Programmer’s

o

Reference Vianual

.(,/\

16,

22,
22,

23,
24,
26,
31,
39,

40,
40,

41,
41,
41,
53,
56,
59,
60,
68,

line 2:

n

13:
18:

2:

17:
5:

5:
5:

1:
19:

31:
10:

\0
'

15:

RC 3603 CPU Programmer's Reference Manual.

List of Corrections.

Central Processor unit: u corrected to: U

o

Program execution:

n " e E

Fundamental Cocepts: Cocéﬁts corrected to Concepts

Data transfer Operations: t

program flow, i.w.to stop ..

corrected to: T

¢ w corrected to:

condition the addresses saved: addresses correc

above from the basis . .: from corrected to: f
. . of informations: informations corrected to:

Illustration out of drawing:

3x100x1x10+ . . .: x corrected to: +

. « group of three bit can:

(216-l)should be moved to the preceding line immediately after 65,53°
: Two lines are missing between "the last digit." and "Thus:"

bit corrected to bi

The following should be inserted:
In exactly the same way binary complements are produced by sub-
tracting the individual digit from 1 and then adding 1 to the

last (rightmost) digit.

« « is used for addition . .

: for corrected to:

e
ted to address

orm
information

ts

the

. . be taken to_the effective: corrected to: . taken to be the eff.

memory area.: corrected to:
. + aid in difining . .: i

. . with the word addresses:

memory area are co
corrected to: e

s corrected to: d

. « beginning of ths section: ths corrected to:

- 16: the last part of these

lines has been moved

ncerned.

this

down on line with

indices; the part in question is to be moved into place on

the line itself.

. » independant . .: a corrected to: e

: widely different types . .:

both 0 and the device . .:

ent corrected to:
and is to be deleted

ing

and reset the Busy flag and set the Done: is to be corrected to:
and resets the Busy and Done flags,
flag; is to be deleted according to the above correction.

processor is stopped.: corrected to: the proces

buffers addresses from . .:

s corrected to: d

specified by "f". f corrected to: F

whether full - or . .: corrected to: whether f

Panel must be connected . .:

must corrected to:

sor is stopped.

ull- or

can

RC 3603 CPU
Programmer’s Reference Manual

A/S REGNECENTRALEN March 1978
Information Department RCSL 52-AA705

Author: Jens Lovmand Hvid
Technical Editor: Knud Erik Hansen

KEY WORDS: RC 3603, CPU 708, Revision 1.

ABSTRACT: This paper describes the logical structure of the
RC 3603 Central Processor Unit.

SUPPORTING AND REFERENCED DOCUMENTS:

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caysed by
reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1978
Printed by A/S Regnecentralen, Copenhagen

CONTENTS ' Section

RC 3603 SPECIFICATIONS ceeccccocscscscscsocossccssssnncesl

Central Processor Unit eeeeecccceccsccscsscsscssscsesl.l]

MEMOLY cesceocccccscccacsocssscsccccccsccsccssossessels

- INPUt/OUtPUL ceeececsccsscesccsccccsssscocssccncsceele
Interrupt Capability seeececececccccecccsosssscsssecle

Data Channel .sceeececescoccccccscscscccsesessssncsssl

Power Fail/Auto ReStart eeeeeeccccecsescsssccsssccesle

Real Time ClOCK eceeececescsscescacssscssssscscsssnesle

Diagnostic Front Panel seeeccccceccccsssscccccsssscesle

INTERNAL CONFIGURATION ceececcccccsccccscssososccsccccssscel
INtroduction ceecescecssscecsscccscccscccsssssccsseel.]
Program StruCture seeeescccccccscceccccsccsccsscscceclel

Program EXeCution cececeseccecsecccccccsccccscsese2.]
Program Flow Alteration eeecececcccecccsccscsec2.2.2
Program SiZ€ eeeeecsececcccsscsccsccssccsssscceslelel
Program Flow Interruption eeeeecccccccescccscec2.2.4
Information FOIMAtS ceveecevcccccccecscacnccococscseeld
Fundamental CoCeptS ceeecesecsscccecccnsssanseaal.l
Bit NUMDEIiNg cveeeesececccccecencccssancconnse2ede2
Binary Representationeeeeeeccecescecesseseee2.3.3
Octal Representation ...cveeeececeeseccesccscesee3.d
‘Hexadecimal NOtAtion eeeeeeeveceeececesscessnee2.3.5
Numerical QUaNtities ..ceeieeeeecececcccccencccanseasad
INtegerS teeececceccccncrsacscecccscccccccnnnssadal
Logical QUantitieS sieeecececcccececescasseacse2ad.2
AGAresSSiNg ceecececcccescccscccccanassoccnsscssnncaelsd
WOord AJAresSSing ceeeeecesscecccacecocscocennanaade
Page Zero AGAresSing seeeececssscceccccecssaeabal.l
Relative AJAressSing .e.eececececccecosenseae2edale2
. Index Register Addressing ..ececeeeeececeeee2.5.1.3
Indirect AJAreSSing ceeececececcecceccescseee5.1.4
Auto LOCAtioNS ..eveeccsseccncccsencccnneeae.5.1.5
Byte AQAressing eceeeecescecccscccccccccccnceea2ade

1
1
1
1

INSTRUCTIONS cceccecscacccanssccacocccoccsocscsssnsonsseseld
Introduction ..cececececececcscccscseccscsscncsccacaldel
Instruction FOIMAtS .eececececsceccccceccncccansnnsede
Mnemonic DeSCription ..ecececeececececosccascssccascalel
Program F1ow CONtrol...cccececcsccccccccaccccccecaesldd

CJUMP seveccsccsasssccccccccccsnscccsssassssensedad.]
JUMP TO SUBROUTINE ceecceccsccccscccasccsscccsedada
INCREMENT AND SKIP IF ZERD eeveccoccecccssceansa3ded.3

- r——

DECREMENT AND SKIP IF ZERD cecevcccscccscscccseled.d
Data Transfer Operations seccececceccccccccccssssssselad
LOAD ACCUMULATOR ccccceosecccacassercccscscscssesdedal
STORE ACCUMULATOR scecsccccccosscscsscsscssssscssedadel
Integer Arithmetic and Logical Operations eceeeeceee3.6
NEGATE seeeescccecesscescscssscscssasssscassssasleaba3
ADD COMPLEMENT ¢cceccccssscccnsscescasasesnsassslabod
INCREMENT cecescccocscccasnsssassscensscscsasss3ebeb
COMPLEMENT «.ecesscssscssssccsssasccasssssancss3aba?
AND teeeesssccsnsssscssscscssscssscssscsssscssseleab.8
EXampPleS ceeesceoscsccscscscccsscsascosscnssencelab.9
Deciding the sign of a NUMDEL .eeeeesecesece3.6.9.1
Dividing a number by a power of tWO ccceesee3.6.9.2
Changing locations and inverting the order..3.6.9.3

INPUT/OUTPUT ceceeocccsccosccssccsssssecsassasccsasscssccsed 'I
INtroduUCtion seeeesecccscccscscacecssesssssccsscacsscdel
Operation of Input/Output DeviCesS .eceeececsceccsccsscde2 I
Interrupt SYSteM eceescsccssscccsscsscsscccacsscsscnseds3
Priority INterruptS cecececccccccscccccccscscsascsceded l
Direct Memory Access Data Channel ..cececceccccscceed.d
Input/Output INStrUCtiONS ceeeeecccssccccsccsscseacesdeb
DATA IN A vevevveennoonecssesescacessssasssnessdbl] I
DATA IN B ceveccccccssccsscsssssscnssccsacssceesde6.2
DATA IN C soeccecccsccscssnssossosasasccssseansads6.3
DATA OUT A ceeescccscccscscscscscssassscssscessdeb.d l
DATA OUT B sececeacosscscssssessssssscscscssseede6s5 '
DATA OUT C secescscscscscscsccsssvscscscssscesecde6.6
I/O SKIP teeicecscacscscscssncsscassoscscscncesdab.?]
NO I/O TRANSFER seccsccsccccsccsccscsscscoscesecdob.8 ,
Central Processor FUNCtiONS seeeecesescsccscescaseceds’ ‘]
INTERRUPT ENABIE .ceeecoesccccccccccscscscssseccde7ol
INTERRUPT DISABIE .ocececccccccasccscscssccnsasecda? 2
READ SWITCHES cceocscccevcccccscsccscnscsccccssdele3 l
INTERRUPT ACKNOWLEDGE cccececccsccsccccsccaccssds7.d
MASK OUT cceeeccccccscssssssssssssssssssassssscde?5
I/0 RESET eecececccccsasssscssoccscsssscsccsessds7ob I
°

HAI‘T ..o....loo.oo.....".o.....0..00..000.0.0.4.7.7

CPU S(IP ..0.0....lo.........‘.lo.o........o..oo4.7.8

PMESSOR ms o..o....o...o..-o........0............5
IntrOdUCtion‘000..‘......l.......l......ll.5..‘
Pwer FailQo-...O.....'l.oo.o...lo..o..o-000005.2

Memory EXEENSION eeveeeeeanseneesansesscssnnsssnnsesda3

PROCESSOR OPTIONS .ccccecccscccassssssscscsssssscsccscssssash
Real Time ClOCK sececsccccscccssassssccssscsssccnasebal
Teletype CONtroller. ...eceeescecrscscesscccscscnsssesada?

INSErUCtIONS tevevssscosssccscsssccscccosscssesd

6

2.1
READ CHARACTER BUFFER ceocccccsccccccccnnseed.2.1.1
LOAD CHARACTER BUFFER cccccccscesaccasccnnsebe2.1.2
Programning .eceececesccssesccsccsccssscoscssenseaba2.2
INDUE ceeeecececcsacccncnccnnesssccsescnnssabe2,2,1
OUtPUL cecenccccecresansscossscsscaconanssssd 2,2,2
Progranming EXamPleS seeeveccccsccssccccssscsaebe2.3

PROGRAMMING IOADING cccceccascessosassccscsasscscsoscscanncal
INtroduCtion ..ceeccececcccccccscccsssassssessscsssslel
Automatic Loading ceessscccccssssssccccscsscscsassaclel

SWITCHES AND INDICATORS ccevececsccccscscsccsscsscscccsced
SWitCheS .eeceecesecccssccascscscscssacccasssssacensealal

ENABLE TCP ecceeccccocccavsoscscsascscsssnsnaseeBalal
AUTOLOAD DEVICE SELECT eecccccscscccscssccscnsee8el?
PARITY ERROR cccecocccccccssccccssoscssscssceasseBelel
MEMORY EXTENSION SELECT ceeeescsscsscscsccccece8elod
INAIiCAtOrS ccesseseccccssasssccscasssnsssscnsvsscsassale
PARITY ERROR .cvecececsnscccacsossssssscsassassB.2.]
"CPU-STATUS tcceccersnssssccscscssssasccscssssseceBel,2

" APPENDICES:
I/0 DEVICE CODES AND MNEMONICSAppendix A
ASCII CHARACTER CODES eeeeceecececesesssss.Appendix B
DOUBLE PRECISION ARITHMETIC .oveeeeees.....Appendix C
INSTRUCTION USE, EXAMPLES .eeeveeeeoseese..Appendix D
INSTRUCTION EXBCUTION TIMES veeeeeeeeee....Appendix E

~
-

A

1.1

1.2

-

Page 7

RC 3603 Specifications

Central Processor Unit

The RC 3603 Central Processor Unit is a micro—-programmed,
general purpose stored-program computer with four accumulators.
The CPU works on the basis of a unit of information called a
word which consists of 16 bits. Arithmetic and logical
operations are performed on operands held in the accumulators,
which consequently also are 16 bits in length. Two of the
accumulators can be used as index registers for addressing
purposes.

Memory

The main memory is available in two alternative modules:

RC 3608 is a core memory with a capacity of 32K words and a
cycle time of 750 ns.

RC 3609 is a core memory with a capacity of 16K words and a
cycle time of 650 ns.

The CPU can directly address 32K words of core memory and
provides for base page, relative, indexed and multi-level
indirect addressing modes. By the use of a special instruction
the CPU can be switched to a mode which will allow it to work
with up to 64K words of core memory.

Word length in memory is 16 + 2 = 18 bits. The two extra bits

-are parity check bits. They are generated during each memory

write cycle and are checked during each memory read cycle. The
detection of a parity error can affect the operation of the CPU
in two alternative ways: the error can be indicated on the front
frame of the CPU board while processing continues uninterrupted
or processing can be brought to a halt. The selection of either
possibility is left to the operator's choice by means of a
switch also located on the CPU frame.

13

14

15

Page 8

Input/Output

All peripheral devices are connected to the CPU through the
Input/Output bus. This consists of a six-line device selection
network, interrupt circuitry, command circuitry and sixteen data
transmission lines. Each individual Input/Output device has a
unique six-bit device code and will only respond to commands if
its own device code is transmitted through the device selection
network of the Input/Output bus.

The six bits in the device code allows for 64 separate codes. A
number of these codes are reserved for specific uses, but the
remaining codes makes it possible to obtain an extremely
flexible handling of Input/Output devices.

Interrupt Capability

The interrupt circuitry included in the Input/Output bus
provides the capability for any peripheral device to interrupt
normal program execution whenever the device is in need of
attention. When a peripheral device has requested an interrupt
the processor will transfer control of operations to the main
interrupt service routine, which will handle the servicing of
the device. The interrupt service routine will establish the
source of the interrupt either by polling all Input/Output
devices connected to the CPU or it can use a special instruction
to identify the device in question.

The interrupt system also provides the capability of
implementing up to sixteen levels of priority in connection with
interrupts, so that each individual peripheral device is
associated with a specific priority level. A standard priority
assignment is implemented by Regnecentralen, but the programmer
can change these assignments according to his own choice.)

Data Channel

Data transfers between peripheral devices and main memory under
program control occupies processor time and retards the rate of
information transfer. '

To avoid this restriction the Input/Output bus contains
circuitry allowing high-speed access direct to memory through
the data channel, this permits a peripheral device to transfer

|

1.6

1.7

1.8

2y]

-

Page 9

data directly into/out of memory using a minimum of processor
time. At the maximum transfer rate the data channel effectively
stops the processor, but at lower rates processing continues
while the data transfer takes place.

Power Fail/Auto Restart

The RC 3603 computer incorporates a feature providing for
automatic restart in the event of an unexpected power loss. The
delay between the initial decrease of voltage and the actual
automatic shut-down of the processor is utilized to bring the
interrupt service routine into action. This routine will under
these circumstances use the available interval of time to store
the ocontents of accumulators, the program restart address and
other information that will be necessary for restart and

continued operation when the power supply again has been
restored.

The Power Fail feature is entirely automatic and will restart
operations on its own whenever power is again available.

Real Time Clock

A Real Time Clock can optionally be included in the RC 3603
computer. This clock will generate a train of pulses
independently of processor timing, this will allow the interrupt
System to be activated at precisely spaced intervals of time.
The pulse train frequency can be selected by the programmer

among the following four possibilities: 10 Hz, 50 Hz, 100 Hz and
1000 Hz.

Diagnostic Front Panel

A Diagnostic Front Panel can be connected to the CPU even during
program execution. This will allow external, manual control of
the CPU and will thus facilitate error detection and correction.
The Diagnostic Front Panel is not described in detail in this
manual, for further information concerning this oconsult the
Reference Manual for the Diagnostic Front Panel - RCSL 52-AA542.

2.1

2.2

2.2.1

Page 10

Internal Configuration

Introduction

This chapter and the following deals in some detail with the
basic concepts underlying the actual modus operandi of the RC
3603 CPU. A more intimate knowledge of this subject is not
strictly necessary for ordinary everyday use of the computer,
because the high-level programming languages available are
designed to allow symbolic programs to be written without
reference to the more specific information contained in this
manual. Thus the intention is not to establish guidelines for
actual programming, for which purpose separate manuals are
available, but to provide a source of background information for
the programmer and/or operator.

Program Structure

Information about the type of operation - arithmetical or other
~ which the computer at any particular time must perform, is
given to the CPU in the shape of an "instruction". The CPU will
carry out successive instructions in strict sequence according
to the order in which the instructions have been specified. The
complete set of instructions is called a “"program" and this must
at the time of execution reside in main memory in order to be
accessible to the CPU.

Program Execution

Each individual instruction occupies a space in memory called a
"word" and although these words will usually occupy adjacent
physical locations in memory, the program may incorporate
instructions with the specific purpose of altering the sequence
in which the instructions should be carried out.

Thus the CPU must be able to locate the correct word at the
correct point in the sequence in order to execute the program
properly. The actual physical location of a word is called its
"address" and. consequently the establishing of location is
called “addressing”".

Addressing the instructions is arranged by incorporating a
counting circuit called the "program counter". The program

2.2.2

Page 11

counter contains one integer number, which always indicates the
memory address of the instruction currently being carried out.
When the operation specified by that particular instruction has
been completed, the number in the program counter is incremented
by one and the CPU will then retrieve the next instruction to be
carried out from the memory location now being indicated by the
number in the program counter. Succeeding addresses will thus
form a strictly ascending numerical sequence and this method of
operation is consequently called "sequential operation".

Program Flow Alteration

The programmer can however purposely arrange to deviate from the
strict sequential operation. This is done by using the
appropriate program flow control instructions which will make it
possible to achieve two distinctly different types of program
flow variation.

The "jump" type instruction will cause an arbitrary new number -
either larger or smaller than the current one - to be inserted
in the program counter. Thus when the jump instruction has been
executed, the next instruction to be located can have any of all
the possible addresses.

The "conditional skip" type instruction will first determine
whether a spec1f1ed test condition is true or not. If true, it
will then cause the program counter to be increased by one, if
false, nothing further will be done. When the conditional skip
instruction has been executed, the program counter will be
increased by one as in the usual sequential operation and thus
the next instruction to be located will have either of the two
following addresses depending on the outcome of the test. Normal
sequential operation will be resumed after the completion of
either type of instruction - using the updated value of the
program counter - and will continue until the next program flow
alteration occurs. An illustration showing the two types of
program flow alteration appears on the following page. Fig. 2.2.2.

2.2.3

2.2.4

Page 12
Fig. 2.2,2
s _/— SEQUENTIAL
l : PROGRAM
FLOW
INCREASING
ADDRESSES
I JUMP
N PROGRAM
S FLOW
T 4
R
'
C
T
I SKIP
0] PROGRAM
N FLOW
S
L

Program Size

The integer number contained in the program®counter will have a
magnitude betweeh 0 and 32, 767 (both included) and will thus
make it possible to address 32,768 separate memory locations
which is then the maximum program size. The program need not
necessarily start in memory location 0, but if the program
counter reaches the value 32,767 the next incrementation will
produce the value 0 and sequential operation will then continue
from here as previously explained. Notice should be taken of the
fact, that no indication whatsoever of this particular situation
will be given.

NOTE: The proceeding outlined above will change if Memory
Extension has been selected (cf. Section 5.3).

Program Flow Interruption

During the normal running of a program a variety of situations
may arise which will make it necessary to interrupt the normal
program flow, i.e. to stop ordinary processing temporarily. This
may be due to either quite normal occurrences - for instance the
necessity of performing an Input/Output operation - or it may be

2.3

Page 13

due to exceptional occurrences - external or internal faults or
malfunctions.

In both cases the address of the next sequential instruction is
saved by the CPU while the interrupt condition lasts. On
termination of the interrupt condition the address saved by the
CPU is placed in the program counter anew and the interrupted
program resumes operation at the correct point in the sequence.

An illustration showing this variation in program flow appears
below, Fig. 2.2.4.

- SEQUENTIAL
, PROGRAM
1 FLOW
INCREASING 1/0
ADDRESSES INTERRUPT
I OCCURS
N
S
T JUMP
R
U J
| C
T SKIP
I
o)
N CONTINUED
{ S PROGRAM RETURN
FLOW
\
_Fig. 2.2.4

Information Formats

In any computer information is basically represented by some
physical quantity - usually electric current or magnetism. The
actual nature of this quantity as well as its magnitude carries
no importance with respect to use of the computer; the important

2.3.1

2.3.2

Page 14

property is that the relevant quantity can either be present or
not present.

Fundamental Concepts

The two possible — but mutually exclusive - states as mentioned
above form the basis for all considerations of information
processing. The two states are normally indicated by the
numerals 0 (zero) and 1 (one) and the nucleus of information
thus represented is called a "binary digit" - usually shortened
to "bit".

In the RC 3603 computer the standard unit of information is
however the "word", which is a string of 16 individual bits. As
each bit can attain either of two different states, the string
of 16 bits can represent 216 = 65,536 different pieces

of information, for instance the integer numbers from O up to
65,535. It should here be noted, that although the wellknown
mathematical symbolism - i.e. numbers - is often used to
describe the information content of a word (or a part of a
word), this is in reality only a matter of convenience and does
not restrict the actual meaning of the information to this
particular subject; nor does it restrict the use to which it may
be put. Although the word is the standard unit of information
handled by the RC 3603 computer it can at times be convenient to
subdivide a word into two parts of 8 bits each. Such a half-word
is called a "byte" and is capable of representing 28 = 256
different pieces of information.

Bit Numbering

when considering the information contained in bytes or words it
is convenient to establish a definite method of referencing the
individual bits of the byte or word. This is done simply by
ordinary numbering of the bits within the word or byte.

The numbering always proceeds from left to right, i.e. the
leftmost bit in a word is bit 0 while the rightmost bit in a
word is bit 15. Similarly the leftmost bit in a byte is bit 0
while the rightmost bit in a byte is bit 7. Notice that the
numbering always starts with bit O.

The convention adopted here is illustrated in the figure which
appears on the following page. Fig. 2.3.2.

Page 15

BYTE BYTE , BYTE BYTE
0,1,2/3,4,5,6,7]041,2,3,4,5,6,7]0,1,2,3,4,5,6,7]0,1,2,3,4,5,6,7
0123456789101 1213141501234567891011 12 13 14 15
Fig. 2.3.2.

It should also be noted that the adoption of this convention
means, that if for instance the word contains a number then the
highest-order digit will have the lowest bit number while the
lowest-order digit will have the highest bit number.

2.3.3 Binary Representation
If the conventional mathematical notation is adopted by using
the numerical values 0 and 1 to indicate the two possible states
of the bit, then a word will be read simply as an ordinary
16—digit number - although the number will be written in
somewhat unusual manner which in mathematics is called "binary
notation”.

From our everyday lives we are accustomed to use of numbers in
very many contexts; take for instance an arbitrary number like
315. The important feature of a number like this is that the
actual value of the individual digit depends on its position in
the written number., In effect the way the number is written is
just a convenient short-hand way of indicating the magnitude:

3x100+1x10+5x1=3x1024+15x10" +5x 100,

This is called "decimal notation" or "base 10" representation
because successive digit positions in the number form a sequence
of increasing powers of 10.
To indicate that a number is written in base 10 representation a
subscript is used whenever there exists a possibility of
confusion:
31510.
It is obvious that decimal notation will require ten different
symbols to indicate the possible values of the individual
digits, namely the symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Binary notation - or base 2 representation - is in exactly the
same way a positional system, the only difference being that in
this case successive positions in the number form a sequence of

2.3.4

Page 16

powers of 2. Whereas base 10 representation required ten
different symbols for the individual digits base 2
representation will only require two different symbols, namely O
and 1; this is of ocourse the reason for its dominant position in
all aspects of computer technology.

A binary number can of ocourse be used to indicate any magnitude
just as well as a decimal number; consequently a binary number
can always be converted to the equivalent decimal number and
vice versa. Thus:

100]110112 =

1x28+0x27+0x202+1x22+1x2+1x23+

0x22+1x2 +1x2°=

1x25%,,+0x128. . +0x64 +1x32 _ +1x16,,+

10 10 10 10 10
1x8]0+0x4]0+1x2]0+1x1]0=
256]0 + 32]0 + 16.[0 + 810 + 2.|O+]'IO =
315]0.

Octal Representation

Internally the CPU will only recognize information given in base
2 representation, but from the example given above it will be
clear that the simplicity of binary numbers, owing to the
limited number of different symbols used, is counteracted by the
necessity of using more digit positions to indicate any given
magnitude, i.e. binary numbers tend to become rather long and
unwieldy. '

Extensive application of binary notation in a manual like this
can therefore be somewhat awkward and might even lead to
confusion. It cannot be completely avoided, but very often
numerical representatioﬁ to yet another base is used instead.

Noting that a three-digit binary number can represent numerical
values from 0002 = 0]0 to 1112 = 7]0 '

it is easily realised, that each group of three bits can

be uniquely represented by the eight digits 0, 1, 2,+...6 and 7.
Therefore the use of a representation to base 8 - so—called
octal notation -~ will retain the basic structure of the binary

l

D

2.3.5

o

2.4

AR REREEREEEEREEEER

MQ’

E R BN

Page 17

format, but it will on the other hand only require one third of
the positional places needed in pure binary notation.
Expressing the example used on the preceding page in octal
notation will yield:

3'|5]0 = 100]110112 = 4738.

Thus by dividing any string of bits into groups of three and
using octal notation a fairly compact and convenient
representation is achieved. The subdivision of the string always
starts with the rightmost group of three bits and proceeds
towards the left. If the number of places in the binary number
is not divisible by three the leftmost group will contain only
one or two bits. This is however of no particular consequence:
conversion to octal notation will take place as outlined above
on the additional assumption that the leftmost group is
filled-up to three digits by prefixing the necessary one or two
zeroes.,

Hexadecimal Notation

In some cases still another base is used to represent binary
information, namely base 16 - also called hexadecimal notation
("hex"). Just as in the case of octal notation the binary number
is formed into groups, but now each group will consist of four
bits. These four bits can express the numerical values from
00002 = 0]0 to 1111, = 1570+ and in "hex" it will

consequently be .necessary to use sixteen individually different
symbols for the digits. The numerals from 0 to 9 are of course
still used to represent their usual values, whereas the values
from 10]0 to 15y, will be represented by the initial six
letters of the alphabet: A to F. The example previously used
will then yield: .

3'1510 = 1001110112 = 4738 =]3316'

Numerical Quantities'

The CPU does not intrinsically recognize ane type of information
as being different from another, but it is quite obvious that in
terms of application of the computer numerical quantities do
appear in the majority of situations. Numerical quantities
basically accepted by the CPU can be either integers or logical
quantities,

2.4.1

Page 18

Integers
Operations on integer quantities can be performed on signed or

unsigned binary numbers, which may be carried by the CPU in
either single or multiple precision. Single precision integers
are two bytes long (16 bits), while multiple precision integers
are four or more bytes long.

Unsigned integers use all available bits to represent the
magnitude of the number; thus an unsigned, single precision
integer can range in value from 010 to 65,535, (216 -1
corresponding to the sixteen bits available. Similarly two words
taken together as an unsigned, double precision integer can
range in value from 0, to 4,294,967,295,; (232 - 1)
corresponding to the thirtytwo bits available. Signed integers
use bits 1 to 15 to represent the magnitude of the number while
bit 0 is reserved for use a sign bit. The aforesaid assumes
single precision; if multiple precision is employed the first
(leftmost) word will be structured in this same way while the
following word(s) will use all available bits to represent
numerical information.

For positive numbers the sign bit is 0 and the remaining bits
represent the magnitude of the number in standard binary
notation as explained above.

For negative numbers the sign bit is 1 and the remaining bits
represent the magnitude of the number in complemented binary
notation (also called two's complement form).

Complementing a number - whether in decimal, binary or any other
notation - simply means writing the negative number as the sum
of two numbers: a large negative number which is a power of the
base plus that positive number which will yield the original
number when added to the large negative one. For instance in
decimal notation:

- 315 = - 1,000,000,000 + 999,999,685.
The advantage of this form is that when working within a set
number of digit positions, the large negative number will
"vanish"™ - leaving simply a row of zeroes.
To produce the complement - "mechanically” speaking - of a
decimal number just subtract the individual digit from 9 to give
the digit value of the complement - and then finally add 1 to
the last digit.

I R B EEEEEEEREER!
‘9

2.4,2

Page 19
Thus: 315,45 = 0 000 000 100 111 011
1111 111 011 000 100 - complementation
+ ' 1
- 31510 =1 111 111 011 000 101

Note that the complementation of a negative number will of
course produce the positive of that number.

Complementing zero will produce a carry out of the leftmost bit
and leave the number again as zero:

0 000 000 000 000 000 - zero

T 111111 111 111 1 ~ complementation
+ 1

0 000 000 000 000 000 - zero

Note that zero is a positive number!

As shown above complementation of zero will again produce zero
and there will thus always be one more negative number than
there are non-negative numbers within the given range of digit
positions. The numerically largest negative number is a number
with the sign bit 1 and all remaining bits 0. The positive value
of this number cannot be represented in the same number of
digit positions as used to represent the negative number.

Thus a single precision signed integer can lie in the range from
- 32,768 to + 32,767 while a double precision signed integer can
lie in the range from - 2,147,483,648 to + 2,147,483,647.

Note that addition and subtraction of signed numbers in two's
complement form is identical to the same operations on unsigned
numbers; the CPU just treats the sign bit as the most
significant (highest-order) magnitude bit,

Logical Quantities

Operations on logical quantities can be performed on individual
bits, bytes or words. In all cases the quantities operated on
are treated as simple un-structured binary quantities. The
logical value "true" is represented by 1 while the logical value
"false" is represented by 0. Two logical quantities are
identical if and only if they have identical values in
corresponding bit positions.

25

2,5.1

Page 20

The number of bits, bytes or words operated on will depend on
the instruction actually being used.

Addressing

It has already been mentioned in the section "Program Execution"
(section 2.2.1) that the CPU must be able to locate the
instructions stored in main memory. Similarly the CPU must be
able to locate the data involved in the operation to be
performed - the address of which data will usually be indicated
in the instruction.

word Addressing

Main memory is subdivided into a number of words - the actual
magnitude of which depends on the CPU configuration actually
being employed. Every single word in memory has a definite
address, which is given as a number: the first word in memory
has the address 0, the next word has the address 1, the next
word has the address 2 and so on. It will be recalled that the
address of the instruction currently in effect is held in the
one-word program counter during the execution of a program. The
instruction itself must contain information about the address of
data to be used during the execution of that particular
instruction.

In contrast to the address held in the program counter the
address information contained in the instruction will not always
directly specify the necessary address but may form the basis
for a calculation whose result will be the desired address. This
calculation is called "effective address calculation” and the
result of this is the "effective address".

The six instructions which directly reference memory in this way‘

use eleven bits of the word containing the instruction for
effective address calculation. The format of these six
instructions is shown below:

IN-
@| DEX DISPLACEMENT
| &1 | [} | Y N B

001 2 3456 7 8 9101112131415

The eleven bits concerned ére bits 5 to 15; of these bit 5 is

D

AR R R EER
‘@

2.5.1.1

2.5.1.2

2.5.1.3

Page 21

called the indirect bit, bits 6 and 7 are called the index bits
and the remaining eight bits (bits 8 to 15) are called the
displacement bits.

There are four essentially'different modes of effective
address calculation available:

Page Zero Addressing. Page zero addressing is indicated by the
index bits being 00. Then the displacement bits are taken as an
ordinary unsigned integer number indicating directly the
effective address. An 8-bit number will lie in the range from 0
to 25510; this first block of 256]0 words in

memory, which can be addressed directly in this way, is known as

page zero.

Relative Addressing. Relative addressing is signified by the
index bits being 01. In this case the displacement bits are
taken as a signed, two's complement integer number. This number
is added to the address - contained in the program counter - of
the instruction currently in effect; the result of the addition
is the effective address. By this means the effective address
can be any address in memory accessible to the program as it is
defined relative to the address of the instruction. A signed
8-bit number will lie in the range from —128]0 to

+127. . and relative addressing therefore gives access to

a block of 2,56]0 words distributed evenly on either side

of the instruction.

Index Register Addressing. Index register addressing is

signified by the index bits being either 10 or 11. If they are
10 then accumulator 2 is- used as an index register; if they are
11 then accumulator 3 is similarly used.

In both cases the displacement bits are taken as a signed, two's
complement integer number; this number is added to the number
contained in the accumulator indicated by the choice of index
bits. The result of the addition is the effective address.

NOTE: The addition performed in relative and index register
addressing is clipped to 15 bits, i.e. the high-order
bit (bit 0) of the resulting address is set to 0. For
example: if the displacement bits are 01 001 111 and
(in relative addressing) the program counter stands at
111 111 110 101 011, then the addition should produce
the result: 1 000 000 000 011 010, but bit 0 will be
set to 0 so that the result reads:

0 000 000 000 011 O10.

2.5.1.4

2.5.1.5

Page 22

If however Memory Extension has been selected the
procedure outlined in this note will not apply (for

further details see section 5.3).
When index register addressing is used the addition of the
displacement to the number contained in the accumulator does not
change the value contained in the accumulator.

Indirect Addressing. While discussing the three addressing modes
hitherto covered it has been tacitly assumed, that the indirect
bit (bit 5) of the instruction was 0, since only then will the
result of the address calculation be the effective address.

If the indirect bit is 1 then the word addressed by either of
the three previously mentioned address calculations is expected
in itself to contain an address (level 1 indirection). The word
concerned will of course ocontain the usual 16 bits of which now
bit 0 will be the indirect bit and bits 1 to 15 will contain the
address proper.

If now the indirect bit in the level 1 indirection address is 0
then the address contained in bits 1 to 15 is assumed to be the
effective address, but if the indirect bit is 1 then the level 1
indirection address is again expected to contain a further
address (level 2 indirection). This procedure will then be
repeated until an address is eventually retrieved where bit 0 is
0 and bits 1 to 15 consequently will be taken to be the effec-
tive address. '

It should be noted that there is no limit to the levels of

indirection accepted by the CPU. Neither is there any indication

if the chain of indirect addresses due to an error should form a

closed loop thus continuing indefinitely.

NOTE: Indirect addressing cannot be used to address the
extended memory area, as locations there will have
addresses in the range from 100000, to
1777778 - i.e. bit 0 of addresses in this
range will always be 1. Consequently the indirection
chain will continue if that addressing mode is
attempted in this area.

Auto Locations. Two areas of main memory are reserved for
special addressing purposes.

Locations in the range from 208 to 27, are
auto-increment locations, which means that if an indirect

D

2.5.2

Page 23

addressing chain references an address in this range then the
word in that location will be retrieved, the number contained in
the word will be incremented by one and this will then be
written back into the location. The updated value is then used
to oontinue the chain of indirect addresses.

Locations in the range from 30, to 37, are

auto—drecrement locations. Exactly the same procedure as
outlined above applies here except that the contents of the
location will be decremented instead of incremented.

NOTE:

When auto—-increment or auto- decrement locations are
referenced in an indirection chain the state of bit 0
before the incrementation or decrementation will be
condition determining the continuation of the chain.
For example: if an auto-increment location containing
the number]777778 is referenced during an
indirection chain then the next address in the chain
will be location 000000, - and it will be

assumed that this location in itself will contain an
address due to the fact, that the original word
contained in the auto-increment location

(1777778) had a 1 bit in bit 0.

Byte Addressing

Although the ordinary addressing routines will only allow
addressing of complete 16-bit words in memory a convenient
programming method is available which will allow handling of
individual bytes.

This method involves the use of a "byte pointer" which is a word
containing in bits 0 to 14 address of normal two-byte word in
memory and where bit 15 is the "byte indicator". If the byte
indicator is 0 the referenced byte will be the leftmost byte
(containing bits 0 to 7) of the word whose address is given in
bits 0 to 14 of the byte pointer; if the byte indicator is 1 the
referenced byte will correspondingly be the rightmost byte
(containing bits 8 to 15).

Programming routines to handle individual bytes in this way are
listed in Appendix D of this manual.

Byte addressing cannot be used where locations in the extended
memory area are concerned,

3.1

3.2

3.3

Page 24

Instructions

Introduction

The complete set of operation instructions available for RC 3603
CPU is divided into four subsets. These are instruction sets for
program flow control, data transfer operations, integer
arithmetic and logical operations and a special subset for
programming the processor functions plus the optional features:
Real Time Clock, Power Fail/Auto-restart and Memory Extension.

Instruction Formats

All instructions in the set are one 16-bit word in length but
the lay-out will differ depending on the type of operation to be
performed; more specifically this will bear on the number of
accumulators employed in the execution of the instruction. In
the following description of the different subsets a discussion
of the general format in each separate case will appear
initially followed by a description of the individual
instructions which make up that particular subset.

Mnemonic Description

In the description of individual instructions the specific form
of the instruction is given in the following generalized format:

MNEMONIC < optibnal menmonic > OPERAND STRING <optional operands >

The main mnemonic is a group of letter symbols which must be
used to initiate the operation concerned in the instruction. To
this may in some cases be appended the optional mnemonics, which
will cause a modification of the execution of the instruction.

The operand string consists of the actual operands necessary to
the execution of the instruction. To this may likewise be

appended optional operands.

The symbols < >and == are used as an aid in defining the

‘9

3.4

.9

/

5

WIII......I...

Page 25

specific form of each individual instruction:
< > indicates optional mnemonics or operands
==== used as underlining to identify where definite
substitution is required, i.e. where the actual
identification of accumulator, address, name, number
or mnemonic must be inserted in the instruction
string.
The following abbreviations are used throughout this manual:
AC Accumulator
ACD Destination accumulator
ACS Source accumulator.

Program Flow Control

Program flow control operations are handled by way of the
program counter - as outlined in section 2.2.1 - and thus do not
explicitly utilize any of the available accumulators. The
instruction lay-out in this subset is as follows:

op In-

0 0O O] Code| @] dex DISPLACEMENT
| 1 O O T S O O

] T T 1
0 1 2 3 45 6 7 8 9101112131415

In this format bits 0, 1 and 2 are 000, bits 3 and 4 contain the
operation code and bits 5 to 15 contain the memory address as
described in section 2.5.1.

The symbol @ - placed anywhere in the effective address operand
string - will set the indirect bit (bit 5) to 1.

The index bits (bit 6 and 7) are set by a comma followed by one
of the digits 0 to 3 as the last operand of the operand string.
If no index is coded, the index bits are automatically set to
00. The index bits can be set to 01 by using the character
"period" (.) at the beginning of the effective address operand
string. when the period is used, it is followed by either a plus
or a minus sign and the appropriate displacement, e.g. ".+7" or

".-2".

The subset contains the following four instructions: JUMP, JUMP
TO SUBROUTINE, INCREMENT AND SKIP IF ZERO and DECREMENT AND SKIP
IF ZERO.

3.4.1

3.4.2

Page 26

JMP < @ > displacement < ,index >

0 0 0|0 O|@|dex | DISPLACEMENT

| 11 | I O O
0'1 2 345 6 7 8 91011 1213 1415

The instruction will cause the effective address to be computed
and subsequently placed in the program counter. Sequential
operation will then continue with the word addressed by this new
value of the program counter.

JUMP TO SUBROUTINE

JSR < @ > displacement < ,index >

— e e e e e e e ———

In-
0 0 0|0 1)@ |dex DISPLACEMENT
Ll I O Y T O

0'1 2 3'4 5 6'7 8 917011 12131415

The instruction will cause the effective address to be computed.
The current value of the program counter is incremented by one

and this number .is placed in AC 3, whereupon the previously

calculated effective address is placed in the program counter

and sequential operation then continues with the word addressed
by this new value of the program counter.

NOTE: The computation of the effective address is completed
before the incremented value in the program counter is
written into AC 3. This means that if the effective
address calculation involves AC 3 as an index
register, the original value contained in this
register will be used in the calculation before it is
overwritten with the incremented program counter.

As this instruction saves the incremented value of the program

counter in AC 3 the use of this instruction for subroutine calls

makes the return to the proper point in the main program

extremely simple necessitating only the instruction JMP 0,3.

E N B EBEEEEEEEEEERE®R'
.9

3.4.4

35

Page 27

INCREMENT AND SKIP IF ZERO

ISZ <@ > displacement < ,index >
In-
0 0 0|1 o]e]dex DISPLACEMENT
g- 1 g] L4 b1 11
01 2 34 5 6"7 8 91011 1213 14 15

This instruction will cause the effective address to be
computed. The word in this location is incremented by one and
the result is written back into the original location. If the
result of the incrementation is zero then the next sequential
instruction is skipped.

DECREMENT AND SKIP IF ZERO

DSZ < @ >displacement < ,index >
In- '
0 0 0|1 1]@|dex DISPLACEMENT
|1 | | N B I I |

0'1 2 3'4 5 6'7 8 91011 1213 14 15

This instruction will cause the effective address to be
computed. The word in this location is decremented by one and
the result is written back into the location. If the result of
the decrementation is zero then the next sequential instruction
will be skipped.

Data Transfer Operation

Data transfer operations always involve one of the available
accumulators as terminal point for the operation (except when
the Direct Memory Access feature is utilized, see section 4.5).
There are however slight differences in the instruction format
depending on whether the data transfer is internal (between main
memory and accumulator) or external (between peripheral device
and accumulator). This section will only describe the
instructions pertaining to internal data transfers, while

3.5.]

Page 28

external transfers will be dealt with in chapter 4:
Input/Output.

Internal data transfer instructions use the following lay-out:

OP In-
Ojcode| AC |@]dex D]iSPLACEMENT
L1 R Y

'
01 23 45 6 7 8 9101112131415

In this format bit 0 is 0, bits 1 and 2 contain the operation
code, bits 3 and 4 specify the accumulator to be used in the
operation and bits 5 to 15 contain the memory address as
outlined in section 2.5.1.

The symbol @ - placed anywhere in the effective address operand
string - will set the indirect bit to 1.

The index bits (bits 6 and 7) are set by a comma followed by one
of the digits 0 to 3 as the last operand of the operand string.
If no index is coded, the index bits are automatically set to
00.

The index bits can be set to 01 by using the character "period"

(.) at the beginning of the effective address operand string.

When the period is used it is followed by either a plus or a
minus sign and the appropriate displacement, e.g. ".+7" or

".-2",

The internal data transfer subset comprises the following two
instructions: LOAD ACCUMIULATOR and STORE ACCUMULATOR.

LOAD ACCUMULATOR

ILDA ac,<@>displacement <,index >

In-
0]0 1 AC | @] dex DISPLACEMENT

1] I N
0'1 2 345 6'7 8 9101112131415

This instruction will cause the effective address to be computed
and the word contained in this location will then be retrieved

@

F

'

3.5.2

3.6

Page 29
and subsequently written into the accumulator specified. The
previous contents of that accumulator will be lost; the contents

of the location addressed will remain unchanged.

STORE ACCUMULATOR

STA ac,<@>displacement§index >

In-
O 1T 0| AC | @] dex DISPLACEMENT

L1 | [T I
001 2 3 456 7 8 91011 1213 14 15

This instruction will cause the effective address to be computed
and the word presently located in the accumulator specified will
be retrieved and subsequently written into the main memory
location indicated by the result of the effective address
calculation. The previous contents of this location will be
lost; the contents of the accumulator will remain unchanged.

Integer Arithmetic and Logical Operations

Arithmetical and logical operations always use two of the
available accumulators - usually designated "source accumulator"
and "destination accumulator™ - to hold the operands involved.
Instructions in this subset have the following lay-out:

opP
1| ACS | ACD | Code SH C |# | SKIP

I O T . (] 1 |1
001 2 3 456 7 8 910111213 14 15

In this format bit 0 is 1, bits 1 and 2 specify the source
accumulator, bits 3 and 4 specify the destination accumulator,
bits 5 to 7 contain the operation code, bits 8 and 9 specify the
action of the shifter, see figure 3.6, bits 10 and 11 specify
the initializing value of the carry, bit 12 indicates whether
the result of the operation must be loaded into the destination
accumulator or not and finally bits 13 to 15 specify the skip
test.

All operations initiated by instructions in this subset are
performed by way of an arithmetic unit whose logical

Page 30

organisation is illustrated below:

Fig. 3.6
ORGANIZATION OF ARITHMETIC UNIT
17 BITS
4
FUNCTION SHIFTER
GENERATOR
¥ ¥ } 17 BITS
1 BIT | ACS |{ACD M
~ 16 16 SKIP SENSOR
CARRY BITS |BITS
Initializer
)
CARRY|]Accumulators
T ACD 4 17
BIT 16 BITS BITS
—0

The instruction specifies two accumulators containing the two
operands which will have to be supplied to the function
generator. This then performs the desired function as specified
in bits 5 to 7 of the instruction. In addition to the actual
function result the function generator will produce a carry bit,
whose value depends on three quantities: an initial value
specified by the instruction, the input operands themselves and
the function actually performed.

The initial value of the carry bit may be derived from a
previous value of same or a completely independent value may be
specified via the instruction.

The 17-bit output from the function generator — made up of the .
carry bit and the 16-bit function result - is then placed in the
shifter. Here the 17-bit result can be shifted one place either
to the right or to the left; alternatively the two 8-bit halves
of the function result can be swapped without affecting the
carry bit. The output from the shifter can then be tested for a
skip. The skip sensor will test whether the carry bit or the
function result itself is equal to zero or not.

After the skip test the output may be loaded into the carry bit
and the destination accumulator respectively. Note however that
loading is not an absolute necessity.

)) @ D

B E EFE N EEFEEEEEEFEEFEEEYYENR'

Page 31

The diagrams below illustrate the possible actions taken by the
shifter:

Optional Shifter

Mnemonic Operation
L All bits are moved one position to the left.

Hereby bit 0 is shifted into the carry position
while the carry bit is shifted into bit 15.

Iy —

R All bits are moved one position to the right.
Hereby bit 15 is shifted into the carry position
while the carry bit is shifted into bit 0.

Iy st

S The two halves of the 16-bit function result
change places bit by bit. The carry bit is not
affected by this operation.

Y

C 0-7 8-15
C 0-7 8-15

The following table lists the various options available for use
with the instruction format embodying the two-accumulator
multiple operation. The characters in the column headed "Class
Abbreviation" refer to the specific. fields of the instruction
format as given at the beginning of this section. The characters
in the column headed "Optional Mnemonics™ are those which may

Page 32

optionally by appended to the main mnemonic. The binary numbers
in the column headed "Bit Settings" show the actual bits which
will appear in the appropriate field of the instruction word.
The comments in the column headed "Operation" describe the
resultant action of the option in question.

s

Page 33

Class

Abbreviation

C
(Carry
Preset)

| Mnemonic

Optional

Bit
Settings

Operation

00

01

10

11

Do not initialize the carry
bit.

Initialize the carry bit to
0.

Initialize the carry bit to
1.

Initialize the carry bit to
the complement of its
present value.

SH
(Shifter)

00

01

10

11

Leave the result of the
arithmetic or logical
operation unaffected.
Combine the carry and the
16-bit result into a 17-bit
number and shift it one bit]
to the left.

Combine the carry and the
16-bit result into a 17-bit|
number and shift it one bitl
to the right.

Exchange the two 8-bit
halves of the 16-bit result
without affecting the carry
bit.

(Load)

Load the result 5Eﬁthe
shift operation into ACD.
Do not load the result of
the shift operation into
ACD.

SKIP

SKP
SZC

SNC

SZR

SNR

SEZ

SBN

000
001
010
011
100
101

110

111

-| Z2€ro.

Never skip.

Always skip.

Skip if carry equal to
Zero.

Skif if carry not equal to
zero.

Skip if result equal to
zero.

Skip if result not equal to

Skip if either carry or
result equal to zero.

Skip if both carry and
result not equal to zero. |

3.6.1

3.6.2

Page 34

The instruction subset pertaining to integer arithmetic and
logical operations include the following instructions: ADD,
SUBTRACT, NEGATE, ADD COMPLEMENT, INCREMENT and MOVE, all of
which refer to arithmetical operations, and the logical
operations COMPLEMENT and AND.

Integer arithmetic is performed in fixed point mode on 16-bit,
signed or unsigned operands in the accumulators. Logical
operations are performed on 16-bit unstructured binary operands
in the accumulators.

ADD

ADD<c><sh ><§>acs,acd <,skip>

- — —— m—— ———
= = === === ===

1|Acs |AaCS |1 1 0} SH C % | SKIP

I AT B |]
01 2 3 4 56 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the number in ACS is added to the number
in ACD and the result is placed in the shifter. If the addition
produces a carry = 1 out of the high-order bit (bit 0) the carry
bit will be complemented, i.e. this will happen if the sum of
the two numbers being added is greater than 65,535]0.

The specified shift operation is then performed and the result
of this is placed in ACD provided that the load bit of the
instruction has been set to 0. If the skip test demanded results
in the condition being true the next sequential instruction will

be skipped.

SUBTRACT

SUB<c><sh><$>acs,acd <,skip>

- —— ——— mmem— =

LIPCSACSI(J‘TSH c |# | sk1p

I T AT Y O A L1,
01 23 4 5 6 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the number in ACS is subtracted from the

“
(amatess — — ‘el]

‘.ﬂ'

i

“

P

3.6.3

3.6.4

Page 35

number in ACD (the actual operation being pérformed by first
forming the two's complement of the number in ACS and then
aading this to the number in ACD) and the result of the
subtraction placed in the shifter. If the operation produces a
carry = 1 out of the high-order bit (bit 0) the carry bit will
be complemented, i.e. this will happen if the number in ACS 1is
less than or equal to the number in ACD. The specified shift
operation is performed and the result of this is placed in ACD
provided that the load bit of the instruction has been set to 0.
If the skip test demanded results in the condition being true
the next sequential instruction will be skipped.

NEGATE

NEG<c><sh><§>acs,acd <, skip>

1S |ACD |0 0 1] SH C |# | SKIP
N T T U I 11
001 23 456 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the two's complement of the number in ACS
will be formed and placed in the shifter. If the complementation
produces a carry out of the high-order bit (bit 0) the carry bit
will be complemented, i.e. this happens if the number in ACS is
zero. The specified shift operation is performed and the result
of this is placed in ACD provided that the load bit of the
instruction has been set to 0. If the skip test demanded results
in the condition being true the next sequential instruction will

be skipped.

ADD COMPLEMENT

ADC<c><sh><#>acs,acd<,skip>

ACS
I

ACD
|

1

00
|

SH
|

o
|

#

SKIP
I

]

0'1 2 3 45 6'7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the logical complement of the number in
ACS is added to the number in ACD and the result is placed in

3.6.5.

3.6.6

Page 36

the shifter. If the addition produces a carry out of the
high-order bit (bit 0) the carry bit will be complemented, i.e.
this happens if the number in ACS is less than the number in
ACD. The specified shift operation is performed and the result
is placed in ACD provided that the load bit of the instruction
has been set to 0. If the skip test demanded results in the
condition being true the next sequential instruction will be

skipped.

MOVE

MOV<c><sh><§>acs,acd <,skip>

1as|ap|o 1 0 si| c [#]| skip

1 | L1 |] L
001 2 34 5 6 7 8 91011 1213 14 15

This instruction will first initialize the carry bit to the
specified value. Then the number in ACS is placed in the
shifter, the specified shift operation is performed and the
result of this is placed in ACD provided that the load bit of
the instruction has been set to 0. If the skip test demanded
results in the test condition being true the next sequential
instruction will be skipped.

INCREMENT

INC<c><sh><#>acs,acd <, skip >

= —— _— === ===

1/acs |ap |0 1 1| sa| c [#]| sk

I 1 1 | | 1 1 1 |
001 2 345 6 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the number in ACS is incremented by one
and the result is placed in the shifter. If the incrementation
produces a carry out of the high-order bit (bit 0) the carry bit
will be complemented, i.e. this will happen if the number in ACS
is 1777778. The specified shift operation is performed and the
result of this placed in ACD provides that the load bit of the
instruction has been set to 0. If the skip test demanded results

¥

¢
|

=

{

s

9

E R EBEEEREEBEEREEREEREERNREENENERERERERE]

3.6.7

3.6.8

3.6.9

Page 37

in the test condition being true the next sequential instruction
will be skipped.

COMPLEMENT

COM<c><sh><§>acs,acd <,skip>

1]ACS |ACD |0 0 O] sH C |# | SKIP

N O) i
01 2 3 45 6 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. The logical complement of the binary quantity
in ACS is formed and placed in the shifter. The specified shift
operation is performed and the result of this is placed in ACD
provided that the load bit of the instruction has been set to 0.
If the skip test demanded results in the test condition being
true the next sequential instruction will be skipped.

AND

- AND<c><sh><§>acs,acd<,skip>

11 acs | ap |1 1 1| sH| C |4 | skip

R N O VI O A
00 1.2 3 456 7 8 9101112131415

This instruction will-first initialize the carry bit to the
specified value. Then the logical "and" of the two binary
quantities in ACS and ACD is formed and placed in the shifter.
Each bit placed in the shifter is 1 if and only if the two
corresponding bits in ACS and ACD respectively are both 1; in
all other cases the result bit placed in the shifter will be 0.
The specified shift operation is performed and the result of
this is placed in ACD provided that the load bit of the
instruction has been set to 0. If the skip test demanded results
in the test condition being true the next sequential instruction
will be skipped.

Examples
To show how these different instructions may be used under

various circumstances consider the following examples:

3.6.9.1

3.6.9.2

Page 38

Deciding the sign of a number. To determine whether an integer

contained in an accumulator is positive or negative can be done
in several ways, but the most efficient will be to use the MOVE
instruction and thus the inherent power of the two—accumulator

multiple-operation format.

Assume that the number in question is contained in AC 3. Use of
the instruction:

MOVL43,3,S2C
will place the number in the shifter and shift the number one
place to the left. This will place the original sign bit in the
carry bit position and the skip test can then be used to
determine whether this bit is 0 or 1. The two following
instructions in the program must of course be chosen in such a
way that appropriate action is taken in either case.
Note that by using the optional mnemonic # the load bit is set
to 1; thus the output from the shifter will not be loaded back
into AC 3 and the original number contained herein will
therefore be retained for further use.

Dividing a number by a power of two. To divide a binary number
by 2 is simply equivalent to shifting all digits one position to
the right (compare with decimal notation where division with 10
- i.e. the base - is readily acknowledged to be produced by
this expedient). The fact that the rightmost bit of the
original number will be discarded after the shift means that the
result of the division will be rounded down to the nearest
integer.

The division can be performed simply and efficiently by
employing the MOVE instruction as follows:

MOVL¥ 2,2,SZC
MOVOR 2,2,SKP
MOVZR 2,2,SKP
MOVOR 2,2,SKP
MOVOR 2,2

The number being divided is supposed to be placed in AC 2. The
first instruction is simply a repetition of the previous example
of deciding the sign of the number. If the number is positive
the second instruction will be skipped and operations will
continue with the third instruction. This will shift the number
one place to the right thus resulting in the division by 2 while

"

— 3 [] L] T L .—

2

»

4,

e

o~

3.6.9.3

Page 39

at the same time initializing the carry bit to 0 so that when
this bit is shifted into the sign bit position the number will
remain positive. Note that after division the number is now
loaded into AC 2 so that this accumulator now holds the result
of the division. Finally the fourth instruction is skipped and
the fifth repeats the division once more - following which there
is no further skip. The repetition means that the end effect
will be that the original number has been divided by four. If
the number is negative exactly the same sequence of operations
are performed with the appropriate alterations to cope with the
negative sign - the instructions now in force being the second
and fourth.

Changing locations simultaneously inverting the order. Assume

that a block of 30]0 words, which at present occupy locations
20008 to 2035g, must be moved to locations 5150g to

520581n such a way that the order of the individual words in the
block will be inverted.

To do this a section of a program is set up which will
auto-increment through one set of locations, auto-decrement
through the other set and decrement a control count to determine
when the block transfer has been completed. The program section
listed below will accomplish this:

DSZ CNT + 2 ocount down word count

" LDA 0,CNT ;comment: set up
STA 0,21 : auto—-increment location
LDA O,CNT + 1 ; set up
STA 0,35 ; auto—decrement location
LOOP: IDA 0, @ 21 ; get a word
STA 0, @ 35 H store it
JMP LOOP ; jumb back for next word,
skip to here when count
is zero
CNT: 001777 : 1 before source block
+ 1: 005206 : 1 after destination block
+ 2: 36 : word count

4.1

4.2

Page 40

Input/Output

Introduction

All useful information processing to be performed by the computer
depends on the existence of some means of communication between
the CPU and the outside world. For this purpose the CPU is
connected to a number of peripheral or Input/Output devices the
actual type, size and number of which is completely independent of
the internal logical structure of CPU.

The program must of course contain instructions designed to
handle the external data transfer operations; these are all
normally termed Input/Output - usually shortened to 1/0 -
operations and allow for the transfer of information in units of
bits, bytes, words or groups of words called "records" depending
on the device in use.

All instructions in the I/O subset are basically similar to the
previously mentioned internal transfer instructions (section
3.5) except for the fact that addressing as such is not
relevant; on the other hand the CPU must have information as to
which peripheral unit is to be employed for the actual data
transfer and secondly there must be instituted some means of
allocating the necessary time for the transfer.

To handle the control of peripheral devices - of which there may
be several units of widely differing types connected to the CPU
at any given time - the RC 3603 CPU is equipped with a six-line
device selection network. To initiate operation on a specific
device a signal must be transmitted on the selection network,
but each individual peripheral device will only respond to this
signal if it is identical to the device's own device code. The
device code is a six-bit integer number corresponding to the six
lines in the selection network.

Operation of Input/Output Devices

In general all operations on individual I/O devices are handled
by manipulation of two control bits which are called the "Busy"
and "Done" flags respectively. If the Busy and Done flags are

9

4.3

Page 41

both 0 the device is idle and cannot perform any operation. To
initiate operation on a device the Busy flag must be set to 1,
and if the Done flag is not already 0 it must be set to this
value. when the device has finished its operation it will itself
set the Busy flag to 0 and the Done flag to 1. (If the Busy and
Done flags are both - erroneously - set to 1 the situation is
meaningless and will produce unpredictable effects.)

Thus to initiate operation on a particular device the program
must first determine whether that device is currently performing
an operation or not, i.e. it must check the state of the Busy
and Done flags. If the Busy and Done flags are 0 and 1
respectively, the program will be able to start the operation by
setting Busy to 1 and Done to 0 as described above. When the
operation has been completed the device will reset the two flags
and will thus be available for another operation whenever
necessary.

There are two ways in which the program can test the state of
the Busy and Done flags. One is to use the instruction I/O SKIP
(cf. section 4.6.7), the other is to employ the Interrupt
System which is standard on the RC 3603.

Interrupt System

The interrupt system consists of an interrupt request line to
which each I/0 device is connected, an Interrupt On flag in the
CPU and a 16-bit interrupt priority mask.

An interrupt is initiated by an I/0 device at the time when it
completes its operation and resets the Busy and Done flags;
simultaneously the device places an interrupt request on the
interrupt request line provided that the bit in the interrupt
priority mask, which corresponds to the priority level on the
device, is 0 (cf. section 4.4). If that particular bit of the
mask is 1, the device will still set the flags, but it will not
place an interrupt request on the line.

The Interrupt On flag controls the state of the interrupt system
in the sense that if the Interrupt On flag is set to 1 the CPU
will respond to the process interrupt requests; if the Interrupt
On flag is set to 0 it will not do so but will simply go on with
normal sequential execution of the program.

Page 42

The CPU responds to an interrupt request by immediately setting
the Interrupt On flag to 0 so that no further interrupts can
interfere with the interrupt service routine. The CPU then
places the program counter in memory location 0 and executes a
"jJump indirect" to memory location 1 on the underlying
assumption, that this location contains the address - direct or
indirect - of the interrupt service routine.

When control has been transferred to the interrupt service
routine this routine will first ensure, that the contents of
accumulators to be used by the routine are saved, so that these
values again can be made available when control is eventually
returned to the program proper. The same applies to the carry
bit. When this has been accomplished the routine will determine
which device requested the interrupt; following this it will
proceed with the operations relevant to the servicing of the
interrupt.

The determination of which device is in need of service can be
accomplished through either the I/0 SKIP instruction or the
INTERRUPT ACKNOWLEDGE instruction. This last-mentioned
instruction returns the six-bit device code of the device
requesting the interrupt, thereby initiating operation of that
particular device. If more than one device has requested an
interrupt, the code returned will be that belonging to the
device which is physically closest to the CPU on the I/0 bus.

when the I/O device has completed its operation, the interrupt
service routine will restore all previously saved values, set
the Interrupt On flag to 1 and finally return control to the
interrupted program. For this purpose the instruction, that will
set the Interrupt On flag to 1, will allow the processor to
execute one further instruction before the next interrupt can
take place. This extra instruction must be the instruction which
returns control to the main program; otherwise the interrupt
service routine may go into a loop. However, since the updated
value of the program counter - as related above - was placed in
location 0 upon responding to the interrupt request, the final
instruction in the servicing routine can simply be the
instruction "JMP @ 0"; this will transfer control to the main
program as intended.

,
4

»

»

e

1

-

o

B B R ERRREBR. “ =)
w E B EREEREESSESEREEREREAEE

44

Page 43

Priority Interrupts

If the Interrupt On flag remains 0 throughout the interrupt
service routine - as assumed above - all further interrupts will
be ignored and there is thus only one level of device priority.
This level of priority - i.e. which devices will be able to
secure an interrupt - will be determined either by the order in
which I/0 SKIP instructions are issued or — if the INTERRUPT
ACKNOWLEDGE instruction is used - by the relative physical
locations on the I/O bus of the various devices.

If the complete computer installation embodies I/O devices of
widely differing speeds of operation - such as for example a
teletypewriter versus a fixed head disc - it can be convenient
for the programmer to set up a multi-level interrupt schedule;
this is accomplished by the use of the priority mask coupled
with the appropriate instructions.

The priority mask is one 16-bit word to which the individual I1/0
devices are connected in such a way, that each I/O device is
assigned to one specific bit of the mask. The standard mask bit
assignment are arranged in such a manner, that devices having
roughly the same speed of operation will correspond to the same
bit in the mask and will therefore be on the same priority
level. (Appendix A of this manual contains - in addition to the
device codes - the standard RC mask bit assignments.) Although
this standard is relevant for most purposes it is not necessary
to comply with it, and the programmer is completely free to
define his own levels of priority for the individual devices by
using the MASK QUT instruction (cf. section 4.7.5). Whenever a
bit in the priority mask is set to 1 all devices in the priority
level corresponding to that particular bit will be prevented
from requesting an interrupt. In addition all pending interrupt
requests from devices in that priority level will be ignored.

When multi-level priority handling is implemented, the interrupt
service routine must be written in such a way that it may itself
be interrupted without damage. This is done by arranging for the
main interrupt routine to save the state of the machine, - the
contents of the four accumulators, the carry bit and the return
address - whenever it takes over control.

The information concerned must be stored in separate locations
for each time the interrupt handler is entered, so that a higher
level of interrupt will not overlay the return information
corresponding to a lower priority level. Having thus saved the

4.5

Page 44

necessary return information the main interrupt routine must
determine which device has requested service and then transfer
control to the correct interrupt handling routine. The actual
transfer is effected in the same way as for the previously
described single-level interrupt handler.

when the correct service routine has received control it will
save the current priority mask, establish the new priority mask
and activate the interrupt system. When it has finished
servicing the I/0 device, the routine will de-activate the
interrupt system, reset the priority mask to its original form,
restore the state of the machine, again activate the interrupt
system and finally return control to the interrupted program.

Direct Memory Access Data Channel

The handling of data transfers under program control as
described above requires an interrupt plus the execution of
several instructions for each word transferred and therefore
occupies valuable time on the processor.

To avoid this and at the same time to obtain higher transfer
rates the RC 3603 CPU is equipped with a separate data channel
through which an I/0 device - at its own request - can gain
direct access to main memory.

When an I/0 device is ready to send or to receive data it
requests access to memory via the data channel. All such
requests are synchronized by the CPU at the beginning of each
memory cycle. The CPU will then pause at specified points during
the execution of an instruction; at each pause it will accept
all previously synchronized requests in which instance a word
will be transferred directly via the channel from the device to
memory or vice versa without interference with the program.

All requests are honoured in relation to the relative physical
positions on the I/0 bus of the different requesting devices;
that is: the device being physically closest to the CPU is
serviced first, then the next closest device and so on until all
requests have been processed. As synchronization of new requests
occur continuously even while previous requests are being
attended to, a device can in effect saturate the channel if it
requests transfer continually. All devices further out on the
bus cannot gain access to the channel until the transfers

Y

iy

”

iuﬂ

4.6

Page 45

involving the closer device have been processed, although of
course devices which are closer still on the bus will not be
affected.

In addition to the pause intervals during the execution of an
instruction data channel request will be handled on completion
of an instruction. At this point furthermore, all outstanding
I/0 interrupt requests will be accepted. When all such data
transfers have been accomplished the CPU will continue with
normal sequential operation.

Input/Output Instructions

All I/0 instructions use the format given below:

01 1y ACc |oP Con-
CODE trol| DEVICE QODE

T T O Y R
01 2 3 456 7 8 9101112131415

In this format bits 0, 1 and 2 are 011, bits 3 and 4 specify the
accumulator involved, bits 5 to 7 contain the operation code,
bits 8 and 9 control the Busy and Done flags in the device and
bits 10 to 15 contain the device code. The six bits provided for
the device code will define 64] 0 unique devices, but the

total number of separate devices which can be employed
simultaneously on any given installation will be slightly lower
than this as some of the available device codes are reserved for
the CPU and certain processor features. Of the remaining codes
some have been assigned to specific devices by Regnecentralen. A
complete listing of device codes appear in Appendix A.

The subset of I/0 instructions has a number of options that can
be obtained by appending the appropriate optional mnemonic to
the standard mnemonic of the instruction. These optional
mnemonics are listed in the table below; the column headings
correspond to those given in section 3.6.

4.6.1

Page 46
Class Optional | Bit
Abbreviation |Mnemonic | Settings Operation
F 00 Does not affect the Busy
(Flags) and Done flags.

S 01 Start the device by set-
ting Busy = 1 and Done = 0.

C 10 Idle the device by setting

: both Busy and Done to 0.

P 11 Pulse the special in-out
bus control line. The
effect - if any - depends
on the actual device.

T BN 00 Tests for Busy = 1.
(Tests) BZ 01 Tests for Busy = 0.
DN 10 Tests for Done = 1.

DZ 11 Tests for Done = 0.

The I/0 inétruction subset contains the following instructions:
DATA IN A, DATA IN B, DATA IN C, DATA OUT A, DATA OUT B, DATA
ouT C, I/0 SKIP and M) I/0 TRANSFER.

DATA IN A

" DIA<f> ac,device

01 1|l aclo o 1] F DEVICE. QODE

1 I S S N T N O v |
0"1 2 374 5 6'7 8 9101112113 1415

This instruction will place the contents of the A input buffer
on the specified device in the AC specified in the instruction.
After the data transfer has been completed the Busy and Done
flags are set as specified by "F".

The number of data bits moved depends on the size of the buffer
and the mode of operation of the device selected. Bits in the AC
not receiving any data are set to 0.

D

D

i

»

»

—mt, Gt et 0 Saemth 00 e 00 fheeeath 0 Snstth 0 Shesth 0 GSneest 0 et 0 Sheash 0 Shealh

Page 47

4.6.2 DATA IN B

DIB<f> ac,device
o 1 1|l ac]o 1 1| F | Device cooe

|] 1| I L 1 | 1 |
0"1 2 374 5 6'7 8 970 11 1213 14 15

This instruction will have exactly the same effect as the one

previously described - except that it will utilize the B buffer
of the peripheral device.

4.6.3 DATA IN C

'3

DIC<f> ac,device

01 1 ac|1 o 1| F | Device coE

] 1 |] I 1 | 1 |
001 2 3"4 5 6 7 8 9710 11 12'13 14 15

This instruction will have exactly the same effect as the two
previously described - except that it will utilize the C buffer
of the peripheral device.

4.6.4 DATA OUT A

DOA<f> ac,device

- _— ==—===

01 1] aclo 1 ol F | peEvicE copE

| 1] | | J |
"1 2 374 5 67 8 91011 12'13 14 15

0

This instruction will place the contents of the specified AC in
the A output buffer of the selected device. After the data

transfer has been completed, the Busy and Done flags are set as
specified by "F". The contents of the AC will remain unaltered.

The number of data bits moved will depend on the size of the
buffer and on the mode of operation of the device.

ay

»

4.6.5

4.6.6

4.6.7

Page 48

DATA OUT B

DOB<f > ac,device

= = ======

0 1 1] Ac |1 0 o F [DEVICE CODE

| 1 | || l I T
0'1 2 374 5 6'7 8 910111213 1415

This instruction will have exactly the same effect as the one
previously described - except that it will utilize the B buffer
of the peripheral device.

DATA OUT C

DOC<f> ac,device

= == =====

o1 1[ac|1 1 of F

] 1]] 1 11 1 |
1T 2 374567 8 9101112131415

DEVICE (QODE

This instruction will have exactly the same effect as the two
previously described - except that it will utilize the C buffer
of the peripherdl device.

I/0 SKIP

SKP<t> device

o1 1o Oo}1 1T 1} T DEVICE CODE

L1 | L 11
0'1 2 3'4 5 6'7 8 9'1011 12131415

e

This instruction will test the state of the Busy and Done flags
and will thus enable the programmer to decide on actions to be
taken in consequence of the values of these flags, i.e. whether
a device is in need of service from the interrupt system or not.
The test performed depends on the value of bits 8 and 9 of the
instruction and is selected by appending the appropriate

.

4.6.8

Page 49
optional mnemonic to the instruction according to the table
given in. section 4.6. If the test condition specified by "T" is
true the next sequential instruction will be skipped.

NO I/0O TRANSFER

NIO < £ > device

0 1 110 0{0 0 0f F } DEVICE CODE

R N Y Y O O
0’1 2 34567 8 91011 1213 12 15

This instruction will set the Busy and Done flags in the
selected device according to the control code specified by "F",

Central Processor Functions

I/0 instructions with a device code of 77. will perform

a number of special functions rather than control a specific
peripheral device. With the exception of the I/0 SKIP
instruction all I/O instructions having a device code of

778 will use bits 8 and 9 of the instruction format to
control the state of the Interrupt On flag. The I/0 SKIP
instruction - when used with a device code of 778 - will
Cause a test of the state of the Interrupt On flag.
(Alternatively it may be used to test the state of the Power
Fail flag; see section 5. 2). The optional mnemonics for these
special instructions are the same as for normal I/0
instructions. The table below lists the resulting actions for
these instructions when used with the spec1al device code

77

8"

4.7.1

Page 50
Class Optional |[Bit
Abbreviation | Mnemonic |Settings Operation
F 00 Does not affect the state
(Flags) of the Interrupt On flag.
] 01 Set the Interrupt On flag
to 1.
C 10 Set the Interrupt On flag
to 0.
P 11 Does not affect the state
of the Interrupt On flag.
T BN 00 Tests for Interrupt On = 1.
(Tests) BZ 01 Tests for Interrupt On = 0.
DN 10 Tests for Power Fail = 1.
Dz 11 Tests for Power Fail = 0.

In addition to use of the ordinary I/0 instructions with the
special device code 778, there is a subset of special
instructions for processor functions which contains the
following instructions: INTERRUPT ENABLE, INTERRUPT DISABLE,
READ SWITCHES, INTERRUPT ACKNOWLEDGE, MASK QUT, 1/0 RESET, HALT
and CPU SKIP.

INTEN
NIOS CPU
0 1 1o 0o o ofo 11 1 1 1 11

11 I | | l] 1 1 1 1
001 23456 7 8 9101112131415

This set of instructions will set the Interrupt On flag to 1. If
the state of the Interrupt On flag is hereby changed, the CPU
will allow one more instruction to be executed before the first
I/0 interrupt can occur.

Page 51

INTERRUPT DISABLE

INTDS
NIOC CPU

o1 1]o ofo o of1 o
T S I

T 111 11
I 1] 1 1

0'1 2 34 56'7 8 9

10 11 12'13 14 15

This set of instructions will set the Interrupt On flag to 0.

READ SWITCHES

READS ac

DIA <f > ac,CPU

o1 1| aloo 1| F
| | |1 |

T 11 1 11
|

0’1 2 3456 7 8 9

10 11 1213 14 15

This set of instructions will place the current setting of the

data switches on either the Diagnostic

Front Panel (if

connected) or the front frame of the CPU-board in the AC
specified in the instructions. After the transfer has been
completed, the Interrupt On flag is set according to the ocontrol

code specified by "F".

INTERRUPT ACKNOWLEDGE

_

.' 4.,7.2
.ﬁ

|

~

_

- 4.7.3
»

‘-. % 4.7.4
-

INTA ac

DIB < f > ac,CPU

- = ===

or1xlalo1]F
T

1111 11
| I .

L §

001 2 3 4 5 5"7 8 9

10 11 1213 14 15

This set of instructions will cause the six-bit device code of
that device, which is physically closest to the CPU on the I/0

4.7.5

4.7.6

Page 52

bus, to be placed in bits 10 to 15 of the AC specified in the
instructions. Bits 0 to 9 of the AC involved will be set to 0.
After the transfer has been completed the Interrupt On flag is
set according to the control code specified by "F".

MASK OUT

0O v 1] &1 0O F [T 1T 1111
I N B I A AR
01 2 3 4 6 7 8 91011 1213 1415

This set of instructions will place the contents of the AC

specified in the priority mask. After the transfer has been

completed, the Interrupt On flag is set according to the control

code specified by "F". The contents of the AC remain unaltered.

NOTE: The digit 1 in any bit position disables interrupt
requests from any peripheral device in the
corresponding priority level.

I/0 RESET

IORST
DIC < f > ac,CPU

o 1 '1rp A1 O F (1T 1T 1111

. 1 | L1 | 1 1. 1 11
0'1 2 34 5 67 8 91011 1213 14 15

This set of instructions will cause the Busy and Done flags in
all I/0 devices to be set to 0; simultaneously all bits in the
16-bit priority mask are set to 0. The Interrupt On flag is set
according to the control code specified by "F".

Page 53

4.7.7 HALT .

»
|

HALT _
DOC <f > ac,CPU

0o 1 1f Ac|1T 1T Of F |T 1T 1 1 11

1 1 11 1 1 1 | W I |
0 1 23 4 5°6 7 8 910111213 1415

This set of instructions will set the Interrupt On flag
according to the control code specified by "F". Following this
the processor is stopped.

4.7.8 CPU SKIP

-y

SKP <t >CPU

= ==

1o of1 1 1f T |1 1 1 1 11
I I O N T T A OO S W O

T

001 2 3 45 6 7 8 9101112131415

This instruction will cause the Interrupt On flag or the Power
Fail flag to be.tested depending on the control code specified
by "T". If the test condition is true the next sequential
instruction will be skipped.

~» +y

E BN B BN BN B A BB BB B 232 EEOBA B B B OO o
o
]

5

5.1

5.2

Page 54

Processor Features e

Introduction

Features included in the RC 3603 computer are a power monitor
which will handle automatic shut-down and restart in the event
of a failure of the power supply plus a special CPU function
allowing memory to be extended beyond the 32K words' capacity.

Power Fail

Core memory in the RC 3603 computer is of magnetic type and l
information stored in it is therefore independent of power ‘ 4
supply and will be retained unaltered for a very considerable

time in event of the power supply being cut off. The same does]
not, however, apply to the accumulators, program counter,

various flags etc. in the CPU; all values in these components

will be indeterminate following a break in the supply of power. !
The Power Fail feature provides the capability to overcome this

difficulty.]

In the event of an unexpected power failure the wvoltage will
rapidly decrease from its normal value to the value where the
processor automatically shuts down completely. There will
however be an interval of time - roughly one or two milliseconds
- between the initial drop-off of woltage and the actual
shut-down. The Power Fail circuit will sense the beginning
reduction of voltage, set the Power Fail flag and request an Qt
interrupt. The interrupt service routine will then be able to _
utilize the interval before shut-down to store the contents of
the accumulators, the carry bit and the current priority mask in
memory. In addition to this it will save memory location 0,
where it will store a jump instruction to the desired restart
location and finally it will execute a HALT. As one or two
milliseconds is sufficient time to execute up to 1500
instructions there is ample time to perform the power fail
routine. '

When the power supply is again restored, the CPU will execute a
"JMP 0" instruction after an interval of 100 milliseconds. This
will effect a restart of the interrupted program.

»

5.3

)

-y

~

- -‘ - -
I

Page 55

The power fail feature has no device code and no interrupt
disable bit in the priority mask. Neither does it respond to the
INTERRUPT ACKNOWLEDGE instruction. The Power Fail flag can be
tested by means of the CPU SKIP instruction as described in

section 4.7.8.

Memory Extension

Normal memory capacity of the RC 3603 computer is 32K words (64K
bytes). The Memory Extension feature provides the capability to
increase this capacity to 64K words (128K bytes).

To switch from running in normal configuration to running in
extended memory configuration the following instruction must be
applied:

o0 1 1|x x{1 0 1[1 110 0 0 0 O 1

llllllll!ll
™1 2 3'4 5 6 7 8 910111213 1415

This instruction will allow the CPU to utilize the extra block
of core memory and it will furthermore set the Memory Extension
flag to 1. For the instruction to have the desired effect the
switch 64K/128K BYTES on the front frame of the CPU-board must
be in the 128K BYTES position; otherwise the instruction is

dummy .

The state of the Memory Extension flag can be tested with the
I/0 SKIP instruction using the device code (001) reserved for
the Extended Memory (see Appendix A). The testing of the flag
thus follows through the instruction:

SKPDN 1

o1 1o of1 1 1{1 00 O O 0 O 1

| 1 | 1 1 | Ll!I |
Y1 2 3'4 5 6'7 8 910111213 1415

As usual with this instruction the next sequential instruction
will be skipped if the test condition is true, i.e. if the

Memory Extension flag is 1.

Page 56

If the 64K/128K BYTES switch on the front frame is returned to
the 64K BYTES position the Memory Extension flag is not
automatically set back to 0 (although the CPU no longer will be
able to utilize the extended memory block). To return the Memory
Extension flag to 0 an I/0 RESET instruction must be used. The
flag will also be set to 0 following a power up.

The CPU can only execute programs placed in the first block of
64K bytes in core memory, that is: the area having addresses
from 0 to 777778. The extended area - which will have

addresses from 1000008 to 1777778 - can only be

used as data buffers addressed from the program by indexing to
this memory area (see section 2.5.1.3). Indirect addressing
cannot be used in this area, where addresses implicitly will
have a 1 in bit 0 of the address causing confusion with the role
of this bit as indirect bit.

The Disc Controller is capable of writing data into and reading

data from the extended area of memory.

NOTE: It is important to be aware of the fact, that when
Memory Extension is applied the program counter will
continue from 777778 to 1000008 in the
course of normal sequential operation. But as
explained above the program cannot address this area
where bit 0 is 1, as this bit is masked out in
execution of "JUMP TO SUBROUTINE", indirect address
calculations and the interrupt routine.

» |
ld

 —1 re— f—1 Nl o —— "

-

<"

"
#

9y

-9

6.1

Page 57

Processor Options

The RC 3603 CPU can be equipped with the following optional
features: a Real Time Clock and a Teletype Controller.

Real Time Clock

The Real Time Clock generates a continuous sequence of pulses
independently of processor timing. The clock can be used
primarily for low resolution timing as compared to processor
speed, but it has a high long-term accuracy.

Following a power turn-on the various frequencies are only
available after an interval of 5 seconds, because the crystal
must be given this amount of time to settle down after
excitation in order to emit a steady pulse train.

Selection of clock frequency is accomplished by means of the I/O
instruction DATA QUT A, Real Time Clock:

DOA < £ > ac,RTC

o1 1|l A0 1T O] F |00T1 10O
AN S T A Y T
0123 456 7 8 9101112131415

This instruction will select the clock frequency according to
the values of bits 14 and 15 in the specified AC as listed
below: '

AC bits 14 & 15: 00 01 10 11
Frequency: 50 Hz 10 Hz 100 Hz 1000 Hz

In addition the instruction will cause the Busy and Done flags
to be set according to the control code specified by "F" (cf.
section 4.6). Setting the Busy flag by means of this instruction
will allow the next pulse from the clock to set Done thus
requesting an interrupt if the Interrupt On flag is 1.

The interrupt priority level of this device is associated with
bit 13 of the interrupt priority mask.
The DATA QUT A instruction applied to select the clock frequency

6.2

6.2.1

Page 58

is needed only once. The first interrupt after this instruction
has set Busy = 1 can come at any time up to the clock frequency,
but once the first interrupt has appeared the following
interrupts will adhere to the selected frequency - provided that
the program sets Busy = 1 before the next interrupt is due.
This is done by the instruction:

NIOS 14.
The I/0 RESET instruction will - whether it appears in the
program or is generated by using the Diagnostic Front Panel -
reset the clock to a frequency of 50 Hz.

Teletype Controller

The Teletype Controller provides for two-way communication
between the computer and the operator. The input device is the
Teletype keyboard and the output device is the Teletype printer.
All information exchanges between the computer and the
keyboard/printer use a subset of the 128 character alphanumeric
ASCII code as listed in Appendix B. In addition to a keyboard
and a printer, some models of the Teletype terminal can be
equipped with a paper tape reader/punch combination. Terminals
so equipped are designated Automatic Send/Receive (ASR)
terminals, while those not so equipped are designated Keyboard
Send/Receive (KSR) terminals.

Instructions

Since the terminal is in effect two peripheral devices coupled
together, the controller contains both an input buffer and an
output buffer. These buffers are independent of one another and
are both 8 bits in lerigth.

Similarly two completely sepatate sets of Busy and Done flags
are available for input and output operations respectively.

The Busy and Done flags are controlled by means of the two
standard device flag commands in the instructions according to
the following list:

"F" = 5 Sets Busy = 1 and Done = 0 and either reads a
character into the input buffer or transfers a
character in the Otitput buffer to the printer (or the
punch).

"F" = C Sets Busy = 0 and Done = 0 thereby stopping all data
transfer operations. This command - if issued while a

6.2.1.1

6.2.1.2

Page 59

transfer is in process - will result in partial
reception of the character code being transferred.

"F" = P No effect.

The instructions used to read the character buffer and to load
the character buffer are the standard I/0 instructions with the
appropriate device codes. An extract of Appendix A containing
these codes appear below:

Octal

Code Mnemonic Maskbit Device
10 TTI 14 Teletype input, first controller
11 TT0 15 Teletype output, first controller
50 -~ TTIN 14 Teletype input, second controller
51 TTO01 15 Teletype output, second controller

READ CHARACTER BUFFER

DIA<f >ac,TT1

-— em—

o1 1}, A |0 011 F |O01 000

N T N T
01 2'3 456 7 8 9101112131415

This instruction will place the contents of the input buffer in
bits 8 to 15 of the AC specified in the instruction. Bit 8 is a
parity check bit while bits 9 to 15 contain the character code
proper. Bits 0 to 7 of the AC are all set to 0. A

After the data transfer has been completed the controller's Busy
and Done flags for input are set according to the control code
specified by "F".

LOAD CHARACTER BUFFER

DOA < f > ac,TTO
01 1)l AA|jOo O 1} F |00 1 0 0 1

T A T T Y O A
001 23 456 7 8 9101112131415

TR Z L T

6.2.2

6.2.2.1

6.2.2.2

6.2.3

Page 60

This instruction will place bits 9 to 15 of the specified AC in
the output buffer of the controller. After the transfer has been
completed the controller's Busy and Done flags for output are
set according to the control code specified by "F". The contents
of the AC specified in the instruction will remain unaltered.

Programmi

On account of the two-sided nature of the Teletype terminal this
section will describe input and output procedures separately.

Input. Input operations - whether full- or half-duplex - do not
have to be initialized by the program because the striking of a
key on the keyboard automatically will transmit the
corresponding character code to the controller. when the
character has been assembled the input Busy flag is set to 0,
the input Done flag is set to 1 and a program interrupt
consequently requested - provided that the priority mask bit is
0.

The character can then be read by issuing the READ CHARACTER
BUFFER instruction (DIA). The instruction should be issued with
either a C or an S command so that the input Done flag is set to
0; this will allow the controller to initiate a further program
interrupt request when the next character has been fully

_ assembled.

Output. Output operations are initiated by the program using the
LOAD CHARACTER BUFFER instruction (DOA). The instruction should
be issued with an S command, which will set the Busy flag to 1
and allow the transmitting of the character to the terminal.
when the transmission has been completed the output Busy flag is
set to 0 and the output Done flag is set to 1 thus issuing a
program interrupt request.

The output buffer must be reloaded by means of the LOAD
CHARACTER BUFFER instruction every time a character is to be
sent to the terminal. Thus to transmit a multi-character message
a sequence of LOAD CHARACTER BUFFER instructions with S commands
must be issued. The program must make allowance for complete
transmission of every single character before transmission of
the next character is initiated.

Programming Examples
The following examples show sections of programs which will
handle character operations involving the Teletype keyboard,

o —_—— p—

[.

i m—

)

)

)

v

6.2.3.1

6.2.3.2

6.2.3.3

6.2.3.4

Page 61

printer, paper tape reader and paper tape punch.

Example 1 reads a character from the Teletype keyboard, example
2 reads a character from Tape reader and example 3 prints a

character on the Teletype printer and - if the tape punch on an
ASR terminal is turned on - simultaneously punches the character

on the tape.

Example 1.

SKPDN
JMP
DIAC

Example 2.

NIOS
SKPDN
JMP
DIAC

Example 3.
SKPBZ

JMP
DOAS

TTI

1,TTI

TTI
TTI

1,TTI

TTO
o—]

;Character buffer loaded yet?
sNo

;Read character and clear Done
flag

;Start reader

;Frame buffer loaded yet?

;No

;Read frame and clear Done flag

;Printer free?
;No, try again
;Print character

Example 4. The subroutine shown in this example and called from
the main program by a JUMP TO SUBROUTINE instruction (JSR to
TTYRD) illustrates reading and echoing characters on the
Teletype, with Teletype interrupts disabled. AC 0 is used to

store the character.

TTYRD: SKPDN
JMP
DIAC

SKPBZ
JMP
DOAS
JMP

TTI
.—]
0,TTI

TTO
1
0,TTO
0,3

;Has character been typed?
:No, then wait

;Yes, then read character and
clear Done flag

;Is TTO ready?

:No, then wait

;Yes, then echo character
sReturn

6.2.3.5

Page 62

Example 5. This example shows how Teletype may be programmed
using the program interrupt facility. To do so makes it possible
to perform a number of calculations in the intervals of time
between Teletype characters.

This routine will read a line and echo it on the Teletype

printer using the interrupt priority system. The characters are
read into a buffer area beginning at location 10008. The

routine is terminated by either a carriage return character or line
overflow. Line overflow is determined by the value of MAXLL
(maximum line length).

BUFFR:
MAXIL:

THAND:

.LOC 0]

0

THAND

.LOC 400

LDA 1,BUFFER
STA 1,23
LDA 1,MAXLL
STA 1,CNTR
suBzL 1,1
DOBS 1,CPU
LDA 0,CNTR
MOV - 0,0,SZR
Jw .—2

771

110

0

SKPDN TTT

;
;Program counter stored here when
an interrupt occurs.

;Address of interrupt handler

.
’

;Set up buffer pointer in
auto—increment location 23

H

;Get maximum line length
;Initialize line overflow counter
iSet AC1 =1

;sMask out TTO and turn on
interrupts

;When need full line to continue
hang up here until reading is all
done

we . we

;:Buffer begins at location 1000
;Maximum of -72]0

characters per line

;Line overflow counter

;Make sure TTI caused the
interrupt

SAvVO:
SAV1:
CR:
TTMSK:

HALT

STA

STA
DIAC
STA
SKPBZ
JMP

SuB
JMP

- SUBC

STA

JMP
DSZ

JMP

MSKO

INTEN
JMP

215
3

Page 63

0,SAVO

1,SAvV1
0,TTI
0, 23

o_]
0,TTO
1,CR
0,1,SZR

0,0

;Error - some other peripheral
interrupted

:Save accumulators that will be
used

Read character and clear Done
Store character in buffer
Make sure TTO not busy

e W wp W W

+Echo character

:Is it a carriage return?
H
;:No
;Yes, clear AC 0 without changing
carry

:Zero out CNTR to indicate line
done

.
r

:If not a carriage return,
decrement ONTR

:Line not yet done, go dismiss
;Line is done

;Mask out TTI (and TTO) to inhibit
further input

;:Restore accumulators

.
4

;Turn interrupts back on
;Return to interrupted program

7.1

7.2

Page 64

Program Loading

Introduction

Whenever the computer is used for information processing of any
kind the program must - as previously mentioned - reside in main
memory. But to read a program into memory is in itself a kind of
information processing and therefore requires the existence in
memory of a program — called a loading program — to perform this
duty.

Although the loading program will normally be present, it may
from time to time be necessary to read it into memory. This is
done by a small, specialized loading program which is called a
"bootstrap loader" and whose only function is to read into
memory the more general-purpose loading program.

Two methods are available for entering the bootstrap loader into
memory. One is for the operator to enter it manually utilizing

the data switches and the deposit switch on the Diagnostic Front
Panel. The other is to use the Automatic Program Load option if

the computer in question is so equipped.

In this chapter only automatic program loading is described. For
details about manual loading the reader must consult the
Reference Manual for the Diagnostic Front Panel - RCSL:
52-AA542.

Automatic Loading

To use the Automatic Program Load option, the operator must
first select the input device and set up the loading program on
this device in preparation to be read. In addition the device
code of this unit must be set up in its binary form on the data
switches 10 to 15 on the front frame of the CPU board (cf. the
illustration appearing in the following chapter). The setting of
data switch 0 on the front panel depends on the type of input
device selected. If this is a data channel device - for instance
magnetic tape - data switch O must be set to 1. If it is a
low-speed device - for instance a paper tape reader - data
switch 0 must be set to 0.

|

el

)’._1_-—.-— el s S S

[rSr Y (O [y et oY = Mnmetenith vhemnn

o

9

‘

Page 65

When this has been done, push the AUTOLOAD switch on the
operator panel. This will cause the bootstrap loader to be read,
deposited in memory locations 0 to’378 and started at

location 0. The bootstrap loader will then read the data
switches (0 and 10 to 15), set up its own I/O instructions with
the device code as read and finally perform a program load
procedure which depends on the setting of data switch 0.

If data switch 0 has been set to 1, the bootstrap loader will
start the device for data channel transfer starting storage at
location 0 and will then loop at location 377, until a

data channel transfer places a word in this location. When this

happens, the word placed in this location is executed as an

instruction; typically this will be a JUMP into the data which

have been placed in locations 0 to 376,.

NOTE: For proper program loading via the data channel the
device in use must be initialized for the reading
operation by an I/0 RESET instruction followed by a
NIOS instruction. Furthermore the device must stop
reading when 256]0 words has been read;
otherwise the available memory locations will
overflow.

If data switch 0 has been set to 0, the bootstrap loader will

read the loading program via programmed I/0. The device must

supply data as 8-bit bytes; each pair of bytes read will be
stored in memory as a single word wherein the first and second
byte will become respectively the left and right halves of the
word. To simplify the positioning of the input medium - for
instance a paper tape - the bootstrap loader will ignore leading
null characters, i.e. it will not store any word until it has
read a non-zero synchronization byte.

The first word following this synchronization byte must be the
negative of the total number of words to be read including this
first word. The number of words to be read - including the first
- cannot exceed 192]0. The bootstrap loader will store

the words read in memory starting in location 1008. When

the last word has been read the bootstrap loader will transfer
control to that location.

On the two following pages appear a listing of a 32 word
bootstrap loader (FO2) capable of loading in either of the
manners described above and a list of available bootstrap
loaders.

00000
00001
00002

00003

00004
00005
00006
00007
00010

00011
00012

00013
00014
00015
00016

00017

00020
00021
00022

00023
00024
00025
00026
00027

00030
00031
00032
00033

00034

060477
105120
124240

010011

010031
010033
010014
125404
000003

060077
030017

050377
063377
000011
101102

000377

004031
101065
000020

004030
046027
010100
000023
000077

126420
063577
000031
060477

107363

BOOTSTRAP LOADER FOR

Page 66

AUTOMATIC PROGRAM LOAD

Fig. 7.1

BEG: READS 0

MOVZL 0,1

COMOR 1,1
LOOP: ISZ OP1

IS%Z oP2

1SZ OP3

1S7 orP4

INC 1,1,SZR

JMP LOOP
oP1: 060077

IDA 2,C3717

STA 2,377
orP4: 063377

JMP OP1

MOVL 0,0,S72C
C377: JMP 377
LOOP2 :JSR GET+1

MOVC 0,0.SNR

JMP LOOP2
LOOP4 :JSR GET

STA 1,eC77

I1SZ 100

JMP LOOP4
C77: JMP 77
GET: SUBZ 1,1
OP2:
100P3:063577

JMP LOOP3
oP3: 060477

ADDCS 0,1,SNC

;READ SWITCHES INTO ACO
; ISOLATE DEVICE QODE
;-DEVICE CODE -1

;COUNT DEVICE CONTROL INTO
ALL
I0 INSTRUCTIONS

;START DEVICE;(NIOS 0) -1
;YES,PUTIJMP 377INTO
LOCATION 377

-e -

BUSY ? :(SKPBN 0) -1
;NO, GO TO CPl

;LOW SPEED DEVICE?(TEST
SWITCH 0)

;NO, GO TO 377 AND WAIT
FOR (HAN.

;GET A FRAME
;IS IT NONZERO?
;NO, IGNORE AND GET ANOTHER

:YES, GET A FULL WORD
;STORE STARTING AT 100
;COUNT WORD -~ DONE?

:NO, GET ANOTHER

;YES — LOCATION QOUNTER AND
JUMP TO LAST WORD

;CLEAR AC1, SET CARRY

;DONE ? : (SKPDN 0)-1
;NO, WAIT

;YES, READ INTO ACO:(DIAS
0,0) -1

;ADD 2 FRAMES SWAPPED-
GOTSECOND?

¥ 9

b

y

Page 67
00035 000031 JMP -LOOP3 ;NO, GO BACK AFTER IT.
00036 125300 MOWVS 1,1 ;YES, SWAP ACI
00037 001400 JMP 0,3 ;RETURN WITH FULL WORD

LIST OF AVAILABLE
PROGRAM LOADS

Device Code
Device Type Bit 0 Bits 10-15 (octal)
FOl Magnetic Tape 1 30
FO2 PTR 0 12
FO3 - CDR 0 16
FO4 FDD 0 61
FO5 DKP 0 73
FO6 ASL *) NOTE
FO8 DsC 0 20
(FO1) FPA 1 46

NOTE: Works together with another program load, i.e. FO4

8.1

8.1.1

8.1.2

Page 68

Switches and Indicators

This chapter contains a description of the switches and
indicators placed on the front frame of the CPU board. An
illustration of the front panel is found at the extreme end of
the chapter.

Switches

Four groups of switches are placed on the front panel, namely
the ENABLE TCP switch, the AUTOLOAD DEVICE SELECT switches, the
PARITY ERROR switches and the MEMORY EXTENSION SELECT switch.

ENABLE TCP

This switch transfers control to and from the Diagnostic Front
Panel, details of which can be found in Reference Manual for the
Diagnostic Front Panel - RCSL: 52-AAS542.

when this switch is in the UP position, the Diagnostic Front
Panel can be connected to or disconnected from the CPU without
creating any disturbance for CPU program execution. Furthermore
the AUTOLOAD DEVICE SELECT switches are operative when ENABLE
TCP is in this position.

whenever the Diagnostic Front Panel is not connected to the CPU,
the ENABLE TCP switch is inoperative, i.e. pushing this switch
will not affect the CPU.

when the ENABLE TCP switch is in the DOWN position all control

of the CPU is carried out from the Diagnostic Front Panel

connected to the CPU.

NOTE: The ENABLE TCP switch must be in the UP position
before the Diagnostic Front Panel is connected or
disconnected to the CPU.

AUTOLOAD DEVICE SELECT

These switches are operative when the ENABLE TCP switch is in
the UP position as mentioned above. They are used for external,
manual setting of specific bits of a word, the bits in question
being bit 0 and bits 10 to 15.

Setting these switches is imperative in connection with the use
of the Automatic Program Loading feature as outlined in the
previous chapter. In this case the switches 10 to 15 are set
according to the binary code of the input device being used,
whereas switch 0 is used to distinguish between the types of

9

o

»

C

)

8.1.3

Page 69

device available, i.e. whether the device is a data channel
device or a programmed 1/0 device.

Apart from this the switches can be used in conjunction with
normal program operation by including the instruction READ
SWITCHES; this instruction will - as explained in section 4.7.3
- place the bit values indicated by these switches in their
respective positions in an accumulator specified by the
instruction. When loaded into the accumulator the bit setting
indicated will be accessible to the program. When the bits are
loaded into the accumulator bits 1 to 9 will be read as logic
zeroes.

PARITY ERROR _
This group contains two switches: STOP and RESET.

when the STOP switch is in the DOWN position a parity error
detected during a memory read cycle will cause the CPU to
suspend processing in the microprogram. This will allow
connecting of the Diagnostic Front Panel to the CPU while the
CPU is still at that point of execution where the error was
registered. Thus information about the memory address giving
rise to the parity error can be read out from the memory address
register so that corrective action can be decided upon.

To restart the CPU following a parity error - if so desired - is
accomplished either by pushing the STOP switch to the UP
position or by pushing the RESET switch to the DOWN position.

when the STOP switch is in the UP position the detection of a
parity error will be indicated (cf. section 8.2.1), but
processing will continue without interruption.

When the RESET switch is pushed to the DOWN position the parity
error indicators (cf. section 8.2.1) will be reset; if the CPU
has suspended processing following the detection of a parity
error, this action will simultaneously restart the CPU.

CAUTION

If the switch AUTO is pushed while the RESET switch is still in
the DOWN position, the CPU will restart in the address
determined by the positions of the AUTOLOAD DEVICE SELECT
switches - direct if switch 0 is set to 0, indirect if switch 0
is set to 1.

(A description of the AUTO switch mentioned above is not
included in this manual. This switch is a feature of the
Diagnostic Front Panel and the external Autoload Panel; more

8.1.4

8.2

8‘2..‘

8.2.2

Page 70

detailed information must be sought in the relevant manuals.)

NOTE: Activating the RESET switch will only reset the
indicators. The parity error causing the indication
will still be present in the particular memory
location. Only a write operation into that location
will remove the error.

MEMORY EXTENSION SELECT

When this switch is in the DOWN position the Memory Extension
feature is inoperative. If the switch is in the UP position the
programmer can utilize the extended block of core memory by
including the proper instructions in the program. (Refer to
section 5.3.)

Indicators

Two groups of indicators are placed on the front panel, namely
the PARITY ERROR indicators and the CPU-STATUS indicators.

PARITY ERROR

This group consists of two indicating lights: LEFT and RIGHT.
The LEFT indicator is lit whenever a parity error is detected in
the left byte (bits 0 to 7) of a word being read during a memory
read cycle.

The RIGHT indicator is lit whenever a parity error is detected
in the right byte (bits 8 to 15) of a word being read during a
memory read cycle.

The indicators - either or both - can only be cleared by pushing
the RESET switch as previously described.

CPU-STATUS
This group consists of two indicating lights: FETCH and DEFER.

The FETCH indicator is lit whenever the CPU is reading an
instruction from core memory.

The DEFER indicator is lit whenever the next microcycle will be
used to follow an indirect addressing chain.

il r ndin

ity il

i

Page 71

FRONT FRAME OF CPU BOARD

. p.{)
ORd ALTYVd SNINIS-dD
o°_ _mgm n.HmmE JHOIY _H...M"Wq _\Wmmma mp%.ml_ &Mw—

s @ ¢ ¢ 919 9 @14 9 e o

| App. A

Page 72

1/0 Device Codes and Mnemonics

Decimal Octal

code

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

code

01
02
03
04
05
06
07
10
1
12
13
14
15
16
17
20
21
22

23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43

Mnemonic Maskbit

ASL
TTI 14
TTO 15
PTR 11
PTP 13
RIC 13
PLT 12
CDR 10
LPT 12
DSC 4
SPC 9
SPC1 9
PTRI 1
TMX10 | 0
T™X11 } 1
T™XO0] 0
T™™X1 1
MT 5
PTP1 (IBM) 13
(IBM) (13)
DISP 7
LPS 12
REC 8]
XMT 8
REC1 8]
XMT1 8
RC 3603

Device

Extended Memory

Automatic System Load

Teletype input

Teletype output

Paper Tape Reader

Paper Tape Punch

Real Time Clock

Incremental Plotter

Card Reader

Line Printer

Disc Storage Channel

Standard Parallel Controller

Second Standard Parallel

Controller

Second Paper Tape Reader

l Second 64 Channel
Asynchronous Multiplexer

[64 Channel Asynchronous
Multiplexer

Magnetic Tape

Second Paper Tape Punch, & IBM 1

OCP-Function Button Out, & IBM 1

OCP-Function Button In

OCP-Numeric Keyboard In

OCP-Display

OCP-Autoload

Serial Printer

BSC Controller

Second BSC Controller

o

9 L4 ?

Page 73

Decimal Octal
code code Mnemonic Maskbitr Device

36 44 MT1 -5 Second Magnetic Tape

37 45 CLP 12 Charaband Printer

38 46 FPAR 3 Inter Processor Channel
Receiver

39 47 FPAX 3 Inter Processor Channel
Transmitter '

40 50 TTI1 14 Second Teletype Input

41 51 TTO1 15 Second Teletype Output

42 52 AMX 2 8 Channel Asynchronous
Multiplexor

43 53 AMX1 2 Second 8 Ch. Asynchronous Mpx.

44 54 HLCR 8 HDLC Controller Receiver

45 55 HLCX 8 HDLC Controller Transmitter

46 56 CDR1 10 Second Card Reader

47 57 LPTl 12 Second Line Printer

48 60 SMX Synchronous Multiplexor

49 61 FDD 7 Flexible Disc Drive

50 62 CRP 10 Card Reader Punch

51 63 CLP1 12 Second Charaband Printer

52 64 FDD1 7 Second Flexible Disc Drive

53 65

54 66

55 67 LPS1 12 Second Serial Printer

56 70 DST Digital Sense

57 2 DOT(IBM) (13) Digital Output, & IBM 2

58 72 CNT(IBM) (13) Digital Counter, & IBM 2

59 73 DKP 7 Moving Head Disc Channel

60 74 , 3 Second Inter Processor Channel

_ Receiver

61 75 3 Second Inter Processor Channel
Transm.

62 76

63 77 CPU Central Processor

RC 3603 A-2

Page 74

App. B ASCII Character Codes

To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal |Octal | Hex { racter | Control Function | Cntr Shift Char code
0 000 |00 | NUL | Null vV Vv P 00
1 001 | 01 SOH Start of Heading | L/ A 81
2 002 |02 STX Start of Text 74 B 82
3 003 |03 ETX End of Text Vv C 03
4 004 |04 EOT | End of 74 D 84
Transmission
5 005 |05 | O | Enquiry vV E 05
6 006 |06 | ACK | Acknowledge 74 F 06
7 007 {07 | BEL |Bell v G 87
8 010 | 08 BS Backspace 4 H 88
9 011 |09 | HT Horizontal Tap 4 I 09
10 012 | 0A NL New Line line feed | 0A
74 J OA*
v line feed | 8A
11 013 | OB vT Vertical Tab v K 8B
12 014 | oC FF Form Feed v L 0C
13 015 | 0D RT Return return 8D
v M 8D*
V’ return 0D
14 016 |0E | SO Shift out v N 8E
15 017 |oF | sI shift In v 0 OF
16 020 |10 DLE | Data Link Escape| P 90
17 021 |11 | pc1 | pevice Control 1| / 0 11
18 022 |12 | pc2 | Device Control 2| R 12
19 023 |13 DC3 Device Control 3 v4 S 93
* on even parity Teletypes these codes have odd parity
RC 3603 B-1

)

Page 75
To Produce Even
ASCII On TTY Mod Parity

Deci- Cha- 33,35 8-bit

mal |Octal | Hex | racter | Control Function |Cntr shift Char code
20 024 | 14 DC4 Device Control 4 V4 T 14

21 025 | 15 NAK Negative Acknow-
ledge % U 95
22 026 | 16 SYN Synchronous Idle | V v 96
23 027 |17 ETB End Transmission

Block 4 W 17
24 030 |15 | can | cancel Vv X 18
25 031 |19 EM End of Medium v Y 99
26 032 | 1A | suB | substitute %% A 9a
27 033 | 1B | ESC | Escape esc 1B
v vV K 1B
28 034 | 1C FS File Separator v VvV L 9C
29 035 | 1D | GS Group Separator v vV M 1D
30 036 | 1E | RS Record Separator | V' V N 1E
31 037 {1F | US Unit Separator v Vo 9F
32 040 | 20 spP Space space AQ
33 041 | 21 ! vl 21
34 042 | 22 | vV 2 22
35 043 | 23 | # V 3 A3
36 044 | 25 | s v 4 24
37 045 | 25 | % v s A5
38 046 | 26 | = V 6 A6
39 047 | 27 ' V7 27
40 050 | 28 (v 8 28
41 051 | 29) v 9 A9
42 052 | 2a | * Vv . AA
43 053 | 2B | + Vs 2B
44 054 | 2c | , , 2C

RC 3603 B-2

Page 76
To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function | Cntr Shift Char code
45 055 | 2D - - 2D
46 056 | 2E . . 2E
47 057 | 2F | / / AF
48 060 | 30 0 0 30
49 061 31 1 1 Bl
50 062 | 32 2 2 B2
51 063 | 33 3 3 33
52 064 | 34 4 4 B4
53 065 | 35 5 5 35
54 066 | 36 6 6 36
55 067 | 37 7 7 B7
56 070 | 38 8 8 B8
57 o7 39 9 9 39
58 072 | 3a : : 3A
59 073 | 3B H : BB
60 074 | 3C < Vo 36
61 075 | 3D = v - BD
62 076 3E | > v . BE
63 077 | 3F ? v/ 3F
64 100 | 40 @ VP Cco
65 101 41 A A 41
66 102 | 42 B B 42
67 103 | 43 C C 43
68 104 | 44 D D 44
69 105 | 45 E E c5
RC 3603 B-3

i — [~ " e

ittty

Page 77
i To Produce Even
N ASCII - On TTY Mod Parity
i Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter Control Function | Cntr shift Char code
i 70 106 |46 F F Cé6
71 107 | 47 G G 47
i 72 110 |48 | H H 48
73 111 | 49 I I c9
i 74 112 | 4a J J ca
75 113 | 4B K K 4B
76 114 | 4C L L cC
i 77 115 | 4D M M 4D
78 116 |4E | N N AE
i 79 117 | 4F (o} o} CF
N
80 120 | 50 P P 50
i 81 121 | 51 Q 0 D1
82 122 | 52 R R D2
83 123 53 S S 53
- 84 124 | 54 T T D4
- 85 125 | 55 U U 55
86 126 | 56 \' \' 56
87 127 | 57 W W D7
i 88 | 130 [s8 | x X D8
89 131 | 59 Y Y 59
i 90 132 5A Z pA 5A
91 133 | 5B (v K DB
-) 92 134 |5¢c | \ VL 5C
93 135 | 5D] v M DD
- 94 136 5E A VN DE
- RC 3603 B-4
| "

Page 78
To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function | Cntr Skift Char code
Y5 137 |5F | _ vV oo 5F
36 140 | 60 \ 60
97 141 61 a El
98 142 | 62 b E2
99 143 | 63 c 63
i30 144 | 64 d E4
191 145 | 65 e 65
102 146 | 66 f 66
103 147 | 67 g E7
104 150 | 66 h E8
135 151 69 i 69
106 152 | 6A 3 oA
137 153 | 6B K EB
1928 154 | 6C 1 6C
109 155 | 6D m ED
110 156 | 6E n EE
111 157 | 6F o} 6F
i12 160 |70 | p FO
i13 161 T q A
114 162 | 72 r 72
115 163 | 73 s F3
il6 164 | 74 t 74
117 165 | 75 u F5
118 166 | 76 v Fé6
119 167 | 77 w 77
120 170 | 78 X 78
121 171 79 Y F9
122 172 | 7a z FA
123 173 | 7B | 7B
124 174 | 7C FC
125 175 | 7D } 7D
126 176 | 7E ~ 7E
127 177 | 7F DEL rubout FF
RC 3603 B-5

| i it ‘il

nasatts Mt 0 dsadh ARt

o
>
o
i
(]

2] o ?

Page 79

Double Precision Arithmetic

A double length number consists of two words concatenated into a
32-bit string wherein bit 0 is the sign and bits 1-31 are the
magnitude in two's complement notation. The high-order part of a
negative number is therefore in one's complement form unless the
low-order part is null (at the right only 0's are null
regardless of sign). Hence, in processing double length numbers,
two's complement operations are usually confined to the
low-order parts, whereas one's complement operations are
generally required for the high-order parts.

Suppose we wish to negate the double length number whose high
and low-order words respectively are in ACO and ACl. We negate
the low-order part, but we simply complement the high-order part
unless the low order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;LOW ORDER ZERO
coM 0,0 ;LOW ORDER NON-ZERO

Note that the magnitude parts of the sequence of negative
numbers from the most negative toward zero are the positive
numbers from zero upward. In other words, the negative
representation -x is the sum of x and the most negative number.
Hence, in multiple precision arithmetic, low-order words can be
treated simply as positive numbers. In unsigned addition a
carry indicates that the low-order result is just too large and
the high-order part must be increased. We add the number in AC2
and AC3 to the number in ACO and ACl.

ADDZ 3,1,82C
INC 0,0
ADD 2,0

In two's complement subtraction a carry should occur unless the
subtrahend is too large. We could increment as in addition, but
since incrementing in the high-order part is precisely the

difference between a one's complement and a two's complement, we

can always manage with only two instructions. We subtract the
number in AC2 and AC3 from that in ACO and ACl.

SUBZ 3,1,82C
SuB 2,0,SKp
"ADC 2,0
RC 3603 C-1

App. D

Page 80

Instruction Use, Examples

On the following pages are examples of how the instruction set
of the RC 3603 computer may be used to perform some common
functions.

].

Clear an AC and the carry bit.

SUBO AC,AC

Clear an AC and preserve the carry bit.
SUBC AC,AC

Generate the indicated constants.

SUBZL AC,AC ;GENERATE +1
ADC AC,AC ;GENERATE -1
ADCZL aC,AC ;GENERATE -2

Let ACX be any accumulator whose contents are zero.
Generate the indicated constants in ACX.

INCZL ACX,ACX ;GENERATE +2
INCOL ACX,ACX :GENERATE +3
INCS ACX ,ACX :GENERATE +400

8

Subtract 1 from an accumulator without using a constant from
memory.

NEG AC,AC
ooM AC,AC

Check if both bytes in an accumulator are equal.

MOVS ACS,ACD
SUB ACS,ACD,SZR
JMp — sNOT BQUAL
- — sEQUAL
RC 3603 D-1

>

’

10.

11.

Page 81

Check if two accﬁmulators are both zero.

MOV ACS,ACS ,SNR

SuB# ACs,ACD,SZR

JMP — sNOT BOTH ZERO
- -— ;BOTH ZERO

Check an ASCII character to make sure it is a decimal
digit. The character is in ACS and is not destroyed
by the test. Accumulators ACX and ACY are destroyed.

LDA ACX,C60 ;ACX=ASCII ZERO
LDA ACY,C71 sACY=ASCII NINE
ADCZ# ACY,ACS,SNC ;SKIPS IF (ACS) >9
ADCZ# ACS,ACX,SZC ;SKIPS IF (ACS) 20
JMP — ;NOT DIGIT

-== R ;DIGIT

C60: 60 ;ASCII ZERO

cn A ;ASCII NINE

Test an accumulator for zero.

MOV AC,AC,SZR
JMP — :

NOT ZERO

e w

Test an accumulator for -1.

COM§ AC,AC,SZR
JMP — :NOT -1

Test an accumulator for 2 or greater.
MOVZR# AC,AC,SNR

JMP —_ ;LESS THAN 2
-— — ;2 OR GREATER

RC 3603 D-2

12. Assume it is known that AC contains 0, 1, 2, or 3.
Find out which one.

]3.

MOVZR#
JMP
MOV
JMP
MOVZR#
JMP

Multiply an AC by the indicated value.

MOV
MOVZL
MOVZL
ADD
ADDZL
MOV
ADDZL
ADD
MOVZL
ADDZL

MOVZL

ADDZL
SuB

ADDZL
MOVZL
MOVZL
ADDZL

ADDZL
ADDZL
MOVZL
ADDZL
MOVZL
MOVZL
ADDZL
ADDZL

Page 82

AC,AC,SEZ -

THREE

AC,AC,SNR

ZERO

AC,AC,SZR

WO

ACX ,ACX
ACX ,ACX
ACX,ACY
ACY,ACX
ACX ,ACX
ACX ,ACY
ACX ,ACX
ACY,ACX
ACX ,ACY
ACY,ACX
ACX ,ACY
ACY,ACY
ACX,ACY
ACX,ACX
ACX,ACX
ACX,ACY
ACY ,ACY

ACY,ACX

ACX,ACY
ACX,ACX
ACY ,ACX
ACX,ACY
ACY,ACX

ACX,ACX

ACX,ACY
ACY,ACY
ACY,ACX

sWAS 3
;WAS O

sWAS 2
sWAS 1

s MULTIPLY
sMULTIPLY
;MULTIPLY

MULTIPLY
MULTIPLY

.
’
.
14

sMULTIPLY
;s MULTIPLY
;IN ACY

:MULTIPLY
;s MULTYPLY
sMULTIPLY

sMULTIPLY

sMULTIPLY

BY

BY

BY

BY

RC 3603

10

10 ~
12,

1810

D-3

-

14.

15.

16.

Page 83

Perform the inclusive OR of the operands in ACO and
ACl. . The result is placed in ACl. The carry bit is
unchanged. '

com 0,0
AND 0,]
ADC 0,1

Perform the exclusive OR of the operands in ACO and
ACl. The result is placed in AC1. The contents of
AC2 and the carry bit are destroyed.

MOV 1,2
ANDZL 0,2
ADD 0,1
suB 2,1

Move 30 words from locations 20008-20358 to
locations 3000 -30358. The auto-increment locations
are used to ho?d the source and destination addresses.

LDA 0,ADDRS ;SET UP SOURCE ADDRESS
STA 0,20
LDA 0,ADDRD ;SET UP DESTINATION ADDRESS
STA 0,21
LOOP: IDA 0,820 INCREMENT SOURCE ADDRESS

AND GET WORD

we We wmp WS ae

STA 0,021 INCREMENT DESTINATION
ADDRESS AND STORE WORD
DSZ CNT DECREMENT CQOUNT
JMP LOOP ;GO BACK FOR NEXT WORD
' ;SKIP HERE WHEN OOUNT IS
: ZERO
ADDRS: 1777 ;SOURCE ADDRESS MINUS ONE
ADDRD: 2777 ;DESTINATION ADDRESS MINUS
: ONE
CNT: 36 sWORD COUNT ——368 EQUALS 30]0

RC 3603 D-4

Page 84

17. Perform the following unsigned integer comparisons.

18.

]9.

SUB#

SUuB#

ADCZ#

SUBZ#

SUBZ#

ADCZ#

ACS ,ACD,SZR
ACS ,ACD,SNR
ACS ,ACD,SNC
ACS ,ACD,SNC
ACS ,ACD,SZC |

ACS,ACD,SZC

;SKIP IF CONTENTS OF ACS =

; CONTENTS OF ACD
;SKIP IF CONTENTS
; CONTENTS OF ACD
;SKIP IF CONTENTS
; CONTENTS OF ACD
;SKIP IF CONTENTS
; CONTENTS OF ACD
;SKIP IF CONTENTS
; CONTENTS OF ACD
;SKIP IF CONTENTS
; CONTENTS OF ACD

OF

2 8 8 8

Compare the signed, two's complement integer

ACS to 0.

MOV
MOV#
ADDO#
MOVLA
MOVL#
ADDO#

Simulate the operation of the

.MPYU:
.MPYA:

:CB99

.CB03:
.DB20:

ACS ,ACS,SZR
ACS ,ACS ,SNR
ACS ,ACS,SBN
ACS ,ACS,SZC
ACS ,ACS ,SNC
ACS ,ACS,SEZ

SUBC 0,0
STA 3,.CBO3
LDA 3,.CB20
MWR 1,1,SNC
MOVR 0,0SKP

ADDZR 2,0

ING 3,3,SZR

J¥P .CB99
MOVCR 1,1

JMP @.CB03
0

-20

sSKIP IF CONTENTS
sSKIP IF COONTENTS
;SKIP IF CONTENTS
sSKIP IF CONTENTS
sSKIP IF CONTENTS
;SKIP IF CONTENTS

;CLEAR ACO, DON'T DISTURB CARRY

;SAVE RETURN
;GET STEP COUNT

oF
OF
oF
OF
OF
OoF

ACS #

aCs <

contained in

ACS D O
ACS NE O
ACS GT 0
AS GEO
ACS LT O
ACS IE O

MULTIPLY instruction.

;CHECK NEXT MULTIPLIER BIT

;0 SHIFT

;1 — ADD MULTIPLICAND AND SHIFT

COUNT STEP, COMPLEMENTING CARRY ON

FINAL COUNT
ITERATE LOOP

COMPLEMENTED BY FINAL COUNT) AND

RESTORE CARRY

:16

40 STEPS

RC 3603

;SHIFT IN LAST LOW BIT (WHICH WAS

D-6

2

L

9

e]

- a @ Ea A EaSESdEaaEaaEaEaEaaEaEaEaESs

21.

Page 85

20. Simulate the operation of the DIVIDE instruction.

.DIVI:
.DIVU:

.CC98

.CC99

.CC03
.CC20

SUB
STA
SUB#
JMP
LDA

MOVZL

MOVL
SUB#
SUB
MOVL
INC
JMP
SUBO
SUBZ
JMP
0

20

0,0
3,.CC03
2,0,82C
.CC99
3,.CC20
1,1

0,0
2,0,582C
2,0

1,1
3,3,82C
Ccas -
3,3,SKP
3,3
@.CCo3

; INTEGER DIVIDE CLEAR HIGH PART
;SAVE RETURN

;TEST FOR OVERFLOW

;YES, EXIT(ACO AC2)

;GET STEP QOUNT

;SHIFT DIVIDEND LOW PART
;SHIFT DIVIDEND HIGH PART
;DOES DIVISOR (0 IN?

; YES

;SHIFT DIVIDEND LOW PART
;COUNT STEP

; ITERATE LOOP

;DONE, CLEAR CARRY

;SET CARRY

+ RETURN

:16. . STEPS

10

Load a byte from memory. The routine is called via a JSR.

The byte pointer for the requested byte is in AC2. The
requested byte is returned in the right half of ACO0. The
left half of ACO and the carry are set to 0. AC! and AC2 are
unchanged. AC3 is destroyed.

LBYT:

STA
LDA
MOVR

MOVS

MOVS

MOVL
JMP

371

3,LRET
3,MASK

3,3

0,0,2
1,0,SNC

0,0

2,2
@ LRET

;SAVE RETURN ADDRESS

;TURN BYTE POINTER INTO WORD ADDRESS
; AND SKIP IF REQUEST BYTE IS RIGHT
: BYTE

;SWAP MASK IF REQUESTED BYTE IS LEFT
; BYTE

;PLACE WORD IN ACO

;MASK OFF UNWANTED BYTE AND SKIP IF
; SWAP IS NOT NEEDED

;SWAP REQUESTED BYTE INTO RIGHT HALF
; OF ACO
;RESTORE BYTE POINTER AND CARRY
s RETURN
sRETURN LOCATION

RC 3603 D-7

Page 86

22. Store a byte in memory. The routine is called via a JRS. The
byte to be stored is in the right half of ACO with the left
half of ACO set to 0. The byte pointer is in AC2. The word
written is returned in ACO. AC1 and AC2 are unchanged. AC3
and the carry bit are destroyed.

SBYT: STA 3,SRET ;SAVE RETURN
STA 1,SAC1 ;SAVE ACl
LDA 3,MASK

MOVR 2,2,SNC ;CONVERT BYTE POINTER TO WORD

ADDRESS AND SKIP IF BYTE IS TO BE

-e

; RIGHT HALF
MOVS 0,0,SKP ;SWAP BYTE AND LEAVE MASK ALONE
MOVS 3,3 ;SWAP MASK
a 1,0,2 ;IOAD WORD THAT IS TO RECEIVE BYTE
AND 3,1 :MASK OFF BYTE THAT IS TO RECEIVE
; NEW BYTE
ADD 1,0 ;ADDMEMORYVDRD(N'IOPOFNEMBYTE
STA 0,0,2 ;STORE WORD WITH NEW BYTE
MOVL 2,2 ;RESTORE BYTE POINTER AND CARRY
LpA 1,SAC1 ;RESTORE ACI
JMP @ SRET ;RETURN
SRET: 0 ;RETURN LOCATION
SACl: 0
MASK: 377

RC 3603 D-8

@

—

—

_—
—

App. E

Page 87

Instruction Execution Times

1/0 INPUT (incl. READS, INTA)

1/0 OUTPUT (MSKO)
NIO (INTEN, INTDS)
I/0 SKIP

If SKIP occurs, add

RC 3608 RC 3609
INSTRUCTION MNEMONIC 32K memory 16 K memory
LDA 1.6 s 1.4 us
STA 1.6 s 1.4 us
1Sz, DSZ 2,4 s 2.1 us
JMP 0.8 us 0.7 us
JSR 1.25 us 1.2 us
COM, NEG, MOV, INC 1.15 us 1.0 us
ADC, SUB, ADD, AND
Each level of @, add 0.85 us 0.75 us
Each autoindex, add 0.85 ups 0.75 pus
Base register addr, add 0 us 0 us
shift R, L, add 0.3 us 0.3 us
Swap, add 0.9 s 0.9 us
If SKIP occurs, add 0.2 s 0.2 us
us us
us us
us us
Ms ps
Hs us
ps us

For S, C and P, add

DATA CHANNEL

DMA Input

DMA Output

DMA Increment
DMA Add to Memory

EEEE

EEEG

|

RC 3603 CPU
READER'S COMMENTS Programmer' s Reference Manual
RCSL 52-AAT705

A/S Regnecentralen maintains a continual effort to improve the

quality and usefulness of its publications. To do this effective-
ly we need user feedback - your critical evaluation of this

manual.

Please comment on this manual's completeness, accuracy, organiza-
tion, usability, and readability:

)

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

)

Please state your position:
Name: Organization:
Address: Department:

)

Date:

\

RETURN LETTER - CONTENTS AND LAYOUT

Affix
postage

here

A/S REGNECENTRALEN
Information Department
Falkoner Allé 1
DK-2000 Copenhagen F
Dermark

REGNECENTRALEN

N S@@mﬁ@g
b COMBPUTER

HEADQUARTERS: FALKONER ALLE ¥ - DK-2000 COPENHAGEN F : DENMARK
PHONE: (01108388 - TELEX: 186282 rchqdk - CABLES: REGNECENTRALEN

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark

SUBSIDIARIES

AUSTRIA

RC — SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna

FINLAND
OY RC — SCANIPS AB
Helsinki

‘FRANCE

RC — COMPUTER S.ar.l.
Paris

HOLLAND

REGNECENTRALEN (NEDERLAND) B.V.

Rotterdam

NORWAY
A/S RC — SCANIPS
Oslo

SWEDEN
RC — SCANIPS AB
Stockholm

SWITZERLAND
RC — SCANIPS (SCHWEIZ) AG
Basel

UNITED KINGDOM
REGNECENTRALEN LTD.
London

WEST GERMANY
RC — COMPUTER G.mb.H.
Hannover

REPRESENTATIVES
HUNGARY

= HUNGAGENT AG
" Budapest

KUWAIT

KUWAITI DANISH COMPUTER CO.S.A K.

Safat

CZECHOSLOVAKIA
KSNP KANCELARSKE STROJE N.P.
Praha

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO
Wroclaw

RUMANIA
1.1.LR.U.C.
Bucharest

HUNGARY
NOTO-0SZVv
Budapest

P

