Keywords :
~Abstract

Fv)
RCSL : 44 - RT 740

Avuthor : A.P. Ravn
Edited : September 1973

MUSITL

RC 3600 MUS System Software, Programming Language.

Syntax Rules for MUSIL language. Description of standard
procedures. Explanation of /O handling. '

1

R

j CONTENTS PAGE
PROGRAMS R D R R R R
CONSTANT DEFINITIONS ...tiiiiirtinereceeccccececaceanans 2
DATA TYPE DEFINITIONS .. iiiiiiiiiiiitieeenreecerececncnnnns 3
SCALAR TYPES. ceitiniieerseoresacsocosocasescscaconsecsconcans 4
RECORD TYPES. . itreteiineetenencnseoeosooassasocscaccsonnsaces 5
FILE TYPES . cieitenirieecnooaneoeocnaosoasosacacencoccacansaane 6
DECLARATIONS AND DENOTATIONS OF VARIABLES 7

Entire Variables....ooviiieriiinieeinniiieeeeaneenanns 7

~ Component Variablescvitiiriiiieeiinnnenrennennas 7
Field Designators....cceeeeeeeeeeeeeeeeeeecneenceennenns 7

Current File Componentscovvvueiensenncsonccnncess 7

STATEMENTS i ittiiiiiiiititienroneescsossoeasscccnscnccnnann 8

Simple Statements......coeerreiiiiiiiiiierracnncannnncss 9

Assignment Statementsceeeeeireencennercancanocann- 9

Procedure Statementscccceeieeeceencconcccocoaceans 9

Goto Statementsvieeieerienernnnenneescnsssocssnens 10

Structured Statementsoeieeeeenninreecnnnonncaaans 10

Compound Statementscovoveveocnrorcnocnsensacans 10

Conditional Statementsc.cveieeeeinnneneneannes 10

P If Statementscvireiiineiennnesnnnenecncncnnnns 10
~ Repetitive Statementsceeevviiviivneenecensns 11
While Statements eescescscaaasesans 11

Repeat Statementsccceeeeerennnnnnnenenecaens .. 1n

EXPRESSIONS ..t iiiiirieeeenenenccncneaccccsncanenes 12
OPERATORS £ it iiiiiiteeerereneceonseesconesasecsoncnconnannes 13

Monadic Operatorscciviiiiiiinninnnnninnnn. ... 13

Adding Operatorscceeverecessecnsnconconsnsnsnss 13

 Multiplying Operatorseeeeeeeeeececcesesssacssscns 13

Relational Operatorscevveieeeinnneneeeeecennnnen. 14

Function Designatorseeeeeeveeneeccnccocccanaes 14
-~ PROCEDURE DECLARATIONS ... ccuieeeeeevecncacccnoncsanans 15

{

CONTENTS PAGE

I/O HANDLING tteceseesesasesesesscesesasnasennas 17
ZONES covteeeeesnnoncnsecasssssassossacacssasecssaonses 17
Identification of Documentsccveeereccnsncscoansans 19
Handling of Exeptions ...ceeeevvececoreresnononconnsans 20
Record StructUre cu.eeeeveeereecacooccooescosossssnacnes 22
Current Record tesessecesesscscsessasescasans 23

I/O PROCEDURES e evernrreceeoreseassccaccsscsscccsscancenes 26

Basic Procedures
Transfer coeeeeeeeecccecoscnnss tesescsececrscsssssnsase 26
Waittransfer ..coeeveeacsnenn teetcesesccasacscnsessnnas 26
Repeatshare........co0uenes. tresessescscescsanesasoens 26
Inblocksevieeerinneiannininnnns chessescecsssencseanas 26
Outblock cvivvveeenn... cresseaces ceecsesesseseasesenss 27
Initialisation Procedures
Open.ceeeeeneonaceesnne tecesessssessanns cecsscesensen 27
Waitzone cv.vvvvrverncncacncaacans eseseceses creecees 27
Close vovveernesneeceeneeannaans cresecsessescsssanans 28
Setposition Ceceescasacaes teceacecscsasseracsens 28
Record Procedures
Getrec covevevenennonasees ceennns cecsscsaccssanesnens 28
T £ .. 29
Character 1/0O Procedures
Inchar coviviinieennnienns. tecessseccsecsacencoaos 30
Outchar c.ivvieiieiiernceeeceanss ceesscscoscsnasesns 30
Outtext caseccsses cecenvanes cesoocnnsues 30

STRING MANIPULATIONiiviiveesceencoccccsosccansannons 31
Move teeccsccescesanas cerescssscccscssccsss 31
Convert tecscssscecccesessenseanes coseccscasens 31
Translate tecseeccccssssscsccsssses < 74

Insert ..ueeeevenennnns teseececesesssescns cevcsccseess 32

TN

CONTENTS PAGE
CONVERSION PROCEDURES . .oveveerececcacococesssesscncananes 33
Bindec covvvverineeiensossesocecceconsasocscoossnsonnes 33
Dechin. ueeeeeeeeveorececennsconsoscoscssccsscaannnoas 33
OPERATOR COMMUNICATION L. ..iviieereinececensvesososnscnns 33
OPMESS «ovvesseeseesescnsonsasassocssossessescsnsaseane 33
OPStOtUS v veveeevecusrosssnssssscassossvescsssansassane 34
OPiN cieivieereoseeasecsecsescceoacsscssccaccscssscean: 34
OPWAIE o iceineeesveseesessssecasssacsscssoscssasesncss 34
o~ Optest cvveeeeearenecssssncasecessssoosssscscssssossens 34
~
~~

PROGRAMS
A program has the form of a procedure declaration without heading
<program> ::= <constant definition part> <type definition part>
<variable declaration part>

< Procedure declaration part> <statement part>

The constant definition part contains all constant synonym definitions.
<constant definition part> ::= <empty> |

const <constant definition> {, <constant definition> J *,

The type definition part contains all type definitions
<type definition part> ::= <empty> |

type <type definition> f; <type definition>} ¥,

The variable declaration part contains all variable declarations
<variable declaration> := <emp1’y>!

var <variable declarofion>{; <vdriable declaration>} *,

The procedure declaration part contains all procedure declarations
<procedure declaration part> ::=

{<procedure declaration> ;3

The statement part specifies the algorithmic actions to be executed upon

an activation of the procedure by a procedure statement.

<statement part> ::= <compound statement>

(cf. p10).

IDENTIFIERS

Identifiers serve to denote constants, types, variables, and procedures.
<identifier> ::= <letter> { <letter>! <digit>}"
COMMENTS

The construct

!<any sequence of symbolts not containing "{">!

may be inserted at any place.

page 1

el

page 2

CONSTANT DEFINITIONS

A constant definition introduces an identifier as a synonym to a constant.

<unsigned constant> ::= <number> | 1<character>® * L4 <number>® #
<constant> ::= <unsigned constant> | <sign> <number>
<constant definition> ::= <identifier> = <constant>
<character> ::= <graphic> | <<number>>
A characterstring surrounded by ...’

is packed in ASCII alphabet. Char values less than 32]0 are ignored.

Any string is terminated by a zero bytevalue.
The notation <<number>> denotes an 8 bit binary representation of a non-

graphic or graphic character.

The construct # <number> ...#is used to pack a number of bytevalues which

should be used for a table. E.g.

dtab = # 1 8377
2 81777
3 8077
4 8007
5 8000 #
Examples:
1<10>error’ "name <25>" #1 2 3 | finis table . #

The decimal notation is used for numbers, which are the constants of the

data types integer.

In <number> ' <number> the first number is treated as radix for the second number.

<number> ::= <integer>I<integer> ' <integer>
<integer> ::= <digit>®
Ssign> =+ | —

Examples:

1 100 2'100 817777

-~ DATA TYPE DEFINITIONS

A data type determines the set of values which variables of that type may

‘assume and associates an identifier with the type.

In the case of structured types, it also defines their structuring method.

<type> ::= <scalar type> | <record type> |
<file tvpe> | <type identifier>

<type identifier> ::= <identifier>

<type definition> ::= <identifier> = <type>

Examples:
—

line = string (20)

pline = record
I: line,
12: line,
13: line
end

in = file
'MTO , 14, 1, 600,FB
of pline,

page 3

page 4

— SCALAR TYPES

The scalar types may be one of two standard types.
integer which denotes a 15 bit signed binary value type.

string (<number>) which denotes a string of <number> 8 bit bytes.

PN

page 5

RECORD TYPES

A record type is a structure consisting of a fixed number of components,
possibly of different types. The record type definition specifies for each
component, called field, its type and an identifier which denotes it. The

scope of these so called field identifiers is the record definition itself, and

they are also acessible within a field designator referring to a record

variable of this type.

<record type> ::= record <field list> end

<field list> ::= <fixed part>

<fixed part> ::= <record secﬁon>£; <record secﬁon>} *

<record section> ::= <field identifier> [, <field identifier>} *: <field type>
<field type> ::= <type> from <number>

<type> can only be of scalar type string(<number>).

The suffix 'from <number> is used to force the field to start at byte <number>

of the record. The bytes are numbered 1, 2, 3

A field may not start beyond position 255.

A record section with a <field type> containing from, can only contain one

fieldidentifier. (Otherwise the fieldidentifiers would be synonymous).

Examples:

record

ccw: string (]);
line: string (132)

end

—

record

totalrec: string (80);
col 10: string (1) from 10

end.
—

7

AN

page 6

FILE TYPES

Defines a file and the associated file records.

<file type> ::= file

<device>, <kind>, <buffers>

, <blocklength> [, <recformct>} (])

<file options>

of <filerecordtype>
<file options> ::= { ;<giveup opfion>} (]) {;<conversion>} (])
<giveup option> ::= giveup <action>, <mask>
<conversion> ::= conv <table>
<filerecordtype> ::= <record>| <scalartype> ; NOTE only string types allowed

The entries between file and of forms port of the file descriptor (zone).
See i/o handling. ‘

<device> ::= " {<characfer>} g" Device driver process name.
<kind> ::= <number> Kind for handling of device.
<buffers> ::= <number> The number of buffers used for
the file.
<blocklength> ::= <number> The buffer size of each buffer.
<recformat> ::= ZU' F) V} [B} (]) The format of the records.
<action> ::= <procedure identifier> Exception handling procedure
<mask> ::= <number> User bits of status word.
<table> ::= <string identifier> Conversion table.

page 7

DECLARATIONS AND DENOTATIONS OF VARIABLES

Varioble declarations consist of a list of identifiers denoting the new variables,

followed by their type.

<variable declaration> ::= <identifier> {,<idenfifier>} *: <type>

Denotations of variables either denote an entire variable or a component

of a variable.

<variable> ::= <entire variable> | <component variable>

Entire Variables

An entire variable is denoted by its identifier.

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

Examples:

a XXX

Component Variables

A component of a variable is denoted by the denotation for the variable
followed by a selector specifying the component. The form of the selector

depends on the structuring type of the variable.

<component variable> ::= <current file component> | <field designator>

Field Designators

A component of a record variable is denoted by the denotation of the record

variable followed by the field identifier of the component.

<field designator> ::= <record variable>. <field identifier>
<record variable> ::= <variable>
<field identifier> ::= <identifier>

Examples:

u.realpart in?.ccw

v.realpart

page 8

Current File Components

At any time, only the one component determined by the current file position

(or file pointer) is directly accessible.

If a file variable is used without? (the file record indicator) it refers to the

file descriptor record. See i/o-handling.

Example

in?

7~

page 9

STATEMENTS

Statements denote algorithmic actions, and are said to be executable.

<statement> ::= <simple statement> | <structured statement>

Simple Statements

A simple statement is a statement of which no part constitutes another

statement.

<simple statement> ::= <assignment statement> |

<procedure statement> | <goto statement>

Assignment Statements

The assignment statement serves to replace the current value of a variable
by a new value indicated by an expression. The assignment operator symbol

is: := ,pronounced as "becomes".

<assignment statement> ::= <variable> := <expression>
The variable and the expression must be of identical type.

Procedure Statements

A procedure statement serves to execute the procedure denoted by the procedure

identifier. The procedure statement may contain a list of actual parameters

which are substituted in place of their corresponding formal parameters defined

in the procedure declaration. The correspondence is established by the positions
of the parameters in the lists of actual and formal parameters respectively.

There exist two kinds of parameters: variable-, constantparameters.

In the case of variable parameters, the actual parameter must be a variable.

If it is a varicble denoting a component of a structured variable, the selector
is evaluated when the substitution tckes place, i.e. before the execution of
the procedure. If the paorameter is a constant parameter, then the corresponding

actual parameter must be an expression.

<procedure statement> ::= <procedure identifier> |
<procedure identifier> (<actual parameter>
{,<actuc| parameter> | *)

<procedure identifier> ::= <identifier>

<actual parameter> ::= <expression> | <variable>

S

s

page 10

Goto Sfofemenfs

A goto statement serves to indicate that further processing should continue
at another part of the program text, namely at the place of the label.
Labels can be placed in front of statements being part of a compound

statement.

<goto statement> ::= goto <label>
<label> ::= <integer>

Structured Statements

Structured statements are constructs composed of other statements which have
to be executed either in sequence (compound statement), conditionally

(conditional statements), or repeatedly (repetitive statement).

Compound Statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. Each statement may

be preceded by a label which can be referenced by a goto statement

<compound statement> ::=

begin <component statement> {; <component statemenf>} * end
<component statement> ::=

<statement> | <label definition> <statement>

<label definition> ::= <label>:

Example:

begin z:= x, x:= vy, y:=z end

Conditional Statements

A conditional statement selects for execution a single one of its component

statements.

<conditional statement> ::= <if statement>

If Statements

The if statement specifies that a statemint be executed only if a certain

condition is true . If it is false, then no statement is to be executed.

<if statement> ::= if <expression> then <statement>

The expression between the symbols if and then must be relational.

Repetitive Statements

Repetitive statements specify that certain statements are to be executed

repeatedly.

<repetitive statement> ::= <while statement> |

<repeat statement>

While Statements

<while statement> ::= while <expression> do <statement>

The expression controlling repetition must be relational. The statement is
repeatedly executed until the expression becomes false. If its value is false

at the beginning, the statement is not executed at all.

Repeat Statements

<repeat statement> ::=
repeat <stotement>{; <statemenf>}* until <expression>

The expression controlling repetition must be relational. The sequence of
statements between the symbols repeat and until is repeatedly (and at least

once) executed until the expression becomes true .

page 11

A~

page 12

EXPRESSIONS

Expression are constructs denoting rules of computation for obtaining values
of variables and generating new values by the application of operators.
Expressions consist of operands, i.e. variables and constants, operators, and

functions.

The rules of composition specify operator precendences according to four classes

of operators. The monadic have the highest precedence, followed by the so-called
multiplying operators, then the so-called adding operators, and finally,

with the lowest precedence, the relational operators. Sequences of operators

of the same procedence are executed from left to right. These rules of precedence

are reflected by the following syntax:

<factor> ::= <variable> | <unsigned constant> | <function designator> |
<monadic operator> <variable> |
(Ksimple expression>)
<term> ::= <factor> | <term> <multiplying operator> <factor>
<simple expression> ::= <term> |
<simple expression> <adding operator> <term> |
<adding operator> <term>
<expression> ::= <simple expression> | .
<simple expression> <relational operator>

<simple expression>

Examples:
Factors: x byte int.ccw translate (x,ctab)
15
(x+y+z)
Terms X *y
i/(1 - 1)
Simple expressions: xty
-x
P
<

Expressions: p = q

OPERATORS.

Monadic operators

<monadic operator> ::= byte | word

page 13

operator operation type of operands type of result
byte take first byte string integer
word take first and

second byte

Adding Operators

<adding operator> ::= + | ~ | shift | extract | and

operator operation type of operands type of result
+ addition integer integer
- - subtraction integer integer
shift first operand
logical shift left integer teqer
second operand 9 9
positions
extract first operand mask out
second operand integer integer
positions from right .
and integer integer

When used as operators with one operand only, - denotes sign inversion, and

+ denotes the identity operation.

Multiplying Operators

<multiplying operator> =+ | /

operator operation type of operands type of result
* multiplication integer integer
/ division integer integer

page 14

~ Relational Operators
<relational operator> ::= =1 <> | < | <=>=>
operator type of operands
= <>
< > any scalar type
<= >=

Function Designators

A function designator specifies the activation of a function. It consists of the

identifier designating the function and a list of actual parameters. The parameters

a8 are variables, expressions, procedures, and functions, and are substituted for
the corresponding formal parameters
<function designator> ::=
<fuction identifier> (<actual parameter> {, <actual pcramefer>} *)
<function identifier> ::= <identifier>
:/}\>

_~—

page 15

PROCEDURE DECLARATIONS

Procedure declarations serve to define parts of programs and to associate
identifiers with them so that they can be activated by procedure statements.
A procedure declaration consists of the following parts:

<procedure declaration> ::=

<procedure heading> <statement part>

The procedure heading specifies the identifier naming the procedure and the
formal parameter identifiers (if any). The parameters are either constant- or

variable.

<procedure heading> ::= procedure <identifier> ,

Example:

procedure getnext

! iz is a file type, which describes a magnetic tape. The blocks have
been organized: |
byte 1 - 5 skipped

byte 6 - 7 variables block blengfh

remaining records of variable length:
byte 1 length of record -1

byte 2 ccw

remaining printline

The procedure places, ccw.of next record in global variable ccwx:

string (1) and makes the file record z point at the printline _’_

1: if z.zrem = 0 then
begin
inblock (z);
getrec (z,5); ! skip 5 bytes .
getrec (z,2), ! get length !
z.zrem := word 27‘; goto 1

end.
——

page 16

getrec (z,]); _’_ recsize !
z.zleng := byte zf,
getrec (z, 1); cewx = z#,

getrec (z, z.zleng ~ 1)

end,
4

pagel7

I/O-HANDLING

ZONES

All 1/O-procedures work on files, and in order to understand the function in

detail, some knowledge of the description of a file (a zone) is needed.

A zone contains 3 parts: Zone descriptor, which contains information about the

document and the device, that holds it. Share descriptiors which holds information

about the current activities in the buffers which they describe. A buffer area which

physically contains the descriptors and associated buffers.

Zone descriptor:

docname

N document description
kind
operation
giveupmask
giveupaddr exception handling
blockcount
filecount position of document
bufaddress
bufsize buffer information
used share
sharelength share information
recformat
reclength record information
firstbyte
topbyte current block and record
remaining bytes
auxiliary work locations for utility procedures
conv table conversion table oddress

page 18

Zone descriptor fields available in MUSIL:

z.zmode : mode of operation
z.zmask : giveup mask for device errors
z.zfile : file position of document
z.zblock : block position of document
z.zfirst : pointer (byteaddress) of first

byte of current record
z.zstop : pointer to first byte after

current record
z.zlength : fength (in bytes) of current record
z.zrem : length (in bytes) of remaining

part of current block

z.2z0 : user status of file in giveup procedure

Full organization of a file:

r? message share T

DOC

—

EXCEPT state

— e e - top of bufferd

B B N R i

—————— J message
buffer o~ W =, T - T
Bsize | { |mF— — ——
- — — — - state
used share o--—j -to;oi’_bu—ﬁfe:.

) S

Ssize

record
description

auxiliary Buffer for Bsize

S 2 .‘J{— Ssize

Buffer for
S1 J=Ssize

zone with 2 buffers

7

IDENTIFICATION OF A DOCUMENT

page 19

The term document is used to describe a medium, which is able to contain

data, and which is mounted on a device.

A document is described inside a zone descriptor by:

document name, the process name of the driver, which controls the device.

operation, that is the operation code, which should be used in any transput

operation sent as message to the driver process.

device kind, a word, which contains some bits, that describe how transfer

errors may be handled.

At present, the following bits of kind are defined:

b15: char

b14: blocked
b13: positionable
b12: repeatable

set if the device is character
oriented, transfers information

in terms of characters

set if a full block should be

transferred as a unit
set if positioning has any effect.

set if an operation may be repeated.

The remaining bits of the kind word should be zero.

Description of mode and kind applicable to standard driver processes, are found

as part of their description.

Examples of kinds:

Magnetic Tape Station
Line Printer

Card Reader

Teletype

Paper Tape Punch
Paper Tape Reader

1110
0001 or 0011
0010
0001
0001
0001

N

page 20

HANDLING OF EXCEPTIONS

In the input/output procedures the user may select certain statusbits, which if
set in the answer to a message to the driver, will transfer control to user

code. These user facilities are described in the zone descriptor by:
giveupmask , giveupaddress.

When the basic procedure wait transfer receives an answer, the statusword

is augmented with the following bits:

b15: repeaterror is set if the standard repetition of
’ operations has given negative results.
b13: rejected is set if a control operation with
command = 102 is checked.
b12: position error is set, if kind (13) is one and filecount
or blockcount of anseer does not match
with the corresponding updated values

of the zone descriptor.

This combined driver and standard procedure status is compared with the giveupmask.

Common ones from the users status.

Remaining status bits are given to the standard check actions, which executes

the following recovery work:

b0: disconnected the error is hard.

bl: off-line the error is hard.

b2: device busy the operation is repeated.

b3: - - 1 ignored.

b4: - - 2 ignored.

b5: - - 3 ignored.

bé: illegal the error is hard.

b7: eof the error is hard.

b8: block error the error is hard.

b9: data_late if kind (12) is 1 then operation
is repeated, otherwise the error
is hard.

b10: parity error if kind (12) the operation is

repeated else it is a hard error.

pege 21

bltl: end medium if bytecount of answer is nonzero
and operation is input no action is

taken, otherwise the error is hard.

b12: position error hard error.
b13: rejected hard error.
b14: timer hard error
b15: repeaterror hard error.

A hard error results in a breakprocess call, with errorcode = 5.

An operation is repeated a maximum of 5 times. If it is still erroneous, it is

classified as having a repeat error. The cause of the unsuccessful repeats is included

in user status.

When remaining bits have been freated by the standard actions, control is given to

giveupprocedure if users bits are different from zero. Otherwise a normal return from

wait_transfer takes place.

page 22

RECORD STRUCTURE

There exist three formats for records. For each type, the records may be either

blocked or unblocked.

Record type: Format code: Blocked:
Unformatted U

Fixed length F

Variable length \Y B

Unformatted

A block contains sharelength bytes or less. In output a full block is transferred
to the device regardless of contents. By input as many bytes as requested are
delivered from the block. If the records are blocked, change of blocks takes

place, when the remaining bytes of the zone cover the demand insuffiently.

Fixed length

Every block containing one or more records (blocked) of fixed length.
The length is given by the zoneparameter reclength. If sharelength is not an

integral multiple of recordlength, the last bytes of input are skipped.

Variable length

The block contains, in twe block descriptor BDW, the length of the total block.

- sharelength =
BDW recordarea E]
[blocklength -

A BDW contains no further information:

blockléngth 0 0
4 bytes

The recordarea may contain one (unblocked) or more records. Each record
is headed by a 4 byte record descriptor RDW.

RDW recordg | RDW record,
— reclength4

A RDW contains the recordlength and a segmentcode, which always is zero.

recleng.fh 0 0
4 bytes

CURRENT RECORD

Changes in zone descriptor fields after activation of standard procedures:

Initialization procedures:

open, waitzone, setposition

D

2)

close:

output (zmode extract 2 = 3)

buffer:

’
ztop:
[zrem

zfirst is undefined

zlength is undefined for U and V formats

input or sense (zmode extract 2 <> 3)

by

ztop

zrem = 0

zfirst is undefined

zlength is undefined for U and V formats.

all pointers are undefined.

all values are undefined .

Basic 1/O-procedures

transfer :

waittransfer,

all pointers are undefined.

all valuves are undefined.

giveup procedure:

buffer:

“

+

page 23

‘ L} .
ztop zfirst (last byte which should have been
input or output)

-~ zrem (bytes input or output)

zlength undefined

N

inblock

outblock

[y

ztop

 zrem

zfirst undef.ined

zlength undefined

r—.‘&-v

ztop

— zrem

zfirst undefined

zlength undefined

Record 1/O procedures.

getrec (z,length)

After call:

Before call
ztop
— ¥ . |
+zrem ~
length =
zlength kzrem -
=~; l'lll’l ¥y r/rl—rl" Hral {

current rec

f

zfirst

f

ztop

page 24

If length is greater than zrem different things may happen for the various formats.

putrec (z,length)

Before call:

j=
e R Y VYT W—

f

ztop

zZrem

ke

After call:

length=
zlength = zrem -
fpota —— e 1 =4
" current rec.
¢ 4
zfirst ztop
Character 1/0O
inchar , outchar = zrem —i
S + ._.‘
ztop
Fi+ zrem -
)——mwwu”&#re* - —
T ztop
zfirst
backspace:
}— zrem -]
+ - sk —
T t
ztop
zfirst
- !— . zrem -
* <
ztop
zfirst

page 25


~~~

page 26

I/O-PROCEDURES

Basic procedures

procedure TRANSFER (f: file , const length, operation : integer) ,

Initiates a transfer operation described by ‘operation' in used share of zone.
The bytecount of the message is put to length. Sharestate of used share points

to the buffer used for the message. Used share is updated to next share.

NB: starttransfer does not check that state of used share is free (zero). If the

state is not free, the buffer address saved in state is lost permanently.

procedure WAITTRANSFER (f : file) ;

Examines used share of zone. If state is free (zero) the procedure returns immediately,

otherwise it waits for answer to the message placed in buffer identical with state and

sets state to free.

When the answer arrives the status is checked as described in HANDLING OF EXCEPTIONS
f.ztop is adjusted to point at firstaddress of share. f.zrem is adjusted to bytecount

of answer.
procedure  REPEATSHARE (f : file)
NB: This procedure must not be called outside the giveup procedure of f.

It returns to waittransfer after having restarted the operation, which was rejected.

procedure  INBLOCK (f : file) ,

Administrates the basic cyclic buffering strategy for input procedures inchar and getrec.

The algorithm used is:

while f.zused.state = free i"_’

transfer (f, f.zsharelength, f.zmode) ;
waittransfer (f) ;

I n-1 shares are busy and one is ready with input'




page 27

procedure OUTBLOCK (F : file) ;

Administrates the basic cyclic buffering strategy for output procedures, outchar and putrec.

transfer (f, f.zsharelength f.zrem, f.zmode) ,
waittransfer (f); :

Un~1 shares may be busy with output, and one is ready with input!

Initialization procedures

procedure OPEN (fF : Fi_leg; const operation : integer) ;

The operation is placed in the modeword of zonedescriptor.
Then remaining bytes of zone is initialized to zero if command = 1 or else to

sharelength. Top of zone points to first of used share.

To initialize the transfers a control message is sent to the process specified by

zname. This message includes reservation and set up of conversion table address.
procedure WAITZONE (f : file) ;

Terminates the current activities of the zone as follows:

If command is output, a last block is output.

Then all pending transfers are waited for. Either by means of wait
transfer if command is output, o:: else by means of waitanswer (no

checking takes place).

if f.zmode extract 2 = 3 then. outblock (f);
0: ;f;p:= f.zused,
1: share:= f.zused:= f.zused.nexishare,

if share.state <> free then

begin

if share.operation extract 2 = 3 then

begin waittransfer (f), goto 0 end

else waitanswer (share.s’rafe);

end,

——f

if share <> stop then goto 1,



,, ™

page 28

procedure CLOSE (f : file . constrelease : integer),

First the zone is set neutral by waitzone. Then if command is output a termination,
and if release is nonzero a release reservation, and disconnect message is sent to

the process specified by the zonename.
Finally operation of zone is set to zero, and the file is set neutral by waitzone.
procedure SETPOSITION (f : f_il_g_; const file, block : integer);

Waits for all pending transfers to the zone as described in procedure waitzone.

Then it sends a position message, which contains the new file- and blockcount.

Record Procedures:

procedure GETREC (f : file . var bytes : integer),

Moakes the next record available in inputbuffer. Depending on recordformat the

actions are:

Unformatted unblocked:

inblock (f);
f.zlength:= bytes:= f.zrem,

goto 10,

Fixed length unblocked:

inblock (f);
bytes := f.zlength,
. recordlength is used!

goto 10,

Unformatted blocked:

f.zlength := bytes,

Fixed length blocked:

bytes := f.zlength,
if f.zrem < b_ytes then inblock (f);
goto 10,



Variable length blocked:

if f.zrem > 0 then goto 5,

Variable length unblocked:
inblock (f)

f.zrem:= word f? -4;

f.ztop:= f.ztop +4

5: f.zlength:= bytes:= word f -4,
f.zrem:= f.zrem -4,
f.ztop:= f.ztop +4;

10: f.zfirst:= f.ztop,
f.ztop:= f.ztop + bytes,

f.zrem:= f.zrem -bytes,
procedure PUTREC (f : file , const bytes : integer),

Makes space for a record in the output buffer. Depending on recordformat

the actions are:

Fixed length unblocked:

bytes:= f.zlength,

Unformatted unblocked:

outblock (f);
if f.zrem < bytes then
breakprocess (cur,4),
update top of zone and rem_of zone,

return;

Fixed length blocked:
bytes:= f.zlength

Unformatted blocked:

if f.zrem <bytes then outblock (f);
if f.zrem < bytes then
bredkprocess (cur,4);

update top_of zone and rem_of_zone,

return;

page 29



s

Variable length blocked:

if f.zrem < bytes + 4 then
outblock (f);
goto O,

Variable length unblocked:

outblock (f);
0: if f.zrem <bytes + 4 then

breakprocess (cur,4);

ft. (0:1):= bytes + 4,

fr. (2:3):= 0;

f.ztop:= f.ztop + 4;

f.zrem:= f.zrem —4;

update top_of zone_and_rem_of zone,

f.zused.first (0:1):= f,zsharelength - f.zrem;

f.zused.first (2:3):= 0,

! block descriptor word inserted!

return;

procedure update_top_of zone_and rem_of_zone,
begin
f.zfirst:= f.ztop,
f.zlength:= bytes,
f.ztop:= f.ztop + byteé;
f.zrem:= f.zrem - bytes,

end,
4

Character 1/O Procedures

procedure INCHAR (f : file ., var bytevalue : integer),
Fetches the next 8 bit bytevalue from f.

procedure OUTCHAR (f : file . const bytevalue : integer),

Outputs the 8 bit of bytevalue on f.

procedure OUTTEXT (f : file ; const text : string (+)) ;

Outputs the text, which should be terminated by a zero byte, on f.

page 30




N

page 31

STRING MANIPULATION

For all of the following procedures it should be noted that any explicity given
lengths or indices are not checked for validity by the system. This may have

unpredictable results in case of errors.

procedure MOVE (consL from : string (*); fromdex : integer,
varto : string (*), todec : integer,

const bytes : integer),

tbytes' bytes are moved from string ‘from' with an offset of ‘fromdex' to string 'to'

with offset 'todex'.

fromdex length
- ..z.... -
.fl"om: :7 = ‘Ir“"l“{a' T i‘“"-‘r‘r!"i‘v‘"g '{

todex
- -
fo: — At AAAAA A

.

NB: MOVE always moves to a full word. This means, that if to + todex + length is
an odd address, the following byte will be destroyed.

procedure CONVERT {const from : string (*); var to : string (*),
const table : string () , length: integer),

The number of bytes indicated by 'length' is moved from string 'from' to string "to'.

Every byte moved, is converted by tablelockup in ‘table’.

The table should contain as many entries, normally 256, as there is in the range of

the possible bytevalues.

NB: In connection with files, the facility of conversion during in- or output should
be used instead of a programmed call of CONVERT.



page 32

7~~~ procedure TRANSLATE (const byte: string(*); var value: string (*);
const table : string (*));

Converts a single byte from 'byte' through an associative search in 'table', and
g Y Y g

delivers the result in 'value'

The table should be organized as:

table = # arg 1 valuel

arg 2 value2

0 0
~~ 0 default value #’:

procedure insert (const val : iateger ., var to : string (=),

const index : integer),

The less significant 8 bit of val is regarded as a bytevalue, and inserted in string 'to' ,
at position 1 + 'index'.
index

- -

to:



V)

N

page 33

CONVERSION PROCEDURES

These procedures makes conversion between 16 bit binary integer format and ASCII-

characters string format.
procedure BINDEC (const value : integer , var fext : string ),

The binary value 'value' is converted to 5 decimal digits, which are placed in

‘text' from the first byte position onwards.

NB: The string parameter should have a minimal length of 5 bytes.

procedure DECBIN (const text : string () , var value : integer),

The text is supposed to contain a sequence of ASCIl numeric characters, which represent
an unsigned decimal number. This number is delivered as a 16 bit binary value in

tvalue'.

NB: The conversicn will siop at the first non-digit. If no digits are present the

value will be zero.
NB: A sign character + or - is regarded as a non digit.

NB: No check for overflow is made during conversion.

OPERATOR COMMUNICATION

When a program is compiled, a specific process is appointed, operaior, for the program.

This process is able to output and input strings of ASCII characters. (No parity is
provided in input).

Standard operator communication procedures, toke care of the actual operations.
OUTPUT:
procedure OPMESS (const text : string (*));

This procedure will output the text in string 'text' on the operator device.



page 34
The string is terminated by a 0 (NULL) character or a maximal length of 53 bytes.

NB: If the string is less than 64 bytes, and it does not terminate with a NULL character,

some irrelevant text may be output, but this does not destroy anything.

procedure OPSTATUS (const pattern : integer, text : string (*));

This procedure is designed to ease output of status messages, but may be used for
other purposes. The 'text’ should contain a number of messages separated by a single
NULL-character. The 'pattern’ is used to select the parts which should be output. A 1 in

the corresponding bit-position indicates inclusion. A 0 indicates exclusion.
NB: Two adjecent NULL-characters will be interpreted as an empty string.

INPUT:

procedure  OPIN (var text: string (*));

First time this procedure is called, a message is sent to the operator process, indicating
that a line may be input to 'text'. The program does not stop to wait for the input.
If the procedure is called in the following, without intervening calls of OPWAIT, this

has no effects.

NB: The 'text' should be at least 64 bytes long, as this number of characters may be input.

procedure  OPWAIT (var length : integer),

If OPIN has not been called, the program will continue. If OPIN has been called,
it will suspend program execution until a text has been input. The ‘'length’ parameter

indicates how many bytes, that were delivered in the 'text' parameter of OPIN.

function OPTEST : integer,

If OPIN has been called, and a text has been input, this function will take a

nonzero value. Otherwise the value will be zero.




page 35
Example of use:

A generalized operatorcommunication procedure, which display a given text, a given

number and modifies it depending on the answer is:

const

questions = "QI<K0>Q2<0> ... <0>Q16"

LR ]

var

“opl,pno, paramvalue : integer,
opstring : string (64),

;;rocedure opcom,
opstatus (1 shift (16-pno), quesﬁons);
bindec (paramvalue,opstring). opmess (opstring),
opin(opstring), opwait (opl),
decbin(opstring ,opl),
paramvalue:= opl

end.
14

—,



