RCSL: 44-RT 551

Author: Jens Falkenberc
Andersen

Edited: 8/11 - 1972

RC 3600 BINARY LOADER

Key: RC 3600, Binary Loader, Automatic Program Load.

Abstract: The RC 3600 Binary Loader is a routine used to load the
absolute binary tapes produced as output by the Assembler.
The loader is available in a special formattet tape:

RCSL: 44-RT 550.

This tape can be loadet by the bootstrap program in ROM 007
and ROM 008.

ASCII tope: RCSL: 44-RT 552.

CONTENTS PAGE

1 REQUIREMENTS . . civecsvine vionn s onasmsssnsnshsssss 1
2 OPERATING PROCEDURE . ¢ s v i vvvvnsmnonnmnnsessys 2
3 IHSCMSTION wsw vvdvsivs wamstnns il Sna & 5 o brsmm e e s 7
4 EXAMPLES AND APPLICATIONS ..o vvvvvvnnnnnnnn... 8
9 ASSEMBLER LISTNINGvivvieitnnnnnnnsanesans 9

REQUIREMENTS

1.1 Memory
2 K or larger alterable memory.

1.2 Equipment

Teletype ASR or paper tape reader.

1.3 External Subroutines

None.

1.4 Other

None.

Page 1

Page 2

2. OPERATING PROCEDURE

2.1 Calling Sequence

The Binary Loader must be loaded by using the Automatic
Program Load procedure described in "How to Use Nova

Computers". Special format tape RCSL: 44-RT 550 must be used.

The Binary Loader is started by entering SX777 in the data
switches and depressing START. "X" represents the two most
significant octal digits of the highest memory address avail-
able. For example, X = 07 for a 4K system and 17 for
an 8K system. "S" represents bit 0 of the data switches
and should be set if input is to be via the paper tape reader
and reset if via the teletype.

2.2 Inpu'r. Format
The input to the Loader is an absolute binary tape. The
tape is punched in blocks separated by null (all zero) cha-
racters. The Loader reads two tape characters to form a

16-bit word.
The format is as follows:

tape channel A direction of motion

8 7 & § 4.3 2 1

e e e e et e

#1 A 0 78 15
#2 . | %2 | =1 |

In other words, the first tape character forms bits 8 = 15 of

the data word, and the second tape character forms bits 0 - 7

of the data word.

Page 3

The first non-null tape character indicates the start of
a new block. Four different block types, data, multiple
data, start, and error, are defined.

The block type is determined by the first word of the
block. A description of each block type follows.

The first word, WC, of a Data Block is in the rangé
0<WC < 20

8
Its format is:
word
1 -WC
2 ADDRESS
3 CHECKSUM
4 DATA WD 1
5 DATA WD 2
WC = N
3+N DATA WD N

The two's complement of WC is given in the first word.
Normally sixteen data words will be punched per data
block, but the .END and .LOC pseudo-ops to the Assembler
may cause short blocks to be punched. The second word
contains the address at which the first data word is to be
loaded. Subsequent data words are loaded in sequentially
ascending locations. The third word contains a checksum.
This number is computed so that the binary sum of all

words in the block should give a zero result. The remaining

words are the data to be loaded.

Page 4

The first word, WC, of a Multiple Data Block is in the

range
208<WC < 777778
Its format is:
word

1 -WC

2 ADDRESS

3 CHECKSUM

4 DATA WD

where again the two's complement of WC is given in the
first word. This block type is used to indicate that 16]0 or
more data words, all identical to the one data word punched,
are to be loaded sequentially into memory locations beginnig
at the absolute address, ADDRESS. In this case, the number
of identical data words, n, is given by the formula
n=WC =]

i.e. if the first word of the block is —1710, the data is to
be repeated]610 times (note that WC is the absolute value

of the first word). The checksum is computed in the same

manner as an ordinary Data Block.

The first word of a Start Block is 000001. Its format is:

word
1 000001
2 S ADDRESS
3 CHECKSUM

The second word uses bit 0 as a flag. If S = 1, the loader
will transfer control after loading to the address in bits
1 - 15 of the second word. The checksum is the same as

that for a Data Block.

2.3

2.4

Page 5

The first word of an Error Block is greater than +1.

lts format is:

word
1 <
2
IGNORED
N

The last byte of an error block is a rubout (377).

An error block is ignored in its entirety by the Loader.

The binary tape to be loaded must be mounted in the
input device selected by bit 0 of the data switches be-

fore starting the Loader.

Output Format

The output is a loaded routine ready for execution. If no
starting address was given, the Loader will HALT at loca-
tion XX741. Otherwise, control will be transferred to

the loaded routine.

Error Returns

Two error conditions will cause the Loader to HALT at

location XX727.

The first is a binary tape that attempts to overwrite the
Loader. This is a fatal error, and the user must reassemble

with a lower origin before loading will be successful.

The second is a checksum failure over the last block read.
The binary tape should be repositioned to the beginning of
the last block read andCONTINUE depressed. If this se-
cond attempt fails, the binary tape should be assumed to

be incorrectly punched. The user must either reassemble

2.9

2.6

Page 6

to obtain a new binary tape, or he must proceed with
the loading from the next block and after loading key
in from the console the sixteen words of the block in

error,

State of Active Registers upon Exit

If a checksum error occures, ACO will contain the 'in-

correct checksum.

If a binary tape attempted to overwrite the Loader, AC3
will contain the address which would have been over-

written.

Cautions to User

If possible, the user should write routines which do not
desr'roy locations above XX635 (the start of the Loader).
If he adheres to this practice, the Bootstrap and Binary
Loaders will always be intact and need never be reloaded.
Note that although the Loader will not load data above

XX635, the user can write in this area during execution.

3.

Page 7

DISCUSSION

3.1

3.2

3.3

3.4

Algorithms

The binary loader reads in a frame of information at a
time from the input device using a GTCHR routine.
Once the start of a block has been detected (a non-null
frame), the Loader assembles two frames at a time to
construct a complete 16-bit word. The type of block is
determine, i.e. start, data, multiple data, or error,
and control is transferred to an cppropricfe processing
routine. A start block terminates the loading process by
causing control to be transferred to the starting address

or causing the Loader to HALT.

Limitations and Accuracy

The Binary Loader will not permit itself to be overwritten.

Size and Timing

The Loader is 120 (octal) words in length, 116 of which
immediately precede the Bootstrap Loader and the re-

maining two of which follow the Bootstrap.

The speed of the Loader is limited by the speed of the

input device.

Flow Diagrams

Not applicable.

4,

EXAMPLES AND APPLICATIONS

None.

Page 8

G6ar7y
21400

a1unl
Wivwe
A1yvl
A1y
W1dus
Q1yne
aluvy
b1uvly
vivll
Bivile
21413
Wwluld
vivis
vlvle
J1vli7
dilvy
Divel
Dlruvee
wives

5

wav7Ty
Wavu3e

AdBBel
177754

hewiael
176221
116449
bws554049
vw3ldgw
172414
nau774d
waddasy
vaaall
1339009
1514dve
VU4l
nd5609
p1o4v4y
Bvu774
wes3niy
wul1oava
P4y
wuY7Tse6

ASSEMBLER LISTNING

sRC 36u4

PREAMB

~e we we

BINARY LOADER

LE FOR

ol 0C

GET=30

Baurel

NEW BOOT

AT

BEG=EHD=2

LDA
ADCZR
Sus
STA

LDA

SUiB#
JHp
JSR
STA
ADD
INC
JSR
STA
182
JMP
HALT
Jiip
que
JMP

B CAK
503, 5KP
el
5:,3¢3
Celis 3
3,2,5ZR
LOGP
GET
1,C4K
1,2

2re

GET
1,252
CaK

el

Page 9

PAGE |

PROGRAM

’

WMB WS PO ME Ve w4 WS M4 M3 WE WA WIS WA WE W =@ ~e ~wo

-

ANY NON PAGE ZERO WILL DO

TAPE SYNCHRONIZER
NEGATIVE WORD CQUNY FOR PREAMBLE

MEMORY SIZING INCREMENT
FORM HIGHEST ADDRESS
DECREMENT

STURE ADDRESS

GET IT BACK

SAME?

NO = NO MEMORY

GET

SAVE COUNT OF BINLUADER
FORM FIRST ADDRESS
INCREMENT ADDRESS

GET

SET INTQO MEMORY

BUMP COUNT

GO BACK

WHOA FAT HIPPO

GETS CONTROL HERE

@7035

76356
w7637
D7649
B7641
A764p2
7643
V7644
w7645

w7646
d7647
w7650
7651
27652
B7653
67654
b765%

u7656
ba7657
A7660
87661

b7662
dT7063
W76064
A76645
V7666

BoT635
177636

854512
auuda7
171340
ava4us
173380
1438490
yuasiey
BAYNRY

U545 3
B34503
175143
ddu4us
weld61e
waaTTT
nras1e
w2474

vweisein
uuvrTT7
W74510
wuedTe

o617
vewud77
vdvdes
newllo
wewiile

sRC 56€R BIMNARY LOADER

START

wa we

we we

ADDED

LOC

BUILD:

DIFF §

SUBROUTINE TO
IF SWITCH@=9,

H
H
GTCHR s

3 ISTART
START:

BINARY BLOCK LOADER

SUBROUTINE TO ASSEMBLE

Page 10

PAGE 2

A WQRD INTO AC2, THIS WORD IS

INTO THE CHECKSUM HELD IN ACO

{635

BUILD=BEND=~1

STA 3, TEMP1

JSR GTCHR

MOVS 3.2

JSK GTCHR
ADODS 3,2

ADD 2,9

JMP OTEMP1

13

STA 3, TEMP2
LDA 3, 3AVE
MOVL 3,3,5NC
JMP s tD
SKPDN PTR

JMP o=
DIAS 3,PTR
JMP B8TEMP2
SKPDN TTI

JMP =1
DIAS 3. TTL
JMP @TEMPZ
OF THE LOADER
IORST

READS 9

STA B, SAVE
NIOQOS§ 171

NIOS PTR

™6 ma wE MA we “E wa

-e -y we ™a me wa wd we

~e w8 o

MINUS WORD COUNT FOR BIN LOADER

SAVE THE RETURN

GET CHARACTER INTO AC3
AND SAVE IN THE LN OF AC2
GET THE NEXT CHARACTER
AND BUILD IN AC2

ADD INTO CHECKSUM

AND RETURN

GET A CHARACTER INTO ACS3
USE TELETYPE, ELSE USE PTR

SAVE THE RETURN

GET THE SWITCH WORD
AND TEST BIT ¢

A By USE-THETTI

A i, USE THE PTR

READ INTO AC3 AND START
RETURN

WAIT FOR TTI FLAG

EXIT

READ SWITCHES
AND SAVE THE WORD
START BOTH READERS

@7667
w767y
97671
a7672
876073
g7674d
87675
B7676
7677
Bwirag
g7791
arrae
Q7743

B7724
A77us
B7726
D7IV7
QT71v
A7T711
7712
B77153
7714
a7715
w7716
2 A 1
D772
w7721
arvree
w7723
Bgr7724
AT 125
B71726
bwr7ev

wadT7s57
1713u5
dia7ie
yad7s4
173390
141890
145200
Pu4rda
esud77
Bud736
IeS1t3
Dpudles
w4459

nw3aua4as
B3I4T740
172499
Wid4e7
136420
172023
wavdid
w3vdy
147233
vludds
1d7mv22
125115
PUET16
¥5245S
Bwldasy
vivwuie
bwau773
121004
WweldaryT
WOBT740

;RC 3600

y READ T
BLACK?

sREAD IN

STORE:

CHKER ¢

N A BLOCK
JSR GTCHR
MOVS S92 SNR
JMP BLUCK
JSR GTCHR
ADDS 3,2
MOV 2r¥
MOV 2el
JSR BUILD
STA 2sADDRS
J8R BUILD
MOV # 1,1,8NC
JMP TEST
~STA 1,COUNT
THE DATA BLOCK
LDA 2, TEMP2
L.DA S,DIFF
suB 3,2
LDA 3,ADDRS
Sub 1,3
ADCZ 342¢SNC
JMP CHKER
LODA 2,C20
ADDZ# 2rleSNC
182 COUNT
ARDZ 2¢,1,82C
MOV # 1,1+8SNC
JSR BUILD
STA 2, @ADDRS
ISZ ADDRS
184 COUNT
JMP STORE
MOV drdeSZR
HALT
JMP BLOCK

BINARY LOADER

MO WO W WA MG WE WA WE NA WE WE wsd wm

~a

e

Y]

-2 w8 wo

Page 11

PAGE- 3

GET
AND

A CHARACTER

TEST . IT FOR ZERO
YES, STILL IN LEADER
OKy BUILD A WORD

IN AC2

SET INTO THE CHECKSUM
SET THE CQUNTER

GO GET THE ADDRESS

AND STORE IT

READ THE CHECKSUM WQORD
TEST THE CUUNT

IT 18 >0,
BLLOCK

SEE IF STORAGE
ADDRESS IS T0O

BIG

YES, HALT THE LOADER

REPEAT BLOCK?

NOW, TEST THE CHECKSUM

CHECKSUM ERROR, ACdevALUE
GO READ IN A BLOCK

IE A START OR IGNORE

B773¢
w7731
Q71732
47733
vw7i73d
27735
87736
87737
B774u
Q7741

97742
971743
Q7744
a7745
b7 746
07747
a7 /59
@7751
97752
Q7753
27754

gri7e
arrri

t 25224
Waadil
1d1pnad
waaT73
wiag4e
bweeetli
151113
balgya
We35a77
ouari7

paq7vd
beuday
116494
YBYT775
Juv7el
Bres77
weponn
ddurai
Wwedvupy
URBaaY
Qepa2o

wariie
BovEve
VRV663

sRC 36u@

EST3

s IGNORE
;7 A kRUBD

CATTS
TEMP L3
TEMP2:
SAVE?S
COUNT 2
C2o:

ADDRS:

BLINARY LOADER

7 START BLUCK 0OR IGnNORE
{ MOVZR 1.1,87R
JrpP LGNOR
MOV DeBeSZIR
JMP CHKER
LCA 2,AODRS
IORST
MOVL# - 2elrSNC
JMP Vsl
HALT
JMP «=1
ERRGR
uT
JSR GTCHR
LDA @, CITT
SuB B,3,5ZR
JipP IGNOR
JMP BLOCK
377
@
|
¥
1%}
2
s L0G «t21
(]
JMP START

BEND 2

Page 12

PAGE 4
BLOCK

AN IGNURE BLUOCK
TEST THE CHECK SUM
ERROR

GET THE ADDRKRESS

V0 A RESET

TEST BIT 2

O=~START THE PROGRAM
U, HALT

™8 We We we WE wA ww we

MESSAGES BY READING UNTIL

GET InNTO AC3

~-a

OK, GO INTO BLOCK MODE

e

REPEAT BLOCKS HAVE WD > 2u(0CTAL

-e

SKIP BOUTTSTRAP (QLD NQOVA)

e

ADDRS
BEG
BEND
3LOCK
BUILD
c2v
C377
C4dK
CHKER
COUNT
DIFE
END
GET
GTCHR
IGNOR
LLoQoP
SAVE
START
STORE
TEMP1
TEMPZ
TEST

war776
dul1val
warTriT
watee67
6d7636
w7754
waTTadT
byuiae2
w7726
w7753
uR7645
gwlgesd
WAeA39
w7646
wa7iue
uA1au3
Bur7s2
vwa7662
BarTTLT
Va7 75@
w7751
WO773%9

Page 13

