

A
RCSL : 44 -RT - 759
l Date : Rev. September 1974
Authors: Torkild Glaven /
I AP Ravn
MUS - SYSTEM
: INTRODUCTION
(part one of two)
Keywords: Multiprogrammering, monitor, devicehandling, i/o-utility,

record i/o, operator communication, operating system.
Abstract: This Manual is intended as an introduction guide to the Multi-

programmering Utility System,

If actual programming is to be performed, MUS programmers

Guide should be consulted to get formats and examples of use.

This manual obsoletes RCSL 44 - RT - 614, April 1973,

CONTENTS PAGE
SYSTEM OVERVIEW cesenes ceecesescascarenresanses weoo 11 =15
System Configuration +u.uueeeeeeeesenieesonsnoenooaaans 1.1
Notation and Terminology ..evveeeiiieeiienenrienin.en. 1.3
MONITOR L vvvttereeeeeesssesssosoecoarasssanessaansaasns 2.1-2.7
DRIVER PROCESSES e PO 3.1-3.3
I/O HANDLING e e e st et aaeees 4,1 -4.10
Positioning Proceduresco0vueunen. ceeteseserieanee 4.6
Transfer Proceduresvvveuevreiernereneenenneneoass 4.6
Record Formats Ce e ceceeaneeseinesaeeaereeoeanns 4.8
OPERATOR COMMUNICATION eeesseseesrateansonenane 5.1
OPERATING SYSTEM 4 iveerereinnnnercesasesosesoaceennnans 6.1

1.1

SYSTEM OVERVIEW

The multiprogramming Utility System for DGC NOVA line of computers has the

airﬁ

- to implament parallel processing including interprocess comunication and inter-
rupt processing.

~ give a strong framework for i/o processing, both on character level and on re-
cord oriented level.

- support the user in the running of the system, which includes easy operator com-
munication, and a basic operating system that takes care of the creation, removal

of processes and loading or delection of programs to core.
These goals have been reached by creation of the following software modules:

1.1 A multiprogramming monitor (system supervisor), the design of which rests heavi-

ly on the proven design of the RC 4000 multiprogramming system.

1.2 Driver programs for common devices. These lay down the rules which are o be
followed in coding drivers for new devices. These rules are purely a motter of
overall cleanliness, as no real destinction is made between driver programs and

ordinary programs.

1.3 Reentrant i/o procedures designed around the zone concept of RC 4000, which
has shown itself to be a clean and tidy way to describe device peculiarities,

buffering, record formatting and - packing involved in any i/o activity.

1.4 A basic operating system, which caters for program load and deletion, process
creation and removal and start or stop of existing processes. This operating system

can recieve commands from the human operator or from an external device.

SYSTEM CONFIGURATION

The different modules have been fitted together in a manner, which should give as
few logical dependencies as possible and especially eliminate non-hieracial inter-

faces.

Notice that the following versions of the system may be used as subsystems.

A: Monitor alone
B: Monitor and driver processes
C: B and operator communication and basic i/o procedures

D: and/or record handling procedures.

MONITOR

550 words
DRIVER U
PROCESSES S
100 - 200 £
words each R
/ BASIC 1/O P
/ 300 words - _ B 2
op. | Rec. 0
COMM.| 1/0 E
300 w. |[uIs W] _ S
e — ==
OP svs, E
700 w. S

1

.2

1.3

NOTATION AND TERMINOLOGY

address

integer

character

text

descriptor

item

field

An address may be a word address, which is a 15 bit unsigned

integer, corresponding to a physical address in core store. Or

it may be a byteaddress, which is a word address left shifted one
and with a one added in bit 15 if the byte addressed within the
word is to the right.

A computer word consists of 16 bits, numbered from left to right:
BO, BT, B2, B15.

A corﬁpufer word is regarded as two 8 bit bytes. The left one
bitC to bit7 has a even address and the right one bit8 to bitl5
an odd address.

A character is a byte. There exists no common alphabet within

the system; thus there can be no graphic meaning of a byte value.

A text is a sequence of characters. Starting at a byte address and
containing in a left to right packing. A text is terminated by a

Nullcharacter with value zero.

A collection of information, which describes an object, is called
a descriptor. Descriptors are found as part of items and as part of

zZones .

An item is a core area, which is headed by a descriptor, the
first part of which has a standard layout. This ensures that an item
always may be in some chain and possibly also in a queve.The

first words of an item contains the fields:

next: next item in a queue

prev: previous item in a queue

chain: next item in a chain

size: the size of the core area of item

name: (3 words) A text identifying the item.

A field is a displacement, which identifies a piece of information

within a descriptor. Fields are predefined in the system assembler.

chain

gueue

length

size

function

1.4

Notation for a field f of a descriptor d is:

fd
Fields may be used as displacements in assembler code. For
example: if accumulator ac2 contains the address of descriptor
d, the contents of field f of d may be loaded to acO by the
instruction

lda 0, f,2 ; acO:=f.d

(linked linear list). A chain consists of a chain head and a
number of chain elements. The head and each element point
at the next item in the chain, the last element equals zero.
For example:

chain head: first chain.first: last chain.last: O

When the chain is empty chain.head equals zero.

(doubly linked cyclical linear list). A queue consists of one or

more queue elements. One of the elements is the queue head.
A queue element consists of two consecutive words pointing at
the next element in the queue and the previous element in the
queue respectively.
For example:
next.head: first next.first: last next.last: head
prev.head: last prev.first: head prev.last: first
When a queue is empty the head points at itself. When an ele-

ment is not in a queue it normally points at itself.

The term length is used to express the number of bytes contained

in some core areaqa.

The term size is used to express the number of words contained
TE—

in some core area.

A function is a monitor routine executed in disabled mode.

Call of a function is executed by writing its name (the
linkage is defined in the system assembler) E.g. Function

send message (address, name address, buf)

1.5
call: return:
ac0 unchanged
acl address address
ac? name address buf
ac3 link cur

A call is coded as:

Ida 1, words ; acl: = address of message
Ida 2, nome, 2 ; ac2: = name of item
sendmessage

procedure A procedure is a system routine executed in enabled mode.

Call as @n example for functions.
A procedure may also be called with preloaded link register.
E.g. the following routine may be used to fetch consecutive

bytes from an area:

fetchbyte:
Ida 1 abyte ; acl: = byteaddr;
isz abyte ; increment (byteaddr);
dsz count ; if decrement (count) ¥ O then
.getbyte ; begin getbyte (byte,byteaddr);
jmp +1,3 ; return to (link+0)

; end;

; return to (link+1);

2.1

MONITOR

The primary. purpose of the monitor is to implement multiprogramming, that is
simulation of parallel execution of several active programs (processes) on a single
physical processor.

In order to do this, the normal operation is interrupted at regular intervals by a
real time clock device (rtc) . When such_an_interrupt_occurs the monitor gains
control of the processor, and is able to determine which process is to get the

next slice of time for instruction execution.

q— —

As interrupts from devices are intercepted by the monitor, it also in-

cludes interrupt handling functions. Use of this facility give processes the ability
to synchronize with devices. Futhermore this waitinterrupt function is extended
with a software timer, if the device does not interrupt within a given number

of rtc periods.

The need for synchronization also exists within the group of processes, and the
monitor implements this as a facility to exchange fixed amounts of information
between processes in such a way that only one process at a time accesses the

information.

All information about a process, which is needed by the monitor is collected

in a process descriptor .

monitor usage.

description, links to chain and

queues
process name }identification
process state }

process delay period

 dispatch information

priority of process

saved registers, program counter,

and carry
\

communication description interprocess communicatian
J

program_information } start, stop process.

optional words }nof used by monitor

fig. 2.1 Process Descriptor.

2.2

All process descriptors are linked together in a process chain. Those processes
which are running (i.e. competing for the time slices) are also linked into

the running queue. The available slice is always given to the process at the

head of running queue. Insertions into running queue is done in order of
priority (a positive integer). Processes of equal priority are inserted in order of
insertion.

If a process is not running, it may be waiting for an event (synchronizing with
another process), waiting for an interrupt, or stopped.

In all cases of waiting it may be linked to delay queue, if it has specified a
number of delay periods it wants to wait. In case nothing happens, it will be set
running, when this number of timer periods have elapsed. Waiting for interrupt

it is also attached to a device table which determines which device number it

is waiting for,

—b »
V‘unning ¢ ——]
Queue head " LY Ly

>

=
m

froc. chain "

T

Fig. 2.2 Process descriptor organisation

2.3
Process chain: G, D, A, B, E, H, F, C

Processes A, B and C are running, D, E and F are waiting for a delay to
expire, E is also waiting for an interrupt from device |.G and H are stopped,

without delay.

The processes G and H may be waiting for an event , and process E may

be waiting for a general event.

2.4

Notice that the monitor imposes no restrictions on the processes which communi-
cate with devices. Special device handlers do not exist within MUS-monitor.

The term driver process is used to describe a normal process, which is dedicated

to operation of a device. They have been introduced in order to give a logically

clean approach to |/O-handling.

Communication facilities for internal processes are designed with the concepts of

a sender process, which sends a message to a receiver, which in turn returns an

answer.

Messages and answers are fixed amounts of information, placed in special message-
buffers and moved between processes by monitor functions. These buffers are part
of the process and belong to the process, but should not be used directly by it.
This method which takes common information away from the code should ensure,
that programming errors or misunderstandings about the communication proce-

dures to a reasonable degree, should have only local effect.

running queue links

event queue head
buffer chain head

owner chain

auxiliary links

¢ sender link (permanent)

receiver link

fig. 2.3 a Initial no communication state information

AT

TP,/ ./

fig. 2.3 b B waits for a general eveni

Process B is linked out of running queue, as no event is pending,
it is set in state waiting.

‘ lnu ‘ "Bn
mon.ifor LY 11
chain = 4 S
of used
buffers
’
7777/
2994,

fig. 2.3 ¢ A sends a message to B

2.5

First free buffer is loaded with information, and linked to eventqueue of B.

Receiver address is put to B,

n
"“H. B 3
'
; L)
S 7
! /7/.. t?
VR4 ’7
Y4 PR
\ — ———;::“"‘__’, -
\ e e = fpy——
q,/" ,//

T

fig. 2.3 d: A waits for answer (specific event)

Process A is stopped, as no answer to the message has appeared.

2.6

eop o (XX

.
—=1i:
ARRATE B
DEESTY

' fig. 2.3 e: B sends the answer.
The buffer is removed from the eventqueue of B, and is momentarily linked to
the eventqueue of A. As A is waiting for the answer, the buffer is removed
from the eventqueue of A and set into the free buffer pool of A.

List of elementary monitor functions:

wait-interrupt (device, delay), waits for interrupt from device. When the
delay period has expired the process is started unconditionally.

send-messqge (information, receiver-name), copies the information into a
free message buffer and links it to the receiver eveniqueue.

wait-event (information, bufferaddress). If bufferaddress is zero it waits
W ——

for an event (message or answer) to arrive in the eventqueue of the process.
Otherwise bufferaddress should point at a buffer in eventqueue, and the

function waits for arrival of an event after this buffer.

send-answer (information, bufferaddress), puts information into the buffer

addressed and retums it to sender.

wait-agswer (information, bufferaddress), is a special version of wait-event,
which waits for a specified buffer and when it arrives collects the informa-

tion in it and retums it to free buffer pool.

wait (device , delay, bufferaddress) combines the function of waitinterrupt
——

and waitevent.

2.7

Other features of the monitor.

Besides process chain, two further chains are kept by the monitor. Program chain

which chain all program aceas together and Free core chain which contains all

unused core areas.
In this way all of core belongs to a chain, which can be process chain, free
core chain, monitor used buffer chain or the separate free buffer chains of the

processes.

Special attention has been paid in the -implementation to the problem of reentrant
programs. All data areas can be placed as part of the process descriptor, the
address of which may be loaded by d single instruction anywhere in program.

This is a very convenient way to eliminate programmer kept data segment pointers.

3.1

DRIVER PROCESSES

A_driver process is a normal process seen_from_the monitor.

The reasons for introduction of process dedicated to device control are:
- to let more than one process communicate with a device. Without a driver

as interface, this would demand explicit arrangemen s among involved processes.

- to handle devices in a more uniform way. That is introduction of standard

operations, standard status information. Blocking of all input/output, also for

character oriented devices.
- to realise simple conversions of characters directly from input or output to the

device..
The operations may be split info two classes,

1. control operations which does not imply any actual input or output, but which

performs positioning, selects different facilities etc.
2. transput operations which calls for input or output to a core area.

The operations are communicated through messages to the driver process.Regard-
less of the operation the answer received when a message has been treated by

the driver process contains a status word, which describes how the execution went.

| Messages
The formats for messages are:
control; transput:
mode X0 mode Q1
special 1 bytecount
special 2 first byte
special 3 special

Operation is the common term used for the first word. It is split into a 14 bit

mode and a 2 bit basic command.

If b15 is zero, it is a control operation, otherwise a transput. operation. A

transput may be either input, Q = 0 or output, Q = 1.

Modebits of a control operation are used to specify control actions. The follow-

ing actions exist at the moment.

3.2

Reservation: the driver is reserved for exclusive access by the sender process,
—EET

or reservation is released.

Conversion: a conversion table address is set up in the driver process. The
——————i

format of conversion tables is driver dependent. Note that if conversion is
used the driver should be reserved, otherwise one cannot be sure that the

proper conversion table is used. Another process may have specified its own.

Termination: is used to close output logically. E.g. a tapemark may be writ-
I ———

ten on magnetic tape.

Position: specifies the execution of a positioning operation for devices which

can be positioned.
Disconnection: means that device should be set offline if possible.

—

Erasure: is used to delete previous output on magnetic tape for example.

Not all mode-actions may be relevant for a specific driver process.

Modebits of a transput operation are used entirely in driver dependent

fashions.

Special words of messages are used in connection with the modebits.

Bytecount and firstbyte of a transput message defines the core area, which

should be input or output.
Answers

All answers from a driver have a standard fommat:

status

byte count

special 1

|_special 2

3.3

Status is an array of 16 bits, with standard interpretation:

bit: interpretation, if set:
bO: device disconnected
bl: device off-line

b2: device not-ready

b3: device mode 1

b4: device mode 2

b5: device mode 3

bé: illegal message or device reserved by other process
b7: end-of-file

b8: block=-error

b9: data=late

b10: parity-error

b11: end-of-medium

b12; position error

b13: 0

b14. timer error

b15: 0

The status bits b0, b1, b2, b6, b7, b8, b?, b10, b11, b14, are called clean bits.

It means that if they occur, the driver shall return all following transpyi messages

with status = 0 and count = 0,

Bytecount is the number of bytes actually input or output,

Special words may be used to give a document position.

4.1

I/O-HANDLING

The reentrant i/o procedures, which may be included in the MUS system, work

on zones. A zone is a collection of information and associated storage areas

necessary to perform operations on documents (data sets).

A zone contains 3 parts: Zone descriptor, which contains information about the

document and the device, that holds it. Share descriptors which holds information

about the current activities in the buffers which they describe. A buffer area which

physically contains the descriptors and associated buffers.

remaining bytes

auxiliary work locations for utility procedures

docname

document description
kind
operation
giveupmask
giveupaddr exeption handling
blockcount - ”
filecount position of document
used share))
sharelength share information
recformat record information
reclength
firstbyte
fopby);e } current block and record

conv table

conversion table address

fig. 4.1 zone descriptor.

4.2

S: |operation
count
address
special

message words to driver process

next share

link to next share, shares are linked cycli-

state

describes current use cally

first address

e —-

buffer description.

fig. 4.2 Share desriptor

Fu'll organisation:

doc

:
B i R —

POAITION

wseol shav a—
Ssiu

rseovol
descriphon

Qux! Wq,nj
ophenal

fig. 4.3:
zone with 2 shares

messaqe 34

next shove, o~

stode

message

rext shore o

stode.

[

U —3

Bulper Jor _
S 2 Seie

Buler f'or
S 4 Ssire

po>:‘ Lon {

g used shove m%—-—-———J

Yecord ¥
blecis

If a zone is to be set up in assembler code, the following parts

should be initialized:

-

)% 1 D IIRAD 5Ky
7 RN DY .\127\;‘
)

)

N 8
h)

W docnome (“:5
) L
S : {4
,‘?\) £
N N T,
3 e kl nd {‘\('

7 qive up moesk Z

2] ’)
A0 &

o Ces
‘){’; Share lemqux 4(;,;:,

4.3-4.5

shave desc,

Me<sage
word s
N7 vext share &
7 clade=o0 Z
“s Livsi oddv]
messaqe
Woré\ﬁ
7 wnexd shawn 4
7 Slvle = © //
e livet adde

U, conv. addvess 7

fig. 4.5

AN ANAANAAA A NAL

. zone and buffer after init.

S l'\ay(, L’ib\c‘ h

4.6

I/O POSITIONING PROCEDURES

open (zone, operation)

sets operation of zone, This prepares later operation. Then it initialises the record
and block information and sends a reservation message to the driver process.

If conversion table address is different from zero a request for conversion is
included,

setposition (zone, filecount, block count).

The values are placed in the zone, and a control message specifying position

is sent to the driver process,

il_(_)_s_g_ (zone, release).

Outputs a last block if necessary. Wait for all pending transfers, which may

have been initiated by the transfer procedures. If the second parameter is
e —— e’

<hanzero a release and disconnect message is sent to the driver process. If command

—

part of operation = 3 (output) a termination message is sent independent of the se-

S —

cond parameter,
\

I/O TRANSFER PROCEDURES
This subset of the 1/O procedures falls into three classes. One is the basic

block transfer procedures common for the remaining procedures. The second
is the character oriented procedures, which transfer information in character
form. The third is the record oriented procedures which transfer information in

terms of records of various formats.

transfer (zone, length, operation) ,

A operation is started in used share.

waittransfer (zone),

If state of used share is O (free) the procedure is dummy. Otherwise it waits
for a pending message (initiated by transfer) and adjusts the zone parameters:
remaining of block and top address, which describes the block input or output,
Then the transfer is checked using the status and givupmask.

Note: use of these primitive transfer procedures, should not be common practice.

They should only be used if a special bufferadministration is wanted.

4.7

@c/k (zone).

Starts input of one or more blocks to the available share buffers according to

a circular buffer-strategy. Then it waits for a single operation to be finished,

ready for use.

%lg (zone).

Makes the next share buffer available for output, after having started an output

operation for the current one.

Character 1/O procedures.

inchar (zone, char)
p— N

makes the next character from the zone available.

outchar (zone, char).
——

‘outputs the character on the specified zone.

outend (zone, byte)
—

works as a close with no release on character oriented devices, otherwise as

outchar.

outtext (zone, textaddr)
S

outputs a text terminated by a Null-character by means of outchar. The Null-

character is not output.

outoctal (zone, integervalue)

outputs a 16 bit binary integer in octal form, as 6 ASCIl characters.

Record oriented procedures

getrec (zone, length, recaddress),

makes the next record as determined by recordformat of zone available at
recordaddress and onwards. The length of the record must be given for U-fbrmats

and is always returned in the length parameter.

putrec (zone, length)

makes room for the record specified by length.

4.8

RECORD FORMATS

The items of data in a document are arranged in blocks separated by inter-

block gaps (IBG), a block is the unit of data transmitted to and from a

document. Each block contains one record, part of a record or several
W

records, a record is the unit of data transmitted to and from a process.
——T— ————

If a block contains two or more records, the records are said to be blocked.
Blocking conserves storage space on the physical medium containing the

document because it reduces the number of interblock gaps, and it may

increase efficiency by reducing the number of input/output operations required to
process a data set. Records are blocked and deblocked automatically by pro-

cedures getrec and putrec.
The records in a data set must be in one of three formats: fixed-length,

variable-length, or undefined-length. They can either be blocked or un-

blocked. The following paragraphs describe the three record fomats.

FIXED-LENGTH RECORDS

In a document with fixed-length (F-format and FB-format) records, (see

Figure 4.6) all records have the some length. If the records ar ,
. WW .

each b!ocg..,.g%;gms an_equal number of fixed-length records (although the

last block may be truncated if there are insufficient records to fill it). If

the records are unblocked, each record constitutes a block. If the block-
length is not an integral multiple of the recordlength, some space is left

unused in the block.

- Blece
| Eco®D ' ea [REcemd | 1R&| WBcom» |

- Blecikc —

[Reconn [recoer{rREcorn|iBar [REeoen] | | i
fig. 4.6 Fixed-Length Records

VARIABLE - LENGTH RECORDS

This format permits both variable~length records and variable-length blocks.
The first four bytes of each record and of each block contain control infor-
mation for use by the procedures (including the length in bytes of the record

or block). Variable-length records can have one of two formats:

V, VB (figure 4.7)

V-format signifies unblocked variable=length records. Each record is treated

as a block containing only one record, the first four bytes of the block con-

tain block control information, and the next four contain record control.

VB-format signifies b Each block contains as

many complete records as it can accomodate. The first four bytes of the block
contain block information, and the first four bytes of each record contain

record control information,

Fig. 4.7 a:
V' FORMAT
Clz%cz!?eaonol ?105 %Ci CU[RECORD L il(‘aé clicy
VB FORMAT
1(:1 czfﬂewao/ icmé’RECOﬂD 2 i 10e %Qi{}j@f}_@‘33

4.9

UNDEFINED - LENGTH RECORDS

In this format a record is either an entire block, in unblocked format, or
a number of bytes of the block in bloked format (see figure 4,8).

The user must detemine the number of bytes wanted for a record.

Unblocked records (U-format):

' ‘RECOR D \BG RECORD 166 "RECORD

Blocked records (UB-format):

§%A”REC0Q® InG RECORD RECOR D

Fig. 4.8: Undefined-length records.

5.1

OPERATOR COMMUNICATION

Within a computing system, which contains a single process communicating
with the human operator, there is no real problem in this communication.

All the process needs to know is the device for output and the device for
input of concem to the operator (actually it may be the symbolic names

of the associated drivers).

When more than one process wants to communicate with the single operator
an identification problem arises. How is the operator to distinguish messages
from different processes, and how is he sure that a reply reaches the correct
process?

The answer to these questions within MUS is introduction of operator processes,

which on one side communicates with the human operator through the operator

devices and on the other side acts as operator for the processes.

' Jeat input
et =]] | =
G \
/4.
. ‘o'
\Mpw‘
' : ferd ouwtput
/ ood| | =|7
)C‘ -

Fig. 5.1 : 'o'functions

6.1

OPERATING SYSTEM

The human operator has two distinct roles to play within a processing system.
One is to serve the system when it calls for something to be done (eg. mount
a tape, change paper in printer,supply parameters to a program); the other
is to act as master for the system (eg. load programs, create processes, start
processes).

Within MUS communication with the serving operator is a matter which the single
process must take care of, but the master operator has to have some means
to carry out his commands. This is precisely the reason for introduction of an

operating system process "S", which can effectuate master operator commands.

o,
cluatde (v ot “1.1_‘
?::»ths - > qLW
(% —» S-command
- L 1

(o) HRAsTeR
/ — Se_LPATY

‘n" :’ A

B

. 2AL

oooooooooo

lBl'

fig. 6.1 : "sys" process and operator

Commands for "sys" are single lines of text, which should conform to the

following syntax:

CALL [MODIF MODIE j

CALL determines the basic function, and MODIFs

qualifies the execution.

RCSL 44 - RT - 759
Date Rev, June 1975
Authors: Torkild Glaven

AP Ravn
MUS
PROGRAMMERS GUIDE
(part two of two)
Keywords: Multiprogramming, monitor, devicehandling, i/o-utility,

record i/o, operator communication, operating system,
Abstract: The manual is mainly intended for readers who are going to

use the system, The user is assumed to be familiar with the

general principles of the system as well as with the assembler

language.

This manual obsoletes RCSL 44 - RT 508 RC 7000 System Software Nucleus.

]
]
CONTENTS PAGE
]
MONITOR 2.1 - 2,19
l Introduction. .ceeeuernrnereennenesnscencncn sonns 2.1
oY 111 2.4
I Page Zero Variablesccvviiieieineennnnnns 2.10
Page Zero Constantsoevueevicncenoccennncases 2.11
l Monitor Functionsccveeeereenconsanncennenns 2.14
DRIVER PROCESSES .. viivviteneenncencanesnscsonnonnas 3.1 -3.10
Control Messagecoovveveveenacereoesneonns 3.2
l Transput Messagecveveeenvnrenceannccnsnas 3.4
ANSWErS .. .iuiiiiitiietunesnearescnacrananeannas 3.5
l System Utility Procedurescovveviennnnnnn 3.7
/O HANDLING ...tttiiiiiiiiiiiieieeneennnnnnanesanns 4.1 - 4.28
l Identification of a Documentccvvveinns. s 4.3
Record Structurecovivvunrinnenneennecennens 4.5
l Handling of Exceptionsccviiiieeneeneenenenans 4.7
Formats ...vvivniiiinnenecnsonssocossnscosnannns A.10
Basic 1/O Proceduresceeeeeeeenoecacans 4.12
l Initialization 1/O Procedures eeeeececeneeas 4,14
Positioning Proceduresccceveeriieinnnnanns 4.16
. Character /O Procedureseeeeeevencenoas 4.18
Record 1/O Proceduresceveeveunnnnccannnas 4.20
' OPERATOR PROCESScivvunnnnn Crecesenesstcsncans 5.1 - 5.3
OPERATING SYSTEM . iiiiiiiiiitieieercnnsnnccnasnnans 6.
l STANDARD DRIVER PROCESSESvvvvvevnnnnnnn ceesanas 7.1 -7.4
Teletype Console Driverc.ccvviiviiieees. 7,101
I Paper Tape Readerocoviiiiniiniiiinnnenns 7.2.1
Paper Tape Punch Drivercovivviieiet. 7.3.1
Line Printer Driveroviiiiiineenriennnennns 7.4.1
l Magnetic Tape Drivercovviiinennnnnnnnn. 7.5.1 - 7.5.2
. Card Reader Driverevvvevnnnennenennnnnnn. 7.6.1 - 7.6.3
Operator Panel Drivereeeeeeeueseennnn. 7.7.1 - 7.7.3
l EXECUTION TIMES otittiiiiiiiiieieeiiennnnnnn. 8.1 - 8.1.4
i
i

2.1

INTRODUCTION

Without the monitor we have the cpu operating in parallel with the devices.
Only one program can run in the cpu so we have one process running in
parallel with the devices. This process is able to communicate with the

devices by means of io instructions and the interruption system.

cpu: lo-instr. (Device 4 |
[process ink.- 51454. L de,V\r:e, 2|

Multiprocessing

The primary purpose of the monitor is to implement multiprocessing., i.e.
simulate multiple processes running in parallel by sharing the cpu and the
devices.
In order to implement the advanced tool of cpu time-sharing the monitor
uses the two primitive tools:

real time clock device and

-
interruption system.

Having occupied these facilities the monitor must supply the process with
corresponding facilities.

The monitor thereforesimulates that each process is supplied with a real
time clock device. This device gives an interrupt after a real time delay
specified by the process.

The monitor also supplies the process with an interruption facility, the
monitor function: wait interrupt. This enables each process to wait for
interrupt from any device except the cpu, but including the simulated real
time clock device. Interrupt from the cpu, power failure interrupt, is not
available for the processes. When it occurs the processes are breaked and
informed about the cause.

Now we have a number of processes running in parallel with the devices.
Each process is able to communicate with its own clock device and all

other devices. Processes are unknown to each other.

cpu: moniitor

io - insr, ”"‘""::l device J

Process [wout-ind. 5’

¢ dev.

2.2

Monitor Functions

One monitor function has already been introduced: wait interrupt. Monitor

functions perform indivisible operations on tables, queues, chains, etc. The

s——

functions are called by the processes and executed by the moniior in disabled
mode. Seen from the processes they are extended instructions. The total list
of monitor functions is:
Interruption:
wait interrupt
Process Communication:
send message
wait answer
wait event
send answer
General Communication:
wait
Operating System Facilities:
search item
clean process
break process
slop process

start process

Process Communication

The four monitor functions for process communication enable the processes to
exchange information by means of message buffers (shortly: buffers). Each
process has a pool of unused buffers. At present a buffer contains a head of
6 words and an information part of 4 words. A communication takes place

in the followirg way: The sending process sends a message to the receiving
process by mecns of_send message. The receiver gets information about the
message by means of wait event. The receiver returns the buffer as an answer
by means of send answer. The original sender may get information about the
answer by means of wait_event, before the buffer is released by means of
wait answer. If the sender wants to wait for answer to a specific message, it
suffices to use wait_answer.

2.3

General Communication

The function, wait, works as a combined waitinterrupt and waitanswer. In this

way it is possible to wait for an interrupt or a timeout or an event.
e

Operating System Facilities

The monitor function, search item, searches for a nomed item in a specified
chain. —

The monitor function, glecn process, is performed on all processes after a
power failure. The function cleans the communication situation and breaks the
processes.

The monitor function, break process, is performed at monitor function call
error. The process is started at its break address with an error number in a
register.

The monitor function, stop_process, sets a process in state stopped. If it is
waiting, the program counter is decreased so the monitor function is performed

again after start.The process is linked out of any queue of which it is a member.

The monitor function, start_process, sets a process in state running and links
it to running queue. This takes place if the state of process is stopped;
otherwise the function is dummy.

FORMATS

Process Descriptor

A process descriptor is an item. Each process has a process descriptor.

containing important process parameters such as name, state, and saved

registers.
next.proc:

prev.proc:

chain.proc:

size.proc:

name. proc:

event.proc:
+1:

buffe.proc:

prog.proc.

state.proc:

next process in a queue of processes.
previous process in a queue of processes.
This queue element links the process to the running queue
or to the delay queue, or it points at itself.
next process in the process chain.
All process descriptors are in this chain.
process descriptor size.
Process descriptors are of variable lengths.
process name (three words).
The process is identified by this text of one to five

characters, unused character positions equal zero.

first event in event queue.
last event in event queue.
This queue element is the event queue head. The queue
contains messages and answers to the process.
first message buffer.
Message buffer chain head. The chain contains the
message buffers be|onging to the process.
program address.
Address of the program executed by the process. A program
may be used by one or more processes.

process stafe.

-8-63 waiting for interrupt, event or software timer
-2 waiting for event or software timer
-1 waiting for event

0 running (i.e. linked to running queue) or
waiting for software timer
8-63 waiting for interrupt from device no = state-
buf > 63 process waiting for answer in that buffer
1b0 process stopped

2.4

2.5

timer.proc: timer count.
The number of timer periods the process still will wait in
the delay queue.

prior.proc: priority.
Priorities are unsigned values (zero must not be used). Current
process (executing instructions) is chosen cyclically among the
processswith highest priority.

bread.proc: break address.
This address is entered after an operator break , a power failure, or
a program error. It must always be defined.

acO.proc: saved ac0.

acl.proc: saved acl.

ac2.proc: saved ac2.

ac3.proc: saved ac3.

psw.proc: psw (process status word) = pc * 2 + carry.
When the process is not active the registers are saved here.

save.proc: work location for basic reentrant procedures.

o.proc¢: process optional words.
The process descriptor may contain any number of optional
words.

E.g:

The optional words are used by the driver utility procedures, as:

buf.proc: saved message buffer address.

addre.proc: current value of address.

count.proc: current value of count.

reser.proc: process descriptor address of reserving process.
Zero indicates no reserver.

convi.proc: conversion table address.Zero indicates no conversion.

clint. proc: interrupt handling entry address. This address is entered in disabled

mode, when an interrupt arrives from a device, which the process
wants to supervise. ’
This means that a driver process should contain atleast 6 optional words, if it wants

to utilize the procedures.

2.6

Message Buffer

A message buffer is an item. lts head of 6 words contains the item head
and references to the sending process and the receiving process. The remai-

ning part contains the transmitted information.

next.buf: next buffer in a queue of buffers.

prev.buf: previous buffer in a queue of buffers.
This queue element links the message buffer to the event
queue of a process, or it points at itself.

chain.buf: next buffer in a chain of buffers.

All message buffers of a process are chained together.

size.buf: size of the buffer.

At present the size equals ten.

sende.buf: sender process descriptor address.

This value is permanent.

recei.buf: receiver parameter.

buffer state: receiver parameter value:
free 0
(not yet . .
+ t
message . wered) receiver process descriptor address

answer - receiver process descriptor address

The next words have optional contents depending on the use, for example:

messO.buf: operation status word
messl.buf: byte count byte count
mess2.buf: first word address file number
mess3.buf: special information * block number

The format of an input/output message to a driver is defined in the driver
description. A few standards are used:

The first word contains the operation. Which is split into a 14 bit mode and
a command. Operation(15:15) defines a control message (=0) or a transput
message (=1). For transput messages operation (14:14) defines input (=0) or
output (=1). The second word normally contains byte count, the third word
normally contains first word address, and the fourth word has a special content

depending on the operation and driver.

Answer from a driver normally contains the status word and the number of
bytes transferred in the first two words. Further specification is found in the

driver description.

Program

A program is an item of the program chain. The program head contains infor-

mation about the size and name of program and o descriptor word.

pspec. prog: program descriptor. word.
pstar.prog: start address for program.
chain.prog: link to next program in chain.
size.prog: size of program.

name.prog: program name (three words),

The program is identified by this text of 1 to 5 characters.

The program descriptor word is an array of bits, which describe the use of

the program.

bO: own bit, if set, the program contains its own process descriptor
after the program. This process descriptor is used, if the program
should be started as a process.

Thus the process descriptor address is prog+tsize.prog.

2.7

bl: reentrant bit, if set the program is reentrant.
b2: page zero bit, if set the program uses page zero locations.
b8-b15: process count, the number of existing process descriptors, which use

this as program.

Free Core area

A free core area is an item of the free core chain. At present the items of
the chain cannot be handled by any standard procedures. In later versions

of the system they may be used for dynamic storage allocation.

Catalog

A catalog entry is an item of the catalog entry chain. At present only the

entry head exists.

2.8

Page Zero Locations
The monitor leaves about half of page zero, 128 (decimal) locations, for use
by user programs translated by compilers.
[t is strongly emphasized, that the system is not prepared to take care of
programs using page zero locations, this is at own risk in the multiprogram-
ming system.
Monitor Process Descriptor
The monitor is organized as a process which process descriptor contains all
tables and the code for the monitor.. However the locations 0-31 are outside
this process descriptor. They are used in the following way:

0-1 : interruption system

2-13: monitor function entries

14-15: two page zero locations to be used in disabled mode by processes.

16~17: two autoincrementing locations to be used in disabled mode by
processes.

18-29: monitor function references.
30-31: two autodecrementing locations to be used in disabled mode by
processes.
The monitor process has the lowest possible priority (zero) which must not be
used for other processes. So the monitor is active as a process only when no
other process wants to execute instructions. The monitor process executes a

dummy program: jmp .+0 in enabled mode.

Only the first part of the monitor process descriptor, corresponding to a
normal process descriptor, is described here. Some of its parameters act
as normal process parameters in order to let the monitor run as a dummy
process when no other processes wants execution time. The remaining locations

are used for important monitor constants and variables.

cur: first process in running queue.

+1: last process in running queue.
Head of running queue and process chain. A process may
always find its process descriptor address (current process

descriptor address) in cur.

opera:
size:

table:

topta:

runni:

proce:

monit:

dfirs:

+1:

efirs:
ffirs:

delay:

2.9

reference to name of operator process
monitor process descriptor size.
device table.
Contains a word for each device number holding process
descriptor address for interrupt requesting process.
top of device table.
running queue.
Reference to head of running queue.
process chain.
Reference to monitor process chain.
monitor process description.
Reference to monitor process descriptor address.
first process in delay queue.
last process in delay queue.

Head of delay queuve and message buffer chain.

first in program chain.
monitor exit address.
first in entry chain.
first in free core chain.
delay queve.

Reference to head of delay queve.

PAGE ZERO VARIABLES

The page zero variables are part of the monitor process descriptor

cores: core size.
Contains the number of words in core.

frequ: frequency of rtc.

Defines the real time clock frequency:

0: 50 hz

1: 10 hz

2: 100 hz

3: 1000 hz
progr: program chain.

Reference to head of program chain.
entry: entry chain.

Reference to head of entry chain.
free: free core chain.

Reference to head of free core chain.
mask: interrupt mask

2,10

PAGE ZERO CONSTANTS

The page zero constants are part of the monitor process descriptor. These
currently used constants are placed in page zero in order to decrease program

core requirements.

Bit patterns

The bit patterns, 1b0, 1b1, ..., 1bl15, are placed in consecutive locations
labelled by a point and the value, for example:
.1b12: 1b12
The first location has a further label, bit, so if ac2 equals 7, the instruction,
Ida 0 bit,2
loads the bit pattern, 1b7, into acO.

Decimal constants

Now follows a list of decimal constants available for the programs, but not

necessarily placed in the here shown order:

N oONONOGOOPAEWON —O
VoONOCDOHAWN—O

CUDAMWNON — — -

CTPINIEROP e

gm##www-—-.—a_._._.
CXONABRENWNO

.63:
.64:
.120:
127,
.128:
.255;
.256:
512
.1024;
.2048:
.4096:
.8192;
.16384

.32768:

.m3:
.m4:
.mlé;
.m256:
.name:
.mess:

.even:

-256
name
mess0

event

ssize
10
13
10
12

(relative address of name in item)
(relative address of messO in buf)
(relative address of event, proc)
(standard zone size)

(size of a share descriptor)

Status bits

sdisc:
soffl:
sbusy :
sdevl:
sdev2:
sdev3:
sille:
seof
sbloc:
sdata:
spari:
sem:
s12:

snotp:

stime:

s15:

ceras:
cdisc:
cposi:
cterm:
cconv:

crese:

160
1b1
1b2
1b3
1b4
1b5
1b6
1b7
168
1b9
1b10
1b11
1b12
1b13
1b14
1b15

Control bits

1b8
1b9
1b10
1b11
1b12
1b13

(disconnected)
(offline)

(busy)

(device mode 1)
(device mode 2)
(device mode 3)
(illegal)

(end of file)
(block error)
(data late)
(parity error)
(end medium)
(position error)
(rejected by wait transfer)
(timer)

(hard error in wait transfer)

(erasure)
(disconnect)
(positioning)
(termination)
(conversion)

(reservation)

2.13

MONITOR FUNCTIONS

The functions are called from assembler code by writing their names. Link
is automatically defined. The functions are executed in disabled mode by

the monitor.

In case of parameter error in call, current process is breaked with the
error number (always negative) in acO. If the function is not implemented,

the calling process is breaked with error number = -1.

The functions are described in the following. The return value of ac3 (cur)

is the process descriptor address of the calling process (current process).

Function Wait Interrupt (device, delay)

call: return: link
ac0 unchanged +0: timeout
acl device device +1: interrupt
ac2 delay cur
ac3 link cur

The corresponding entry in devicetable is checked for an interrupt.

If interrupt is pending return is made immediately to (link +1).

Delay is inserted as timer count in the process descriptor and the process
is linked to the delay queue. If delay is zero a maximum waiting period
is specified.

The process is stopped with status = waiting for interrupt or software timer.

Return depends on the event: If the time specified by delay runs out before
the interrupt arrives, return is performed to time out (link+0), otherwise

to interrupt (link+1).

Note: Wait Interrupt may be used as a pure timer, when device = 0.

e

Note: Before any call of wait interrupt with device # 0, the device table
entry must be initialized to proc ¥ 2,

This may be done by procedure setinterrrupt,

2.14

Function Send Message (address, name address, buf)

call: return:
ac0 unchanged
acl address address
ac2 name address buf
ac3 link cur

Selects a free message buffer belonging to the calling process and copies
the message at address and on into this message buffer (4 words). The message
buffer is delivered into the queue of a receiving process with name placed
at name address and on. The receiving process is activated if it is waiting
for an event. The calling process continues execution after being informed

about the address of the message buffer.

The format and interpretation of a message depends on the receiving process.

Errors:
=2: There exists no process with the given name.

-3: No free message buffer is available at the moment.

Function Wait Answer (first, second, buf)

call: refurn:
ac0 first
acl second
ac? buf buf
ac3 link cur

Delays the calling process until an answer arrives in the message buffer
given as parameter. The process is supplied with the first two words of

the answer. The message buffer is released.

The format of the answer depends on the process that has answered the

message.
Errors:

-2: The message buffer address does not point at a message buffer belonging

to the calling process.

2.15

2.16

Function Wait Event (first, second, buf)

call: return: link
ac0 first +0: answer
acl second +1: message
ac2 buf buf
ac3 link cur

Delays the calling process until an event (o message or an answer) arrives
in its queue after the message buffer given as parameter. If this parameter
is zero, the queue is examined from its beginning. The calling process is
supplied with the address of the event and with the first two words of the
event.

Return depends on the event: If the event is an answer return is performed
to answer (link+0), otherwise to message (link+1).

Errors:

-2: The message buffer address is neither zero nor pointing at a message

buffer in the queue of the calling process.

Function Send Answer (first, second, buf)

call: return:
ac0 first first
acl second second
ac2 * buf buf
ac3 link cur

The calling process delivers a first and a second word, which are copied
into the first two words of the message buffer given as parameter. The
message buffer is delivered as an answer in the queue of the sender.
Errors:

-2: The message buffer address does not point at a message buffer in the

queue of the calling process.

2.17

Function Wait (delay, device, buf, first, second)

call: return: link
ac0 delay (first)(unchanged) +0: timeout
acl device (second)(device) +1: interrupt
ac2 buf ' (buf)(cur) +2: answer
ac3 link cur +3: message

Performs the combined functions of wait interrupt and wait-event.
Delay is inserted as timer count in the process descriptor, and the process is
linked to delay queue. If device is non-zero, the devicetable is ohecked for

an interrupt,

Then it waits for an event after the buffer given as parameter, if buf is

zero the event queue is examined from the beginning.

If an event arrives first, return is made with the first two words of the
message or answer and address of the buffer.

Otherwise the contents of the registers are as for waitinterrupt.

Errors:

-2: The message buffer address is neither zero nor pointing at c‘ message

buffer in the queue of the calling process.

Function Search ltem (chain, name address, item)

call: return:
ac0 unchanged
acl chain chain
ac?2 name address item
ac3 link cur

If the chain contains an item with the name placed at name address and

on, the address of this item is delivered, otherwise a zero is delivered.

Function Clean Process (proc)

call: return:
ac0 unchanged
acl unchanged
ac?2 proc proc
ac3 link cur

Messages to the process are answered with status = not processed.

Answers to the process are released.

Messages from the process are released and the receivers are breaked, with
error number = 1,

Finally the process is breaked with error number = 0.

Function Break Process (proc, error number)

call: return:
ac0 error number error number
acl unchanged
ac2 proc proc
ac3 link cur

Error number should be greater than zero. The process is started at

its break address with the following accumulator contents:

acO: error number

acl: unchanged

ac2: proc

ac3: psw //2 (its old program counter)

The following errornumbers are used by system procedures.

0: clean process.

1: clean process, message receiver.

2: operator breaked process.

3: end of program, MUSIL

4: putrec, record too large, getrec illegal length of record.
5: wait transfer, hard error.

Function Stop process (proc)

call:
acl
acl
ac2 proc
ac3 link

2.19

return:
unchanged
unchanged
proc

cur

The process is set in state stopped and removed from delay- or running queue. If

it was waiting for event or answer, psw is decreased by 2. This ensures, that

the monitor function is called again if start process is performed.

Function Start Process (proc)

call:
acO
acl
ac2 proc
ac3 link

State of proc is examined.

the function is dummy.

refurn:
unchanged
unchanged
proc

cur

If it is stopped, the process is set running, otherwise

3.1

DRIVER PROCESSES

A driver process is dedicated to communication with a device. Under special
circumstances it might take care of several devices. E.g. teletype input and
teletype output.

Other processes must then request the driver process to perform input/output

operations. Driver processes are thus the only processes which actually

execute i/o~instructions and call waitinterrupt.

Communication with other processes takes place via messages and answers.

The messages should conform to the below mentioned standards, and the
answers should also be of a standard form.

Note, that it is regarded as a rule, that all messages sent to a driver process
should be answered in finite time.

Furthermore it is standard, that a driver process returns all waiting messages if
a device operation goes wrong. This rule is a great help for the standard

i/o-routine, when they use multibuffered input/output.

To code a driver program one should also be familiar with the standard

recovery actions of the i/o procedures and with the document kind specification.

3.1.1

DEVICE HANDLING

Before any i/o instructions are executed, the driver process should clear
the devices and insert its process descriptor address ¥ 2 in the correspond-
ing device table entries,

This may be done by procedure setinterrupt.
The driver process descriptor shall contain 6 optional words (see System
Utility Procedures).

The last clint. proc shall give an address of an interrupt clear action,

clint,proc must obey the following conventions:

called with: return with:
ACO: destroyed
ACl: device unchanged
AC2; proc unchanged
AC3: link destroyed

clint.proc is called in disabled mode and must not change this state.

It must return with the interrupting device cleared. The amount of data
processing in clint.proc must be as little as possible since it affects

system overhead, and clint.proc must never call other system procedures.

If only a nioc device is to be executed, the standard action clear may be used.

i.e. clint,proc: clear,

CONTROLMESSAGE

A controlmessage is used for a non-transfer i/o~operation. The format is:

mess0.buf: operation
mess1.buf: speciall
mess2.buf: special2
mess3.buf: special3

Operation consists of mode (14 bits) and command.

The command specifies control (x0, bit 14 irrelevant).

Mode is an array of bits, which specify actions to be executed. An action
is performed if the corresponding bit is one. Interpretation proceeds from

bit 13 to bit 0. Not all actions are relevant for specific driver processes.

00000000 EDPTCR X O]

l——- reservation

conversion

termination

position

disconnection

erasure

not used at present

If o bit is set, the action is:

Reservation: If special=1 # O the sender of the message gains exclusive
access to the driver process. It is set as reserver in the process descriptor
of the driver. Reservation means that messages from all other processes are
returned with an illegal status, without being processed.

If special-1 = 0 a reservation is cancelled, that is the driver process will

accept any messages again.

Conversion: Only relevant for character oriented devices. Special2 is used

as address of a conversion table, which is placed in the process descriptor of

the driver. A table address of zero specifies no conversion. Format and inter-

3.2

pretation of the table is dependent on the driver. Note that if conversion is used,

reservation ought to be done.

Termination: Only relevant for output devices.
The document which has previously been output is terminated logically.
E.g. for a magnetic tape unit two file marks are written, and the tape

is positioned between the two,

Position: The document is positioned according to the information in spe-

cial2 (file count) and special 3 (block count).

Disconnection: The device is'set local (off.line).

Erasure: Only relevant for output devices, which are able to cancel
pervious output. Special 1 may be used to specify how much that should

be erased.

If all bits are zero only a sense command is executed.

3.3

TRANSPUT MESSAGE

A transput message specifies an operation, which involves transfer to or
from a core area.

The format of a message is:

mess0.buf: operation
mess1.buf: bytecount
mess2.buf: first byte address
mess3.buf: special

Operation consists of command and mode. Mode transmits
information about the mode of transfer. E.g. odd parity, 7 track magnetic

tape, decimal coded cards.

MMMM MMMM MMMM MMQ
I T 1 defines transput
input (Q = 0), output(Q = 1)

mode bits, driver dependent.

Byte count specifies the number of bytes to be transferred to or from core.
First byte address is the byte address of the first byte to be transferred.

The core area used for transfer is thus:

first byte address: | byte 1 | byte 2 |

oo bytecount bytes.

[byte n,| byte (n+1) .

ANSWERS

3.5

The messages are independent of the command part of operation. The answer

has the format:

mess0.buf:
mess] .buf:
mess2.buf:
mess3. buf:

status (latest sensed status for control or transput message with

bytecount
specialal

speciala2

count30 and status #b6or bit 14)

Status is an array of bits, which convey information about device errors or

call errors. The different bits have been given specific meanings in order

to standardise error recovery in the input/output procedures.

bO:

bl:

b2:

b3:

b4:

b5:

bé6:

b7:

b8:

b9:

b10:

bill:

b12:
b13:

disconnected,]
off-line, *
device busy, *

device mode 1
device mode 2
device mode 3
illegal *
eof *
block error »*

data late *

parity error *

end medium *

the device is not present,
power off for example.

the device was off-line
when an operation was attempted.

the device was temporarily not
able to execute the operation.

device dependent
device dependent
device dependent

the operation was rejected either be-
cause the driver was reserved by
another process or because it was nonsense.

logical end of document is detected
(file mark, end of transmission sequence).

the core area specified is too small to
hold the block input.

the high speed data channel responded
too late.

one or more invalid characters were
input in this operation.

physical end of medium. E.g. end-of-tape,
poper tape reader empty, paper out for
lineprinter.

not to be used

not to be used.

€

3.6
b14: timer ¥ the device did not respond within
a maximal time.
b15: 0 not to be used.

If a statusbit is marked # all immediately following transput messages should be returned with

status zero. These bits are called clean bits.
“
Bytecount of answer specifies the number of bytes actually transferred.

Specialal is used for position information, (file count).

Speciala2 is used for position information, (block count).

3.7

SYSTEM UTILITY PROCEDURES

As an aid for the driver processes a number of actions, which frequently have

to be executed, are collected as reentrant routines,

If they are used, the process descriptor should contain the following optional

words:
buf, proc: buffer address of current message
addre. proc: value of mess2, first byte address
count, proc: value of mess1, bytecount
reser, proc: word containing reserver process,
convt, proc: conversion table address.
clint, proc: interrupt clear action address.

Procedure Next Operation (mode, count, buf)

call: return: link
ac0 mode (=operation(0:13)) +0: control
acl count +1: input
ac2 cur cur +2: output
ac3 link buf

Used by a driver process when it is ready for a new operation.
Notice: the procedure delays the process until a relevant message arrives in its

queue, Examines the event queue in the following way:

0. answer, Examination continues.,

1. message where sender buf is different from a nonzero reserver.cur:
the message is returned by means of send answer (status=illegal, count=0).
Examination continues.

2., transput message (operation (15:15)=1) with count=0: the message is
returned by means of send answer (status=0, count=0). Examination continues.

3. transput message, where buf,cur equals -1: The message is returned by means
o e Sy "

of send answer (status=0, count=0), Examination continues. .

4, control message (operation (15:15)=0):buf, count and address are saved.
Return to control (link+0).

5. input message (operation(14:15)=1):buf, count, and address (mess. 2buf)

are saved. Return to input (link+1).

6.

3.7.1

output message (operation (14:15)=3): buf, count, and address (mess2,buf)

are saved, Return (link+2),

Procedure Wait Operation (timer, device, mode, count, buf)

ac0
acl
ac2

ac3

acO
acl
ac?

ac3

call:

timer
device

cur

link

return:

timer

device

cur

cur

ac0, acl irrelevant
mode

count

cur

buf

link:

+0 timer

+1 interrupt

+2: dummy

+3: control
+4: input

+5:output

This procedure may be used by a driver process, when it is necessary to wait for

either device interrupt, timeout or a message.

buf.cur should contain a value -1, or 0 indicating wait for any buffer, or it should

contain a buffer in event queue, in which case a message after this one is waited for.

The timer and interrupt returns are taken if these occur. Dummy return is taken

where a message is returned by means of send answer or an answer arrives (see

point 0, 1, 2, 3 ofNextOperation). The remaining returns are taken when

point 4, 5, 6 of Next Operation occurs.

) B B B) BE B oE B EE BE B BN B O BE B OB BE BE B e

3.8

Procedure Set Interrupt (device)

call: return:
ac0 destroyed
acl device device
ac2 unchanged
ac3 link destroyed

Includes the process as user of the device. The device is cleared by a nioc instruction.
This means, that any interrupts arriving to the device must be handled by the routine

clint .proc. As a standard clint.proc may be: clear. This executes a nioc device.

Procedure Return Answer (status)

call: refurn:
acl status status
acl mess2 fo buf destroyed
ac2 cur cur
ac3 link destroyed

Insert status a return value for mess2.buf, and the calculated number of transferred bytes into

the message buffer (saved buf in optional words). Returns the message buffer to the sender
by means of send answer. The number of bytes is calculated by subtracting the

original byte address still remaining in the message buffer from the updated byte
address saved in the process descriptor. '

If one of the clean bits are set in status, buf.cur is set to -1,

Procedure Set Reservation (mode)

call: return:
ac0 operation(0: 13)operation (0:12)
acl destroyed
ac?2 cur cur
ac3 link destroyed

If bit 13 of operation (R-bit of mode) is nonzero messl.buf is examined. If
this word is non-zero sender of message is inserted as reserver of cur, otherwise

reserver of cur is put to zero.

Procedure Set Conversion (mode)

ac0
acl
ac?

ac3

call:

return:

operation(0:12) operation(0:11)

cur

link

destroyed
cur

destroyed.

If bit 12 of operation (C-bit of mode) is nonzero mess2.buf is inserted as

conversion table address.

Procedure Conbyte (byte)

ac0
acl
ac2

ac3

call:

byte

cur

link

return:

byte (converttable.cur + byte)
destroyed

cur

destroyed

Loads the byte at relative location byte in conversion table. Note that

conversion table address in this case should be a bxfeoddress. If conversion-

table.cur is zero, the procedure is dummy.

Procedure Getbyte (addr, byte)

ac0
acl
ac2

ac3

call:

addr

link

return:

byte addressed
addr

cur

destroyed

Fetches the byte at the given byteaddress.

3.9

3.10

Procedure Putbyte (addr, byte)

call: return:
ac0 byte byte
acl addr addr
ac2 cur
ac3 link destroyed

Stores the byte, which must be in the range 0 to 255, at the given byteaddress.

Note the remaining part of the word addressed is untouched.

4.1

/O HANDLING

The procedures, which can take care of i/o, use zones to describe the activities,

with which they are concerned,
They fall into 4 classes, which handle distinct phases of common i/o activities.

Initialisation:

open

close
setposition
waitzone

Character input/output:

inchar
outchar
outend
outtext
outoctal

Record input/output:

getrec
putrec

Basic input/output:

transfer
waittransfer
inblock
outblock

4.2

The procedure open readies a zone for actual input/output, and close takes care
of orderly closedown of activities. Setposition is mainly of use for block oriented

devices.

The character i/o procedures may be used after initialisation and open. They

cannot be used with record i/o procedures.

Record i/o procedures may be used after initialisation and open. They cannot be
used alongside character i/o procedures. If single bytes of records should be in-
spected or modified the system utility procedures getbyte and putbyte may be of
great help.

Basic i/o procedures are not recommended for general use.

IDENTIFICATION OF A DOCUMENT

The term document is used to describe a medium, which is able to contain

data, and which is mounted on a device.

A document is described inside a zone descriptor by:

document name, the process name of the driver, which controls the device.

operation mode, that is the operation , which should be used

in any transput operation sent as message to the driver process.

device kind, a word, which contains some bits, that describe how transfer

errors may be handled.

At present, the following bits of kind are defined:

b15:

b14:

b13:

b12:

char

blocked

positionable

repeatable

: set if the device is character

oriented, transfers information

in terms of characters

: set if a full block should be

transfered as a unit.

: set if positioning has any effect.

:set if an operation may be

repeated

The remaining bits of the kind word should be zero.

Description of mode and kind applicable to standard driver processes, are

found as part of their description.

4.3

Examples of kinds:
Magnetic Tape Station
Line Printer

Card Reader

Teletype

Paper Tape Punch

Paper Tape Reader

1110

0001 or 0011

0010

0001

0001

0001

4.5

RECORD STRUCTURE
There exists three formats for records. For each type, the records may be either

blocked or unblocked.

Record type: Format code: Blocked:
Unformatted 0
Fixed length 2 +1
Variable length 4

Unformatted

A block contains sharelength bytes or less. In output a full block is transferred
to the device regardless of contents. By input as many bytes as requested are
delivered from the block. If the records are blocked, change of block takes

place, when the remaining bytes of the zone cover the demand insuffiently.

Fixed length

Every block containing one or more records (blocked) of fixed length.
The length is given by the zoneparameter reclength. If sharelength is not an
integral multiple of recordlength, the last bytes of input are skipped.

Variable length
The block contains, in two block descriptor BDW, the length og the total

block.

- sharelength __0
BDW recordarea L _i
- blocklength —

A BDW contains no further information:
blocklength 0 0
— 4 bytes —

The recordarea may contain one (unblocked) or more records. Each record

is headed by a 4 byte record descriptor RDW.

LRPW I recordg |RDW recordgy }ee-.e
- reclength 4

4,6

A RDW contains the recordlength and a segmentcode, which always

is zero,

[rec length 0 0
F 4 bytes 4

-

4.7

HANDLING OF EXCEPTIONS

In the input/output procedures the user may select certain statusbits, which if
set in the answer to a message to the driver, will transfer control to user

code. These user facilities are described in the zone descriptor by:

give upmask, giveupaddress.

When the basic procedure waittransfer receives an answer, the statusword

is augmented with the following bits:

b15: repeaterror is set if the standard repetition of operations

has given negative results,

b13: rejected is set if a control operation with command = 102
is checked.
b12: position error , is set if kind (13) is one and filecount or

blockcount of answer does not match with the
corresponding updated values of the zone

descriptor.

This combined driver and standard procedure status is compared with the give-

upmask. Common ones from the users status.

Remaining status bits are given to the standard check actions, which executes

the following recovery work:

b0: disconnected the error is hard.

bl: off-line the error is hard.

b2: device busy the operation is repeated.
b3: - - ignored.

b4: - - 2 ignored.

b5: - - 3 ignored.

bé: illegal the error is hard.

b7: eof the error is hard.

4.8
b8: block error the error- is hard.
b9: data_late if kind (12) is 1 then operation is repeated,
otherwise the error is hard.
b10: parity error if kind (12) the operation is repeated else
it is a hard error.
b11: end medium if bytecount of answer is nonzero and operation is

input, no action is taken, otherwise the error is hard.

b12: position error hard error
bl3: rejected hard error
b14: timer hard error
b15: repeaterror hard error

A hard error results in a bredkprocess call, with errorcode = 5 and status placed

in acl.

An operation is repeated a maximum of 5 times. If it is still erroneous, it is
classified as having a repeaterror. The cause of the unsuccesful repeats is included
in user status.,

When remaining bits have been treated by the standard actions, control is given
to giveupaddress if users bits are different from zero. Otherwise a normal return

L]

from wait transfer takes place.

acl:
ac2:
ac3:

ztop:

zZrem:

z0:

_Exit to giveupaddress takes place with:

users bits of status,
zone
return address

first byte transferred,

actual bytecount for transfer.

user bits of status.

The giveup action may return to . repeatshare or directly to

ac3 fo call, ac3 and ac2 must be unchanged in either case,

If the giveup action returns to .repeatshare the message to

the driver is repeated. |f the giveup action returns directly

to ac3 the answer is treated as correct and control is re-

turned to the calling I/O procedure,

Note: The giveup action must never call any |/O effecting

procedure if it wants to return to the calling |/O procedure

by means of .repeatshare or via ac3.

4.9

FORMATS

Zone

A zone describes an input/output situation for a process. It consists of a zone

descriptor and a buffer.

The zone descriptor contains general parameters. The buffer contains the share

descriptors and the shares.

Zone Descriptor

A zone descriptor is identified by the address of its first location.
zname.zone: document name (three words).
The document name of one to five characters identifies
the driver process which should receive messages with i/o

requests.

zmode. zone: operation.
This operation is used in transput messages to the documents.
zkind.zone: kind of document.
Kind for error hondling; open action, close action, etc.
zmask .zone: mask for give up.
The mask is compared with the status word when a transfer
is checked. Common ones form the users bits and causes
the address for give up to be entered.
zgive.zone: give up address.

This address is entered if users bits is non-zero.
zfile.zone: file count.

Used for positioning of some document kinds.
zbloc.zone: block count.

Used for positioning of some document kinds.
zconv.zone: conversion table address.

Used in control message to driver process from open.

zform,zone: format code for records,
zleng.zone: length of records,
zfirs, zone: first of record (byte address).

Address of the first byte in the record,
ztop. zone: top of record (byte address)

Address of the first byte after the record.
zused,zone: used share

Address of the currently used share.
zshar.zone: share length (in byfes)'.

All shares have the same length,
zrem,zone: remaining bytes in share,

The bytes represent already input characters or room

for new output records,

The zone contains a number of auxiliary words, used by the procedures.
The number of these are given by the assembly constant zaux. These are
labelled 20, 21,z"aux=1",

The total size of a standard zone descriptor is given by the field z.

Share Descriptor

A share descriptor is identified by the address of its first location.
soper,share: operation (0.message)
scoun,.share: count (1.message)
saddr.share: address (2.message)
sspec.share: special (3.message)
These first four words are used as message to the document,
snext,share: next share, |
Next share descriptor in the linked cyclical list of share
descriptors in the zone,
sstat,share: state of share with the values:
0 free
buf pending

sfirs.share: first shared (byte address).

Address of first location in the share, always even.

The size of a share descriptor is given by ssize.

The total used core for a zone with N shares of length B is:

z + N % (ssize + (B+1)//2)

4.11,1

BASIC 1/O PROCEDURES

procedure Transfer (zone, length, operation),

call: return:
acO operation destroyed
acl length destroyed
ac? zone zone
ac3 link destroyed

Initiates a transfer operation described by operation to used share.zone.
The bytecount of the message is put to length. Sharestate of

used share points to the buffer used for the message. Used share is updated

to next share.

Note: starttransfer does not check that state of used share is free (zero). If

the state is not free, the buffer address saved in state is lost permanently.

procedure Wait transfer &one)

call: return:
acO destroyed
acl destroyed
ac? zone zone
ac3 link destroyed

Examines usedshare.zone. If state is free (zero) the procedure returns immediately,
otherwise it waits for answer to the message placed in buffer identical with state
and sets state to free.

When the answer arrives the status is checked as described in HANDLING OF
EXCEPTIONS. top.zone is adjusted to point at firstaddress of share.

remaining.zone is adjusted to bytecount of answer.

procedure Inblock (zone)

call: return:
acO destroyed
acl destroyed .
ac? zone zone
ac3 link destroyed

4.13

Administrates the basic cyclic buffering strategy for input procedures as

inchar or getrec. The algorithm is:

while state.usedshare.zone = 0 do

transfer (zone, sharelength.zone, mode.zone);
comment zone should be opened for input,

wait transfer(zone).
— 4
comment n-1 shares are busy and one is

ready with input,

procedure Outblock (zone)

call: return:
acO destroyed
acl destroyed
ac2 zone zone
ac3 link destroyed

Administrates the basic cyclic buffering of output. The algorithm is:

transfer (zone, sharelength,zone - rem.zone, mode. zone);

comment zone should be opened for output,
waiH‘ransfer(zone);

remaining.zone:= sharelength.zone,

INITIALISATION PROCEDURES

Procedure Cpen (zone, operation)

call: return:
ac0 operation destroyed
acl destroyed
ac2 zone zone
ac3 link destroyed

The operation is placed in the modeword of zonedescriptor.
Then remaining bytes of zone is initialized to zero if commard =1 or else to

sharelength. Top of zone points to first of used share.

To initialize the transfers a control message is sent to the process specified by

zname. This message includes reservation and set up of conversion table address.

Procedure Setposition (zone, file, block)

call: return:
ac0 block destroyed
acl file destroyed
ac? zone zone

ac3 link destroyed.

Waits for all pending transfers to the zone as described in procedure close.

Then it sends a position message, which contains the new file- and blockcount.

4,17

Procedure Close (zone, release)

call: return:
ac0 destroyed
acl release destroyed
ac? zone zone
ac3 link destroyed

First the zone is set neutral by means of waitzone,

Then if command was output, a termination, and if release is nonzero a release
reservation, disconnection control message is sent to the process specified by name

of zone,

Command is set to zero, and the zone is set neutral by waitzone.

Procedure Waitzone (zone):

call: return:
ac0 unchanged
acl unchanged
ac? zone zone
ac3 link destroyed

Terminates the current activities of the zone as follows:
If command is output, a last block is output.
Then all pending transfers are waited for, Either by means

of wait transfer if command is output, or else by means of

waitanswer (no checking takes place).

4.18

CHARACTER 1/0O PROCEDURES

Procedure Inchar (zone, char)

call: return:
ac0
acl char
ac?2 zone zone
ac3 link destroyed

Gets the next 8-bit character from the zone.

Procedure Backspace (zone)

call: return:
ac0 destroyed
acl top.zone
ac2 zone zone
ac3 link link

Delivers the latest character read by inchar from the zone. Consecutive calls have

the same effect as one call.

Procedure Outchar (zone, char)

call: return:
ac0 unchanged
acl char destroyed
ac2 zone zone
~ac3 link destroyed

Procedure Outend (zone,char)

call: return:
ac0 destroyed
acl char destroyed
ac? zone zone
ac3 link destroyed

Outputs the 8-bit character on the zone by means of outchar. Then outputs
the part of the share now filled with characters by means of outblock. This

output of the last portion is done only for character oriented devices, i.e.

kind(15) = 1.

Procedure Outtext (zone, address)

call: return:
ac0 address destroyed
acl . destroyed
ac2 zone zone
ac3 link destroyed

Outputs the text of 8-bit characters on the zone by means of outchar.
Address is a byte address and may be odd as well as even. The text terminates

with a zero character.

Procedure Outoctal (zone value)

call: return:
acO value destroyed
acl destroyed
ac? zone zone
ac3 link destroyed

Converts the value to character form and outputs it on the zone by means of

outchar. The 16-bit value is output as 6 octal digits.

4.20

RECORD 1/O PROCEDURES

Procedure Getrec (zone, addr, bytes)

call: refurn:
ac0 (bytes) bytes
acl addr (first byte of record)
ac? zone zone
ac3 link destroyed

Makes the next record available in inputbuffer. Depending

on recordformat the actions are:

Unformatted unblocked:
inblock (zone);
bytes: = rem.zone;

goto update;:

Fixed length unblocked:
inblock (zone):
bytes: = length.zone;
comment recordlength is used;

goto update;

Unformatted blocked:

length.zone: = bytes;

Fixed length blocked:
bytes: = length.zone;
if rem.zone < bytes then inblock (zone);

goto update;

Variable length blocked:

if rem.zone > 0 then goto next-record;

Variable length unblocked:

inblock (zone)

rem.zone: = top.zone (0:1) -4;

top.zone: = top.zone +4

next-record:

update:

bytes: = top.zone (0:1) -4;
rem.zone: = rem.zone =-4;
top.zone: = top.zone +4;

if bytes <rem, zone then
breakprocess (cur,4);

addr: = first.zone: = top.zone;
top.zone: = top.zone + bytes;
rem.zone: = rem.zone -bytes

length.zone: = bytes ;

4.21

Procedure Putrec (zone, addr, bytes)

ac0
acl
ac?

ac3

Makes space for a record ‘in the output buffer.

recordformat the actions are:

Fixed length unblocked:

Unformatted-unblocked:

call:

bytes

zone

link

return:

destroyed
destroyed
zone

destroyed

bytes:= length.zone,

outblock (zone)

.
7

if rem.zone < bytes then

breakprocess (cur, 4); ‘

Depending on

update top of zone and rem of zone.
4

refurn;

Fixed length blocked,

bytes:= length.zone,

Unformat ted blocked:

Variable length blocked:

if rem.zone < bytes then outblock (zone),

if rem.zone < bytes then

breakprocess (cur, 4);

update top of zone and rem of zone,

return;

if rem.zone < bytes + 4 then

outblock (zone);

4.22

4.23

Variable length unblocked:

outblock (zone),

if rem.zone < bytes + 4 then
breakprocess (cur, 4);

top.zone (0:1):= bytes + 4,

top.zone (2:3):= 0,

‘top.zone:= top.zone + 4,

rem.zone:= rem.zone - 4;

update top of zone and rem of zone,

first.used.zone (0:1):= sharelength.zone - rem.zone,

first.used.zone (2:3):= 0,

comment block descriptor words inserted,

rei‘urn;

Update top of zone and rem of zone:

first.zone:= top.zone,

top.zone: = top.zone + bytes,

|

rem.zone:= rem.zone - bytes,

Errors:

The process is breaked with errornumber = 4, if an improper number of bytes are

specified.

Procedure Move (paramaddr) ;

call: return:
acO destroyed
acl destroyed
ac? paramaddr paramaddr
ac3 link destroyed
paramaddr +0 count

+1 to” address

+2 from address

+3 work location

The procedure moves count bytes from byte position

from address and on to byte position to address and on.

Note: The procedure always moves to full words.
If to_address + count is odd one more byte is

destroyed.

4,24

5.1

OPERATOR PROCESS

General Rules

An operator process coordinates the communication with the operator.
The process cannot be reserved.

The process works on an input device and on output device.

Attention Request

If output is in progress this will continue until End-of-Line, and the rest is
skipped.

Input in progress is cancelled.

A line is read from the input device and interpreted like this:

The line contains a name. The operator process searches in its event queue for an
input message from a process with this name. The action depends on the name:

If the name is not a provess name, the following line is output on the output

device:

unknown
If the event queue of the operator process contains no message from the process

with the found name, the following line is output on the output device:

busy

If the event queve of the operator process contains at least one message from the
process with the found name, the process is selected as current process, and the

message is executed.

Control Message

The message is returned (status = 0).
Input Message

Input messages will be delayed until operator enters a character.

The action depends on the sender:

5.2

1 If sender = current process, the message is executed, that is a

line is read from the operator input device.
2: Sender current process.
The message buffer is left unchanged in the event queue and may

only be executed after an attention message.

Output Message

If input is in progress this will continue until End-of-Message or until Timeout
occurs.

The action depends on sender:

1. Sender = current process.

The text is output on operator output device.
2. Sender ¥ current process .
2.1 The sender is selcted as current process. The text

> "proc" is output followed by the text of the message.

Messages and Answers

Operation: Message: Answer:
control 0 0
input 1 0
bytes bytes input
address
output 3 0
bytes bytes output

text address

Operating System S

The operating system S contains basically a command line interpreter, which
is able to execute system altering commands. 4
S has always two sources of input:

1) Primary input, which is fixed at system generation time.

2) Normal input, which is alterable by execution of commands.

S has furthermore one output device, which is-fixed at system generation time.
Commands consists of sequences of ASCI| texts seperated by spaces and terminated

by one control character (ASCIl 0-31).

Files are identified by an ASEII text in the first block. Any characters betwen
the terminating linefeed and data should be blanks (Null).

MT program tape:

Bff autoloadfile

. 1 . fi'es ‘o.ahtl‘..- '

datafile

Datafile:

. Nulls
l l Ident"“"‘"‘“‘"“"‘"“""l.onc-- deG lu....t ddfa.

6.1

Commands
IN: "device"
. 1

INT: {"lden’r'f} R

END:

START: "procname”

KILL: "procname"

LIST:

STOP: "procname”

BREAK: "procname"
CLEAR:

6.2

selects "device" as normal input. If "device" is not
p

a process the error message: UNKNOWN will be output.

reads a sequence of command lines from normal input,

The command lines should contain END as last command.

"ident" is used to identify the file from which input

should commence,
dummy command.,

starts a process, i.e. admits it to continue if it is stopped.
If the process is not found error message YNKNOWN

is given,

removes a process from chain, If the program of the process
is specified as own, it is also removed, If the process is not

found error message UNKNOWN is given,

lists all existing processes, and the current maximal

load address.

stops a process, i.e. prevents it from entering running

queue, If it is not found error message UNKNOWN is given.

starts a process in its breakaddress. If it is not found

error message UNKNOWN is given,

acts as a sequence of KILL commands on all

user processes.

LOAD:

Errormessages:

'("idenf'f}:.

6.3

1) if any of the given idents are found as processes

they are removed from the parameter list.

2) then the normal input device is searched for files
identified with "ident"s. If any are found they are

loaded in relocatable format.

If the parameter list is empty loading starts at once

from normal input,

SUM appears if a relocatable block contains a check-

sum error,

ILLEGAL appears if a relocatable block contains no

proper startcode,

"device" XXXXX appears in case of a input device
status. Answering with START means that execution

will continue.

7.1

n
o
7
(2}
]
O
Q
o
o,
oz
wl
2
oz
(a]
)
<
()
Z
<
7

7.1

TELETYPE CONSOLE DRIVER

General Rules

This is an operator driver.

Control messages are ignored.
The driver operates on bytes placed left to right in words, allowing odd
addresses and odd byte counts.

No parity check is performed: the parity bits are masked off.

Control

Ignored

Input Operation

A line of characters can be input to the stora
The characters are echoed on the teletype d

Some characters have special effects.

RUBOUT: Char cancel
The character " €— " is output on the teletype and

the last character is cancelled in the storage area.

RETURN: New line. A LF character is stored.
An answer is delivered with status = 0 and bytes input
defined.

BELL: (© G) Attention Request. Previous input is forgotten.

LINE FEED Same action as for RETURN.

Input is terminated when the storage area is full, or when one of the special

character actions causes termination, whichever occurs first.

rea defined by the message.

.1

Input is terminated temporarily when no character has been input for 5 seconds.

If an output message is pending the input is cancelled, otherwise input is

continued.

7.1.2

Attention Request

Attention request is set when any character key is activated in a non=input situation,
or when the BELL key is operated. In a output situation output beyond the present

line is skipped.

Output Operation

The storage area defined by the message is output as 7-bit characters,

Output is terminated when the area is empty, or after a NULL character.

tatus

Not applicable.

7.2.1

PAPER TAPE READER DRIVER
General Description
Control= and Input messages are accepted. Output messages are interpreted as
input messages, Leading blanks are skipped after a control message.
Control
Reservation and Conversion is accepted. Conversion table address should be
an even byte address.
Input Operation
Three modes of operation exist.

1: binary, the input character is delivered.

5: odd parity, the most significant bit is regarded as

a complemented parity and removed.
9: even parity, the most significant bit is regarded as

parity and removed.

When operation 5 or 9 are used, the further treatment of the input character is:
char: = dia (device);
if' =, parity_ok (char) then char: =26;

char: = char mod 128;

Conversion is done with the following table:

4&——— base = convtab addr //2

class value ¢— base + char

7.2.2
class = 0 normal character, the value is delivered.
class = 128 skip character, the character is skipped.
class = 129 Shift in, base: = base - if valve = 0

then 256 else value.

The character is looked up

again.

class = 130 shift out, base: = base + if value = 0
then 256 else value.
The character is looked up
again.

class = 132 end of block, the character delimits the
current block.

class >= 136 parity parity error indicated and
counted; value delivered.

Starus

1B3: Char defect.

1B6: Device reserved.

1B10: Parity error is set if one or more characters with

wrong parity occurs in the block.
1B11: End medium is set if the device is not ready to deliver

a character within 1 second.

7.3.1

PAPER TAPE PUNCH DRIVER

General Description

Control- and Output messages are accepted. Input messages are interpreted as

control messages.

Control

Reservation and Conversion is accepted, Conversion table address should be a

byte address, and the characters areconverted before output by simple indexing.
conv character: = byte (convtable + character).

Position, Termination and Disconnect results in output of 128 characters blank tape.

Output operation

Three modes of operation exist:
3: binary, the converted character is output.
7: odd parity, the converted character is augmented by the

complement of its parity in the most significant position.

11: even parity.
Status
1B6: device reserved
1B11: em, is set if the hardware status bit 15 (paper low) is set.
1B14: timer, is set if a character is not output within 600 ms.

7.4.1

LINE PRINTER DRIVER

- General Description

Control- and Output messages are accepted. Input messages are treated as

Control messages.

gontrol

Reservation and Conversion is accepted.

Conversion table address should be a byte address. The characters to be output

are converted as
conv char:= byte (convtable + char),

The position command has only effect if Output mode is 7. Then the mess2 part (file)

of the control message gives a number of spaces to be output in front of the

printline.

Output Operation

Two modes of operation exist:
3 : The converted characters are output to the line printer.

7 : The first byte of an output message is interpreted as a carriage
control word.

The standard RC 3600 interpretation is used
s NNNN AA1

move paper:

00 after print
01 immediate (no print)
11 before print

number of lines to be
spaced or channel for skip

- -0 space paper
1 skip to channel

Sfahg:

1BO:
1B1:
1B3:
1B6:
1B8:
1B9:
1B10:
1B11:
1B14:

7.4.2

disconnected, line printer disconnected or unable to accept command.
off-line, the line printer is in off-line state.

device mode 1, channel 12 in carriage control tape has been encountered.
illegal, device reserved.

block error, paper is out, paper torn or paper run away.

data late, line printer not in ready state.

parity, a ccw contains a zero bit in the least significant position.

end medium, end of paper, less than 1.5 forms left.

timer paper run away.

7.5.1

MAGTAPE DRIVER

General Description

Control, Input- and Qutput messages are accepted. At return mess2 and mess3

of the message contains the actual file- and block number,

Control

Reservation, Termination, Positioning, Disconnect, Erase and Sense are accepted.
Conversion is ignored,
Bit 11 =1: Termination: Writes two tape marks and positions between them.
Bit 10=1: Positioning: Positions the tape at the file= and block number
given by mess2 and mess3 of the message.
Bit 9=1: Disconnect: Rewinds the tape and when BOT is sensed, sets

the unit off-line.

Bit 8=1: Erase: Erase 3.7 inches of the tape.
Input

Operation:

L Read pccked,' byte limit =18,

5: Read packed, byte limit =0,

9:: Read unpacked, byte limit =18,

13 Read unpacked, byte limit =0,
Output

Operation:

3: Write.

Common Input/Cutput

Common mode bits:

Bit4 =+ 8192: Selects the lower of two possible densities.
Bit 5 =+ 4096: Selects even parity.

§fafus:

1B1 :
1B2:
1B3 :
1B4 :
1B5 :
1B6 :
1B7 :
1B8 :
1B9 :
1B810:
1B11:
1B12:

1B14:

7.5.2

off=line, the unit is off-line,

Busy ; the unit is rewinding.

device mode 1, noise record,

device mode 2, PE,

device mode 3, write lock.

illegal ; byte limit conflict or write lock, device reserved.
eof, end of file,

block error, block length error (read).

data late,

parity error, read or write.

end medium, end of tape (EOT).

position error, a file mark is read while positioning at
a block. The blockno of answer is one greater than
number of blocks in current file. Position in front of
filemark.

timer, time out at wait interrupt.

7.6.1

CARD READER DRIVER

General Description

Control and Input messages are accepted, Output messages are returned with

illegal status.

Control

Only Control modes: Reservation and Conversion are performed, other modes are

skipped. A sense of the device is always executed when the driver receives a

control message.

Input Cperations

Three modes of operation exist:

1: Read binary bytes.

5: Read binary punched cards.
21 : Read decimal punched cards.
33: Read decimal punched cards and skip of trailing blank columns.

(Min. 10 columns are returned)

All other operation modes are returned with illegal status.

Buffer start B c
B+ 1 C (2)
B+2 C (3)
C (n-1)
B+n-1 C (n)
Fig. 1 Column lay-out in internal driver buffer area

Number of columns =n.

Binary Read Mode

The binary read command will cause the card to be transferred to the internal
buffer as shown in fig. 1. Fig. 2 shows how the row numbers in each column

are placed in the buffer.

7.6.2

Not used 1211 0 1 2 3 4-5 6 7 8 9

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Fig. 2 Buffer word

Decimal Read Mode

The decimal read command will cause the card to be transferred to the internal
buffer as shown in fig. 1 Fig 3 shows how the 12 bits in a column will be con-

verted to a 8 bit character.

12 11 0 8 9 x x x
o ' 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fig. 3 Buffer word

The table below shows how the E-bit (error) and the three x bits are converted.

P unch position number Buffer word bit
12 3 45 67 013 1415
0 0 00 OO 0 00O

0 000 OO 0 0 01
01 00O0O0DO 0 01O
001 0O0O0TO 0 0 11
0 001 0O0O 01 0O
00007100 01 01
0 00O0O0T1O 01 10
0 0000 O0I1 01 11

X
X
X

More than one 1'%

Data - conversion

The Conversion Table Address should be a byte address, If the operation is 5

(Read Binary punched cards) no cenversion of data is performed and the card

columns (fig 2) is delivered to the user, E.g. one card column fills up one

user buffer word.

If the operation is 21 or 33 (Read decimal punched cards) the characters

are converted before output by simple indexing:

conv character: = byte (conv table + character)

E.g. one card column fills up one user buffer byte.

Status

1B1 .

1B2 :

1B3 :
1B4 :
1B6 :
1B8::

1B9 :
1B10;

1B11:
1814:

off-line, card reader is not ready:

Stacker jam, Stacker full, Stop five, power off, test mode,
open interlock, start true, disconnected,

Busy, a card has failed to feed from hopper, a card has not
passed over the read station in the specified time,

Device mode 1, reject command failed,

Device mode 2, 51 column cards,

Illegal command, device reserved.

Block length error, card reader has delivered less than 80 columns,
user byte count less than received no. of bytes from card reader,
Data late,

Parity error, light senser failure, at least one column in a card
read in decimal mode contains a conversion error.

End medium, hopper empty (no data has been transferred).
Timer, in wait interrupt has occurred (300 msec).

The received data are delivered.

7.6.3

7.7.1

OPERATOR CONTROL PANEL DRIVER.

General Description and Rules.

This is an operator driver. The driver operates on bytes placed left to right in

words. Odd addresses are not allowed but odd byte counts are.

Attention Request.

When the load button is pressed, the driver accepts this as a request to choose

the operating system 's' as user. All input is then directed to 's' until 'NL' but-
ton or 'CAN' button is pressed. In attention mode the lamp labelled "LOAD® is

lit.

Control.

Control messages are ignored.

Input Operation.

A string of digits or an indicator message can be input to the storage area de-
fined by the message. Only the digit, +, - buttons are echoed from position 12
on the display.

The other indicators have following effects:

CAN: Echoed characters are cancelled and previous input

is ignored. The operator can input a new text.

NL: Terminates the previous input message by placing a

NL as the last character of the string of digits.

START, CONT, STOP, INT: (1) If an input operation is in progress from key-
board it terminates the previous input message by
placing a NL as the last character of the string of
digits. The button is then treated as for (2) if a

new input message arrives.

2.7.2

START, CONT, STOP, INT: (2) If no previous input has occured the corre-
sponding text: 'START!. 'CONT', etc. is delive-

red as answer.

Note:

If more than one indicator is activated the left

most is delivered.

On Keyboard in sequence:

o1,...,8,9.

CAN,NL,SP,+,-,

Input is terminated when the storage area is full, or as explained above, which-

ever occurs first.

An answer is delivered with status = 0 and bytes input defined.

Output Operation.

b 4b3b2b]

0000
0001
0010
0011
0100
0101
0110
o011l
1000
1001
1010
on
1100
1101
1110
[RRB

000
terminator
terminator
terminator
CLEAR ALL
START
CONT
STOP
ALARM
C.STOP
C.ALARM
NL

C.START
C.CONT

bsbebs

001

010

/

—

*OCO\IC?\U'I#COM—-'-S_O

A\- .o

1]

W VvV

Ozgr—xx_.—IQ'nmUOWIP@a
o

o1 110 111

MU SeSnN<sXs<c—Hv=po

The figure shows the character repertoire and coding (binary). Empty positions

indicate blind characters.

Output is delimited by the bytecount or by a character < 3.

7.7.3

Outputting the NL character causes all 16 character-positions in display to be

cleared in one operation.

Displayable characters delivered after the NL character are displayed in sequen-
ce from left to right. If more than 16 displayable characters are delivered after

the last NL character, the previous message is overwritten cyclically.
Blind characters have no effects.

The characters 'CLEAR ALL' to 'C.CONT!' on figure are used to indicate the corre-

sponding function indicators:

<3> means clear all lamps and audio alarm.
<4> means light the lamp labelled 'START"

<5> - - - - - 'CONT!
<6> - - - - - 'STOP!

<7> - turn the audio alarm on

<8> - clear the lamp labelled 'STOP!

<9> - turn the audio alarm off

<10> - NL

<14> - clear the lamp labelled 'START'
15> - - - - - 'CONT!

Note: Depressing any indicator turns the audio alarm off.

Status.

Not applicable.

7.8.1

Reader Punch Driver.

General Description.

Control, Input and Output messages are accepted.

Control.

Only Control modes, Reservation and Conversion are performed, other modes are
skipped. A sense of the device is always executed when the driver receives a

control message.

Input /Output Operations.

General.

In the Input/Output Operations bit (7 : 15) are used to define the type of Com-
mand. |
Bit 7 =1 selects stacker # 2 or the secondary hopper depending on the
mode of operation
Bit 8 = 1 inhibits the input feed of the next card
Bit (9 : 15) defines the mode of operation

The driver communicates with the device in either binary or decimal mode.

Binary mode.

In binary mode the driver words correspond to the card columns as shown in fig. 1.

Notused 1211 0 1 2 3 4 5 6 7 8 9
01 2 3 4 5 6 7 8 9101112131415

Fig. 1. Driver word.

Decimal mode.

In decimal read mode the card column will be transferred to the driver as an
eigth bit character as shown in fig. 2.

In decimal write mode the driver word will be transferred to the device as

shown .in fig. 3.

Fig. 4 shows the correspondence between bit(13 : 15) in the driver word and row
(1 : 7) in the card column, and for the decimal read mode how the E-bit (Error)

is converted.

7.8.2

E 1211 0 8 9 x x «x
01 2 3 45 67 8 921011121314 15

Fig. 2. Driver word in decimal read mode.

| 1211 0 8 9 x x x
012345678 9101112131415

Fig. 3. Driver word in decimal write mode.

Card row number Driver word bit
1 2 3 45 6 7 0 13 14 15
0 00 0O0O0TUO 0O 0 0 O
10000 00O 0 0 o0 1
01 00O0OTD O O 0 1 o0
001 00 00O o o 1 1
0001 00O o 1 0 o
00001 00 o 1 o0 1
0000010 o 1 1 0
0 000 O0O01 o 1 1 1
More than one 1's T x x x

Fig. 4. Data Conversion in decimal mode

(the x's are irrelevant).

Input Operations.

Bit 7
Bit 9

1 Selects the secondary hopper.

]

1 denotes that the card in the wait station will be led out to stacker # 2.
A new card is read from the specified hopper.
Bit (10 : 15) denotes the mode of operation.
Four modes of operation exist: |

1: Read binary byte

5: Read decimal byte and convert

?: Read binary word

21: Read decimal byte, convert and skip trailing blank columns (min. 10

columns are returned).

All other modes of operation are returned with illegal status.

Except for the abovementioned case (bit 9 = 1) stacker # 1 is used.

7.8.3

In the decimal modes and in read binary byte mode, byte count must be greater
than or equal to 80 (51), or else the operation is returned with block length error
and a number of bytes transferred equal to block count. The rest of the columns
will be skipped.

In the read binary word mode, byte count must be greater than or equal to 160
(102), or else the operation is returned with block length error, and a number of
words equal to byte count // 2. The rest of the columns will be skipped. Byte
count and byte address must be even numbers or else the operation is returned with
illegal status.

Output Operation.

Bit 7 = 1: Selects stacker # 2.

Bit 2 = 1: The card in the wait station is led out to the appropriate stacker, .

i

and a card is fed before the write operation.
Bit (10 : 15) denotes the mode of operation.
Five modes of operation exist:

3 : Punch binary byte with conversion.

11 : Punch decimal byte with conversion.

19 : Print decimal byte with conversion.

27 : Punch and Print decimal byte with conversion.

47 : Punch binary word.

All other operation modes are returned with illegal status.

If the punch/print modes the secondary hopper is used.

In the decimal modes and the punch binary byte mode, byte count must be less

than or equal to 80 (51). If not, the operation is returned with block length error,
and 80 (51) bytes will be transferred.

In the punch binary word mode byte count and byte address must be even numbers,
or else the operation is returned with illegal status. Byte count must be less than

or equal to 160 (102), or else the operation will be returned with block length -error
and 80 (51) words transferred.

in all modes if byte count is less than the maximum allowed, the card will be

filled up with trailing blanks.

Data Conversion.

The Conversion Table Address should be a byte address.

If the operation is 9 (read binary word) or 47 (punch binary word) no conversion

7.8.4

of data is performed and the twelve last bits ina user word corresponds to a card

co'lumn (Fig. 1).

If the operation is 1, 5, 11, 19, 21, 27, or 43 (read/write decimal or binary byte)

the characters are converted before output /input by simple indexing:

conv char : = byte (conv. table '+ char)

e.g. one card column corresponds to one user buffer byte.

To avoid conversion the Conversion Table Address should be zero.

Status.

1B1

1B2

1B3
1B4
1B6

1B7 .

1B8
1B10

1B11
1B14

: Off-line, Reader Punch is not ready:

Power off, power start-up, open interlock, Input Error, Output
check, Punch Data Check, Stacker Full, Stop/Reset key was

pressed, disconnected.

: Busy, a card has not reached the read station in a specified time,

or a light senser failure.

: Device mode 1, Stacker Full.

Device mode 2, 51 column cards.
Illegal command.

End of file, secondary hopper empty.

: Block length error, user byte count does not comply with the number

of columns in a card.

: Data error, read error, punch error, at least one column in a card

read in decimal mode contains a conversion error.

: End medium, primary hopper empty.

: Timer, in wait interrupt hos occurred. The received data are delivered.

7.9.1.

CASSETTE TAPE DRIVER.

General.

Control, Input- and Output messages are accepted. At return mess 2 and mess 3

of the message contains the actual file= and block number.

Control.

Reservation, Termination, Positioning, Disconnect, Erase and Sense are accepted.

Conversion is ignored.

Bit 11 = 1 Termination; writes two tape marks (according ECMA 34 vers
2) and positions between them.

Bit 10 = 1 : Positioning; positions the tape at the file- and block number
given by mess 2 and mess 3 of the message.

Bit 9 = 1 : Disconnect; rewinds the tape and ejects the cassette.

Bit 8 = 1 : Erase; erases the tape in a length corresponding to approxi-
mately 150 characters.

Input

As it is possible to read data according several standards, following input modes are

valid:

Operation:
1: Read one block, ECMA 34 vers 2.
9: Read one block, ECMA 34 vers 1.
J17: Read one block, ASCIl Standard (LRC + VRC).

33: Read one block, no check of data.

7.9.2.

Read continously mode: If 4 is added to the abovementioned input modes, the

CTU will read the datablocks without stopping at interblockgabs, if input messages

are contiguous within 20-40 ms.

OufEuf.

Operation:

Status:

3: Write, according ECMA 34 vers 2.

1B1 :
1B2 :
1B3 :

1B4 :

1B5 :

1B6 :

1B7 :

1B8 :

1B10 :

1B11 :

1B14 .

Off-line, disconnected, cassette released.

Not ready, busy, rewinding or positioning to BOT.

Device mode 1: End of Data, erased tape with length both of
250 to 400 mm has been forund.

Device mode 2: Even parity on character was found, when
input mode 17 is used. Substitute char 26 is inserted.
Device mode 3: Power interrupt, is indicated when power
failure and after power on.

Illegal, illegal command.

EOF, end of file.

Block length error (read).

Parity or blockcheck error.

End Medium, .BOT/EOT hole is sensed in the tape during
operation (data is not lost).

Timeout; possibly hard efror in cassette tape unit, or writing

has been tried on a cassette with the write~enable plugs removed.

7.10.1

DISC DRIVER

General Description

Control, Input, and Output messages are accepted. The driver can handle up to

4 disc drives, connected to the same controller.

Each disc pack mounted on a drive contains 2 surfaces of 203 cylinders of 12

sectors. Giving a total of 2 x 203*12 = 4872 sectors of 512 bytes.

Addressing of drives and sectors uses a logical segmentnumber. Where the

physical addresses are computed as:

driveno = logical segment / 4872
cylinder = logical segment / 24 mod 203
surface = logical segment / 12 mod 2
sector = logical segment mod 12

Control

Reservation, and position are accepted. Other control messages are ignored.

Position uses blockno = mess3.buf as current logical segmentnumber, and posi-

tions the disc accordingly.

InEuf

Two modes of operation exist.

1 sequential read

9 random read

7.10.2

The bytecount of message shall be an integral multiple of 512. Address of

message shall be an even byteaddress.

In sequential read mode bytecount / 512 sectors are read from current segment

and forward. Increasing current segment by one for each sector read.

In random read mode current segment is first assigned the value of mess3.buf,

and then input takes place as for sequential read.

Note: When using the standard 1/O system sharelength should be exactly 512.
Otherwise repetition will function incorrectly.

Output

Two modes of operation exist:

3 write sequential

11 write random

The bytecount of message shall be an integral multiple of 512. Address of

message shall be an even byteaddress.

In sequential write mode bytecount / 512 sectors are written from current segment

and forward. Current segment is increased by one for each sector.

In random write mode current segment takes the value of mess3.buf, and output

is then performed as in sequential mode.

Note: When using the standard 1/O system sharelength should be exactly 512,

otherwise repetition will function incorrectly.

Answers

7.10.3

In any answer from the driver messl gives the number of bytes transferred.

Mess3 contains current logical segment number.

Status

1BO
1B6

188
1B9
1B10
1B11

- 1B12

1B14

disconnected

illegal

blockerror
data late
parity

end medium

position error

timeout

the selected drive is not available.

the disc driver is reserved, address is an odd byteaddress.
Bit 12 drive malfunction of hardware.

the bytecount is not an integral multiple of 512 bytes.
data channel overrun

parity error on disc sector in read operation.

drive does not exist, end of cylinder detected without
zero sector counter (hardware bit 11)

a seek has failed (hardware bit 10)

an operation has not terminated within 200 ms (seek, 1/0)

or 640 ms for recalibrate.

7.11.1

MULTIPLEXER DRIVER

GENERAL DESCRIPTION
Control, input- and output messages are accepted. The driver exists in 3 versions:
one for 16 half duplex channels, one for 32 half duplex channels and one for 64 half

duplex channel.

Initialization

A message of the format:

messO : -1
messl : count
mess2 : address

mess3 : irrelevant

is used to initialize the line descriptions. The lines are numbered 0 to N (N =15, 31, 63)
logically and address and count points to a block of words giving the type and physical

channel-number of each line.

address /2 : line descriptor O

"count" bytes.

line descriptor N

Where each line description occupies 4 bytes

echo channel, kind]
time0 timel |

echo is the echo line for a full duplex input line, otherwise 255.

Channel, kind is the physical channel number « 2 + 1 if output or combined input/output

channel .

TimeO is only relevant for input channels, and is a maximal wait time for first character

(in full seconds) O denotes no max. wait time.

----—--'---‘-

7.11.2

Timel is the allowable wait time between characters (in full seconds).

Line addressing

For all normal messages, the line number is given in the left byte of messO (operation).

CONTROL

Reservation, conversion and disconnect are accepted. Termination, Position and Erase

have no effect.
operation (0 : 7) = line
Reservation: The line is reserved /released depending on messl.
In case of reservation of an output or half duplex channel, a

SET DATA TERMINAL READY command is given.

Conversion: Mess2 is faken as a byte-address of an conversion table. This table

should start at an even byte (Full word boundary).
Disconnect: A HALT command is executed, and in case of output and half duplex
line a CLEAR DATA TERMINAL READY. Attention buffers are returned.
INPUT

Operation (0 : 7) = line

The remaining part of operation, selects the input buffer to be used as an attention
buffer, or a normal input buffer. An attention buffer is retained until no normal input

buffer is present, and an attention character arrives.

7.11.3

Operation (8 :15):

1 normal input
17 attention
+4 parity check for even parity of characters.
+8 echoing of input takes place to echo channel.

Treatment of characters

When a character is read, parity check is performed if specified. When a parity error
is detected the value 26 (decimal) is substituted. When parity checking is specified

7 least significant bits are taken as character value in the conversion.

The conversion is performed when conversion table address is nonzero as table lookup,

giving a class and a value byte for each character.

Convtable/2 : [class | value | ; value 0
 class | value | ; value "char"
Class =0 normal character, the value is delivered (and echoed)
Class~128<> 0 attention character, status attention is delivered. Input is

terminated. The value is neither delivered nor echoed.

Classnb4 <> 0 termination character, input is terminated with this character.
If class includes special echo, this is performed, otherwise

treated as normal character.

ClassA32 <> 0 special echo, the word class concatenate value bits 3 to 15
is taken os a displacement in words from convtabel/2 to a

subtable containing:

convtable /2:

Class n value (3:15)

e subclass | value
echo 1 echo 2
echo3 | -=--=--

128

Subclass A128<>0 erase current input buffer

Subclass A64 <> 0 erase last character (if any) from input buffer.

SubclassA 32 < 0 the value is not delivered.

Value gives the value delivered rand echo 1, echo 2, isa string

terminated by 128, which is echoed on the echo channel (if any).

OUTPUT

Operation (0:7) = line

The text to be output should be terminated by a stop character (value 128).

STATUS

1B1 data set not ready

1B2 calling indicator

1B3 carrier off

1B5 attention char received

1B6 channel reserved by another user
1B8 buffer overflow

1810 parity

1B11 break received

1B14 timeout.

7.11.4

INCREMENTAL PLOTTER DRIVER 7.12.1

General Description.

Control- and Output messages are accepted. Input messages are treated as

Control messages.

Control.

Reservation and Conversion is accepted. Conversion table address should be a

byte address. The characters to be output are converted as

conv. char: = byte (convtable + char);

Output Operation.

One mode of operation exist:

3: The converted characters are output to the incremental plotter.

The maximum size of the output blocks is 64 bytes. Only the last 4 bits in a
byte are significant. '

The meaning of the last four bits in the byte is:

decimal binary
0 0000 = step (+dy, 0)
1 0001 = step (+dy, +dx)
2 0010 = step (0, +dx)
3 0011 = step (~dy, +dx)
4 0100 = step (-dy, 0)
5 0101 = step (~dy, -dx)
6 0110 =step (0, -dx)
7 0111 = step (+dy, -dx)
8 1000 = step all pens up
9 1001 = pen 1 down, pen 2 and pen 3 up
10 1010 = pen 2 down, pen 1 and pen 3 up
11 1011 = not used

decimal binary
12 1100
13 1101
14 1110
15 1111

pen 3 down, pen 1 and pen 2 up
not used
not used

not used

If neccessary decimal 16 can be added to all data.

Status.

1B8
1B14

block error

timer

7.12.2

Execution Times

Note all timings for NOVA" 1200

Interrupt
dummy

driver waiting

Timer
(no processes started)

+ Each process started

Wait
int. pending
buffer pending

no activation

Wait interrupt
int. pending

no actication

Sendmessage
event waited

no activation

Wait Answer
answer pending

answer not present

Wait Event
event present

event not present

Send Answer

answer waited
not activation

92y (std clear)
153 y (std clear)

149
92 p

210 p
232 p
163 p

169 p
155

375 p
269 p

318 u
104 p

118
114 4

299 p
171 p

8.1.2

Send Answer
answer waited 299 p
not activation 171 p

send message +

waitanswer / 387 - 489 v
send answer + 403 - 488 w
wait answer 790 - 977 u
total message traffic : 261 - 308 u

waitinterrupt

next.operation (~waitevent) 40p
return answer (-sendanswer) 30 p
clear 10 p
setinterrupt 25p
setreservation 16,u
setconversion 10 p
conbyte (no conversion) 525
(conversion) 21,00 p
getbyte 14,40 p
putbyte 27,45 p
multiply 126 p
divide 135
(move with getbyte, putbyte) 64,85 p / bytes

move (min) 32,40+ 10,50 * (bytes + 1) //2
(max) 121,05+ 23,70 # (bytes + 1) //2
(average)76,8 + 17,10 % (bytes + 1) //2

bindec 478 p
decbin 181 u

getrec

. putrec

wait transfer

repeatshare

transfer

inblock

outblock

inchar

outchar

backspace

outend

outtext

outoctal

(=inblock)
(+1.variable length field

(=outblock)
(+ 1 variable length field

(-waitanswer)
+ control

+ position check

(-sendmess, waitanswer)

+ position (-sendmess,waitanswer)

(=transfer, waittransfer)

(-transfer, waittransfer)

(=inblock)

(~outblock)

(-outblock)

68 p
+38 p)

9% p
+315)

85p
1Mp

23 p

105 p
75 p

33 p
23 p
23 p
39p
38p
15 p
47 p
53 p

332 p

(50)

* # chars

(-outblock, -waittransfer) (2 shares) 100
setposition (-waitzone, -transfer)

* .
waitzone, -transfer)

(~transfer)

8.1.4

