i MUS SYSTEM
‘ INTRODUCTION
(part one of two)

d IE 8REGNECENTRALEN

RC SYSTEM LIBRARY: FALKONERALLE 1 DK -2000 COPENHAGEN F

Edition:

Author:

RCSL Mot

C44-RT 1306
" Rev. August 1976

T. Glaven/A.P. Ravn’

Keywords: |

Multiprogramming, monitor, device handling, i/o utility, record i/o, ‘

operator communication, operating system.

Abstract:

This manual is intended to function as an introduction and guide to the
Multiprogramming Utility System. ;
If actual programming is to be performed, MUS Programmers Guide should

be consulted to get formats and examples of use.

This manual supersedes RCSL 44-RT 614, April 1973,

and RCSL 44-RT 759, September 1974 ,
h Ll;e;'s kof"kﬂ‘\is“;nclriut‘:! a’m cautioned th;:f the specifications ‘

confgined herein are subject to change by RC at any time:
Copyrlght © A/S RegnecentMIen’ 1976 without prior notice. RC is not responsible for typographi-

cal or arithmetic errors which may oppear in this manuali
and shall not be responsible for any damages caused by
reliance on any of the materials presented,

Printed by A/S Regnecentralen, Copenhagen

CONTENTS PAGE

SYSTEM OVERVIEW . i iieaerannsrensnssnnssersomens 1.1-1.5
System Configurationcerirnvurvnnnenenrensnsenns 1.1
Notation and Terminologyvvvevirunriiennnienimenns 1.3

MONITOR s ite ittt ien et insnnrrsasansansenssosinas 2.1-2.7

DRIVER PROCESSES ... s vririvierernennnenns eeeer e 3.1-3.3

/O HANDLING ..ttt teeeerteenennneran e rancnsseoronenss 4,1-4,10
Positioning Procedures e 4.6
Transfer Procedures «......covvuvrivervseennnnenensnns .. 4.6
Record Formats cuvinenenreiiennrrenennaesneeannnns 4.8

OPERATOR COMMUNICATION .. iiirinenanreorronneeannnones 5.1

OPERATING SYSTEM v eee i nes Ceeeeaeceees 6.1

CONTENTS of Part 2 :
See after page 6.1 in this part.

1.1

SYSTEM OVERVIEW

The multiprogramming Utility System for DGC NOVA line of computers has the

aim

- to implement parallel processing including interprocess comunication and inter~
rupt processing.

~ give a strong framework for i/o processing, both on character level and on re-
cord oriented level.

- support the user in the running of the system, which includes easy operator com-
munication, and a basic operating system that takes care of the creation, removal

of processes and loading or delection of programs to core.
These goals have been reached by creation of the following software modules:

1.1 A multiprogramming monitor (system supervisor), the design of which rests heavi-

ly on the proven design of the RC 4000 multiprogramming system.

1.2 Driver programs for common devices. These lay down the rules which are io be
followed in coding drivers for new devices. These rules are purely a matter of
overall cleanliness, as no real destinction is made between driver programs and

ordinary programs.

1.3 Reentrant i/o procedures designed around the zone concept of RC 4000, which
has shown itself to be a clean and tidy way to describe device peculiarities,

buffering, record formatting and = packing involved in any i/o activity.

1.4 A basic operating sysiem, which caters for program load and deletion, process
| creation and removal and start or stop of existing processes. This operating system

can recieve commands from the human operator or from an external device.

SYSTEM CONFIGURATION

The different medules have been fitted together in o manner, which should give as
few logical dependencies as possible and especially elimincte non-hieracial inter-

faces.

Notice that the following versions of the system may be used as subsystems.

A: Monitor alone
B: Monitor and driver processes
C: B and operator communication and basic i/o procedures

D: and/or record handling procedures.

/MONITOR
%550 words

/ DRIVER [

/" PROCESSES |

/"' 100~-200 ;

) VQ v\' '_:j.~w i
BASIC 1/O l

."3~' J N .

f

i
i
A

pme§
o

o0

!

|

|

|
/

!
1
IR emno
!
!
{
!
!
/

1

.2

1.3

NOTATION AND TERMINOLOGY

address An address may be a word address, which is a 15 bit unsigned
integer integer, corresponding to a physical address in core store. Or

it may be a byteaddress, which is a word address left shifted one
and with a one added in bit 15 if the byte addressed within the
word is to the right.

bit A computer word consists of 16 bits, numbered from left to right:
BO, B1, B2, B15,
byte A computer word is régarded as two 8 bit bytes. The left one

bitC to bit7 has a even address and the right one bit8 to bit15
an odd address. '

character A character is a byte. There exists no common alphabet within

the system; thus there can be no graphic meaning of a byte value.

text A fext is a sequence of characters. Starting at a byte address and
containing in a left to right packing. A text is terminated by a

Nullcharacter with value zero.

descriptor A collection of information, which describes an object, is called
a descriptor. Descriptors are found as part of items and as part of

zones .

item An item is a core area, which is headed by a descriptor, the

first part of which has a standard layout. This ensures that an item
always may be in some chain and possibly also in a queue.The
first words of an item contains the fields:

next: next item in a queue

prev: previous item in a queue

chain: next item in a chain

size: the size of the core area of item

name: (3 words) A text identifying the item.

field A field is a displacement, which identifies a piece of information

within a descriptor. Fields are predefined in the system assembler.

chain

gueue

length

size

function

1.4

Notation for a field f of a descriptor d is:

f.d
Fields may be used as displacements in assembler code. For
example: if accumulator ac2 contains the address of descriptor
d, the contents of field f of d may be loaded to acO by the
instruction

Ida 0, f,2 ; ac0O:=f.d

(linked linear list). A chain consists of a chain head and a
number of chain elements. The head and each element point
at the next item in the chain, the lost element equals zero.
For example:

chain head: first chain.first: last chain.last: O

When the chain is empty chain.head equals zero.

(doubly linked cyclical linear list). A queue consists of one or
more queue elements. One of the elements is the queue head.
A queue element consists of two consecutive words pointing at
the next element in the queue and the previous element in the
queve respectively.
For example:
next.head: first next.first: last next.last: head
prev.head: last prev.first: head prev.last: first
When a queue is empty the head points at itself. When an ele-

ment is not in a queue it normally points at itself.

The term length is used to express the number of bytes contained

in some core areqa.

The term size is used to express the number of words contained

in some core area.

A function is a monitor routine executed in disabled mode.
Call of a function is executed by writing its name (the
linkage is defined in the system assembler) E.g. Function

send message (address, ncme_addréss, buf)

procedure

1

call: return:
ac0 unchanged
acl address address
ac?2 name address buf
ac3 link cur

A call is coded as:

Ida 1, words ; acl: = address of message
lda 2, name, 2 ; ac2: = name of item
sendmessage

A procedure is a system routine executed in enabled mode.
Call as in example for functions.

A procedure may also be called with preloaded link register.
E.g. the following routine may be used to fetch consecutive

bytes from an area:

)

fetchbyte:
Ida 1 abyte ; acl: = byteaddr;
isz abyte ; increment (byteaddr);
dsz count ; if decrement (count) ¥ 0O then
.getbyte ; begin getbyte (byte,byteaddr);
imp +1,3 ; return to (link+0)

; end;

; return to (link+1);

2.1

MONITOR

The primary. purpose of the monitor is to implement multiprogramming, that is
simulation of parallel execution of several active programs (processes) on a single
physical processor.

In order to do this, the normal operation is interrupted at regular intervals by
real time clock device (ric) . When such an inferrupt occurs the monitor gains
control of the processor, and is able to determine which process is to get the

next slice of time for instruction execution.

As interrupts from devices are intercepted by the monitor, it also in-

cludes interrupt handling functions. Use of this facility give processes the ability
to synchronize with devices. Futhermore this waitinterrupt function is extended
with a software timer, if the device does not interrupt within a given number

of rtc periods.

The need for. synchronization also exists within the group of processes, and the
monitor implements this as a facility to exchange fixed amounts of information
between processes in such a way that only one process at a time accesses the

information.

All information about a process, which is needed by the monitor is collected

in a process descriptor .

monitor usage.

description, links to chain and

queues
process name , }identification
process state 1

process delay period

, dispatch information

priority of process

saved registers, program counter,

and carry J

communication description interprocess communicatian
program fnformation } start, stop process.
optional words }nof used by monitor

fig. 2.1 Process Descriptor.

2.2

All process descriptors are linked together in a process chain. Those processes
which are running (i.e. competing for the time slices) are also linked into

the running queue. The available slice is always given to the process at the

head of running queue. Insertions into running queue is done in order of
priority (a positive integer). Processes of equal priority are inserted in order of
insertion.

If a process is not running, it may be waiting for an event (synchronizing with
another process), waiting for an interrupt, or stopped

In all cases of waiting it may be linked to delay queue, if it has specnﬂed a
number of delay periods it wants to wait. In case nothing happens, it will be set
running, when this number of timer periods have elapsed. Waiting for interrupt

it is also attached to a device table which determines which device number it

is waiting for.

$, ==
T » T -
;::uf:nl?gad / el ‘ lu B“ — nC n
B 1 7y
*l I [
’ r
[et +(— — T ¥
Q. < <
qucuﬂo ® D‘\ f:} nE" — uFa
| :
|
t
— |
oc. é ' »
p n nG» . "H
{
T |
: .
— S

mr oy

Fig. 2.2 Process descriptor organisation

2.3
Process chain: G, D, A, B, E, H, F, C

Processes A, B and C are running, D, E and F are waiting for a delay to
expire, E is also waiting for an interrupt from device |{.G and H are stopped,
without delay.

The processes G and H may be waiting for an event , and process E may

be waiting for a general event.

2.4

Notice that the monitor imposes no restrictions on the processes which communi-
cate with devices. Special device handlers do not exist within MUS-monitor.

The term driver process is used to describe o normal process, which is dedicated

to operation of o device. They have been introduced in order to give a logically

clean approach to |/O-handling.

Communication facilities for internal processes are designed with the concepts of

a sender process, which sends a message to a receiver, which in turn returns an
answer.

Messages and answers are fixed amounts of information, placed in special message-
buffers and moved between processes by monitor functions. These buffers are part
of the process and belong to the process, but should not be used directly by it.
This method which takes common information away from the code should ensure,
that programming errors or misunderstandings about the communication proce-

dures to a reasonable degree, should have only local effect.

running queue links

event queue head
buffer chain head

;"" —f -"" ~owner chain
/ NN o auxiliary links
-'-I': /%‘S -E- sender link (permanent)

receiver link

(

fig. 2.3 a Initial no communication state information

I/ T

.......

—

fig. 2.3 b B waits for a general eveni

Process B is linked out of running queue, as no event is pending,
it is set in state waiting.

monitor
chain

of used
buffers

fig.

lHn

[N 7

.....

DIB"

Filili

2.3 ¢ A sends a message to B

2.5

First free buffer is lcaded with information, and linked to eventqueue of B.

Receiver address is put to B,

nn (E-:i!
unu B 3
h.\
7 1!
/”/,. AN
4 i
77 s
77 P
/7 ’___,//
——— ——-—/—:"f""‘,"
\ - —— - —_
Q[,‘ ,//
-
A’;)

L)

Process A is stopped, as no answer to the message has appeared.

fig. 2.3 d: A waits for answer (specitic event)

2.6

IHI "B' h

0 LI

e p o ve ase

fig. 2.3 e: B sends the answer. :
The buffer is removed from the eventqueue of B, and is momentarily linked to
the eventqueue of A. As A is waiting for the answer, the buffer is removed
from the eventqueue of A and set into the free buffer pool of A.

List of elementary monitor functions:

wait=interrupt (device, delay), waits for interrupt from device. When the

delay period has expired the process is started unconditionally.

send-message (information, receiver-name), copies the information into a

free message buffer and links it to the receiver eventqueue.

wait-event (information, bufferaddress). If bufferaddress is zero it waits
for an event (message or answer) to arrive in the eventqueue of the process.
Otherwise bufferaddress should point at a buffer in eventqueue, and the

function waits for arrival of an event after this buffer.

send-answer (information, bufferaddress), puts information into the buffer

addressed and retums it tfo sender.

wait=answer (information, bufferaddress), is a special version of wait-event,
which waits for a specified buffer and when it arrives collects the informa-

tion in it and retums it to free buffer pool.

wait (device , delay, bufferaddress) combines the function of waitinterrupt

and waitevent.

2.7

Other features of the monitor.

Besides process chain, two further chains are kept by the monitor. Program chain

which chain all program areas together and Free core chain which contains all

unused core areas.
In this way all of core belongs to a chain, which can be process chain, free
core chain, monitor used buffer chain or the separate free buffer chains of the

processes.

Special attention has been paid in the implementation to the problem of reentrant
programs. All data areas can be placed as part of the process descriptor, the
address of which may be loaded by d single instruction anywhere in program.

This is a very convenient way to eliminate programmer kept data segment pointers.

3.1

DRIVER PROCESSES

A driver process is a nomal process seen from the monitor.
The reasons for introduction of process dedicated to device control are:
- to let more than one process communicate with a device. Without a driver

as interface, this would demand explicit arrangemen ts among involved processes.

- to handle devices in a more uniform way. That is introduction of standard

operations, standard status information. Blocking of all input/output, also for

character oriented devices.
- to realise simple conversions of characters directly from input or output to the

device. .
The operations may be split into two classes,

1. control operations which does not imply any actual input or output, but which

performs positioning, selects different facilities etc.
2. transpui operations which calls for input or ouiput to a core area.

The operations are communicated through messages fo the driver process. Regard=
less of the operation the answer received when a message has been treated by

the driver process contains ¢ status word, which describes how the execution went.

Messages

The formats for messages are:

control, tranépuf:
mode X0 mode Q1
special 1 bytecount
special 2 | first byte
special 3 special

Operation is the common term used for the first word. f is split into a 14 bit

mode and a 2 bif basic command.

If b15 is zero, it is a control operation, otherwise a trunsput. operation. A

transput mc}' be either input, Q@ = 0 o output, Q = 1.

Modebits of a control operation are used to specify control actions. The follow-

ing actions exist at the moment.

3.2

Reservation: the driver is reserved for exclusive access by the sender process,
or reservation is released.

Conversion: a conversion table address is set up in the driver process. The
format of conversion tables is driver dependent. Note that if conversion is
used the driver should be reserved, otherwise one cannot be sure that the
proper conversion table is used. Another process may have specified its own.
Termination: is used to close output logically. E.g. a tapemark may be writ-
ten on magnetic tape.

Position: specifies the execution of a positioning operation for devices which
can be positioned.

Disconnection: means that device should be set offline if possible.

Erasure: is used to delete previous output on magnetic tape for example.

Not all mode~actions may be relevant for a specific driver process.

Modebits of a transput operation are used entirely in driver dependent

fashions.

Special words of messages are used in connection with the modebits.

Bytecount and firstbyte of a transput message defines the core area, which

should be input or output.
Answers

Al] answers from a driver have a standard format:

status

byte count

special 1

special 2

3.3

Status is an array of 16 bits, with standard interpretation:

bit:
bO:
bl:
b2:
b3:
b4:
b5:
bé:
b7:
b8:
b9:

b10:
b11:
b12:
b13:
b14:
b15:

interpretation, if set:
device disconnected
device off-line
device not-ready
device mode 1
device mode 2
device mode 3
illegal message or device reserved by other process
end-of=file
block=-error
data=late
parity=-error
end-of-medium
position error

0

timer error

0

The status bits b0, b1, b2, b6, b7, b8, b9, b10, b11, b14, are called clean bits.

It means that if they occur, the driver shall return all following franspyt messages

with status = 0 and count = 0,

Bytecount is the number of bytes actually input or output,

Special words may be used to give a document position.

4.1

I/O-HANDLING

The reentrant i/o procedures, which may be included in the MUS system, work

on zones. A zone is a collection of information and associated storage areas

necessary to perform operations on documents (data sets).

A zone contains 3 parts: Zone descriptor, which contains information about the
document and the device, that holds it. Share descriptors which holds information

about the current activities in the buffers which they describe. A buffer area which

physically contains the descriptors and associated buffers.

docname
document description

kind

operation

giveupmask

giveupaddr exeption handling
blockcount - £ d

filecount position of document
used share .)
sharelength share information
recformat record information
reclength

firstbyte

topbyte current block end record

remaining_bytes

auxiliary work locations for utility procedures

e e g SRS, UGS W AN | S

lconv table conversion fable address

fig. 4.1 zone descriptor.

S: |operation
count
address
special

next share

state

first address

e S

fig. 4.2 Share desriptor

Full organisation:

PosiTiION

wseol shaw a—
Ssiw

racovol
descriphon

Qux? \iq,rv
op‘Hem;l

fig. 4.3:
zone with 2 shares

buffer description.

messaqe

next shove, o~

staie

messaqe

rext shore o

stode

[

Bulper Jor

T T— 3

4.2

message words to driver process

link to next share, shares are linked cycli-
describes current use

cally

sS4

If a zone is to be set up in assembler code, the following parts

should be initialized:

Po:ﬁ Lon {

Yecord ¥
blocie

1 T AN))ﬂ

b
B docnome ‘(‘:E
N feol
1N Lt
X kind .
%‘qivc wp mo.—gk__?
7 ajviap_addy_
]

33 0 N 35
\:‘l)/ n ;\\‘Q» g)gmm u))d_Nnb

—_— o e e e —

7 vec kvath 2

1))

A &
G -]‘ ¥
,Qe % Share lev\ci L E//:

Z conV. addvess %

fig. 4.5

h'\e,c.souc\e,
word s
y/; ext shove og
7 clates 0
7/5 tivsi acldy 7
messaqe
Werols
7 next shaw e
7 slale = 0 Z
i

. Jivot addv 2

. zone and buffer after init.

4.3-4.5

share desc,

S WQ lﬁv\:‘#\

I/O POSITIONING PROCEDURES

open (zone, operation)

4.6

sets operation of zone, This prepares later operation. Then it initialises the record

and block information and sends a reservation message to the driver process,
If conversion table address is different from zero a request for conversion is
included.

setposition (zone, filecount, block count).

The values are placed in the zone, and a control message specifying position
is sent to the driver process.

close (zone, release).

Ovutputs a last block if necessary. Wait for all pending transfers, which may

have been initiated by the transfer procedures. If the second parameter is

nonzero a release and disconnect message is sent to the driver process. [f command

part of operation = 3 (output) a termination message is sent independent of the se-

cond parameter,

I/O TRANSFER PROCEDURES

This subset of the |/O procedures falls into three classes. One is the basic

block transfer procedures common for the remaining procedures, The second
is the character oriented procedures, which transfer information in character
form. The third is the record oriented procedures which transfer information in

terms of records of various formats.

transfer (zone, length, operation) ;

A operation is started in used share,

waittransfer (zone).

If state of used share is O (free) the procedure is dummy. Otherwise it waits

for a pending message (initiated by transfer) and adjusts the zone parameters:
remaining of block and top address, which describes the block input or output.
Then the transfer is checked using the status and givupmask.

Note: use of these primitive transfer procedures, should not be common practice.

They should only be used if a special bufferadministration is wanted.

4.7

inblock (zone).
Starts input of one or more blocks to the available share buffers according to
a circular buffer-strategy. Then it waits for a single operation to be finished,

ready for use.

outblock (zone).
Makes the next share buffer available for output, after having started an output

operation for the current one.

inchar (zone, char)

maokes the next character from the zone available.

outchar (zone, char).

outputs the character on the specified zone.

outend (zone, byte)
works as a close with no release on character oriented devices, otherwise as

outchar.

outtext (zone, textaddr)
outputs a text terminated by a Null-character by means of outchar. The Null-

character is not output.

outoctal (zone, integervalue)

outputs a 16 bit binary integer in octal form, as 6 ASCIl characters.

Record oriented procedures

getrec (zone, length, recaddress),
makes the next record as determined by recordformat of zone available ot
recordaddress and onwards. The length of the record must be given for U-formats

and is always returned in the length parameter,

putrec (zone, length)

makes room for the record specified by length.

4.8

RECORD FORMATS

The items of data in a document are arranged in blocks separated by inter-
block gaps (IBG); a block is the unit of data transmitted to and from a
document. Each block contains one record, part of a record or several

records, a record is the unit of data transmitted to and from a process.

If a block contains two or more records, the records are said to be blocked.
Blocking conserves storage space on the physical medium containing the

document because it reduces the number of interblock gaps, and it may

increase efficiency by reducing the number of input/output operations required to
process a data set. Records are blocked and deblocked automatically by pro-
cedures gefrec and putrec.

The records in a data set must be in one of three formats: fixed-length,
variable~length, or undefined-length. They can either be blocked or un-

blocked. The following paragraphs describe the three record formats.

FIXED-LENGTH RECORDS

In a document with fixed-length (F-format and FB-format) records, (see
Figure 4.6) all records have the same length. If the records are blocked,
each block contains an equal number of fixed-length records (although the
last block may be truncated if there are insufficient records to fill it). If
the records are unblocked, each record constitutes a block. If the block-
length is not an integral multiple of the recordlength, some space is left

unused in the block.

- BPece H
[Reco®d |iB& | RECO®D iee] REcems |

- Blhecic —

[BconD [Recoer{REcorD|IBGr [REaeen] | 1
fig. 4.6 Fixed~Length Records

VARIABLE - LENGTH RECORDS

This format permits both variable~length records and variable-length blocks.
The first four bytes of each record and of each block contain control infor-
mation for use by the procedures (including the length in bytes of the record

or block). Variable-length records can have one of two formats:

V, VB (figure 4.7)

V-format signifies unblocked variable-length records. Each record is treated
as a block containing only one record, the first four bytes of the block con-
tain block control information, and the next four contain record control.
VB-format signifies blocked variable-length records. Each block contains as
many complete records as it can accomodate. The first four bytes of the block
contain block information, and the first four bytes of each record contain

record control information.

Fig. 4.7 a:

V FORMAT
Clcd Recoro! b6 (C1CA[REORDD [IB6 (CNCA
VB FORMAT

T

CU/RECORD [[c % RECORD L [IDG (€ CURECORD S

-

—

4,9

UNDEFINED - LENGTH RECORDS

In this format a record is either an entire block, in unblocked format, or
a number of bytes of the block in bloked format (see figure 4.8).

The user must detemine the number of bytes wanted for a record.

Unblocked records (U-format):

‘RECORD \BG RECORD |B6 RECORD

Blocked records (UB-format):

?%,a RE CORD DG ..,?ECOR?_, ,_ N ECORD

Fig. 4.8: Undefined-lehgfh records,

5.1

OPERATOR COMMUNICATION

Within a computing system, which contains a single process communicating
with the human operator, there is no real problem in this communication.

All the process needs to know is the device for output and the device for
input of concem to the operator (actually it may be the symbolic names

of the associated drivers).

When more than one process wants to communicate with the single operator
an identification problem arises. How is the operator to distinguish messages
from different processes, and how is he sure that a reply reaches the correct
process?

The answer to these questions within MUS is introduction of operatfor processes,

which on one side communicates with the human operator through the operator

devices and on the other side acts as operator for the processes.

Jext fm‘/twf’
fown,
‘um y On'n ¢=
L \
‘KFM!
o'
\pw‘
: - ferd output
/ O out =|>
e -

Fig. 5.1 : 'o'functions

6.1

OPERATING SYSTEM

The human operator has two distinct roles to play within a processing system.
One is to serve the system when it calls for something to be done (eg. mount
a tape, change paper in printer, supply parameters to a program); the other
is to act as master for the system (eg. load programs, create processes, start
processes) .

Within MUS communication with the serving operator is a matter which the single
process must take care of, but the master operator has to have some means
to carry out his commands. This is precisely the reason for introduction of an

operating system process "S", which can effectuate master operator commands.

<o,
chuate fw -n ",
ecig:wwuds ' > ‘L'O/
esboﬁa(—% S-command
'6' HAsTER

o A

>B ...

. AL

..........

IB“

fig. 6.1 : "sys" process and operator

Commands for "sys" are single lines of text, which should conform to the

following syntax:
CALL [MODIF MODIF —1

CALL determines the basic function, and MODIFs
qualifies the execution.

Title:

@ MUS

PROGRAMMERS GUIDE

(part two of two)

® r AREGNECENTRALEN Rosi Nor #4-FT 1300

: Edition: Rev. August 1976

Author: T. Glov’en/A.P'.' Ravn

RC SYSTEM LIBRARY: FALKCNERALLE 1. DK-2000 COPENHAGEN..F.-.

Keywords:

Multiprogramming, monitor, device handling, i/o utility, record i/o, .

operator communication, operating system.

Abstract:
The manual is mainly intended for readers who are going to use the system.
The user is assumed to be familiar with the general principles of the system
g Y
as well as with the assembler language.
This manual supersedes RCSL 44-RT 508: RC 7000 System Software Nucleus
and RCSL 44-RT 759
: Users of this manual are cautioned that the specifications .
“contained ‘herein are subject to change by RC at any time
CopYthf@ A/S Regnecenfmlen’ 1976 without prior notice. RC is not responsible for typographi-
H cal or arithmetic errors which may appear in this manual
Printed by A/S Regnecenfrclen’ Copenhagen and shali not be responsible for any damages caused by

reliance on any of the materials presented.

. CONTENTS PAGE

MONITOR 2.1 - 2.19
Introduction...cooeirerenenneenreneensacsnns . 2.1
FOrmats vveueeenerecnrncocenooencnnans eeees 2.4
Page Zero Variablesot 2.10
Page Zero Constantscccvveencececcnenes 2.11
Monitor Functionscceveevnnennenecosses 2.14

DRIVER PROCESSES .. cvvivieeeiionenennnasnnsccnnns 3.1 -3.10
Confrol Messageceevveiveenecones e 3.2
Transput Messageceeveeeenecccnonnnennn 3.4
ANSWETS ivvvirereernseosononsnsocnossssosns 3.5

. System Utility Procedures 3.7

/O HANDLING ...coviiiiiiiiiiiieeeneanes 4,1 - 4.23
Identification of a Documentovennn 4.3
Record Structureccivenrecnecccncnconns 4.5
Handling of Exceptionsc.cvvvvineneeenenns 4.7
FOrmats v.uveereneneeeonsnseonesanosossncones 4.10
Basic I/O Procedureseeeeeeeceoonns 4.12
Initialization 1/O Proceduresccvvveeen. 4,14
Positioning Proceduresccceeenneeennn 4.16
Character 1/O Procedurescoeveeeaooens 4,18
Record 1/O Procedurescceeeeeecnnecsen 4.20

OPERATOR PROCESS +.ivverinirereroenneanncssnnns 5.1 - 5.3

OPERATING SYSTEM «oiiieieiiiieenerenancsosnons é

. EXECUTION TIMES e ereerecei st s 7.1 -7.1.4

2.1

INTROD UCTION

Without the monitor we have the cpu operating in parallel with the devices.
Only one program can run in the cpu so we have one process running in
parallel with the devices. This process is able to communicate with the

devices by means of io instructions and the interruption system.

Cpu: {o~instr. » [device 4]
process [[Gevice 2 |

int-- 5\154.

Multiprocessing

The primary purpose of the monitor is to implement multiprocessing., i.e.
simulate multiple processes running in parallel by sharing the cpu and the
devices.
In order to implement the advanced tool of cpu time=sharing the monitor
uses the two primitive tools:

real time clock device and

interruption system.
Having occupied these facilities the monitor must supply the process with
corresponding facilities.
The monitor thereforesimulates that each process is supplied with a real
time clock device. This device gives an interrupt after a real time delay
specified by the process.
The monitor also supplies the process with an interruption facility, the
monitor function: wait interrupt. This enables each process to wait for
interrupt from any device except the cpu, but including the simulated real
time clock device. Interrupt from the cpu, power failure interrupt, is not
available for the processes. When it occurs the processes are breaked and
informed about the cause. '
Now we have a number of processes running in parallel with the devices.
Each process is able to communicate with its own clock device and all

other devices. Processes are unknown to each other.

cpu: monitor

omekr. | [device]
— «—
[ocess |wout- it b ,
e dev.

2.2

Monitor Functions.

One monitor function has already been introduced: wait interrupt. Monitor
functions perform indivisible operations on tables, queues, chains, etc. The
functions are calied by the processes and executed by the moniior in disabled
mode. Seen from the processes they are extended instructions. The total list
of monitor functions is:
Interruption:
wait interrupt
Process Communication:
send message
wait answer
wait event
send answer
General Communication:
wait
Operating System Facilities:
search item
clean process
break process
stop process

start process

Process Communication

The four monitor functions for process communication enable the processes to
exchange information by means of message buffers (shortly: buffers). Each
process has a pool of unused buffers. At present a buffer contains a head of
6 words and an information part of 4 words. A communication takes place

in the following way: The sending process sends a message to the receiving
process by means of send message. The receiver gets information about the
message by means of wait event. The receiver returns the buffer as an answer
by means of send answer. The original sender may get information about the
answer by means of wait event, before the buffer is released by means of
wait answer. If the sender wants to wait for answer to a specific message, it

suffices to use wait_answer.

2.3

General Communication

The function, wait, works as a combined waitinterrupt and waitanswer. In this

way it is possible to wait for an interrupt or a timeout or an event.

Operating System Facilities

The monitor function, search item, searches for a named item in a specified
chain.

The menitor function, clean process, is performed on all processes after a
power failure. The function cleans the communication situation and breaks the
processes.

The monitor function, break process, is performed at monitor function call
error. The process is started at its break address with an error number in a
register.

The monitor function, stop process, sets a process in state stopped. If it is
waiting, the program counter is decreased so the monitor function is performed

again after start.The process is linked out of any queue of which it is a member.

The monitor function, start process, sets a process in state running and links
it to running queue. This takes place if the state of process is stopped;

otherwise the function is dummy.

FORMATS

2.4

Process Descriptor

A process descriptor is an item. Each process has a process descriptor.

containing important process parameters such as name, state, and saved

registers.
next.proc:

prev.proc:

chain.proc:

size.proc:

name. proc:

- event.proc:
+1:

buffe.proc:

prog.proc.

state.proc:

next process in a queue of processes.
previous process in a queue of processes.
This queue element links the process to the running queue
or to the delay queue, or it points at itself.
next process in the process chain.
All process descriptors are in this chain.
process descriptor size.
Process descriptors are of variable lengths.
process name (three words).
The process is identified by this text of one to five

characters, unused character positions equal zero.

first event in event queue.
last event in event queue.
This queue element is the event queue head. The queue
contains messages and answers to the process.
first message buffer.
Message buffer chain head. The chain contains the
message buffers belonging to the process.
program address.
Address of the program executed by the process. A program
may be used by one or more processes.

process statfe.

-8-63 waiting for interrupt, event or software timer
-2 waiting for event or software timer
-1 waiting for event

0 running (i.e. linked to running queue) or
waiting for software timer
8-63 waiting for interrupt from device no = state
buf » 63 process waiting for answer in that buffer
1b0 process stopped

timer.proc:

prior.proc:

bread.proc:

ac0.proc:
acl.proc:
ac2.proc:
ac3.proc:

psw.proc:

save.proc:

o.proc:

E.g:

The optional

buf.proc:
addre.proc:
count.proc:

*
reser.proc:

convt. proc:

clint. proc:

2.5

timer count.
The number of timer periods the process still will wait in
the delay queue.
priority.
Priorities are unsigned values (zero must not be used). Current
process (executing instructions) is chosen cyclically among the
processswith highest priority.
break address.
This address is entered after an operator break , a power failure, or
a program error. |t must always be defined.
saved ac0.
saved acl.
saved ac2.
saved ac3.
psw (process status word) = pc * 2 + carry.
When the process is not active the registers are saved here.
work location for basic reentrant procedures.
process optional words.
The process descriptor may contain any number of optional

words.

words are used by the driver utility procedures, as:
saved message buffer address.
current value of address.
current value of count.
process descriptor address of reserving process.
Zero indicates no reserver.
conversion table address.Zero indicates no conversion,
interrupt handling entry oddress. This address is entered in disabled
mode, when an interrupt arrives from a device, which the process

wants to supervise.

This means that a driver process should contain atleast 6 optional words, if it wants

to utilize the procedures.

2.6

Message Buffer

A message buffer is an item. lts head of 6 words contains the item head
and references to the sending process and the receiving process. The remai-

ning part contains the transmitted information.

next.buf: next buffer in a queue of buffers.

prev.buf: previous buffer in a queue of buffers.
This queue element links the message buffer to the event
queue of a process, or it points at itself.

chain.buf: next buffer in a chain of buffers.

All message buffers of a process are chained together.

size.buf: size of the buffer.

At present the size equals ten.

sende.buf: sender process descriptor address.
This value is permanent.

recei.buf: receiver parameter.

buffer state: receiver parameter value:
free 0
(not yet . .
m + i ro descriptor address
essage . wered) receiver process descrip /
answer - receiver process descriptor address

The next words have optional contents depending on the use, for example:

messO.buf: operation status word
mess1.buf: byte count byte count
mess2.buf: first word address file number
mess3.buf: special information block number

The format of an input/output message to a driver is defined in the driver
description. A few standards are used:

The first word contains the operation. Which is split into a 14 bit mode and
a command. Operation(15:15) defines a control message (=0) or a fransput
message (=1). For transput messages operation (14:14) defines input (=0) or
output (=1). The second word normally contains byte count, the third word
normally contains first word address, and the fourth word has a special content

depending on the operation and driver.

Answer from a driver normally contains the status word and the number of
bytes transferred in the first two words. Further specification is found in the

driver description.

Program

A program is an item of the program chain. The program head contains infor-

mation about the size and name of program and a descriptor word.

pspec. prog: program descriptor word.
pstar.prog: start address for program.
chain.prog: link to next program in chain.
size.prog: size of program.

name.prog: program name (three words),

The program is identified by this text of 1 to 5 characters.

The program descriptor word is an array of bits, which describe the use of

the program.

bO: own bit, if set, the program contains its own process descriptor
after the program. This process descriptor is used, if the program
should be started as a process.

Thus the process descriptor address is progtsize.prog.

2.7

bl: reentrant bit, if set the program is reentrant.
b2: page zero bit, if set the program uses page zero locations.
b8-b15: process count, the number of existing process descriptors, which use

this as program.

Free Core area

A free core area is an item of the free core chain. At present the items of
the chain cannot be handled by any standard procedures. In later versions

of the system they may be used for dynamic storage allocation.

Catalog

A catalog entry is an item of the catalog entry chain. At present only the

entry head exists.

2.8

Page Zero Locations

The monitor leaves about half of page zero, 128 (decimal) locations, for use
by user programs translated by compilers.

It is strongly emphasized, that the system is not prepared to take care of
programs using page zero locations, this is at own risk in the multiprogram-

ming system.

Monitor Process Descriptor

The monitor is organized as a process which process descriptor contains all
tables and the code for the monitor. However the locations 0-31 are outside

this process descriptor. They are used in the following way:

0-1 : interruption system
2-13: monitor function entries
14-15: two page zero locations to be used in disabled mode by processes.

16-17: two autoincrementing locations to be used in disabled mode by
processes.

18-29: monitor function references.
30-31: two autodecrementing locations to be used in disabled mode by
processes.
The monitor process has the lowest possible priority (zero) which must not be
used for other processes. So the monitor is active as a process only when no
other process wants to execute instructions. The monitor process executes a

dummy program: jmp .+0 in enabled mode.

Only the first part of the monitor process descriptor, corresponding to a
normal process descriptor, is described here. Some of its parameters act
as normal process parameters in order to let the monitor run as a dummy
process when no other processes wants execution time. The remaining locations

are used for important monitor constants and variables.

cur: first process in running queue.

+1: last process in running queue.
Head of running queue and process chain. A process may
always find its process descriptor address (current process

descriptor address) in cur.

opera:
size:

table:

fopta:

runni:

proce:

monit:

dfirs:

+1:

efirs:
ffirs:
delay:

2.9

reference to name of operator process
monitor process descriptor size.
device table.
Contains a word for each device number holding process
descriptor address for interrupt requesting process.
top of device table.
running queue.
Reference to head of running queuve.
process chain.
Reference to monitor process chain.
monitor process description.
Reference to monitor process descriptor address.
first process in delay queue.
last process in delay queue.

Head of delay queue and message buffer chain.

first in program chain.
monitor exit address.
first in entry chain.
first in free core chain.
delay queue.

Reference to head of delay queue.

PAGE ZERO VARIABLES

2.10

The page zero variables are part of the monitor process descriptor

cores:

frequ:

progr:

entry:

free:

" mask:

core size.

Contains the number of words in core.

frequency of rtc.

Defines the real time clock frequency:

0:
1:
2:
3:
program chain.
Reference
entry chain.

Reference

50 hz
10 hz
100 hz
1000 hz

to head of program chain.

to head of entry chain.

free core chain.

Reference

interrupt mask

to head of free core chain.

PAGE ZERO CONSTANTS

The page zero constants are part of the monitor process descriptor. These
currently used constants are placed in page zero in order to decrease program

core requirements.

Bit patterns

The bit patterns, 1b0, 1b1, ..., 1bl5, are placed in consecutive locations
labelled by a point and the value, for example:
.1b12: 1b12
The first location has a further label, bit, so if ac2 equals 7, the instruction,
Ilda 0 bit,2
loads the bit pattern, 1b7, into acO.

Decimal constants

Now follows a list of decimal constants available for the programs, but not

necessarily placed in the here shown order:

0 -0
1 1
2 2
.3 3
4 4
5 5
6 6
7 7
8 8
9. 9
10: 10
a2 12
.13 13
.15 15
Jd6: - 16
.24, 24
. 25: 25
.32: 32
.40: 40
.48: 48
56: 56
60 60

.63:

. 64:
.120:
127
.128:
.255:
.256:
512
.1024:
.2048:
.4096:
.8192:
.16384:

.32768:

.m3:
.mé:
.mlé:
.m256:
.name:
.mess:

.even:

-256
name
messO

event

ssize
10
13
10
12

relative address of name in item)

relative address of messO in buf)

(
(
(relative address of event, proc)
(standard zone size)

(

size of a share descriptor)

. Status bits

sdisc: b0 (disconnected)
soffl: b1 (offline)

sbusy : 162 (busy)

sdevl: 1b3 (device mode 1)
sdev2: 1b4 (device mode 2)
sdev3: 1b5 (device mode 3)
sille: b6 (illegal)

seof : 1b7 (end of file)
sbloc: 1b8 (block error)
sdata: 1b9 (data late)

. spari: 1610 (parity error)
sem: 1b11 (end medium)
s12: 1b12 (position error)

snotp: 1613 (rejected by wait transfer)
stime: 1b14 (timer)

s15: 1b15 (hard error in wait transfer)

Control bits

ceras: 1b8 (erasure)
cdisc: 1b9 (disconnect)

cposi: 1b10 (positioning)

. cterm: 1b11 (termination)
cconv: 1b12 (conversion)
crese: 1b13 (reservation)

2.14

MONITOR FUNCTIONS

The functions are called from assembler code by writing their names. Link
is automatically defined. The functions are executed in disabled mode by

the monitor.

In case of parameter error in call, current process is breaked with the
error number (always negative) in acO. If the function is not implemented,

the calling process is breaked with error number = -1.

The functions are described in the following. The return value of ac3 (cur)

is the process descriptor address of the calling process (current process).

Function Wait Interrupt (device, delay)

call: return: link
ac0 unchanged +0: timeout
acl device device +1: interrupt
ac2 delay cur
ac3 link cur

The corresponding entry in devicetable is checked for an interrupt,

If interrupt is pending return is made immediately to (link +1).

Delay is inserted as timer count in the process descriptor and the process
is linked to the delay queuve. If delay is zero a maximum waiting period
is specified. |

The process is stopped with status = waiting for interrupt or software timer.

Return depends on the event: If the time specified by delay runs out before
the interrupt arrives, return is performed to time out (link+0), otherwise

to interrupt (link+1).

Note: Wait Interrupt may be used as a pure timer, when device = 0.
Note: Before any call of wait interrupt with device ¥ 0, the device table
entry must be initialized to proc ¥ 2,

This may be done by procedure setinterrrupt,

Function Send Message (address, name address, buf)

call: return:
ac0 unchanged
acl address address
ac2 name address buf
ac3 link cur

Selects a free message buffer belonging to the calling process and copies
the message at address and on into this message buffer (4 words). The message
buffer is delivered into the queue of a receiving process with name placed
at nome address and on. The receiving process is activated if it is waiting
for an event. The calling process continues execution after being informed

about the address of the message buffer.

The format and interpretation of a message depends on the receiving process.
Errors:
-2: There exists no process with the given name.

-3: No free message buffer is available at the moment.

Function Wait Answer (first, second, buf)

call: return:
ac0 first
acl second
ac2 buf buf
ac3 link cur

Delays the calling process until an answer arrives in the message buffer
given as parameter. The process is supplied with the first two words of

the answer. The message buffer is released.

The format of the answer depends on the process that has answered the
message.

Errors:

-2: The message buffer address does not point at a message buffer belonging

to the calling process.

2.15

2.16

Function Wait Event (first, second, buf)

call: return: link
ac0 first +0: answer
acl second +1: message
ac? buf buf
ac3 link cur

Delays the calling process until an event (@ message or an answer) arrives
in its queue after the message buffer given as parameter. If this parameter
is zero, the queue is examined from its beginning. The calling process is
supplied with the address of the event and with the first two words of the
event.

Return depends on the event: If the event is an answer return is performed
to answer (link+0), otherwise to messoge (link+1).

Errors:

-2: The message buffer address is neither zero nor pointing at a message

buffer in the queue of the calling process.

Function Send Answer (first, second, buf)

call: return:
ac0 first first
acl second second
ac2 buf buf
ac3 link cur

The calling process delivers a first and a second word, which are copied
into the first two words of the message buffer given as parameter. The
message buffer is delivered as an answer in the queue of the sender.
Errors: ‘

=2: The message buffer address does not point at a message buffer in the

queue of the calling process.

Function Wait (delay, device, buf, first, second)

call: return: fink
acO delay (first)(unchanged) +0: fimeout
acl device (second)(device) +1: interrupt
ac2 buf (buf)(cur) +2: answer
ac3 link cur +3: message

Performs the combined functions of wait interrupt and wait-event.
Delay is inserted as timer count in the process descriptor, and the process is
linked to delay queue. If device is non-zero, the devicetable is checked for

an interrupt,

Then it waits for an event after the buffer given as parameter, if buf is

zero the event queue is examined from the beginning.

If an event arrives first, return is made with the first two words of the
message or answer and address of the buffer.

Otherwise the contents of the registers are as for waitinterrupt.

Errors:

-2: The message buffer address is neither zero nor pointing at a message

buffer in the queue of the calling process.

Function Search ltem (chain, name address, item)

call: return:
ac0 unchanged
acl chain chain
ac2 name address item
ac3 link cur

If the chain contains an item with the name placed at name address and

on, the address of this item is delivered, otherwise a zero is delivered.

2.17

Function Clean Process (proc)

call: return:
ac0 unchanged
acl unchanged
ac?2 proc proc
ac3 link cur

Messages to the process are answered with status = not processed.

Answers to the process are released.

Messages from the process are released and the receivers are brecked, with
error number = 1,

Finally the process is breaked with error number = 0.

Function Break Process (proc, error number)

call: return:
acO error number error number
acl unchanged
ac? proc proc
ac3 link cur

Error number should be greater than zero. The process is started af

its break address with the following accumulator contents:

acO: error number
’ acl: unchanged
ac2: proc
ac3: psw //2 (its old program counter)

The following errornumbers are used by system procedures.

0: clean process.

1: clean process, message receiver,

2: operator breoked process.

3 end of program, MUSIL

4. putrec, record too large, getrec illegal length of record.
5 wait transfer, hard error. |

2.19

Function Stop process (proc)

call: return:
acO unchanged
acl unchanged
ac? proc proc
ac3 link cur

The process is set in state stopped and removed from delay- or running queue. If
it was waiting for event or answer, psw is decreased by 2. This ensures, that

the monitor function is called again if start process is performed.

Function Start Process (proc)

call: return:
ac unchanged
acl unchanged
ac2 proc proc
ac3 link cur

State of proc is examined. If it is stopped, the process is set running. otherwise

the function is dummy.

3.1

DRIVER PROCESSES

A driver process is dedicated to communication with a device. Under special
circumstances it might take care of several devices. E.g. teletype input and
teletype output.

Other processes must then request the driver process to perform input/output
operations. Driver processes are thus the only processes which actually

execute i/o~instructions and call waitinterrupt,

Communication with other processes takes place via messages and answers.

The messages should conform to the below mentioned standards, and the
answers should also be of a standard form.

Note, that it is regarded as o rule, that all messages sent to a driver process
should be answered in finite time.

Furthermore it is standard, that a driver process returns all waiting messages if
a device operation goes wrong. This rule is a great help for the standard

i/o-routine, when they use multibuffered input/output.

To code a driver program one should clso be fomiliar with the standard

recovery actions of the i/o procedures and with the document kind specification.

3.1.1

DEVICE HANDLING

Before any i/o instructions are executed, the driver process should clear
the devices and insert its process descriptor address # 2 in the correspond-
ing device table entries,

This may be done by procedure setinterrupt.
The driver process descriptor shall contain 6 optional words (see System
Utility Procedures),

The last clint, proc shall give an address of an interrupt clear action,

clint.proc must obey the following conventions:

called with: return with:
ACO: destroyed
ACl: device unchanged
AC2: proc unchanged
AC3: link destroyed

clint.proc is called in disabled mode and must not change this state.

It must return with the interrupting device cleared, The amount of data
processing in clint,proc must be as little as possible since it affects
system overhead, and clint, proc must never call other system procedures,

If only a nioc device is to be executed, the standard action clear may be used.

i.e. clint,proc: clear,

3.2

. CONTROLMESSAGE

A controlmessage is used for a non-transfer i/o-operation. The format is:

mess0.buf: operation
mess | .buf: speciall
mess2 .buf: special2
mess3.buf: special3

Operation consists of mode (14 bits) and command.

The command specifies control (x0, bit 14 irrelevant).

Mode is an array of bits, which specify actions to be executed. An action
is performed if the corresponding bit is one. Interpretation proceeds from

‘ bit 13 to bit 0. Not all actions are relevant for specific driver processes.

[00000000 EDPTCRXO]
L—— reservation
conversion

termination

position

disconnection

T ~ erasure

not used at present

. If o bit is set, the action is:
Reservation: If special-l * O the sender of the message gains exclusive
access to the driver process. It is set as reserver .in the process descriptor
of the driver. Reservation means that messages from all other processes are
returned with an illegal status, without being processed.
If special-1 = 0 a reservation is cancelled, that is the driver process will

accept any messages again.

Conversion: Only relevant for character oriented devices. Special2 is used

as address of a conversion table, which is placed in the process descriptor of

the driver. A table address of zero specifies no conversion. Format and inter-
pretation of the table is dependent on the driver. Note that if conversion is used,

. reservation ought to be done.

Termination: Only relevant for output devices.
The document which has previously been output is terminated logically,
E.g. for a magnetic tape unit two file marks are written, and the tape

is positioned between the two.

Position: The document is positioned according to the information in spe-

cial2 (file count) and special 3 (block count).

Disconnection: The device is set local (off.line).

Erasure: Only relevant for output devices, which are able to cancel
pervious output, Special 1 may be used to specify how much that should

be erased.

If all bits are zero only a sense command is executed,

3.3

3.4

TRANSPUT MESSAGE

A transput message specifies an operation, which involves transfer to or
from a core area.

The format of a message is:

mess0. buf: operation
mess1.buf: bytecount
mess2.buf: first byte address
mess3.buf: special

Operation consists of command and mode. Mode transmits
information about the mode of transfer. E.g. odd parity, 7 track magnetic

tape, decimal coded cards.

MMMM MMMM MMMM MMQ ﬂ
' l T defines transput
input (Q = 0), output (Q = 1)

mode bits, driver dependent.

Byte count specifies the number of bytes to be transferred to or from core.
First byte address is the byte address of the first byte to be transferred.

The core area used for transfer is thus:

first byte address: by’re»__}wlwl_:?_x_’r_‘em‘Z ‘ 1

o & &

bytecount bytes.

* 8 @

[byte n,| byte (n+1) |

3.5

o ANSWERS

The messages are independent of the command part of operation. The answer

has the format;

mess0.buf: status (lotest sensed status for conirol or transput message with
count#0 and status *b6 or bit 14)

mess1.buf: bytecount

mess2.buf: specialal

mess3.buf: speciala2

Status is an array of bits, which convey information about device errors or
call errors. The different bits have been given specific meanings in order

to standardise error recovery in the input/output procedures.

. b0: disconnected, * the device is not present,
power off for example.
bi: off-line, #* the device was off-line
when an operation was attempted.
b2: device busy, * the device was temporarily not
able to execute the operation.
b3: device mode 1 device dependent
b4: device mode 2 device dependent
b5: device mode 3 device dependent
bé: illegal % the operation was rejected either be-

cause the driver was reserved by
another process or because it was nonsense.

b7: eof % logical end of document is detected
. (file mark, end of transmission sequence).

b8: block error * the core area specified is too small to
hold the block input.

b9: data late * the high speed data channel responded
too late.

b10: parity error # one or more invalid characters were
input in this operation.

b11: end medium % physical end of medium. E.g. end-of-tape,
paper tape reader empty, paper out for
lineprinter.

b12: 0 not to be used

b13: 0 not to be used,

3.6

b14: timer % the device did not respond within
a maximal time.

b15: 0 not to be used.

If a statusbit is marked # all immediately following transput messages should be returned with
status zero. These bits are called clean bits.

Bytecount of answer specifies the number of bytes actually transferred.

Specialal is used for position information, (file count).

Speciala2 is used for position information, (block count).

3.7

SYSTEM UTILITY PROCEDURES

As an aid for the driver processes a number of actions, which frequently have

to be executed, are collected as reentrant routines.

If they are used, the process descriptor should contain the following optional

words:
buf. proc: buffer address of current message
addre, proc: value of mess2, first byte address
count, proc: value of messl, bytecount
reser, proc: word containing reserver process.
. convt, proc: conversion table address,
clint, proc: interrupt clear action address.

Procedure Next Operation (mode, count, buf)

call: return: link
acO mode (=operation(0:13)) +0: control
acl count +1: input
ac2 cur cur +2: output
ac3 link buf

Used by a driver process when it is ready for a new operation.

Notice: the procedure delays the process until a relevant message arrives in its

. queue. Examines the event queue in the following way:
0. answer, Examination continues.,
1. message where sender,buf is different from a nonzero reserver, cur:

the message is returned by means of send answer (status=illegal, count=0),
Examination continues,
2, transput message (operation (15:15)=1) with count=0: the message is
returned by means of send answer (status=0, count=0), Examination continues.
3. transput message, where buf.cur equals -1: The message is returned by means
of send answer (status=0, count=0), Examination continues, |
4, control message (operation (15:15)=0):buf, count and address are saved.
Return to control (link+0).

. 5. input message (operation(14:15)=1):buf, count, and address (mess, 2buf)

are saved. Return to input (link+1).

3.7.1

6. output message (operation (14:15)=3): buf, count, and address (mess2.buf)

are saved, Return (link+2),

Procedure Wait Operation (timer, device, mode, count, buf)

call: return: link:
acO timer timer
acl device device +0 timer
ac?2 cor cor +1 interrupt
ac3 link cur
. ac0, acl irrelevant +2: dummy ac? cur
ac0 mode ac3 cur
acl count +3: control
ac? cur +4; input
ac3 buf +5:0utput

This procedure may be used by a driver process, when it is necessary to wait for
either device interrupt, timeout or a message,
buf, cur should contain a value -1, or 0 indicating wait for any buffer, or it should
contain a buffer in event queue, in which case a message after this one is waited for.
The timer and interrupt returns are taken if these occur, Dummy return is taken

‘ where a message is returned by means of send answer or an answer arrives (see
point 0, 1, 2, 3 of NextOperation), The remaining returns are taken when

point 4, 5, 6 of Next Operation occurs.

3.8

‘ Procedure Set Interrupt (device)
call: return:
ac0 destroyed
acl device device
ac? unchanged
ac3 link destroyed

Includes the process as user of the device. The device is cleared by a nioc instruction.
This means, that any interrupts arriving to the device must be handled by the routine

clint .proc. As a standard clint.proc may be: clear. This executes a nioc device.

Procedure Return Answer (status)

call: return:
‘ ac0 status status
acl mess2 to buf destroyed
ac? cur cur
ac3 link destroyed

Insert status a return value for mess2.buf, and the calculated number of transferred bytes into
the message buffer (saved buf in optional words). Returns the message buffer to the sender

by means of send answer. The number of bytes is calculated by subtracting the

original byte address still remaining in the message buffer from the updated byte

address saved in the process descriptor.

If one of the clean bits are set in status, buf.cur is set to =1,

Procedure Set Reservation (mode)
. call: return:
ac0 operation(0: 13)operation (0:12)
acl -destroyed
ac? cur cur
ac3 link destroyed

If bit 13 of operation (R-bit of mode) is nonzero messl.buf is examined. If
this word is non-zero sender of message is inserted as reserver of cur, otherwise

reserver of cur is put to zero.

3.9

Procedure Set Conversion (mode)

acO
acl
ac?

ac3

call: return:

operation(0:12) operation(0:11)

destroyed
cur cur
link destroyed.

If bit 12 of operation (C-bit of mode) is nonzero mess2.buf is inserted as

conversion table address.

Procedure Conbyte (byte)

acO
acl
ac?

ac3

call: return:

byte byte (converttable.cur + byte)
destroyed

cur cur

link destroyed

Loads the byte at relative location byte in conversion table. Note that

conversion table address in this case should be a bxfeaddress. If conversion-

table.cur is zero, the procedure is dummy.

Procedure Getbyte (addr, byte)

ac0
acl
ac?

ac3

call: return:

byte addressed

addr addr
cur
link destroyed

Fetches the byte at the given byteaddress.

3.10

Procedure Putbyte (addr, byte)

acO
acl
ac2

ac3

call:

byte
addr

link

refurn:
byte
addr
cur

destroyed

Stores the byte, which must be in the range 0 to 255, at the given byteaddress.

Note the remaining part of the word addressed is untouched.

procedure multiply (opl, op2, result);

computes the double length (32 bit) result of multiplying the single length operands.

ac0
acl
ac?

ac3

call:
opl
op2

link

return:

result(0:15) high part
result(16:31)

cur

destroyed

procedure divide (dividend, divisor, quotient, remainder);

performs a short division of the 16 bit dividend extend with zeroes by the divisor.

Giving single length quotient and remainder.

acO:
acl:
ac?2:

ac3:

call:
dividend

divisor

link

return:
quotient
divisor
cur

remainder

I/C HANDLING

The procedures, which can take care of i/o, use zones to describe the activities,

with which they are concerned.

They fall into 4 classes, which handle distinct phases of common i/ activities.

Initialisation:

open
close

. setposition
waitzone

Character input/output:

inchar
outchar
outend
outtext
outoctal

Record input/output:

getrec
putrec

. Basic input/output:

transfer

waittransfer

inblock
outblock

4.1

4.2

‘ The procedure open readies a zone for actual input/output, and close takes care
of orderly closedown of activities. Setposition is mainly of use for block oriented

devices.

The character i/o procedures may be used after initialisation and open. They

cannot be used with record i/o procedures.

Record i/o procedures may be used after initialisation and open. They cannot be
used alongside character i/o procedures. If single bytes of records should be in-
spected or modified the system utility procedures getbyte and putbyte may be of
great help.

Basic i/o procedures are not recommended for general use.

4.3

. IDENTIFICATION OF A DOCUMENT

The term document is used to describe a medium, which is able to contain

data, and which is mounted on a device.
A document is described inside a zone descriptor by:
document name, the process name of the driver, which controls the device.

operation mode, that is the operation, which should be used

in any transput operation sent as message to the driver process.

device kind, a word, which contains some bits, that describe how transfer
errors may be handled.
. At present, the following bits of kind are defined:

b15: char : set if the device is character
oriented, transfers information

in terms of characters

b14: blocked . set if a full block should be

transfered as a unit.

b13: positionable : set if positioning has any effect.
‘ b12: repeatable :set if an operation may be
repeated

The remaining bits of the kind word should be zero.

Description of mode and kind applicable to standard driver processes, are

found as part of their description.

Examples of kinds:
Magnetic Tape Station

Line Printer

Card Reader

Teletype

Paper Tape Punch

Paper Tape Reader

1110

0001 or 0011

0010

0001

0001

0001

4.4

4.5

RECORD STRUCTURE

There exists three formats for records. For each type, the records may be either
blocked or unblocked.

Record type: Format code: Blocked:
Unformatted
Fixed length 2 +1
Variable length 4

Unformatted

A block contains sharelength bytes or less. In output a full block is transferred
to the device regardless of contents. By input as many bytes as requested are
delivered from the block. If the records are blocked, change of block takes

place, when the remaining bytes of the zone cover the demand insuffiently.

Fixed length
Every block containing one or more records (blocked) of fixed length.
The length is given by the zoneparameter reclength. If sharelength is not an

integral multiple of recordlength, the last bytes of input are skipped.

Variable length
The block contains, in two block descriptor BDW, the length og the total
block.

- sharelength __
BDW recordarea . “E
- blocklength —

A BDW contains no further information:
blocklength 0 0
— 4 bytes —

The recordarea may contain one (unblocked) or more records. Each record
is headed by a 4 byte record descriptor RDW.

‘RDW l recordg lRDW recordy, }.....
- reclength <4

A RDW contains the recordlength and a segmentcode, which always

is zero.,

l reclength 0 0
F 4 bytes 4

4,6

4.7

HANDLING OF EXCEPTIONS

In the input/output procedures the user may select certain statusbits, which if
set in the answer to a message to the driver, will transfer control to user

code. These user facilities are described in the zone descriptor by:

give upmask, giveupaddress.

When the basic procedure waittransfer receives an answer, the statusword

is augmented with the following bits:

b15: repeaterror is set if the standard repetition of operations

has given negative results,

b13: rejected is set if a control operation with command = 102
is checked.
b12: position error , is set if kind (13) is one and filecount or

blockcount of answer does not match with the
corresponding updated values of the zone

descriptor.

This combined driver and standard procedure status is compared with the give-

upmask. Common ones from the users status. .

Remaining status bits are given to the standard check actions, which executes

the following recovery work:

b0: disconnected the error is hard.

bl: off-line the errorgis hgrd.

b2: device busy the operation is repeated.
b3: - = 1 ignored.

b4: - - 2 ignored. |

b5: - - 3 ignored.

bé: illegal the error is hard.

b7: eof the error is hard.

4.8
. , b8: block_error the error is hard.

b9: data_late if kind (12) is 1 then operation is repeated,

otherwise the error is hard.

b10: parity error if kind (12) the operation is repeated else

it is a hard error.

b1l: end medium if bytecount of answer is nonzero and operation is

input, no action is taken, otherwise the error is hard.

b12: position error hard error
. b13: rejected hard error
b14: timer hard error
b15: repeaterror hard error

A hard error results in a breckprocess call, with errorcode = 5 and status placed

in acl.

An operation is repeated a maximum of 5 times. If it is still erroneous, it is

classified as having a repeaterror, The cause of the unsuccesful repeats is included
in user status.

. When remaining bits have been treated by the standard actions, control is given
to giveupaddress if users bits are different from zero. Otherwise a normal return

from wait transfer takes place.

Exit to giveupaddress takes place with:

acl:
ac2:
ac3:

ztop:

zrem:

z0:

users bits of status,
zone
return address

first byte transferred,

actual bytecount for transfer,

user bits of status,

The giveup action may return to . repeatshare or directly to

ac3 fo call, ac3 and ac2 must be unchanged in either case,

If the giveup action returns to .repeatshare the message to

the driver is repeated. If the giveup action returns directly

to ac3 the answer is treated as correct and control is re-

turned to the calling 1/O procedure.

Note: The giveup action must never call any |/O effecting

procedure if it wants to return to the calling /O procedure

by means of .repeatshare or via ac3.

4.9

4.10

FORMATS

Zone

A zone describes an input/output situation for a process. It consists of a zone

descriptor and a buffer.

The zone descriptor contains general parameters. The buffer contains the share

descriptors and the shares.

Zone Descriptor

A zone descriptor is identified by the address of its first location.

zname.zone: document name (three words).

1

The document name of one to five characters idenfifiesv
the driver process which should receive messages with i/o

requests.

zmode. zone: operation.
This operation is used in transput messages o the documents.
zkind.zone: kind of document.
Kind for error handling, open action, close action, etc.
zmask .zone: mask for give up.
The mask is compared with the status word when a transfer
is checked. Common ones form the users bits and causes
the address for give up to be entered.
zgive.zone: give up address.

This address is entered if users bits is non-zero.
zfile.zone: file count.

Used for positioning of some document kinds.

. zbloc.zone: block count.

Used for positioning of some document kinds.

zconv.zone: conversion table address.

Used in control message to driver process from open.

zform, zone:
zleng. zone:
zfirs, zone:
ztop. zone:
zused, zone:

zshar, zone:

zZrem, zone:

format code for records,
length of records,
first of record (byte address),

Address of the first byte in the record.
top of record (byte address) \

Address of the first byte after the record.
used share

Address of the currently used share.
share length (in bytes),

All shares have the same length.
remaining bytes in share,

The bytes represent already input characters or room

for new output records,

The zone contains a number of auxiliary words, used by the procedures.

The number of these are given by the assembly constant zaux. These are

labelled 20, 21,z"aux=1",

The total size of a standard zone descriptor is given by the field z.

Share Descriptor

A share descriptor is identified by the address of its first location.

soper ., share:

scoun .share:

saddr. share:

sspec, share:

snext, share:

sstat.share;

operation (0.message)
count (1,.message)
address (2, message)
special (3. message)
These first four words are used as message to the document,
next share,
Next share descriptor in the linked cyclical list of share
descriptors in the zone,
state of share with the values:
0 free
buf pending

4.1

sfirs,share: first shared (byte address).

Address of first location in the share, always even.

The size of a share descriptor is given by ssize,

The total used core for a zone with N shares of length B is:

z + N % (ssize + (B+1)//2)

4.11,1

BASIC 1/O PROCEDURES

procedure Transfer (zone, length, operation)

.
s

call: return:
ac0 operation destroyed
acl length destroyed
ac2 zone zone
ac3 link destroyed

Initiates a transfer operation described by operation to used share.zone.
The bytecount of the message is put to length. Sharestate of
used share points to the buffer used for the message. Used share is updated

to next share.

Note: starttransfer does not check that state of used share is free (zero). If

the state is not free, the buffer address saved in state is lost permanently.

procedure Wait transfer one)

call: return:
ac0 ‘ destroyed
acl destroyed
ac? zone zone
ac3 link destroyed

Examines usedshare.zone. If state is free (zero) the procedure returns immediately,
otherwise it waits for answer to the message placed in buffer identical with state

and sets state to free.

When the answer arrives the status is checked as described in HANDLING OF
EXCEPTIONS. top.zone is adjusted to point at firstaddress of share.

remaining.zone is adjusted to bytecount of answer.

procedure Inblock (zone)

call: return:
ac0 destroyed
acl destroyed
ac2 zone zone

ac3 link destroyed

4.13

Administrates the basic cyclic buffering strategy for input procedures as

’ inchar or getrec. The algorithm is:

while state.usedshare.zone = 0 do

transfer (zone, sharelength,zone, mode. zone);
comment zone should be opened for input,

wait ’rronsfer(zone);
comment n-1 shares are busy and one is

ready with input,

procedure Outblock (zone)

call: return:
ac0 destroyed
acl destroyed
‘ ac? zone zone
ac3 link destroyed

Administrates the basic cyclic buffering of output. The algorithm is:

transfer (zone, sharelength.zone - rem.zone, mode. zone);

comment zone should be opened for output,

waittransfer(zone)

4

remaining.zone:= sharelength.zone,

INITIALISATION PROCEDURES

Procedure Cpen (zone, operation)

call: return:
acO operation destroyed
acl destroyed
ac? zone zone
ac3 link destroyed

The operation is placed in the modeword of zonedescriptor,
Then remaining bytes of zone is initialized to zero if commard = 1 or else to

sharelength. Top of zone points to first of used share.

To initialize the transfers a control message is sent to the process specified by

zname. This message includes reservation and set up of conversion table address.

Procedure Setposition (zone, file, block)

call: return:
ac0 block destroyed
acl file destroyed
ac? zone zone
ac3 link destroyed.

Waits for all pending transfers to the zone as described in procedure close.

Then it sends a position message, which contains the new file- and blockcount

4,17

Procedure Close (zone, release)

call: return:
ac0 destroyed
acl release destroyed
ac? zone zone
ac3 link destroyed
. First the zone is set neutral by means of waitzone,

Then if command was output, a termination, and if release is nonzero a release
reservation, disconnection control message is sent to the process specified by name

of zone.

Command is set to zero, and the zone is set neutral by waitzone.

Procedure Waitzone (zone):

call: return:

II ac0 unchanged
acl unchanged
ac? zone zone
ac3 link destroyed

Terminates the current activities of the zone as follows:
If command is output, a last block is output,

Then all pending transfers are waited for. Either by means
of wait transfer if command is output, or else by means of

waitanswer (no checking takes place),

4.18

CHARACTER 1/0O PROCEDURES

Procedure Inchar (zone, char)

call: return:
ac0
acl char
ac? zone zone
ac3 link destroyed

Gets the next 8-bit character from the zone.

Procedure Backspace (zone)

call: return:
ac0 destroyed
acl top.zone
ac? zone zone
ac3 link link

Delivers the latest character read by inchar from the zone. Consecutive calls have

the same effect as one call.

Procedure Outchar (zone, char)

call: return:
ac0 unchanged
acl char destroyed
ac? zone zone
ac3 link destroyed

Procedure Outend (zone,char)

call: return:
acO destroyed
acl char destroyed
ac? zone zone
ac3 link destroyed

Outputs the 8-bit character on the zone by means of outchar. Then outputs
the part of the share now filled with characters by means of outblock. This

output of the last portion is done only for character oriented devices, i.e.

kind(15) = 1.

Procedure Quttext (zone, address)

ac0
acl
ac?

ac3

call:

address

zone

link

return:
destroyed
destroyed
zone

destroyed

Outputs the text of 8-bit characters on the zone by means of outchar.

Address is a byte address and may be odd as well as even. The text terminates

with a zero character.

Procedure Qutoctal (zone value)

ac0
acl
ac?

ac3

call:

value

zone

link

refurn:
destroyed
destroyed
zone

destroyed

Converts the value to character form and outputs it on the zone by means of

outchar. The 16-bit value is output as 6 octal digits.

RECORD I/O PROCEDURES

Procedure Getrec (zone, addr, bytes)

call: return:
ac0 (bytes) bytes
acl addr (first byte of record)
ac2 zone zone
ac3 link destroyed

- Makes the next record available in inputbuffer,

on recordformat the actions are:

Unformatted unblocked:
inblock (zone);
bytes: = rem.zone;

goto update;

Fixed length unblocked:
inblock (zone);
bytes: = length.zone;
comment recordlength is used;

goto update;

Unformatted blocked:

length.zone: = bytes;

Fixed length blocked:

bytes: = length.zone;

Depending

if rem.zone < bytes then inblock (zone);

goto update;

Variable length blocked:

if rem.zone > 0 then goto next-record;

Variable length unblocked:

inblock (zone)

rem.zone: = top.zone (0:1) -4;

top.zone: = top.zone +4

next=record:

update:

bytes: = top.zone (0:1) -4;
rem.zone: = rem.zone -4;
top.zone: = top.zone +4;

if bytes <rem,zone then
breakprocess (cur,4);

addr: = first.zone: = top.zone;
top.zone: = top.zone + bytes;
rem.zone: = rem.zone -bytes

length.zone: = bytes ;

4.21

. Procedure Putrec (zone, addr, bytes)
call: return:
ac0 bytes destroyed
acl destroyed
ac2 zone zone
ac3 link destroyed

Mdkes space for a record ‘in the output buffer, Depending on

recordformat the actions are:
Fixed length unblocked:

bytes:= length.zone,

. Unformatted-unblocked:

outblock (zone);

if rem.zone < bytes then
breakprocess (cur, 4),.

update top of zone and rem of zone,

I
return;

Fixed length blocked,

bytes:= length.zone,

Unformat ted blocked:

. if rem.zone < bytes then outblock (zone).
if rem.zone < bytes then
breakprocess (cur, 4);
update top of zone and rem of zone,

return;

Variable length blocked:

if rem.zone < bytes + 4 then

outblock (zone)

.
7

4.22

4.23

. Variable length unblocked:

outblock (zone);

if rem.zone < bytes + 4 then
breakprocess (cur, 4);

‘top.zone (0:1):= bytes + 4,

top.zone (2:3):= 0.

top.zone:= top.zone + 4,

rem.zone:= rem.zone - 4;

update top of zone and rem of zone,

first.used.zone (0:1):= sharelength.zone - rem.zone,

first.used.zone (2:3):= 0.

comment block descriptor words inserted,

return;

Update top of zone and rem of zone:

first.zone:= top.zone,

top.zone: = top.zone + bytes,

rem.zone:= rem.zone - bytes,

Errors:

The process is breaked with errornumber = 4, if an improper number of bytes are

specified.

Procedure Move (paramaddr) ;

call: return:
ac0 destroyed
acl destroyed
ac? paramaddr paramaddr
ac3 link destroyed
paramaddr +0 count

+1 to_address

+2 from address

+3 work location

The procedure moves count bytes from byte position

from address and on to byte position to address and on.

Note: The procedure always moves to full words.

If to address + count is odd one more byte is

destroyed,

4.24

5.1

OPERATOR PROCESS

General Rules

An operator process coordinates the communication with the operator.
The process cannot be reserved.

The process works on an input device and on output device.

Attention Request

If output is in progress this will continue until End-of-Line, and the rest is
skipped.

Input in progress is cancelled.

A line is read from the input device and interpreted like this:

The line contains a name. The operator process searches in its event queue for an
input message from a process with this name. The action depends on the name:

If the name is not a provess name, the following line is output on the output

device:

unknown
If the event queue of the operator process contains no message from the process

with the found name, the following line is output on the output device:

busy

If the event queue of the operator process contains at least one message from the
process with the found name, the process is selected as current process, and the

message is executed.

Control Message

The message is returned (status = 0).

Input Message

Input messages will be deloyed until operator enters o character.

The action depends on the sender:

5.2

If sender = current process, the message is executed, that is a
line is read from the operator input device.

Sender + current process.

The message buffer is left unchanged in the event queue and may

only be executed after an attention message.

Output Message

If input is in progress this will continue until End-of-Message or until Timeout

occurs.

The action depends on sender:

Sender = current process.

The text is output on operator output device.
Sender ¥ current process .

The sender is selcted as current process. The fext

> "proc" is output followed by the text of the message.

Messages and Answers

Operation:

control

input

output

Message: Answer:

0 0

] 0

bytes bytes input
address

3 .0

bytes bytes output

text address

Operating System S

The operating system S contains basically a command line interpreter, which
is able to execute system altering commands,
S has always two sources of input:

1) Primary input, which is fixed at system generation time,

2) Normal input, which is alterable by execution of commands.

S has furthermore one output device, which is fixed at system generation time.
Commands consists of sequences of ASCII texts seperated by spaces and terminated

by one control character (ASCII 0-31).

Files are identified by an ASCII text in the first block. Any characters betwen
the terminating linefeed and data should be blanks (Null),

MT program tape:

Bft autoloadfile

files

datafile

Datafile:

& | oidenr, N]

6.1

Commands

IN:

INT:

END:

START:

KILL:

LIST:

STOP:

BREAK:

CLEAR:

"device"

{"idem"{} ,1

"procname"

"procname"

"procname"

"procname"

6.2

selects "device" as normal input, If "device" is not

a process the error message: UNKNOWN will be output.

reads a sequence of command lines from normal input.

The command lines should contain END as last command,

"ident" is used to identify the file from which input

should commence.
dummy command,

starts a process, i.e. admits it to continue if it is stopped.
If the process is not found error message TUNKNOWN

is given,

removes a process from chain. If the program of the process
is specified as own, it is also removed, If the process is not

found error message UNKNOWN is given,

lists all existing processes, and the current maximal

load address.

stops a process, i.e. prevents it from entering running

queue. If it is not found error message UNKNOWN is given.

starts a process in its breakaddress. If it is not found

error message UNKNOWN is given.

acts as a sequence of KILL commands on all

user processes.

LOAD: {rident}.”

Errormessages:

6.3

1) if any of the given idents are found as processes

they are removed from the parameter list.

2) then the normal input device is searched for files
identified with "ident"s, If any are found they are

loaded in relocatable format,

If the parameter list is empty loading starts at once

from normal input.

SUM appears if a relocatable block contains a check-

sum error,

ILLEGAL appears if a relocatable block contains no

proper startcode.

"device" XXXXX appecrs in case of a input device
status. Answering with START means that execution

will continue.

LOAD: {"idenf'ﬂ}:.

Errormessages:

6.3

1) if any of the given idents are found as processes

they are removed from the parameter list,

2) then the normal input device is searched for files
identified with "ident"s, If any are found they are

loaded in relocatable format.

If the parameter list is empty loading starts at once

from normal input.

SUM appears if a relocatable block contains a check-

sum error,

ILLEGAL appears if a relocatable block contains no

proper startcode,

"device" XXXXX appears in case of a input device
status, Answering with START means that execution

will continue.

Execution Times

Note all timings for NOVA 1200

Interrupt
dummy
driver waiting
Timer
(no processes started)
+ Each process started
Wait

int. pending
buffer pending

no activation

Wait interrupt
int. pending

no actication

Sendmessage
event waited

no activation

Wait Answer
answer pending

answer not present

Wait Event
event present

event not present

Send Answer

answer waited
not activation

92 u (std clear)
153 y (std clear)

149 p
92 p

210 p
232 p
163 p

169 y
155 p

375 p
269 p

318 p
104 p

118 p
114

299 1
171 p

Send Answer
answer waited
not activation
send message +
waitanswer
send answer +
wait answer
total message traffic

waitinterrupt

next,operation (-waitevent)

return answer (-sendanswer)

clear

setinterrupt

setreservation

setconversion

conbyte (no conversion)
(conversion)

getbyte

putbyte

multiply

divide

(move with getbyte, putbyte)

299 p
171 p

387 - 489 v
403 - 488 w
790 - 977 w
261 - 308 v

40 p
30 p
10 p
25p
16,u
10 p
5,25 p
21,00 p
14,40 p
27,45 p
126 p
135 p

64,85 p / bytes

move (min) 32,40+ 10,50 ¥ (bytes + 1) //2
(max) 121,05+ 23,70 * (bytes + 1) //2
(average)76,8 + 17,10 % (bytes + 1) //2

bindec

decbin

478 p
181 p

7.

1.2.

getrec (~inblock) 68 p
(+1.variable length field +38 p)
putrec (=outblock) 96
(+ 1 variable length field +315 p)
wait transfer (-waitanswer) 85 p
+ control [RIY
+ position check 23 p
. repeatshare (-sendmess, waitanswer) 105 p

+ position (-sendmess,waitanswer) 75 p

transfer 33 p
inblock (~transfer, waittransfer) 23 p
outblock (~transfer, waittransfer) 23 p
inchar (=inblock) 39%p
. outchar (~outblock) 38y (50 p)
backspace 15y
outend (=outblock) 47 p
outtext 53 p * # chars
outoctal 332 p

waitzone (-outblock, -waittransfer) (2 shares) 100 p
setposition (-waitzone, -transfer) 49
close (2 * waitzone, -transfer) 150 p
open (=transfer) 47 p

