ﬁ@gﬂ oK ohRVICE, Glostrup, 27th September, 1971. PEH/BECA.

‘Dear uirs,

-

fﬁ enclosed a new-set of »es+pW:grams which extends the number
ot hardware tests for the RC 4000.»

fRer NN o= 4
Fiease T

*;hs set consists of

CPu-test 1 description | 51-VBI72
% paper tapes = 31-T15
31-T16
31-T17
’ 1ftest;¢able type 27/50
2 descriptions . 31-A29
31-D14
-2 paper tapes = 31-T19
31-T20
Dise test . 1.@escription . 3L-DI7
k 1 baper tape 31=-T30

ﬁist%bngly rec ommendod that yox run the testprograms when convenient,

goiu it familiar o them before an error situation arises.

Kind regards,
A/S REGNECENTRALEN

(;Qq/ kikkﬁﬁfrﬂx~

Per Hansen

RCSL: 51-VB1172
Author: Allan Gilese
Edited: March 1971

RC LOOO DIAGNOSTIC PROGRAM

FOR CENTRAL PROCESSOR

PROGRAM DESCRIPTION

KEY: Technical Manual, Fault Detection and Isolation

e e ot = e = o o = = = " = o -~ — " > = e~

Abstract: This manual describes the loading of the diagnostic program and

explains how error messages are used for fault detection and location.

A/ S REGNECENTRALEN
Falkoneralle 1
DK 2000 Copenhagen F

CONTENTS

0. INTRODUCTION 7
0.1. Automatic Program Loading
0.2. Manual Loading from Paper Tape Reader.
0.3. Manual Loading from High-Speed Device
0.4. Test of Interruption System
0.5. Normal Operator Commands
0.6. Sequence and Interrupt Errors
0.7. Error Messages from Testprogtams
0.8. List of Error Messages with no Section Number
0.9. Alteration of Device No. for Typewriter

1. WRITE THE DIGIT 1 FROM WO 2
2. WRITE THE DIGITS 2, 4, AND 8 FROM W1, W2, AND W3, RESPEC-
TIVELY 2
3. WRITE THE DIGITS 1, 2, 4, AND 8 FROM WO, Wi, W2, AND W3 -
RESPECTIVELY BY MEANS OF AL INSTRUCTIONS 1
4. WRITE THE CHARACTERS /, 3, AND Y FROM WO BY MEANS OF AL
INSTRUCTIONS 1
5. WRITE THE DIGITS 1, 2, 4, AND 8 FROM WO BY MEANS OF LO
INSTRUCTIONS 1
6. REGISTER W1 AND CORE STORE DATA PATH 5
7. INTEGER ADDER 4
8. RELATIVE ADDRESSING AND JUMP 2
9. SB(12) EXTENSION 1
10. SKIP ON AR(-1) =1 1
11. SKIPON AR < > O 2
12. SKIP ON AR = O 1
13. SKIP ON AR > 0 1
1k, INDEX X1 2
15. REGISTER W2 2
16. REGISTER W3 2
17. REGISTER WO 2

VB1172

CONTENTS (continued)

. ot iy ot e e 4 e e —— = o 1o " o o T " o 2 T o T 7" . 2 - -

Section ' Pages

18. INDEX X2

19. INDEX X3

20. LOGICAL LEFT SHIFT SINGLE
21. W PRE

22. LOGICAL LEFT SHIFT DOUBLE
23. JUMP

24, JUMP CONDITIONS FOR FR
25. REGISTER FR

26. LOGICAL RIGHT SHIFT

27. ARITHMETIC RIGHT SHIFT
28. MULTIPLE LEFT SHIFTS

29. MULTIPLE ARITHMETIC RIGHT SHIFTS
30. NORMALIZE

31, SB DIAGONAL READ-QUT

32, SB(0) EXTENSION

33, SB DIAGONAL READ-IN

3Lk, LOGICAL AND

35. REGISTER EX

36. PROTECTION KEY

37. REGISTER PR

38. SKIP ON PROTECT

39. READ FROM WO

4LO0. READ FROM Wi

41. READ FROM W2

42, READ FROM W3

43, READ DOUBLE

L, INSTRUCTIONS IN W

45, WRITE INTO W REGISTERS
4L6. REGISTER PBO

47. REGISTER PB1

R R R R DN N NN R RN R R RN NN R WU RN R NN NN

VB1172 2

CONTENTS (continued)

Section

L8,
Lo,
50.
51.
52.
53.
5k,
55.
56.
57
58.
59.
60.

67.
68.
69.
70.
71.
72.
73.
Th.
75.
76.
7.
78.

REGISTER PB2

REGISTER PB3

REGISTER AE

REGISTER SE

FLOATING ADDER

W(12) EXTENSION
REGISTER SC

CONSTANT 23

ARITHMETIC RIGHT SHIFT IN AF
ARITHMETIC RIGHT SHIFT IN SF
AF <> 0

LOGICAL LEFT SHIFT IN AF
BITS (35,36,37)

ROUNDING

SC COUNT UP

SC COUNT DOWN

SC <> 0, SC > -38 A SC < 38
LOW PRECISION

CONSTANT -2048
EX(22:23):= 0

TEST SHIFT IN EX

TEST EXP IN EX

TEST INTEGER IN EX
CARRY(0)

BR(22), BR(23)

BE(0)

INTEGER DIVISION
CONSTANT 1

AR <> 0

FLOATING MULTIPLICATION
FLOATING DIVISION

VB1172

N NN NN RN PR R R R RV DN FE NN DY DR, N R NN

CONFENTS (continued)

19.
80.
81.
82.
83.
8k,
85.
86.
87.

CONSTANT 12

ADDRESS OVERFLOW
PROTECTION

REGISTER IM

INTERRUPT ENABLE
REGISTER IR

INTERRUPT REQUEST
INTERRUPT NUMBER

CLFAR ANSWERED INTERRUPT

VB1172

[AC T \C B \C B \S B S 0 T e ool

0. INTRODUCTION

T TS s e e e s i g o A et o i i i s S~ ————————— -~ —— o o s 2o 2o T O oD e P M o S

This section explains the program loading, the opeapator commands and the
messages issued by the system. An introduction. to the documentation for
each subprogram is also given.

0.1. Automatic Program Loading.
The program loading proceeds as follows:
1. Set the computer into Reset Mode. This state is signalled by a
red light in the indicator for Reset Mode.
2. Insert the program LOADER FOR CPU TESTPROGRAM into the RC 2000
paper‘ tape reader and press the RESET button belonging to the reader.
3. Press only once the AUTOLOAD key whereafter the computer reads and exe-
cutes the Loader, and the computer turns then into the Reset state.
L, Insert the program CPU TESTPROGRAM into the paper tape reader and
press the RESET button belonging to the reader.
5. Activate the START key and the Loader takes care of loading of the
' testprogram. After loading the computer turns into the reset state
and register W5 contains the address of the first free location af-
ter the testprogram.
If the operator wants to verify the loading of the CPU. TESTPROGRAM,
wvhich should normally be the case, he continues with step 6, other-
wise step 6 1s skipped.
6. Insert the program CHECK LOADING OF CPU TESTPROGRAM into the reeder
‘and press the AUTOLOAD key. The progrem writes either che
checksum ok or checksum incorrect
depending on whether the testprogram is successfully loaded or not.
Before proceeding to the next step the RESET key must be activated.
T. The CPU TESTPROGRAM is started by the START key and the program re-
sponds by printing
test end
number of runs =
The operator commands may now be used confer Section 0.5.

VB1172 0-1

FILE PROCESSOR UTILITY PROGRAM: CHECKIO

General

Checkio may supervise all actions on a particular document, That is per-
formed in the following way: Assume that checkio is executed in a job
process called EEX‘ Then all messages sent to dev are passed on by
checkio to the document supervised., The answer from the document is passed
back to the original sender process, which seems to be handling the do-
cument in the normal way,

Checkio can easily print all messages and answers as they are
passed on, and you can later find out about parity errors from the docu-

ment, rereading, etc.

Call

The process dev must be created with a protection register which enables
it to modify the contents of all other processes,

Checkio must be called with one parameter specifying the name of
the document to be supervised. The messages and answers are printed on
the current output of dev. A console communication to start dev may look
like this:

to s
new dev size 5000 pr 1 2 2 4 56 7 pk 1 run

to dev
o 1lp 3 print on the line printer
checkio t6 3 check the document t6

You will then see nothing from dev until some messages are sent to it,

for instance from another job started like this:

to s

new sl run

to sl

s=get mto dev ; edit to the ’magnetic tape’ dev,
g=edit tre 3 which acts as the magnetic tags t6.

Dev will now start listing the communication on the line printer. When
you have finished using dev for supervising of t6, you can proceed like
this:

0.2. Manual Loading from Faper Tape Reader.

The manual loading is used in cases where the CPU TESTPROGRAM cannot be

loaded by the automatic way .or the error reactions from the program are

suspicious-looking. The reasons for the manusl start-up procedure to be

superior to the automatic are that fewer parts of the computer are neces-

sary to operate satisfactory for loading and that the testprogram is ini-

tiated in a different way.

The loading proceeds as follows: :

1. Set the computer into Reset Mode. This state is signalled by a red
light in the indicator for Reset Mode.

2. Insert the program CPU TESTPROGRAM into the paper tape reader and
press the RESET button belonging to the reader.

3. Insert the Slang program below into the w-registers.

w0: aw x3+0 3 numeric code O
wl: al w3 x3+2 s - - 11
w2: J1 0 s - - 13
w3: 8

Set the Protection Register, PR:= b1111 1111
and the Function Register, FR(5):= 0

L. Set the Micro Address Register, MAR:= x16y4 and press the Single
Micro Instruction pushbuttoh. The paper tape is read hy

setting the Instruction Counter, IC:= O
setting MAR:= xlyO;
activation of the pushbutton MAR COMPUTER CONTROLLED;
activation of the pushbutton CONTINUE.
5. The CPU TESTPROGRAM is initiated by setting
IC con O:= 128+6L4+ 16+8+4
MAR:= xhy0O; EX:= Oy
Wi= 49s wli= 503 w2:i= 52; w3:= 56
after activation of the pushbuttons
MAR COMPUTER CONTROLLED
CONTINUE (SINGLE INSTRUCTION repestly if this is wanted)
the testprogram wiites if no errors are found
12481248 /3Y12u48
00 000000 000000 000000 000000
test end
number of runs=
The operator commands may now be used confer Section 0.5.

VB1172 0-2

0.3. Manual Loading from High-Speed Device.
The manual loading explained in the previous section requires that quite
a nuber of micro commands and jump conditions, as well as parts of the
arithmetic unit do function properly. In order to surmount this obstacle
the program may be loaded from a high-speed device, for example a magne-
tic tape, a drum, or a disc. The program must, of course, have been
stored on the storage medium in question at a time where the computer was
faultless or by another computer. The requirements for high-speed loa-
ding are limited to error-free operation of the high-speed data chamnel
the part of the store controller that handles high-speed data transfer,
and the necessary I/0 instructions for initialization of data transfer.
If, for example, the CPU TESTPROGRAM is stored as the first block on an
RC 747 or RC 749 magnetic tape station then the loading proceeds as
follows: .
1. Set the computer into Reset Mode. This state is signalled by a red

light in the indicator for Reset Mode. Set the Protection Register,

PR:= b1111 1111,
2. Execute the instruction (inserted in the W-registers)

io wx devno<d< 6+ 5 s where wx = last storage addr, e.g.

last addr of core store

e

3. Execute the instruction
io wx devno < 6+ 13 ; where wx = first storage addr = 8
The CPU TESTPROGRAM is now loaded into core store from location 8
and upwards.
L, Execute the instruction
io wx devno< 6+ 0 ; wx = status word
5. Execute the instruction
| iilo wx devno< 6+ 4 5 wx =Dblock size
The block size is determined by executing the above mentioned
steps when the computer is error-free.

6. The CPU TESTPROGRAM is initiated as explained in step 5 of Section 0.2.

0.k, Test of Interruption System.

A c‘omplete test of the interruption system requires a possibility that
enables the testprogram to set bits in the interrupt register. This is
implemented by removal of one of the external I/0 bus cables plus the
wvired interrupt plug 1021 and replaces them with a cable of type 27, In
other words one of the following connections is made

VB1172 0-3

plug 1062 - cable type 27 - plug 1021
plug 1061 - cable type 27 - plug 1021.

By this arrangement the ones in the effective address of an I/0-instruc-
tion set the corresponding bits in the interrupt register to one. Since
the operators console typewriter (device no. 2) is connected to an in-
ternal I/0 bus it is still possible for the program to communicate over
the typewriter while the external bus is used for interruption test.

In cases where communication to the operator takesi.place via the exter-
nal I/0 bus (i.e.: device no. 2 is not installed) the interruption system
cannot be completely tested.

0.5. Normal Operator Commands.
After activation of the CPU TESTPROGRAM no matter which method is used,
the program arrives at the start point where it writes

test end '

nunber of runs =
The operator now types the number of times he wants the program to be
executed and terminates with a New Line (NL) character. This character
must have the ISO value 10. The program then asks whether the interrup-
tion system should be tested or not by writing

interrupt/no interrupt ¢
Typing an i signifies test interruption system, an n no test. The prere-
quisites for this test are stated in Section O.4. The testprogram is then
started and it writes at regular intervais

run no. < run no. >
vhere < run no. > is the run number to be executed next.
The interval equals number of runs/10.
After execution of all runs the program returns to the start point and a
test may be specified anew.
If for one reason or another the operator wants {:o terminate the test, he
only has to activate the RESET and START keys taken in that order; this
forces the program to the start point.

VB1172

0.6. Sequence and Interrupt Errors.
The diagnostic program consists of 87 independent test programs. Figure 0.1
shows a layout of the core and the succession in which the test programs

.are executed.

byte addr.
(approx.)
8 Constants and Variables
220 Testprograms 1 to 6 | ¢——— Manual Start
1472 Testprograms 7 to 8 *—T— Automatic Start
2058 Central Actions for

interrupt error
selection of next testprogram

operator communication

L4156 | Testprograms 9 to 83

10810 Testprograms 8, to 87
11360 (Interruption System)

Figure 0.1 Core Layout

VB1172 0-5

The last two instructions of a testprogram causes normally a loading of
register wl with the start address of the next testprogram followed by
a jump to the central action. In order to check that the chronological
order of testprograms is kept, the central action compares the contents
of wl against the same start address but obtained from a table stored in
the central action. If the two addresses match, the diagnostic program
continues with the next testprogram, otherwise the following message is
printed ‘

sequence error < name of testprogram >

repeat/continue ?
The operator may now type r for repeat, i.e. the same testprogram is exe-
cuted once more, or ¢ for continue, i.e. the next testprogram as defined
by the table lookup, is executed.

If interrupts occur when no interrupts are expected the following alarm

is given ’
interrupt error: < name of interrupted testprogram >
return addr.: < address of interrupted testprogram; core loc. 10 >
itr. no. x 2: < interrupt number ; core loc 8 >

repeat/continue 1

and the operator may choose to repeat (r) or continue (c).

0.7« Error Messages from Testprogrems.
If one of the testprograms unveils an error the following error message is
normally printed
< section number > < name of testprogram >
test no. < number >
received € received bitpattern >
expected < expected bitpattern >
Information about the nature of the error is found in the section equal to
< section number >. Consult Section 0.8. if no section number is printed.
Each section 1s often divided into four parts.
1. Test Purpose:
Explains how the test is performed; the used test data are also given.
2. Error Reaction:
Shows the exact layout of the error message and indicates in some in-
stances the most likely error.

VB1172 0-6

3. Complete Test of:

Lists the micro orders and Jump conditions which are systematically
tested. The ¢orresponding logic diagrams and circuits are given.
For exsmple: '

< ARUO64:ARUO66 - ARUO6S, 174, 175>
delimits the error to logic diagrams ARUO6L, ARUO65, ARUO66, plus
more specifically to logic diagram ARUO68 boards 174 and 175.

L, Partly Test of: :
Lists the micro orders and jump conditions which must operate satis-
factory for successful test but which on the other hand has not

“been tested themselves. \

0.8. List of Error Messeges with no Section Number.
The following error messages are not preceeded by a section number

Error Message - Program Name Section
{letterd>: <2h-bit pattern> integer adder 7
<{number>: <24-bit pattern> relative addressing and
A Jump
@-ext: <24-bit pattern> sb(12) extension 9
1-ext: <24-bit pattern> , sb(12) extension 9
<program name> ' consult list of contents

sections 10 to 22

0.9. Alteration of Device No. for Typewriter.
The source program writes the error messages on device no. 2, the ope-
rators console typewriter. In case error messages should be printed on
another IBM selectric typewriter, a Teletype or an Olivetti typewriter,
the device mmber should be altered in the original source text. This is
easily done by a global editing command where

| 2< 6 1is replaced by -dtviceno. < 6
It should be noted’that all new line commands in the original source text
are 13, 10, 13. ’
Note, by altéring the device no. it might not be possible to test the in-
terruption system, confer Section 0.k4.

VB1172 | 0-7

1. WRITE THE DIGIT 1 FROM WO

T o o e e e o e e e e e o e o o o ot e e s o+ it o i o e o o i e o o e A = 7 71 s 7 o 10 e ot 2 o Bt o o M7 Ot bk B o i o o . o S Bl 2 e e e o

The aim of this test is to write the digit 1 on the console typewriter, and
the test is a link in the exploration of the output possibilities for the.
program. The nuxﬁber 49 IS0-value for digit 1 is already manually inserted in
register WO.

Correct Test Output:

Error in Test Output:

If, for example, the output is 5, 1t is most likely that the micro order
BUS:= W(fr) has selected both register WO. and Wi. In general, we have:

Output Selected Registers
0 none
wi NB
WO, W1
w2 NB
w2,Wo
W2 WL
W2,W1 , WO
W3 - NB
W5 ,WO
W3 W1
W3 W1 ,WO
W3, W2
W5 ,W2,WO0
W5 ,We, Wl
W3 ,W2,W1,Wo

O ®©® =T on v &= W

/\ ee

™ Vv

. NB The error may also be due to an interchange
of bit positions.

VB1172

. 2) No output at all, or the output is different from 1)

Check the io instruction by executing it Single Micro Instruction by
Single Micro Instruction. Remember that the error may be due to the input/-

output data transfer I0 BUS:= GSB.

Complete Test of:
MMode:= PROTECT for PROTECT = 1 <ARU105 421> ‘
T0 Phase Ay I0 Phase By I0 Timing <LCI003,LCI011,LCI012,LCI020,LCTO26>
Test I0 for Discommected = O and Busy = O; <ARU101,ARU102>
BR(23):= SB(23) for SB(23) =1 ‘
SB(16:2%):= W(fr)(16:23) for fr = 0 and WO = 49
® EX(22,23) < > 0 [0]; <MPC006,120-ARUL102,382>
MMode [1]; <MPCO09,123-ARU105,421>
BR(23) [1]; <MPCO08,122-ARUOT6,185>

Partly Test of:

Read Instruction

VB1172 1-2

2. WRITE THE DIGITS 2, 4, AND 8 FROM W1, W2, AND W3, RESPECTIVFLY

Continue to explore the communication possibilities by writing the digits 2,
4, and 8. The numbers 50, 52, and 56 (ISO-values for digits 2, 4, and 8) are

already manually inserted in registers W1, W2, and W3, respectively.

Correct Test Output:

1248

Error in Test Output:

Confer 1) in WRITE THE DIGIT 1 FROM WO.

2) Output sequence is 1222...22

In this case the sx instruction does not skip when the output device has

cleared its Busy signal.

3) Output sequence is 1 < characters at random >

If the sx instruction always skip, it follows that the progzram does not
wait until the typewriter clears its Busy signal;- but transmits test out-
puts and error messages at the speed of the program. Since the typewriter
cannot cope with this speed only those characters are printed which happen

to be transmitted to the typewriter controller when its Busy signal is O.

L) No output at all, or the output is different from 1), 2), and 3)

Confer 2) in WRITE THE DIGIT 1 FROM WO

VB1172 2-1

Complete Test of:
Test IO for Disconnected = O and Busy = 1; <ARU101,ARU102>
SB(16:23):= W(fr)(16:23) for fr = 1,2,3 and

w(1) = 50, W(2) = 52, W(3) = 56
EX(22,23):= 0 where EX(23) is first set equal to 1; <ARUL02, LL>
AR:= 22extOconEX for EX = 0,1
AR:= AR A SBa for AR = 0,1 and SB

It

]
W

EX(22,23) < > 0 [1] for EX(22,23) = 1; <MPCOO06,120-ARU102:382>
MMode v - ,PROTECT [1] for MMode = 1 and PROTECT = 1;
KMPCO10,124-ARUL05 , 2k5>

1

Partly Test of:
Read Instruction; SB(0:11):= 12extSB(12) for SB(12) = O
Read Data; AR:= SBa; IC:= AR(5:22)
if AR = 0 then IC:= IC+1

FR(6) v FR(7) [0]

VB1172

2-2

%, WRITE THE DIGITS 1, 2, &4, AND & FROM WO, Wi, W2, AND W3, RESPECTIVELY
BY MFANS QF AL INSTRUCTIONS

The numbers 49, 50, 52, and 56 are first loaded by the program into the reg’s-

ters, whereafter their contents are printed out as in the two previous tests.

Correct Test Output:

o 124812148

Error in Test Output:
An erroneous output pattern signifies most likely an error in one of the mi-
cro orders BUS(0:23):= SB or W(fr)(12:23):= BUS(12:23).
An error may, of course, also be due to one of the partly tested micro orders.
The jump condition FR(6) v FR(7) is incorrect if the only error is that 1 is
replaced by the letter @g. More specific, the instruction

250t j1 w0 al3

stores erroneously the link address 252 in register wO.

Complete Test of:

w(fr)(16:23):= SB(16:23) for fr = 0, and SB(16:23) = 49
for fr = 1, and SB(16:23) = 50
for fr = 2, and SB(16:23) = 52
for fr = 3, and SB(16:23) = 56

FR(6) v FR(7) [0]; <MPCOO4,118-ARUO70,092>

Partly Test of:
Read Instruction; SB(0:11):= 12extSB(12) for SB(12) = 0O
Read Instruction; AR:= SBa; IC:= AR(5:22);
if AR = O then IC:= IC+1

VB1172 , 3-1

L. WRITE THE CHARACTERS /, 3, AND Y FROM WO BY MEANS OF AL INSTRUCTIONS

If this test, which checks the input/output datapaths, and the previous tests,

all work satisfactory, the program is capable of writing any message on the

typewriter. Register WO is loaded successively by the following patterns:
IS0~-value Character

wo(0:16):= 0; WO(17:23):= 0101111 L7 /
wo(0:16):= 03 WO(17:23):= 0110011 51 3
Wo(0:16):= 03 WO(17:23):= 1011001 89 Y
Correct Test Output:
12L81248/3Y

Error in Test Output:
The datapaths conveying the output information are all checked by these pat-

terns, and any interchange of bit positions will be disclosed.

Complete Test of:
W(fr)(16:23):= SB(16:23) for fr
SB(16:23):= W(fr)(16:23) for fr

Partly Test of:
Read Instructions SB(0:11):= 12extSB(12) for SB(12) = O
Read Data; AR:= SBa; IC:= AR(5:22);
if AR = O then IC:= IC+1

VB1172 b-1

5. WRITE THE DIGITS 1, 2, 4, AND 8 FROM WO BY MEANS OF LO INSTRUCTIONS

This method of constructing the above-mentioned digits is employed in the test
REGISTER W1 AND CORE STORE DATA PATHS in order to specify different errors.

Correct Test Output:

12481248/3Y1248

Error in Test Output:
No new micro orders or jump conditions are tested, and errors originate conse-

quently from the partly tested items.

Complete Test of:

No new micro orders or jump conditions are tested.

Partly Test of:
Read Instruction; SB(0:11):= 12extSB(12) for SB(12) = O
Read Data; AR:= SBa; IC:= AR(5:22);
if AR = O then IC:= IC+1

VBi172 5-1

6. REGISTER W1 AND CORE STORE DATA PATH

A number of commonly used micro orders are tested by this scheme.

First, register Wl is loaded from core store with a testpattern and the con-
tents of Wi are verified. Second, the contents of Wl are stored in a fixed
location in core store from where it is reloaded into W1 and the testpattern

is checked once more.

The 26 testpatterns are for:

Test no.

VB1172

1
2

o N o b F W

10
11
12
13
1k

15
16
17
18
15
20

000000
111111

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
111111

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
111111

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
111111

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

21
22
23
2k
25
26

000000 000000
000000 000000
000000 000000
000000 000000
00CC00 000000
000000 000000

The test works in details as

z1:
z2:
23
zli:
26:
28:
b6

z9:

Correct Test Output:

VB1172

testpattern

inverted testpattern

1

2
L
8

current testpattern

a1

rl
sz
lo
50
lo

rs
rl
sz
lo
80
lo
io
sX

bl

w0

wl

wl

wl

&8 8%

48
z1
22
25
z1
zl

b6
b6
z2
26
z1
28
2<6+3

29

000000 100000
G00000 ©10000
000000 001000
000000 000100
000000 €00210
000000 00001

described by the Slang program below

we -e -e -e we -e -e “-e -e -e o0

-e

-e

“e

-8

Load Test:
wO:= 48, comment ISO character Oj
wl:= testpattern;
if ors (inverted testpattern A wi)
then wO:= wO+1l; comment Error Type Ij
if ors (testpattern A - ,wi)
then wO:= w0+2; comment Error Type II;
Store Test:
ST(v6):= wi;
wis= ST(b6);
if ors (inverted testpattern A wi)
then w0:= wO+l4s comment Error Type IIIj
if ors (testpattern A -,wl)
then w0:= w0+8; comment Error Type IV;
write(w0);

goto next testpattern;

12481248/3Y1248
00 000000 000000 000000 000000

Error in Test Output:

Each character in the last output line explains the result of a specific
testpattern. For example, the 5th character signifies the outcome of the
5th testpattern.

The interpretation of the test output appears in this table:

Test Output Error Type
Character Iv. IIT II I
0 no error
1 X
2
3 x
L X
5 X x
6 X
7 X X
8 X
9 X b4
: x
3 x x
< X X
= X X X
> X e
? X X x
Error Type I

Instruction Micro Orders

rl wi =21 SB:= testpattern from storage
W(1):= SB

sz wl (=22 SB:= inverted testpattern from storage
AR:= Wa(1)

AR:= AR A SBa
if AR = 0 then IC:= IC+1

VB1172

Error Type II

Instruction Micro Orders

rl wi 21 See Error Type I
so wi (z1 SB:= testpattern from storage
AR:= SBa
SB:= W(1)
AR:= AR A -,SB
if AR = O then IC:= IC+1

Error Type III

Instruction Micro Orders

rs wi y3 AR:= Wa(1)
SB:= AR(0:23)
storage(y3):= SB
rl wi y>3 See Error Type I
sz wl (z2 See Error Type I

Error Type IV
Instruction Micro Orders
rs w1 y3 See Error Type III

rl vl y>3 See Error Type I
so wl (z1 See Error Type II

VB1172

Complete Test of:

Read Data for SB:= STdata(0:23)

comment data path from core store to SB;

<STC006-STCO10: STCO13-STC019: STCO20- ARUOBL : ARUOB6-ARU090 , 363>
Read Split for STdata(0:23):= SB

comment data path from SB to core store;

<STC006 , 499, 505-STC010: STCO13-STCO17 : STCO18>
BUS(0:23):= SBy <ARU002:ARU025-ARU090,237>
w(fr)(0:11):= BUS(0:11) for fr = 13 <ARU052,285,292-ARU058,385>
w(fr)(12:23):= BUS(12:23) for fr = 1; <ARUOS3,304,313-ARU0S8,385>
BUS(0:23):= W(fr) for fr = 1; <ARUOO2:ARUO25-ARUOS8,281>
AR(-1:23):= if MC(11) then BUS(-1:23) else BUS(0,0:23)

for MC(11) = O but except for AR(-1); <ARUO71:ARUOT2-ARUOB1,311

-ARU082,190>

Adder:= b 1011 0003 Adder:= b 0111 0003 <ARU098:ARU100>
BUS(0:2%3):= AND(0:23)

for 1A0 = 0 and OAl = 03 <ARU093:ARU09S>
BUS(-1:23):= AR(-1:23); <ARUOO1:ARU025-ARU0B2,257>
SB(0:11):= BUS(0:11); {ARUO8BL- ARUOB5-ARU090-ARUO9 1>
SB(12:23):= BUS(12:23); <ARUO86-ARUOS0-ARUO91>

Partly Test of:

VB1172

Read Instruction; SB(0:11):= 12extSB(12) for SB(12) = 0
Read Data; Read Split; Split Write

IC:= AR(5:22)

if AR = O then IC:= IC+1

7. INTEGER ADDER

The adder and carry circuitry for integer addition and subtraction is *est-

ed by means of the testpatterns shown below. The first 12 tests (identified
by small letters) are concerned with addition and the next 12 (identified

by capital letters) with subtraction. The main purpose of these 2L tests is

a complete verification of the actual adder network, but the tests do not

assure that, for example, bit(0) and bit(2) have not been interchanged when
connected to the arithmetic bus. This type of error is solved by the addi-

tional tests u, v, x, y, and z.

VB1172

Test a:

AR:
SB:

1}

3 8
(I 1]

5

AR:=

SB:=

00000000
00000000
00000000

00000000
11111111
11111111

11111111
00000000

= 11111111

01010101
01010101
10101010

00000001
11111111
00000000

00000010
11111110
00000000

00000000
00000000
00000000

00000000
11111111
11111111

11111111
00000000
11111111

01010101
01010101
10101010

00000000
11111110
11111111

00000001
11111101
11111111

00000000
00000000
00000000

00000000
11111111
11111111

11111111
00000000
11111111

01010101
01010101
10101010

00000001
11111111
00000000

00000010
11111110
00000000

VB1172

Test g:

Test 1:

AR +

AR:
SB:

SB:

AR:
SB:
SB:

n

00000100
11111100
00000000

00001000
11111000
00000000

00010000
11110000
00000000

00100000
11100000
00000000

01000000
11000000
00000000

10000000
10000000
00000000

00000000
00000000
00000000

11111111
00000000
11111111

11111111
11111111
00000000

10101010
01010101
01010101

00000011
11111011
11111111

00000111
11110111
11111111

00001111
11101111
11111111

00011111
11011111
11111111

00111111
10111111
11111111

01111111
01111111
11111111

00000000
00000000
00000000

11111111
00000000
11111111

11111111
11111111
00000000

10101010
01010101
01010101

00000100
11111100
00000000

00001000
11111000
00000000

00010000
11110000
00000000

00100000
11100000
00000000

01000000
11000000
00000000

10000000
10000000
00000000

00000000
00000000
00000000

11111111
00000000
11111111

11111111
11111111
00000000

10101010
01010101
01010101

7-2

VB1172

Test K

Test G:

Test H:

Test J:

Test K:

Test u:

AR +

Test v:

AR

SB:
SB:

AR:

SB

AR:

SB

AR

885

885

8 8

995

- SB:

.
.

e

885

n

L}

00000000
00000001
11111111

00000001
00000010
11111111

00000011
00000100
11111111

00000111
00001000
11111111

00001111
00010000
11111111

00011111
00100000
11111111

00111111
01000000
11111111

01111111
10000000
11111111

00000000
00000000
00000000

00000011
00000000
00000011

00000001
00000000
00000000

00000010
00000001
00000000

00000100
00000011
00000000

00001000
00000111
00000000

00010000
00001111
00000000

00100000
00011111
00000000

01000000
00111111
00000000

10000000
01111111
00000000

00001111
00000000
00001111

11110000
00000000
11110000

00000000
00000001
11111111

00000001
00000010
11111111

00000011
00000100
11111111

00000111
00001000
11111111

00001111
00010000
11111111

00011111
00100000
11111111

00111111
01000000
11111111

01111111
10000000
11111111

11111111
00000000
11111111

00111111
00000000
00111111

T-3

Test x: AR:= 00011100 01110001
SB:= 00000000 00000000

AR + SB:= 00011100 01110001
Test y: AR:= 00100100 10010010
SB:= 00000000 00000000

AR + SB:= 00100100 10010010
Test z: AR:= 01001001 00100100
SB:= 00000000 00000000

AR + SB:= 01001001 00100100

11000111
00000000
11000111

01001001
00000000
01001001

10010010
00000000
10010010

Error Reaction:
If a test fails, the test identification
shall be printed out. For example:

G: 11110111 00000000

letter and the result of the test

11111111

shows that Test G has failed and, by comparing with the correct result,

hit(l) is spotted to produce the error.

The vay in which the erroneous binary result is printed out is based on a

shift instruction which has not yet bheen

Complete Test of:

tested.

Adder:= b 1011 000; Adder:=b 0111 100 <ARUO98 : ARULOO>

BUT(-1:23):= SUM(-1:23) except

Partly Test of:
Read Instruction; SB(0:11):=
Read Data; IC:= AR(5:22)
if AR = O then IC:= IC+1

for SUM(-1) <ARUOO1:ARU025
~ARU0OG8 , 23>

12extSB(12) for SB(12) = 0

The 1ist does not include the micro orders used in possible

error messages.

VB1172

-3
|
=

8. RELATIVE ADDRESSING AND JUMP

Transfer of addresses from BUS to the instruction counter, IC, and vice
versa is checked for addresses in the interval 6 <= address < 32K bytes.
Likewise, these addresses are used to check the address path from IC and SB
to the address register in core store.

The test generates the following piece of code starting at location addr.

addr: al wi 0
al. vi -2 wl:i= addr + 2 - 2
se wi addr if wi < > addr

Ji error . then write contents of wl

e

e

J1 next test else goto next test

’

When the program is set up, a jump is made into location addr. Addr is for

the various tests as follows:

Test no. 1 00000000 01011101 11000000
2 00000000 01100101 00100110
3 00000000 01110010 10010100
l 00000000 00111100 00111000

Error Reaction:
If a test fails, the test no. and the contents of register W1 shall be

printed out. For example:
3: 00000000 00110010 10010000
The way in which the contents of W1 is printed out is based on a shift in-

struction which has not been tested.

VB1172 8-1

Complete Test of:

IC:= BUS(5:22) for O <= BUS(5:22)con0 < 32K bytes;
<ARUO60: ARUO62-ARU063 (171 ,175>

BUS(0:23):= SextOconICcon0 for O <= ICconO < 32K bytes;
<ARUO16: ARUO2L - ARUO29 : ARUO30-ARUO63S , 237>

if - FR(8) then AR(-1:23):= BUS(0,0:23); <ARUOBO,255-ARU0OS1, Z5%>

Read Instruction for STaddr:= IC(6:22) 4 <= ICcon0 < 32K bytes
comment core store address selection from IC;
{STCOO4-STCO08: STC009-STCO16>

Read Split and Read Data for STaddr:= SB(6:22) U <= SB < 32K bytes
comment core store address selection from SB;
<STCOOL-STCO08: STCO09-STCO16>

Partly Test of:
SB(0:11):= 12extSB(12) for SB(12) = 0.1
if AR = O then IC:= IC + 1

. The 1list does not include the micro orders used in possible error messages.

VB1172 8-2

9. SB(12) EXTENSION

The micro order SB(0:11):= 12extSB(12), used to convert a 12-bit integer to
a 24-bit integer, is checked by means of the bl instruction.

!

Error Reaction:
The two types of error messages for zero- and one-extemsions are:

0-ext: <received result of 12extSB(12)conSB(12:23)>

1-ext: {received result of 12extSB(12)conSB(12:23)>
- where SB before extension was equal to

SB=Db 111111111111 011111111111 for O-ext

and SB = b 000000000000 100000000000 for 1-ext
If the incorrect results are -1 (for O-ext) and O (for 1-ext), the left
halfword has properly been selected which signifies that the jump condition
HA(23) is s-a-0. '
The way in which received results are printed out is based on a shift in-

struction which has not been tested.

Complete Test of:
SB(0:11):= 12extSB(12) <ARUOSL-ARUOB5-ARUO90,363-ARUO9L 374>
HA(23) [1] <MPCOOT7 ,121-STCO03 , kl5>

Partly Test of:
if AR = O then IC:= IC+1
The list does not include the micro orders used in possible error messages.

VB1172 ‘ 9-1

10. SKIP ON AR(-1) = 1

The micro order, if AR(-1) = 1 then IC:= IC+1, is verified by the aid of
the sl instruction and the following testpatterns.
Testpattern in AR(-1:23):

Test no. 1 0 000000 000000 000000 000000
2 0 000000 000000 000000 000001
3 1 100000 000000 000000 000000

Error Reaction:
If the program does not skip as expected, the test number will be typed out,
for example:

skip on ar(-1) =1

test no. 2

An error is most likely due to the decoding network for register AR.

Complete Test of:
if AR(-1) = 1 then IC:= IC+1 <ARU063,168,176>
AR(-1:23):= if MC(11) then BUS(-1:23) else BUS(0,0:23)
for MC(11) = 0 and AR(-1); <ARUOO1-ARUOT1,158-ARUOS1 311
-ARU0B2,190>
BUS(-1:23):= SUM(-1:23) for SUM(-1) <ARUOO1-ARU098,234>

VB1172 10-1

11. SKIP ON AR < > O

The micro order, if AR < > O then IC:= IC+1, is verified by the aid of the

sn Instruction and the following testpatterns.

Testpattern in AR(-1:23):

Test no. 1
2

~= O & W

9
10
11
12
13

14
15
16
17
18
19

20
21
22
23
2k
25

0

O O O O O ©O O O O O O O

C O O O O O

o O O O O

0

000000
100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

It should be noted that
tracting two 24-bit numbers.

VB1172

000000
000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
OOOPOO
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

AR(-1) = 1 and AR(0:23) = O can never occur by sub-

11-1

Error Reaction:
If the program does not skip as expected, the test number will be typed out,
for example:
skip on ar < > 0
test no. 9
test no. 17
An error is most likely due to the decoding network for register AR.

Complete Test of:
if AR < > O then IC:= IC+1; <ARU063,168,176>
AR(-1:23):= if MC(11) then BUS(-1:23) else BUS(0,0:23)
for MC(11) = 1; <ARUOO1-ARUO71,158-ARUO81,311-ARU0B2,190>

VB1172 11-2

12. SKIP ON AR = 0

e e o e o i i o 1t e s o 4 o 7 o o s o o e o o o o o e 8 i w4 o S0 o o oo Ao o o o o o o o o

The micro order, if AR = O then IC:= IC+1, is verified by the aid of the se
instruction and the following testpatterns.
Testpattern in AR(-1:23):
Test no. 1 0 000000 000000 000000 000000
2 1 100000 000000 Q00000 000000

Error Reaction:
If the program does not skip as expected, the test number will be typed out,
for example:
skip on ar = 0O
test no., 2
An error is most likely due to the decoding network for register AR.

Complete Test of:
if AR = O then IC:= IC+1; <ARU063,168,176>

VB1172 12-1

13. SKIP ON AR > O

ot 2 o n on e e e 4 o o o o e o = oy o o . ot - ot - - - " — o - " oo -

The micro order, if AR > O then IC:= IC+1, is verified by the aid of the sh

instruction and following testpatterns.,
Testpattern in AR(-1:23):

Test no. 1 0 000000 000000 0QO0OO0 000000
2 1 100000 000000 000000 000000
3 0 000000 000000 000000 000001

Error Reaction:

If the program does not skip as expected, the test number will be typed out,

for example:
skip on ar > 0
test no. 1
An error is most likely due to the decoding network for reglster AR.

Complete Test of:
if AR > O then IC:= IC+1; <ARU063,168,176>

VB1172

13-1

The index address mode for index X1 is tested where
WO = b 000000 000000 000000 000001

index X1 = W1 =b 111111 000000 100000 000000
W2 = b 000000 000000 000000 000100
W3 = b 000000 000000 000000 001000

and the displacement d = b 000000 000000 011111 000000

Error Reaction: 7
If the calculated effective address, d + X1, differs from the expected one,
the program issues the following message

1hdex x1

received {24-vit received result>

expected 111111 000000 111111 000000
If either none, WO, W2, or W5 is selected instead of W1, the received re-
sults are:

received result selected index register

000000 000000 011111 000000 none

000000 000000 011111 000001 WO

000000 000000 011111 000100 w2

000000 000000 011111 001000 W5
If more than one index register is selected, the received result shall be e-
qual to the logical sum of these registers.
If bit 11 becomes 1, it is probably because the instruction counter is added
to the displacement, instead of the index register; confer the second micro
order under Complete Test.
The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly the

received one if the expected result is printed correctly.

VB1172 | : 14-1

Complete Test of:
BUS(0:23):= W(index) for index = 13 <ARUO02:ARU025-ARUOS8,281>
if - ,FR(8) then AR(-1:23):= BUS(0,0:23); <ARUOBO-255-ARUOS1,255

Partly Test of:

The 1ist does not include the micro orders used in possible error messages.

VB1172 1h-2

15. REGISTER W2

e e s i e o o - —— o —y T > -~ = - - ————— - - — - = — 1t wos

Register W2 is checked by means of the following testpatterns:

Test no.

VB1172

1

~N O W = W

[e2)

10
11
12
13

14
15
16
17
18
19

20
21
22
23
2k
25

000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000 000000 000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

15-1

Error Reaction:
If the test fails, the programs issue the following message:

register w2

received <2L-bit received resultd>

expected <2k-vit expected resultd
The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly
the received one if the expected result is printed correctly.

Complete Test of:
W(fr)(0:11):= BUS(0:11) for fr = 2; <ARUO54,286,294-ARU0S9,436>
W(fr)(12:23):= BUS(12:23) for fr = 2; <ARUO55,307,316-ARU059 436>
BUS(0:23):= w(fr) for fr = 2; <ARU0O2:ARU025-ARU059,91>

Partly Test of:

The list does not include the micro orders used in possible error messages.

 VB1172 15-2

Register W5 is checked by means of the following testpatterns:
Test no. 1 000000 000000 000000 000000

100000 000000 000000 000000
010000 000000 000000 000000
001000 000000 000000 000000
000100 000000 000000 000000
000010 000000 000000 000000
000001 000000 000000 000000

~N o U WD

000000 100000 000000 000000
000000 010000 000000 000000
10 000000 001000 000000 000000

11 000000 000100 000000 000000
12 000000 000010 000000 000000
13 000000 000001 000000 000000

1k 000000 000000 100000 000000
15 000000 000000 010000 000000
16 000000 000000 001000 000000
17 000000 000000 000100 000000
18 000000 000000 000010 000000
19 000000 000000 000001 000000

20 000000 000000 000000 100000

21 000000 000000 000000 010000

22 000000 000000 000000 001000

23 000000 000000 000000 000100

2L 000000 000000 000000 000010

25 000000 000000 000000 000001
The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly ’

the received one if the expected result is printed correctly.

VB1172 16-1

Error Reaction:

If the test fails, the programs issue the following message:
register w3
received <24-bit received result>
expected <24-vit expected resultd

Complete Test of:
W(fr)(0:11):= BUS(0:11) for fr = 33 <ARU056,286,294-ARU059,436>
W(fr)(12:23):= BUS(12:23) for fr = 3; <ARUOS5T,307,316-ARUO59,U436>
BUS(0:23):= W(fr) for fr = 3; <ARU0O2:ARU025-ARU059,091>

Partly Test of:

The list does not include the micro orders used in possible error messages.

VB1172 16-2

e

et

17. REGISTER WO

e o o = o e - o 2 ot o 2 o e o o o o S oot~) o ot o " - o - o -

x; Register WO is checked by means of the following testpatterns:

Test no.

VB1172

1

e AN 2 I~ & I .}

@

10
11
12
13

1k
15
16
17
18
19

20
21
22
25
24
25

000000 000000 000000 000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

17-1

Error Reaction:

If the test fails, the programs issue the following message:

register w0
received <24-bit received result)
expected <2k-bit expected resultd

The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly
the received one if the expected result is printed correctly.

Complete Test of:
W(fr)(0:11):= BUS(0:11) for fr = 0; <ARU050,285,292-ARU0S8,385>
W(fr)(12:23):= BUS(12:23) for fr = 03 <ARUOS1,304,313-ARU058,385>
BUS(0:23):= W(fr) for fr = 0; <ARUOO2:ARU025-ARU0S8,281>

Partly Test of:
The 1ist does not include the micro orders used in possible error messages.

VB1172 17-2

The index address mode for index X2 is tested where

WO = b 000000 000000 000000 000001
W1 = b 000000 000000 000000 000010
index X2 = W2 = b 111111 000000 100000 OOO0O00
W3 = b 000000 000000 000000 001000

b 000000 000000 011111 000000

and the displacement 4

Error Reaction:
If the calculated effective address, d + X2, differs from the expected one,
the program issues the following message

index x2
received <2U-vit received result>
expected 111111 000000 111111 000000

If either none, WO, W1, or W3 is selected instead of W2, the received re-
sults are:

received result selected index register

000000 000000 011111 000000 none
000000 000000 011111 000001 WO
000000 000000 011111 000010 Wl
000000 000000 011111 001000 W3

If more than one index register is selected, the received result shall be e-
qual to the logical sum of these registers.

The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly the

received one if the expected result is printed correctly.

Complete Test of:
BUS(0:23):= W(index) for index = 2; <ARUOC2:ARU025-ARU059,091>

VB1172 18-1

Partly Test of:

\
The list does not include the micro orders used in possible error messages.

VB1172 18-2

o e e e e e e e . o o > o T o i i o o M b o ot o o o Ao e b o o i " — " o~ " 3" o~ s " oo

The index address mode for index X3 is tested where
WO = b 000000 000000 000000 000001

W1 = b 000000 000000 000000 000010
W2 = b 000000 000000 000000 000100
index X3 = W5 = b 111111 000000 100000 000000

and the displacement d = b 000000 000000 011111 000000

Error Reaction:
If the calculated effective address, 4 + X3, differs from the expected one,
the program issues the following message

index x3
received <2h-bit received resultd
expected 111111 000000 111111 QOO0000

If either none, WO, Wi, or W2 is selected instead of W3, the received re-
sults are:

received result selected index register

000000 000000 011111 000000 none
000000 000000 011111 000001 12(0]
000000 000000 011111 000010 Wi
000000 000000 011111 000100 w2

If more than one index register is selected, the received result sﬁall be e-
qual to the logical sum of these registers.

The way in which the received result is printed out is based on a shift in-
struction which has not yet been tested. The received result is properly the
received one if the expected result is printed correctly.

Complete Test of:
BUS(0:23):= W(index) for index = 3; <ARU002:ARUO025-ARU059,091>

VB1172 19-1

Partly Test of:

. The list does not include the micro orders used in possible error messages.

VB1172 19-2

20. LOGICAL LEFT SHIFT SINGLE

s e e o o ot e e o 2 o e e o o oo o iy s o o ———— v] o —— " - —— - — - " " — o o - o o e o

The left shift mechanisms for register AR (used by single shift instruc-
tions) are checked by means of the testpatterns in the table below. The reg-

ister is only shifted 1 position for each testpattern.

Testpattern in AR(0:23)conBR(0):

Test no. 1
2

(o)W, B g |

O o 3

10
11
12

13
14
15
16
17
18

19
20
21
22
25
2L

VB1172

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

O O O O O O O O O O O O O O O O O O

o O O O O O

20-1

Error Reaction:
If the program finds an error, thé test number will be typed out, for exam-
ple: v
logical left shift single
test no., 20
If all tests fail, it may be due to the jump conditions
SB(0), SB< > 0, SB> 64, sSC <> 0

Complete Test of:

SC:= BUS(11:23) for BUS(11:23) = 1; <ARUO6L:ARUO66-ARUO68,174,175>

SC:= SC-1 for SC = 1; <ARU068,174,089>

BR:= BUS(0:23) for BUS(0) = 03 <ARUO75,153-ARU0B3,169,190>

Adder:= b 1111 0003 <ARU098:ARU100>

1shl ARconBR Only shifts in AR are tested; <ARUOT1:ARUO7Z,
ARU0B0: ARUOB3>

sB(0) (o] s <MPCO09 ,123-ARUOSY, 283>

SB < > 0 [1] for SB = 13 <MPC010,12L4-ARUOBS>

SB > 64 [0] for SB = 13 <MPCO03,117-ARU0SS>

Partly Test of:
sc <> o0 [o] s <MPC010,12k4-ARUO6T>

VB1172 20-2

The micro orders which transfer from BUS to W(pre) and vice versa are tested
separately for the 4 working registers WO, Wi, W2, and W3 by means of the

14 instruction (only one shift).

The testpatterns loaded into these registers appear from the scheme below

contents of WO Wi W2 W3

for the test of WO
for the test of Wl
for the test of W2
for the test of W3

= e e g
(I S o I
=9 F &

" o @

vhere p:= b 000000 000000 100000 000000

Error Reaction:

The error message is
w <{number> pre
received <2L-bit received result>
expected 000000 000001 000000 000000

If either WO, W1, W2, or W3 is selected instead of the appropriate one, the

received results are

received result selected W(pre) register
000000 000000 000000 000010 WO
000000 000000 000000 000100 Wi
000000 000000 000000 001000 W2
000000 000000 000000 010000 W3

If more than one W(pre) is selected the received result should be equal to
the logical sum of these registers.

The way in which the received result is printed out is based upon a shift
‘nstruction which is only partly tested. The recelved result is properly the
received one if the expected result is printed correctly.

VB1172 21-1

. Complete Test of:
BUS(0:23):= W(pre) 3 <ARUOS8:ARUOSS>

W(pre):= BUS(0:23) 3 <ARU058:ARUOSY>
sc<>o0 [o0] {MPCO10,124 - ARUO6T>

-e

Partly Test of:

The 1% st does not include the micro orders used in possible error messages.

VB1172 21-2

22. LOGICAL LEFT SHIFT DOUBLE

e o vo e e o o ot o o e ot o o o i o . o e At A o, o S T~ o — o — o - " s " > n o e o

The left shift mechanisms for register BR (used by double shift instructions)
are checked by means of the testpatterns in the table below. The register is
only shifted 1 position for each testpattern.

Testpattern in AR(23)conBR(0:23):

100000 000000 000000 000000

010000 000000 000000 000000

001000 000000 000000 000000

000100 000000 000000 000000

000010 000000 000000 000000

000001 000000 000000 000000

Test no. 1
2

o & N
O O O O O O

7 0 000000 100000 000000 000000
8 0 000000 010000 000000 000000
9 0 000000 001000 000000 000000
10 0 000000 000100 000000 000000
11 0 000000 000010 000000 000000
12 0 000000 000001 000000 000000
13 0 000000 000000 100000 000000
14 0 000000 000000 010000 000000
15 0 000000 000000 001000 000000
16 0 000000 000000 000100 000000
17 0 000000 000000 000010 000000
18 0 000000 000000 000001 000000
19 0 000000 000000 000000 100000
20 0 000000 000000 000000 010000
21 0 000000 000000 000000 001000
22 0 000000 000000 000000 000100
23 0 000000 000000 000000 000010
24 0 000000 000000 000000 000001

VB1172 22-1

Error Reaction:

If the program finds an error, the test number will be typed out, for exam-

ple:
logical left shift double
test no. 13

Complete Test of:
BR:= BUS(0:23); <ARUOTS:ARU(T6-ARU0B3,169,150>
BUS(0:23):= BRy <ARU002:ARU025-ARU0S3,23L>
1shl ARconBR; <ARUOTS5:ARUOT6,ARUOS0: ARUOB3>

VB1172

22-2

e e n i m t v e o~ -~ -’ 28 dm e M ot ok > e n i - - - . = e . -~ " - — - - —— - - - - -

Tne first two tests check the jump condition, FR(6) v FR(7), for s-a-0. The
third test inspects the micro order, BUS(-1:23):= AR(-1:22)con0. This micro
order has only effect when a jl instruction, having an odd effective address,
is followed by an instruction where relative mode is employed. An example:
J1. addr+1
addr: al. wl 0

If the micro order functions, Wi = addr (bit 23 is 0), if not, Wi = addr +1.

Error Reaction:

Jump

test no. <{nunber>

received <24-vit received return address>
expected <24-bit expected return address>

Test no. 1 fails: The received result is then -1 and no link i1s stored be-
cause FR(7) is s-a-0 in the jump éondition. FR(6) v FR(7).

Test no. 2 fails: The received result is then -1 and no link is stored be-
cause FR(6) is s-a-0 in the jump condition, FR(6) v FR(7).

Test no. 3 fails: Bit 25 is 1 in the received result; confer the above exam-

ple.

Complete Test of:
BUS(-1:23):= AR(-1:22)con0; <ARU0B2,237>
FR(6) v FR(7) [1] s <MPCOO4,118-ARU0T0,092>

VB1172 25-1

24k. JUMP CONDITIONS FOR FR

Jump conditions derived from the function register, FR, are all tested by ex-
ecuting a number of instructions with different address modifications. A num-

ber of these jump conditions are tested beforehand,. but not in a systematic

manner,
Instruction FR(0:5) FR(8:11)
Test no. 1 rl w0 010100 0000
2 rl w0 x1 010100 0001
3 rl w0 x2 010100 0010 -
L rl wo (010100 0100
5 rl. w0 010100 1000
6 al w0 001011 0000
7 al w0 x1 001011 0001
8 al w0 x2 001011 0010
9 al wo (001011 0100
10 al. w0 001011 1000
11 al w0 001011 0000
12 ac w0 100001 00N0
13 ac w0 x1 100001 0001
1k ac w0 x2 100001 0010
15 ac wo (100001 0100
16 ac., w0 100001 1000

Error Reaction:
Jjump conditions for fr
test no. <{number>
received <24-bit received resultd
expected <24-bit expected result>
The expected result is 111110 001111 011111 111000 for tests 1 to 5 and
000000 000000 011111 111111 for tests 6 to 16.

VB1172 o1

Complete Test of:
FR(n) A -,Modif for n = 0,1,2,3,4,5 [0] [1]; <MPCOO5:MPCO10>
FR(n) for n = 0,1,2,3,4,5,8,9 [0] [1]; <MPC002:MPCO03 ,MPCO05:MPCO10>
FR(10) v FR(11) [0] [1]; <MPCO11-ARUO70,92>

VB1172 2k-2

25. REGISTER FR

o i ettt n o e ot = % o= . & i e e o ot . . - - - = " S - ek = e e e e e s Sn e

The function register, FR, is normally loaded directly from store. However,
for instructions that follow immediately after a jump instruction, the FR
register is loaded from the arithmetic bus. This is tested for the following

instructions:

Instruction FR(0:5) FR(6:11)
Test no. 1 al wo (x3 001011 000111
2 rl wi x1 010100 010001
o 3 al w3 (x1 001011 110101
L ac wo (100001 000100
5 wa. wO x1 000111 001001

Error Reaction:

register fr

test no. <{numb er>
received <2L4-bit received resulty
expected 111110 001111 011111 111000

‘ Complete Test of:
FR:= BUS(0:11); <ARU069-ARUOTO,174,92,27>

26. LOGICAL RIGHT SHIFT

The logical right shift mechanisms for registers AR and BR are checked by
means of the testpatterns in the table below. The registers are only shifted
1 position for each testpattern.

Testpattern in AR(-1:23)conBR(0:23):

Test no. 1 1 100000 000000 000000 000000 000000 000000 000000 00O000
2 0 010000 000000 000000 000000 000000 000000 000000 000000
b) 0 001000 000000 000000 000000 000000 000000 000000 000000
L 0 000100 000000 000000 000000 000000 000000 OOC000 000000
5 0 000010 000000 000000 000000 000000 000000 000000 000000
6 0 000001 000000 000000 000000 000000 000000 000000 000000
7 0 000000 100000 000000 000000 000000 000000 000000 000000
8 0 000000 010000 000000 000000 000000 000000 000000 000000
9 0 000000 001000 000000 000000 000000 000000 000000 000000

10 0 000000 000100 000000 000000 000000 000000 000000 000000
11 0 000000 000010 000000 000000 00000 000000 000000 000000
12 0 000000 000001 000000 000000 000000 000000 000000 000000
13 0 000000 000000 100000 000000 000000 000000 000000 000000
1k 0 000000 000000 010000 000000 000000 000000 000000 000000
15 0 000000 000000 001000 000000 000000 000000 000000 000000
16 0 000000 000000 000100 000000 000000 000000 000000 000000
17 0 000000 000000 000010 000000 000000 000000 000000 000000
18 0 000000 000000 000001 000000 000000 000000 000000 000000
19 0 000000 000000 000000 100000 000000 000000 000000 000000
20 0 000000 000000 000000 010000 000000 000000 000000 000000
21 0 000000 000000 000000 001000 000000 000000 000000 000000
22 0 000000 000000 000000 000100 000000 000000 000000 000000
25 0 000000 000000 000000 000010 000000 000000 000000 000000
24 0 000000 000000 000000 000001 000000 000000 000000 000000

VB1172 26-1

Error Reaction:

VB1172

25
26

28
29
30

31
32
53
3L
35
36

A7
38
39
ko
Ly

42

b3
Ly
L5
L6
b7

S O O O O O O O O O O O O O O O O O

o O O O O O

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

logical right shift

test no.
received

expected

<{number>
<48-bit received
<48-vit expected

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

result>
result>

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

00000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

N00000
000000
000000
000000
000000
00C000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
0000C0
000000
000000
000000

100000
010000
001000
000100
000010
000001

26-2

Complete Test of:
SC:= BUS(11:23) for BUS(11:23) = -1; <ARUO64:ARUO66-ARUOES, 174, 175>
SC:= SC + 1 for SC = -1; <ARUO68,17k4,089>
1shr ARconBR; <ARUOTS:ARUOT6-ARUOBO: ARUOS3 ,ARUOGS , 234>
sB(0) [1] ; <MPCO09,123-ARUOBL 283>
SB< >0 [1] for SB = -1; <MPCO10,124-ARUOB9>

i}

Partly Test of:
SB ¢ - 65 [0] for SB = -1; <MPCOO2,116-ARU0B?,373,370,298>

VB1172 26-3

27. ARITHMETIC RIGHT SHIFT

Arithmetic right shifts are similar to logical right shifts; hence two test-
patterns are sufficient for verification. The testpatterns are only shifted
1 position.
Testpattern in AR(-1:23):
Test no. 1 0O 010000 000000 000000 00000D

2 1 100000 000000 000000 000000

Error Reaction:
arithmetic right shift
test no. <{number>
received {24-bit received result>
expected {2L-bit expected resultd>

Complete Test of:
ashr ARconBR except for AR(-1); <ARUOS0:ARUOS2

. Partly Test of:
SB ¢ -65 [0] for SB = -1; <MPCO02,116-ARU0S9,375,570,298>

VB1172 27-1

28. MULTIPLE LEFT SHIFTS

Multiple left shifts are tested for various number of shifts. In this way dif-

ferent micro orders and jump conditions are checked. The original L8-bvit con-

tents of the double register before it is shifted are
100000 000000 000000 000000 000000 000000 000000 000001

The number of shifts for each test is listed below. Number of left shifts ex-

pressed in binary form for

Test no. 1
2

~N o v &= W

(00]

10
11
12
13

14

16
17
18
19

20
21
22
25
2L

VB1172

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000001
000000 000010
000000 000100
000000 001000
000000 010000
000000 100000

000001 000000
000010 000000
000100 000000
001000 000000
010000 000000

000000
000000
000000
000000
000000
000000
000000

000001
000010
000100
001000
010000
100000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

000000
000001
000010
000100
001000
010000
100000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

25 000000 001000 000000 000001
26 000000 010000 000000 000001

Error Reaction:

multiple left shifts

<48-bit received resultd
<48-vit expected resultd

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

test no. <{number>

received

expected
The expected results are for each test:
Test no. 1 100000 000000

2 000000 000000

3 000000 000000

Y 000000 000000

5 000000 000000

6 000000 000000

1 000000 000000
8-26 000000 000000

If the results of tests 25 and 26 show that

000000
000100
000000

000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
only 1

000000
000000
000000
000000
000000
010000
000000
000000

000000
000000
000000
000000
000100
000000
000000
000000

000001
000010
000100
010000
000000
000000
000000
000000

left shift has been per-

formed, the error is due to the decoding for SB > 6l.

Complete Test of:

SC:= BUS(11:23)
for BUS = 1,2,4,8,16,32; <ARUOG6k:ARUO66-ARUO6S 17k, 175>

= 48; <ARUO31,088-ARU030,308-ARU020: ARUO21>
for SC = 1,2,3,...,48; <ARU068,174,89>

BUS(0:23):
SC-1

28 3
Fa AN ||

VB1172

> 0 [1]

> 0 [0] [1]; <MPC0O03,117-ARUOSS>
for SC = 1,2,3,...,48; <MPCO10,124-ARUOET>

28-2

29. MULTIPLE ARITHMETIC RIGHT SHIFTS

Arithmetic right shifts are tested for various number of shifts. In this way
d:fferent micro orders and jump conditions are checked. The original L8-vit

contents of the double register before it is shifted are

Test no.
1-13 100000 000000 000000 000000 000000 000000 000000 000001
14 011111 111111 111111 111111 111111 1111311 111111 111111
Number of arithmetic right shifts for
Test no. 1 111111 111111 111111 111111 (- 1)
2 111111 111111 111111 010010 (- L6)
3 111111 111101 111111 111111
L 111111 111011 111111 111111
5 111111 110111 111111 111111
6 111111 101111 111111 111111
7 111111 011111 111111 111111
8 111110 111111 111111 111111
9 111101 111111 111111 111111
10 111011 111111 111111 111111
11 110111 111111 111111 111111
12 101111 111111 111111 111111
13 100000 000000 000000 000000 (- 2xx23)
14 101111 111111 111111 111111

Error Reaction:
multiple arithmetic right shifts

test no. <{number>
received <U48-bit received resultd
expected <48-bit expected result>

vB1172 26-1

The expected results for each test are:

Test no. 1 110000 000000 000000 000000 000COO 00000D0 000000 000000
2 111111 1111211 1111311 111311 1111171 111111 111111 111110
3-13 111111 1111171 1111171 111111 111111 11171171 1113111 111111

14 000000 000000 000000 000000 000000 000000 000000 000000

If only test 1 and properly 2 delivers the result -1, it is most likely that
the jump condition, SB { -65, is s-a-1. If test 2 does not shift the correct
number of times, the SC counter fails to count up. If tests 3 to 1l deliver
a result which is only shifted 1 position, the jump condition, SB { -65, is
s-a-0. Test 14 checks the AR(-1) jump condition for zero value. An interrupt
may occur due to test 13 if the jump condition, SB = O, gives a zero result
for SB = -2xx23.

Complete Test of:
BUS(0:23):= -1; <ARU029:ARUO30,ARUO31,218,232,88,157>
SC:= SC + 1 for SC = -1,-2,...,-46; <ARUO68,174,089>
SB<> 0 for SB = -2xx23; <MPC010,124-ARUOBO>
SB < -65 [0] [1]; <MPC002,116-ARU0B9,373,370,298>
AR(-1) [0] [1]; <MPCOO7,121-ARUOT1,290>

VB1172 29-2

This test checks the normalization of different numbers. The numbers to be
normalized and their expected exponents are listed below.
to be normalized

Test no.

VB1172

1

@ N o0 U & W

10
11
12
13
1k

15
16
17
18
19
20

21
22
23
2L
25
26

Number
111111
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

111111
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

111111
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

111111
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

Expected exponent

111111
100000

000000
000000
111111
111111
111111
111111

111111
111111
111111
111111
111111
111111

111111
111111
111111
111111
111111
111111

111111
111111
111111
111111
111111
111111

101001
000000

000000
000000
111111
111110
111101
111100

111011
111010
111001
111000
110111
110110

110101
110100
110011
110010
110001
110000

101111

101110
101101
101100
101011
101010

(-23)
(-2048)

(0)
(0)
(-1)
(-2)
(-3)
(-4)

(-5)
(-6)
(-7)
(-8)
(-9)
(-10)

(-11)
(-12)
(-13)
(-1k)
(-15)
(-16)

(-17)
(-18)
(-19)
(-20)
(-21)
(-22)

30-1

Error Reaction:
normalize
test no.

received

expectad

Complete Test of:

<{number>

<24-bit received exponent con
24-bit normalized received result>

<24-bit expected exponent con
24-bit normalized expected resultd

SC:= BUS(11:23) for BUS(11:23) = O3 <ARUO6L:ARUO66-ARUO68 174, 175>

SC:= SC-1

for SC = 0,-1,-2,...,-22; <ARUO68,174,89>

BUS(12:23):= SC(12:23)
for SC = 0,-1,-2,...,-23; <ARUO1k4:ARUO25-ARUOE8,237>
AR < > 0 [1]; <MPCO08,122-ARUOT8>

AR(0) = AR(1)

[0] [1]; <MPCOO4,118-ARUOT8,222>

AR(1) = AR(2) [0] [1]; <MPC0OO3,117-ARUOTS,222>

Partly Test of:

BUS(0:11):= 0
AR <> 0 [0]

VB1172

s BUS(12:23):= -2048
<MPCO08 ,122-ARUOT8>

30-2

31. SB DIAGONAL READ-QUT:

e e o e o o0 e o o o o e o e o o o S o5 A T o (> o > 2 " " " - [" oy et n S8

The micro order, BUS(0:23):= 12extOconSB(0:11), is checked by means of the

bz instruction. The following

Test no. 1
2

(o)N IR~]

v 0 =

10
11
12

Error Reaction:
sb diagonal read-out
<numb er>
{24-bit received result>
<24-bit expected result>

test no.
received
expected

100000 000000
010000 000000
001000 000000
000100 000000
000010 000000
000001 000000

000000 100000
000000 010000
000000 001000
000000 000100
000000 000010
000000 000001

testpatterns are used:
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

If the results for all tests are zero, the jump condition, HA(23), is s-a-1.

Complete Test of:
BUS(0:23):= 12extOconSB(0:11); <ARU0O02:ARUO25-ARU0S0,091>
[0]; <«MPCOOT ,121-STCO03 ,L45>

HA(23)

VB1172

31-1

32, SB(0) EXTENSION

The micro order, SB(0:11):= 12extSB(0), is checked by means of the bl in-
struction. Two testpatterns are used, namely for
Test no. 1 011111 111111 111111 111111

2 100000 000000 000000 000000

Error Reaction:
sb(0) extension
test no. <numb er>
received <{24-bit received result>
expected <24-bit expected result>
If the received result is O for test 1 and -1 for test 2, a race condition
exists between the two micro orders, SB(0:11):= 12extSB(0) and
SB(12:23):= SB(0:11).

Complete Test of:
SB(0:11):= 12extSB(0); <ARUOSL:ARUOB5-ARU090: ARUOSL>

VB1172 32-1

33. SB DIAGONAL READ-IN

e o e e ot o i 2t o e o b Ak o ok B M T —— - — A - " - o - Tt o m e fne ko b AR M P W ey o S S e

The micro order, SB(0:11):= BUS(12:23), is checked by means of the hs
{even addr> instruction. The following testpatterns are used:
Test no. 1 000000 000000 100000 000000
2 000000 000000 010000 000000
000000 000000 001000 000000
000000 000000 000100 000000
000000 000000 000010 000000
000000 000000 000001 000000

o U & W

000000 000000 000000 100000
000000 000000 000000 010000
000000 000000 000000 001000
10 000000 000000 000000 000100
11 000000 000000 000000 000010
12 000000 000000 000000 000001

O o

Error Reaction:
sb diagonal read-in
test no. <numb er>
received <24-bit received resultd
expected <24-bit expected result>

Complete Test of:
SB(0:11):= BUS(12:23); <ARUOSL : ARUOBS- ARU090,363 ,026>

VB1172 33-1

34, LOGICAL AND

The micro order, BUS(0:23):= AND(0:23), has previously been used (and test-
ed), namely in the test REGISTER W1 AND CORE STORE DATA PATHS. In this case,

however, the resultant logical product was &ll zeroes. Now we are interested

in the cases where the logical product has one bit equal to one and the rest

equal to zero. In other words, we check the result of testpattern A testpat-

tern for the following cases:

Test no. 1
2

[N N

O o

10
11
12

13
14
15
16
17
18

19
20
21
22
23
2k

VB1172

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

3h-1

‘ Error Reaction:

logical and
test no. <numb er>
received <24-bit received resultd

expected <2L-bit expected resultd

Complete Test of:
BUS(0:23):= AND(0:23)s <ARU093:ARU09S>

VB1172 3h4-2

35. REGISTER EX

. e e o e e = - - - " . . > - - . - - " o o — - - o o oo o = o

Register EX is checked for loading and storing by means of the following
testpatterns in EX(21:23): ‘

Test no. 1 100
2 010
3 001

Error Reaction:
If the test fails due to a transmission error from BUS to EX or vice verss,
(the two types of error cannot be distinguished) the error message is:
register ex
test no. <{numb er>
received <24-bit received result>
expected <2L4-bit expected result>

Complete Test of:
EX(21:23):= BUS(21:23); <ARU101,435,028-ARU102,L4L40>
BUS(0:23):= 21extOconEX; <ARUO30:ARUO31-ARU101,435,028>

VB1172 ‘ 35-1

36. PROTECTION KEY

The protection key of a word in core store is tested by the following test-
patterns in PK(0:2):

Test no. 1 100
2 010
3 001

A testpattern is first applied to the register whereafter it is read out a-
gain and finally the two bitpatterns are compared.

Error Reaction:

protection key

test no. <numb er>
received <2L-bit received result>
expected {21ext0 con3-bit expected PK>

Complete Test of:
PK:= BUS(21:23); <ARU104,317-ARU105,432,253 ,187 ,26>
BUS(0:23):= 21extOconPK; <ARUO30:ARU031-ARU105,187,26>
Split Write for STdata(24:27):= PK
comment data path from PK to core store;
<STCO14-STCO18>
Read Data for PK:= STdata(24:27)
comment data path from core store to PK;
{STCO1kL-STC020-ARU104 ,317-ARUL05,385>

VB1172 2

37. REGISTER PR

The protection register is tested by the following testpatterns:

Test no. 1

~N on WU W

8

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

A testpattern is first applied to the registef whereafter it is read out a-

gain and finally the two bitpatterns are compared. Note PR(0) is permanently

equal to one. Prior to the execution of this test all its instructions are

supplied with a key equal to zero.

Error Reaction:

register pr

test no.
received

expected

Complete Test of:

PR(1:7):= BUS(17:23); <ARU103-ARU105,237,187,25>
BUS(0:23):= 16extOconPR; <ARUO18:ARU025-ARUL05,187,27>

VB1172

<{number>
<24-vit received result>
{16extOconlcon expected PR(1:7)>

37-1

38. SKIP ON PROTECT

The micro order, if - ,PROTECT then IC:= IC + 1, is verified by the sp instruc-
tion. PROTECT is a decoding network whose value depends on PK and PR. The e-
quation is PROTECT:= PR(PK) = 1. The operation of the network is checked by
the following testpatterns:

PK(0:2) PR(16:23) PROTECT
Test no. 1 000 10 000000 1
2 001 11 000000 1
3 010 10 100000 1
L 011 10 010000 1
5 100 10 001000 1
6 101 10 000100 1
7 110 10 000010 1
8 111 10 000001 1
9 001 10 010100 0
10 010 10 010010 0
11 011 11 100001 0
12 100 10 000110 0
13 101 11 001001 0
14 110 10 101001 0
15 111 10 010110 0

Prior to the execution of this test all its instructions are supplied with a

protection key equal to zero.

Error Reaction:
If the program does not skip as expected, the testi number will be typed out
skip on protect
test no. <{number>
received 000000 000000 000000 000000
expected 000000 000000 000000 000000
An error is most likely due to the decoding network.

VB1172 38-1

Complete Test of:
if - ,PROTECT then IC:= IC + 13 <ARU104,157 ,241,249,253
-ARU063,168,176>

VB1172

38-2

39. READ FROM WO

The datapath from register WO to SB, which is controlled by the store con-
troller (STC), is activated when the effective address of store and load in-

structions equals 0. The datapath is tested by means of the instruction,

rl wO 0,
Wis=
We:=
Wi:=

and WO equals

Test no.

1
2
3
L
5
6
7

oe]

10
11
12
13

14
15
16
17
18
19

VB1172

-1 for test no. 1;

-1 for test no. 1j

-1 for test no. 13

for
000000
100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000G00
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

where the following testpatterns are employed

2 for test nos. 2 to 25
4 for test nos. 2 to 25
8 for test nos. 2 to 25

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

59-1

20

000000 000000

000000 100000

21 000000 000000 000000 010000
22 000000 000000 000000 001000
23 000000 000000 000000 000100
2k 000000 000000 000000 000010
25 000000 000000 000000 000001

Error Reaction:

read from w(

test no. <{number>
received ¢2h-vit received result>
expected <2L-vit expected result>

1. Received result:= W1, W2, or W3.
An error in the register selection network of the store controller is dis-
covered.

2. Received result:= constant different from Wi, W2, and W5.
Core store address O has properly been selected instead of WO due to an
error in the bistable Addr ST. This situation may lead to a core store er-

ror.

Complete Test of:
Read Data for STBUS(0:23):= WO;
comment datapath from WO to STBUS;
<STCO03 ,445-8STCOOT , 499,506~ STCO10: STCO13>

VB1172 . 39-2

L0. READ FROM Wi

The datapath from register Wi to SB, which is controlled by the store con-
troller (STC). is activated when the effective address of store and load in-
structions equals 2. The datapath is tested by means of the instruction,

rl wl

2, where the following testpatterns are employed

WOo:= -1 for test no. 1; 1 for test nos. 2 to 25
W2:= -1 for test no. 1; 4 for test nos. 2 to 25
Wi:= -1 for test no. 1; 8 for test nos. 2 to 25

and W1 equals for

Test no.

VB1172

~N oW W

1 000000 000000 000000 000000
100000 000000 000000 000000
010000 000000 000000 000000
001000 000000 000000 000000
000100 000000 000000 000000
000010 000000 000000 000000
000001 000000 000000 000000

000000 100000 000000 000000
9 000000 010000 000000 000000

10 000000 001000 000000 000000
11 000000 000100 000000 000000
12 000000 000010 GOOO00 000000
13 000000 000001 000000 000000

14 000000 000000 100000 000000

15 000000 000000 010000 000000
16 000000 000000 001000 000000
17 000000 000000 000100 000000
18 000000 000000 000010 000000

19 000000 000000 000001 000000

4o-1

20 000000 000000 000000 100000
21 000000 000000 000000 010000
22 000000 000000 000000 001000
23 000000 000000 000000 000100
2L 000000 000000 000000 000010
25 000000 000000 000000 000001

Error Reaction:
read from wil
test no. <{number>
received <24-bit received resultd
expected <2h-bit expected result>
1. Received result:= WO, W2, or W3.
An error in the register selection network of the store controller is dis-
covered.
2. Received result:= constant different from WO, W2, and W3.
Core store address 2 has properly been selected instead of W1 due to an
error in the bistable Addr ST. This situation may lead to a core store er-

ror .

Complete Test of:
Read Data for STBUS(0:23):= Wi
comment datapath from W1 to STBUS;
<STCO03 ,445-STCO0T , 499 ,506-STCO10: STCO13>

VB1172 Lko-2

k1., READ FROM W2

e ot o e e e - > " —_— 8 " - " —— A = - - —— " o " - —_— " = o o

The datapath from register W2 to SB, which is controlled by the store con-
troller (STC). is activated when the effective address of store and load in-
structions equals 4. The datapath is tested by means of the instruction,

rl w2 L, where the following testpatterns are employed

WO:= -1 for test no. 1; 1 for test nos. 2 to 25
Wi:= -1 for test no. 1 2 for test nos. 2 to 25
W3:= -1 for test no. 1; 8 for test nos. 2 to 25
and W2 equals for
Test no. 1 000000 000000 000000 000000
2 100000 000000 000000 000000
3 010000 000000 000000 000000
L 001000 000000 000000 000000
5 000100 000000 000000 000000
6 000010 000000 000000 000000
7 000001 000000 000000 000000

000000 100000 000000 000000
9 000000 010000 000000 000000
10 000000 001000 000000 000000
11 000000 000100 000000 000000
12 000000 000010 000000 000000
13 000000 000001 000000 000000

14 000000 000000 100000 000000
15 000000 000000 010000 000000
16 000000 000000 001000 000000
17 000000 000000 000100 000000
18 000000 000000 000010 000000
19 000000 000000 000001 000000

VB1172 hi-1

20 000000 000000 000000 100000
21 000000 000000 000000 010000
22 000000 000000 000000 001000

25 000000 000000 000000 000100
2L 000000 000000 000000 000010
25 000000 000000 000000 000001

Error Reaction:
read from w2
test no. <{number>
received <24-bit received resultd>
expected <24-bit expected result>
1. Received result:= WO, W1, or W3.
An error in the register selection network of the store controller is dis-
covered.
2. Received result:= constant different from WO, Wi, and W3.
Core store address U4 has properly been selected instead of W2 due to an
error in the bistable Addr ST. This situation may lead to a core store er-

Tror.

Complete Test of:
Read Data for STBUS(0:23):= W2;
comment datapath from W2 to STBUS;
<STC003 ,kli5-STCO07 ,499 ,506-STCO10: STCO13>

VB1172 h1-2

h2. READ FROM W3

P ..-.<__.___._.__.__.._.._.._.__..._._..______....-..____..___._.-...-__4_.._.__.____..__._¢..._-.._.

The datapath from register W5 to SB, which is controlled by the store con-
troller (SIC), is activated when the effective address of store and load in-

structions equals 5. The datapath is tested by means of the instruction,

rl v’ 6,
WO:=
Wiz
W2:=

and W5 equals

Test no. 1

2
5
L
5
6

3

10
11
12
13

1k
15
16
17
18

VB1172

-1 for test no. 1;
-1 for test no. 1;

-1 for test no. 1;

for
000000
100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

100000 000000
010000 000000
001000 000000
000100 000000
000010 000000
000001 000000

1 for test nos.
2 for test nos.

L for test nos.

where the following testpatterns are employed

2 to 25
2 to 25
2 to 25

ho-1

20
21
22
23
2l
25

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

Error Reaction:

read from w3

test no. <{numbery

received <2h-bit received result>

expected {24-bit expected result>
. 1. Received result:= WO, W1, or W2,

000000 100000
000000 010000
000000 001000
000000 000100
000000 000010
000000 000001

An error in the register selection network of the store controller is dis-

covered.
2. Received result:= constant different from WO, Wi, and W2.

Core store address 6 has properly been selected instead of W5 due to an

error in the bistable Addr ST. This situation may lead to a core store er-

ror.

Complete Test of:
Read Data for STBUS(0:23):= W3;

VB1172

comment datapath from W5 to STBUS;
{STCO03 , klt5-STCO0T , 499, 506-STCO10: STCO13>

L2-2

43. READ DOUBLE

The datapath from BR to the address register of the core store is checked by
means of dl instructions. The contents of BR for the individual tests are
for:

Test no. 1 000000 000101 110111 000000

2 000000 000110 010100 100110
3 000000 000111 001010 010100
N 000000 000011 110000 111000
5 000000 000000 000000 000010 (selection of Wi)
6 000000 000000 000000 000100 (selection of W2)
7 111111 111111 111111 111111 (selection of W3)

The addresses of the first four tests are identical to the addresses used in
RELATIVE ADDRESSING AND JUMP.

Error Reaction:

read double

test no. <{number)
received <24-bit received result>
expected 111110 001111 011111 111000

The test no. defines the address which has not been interpreted correctly.

The received result has no meaning.

Complete Test of:
Read Data Double for STaddr:= BR(6:22) U4 <= SB < 32K bytes
and HA(21:22):= BR(21:22)
comment address selection from BRj
<STCO03-STCO08: STCO09>

VB1172 43-1

L, INSTRUCTIONS IN W

Instructions are loaded into the w registers WO, W1, and W2, namely
Wo: &l wO O '
Wi: rl wO b5+ 22
W2: J1 x5 0
W5 contains return address
followed by a jump to WO,

Error Reaction:

instructions in w

test no. 1
received <2U-pit received WO
expected 111110 001111 011111 111000

Complete Test of:
ICaddrST for O <= ICcon0.< 8 bytes;
<STC008 , 297 -ARUOLS>

VB1172 Lh-1

45, WRITE INTO W REGISTERS

The rs instruction with an effective address of 0, 2, 4, or 6 invokes the
store controller (STC) for data transfer from SB to the appropriate W regis-

ters. Four tests are necessary, namely

Test no. 1 rs w0 6 3 transfer from SB to W5
2 rs wl 4 ; transfer from SB to W2
3 rs w2 2 3 transfer from SB to Wi
L rs w3 0 + transfer from SB to WO

?

Before each test, the contents of WO, Wi, W2, and W5 are set to 1, 2, 4, and
8, respectively. The contents of W registers before and after the execution

are seen from the table below.

test no. .1 test no. 2 test no. 3 test no. U4
before after before after before after before after
3[0) 1 1 1 1 1 1 1 8
W1 2 2 2 2 2 L 2 2
W2 L N L 2 b L L L
6] 8 1 8 8 8 8 8 8

Error Reaction:

write into w registers

test no. <numb er>
received ¢2l-vit received result>
expected ¢24-bit expected resultd

More than one error message occurs for a particular test number if the store

controller writes into more than one W register.

Complete Test of:
Split Write for BUS(0:23):= SB; W(fr):= BUS(0:23)
comment datapath from SB to W(fr);
<STCOO0T , 438 , Lk~ ARUO59-ARUO0, 2372

VB1172 L5-1

46, REGISTER PBO

PBO is the protection key-belonging to register WO. FBO itself and its incom-
ing and outgoing datapaths are tested. The datapath, PBUS(0:2), from PX to
PBO is activated by the instruction

ks 0 k
vhereas data transfer from PBO to PK takes place via STBUS(24:26) supervised

by the store controller. The latter transfer is activated for

k1 0
‘ The testpatterns for PBO are:
Test no. 1 100
2 010
5 001

Error Reaction:

pb0

test no. <{number>

received <21extO con received PBO®
expected {21ext0 con expected PBO>

Complete Test of:
Split Write for PBO:= PK; <ARU105,187-ARU106,187,253-ARUL107 319
-ARU109,382
Read Data for PK:= PBO; <STCO14,383-ARU10L, 317>

VB1172 Le-1

k7. REGISTER PB1

PB1 is the protection key belonging to register Wi. PBl itself and its incom-
ing and outgoing datapaths are tested. The datapath, FBUS(0:2), from PK to
PB1 is activated by the instruction

ks 2
vhereas data transfer from PBl1 to PK taskes place via STBUS(2h:26) supervised

by the store controller. The latter transfer is activated for

k1 2
. The testpatterns for PBl are:
Test no. 1 100
2 010
3 001

krror Reaction:

pbl

test no. <{number>

received <2lext0 con received PB1>
expected <21ext0 con expected PB1>

Complete Test of:
Split Write for PBl:= PK; <ARUL0S,187-ARU106,187,253-ARU107 ,319
-ARU109,382>
Read Data for PK:= PB1l; <STCO1k4,383-ARULOL 317>

47-1

48. REGISTER PB2

PB2 is the protection key belonging to register W2. PB2 itself and its incom-
ing and outgoing datapaths are tested. The datapath, FBUS(0:2), from PK to
PB2 is activated by the instruction

ks 4
whereas data transfer from PB2 to PK takes place via STBUS(24:26) supervised

hy the store controller. The latter transfer is activated for

k1l b4
‘ The testpatterns for PB2 are:
Test no. 1 100
2 010
3 001

Irror Reaction:

b2

test no. {number>

received {21ext0 con received PB2>
expected {2lext0 con expected PB2>

Complete Test of:
Split Write for PB2:= PK; <ARU105,187-ARU106,187,253-ARUL08,320
-ARU109,382>
Read Data for PK:= PB2; <STCO14,383-ARU104 317>

VB1172 L8-1

LG, REGISTER PB3

PB3 is the protection key belonging to register W3. PB3 itself and its incom-
ing and outgoing datapaths are tested. The datapath, PBUS(0:2), from PK to
PB3 is activated by the instruction

ks 6
whereas data transfer from PB3 to PK takes place via STBUS(24:26) supervised

by the store controller. The latter transfer is activated for

k1l 6
The testpatterns for PB3 are:
Test no. 1 100

2 010

3 001

Error Reaction:

ph3
test no. <{number>
received ¢21ext0 con received PB3>

expected <21ext0 con expected PB3>

Complete Test of:
Split Write for PB3:= PKj; CARU105,187-ARU106,187 ,253-ARU108,320
-ARU109,382>
Read Data for PK:= PB3; {STCO1k4 ,383-ARULOL 317>

VB1172 Lo-1

50. REGISTER AE

Data transfer to and from the 12 most significant bits of register AE is

checked by means of the fa instruction. The two exponents of the operands

are chosen in such a way that the exponent difference (sCc) is > = 38, This

implies that no addition takes place for which reason the expected result e-

quals the contents of the operand stored in WOconWl. In details, the test

works as follows:

fa wl

where

addr

WO: 101111 000111

Wl: depends on test number

addr-2:

111000 000001

101111 000000 000000 000000

addr: 111111 100000 000000 0OOOO00
The testpatterns equal for

Test no. 1
2

~N o U & W

10
11
12
13

VB1172

000000
100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

111111
111111
111111
111111
111111
111111
111111

111111
111111
111111
111111
111111
111111

50-1

Error Reaction:

register ae

test no. <{numb er>

received <48-bit received resultd

expected <4B8-bit expected resultd
If the not tested jump conditions, SC > -38 A SC < 38 and SC(11), do not
operate satisfactorily, the following results can be expected:
SC>-38ASC<38 , SC(11) Received Result

0 0 The jump conditions are correct and the received
result should be the correct one provided the new

micro orders are executed correctly.

0 1 101111 000000 000000 000000 111111 100000 000000 000000
1 0 101111 000111 111000 00000x xxxaxx xxxxxx 000000 111111
1 1 101111 000000 000000 000000 111111 011111 000000 0000ND

Complete Test of:
AE:= BUS(0:11)conOcon0 except for AE(12,13); <ARUOT3:ARUOTL-ARU0S2,256>
BUS(0:11):= if EX(21) = O then AE(0:11)
else AR(0:9,9,9) for EX(21) = O3
CARU029: ARUO30-ARU0B2, 190>
sc(11) [o0] ; <MPCO09,123-ARUO6L, 166>

Partly Test of:
BUS(0:11):= 12extW(1)(12) for W(1)(12) = 0; <ARU0O2:ARUO13
-ARU060,281,213>
SE:= SB(0:11)conOcon0, SB(0:11):= 12extSB(12) only the last micro
order has influence on
the final result.
SC > -38 A SC < 38 [0] for SC = 63; <MPC008,122-ARUO6T>

VB1172 50-2

51. REGISTER SE

Data transfer to and from the 12 most significant bits of register SE is
checked by means of the fa instruction. The two exponents of the operands
are chosen in such a way that the exponent difference (SC) is < = -38. This
implies that no addition takes place for which reason the expected result e-
quals the contents of the operand stored in addr-2 and addr. In details, the
test works as follows:

fa wil addr
where

WO: 101111 000000 000000 000000

Wi: 111111 100000 000000 000000

addr-2: 101111 000111 111000 000001
addr: depends on test number

The testpatterns equal for

Test no. 1 000000 000000 000000 111111
2 100000 000000 000000 111111
3 010000 000000 000000 111111
L4 001000 000000 000000 111111
5 000100 000000 000000 111111
6 000010 000000 000000 111111
7 000001 000000 000000 111111
8 000000 100000 000000 111111
9 000000 010000 000000 111111

10 000000 001000 000000 111111
11 000000 000100 000000 111111
12 000000 000010 000000 111111
13 000000 000001 000000 111111

VB1172 51-1

Error Reaction:

register se

test no.

received

expected

<number>
<48-vit received resultd
<i8-bit expected result>

If the not tested jump conditions, SC > -38 A SC < 38 and SC(11), do not
operate satisfactorily, the following results can be expected:

SC>-38ASC<38 , sc(11)

o)
0

Complete Test of:

0
1

Received Result

101111 000000 000000 000000 111111 100000 000000 000000
The jump conditions are correct and the received result
should be the correct one provided the new micro orders
are executed correctly.

101111 000000 000000 000000 111111 011111 000000 000000
101111 000111 111000 00000x xxxxxx xxxxxx 000000 111111

SE:= SB(0:11)conOcon0, SB(0:11):= 12extSB(12) except for SE(12,13);
<ARUOSL : ARUOB5- ARUOST : ARUOSB-ARUO90,363 , 370-ARUOS1 ,432,370,374>
BUS(0:11):= SE(0:11); <ARU0O2:ARUO13-ARUO91,212>

sc(11)

Partly Test of:

[1]

<MPC009,123-ARU064L ,166>

BUS(0:11):= 12extW(1)(12) for W(1)(12) = O3 <ARUOO2:ARUO13

-ARU060,281 ,213>

SC > -38 A SC < 38 [0] for SC = -633; <MPCOO8,122-ARU06T>

VB1172

N

51~

52.

The adder and carry circuitry for floating arithmetic is investigated in

this test. Since integer arithmetic is already known to operate, we shall

FLOATING ADDER

here confine our investigations to the mantissae bits 12 to 35. The testpat-

terns for each test are listed below (all operand exponents are chosen to be

zero). Tests 21 and 22 are included with the sole purpose of testing for in-

terchanged hit positions.

VB1172

Test

Test

Test

Test

Test

Test

Test

no. 1

AE +

no. 2

no. 3.

AE +

no. U4

AE +

no. 5

AE +

no. 6

AE +

no. 7

AE +

AE:=
SE:=
SE:=

AE:
SE:=
SE:=

]

AE:=
SE:=
SE:=

AE:=
SE:=
SE:=

SE:=
SE:=

AE:=
SE:=
SE:=

SE:=
SE:=

00000000
00000000
00000000

00000000
11111111
11111111

11111111
00000000
11111111

01010101
01010101
10101010

00000000
11111110
11111111

00000001
11111101
11111111

00000011
11111011
11111111

0000
0000
0000

0000
1111
1111

1111

0000
1111

0101
o101
1010

1000
1000
0000

1000
1000
0000

1000
1000
0000

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

VB1172

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

no.

no'

no.

no.

no.

no.

no.

no.

no.

no.

8

AE +

9

AE +

10

AE +

11

AE +

12

AE +

13

AE -

14

AE -

15

AE -

16

AE -

17

SE:
SE:

AE:
SE:
SE:

AE:
SE:
SE:

AE:
SE:
Sk

SE:
SE:

SE:
SE:

AE:
SE:
SE:

AE:
SE:
SE:

SE:
SE:

00000111
11110111
11111111

00001111
11101111
11111111

00011111
11011111
11111111

00111111
10111111
11111111

01111111
01111111
11111111

00000000
00000000
00000000

11111111
00000000
11111111

11111111
11111111
00000000

10101010
01010101
01010101

00000001
00000000
00000000

1000
1000
0000

0001
1111
0000

0010
1110
0000

0100
1100
0000

1000
1000
0000

0000
0000
0000

1111
0000
1111

1111
1111
0000

1010
0101
0101

0111
1000
1111

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

52-2

Test no. 18 AE:
SE:

AE - SE:

Test no. 19 AE:
SE:

AE - SE:

Test no. 20 AE:
SE:

AE - SE:

Test no. 21 AE:
SE:

AE - SE:

Test no. 22 AE:
SE:

AE - SE:

Test no. 25 AE:
Sk

AE - SE:

Test no. 24 AE:

SE:

A¥ - SE:

Test no. 25 AE:
SE:

AE + SE:

Test no. 26 AK:
SE:

AE + SE:

VB1172

-
=

1

00000010
00000001
00000000

00000100
00000011
00000000

00001000
00000111
00000000

00010000
00001111
00000000

00100000
00011111
00000000

01000000
oo111111
00000000

10000000
01111111
00CC0000

0C0O0CCO0
00001111
00001111

0C0CCCCo
00110011
00110011

o111
1000
1111

c111
1000
1111

0111
1000
1111

0000
0001
1111

0001
0010
1111

0011
0100
1111

0111
1000
1111

0000
0000
00C0

o000
0011
0011

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00

00

0C
00
00

oC
00
00

00
00
00

Error Reaction:

floating adder

test no. <{numb er>
received {received 36-bit mantissa con 12-bit exponent>
expected <{expected 36-bit mantissa con 12-bit exponent>

Received result is:

1.

equal to one of the two matissae for all tests.

This signifies that the jump condition, SC > -38 A SC < 38, does not be-
come 1 for SC = 0. Hence the microprogram believes that the exponent dif-
ference of the two floating numbers is greater than ’58’, which explains
the result.

equal to half of the expected results for all tests.

In this case AR(-1) = AR(0) is O instead of 1 and, as this condition sig-
nifies overflow, the calculated sum or difference shall be shifted arith-
metically one position towards left.

equal to the expected result + 1 added to the least significant bit of
the mantissa for all tests.

The jump condition Round is Simply 1, i.e. rounding has taken place.

Complete Test of:

Adder:= b 1010 000 ; Adder:= b 0101 0013 <ARU098:ARU100>
AP(-1:37):= if - ,MC(10) then SUM(-1:37) else SUM(-1:35)conOcon0
for MC(10) = 0, SUM(37) is not tested;
CARUOT73: ARUOT 4-ARUOB1 ,311,355-ARU082, 236,252
SC > -38 ASC < 38 [1] for SC = 0; <MPCO08,122-ARUO6T> -

AR(-1) = AR(0) [1] for AR(-1,0) = 0; <MPCO02,116-ARU078,222>
Round [0] for AF(-1:1,35:37):= b 001 000 or
b 001 1003

<MPC125,011-ARU079,213,365>

Partly Test of:

VB1172

BUS(0:11):= 12extW(1)(12) for W(1)(12) = 0; <ARUO02:ARUO13
-ARU060,281,213>

52-4

The extension micro order, 12extW(p)(12) for p = 0,1,2,3, is tested by ad-
ding a floating point number, f, to itself.
Test nos. 1 and 2: fa w0 0 test of WO(12) extension
3 and U: fa wl 2 5 test of wi(12) extension
5 and 6: fa w2 L, test of W2(12) extension
7 and 8: fa w3 6 3 test of W3(12) extension
For odd test numbers
. £ = 001000 000000 000000 000000 000000 000000 100000 000000

e

and for even test numbers
£ = 001000 000000 000000 CCOO0OO0 111111 111111 011111 111111

Error Reaction:

w(12) extension

test no. <{numb er?

received {received 36-bit mantissa con 12-bit exponent>

expected <{expected 36-bit mantissa con 12-bit exponent>
. Complete Test of:

BUS(0:11):= 12extW(fr)(12); <ARUOO2:ARUO13-ARU060,281,213,231>

VB1172 53-1

Sk, REGISTER SC

e o e o e e o ot o o o = iy — " " —— " " - — - o " T o ¥ o = " et " ot v

Data transfer to and from SC is investigated. The two floating point numbers
have equal exponent for all tests. In details, the test works as follows:
fa wil addr
where
WO: 010000 000000 000000 000000
Wl: depends on test number
addr-2: 000000 000000 000000 000000
addr: depends on test number
Testpatterns equal for
Test no. 1 111111 1111311 011111 111111
2 000000 000000 100000 000000
000000 000000 010000 000000
000000 000000 001000 000000
000000 000000 000100 000000
000000 000000 000010 000000
000000 000000 000001 000000

~N o M

0¢]

000000 000000 000000 100000
000000 000000 000000 010000
10 000000 000000 000000 001000

11 000000 000000 000000 000100
12 000000 000000 000000 000010
13 000000 000000 000000 000001

Error Reaction:

register se

test no. <{nunb er>
received {received 36-bit mantissa con 12-bit exponentd
expected {expected 36-bit mantissa con 12-bit exponent>

VB1172 5h-1

Received result has error in

1. exponent part.
The corresponding bit in register SC is not able to either receive from
BUS or deliver to BUS the expected exponent.

2. mantissa part.
This signifies properly that the exponent difference, which should be e-
qual to zero, has been calculated incorrectly; properly due to an error

in the extension micro order.

Complete Test of:
SC:= BUS(11:23) except for SC(11); CARUO6L:ARUO66-ARUO68,174,175>
BUS(0:23):= 12ext0OconSC(12:23); <ARUD02:ARUO25-ARU068 257>

VB1172 54-2

55. CONSTANT 23

Constant 23 is checked by converting an integer to a floating point number.

The test is:
ci w0 0
wvhere
WO: 010000 000000 000000 000000

and this leads to a floating point number having an exponent equal to 23.

Error Reaction:

constant 25

test no. 1

received {12 least significant mantissa bits con received expo-
nent>

expected 000000 000000 000000 010111

Complete Test of:
BUS(0:23):= 23; <ARU031,157,88>

VB1172

1

=

56. ARITHMETIC RIGHT SHIFT IN AF

Since arithmetic shifts in AR are tested already, we only have to concentrate
on shifts in AE and, of course, the special case where AR(23) is shifted into
AR(0). Bits AF(-1,35:37) are not included in the test, but are tested sepa-
rately. In details, the test works as follows:
fa wi addr
where
WO: depends on test number
Wi: depends on test number
addr-2: 010000 000000 000000 000000
addr: 000000 000000 000000 000001
The testpatterns for WOconWl equal for

Test no. 1 000000 000000 000000 000001 000000 000000 000000 000000
2 000000 000000 000000 000000 100000 000000 000000 000000
3 000000 000000 000000 000000 010000 000000 000000 000000
L 000000 000000 000000 000000 001000 000000 000000 000000
5 000000 000000 000000 000000 000100 000000 000000 000000
6 000000 000000 000000 000000 000010 000CO0 000000 000000
7 000000 000000 000000 000000 000001 000000 000000 000000
8 000000 000000 000000 000000 000000 100000 000000 O00000
9 000000 000000 000000 000000 000000 010000 000000 000000

10 000000 000000 000000 000000 000000 OOiOOO 000000 000000
11 000000 000000 000000 000000 000000 000100 000000 000000
12 000000 000000 000000 000000 000000 000010 000000 000000

The mantissa in WOconWi{0:11) is the testpattern to be shifted one shift in
AF‘

Error Reaction:
arithmetic right shift in af
test no. {number>
received <48-vit received result>
expected ¢L4B-bit expected result>

VB1172 56-1

1. If the received result equals
010000 000000 000000 000000 000000 000000 OC0O00 0DONOC
i.e. the operand in store for all tests then the jump condition
5C > -38 A SC < 38 is s-a-0 for SC = -1.

2. Other errors are due to the micro order ashr AF.

Complete Test of:
ashrAF except for AC(-1,35:37); <ARUO73:ARUOTL
-ARU0O80: 082>

SC > 38 A SC < 38 [1] for SC = -1; <MPCOO8,122-ARUOET>

VB1172

All bits in SF, except for SF(35:37), are tested for arithmetic right shifts.
In details, the test works as follows:
fa wi addr
where
WO: 110000 000000 000000 000000 (test no. 1)
Wi: 000000 000000 000000 000001
addr-2: depends on test number

addr: depends on test number

WO: 100000 000000 000000 000000 (test nos. 2 to 3%5)
Wl: 000000 000000 000000 000001
addr-2: depends on test number
addr: depends on test number

The testpatterns for addr-2 and addr equal for

Test no. 1 100000 000000 000000 000000 000000 000000 DO000O 000000
2 010000 000000 000000 000000 00000O OO0000 00000C 000000
3 001000 000000 00000C 000000 000000 O0O0O0 000000 000000
L 000100 000000 000000 000000 000000 000DO0 000000 000000
5 000010 000000 000000 000000 000000 Q00000 CO0O00 000000
6 000001 000000 000000 000000 000000 CO0000 000000 000000
T 000000 100000 000000 000000 000000 000000 000000 000000
8 000000 010000 000000 000000 000000 000000 000000 000000
9 000000 001000 000000 000000 000000 000000 000020 000000

10 000000 000100 000000 000000 000000 000000 COOO00 000000
11 000000 000010 000000 000000 000000 000000 000000 000000
12 000000 000001 000000 000000 000000 000000 000000 000000

VB1172 57-1

13
1k
15
16
17
18

19
20
21
22
25
2l

25
26
27
28
29
30

31
32
33
3k
35

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
00010

The mantissa stored in addr-2 and addr is the testpattern

SF.

Error Reaction:

VB1172

arithmetic right shift in sf

test no.

received

expected

<number)
<U8-bit received result>
<48-bit expected result>

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
C00000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

00000C 000000
000000 000000
000000 000000
000000 000000
000000 000000
to be shifted

in

1. If the received result equals for test no. 1
‘ 110000 000000 000000 000000 000000 000000 000000 000001
and for tests nos. 2 to 35
100000 000000 000000 000000 000000 000000 000000 000001
then the jump condition SC > -38 A SC € 38 is s-a-0 for SC = 1.
2. The last bit in the mantissa equals 1 signifies that rounding is always
executed implying that Round is s-a-1.

3. Other errors are due to the micro order ashrSF.

Complete Test of:
ashrSF except for SF(35:37; <ARUOBL:ARUOS7T-ARUO91,26,37L 370,432>
SC > -38 A SC < 38 [1] for SC = 1; <MPC008,122-ARUO6T>
® AR(-1) = Ar(0) [1] for AR(-1,0) = bll; <MPCOO2,116-ARU0OT8,222>
Round [0] for AF(-1:1,35:37):= b 110000 or b 1101003
<{MPC125,011-ARU079,213,365>

VB1172 57-3

The jump condition, AF ¢ > 0, is tested except for AF(36,37). The test works
by converting (cf instruction) the following floating point numbers to inte-

ger numbers. The floating point number to be tested is stored in WOconWl

Test no. 1
2

e BN e RN BN = W

(0]

10
11
12
13

14

000000
000000
000000
000000
000000
000000
000000

000000
0C0000
000000
000000
000000
000000

000000

0C0000 000000
000000 000000
000000 000000
000000 00C0OCO
000000 000000
000000 000000
0000C0 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000

The floating point numbers in tests

000001
000000
00C000
000000
0C0000
000000
000000

000000
000C00
000000
000000
000000
000000

000000
1 to 13

00000C 00C000
10000C 00CCO0
01000C 000000
001000 CCO000
000100 000CO0
000010 00CO00
000001 000C0C

000000 100000
000000 010000
000000 001000
000000 000100
000000 000010
000000 000001

000000 000000

00000C 111111
000000 111111
000000 111111
000000 111111
000000 111111
00000C 111111
000C00 111111

000000 111111
000000 111111
000000 111111
00000 111111
000000 111111
000000 111111

000000 111111

are too hig to be represented by

integer numbers, for which reason no conversion tekes place and the contents

of WOconWl are unaltered. On the contrary, the zero mantissa in test 1k is
With the chosen floating point

converted to an integer zero, i.e. Wil:= O.
numbers the conversion is executed if, and only if, AF = 0. In other words
if AF < > O then WO and W1 are unaltered;
if AF =0

VB1172

then WO is unaltered and Wil:= Oj

actually Wi:= WO where WO is O

58-1

Error Reaction:

af <> 0

test no. <{number>

received <24-vit received result in Wi>
expected <24-bit expected result in Wi>

1. Received result is WO for some tests.
If this happens for a test, the jump condition AF < > 0 is s-a-0 for the
corresponding mantissa.

2. Only test 14 fails.
The jump condition AF < > 0 is s-a-1.

3. All tests except test 14 fail.
The jump condition AF < > O is either s-a-0 for all bitpatterns or the
micro order BUS(0:23):= 23 does not generate the number 23 but some other

number.

Complete Test of:
AF <> 0 [0] [1] except for AF(36,37);
<MPC008 ,122-ARU0TS,300-ARU078,356,365>

VB1172 58-2

59. LOGICAL LEFT SHIFT IN AF

e o e e ettt o o e o e o ot o o et o o ko o o e e e o 4 ot o o ot o o i | O i M " 8 S M o o o o o g T S mm S e o

Since logical left shifts in AR are tested already, we only have to concen-
trate upon shifts in AE and, of course, the special case where AE(O) is
shifted into AR(23). Bits AF(35:37) are not included in the test. In details,
the test works as follows:
fa wl addr
where
WO: depends on test number
Wi: depends on test number
addr-2: 001000 000000 000000 000000
addr: 000000 000000 000000 000001
The testpatterns for WOconWl equal for

Test no. 1 000000 000000 000000 000000 100000 000000 000000 000001
2 000000 000000 000000 000000 010000 000000 000000 000001
3 000000 000000 000000 000000 001000 000000 000000 000001
L 000000 000000 000000 000000 000100 000000 000000 000001
5 000000 000000 000000 000000 000010 000000 000000 000001
6 000000 000000 000000 000000 000001 000000 000000 000001
T 000000 000000 000000 000CO0 000000 100000 000000 000001
8 000000 000000 000000 000000 000000 010000 000000 000001
9 000000 000000 000000 000000 000000 001000 000000 000001

10 000000 000000 000000 000000 000000 000100 000000 000001
11 000000 000000 000000 000000 000000 000010 000000 000001
12 000000 000000 000000 000000 000000 000001 000000 000001

The mantissa in WOconWl is the testpattern to be shifted one shift in AF.

VB1172 59-1

Error Reaction:
logical left shift in af
test no. <{number>
received <48-bit received result>
expected <48-bit expected resultd
1. Received mantissa = expected mantissa + 2xx-35.
The jump condition Round is s-a-1.

2. Other errors are due to the micro order 1lshl AF.

Complete Test of:
1shl AF except AF(36,37); <ARU0OBO:ARUOB2
Round [0] for AF(-1:1,35:37):= b 000000 or b 000100;
<MPC125,011-ARUOTS, 213,365

VB1172 59-2

The floating point instructions (floating add and subtract) use micro orders
and jump conditions which depend on bits 35,36, and 37 of register AF and SF.
In order to facilitate the error detection, we have for each test number

listed the corresponding (mantissae and exponents) plus the micro orders and

Jump conditions which have not been tested previously.

(-1:0) (1:4) (33:37) exp Test of micro orders
Test no. 1
AF: 00.1000 00100 0
SF: 00.0000 00000 1
lashr AF: 00.0100 00010 0 ashr AF
AF:= AF+SF: 00.0100 00010 1 adder:= b 1010000
Result:=
11shl AF: 00.1000 001 0 1shl AF
Test no. 2
AF: 00.1000 00100 0
SF: 00.0000 0000090 2
2ashr AF: 00.0010 00001 2 ashr AF
AF:= AF+SF: 00.0010 00001 2 adder:= b 1010000
Result:=
21shl AF: 00.1000 001 0 1shl AF
Test no. 3
AF: 00.1000 00100 0
SF: 00.0000 00000 3
3ashr AF: 00.0001 00000 3 ashr AF
AF:= AF+SF: 00.0001 00000 3
Result:=
31shl AF: 00.1000 000 0 1lshl AF

VB1172 60-1

Test no. 4
AF:
SF:

lashr SF:
AF:= AF+SF:

Test no. 5

AF:

SF:

2ashr SF:

AF:= AF SF:
Result:=

21shl AF:

Test no. 6

~ AF:

SF:

Zashr SF:

AF:= AF+SF:
Result:=

31shl AF:

Test no. 7T

AF:

SF:

2ashr SF:

AF:= AP+GF:
Result:=

21shl AF:

VB1172

{ .
[

O O O O o O O O O O O O
o O O O

o O O O

o O O O
o O O O

S
~-

o O O O

o O =+ O o o = O o O +» O

o O = O

(Leh)

= = O O
o O O O

o O O O
B O O
O O O O

o O O O
o O O O
= = O O

o O O O

= 2 O O
o O O O

S O O O

o O O O o O O O

o O O O

o O O O
o O O O
o O = O

o O O O

o O O O

o O = O

o O = O

o O = O

o O —~ O

(33:37)

= = O O
o O O O

o © O O O O O O
e]

o O O O

= = O O

= = O O

X P

NN ON == O

W W O W

N DO

Tegt of micro orders

ashr SF
adder:= b 1010000

1shl AF

ashr SF
adder:= b 1010000

1shl AF

ashr SF

1shl AF

ashr SF
adder:= b 1010000

1shl AF

60-2

Test no. 8
AF:
SF:

2ashr AF:
AF:= AF+SF:
Result:=

21shl AF:

Test no. 9

AF:

SF:

2ashr SF:

AF:= AF-SF:
Result:=

21shl AF:

Test no. 10

AF:

SF:

2ashr SF:

AF:= AF-SF:
Result:=

21shl AF:

Test no. 11

AF:

SF:

2ashr SF:

AF:= AF-SF:
Result:=

21shl AF:

VB1172

(-1:0)

o = = O
o = = O

o = = O

o = = O

O = = O

o = = O

‘(1:h)

1
0

O = O O
o = O O
= O O O
= O O O

o = O O
o = O O
= O O O
= C O O

o = O O
O = O O
= O O O
=~ O O O

0
0

= O O O
= O += O

110

0

0]

= O O O
= O O O
= O = O

= O O O
= O += O

0

0

- O = O

= O O O
= = O O
o O O ©

(33:37)

O

= O O O
= = O O

o » O O
B e O O

exp

[\S TN\ B I \V] N N ON

N DO N

Test of micro orders

SE(0:13):= BUS(0:11)

conOconO for SE(12,13)=b10

ashr AF
adder:= b 1010000

1shl AF

ashr SF
adder:= b 0101001

1shl AF

ashr SF
adder:= b 0101001

1shl AF

ashr SF
adder:= b 0101001

lshl AF

(-1:0) (1:4) (33:37) exp Test of micro orders
Test no. 12

AF: 00.1000 01100 0
SF: 00,0000 00000 su(0:13):= BUS(0:11)
conOcon0 for SE(12,13)=bl10
2ashr AF: 00.0010 0011 2 ashr SF
AF:= AF-SF: 00.0010 00011 2 adder:= b 10101001
Result:=
21shl AF: 00.1000 011 0 1shl AF
Test no. 13
AF: 00.0000 00000 1 AF (> O for AF = 2
SF: 00.0000 00100 0
lashr SF: 00. 0000 00010 1 ashr SF
AF:= AF+SF: 00 . 0000 00010 1 adder:= b 1010000
Result:=
351shl AF: 00 . 1000 000 -3h 1lshl AF
Test no. 14
AF: 00.0000 00000 2 AF < > O for AF =1
SF: 00.0000 00100 0
2ashr SF: 00. 0000 00001 2 ashr SF
AF:= AF+SF: 00 . 0000 00001 2 adder:= b 1010000
Result:=
361shl AF:: 00.1000 000 -3k lshl AF
Test no. 15
AF: .= e = = = - ---11 this is done by the cf in-
struction.
AF: 00.0000 00000 2 AE(0:13):= BUS(0:11)
SF: 00.0010 00000 2 conOconO for AE(12,13)=b11
AF:= AF+SF: 00 01 0 2 adder:= b 1010000
Result:=
21shl AF: 00.1000 000 0 1shl AF

VB1172 60-1

Error Reaction:
bits (35,36,37)
test no. <numb er>
received <b8-bit received resultd
expected <48-bit expected resultd

Complete Test of:

AF(-1:37):= if - ,MC(10) then SUM(-1:37) else SUM(-1:35)conOcond

for MC(10) = O and SWM(37); <ARUOTL, 367
-ARUO82,232>

ashr AF for AF(35:37); <ARUOTW

1shl AF for AF(35:37); <ARUOTL>

ashr SF for SF(35:37); <ARUOBS>

AE:= BUS(0:11)conOcon0 for AE(12,13); <ARUOTYL,367-ARU0B2,236>

SE:= BUS(0:11)conOcon0 for SE(12,13); <ARUOS8-ARUO91,432,370>

Adder:= b 1010000 for bits(35:37)

Adder:= b 0101001 for bits(35:37)

AF <> 0 [1] for AF(36,37); <ARUOT8,356>

SC > -38 A SC < 38 [1] for SC = -3,-2,2,3; <MPCOO8,122-ARUO6T>

Partly Test of:
Round [0]; <MPC125,011-ARU0T9,213,%65>

VB1172 60-5

Rounding of mantissae for floating point numbers involves a set of micro or-

ders and jump conditions. We have therefore for each test number listed the

appropriate items under test.
(-1:0)

Test no. 1

AF:

SF:

AF:= AF+SF:
Result:=

lashr AF:

Test no. 2

AF:

SF:

lashr SF:

AF:= AF+SF:
Result:=

11shl AF:

Test no. 3

AF:

SF:

lashr SF:

AF:= AF+SF:
Result:=

11shl AF:

VB1172

S O O O

= O O

()

o O O O

= o O

(1:4)

1000

1
0

o O O O
= O O =

O O =

0
0

o O O ©
o O O O
o O O O

0
0

o O O O
o O O O

0]
0

(33:37)

0000

0
0

o O O O

O O O O

1
1

o O = O

S = = O

0

0

000

e
B Rk O O
o O O O

e

= O O O

exp

-1
-1
-1

S e ™

[S

Test of micro orders

AR(-1)=AR(0) [0];Round [1]

ashr AF for AF(-1) = 0O

Round [0]

Round [0]

61-1

(-1:0) (1:4) (33:37) exp Test of micro orders

Test no. 4
AF: 11.0000 00000 0
SF: 00.0000 10100 -2
2ashr SF: 00.0000 00101
AF:= AF+SF: 11 .0000 00101 Round [0]
Result 11.0000 001
Test no. 5
4F: 00.1000 00000 0
SF: 00.0000 10100 -
2ashr SF: 00.0000 00101
AF:= AF+SF: 00.1000 00101 Round [0]
Result 00.1000 001 0
Test no. 6
AF: 11,0000 00000 -1
SF: 11.0000 01100 -3
2ashr SF: 11,1100 00011 -1 AR(-1) = AR(0) [0];
AF:= AF+SF: 1 0. 1100 00011 -1 Round [0]
Result:=
lashr AF: 11.0110 000 0 ashr AF for AF(-1) = 1
Test no. 7
AF: 00.1000 00100 -1
SF:+ 00.1000 00000 -1
AF:= AF+SF: 01 .0000 00100 -1 AR(-1) = AR(0) [0]
Round [1]
Result:=
lashr AF+k: 00.1000 001 0 Adder:= b 1111010
(Carry 36)

VB1172 61-2

Test no. 8
AF:
SF:
AF:= AF+SF:

Result:=
lashr AF+h:

Test no. 9

AF:

SF:

2ashr SF:

AF:= APF+5F:
AF:= AF+L
AF(36:37)

Result:=
1shl AF:

10
AF:
SF:

lashr SF:
AF:= APF+SF:

Result:=
AR+l

Test no.

Test no. 11

AF:

SF:

2ashr SF:

AF:= AF+SF:
Result:=

lshl AF+h:

VB1172

(-1:

= O O
-, O O

o O O O
o O O O

S O o O

0)

o O O O

o O O O

- o0 o =

o O O O

= o O =
= O O
, o O .

o O O O

- o O -
o O O O

(1:4)

O O O O

O O O O

o o O O

-, O O

o O O ©

o O O O

(33:37) exp
0000 -1
0100 -1
0100 -1
01 0
1100 1
1100 1
0011 1
1111 1
0000 1
00 0
0000 0
0100 -1
0010
0010
01 0
0000 1
0100 -1
0001 1
0001 1
01 0

Test of micro orders

AR(-1) = Ar(0) [0];
Round [1]

ashr AF for AF(-1) = 1;
Adder:= b 1111010
(Carry 36)

- Round [1]

Adder:= b 1111010
(Carry 36) AF(36):= 0O

Round [1]

Adder:= b 1111010

Round [1]

Adder:= b 1111010

Test no. 12

AF:

SF:

2ashr SF:

AF:= AF+SF:
Result:=

1shl AF+lh:

Test no. 13
AF:
SF:

SUM(-2:37):=

AF-SF:

SUM: =SUM+ L ¢
Result:=
2asnhr SUM:

(-1:0)

O O

001

010

Error Reaction:

rounding

test no.

received

expected

Complete Test of:
AF(-1:37):= if - ,MC(10) then SUM(-1:37) else SUM(-1:35)conOconO

_ O O+

(1:4) (33:37) exp Test of micro orders

000 00000 1

000 ©00100 -1

000 00001 1

000 00001 1 Round [1]

000 001 0 Adder:= b 1111010

-2

000 00000 -2

111 11100 -2 AR(-1) = AR(0) [0];
Round [1]

000 00000 -2 ashr AF

000 000 0 Adder:= b 1111010
(Carry 36)

<{numb er>

{36-bit mantissa con 12-bit exponent>

{36-bit mantissa con 12-bit exponent>

for MC(10) = 1; <ARUOT4,367-ARU0B2,232>

Round [0] [1]; <MPC125,011-ARU0T9,213,365>
AR(-1) = AR(0) [0]; <MPC002,116-ARUOT8,222>

VB1172

62. SC COUNT UP

The sequential counter, SC, is tested for counting up. Since the exponent of

a floating point number is

if the sum of the mantissa

Test no.

00.100
00.100
+01.000
) 00.100
vhere the testpatterns
1 111111
2 111111
3 111111
L4 111111
5 111111
6 111111
7 111110
8 111101
9 111011
10 110111
11 101111
12 011111
13 111111
14 000000
15 001001
16 000000
17 000000
18 000111

VB1172

leads to mantissa overflow.

0
0
0
0

exp
exp
exp
exp+ 1 (SC:=sC + 1)

for SC(12:23) are

111110
111101
111011
110111
101111
011111

111111
111111
111111
111111
111111
111111

111111
000000
001000
000111
111111
111111

This test utilizes

kept in SC after addition, SC is counted up by 1

62-1

Error Reaction:

20
21
22
23
2L

25
26

011011

000000

000010
010111
000000
000000

000001
001111

sc count up

test no.

received

expected

Complete Test of:
SC:=8C + 1

VB1172

011011
010111
111111
111111
000001
001111

111111
111111

<numb er>
{12ext0 con 12-bit received result>
{12ext0 con 12-bit expected result>

for SC(12:23); <ARUOE8,17%4,089>

2-2

63. SC COUNT DOWN

The sequential counter, SC, is tested for counting down. Since the exponent

of a floating point number is kept in SC after addition, SC is counted down
by 1 if the sum of the mantissa leads to a result which could be normalized
by only one left shift. This test utilizes

00.0010---0 exp

00.0010---0 exp

+00.0100---0 exp

00.1000---0 exp-1 (sc:=s5C-1)
vhere the testpatterns for SC(12:23)are

Test no. 1 000000 000001
2 000000 000010
3 000000 000100
L 000000 001000
5 000000 010000
6 000000 100000
7 000001 000000
8 000010 000000
9 000100 000000
10 001000 000000
11 010000 000000
12 100000 000000
13 000000 000000
14 111111 111111
15 110110 110111
16 111111 111000
17 111111 000000
18 111000 000000

VB1172

63-1

Error Reaction:

19
20
21
22
23
2L

25
26

100100
111111
111101
101000
111111
111111

111110
110000

100100
101000
000000
000000
111110
110000

000000
000000

sc count down

test no.

received

expected

Complete Test of:
SC:=SC - 1

VB1172

<nunber>
{12ext0 con 12-bit received result>
{12ext0 con 12-bit expected result>

for SC(12:23); <ARUO68,174,8%>

63-2

The two jump conditions, SC < > 0 and SC > -38 A SC < 38, are tested for va-

rious testpatterns by means of floating point additions.

Tests nos.

1 to

10:

For these tests the floating point numbers (fl and f2) are chosen in such a

wey that the exponent difference, expl-exp2 >= 38.
0. 00000 000000 000111 000000 000000 000000 011111 111111

Result:=f1+f2:

fi:
f2:

"

The testpatterns

Test no. 1

EAN]

O ®© N o\

<|' 10

Tests nos.

S O O O O O O O O o

11 to

0. 00000 000000 000000 000001

000000 000000 exp2

0.00000 000000 000111 000000 000000 000000 011111 111111
for expl-exp2 equal for

000001
000010
000100
001000
010000
100000
000000
000000
000000
111111

20:

000000
000000
000000
000000
000000
000000
110000
101000
100100
111111

(64)
(128)
(256)
(512)
(1024)
(2048)
(L8)
(%o0)
(38)
(4095)

For these tests the floating point numbers (fl and f2) are chosen in such a

vay that the exponent difference, expl-exp2 <= -38.

f1:= 0.00000 000000 000000 000001 0000CO 000000 expl

£2:= 0.00000 000000 000111 000000 000000 000000 011111 111111
Result:=f1+f2:= 0.00000 000000 000111 000000 000000 000000 011111 111111

VB1172-

The testpatterns for expl-exp2 equal for

Test no. 11
12
13
1k
15
16
17
18
19
20

T O =

011111
101111
110111
111011
111101
111110
111111
111111
111111
111111

Tests nos. 21 to 23:
For these tests the floating point numbers (fl and f2) are chosen in such a

way that the exponent difference, 0 < expl-exp2 < 38.
f1:= 0.00000 000000 000111 000000 000000 000000 000000 001110
£2:= 0,00000 000000 000000 000001 000000 000000 exp2

111111
111111
111111
111111
111111
111111
001111
010111
011001
011010

(-2049)

(-1025)

(-513)
(-257)
(-129)
(-65)
(-49)
(-41)
(-39)
(-38)

Result:=f1+f2:= 0.11100 000000 000000 000000 000000 000000 000000 000000
The testpatterns for expl-exp2 equal for
0 000000 100100
0 000000 100011
0 000000 011000

Test no. 21
22
23

Tests nos. 24 to 26:
For these tests the floating point numbers (f1 and f2) are chosen in such a

way that the exponent difference, -38 < expl-exp2 < O.
f1:= 000000 000000 000001 000000 000000 000000 expl
£2:= 000000 000000 000111 000000 000000 000000 000000 001110

(36)
(35)
(24)

Result:=f1+£2:=0.11100 000000 000000 000000 000000 000000 000000 000000
The testpatterns for expl-exp2 equal for

Test no. 2L

25
26

vBiiT72

1 111111 110000
1 111111 011100

1 111111 011011

(-16)
(-36)
(-37)

6h-2

Error Reaction:
se <> 0, sc> -38 Asc <38

test no. <numb er>
received {36-bit mantissa con 12-bit exponent>
expected {36-bit mantissa con 12-bit exponent>

Complete Test of:
SC <> 0 [1]; <MPCO10,124-ARUOET>
SC > -38 A SC < 38 [0] [1]; <MPCOOB,122-ARUOGT>

VB1172 6L-3

65. LOW PRECISION

Floating point arithmetic can be executed in two modes, viz. high- and low
precision. In the low precision mode, the mantissa bits 34 and 35 are set e-
qual to the mantissa bit 33. This is tested by two tests where, if high pre-
cision were selected, the resultant mantissa would be
Test no. 1 010000 000000 000000 000000 000000 000100

2 010000 000000 000000 000000 111111 111011

Error Reaction:

low precision

test no. <{number>
received {36-bit mantissa con 12-bit exponent>
expected {36-bit mantissa con 12-bit exponent>

Complete Test of:
BUS(0:23):= if EX(21) = O then AE(0:11)conl2extO
else AE(0:9,9,9)conl2ext0 for EX(21) = 1

s <ARU029:ARU030-ARU0O82,190>

VB1172 65-1

66, CONSTANT -2048

If a floating point operation results in a zero result the exponent is set e-
qual to the least conceivable exponent which is -2048. Hence the test is ver-
ified by the instruction

fs wO 0
where

WOo:= 111111 111111 011111 111111

Error Reaction:
constant -2048
test no. 1
received <2U-bit received result>
expected 000000 000000 10000 000000

Complete Test of:
BUS(0:11):= 0, BUS(12:23):= -2048; <ARUOLL>

VB1172 66-1

67. EX(22:23):= 0

Bits 22 and 23 of the exception register indicate overflow and carry. The
two bits are reset when the micro order, EX(22:23):= 0, is activated.
X(21:23) is set to all ones (x1 instruction) before the micro order is test-
ed.

Error Reaction:
ex(22:23):= 0
test no. 1
received <21lextOconFX(21:23)>
expected 000000 000000 000000 000100

Complete Test of:
EX(22:23):= 0; <ARU102,1L0>

VB1172 67-1

68. TEST SHIFT IN EX

Overflow in left shifts for arithmetic shift instructions is indicafed by a
1 in EX(22). The testpattern

000100 000000 000000 000000
is shifted left 2 times for test no. 1 and 4 times for test no. 2.

Yrror Reaction:

test shift in ex

test no. <{number>
received {2lextOcon received EO
expected {2lextOcon expected EX>

Complete Test of:
Test Shift for register EX; CARUOT8 ,365-ARU101 , 245,43k L35, 28
-ARU102, 440>

VB1172 68-1

69. TEST EXP IN EX

Floating point exponent overflow is indicated in EX(22). Four tests, two of
vhich imply no overflow, are used for verification.

The testpatterns for exp:= SC equal for

Test no. 1 0 011111 111111 no overflow
2 1 100000 000000 no overflow
3 0 100000 000000 overflow
L4 1 011111 111111 overflow

Error Reaction:

test exp in ex

test no. <numb er>
received {21extOcon received EO
expected {21lextOcon expected EX

Complete Test of:
Test Exp for register EX; <ARUOG7-ARULO1 434 435,28
SC:= SC-1 for SC(11); <ARU068,174,89>
SC:= SC+1 for SC(11); <ARU068,1Tk4,089>

VB1172 69-1

70. TEST INTEGER IN EX

Overflow and Carry are indicated in EX(22:23). The micro order is justified

by integer additions with the following integer numbers.

Test no. 1 00.111---111
00. 000 0
+ 00.111 1 Overflow = 0 Carry = 0
TeSt nO. 2 11- OOO“"“OOO
00. 000 000
+ 11.000 0 Overflow = O Carry = O
Test no. 3 00.111---111
00.000 001
+ 01.000 000 Overflow = 1 Carry = O
Test no. 4 11.000~---000
11.111---111
+ 10.111---111 Overflow = 1 Carry = 1
Error Reaction:
test integer in ex
test no. <number>
received <21extO con received EO

expected {21lext0 con expected EX>

Complete Test of:
Test Integer for register EX; CARU098,222,162-ARUL01 , 245 43k 438,28
-ARU102 , 440>

VB1172 70-1

71. CARRY(0)

The jump condition, Carry(0), is tested by means of the aa instructions

two toests having the following testpatterns
000000 000000 000000 000000
000000 000000 000000 000000

+ 000000 000000 000000 000000
Carry(0) = 0

Test no. 1

000000 000000 000000 000000
000000 000000 000000 000000
+ 000000 000000 000000 000001

Test no. 2

000000 00000C
000000 000000
000000 000000

100000 000000
100000 000000
000000 000000

Carry(0) = 1
Error Reaction:
carry(0)
test no. <{numb ery
received <48-bit received resultd>

expected

Complete Test of:
Carry(0)

VB1172

<48-bit expected resultd>

[0] [1]; <MPCO02,116-ARU093,28L>

000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000

n

Lad

T1i-1

72. BRrR(22), Br(23)

The two above-mentioned jump conditions are tested by the program sequence

al w0 0
wm wl addr
where for
Test no. 1

addr: 111111 111111 111111
Wi:s 111111 111111 111111

Result:= WOconWl: 000000 000000 000000
BrR(22) = 1, BR(23) =

Test no. 2
addr: 010101 010101 010101
Wi: 000000 000000 000000
Result:= WOconWi: 000000 000000 000000
BR(22) = 0, BR(23) =

Test no. 3
addr: 000000 000000 000000
Wi: 101010 101010 101010
Result:= WOconWl: 111111 111111 111111
BR(23) = 0

Error Reaction:
br(22), br(23)

test no. {number>

received <48-vit received result>
expected <48-bit expected resultd

VB1172

111111
111111
000000
1

010101
000001
000000
1

000001
101010
111111

000000 000000 000000 000001

010101 010101 010101 010101

101010 101010 101010 101010

72-1

1. Error in test no.'1

signifies that the jump condition BR(22) is s-a-0.
2. Error in test no. 2

signifies that the jump condition BR(22) is s-a-1.
3. Error in test no. 3

signifies that the jump condition BR(23) is s-a-1.

Complete Test of:
BR(22) [0] [1]; <MPCOO8,122-ARUOT6,185>
BrR(23) [0] s <MPC008,122-ARU0T76,185>

VB1172 12-2

Bit O of register BE is checked &s well as the corresponding jump condition
BE(0) by the instruction
cf w0 23
where for
Test no. 1 W5:= 000000 000000 000000 000101
WO:= 000000 000000 000000 000000

‘Result:= WO:= 000000 000000 000000 000101

i

Test no. 2 W3:= 000000 000000 000000 000101
WO:= 100000 000000 000000 000000
WO:= 000000 000000 000000 000110

Result:

Error Reaction:

be(0)

test no. {number>

received <2L-bit received resultd>
expected (2L-bit expected result>

Tests 1 and 2 check BE(O) for the logical values O and 1, respectively.

Complete Test of:
BE(0):= BUS(0); <ARUOTT,155-ARU0O83,169,376,27>
BE(0) [0] [1]; <MPCO11,125-ARUOTT,155>

VB1172 73-1

INTEGER DIVISION

The two micro orders Test WD Sign and Divide Integer plus the jump condition
BR(1) = BR(2) (signifies division overflow) are necessary prerequisities for

the success of an integer division. The test works by executing the instruc-

tion
wd

where for

wl

Test no. 1
WOconWi:
addr:
Result:= WOconWi:

addr

011111 111111 111111

011111 111111 111111

The dividend remains in WOconWl, since

111111

111111

111111 111111
000000 000000
111111 111111

the division leads to

111111 111111
000000 000000
111111 111111

overflow.

Test no. 2
WOconWl: 011111 111111 111111 111111 111111 111111 111111 111111
addr: 111111 1111171 1111171 111111
Result:= WOconWl: 011111 111111 111111 111111 111111 111111 111111 111111

The dividend remains in WOconWl, since

the division leads to

overflow.

Test no. 3
WOconW1: 000000 000000 000000 111111 101010 101010 101010 101010
addr: 000000 000001 000000 000000
Result:= WOconWl: 000000 000000 101010 101010 000000 111111 101010 101010
Test no. U4
WOconWi: 111111 111111 111111 000000 010101 010101 010101 010110
addr: 111111 111111 000000 000000
Result:= WOconWl: 111111 111111 010101 010110 000000 111111 101010 101010

Th-1

Error Reaction:

integer division

test no. <{numb er>

received <48-bit received resultd

expected <48-vit expected resultd>
dnly the two first quotient bits are of interest in tests 1 and 2 since
these bits, when they are alike, signify an overflow condition.

Complete Test of:

Test WD Sign; <ARU099:ARU100>

Divide Integer; <ARUOT6,376-ARU0SO: ARUOB1-ARUOB3-ARU0OSS>
BR(1) = BR(2) [0] [1]; <MPC003,117-ARU0T79,222

VB1172

Th-2

75, CONSTANT 1

A constant 1 is sometimes used in integer division for correcting the least
significant bit of the quotient. This is tested by executing the instruction
wd wl addr
wvhere
WOconWi: 000000 000000 000000 000000 000000 000000 000000 100111
addr: 000000 000000 000000 100000
Result:= WOconWi: 000000 000000 000000 000111t 000000 000000 000000 000001

Error Reaction:
constant 1
test no. 1
received <48-bit received result>
expected 000000 000000 000000 000111 000000 000000 000000 000001

1. W1 =90 . The micro order BUS = 1 has not been activated.
2. W1 <> 0, 1 The micro order does not transmit a 1 but a number which eguals
Wi.

WO is not influenced by the micro order.

Complete Test of:
BUS(0:23):= 1; <ARUO31,157>

-J
o
[
[any

VB1172

The jump condition has already been tested for AR having a value different
from zero and therefore this test investigates the zero condition. This is
done by executing the instruction

wd wl addr
where

WOconWi: 111111 111111 1111131 111111 111111 1111311 111110 100000

‘ addr: 000000 000000 000000 100000

Result:= WOconWl: 000000 000000 000000 000000 111111 111111 111111 111101

Error Reaction:

ar <> 0

test no. 1

received <48-bit received result>

expected 000000 000000 000000 000000 11111t 111111 111111 111101

If the jump cannot attain the zero value, then the received result equals
111111 111111 111111 100000 111111 111111 111111 111110

‘ Complete Test of:
AR <> 0 [0]; <MPCOOB,122-ARUOTS>

VB1172 76-1

7. FLOATING MULTIPLICATION

A number of micro orders and jump conditions are used only in floating point

multiplication, for which reason it is not possible to test them separately.

The tests work by executing the instruction
fm wil

where

addr

WOconWl: depends on test number

The testpatterns for WOconWl equal for

Test no.

Error Reaction:

VB1172

1

~N o0 WU W

10
11
12
13
1k

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

floating multiplication

test no.

recelved

expected

<{number>

000000
000000
000000
000000
000000
000000
000000

0000C0
000000
000000
000000
000000
000000
000001

000000
000000
000000
000000
000000
000000
000000

000001
000010
000100
001000
010000
100000
000000

<48-bit received resultd
<48-bit expected result>

000000
000001
000010
000100
001000
010000
100000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

addr: 010000 000000 000000 000000 000000 000000 000000 100101

77-1

Complete Test of:
BUS(0:23):= 35; <ARU031,88,157>
BE(0:11):= BUS(0:11); <ARUOTT>
1shr BF; <ARUO7S5:ARUO7T-ARUOB1,311,150,236-ARUOSB3,169,212>
BE(10) [0] [1]; <MPCOO5,119-ARUOTT>
BE(11) [0] [1]; <MPCOOS,119-ARUOTT>

VB1172 11-2

A number of micro orders and jump conditions are used in floating point divi-

sion for which reason it is not possible to test them separately. The test

works by executing the instruction

fda wi

gddr

The testpatterns for addr equal

Tests nos.

Test no.

14

1 to 13
010000
100000

000000 000000
000000 000000

The testpatterns for WOconWl equal

Test no.

1

~N o W W

10
11
12
13
14

010000
010000
010000
010000
010000
010000
010000

010000
010000
010000
010000
010000
010000
010101

Error Reaction:

VB1172

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
010101 010101

floating division

te

st no.

received

expected

<numb er?>

000000
000000

000001
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
010101

000000
000000

000000
100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000
010101

<L8-vit received resultd
¢L8-bit expected result>
Tests 1 to 13 check the data transfer BUS(0:11):= BE(0:11) for
BE(0:11) = W1(0:11).

000000
000000

000000
000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001
010101

000000
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

000001
000000

000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000

78-1

Complete Test of:
® Test FD Sign; <ARU099:ARULOO>
Divide Floatings <ARUOT6-ARUOS0:ARUO81-ARUOB3-ARUOIB>
BUS(0:11):= BE; <ARU002:ARU013-ARUOS83,212,27>
FDsub [0] [1]; <MPCO06,120-ARU099,158>

78-2

79. CONSTANT 12

The micro order, BUS:= 12, is used by the interruption service to fetch the
Service Address which is kept in location 12. The interruption service is in-

voked by an illegal instruction.

Error Reaction:
sequence error constant 12

. If the micro order generates another value than i2 on the buslines, then the
test program shall not return to the expected point in the program, because
an erroneous service address is fetched. This implies that the test is not
terminated properly and this is normally disclosed by the test sequence su-
perviser. If, however, the fetched service address implies that an interrupt
is generated anew, a closed program loop may be expected in which case test-

program messages fall to appear on the typewriter.

Complete Test of:
BUS(0:23):= 12s; <ARUO31,88,157>

79-1

80. ADDRESS OVERFLOW

The store controller, STC, invokes an interrupt if the specified storage ad-

dress exceeds the storage capacity. This is tested by
rl w0 addr

where
addr = 111111 111111 111111 111111

Prior to the execution of this instruction,
WO = 111110 001111 011111 111000

Error Reaction:

address overflow

test no. 1
received {24-bit received WOO
expected 111110 001111 011111 111000

Complete Test of:
Read Data for SB = -1 (Fixed Address = 1);

<MPC002:MPCO11-MPCO27 , 3k STCO02-STCO03 , bl5 , kU7 -STCO06 , 47 - ARUOLG>

VB1172

80-1

81. PROTECTION

The effect of the protection system is tested for the following conditions:

Test no. 1
Test no. 2
Test no. 3

Test no. U

Error Reaction:

Execute a privileged instruction in task mode. This should in-
voke the interruption system. |

Execute an instruction in task mode followed by a protected
instruction. This should invoke the interruption system.

Store a word in a non-protected location by means of an in-
struction in task mode. This is a valid instruction.

Store a word in a protected location by means of an instruc-

tion in task mode. This should invoke the interruption system.

protection
test no. <numb er)
received {24-bit received result>

expected {2k-vit expected result>
The result for tests 1 and 2 is the return address from the interruption rou-

tine. For tests 3 and 4, the results are the contents of the location under

test.

Complete Test of:
Read Instruction for Test no. 1j KMPCO27-STCO06 , Lul>
Read Split for illegal storing; <STCOOT LLL>
MMode:= PROTECT for PROTECT = O3 <ARU105 k21>

MMode

[0]; <MPCO09,123-ARUL05,421>

MMode v - ,PROTECT [0] [1]; <MPCO10,124-ARU105,2L45>

VB1172

81-1

82. REGISTER IM

Régister IM is checked for loading and storing by means of the following

testpatterns:
Test no. 1 100000 000000 000000 000000
2 010000 000000 000000 000000
3 001000 000000 000000 000000
L 000100 000000 000000 000000
5 000010 000000 000000 000000
6 000001 000000 000000 000000
T 000000 100000 000000 000000
8 000000 010000 000000 000000
9 000000 001000 000000 000000
10 000000 000100 000000 000000
11 000000 000010 (000000 000000
12 000000 000001 000000 000000
13 000000 000000 100000 000000
14 000000 000000 010000 000000

15 000000 000000 001000 000000
16 000000 000000 000100 000000
17 000000 000000 000010 000000
18 000000 000000 000001 000000

19 000000 000000 000000 100000
20 000000 000000 000000 010000
21 000000 000000 000000 001000
22 000000 000000 000000 000100
23 000000 000000 000000 000010

2k 000000 000000 000000 000001

VB1172 82-1

Lrror Reaction:

‘ register im
test no. <{numb er>
received <24-vit received resultd

expected <2k-bit expected result)
An error is due to an incorrect transmission to register IM or vice versa.

Interrupts may occur if the interruption system cannot be disabled.

Complete Test of:
™(1:23):= SB(1:23), IM(0) is permanently equal to 1;
<ITROO1:ITRO06-TITRO10,412,345-LCTI001: LCI002-ARUO28,25>
BUS(0:23):= IM; <ARUO26:ARUO27-ARU028,218,25>

VB1172 82-2

83. INTERRUPT ENABLE

The mfcro order, ITRenable:= FR(5) is verified for its ahility to suppress
‘nterrupts and allow interrupts to break the normal program sequence.

The micro order is tested by means of jd and jl instructions.

Error Reaction:

interrupt enable

test no. <nunbery
received 000000 000000 000000 000000
expected 000000 000000 0000CO 000000

Error in test no. 1 signifies an error for ITRenable:= O.
1 or that the micro

frror in test no. 2 signifies an error for ITRenable:
order Test Integer does not produce an interrupt.
Confer also interrupt request.

The received and expected 24 bits have no signification.

Complete Test of:
ITRenable:= FR(5); <ARU102,189,245,28>
Test Integer; comment IR(1):= 1; <ARU101,435-ITR0OL,L0OO>

VB1172 83-1

84. REGISTER IR

The purpose of this test is to check the interrupt register for

1. activation of individual interrupt bits; IR(n):= 1

2. storing of IR register; BUS:= IR

3. clearing of individual interrupt bits; IR(n):= 0

Activation of external interrupts (IR(3:23)) are simulated by comnecting the

I/0 BUS plug to the interrupt

In details, the program works

the testpatterns are for

Test no. 1
2

3
L
5

O @@ 3 o

10
11

12

13
14

15
16
17

VB1172

010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

plug 1021. IR(0) is not included in this test.

as described below for each test number, and

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

100000 000000
010000 000000
001000 000000
000100 000000
000010 000000
000001 000000

8L-1

18 000000 000000 000000 100000
19 000000 000000 000000 010000

20 000000 000000 000000 001000
21 000000 000000 000000 000100
22 000000 000000 000000 000010
23 000000 000000 000000 000001

Prozram description for test:

for n
bezin
IR:

WO:=

1 step 1 until 23 do

0; IR(n):= 1; comment set interrupt bit n;
IR

H
if WO(n) = O then begin error message; specification:= set end;

IR:= 03 IR(n):= 1;

IR(n):

= 03 comment clear interrupt bit nj

Wo:= IR

if WO < > 0 then begin error message; specification:= clear

ends

Error Reaction:

where

register ir

test no. <{number>

received <2L-bit received result>
expected {2U-bit expected resultd>
<{specification>

{specification>::= set [clear

Complete Test of:

VB1172

IR:= IR A -,SB; <ITROO1:ITRO06-ITRO10,412,345,211>
BUS(0:23):= IR; <ARUO26:ARUO27-ARU028,218,25>

Test Shift; comment IR(1):= 1; <ARU101,435>

Test Fxp; comment IR(2):= 1; <ARU101,435-ITROO1,L40O1>

Interrupt request is a decoding network whose value depends on IR and IM. The
equation is

INTERRUPT REQUEST:= ors(IR A IM).
If ITRenable = 1, then the running program is interrupted if and only 17

TNTERRUPT REQUEST 1. This assertion shall be proved by the following test-

natterns:

Test no. 1 IR:= O e IM:= -1
2 IR:= O11111 1111131 111111 111111 s IMi= 0
> IR:= IM:= 010000 000000 000000 0O000CO
h IR:= IM:= (001000 000000 000000 000000
5 IR:= IM:= 000100 000000 000000 000000
6 IR:= IM:= 000010 000000 000000 000000
7 IR:= IM:= 000001 000000 000000 000000

IR:= IM:= 000000 100000 000000 000000

Q IR:= IM:= (00000 010000 000000 OGO0000

10 IR:= IM:= 000000 001000 000000 000000
11 IR:= IM:= 000000 000100 000000 000000
12 IR:= IM:= 000000 000010 000000 000000
13 IR:= IM:= 000000 000001 000000 000000
1k IR:= IM:= 000000 000000 100000 000000
15 IR:= IM:= 000000 000000 010000 000000
16 IR:= IM:= (000000 000000 001000 000000
17 IR:= IM:= (000000 000000 000100 000000
18 IR:= IM:= 000000 000000 000010 000000
19 IR:= IM:= 000000 000000 000001 000000
20 IR:= IM:= 000000 000000 000000 100000
21 IR:= IM:= 000000 000000 000000 010000
22 IR:= := 000000 000000 000000 001000

M
23 IR:= IM:= 000000 000000 000000 000100
2U IR:= IM:= 000000 000000 000000 000010
25 TR:= IM:= 000000 000000 000000 000001

VB1172 85-1

Error Reaction:

interrupt request

test no. <{numbery
received 000000 000000 000000 000000
expected 000000 000000 000000 000000

Interrupt Request should be O for tests 1 and 2, otherwise 1. The received

and expected 24 bits have no signification.

Complete Test of:
INTERRUPT REQUEST A ITRenable; <ITROO7,211,3L45,395>

VB1172 85-2

86. INTERRUPT NUMBER

The decoding network that selects the interrupt with the highest priority
and also generates the interrupt number to be stored in location 8 is tested.
Testpattern for IR(0:23) A IM(0:23):

Expected interrupt address
Test no. 1 100000 000000 CO00N00 100000 0

2 110000 000100 000000 000000 0
3 011000 000000 001000 000000 2
L 001001 000000 000000 000000 L
5 000100 000000 000000 000001 6
6 000011 000000 010000 000000 8
7 000001 100000 000000 100000 10
8 000000 100100 000000 000000 12
S 000000 010000 000000 000000 14
10 000000 001100 000001 000000 16
11 000000 000110 000000 000010 18
12 000000 000010 010000 000000 20
13 000000 000001 000000 000000 22
1k 000000 000000 110000 000100 2L
15 . 000000 000000 011000 000000 26
16 000000 000000 001001 000000 28
17 000000 000000 000100 000000 30
18 000000 000000 000011 000000 32
19 000000 000000 000001 100000 3k
20 000000 000000 000000 100100 36
21 000000 000000 000000 010000 38
22 000000 00000C 000000 001100 Lo
23 000000 000000 000000 000110 L2
24 000000 000000 000000 000010 L
25 000000 000000 000000 000001 L6
26 000010 000000 000000 000010 8
27 000000 001000 000000 000000 16
28 000000 000000 100000 000000 2k
29 000000 000000 000010 000000 32
30 000000 000000 000000 001000 Lo

86-1
VB1172

Error Reaction:

interrupt number

test no. <number>
received <24-bit interrupt number>
expected <24-bit interrupt number>

If only tests 1 and 2 fail it is most likely that the micro order IR(0):= 1
does not set interrupt bit(0) to 1. Other errors originate from the decoding

network itself. Confer this test with the test CLEAR ANSWERED INTERRUPT.

Complete Test of:
1R(0):= 1; <ITROO1>
BUS(0:23):= 18ext0 con ITRnumber(18:22) con0;
<ITROOT7 : ITRO09-ARU028,157 ,27-ARUO30: ARDO31>

VB1172 86-2

87. CLEAR ANSWERED INTERRUPT

Whenever an interrupt is answered, i.e. when the running progrem is interrupt-

ed, the corresponding interrupt bit is turned off. The goal of this test is

to verify that the correct bit and only this bit is cleared. Register IR is

for test 1 equal to all ones and for tests 2 to 24

IR:= 011111 111111 1111121 111111,
The mask register IM equals for

Test no. 1
2

[) NG B g

o -3

10
11
12

13
1h
15
16
17
18

19
20
21
22
25
24

VB1172

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

100000
010000
001000
000100
000010
000001

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

100000 000000
010000 000000
001000 000000
000100 000000
000010 000000
000001 000000

000000 100000
000000 010000
000000 001000
000000 000100
000000 000010
000000 000001

87-1

Error Reaction:

clear answered interrupt

test no. <numbery
received <2L4-vit interrupt registerd
expected {24-bit interrupt register>

Complete Test of:
IR(ITR number):= O3 <ITROO1:ITRO06-ITRO08,397,339-ITRO10 412>

VBL172 | 87-2

RCSL: 31-A29
Author: H. Kold Mikkelsen
Edited: July 1671

~ RC 4000

TEST OF PERIPHERAL DEVICES

OPERATOR's MANUAL

KEY: RC 4000, Test of Peripheral Devices, Operator's Manual

- > > - > = - - o —— —————— - o — " T = A o = - —n > ol = e e s n . R S o e e S SR

A/S REGNECENTRALEN
‘ Falkoneralle 1
DK 2000 Copenhagen F

CONTENTS:

T i o St e e e o s o A - ——— - " - —— - " o~ - v

LOADER' PROCEDIJRES AND INTE:RRIJPTION @0 00000 000000000 00OOOs OO OPS 5
TI{E RHAOCATABLELOmmz.l.....’.."...0.0'0'.0.....‘.‘..0...‘.... 11

Preface:

This manual is an substitution of RCSL: 51-VBL73 by Jgrgen Lindballe.
All test programs designed for the previous loader will work in loader 2.

31- A29

LOADER, PROCEDURES AND INTERRUPTION

The loader 2 (which reads and stores procedures and testprograms) and 9 pro-
cedures (used by the programs for output on and input from the operator's
typewriter, for output on a specified output device, for reservation of
buffer area and for administration of the test) exist in the binary version

on one paper tape.

This paper tape is read from the RC 2000 Paper Tape Reader (dev. No. 0)
when the operator activates the RESET and then the AUTOLOAD push-button.

The loader first writes:

channel no. of operator key =

dev. no. of operator's typewriter =

and the operator types the interrupt channel No. of the operator key and
the device No. of the typewriter he wants to use. (These numbers may be al-
tered later by activating the RESET and then the START push-button after
which the loader writes the above-mentioned questions again).

The loader now writes:

loader 2

input from dev.no.:

and then the operator writes the number of the device, from which the bina-
ry testprograms shall be read, followed by <NL>. Consequently he must write
0, if input is wanted from the paper tape reader. If input is wanted from a
magnetic tape station (dev. No. > 0), the loader asks:

and the operator writes the number of the file in which the testprograms are

placed. These filenumbers appear from this table:

RC NO. KIND OF PERIPHERAL DEVICE FILE NO.
2000 Paper Tape Reader
150 Paper Tape Punch
315 Typewriter
610 Lineprinter, Data Products
333 Lineprinter, Anelex
4191 Incremental Plotter
707 Magnetic Tape Station, 7 tracks
T09 Megnetic Tape Station, 9 tracks
Lh15 Drum
4314 Disc
Interval Timer
Teletypewriter
Display

31-4A29

. 31.A29

When all the testprograms (not more than 15) for the kind of device are
stored, the loader writes:

After this the operator types the device number (or the device numbers, as
it is possible to write up to 3 device numbers separated by {comma>; e.g.
teletypewriter). When the program hereafter writes:

channel no. =

the operator types the interrupt channel number of the device (or the chan-
nel numbers, as it is possible to write up to 3 channel numbers separated by
{comma>; e.g. teletypewriter).

Now the program asks for an output device:

output dev., no. =

and the operator types an integer >O.
Hint: programs which uses the output dev. may work as move programs by speci-

fying the cpu-timer (dev. 3) as output device.

Next the program writes:

testprogram:

and the operator may type s or b or ¢ or ... and in this way select the first,
the second, the third, ... testprogram. If he types <NL> the following direc-
tory of the stored testprograms is written:

8 _ __ {description of _ _ 1st testprogram
b {description of _ _ 2nd testprogram
c {description of 3rd_testprogram>

T e e e e e e e e St e v - et e e = e e B > D e > e

e e ot ettt e e . - - - o

‘ Having selected the testprogram the operator to the question:
number of runs =

must write the number of times the program is wanted to be executed. This

number must be chosen so that
1 < number of runs £ 8 388 607
Before the execution of some runs it writes:

run no. <{run no..

‘ namely before the execution of

1st, 2r1d| e0e, 9th run, if 1 S No- of Ims -<- 9
1st, 11th, 21st, ..., 91st run, if 10 € No. of runs { 99
1st, 101st, 201st, ..., 90ist run, if 100 < No. of runs £ 999

etc.
Having executed the specified number of runs, the program writes:

test end

and now it is possible to select a new testprogram.

‘ USing the loader some erroneous situations may occur:

If 'end of tape' appears in the paper tape reader or if 'tape mark'
appears on magnetic tape when the loader reads testprograms before the

first testprogram has been stored, it writes:

mount paper tape

e e o e o

respectively. If the operator types <NL> after the first message, the loa-

der continues to read.

The error messages:
. parity error in {program description>

T o 2 et i o of e et i e e o ko e o 0 e e o

31-A29 : 5

and (when loading from the paper tape reader):

meens parity error and checksum error in the program being loaded.

If bit 0, 2, 3, 4, 5 or 6 is set in the statusword when the programs are
loaded from tape, the loader writes:

status = <bit 0-9

and the programs must be loaded again.

It is always possible to break the execution of a testprogram by activating
the operator key. After this the interrupt sequence writes:

Then the operator may type t, o, 4, 1 or c after which the typevriter continues

to write the below-mentioned underlined texts:

The operator may select a new testprogram for the same device number.

The operator may select a new device number (and after this as usual a

new interrupt channel nunber) for the same kind of peripheral device.

loader 2

Now a new set of testprograms may be loaded, and in this way a new kind

of peripheral device may be selected.

31-A29 6

core store contents

The contents of someipart of the core store may be written on the output de-

vice. When the program writes:

first word addr. =

last word addr. =

the operator specifies the part of the core store; it must be mentioned
that for the testprograms which use input-output buffer, the addresses of
the first and the last bufferword are written on the typewriter immediate-
ly before the execution of the first run.

When the program writes:

the operator types t, 4, b or i after which the typewriter continues to

write the below-mentioned underlined texts:

text

The bitpatterns are written as a text.

The bitpatterns are interpreted as integers (negative, zero or positive)

and written in decimsal.

The program waits for input from the console used for the print layout:
answer> ::= <int eger).'. empty>

where 0 <= <integer> <= 24 and
{empty> ::= <{integer> = 24

For <{integer> = 0 the program converts the integer to 2u.

If <integer> <0 or <integer>>2l the program asks for a new input.

Now the binary word is divided into a number of blocks from the left side,
containing the specified number of bits and is printed as separate decimal
numbers. If the division 2h/<integer> not comes right, the rest word is
printed as a binary number, e.g.

31-A29

will cause the leftmost 20 bits to be separated into blocks of 10 bits and
the rest of 4 bits is printed as a binary number.

bina.

The bitpatterns are interpreted as positive integers and they are written
in binary.
The program waits for input from the console:

{answer> ::= {integer> ! {empty>

where

0<= <{integer> <= 24 and

<empty> ::= <{integer> = 2L

For <{integer> = O the program converts it to 2k.

The binary word is now printed in blocks of {integer> separated by a <{spaced.
The dividing is made from the left.

instruction

The bitpatterns are written as machine instructions including the mmemonic
functioncodes.
In case of hardware or software error interrupt No. O may occur. This invol-

Ves an error message:

interrupt no. 0

from the interrupt-sequence. In this case not only the testprograms but even
the loader should be stored again.

By activating the RESET and then the START push-button, a Jump to the loader
is’executed, and a new operator-key and -typewriter may be selected.

On the next page is shown some messages to and from the operator during a
test.

The testprograms for high-speed devices are so designed that they propose
the start address of the input-output buffer by writing:

fow = {address of first free word

- o — - - T — - — -

31-A29

and waits for input. If the operator types <NL>, he accepts the start ad-
dress; if he types a slash, the programs ask:

and he must input another start address. This address must be within a
free part of the core store, i.e. 1) an address lower than the loader 2
start address (but not less than 24) or 2) an address higher than the test-
program's top address. If this condition is not fulfiled the program asks
for a new input. Contition 1) issonly significant when using the reloca-
table loader with start address greater than O. After input from the con-
sole the address of the last buffer word is calculated and written.

If the last buffer word (lbw) is calculated to be without the free part

of core store some error messages will occur.

31-A29 9

loader 2

input from dev. no.: O
rc teletypewriter
device no. = 16,17,18
channel no. = 22,23
output dev. no. = 5
testprogram:

1.2 read (echo)

1.3 write key - board
1.4 timer

2.1 sequence

o0 o

testprogram: b
number of runs = 1

run no. 1
terminal disconnected

select testprogram: c
number of runs = 10

time, expected:3000-6000 msec
time measured:

run no. 1

select loader 2
input from dev. no.: O
rc 315 typewriter
device no. = 2
channel no. =17

output dev. no. = 2
testprogram: 4

number of runs = 1

sequence =
abcdefghi jklmm

run no. 1
abedefghi jklmn
test end

testprogram:

select device no. = 10
channel no. = 8

output dev. no. = 5
testprogram: b

nunber of runs = 2

T™Un no. 1
r™Un no. 2
test end
testprogram:

31-A29

10

THE RELOCATABLE LOADER %

The relocatable loader consists of the above-mentioned loader and procedures,
however so designed that the relocatable loader and the testprograms may be
stored everywhere within the available core store if the operator before ac-
tivating the AUTOLAD push-button puts the start address into w3. This start
address must be chosen that

0 £ w3 £ length of core store -
(length of relocateble loader +

length of testprograms)

All lengths are measured in No. of bytes. The length of the relocatable load-
er is 2980 bytes.

When w3 = 0, the loader and the testprograms are stored as usually (see
chapter 1.1 page 5).

31-A29 11

RCSL: 31-D1k
Author: J. Lindballe,

H. Kold Mikkelsen
Edited: July 1671

TEST OF PERTPHERAL DEVICES

MAIN CHARACTERISTICS

ABSTRACT: This paper describes the features of the loader 2. Further more
some of the standard facilities of different testprograms are described.

A/S REGNECENTRALEN
Falkoneralle 1
DK 2000 Copenhagen F

CONTENTS:

page

1.1. INTRODUCTION +evevernnrcoonnnncocanneeos

1.2. THE LOADER 2 vevvevovonnorraconeononnnes

1.3. THE PROCEDURES veveevevenconcneeacannees 13
1.4, TEST PROGRAMS veveveeveernncnnnnconnnees 26
1.5. INTERRUPTION evveeeevveecrenroennnnenees 51
1,60 BITPATTERNS vuveeeeennceeenvoesanacesees 33
1.7. THE RELOCATABLE LOADER 2 vveeevecevesens 38

This paper is an extension of 51-VB4L31 by Jgrgen Lindballe.
All testprograms designed for the previous loader will equally well run

in loader 2.

1.1, INTRODUCTION

For each of the belowmentioned RC L4000 peripheral devices are made a number of
test programs. The purpose of some of these is to check the peripheral device
in question (checking programs), while the purpose of others is to help the op-

erator to localize errors if these occur (motion programs):

Kind of Peripheral Devices Number of Programs

Paper Tape Reader

Paper Tape Punch

Typewriter

Lineprinter, Data Product
Lineprinter, Anelex

Plotter

Magnetic Tape Station, 7 tracks
Magnetic Tape Station, 9 tracks
Drum

Disc

Interval Timer

Teletypewriter

N £ o= U E NN WO N

Display

Besides the test programs are programmed partly a set of standard procedures
used of the programs meinly for output on and input from the operator's tyger .
writer and partly a loader program, the aim of which is to place the test
programs of a given kind of peripheral devices and the mentioned procedures in
the core store, because the test programs are used independent of the RC 4000
monitor and operative system (because it is a demand to these programs that
they are possible to test any kind of peripheral devices within a core store

of minimum size: 4096 words).

The loader 2, the test programs as well as the procedures, are written in SLANG.
»

PG

AN

A test by means of these programs demands perfectly operating:

1. a central unit including

2. a core store not less than 4096 words.
3. a paper tape reader (device No. 0).

k. a typewriter (device No. 2).

Furthermore it should be desirsble that
5. an operatorkey (interrupt channel No. 3), and
6. a magnetic tape station (7 or 9 tracks)

are available.

The abovementioned programs are linked together in accordance with this hier-

archy:

SELECT KIND OF PERIPHERAL DEVICES
v

b=
SELECT DEVICE NO. =
SELKCT TEST PROGRAM E
E
4 &

| TEST PROGRAMS

k
INPUT-QUTPUT

so that, by the aid of the loader, all the test programs of a given kind of pe-
ripheral devices (say magnetic tape station or typewriter) can be placed in

the core store, and after this the operator may select the device number and
then the test program he wants to be executed. It is always possible to break
the execution of a test program by pushing the operatorkey; after this he may
select for the same device number a new test program, or for the same kind of
peripheral devices he may select another device number, or he may load the

test programs of a new kind of peripheral devices, (Finally, after such‘an op~é
erator termination, it is possible to have the contents of a part of the cbré

store typed out).

i

The loader 2 and the procedures are found in a binary version punched on a
paper tape which may be read by the paper tape reader after activating the
autoload pushbutton.

The test programs are found in a binary version both punched on paper tave

(so that all the test programs for a given kind of peripheral devices are col-
lected on one tape) and written on magnetic tape (so that all the test prog-
rams for a given kind of peripheral devices are collected in one file, and in

such a way that each program forms a block).

Loader, procedures, and test programs are loaded as shown on the next page. It

is noticed that only the first 4096 words are necessary for a test.

Before the detailed description of this complex of programs, it must be pnen-,
tioned that everywhere in this report, the output on the typewriter from the

programs is underlined so that it is not mistaken for the operator input.

Finally it is a rule that the operator, when he has carried out what a program
has asked him to do, he must type in the character <NL>.

WORD-NO.

CORE STORE

0x2' :

LOADER
(incl. interruption and fables)

523 x¢2

10 PROCEDURES

1490 x2

4095 x2

TEST - PROGKRAMS

for one kind of
joerpheral gevice

/rput-oviout
BUFFERS

(1 necessary)

CORE STORE LAYOUT

1.2. THE LOADER 2.

When the binary tape, containing the loader and the procedures, has been plac-
ed in the paper tape reader (device No. 0), and the operator has activated the
RESET and then the AUTOLOAD pushbutton, the loader is read into the core store

by means of autoload word instructions in a 'bootstrap' as shown on the next

bage.

Next the loader, which occupies 523 words, is executed in a way explained on

the following pages.

First the loader is initialized whereby words Nos. 16, 18, 20, and 22 are fil-
led with the start addresses of U4 tables, which in this way are made available
for all the programs which later on are placed in the core store. These tables
are gradually filled with the following data:

TABLE 1 (startaddress in word 16):

word 1: The address of the first free word. This address is placed by the
loader when the last test program has been loaded. It is used by the

7th procedure when a buffer area is reserved.

word 2: 2xthe number of test programs (incl. the name (chapter 4)). This num-
ber is placed by the loader when the last test program has been load-
ed. It is used when the 9th procedure delivers the directory (a des-
cription of the test programs stored (chapter 1.3)).

word 3: Last word address of the core store + 2. This address is stored by the
loader when initialized, and it is used by the 7th procedure.

word 4: When a test program, which tests the interrupt signal from the peri-
pheral device, is initialized, it stores in this word the start ad-
dress of its own interrupt sequence. Then, in case of interrupt sig-
nal from the peripheral device, a return jump from the loaders inter-

rupt sequence to this start address is performed.

word 5: Device No. of operator's typewriter < 6. This device No. is stored by
the loader when initialized, and it is used by the 1st and the kth

procedure.

word 6: Output dev. No. < 6.and is stored by the loader when initialized, and

is used by the 1st and the bth procedure. .

N B b= = b
OO FNNOODOFNO

x+0
X+ 2
x+U4
x+6
x+8

x+10

The Paper Tape

aw
aw

J1

aw

aw x1
aw

al wl x1
aw

j1.

J1 wl

a300:

aliol:
ali02:
alio3:

x+12 jJ1. wl

[@ IR~ \V]

alio1

=

ako2

alto3
-4
ako1

QOOOOOO0O

a30

*

The Loader Bootstrap

(=x+0)
(=x+2)
(=x+4)

(=x+0)

(=y-x-12)

o N O

y-12

x-6
x-U
x-2
x+0
xX+2
x+U

The Core Store

aw 2
aw U x+0 ete.
J1 0
0
a300: s initialize
0
0
0
aw x1 4 31, wl y-x-12
al w1 x1 2
J. ' -4

word 1-10: Contain the addresses of the entry points of the 10 procedures.
These addresses are stored by the loader successively when the pro-

cedures are stored. They are used by all of the programs.

TABLE 3 (startaddress in word 20):

word 1-16: Contain the addresses of the entry points of the name (chapter 1.4)
and the test programs. These addresses are stored by the loader
successively when the programs are stored. In connection with the
administration of a test they are used by the 9th procedure.
(chapter 1.3).

TABLE 4 (startaddress in word 22):

word 1,3,5: Device number(s) < 6

word 2,4,6: Interrupt channel number(s) #(-1)

When a test program is initialized, it fetches from here the device number(s),

and if it tests the interrupt signal then the interrupt channel number(s) too.

When the loader has been initialized, it reads (IO-instructions) from the pa-
per tape reader (device No. 0O) the 9 procedures, and now it is able to communi -

cate wvith the operator's typewriter.

The loader first writes:

and the operator types the interrupt channel No. of the operator key and the
device No. of the typewriter he wants to use. (These nurbers may be altered
later by activating the RESET and then the START push-button after which the

loader writes the above-mentioned questions again).

When after the message and question:

loader 2

the operator has specified whether further inputs are wanted from the paper
tape reader (device No. = 0) or from magnetic tape station (device No. > 0)
(in the last case the typewriter writes:

file no.

and the operator must specify the file No. (chapter 1.4)), the test programs
are loaded. 9

The loader now writes:

<{name of the peripheral device>

After the questions:

it reads the device number(s), the interrupt chennel number(s) and the wanted
output device number (> 0), it Jumps with IM(operator-key) = 1, IR = 0 and
interrupt enabled to the 9th procedure ('directory', chapter 1.3).

In case of interrupt No. O or when the operator-key is activated or in case of
interrupt signal from the peripheral device (1f the test program tests inter-

rupt) a jump is performed to the loader's interrupt sequence, the start address
of which is placed by the loader in word No. 12. A detailed description of this

sequence is given in chapter 1.5.

The following rules apply to every program (a procedure or a test program)
which is read and stored by the loader:

1. It is stored with the protection key = O so that every test is performed in

the monitor mode.

2. The parity and (when punched on paper tape) the check sum are examined, and

in case of error, the following messages are given:

3. The first words of a program must contain a text string finished with the

character <> and giving a description of the program.

4, Entry point of the program must be the first word after this textstring.

10

Nex! prog.
Frorm read.

Mour?
jpaper ‘ope

y-l 7’09 S70=
0rog.ro +/

Next prog.
frorm fope

@evice
r20.=

v

chornrne/
0=

output dev.
no, =

ClearM

s

Directory

Word /8./4
/6,/8,20,22

*

Prot key
=0

T

FIrst free
word

T

Loooler

begr

e 300

THE LOADER 2

Firstfree jrle rro.
woro Word
/rput fro
AT it g
adsé f a/58
Stort key

proc.

/00

/nterrypt
S’ 9909{709

bqiw

Store 4
W-reg

‘nterrvpt
70.0

'THE INTERRUPT SEQUENCE

a//8

Abﬂ”wﬁwnpml
roble 7 (4)

I

re/ood 4
w-reg

v

Je (/)

12

1.3. THE PROCEDURES

The first programs which are read (by means of the I0-instruction) and stored
by the loader are the belowmentioned 10 procedures which in the binary version

are punched on the same paper tape as the binary loader:

1. write a text
2. write a decimal number
write a binary number

read one character from the typewriter.

.

read a decimal number from the typewriter.

read a binary number from the typewriter.

reserve buffer area.

.

write the contents of a part of the core store.

. administrate the test.

\C ® N o0 v & W

10. compare 2 binary words, write the result.

Each of these procedures, together occupying 967 words, are described in de-
tail one by one on the following pages.

13

This procedure writes a text; the text, which may consist of an arbitrary

number of characters, must be finished with the character <O>.

input output
(w0) = + or - text start address (wO) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. wO <text start>.
am (18)
J1 w2 (+0)

if output on the operators typewriter.

ac. w0 {text startd>.
am (18)
Jj1 w2 (+0)

if output on the spec. output device.

14

This procedure writes in decimal a 24-bit integer. The integer may be nega-
tive, zero, or positive.

input output
(w0) = + or - address of integer (w0) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. w0 {int. addr.>.
am (18)
J1 w2 (+2)

if output on the operators typewriter.

ac. w0 {int. addr.>.
am (18)
Ji w2 (+2)

if output on the spec. output device.

15

rd procedure: write a binary number part 1

This procedure writes the leftmost bits of a word.

Input output
(wO) = + or - word addr. (w0) = undefined
(wl) = No. of bits (wl) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. w0 <word addr.>.
al wi <{No. of bits>
am : (18)
1 w2 (+4)

1T output on the operators typewriter.

ac. w0 <word addr.>.
al wl {No. of bits>
am (18)
J1 w2 (+4)

if output on the spec. output device.

Lth procedure: read one character

(w2) = return address (w2) = status and char.

It may be called in this way:
am (18)
J1 w2 (+6)
{SP> 18 treated as a blind character.

If a parity error occurs, the character is replaced by a slash.

17

5th procedure: read a decimal number

This procedure reads a decimal integer typed on the operator's typewriter.
The integer, which may be negative, zero, or positive, must be followed by
a terminator (that is an arbitrary character which is not a digit or a

space).

input output
(wO) = undefined (wO) = integer
(w2) = return address (w2) = terminator

It may be called in this way:

am (18)
J1 w2 (+8)
sn w2 10
sh w0 0
J1. -8

1f the call demands an integer greater than O and a terminator equal to <NL>.

18

6th procedure: read a binary number

This procedure reads a positive binary integer typed on the operator's type-
writer. The integer must be followed by a terminator (that is an arbitrary

character vhich is not a O or a 1 or a space).

(wO) = undefined
(w2) = return address

It may be called in this way:

am
J1 w2
se w2
J1.

(18)

(+10)
10
-6

(w0)
(w2)

if the call demands a terminator equal to <NLD>.

integer

terminator

‘ Tth procedure: reserve buffer srea

- - e o =t~ o~ — — ———— ——— - -

This procedure reserves a part of the core store and it writes on the opera-
tor's typewriter:

fbw = {address of first buffer word>

(w0)

"’ (w2)

No. of words wanted (w0) = No. of words

return address (w2)

start address

If it was not possible to reserve the wanted number of words within the avail-
able core store, the output value of both w0 and w2 is O.

The procedure may be called in this way:
al w0 <{No. of words>

am (18)
J1 w2 (+12)
sh w2 0
Jl.
. If the input value of wO is equal to -(No. of words wanted) the procedure

waits for input after having written <first buffer word>; if the operator in-
puts a character different from <NL> (for example /), it writes

and waits for another start address. This address must be within the free

part. of the core store, i.e.

1) lower then the loader start address but not less than 24 (only signifi-
cant when using the relocatable loader)

2) higher than the last address of the test programs.

If <fbw) is outside the free core the loader will request for a new <fbw>.

After input from the operator it calculates and writes <last buffer word>.

20

This debug procedure is able to write on the operator's typewriter the con-
tents of a specified part of the core store (from word No. 8) inone of four

modes: text, decimal, binary, or machine instructions.

After an operator termination it is called when the operator types c; the core

store area is specified when the procedure writes:

first word addr. =

respectively, and the mode is selected when the operator types t, 4, b, or i,
respectively.

In case of d(ecimal) and b(inary) the program waits for input of an integer
which specifies the print lay-out:

<ansver> lay-out
(new line) 24 bits
0 < <integer> <= 24 the word is divided into <integer> No.

of bits from the left and printed.

If d(ecimal) and if 24 mod <integer>
4 0 then print the rest word as a bi-
nary number.

d{integer> = 0 2k vits

The procedure may be called in this way:

am (18)
J1 w2 (+14)

21

Immediately after the selection of the device No. (and the interrupt channel
No.) for the peripheral device and the output device, a jump from the loader
to 'directory' is performed. In this procedure the test program and the num-
ber of runs are selected, and furthermore the procedure is sble to write on

the operator's typewriter a description of the stored test programs.

After the question:
test program:

the operator may type a letter: a, b, ¢, ... and in this way select the lst,
2nd, 3rd, ... test program, or he may type <NL>, after which the procedure
writes the following directory:

These descriptions are fetched from the first words of each program

(chapter 1.4.).

22

When the operator has answered the question:

number of runs =

the test program is called Oth, 1st, 2nd, ..., last time. During call No. O
the test program is initialized. At each call the return address is placed in
w2, while
wi (22)
wl (23)

last call
Oth call

involving that run No. O and last run may be selected in this way:

sz wl 1

i s run No. O (initiate)
and

sz wl 2

J1 ; last run (finish).

Before some runs 'directory' writes:

run no. <run No.>

that is before

ist, 2nd,ee. 9th run, if 1 £ No. of rums £ 9
1st, 11th, 21st,..., 91st run, if 10 £ No. of runms < 99
1st, 101st, 201st,..., 901st run, if 100 £ No. of runs ¢ 999

etc., so that a test is always introduced with the message

= - —-

and so that a message is sent each time such a number of runs are executed
that:
this number = the greatest 10-power which is less or
equal the specified number of runs.

Having performed the wanted number of runs, the procedure writes:
test end

after which a new test program may be selected.

23

If the testporgram wants to finish the test before <No. of runs> are ex-
ceeded, it may return to the directory with return address:= return address
+2. I.e. if w2 contains the return address the {test end® may be executed in

the following way:

5 x2 + 2

2U

This procedure compares two binary words and writes some of the leftmost
bits in the following way: the two words are called 'received pattern' (rec.)
and 'expected pattern' (exp.) respectively; the two words are compared bit
by bit and if they are.equal the value is written else one of the two let-
ters ¥ or x is written:

g if the bitvalue in rec. is O (a wrong zero),

x if the bitvalue in rec. is 1 (a wrong one).

(wl) = + or - table address (wl) = undefined
(w2) = return address (w2) = unchanged

It may be called in this way:

al. wl {tgble addr.>.
am ' (18)
J1 0 w2 (+18)

if output on the operators typewriter.

ac. wl {table addr.>.
am (18)
J1 w2 (+18)

it output on the spec. output device.

{table address> + 0: <blocksized <12 + <No. of bits>
+ 2: bit pattern {received
+ b: bit pattern <{expected

where <blocksize> denotes the mumber of bits to be printed before a <{space’;
if <blocksized <=0 or <blocksize> > = <No. of bits> no <{space>'s are printed.
¢No. of bits> denotes the tatal number of bits to be printed counted from
left to right.

25

1.4. TEST PROGRAMS.

For each kind of peripheral devices mentioned below is made a set of test prog-

rams:

File No,
RC 2000 Paper Tape Reader 1
RC 150 Paper Tape Punch 2
RC 315 Typewriter 3
RC 610 Lineprinter, Data Products etc.

RC 333 Lineprinter, Anelex
RC L4191 Plotter
RC 707 Magnetic Tape Station, 7 tracks
RC 709 Magnetic Tape Station, 9 tracks
RC 4415 Drum
RC 4314 Disc
Interval Timer
Teletypewriter
DPCLO1 Display

The test programs in the binary version exist both on paper tapes (so that all
the. progrems for one kind of peripheral devices are punched on one paper tape)
and on 7- or 9-track magnetic tape (so that each program forms one block, and
so that all the programs for one kind of peripheral devices form one file. In
both cases the parity is odd.

YAV /.

\ J
N
name 1-15 test programs end of tape or
tape mark

This drawing shows a paper tape or a file on magnetic tape containing the bi-
nary test programs for one kind of peripheral devices.

26

For each program (test program or procedure), which is read and stored by the
loader, the following rules apply:

1. The first 15 words (that is the first 45 ISO-characters) must contain
a text. This text is used by the loader in the message in case of pa-
rity error and check sum error, and it is used by the 9th procedure
when writing the directory.
2. The 16th word must be the entry point.
3. The program must be finished with a check sum when punched on paper
tape.
The paper tape/the file first contains a 15-word progrem containing the name
of the kind of peripheral devices, for example:

{:rc 707 magnetic tape station, 7 tracks<O> D

This is the text which is written by the loader immediately after the test

programs are stored.

After the name follows a number of test programs in arbitrary succession; if
the number exceeds 15, only the first 15 are loaded.

At the jump from 'directory' to a test program w2 contains the return address

and

1]
o

if Oth call then wi(23)
if last call then wi(22)

it
[EEN

(the other bits are all 0) so that the test program may initiate and finish
the test.

27

The test programs are divided into two groups:

1. gggggggg_gggggggg for critical check of the
device.

Test programs:
2. Motion programs gggig%critical use of the

Within each group for a given kind of peripheral devices the programs are suc-
cessively numbered: 1.1, 1.2, ..., and 2.1, 2.2, ...

e e s D B oy e B e

device is performed. If the device does not react in the expected manner, mes-

sages mentioned in chapter 3 are given. The test of

sense, control, read, write
exception register
interrupt signals

status

data

is included in these programs. It is a principle that whatever happens, the
test is going on. For example, the absence of an interrupt signal or even a
disconnected device causes a message to the operator, but the test continues;

but the operator may break the run by activating the operatorkey.

The exception register and the interrupt signal are tested as shown on the next
page and as explained below:

EX

00: The device is available and, if it has sent an interrupt signal, the
test continues; contrary this message is written (and the test con-

tinues):

EX = 01: The device is busy either because the transmission has not yet finish-
ed (especially because the device is in the local state) or because
of a hardware error. If the device remains busy for a time depending

on the kind of device, the program writes:

and the test continues.

28

10

P!

e0 COUNTER
== -0

NO

l

10 n
counter =
counter +1
YES e3 v e2 v NO
device busy device exrg= nointerrupt
for <lim>sec disconnec tad b 1 from device

YES

flag =0

continue

8]

Q

EX = 10: The device is disconnected either because of an operator oversight

or because of a hardware error. After the message:

device disconnected

o o > > o o o - -

the test continues.

EX = 11: This is a hardware error which involves the message:

g Ghupupip i R PR

After this the test continues.

Motion programs are commonly used when checking programs have shown an error.
These programs use the peripheral devices in an uncritical way, that is they
do not apply interrupt signals, the status word is not examined, and they
hardly ever send error messages to the operator. In this way and by selecting
a great number of runs it is possible to encircle the error, for example by

oscilloscope measurements.

Each kind of peripheral device may be tested by means of a core store of mi-
nimum size that is 4096 words, but for high-speed devices it is possible to
place the input-output buffer anywhere in the free part of the available core

store.

The testprograms for high-speed devices are so designed that they propose the
buffer start address by writing:

fbw = <address of first free word

- ———— -~ . -

and wait for input. If the operator types <NL>, he accepts the start address;
if he types a slash, the programs write:

and he must input another start address. After input from the operator the
address of the last buffer word is calculated and written. (ref. 7th proce-

dure: reserve buffer area).

30

1.5. INTERRUPTION.

Interruption (that is interrupt signals, the interrupt register (IR), the in-
terrupt mask (IM), and interrupt enasbled/dissbled) is applied in the following

way:

When the loader is stored and executed and when the interrupt sequence is exe-
cuted, interruption is disabled so that only interrupt No. O causes interrup-
tion. At all other times, that is during the execution of test programs and
procedures, interrupt is enabled.

At the Jump from the loader to directory the interrupt register is cleared, so
that old signals from the operator key or other peripheral devices should not
cause interruption. During the execution of directory m™(o) = IM(operator key)
= 1, involving that only interrupt No. O or the use of the operator key causes

interruption.

At the jump to a test program applying interrupt signals from the peripheral
device furthermore IM (interrupt channel No.) is set to 1. (This mask is con-
structed by the test program when initiated; at the same time the test program
stores the start address of its own subinterrupt sequence in word No. 4 of
table 1 in the loader). So for these test programs interrupt signals from the
peripheral device cause interruption. At the return jump from test programs the

interrupt mask of directory is reloaded.

The interrupt sequence is placed inside the loader. Its start address is stor-
ed in word No. 12 by the loader when initiated. It is shown in the flow chart
in chapter 1.2, and is now further described.

At the Jump to the interrupt sequence, interrupt is disabled. Such a Jump is

performed in the following situations:

1. Interrupt No. O which may always occur. If the interrupt sequence and the

first procedure are not destroyed, this message is written:

interrupt no. 0O

If this occurs (due to a hardware- or software-error), the loader should

be stored again.

31

By activating the operator key during the execution of a test program, di-

rectory or one of the other procedures. The interrupt sequence writes:

after which the operator may type t, o, 4, 1, or c. The typewriter now

continues to write one of the following underlined texts:

A jump to directory is performed, and the operator may now select a new

test program for the same device No.

and the operator may select a new output device number > 0. Hint: when
using the cpu-timer as output dev. No. even checking programs may be
used as motion porgrams. This can only be used for testprograms newer
than medio 1971.

device no.

A jump to the statement in the loader where the device number(-s) is(are)
selected. In this way the operator may select a new device No. (and after
this a new interrupt chamnel No.) for the same kind of peripheral device

loader 2

A set of test programs for a new kind of peripheral device may be loaded.

core store contents

A jump to procedure No. 8 (chapter 1.3) is performed.

At interrupt signals from the peripheral device during the execution of a
test program which applies interrupt. In this case a return Jump is per-
formed to the subinterrupt sequence of the test program with interrupt
still disabled. w2 contains the return address. The start address of this
sequence is stored by the test program when initiated in word No. 4 of
table 1 in the loader. The contents of the 4 W-registers and the excep-
tion-register are stored by the loader's interrupt sequence, and the re-
glsters are reloaded just before a jump with interrupt enabled is per-
formed to the broken test program.

32

1.6. BITPATTERNS.

- — . s o o o o e e

acters are shown in the table on the next page.

The character set has the following proporties:

1. Except for 8 zeroes and 8 ones it contains (one or more times) all charac-

ters which are composed by 8 bits.

2. During the generation of the characters row by row each of the 8 bitposi=
tions is activated in a very irregular way.

3. The programming of the generation is rather simple.

33

221
237
245
249

253

L

12
20
36

52

100
76

164

60
116
108
212

180
85
170
75
51

17
139
195

91
171
179
155
211
203
227

187
219
235
2u3

251

8

2k
ko
T2
136

56
10k

200
152
168

(P

120
232
216
169
153
105
170

85
150
102

86

39

135

182

87
103

35
167
151
199

119
183
215
231

2L7

16

112

32

96
160
25

224
161
97
35

162
37

225
163

99
166
102
165
170

85

90
153

156
92
30

218
93
157
220
158
9l
31

221
222

95
159

223

192

181

185
61
188
62

187
189
190

63

191

128

129
130
132
136

131
134
133
1o
137

148

135
142
1k
154
153
150
170

85
105
102
101
114
113
120

107
117
118
115
122
121
12k

119
123
125
126

127

3k

The characters are generated by cyclic shifts and complementation of the 19
8-bit characters shown below.

These characters consist of 1, 2, 3, or 4 ones. After 8 cyclic shifts
19«8 = 152 characters

are obtained, among which 6 + 4 + 4 = 14 characters are doublets (from the pat-
terns marked with ¥ and H), i.e.

152 - 14 = 138 different characters.

By complementation of each of these
138«<2 = 276 characters

are achieved, among which 8 + 4 + 8 + 2 = 22 characters are doublets (from the
patterns marked with dbbt), so the result is

276 - 22 = 254 different characters

i.e. the characters 1 to 254, It is noticed that the 2 characters O and 255 are
not included.

1 00000001

00000011
00000101
00001001
00010001 *t)

2

3

b

5

6 00000111
7 00001101
8 00001011
9 00011001
10 00010011
11 00010101
12 00101001

13 00001111 *ht)
14 00011101

15 00011011

16 00110101

17 00110011 k))
18 00101101)
19 01010101 %)

%) the pattern is repeated after 2 cyclic shifts.
) the pattern is repeated after 4 cyclic shifts.

*ii) the pattern is repeated after complementation and cyclic shifts.

- o o -

=Y

0000001

0000011
0000101
0001001

+\Wn

0000111
0001101
0001011
0011001
0010101

O O ovwn

After 7 cyclic shifts
Tx9 = 63 different characters
are optained.

After complementation of each of these
65«2 = 126 different characters

are achieved, i.e. the characters 1 to 126, The 2 characters O and 127 are not
included.

36 |

In the test program RC 709 1.1 eand 1.4 the generation of 522 bitpatterns

-

acters:
1 000000001

000000011
000000101
000001001
000010001

2

3

L

5

6 000000111
7 000001101

8 000001011

9 000011001

10 000010011

11 000010101

12 000110001

13 000101001

1k 000100101

15 001001001 %)

16 000001111
17 000011101
18 000011011
19 000010111
20 000111001
21 000110011
22 000100111
23 000110101
2k 000101101
25 000101011
26 001101001
27 001011001
28 001100101
29 001010101

%) the pattern is repeated after 3 cyclic shifts.

After 9 cyclic shifts
29x9 = 261 characters

are optained, among which 6 are doublets, i.e.
261 - 6 = 255 different characters.

By complementation of each of these

255x2 = 510 different characters
are achieved, i.e. the characters 1 to 510. It is noticed that 2 characters O
and 511 are not included.

37

1.7. THE RELOCATABLE LOADER .2

e -~ ———— " ———— o~ - - " -

The relocatsble loader 2 consists of the sbovementioned loader and procedures,
however so designed that the relocatable loader and the testprogrems may be
stored everywhere within the available core store, if the operator before ac-
tivating the AUTOLOAD push-button puts the start esddress into w3. This start
address must be so chosen that

0 { w3 £ length of core store -
(1ength of relocatsble loader +
length of testprogrems)

All lengths are measured in No. of bytes. The length of the relocatasble load-
er is 2980 bytes. ‘

When w3 = 0, the loader and the testprograms are stored as usual
(see Chapter 1.1, pege 5).

38

RCSL : 44 RT 1083
Author : Per Hansen

Edited : June 1975.

TEST OF RC 4818 DISC .

Key : RC 4000, Hardware testprogram, RC 4818.

page 2

-

Contents :
- RC 4818 Disc. Page
General information. 4
0.1 Sense commands and status 4
0.2 Control commands 5
0.3 Interrupt number specification 6
‘ 0.4 Selected output device 6
Testprogram descriptions. 7
1.3 Segment addresses 7
Purpose 7
Method 7
Initation 7
Error messages 9
1.4 Read and write 12
Purpose 12
Overwiew of operation 12
. Initation 14
Test 18
Timing 18
Test data kinds 19
Addressing modes 21
Error messages, statuserrors and dataerrors 21
Error messages, time out and interrupterrors 24
Special information 28

2.1

2.2

2.3

2.4

2.5

Read segments
Purpose
Initiation
Method

Error messages

Write segments
Purpose
Initiation

Method and error messages

Read segment addresses
Purpose

Initiation

Method

Error messages

Write segment addresses
Purpose
Initiation

Method and error messages

Move heads
Purpose
Initiation

Error messages

Page

29
29
29
30
30

32
32

32
33

34
34
34
34

35

36
36
36
37

38
38
38
38

page 3

page 4

General information.

0.1 Sense Commands and status.

The sense command
10 w dev<6+0

yields the status 0 when the controller is ready and connected .

The meaning of the statusbits is :

Bit no. Meaning.

0 Intervention
1 Parity
2 Timer
3 Data overrun
8 Disc in local
9 Pack -unsafe -
10 Synchronication error
11 Heads moving
12 : 15 Command register
16 : 23 Unit selected
‘ The sense command

10 w dev< 6+ 32

yields the status 32 when the controller is connected. Note that the transfer is
independent on the ready/busy state. The controller simulates ready with regard

to this command even when it is busy. The statusbit have the following meaning :

0:14 CR (0: 14), control register
15 Wrong 2nd index '
16 Address error
17 Drop out
18 Seek error
. 19 Pack unsafe

20:23 Unit register

page O

0.2 Contro! Commands

Control Command Modifications

The control commands are used to specify and initiate cylinder

selections and data block transfers. The disc contioller accepis

kY
4

12 modifications of the control comrand:

5 transfer first

9 transfer size
13 input dzota

17 output data

21 inpui address
25 output address
29 select disc

33 refurn to zero
37 transfer forward
41 transfer reverse
45 set mode

61 master clear

<cyl, head,sector>

<number of segments>
<first storage address>
<first storuge cddress>
<first storage address>
<first storage oddress>
<disc number>
<irrelevant>

<abs (cylinder differerce)>
<abs {cylinder difference)>
<mode>

<irrelevant>

The integers denote the values of bits 18-23 in the effective adcress
of the input/output instruction. The parameters in the brackets

< and > denote the contents of the working regisier selecicd by

the input/output instruction.

The parameters are interpreted as follows:

< disc number > modulo 16

< obs (cylinder difference) > modulo 512

< cylinder, heod, sector > modulo 512, 32, 14
< number of segmenis > modulo 512

< first storage address > modulo 262144

< mode > module 16

0.3

0.4

page

Interrupt number specification.

When the loader asks for interruptnumber, the data interrupt number and

then the head interrupt number must be specified.

The data interrupt is connected to the latter, the head interrupt to the

former channel (the one nearest the CPU on the bus) of the controller.

Selected output device.

The loader's question

output dev. no.

should be answered with the number of the printer, if available, other-
wise the typewriter. On this device all error messages will appear.
If however, the messages are undesired, they may be suppressed by

specifying the timer (device no. 3) as output device.

page

Testprogram description.

1

.3

Segment addresses.

Purpose.

The purpose of this program is to perform and test the storing of segment
addresses on the disc. Furthermore the exception register, the interrupt

signals and the statuswords are tested.

This program is also used (together with program 1.4) to initialize a

virgin disckit before put into operation.

Method.

The program writes or reads a sequence of addressmarks on selected
tracks. It is possible to skew the addressing from cylinder to cylin-
der to match the time which the heads need for changing cylinder.
The number of addressmarks written is restricted to full tracks since

it is not possible to write addressmark on part of a track.
Caution
When addressmarks have been written, the contents of the datasegments

are not initialized and must be overwritten by means of e.g. program

1.4 before the kit is put into operation

Initiation.

Typing of numbers.

Numbers typed to this program are interpreted as radix numbers, that
is the number base can be specified in front of the number separated

with a point. if no radix is specified the number is interpreted as a

page 8

decimal number.
Example : the number 2.1100000000
equals the number : 10.768 or just : 768 -
This feature is useful when specifying parameters with the purpose of

loading special bitpatterns and powers of two.

First the program asks the following questions, and the operator answers

as shown :
select disc = (05n§7)
. < <
first segm = (0-n-73079)
no. of segm = (9 N n < 73070) or m(ax)

When m is specified the maximum number of segments is used. Current
versions of the program however, use 36540 as max value.

The answers to question 2 and 3 must be numbers which are integer
multiples of 9. Otherwise the number is rounded off and a correction

message is typed on the console.
Now the program types
fbw = 9690 (if normal loader? is used't).

which may be acknowledged with a < NL >.

If any other character is typed, the first buffer word address must be
fyped by the operator. The program only reserves 9 words indepen-
dent on the number of segments under test.

Selection of various values of the fbw throughout the corestore is

used to check the highspeed channel addressing circuits.

page

When the program asks :

no. of shifts per cyl. =

the operator types a number which normally is 3. Any other may be used, but 3 shifts

will be optimum during normal operation.
The question :

write or read ?

must be answered y(es) or n(0) and the test enters run no. 1.
If write is selected, the write operation automatically will be followed by a read

operation on the segments specified.

Before any read operation the buffer is cleared.

Error messages.

The first run is initiated by issuing a masterclear command followed by a select
disc command. Now a sense operation is performed, and it is checked that one
and only one bit is sat in unitselected (bit 17 : 23) in statusword 0. If an error

is detected a message like this

run 1, segm. 0, unit 00000000

will be output.

Further, status O is examined, and in case of error both status 0 and status 32 is
typed out. To save space, wrong bits are indicated with ¢ or x , where ¢ means
a 1 mutilated into 0 and x means a 0 mutilated into 1 (¢ and x symbolizes 0 and

1 with a slash indicating that they are wrong).

Example :

run 1, segm., 0,select-status 0 : 00000x000000 Opp¢» 00000000
run 1, segm., 0select-status 32: 000001000000 000000000000

page 10

~

In the same way move-head, read and write operations are checked and in case of

statuserror the message is identified in one of these ways :

move - status

read - status

write - status

After a read operation a dataerror may occur, in this case a message identifying

runno., segment no. dataerror and core address is output.
Example :
runno. 10, segm. 8, addr. ¢¢¢p011xx00p0 1x11x1000p00 core addr 4224
Note :Before the read operation is initiated the buffer is cleared. This means that a
message of 0's and ¢'s only may be due to the addressmarks not being received or

received in a wrong place in the core store.

After any senseoperation the exception register is examined, this may cause the

message :

*** dev. disconnected

Now a masterclear command is sent to the controller and the registers are initiali-

zed anew. When (if) the controller turns connected the message :

dev. connected

is output.

Time consuming commands (datatransfers and head moves) are checked for maximum

duration. The messages and limits (milliseconds) are :

*** max busy (> 5000 mS)
*** max head move (> 500 mS)

page

The interrupt signals are checked for arriving at the correct time. If no interrupt

~ is received when the controller goes ready or head move is finished, the messages :
no head int
data :
is output.

If an interrupt is received during busy or while heads are moving it will cause this

message :

ill. busy {22?:} int.

An unexpected interrupt (e.g. datainterrupt after headmove or vice versa) is in-

dicated with
ill. ready {::;d} int.

If the same interrupt is received more times the message

multi {::;d} int.

L

is output.

Any of these messages are accompanied by the usual identification of runnumber and

segmentnumber.

- All errormessages will be output on the outputdevice specified to the loader.

1

page 12

Read and write.

Purgose .

This program is the main test for the disc. It is intended for use when

other tests are running ok and a long-term reliability testing is desired.

After any operation the exception register, interrupt and statusword

are examined.

The program is designed in a way which makes it easy for the opera-

tor to :

1. test the addressing of the disc.

2. test the addressing of the core store.

3. perform a critical test of the data chain, including
write modulator, read amplifier, head selection and
read detector.

4. perform a critical test at the surface of the magnetic
disc pack.

5. trace the origin of any error.

Overview of operation.

The operation of the program allows the user considerable flexibility,
as described below. But a typical run might be as follows. The program
first writes test data into an area of the disc specified by the operator.
Then it reads this data back and checls that it has been read correctly.
It does not immediately report errors discovered in the readoperation,
but keeps a record of errorsto be printed out later.After the read ope-
ration is completed or a hard error is met, the program prints out a
table showing in which segments data errors and status errors have
occured. Then it prints out a list of precisely what data errors oc-
cured, giving segment number , word number, expected value and

received value for each data error. Because the list of data errors

page -

can easily become unmanageably long, the user may specify a limit
on how many dataerrors are to be reported for each segment. The

test data used may be any of three kinds : (1) constant plus word num-
ber , (2) cyclic concatenated constants, (3) cyclic lippel code.

These test data kinds are described in detail further on.

There are three addressing modes available for both the write ope-
ration and the read operation. The segments may be read or written :
(1) forward, from first segment to last, (2) reversed, from last to
first, (3) alternating, shifting back and forth between high and low
ends of the area. The alternating address mode makes a really brutal
test of disc-head motion, but it is of course much slower than the

other addressing modes.

The write operation may be omitted if it is not desired.The read
operation and its accompanying error printout may be performed
from O to 8 times per run as specified by the user. This means
that a dispack may be tested as follows :

The discpack is mounted on one disc drive, data is written on
it, but not read back, the disc pack is moved to another drive,
the data is read back and checked.

13

page

Initiation.
First the program asks :
mode =
and the operator may answer one of these :

c (‘hange)
i (nitiate)
r(un)

t (able)

If run is selected, the test proceeds using a set of parameters which are
sat to a standard value unless changed by means of initiate.

The contents of these parameters (15 items) may be output on the selec-
ted output device by means of the table command.

By means of change or initiate one or more parameters may be changed.
If change is used the parameter changes will be considered temporary,
and the parameters will be reset when the runs specified have been
executed. If the initiate command is used, the new parameters will
remain until changed again by initiate or until the test is re-input.
When the change, initiate or table command has been executed, the
program returns to the mode = situation.

When change or initiate has been selected, the operator must type one
or more numbers (separated by commas) specifying the parameters to

be altered, or he may type

a (1)

The parameters and answers are :

(1) write oper.? y(es)orn(o).
(2) no. of read oper. perrun: 0Sn<8
(3) first segm. for test = 0<n< 73079

(4) no. of segm. for test = 1 < n< 73080

page 15

(5) blocksize writing = (amount of segments,

max. no. depends on core size)
(6) double buf. writing ? y(es)orn(o)

(7) addr. mode writing : f (orward), r (everse) or

a (lternating)

(8) blocksize reading = (like param. no. 5)
(9) double buf. reading ? y(es)orn(o)
(10) addr. mode reading : (like param. no. 7)
(11) test data kind = 1,2 or 3 (see below)
(12) max. no. of messages of

word level per segm. : 0<n< 256
(13) disc unit : 0<n<7

If test data kind 1 is selected, the program continues,

constant plus wordnumber.

constant = (any number, either a decimal

integer or with radix as des-
cribed in 1.3).

Or if kind = 2, then the program continues,

cyclic concatenated constants.

constants = (from 1 to 16 numbers, sepa-
rated by commas and termi-
nated by a new line).

Or if kind = 3 the program continues,

cyclic Lippelcode.

window width = (3 < windowwidth < 11)

page 16

If the test data kind is 2 or 3, the program furthermore asks for :

number of shifts per run = (| shifts | < length of

standard cycle in bits).
which determines the number of bits the testdata are cycled for each run.
The three kinds of testdata are described further on.

During setting of the parameters the program checks for consistency e.g. if

writemode = no attempt to reserve write buffers is rejected.
When the question
fbw =
has been answered the program reserves the space needed in the core store.
If the space is too little the program automaticly switches back to redefi-

nition of the buffersizes etc.

When the test is loaded, the parameters are initialized to the following

values :

(1) write oper. ? yes \
(2) no. of read oper. per run : 1 |
(3) first segm. for test = 0

(4) no. of segm. for test = 36540

(5) block size writing = 4

(6) double buf. writing : yes

(7) addr. mode writing : alternating

(8) block size reading = 5

(9) double buf. reading ? yes

page

(10) addr. mode reading : alternating
(11) test data kind = 3
cyclic lippel code
window width = 5
no. of shifts per run = 48
(12) max. no. of messages on
word level per segm. : 16
(13) disc unit = 0

Notice that no. of segm, for test (4) after loading is 36540 corresponding

to 9 megawords.

17

page 18

Test.

With the above initiation out of the way, the program runs as follows.

If the write operation was requested (question 1 above), the selected
type of testdata is written in the selected area of the disc (question

3 and 4). This is done with the selected blocksize (question 5) except
possibly for a short block in the top of the area. The sequence in which
writing is performed is either forward, reverse or alternating (question

7) as described later.

Then as many read operation as specified (question 2) are performed.
Each read operation is as follows :

The whole area is read in the blocksize specified (question 8), except
for a possible short block at the top of the area. The sequence is as specified
(question 10). Each block read is checked against what is expected.
Any errors found, along with any status errors in reading, are recorded
in a table in the free space in core of the program. Then when the read
operation is completed a list of errors is printed out as described later.
If a hard error is met, it will be reported immediately, the error table
will be output and the read operation terminated, that is the test starts
from the beginning. Hard error is either busy, disconnected, timer status

or synchronization error status.

After all the read operations have been performed if the test data kind
is 2 or 3, the standard cycle is rotated left by the amount specified

(question 11, third parameter) in preparation for the next run.
Timing.
The following table gives the times in minutes and seconds for reads

and writes of all 73080 segments of the disc. No errors occurred in

the trials.

page 19

Single-buffered Doubble-buffgred
writing reading writing reading
fo‘rword 9:30 9:35 6:25 6:35
o ,
reverse 9:00 9:00 5:50 6:10
alternating 14: 00 15:30 10: 00 10: 00

All operations were with blocksize equal to ten.

. Test data kinds.

If the test data kind (question 11 above) is | the contents of each word

written is a specified constant (the question constant =) plus the

" wordnumber " of that word in the disc. The'wordnumber " is

256 x segment number + wordnumber in segment

where " wordnumber " in segemnt runs from 0 to 255.

If the test data is 3, the data is again a sequence of constants
repeated throughout the disc. But this time the sequence is a
lippel code generated with the specified window width (que-

stion 11, third parameter).

See W.W.Peterson, Error-Correcting Codes, John Wiley and
Sons, 1962 for a description of Lippel Codes.

Briefly, this is a sequence of (2 ** window width) bits with
the property that , if it is considered cyclic, then every possib-

le sequence of bits (window-with) - long is a subsequence of it.

The sequence of words used is a concatenation of three lippel
sequences generated with the specified window width. This con-

catenation of three is just to get a sequence of bits whose length
is divisible by 24.

page

20

Addressing modes.

The three addressing modes available are forward, reverse , and

alternating. The diagram on the following page shows the order

of writing for each of these addressing modes.

In order to describe these addressing modes precisely in words,
we first need to define some concepts. To read or write an a-

rea on the disc at a given blocksize, the number of blocks is
n=(s+b-1)//b
where

s = number of segments in area

b = block size
One of these blocks may be a short block, with size
k=smod b<b

In this program the n io operations are divided into n blocks,
with the short block, if any, at the top of the area (highest

segment addresses). This is true regardsless of addressing mode.

In the forward addressing mode, these blocks are written or read

starting from the block at the lowest address and continued upward.

In the reverse addressing mode, the blocks are written or read star-
ting from the block at the highest address (that is, the one which

may be a short block), and continuing downward.

In the alternating addressing mode, the first block written or read
is the one at the lowest address in the area (the one which may
be short). The third is the next-lowest block, etc, as shown in

the diagram.

Errormessages, statuserror and dataerrors

All errormessages will be printed on the selected outputdevice (as

specified to the loader). When statuserrors or dataerrors are reported,

page 21

page 22

A /]

v
ajoulay|o

................. i

o.OC.Emmm

320|q Hoys

O9SI9Adl

6708/ *ou -wbas

9Z15320|q

o

bF————————————

page 23
bad bits are indicated by ¢ or x, when ¢ means a 1 mutilated

into a 0 and x means a 0 mutilated into a 1. (¢ and x symbo-

lizes a 0 and a 1 with a slash indicating that they are wrong).

If statuserrors are detected after a writeoperation or a head move
operation or a hard statuserror (timer or sync. error, bit 2 or
bit 10) after a read operation a message giving run number, seg-

ment number and statuswords is output.
example :

run 1, segm. 90 *** statys 0 0000000000x0 001110000000

run 1, segm. 90*** statys 32 100000000000 000001000000

A hard status after read will cause termination of the current read

operations.

If one or more errors are detected during the input from the disc,
a scheme (an example of this is shown on page 25 is deli-
vered on the selected output device. One line is printed for each
quarter of a cylinder (5 heads) containing at least one erroneous
segment. For every segment the program distinguishes between sta-
tuserror (that is bit 0 : 11 in status O unequal to zero) and data-
error (that is the received contents of one or more words of the

segment do not equal the expected (output-) contents.

In case of statuserror without dataerror a letter , which identifyes
the bad status is printed. If a dataerror is detected a digit corres-
ponding to the letter is printed (which is 0 if no statuserror).

Errorfree segments in the printout are identifyed by a - (minus).

The first kind of statuserror detected is identifyed by a (or 1),
the next by b (or 2) up to i (or 9). After the segment table
follows a list of the bad statuswords corresponding to the letters.

For example :

status error data error output
no no -
no yes 0
yes no a
1

yes yes

page 24

a) status 0 : x00000000000 001100000000

stauts 32 : 100000000000 000000000000

During the read operation the errors detected are stored in the

free area. If this area runs full the message :

error space exhausted

is output and the error list printing is initiated. After the list of

statuserror the dataerrors will be listed in the format :

run 2, segm. 1, data 00pppxx0 ¢lxxplel 00xxxpxC wn.1

For each wrong segment the bad words are listed until the limit
as specified in parameter 12 (max. no. of messages on word
level per segm.) has been reached. This number may be sat

to zero in order to suppress the dataerror printing.

Notice, that the input buffer is cleared before each read operation.

This means that an error message like this :

000ppp0p 0000p0p¢ 0000

(which means that the received data were 0) may be caused by
an addressing error in the controller or HCI causing the block

loaded to a wrong place inside (or outside) the corestore.

Errormessages, timeout and interrupterrors.

When a time consuming operation, i.e. a datg operation or a headmove
has been initiated, it is checked that the controller goes busy. If not,

the message

dev. not busy after io operation

is output and the test proceeds.

A

rumn

run

un

T

Yan

min

Tivre

AR
N
T
.
ot
[
.

.

o

aTan
i3{0 2

7 AdAATT 3AAAaRAlA
Db ~%659 a1anaadaa aaaaanaaa aasdaAasiiiy IRAane

page

ead operation no. L
3 lines of secr. errow LSS IRV

b i}
1 <

) - VIR RIS
s AR R Pt V= Sb=lth
Soctentt no, i i

Vead no., 0

Any aTanmAng FEREER
. Lo 1A Aaa daaaAad A aaaanannT anas mana 3Aaan
HOG AL aaaaa i0aa ANaaaand 33 B

2 I
: : 7 a
E'(‘-i“: 1), by (\

SRR I (=t G177 Yot =
RTEEARRIAR N T, :

N - . ‘. ‘5 ‘i
hoad no S 156 1€ 17 1A R y
I SRR Y ~r i L -
no =4 9-17 1=t A RISrt!

c3a AnAAAAaATT AAAAAAALA

g “ G0 mmmmem———— —==—==AAA A8AA7

e errorna Foellow:

Do GONNN00000 (01110200000
LGO000000000 Go00eN000000

. s O
Ly read oreratiion no, P

. e
R RN TR onarat ton Ny, B
ty)

i 3 1 P f‘ T t
[APEETALEA N LhHyo, 111, vraadv hend .

i & al - [B e

K I 1ines of optrm, erroy 1Yo

i H
bt e, i Pl ;
sacrant no, =1 L=
Ll -5a3hh s N ————

Tt

. . . e
L= e DSV PR RIS it
O0{) -—— - - - -— - - -
G0N)mmme mmm - = -
- o (3T

“nha naAAARAAn

[FESEN 25 aEATE Vi ’_;“, J_ .’U}‘..’ R

#OO00NNGHN0G Y01 LES0E0000

LOO000uL0ONY G00ue00nanLH

EYYOY MIEESATES

run 2,read oreration no, 1
run 2,error snace exhausted
. run 2, 11 lines of serm, error “sllow:
A :
head no, 0 ¢ 1 2 3 b
cvl, sesment no, 0-8 9-17 18-26 277=-35 36=-4Y4
0 0 =44 000000000 CGOOO0000 00000QN00 0QCOCNNCY 000002000
1 180 =224 111111112 111112123131 1111213331 213113123111 111100000
2 360 =404 000000000 000000000 CO00CGO0GC GOOCOO00D 00JG00000
head no. 5 6 7 8 9
cyl. segment no. 0-8 9-17 18-26 2'7=35 36=44
0 45 =89 060000000 G00CO0000 00040CLCO 00000000 000000000
1 225 =269 000000000 0000C000C 0000C0O000 000000000 000000000
2 Los ~-449 000000000 000000000 000OCH00O GOOO00000 000000000
head no. 10 11 12 13 1y
cyl. segment no, 0-8 9-17 18-286 27-35 3€-4h
0 30 =134 00000000C 00000Q000 CO00000C20 00NNONCO0 00CN0000D0
. 1 270 =314 11113133311 133313131 111111111 111000020 000000000
2 450 -4394 000000000 00000CO00 000000000 CNCO000N00 ODmmmm——-—
head no. 15 16 17 18 19
cyl., serment no, 0-8 9-17 18~2€ 27-35 36-4L
0] 135 =173 000000000 0000000CO 000000000 0CCONNO01 111111111
1 315 =359 000000000 COCO00CO0 0000CO00C 000CO000C 00000G000
* table of status errors follow:
a) statusO: 0x0000000000 001110000000
status32: 100000000000 000000000000
run 2, 875 word level error nessa~es follow,
run 2,sem, 0,data 00725x%10 olxcrlal 00xXXX~¥0 wn. 1
run 2,sem, 0,data xlrzxlxl 007A~~x~0 glx~~1~1 wn, 2
‘ run 2,sem, l,data 00nnzxaC ~lur~icl 00uxxexC wn. 1
run 2,sermn, l,data zloxxlul 00800xe0 o
select testprosranm: b
nunber of runs = 3
L:% read and write
inode: run
fbw = 14376
lbw = 24614
run no, 1
run l,read operation no, 1
run 1, 3 lines of seqr. error follow:
head no. 0 1 2 3 g
cyl, serment no. 0-8 9-17 18-26 27-35 36-44
. 20 3600 —3bi4 aaaraaraa 2aaaanaaa zaraanasm azaa23ana aazaasaza
s head no. 5 & 7) q
o (_Serment no, 0-8 9-17 18=-2¢ PVERT 36-4Y
- IOHS ~368Y aananazaa A2aanaaAa 2AA2AARAAA DAARARANA RRAAAARAA

page 26

i’ ki WL SRR O

page 27

After any sense operations the exception register is examined. This may

cause one of the messages :

*** exc. = b.l11

*** dev., disconnected

* k%

max busy (> 5000 mS)

* k%

max head move (> 500 mS)

The ‘'max' messages refer to the times in the parenthesises. If this
situation appears, the program issues a master clear command and
initiate the disc. This may (in case of disconnected) cause

the disc to go connected again, annouced by this message :

dev. connected

The interrupt signals are checked for arriving at the correct time.
If no interrupt is received when the controller goes ready or head

move is finished, on of the messages :

,‘head .
no int.
data

/

is output.

If an interrupt is received during busy or while heads are moving

it will cause this message :

A
ill. busy head R int.
data)
An unexpected interrupt (e.g. data interrupt after head move or

vice versa) is indicated with :

rd

&head
ill. ready) data
\

)
(\ int.

If the same interrupt is received more times the message :

Bead .

multi int.
data

is output.

Any of these messages are accompanied by the usual identifi-

cation of runnumber and segmentnumber .

All errormessages will be output on the outputdevice specified

to the loader.

Special information.

When testing certain discdrives, the message :
ill. busy head int.
may be output in the beginning of a read or write operation.

This is due to an otherwise harmless designerror in the disc-

drive.

page 28

2.1

page 29

Read segments.

Purpose.

This program performs input from one or more segments in an un-
critical way, that is without examining the status word or the

interrupt signals.

Initiation.

First the program writes :
select disc :

and the operator types the unit number of the disc to be tested.

Next the program writes :

first segment = (0< n<73079)

and

no. of segments = (1< n<73080)

and the operator answers with a number in the range shown in the
parenthesis . The program checks the range and automatically cuts
the size if too big.

Now the program asks :

blocksize =

and the operator must fype a number between 1 and 512. It is

checked that the block is inside the free area of the core store.

page 30

Method o

Before the first run a master clear command and a return to zero

command is issued.

Next the segments are read in this way :

(1) the heads are moved if necessary .
(2) the input buffer is cleared.
(3) the block transfer is initiated.

Although the data transferred are not checked, they will be avail-
able by the loader's core print feature. Thus, according to (2),
if the print shows empty cells, this may be because the block has

been transferred to a wrong place or not transferred at all.

Error messages

The only thing checked is the busy and disconnected state.
After any operation the device is sensed. This may cause one

of these messages to be output :

*** exc = b.11

*** dev. disconnected

k

max. busy (> 5000 mS)

*** max head move (> 500 mS)

The 'max' messages refer to the times in the paranthesis. In case

of disconnected the program issues a master clear command and

page

the run is terminated. In case of busy the program proceeds.

If the device happens to go connected again, the message :

‘dev. connected

will be output.

All the messages mentioned will be accompanied by an iden-

tification of run number, and segment or cylinder number.

31

2.2

Write segments.

Purpose

This program performs writing of specified information on some segments
in an uncritical way, that is without examining the status word or the
interrupt signals.

Initiation

First the program writes :

select disc :

and the operator types the unit number of the disc to be tested.

Next the program writes :

first segment = (0<n<73079)

and

no. of segments = (1<n<73080)

and the operator answers with a number in the range shown in the
parenthesis. The program checks the range and automatically cuts
down the size if necessary.

Now the programs asks :

blocksize =

and the operator must type a number between 1 and 512. It is

checked that the block lies inside the free area of the core store.

page 32

page 33

Finally the program asks :
contents =

and the operator types (either in decimal or with radix as described
in 1.3 above) from 1 up to maximum of 16 integers separated by
> comma > and terminated by < NL >. These integers are filled into

the output buffer as shown below (in this example the integers are :
-1,0,2):

word no. output buffer
0 -1
]
2 2
3 -1
4 0
254 2
255 -1
0 0
1 2
255 0

If the operator types wrong,the current line may be regretted ty typing

"al'.

Method and error messages

are similar to those of program 2.1.except that writing instead of reading
is performed.

2.3

Read segment addresses

Purpose
This program performs input from one or more segment addresses in an
uncritical way, that is without examining the statusword or the inter-

rupt signals.

Initiation

_ First the program writes :

select disc :

and the operator types the number of the disc to be ‘fested.Next the

program asks :

first segment = (0<n<73079)

and

no. of segment = (1<n<73080)

and the operator will answer by typing a number inside the range shown

in the parenthesis. The numbers will be checked for being integer mul-

tipla of nine. If not, they are automatically cut, and the new value
is given on the typewriter.

The blocksize is always set to 9 segments .

Method.

Before the first run a master clear command and a return to zero command

is issued. Next the segments are read in this way :

page 34

(1.) the heads are moved if necessary.
(2.) the input buffer is cleared.
(3.) the block transfer is started.

Although the address marks transfer-ed are not checked, they will be
available by means of the loader's core print feature. Thus , accor-
ding to (2), if the print shows empty cells, this may be because the

block has been transferred to a wrong place or not transferred at all.

Error messages.

The only thing checked is the busy and disconnected state. After any
operation the device is sensed. This may cause one of these messages

to be output :

*** ecx. =b.11

*** dev. disconnected

kX%

max. busy (> 5000 mS)

*** max. head move (>500mS)

The ' max ' messages refer to the time in the parenthesis.

In case of disconnected the program issues a master clear command and
the run is terminated. In case of busy the program proceeds.

If the device happens to go connected again, the message :

dev.connected

will be output.

All the messages mentioned will be accompanied by an identification

of runnumber and segment- or cylinder number.

page 35

2.4

Write segment addresses

PurEose

This program writes specified information on 9 segments under same head.

The writing is performed in an uncritical way that is, without examining

the status words and the interrupt signals.
Initiation
First the program writes :

select disc :

and the operator types the unit of the disc to be tested.

Next the program writes :

first segment = (0<n<73079)

and

number of segments = (1<n<73080)

and the operator will answer by typing a number inside the range shown
in the parenthesis. Thenumbers will be checked for being integer mul-
tipla of nine. If not, they are automatically cut, and the new value

is given on the typewriter.

page 36

The blocksize is always set to 9 segments.

Finally the program asks :
contents =

and the operator types (either in decimal or with radix as
described in 1.3 above) from 1 up to maximum of 8 integers
separated by < comma > and terminated by < NL >.

These integers are filled into the output buffer as shown

below. (In this example the integers are -1, 0, 2) :

word no. output buffer

0 N O O A W N —~ O
o

If the operator types a wrong number, the current line may be

regretted by typing ' & '.

Method and errormessages

are similar to those of program 2.3 except that writing instead

of reading is performed.

page 37

2.5

page 38

Move heads

Purpose

This program perform a sequence of head movings to specified

cylinders.

Initiation

The program asks the following questions, and the operator must

answer as indicated to the right :

select disc = (0<unit<7)

cyl. sequence = (up to 16 decimals or radix number

separated by commas and terminated
by < NL >).

Errormessages

After each move operation the statusword is examined to see if
bit 10 (= synchronization error) is equal to zero. If not, the
message :

*** sync. error

will be output. As neither read nor write has been attempted,
sync. error in this case is identical to the signal ' seek error '

from the disc drive.

Further , the exception register is examined, and if disconnected,

the message :

*** dev. disconnected

will be output. This will cause the program to issue a master
clear and the run will be terminated. If the device goes connec-

ted again the message :

dev. connected

will appear. Hard errors during head move may give rise to one

of these messages :

*** exc. = b.11
*** max. busy (> 2000 mS)
*** max. head move (> 500 mS)

Notice, that the controller must not do busy during head move

opetations.

All error messages are accompanied by an identification of run

number and cylinder number.

page 39

