TECHNICAL MANUAL

RCSL: 51-VB754
Author: Allan Giese -
Edited: February 1970

RC k005
TECHNICAL DESCRIPTION

VOLWME 1

A/S REGNECENTRALEN
Falkoneralle 1
2000 Copenhagen F

CONTENTS:

s e o v o

RC 4000, HARIWARE ORGANIZATION eecesocossoccsscessoccssacccacass
TECHNICAL CONTROL PANEL AND OPERATOR CONTROL PANEL FOR

THE RC 4000 COMPUTER sevccocococrcscossscocasssssssasssacssanans
THE MICROPROGRAM ALGORITHMS FOR THE RC 4000 COMPUTER seescoccess
THE MICROPROGRAM FOR THE RC 4000 COMPUTER seessesscsssscccsccnsce
BIT PATTERN IN THE MICROPROGRAM STORE FOR THE RC 4000 COMPUTER .
CORE STORE CONTROLLER FOR THE RC 4000 COMPUTER seeevccocccccccce

T I el darT

RCSL NO:

51-VB6hlL
51-VB263
51-VB598

51-VB306 - .

51-VB357

VYLl

-y

RCSL NO: 44-D6

~ 18 REGNECENTRALEN AUTHOR & Al Giese

h|: SCANDINAVIAN INFORMATION PROCESSING SYSTEMS EDITION : October 1968

RC 4000, HARDWARE ORGANIZATION

Abstract

This paper gives a short description of the hardware organization
of the central processor and the input/output system. The mainte-
nance problem is discussed and diagnostic programs are presented.
The problems around the selection and use of high - speed inte-

grated circuits are considered together with mounting and wiring

techniques.

CONTENTS

1. CPU ORGANIZATION
1.1. Design Considerations

1.2. Register Structure

2. INPUT/OUTPUT
2.1. Introduction
2.2. Low-Speed Data Channel
2.3. High-Speed Data Channel
2.4. Input/Output Control

3. DIAGNOSTIC PROGRAMS FOR TESTING OF HARDWARE
3. 1. Introduction
3.2. Diagnostic Programs for the Central Processor
3.3. Diagnostic Programs for the Peripheral Devices

3.4. Automatic Error Indication

4, TECHNOLOGY
4.1. Integrated Circuits
4,2, Printed Circuit Boards

4.3. Wiring Technique

APPENDIX

page

®© N N N N w

0O 0 0 VO

10

11
1
11
12

13

1. CPU ORGANIZATION

1.1. Design Considerations

Experience from the design of the GIER computer showed that the control of a
computer from a microprogram store containing the microprogram implied a number
of advantages such as: flexibility, simple structure, good reliability, and mode-
rate component cost. The disadvantage of such a scheme is that the repetition
rate for control signals is limited to the cycle time of the microprogram store,
In our case, however, this is not a severe obstacle, since the main factor which
influences the instruction execution time is the cycle time for the core store and
not that of the microprogram store. The cycle time for the core store is 1500
nanoseconds for read-restore and 2500 nanoseconds for read-modify-write, whereas
. the cycle time for the microprogram is only 500 nanoseconds. It was therefore de-
cided to control the RC 4000 computer by means of a microprogram.

The microprogram store is organized like a general store having a maximum capa~-
city of 1024 words, each of 100 bits, The store is constructed as a decoding net-
work implemented entirely by means of integrated circuits. For maintenance
purposes, the microprogram can be controlled to be executed step by step.

The repetition rate of 500 nanoseconds implies that all the microoperations speci-
fied in one microstep are active in this period. Certain of the logical operations,
derived from the microoperations, must even within this time interval follow a
strictly timed format in order for the computer to execute its instructions. The
period of 500 nanoseconds is consequently subdivided into 10 intervals by pulses,
having a pulse width of 100 nanoseconds and delayed 50 nanoseconds with respect
to each other. The circuit which accomplishes this is a feedback shift register con-
trolled by an oscillator,

1.2, Register Structure

The registers of the RC 4000 are grouped around a common bus line system, a con-
figuration which has the advantage that all the registers can transfer data directly
to one another. The block diagram, in the appendix, shows not only the data
paths between the registers of the Arithmetic Unit, but also the paths to the Core
Store Unit, the Interrupt Unit, and the Input/Output Unit. The direction of flow
is indicated by means of arrows, and the bit numbers are written on the data paths.

place via STdata. The register is logically divided info three groups.

STc;!ata(O:23) Specifies a 24-bit dataword .
STdata(24:26) Specifies the protection bits.
. STdata(27) Specifies the parity bit. (Not shown on the block

diagram)

Core Store Address Register STaddr(6:22):

This register is able fo address the maximum core store configuration of 128 K
words. STaddr may therefore have fewer bits in actual installations.

Working Registers W [0](0:23), W[1](0:23), w2)(0:23), W[3](0:23):
The four working Tegisters, each of 24 bits, can be specified as the result
register, Three of the registers (W[1], W([2], and W[3]), also function as index
registers. The current index register is specified by the instruction format, Since
the working registers also act as the first four locations of the core store, it is
possible to execute instructions stored in these registers. Like the rest of the

storage words each register is supplied with its own protection bits (PB),

Protection Bits PB[O](0:2), PB{1](0:2), PB[2)(0:2), PB]3](0:2):

The four 3-bit registers determine together with the protection register, PR,
whether the corresponding working register is protected or not. For example,
W[O] is protected if PR(PB[O]) equals one, otherwise WwIO] is unprotected,

This 8-bit register specifies the protection status for the eight possible values
of the protection bits. PR(O) is per manently equal to one.

Instruction Counter IC(5:22):

The instruction counter contains the word address of the instruction to be exe-
cuted. IC is normally increased by one after execution of an instruction, but jump
instructions insert explicitly the jump address in IC. A decoding of IC detects when
the storage capacity is exceeded.

The 13-bit sequential counter is used to determine the number of iterations in, for
example the multiply, divide, shift, and normalize instructions. For each iteration,
SC is either increased or decreased by one.,

In floating-point operations, SC is also used for temporary storage of the resultant
exponent,

When a new instruction is fetched from storage, the function part of the instruction,
i.e. the twelve left-most bits of the instruction, is assigned to the function register.
FR is divided into the following five subfields:

FR(O:5) Specifies 64 basic instructions,

FR(6, 7) Specifies one of the working registers as result register,
FR(8) Indirect addressing.

FR(9) Relative addressing.

FR(10,11) Indexed addressing.

Exception Register EX(21:23):

An exceptional outcome of an arithmetic instruction or an input/output instruc-
tion has the effect of setting the two bits EX(22) and EX(23). Bit EX(21) speci-
fies the precision (significance mode) for floating=point operations. The contents
of EX can also be altered by means of the Exception Load instruction.

Sforcge Buffer SB(O 23):

When a new instruction is fetched from storage, the address part (the displace-
ment) of the instruction is assigned fo the 12 right-most bits of SB, This displace=
ment is then extended to a 24-bit signed integer. The address modifications take
then place in SB in order to obtain the effective address for the data word. In
consequence of, that the address for the data word is generated in SB, we have
also established an address path between the core store address register (STaddr)
and SB. Moreover, the 24-bit data word, which is read from the core store,

is transferred to SB just as a data word from the Arithmetic Unit to the core

store also passes through SB. It is therefore no coincidence that the name for

this register is storage buffer.

Either the contents of SB or its complement may be employed as input data for
the ADDER circuitry. This makes it possible for the ADDER to perform addition
and subtraction,

Protect Key,PK(O:2):

Every time a word is read from storage, the protection bits are inserted in PK,
and reversely, PK determines the protection bits to be stored.

Storage Buffer Extension n SE(O:13):

SE forms together with SB a 38-bit register which is used in floating-point opera-
tions to store the mantissa. The two extra bits SE(12,13) play an important role
in the rounding calculations,

Either the contents of SE or its complement may be employed as input data for
the extended ADDER circuitry,

Adder Circuitry ADDER(-1:23):

The adder is a parallel adder utilizing extensive carry look-ahead technique.
25 bits are added in typically 120 nanoseconds and 39 bits in 140 nanoseconds.

A-Register AR(~1 :23):

AR constitutes together with SB the two data parts fo the ADDER circuitry, Bit
AR(=1) detects if an overflow situation occurs.

A -Register Extension 1V AE(O:13):

The combined 38-bit register ARconAE is used in a manner very similar to that of
SBconSE,

|
|

B-Register BR(O:23):

BR is mainly used by multiply, divide, and double length instruction, whereas
other instructions only use the register to store temporary results.

If an instruction requires two successive storage words, the address of the
second word is held in BR while the first word is fetched from core store.
An address path is therefore provided from BR to STaddr,

B-Register Extension BE(O 11):

The BR register is extended in order to be able to execute the floating-point
division instruction.

Display and Manual Control of Bus.

This unit consists of the two registers, DR(-1:23) and DP(O:2) which control
RUS(-1:23) and PBUS(O:2), respectively.

Interrupt Reglsfer IR(O:23):

Each bit in IR is connected to an external or an internal device, which sets
the bit in accordance with some specified condition. The left-most bits are
assigned highest priority.

Interrupt Mask IM(O:23):

IM determines whether a given interrupt request should be honoured or not.
IM(O) is permanently equal to one.

Input/Output Unit,

Each input/output device has in principle a 24-bit buffer register plus the two
status bits Disconnected and Busy.

2. INPUT/OUTPUT

2.1.

2.2.

2.3.

Introduction

Experiences have shown that many programs do not use the central processor
very effective, because a great percentage of the total computer time is spent,
waiting for the input/output devices to complete their operations. This fact

has resulted in the development of monitor systems capable of executing several
programs in parallel. The advantage of such a scheme is best illustrated by
considering two programs A and B. When program A arrives to an input/output
instruction, only a short message is sent to the selected device and the monitor
will then transfer control to program B. Control is first handed over to program
A again, when the external media has terminated. Hence, the central processor
does not have to wait for the relatively slow devices. A scheme like this, ob~
viously, requires that each device has its own controller, which can initiate
and operate the device independent of the program.

The RC 4000 has two data channels for communication between the central pro-
cessor and the peripheral devices; one for low-speed devices and one for high-
speed devices.

Low-Speed Data Channel

Slow, character-oriented devices like input/output typewriters, paper tape
punches, and paper tape readers are connected to a single low-speed data
channel, which communicates directly with the internal working registers.
Each device has a separate buffer register of 24 bits, which transmits or re-
ceives one character a time to or from the external data medium.

The data channel consists of an input/output bus, with 24 bits for transfer of
data to or from device buffers and 6 bits for channel control information.
Transfers of data between working register and device buffers take place one
at a time under program control. Transfers between buffer registers and ex-
ternal data media, however, are controlled independently by the devices, so
that several such transfers can occur simultaneously.

High-Speed Data Channel

Input/output devices such as magnetic drum stores, magnetic disc stores, and
magnetic tape stations, which transmit large volumes of data at high speeds,
are connected to a single high-speed data channel. This channel provides
input/output directly to or from the internal store on a cycle-stealing basis.
Program execution and input/output operations occur simultaneously.

Block transfers can take place on several devices at once. A multiplexer
switches rapidly among the devices, connecting them whenever they are ready
to transfer a complete data word to or from the store.

2.4.

The method of solving the multi-access competition for core store cycles in-
fluences the kind and number of peripheral transfers which may be simul-
taneously executed. If more than one device is ready for transfer of data,

the one having the greatest transfer rate should be first served, since this
device will issue its next request before the other. This strategy is adopted
for the RC 4000 computer and it is implemented by means of a priority system.

The capacity of the channel is 500,000 words per second.

Input/Output Control

There are four basic input/output commands: read, write, control, and sense.
A read command initiates the input of a character to a buffer register. The
write and control commands transfer the contents of a working register to a
buffer register and initiate output and control operations respectively. A
sense command requests a device to transfer a status word from its buffer to

a working register. The exception register indicates whether the status word
is available; this is the case only after the termination of an operation. The
status word contains the last input or output character as well as information
about parity errors and other exceptional events.

The high-speed devices use the low-speed channel to transfer commands and
addresses of buffer areas in the store. All devices are thus controlled by the
standard input/output instruction,

3. DIAGNOSTIC PROGRAMS FOR TESTING OF HARDWARE

3.1.
®
3.2.
@
3.3,

Introduction

Experiences have shown that the use of microelectronic circuits causes main-
tainability problems, because errors occur so seldom that it is difficult for the
service engineers to have sufficient training in error location. Thus, the new
systems coupled with older maintenance techniques, will result in machine
break-downs for long periods, although of lower frequency. The result is the
apparent paradox of more reliable systems being less maintainable. Diagnostic
programs have therefore been developed for the RC 4000 computer system.

Many of these programs do not only detect failures, but are also able to iso-
late them to specific modules. The programs fall into two categories; the first
group comprises testprograms for the central processor, whereas the programs
which check the peripheral devices constitute the second group. A major
difference between the two types of programs is that the testprograms for the
peripheral devices are constructed under the assumption that the central pro-
cessor itself works correctly, but this, of course, can not be taken for granted
for programs belonging to category one. The diagnostic programs for the central
processor are therefore often referred to as self-check programs.

Diagnostic Programs for the Central Processor

The self-check programs are oriented towards the checking of hardware failures
in microcommands, decoding networks, arithmetic registers, etc. An O.K.
message is typed on the operator's typewriter if the outcome of these tests shows
that the central processor works correctly. In the case where an error is found,
information concerning its nature is typed out whenever possible, but it should
be noted that some errors have the effect of destroing the programs completely
and thereby prevent further communication between the operator and the self-
check programs. Under such circumstances, the operator must turn to the simple
diagnostic programs, which can be executed manually from the technical panel.

The self-check programs are usually controlled by the monitor system which then
takes care that they are executed at regular intervals. A special version of the
program is also provided which can be loaded by means of the autoload key.

Special programs for testing the core store are also available. As an example,
one of the programs will generate and write into the core store a worst-case

bit pattern after which the program starts to read and check the store word by
word. In the event of an error, the erroneous word and its location are indicated.

Diagnostic Programs for the Peripheral Devices

A diagnostic program is constructed for each type of peripheral device. The
prime objective for this assembly of programs is to reduce the tedious task of
manual error detection and location to a minimum. The programs are controlled
from the operator's typewriter in a conversational mode.

3.4.

The programs check for each device the four input/output commands (sense,
control, read, write), the status bits, the local/remote status, plus an
additional number of tests dependent on the peripheral device.

If a peripheral device does not complete its operation within a prescribed
time, a watch dog timer comes into force and terminates the operation. This
action is indicated by a status bit.

Avutomatic Error Indication

The computer system is constantly supervised for gross failures even when the
diagnostic programs are not running. This is made possible by additional hard-
ware, and concerns the following:

Core Store: check for parity error,

Read-Only Store: check for parity error.

Power Supply: check for current and voltage levels.

Temperature: check of the temperature in the cabinets.

Blower Assembly: check for that the fans are running.

-10 -

4. TECHNOLOGY

4.1,

4,2,

Integrated Circuits

The use of integrated circuits (ICs) has greatly influenced the design and
performance of todays computers. These circuits offer advantages such as
high reliability, high-speed switching delay time, and a wide operating
temperature range. This clearly indicates that ICs were going to be used
as the basic logic circuits for the RC 4000 computer.

The circuits, used in RC 4000, are the Transistor-Transistor-Logic integra-
ted circuits (TTL) as supplied by Texas Instruments in Series 74, The charac-
teristics are: noise margins minimum 0.4 volt, typical 1 volt; propagation
delay time typical 13 nanoseconds; fan-out 10 for standard gates, 30 for
power gates; low impedance at both logic levels with specified good ca-
pacity driving capability; only one supply voltage of +5 volts; O to 70
degrees centigrade operating range; voltage swing minimum 2 volts; power
dissipation typically 10 mW per gate; 14- or 16-lead plastic dual-inline
package. Integrated circuits from the compatible Series 74H, characterized
by a propagation delay time of only 6 nanoseconds, have been employed
where speed is of paramount importance, as for example in the adder cir-
cuitry.

The Series 74 comprise a number of different circuits from which we have
chosen: NAND-gates having 2, 4, and 8 inputs, the 4~input power NAND=-
gate, plus the 2-wide 2~input AND -OR-INVERT gate, and the 4-wide
2-input AND-OR-INVERT gate. Two of the Series bistable elements are
employed, namely the J-K flip~flop and the D-type flip-flop both of which
are edge~triggered. A 4-bit binary adder is also used.

Special circuit functions, for example line drivers, level converters etc.,
which are not available as ICs have been constructed from discrete compo-
nents,

Printed Circuit Boards

The ICs are mounted on dual-sided printed circuit boards, 11x14.7 cm, by
soldering technique. The boards are provided with a 41-pin connector and
test points for almost all output signals. The latter facilitates the error loca-
tion on the board.

A total number of approximately 65 different board types are used for the

implementation of the entire computer system. Several considerations have
influenced the partitioning of the logic to the various board types. A small
number of boards have the advantage of minimizing the spare part problem;

-1 -

but on the other hand, too few board types imply that an excessive number

of boards are necessary to construct even a simple unit. Another problem is
that the physical distance between the sending and the receiving IC increases
with the total number of boards used in the system, and this increased wire
length may lead to severe noise problems and signal delays.

4.3.Wiring Technique

The interconnection between the boards is done by means of ordinary back-
plane wiring. It was soon realized that the number of connections for the
central processor (500 boards) would exceed 10,000 clearly indicating that
some sort of automatic data processing had to be done. We, therefore, decid-
ed to make a programming system, which covers the following two principal
areas:
1) From the logic diagrams and a list over the number of used boards,
supplied by the designer, the program will analyze all interconnec-
tions between the boards, and then assign a position number to each
board in the rack. The program cannot produce an optimal solution
because of the almost infinite number of possible combinations; but
the solutions have proved to be satisfactory.

2) After the boards have been positioned, the program produces the
wiring lists. These lists contain information about the addresses (i.e.
the position- and pin-number of the terminal)to be interconnected
and the necessary wire-length.

The programming system also incorporates very useful design and checking faci-
lities,

-12 -

-13 -
APPENDIX

{

. |

g BT ey !
0 |

[}

]

|

BUJS(0:23) PBUS0:2)

'W(0} P80}
w(l) 0:23 [PB(D) &, 0:2 .
| PR} |
PR(3)

w(2)
w(3)

0:1 0:11

22:231 EX I

-1 YR 0:23 0:13 r—‘A f:

!
!
|
1
1
i
i
1
1
'
[
)

INTERRUPT UNIT

I !
' 1R 0:23 '
1 IM i
| |
| |

INPUT/QUTPUT UNIT

[}

T : |
i A 1/OCONTRO &gl]
T H |
! DEVICE 0 !
! DEVICE :
| DEVICE - ,

RC 4000 REGISTER STRUCTURE

V 10690

TECHNICAL CONTROL PANEL
ARD

OPERATOR CONTROL PANEL
FOR

THE RC 4000 COMPUTER

A/S REGNECENTRALEN
Falkoneralle 1
2000 Copenhegen F

RCSL:
Author:
Editeds

51-VBGLY
Allen Giese
December 1969

s s o > 2

16 OPmA-mR CONTROL PMEEJ PP OGOSOOPCEOYLEOEPQAOGCCOCEOOOOCOESOOVIESLOOERGSE D

20 TmmICAL CONTROL PANM‘ [Z X R R E NS EEENERS NS EREN NN EN NN ENRERENNRENENN]

2.1,
2.2
2.3,
R

2.5.
2.6.
2.7.
2.8.

VB6kk

Control Panel Controls and Indicators cececcccssscsescece
Alter end Display Registers 06 E0esE0EER000RE00EREROODGD
Execute Program Instruction by Instruction cceescscoscos
Execute the Microprogram Micro Instruction by

Micro Instruction cececcccececosccoscccssoeocccesnsccnsne
Read a Word from Storage .,......o....oc......;.o.,.....
Insert or Modify a Word in Storage scceseccecceccscesccon
Insert a Word in IM Register sececcvssascscocsssecccsnce

Clear Selected Bits in IR register ceccovescecceccocossce

page

11
11

12
13
13
ik

This paper serves as an introduction for menusl control‘ of the RC L4000 Com-
puter. The control is exercised by means of keys and pushbﬁttons on either
the Opérator Control Panel or on the Technicel Control Panel., Visual indi-
cations of the machine status and the contents of registers are also given.

1. OPERATOR CONTROL PANEL

> G o 2 s B e W D B . Ut S W A i U D i e O B

CPU POWER ON Green light indicates that all power supplies
indicator for the central processor function correctly.
FMERGENCY BREAK When this knob is pulled, all power supplies are

instantaneously disconnected.

OPERATOR CONTROL ON/OFF With this key-operated switch in position OFF,
switch the pushbuttons on the operstor's panel are dis-
abled, With the key in position ON and if at the
same time the Technical Control Panel is disa-
bled (i.e. the MODE SELECTOR switch on the Tech-
. ‘nical Control Panel is in position NORMAL), then
the three pushbuttons RESET, START, and AUTQLOAD
will function normslly.

OPERATOR MODE Green light indicates that the OPERATOR CONTROL

indicator end the MODE SELECTOR keys are in positions ON
and NORMAL, respectively. Moreover, the power
supplies for the central processor must work sa-
tisfactorily.

VB6kL

RESET
‘pushbutton

START
pushbutton

AUTOLOAD
pushbutton

CPU RUNNING
indicator

VB6UL

Pressing this button interrupts the program in
progress. Thereafter, the return address is
stored in storage word 10, and the computer is
set in Monitor Mode with the interrupt system
disabled. The computer remains in this reset
state indicated by red light in the indicator
RESET MODE, until the operator presses either
the START pushbutton or the AUTOLOAD pushbuttone.

The program will not enter the reset situation -
if an Interrupt redquest is being served and at

the same time the interrupt start address erro-
neously points at a non-existing core store lo-
cation. This situation is indicated by no light
in the CPU RUNNING indicator.

When this pushbutton is pressed, the instrue-
tion counter is set to an address kept in stor-
sge word 1lt, after which the fetch cycle is ini-
tiated. The START pushbutton has no effect, un-
less the machine is in the reset state.

The autoload facility is used to initiste a
boothstrapping routine that loads a program in-
to the internal store from device number O
(normally the paper tape reader). The AUTOLOAD
pushbutton has no effect, unless the machine is
in the reset state.

Green light indicates that the Teclmicel Con-~
trol Panel is switched off (MODE SELECTOR key
in position NORMAL) and that the computer has
executed & fetch cycle, i.e. an instruction has
been fetched to be executed, within the last
200 milliseconds.

RESET MODE
indicstor

CPU PARITY ERROR
indicator

vB6l

Red light indicates that the computer is in reset
state walting for the operator to depress either
the START or the AUTOLOAD pushbutton

Red light indicates that the computer has been
stopped due to a parity failure in core store or
microprogram store. The two types of errors can
be distinguished by indicators on the Technical
Control Panel.

2. TECHNICAL CONTROL PANEL

2 T 1100 D ek i s o P s S 2 PO e o S B0 S S A i o i s

This panel is located behind the left-hend front cover of the central pro-
cessor and it is mainly intended for control of the RC 4000 Computer during
maintenance periods. ‘

The pushbuttons on the panel are all inoperative when the MODE SELECTOR
switch is in position NORMAL (Normsl Mode), but turning the key to TECHNI-
CAL position (Technical Mode) makes it possible for the operator to control
and inspect the status of the computer. | '

Normally, the microprogram is executed and the computer is said to be in
Running Mode. The opposite to Running Mode is called Stopped Mode in which

case the microprogrem is stopped.

Besides the Normal Mode and Running Mode (end their corresponding opposite
modes) we do have two more modes, which esre also opposite to one another,
nemely Computer Mode snd Menual Mode. In Computer Mode, the next micro ad-
dress is generated by the microprogram; in Manual Mode, the next micro ad-
dress may be inserted manually by mesns of pushbuttons.

A complete list for the modes is therefore:

Normal Mode Technical Mode
Running Mode Stopped Mode
Computer Mode Manual Mode

2:1.. Contro.}'_Panel Controls and Indicators

o e s et o S S s B D D S T T D A T D D T =

The following list gives a detailed description ofr the controls and indica~
tors on the Technical Control Panel. If nothing else is explicitly stated,
an indicator lamp lights to denote the presence of a binary one.

VB6UL

MDODE SELECTOR
NORMAL/ TECHNICAL
switch

CONTINUE
pushbutton

SINGLE INSTRUCTION
pushbutton

VB64k

-7 -

With thils key-operated switch in position NORMAL,
all pushbuttons on the Technical Control Panel
are disabled, and the computer is automaticelly
operating in the following modes:

1. Normal Modes

2. Running Mode; and

3. Computer Mode.

It is only possible to remove the key from the

lock when the key is in position NORMAL.

When the switch is turned to TECHNICAL position,
all pushbuttons function normaily, and the com-
puter operates in Technical Mode. The Operator
Console is disabled in this mode.

Pressing this button sets the computer in Running
Modes i.e. the microprogram is executed.

When this pushbutton is pressed, the computer
stops after an instruction has been fetched
(fetched cycle) but before it is executed (exe-
cute cycle). The contents of the function regis-
ter (FR), the storage buffer (SB), and the in- |
struction counter (IC) equal:
FR: operation byte. ‘
SB: eddress byte extended to & 24-bit integer.
IC: address of the next consecutive instruc-
tion.
For Jjump and skip instructions the next in-
struction is not necessarily the consecu-
tive instruction. |

If SINGLE INSTRUCTION is pressed repeatedly, the
conmputer steps through the program one instruc-~
tion at a time.

If the microprogram is executing an interrupt re-
quest end if thé start address of the interrup~ v
tion program erroneously points at a non-existing
core store loaction, the microprogram will not be
stopped by depressing the SINGLE INSTRUCTION
pushbutton.

-8 -

SINGLE MICRO INSTRUCTION When this pushbutton i‘s pressed, the computer stops

pushbutton

MAR COMPUTER CONTROLLED

pushbutton

MAR MANUAL CONTROLLED
pushbutton

JUMP SELECTOR REGISTER
indicators

MICRO COMMAND REGISTER
indicators

MICRO ADDRESS REGISTER

pushbuttons and
indicators

NORMAL MODE
indicator

VB6LL

after each micro instruction and Stopped Mode is
set. If SINGLE MICRD INSTRUCTION is pressed repeat-
edly, the computer steps through the microprogram
one micro imstruction at a time, so that the con-
tents of registers can be observed in each step.

Note that a step by step execution of the micro-

program will not result in an instruction exception

(IR(0)= 1) in two cases, nemely:

1. the core store address exceeds the core store
capacitys; and

2. an unprotected program jumps to a protected lo-
cation.

Pressing this pushbutton stops the computer when
the current micro instruction is completed and sets
the computer in Stopped Mode and Computer Mode.

Pressing this pushbutton sets the computer in Manu-
&l Mode and in Stopped Mode.

Indicate the contents of the 50-bit JS register.
Indicate the contents of the 69-bit MC register.

Indicate the contents of the 10-bit micro address
to be executed. The micro address can be manuvally
loaded by means of the pushbuttons below the indi-
cators when the computer is in Stopped Mode and
Manual Mode.

The indicator lights when the computer is in Normal
Mode, The light is out in Technicsl Mode.

RUNNING MDDE
indicator

MANUAL MODE
indicator

MONITOR MODE
indicator

MPS CONTROL ON
pushbutton

MPS CONTROL OFF
pushbutton

MPS CONTROL
indieator

MPS ERROR

indicator

CORE STORE CONTROL ON
pushbutton

CORE STORE CONTROL OFF

pushbutton

VB6Lk

-9 -

The indicator lights when the computer is in Run-
ning Mode. The light 1s out in Stopped Mode.

The indicator lights when the computer is in Man-
ual Mode. The light is out in Computer Mode.

The indicator lights when the computer iz in Mon-
itor Mode. The light is out 1n Task Mode.

When this pushbutton is pressed, every word read
from the microprogram store is checked against
parity error.

Switching the Mode Selector key to Normal posi-
tion causes the MPS control to be set.

When this pushbutton is pressed, no parity check
is performed on the microprogram store. The bub-
ton has also the effect of erasing a possible
MPS error.

The indicator lights when the micrcprogram is
checked against parity error.

In the event of & parity error ceused by the mi-
croprogram store, the computer will stop at once
end the indicator will light.

When this pushbutton is pressed, every word
read from the core store is checked sgainst pari-

iy error.

Switching the Mode Selector key to Normel posi-
tion causes the Core Store Control to be set.

When this pushbutton is pressed, no parity check
ig performed on the core store. The button has
also the effect of erasing & possible core store

parity error.

CORE STORE CONTROL
indicator

CORE STORE ERROR
indicator

REGISTER DISPLAY
indicator

VB6l

- 10 -

The indicator lights when the core store 1s checked
against parity error. '

In the event of a parity error ceused by the core
store, the computer will stop at once and the indl-
cstor will light.

This light signifies that the REGISTER DISPLAY
field functions normslly, and it is turned on when
the computer is set in Stopped Mode.

Now the REGISTER DISPLAY indicator lights on the
Control Panel can be used to display and alter the
contents of all the registers in the arithmetic u-
nit. The contents of a register is displayed in bi-
nary form by means of an srray of indicators. Each
indicator is controlled by two pushbuttons, one for
setting the bit to 1, and one for resetting to O.
Besides this, two pushbuttons are used for collec-
tive set snd reset of the whole register. The name
of the register to be displayed is indicated in the
top row of this field, and the function of the
pushbuttons below is to connect one of the below
mentioned registers to the displsy.

WO pushbutton W(0)(0:23)conFB(0)(0:2)
W1 pushbutton W(1)(0:23)conPB(1)(0:2)
W2 pushbutton W(2)(0:23)conPB(2)(0:2)
W3 pushbutton W(3)(0:23)conPB(3)(0:2)
pushbutton I¢(5:22)

pushbutton Sc(11: 23)

pushbutton FrR(0:11)

pushbutton SB(0:23)conPK(0:2)
pushbutton SE(0:13)

pushbutton AR(-1:23)

pushbutton AR{0:13)

pushbutton BR(0:23)

S EE 88884

- 11 -

BE pushbutton BE(0:11)

PR pushbutton Fr(0:7) x)
EX pushbutton EX(21:23)
IR
M

pushbutton Ir(0:23) display only
pushbutton M(0:23) ; display only

*

x) PR{0:7) corresponds to the bit position numbers
16 to 23 in the display.

o -~ -~ ot} AP AP o S <P S S S D . e 2l A S s A e A W S

1. Set the computer into Stopped Mode, which is done by depressing any of
the following pushbuttons:
SINGLE INSTRUCTION,
SINGLE MICRO INSTRUCTION,
MAR MANUAL CONTROLLED, or
MAR COMPUTER CONTROLLED.

2. Now the REGISTER DISPLAY lights and the chosen register 1s displayed,
and 1ts contents can be altered.

— et S — - A S > o T P e A P T o P2 W i . D S 20 28 0 R s AU S DD D S A R D

A program may be exsmined in details by executing it instruction by instruc-
tion in the following manner:

1. Depress SINGLE INSTRUCTION.
2. Insert the program start address in IC.

3. Depress MAR MANUAL CONTROLLED and insert in the Micro Address Register
x=li and y=0. ‘

i, Depress MAR COMPUTER CONTROLLED.

VB6UL

- 12 -

5. Depress SINGLE INSTRUCTION, which csuses the first instruction to be
fetched and loaded into FR and SB. After the first instruction has been
fetched, each time the SINGLE INSTRUCTION pushbutton is operated, the
previously fetched instruction is executed and the next instruction is
fetched.

W S 0 i Q4T) I s o s i S0 o BN R D U PO e Y O e . A e Rk S e ! Y A S BT A B T B D N MDD D T S) O S I D K e o T A D i L D A S 0 S S WD oA P D

The microprogram mey be examined in details by executing it micro instruc-
tion by micro instruction in the following menner:

1. Depress SINGLE INSTRUCTION.

2. Depress MAR MANUAL CONTROLLED and insert the wanted start address in the
Mlero Address Register.

3« Depress MAR COMPUTER CONTROLLED.

k, For emch time the SINGLE MICRO INSTRUCTION pushbutton is cperated, one
micro instruction is executed.

2.5, PRead a Word from Storage

i o~ — . o T . "~ > 5 — o 2

Any 27-bit word can be read out from storsge as follows:

1. Depress SINGLE INSTRUCTION and insert in SB the wanted byte address.

2. Depress MAR MANUAL CONTROLLED snd insert in the Micro Address Reglster
x=1 and y=0,

3« Depress SINGLE MICRO INSTRUCTION end the 27-bit word is loaded into SB
and PK from where it can be displayed.

k., Before returning to the normal mode of operation, depress MAR COMPUTER
CONTROLLED.

VB6hk

-

- 13 -

S ettt P 0 D U > ot W o S i S 8 O S A T A O S B I S P D 0l 5l Sl

Any 27-bit word in storage can be sltered as follows:

1.

2.

3e

5

6o

-

2.

3.

Depress SINGLE INSTRUCTION and insert Iin SB the wanted byte sddress.

Depress MAR MANUAL CONTROLLED end insert in the Mlero Address Register
x=0 and y=30.

Depress SINGLE MICRO INSTRUCTION end the selected 27-bit word is read
into SB and PK. SB and PK should now be modified to the word we want to
store.

Insert in the Micro Address Regilster x=16 and y=8.

Depress SINGLE MICRO INSTRUCTION and the contents of SB and PK are
stored.

Before returning to the normsl. mode of operation, depress MAR COMPUTER
CONTROLLED.

s o " 1 D S AT " D " o LD s D 20 WD D S Ak B AR <20

Depress SINGLE INSTRUCTION and insert in SB the word to be loaded into
M.

Depress MAR MANUAL CONTROLLED and insert in the Micro Address Register
x=12 and y=120

Depress SINGLE MICRO INSTRUCTION. The contents of SB are inserted into
IM; remember, IM(0) is always 1.

Before returning to the Normal Mode of operation, depress MAR COMPUTER
CONTROLLED,

VB6UL

- 1h -

-—-—.—....-—.-—-..--n-.o...-_--...,..——a—-.-.a...-a-....-.—-......_..»_

1. Depress SINGLE INSTRUCTION and insert & 1 in the bits of SB, which corre-
sponds to the bits to be cleared in IR. '

2. Depress MAR MANUAL CONTROLLED and Insert in the Micro Address Register
x=212 and y=13.

5. Decpress SINGLE MICRO INSTRUCTION snd the selected bits of IR are cleared.

k. Before retwrning to the Normal Mode of operation, depress MAR COMPUTER
CONTROLLED.

VB6hk

RCSL51: VB263
Author: Allan Glese
Edited: September 1968

THE MICROPROGRAM ALGORITHMS FOR

THE RC 4000 COMPUTER

ABSTRACT.

This paper presents the algorithms which control the execution of the
instruction set. A survey of the data formats and the register struc-
ture 1s also given. |

A/S REGNECENTRALEN
Falkoneralle 1,
Copenhegen, F.

This paper presents for every instruction a detailed algorithm which
corresponds to the actual microprogram. The purpose of this is threefold:

- It enables the programmer to determine the outcome of an instruc-

tion for all possible data combinatlons.

- It shows the arithmetic and logic formulae used in the implementa-
tion of the instructions. A verification of the formulse 1s not
included.

- It serves as a guide for the understanding of the microprogram.

Before proceeding to the algorithms in Section L, we should like to
clarify the different data formats end the register structure. The data
formats are found in Section 1, and Section 2 describes the register
structure together with an indication of the tasks of the registers; Sec-.
tion 3 shows the instruction set and the numeric codes assigned to these

instructions.

o s e -

page

1. DAm FUR-&MA-TS P 9 9 S0 CEP ORISRV SNS0COCEOSOCEOONSOIPNESRAIBDRISFCEERITERDIDS 24'
1.1. Fixed‘_Point Nmers 'EEEEEEEXEEN Y RN R NN N E R R NI RN NN N h
1.2. F]-Oating_Point Nlm]bers 'EEERRVYEERRENN N NN EESE RSN S SIS N h

2. REGISTER STRUCT[JR.E ..'...'Il.'.‘.l'Q"Q.."....l'..'....l." 5
. 5. mSTRIJCTION SmIQ....I..OOI.‘.‘O..ﬂ..‘.'.'.’.“l"Q. 10

4. DEFINITION OF INSTRUCTIONS eeeseccessscocsssosaccccsonsses 13
.1, NOLBLION seovacsssecccosscsesssccsssassssascsccoce 13
4,2, Control Panel FUNCtIONS eeeeecccssssosssnsnossesss 1l
4.3, Interruption Service seeseccssssecscsesssssescssss 15

L.k, TInstruction Fetch CYCLE eevevveossennsssasscscacne 16
Ll"S‘ Irlstruction EXCep'tiOIlS 'Y EEEEEEE N EEE N NN E RN NN NN ENENN] 17

L’o6o Instruction Execution cct'10;"!'01000¢ll00¢000-vt- 17

APPENDIX

6

The RC 4000 accepts three formats for fixed-point numbers:
1) 12-bit integers (bytes) '
2) 2b-vit integers (words)
3) k8-bit integers (double words).

They are stored as shown in the following figure:

A

DOUBLE WORD

V

< - WORD

A

WORD L

Y

~4——BYTE ——#—+t<¢—— BYTE ——»{<4——BYTE —>}<——BYTE —

INTEGER BYTE INTEGER BYTE
0 12 23

INTEGER WORD
0 23

INTEGER DOUELE WCRD

1.2, Floating-Point Numbers.,

0t e ot o et e oo S e o o o e " > -

A floating-point number
X = Ax2lexpA

consists of two portions, the mantissa A and the exponent expA. The mantis-

sa 1s always in normalized form, which implies that A and expA are uniquely
determined except when X equals zero. In this case it is perfectly clear

- that A must be zero, wheras expA may be eny number. However, we have de-

fined that expA for X = 0 should be the smallest conceivable exponent, that
is in 2's complement notation 100...0. Using this notation, the following
rule is always satisfied

X+ 0=X,

In the RC 4000, floating-point numbers are represented by double words
of 48 bits and the mantissa is divided into two fields, Al and A2, as seen
below.

- DOUBLE WORD -

i MANTISSA rat— EXPONENT ——o

Al l A2 ' expA
0 23 24 35 36 47

If an instruction operates on two floating-point numbers X = AxZAepr
and Y = BxZJﬁxpB, it is essumed that the numbers are stored as follows:

W[pre]: A1 ST[address-2]: Bl
W[fr]: A2, expA ST[address] : B2, expB

2. REGISTER STRUCTURE.

The registers of the RC 4000 are grouped around a common bus line
system - a configuration which has the advantage that all the régisters can
transfer data directly to one another. The figure, in the Appendix, shows
not only the data paths between the registers of the Arithmetic Unit, but
also the paths to the Core Store Unit, the Interrupt Unit, and the Input/-
Output Unit., The direction of flow is indicated by means of arrows, and

the bit numbers are written on the data peths.

Date communication between the Core Store Unit and the Arithmetic
. Unit takes place via STdata. The register is logically divided into three
groups. '
STdata(0:23) Specifies a 2U-bit dataword.
 STdsta(24:26) Specifies the protection bits.
STdata(27) Specifies the parity bit (Not showm in the
Appendix).

- ran s i e . i o S e i ko s o % e T e et e A S P et o S O i ot o

This register 1s able to address the maximum core store configuration
of 128 K words. STaddr may therefore have fewer bits in actuel installati-

ons.

The four working registers, each of 24 bits, can be specified as the
result register. Three of the registers (W[i], W[2], and W[3]), elso func-
tion as index registers. The current index register is specified by the in-
struction format. Since the working registers also act as the first four
locations of the core store, it is possible to execute instructions stored
in these registers. Like the rest of the storage words each register is

supplied with its own protection bits (PB).

o

The four 3-bit registers determine together with the protection regis-
ter whether the corresponding working register is protected or not. For ex-
ample, W[0] is protected if PR(PB[0]) equals one, otherwise W[0] is unpro-
tected.)

This 8-bit register specifies the protection status for the eight pos-
sible values of the protection bits. PR(0) is permanently equal to one.

The instruction counter contains the word address of the instruction
to be executed. IC is normally increased by one after execution of an in-
struction, but jump instructions insert explicitly the Jjump address in IC.
A decoding of IC detects when the storage capacity is exceeded.

If the operator executes one instruction at a time by using the
SINGLE INSTRUCTION pushbutton, he should be aware that IC shows the ad-
dress of the instruction, which is going to be executed when he next time
depresses the SINGLE INSTRUCTION button. ’

Sequential Counter; SC(11:23).

——— L W L I TS LA DA LTS

The 13-bit sequential counter is used to determine the number of 1t-
erations in, for example the multiply, divide, shift, and normalize .in-
structions. For each iteration, SC is either increased or decreased by
one.

In floating-point operations, SC is also used for temporary storage

of the resultant exponent.

Function Register; FR(O:11).

When a new instruction is fetched from storage, the function part of
the instruction, i.e. the twelve left-most bits of the instruction, is as-
signed to the function register. FR is divided into the following five
subfields:

i FR(0:5) Specifies 64 basic instructions.
FR(6,7) Specifies one of the working registers as result
register.
FR(8) Indirect addressing.
FR(9) Relative addressing.

FR(10,11) Indexed addressing.

Exception Register; EX(21:23).

An exceptional outcome of an arithmetic instruction or an input/out-
put instruction has the effect of setting the two bits EX(22) and EX(23).
Bit FX(21) specifies the significance mode for floating-point operations.
The contents of EX can also be altered by means of the Exception Load in-

struction.

Storage Buffer; SB(0:23).

When a new instruction is fetched from storage, the address partv(the
disPlacement) of the instruction is assigned to the 12 right-most bits of
SB. This displacement is then extended to a oh-hit signed integer. The ad-
dress modifications take then place in SB in order to obtain the effective
address for the data word. In consequence of, that the address for the da-
ta word is generated in SB, we have also established an address path be-

tween the core store address register (STaddr) and SB. Moreover, the 2k-

bit data word, which is read from the core store, 1is transferred to SB
just as a data word from the Arithmetic Unit to the core store also passes
through SB. It is therefore no coincidence that the name for this register
is storage buffer.

During the initial phase of an input/output instruction, the device
address of 18 bits and the command code of 6 bits are held in SB, from
which the address and the code are transmitted to the Input/Output Unit.
Information from the Input/Output Unit, on the other hand, does not go via
SB, but has its own direct entrance to the bus system.

Either the contents of SB or its complement may be employed as input
data for the ADDER circuitry. This makes it possible for the ADDER to per-

form addition and subtraction.

e e

[

Every time a word is read from storage, the protection bits are inser-

ted in PK, and reversely, PK determines the protection bits to be stored.

e T o ot e i an e e it e e e s ot e o T e g e e o e

SE forms together with SB a 38-bit register which is used in floating-
point operations to store the mantissa. The two extra bits SE(12,13) play
an importent role in the rounding calculations.

Either the contents of SE or its complement may be employed as input
data for the extended ADDER circuitry.

The adder is a parallel adder utilizing extensive carry look-ahead tech-
nique. 25 bits are added in typically 120 nanoseconds and 39 bits in 140 nano-
seconds.

A-Registers AR(-1:23).

__________ - Filnhiuioh SRmneliu o4t 4

AR constitutes together with SB the two data parts to the ADDER circu-

itry. Bit AR(-1) detects if an owerflow situation occurs.

The combined 38—bit register ABconAE is used in a manner very similar
to that of SBQQQSE.

——l IRl ISR ,_..._..—-—_.._._._

BR is mainly used by multiply, divide, and double length instruction,
whereas other instructions only use the register to store temporary results.

If an instruction requires two successive storage words, the address
of the second word is held in BR while the first word is fetched from core
store. An address path is therefore provided from BR to STaddr.

The BR register is extended in order to be able fo execute the float-

ing-point division instruction.

ot Shapu AN et

This unit consists of the two registers, DR(-1: 23) and DP(0:2) which
control BUS(-1:23) and PBUS(0:2), respectively.

Bach bit in IR is connected to an external or an internal device, which
sets the bit in accordance with some specified condition. The leftmost bits

are assigned highest priority.

popsiiuginfasiudiuny. “Ghufiiuiiitginuin Piganpiinh. Siaghipu-A5 4

IM determines whether a given interrupt reduest should be honoured or

not. IM(0) is permanently egual to one.

Fach input/output device has in principle a 24-bit buffer register plus
the two status bits Disconnected and Busy. '

- 10 -

3+ INSTRUCTION SET.

This list gives the total instruction set. The numeric code and the

memonic code are added to eaéh instruction.

Address Handling

9 AM Modify Next Address
11 AL Load Address
33 AC Load Address Complemented

. Register Transfer

3 HL Load Half Register

26 HS Store Half Register

20 RL Load Register

! 23 RS Store Register

; 25 BX Exchange Register and Store
54 DL Load Double Register

55 DS Store Double Register

Integer Byte Arithmetic

19 BZ Load Byte with Zeroes
) 2 BL Load Integer Byte
.. 18 BA Add Integer Byte
17 BS Subtract Integer Byte

Integer Word Arithmetic

7 WA Add Integer Word

8 WS Subtract Integer Word
10 WM Multiply Integer Word
24 WD Divide Integer Word

Integer Double Word Arithmetic

56 AA Add Integer Double Word
57 SS Subtract Integer Double Word

Aritlmetic Conversion

32 CI Convert Integer to Flosting
5% CF Convert Floating to Integer

Floating-Point Aritimetie

o s et s o e S e e e e o e . e e e s v et

FA Add Flosating

FS Subtract Floating
50 M Multiply Floating

FD Divide Floating

L 1A TLogical And
5 10 Logicsal Or
6 IX Logical Exelusive Or

36 AS GShift Single Arithmetically
37 AD Shift Double Arithmetically
38 LS shift Single Logically

39 1D Shift Double Logically

34 NS Normalize Single

35 ND Normalize Double

Sequencing

13 JL Jump with Register Link
Lo SH Skip if Register High

b1 SL skip if Register Low

42 SE Skip if Register Fgual

43 SN Skip if Register Not Hqual
Lh 20 skip if Register Bits One
L5 857 Skip if Register Bits Zero
L6 SX Ship if No Exceptions

21 SP Skip if No Protection

+

- 12 -

Monitor Control

15
1k
b
31
12
30
16
27
28
29
22
51

Jump with Interrupt Enable
Jurmp with Interrupt Disable
Clear Interrupt Bits

Store Interrupt Register
Load Mask Register

Store Mask Register

Load Exception Begister
Store Exception Register
Load Protection Register
Store Protection Register
Load Protection Key

Store Protection Key
Input/Output

Autoload Word

- 13 -~

4, DEFINITION OF INSTRUCTIONS.

The Hargol langusge is used throughout this section for describing the
instruction logic. Fach quantity, used in the following explanation, must
therefore be properly defined by a declaration. These declarations, which

are listed below, are grouped for ease of interpretation.

Core Store Unit:

P e s s s St oot

Arithmetic Unit:
‘méggisteg ggggy‘W[O:BJ(O:ZB). PB[O:}](O:Z);

o v g

v o, S e sy g e

PR(0:7), PK(0:2), IC(5:22), sc(11:23), Fr(0:11), EX(21:23),
SB(0:23), SE(0:13), AR(-1:23), AE(0:13), Bw(0:23), BE(0:11);

Interrupt Unit:

»
——————— 2

Input/Output Unit:
integer Selected Device, maximum number of devices;

register array

Device Buffer[O:maximum number of devices](0:23),
Discormected[O:maximum number of devices](0:0),

Busy [O:maximum number of devices](0:0);

Abbreviations:

S e S g et o 2 g et

?i
i

H
N
W
Nr?
It

= 5B(0,0:23), BRa(-1:23) = BR(0,0:23),
SF(0:37) = SB(0:23)conSE(0:13), SFa(-1:37) = SF(0,0:37),
AF(-1:37) = AR(-1:23)conAE(0:13),

BF(0:35) = BR(0:23)conBE(0:11), BFa(-1:35)

BF(0,0:35),

T

IRa(-1:23) = IB(OxO:23) 1

Ma(-1:23) = IM(0,0:23),
ICaddr(6:22) = IC(6:22),
SBaddr(6:22) = SB(6:22),
BRaddr(6:22) = BR(6:22);

register array set

wa[0:3](-1:23) = W[0:3](0,0:23);
integer procedure frj ‘

fri= FR(6,7);

pre:= if FR(6,7) = O then 3 else FR(6,7}-1;
: S integer procedure index;
(] index:= FR(10,11);

..Control Unit:

register :
MMode(0:0), ITRensble(0:0), HA(23:23), SUM(-1:23), Carry(0:0),
Main Power Key ON(0:0),
Reset(0:0), Start(0:0), Autoload(0:0},
Single Instruction(0:0), Continue(0:0);
begin PR(0):= 1; PROTECT:= PR(PK) end;

switch operation:= Modify Next Address, --—, Autoload Word;

. , 4,2, Control Panel Functions.

Reset System: Power Shutdown:
PK:= O; MMode:= PROTECT; _
comment MMode:= 1, since PR(0) = 1. Monitor Mode is set in order to secure
SB:= 23; ashr SF; comment SBaddr:= 10;

L T e -

e - e
e o i W g o

Mt o sy g ey e e S

- 15 -

. Power Startup:
PK:= 0; MMode:= PROTECT;
FR:= O; ITRensble:= FR(5); comment ITRensble:= O3
After Reset:
if Autoload then
begin

SB:= 0y IC:= 0
comment This is equivalent to an execution of the instruetion AW O,

stored in location Og

we

goto Autoload Word;

end H

v e

if Start then
‘ : begin

Dot v e S o o

goto Next Instruction
ends

o e

goto After Reset;

4.3, Interruption Service.

Interruption Service:
SB:= 12; BR:= 233 lshr BF;y comment BRaddri= 10
PK:= O; MMode:= PROTROT; FR:= 0; ITRenable:i= FR(5);

AR:= 6extOconICconO; comment IC:= address of interruption programs

v o o — v e e o

SB:= AR(0:23); ST[STaddr]:= SBconFK;
comment ST[10](0:23):= address of interrupted program;

et ey Pt Bt St g

integer ITRno; | |
for ITAno:= 0, ITino+1 while (IR(ITRno) A IM(IT®no)) = O do;

IR{ITRno):= 03 SB:= ITRnox2j

| ’

[

- 16 -

end..

- ¥

ST[STaddr]:= SBconPK; comment ST[8](0:23):= interrupt nurber;

k.4, Instruction Fetch Cycle.

——— e > - o 1t o Moo o S s 7 > " o o P o

Next Instruction:

if or(IR A IM) A ITRensble then goto Interruption Service;

if - (Main Power Key ON A -,Reset) then goto Reset System;

- if IC > word limit then goto Instruction Exception;
e SBconPK:= ST[STaddr]; FR:= ST[STaddr](0:11);
"" SB(0:11):= 12extSB(12); IC:= IC+1;

.. if -,(MMode v - ,PROTECT) then goto Instruction Exception;
MMode:= PROTECT;

oy g e S S W% o T g PO

Address Modifications: .
if FR(8) = 1 A FR(10,11) = O v FR(8) = 0 A FR(10,11) 4 O then

e ST Dy g St o e

SB:= AR+SBa
end; .
if FR(8) = 1 A FR(10,11) 4 O then
‘ begin comment Belative address and indexing;
SB:= AR+SBa; AR:= Wa[index]; SB:= AR+SBa
end;

if FR(9) = 1 then

B e St o e e T

SBeonPK:= ST[STaddr]

ends

S g s

comment SB contains the effective address and IC points at the next in-

e bt e v i Ty

structions

goto operation [FR(0:5)];

L.

- 17 -

5. Instruction Exceptions.

. Instruction Exception:

IR(0):= 1; goto Interruption Service;

begin | |
if sw(-1) 4 suM(0) then begin EX(22):= 13 TR(1):= 1 end;
if Carry(0) then EX(23):=

end;

procedure Test Shift;

———————— b}

beglin |
if AR(0) + AR(1) then begin EX(22):= 1; Ti(1):= 1 end
ends

——— ¥

begin -
if 8C(11) 4 sC(12) then begin EX(22):= 1; I®(2):= 1 ends

end.

——

4.6, Instruction Execution.

-t e e o Tt s e e et o mn o e et et

Use the effective address as an increment to the displacement in the

next instruction. The operation changes only the effective address of

‘ the next instruction whose D field remains unchanged.
begin
AR:= SBa;

comment The effective address of the am instruction is saved in AR;

S S

if IC > word limit then goto Instruction Exception;
SBeonPK:= ST[STaddr]; FR:= ST[STaddr](0:11);
SB(0:11):= 12extSB(12); IC:= IC+1;

MMode:= PROTECT;

if Single Instruction then wait until Continue;

- 18 -

- SB:= AR+SBa;
Qo if FR(8) = 0 A F&(10,11) 4 O then AR:= Wa[index];
if FR(8) = 1 then AR:= BRa;

goto Address Modifications

]

‘end am 9;

Load Address:

ILoad the W register with the effective address.
begin W[fr]:= SB; goto Next Instruction end al liy

Load the W register with the two's complement of the effective address.
; ; Complementation of the maximum negative number -2A23 gives the result
] . -2)23 and produces an overflow.

% begin
.. ARi= 0; EX(22,23):= O; SUM:= AR-SBa; W[fr]:= SUM(0:23);
Test Integer; goto Next Instruction

end ac 33;

Load Half Register:

Insert the storage byte addressed in the vright-most 12 bits of the W reg-
ister without changing the left-most 12 bits. The storage byte remains

unchanged.
begin
wait until Accept; STaddr:= SBaddr; HA(23):= SB(23);
. if SB(0:22) > word limit then goto Instruction Exception;

SBconPK:= ST[STaddr]; ,
W[rr](12:2%):= if HA(23) then SB(12:23) else SB(0:11);
goto Next Instruction

end hl 3;

Store Half Register:

Store the right-most 12 bits of the W register in the storage byte address-
ed. The register remains unchanged.
begin
AR:= Wa[fr];

' if SB(0:22) > word limit then goto Instruction Exception;

- 19 -

SBconPK:= ST[STaddr];
if -, (MMode v -,PROTECT) then goto Instruction Exception

if HA(23) then SB(12:23):= AR(12:23) else sB(0:11):= AR(12:

ST[STaddr]:= SBconFK;
goto Next Instruction
gnd hs 26;

Load Register:

23)

Loed the Y register with the storage word addressed, The storage word

remains unchanged.
begin
if SB(0:22) > word limit then goto Instruction Exceptiong
SBeonPK:= ST[STaddr];
W[fr]:= SB; goto Next Instruction

++ end 71 20

Store the W register in the storage word addressed. The register remains

unchanged.
begin
AR:= Wa [f]"] :

g g Gy O o e et

SBconPK:= ST[STaddr];

if -,(MMode v - PROTECT) then goto Imstruction Fxceptions
SB:= AR(0:93); Sr{BTadir}:= 3BeconPK;

goto Next Instruction

end rs 233

The W register is stored in the storsge woid addvessed snd the
contents of the storage word is loaded into the register.
begin
AR:= Wa[fr];
wait until Accepty STaddr:i= SBaddrs
if sB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr]; W[fr]:= SB;

previous

- 20 -

if -,(MMode v -,PROTECT) then

. begin W[fr]:= AB(0:23); goto Instruction Exception end;
SB:= AR(0:23); ST[STaddr]:= SBconPK;
goto Next Instruction

end x 255

Load Double Register:

Load the register pair W and Wpre with the storage double word addressed.

The storage double word remains unchanged.

—— 7 o

S v o bt ooy e ex e Pt

if SB(0:22) > word limit then goto Instruction Exception;
. SBeonPK:= ST[STaddr]; W[fr]:= SB;
..~ SBconPK:= ST[STaddr];
W[pre]:= SB; goto Next Instruction
end Al 5k

Store the register pair W and Wpre in the storage double word addressed.

The register pair remains unchanged.

begin
AR:= -2; BR:= if SB 4 O then AR+SBa else 6;
‘ wait until Accept; STaddr:= SBaddr;

if sB(0:22) > word limit then goto Instruction Ixception;
SBeonPK:= ST[STaddr], ,
if -,(MMode v - ,FROTECT) then goto Instruction Exception;
SB:= W[fr]; ST[STaddr]:= SBconFK;
SB:= BR; AR:= Wa[pre];
SBeonPK:= ST[STaddr];
if -,(MMode v - ,PROTECT) then goto Instruction Exception;
SB:= AR(0:23); ST[STeddr]:= SBconFK;
goto Next Instruction

end ds 555

- 21 -

Load Byte with Zeroes:

Insert the storage byte addressed in the right-most 12 bits of the W reg-
ister and extend it towards the extreme left with zeroes. The storage
byte remains unchanged.
begin
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr];

v — 5 v

else W[fr]i= 12ext0consB(0:11);

goto Next Instruction
end bz 19;

Insert the storage byte addressed in the right-most 12 bits of the W reg-
ister and extend the sign bit towards the extreme left. The storage byte
remains unchanged. '
begin
wait until Accept; STaddr:= SBaddr; HA(23):= SB(23);
if sB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr]; .
if HA(23) then SB(0:11):= 12extSB(12) else SB:= 12extSB(0)conSB(0:11);
W[fr]:= SB; goto Next Instruction
end bl 25

The storage byte addressed is extended towards the left to 2L bits and
added to the W register. The sum is placed in the register. The storage
byte remains unchanged.

g ot D i

EX(22,23):= 0; wait until Accept; STaddr:= SBaddr; HA(23):= €(23).

SBeonPK:= ST[STaddr]; .
if HA(23) then SB(0:11):= 12extSB(12) else SB:= 12extSB(0)conSBL0:11);
SUM:= AR+SRa; W[fr]:= SUM(0:23);
Test Integer; goto Next Instruction
end va 184

- 922 _

Subtract Integer Byte:

The storage byte addressed is extended towards the left to 2l bits and
subtracted from the W register. The difference is placed in the register.
the storage byte remains unchanged.
begin
EX(22,23):= O; wait until Accept; STaddr:= SBaddr; HA(23):= SB(23);
AR:= Wa[fr];
if SB(0:22) > word limit then goto Instruction Exception;
SBeonFK:= ST[STaddr];
if HA(23) then SB(0:11):= 12extSB(12) else SB:= 12extSB(0)conSB(0:11) 5
SUM:= AR-SBa; W[fr]:= SUM(0:23);
Test Integer; goto Next Instruction
end bs 17;

Add Integer Word:

The storage word addressed is added to the W register, and the sum is

placed in the register. The storage word remains unchanged.

begin
EX(22,23):= 0; wait until Accept; STaddri= SBaddr;
AR:= Wa[fr];

if SB(0:22) > word limit then goto Instruction Exception;
SBeonPK:= ST[STaddr];

SUM:= AR+SBa; W[fr]:= SUM(0:23);

Test Integer; goto Next Instruction

end wa T;

Subtract Intezer Word:

The storage word addressed is subtracted from the W register, and the
difference is placed in the register. The storage word remains unchanged.
begin
EX(22,23):= 0; wait until Accept; STaddr:i= SBaddr;
AR:= Wa[fr];
if sB(0:22) > word limit then goto Instruction Exceptiong
SBconPK:= ST[STaddr];
SUM:= AR-SBa; W[fr]:= SUM(0:23);
Test Integer; goto Next Instruction
end ws 8;

- 23 -

Multiply Integer Word:

The W register is multiplied by the storage word addressed. The 48-bit
signed product is placed in the register pair Wpre and W. Qverflow cannot
occur.
begin
comment The algorithm starts by setting up the multiplicand in SB and
the multiplier in BR. SC determines the number of iterations. The
final 4B-bit result appears, after termination of the procedure, in
the concatenated register ARconBR;
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr]; AR:= O
for SC:= SC-1 step -1 until O do

if BR(23) = 1 then AR:= (AR+SBa)/2 clse ashr ARconBR;
if BR(23) = 1 then AR:= AR-SBa; ashr AfconBl;
W[fr]:= BR; W[pre]:= AR(0:23); goto Next Instruction

end wm 103

Divide Integer Word:

The register pair Wpre and W is divided by the .storage word addressed.
The 24-bit signed quotient is placed in the W register, while the 2L-vit
signed remainder is placed in the preceeding register Wpre. A non-zero
remainder has the same sign as the dividend. An overflow 1s registered if
the divisor is zero or if the quotient exceeds 24 bits. In this case the

dividend remains unchanged in the working registers.

g o B o v

S o

o e 32 ey St g B ey

EX(22,23):= 03 SCi= 23

vait until Accept; STaddr:= SBaddr; BR:= W[fr];

if SB(0:22) > word limit then goto Instruction Exception;

SBeonPK:= ST[STaddr]; AR:= Wa[pre]; BE:= Wa[pre](0:11);
storing method. The very first bit is calculated by its complemented
value;

WDsub:= if AR(-1) = SB(0) then 1 else 0; Lshl AMgonBR;

- o -

for SC:= SC step -1 until O do
begin
AR:= if WDsub = 1 then AR-SBa glse Ai+SBaj Br(23):= WDsub;
WDsubi= if AR(-1) = SB(0) then ! else O; lsil ARgcomBR

ends

AR(23)conBR(0:23) equals the 25-bit quotient belonging to the re-
mainder stored in AR(-1:22). The quotient exceeds the register ca-
pacity if AR(23) = Br(0);
17 A(25) = BR(0) then
begin .
SB(0:11):= -2011; AR:= SBa; Test Shift; goto Next Instruction
ends
ashr AF;
comment The remainder is now corrected so that -
1) The remainder and the dividend have equal sign.
2) -divisor < remeinder < divisor.

The sign bit for the dividend is BE(0);

if - ,AR(-1) A -,SB(O) A BE(O) then goto if A 4 0 then EXIT2 else EXIT1;

—r——— S emesem -

if -, AB(-1) A SB(O) A -,BE(O) then goto EXITL; :
if -, AR(-1) ~ SB(0) A - BF(0) then goto if A¥ 4 O then EXITS else EXIT1;
if AR(-1) A -,SB(0) A -,BE(0) then goto FXTID;
if AR(-1) A -,SB(0) A BE(O) then
begin .
SBi= AR+SBa; if SB 4 O then goto EXITi;
W[prel:= 0; W[fr]:= BR; goto Next Instruction
ends;
if AR(-1) A SB(0) A -,BE(0) then goto EXITZ;
if AR(-1) A SB(0) A BE(O) then
begin
SB:i= AR-SBa; if SB % O then goto EXIT1;
:= Bk+1l; AR:= AR+l,
if AR(-1) 4 AR(0) then
begin comment The quotient exceeds the register capacity;
ashr AF; Test Shift; goto Next Instruction
end; ,
Wlpre]:= 0; W[fr]:= AR(0:23); goto Next Instruction
end; |

EXIT1: W[pre]:= AR(0:23); W[fr]:= BR+1; goto Next Instruction;
EXIT2: W[pre]:= AR-SBa; AR:= BRrl; W[fr]:i= A"+1; goto Next Instruction;

- 25 -
<

EXIT3: W[pre]:= AR+SBey W[fr]:= BR; goto Next Instruction
end wd 2l

Add Integer Double Word:

The storage double word addressed 1s added to the register pair Wpre aﬁd W
as an integer double word,nd the sum is placed in the register pair. The
storage double word remains unchanged.
begin
EX(22,23):= O3 AR:= -2; BR:= if SB 4 O then A#+SBa else 6;
if SB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];
SUM:= AR+SBa; W[fr]:= SUM(0:23);
AR:= Wa[pre];
SBconPK:= ST[STeddr]
SWMi= if Carry(0) then AR+SBa+l else A#+SBa; W[pre]:= SUM(0:23);
Test Integer; goto Next Imstruction
end aa 56;

Subtract Integer Double Word:

The storage double word addressed is subtracted from the register péir Wpre
and W as an integer double word, and the difference 1is placed in the regls-
ter pair. The storage double word remains unchanged.
begin
EX(22,23):= Oy AR:= -2; BR:= if SB 4 O then Aw+SBa else 6;
if SB(0:22) > word limit then goto Instruction Exceptlon;
SBconPK:= ST{STaddr];
SWM:= AR-SBa; W[fr]:= SUM(0:23);
wait until AcceptSB; STaddr:= BRaddr;
Ar:= Wa[pre];
SBconPK:= ST[STaddr];
SUM:= 1f Carry(0) then AR-SBa eclse AR-SBa-1; W[pre]:= SuM(0:23);
Test Integer; goto Next Instruction
end ss 573

- 26 -

Convert Integer to Floating:

-t 2 o o ot e et e 2 e e i i e o i S

Convert the contents of the W register, interpreted as en integer multiplied
by 24 (effective address) to & floating-point number. The result is placed
in the register pair Wpre and W. .
begin
expR = 23 - number of shifts + effective address;
EX(22,23):= 0; AR:= Wa[fr]; W[pre]:= W[fr];
W[fr](0:11):= 0; AE:= 0; SC:= 23;
if AR = O then begin W[fr](12:23):= -2A11; goto Next Instruction end;
if AR(0) = AR(1) then
begin s
for SC:= SC, SC-1 while AR(0) = AR(1) do 1shl AF; W[pre]:= AR(0:23)

o et

end.

—— ?

~* comment The mantissa is normalized and SC = 23 - number of shifts;
if 8B 4 O then
begin AH:= 13extOconSC(12:23); SC:= AR+SBa; Test Exp end;
Wfrj(12:23):= sC(12:23); goto Next Instruction

end ci 32;

o e ST e e o o o e e S

Convert the contents of the register pair Wpre and W, interpreted as a
floating-point nurber multiplied by 2 (effective address) to an integer
nunber. The result is placed in the W register. Wpre remains unchanged.

An overflow is registered if the integer number exceeds 24 vits.

oo S e e S S S

location of the binary point is moved 23 places to the right is
expA-23. The algorithm starts by evaluating the number of right
shifts, which equals 23 - effective address - expA;

EX(22,23):= O; AR:= 23; if SB # O then AR:= AX-5Ba;

SB:= 12extW[£r](12)conW [£r](12:23); SBi= AK-SBay SC:= SB(11:23);

comment SB and SC equals the number of right shifts;

- 27 -

if SB = O then
begin
BE:= W[fr](0:11); AR:= Wa[pre];
if BE(0) = O then
W[fr]:= AR(0:23); goto Next Instruction

ends

1f AB(-1) = AR(0) them
begin W[fr]:= AR(0:23); goto Next Instruction end;
else goto INTEGER OVERFLOW
end;
AR:= Wa[pre];
if SB < 64 A SB(0) = O then
begin comment O < right shifts < 6l
8C:= SC-1; for 8Ci= SC-1 step -1 until O do ashr AF;
AR:= (AR+1)/2; W[fr]:= AR(0:23); goto Next Instruction
ends :
if SB < 64 A SB(0) = 1 then ;
begin comment right shifts < 0
AB:= W[£r](0:11)conOcon0;
if AF = O then
begin W[fr]:= Ax(0:23); goto Next Instruction end;
else goto INTEGER OVERFLOW
end;
if SB 2 6k A 5B(0) = O then
begin comment wight shifts) 64
W(fr}:= 0; goto Next Instruction
ends
INTEGER OVERFLOW: -
SB(0:11):= -2J11; AR:= SBa; Test Shift
end cf 53;

Add Floating:

The storage double word addressed is added to the register pair Wpre and W
as a floating-point number, and the sum is placed in the register pair. The

storage double word remains unchanged.

- 28 -

Subtract Floating:

Seme as Add Floating except that the difference is calculated instead of
the sum.
begin

% 2

s T i s g S0

difference in SC;
AR:= -2; BRi= if SB 4 O then Aw+SBa else 6;
AR:= 13extW [fr](12)comW [£r](12:23); EX(22,23):= 05
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr];
W[fr](12:23):= SB(12:23);
SC:= AR-SBa;

e S v Wt ey €t o v St U0

SBconPK:= ST[STaddr];

comment W[prel: Al | - W[fr]: A2, expB
SB: Bl SE: B2
AR: expA AE: A2

SC: expA - expB
The algorithm proceeds now in five ramifications depending on the
value of the exponent difference;
if SC 38 then
W(fr](0:11):= if FX(21) = O then AE(0:11) else AE(0:9,9,9);
W[fr](12:23):= AR(12:23); goto Next Instruction
end; |
if 8C> 0 A SC < 38 then
begin comment expA > expB, i.e. R = X+Y = (A+(expA-expB) ashr B)x2lgpr;
Wifr](12:23):= AR(12:23); AR:= Wa[pre];

end;
if SC = 0 then
begin comment expA = expB, i.e. R = XiY = (AiB)xZ/LexpB;
AR:= Wa[pre]; goto ADD SUB '
ends

o —

- 29 -

if SC> -38 A SC < O then

begin comment expA < expB, i.e. R = X+Y = ((-(expA-expB)) ashr A+B)x2hexpB;

AR:=Wa[pre]; for SCi= SC+1 step 1 wntil O do ashr AF;
goto ADD SUB
end

if 5C < -38 then

begin corment expA << expB, i.e. R = XtY = +Bx2lexpB;

e S o e v o e
if Subtract Floating then begin AF:= O; goto ADD SUB end;
W[pre]:= SB; AE:= SE(0:11)con0OconO;

Wlfr](0:11):= if EX(21) = O then AR(0:11) else AE(0:9,9,9);
goto Next Instruction

end .

-

ADD SUB:
if Add Floating then AF:i= AF+SFa;
if Subtract Floating then AFi= AF-SFa;

SC:= W[fr](12,12:23);

comment After addition or subtraction of the two mantissae A and B, the
resultant mantissa R shall first be normalized and then rounded. The

contents of the registers are
AF: R, W[fr](12:23): expR,

SC: expR;

NORMALIZATION:

if AR(-1) 4 AR(0) A AF(35) = O then
___________ d no rounding required;

ashr AF; SCi= SC+1; goto EXIT

énd;

if AR(-1) 4 AR(0) A AF(35) = 1 then
begin comment Mantissa overflow and rounding required;

AF:= (AF+k4)/2, SC:= SC+1; goto ROUNDING

ends :
if AR(-1) = AR(0) A AR(0) # AR(1) A AF(36) = O then

P v T Bn St et Sae o o o o

- 30 -

if AR(-1) = AR(0) A AB(O) 4 AR(1) A AF(36) = 1 then

AF:= AF+l; AF(36,37):= 03 goto ROUNDING
ends X
if AR(-1) = AR(0) A AR(0) = AR(1) A AF(37) = O then

begin comment Mantissa unnormalized or zero, but no rounding required;
if AF 4 O then
begin SR
for SC:= SC,SC-1 while AR(0) = AR(1) do 1shl AF;
goto EXIT
end

else
begin
SC:= SC-1; ;gi_a; AF,
Wwifr](o:11):= 0; W[fr](12:23):= 2A11; W[pre]:= AR(0:23);

goto Next Instruction

end;

end;

-

if AR(-1) = AR(0) A AR(0) = AR(1) A AF(37) = 1 then

T e S g W By e g T Sy

shift is sufficient to normalize the mantissa;
if AR(1) 4 AR(2) then

Tt v X g T e e W Sy PO

1shl AF; SC:= SC-1; AF:= AP+hy AF(36,37):= 0; goto ROUNDING

end.

———

elge

ends

oy

ROUNDING:

e 5D vy e v e o

1/2<R<1 or -1<RZ-1/2

SC: expR AF: R;
end;
if AR(-1) = AR(0) A AR(O) 4 AR(1) then goto EXIT;
if AR(-1) = Az(0) A AB(0) = AR(1) then

begin SC:= SC-1; 1shl AF; goto EXIT end;

if Ar(-1) 4 AR(0) then
begin SC:= SC+1; ashr AF; goto EXIT ends

———

@

- 31 -

EXIT: o
Wlfr](0:11):= if EX(21) = O then AE(0:11) else AE(0:9,9,9);
Wler](12:23):= 8C(12:23); Test Exp; W[pre]:= Ar(0:23);
goto Next Instruction [

end fa 48, fs 49,

Multiply Floating:

The register pair Wpre and W is multiplied by the storage double word
addressed as a floating-point nunber, and the product is placed in the
register pair. The storage double word remains unchanged.
begin
The algorithm starts by calculating expB+expA and by setting up the man-
tissa A and B in BF and SF, respectively. SC determines the number of
iterations;
SCi= 35; BE:= W[fr](0:11);
AR:= -2; BR:= if SB 4 O then AR+SBa else 6;
AR:= 13extW[fr](12)conW [fr](12:23); EX(22,23):= O
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr];

———— o~

_________ 3

SBconPK:= ST[STaddr]; comment SF = B, BF = A, and AF = 03

for SC:= SC-1 step -1 until O do : » :
begin if BE(11) = 1 then AF:= (AF+SFa)/2 else ashr AF; lshr BF end;

if BE(11) = 1 then AF:= AF-SFa;

v g s iy e

end fm 504

s

- 32 -

Divide Floating:

The register pair Wpre and W is divided by the storage word addressed as a
floating-point number, and the guotient is placed in the register palr. The
storage double word remeins unchanged.
begin
The algorithm starts by calculasting expA - cxpB and by setting up the
mantissa A and B in AF and SF, respectively. The quotient is calcu-
lated by means of the non-restoring method;
reglster FDsub(0:0);
AR:= -2; Br:= if SB 4 O then AR+SBa else 6;

A= 13extW [fr](12)conW [fr](12:23); EX(22,23):= Oy
if sB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];

i o S T 2

. B B vt i e o

SBconPK:= ST[STaddr];
comment SF:i= B and AFi= Aj
if AR = O then
begin
sC(11):= 05 SC(12:23):= 2011,
if SB 4 O then begin comment Zero result; W[fr]:= 12extOconSC(12:23) end;

e - P

G o 55 ot By St e St S SO P oy

goto Next Instruction

ends

SC:= 8C+1; FDsubi= if AF(-1) = SF(0) then 1 else O;

- .comuent FDsub = 1 when the signs of the divisor and the dividend are alike;

if FDsub = 1 then AF:= (AF-SFa)x2 else AF:i= (AF+SFa)x2;
if SB = O then
begin
Test Exp; goto Next Instruction
ends

FDsub:= if AF(-1) = SF(0) then 1 else 0;

- 33 -

begin
corment This iteration proceeds until a normalized quotient 1s ob-
tained. If the quotient, Q, is in the interval -1 ¢ Q < - 1/2 or
1/2 ¢ Q < 1, the number of iterations equal 36 end SC = expA-expB.
If -2 Q< -1o0r1<Q <2, the nuber of iterations ecqual 35
i and SC = exph - expB + 1. If Q = -1/2, the number of iterations
E equal 37 and SC = expA-expB-1;

1shl BF; BF(35):= FDsub; if FDsub = 1 then AF:= AF-SFa else AF:= AF+SFa;
- FDsub:= if AF(-1) = SB(0) then 1 elsg O; lshl AF
"" ends
AE:= BEconOcon0;

if FDswb = 1 then

, begin : S

2‘ : Ai:= BRa; AF:= APF+b; AF(36,37):= 0; goto ROUNDING; comment See Add

; Floating;
end;

————d) 7
Wlfr]:= if ¥X(21) then AE(0:9,9,9)consC(12:23) else AB(0:11)consC(12:23);
Test Exp; W[pre]:= BR; goto Next Instruction
end fd 52;

Logical And:

‘“ The W register is combined with the storage word addressed by a logical And
operation. The result is placed in the register. The storage word remains
unchanged. '

begin

S e 27 09

e 2 W e o

SBeontK:= ST[STeddr];
W[fr]:= AR(0:23) A SB; goto Next Instruction
end la b :

.
’

-3l

Logical Or:

P]

The W register is combined with the storage word addressed by a logicel Or
operation. The result is placed in the register., The storage word remains
unchanged.

LT R e -

T 2T O o

SBeonPK:= ST[STeddr];
W[fr]:= AR(0:23) A SBs goto Next Instruction
£nd 1o 55

Logical Exclusive Or:

The W register is combined with the storage word addressed by a logical
Exclusive Or operation, and the result is placed in the register. The stor-

age word remains unchanged.

-y 3 e et
O Tt o s o oy

——— o S

et B oo e ot ey

ical operators: And, Or, and Negation. The algorithm used is

a exor bi= (avb) A(-,2av-b);

BR:= SB v W[fr]; corment Supposing SB = b and W = a then
BR = a v b and AR = a;

SB:= AR(0:23) A SB; comment SB = a A by

AR:= BRaj comment AR = a v b,

W[fr]:= AR(0:23) A -,SB; comment W = (a v b) A-,(a Ab);

goto Next Instruction
end 1x 6;

Shift Single Arithmetically:

Shift the contents of the W register the nurber of places specified by the
effective address in SB. If SB is negative, then shift right with sign ex-
tension in the upper bits; otherwise shift left with zero extension in the
lower bits. Overflow is tested for each single shift.
begin
Ex(22,23):= 04

if SB = O then goto Next Instructiony

- 35 -

SC:= SB(11:23); AR:= Wa[fr];
1£ sB(0) = 0 then

T Sy S o Tt T g

W[fr]:= AR(0:23);

end H

o o

1f SB(0) = 1 then

T O g g e 7

if SB € -65 A AR(-1) = O then wlerli= 05
if SB € -65 A AR(-1) = 1 then Wlerli= -1,
if SB> -65 then |
begin o '
for SCi= SC+1 step 1 until O do eshr AvgonBi; W[fr]:= A(0:23)
end; ' ‘ '
ends

goto Next Instruction

end as 36;

- e ot o o e e e e s e o o e e 2 o

Shift the contents of the register pair Wpre and W the nurber of plaées spe-
cified by the effective address in SB. If SB is negative, then shift right
with sign extension in the upper bits; otherwise shift left with zero exten-
sion in the lowest bits. Overflow is tested for each single shift.
begin |
EX(22,23):= 0y
SC:= SB(11:23); Ak:= Wa[pre]; BR:= W[fr];
if SB(0) = 0 then
if SB) 64 then SC:= U8;
for SC:= SC-1 step -1 until O do
begin Test Shift; 1shl ARconBR ends

~~~~~ ———
W[fr]:= BK; W[pre]:= AR(0:23)
end;

- ——

S—



if sB(0) = 1 then
if SB £ -65 A AR(-1) =
if 8B £ -65 A Ar(-1) =
if SB> -65 then

then W[tr]:= Wprel:= 0
then W[er]:= W[pre]:= -

O s
[ TR 14

.
3

for SCi= SC+1 step 1 92311 0 do ashr ABQQQBR;

W[fr]i= Br; W[pre]:= Ar(0:23)

ends

-

end;

goto Next Instruction
end ad 37;

Shift Single Logically:

Shift the contents of the W register the number of places specified by the
effective address in SB. If SB is negative, then shift right with zero ex-
tension in the upper bits; otherwise shift left with zero extension in the
lower bits. Overflow is not indicated.

if SB = O then goto Next Instructiong

SC:= SB(11:23); AR:= Wa[fr];

if sB(0) = 0 then

begin corment address > Oy

" o v ——

ends

if SB(0) = 1 then

begin comment address < Oy

if SB £ -65 then W[fr]:= 0;
if SB> -65 then
begin . :
for SCi= SC+1 step 1 until O do lshr ARgonBR; W[fr]:= AR(0:23)
ends

o —— ¥

ends

———a ?

goto Next Instruction
end 1s 38;



_57_

Shift Double Logically:

‘ Shift the contents of the register pair Wpre and W the number of places spe-
cified by the effective address in SB. If SB is negative, then shift right
with zero extension in the upper bits; otherwise shift left with zero exten-
sion in the lowest bits. Overflow is not indicated.

begin
SC:= SB(11:23); AR:= Wa[pre]; Bhi= W[fr];
if 8B(0) = 0 then

if 8B 2 64 then SC:= L8;
for SC:= SC-1 step -1 until O do 1lshl AxconBis
W[fr]:= BR; W[pre]:= AR

' end;

if SB(0) = 1 then

__________ H
if SB { -65 then W[fr]:= W[pre]:= 0
~1f SB > -65 then
begin
for 8Ci= SC+1 step 1 until O do lshr AtcomBR;

W[fr]:= BR; W[pre]:= Ar(0:23)
ends

ends

-

goto Next Instruction
end 14 39;

T T

Normalize Single:

Shift the contents of the W register left with zero extension until bit O
is different from bit 1. The number of shifts performed is stored as a ne-
gative integer in the storage byte addressed. If W = 0, the nunber of
shifts is set to -2l11.
begin
AR:= Wa[fr]; BR:= 0; SC:= O
if AR(0) = AR(1) A AR # O then
begin

for SCi= SC, SC-1 while AR(0) = AR(1) do 1lshl ARconBR;

[rpepasueping —— my w —_

T s e et v 2




- 38 -

if SB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];
if -, (MMode v - PHOTECT) then goto Instruction Exception;
if HA(23) then SB(12:23):= SC(12:23) elge SB(0:11):= 5C(12:23);
ST[STeddr]:= SBconlK; goto Next Instruction
end;
if AR = O then

— - v e g g

oy g 2o

if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr]; o

if -,(MMode v - ,PROTECT) then goto Instruction Exception;

if HA(23) then SB(12:23):= AR(12:23) else SB(0:11):= AR(12:23);
ST[STeddr]:= SBeonFK; goto Next Instruction

end ns 3l

Normalize Double:

Shift the contents of the register pair Wpre and W left with zero exten-
sion until bit 0 is different from bit 1. The number of shifts performed
is stored as a negative integer in the storage byte addressed. If W = O,
the number of shifts is set to -2Aii.
AR:= Wa[pre]; BR:= W[fr]; SCi= 0
if AR(0) = AR(1) A AR 4 O then

v 2 g e

walt until Accept; STaddr:= SBaddr; HA(23):= SB(23);

if SB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];

if -,(MMode v - FROTECT) then goto Instruction Exception;

if HA(23) then SB(12:23):= 5C(12:23) else SB(0:11):= sc(12:23);
ST[STaddr]:= SBconPK; goto Next. Instruction;

end;

Ve s



..39...

if As(0) 4 AR(1) then
begin
AR:= Q3 corment Exponent = O

.
"t v . e -~ 3

NORMALIZED REGISTER:
wait until Accept; STeddr:= SBaddr; HA(23):= SB(23);
if SB(0:22) > word limit then goto Instruction Exception;
SBconFK: = ST[STeddr]
if -,(MMode v - ,FKOTECT) then goto Instruction Exception;
if HA(23) then SB(12:23):= AR(12:23) else SB(0:11):= AR(12:23);
ST[STaddr]:= SBconPK; goto Next Instruction;
ends

——

1f AR = 0 then

1

AR:= Wa[fr]; BR:= Wa[fr]; :
if AR 4 0 then begin AR:= 0; goto UNMOWMALIZED REGISTER end;
else begin Ar(-1:11):= 0; AR(12:23):= -2A11; goto NORMALIZED REGISTER end

end 3

end nd 355

Jump with Register Link!

If the W field 4 0, the instruction counter is stored in the W register.
Following this, a jump is made to the effective address.
begin

example, executed by the following instruction

r: Jl a;
Jump:

et e g St S S

———— g Pt e - g s o

if SB(0:22) > word limit then goto Instruction Exception;
if -,(Main Power Key ON A -,Reset) then

—— ey ey

goto Reset System
ends

- ¥



- o -

- e w o e mar

IC:= BR(5:22); goto Instruction Exception
ends :

————

if FR(6,7) 4 0 then begin comment Store link; W[fr]:= BR end;

--------------- ey |

if or (IR A IM) A ITReneble then
FR:= SB(0:11); SB(0:11):= 12extSB(12); IC:= IC+1;
if -,FR(8) then AR:= Wa[index]; MMode:= IWOTECT;
goto Address Modifications

end J1 135

Compare the W register and the effective address as signed integers. If
the register is greatér than the address, then skip the following in-
struction. The register remains unchanged.
begin
AR:= Wa[fr]; AR:= AR-SBaj
if AR > O then IC:= IC+1; goto Next Instruction
end sh 4o;

Compare the W register and the effective address as signed integers; If
the register is less than the address, then skip the following instruc-
tion. The register remains unchanged.
begin
AR:= Wa[fr]; AR:= An-SBa; .
if AR(-1) then IC:= IC+1; goto Next Instruction
end s1 b1

Skip if Register Egual:

Compare the W register and the effective address as signed integers; If
the register equals the address, then skip the following instruction.
The register remains unchanged.
begin
AR:= Wa; AR:= AR-SPa;
if AR = 0 then IC:= IC+1; goto Next Instruction

end se b2



%

it T e e i e et e 4

Compare the W register and the effective address as signed Integers. It
the register is unequal to the address, then skip the following instruc-
tion. The register remains unchanged.
begin
AR:= Was AR:= AR-SBaj
if AR 4 0 then IC:= IC+1; goto Next Instruction

end sn 43;

Skip if Register Bits One:

Use the effective address as a mask to test selected bits in the W regis-
ter. If all the selected bits are one, then skip the following instruc-
tion. The register remains unchanged.
begin
" AR:= SBa; SB:= W[fr]; Awi= AR A -,SBay
if AR = O then IC:= IC+1; goto Next Instruction

end so bk

Skip if Register Bits Zero:

Use the effective address as a mask to test selected bits in the W regis-
ter., If all the selected bits are zero, then skip the following instruc- '
tidn. The register remains unchanged.
begin
AR:= Way AR:= AR A SBay
if AR = O then IC:= IC+1; goto Next Instruction

end sz 455

Use the right-most three bits of the effective address as a mask to test
the exception register. If the selected exception bits are zero, then
skip the following instruction. The exception register remains unchenged.
begin
if AR = O then IC:= IC+1; goto Next Instruction
end sx hé;



- Lo _

Skip if No Protection:

Use the protection key of the storage word addressed to select a bit in the
protection register., If the selected bit is zero, then skip the following
instruction.

begin

SBconPK:= ST[STaddr];
if - ,PROTECT then IC:= IC+1; goto Next Instruction
end sp 21;

-

Jump with Interrupt Enebled:

Same as Jump with Register Link, except that the interruption system is

enabled first. This is a privileged instruction.

Same as Jump with Register Link, except that the interruption system is
disabled first. This is a privileged instruction.
begin

ITHenablei= Oy if - MMode then goto Instruction Exception;

e

Use the effective address as a mask to clear selected interruption sig-
nals. This is a privileged instruction.
if - ,MMode then goto Instruction Exception;
Iki= IR A -,SB; goto Next Instruction
end ic U7;



P —

- 43 -

— o oy o e o e o et o s o o i e o .

Store the interrupt register in the storage word addressed. The interrupt
register remains unchanged.
begin
AR:= IRa,
if SB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];
if -,(MMode v - ,PHOTECT) then goto Instruction Exception;
SB:= AR(0:23); ST[STaddr]:= SBconFK;
goto Next Instruction

end is 313

Load Mask Register:

Insert the storage word addressed in the interrupt mask register. Bit O
of the mask register is permanently equal to one. This is a privileged
instruction.
begin
if 8B(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr];
IM(1:23):= SB(1:23); goto Next Instruction
end ml 12;

Store Mask Register:

Store the interrupt mask register in the storage word addressed. The mask
register remains unchanged.
begin
AR:= IMa;
if SB(0:22) > word limit then goto Instruction Exception;
SBconFK:= ST[STaddr]; :
if -,(MMode v - ,FROTECT) then goto Instruction Exception;
SB:= AR(0:23); ST[STaddr]:= SBconPK;
goto Next Instruction

end ms 30;



-4l

Insert the right-most three bits of the storage byte addressed into the ex-
ception register. The storage byte remains unchanged.
begin
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STeddr];
:= if HA(23) then SB(21:23) else SB(9:11);
| goto Next Instruction
i end x1 16;

Store the exception register in the right-most three bits of the storage
byte addressed. The left-most nine bits of the storage byte are set to

zero. The exception register remains unchanged.
~begin

AR:= 21extOconEX:

------ 3

if sB(0:22) > word limit then goto Imstruction Exception;

SBeonPK:= ST[STaddr];

if -,(MMode v -,PROTECT) then goto Instruction Exception;

if HA(23) then SB(12:23):= AR(12:23) else SB(0:11):= AR(12:23);

ST[STeddr]:= SBconPK; goto Next Instruction ”
end xs 273

‘» Load Protection Register:

Insert the right-most seven bits of the storage byte addressed into the pro-
tection register. Bit O of the protection register is permanently equal to
one. The storage byte remains unchanged. This is a privileged instruction.
begin

vait until Accepty STaddri=. SBaddr; HA(23):= SB(23);

if SR(0:22) > word limit then goto Instruction Exception;

SBconPK:= ST[STaddr];

if - ,MMode then goto Instruction Exception;

PR(1:7):= if HA(23) then SB(17:23) else SB(5:11);

goto Next Instruction
end pl 28,

e




- 45 -

o o 2 e i T s T e o e o s o e ot S e e

Store the protection register in the right-most eight bits of the storage
byte addressed. The left-most four bits of the storage byte are set to

zero. The protection register remains unchanged:

—— S v

wait until Accept; STaddr:= SBaddr; HA(23):= SB(23);
if SB(0:22) > word limit then goto Instruction Exception;
SBconPK:= ST[STaddr];
if -,(MMode v - ,PROTECT) then goto Instruction Exception;
if HA(23) then SB(12:23):= AR(12:23) else SB(0:11):= AR(12:23);
ST[STaddr]:= SBconPK; goto Next Instruction

gnd ps 29;

Load Protection Key:

Load the right-most three bits of the W register with the protection key
of the storage word addressed. The left-most twenty-one bits of the W

register are set to zero. The protection key of the storage word remains
unchanged.

begin
if SB(0:22) > word limit then goto Instruction Exception;
SBeonPK:= ST[STaddr]; .

oy o

end k1 22,

Store Protection Key:

Store the right-most three bits of the W register into the protection key
of the storage word addressed. The register remains unchanged. This is a

privileged instruction.

2 2 s

- e e e o e

if SB(0:22) > word limit then goto Instruction Exception;
SBconPX:= ST[STaddr];

g oy B ST g ot

Py



- 46 -

An input/output operation is initiated if the selected device 1s available.
If the device is busy or disconnected, the operation is rejected. This is
indicated in the exception register. The write command causes an irmedlate
transfer of the W register to the selected device buffer, followed by.an
output operation to the external data medium. The control command is iden-
tical to the write commsand, the only exception being that the output oper-
ation is replaced by a control operation. The read cormend directs the de-
vice to start a transfer of the next character from the external data me-
dium into its buffer register. Finally, the sense command is a request to
the device to transfer the contents of its buffer register to the W regi-
ster.
begin

if - MMode then goto Instruction Exception;

EX(22,23):= 0; Selected Device:= SB(0:17);

if Discomnected[Selected Device] then EX(22):= 1, ,

.+ if Busy[Selected Device] A -,Disconnected[Selected Device] then EX(23):= 1

if Ex(22,23) 40 then goto Next Instruction;
BRi= SB;
if Bi(23) then
SB:= W[fr]; Device Buffer[Selected Device]:= SB;
goto Next Instruction
ends

-

if BR(22) then

00 o ST gt s e it o

else

e g st

begin comment Sense command; W[fr]:= Device Buffer[Selected Device] end

goto Next Instruction
end 1o 1;

Autoload Word:

Four 6-bit characters from device number O are loaded inte the storage word

addressed and the protection key of the storage word is set to zero. This
is a privileged instruction. The computer is set in the reset state if the
loading device is disconnected or if any of the status bits are set during
input.

comment Save load aeddress in the registers, SE and BE. Set SC to h,

namely the number of characters to be read;

L 4



- 47 -

SE:= SB(0:11)conOconO; SB{0:11):= SB{12:23); BE:= SB(0:11);
AF:= 0; SC:= 2; SCi= SC+1; SCi= SC+1;

Next Character:
SB:= 23 comment Rkead command for device O

I 2T g St S oY

Start Input:
if - ,MMode then goto Instruction Exception;
EX(22,23):= 0; Selected Device:= SB(0:17);
if Disconnected[Selected Device] then EX(22):= 1;
if Busy[Selected Device] A - ,Disconnected[Selected Dev1ce] then EX(23):= 1
1f m(22,23) 4 0 then
begin
BR:= 2lextOconkXs

end;
. BR:= SB; 2 1lshl AF;
Read:

if BR(22) = 1 then
begin comment The read cormand is accepted, for which reason we set

up the sense cormandg
SB:= O3 goto Start Input
ends

—— )

Sense:
2 1shl AF; SB:= Device Buffer[Selected Device];

if s:B(o) = 1 then

pseudo character;
BR:= o 0000 00603
Shift: : . : o
if BR(23) = O then begin 1shr ARconBR; goto Shift end;
2 1lshr ARconBR; goto Next Character

end;
AR:= AR v SB(0,0:23); SC:= SC-1; SB(12:23):= 0;
if SB -4. 0 theg

e SRt o s b

goto Reset System

end.

[egeinpung }

o A2 vt oo



corment Store the four 6-bit characters contained in AR in the word
addressed by SE and BE;

SB(0:11):= BE; SB(12:23):= SB(0:11); SB(0:11):= SE(0:11);

wait until Accept SB; STaddr:i= SBaddr;

if SB > word limit then goto Instruction Exception;

SBeonPK:= ST[STeddr];

if - ,MMode v - ,PROTECT then
begin SB:= AR(0:23); PKi= O end;

ST[STaddr]:= SBconPK; goto Next Instruction

. end aw Oy

i
i
|




RCSL: 51-VB698
Author: Allan Giese
Edited: November 1969

THE MICROPROGRAM
FOR

THE RC 4000 COMPUTER

A/S REGNECENTRALEN
Falkoneralle 1
2000 Copenhagen F



P TR R

1, DESIGN AND OPERATION OF THE MICROPROGRAM STORE sccevcoccscccosvsccscce
2. JUMP SELECTORS AND JUMP CONDITIONS seeeeeencecosnccecensecossscasnnns
2.1 Generation of Next AdATreSS eeccccvsccccscsscssscccssssscssvssscosos
2.2 Explanstion of Jump Conditions ceecececccecccsscsccsocsoscsscoscce
3. INTRODUCTION TO MICRO COMMANDS AND MICRO ORDERS ceceocoscococccscccse
l, EXPLANATION OF MICRO ORDERS seccecocoscecscscccsscccsccscossoscccscnces
4,1 I0 Phase A, I0 Phase B, I0 Timing, and BUS(0:23):= I0 Data ecee.
4,2 Add, Sub, AdAE, SubE, Carry 24, Carry 36, and Carry 38 ceececcee
k,3 BUS(0:23):m AND(0:23) cecccesscoccccoscesccccccssecsscessscecsoae 11
4.5 Test WD Sign and Divide INtOEEr cececcccscecosccscoscescscsscsse 13
L.6 Test FD Sign and Divide Flo&ting ccccecececcsccsccsscecscesscase 16
k.7 Test Integer Ceeseesaseenssssensccasscsnscsssssesscsssssonsasese 18

\ommmm\nmUE
®

1‘18 Test Shift 00 GO OOBPOOENOOBOCIPOCOO 000000 CSPCOCRINSOISNOIOIOIEOCEONOIPSOIOIBSOIOSEOES 18
k09 Teﬂt m 00000000 0CER00R00000000006000000060000006c00000600000000CCCS 19

h'lo Test IO [ EXEREEENENNENNNNEENNNEENENENFENESEENNERE NN ENNENRNNENNNENNSENRRNNENS] 19

h'll mmablez- m(S) [ E R RN NN E NN N XNNNNNENREENNNRNNRNRNRXNRENNRRNNENENNENNNNNNN] 20
4,12 Read Instruction, Read Data, Read Split, Split Write, and Double 20
50 WCHART MATIDN I E N Y RN NN NN NN NN NN N RN NN NNEN NN NN N NN NERENENNENNNE R NNNNY N 2&

‘ APPmDIx A: ....O...0'..'.........0....0.'.......‘....‘0..0.‘.".....‘.'.O 27
MICRO ORDER LIST

APPmDH B: GO POOPOOPOCOOPSOPSIOODCOS0PO0C0 000080000000 0000080000000000PCOCES 33

TABLE OF INSTRUCTIONS

TABLE OF XY-NUMBERS AND MICROPROGRAM PAGE NUMBER
XY-NUMBERS FOR START OF EXECUTE CYCLE

TABLE OF JUMP CONDITIONS

FLOWCHARTS FOR MICROPROGRAM

VB698



- o o " —— " - - - —— oo o 2 PO I e D 20D D P W D S D P . S T .~ S

The two design approaches to the control logic of a computer are either to
build a tailor-made logic box for each instruction, or to employ & microprog-
ram. For medium size computers with a rather complex instruction set, the
number of boxes is rather high and, as they differ from one another, the de-
sign and maintenance problem is enlarged. The microprogram, with its orderly
structure, is therefore a more feasible approach for the medium scale RC 4000
computer. Also the economical aspects are in favour of a microprogram.

The microprogram store (MPS) we have employed is organized like a general
store having a maximum capacity of 1024 words, each of 100 bits. The store is
designed as a decoding network implemented entirely by means of integrated
circuits. Only 472 of the possible 1024 words are used by the microprogrem,
and the not used words will give an all zero result if they were selected.

Figure 1.1 reflects the manner in which the MPS operates. For each cycle, a
word is read out of the MPS and strobed into the three registers: MPS Parity,
Micro Command, and Jump Selector where it is held for the duration of the
cycle. The cycle time or the repetition rate for the MPS is 500 nanoseconds.
The MC register supplies the computer with the proper control signals, and
the JS register is used to address the next MPS word. The next address 1s
controlled not only by the JS, but, what is more essential, also by data de-
pendent conditions generated in the processor; for example, an overflow indi-
cation, an outcome of a decoding and so forth., The Micro Address Register
(MAR) is then set equal to Next Address and a new MPS word is selected, and
with that a new cycle is initiated.

The above description is correct as long as Runming Mode is 1. If Running
Mode becomes O (Stopped Mode = 1), no Next Address is written into MAR and
the micro commands from 11 to 69 are cleared to zero. Hence, MAR, JS,
MC(2:10), and MPS Parity remain unaltered.

For mnemonic reasons, MPS is logically divided into 32 sections, and the p'th
word in the n'th section is identified as xnyp (xy-number). Hence, the first
five bits of MAR represent the section number, and the last five bits the
number within the section.

VB698



(VW) M_Em”_#_ $S3WAAY OYDIW

SNOILIANOD dWNr

.

d3ITIOYINOD

(sr)

S43QYO  OADIW

i ol

SONVWWOD OYDIW 4 ALI¥Vd SdW

P

Ul

16

dwnr
SYOLII1IS dWNr
0] &

7] [0Z

I N_G

e - T - - - = L

e e E— a——— — — —— —— — — — —— — a——

—

DECODER

USTIINISUTOISTN ¢eol

€¢ol

— e — —— S . G G G T MR G G — D G G U G G G— — — — — — N G G — ——— — — —— —— — — — — —— — — — —— —

(SdW) FTHOLS WYIDOOUdOYDIW

S

Figure 1.1,

RC4000

MICROPROGRAM CONTROL

VB 698



B et L L TP i ———

—————— o - o - — ———— — — - =" -

The next microinstruction to be selected from the MPS is a function of the
current Jump selectors and the values of the jump conditions,

The TABLE OF JUMP CONDITIONS in Appendix B shows the jump conditions arrang-
ed in a matrix where the ten colums correspond to the ten bits of MAR. Emp-
ty positions signify not used jump conditions. The row to be selected in
each colum is controlled by a group of 3 jump selectors as indicated in
the rectangular boxes below the jump conditions. As an example, let us sup-
pose the jump selectors 71,76,85,91,95, and 97 are active corresponding to
the next address

AR(-1) = AR(0),1,0,0,1, 0,0,0,SB # 0,0

This is a four-way branch based on two independent conditions. The xy ad-
dresses are calculated in the following tsble

AR(-1) = AR(0) |SB % 0 | Next Address
0 0 x9y0
0] 1 x9y2
1 0 x25y0
1 1 x25y2

The Jjust explained evaluation of next address may be overruled by sending
the signal Fixed Address to the Jump controller, and in this case MAR is ex-
plicitly set to x31y31.

VB698



o o e . e T o e o e i s o s S e ot e e e e s e o it e e . < vt

The simple jump conditions whose interpretation is evident will not be found

is this list.

Accept

Autoloed

Carry(0)

FDsub

HA(23)

Itr

Main Power Key ON

VB698

is a signal generated in the Store Controller. It is
1 when the core store is accessible for data trans-
fer to the central processor. Accept is O if the
High-Speed Data Channel occuples the core store.

becomes 1 for a period of 500 nanoseconds for each
time the AUTOLOAD pushbutton on the Operator Console
is depressed.

is the carry generated in position O and supplied to
position -1 of the adder circuitry.

is controlled by the micro command Test FD Sign. The
floating-point adder is set to subtraction as long
as FDsub = 1,

When the microprogram executes one of the micro in-
structions, Read Instruction, Reed Data (Double), or
Read Split (Double), and the command is accepted by
the Store Controller, then HA(23) is always set e-
qual to SB(23), i.e. the least significant bit of
the byte sddress. In other words, HA(23) is 1 for
odd and O for even byte addresses.

is a signal from the Interruption Unit telling the
microprogram to switch to the Interruption Service
routine. Itr equals 1 when

ITRensble A (ors (IR A IM)) # O.

Main Power Key ON is 1 when the key is in position
ON, otherwise O. Reset is 1 as long as the RESET
pushbutton on the Operator Console is depressed.



MMode

MMode v - ,PROTECT

Modif

PROTECT

Round

VB698

is an abbreviation for Monitor Mode.
see MMode and PROTECT.

is a decoding of the address modification bits re-
lative, indirect, snd index. The equation 1is:

Modif:= FR(8:11) 4 0.

is a decoding network whose value depends on PR
and PK. The equation is:

PROTECT:= PR(PK) = 1.

is used in connection with floating-point arithme-
tic in order to determine the correct rounding
procedure,

The equation of the decoding is:

Round:= AF(-1) 4 AF(0) A AF(35)
v AF(-1) = AF(0) A AF(0) # AF(1) A AF(36)
v AF(-1) = AF(0) A AF(0) = AF(1) A AP(37)

and the lines in the equation characterize the man-
tissa as overflow, normalized, and underflow, taken
in line order.



One way of controlling the computer is to assoclate a given control function,
from now on called a micro order, to each micro command. Hence a micro order
is active if the corresponding MC bit is & 1, and any two micro orders may
be active at the same time. For a computer as complex as the RC 4000 comput-
er, it would require sbout 50 per cent more micro commands than the 69 sup-
plied by the MC register. The additional micro orders are generated by group-
ing two or more MC bits into a field and then decode this field. For example,
the three bits MC(51,52,53) (confer Appendix A) generates 7 micro orders,
but by doing so we have restricted ourselves to use one and only one of the
micro orders simultaneously. The groups should therefore be formed in such a
way that this restriction does not influence the instruction execution time.

Appendix A is a list of the micro orders. The vast majority of the micro or-
ders are transfer or other simple functions which are selfexplanatory, but a
few of them are more complex, however, and they are explained in Section L,

L. EXPLANATION OF MICRO ORDERS.

We have here collected the micro orders whose function are not straightfor-
ward. The corresponding micro commands are logic diagrams are also given.

Mc(2,3,4), Mc(47:50) = 7
(ARU026:028), (LCIO03, 011:012, 020,026)

The first three signals control the peripheral devices and their controllers

.via the Low-Speed Data Channel. The fourth micro order transfers the contents

of the Low-Speed Data Channel to the arithmetic bus. Details ebout their mode
of operation are found in the chapter concerning input/ output.

VB698



Mc(5:10)
(ARU098:100)

The adder circuitry has a width of 40 bits, and it is constructed to perform
a number of different arithmetic operations on two operends. The first of
the operands is always ARconAE, while the second operand depends on the ac-
tive micro orders.

We have on basis of the micro commands MC(5:10) and the three bistables
WDsub, FDadd, and FDsub constructed the micro orders listed below. WDsub is
controlled by Test WD Sign (MC(67:70) = 9) while FDadd and FDsub are control-
led by Test FD Sign (MC(67:70) = 8).

Add:= - MC(6) A - ,WDsub A -,FDsub
Sub:= MC(5) v MC(6) v WDsub v FDsub
AddE:= - MC(7) A -,FDsub

SubE:= - ,MC(8) A -,FDadd

Carry 24:= MC(9) v WDsub

Carry 36:= MC(10)

Carry 38:= - A4d4E

Add and Sub control the 26 most significant input bits to the adder from the

second operand whereas AddE and SubE control the 14 least significant bits,
see Figure b.1,

Add, Sub AddE, SubE

Carry(0)

~ © N

751,110 K1 I 777 = ] = 73 M - S = 7 W
r—l Carry24 Corry3:-|
Figure 4 . 1 . Adder Configuration

VB698

Carry38



- 10 -

The input from the second operand cen now be expressed in terms of the micro
orders as follows:

TABLE 4,1

Add Sudb Second Operand(-2:23)

0 Impossible

1 -,5B(0,0,0:23)
0 SB(0,0,0:23)

1 26ext0

= O O

AddE SubE | Second Operand(2l4:37)

0 0 1bhext1
0 1 - ,SE
1 0 SE

1 1 1lext0

The first operand is defined as
First Operand(-2:23) = AR(-1,-1:23) and
First Operand(2l4:37) = AE.

Teble 4.2 shows the relationship between micro commands, micro orders, and
second operand for a number of instructive cases. The table is only correct
provided WDsub = FDadd = FDsub = O,

TABLE 4,2
R ZRR
5§E§§§' "’-553& ggg Second Operand(-2:37)
econ e -2
S8Ee ¥y | 5833 444 P !
0000 00 1011 000 +5B(0,0,0:23)conllext0
0000 10 1011 100 +5B(0,0,0:23)conlliext0 + 2xx1l
0001 00 1010 000 | +SF(0,0,0:37)
1000 0O 1111 000 | +0
1000 01 1111 010 | +k
1000 10 1111 100 | +2xx1b
0100 10 0111 100 -SB(0,0,0:23)conilext0
0100 00 0111 000 -sa(o.o.o:aigcomhemo- 2xx1lt
0110 00 0101 o001 -sP(0,0,0:37

VB698



- 11 -

The output from the adder is called SUM and the following equation holds
SUM(-2:37):= AF(-1,-1:37) + Second Operand(-2:37)

A shorthand notation for describing the state of the adder circuitry is
(b meaning binary):

Adder:= b<AAD <Sub?<AAdB® <SubE> <Carry 2> <Carry 36& <Carry 3&

An example; 1f no micro commands are specified in a microinstruction, the ad-
der will be set up for integer addition, i.e. '

Adder:= b1011 000.

The output from the adder is normally strobed into the receiving register in
the middle of a microprogram cycle so the decoding network of the receiving
register has time enough to stabilize and thereby control the generation of
Next Address before it is read into MAR. In order to achieve this, it is ne-
cessary to set up the adder controls 1 microinstruction before the adder out-
put is written into the receiving register. A typical example of & sequence
of adder micro orders is found in Appendix B microprogram page 21 (x17y5,
x1y15, x0y25, x1y25, and x1y27).

4.3 BUS(0:23):= AND(0:23).

MC(13)
(ArRUO98)

Logical And operations are also incorporated in the edder, and we have
AND(0:23):= AR(0:23) A Second Operand(0:23).

The value of Second Operand depends of the state of the adder.

VB698



- 12 -

4.4 Shifts.

Me(54:56)
(ARU0B0: 083 )

The 6 micro orders:
1shl AF
1shl ARconBR
ashr AF
ashr ARconBR
1lshr AF
1shr ARconBR

formed by the 3 micro commands MC(54:56) are meaningful only when used in
conjunction with the adder because the adder is used as a shifter. For nor-
mal shifts, the adder controls should be

Adder:= b 1111 000, i.e. SUM(-2:37):= AF(-1,-1:37) + O.

Roughly spoken, left shifts are performed by teking the double SUM and right
shifts by taking the helf SUM.

The clock pulse for storing the shifted date arrives late in the microprog-
ram cycle, approximately at Time 350, and there is therefore no need to set
up the adder for shifts in the preceding microinstruction.

The exact definitions of the micro orders are:
procedure 1shl AF;
begin % AF(-1:37):= SUM(0:37)con0 end;

procedure 1lshl ARconBRj
begin % AR(-1:23)conBR(0:23):= SUM(0:23)conBR(0:23)con0 end;

procedure ashr AF;
begin 3 AF(-1:37):=m SUM(-2:36) end;

procedure ashr ARconBRj
begin
4 AR(-1:23):= SUM(-2:22);
% BR(0,1:23):m SUM(23)conBR(0:22);
end

VB698



- 13 -

procedure lshr AF;
begin  AF(-1,0,1:37):= OconOconSUM(0:36) end;

procedure lshr ARconBERj
begin
% AR(-1,0,1:23):= OconOconSUM(0:22)3
$ BR(0,1:23):= SUM(23)conBR(0:22);
end

MC(47:50) = 11, MC(67:70) = 9
(ArUOBO, 098:099)

Integer division is carried out by the non-restoring method. By this method,
one binary quotient bit q is determined in each iteration of a recursive pro-
cess. The recursive equation for the k'th iteration generates a new partial
remainder X(k+1), as a funmction of the present partial remsinder X(k) and
the divisor D. The dividend X(0) is the remainder before the first iteration.
The recursive equation includes either a subtraction or an addition depend-
ing on the relative signs of X(k) and D. If N denotes the word length, then
the finel N+1 bit quotient can be shown to be equal to -,a(-1), a(0),...,
q(N-2),1.

The relationships are:

sign X(k) = sign D ®» q(k-1) = 1, X(k+1) = 2xX(k) - Dx2xxN
sign X(k) # sign D ® q(k-1) = 0, X(k+1) = 2:X(k) + Dx2xxN

The purpose of Test WD Sign and Divide Integer is to control the adder and
shift mechanisms so that each iteration is completed within 1 microprogram
cycle. The exact definitions of the two micro orders are:

procedure Test WD Signg
begin WDsub:= if Running Mode = 1
then begin if SUM(-1) = SB(0) then 1 else O end
else WDsub

end:

VB698



- 14 -

procedure Divide Integer;
begin
% AR(-1:23):= SUM(0:23)conBR(0);
% BR(0:23):= BR(1:22)conWDsubconOy
end

The clock pulses for the two orders arrive at exactly the same time as the
clock pulses for the shift orders, i.e. at approximately Time 350. Running
Mode controls Test WD Sign, and this dependence makes it possible to manual-
ly execute the division microinstruction by microinstruction.

Let us illustrate an integer division by dividing 27 by 4 using 4-bit words;

confer also the microprogram Appendix B, microprogrsm page 16. Before the
iteration starts the contents of SB are set to 4 and ARconBR to 27.

VB698



- 15 -

- JepUTEWRX oY} UITA L = #/)2 3msey

L = Tuod(Z:0)¥d = JuaTIOND

T- = (¢iT-)4V = Zpuremdy

0T1TTO jtTTrTt (%)X Jdv ayse
11T $0000 TT1TQ =:IPPY 94AnZx
0 \oqﬁ T0 T T 11 (h)x=e J9BeuUI SDTATA GTLox
TITTT (2)b=t \o% 0 H_\qﬁ 1000 (%) o usTs QM 38el {IeBejUL SPTAIQ Lt&ox
10000 (1)be=t \o«o 1) \ﬁ 0T00 (2)x*e udre aMm s8I fIeBeul SDPTAIQ 6149%
071000 (0)b=0 \oq:ﬁ M\«o TTT1T (T)x*2 uSTS QM 389l fIeBejul OPTAIA 6TA9x
TITTT (T~)b=T ot 1 11000 (0)x>e ¥guUooHY TUST fuBTs QM I89%
70000 jTT0T 10000 (0)x $000 TTTTA =:I0PPY 02402x
0 11071 10000 SUOT3TPUOD TOTITUL JUSTRIOD
(¢:1-)Nns ey (¢20)ug (€31-)8v g19DI0 OXOTH | o
00TT 4 = €S- 'O0T0 4 = €S
= N 'f = JOSTAIQ 'L2 = PWBPIAICQ
¢°q ETEVL

VB698



- 16 -

MC(47:50) = 8, MC(67:70) = 8
(ARU0B0,098:099)

Floating division is also carried out by the non-restoring method; confer 4.5,
The iterations stop when a normalized qQuotient is obtained. The exact defini-
tions of the two micro orders are:

procedure Test FD Signg

begin FDsub:= if Running Mode = 1
then begin if SUM(-1) = SB(O) then 1 else 0 end
else FDsubj

FDadd:= if Running Mode = 1 .

then begin if SUM(-1) % SB(0) then 1 else 0 end
else FDadd

end;

procedure Divide Floatings
begin
% AF(-1:37):= SUM(0:37)conOg
% BF(0:35):= BF(1:35)conFDsub;
ends

The clock pulses for the two orders arrive at exactly the same time as the
clock pulses for the shift order, i.e. at approximately Time 350.

Running Mode controls Test FD Sign, and this dependence makes it possible to
manually execute the division microinstruction by microinstruction.

Likewise integer division, we shall illustrate a floating-point division, or
t0 be more accurate, the division of two mantissae by an exsmple. Table 4.3
shows the example, and the associated microprogrem is found in Appendix B,
microprogrem page 28.

VB698



g/L 30 TT1°0 $3TBIP AIBUIq ¢ 03 pepumol pue °*°°T0TT°0 sTenbe USTIOND Pe2TTEWION BYJ

0 ()b=1 0110 007°00 (6)x*z USTS G4 386y {BUTIVOTI OPTATA LAgx
01000 T (¢)b=0 1100 - 00T°1T (h)x=e uSTs ad 3895 {BuTIvOTd ePTAIA LAgx
01717 0 (2)bat T000 001°00 (g)xxe udrs a4 386l {PUTIBOTI IDPTAIA LAgx
01000 ] (1)b= 0000 000°T0 (2)xx2 urs @I 8ol {BuTIOTI OPTATA LAgx
00100 T (0)b=0 0000 0TT°11 ud1g @i 3831
0TT17 0000 0T1°11 0 =:48 $000 TTTT Q =:Xeppy 946x
0 0 1--- OTT°T1 (t)x*2 BuT180Td OPTATA cThgx
TIT1T 0 (1-)bs1 --—- | 101°00 uBTg Q4 189
10100 0 0 -—-- 707 °00 000 TTIT Q =:IePPY T49x
0 0 -——- T0T°00 (0)x SUOT3TPUOD TOIITUI JFUSWMOD
(g:1-)wWns pread qneal (¢:0)a9 (C:1-)av $I8PL0 OXOTH pcamﬂ“

010°1Q = 48- 'OTT°0q = 4§

=N 'g/9 = 308TAT@ 'Q/G = PWPTATQ

' ITHVL

VB698



- 18 -

4,7 Test Integer.

MC(47:50) = 1
(ARU101:102)

Overflow and Carry are examined by Test Integer, and the results are stored
in the proper registers.

procedure Test Integer;
begin
1¢ (SuM(-1) 4 SUM(0)) A ITRensble A IM(1) then Itr:= 1;
comment Interrupt request;
1f SUM(-1) 4 SUM(0) them begin EX(22):= 15 TR(1):= 1 end;
if Carry(0) then EX(23):= 1
ends

)"'08 Test Shift.

M (47:50) = &
(ARU101:102)

A left shift shall produce an overflow if bit(0) differs from bit(1) before
the register 1s shifted.

procedure Test Shift;
begin
i1f (AR(0) # AR(1)) A ITRensble A IM(1) then Itr:= 1
comment Interrupt request;
1f AR(0) # AR(1) then begin EX(22):= 1; IR(1):= 1 end;
end;

VB698




- 19 -

Mo(47:50) = 2
(ARU101:102)

Exponent overflow in floating-point operations is detected by this micro order.

procedure Test Exp;
begin
if (sc(11) + sC(12)) A ITReneble A IM(2) then Itr:m 1;
comment Interrupt requestg
ir sC(11) 4 SC(12) then begin EX(22):= 1; IR(2):= 1 end;

end;

L,10 Test IO.

MC(47:50) = 3
(ARU101:102)

The status bits of the selected peripheral device are transferred via the in-
put/output bus to the EX register when Test IO is activated.

procedure Test I0;
begin
1f Disconnected then EX(22):= 1;
1f Busy A -,Disconnected them EX(23):= 1
ends

VB698



- 20 -

L.11 ITRensble:= FR(5).

MC(51:53) = 1
(ARrUL02)

If the memory element ITRenable is 1, an interrupt signel causes the running
program to switch to the Interruption Routinejy if, on the contrary,
ITRenable = O, the running program proceeds.

It should be observed that the function codes for jump emeble and jump dis-
able are 15 (FR(5) = 1) end 14 (FR(5) = 0), respectively.

The disable mode is set in the Interruption Routine by applying all zeroes
to the FR register before the micro order is executed. When the micro order
is then executed, ITRenable is, of course, reset to O, but, moreover, the
asynchronous set signal to the D-type memory element Itr is set to 1. The
set signal could have the value O due to the micro orders Test Integer, Test
Shift, and Test Exp. It should be remembered that a D-type element remains
in the 1-state a8 long &s the set signal is O.

4.12 Read Instruction, Read Data, Reed Split, Split Write, and Double.

Mc(61:65)
(STCOO].: 022)

The micro orders to be explained in this section are all related to the data
trensfer from central processor to core store and vice versa. They are very
importent but also rather complex micro orders since the data transfer may
take as long as up to 5 microprogram cycles (2.5 microseconds).

An easily readsble introduction is found in the paper CORE STORE CONTROLLER
FOR THE RC 40OO COMPUTER, Section 2 (Design Considerations), end the reader
should consult this paper before he continues. In contrast, Section 4 in the
seid paper provides a minute description. For most purposes, included the
reeding of the microprogram, an adequate explanation is expressed in the
following procedures.

VB698



- 21 -

Instruction Exception:

wait 203

comment The micro address is x31y31, due to Fixed Address, see Appendix C
p-23

x31y31: IR(O0):= 1; SB:= 12;

xlty6: BR:= 23; Read Datag

etec.

procedure Read Instructiong
begin
Time O:
if Accept A (-,Itr v PR(0:5) = 9) then
begin
comment Accept = 1 when the High-Speed Data Channel does not access
the core store; wait 165; '
Time 165:
STaddr:= ICaddr; walt 653
Time 230:
HA(23):= SB(23);
Fixed Address:= IC > word limit; wait 510;
Time ThLO:
SBconPK:= ST(STaddr); FR:m ST(STaddr)(0:11); wait 240
Time 980:
if STaddr > 3 A Core Store Parity Control
then Core Store Parity Error:s -,odd ST(STaddr);
if Fixed Address then goto Instruction Exception;
Fixed Address:= -,(MMode v - ,PROTECT); wait 500;
Time 1480:
if Fixed Address then goto Instruction Exception; wait 20;
Time 1500:
if Core Store Parity Error then stop Microprogram
ends
end Reed Instructiong

VB698



- 22 -

procedure Read Data or Read Data Double;
begin
Time O:
if Accept then
begin
wait 165;
Time 165:
STeddr:= if Double then BRaddr else SBaddr; wait 65;
Time 2350:
HA(23):= SB(23);
Fixed Address:= 1f Double = O then SB(0:22) > word limit; wait 510;
comment Read Data Double is only used in the microprogram when it is
known beforehand that BR(0:22) does not exceed the capacity of the
core storeg
Time Th4O:
SBconPK:= ST(STaddr); wait 240;
Time 980:
if STaddr > 3 A Core Store Parity Control
then Core Store Parity Error:s -,odd ST(STaddr);
if Fixed Address then goto Instruction Exceptions wait 5203
Time 1500:
if Core Store Parity Error then stop Microprogram;
end;
end Read Data or Read Data Doubles

procedure Read Split or Read Split Doubles
begin
Time O:
if Accept then
begin
wait 1653
Time 165:
STaddr:= if Double then BRaddr else SBaddr; wait 65;
Time 230:
HA(23):= SB(23)3
Fixed Address:= if Double = O then SB(0:22) > word limit; wait 510;
comment Read Split Double is only used in the microprogram when it 1is
known beforehand thet BR(0:22) does not exceed the capacity of the

core storeg

VB698



- 23 -

Time 74O:
SBconPK:= ST(STaddr)s; wait 240;
Time 980:
if STaddr > 3 A Core Store Parity Control
then Core Store Parity Error:= -,odd ST(STeddr);
if Fixed Address then goto Instruction Exceptiong
SBenable:= MMode v - ,PROTECT; wait 5204
Time 1500:
if Core Store Parity Error then stop Microprogram;
ends
end Read Split or Read Split Double;

procedure Split Writes
begin
Time 1500:
wait 1653
Time 1665:
STdata:= SBconPK; wait 3153

comment If STeddr < 4, one of the W registers is selected and in this
case the arithmetic bus system is used as data carrier. The micro-
progrem must therefore never specify any bus transfers from 1500 to

20003
Time 1980:
SBenable:= 1; walt 5203
Time 2500:
end Split Writes

VB698




- 24 -

5. FLOWCHART EXPLANATION.

o et ot s o ey At A O A O B O e D S O 2D B o

The entire microprogram is presented in Appendix B in a flowchart version,
and this chapter serves as a guidance for the notations and sbbreviations
used in the flowchart description.

The normal execution of an instruction falls into two steps. In the first
step, an instruction is fetched from core store (or W registers), the effec-
tive address is calculated and the instruction number is decoded. These ac-
tivities, which are common to all instructions are collected in the FEICH
CYCLE, p. 1 of the flowcharts. From the FEICH CYCLE, the microprogram conti-
nmues to step two, which is a collection of 64 subprogrsms corresponding to
each of the 64 possible instructions. The subprogram to be chosen 1s deter-
mined by the instruction number. All these subprograms are &s a whole refer-
red to as the EXECUTE CYCLE, pp. 432 of the flowcharts., After execution of
the EXBECUTE CYCLE, the microprogram returns to the FEICH CYCLE, ready to
fetch the next instruction.

OQur first description of the FEICH CYCLE is incomplete as regards Interrupt
and Reset. Interrupt signals are interrogated in the FETCH CYCLE and an in-
terrupt causes a jump to the INTERRUPTION SERVICE, p.2 of the flowcharts. A
reset condition conducts the microprogram to halt execution until either a
Start or Autoload signal is applied by the operator. The necessary microin-
struction, for execution of this part of the instruction logic, are collect-
ed under the title RESET, START, AND AUTOLOAD, p. 3 of the flowcharts.

A sharp distinction between EXECUTE and FETCH cycles is not always possible,
since the lest microinstruction, for some instructions, and the first micro-
instruction of the FETCH CYCLE are merged together in order to reduce the
instruction execution time.

Each microinstruction is depicted by a rectangle, within which the activi-
ties for that particular microinstruction are written. On top of the rectan-
gle, we have to the left the identification number of the microinstruction
(xy-number), and to the right we may have any kind of information which can
clarify the description. Also for ease of interpretation, the same microin-
struction may be duplicated. The microinstruction are linked together with

VB698



- 25 -

straight lines where arrows indicate the direction of flow. Whenever a branch
occurs, the straight lines are broken and the relevent Jump conditions are
inserted.

Let us illustrate the rules by inspecting the flowchart p. 1k, The microin-
struction to follow x3y4 (or x3y6) depends upon the two jump conditions MMode
and Accept, and of course of the unconditional jump conditions O and 1, but
they are of no interest in this connection. Suppose MMode = 1 and

Accept = 0O then we follow the line labelled 10 and reach the microinstruction
x20y6. As long as Accept remains O, the microprogram continues to execute
x20y6 otherwise the microprogram proceeds to x20y7.

From x20y2 leads an arrow to microinstruction xly6, but in this case the mi-
croinstruction is not represented by a rectangle, but by a pentagon. The pen-
tagon symbol is en off-page connector, saying that information about xby6 is
found on page 2, INTERRUPTION SERVICE. An xy-mumber written in continuation
of en arrow is an on-pesge connector indicating that the microinstruction hav-
ing this xy-number is specified on the same page. The arrow from x2lUy5 is an
example of this kind.

A rectangle with no xy-number denotes actually 6l rectangles, namely the rec-
tangles that constistute the first microinstruction of the EXECUTE CYCLE for
each of the 6l possible instructions. These 6l microaddresses are listed in
XY-NUMBERS FOR START OF EXECUTE CYCLE in Appendix B.

The following ebbreviations are used in the flowcharts:

M(0:5) denotes the jump conditions
Fr(2) ,Fr(3) ,Fr(0) ,FR(1) ,FR(Y) ,FR(5)

FR(0:5) A - ,Modif dehotes the jump conditions

FR(2)A- Modi £, FR(3)A- ,Modif,FR(O)A- ,Modif,
FR(1)A- Modif, FR(4)A- Modif , FR(5)A- ,Modif

VB698




ar,sb,br,
be,sc

RI

VB698

- 26 -

are auxiliary variables for the registers AR,SB,
BR,BE, and SC. They have no resemblance in hard-
ware and are used only to express parallelism. An
example, suppose the initial value of SC is 2 and
that the microprogram is going to execute the mi-
croinstruction x6yik on p. 10 of the flowcharts.
The microinstruction x6yll will then be executed
3 times before x6yl2 is executed,

Initial value: SC = 2
x6yll: scim 2; SCim 2-13 ...
x6ylli: scim 13 SCim 1-1;5 ...
x6ylk: ec:m O3 SCim O-15 «..
x6yl2: comment SC = -1; ...

Read Instruction

Read Data

Read Split

Split Write



- 27 -

APPENDIX A

- - ——

MICRO ORDER LIST.

" - o o o i W P S i >

This 18 a complete list of micro orders arranged after increased micro com-
mand number. A number in the Reference column denotes where more information
sbout the function of the micro order can be obtained.

Reference

M(2) I0 Phase A b1
Mc(3) I0 Phase B b1
Mo(h) I0 Timing b1
MC(5,6)

00 Add:= 1, tm O 4.2

01 Add:= 03 Subi= 1 k.2

10 Add:= 13 Sub:= 1 k,2

11 Add:= O3 Sub:= 1 h.2
Mc(7,8)

00 AddE:= 1; SubE:= 1 4.2

01 AddE:= 1y SubE:= O L.2

10 AddE:= Oy SubE:=m 1 4.2

11 AddE:= O; SubE:= 0 h,2
M(9) Carry 24:= 1 L,2
Mc(10) Carry 36:= 1 4,2
m(11) BUS(-1:23):=m SUM(-1:23)
Me(12) AF(-1:37):= if - MC(10) then SUM(-1:37)

else SUM(-1:35)conOcon0

Mc(13) BUS(0:23):m AND(0:23) 4,3
MC(1k) Not used
MC(15,16)

00 No operation

0 1 BUS(0:11):= 12extW(rr)(12)

10 BUS(0:23):= W(£r)

11 BUS(0:23):= 12extW(fr)(12)comW(£r)(12:23)

VB698



- 28 -

Reference
Mc(17) W(rr)(0:11):= BUS(0:11)
Mc(18) W(fr)(12:23):= BUS(12:23)
Mc(19) BUS(0:25):= W(pre)
MC(20) W(pre):= BUS(0:23)
Mx(21) BUS(0:23):= if index % O

then W(index) else O

Mc(22) BUS(0:23):= SextOconIC(5:22)con0
M(23) IC:= BUS(5:22)

MC(2k4) BUS(0:23):= 12extOconSC(12:23)
Mc(25) SC:= BUS(11:23)

M(26) SC:m SC-1

Me(27) SC:m SC+1

Mc(28) BUS(0:23):= SB

M(29) SB(12:23):= BUS(12:23)

Mc(30) BUS(0:23):= 12extOconSB(0:11)
Mc(31) BUS(0:23):= SE(0:11)conl12ext0
Me(32) SE(0:13):= BUS(0:11)conOconOs

SB(0:11):= 12extSB(12)
MC(33) BUS(-1:23):= AR(-1:23)
MC(34) AR(-1:23):= 1f MC(11)
then BUS(-1:23)
else BUS(0,0:23)
MC(35) 1f - ,FR(8) then AR(-1:23):= BUS(0,0:23)
MC(36) BUS(0:23):= 1f EX(21) = O

then AE(0:11)conl2ext0
else AE(0:9,9,9)conl2ext0

M (37) AE(0:13):= BUS(0:11)conOcon0
Mc(38) BUS(0:23):= ER

M(39) BR3= BUS(0:23)

Mc(40) IR(0)s= 1

Mo(l) MModes= PROTECT

VB698



Mo(L2,43 bk b5)

0

B R R R R B R 0000 O O O

MC(L6)

MC(47,48,49,50)

¢

PR R e R e 0 O O O O O O

VB698

0

MR RO 00 0O K B B PO OO

0

B0 0O O O B B =+ 0O 0O O

0

- - O O P P O O P B OO P B O

0

- O O H B O O B K+ O O F 1 O

0

» O O F O FH O R O O = O+

0

O = O Fr O B O + O » O +» O

- 29 -

No operation
BUS(0:23):= -2
BUS(0:23):= 12
BUS(0:11):= Oy BUS(12:23):= -2048
BUS(0:23):= 1
BUS(0:23):= -1
BUS(0:23):= 48
Not used
BUS(0:23):= 6
Fot used
BUS(0:23):= 23
Not used
BUS(0:23):= 35
Not used
BUS(0:23):a 2
Not used

EX(22,23):= 0

No operation

Test Integer

Test Exp

Test IO

Test Shift

EX(21:23):= BUS(21:23)
BUS(0:23):= 21extOconEX
BUS(0:23):= IO Data
Divide Floating
BUS(0:23):= BEconl2ext0
BE:= BUS(0:11)

Divide Integer

FR:= BUS(0:11)
BUS(0:23):= 16extOconFR

Reference

L7
k.9
k.10
4.8

b1
L.6

k.5

BUS(0:23):= 18extOconITRno(18:22)con0y

IR(ITRno):= 0
Not used



M(51,52,53)
0 00
0 0 1
01 0
01 1
1 0 0O
i1 01
11 0
11 1
Mc(54,55,56)
0 0 O
0 0 1
01 0
0 1 1
1 00
i 01
1 1 0
111
M (57)
M(58)
Mc(59)
M2(60)
MC(61)
Mo(62)
Mc(63)
MC(64)
Mc(65)
M2(66)

VB698

- 30 -

No operation

ITReneble:= FR(5)

IC:= IC+1

if AR > O then IC:m IC+1

if AR(-1) = 1 then IC:= IC+1
if AR = 0 then IC:= IC+1

if AR $ O then IC:= IC+1

if - PROTECT then IC:= IC+1

No operation
Not applicable
1lshl AF

1shl ARconBR
ashr AF

ashr ARconBR
1lshr AF

lshr ARconBR

1lshr BPF

BUS(-1:23):= AR(-1:22)con0
Not used

Not used

Read Instruction

Read Data

Read Split

Split Write

Double

Not used

Reference

L,11

bk
bk
b
bl
bk
bk

h.12
k.12
k.12
k.12
k.12



- 31 -

Reference

Mc(67,68,69,70)

0 0 0 O No operation
SB(0:11):= BUS(0:11)
SB(0:11):= BUS(12:23)
SB(0:11):= 12extSB(0)
SB(0:11):= 12extSB(12)
ashr SF
PK:= BUS(21:23)
BUS(0:23):= 21extOconPK ,
Test FD Sign h,6
Test WD Sign k.5
M(1:23):= SB(1:23)
BUS(0:23):= IM
Not used
BUS(0:23):= IR
PR(1:7):= BUS(17:23)
IR:= IR A -,SB

ok e B R R H 0 00 0O O O O
H R, kPO O OO0 PR P KB P OO O
H 2 O O KB H O O F K O O B K O
» O P O O F O F O P O KB O =

VB698



CONTENTS:

B T T o pp—

- 32 -

APPENDIX

B

TABLE OF INSTRUCTIONS
INDEX FOR XY-NUMBER AND FLOWCHART PAGE NUMBER
XY-NUMBERS FOR START OF EXECUTE CYCLE

JUMP CONDITIONS

FLOWCHARTS FOR MICROPROGRAM

FETCH CYCLE

INTERRUPTION SERVICE
RESET, START, AND AUTOLOAD

RL, WA, 1A, 1O,
WS, ML, PL
HL,

RS, MS, IS, HS
AL, AC, DS, IC
AM

1S, As

LD, AD

NS, ND

SN, SE

JL, JD, JE

WM

WD

WD, 2

WD, 3

DL, AA, SS

CI

CF

FA, FS

FA, FS, 2

FA, FS, 3

FA, FS, b

™

) 29)

D, 2

I0, AW

10, AW, 2

M, 3

NOT USED CODES

VB698

1X, SP, KL

- e s o e D et o o e s T et T e e e e

PON N B = o
%388%333g&wpowmqmm:umpowmqo\\n;—ump



- 9 -
TABLE OF INSTRUCTIONS

- —— " - - - -

Decimal Value Mnemonic Code Binary Value Instruction
________________ ... 0125 L5 e

0 aw 000000 eutoloaed word

1 io 000001 input/output

2 bl 000010 load integer byte

3 hl 000011 load half register

b la 000100 logical and

5 lo 000101 logical or

6 1x 000110 logicel exclusive or

T wa 000111 add integer word

8 ws 001000 subtract integer word

9 am 001001 modify next address

10 wi 001010 multiply integer words

11 al 001011 load address

12 ml 001100 losd mask register

13 J1 001101 Jump with register link

1k Ja 001110 Jump with interrupt diseble
15 Je 001111 Jump with interrupt eneble
16 x1 010000 load exception register

17 bs 010001 subtract integer byte

18 ba 010010 add integer byte

19 bz 010011 load byte with zeroes

20 rl 010100 load register

21 sp 010101 gkip 1f no protection

22 k1l 010110 loed protection key

23 rs 010111 store register

2L wd 011000 divide integer word

25 ™>© 011001 exchange register and store
26 hs 011010 store half reglster

27 xs 011011 store exception register
28 pl 011100 load protection register

29 ps 011101 store protection register
30 ms 011110 store mask register

31 is 011111 store interrupt register
32 ci 100000 convert integer to floating
33 ac 100001 load address complemented
3k ns 100010 normalize single
35 nd 100011 normalize double

36 as 100100 shift single arithmetically
37 ad 100101 shift double arithmetically
38 1s 100110 shift single logically

39 14 100111 shift double logically

ko sh 101000 skip if register high

b sl 101001 skip if register low

k2 se 101010 skip if register equal

L3 sn 101011 skip if register not equal
Ll 80 101100 skip if register bits one
b5 sz 101101 skip if register bits zero
T 8X 101110 skip if no exceptions

L7 ic 101111 clear interrupt bits

L8 fa 110000 add floating

kg £s 110001 subtract floating

50 fm 110010 multiply floating

51 ks 110011 store protection key

52 fa 110100 divide floating

53 (3 4 110101 convert floating to integer
54 daL 110110 load double register

55 ds 110111 store double register

56 an 111000 add integer double word

57 ss 111001 subtract integer double word
58-63 not used

VB698



- 3h -

*gT pus /T aFed uo punoJ 8T HTAGX UOTIBOOT UF UOTIINIFSUTOIDTH

2o Tdmreny

2l ¢t gr| ¢2 0¢ 61 0z 8 02 111 02 154 8 L]tk
9| 11 Q1| ¢2 114 61 41 (%4 2t o1 1 ec | 2¢ 8 L] 0ogk
¢t g1'Lt| 62 o¢ 61 02 8 02 2 2t g2 | g2 61 92 | 624
9] 4 gT| 62 o¢ 61 2T ce 2T 2 2T 2¢ | e¢ 61 9z | g2k
o¢c| ¢t QT | €2 22 1¢'L 2t 2 1 11 21 61 12 gl 124
9] 0¢ 81| ¢2 (43 4 4 (4 T 01 21 2¢ | 61 12 T2 | 924
o¢c| ¢1 [4K 14 22 L 2 8 11 Ll 67 12 12 | G2X
9] 62 62| ¢2 22 4 4] [43 G2 01 1t 2¢ | 61 12 [92'22 | 42k
[44 2| €2 0o¢ 42 02 1€ 2 12 12 1¢| 1€ 92 12| cek
9] 01 He| ¢e gz | G2 43 1€ Z 92 92 8| ¢t T 2T | 22k
Gl e 6| e 43 L 02 81 6 61 61 2| 92 [43 21| 12k
9] %2 6] 91 02 L 2t g1 6 92 92 cT| ¢t 01 21| 02k
ocl 1 61| €2 87 L 12 (47 1 97 12 2| 1¢ 8T | 1€'62 | 61£
¢ 1 61| ¢2 [4 Gt 21| l2'9z'2Z 1 12 T €T | €T 1T 8| 814
G| #e w2 1 6T 0z G2 [#4 G2 9T 2z 2] 22 |G we'st' 1t ¢ L1k
¢l 42 12| 62 | 8'9'¢ GT Ge | le'9z'2e (44 12 2 ¢T | ¢t ot 02| 914
1€'0¢] ¢ Lt| 12 €T | gr'ly 62 42 97 1T | 12'81'9T ¢t | 91 12 97 | 614
9] 11| gT'LT] T2 4 L 1T Gelgr'lt 01 12'91 L L L 9| 414
T¢| 61| gT'LT| 61 61 0¢ 8 L ge 17 6t [gT'Ll1 | 6T n 62| ¢1k
9] 61 gT! 61 61 92 4 Ligt'lt 01 61 L L f 9|2t
o¢ | o¢ L1] 61 0¢ 0¢ 6 T 1T 61 2 L 3 o¢c| 11
9| 11 Lt| 61 o] L 1T 6 T ot 61 L L L] 9| 014
o¢c| 11 ¢l 11 o¢ 0¢ 8 8 1T 6 G| 9t Ll 62| 64
9] 01 ¢l ot gl1¢'l2 G 0¢ 8 0T 11 G| 91 i 9! g4
0| 4T HT| #T 12| gr'lt 11 ¢e ge | Le'92'ee 2 12 L 9'4 ge| UL
9] 0T 91| HT 43 L 01 92 g2 | 2792722 4 41 18'9 L) 9] 94
4K H1| ¢ 12 0¢ 11 ce g2 92 12 lt] 61 1 21| 6£
9 ¢ 4K 62 4 01 4 ¢ 92 12 #t [ 61 L 9| H44
1¢'L'2] 0¢ 9| #1 Qe L 11 T¢ T Te 81 11 6 1} o¢c| ¢£
41| 01 9| #%1 62 or 071 ¢ 1 T2 ¢ #1 6 1 62| 24
L'¢] ¢ T 4t [* T[G1'1t L] 1 g2 T 4 4 Ll 1] &
¢l ¢ 1| L2 T 01 4 T g2 1 q 4 n 62| 0X
T¢X  @ex  #zX  0gX LiX 91X 21X 6x gx 9% X ¢x X TTIx ox

HATNNN HOVd LUVHOMOTd QNV SUIEWNN-AX d0d XdANT

VB698




- 35 -

Decimal Mnemonic xy- Decimal Mnemonic xy-
Velue Code number ___Value Code nunb er

0 aw x0y0 32 ci x0y16

1 io x0y2 33 ac x0y18

2 bl xOyl 34 ns x0y20

3 hl x0y6 35 nd x0y22

I la x1y0 36 : as x1y16

5 lo x1y2 37 ad x1y18

6 1x x1yh 38 ls x1y20

7 va x1y6 39 14 x1y22

8 ws x2y0 ko sh x2y16

9 am x2y2 b1 sl x2y18
10 wm x2yh k2 se x2y20
11 al x2y6 43 8n x2y22
12 ml x3y0 bl 80 WByl6
13 )8 x3y2 45 sz x3y18
14 Ja x3yh ke sx x3y20
15 Je x3y6 7 ie x3y22
16 x1 x0y8 48 fa xOy2l4
17 bs x0y10 liTe] fs x0y26
18 ba x0y12 50 fm x0y28
19 bz x0y1h 51 ks x0y30
20 rl x1y8 52 £4 x1y2k
21 8p x1y10 53 cf x1y26
22 k1l x1y12 54 di x1y28
23 rs x1yil 55 ds x1y30
2k wd x2y8 56 aa x2y2l
25 rx x2y10 57 8s x2y26
26 hs x2y12 58 x2y28
27 xs x2y1k 59 x2y30
28 pl x3y8 60 x3y2k
29 ps x3y10 61 x3y26
30 ms x3yl12 62 x3y28
31 is x3ylh 63 x3y30

VB698



(6NvW (8)aVW (O¥vW (9)9vwW (SlvwW (P)avW (elvw (2)avwW (Iavw (o)avw
00l 66 86 6 9 S6 ¥6 €6 6 16 06 68 88 /8 98 68 ¥8 €8 B8 18 08 6L 8L L 9L SL ¥L € U L
8€ > DS ¥ [EE )
8€- < DS NO 4oy ppojoyny DS
‘.0>>Om C_UE
66 86 9% 6 g6 6 06 68 8 98 ¥8 €8 18 08 8L L L VL L 1L
1D310%d -
punoy i POWW apOWW (z2)ue (1-)v (294 1 (94

00t 86 16 6 ¥6 6 16 &8 88 98 G8 €8 z8 08 6L L 9L L €L v
(0)ag 0489S (0)gs (ez)ug (€2)WH 0 #(£2'22)x3 (o1)38 (2)yg = (1)¥g (0)AuoD
86 6 26 68 98 €8 08 LL ¥L V4
idedoy (5)¥4 (¥)ud (144 H (€)ud (2)4d (1¥v = (0N v = (v | (ov = (1-)av

00l 66 L6 96 ¥6 €6 16 06 88 g g8 18 8 18 6L 8L 9L L €L U
(L1134 1 (o1)y4 0#DS (11)2s 0 #3V (o)y4 qnsQ4 (1) (6)y4 (8)yd

66 96 £6 06 £8 8 18 8/ Sz L
0 %4V HPOW =% (S)ud | #POW =% (1)dd | #1PoW -2 ()44 | #1Pow -2 (004 | #1Pow ‘-2 (E)ud | #1PoW ‘-2 (2)ud ¥9 <8 69->8s

001 L6 6 16 88 68 z8 6L 9/ £l

( l | L L | L L 1 1

0 0 0 0 0 0 0 0 0 0

1 F2 v 8 9l 1 Z v 8 91

A X
rY969112£0 OV69L1£0

JUMP CONDITIONS

RC4000

V11615




SUC1IONSUL $9

suoijanyysul 9

]
(31POW “ -)4x299 (G:0)¥4
000 |

L 6148 0 [ 614gx " 0 | a 0 L 614gx
1desoy 1deooy ] 1deooy (5:0)44 1deooy
[ ] | | |
qay ay Q¥ (]
ZAgx £Agx 01AgX 178X 8148X 614X 9ZAgX LTA8X
100 010 L0 001 101 otl L1t
1daooy ‘()44 “(0)¥d
—\on 14gx
suoONYsUl $9 suoONusUl $9 0 °s|@ 0 os|@
(xapui)op usyy (xaput)op usyy
_— A— 0 % X9pu! §1 =1y 04gx 0 % X8pul ji =2y
(5:0)44 (S:0)¥d 61ABCX 8148z
| |
PESHIV =165 ay DES+YV =4S OgS+IV =4S PYSHYV =g OgS+HYY =:gS ogS+YV =4S
X+P 1A0x (P T oAgx (X+P) LAgX 4P 049X X++p § (Lg% (++P) 0AYZX X++P) $ |Apgx
100 010 110 001 101 oLl Lt
(10)¥d :o;E_ (644 (8)ud
Pua  @sja (Xapul)ppp Usy} g ¢ xapul §i uibaq
uayy (8)y4 ‘- 4 =1y
‘12310¥d =19PoOWW ‘1+D1 =201 (Z1)85+x3Z| =¥(11:0)8S
A g 1Apx
0 l
1859y ‘= @ NO Aoy 1amoyg uiow
|
QUO2D|UOD(4X89 =YY
LApx 91 Apx L1Apx
00 ) o 1
1deooy Ty )
|
. M
0Apx
OV69119Z r4g691192z VYH690101 OV89L0S |

FETCH CYCLE

RC4000

Microprogram

V11579




101069HA 261169BRJ 261169AG

220768AG

x31y3] x4y17 x4y16
IRQ):= 1; SB:=12 SB:=12
SB:=12
x4yb
Accept
1 0
x4y7
AR:= 6extOcon|Ccon0;
Ishr BF
x3y11
FR:=0; PK:=0;
MMode:= PROTECT
ST(12): Service Address x6y28
ST(10): Return Address IC:= SB(5:22),
ST(8): ITRno*2 ITRenable:= FR(5);
RS Double
|
Accept
1
xby29
SCi=6
x12y25
if SBenable then
SB:= AR(0:23);
SC:= SC+1
x3y19
SW;
SC:= SC+1
x3y21
SB:= 12extOconSC(12:23)
|
x8y22 ¢ x16y8
RS SW
! I
Accept MMode |-, PROTECT
1 0 1
x8y23 ¢ x31y3
x9y27 x4y0
if SBenable then p. 1
SB:= 18extOconlTRnoconO;
IR(ITRno):= 0 FETCH

RC4000

V11580

INTERRUPTION SERVICE

Microprogram

0

x31yl

Not possible, since

MMode =1



261169AG

2611698RJ

101069HA

220768AG

x4y2  RESET x28y15 ®
PK:=0 if SBenable then
SB:= 5extOconlCcon0
x17y18 x9y2
SB:= 23; Sw
MMode:= PROTECT
x8y4 x31y0
ashr SF
|
x28y0 Main Power Key ON & -, Reset
RS 1 0
x31y16
FR:= 0;
| PK:= 0
Accept
1 0
x28y 1 x16y4
ITRenable:= FR(5);
MMode:= PROTECT
L [
Start, Autoload
R 10 01
x28y4 x24y4 & START x20y4 & AUTOLOAD
BR:=12 SB:=0;
IC:=0
x20y5 x0y0
x16y4 SB:= BR | o 0000 0002 P-29
law
x24y8
RD
[
Accept
1 0
x24y9
x24y25
- IC:= SB(5:22)
x4y0Q
p-1

RC4000
V11581

Leer

RESET, START, AND AUTOLOAD

Microprogram : -

00



0% 1Ay o__vx L1Ryx
00| 10 ot Ll

daddy Tuy

1y
4S -8 (ST:0NV =:(4IM
‘000 {110 9 =113ppY

GZApX
000 L 110 9 =:eppY
‘039 =y
4 gZ7AgTx
952 (€2:04V
=4S
0AYX OAYX yLALLX 0Apx 0Apx 0Apx 0ApX
Jduod04xa|z 1421 =] uayy S 1 (M 8S i (EZ:0NV [8S ® (€2:04V | 1oy iss)
=:(4)M 123104d ‘- # =nig =:(3)M =:(1)M ISRV =2(4)M 25 =:(1PM
™ ELALX ds * LLAX X1 GALX o1 gAx vl LA YM LA X A ﬁ A 1%
011010 101010 010010 100010 000010 110010, 001010
(5344 “(P)ad (134 (04 (eNdd ()4
jdadoy |
|
Q¥ " (om =2y
046X [ JY.IT"
0 L
jdeddy
e 1 1 t b 1
0=xc2'z2)X3
ay ay ay ay QY ‘ay QY
™ FALIES dS OLALX X1 yALX o1 A X V1 0A1X VM QA i 8Ax
OV691192 ry8691192 YH690101 OV89,022

RL, WA, LA, LO, LX, SP, KL

RC4000

Microprogram

V11582




0/pX

9ApX

07X

(11:5)8S =2(£*1)¥d

Z1 =95 ‘I =(0)yl

(€2:£1)4S =*(£:1)4d

1ZALEX

GALEX L141E%
10 ol Lt
aPOWW (E€2)VH
]
6Aex
0 1
1dadoy
|
ay
1d 84Agx

9Ayx 0Apx 0ApX
" 19Ba4u] 53]
Z1 =15 ‘ogS-3v =:(45)M
‘I =t(o)I (€Z:1)8S =(cZ: IWI ‘001 1110 9 =:19ppY
8AZ X FALSAES ¥ okux
0 1
SPOWW

00l {110 9 =3ppPY

(15)oM =1y
LAgx LAZX
0 | 0 l
1dadoy jdedoy
1 |
0=x(£Z2°'22)x3
QY i ‘ay
W 0Agx SM 0Azx
V691192 rig691192 VH690122 oV89£02Z

WS, ML, PL

RC4000

Microprogram

V11583




g

0Apx 0Apx 1 Apx 91 Apx LIApX
10 ot L
jdasoy “uy )
|
19baju| ysa|
‘ogs—yv =:(4M 1abaju| ysa) ]
‘001 L110 9 =eppY ‘ogS+yV =:(1)M ‘a5 =(1m
0ApX 0Apx 9tAz1x LA X 9AZX OApX
, 001 1110 9 =H49pPPY
(11:0)g5u0204xaz | (o)gsxaz =x(11:0)8S (o)gs+xezL =x(11:0)8S (o)as#<ez1 =(11:0)8S (11:0)8S
=M (11:6)8S =:x3 (11:0)8s =x(cz:z1)8S L1:0)8s =x(cz:Z1)8S (L1:0)8s =:(€z:Z1)8S ={£Z:Z1(HIM
Z8 y1A1Ex X 8A1Ex sg 0141 ve ZiALex 19 yA1Ex H 9A1ex
(o 0010 1010 oLLo 0100 1100
HDL3d]
9AZx 91hL1x A% 9AZx {d
0Apx px
001 L110 9 =tpPY (ez:z1)8S
0 ==(11:0)8S (£2:12)8S =:x3 (Z1)gs#x?z | =:(11:0)4$ (z1)gsazL =x(11:0)8S (z1)gsaz1 =:(11:0)9S =T 1)(* M
Z4 £ oefiex X *  vZhiex s [ 9ZALEX ve 1 8ZAEX 18 0ZA1EX TH ZZA1EX
et 0011 tott otll olol Lot
(S)d4 “(¥)e4 (D94 (e2)VH
0 l
jdedoy
ay (43)oM =24V
ZAyTX eAyzx
0 l
jdasoy
|
14 1 s ¥ 1
0 =g \Ns\xm 0 =gz 'z2)X3
ay ay ‘ay ‘ay ay ay
79 ¥ 1A0% 840X Sg 01A0X Ve ZLAQX 18 yAQX H 9Apx
OV69119Z ryg691192 VH690122 OV89L02

HL, BL, BA, BS, XL, BZ

RC4000

Microprogram

V11584




RS, MS, IS, HS, XS, PS, RX, K$

RC4000

Microprogram

V11585

“uil
zd
9Apx 0Apx
Zl =198
1 =)l
141 gA1EX
0 L
12310ud ‘- iePoww
] |
(cz:0)dv
MS =M £2491% MS
9Ag|x GZA9|X 8A9 (X
UEA_VE T-ToPOWW
(€z:12) (1M
=id (€z:T1)yv =:(11:0)8S (ez:z 1)UV =x(cz:Z1)8S (€2:0)9v =4S
uay) s|qouags 41 85 =:(4)Mm uay, s|qousgs 4! uayy a|qouags jt
oLA91x _ ¥ A9 X LRZX 0 TR 6149
l
SpOWW (€2)VH
0 1 0 |
jdeddy haouu<
|
Y Sy
LEA0% LLAZX 0ZA91X 1249 1% b Z1AsX b £1A6X
L 0 l 0 ! 0
1dadoy jdaddy 14355y [CEEEY]
1 2 $ 2
dUOS0IX8/ | X3uo304xazz
(43)oM = =V =gy (13)PMm =24 oy =nJv OW| =3V (35)°oM =23V
Sy sy sy Sy sy Sy Sy sy
3 0EA0% XY 014X Sd 014gx SX Y14z SH Z1hgx Si y14gx SW Z1Agx Sy yLALX
OV69119C r4869119z VH690122 OV89£02Z




Sy S

atl v ¢d J
Z14A6x £146x
0 L
ydeooy
|
, Sy
‘(21d)op =1uy
9 1EXTX
Zi =18S
‘I ={0)l 36 =85
A 6286x TEA6x oxpx 0¥ X
0 |
1331084 - | °POWW
| ZL =19
‘L =x(0) 95 7-9 41 =2
AT 1% LRz
MS 0 {
LTAOX apoWW
|
(4IM =:8$
uayy a|qouagg Ji
GzAgx Dl zzhex
l
jdadoy
]
Sy
8Agx 648x%
0 |
}daddy
h O ﬁx
T b
18bayu| yso)
Sy Sy ‘ogS-yv =:(4IM
‘9 =118 ogS+IV =38 ‘001 110 9 =:9PPY
8AL1x f01ALLX 9LALL* 0ApX 1Apx 9LApX L1ApX
0 L 00 10 ol t
0%8S 19933y 1| ]
| |
00t 110 9 =:eppY
‘0 nxmmmwmvxm ]
Z- =1y : 0 =14V 85 =:(4)M
Sd 0EA X oV 8 140X Y] ShzZx
OV69119Z rig69119z 49690122 OV89,022

AL, AC, DS, IC
Microprogram

RC4000

V11586



*0zAgx u) pabupyd A|jonuow
240 (1101 ‘8)Yd 4oY4 s31jdui}

‘019z wouy Jusiayylp JIPOW A0 o LAgx
l
UOLNISUL MY 5|9 (6)¥4 (1¥di(o0)dd "(e)ud
SUO1IDNIYSUL 9 UBY} _ _
0 = JIPOW J! ESE
(xapu1)pp usyy
a (LL)¥4i(0L)¥d 31 =23V oyg =4V
(1PoW *=)4x99 3 (5:0)¥4 04X 0146 L14gX
0]
(6)dd
| f b
PES+IV =165 OgS+YV =45 0gS+YV =8 PYS+YV =18
0zAgx 1ZAgx 0CAvEX 12APZX
00 10 ol Ll
(tu3i{o)¥4 (8)u4
|
1D310¥d ='3POWW
, ‘1421 =1
(z1)asez1 =:(11:0)8S
6Apx
QuUO2D| U0 xag
=9
eATx
0 |
jdaooy
]
M)
ogs =1y
WY ZAzXx
DVE9119Z ryg69119z ry869012z2 ov89/02Z

RC4000

Microprogram

V11587



"4l
AL
0ApX 1Ay QLAY £ 1Apx
00 10 0l l
jdadoy Tuy) )
|
* % b 4
b 14
ez:004V =:(19M {ez:0)av =:(*AM
849X b Z1Agx
0 1 0 |
0 #2% WEED
] |
YGUOIYY [4s] "1 -D§=10S ) AFUONY |45
3§ =195 “ij1yg 4sa) 1-D§ =108 D5 =195 1y 14 b , 1y
‘000 LLLL 9 =eppY ‘000 LLLL 9 =2PPY | {ez:00aV =(2M ezT:00v = (1M 0 =:(4m |- =M
SY 0LAgx S1 7 1A9x 0AZ1% vAZIX 9Agzx P72 YA
0 L 0 1 0 t 0
(v)dd 0#°5 EED (1-)av
] ] [
YUOSYY 1S | 34UV I4s|
1-D§ =128 14252105 13§ =008 {408 =105 0§ =135 ¥
10 =4¢ G€ =108 000 LLLL 9 =:9ppPY ‘000 LLLL 9 =:49PPY 0 =:(4OM
8A0C% 8487 37 [ 7% $7 9AZLX 37 zA8Zx sl 4 9AgLx
0 1 00 10 ol (
¥9<8S (P)u4 '69->8S
| _
1428 =08
1y (43)PM =Y {ag)om =nav
0192 pZA9X 0< 9ZA9X [ 0EA9X
00 10 (
0 t_m_ (0)as
T ?
0 =gz ‘z)X3
(e2:11)8S =28 (€z:11)8S =128
37 9LALX $1 0ZA1X
OV69L19Z ry8691192 YH690122 OV89£02Z

10

LS, AS

RC4000

Microprogram

V11588




HD134 H

11

LD, AD

RC4000

Microprogram

V11589

1°d
0ApX 1A% 91Apx LIApX
00 10 ol [
) 1dadoy 1))
|
b4
) ]
(ez:0nv
=:(21d)m
LIALX
1 ¥ 1 1
A8 =M 48 =:(1M 48 =:(4M 48 (M
6A9% £ 1A9x 1Az 1% GAZIX
0 1 0 L 0 L 0
0#os ) 029 EED WED
| | | |
YGUOYY |Ys| [ -DS =:DS YGUONY |ys| , ¥guodYy Jyso , YQUOAY 4] , 1y , I
3§ =195 414 459 1-28 =D Dg =105 140§ =108 DS =105 142§ =125 ‘DS =198 0 =:(21d)m 1= =x(21d)m
000 LLLL 9 =t9PPY ‘000 t111 9 =:oppY ‘000 1111 9 =:4eppY ‘000 L111 9 =:49ppY 0 =(4)M 1= =M
m——
av [ L tAgx al G LAgx €AZ1x LAZ 1% y148Zx 0€A8ZX
0 ( 0 {
{(v)ud (I-lv
_ | .
, iy
1-2S =:2§ ‘0 =:(asd)m
(M =238 8y =:DS (M =38 (4OM =48 ‘0 =:(4)M
4 sA0zx 6ABTX ay oLAZ1% al PLAZIX av ol4gex al y148Zx
0 L 00 10 0l [l
y9<aS (144 "c9>8s
| |
[+2S =125
Iy (s2d)op =29y (ead)op\ =29y
o192 GZAgxX o< LTAgx LeAox
00 10 [
0445 (0)dS
|
f }
0 =1(€2°22)x3
{ez:11)8s =S (€z:11)8S =105
av 8LALX a1l ZZA X
OV69119Z 48691192 VYH690122 OV89£022




1 b
849|x
(€2:21)0S =« 11:0)8S €2:21)DS =(€T:Z1)8S
uay; a|qouagg i uay; a|qouags jf
GAQx 1ZAox
0 L
(eq)vH
1
1
(£Z:0)4v
=:(aid)m
0ZA9 1% (ZA91Lx LTApx
0 l 0 {
1daooy ) ydasoy
| | )
, Sy
‘8Y0Z- =TTV Y]
0 =x(11:1-)4v 9zhz1x ) 48 =M
8LACIX 6ZAPX
0 1 0 l 0 L
0%m® ydadoy (v = 1)av
| ] |
, Sy
0=V (cz:0nv 13
Qv =0 =(4)M BY0Z- =:(€Z:Z1)(*)M
0zA9 1% LZRT 1% 8ZAYX 9ZAZ 1%
0 0 [
ideddy (2o = (1)
1
, Sy 4GUOYY |4s| T[-DS =28
Sy Sy ‘8¥0z- =(ET:T IV (M =238 2 v =z’ 1)we
‘0 =y 0 =y 0 =(11:1-)3v (13)Pm =gy ‘000 LL11 9 =39ppY (4HM =218
SN 8ZAgx aN 0cAgx SN 0ZAZ X aN [£254% SN 8ZAZ X aN POCAZ %
010 Lo 001 Lot oLt Lt
(S)dd ‘0 &3V (1)3v o)V
]
0 =128
0 =48
1ZAL1%
! i
(15)oM =nyv (a:d)op =2y
SN 0ZA0x aN zzhox
OVE91 19T r48691192 YH690122 ov89£02Z

12

NS, ND

RC4000

Microprogram

V11590




13

SN, SE, SL, SH, SO, SZ, SX

RC4000

Microprogram

V11591

HD134 HD134
[ -d {°d
0ApX 0Apx 0APX FX
ogs ‘-9 YV =V 1+21 =1 1+21 =221 1+21 =:DI 1421 =2l
‘000 1110 9 =:12ppYy uayy 0 <YV ! uayy | = (1-)vY 3! uayy 0 =3V 4! uayy ORYY !
23S HS GZAgLX 1S £2A8Tx XS$1ZS:0S:35%  62A8ZX NS LEABZX
00 Lo ol 1
(S)hd ‘()4
]
ogS ® AV 000 L110 9 =:49pPY ogS-YY =Y
=4V (M =185 ‘001 1110 9 =HoppY
GLALLX GlAgx AL 1X
1 1 T 1 1 3
X3uoo04xazg 00l 1110 g =2pPPY 00l 1110 9 =t2pPY 001 1110 9 =:49pPY 00l L110 9 =:4°ppPVY
=V (13)PM =23y ogS =:yv (1)om =24 (1M =2y (1g)om =nv (49om =3y
XS 0ZAEx ZS 81AEX oS 91Agx HS 91AZx 18 81AZx s 0zZAzx NS AT A
OV69119Z ryg69119z VYH690122 V89,027




14

Suorenus v9 HO134 HO134 HO134 HO134
.__ { d p d [ d L d
Ay (5:0)ud LAox 04gx 1Agx A9 1X 9Apx
000| 100 010 ) (ol
(TD¥3i{01)u4 " (6)ud "(8)d
|
PUS () 95} (X@pUl DAL USUF § + Xopul J1 UBaq
, , uayy (8)yd '~ 1 =niv
PESHIY =:DI "12310¥d =9POWW “1+D1 =:DI (z1)gs+*eZt =¥(11:0)8S ZlL =1S
ZALEX 8 Apx yZAYX
0 1
.Z_
zhozx Zhozx 47
H
Z- =16S (zz:5)ug =21 (L1:0)85 =44 (Zz:6)ug =Dl 48 =M
0EApx GApEX Y274 GAgZx £A8Tx
00 10 ol "
12310¥d -i9PoWW ()34 1(9)¥d w
| a
a
OcooU.couoﬁxvc |._r
=V (2Z:5)yv =D -
1 140z £1A0Z%
Y t
“ull 19594 7= 9 NO Ko 19moq uibyy
zd 0 t
QAY X jdaooy
|
Z1L =:8S QuOdD|uod(sxaG Quo2D|uod(xag
I =(o)I ay =139 =g
4 Nxomx [LGYA] O\Aowx 2R0Z% 3 mxmx
00 10 ot ¥l |
1deddy "apoyww jdeooy
|
{ !
, Q¥ , ay
‘(G)yu4 =:@|qouay}} (G)yd =m@jqpusy]| aQy
‘ogg =1y ogs =y ogs =y m
T oAex ar IZSS " Zhex N
OV691192 r49691192 ry86901ze oV89Y0ZZ

Microprogrom

V11592




HO134 a4l
| d g d
04y 91Apx L1ApX
00 ol 1t
~._.:
, M
(ET:004V =:(2:d)m
LIAx
48 =4 )M
1AZ1x
f ?
YQUOdYY 1yso
) yguodyy Jyso ‘ogS-yV =4V
000 LLLL 9 =:3ppY ‘001 1110 9 =:49ppY
1A% yZA9 | X
00 ol
10 0495 °(Z2)ye Lt
|
{ 1
YGUOIYY 1ysp YGuodYy Jyso
1-08 =98 D =9 DESHYY =14V
‘000 LLLL 9 =:eppPY 1-08 =125 DS =:2s
81491x F2CTES
0 L
Amm_zm
0 =¥
£ 1Az
[-28 =1D$
(1M =48
GAZx
0 L
1dsddy
|
ay
€T =05
WM yAZx
OV691L19Z ry869119z

VH69012C

oVv89£0¢C

15

WM

RC4000

Microprogram

V11593




221069HA 261169BRJ 261169AG

220768AG

x2y8 WD

SC:= 23;

{rD

x2y9

EX(22, 23):= 0;

BR:= W(fr);
SC:= 5C-1

x2y15

AR:= Wa(pre);

BE:= W(pre)(0:11);
SC:= SC-1

x20y20 l

Adder:=b 1111
Test WD Sign;
Ishl ARconBR

000;

x6y19

Divide Integer;
Test WD Sign

JJsci= 5C; sC:= sC-1;

I

sc ¥0

1 0
x6y17

Divide Integer;
Test WD Sign

br(1,2):= BR(1, 2);

br(1) l= br(2)

1
x8y15

SB(0:11):= -2048

x4y 14
AR:= SBa

xdy15
Test Shift

‘x4 0
p-1

|FErc

x0y15
Divide Integer

x24y6 l

Adder:=b 1111 000;
ashr AF

AR(-1), SB(0), BE(0)

RC4000

V11594

WD

Microprogram

on 001 000
x24y15 x24y11 x24y10
p-17 p. 17 p.17
LwD WD
16



0ApX LApX QLAYX
00 10 ol

"4l
zd

L1ApX
L
1dadoy Ty
3
) N
IRV =(1OM
‘00t LLLL 9 =19pPpPY
PX2%AS
] 00l LLLL 9 =eppY 14 ]
1148 = (M 1498 =V ‘0 =t(a:d)m 1448 =(M
¥ vifex 14T Z1Agx ¥ 1ABX
0 1
0#8S
]
1y (cz:0)4v 09 YV =:(a1d)Mm 1y 1y
11438 =AM =:(a1d)m ‘001 LLLO 9 =:49PPY 1448 =2(9M ¥V =(21d)Mm ogSHIY =(3:)M
[ BEZUCE GAgx € 14Aex y148% A9 GlAg X
0 L 0 l
0 +3v
|
(£Z:004V =:(2)M 001 1110 9 =9ppY (ET:004V =:(21)m 48 =(1HM
0lAyZX | 1Apex Y 1ApZx S 1ApTX
OV691192 ry8691192 VH690122 OV89£02Z

17

WD

RC4000

2
Microprogram

V11595




0ApX
H1YS 459 Z14g%
G LApX
4V Jyso (ez:004v
‘000 LLLL 9 =:9pPY =1(1M
SLALX 6LAL1%
0 l
(v =(1-Nv
|
£Apx
0ApX LApx L1ApX
00 10 i
) 1dadoy [HIY =4V
| ‘001 LLLL 9 =:eppY 148X
L IETZS729
, 1y
, 1y 1y 1RV =M 00l Lt 9 =Heppy (ez:0nav
0 =M ‘149 =M ‘001 LLLL 9 =9ppY ‘1Hg =gV =:(21d)Mm
Z1Agx ¥ 14gx 6ZAYT% FAUSZ4S ¥ LAPZX
0 L 0 1
0445 0485
] |
(ez:0nav 00! LL11 9 =1eppYy
=(21d)m 138 =4V
JZETES € LAYZX A9 %
N | PES-YV =(21)m ogS-AY =4S
‘ogSHyv =:(e1d) M ogS+YV =4S ‘00t LL10 9 =t4eppY 00t 1110 9 =9ppY
GlA91x 0ZAx 1 £1Agx 1ZA6x
¥E =M ¥E =M 001l 1110 9 =:1eppy 001 11109 =:19ppYy
9zApTx YIZSTAS ogdyex (eAyex
OVE9119Z r49691419z VYH690122 OV89£022Z

18

WD
3
Microprogram

RC4000

V11596



HD134

{d
.vx
19bayu| ysa] 19baju| ysaf | 1abaju] ysaf 13baju| ysaf
ogsHIY L4oas Y =x(21d)m 1085 -yV =x(2:d)m . ‘oas-yv =x(2:d)m
S =:(o:d)m =(asdm | o l ‘001 1101 9 =9ppY ‘000 1110 9 =H9ppY ‘001 1110 9 =49ppY
6ZA 1% FALIAES 1deddy S1ALLX 81ApZx 1daddy 61ApZx
| |
00l 101 9 =t4eppY 000 1110 9 =3ppy 00l L1109 =9ppy
(sad)op =19y a|qnoq QY ‘(2ad)opp uu~_<l {(aad)opp =13y a|gnog QY Y(a:d)opp =24V
€ 1A8Zx ELAPX FALGIA] ¥ c1A0x L 1Ay 0140Zx 1tAozx
1 00 L0 ol 1 00 [0 ol L
1dadoy 1daooy ()LD ICEEE AN O LR}
| | |
3j9noq QY
a|qnog Q3 3190°Q QY ‘001 1110 9 =:49ppY
FALCTAS ZIApX 014px
ogS-yVv =:(4M
€S =:(4M OGS+ =:(4YM ‘001 1110 9 =:48ppY
1d 1Ay vV [ZAo% S L1AL1%
0 1
(204 i
jdadoy jdadoy
| |
00L LLLO 9 =t43pPY
ay (33)PM =24V ay ‘(4)oMm =3V
1q:vV $ 8ZA91X 10:vV $62491% SS 0e49 1% SS 1849 | X
00 10 ol [
1902y (G4
|
1 1
Qy ay
‘9 =138 oSV =g
GTATX VSRS
0 l
0 #8S
'l ?
0 =£2'22)x3 0 =€z ‘Z0X3
‘7- =0V ‘2- =V ‘T- =V
1a 8ZAX vy yZhTx SS 9ZATx
V691192 ry8691192 VH690122 V8902

19

DL, AA, SS

RC4000

Microprogram

V11597




20

Cl

Microprogram

‘0 = SS2IPPY ‘PAZ!joWwIOU Dssijubyy :1624gx
HD134 ‘0 # SSaIppy "PIZ!|DWIIOU DSSLUDWY 1 gAgx
‘0 = $S3JppY "0J9Z DSSHUDW 1| ZAZ|X
| -d 0 # Ssalppy ‘019z ossyudyy e ZAZ X
0ApX L Apx 9 LAYX L1APX 'Q = SS8IPPY ‘POZ!|DWOUUN DSSUDW 14747 | X
00 10 0l il ‘0 ¢ SSeJppy "pazijpwiouun pssiuby 1| gAZ|X
1daddy iy i
|
6Z48x LEAgx
o 1
0Apx 0448S
QXm bmo._. _
PgSHIV =108
ogSHIV =(€Z:Z1)(*IM (£2:0)4V =:(a:1d)m
LIA9{x LEApX
0 l
ANY_U = :Y_c
|
1 b
AV [US[ "1-DS=DS 4V 1Ys] T1-DS =:DS
I (£2:Z71)DSuedqixag| 1y 1y 1219w =z 1)e 2 v =z’ 1)o
{ez:21)25 =TT 1)(MIM =34V BYoZ- =(ET:Z (4 )M BY0Z- =TT (1M ‘000 LLL1 9 =*1eppY ‘000 LLLL 9 =9ppPY
6288 LeAgx L [ZAZ 1% €ZAT X 62T X LEAZ X
010 ) 001 L0l oll Ll
0#8S 0 RV _ﬁz< =0)4V
£ =108
0 =(11:00(4IM
‘0 =13v
[ IV ZYAES
0=4£Z"z2)x3
CIM =(21d)m
{ag)om =gy
) 91AQX
rI9691192 VH690122 V89,02

OVé9L19¢

RC4000

V11598




221069HA 261169BRJ 261169AG

220768HA

x1y26

AR:= 23;
EX(22, 23):= 0,

Adder:=b 0111 100

SB¥ 0
1 0
x17y7 x17y5
Adder:=b 0111 100; SB:=12extW(fr){(12)con
AR:= AR-SBa Wifr)(12:23);
Adder:=b 0111 100
x1y15
Adder:=b 0111 100;
SB:= AR-SBa
x0y25
SC:=SB(11:23)
SB¥ 0
1 0
x1y27 x1y25
AR:= Walpre), BE:= W(Fr)(0:11)
SC:=SC-1
s8> 64, SB(0)
10 01 00
x12y19 & SB>64  x4y23 5B<0 xdy19 & 0<SB<64 x0y23
W(fr):= 0, AE:= sc:= SC; AR:= Wa(pre);
RI W(fr)(0:11)conOcond SCi= SC-1 Adder:=b 1111 100
y ]
sc £ 0 BE(O)
1 0 1 0
x6y3 x6y18 x6y16 x4y5 x4y4
SB(0:11):= Adder:=b 1111 000; Adder:=b 1111 100; Adder:=b 1111 100; W(fr):= AR(0:23);
-2048 se:= SC; SC:=5C-1; AR:= (AR+1)/2 AR:= AR+1 RI
ashr AF
AF¥ 0 L x4y4
1 0
x20y15 x20y14 x6y2
AR:= SBa W(fr):= AR(0:23); SB(0:11):=
RI -2048
AR(-1)=AR(0)
1 0
x4y15 x20y14 x4y14
Test Shift W(fr):= AR(0:23); AR:= SBa
RI
x4y0
p. 1 x4y15
|FETCH
2 L 2
|
Itr, Accept
11 10 01 00
x4y17 x4y16 x4y x4y0
p- 2 p.2 p. 1 Lo P}
ITR. ITR. FETCH FETCH
RC4000 CF 21

V11599

Microprogram




261169BRJ 261169AG

221069HA

220768AG

RC4000

V11600

x0y26 FS x0y24 FA
AR:= - AR:= -2
¢ I v
SB¥ O
1 0
x9y18 x9y16
BR:= AR+SBq; BR:= 6;
RD RD
It l v
Accept
1 0
xby7 x6yb
AR(-1:11):=13extW(fr)(12); RD
AR(12:23):=W(fr)(12:23);
EX(22,23):=0
Accept
1 0

FR(3), FR(4)

B! 10 01 00
x3y21 x3y17 x2y21 x2y17 FS:FA
p. 2 p. 27 p.26 SE:=5B(0:11)con0Ocon0; SB(0:11):=
12extSB(12); W(fr)(12:23):=
TR ‘ :23): :1b 0111 100.

x17y24
Adder:=b 0111 100;
SC:= AR-SBq;
RD Double
FR(5), Accept
1 10 01 00
x17y27 FS x17y26 x17y25 FA
AE:= RD Double AE:=
W(fr)(0:11)conOcon0 W(fr)(0:11)conOcon0
Accept
1 0
SC>-3885C<38, SC(11), SC¥0
111 101 100 on 001
x20y31 x20y27 x20y25 x20y23 x20y19
p.23 p. 23 p.23 > p. 23 p. 23
FS FS FS FS FS
SC>-3885C<38, SC(11) SC#0 )
m 101 001
x20y30 x20y26 x20y18
p. 23 p. 23 p. 23
FA FA FA

FA, FS

Microprogram

22



221069HA 261169BRJ 261169AG

220768AG

SC > 38
——

sCc<-38

x20y23 FS
AF:=0
Adder:=b 0101 001

x20y19 FS x20y18 FA
W(fr)(12:23):= Wi(fr)(12:23):=
AR(12:23) AR(12:23)
I y
x28y23
W )(0:11):= if EX(21)=0

then AE(0:11)
else AE(0: 9 9.9). RI

’fr Accepf )

M
x4y17 x4y16
D

x20y22 FA
AE:=
SE(0:11)conOcond

x9y5 x1y21
W(pre):= SB
x28y23
0<SC<38
x20y27 FS x20y26 FA

W(fr)(12:23):= AR(12:23);
SC:=SC-1

W(fr)(12:23):= AR(12:23);
SC:= SC-1

x9y7
AR:=Wa(pre); sc:=SC;
SC:= SC-1; ashr SF;
Adder:= b 0101 001

sc¥ 0

0
x9y5
Adder:=b 0101 001;
AF:= AF-SFa
x9y15
p.24
LEAL_FS
RC4000
V11601

x9y19
AR:=Wal(pre); sc:=SC;

SC:=SC-1; ashr SF;
Adder:=b 1010 000

l

sc¥ 0

0

x9y17
Adder:= b 1010 000;
AF:= AF+SFa

x9y15
p. 24

FA, FS

FA, FS
2

Microprogram

SC=0

x20y25 FS

x4yl x4y0

L p- 1 p.1
FETCH FETCH

x20y24 FA

AR:= Wa(pre);
Adder:=b 0101 001

AR:= Wa(pre);
Adder:=b 1010 000

x%y5

-38<SC<0

x20y 31 FS

AR:= Wa(pre);
SC:= SC+1

x9y30

Adder:=b 1111 000;
sc:=5C; SC:=5C+1;

x%y17

x20y30 FA
AR:= Wa(pre);
SC:= SC+1

x9y26

Adder:=b 1111 000;

ashr A
|

sc¥ 0

1 0
x9y28

se:=5C; SC:=SC+];

L ashr AE
|

sck¥ O

Adder:= b 0101 001

x9y5

0

x9y24

Adder:= b 1010 000

xPy17

23



*Bulpunol ON *MO|JIBA0 DSSIJUDN
‘Buipunoy *mo|jIaA0 DssIHUDYY
"Buipunol ON *MO|4I9A0 DssUDYY

*Buipunoy - mo|418A0 DSSHUDYY

191 A8 *Buipunos oN "pPazI|DWiou DSSLUDYW 9| ApZX
/148X ‘Buipunoy ‘pazijpwiou ossiudy i/ [ApZx
914z 1% *Bulpunos o *019Z 10 Paz||owIoUUN DSSIUDY 19| AgZX
VALTAL ‘Buipunol sdoyiag ‘pazi|pwiouun ossyuDY 1/ [AQZX

"ull ¥l
Z-d ¢ d
91Agx 9LAZ X LAY LIApX
000 0to 0l 1l
jdasoy “uy
|
I
(eZ:0)4V =:(a:d)m
LIALX
|
dx34531 {(£2:71) DS=4€Z:Z )(1)HM v 14s) 27y
1676"6:003v @si@ (11:0)3V =%z ‘|0 | -D8=1D8
uayy 0=(12)X3 4! =x(1 L:0)(4HM ‘000 LLLL 9 =49ppY
zzh91x a2 TAS
0 L
()4 = ()40
]
4
L1ApTx
7] Fx34591 (€2:2 1) DS=€2:Z 1){1IM v 145] (2T INY v 1451 (2 v
(676°6:0)aV @512 (1 1:0)3V 8Y0Z-=€Z:Z)(4NM =2’ 1)4° *|-D8=D8 =2 )40 {1-D8=1]8
gz d uayi 0 (12)X3 # = (L L:0)(})M 0 =:(LL:0) (1M ‘000 L1 9 =t3pPY ‘010 LL11 9 =9pPY ‘000 111 § =H9ppY
7146 1ZA0T% 0Z4gzx 1ZAgex £2A9 1% X2 ZA
10 ol t 0 l
0 #dv (2)4° = (1)© ()0 = ()0
| |
Fx3 1591 (£2:2 [)DS=+(EZ:2 (1M 0 =A/£"9€)dV AN dv 14s] (2 3V
166 '6:0)3V @512 (1 1:0)3V ) Y4V =4y =H(Z "LJe “1-D$=:28 =z " )40 “1-D8=:D8
uays 0 =(12)X3 3! =:(1 1:0)(4)Mm ‘010 LLLL 9 =H9ppY *000 L1LL 9 =12ppY ‘000 LLLL 9 =:4epPpPY
91 Apgx AUSZAS 9148¢gx L1148
001 101 oLl ll
punoy “(1)3v = {00V (Olv=(1-lv
|
010 LLLL 9 =4eppY
qez:zL‘ZI(am=:08
G LA
OV691192 ri8691192 VH690122 oV89£022

24

FA, FS

RC4000

3
Microprogram

V11602




‘MO |419A0 DSSIIUDW
*MO|419A0 DSSIHUDWY

*poZi|PWIOU DSSIUDWY
‘pazi|pwiouun DSSI{UDW

1y zAgx

YZAT X

yzhyex
HCANCTAS

*BUIpUNOL ON] *MO|JJDA0 DSSIJUDW
‘Buipunoy ‘MO |4I9A0 DSSIJUDW
*BuipuNol ON *MO|}49A0 DSSIJUDW
‘Bulpunoy *Mmo|419A0 DssijuDyy

HOL34
{ °d
0Ayx L1ApX
00 Ll
1y
(ez:004v =:(=1d)m
4 LIA1X
X3452L (£2:21) S =(€£212 %Wv;
(67676:0)3V @519(11:0)3V
uays 0=(12)X3 # =:(L L:0){4)IM
FAZCTES
T b 1
, vy , AV .y >3 4531 (€2:Z1)DS=H€Z:Z ()M , AV 1wl
‘1408 =108 1408 =08 (6°6'6:0)3V @s|2(11:0)3V 1-28 =08
‘000 L1119 =2ppY ‘000 LLLL 9 =:19ppY uayy O=( 1Z)X3 3! =:(LL:0)(+HM ‘000 1111 9 =2pPPY
vZAgX vZATIX [ZASTAS YZABTX
00 10 ol i
(v =(0nv (onv={1-Nv
|
y146x
, dv e ¢/(y+dV) =:dv , dvayse Z/(F+dV) =14V
‘1428 =128 1428 =28 1428 =08 1428 =28
‘000 1111 9 =1eppPY 010 LLLL 9 =:9pPPY ‘000 LLLL 9 =:+eppPY 010 LLEL 9 =:2ppPY
914gx £148x 9LAZ 1% JALSARS
OV691192 9691192 VH690122Z

ov89.L02e

19 1Agx
£ 1Agx
9LAZ X
TATTARS

25

FA, FS

RC4000

4
Microprogram

V11603




S47v4 S4°vd
¥Z +d yZ -d
91Agx Z178% 91AyTx 91T £148Z%
000| 00l oLl Lt
punoy “(1)av =(0NV (0)dV =(L-)av
J
S1v4 a4
{znaseaz =X11:0)8S
zz +d ‘puooguos(| | :0)8S =:35 (@ d
O4S-4V =14V LIATX W4 1ZAZX L1AgX
‘100 1010 9 =:12ppY 00 10
FALCTES (¥)¥4 (€)44
0 L
jdeooy
010 LLLL 9 =:49ppY |
ez L) (Mm=:D8 100 1010 9 =:49ppPY 0 umeN X3
0 kpx F— 0z/ox ez:z)(Hmuoxymixeg |
oo| 10 ol Qy =V
042s ‘(01)°9 QA JZL
| 0 t
% 1dadoy
) 5] 4V Jyso 4945|3450 45 +iy=:Y |
“(01)38=:(01)29 [ -D$=:23 (01)38=:(01)29 *1-05=D8 1 d 3
35=:95000 L1 1 | 9=112PPY "35=:95 000 0101 q=149PPY
ZeApX [ ZZAOX ay Q3
! ‘9 =14g YS+YV =148
(11)ag 91hgx 81Agx
| 0 l
0 »mmm
(219 m =39
mxox
( Z- =1v
idaooy yZA0X
]
a|qnog Qy 1-DS =128
0 =14V (11:0)(4)M=138
yAx 6TA0X
PgS+IV
=:(45)M G =125
gThLx W4 8ZA0%
OV691192 FI9691192 48690122

oV89L02C

26

FM

Microprogram

V11604

RC4000



221069BRJ 261169BRJ 261169AG

220768AG

RC4000

V11605

x1y24

FD

AR:= -

x9y18

BR:=AR+SBq;
RD

x9y16

BR:= 6;
RD

I

Accept

1

xby7
AR:= 13extW(fr)(12)con

W(Fr)(12:23);
EX(22, 23):= 0

FR(3), FR(4)

x6y6

RD

Accept

n 10
x3y21 x3y17 FD

01

x2y21

00
x2y17

SE:=SB(0:11 )conOcon0;
$B(0: 11):=1 2extSB(12):
Adder:=b 0111 100

p. 26 >
FM

p. 22

FAFS

)

x3y7
Adder:=b 0111 100;
SB:= AR-SBa

x20y0
AR:= 35

x6y23
SC:= AR+SBa

‘x6 0
p- 28

FD

Microprogram




221069BRJ 261169BRJ 261169AG

220768AG

xb
AR:= W(pre);
RD Double

x6y]

Accept

i

0

AE:=W(fr)(0:11)conOcon0;
Adder:=b 1111 000;

Test FD Sign
l
AR #0
1 0
x8y13 @ x8y5
SC:= SC+1; SC(11):=0;
Divide Floating SC(12:23):=-2048
| |
FDsub SB¥0
1 0 1 0
x%yb x8yb s x17y3 x17y]1
BF:=0; BF:=-1; W(fr):= Test Exp
Adder:=b 1111 000; Adder:=b 1111 000; 12extOconSC(12:23);
Test FD Sign Test FD Sign RI
s )
|
SB¥0
1 0
x8y7 x4y0
SC:=SC-1; p. 1
Test FD Sign;
Divide Floating FETCH
|
BR(1) = BR(2)
1 0
x0y7
AE:= BEconOcon0
|
FDsub
1 0
x3y29 x2y29
AR:= BRq; W(fr}{0:11):=if EX(21)=0 then
Adder:=b 1111 010 AE(:11) else AE€0:9,9 9);
W(fr)(12:23):=5C(12:23)Test Exp
x24y17 x17y22
p. 24 W(pre):= BR;
RI
LFA FS
€
|
Itr, Accept
11
x4y17 x4y0
Lo P- 2 p. 1
ITR, LEETCH

RC4000

V11606

FD

2

Microprogram

28




101069HA 2611698R)J 261169AGC

220768AG

RC4000

V11607

x0y0

AW

SC:=2

x20y29

SC:= SC+1

SE:= SB(0:11)conOcon0;
SB(0:11):= 12extSB(12);

x20y28

SC:= SC+1]

SB(0: 11}= SB(12:23);

x20y16

BE:= SB(0:11)

x12y15

AF:=0

x0y19

SB:=2

x0y2

10

10 Phase A

MMIode

1
x0y13

0

x0y9

IOPhase A,
EX(22,23):= 0

10 Phase B

‘xl722

10 Phase A

x17y4

Test 10;
{OPhase A

x17y31
p- 30

10, A

10, AW

Microprogram

29



OLAZIX
) T
DG Ol =145 opq O =(1M
‘g °°4d Ol g 35044 O AP LAy 91Apx Z1Apx
MY 6K 1ex ol L1A1gx 00 10 ot Ll
It MM 0 l ydadoy ‘uy
ot poay (S)ud |
10 jo44u0D _
00 asuag
‘g @044 Ol
b eTAL1% 0Apx
, 4V |Ys)
000 L1LL 9 =:19pPY
‘g asoyq Ol g asdyq Q| pajoauuoosip
6TALLX L LAOX 5| Japoay
, 4V 195 v Ol
000 1111 9 =:2ppY
ghex g 9044 O 6z d
8ZAL1X £40x Zhox ZApx
0=1¢
‘0 =18S 1y
‘g ssoyq QI ‘g asoy4 O (M =S
weowo Gh91x %3__ ELA9|x omcomo £48Zx posy ¢ |14gzx b 9zAgx LA1EX $cLALex
{ 0 !
€Za1T] (z2)u (z2)y8
J |
] ENAER
‘000 L1119 =:49PPY
ty asoyqd O vV @044 Ol V @s0yd Ol
GZAlEX asuag:ppay # 4| A(£X josuoD) 3 lIM S /ZALEX gAEX
0 l
Amm_vg
4V 145
‘000 LLLL 9 =ts9pPY BuiLol X3u0204x3|Z =238 1y
‘Butwi] O] ‘¥ 95044 Ol ‘v asoy4 Ol ‘g as0y4 OI ‘g 950Y4 Ol
MY 6491 Ol L1A91X MV YA Ol LLAZLX
00 10 ol Ll
(S04 "0 4 A_mm "72)x3
gS =148
‘v 25044 O
MV Ol EAZLX
OV69L19Z rIg691192 VH690101 OV69L022

30

RC4000

2

10, AW

Microprogram

V11608




261169BRJ 261169AG

101069HA

220768AG

x17y30

BR:= 48
SB(0)
1 0
x2y23 End of Buffer x2y19
Adder:=b 1111 000; AR:= AR | SB;
br(23):= BR(23); SC:= SC-1
Ishr ARconBR
|
br(23)
] 0
x2y31 x%y3
Adder:= b 1111 000, SB(12:23):=0
Ishr ARconBR
x3lyl8 ¢
sb(0:11):= SB(0:11);
SB(0:11):= BE
|
sb #0
1 0
x31y15 x31y13
SB(12:23):=
SB(0:11)
SC*#0
1 0
x4y2 x0y19 ¢ x0y17
L JP- 3 SBi=2 SB(0:11):=
Parity or SE(0:11)
End of Tape |RESET
x0y2 x9y22 ¢
p. 29 RS
1 0
x3y23 10, AW
PK:=0 |
Accept
1
x9y23
x16y27
if SBenable then
SB:= AR(0:23)
x16y8
SW

MMode | -, PROTECT

1
x31y3
x4y0
p. 1
FETCH
RC4000
V11609

0

‘x3l 1
p. 7

RS

MMode =1

AW
3

Not possible, since

Microprogram

3




€9 340D

9Ayx
ZL =4S
“t =0l
8AZIx
b 2
0gAex 29 3402 8ZAgx 19 340D 9zAgx 09 340D yZhex 65 340D 0gAzx 85 300D 8ZAzx
V691192 r49691192 VH690101 ov89£022

32

NOT USED CODES

RC4000

Microprogram

V11731




RCSL-51: VB306
°. Author: Allan Glese
Bdited: Januery 1969

BIT PATTERN IN THE MICROPROGRAM STORE FOR

THE RC 4000 COMPUTER

A/S REGNECENTRALEN
Falkoneraile 1
Copenhagen F.



The Microprogram Store (MPS) has a czzecity of 1024 words each of 100

bits. For mnemonic reasons, MPS is logiczilv divided into 32 sections, and

" bit in a word is identified by a position n.rber in the range from 1 to
100. The bits having the position numbers z to 70 constitute the micro com-
mand field, whereas the jump selector fielZ cccupies the bit numbers from
70 to 100. Bit 1 specifies the parity bit -7 the word.

Seventeen of the thirty-two sections zre not used by the microprogrem,
and the value zero is stored in all these wirds, for which reason they are
omitted from the table to follow. The cornz=nis of each word in the remain-

ing sectlons are given in the teble by mezns of the position numbers. For

example,
x0y10: 1, 46,62, ' 73.75,97,98,

states that the bit positions 1,46,62,73,77,97, and 98 have the logical va-
lue 1 and that the unspecified 93 bits hzv: the logical value 0. It appears
from the table that the contents of 8 woris (x3y25, x3y27, x3y31, x5y9,
x9v25, x12y11, x31y23, and x31y29) are O ==i these words are not employed
- by the microprogram. Hence, the microprogzzm is implemented by A "
102k - 17«32 - 8 = 472 words. |

It follows that the parity for each wcrd which is not used by the mi-
eroprogrem is even, since every bit has tr2 logical value zero. The words
belonging to the microprogram, on the othsr hand, are arranged to have odd

perity, and this is achieved by means of ize parity bit.



x0y0:
x0y1:
. X0y2:
x0y>:

x0y5:
x0y6:

b <O

x0y9:

x0y10:
x0yll:
x0yl2:
x0yl13:
xO0y1lh:
x0y15:
x0y16:
x0y17:
x0y18:
X0y19:
x0y20:
x0y21:
x0y22:
x0y23:
x0y2l:
x0y25:
- xX0y26:
x0y27:
- x0y28:
X0y29:
x0y50:
x0y31:

25,42, b3 L
11,29,70,
2,

62,

2 69,

62,
37.,47,50,
62, '
3,29,40,44 70,
46,62,

3,

46,62,

2,6,

62,
47,49,50,
15,20,3k4 L6,
31,70,
6,9,3h 46,

- 29,42,43 44 70,

15,34,

ol 29,
19,3k,
5,9,19,34,
34 b5,
25,28,
34,45,

6l

25,42 4%,
15,26,47 49,
63,

73,79.88,91,94,100,
80,83,87,88,89,92,95,
91,92,93,100,
91,97,100,
73,76,97.98,

73,91,

73,76,97,98,

82,84 ,85,88,91,94,100,
75,16,97,98,
79,9497,

73.76,97 .98,

79,

73,76,97.98,
73,85,97,
73,76.,97,98,

73,76 ,94,97,
73,85,88 9k,
76,85,88,94,97,
73,85,88,

97, |
73,85,88,94,100,
73,91,
73,85,88,94,100,
79,94,98,100,
76,85,88,95,97,
85,88,91,95,97,100,
76,85.88,95,97,
76,85,88,91,94,95,96,100,
88,91,94,100,
88,91,
88,91,94,97,98,
73,91,92,93,97,



x1y0: 1, 62, 76,85,98,
x1lyl: 1, 13,17,18, 79,
xly2: 1, 62, 76,85,98,
x1y3: 17,18,28,33, 79,

 xiyh: 1, 62, 76,85,98,
x1y5: 1,  15,28,39, 73,85,91,94,97,
x1y6: h6,62, 76,85,98,
x1yT: 11,17,18,50, 19,
x1y8: 1 62, 76,85,98,
x1y9: 1, 17,1828, 19,
x1y10: 1, 62, 76,85,98,
x1ylls 1, 51,52 ,53, 79,
x1y12: 1, 62, 76,85,98,
x1y13: 1, 17,18,68,69,70, 19,
xly1l: 1, 15,3k 63, 76,85,91,94,98,
x1y15: 1, 6.9,11,29,70, 88,91,100,
x1y16: 25,28 46, 79,82 ,88,91,92,9%,95,97,
x1y17: 1,  20,33,61, 79,86,98, ‘
x1y18: 1, 25,28 L6, 79,82,88,91,92,94,95,97,100,
x1yi9: 5,54, 79,91,94,97,100,
x1y20: 1, 25,28, . 79,82,88,91,92,94,95,97,
xly21: 20,28, 73,76,79,88,94,97,100,
x1y22: 25,28 79,82 ,88 91,92,94,95,97,100,
xly23: 1,  11,17,18, 79,829k,
xiy2kh: 34 45, 76,85,88,95,97,
x1y25: 15,47 49, 88,94,97,100,
x1y26: 1, 6,9,34 42 U4 L6, 73,85,9%,95,97 ,100,
*1v27: 1, 19,26 34 . 75,79,88,92,94,97,100,
x1y28: 1, 3L ks, 82,88,91,95,97,100,
z1y29: 20,28, 19,

- x1y30: 3L 45, 73,85,91,95,97,

x1y31: 1, 19,3463, 76,85,91,94,98,



x2y0:

. x2y2

X2y3s
x2yl:
X2y5:
X2y6:
xX2yT:
x2y8:
X2y 9:

x2y10:
x2yi1:
x2yl12:
x2y13:
x2y1lk:
x2y15:
x2yl6:
x2yliT:
x2y18:
x2y19:
x2y20:
x2y21:
X2y22:
x2y235:
x2y2l:
x2y25:
x2y26:
x2y27:
- x2y28:
X2y29:
x2y50:
x2y>31:

46,62,
6,9,15,3k,
28 34,61,
22,39,
25,2 bk 62,
15,26,39,

17 ,18,28,61,
17,18,28,
25,42 Lk Lg 62,
15,2639,
15,34 ,63,

15,34 ,63,

3k,

34 L8 L9, 63,
19,26 34 47 49,
6,9,15,34,
6,9,18,28 32,
6,9,15,34,
26,28 33,34,
6,9,15,3k4,
28,32,
6,9,15,3k4,
5,54,55,56,
34 45,46,
39,42,62,
34,45 46,
11,39,62,

17118|2u136ll+91

5,54,55,56,

82,98,

73,85,88,
82,97,98,
79,91,100,

82,94 ,98,
82,91,94,100,
79.86,98,
73,88,91,95,96,100,
82,91,98,
82,91,94,97,100,
82,91,97,98,
82,94,97,100,
73,88 ,94,98,
73%,88,89,91,97,
73,88,94,98,
73.79,88 9%,
73,85,9%,97,
73,85,88,91,

' 75 ;8519)"’197 1

76,85,97,100,
73,85,9%,97,
85,88,94,97,100,
73.85,94,97,
82,88,89,91,94,97 ,100,
82,88,91,95,97,100,
73.88,91,94%,95,98,
82,88,91,95,97,100,
73,88,91,9%,95,98,
76,79,91,

73,85,88 94,97,
76,719,991,
88,97,100,



x3y0:
x3yl:
x5y2:
- x3y3:
x3yl:
x3y5
x3y6:
x5y7:
x3y8:
X3y9:

x3y10:
x3yll:
X5yl2:
X3y13:
x3yib:
X3v15:
X3yl6:
X3yiT:
x3y18:
x3y19:.
x3y20:
X3y21:
x3y22:
X3y23:
x3y2l;
x5y25:
 X3y26:
X3y27:
x3y28:
- x3y29:
¥2y30:

X3y31

62,

28,34 62,
22,39,
28,3453 62,
20,33,
28,3453 ,62,
6,9,11,29,70,
62,

34,47,48,50,63,
L1 b7 48,68 ,69,
3k,63,67,69,70,
6,9,11,20,

3k 63 ,67,68,70,
6,15,29,70,

28 3k,
6,9,28,32,
15,34,

271615’.

34 48 b9,
2k 29,70,

68I69I

5|10|3h 1581

82,85,98,

76,79,91 92,93,
82,85,97,98,

73,75 ,86,87,88,100,
73.79.,92,93,97,98,
76,91,9%,97,
73,79,92,93,97,98,
73,79,

82,85,91,98,
73,76,79,82,85,86,88,92,93,100,
75,88,94,98,

79,82 ,88,91,94,
76,85,91,94,98,
73,76,91,94,100,
76,85,91,94,98,
76,8594,
82,85,91,94,97,100,
82,85,94,97,100,

173.,85,91,94,97,100,

82,85,88 94,100,
73.,85,91,9%,97,100,
76,88,94,97,
16,79,91,92,93,100,
73,88,91,97,100,
76,79,91,

76,79,91,
76,79.,91,

73,76,88,100,
76,7991,




Wyo: 1, 6L, 79,86,98,
*xhy1s 22,34, 79,86,87,88,97,
xhy2: 1, 68,69, 73,85,88,97,

 xhy3: 71,85,88,97,100,
byl 17,18,33 .61, 79,86,98,
xly5: 5,9,11,34, 79,82,97,
xhy6: 1,  39,ke Lk 62, 79,94,97,98,
xbyT e 1, 22,34 57, 82,85,91,97,100,
xby8: 21,35,41,52,68, 72,73,75,76,81 84 ,87,90,93,96,99.100,
xby9: 1,  41,52,68, 72,73,76,88,94,99,100,
xbyl0: 1,  6,9,62,65, 71,73,79,91,97,98,
xly11: 6,19,34, 73,76,88,97,
xhy12: 1, 62,65, 71,73,79,91,94,98,
xly13: 1, 19,34, 73,85,91,94,
xly1lis 28 3k, 79.91,94,97,100,
xby15: 1, L8, 79,
xby16: 1,  29,44,70, 79,94,97,
xlby17: 1, 29,4470, 79.94,97,
xly18: 21,35,41,52,68, 72,73,75,76,81,84,87,90,93,96,99.100.
xby19: 1, 26, - 79.82 ,88,96,97,
¥iy20r 1,  5,10,15,25, 71,76,77.,88,98,99,
xby21: 1,  17,18,28, 73,76,79,91 94,
xhy22s 5,26,54,57, 79,80,82,88,94,96 97,
xly23s 1, 15,37, 79,82,97,100,
xly2ls 1, 29,4470, 79,9%,97,
xly25: 1,  6,13,17,18,61, 79.,86,98,
xby26: 17,18,38,63, 79,88,91,97,98,
xhy27: 1, 20,33, 86,88 94,100,
x4ve8: 17,18,33,63, 79,88,91,94,98,
<y29: 1, 86,88 ,94,100,
xly30: 29,45,70, 13,76,79.,82,85,97,

3{1{»3731: 20.33; 76188 )9119h195197 11001



x6y0:
x6yl:
x6y2:
. Xb6y3:
x6yh:
x6y5:
x6y6:
X6y7:
x6y8:
x6y9s
x6y10:
X6y11l:
x6y12:
x6yl13:
x6y1h:
x6y15:
X0yl16:
x6y17:
x6y18:
x6y19:
x6y20:
x6y21:
x6y22:
x6y23:
x6y2lh:
x6y25:
x6y26:
x6y273
x6y28:
- x6y29:
x6y30:
x6y>51:

[y

19,34 62,65,
5.15,37,67,

bl 45,69,

4l b5 69,
34,37,62,65,
19,39,

62,

15,16,34 46,
17,18,33,61,
17,18,38,
5,26,48,55,56,
5,26,48,55,56,
17,18 ,33,61,
17,18,38,
5,26,55,56,
5,26,55,56,
5,9,54,
k7.,49,50,67,70,
5,26,54,

26,47,49,50,67,70,

6.1,

11,17,18,
8,26,54,57,
11,25,

61,

61,

15,34,
19,3k,

25:28|55;63165l'

25,&2,
15,27 ,3k4,
19,273k,

79.82,98,
76,90,91,9%,100,
71,79,91,9%,97,
73,79.91,94,97,99,
79,82,94,98,
79,81,82,88 94,97,
79,82 ,94,97,98,
82,83,88,92,100,
79,86,98,
85,88,100,
79,82,91,96,97,
79.,82,91,96,97,100,
79,86,98,
85,88,100,
79.82,91,9%,96,97,
79,82,91,94,96,97 ,100,
79,94,
74,76,91,94,97,100,
79,82,88,96,97,
79,82,88,96,97,100,
73.,91,94, o

79,91,9%,

79,80,82,88,94,96,97,
79,82,

79,86,98,

79.86,98
73.,75,79.,91,
73,75,79,91,100,
79,82 ,88,91,94,98,
76,79,88,91,100,
72,76,79,92,97,
72,76,79,91,92,97,




x8y0: 62, 76,87,88,89,97,98,
x8y1l: 1, 11,29,70, 76,
xBy2: 1, 62, 76,97,98,
. x8y3: 1, 76,88,97,100,
xByl: 68,70, 73.,76,79,
x8y5: 1, 25,4k bs, 73,85,95,97,100,
x8y6: 1, 5,39,43 45,47 49,67, 76,94,95,97,100,
x8yT: 1,  26,47,67, 74%,76,9%,97,100,
x8y8: 1, 63, 76,91,98,
x8y9: 1, 76,88,91,100,
x8y10: 62, 76,91,97,98,
x8yl1l: 1, 76,88,97,100,
x8y12: 20,61, 79,86,98,
x8y13: 27,47, 76,84,85,94,97,
xByik: 1, 17,18,38 43,61, 79,86,98,
x8y15: Ll 45,69, 79,91 ,9%,97,
x8y16: 5,27 ,5k4, 73,88,94,97,
x8y17: 5,10,27,54, 76,85,91,94,97,
x8y18: 62, 76,88,97,98,
x8y19: 80,83 ,87,88,89,92,95,
x8y20: 11,29,70, | 75,76,81,8%,87,90,93,96,
xBy21: 11,29,70, 76,85,91,97,
x8y22: 1, 63, 76,88,94,97,98,
xBy23: 1, 76,85,88,91,97,100,
x8y2l: 5,27 ,54, 73,88,94,97,
x8y25: 15,29,70, 88,91,97,100,
xBy26: 1, 62, 76,88,91,97,98,
x8y27: 1, 76,88,97,100,
x8y28: 1, 34,63, 73,88,94,98,
- x8y29: 1, 18,24 .61, 79,86,98,
xBy30: 1, 34,63, 73,88,94,98,

x8y31: 2&.324-. : 73188|1001



- 10 -

62,
15,3%,

6k,

29,

6,13,34,

6,7,12,

539,47 ,49,67,
6,7,19,26,34 68,70,

21,3k,
34,38,
63,

5,10,15,16,25,
39,4262,

8,12,

11,39,62,
8,19,26,34,68,70,

- 11,29,70,

6,9,11,29,70,
63,

8,

5,27 ,54,
29,47 .48 ,49,70,
6.7,
29,40 4k 70,
5,27 ,54,
29,38,70,

76,85,98,

80,83,87,88,89,92,95,100,

73,76,79,82 85,
73,76,75,82,85,88 97,

73,76,79,88,91,9%,100,

76,85,91,9%,97,100,
76,94,95,97,100,
76,85,94,96,97,100,

73,76,79,82,85,89,90,94,97,100,

75,176,100,
73,75,76,99,100,
76,85,91,94,98,
73,88,91,97,100,
71,76,77.88,91,
71,76,77,88,98,99,
79,82 ,94,97,98,
76,85,91,94,97,100,
79,82,94,97,98,
76,85,88,96,97,100,
73 ,9%,97,100,
73,97, |
76,85,88,94,97,98,
82,85,88,94,97,100,
76,85,88,100,

76,85,88,91,96,97,
13,91,
76,85,94,100,
79,9%,97,
76,85,88,91,94,96,97,
85,88,91,94,97,100,



x12y0:
x12y1l:
x12y2:
- x12y3:
x12yl:
x12y5:
x12y6:
x12y7:
x12y8:
x12y9:

x12y10:
x12y11:
x12yi2:
x12y13:
x12y1h:
x12y15:
x12y16:
x12y17:
x12y18:
x12y19:
. x12y20:
x12y21:
x12y22:
x12y23:
x12y2h:
x12y25:
x12y26:
x12y27: .
x12y28:
. x12y29:
x12y30:
x12y31:

17 ,18,33,61,
17,18 ,38,
5,27 ,54,56,
5,27 ,54,56,
17,18,33,61,
17,18,38,

5,27 ,54,55,56,
5,27 ,54,55,56,

29.,40o,44 70,
29,40, bk 70,
15,39,

67,69,
67.,68,69,70,
15,39,
34,37,

5,27 .54,
5,10,27 ,54,
3l L4l b5 63,
17,18,61,
3l 45 63,
18 L4 b5 61,
15,34 ,39,

18 b4 b5 61,
5,27 5k,
27,29,33,70,
5,26,55,56,
3k,
5,26,55,56,
5,26,55,
15,39,
5,26,55,

- 11 -

el
0

79,3£,98,
8= £8,100,
76,79,96,97,
76,7$,96,97,100,
75.86,98,
8% £8,100,
76.79,94,96,97,
7¢,79,9%,96,97,100,
75.54,97,
79.3%,97,
76.79,97,100,

-3

OO0

1,
76,79,9%,97,100,
82,57,100,
73,88,94,97,
76,85,91,94,97,
73,88,94,98,
72,86,98,

73 88,94, 98

7Q ,80 ,98
76,79,88,91,97,100,
75.86,98,
73,88,94,97,
82.85,88,97,100,
74,79,88,91,97,
76,79.88,90,91,97,
74,79,88,91,9k4,

74,79,88,91,9%,97,100,

76,79,88,91,97,

74,79,88,91,94,97,100,



- 12 -

x16y0: 1, 11,29,70, 80,53 27,88,89,92,95,
x16y1: 11,29,70, 75.74,79,88,97,100,
x16y2: 1, - ©73,75,51,54,95,97,
Cxl6y3: 1, 33,69, 73,31,
x16yh: 1, 41,53, 73,74 .75,76,77.,78,79,94,
*16y5: 73,%2,88,61,94,
x16y6: 64, 73.74,79,82,85,100,
x16y7: 20,33, 76,31 .%4,95,97,
x16y8: 6h, 73,74,79,82,85,95,96,100,
x16y9: 1, 2.4 ,5,55, 73,742,79,82,85,88,91,100,
x16y10: 13.3%,57,
xi6y1l1: 1, 2,h, 73,74,79,82,85,88,89,91,97,100,
x16yl2: 1,  6,7.12, 75,22 ,5h,
x16y13: 3.29,39,70, 76,85,91,
x16y1h: 15,68,69, 12,55,
x16y15: 1,  11,20,61, 79,866,938,
x16y16: 1, 5,54,56, 76,753,100,
x16yi7s: 11,18,25 b9, 72,
x16y18: 1, 5,26,54,56, 75,86,89,90,96,97,
X16y19: 1, 29,33, 73,94, .
x16y20: 63, 73,88,54,98,
x16y21: 73,5%,88,97,100,
x16y22: 1, 17,18 24,36 49, 85.£8,100,
x16y23: 1, 5,10, 73,75,88,100,
x16y2k: 6,9,54,56, 7€,72,100,
x16y25: 1, 17,18,33, 73,5%,97,
x16y26: 26,54 ,56, 73.,88,89,90,96,97,
x16y27: 29,33,70, 73,91,
x16y28: 1, 62, 73,88,91,94,98,
- X16y29: 15,34, 79,80,88,94,100,
x16y30: 62, 73,88,91,94,97,98,
x16y31: 1, 6,9,15,34, 73,85,88,100,



x17y0:
x17yl:
x1T7y2:

- x1Ty3:
x17ylh:

x17y5:
x17y6:
x1T7yTs
x17v8:
x1Ty9:

x17y10:
x17y11l:
xiTyl2:
x17y15:
x1Ty1k:
x17y15:
x17y1i6:
x17y17:
»17y18:
x17y19:
x17y20:
x17y21:
x17y22:
x17y235:
x1Ty2k:
x17y25:
x1Ty26:
xY7y27:
‘xélf&ZB:
" x17y29:
x1Ty30:
x1Ty31:

L9,

2,

17,1824 ,61,
2,950,
6,9,15,16,29,70,
6,9,11 34,
6,9,11,3k,
39.4k2,63,
3,39,48 Lo,
11,39,63,

3,61,

11,20,50,
9,11,20,50,
13,29,70,

13,34,
6,9,11,17,18,50,
6,9,11,17 18,

29 .,k1 k2 Lk 70,
17,18.,33,
17,25,37 b2 bk,
25,39,

20,38 ,61,

3,
6,9,11,25,62,65,
15,37,

62,65,

15,37,

3.5.,55,

315,55,
39,43 bk,
2,28,39,

- 13 -

79| _(;w,q.‘fwﬁ i
73,85 ,94,

79,86,98,
73,85,88,91,9%,97,100,
85,91,94,97,100,
73,76,79,88,91,92,95,100,
73,85,9&,100,

76,91,98,

76,85,91,

76,91,98,

79,86,98,

79,

79,

73,76,79,88,91,94,
73,76,79,88,91,94,100,
79,

79,91,97,

76,94,

76,91,94, ‘
76,77,88,90,51,94,95,97,100,
76,77,88,90,91,94,95, |
79.86,98,
73,76,79,82,85,91,95,100,
75,85,88,91,95,98,
73,79,88,89,90,91,93,94,96,97,
73,85,88,91,97,98,

73,79,88,89,90,91,93,94,96,57 ,100,

73,85 ,88,91,94 ,100,
73,85,88,9%,97,100,
82,88,92,94,97,100,
73,83,85,91,95,100,




- 14 -

x20y0: 34 b2 43, 79,82 ,88,94,97,100,
x20y1: 22 35k, 79,88,91,94,97,
x20y?2: 29 40,4k ,70, 79,9%,97,

- x20y3: 73,79.97,
x20ylh: 23,29,70,
x20y5: 29,38 42 b3 Lk 70, 73,76,91,
x20y6: 1, 62, 73,79,9%,97.98,
*x20y7 ¢ 1, 22,39, 73,79,86,87,88,100,
x20y8: 26,39, 79,82,91,92,97,
x20y9: 15,26,39, 79,82,91,92,97,100,
x20y10: 62,65, 73,79,91,97,98,
%x20y11: 6,9,19,34, 73,76,88,97,100,
x20y12: 62,65, 73,79,91,94,98,
x20y13: 1, 9,193k, 73,85,91,9%,100,
x20y1k: 17,18 ,33,61, 79,86,98,
x20y15: 28,3k, 79,91,94,97,100,
x20y16: 28,47 49, 76,79,91,94%,97,100,
x@oyis X 23], 37 K 73,76,77,78,9%,95,96,100, & 5/,7-(9
%2018+ 18,33, 73,76,79,88,0k 97,100, ©eWT-
x20y19: 18,33, 73,76,79,88,94,97,100,
x20y20: 1,  5,55,56,67.,70, 79,82,88,97,100,
x20y2t: 1,  17,18,24,36,k9, 185,88,100,
x20y22: 1, 31,37, 85,88,94,100,
x20y23: 1, 6,7,34,37, 76,85,94%,100,
x20y2k: 8,19,34, 76,85,88,100,
x20y25: 1, 6,7,19,34, 76,85,94,100,
x20y26: 1, 18,26,33, 76 ,85,88,97,100,
x20y27: 1,  18,26,33, 76,85,94,97,100,
x20y28: 1,  27,28,69, 73,79.88,
x0y29: 1,  27,28,32, 73,79,88,91,5k4,
x20y30: 1, 19,27 3k, 76,85,88,91,97,
*x20y31: 19,27 34, 76,85,88,91,94,97,



x2ly0:
x2hy1s
x2ly2:
‘xﬂﬂﬁz
x2lyl:
x2hy5:
x2ly6:
x2Uy7:
x2hy8:
xhy9:

x2Uy10:
xby11:
x2by12:
x2ly13:
x2lUy1l:
x2ly15:
x2ly16:
xby17:
x2ly18:
x2lhy19:
x2by20:
x2ly21:
x2ly22:
x2hy23:
x2ly2ok:
x2hyé5:
x2by26:
x2by27:
22Uy 28
- x2hy29:
=2lhy30:
x2lby31:

11,29,70,
11,29,70,
62,
15,34,
39, kk,
23,38,
5,54,
28,47 48,
62,

20,33,

6,9,
5,9,34,38 43,
5.9,34,38 43,
20,23,
17,18,38,

17,18 24,36 L9,
5,10,12,
6,11,20,50,

6,9,11,20,50,

11,29,70,
11,29,70,
5.26,55,
5,26,55,
17,1824 36,49,
23,28,
17,18,38,

17 ,18,38,
5.,9,11,3k,
5,9,11,17,18,61,
6.9,

6.9,

- 15 -

76,
73,76,79,88,97,
73,7697 ,98,

73,16,79,82,85,86,88,69,92,95,

73,79,94%,100,
73.79.97.,

73,76,86,87,91,92,94,97,98,100,

79,86,91,
73,76,91,98,
73,76,88,91,100,
76,91,9%,97,

82,85,90,91,9%,100,

73,76,88,91,9k,

73,76,88,91,94,100,

76,91 ,94,97,

73,90,91,94,97 ,100,

85,88,100,
76,85,91,9%,97,
79,

19,

76,85,91,97 ,100,

76,85,91,97,100,
73,74,88,94,97,
73 ,7%,88,94,97,
85,88 ,100,

79,

73,91 ,94,97,100,
76,85,88 9k,
79,97 ,1C0,

79,86,98,
82,85,91,94,100,

76,85,88,54,1¢C0,



x28y0:
x28y1:
x28y2:
© x28y3:
x28yls
x28y51
x28y6:
x28y7:
x28y8:
x28y9:

x28y10:
x28y11:
x28y12:
x28y13:
x28y1lh:
x28y15:
x28y16:
x28y17:
x28y18:
x28y19:
x28y20:
x28y21:
x28y22:
x28y23:
x28y2h:
x28y25:
x28y26:
x28y27+
x28y28:
x26y29:
x28y30:
x28y31:

63,

23,38,

17,18,61,
17,18 38,
25,42 b3,
25,43 Ll

3,61,
62,65,

17,18,20,61,
22,29,70,
5.26,55,
5.26,55,
21,34,

21,3k,

17,18 bh b5,
5,26,55,
17,18 43 b5 61,
17 .,36,61,
5,26,55,

52,53,
15,29,70,

51,

6,34,38,

51,53,

17 I18I201)+5!LP§I611

51,52,

- 16 -

73.76,7%,98,
3,7%£,79,51,94,97,100,
%.76,79,86,87,94,97,
55,868,919k,

-] =3 =
‘\N

i

A

-
0O

T,
98,
04,97 ,100,
91,
9
1

1

-3 =1

o T
o O N

-

pis

M \() AN AN

-3 -3
N

—~
[R®
10
a
e}
-

-3

-3
\)4 \() M AN

1,100,
76,79,86,87,91,94,97,
6,98,
76,79,91,94,98,
88 91,94 ,100,
75,86,98,
76,85,97,
73,74,79,88 94,99,
73,74,88,94,97,100,
76,100,

8

o -1 =

\(") \ n

-~
)

) i‘, L

&= 28, LCO.
73,74 ,88,9% 97,

R
131001981

7¢,86,98,
73,88,94,97,

r

¢7,100,

7%,

7¢,88,91,100,

75+

75,86,98,

7%,




x31y0:
X31yl:
x31y2:
C x31y3:
x31yl:
x31y5:
x31y6:
x31yT:
x31y8:
x31y9:
x31y10:
x31y11:
xX31yl2:
x31yl3:
xX31yil:
x31ylibhe
x31y16:
x51y17:
x31y18:
 ¥Y31yl1o:

x31y20:

x31ly21:
x31y22:
x31y23:
x31y2l:
X31y25:
- x31y26:
X31yeT:
1y28:
C x31y29:
31y30:
x31y51:

29,540,470,
11,23,

29 l§ol69|701
30,67,68,69,
18,30,

BOIL"BISOI
3,29,48 ,49,50,70,
6!9129 150169170]

- 17 -

3,17,18,48 k9 50,61,

29,30,69,70,
29,30,
17,18,30,

L7 .48 ,68,69,
29,540,470,
47,50,70,
2!.

68,

28 ,67,68,69,
18,28,

28 ,18,50,
2,5,55,
6,9.68,
2,

68,

70,
29 4o, L4 70,

7%.,76,79,82,85,86,87 .68,

79,9%,97,
79,97,

79,

82,94,97,

19,

19,

97,

79, .
73,85,88,91,94,97,
73,85,88,
79,86,98,
85,9&,97,100,
88,96,97,100,
79,

79,97,

73,94,

79,94 ,97,

73,76,79,82,85,91,94,95,97,100,
73,76,79,89,9C,97,100,

82,94,97,
79,
19,

79,
73,89,90,94,100,
73,85,88,
73,76,79,88,91,97,
85,94,97,100,

82,94,97,
79,94,97,



CORRECTION TO RCSL: 51-VB306

BIT PATTERN IN THE MICROPROGRAM STORE FOR THE RC 4000 COMPUTER

——— o o ———— o — o . " —— = . W 2 £ i i P e o T oy T . -~~~

Page 13:

xi7yl: 1, ko, 79,
should be
x17y1: 17,18,20,L43 45,49, 79,

';;;Page 1k
x20y17: 1, 23,33, 73,76,77,78,94,95,96,100,
should be |
x20y17: 23,3458, 73,76,77.,78,9%,95,96,100,

RCSL: 51-VBOL6 August 1970/J%G



CORE STCRE CONTROLLER FOR

THE RC 4000 COMPUTER

A/S REGNECENTRALEN
Falkoneralle 1
Copenhegen, F.

RCSL: 51-VB357

Author:
Editeds

Allen Giese
March 1969



CONTENTS:

1. CORE STORE CHARACTERISTICS ssceecccscocessconccsacnceoscos
DESIGN CONSIDERATIONS ececcoocecossenoecescocsacoseeacnnne
3. IMPLEMENTATION toevseonncversonsnccconcocsansocsnseasonnoce
Je1l. Priority System Ceccesseensenresesecessonsasnsnnca
5.2, The Control Element, HOC Read cecssececcceoscensse
3+3. The Control Element, STCruns sceeevecocoesecccoces

Mo
®

301"‘0 Time Base Counte’l‘| TB eeecccecsscascoccsssssosncsc
5.59 Time Base Count-@r. TBhAC esecceocscosccccacccscccse
)'l‘e PROGRAM DESCRIPTION eccescecceesecaetroreoe0n00csosceTE D0

VB35T

W W O O wv W

10
10
11




1. CORE STORE CHARACTERISTICS.

et s o > s ot S N A i i YT M o s o ko

The first 65,536 words of core store are housed within the main freme of

the central .processor and this size represents the meximum capacity for a ful-

ly developed core store unit. Another core store unit, placed iIn a seperate
cabinet, may be added to the system, thus giving a total cepacity of 131,072
words. Each unit has the following characteristics:

Manufactures
Type:
Capacity:

- Word Length:

Cycle Time:

Access Time:
Anmbient Temperature:

Logic Levels:

Input Termination:

Output Driver:

Operational Modes:

Registers:
STaddr(6:22):
STdata(0:27):

VB357

AMPEX

RG 1200‘

It ,096 words ~ 65,536 words
28 bits

1200 nenoseconds (Read-Restore or Clear-Write)
1350 nanoseconds (Read-Modify-Write)

450 nenoseconds
0 degree C to +50 degrees C

Logical 1 = 2.2 volts to 5.4 volts
Logical 0 = O volt to 0.8 wvolt

All input lines are terminated with 100 ohms.

A1l output lines are capable of driving a termination
of 100 ohms.

Read-Restore
Clear-Write
Read-Modify-Write

The address register hes up to 16 bits.
The input/output register has a data width of 28 bits.
STaeta(27) is the parity bit.



Control Signals:
S0C:

SIC:

Power Protection:

Start Qutput Cycle.

A signal on this line initiates a storage cperation. In
thls operation, the store is required to mske availsble
on the data output lines, the word in the store which
is associated with the address provided.

Start Input Cycle.

A signel on this line initiates a storage operation in
which the store is required to accept the data present-
ed on the dats input lines end store the sccepted data
in the location associated with the address provided.

Read Modify Write.

A logical 1 level on this line permits & S0C to initi-
ate the read ﬁortion of a read-write operation. After
the processor has modified the output data, a SIC will
initiate the write portion of the cycle to store the
nev data at thé address read.

A logical O level on this line permits read-restore and
clezr-write operations to be initisted by the SOC and
the SIC, respectively.

This feature is designed to safeguard the contents of

the store in the event that the AC input power is in-

Temperature Protection:

terrupted or the internal DC power exceeds predetermin-
ed limits.

The power will be shut down if the temperature rises a-

bove the operation temperature.

More detailed information cen be found in the manuals published by AMPEX.

VB357



2. DUSIGN CONSIDIRATTONS.

Trensfer of date betwesn the core store and the registers of the Arithue-
tic Unit could have been controlled by the micrbprogram in a step by step
fashion. This simple methed, however, leads to a solution where the speed of
the core store would have been drastically reduced, because, in this case, the
time interval bvetween successive commends would have been 500 nanoseconds;
vize. the repetition rate of the microprogram store.

We have therefore aimed at a solution where the microprogram only initi-
ates the data transfer while the sctusl control is left to a hardware device,
called the Store Controller (STC). In order to optimize the overell perfor-
mence, the STC cen interrupt the running microprogram and guide it to the
start address (x31y31) for the Instruction Exception routine. x31y31 is in-
serted in the micro address register (MAR) when the signal Fixed Address be-
. comes one.

Input/output devices such as magnetic drum stores, magnetic disc steores,
and magnetic tape stations, which transmit large volumes of dste at high
‘speeds, are connected to the High-Speed Data Channel (EDC). This channel pro-
vides input/output directly to and from the internal core store on & cycle-
stealing basis. The data transfer between the store and the dalsa chennel is
controlled by the STC whereas communication between the channel end the peri-
pheral devices is supervised by the HDC logic.

The following seven commends control the operation mode of the STC:

(1) Mc(61); Read Instruction. The program initistes the SIC.

(2) Mc(62); Read Data. The program initiates the STC.

(3) Me(63); Read Split. The program initiates the STC. Must be
followed by (k).

(&)  Mo(ed); Split Write. Must be preceded by (3).

(5) Mc(65); Double. Specifies the address to be taken from BR.

(6) HDC Call; The HDC initiates the SIC.

(7) HDC Read Callj Controls direction of dats flow.

The first five of the gbove-mentioned commands are microprogram control-

led, whereas the two last commsnds are reserved for the HDC.

VB357



Read Instruction:

This command is used when the microprogram, after completion of an in-
struction, wants to fetch the next instruction. Since the address of this new
instruction is determined by IC, a special address path is provided from IC to
STaddr. After the address has been staticised in STeddr, the SIC generates a
S0C signal and 450 nanoseconds aftervards, the next instruction is read out
from the core store and strobed into STdata. The contents of STdate(0:26) are
then transferred to the registers SB and PK. In addition, the left-most 12
bits of STdata are also read into FR in order not to lose speed. The informa-
tion of FR is namely used by the microprogram in the immediately following mi-
croinstruction.

The STC also takes care that the programmer does not attempt to execute &
protected instruction when the previous instruction was unprotected. In this
case of protection violation, the microprogram is forced to location x31y31,
iees the Inmstruction Exception routine.

If the interrupt request signal (Itr) is 1, the Read Instruction command
is ignored, - the only exception being the Modify Next Address instruction
(AM). This exception is due to the fact that this instruction and the subse-
guent instruction are inseparable,

Execution time is 1500 nsnoseconds.

Read Data:

A Read Data command initiates a store cycle where the selected address is
taken from SB. This is in accordence with the fact that the address part of an
instruction is placed in SB when the Read Instruction is sccomplished. After
the access time has elapsed, STdata(0:26) is transferred to SB and PX.

A Rezd Data Double command is similar to the Read Date commsnd, except
that the address is taken from the BR register.

Execution time is 1500 nanoseconds. -

Read Split:

_ A Read Split commend controls the first half cycle of'a read-modify-write
operation, and it must slways be followed by a Split Write command, which com-
pletes the second half cycle. The address is determined by SB and the selected
date are transferred to SB and PK.

In every read-modify-write operation the STC must test whether the date-
word is protected or not. This is done by using PK as an index to select & bit
within the PR register, and this bit determines then the protection status.
More precisely, the dateword is protected if and only if, the variable
FROTECT:= PR(PK) equals one. An attempt to violate the protection system is

VB357




detected 1f the expression
PROTFCT v - MMode

becomes one, in which cage SB and PK are blocked. This means that the micro
commands which open for the data flow from the Arithmetic Bus to the two regis-
ters are overruled. By this method, new data ere only applied to SB and FK if
the programmer does not violate the protection rules.

A Read Split Double command is similar to the Read Split command, except
that the address is teken from the BR register.

Execution time is 1500 nanoseconds.

Split Write:

Split Write initiates the writing of data frowm SB and PX plus the genersa-
ted parity bit (odd parity) into STdata, from which it is written into the
core store location.

Execution time is 1000 nanoseconds.

HDC Call:

This command is a request from the High-Speed Data Channel to the core
store for a memory cycle, and the request'is honoured as soon &s the current
core store cycle has come to an end. Data are transferred from the core store
to the HDC if the signal HDC Read Call is true (referred to the time where the
memory cycle is started) and in reverse direction if the signal is fslse. The
protection bits are not altered in this mode of operation.

Execution times are 1500 nanoseconds (HDC Read Call = 1) and 2000 nanosec-
onds (HDC Read Call = 0).

Parity Control and Generation:

Parity Control and Parity Generation for core store words are sutomatical-
ly carried out by the STC. In the event of an error the running program is in-
stantaeneously stopped and control is handed over to the operator.

Address exceeds the Word Limit for the Core Store:

If an instruction in a program refers to a non-existing core store loca-
tion, it is detected by the STC which then inhibits 8ll core store calls. This
situation is also brought to the programmers sttention by an interruption of
the running program. The interruption is & consequence of that the STC sets
Fixed Address to one.

VB557




-8 -

If the HDC refers to locations outside the store, the SOC and SIC control
signals are not suppressed because of lack of time, but the parlty check cir-
cultry is then dissbled. It has not been found necessary that the STC should
send a warning message, since the HDC addresses are normally defined by the
monitor system.

Address < bt

The working registers are addresssble as the first four words of the
store. An instruction can therefore specify & correct address which is not a
core store address. In this case, the contents of the selected W register and
its protection bits act as the 27 left-most bits of STdata. Parity check is in
this comection irrelevent.

A HDC request with an address equals to 0,1,2, or 3 has the same effect
as if the address was outslide the core store limit.

3. IMPLEMENTATION.

ot o s it e i e it D A ot D e ot o

[Dwg. No. 11199] Block Diagram
[Dwg. No. 11200:11204] Timing Diagrams

The SIC logic is built up around a Priority System and two counters, cal-
led TB and TBhdc.

5‘ 10 Priority S‘Jstano

e s v ey 3 e Abe s M it A s i % o 9 i o

The HDC will effect & transfer in the next storage cycle provided the HDC
Call does not occur later than one of the micro commands for the core store.
The meximum delay between a HDC Cell and the stert of the corresponding nemory
cycle is therefore 2.0 microseconds, nemely the longest time which is necessa-
ry for en elready started read-modify-write operation to complete.'

The Priority System is physically implemented by the two bistable ele-
ments SThde end STepu. SThdc = 1 and STcpu = O when the HDC occupies the store
and the reverse is true when the CFU has access (STcpu is first set to one,
500 nanoseconds after the CPU has gained sccess). Both bits are forced to zero

during the startup procedure (CPU ¥Power OK = 0).

VB357



begin
register SThac(0:0), STepu( 0:0)s

Time O
% SThdc:= HDC Call A -,TB(0) A -,STcpu A -,SThde v CPU Power OK A SThdc
% STepus= TB(O) A -,STepu v CPU Power 0K A STepus
wait 2L0;

Time 240:
if TBhdc(3) = 1 then SThde:= O
if TB(5) = 1 then STcpu:= O;
wait 260; goto Time O

ends

Tt et o e o ) s > e S 0 Y N B B N s o S Y o e S S B A3 S o G T S

[sTC - 001]
HDC Read may change except when a HDC memory cycle is iIn progress.

begin
register HDC Read(0:0);
Time 475:
if TBhde(0,1) = bOO then 3 HDC Read:= HDC Read Call;
if TBhdc(0,1) = bOL then % HDC Read:= HDC Read Call A HDC Read;
if TBhde(1) = bl then 3 HDC Read:= HDC Read
wait 500; goto Time 475

end;

[stCc - 001]

' The bisteble STCruns is 1 as long as a core store cycle is in progress. In
this state, repeatedly requests for store accesses, either from the microprog-
ram or the HDC, are rejected. When the running cycle comes to an end, the
STCruns is reset and the store is ready to commence snewe.

During the startup procedure, the SICruns is forced to attain the 0 value.

begin
register STCruns(0:0);

Time O3
% SICrms:= TB(0) v TBhde(0) v STCruns A -,TB(5) A -,TBhdc(3);
wait 500; if CPU Power OK = O then STCrums:= O3 goto Time O

end;

VB357



- 10 -

ot s a1 e o i s s e 1 U 0 A it S RS ot e S e o R Wl W i D

[sTC - 001:002]

The 6-bit time base counter, TB{0:5), controls the STC timing if the store
cycle is initiated by & micro command. TB counts in three different sequences
dependingl on the following parémete:c‘ss : :

(1) Read Instruction or Read Data., Address  word limit.

(2) Read Split followed by Split Write. Address  word limit.

(3) Read Instruction, Read Data, or Read Split. Address 2> word limit.

The proper timing for the three modes of operation appears from the Timing
Diagrams.
The start condition for TB(0:5) is

TB(0:5) = OO0 100.

The Split Write command, which activates the wr_ifte phase of the read-modify-
write cycle, has only effect when TB(3) = O.

Let us assure ourselves that the counter arrives to the start condition
during the startup procedure. TB(3) is set to 1 because Power 0K = 0, and
TB(0,4):= bOO a8 a consequence of that the micro commsnds MC(61:64) ere all ze-
ro. TB{1,2,5) will then, after a few clock periods, attaein the value 0; and the
start situation 1s obtained.

[sTC - 001:002]

The 4-bit time base counter, TBhde(0:3) controls the STC timing if the
store cycle is initiated by s HDC Call. TBhdc counts in two different seguences
depémding on the following parameters:

(1) HDC Call. HDC Read = 1. (Read from core store)

(2) HDC Call. HDC Read = 0. (Write into core store)

The proper timing for the two modes of operation appears from the Timing
Diagrams.
The start condition for TBhdc(0:3) is

TBhde(0:3) = HOCO0.

VB357



- 11 -

Let us assure ourselves that the counter arrives to the start condition
during the startup procedure. This is easily seen if we first consider
TBhdc(0,1) which have the state transitions

10 -> 11 => 01 -> 00.

TBhde(1) = O implies that TBhde(2) is reset end this, on the other hand, impli-
es thet also TBhdc(3) is reset, - and the counter is in the start state.

4. PROGRAM DESCRIFTION.
CORE STORE CONTROLLFR:
begin
register
SThdc(0:0), STcpu(0:0), HDC Read(0:C), SICrums,
TB(0:5), TBhdc(0:3), |
AddrError(0:0), AddrsT(0:0), BA(21:23), MCB(61:61), MCB(62:63),
ST1, STildata{0:27), STisddr(7:22), 5T2data(0:27), ST2addr(7:22),
HDCaata(0:26)
register set
HDCaddr(7:22) = HDCdata(7:22);
integer word limit,
register array
ST1[4:65535](0:27), ST2[0:word 1imit-65536](0:27);
Boolean SOC1, SIC1, RMW1, SOC2, SIC2, RMW2;

conment Address transfer from CPU to Core Store;
comb net GiST£ICaddr(0:0);
begin .
comment This signsl sets up the path from ICaddr to STaddr as a conse-
quence of a Read Instruction commsnd provided the running program.is'
not interrupted. The AM instruction has the function code 9;
GiST?ICaddr:= -,SThde A -,STCruns A (MC(61) A -,Itr v MC(61) A FR(0:5) = 9)

ends

VB357



- 12 -
comb net GISTSBaddr(0:0);
begin
comment This signel sets up the path from SBaddr to STaddr as a conse-
quence of a Read Data or Read Split commands
GiSTfSBaddr:= -,SThde A -,STCruns A -,M2(65) A (Mc(62) v MC{63))
end;
comb net GiSTfBRaddr(0:0);
begin
coument This signel sets up the path from BRaddr to STaddr as & conse-
quence of a Read Data Double or Read Split Double commands
GiSTfBRaddr:= -,SThdc A -,STCruns A MC(65) A (MC(62) v M(63))
ends
comb net GiSTfHDCaddr(0:0);
begin ,
comment This signal sets up' the path from HDCeddr to STaddr as a conse-
guence of a HDC Call;
GiSTfBDCaddr:= SThde
ends

comnent Data transfer from Core Store to STBUS in CPU;
comb net GiSTBUSEST1(0:0);

begin GiSTBUS{ST1:= AddrST A ST1 A (TB(1) v TB(2) v TBhde(0) v TBhac(1)) end;
comb net GiSTBUSST2(0:0); ,

begin GiSTBUSLST2:= AdArST A -,ST1 A (TB(1) v T™B(2) v TBhdc(0) v TBhde(1)) ends

comment Data transfer from Working Registers and PB to STBUS;
comdb net GiSTBUSIWO(0:0);

begin GiSTBUSIWO:= - ,AddrST A TB(1) A HA(21,22) = O end;
comb net GiSTBUSIW1(0:0); ’

begin GiSTBUSfW1:= - ,AddrST A TB(1) A HA(21,22) = 1 end;
comb net GiSTBUSIW2(0:0);

begin GiSTBUSfW2:= -,AddrST A TB(1) A HA(21,22) = 2 end;
coub net GLSTBUSIW3(0:0);

begin GiSTBUSfW3:= - ,AddrST A TB(1) A HA(21,22) = 3 end;

comment Date transfer from SB and FK to STBUS;
comb net GiSTBUSSB(C:0);
begin GISTBUSfSB:= AddrST A -,TB(2) A -,TB(3) end;

VB35T




- 13 -

comment Data transfer from HDC to STBUS
comb net GiSTBUSTHDC(0:0);
begin GISTBUSfHDC:= TBhde(2) ends

comment Data transfer from SB and PK to Working Registers and FBg
comb net STCGIBUSESB(0:0)s

begin STCGiBUSESB:= -,A4drST A -, TB(3) A MC(64) ends
conb net STCGIWOfBUS(0:0);

begin STCGIWOfBUS:= STCGiBUSTSB A HA(21,22)
comb net STCGIW1fBUS(0:0)s

begin STCGIWifBUS:= STCGiBUSTSB A HA(21,22)
comb net STCGIW2fBUS(0:0)s

begin STCGIW2fBUS:= SICGIBUSTSB A HA(21,22)
comb net STCGIW3£BUS(0:0);

begin STCGIW3fBUS:= STCGiBUSTSB A HA(21,22)

4]

0 efnd;

L}

1 endy

8

2 ends

L}

3 ends

comment Control Signalss
coib net Fixed Address(0:0)s
begin
Fixed Address:= AddrError A TB(0) v FROTECT A - ,Mdode A MCB{61) A TB(2)
end;
comb net Check Parity(0:0);
begin Check Parity:= AddrST A (TB(2) v TBhde(0) A TBhdc(1)) end;
comb net EnableSB(0:0)s '
begin
comment This combined varisble prevents, for zero values, that the con-
tents of SB and PK can be changed. This is implemented, simply by sup-
pressing the appropriate clock pulses. The expression becomes zero if
the progrommer asttempts to change & protected word by mesns of an un-
protected instruction;
EngbleSB:= - ,PROTECT v Mdode v TB(3);

VB35T



- 1b -

sequence Time Base Counter 1Bg
begin
Time O:
o TB(1):= - ,AddrError A TB(0);
4 TB(3):= TB(4) v TB(3) A -,(TB(2) A MCB(63));
wait 190;
Time 190:
4 TB(0):= - ,TB(0) A (GLSTFICaddr v GiSTfSBaddr v GiSTfBReddr);
* TB(2):= TB(1);
+ TB(L4):= MC(64) A -, TB(3);
# TB(5):= AddrFrror A TB(0) v TB(2) A TB(3) v TB(4);
wait 310; goto Time 190

end;

sequence Time Base Counter TBhdes
begin
wait 190;
Time 190:
% TBhde(0):= SThdc A -,STCrums v TBhdc(0) A -,TBhdc(1);
4 TBhdc(1):= TBhdc(0);
# TBhdc(3):= -,TBhde(0) A TBhdc(2) v TBhdc(0) A TBhde(1l) A -,TBhde(2)s
wait 285
Time L475:
# TBhdc(2):= TBhdc{1) A - ,HDC Read;
wait 215s goto Time 190
end;

VB357



- 15 -

sequence SIC CONTROLLED BY MICROFPROGRANg
begin
Time O:
wait wntll STCruns = O
wait 100; RMdl:= RMA2:= - SThde A MC(63); wait 653
Time 165 ) o
if GISTFICaddr A -,IC(6) A IC 2> 3 A IC £ word limit A CPU Fower OK then
begin STladdr:= IC(7:22); SOCi:= 1 ends -
if GiSTfICaddr A IC(6) A IC > 3 A IC < word limit A CPU Power OK then
begin ST2addr:= IC(7:22)s SOC2:= 1 end;
if GiSTfSBaddr A -,SB(6) A SB(0:22) > 3 A SB(0:22) £ word limit A CPU Power OK thes
begin STladdr:= SB(7:22); SOCl:= 1 end;
if GiSTfSBaddr A SB(6) A SB(0:22) > 3 A SB{0:22) £ word limit A CPU Power OK then
begin ST2eddr:= SB(7:22)s S0C2:= 1 end;
if GiSTfBRaddr A - ,BR(6) A BrR(0:22) > 3 then
begin STladdr:= BR(7:22); SOCl:= 1 end;
if GiSTfBRaddr A BR(6) A BR(0:22) > 3 then
begin ST2addr:= BR(7:22)s SOC2:= 1 end;
wait until TB(0) = 1s wait L4O;
comment Store original input parameters for later use;
Time 230:
MCB(61,63):= MC(61,63)s HA(23):= SB(23);
if GiSTfICaddr then
begin
ST1:= -,IC(6); AddrError:= IC > word limit;
AdarsT:= IC > 3 A IC £ word limit; HA(21,22):= IC(21,22)
end;
if GiSTf£SBaddr then
begin
STi:= -,5B(6); AddrError:= SB(0:22) > word limit;
AdarST:= SB(0:22) > 3 A 5B{0:22) < word limits HA(21,22):= SB(21,22)
ends
if GiSTfBRaddr then
begin STLl:= - ,BR(6); AddrFrror:= O; AddrST:= BR(6:22) > 3 end;
walt 200; |
Time 430:
S0Cl:= S0C2:= 03 wait 1603

VB35T



- 16 -

Time 590:
if Fixed Address = 1 then
begin
comnent This condition is true for AddrEryor = 1. The microprogrem is then
conducted to the Instruction Exception routine; '
MAR:= 1031; goto EXIT
end; wait 25;
Time 6153
if AddrST then
begin if ST1 then STldata:= ST1[STladdr] else ST2datas= ST2[ST2sddr] end;
weit 125; ‘
Time ThO:
SBeonPK:= 27extGiSTBUSTSTL A STidata(0:26)
v 27extGLSTBUSTST2 A ST2datal 0:26)
v 27extGiSTBUSWO A W[0]conPB[0]
v 27extGiSTBUSIWL A W[1]conPB[1]
v 27extGiSTBUSIWZ A W[2]conPB[2]
v 27extGiSTBUSIW3 A W[3]conPB[3];

if MCB(61) then
begin
comnent Read instruction commandg
FRi= 12extGiSTBUSTSTL A STildata(0:11)
v 12extGiSTRUSTST2 A ST2data(0:11)
v 12extGiSTRUSIVO A W[0](0:11)
v 12extGiSTBUSWL A W[1](0:11)
v 12extGiSTBUSIW2 A W[2](0:11)
v 12extGiSTBUSEW3 A W[3](0:11)
end;
wait 2!40;
Time 980:
if Check Parity A Core Store Parity Control then
Core Store Parity Error:= if ST1 then -,odd STldata else -,0dd STz2data
wait 110s
Time 1090:
if Fixed Address = 1 then
begin
comment This condition is true if the programmer attempts to execute a
protected instruction provided the previous instruction was unprotected;
MAR:= 1031; wait 410; goto Select Sequence
ends
wait ’-!~10;

VB357



- 17 -

Time 1500:
if TB(3) = 1 then
begin | )
corment The command which initislized the SIC was not & Read Split com-
mand, end the STC will therefore finish at time 1500g
goto Select Seouence
ends
Time 1500:
wait until MC{64),
comment The new data to be stored sre already staticised in SB or PK; wait 165;
Time 1665:
if GISTBUSPSB A STL A MO(64) then
begin STidata(0:26):= SBconPK; STldata(27):= -,04dSBconPK; SICl:= 1 end;
if GLSTBUSESB A ST2 A MC(64) then
begin ST2data(0:26):= SBconPKs ST2dutal{27):= ~,0d3SBeonPK; SIC2:= 1 end;
wait 90 ‘
Time 1755: .
if STCGiBUSESB A STCGIWOBUS then W[0]conPB[0]:= SBconPK;
if STCGiBUSTSB A STCGIiW1fBUS then W[i]conPB[1]:= SBconPKj
if STCGiBUSTSB A STCGiW2fBUS then W[2]conPB[2]:= SBeconPK;
if STCGiBUSESB A STCGIW3fBUS then W[3]conFB[3]:= SBconPK;
wait 175;
Time 1930:
SICi:= SIC2:= O3 wait 5703 goto Select Sequence
end STC CONTROLLED BY MICROFROGRAM;

sequence STC CONTROLLED BY HDCj
begin
Time O3 n
weit until STCruns = Os wait 115; RM{l:= RMI2:= SThde A -,HDC Read; welt 50;
Time 165: ,
if GiSTfHDCaddr A -,HDCaddr(6) A -,SICruns then
begin STladdr:= HDCeddr(7:22); SOCii:= 1 ends
if GiSTFIDCaddr A EDCaddr(6) A -,STCruns then
begin ST2addr:= HDCaddr(7:22); SOC2:= 1 end;
wait until TB(0) = 1; wait LO;
comuent Store original input paremeters for later uses
Time 230: ‘
. STi:= -,HDCeddr(6)s; AddrST:= HDCaddr > 3 A HDCaddr { word limit; wait 200;

VB357



- 18 -

Time W30:
80C1:= S0C2:= 05 weit 185
Time 615:
if ST1 then STldata:= STi[STieddr] else ST2data:= SI2[ST2addr|; wait 100;
Time T15:
HDCdatal 24:26):= 3extGiSTBUSTSTL A STidata(24:26)
v 3extGiSTBUSEST2 A ST2deta(24:26)s
comment The 24 bits of data are availsble on STBUS, ready to be transforred
to & peripheral devices
wailt 2653
Time 980:
if Check Parity A Core Store Parity Control then
Core Store Parity Error:iz if ST1 then -,odd STidata else -,0dd ST2date;
weit 305;

- Time 13%85:

if TBhde(2) = O then
begin
commnent The read cycle will finish at time 1500;
wait 115y goto Select Sequence
ends
1f GISTBUSTHDC A ST1 then
begin ST1ldata(0:26):= HDCdatas ST1ldata(27):= -,0dd HDCdata; SICi:= 1 end;
if GiSTBUSTHDC A ST2 then -
begin ST2data(0:26):= HDCdata; ST2data(27):= -,0dd HDCdata; SIC2:= 1 end;
wait 2503 SICli:= SIC:= 2:= 0; wait 365; goto Select Sequence
end STC CONTROLLED BY HDC;

start Time Base Counter TB; start Time Base Counter TBhdcy
Select Seguence:
if HDC Call con MC(61:63) = O then
begin wait 5003 goto Select Sequence end;
if HDC Call then start STC CONTROLLED BY HDC
else start SIC CONTROLLED BY MICROPROGRAM

end CORE STORE CONTROLLER;

VB357T



SUQL +00Z 5! Yipim Bs|ng 17 10N

,
szel S9LL | S68 069 ,
] [ | 1 H:vovi 900DLS) @ ssauppy poxig’-
oozl 518
R A [~ T T T T T T T T T T T T T Grdrietosonuv6e) (wes
089
T T T T T T T T I (8EWLrr’0zod15673)  (u)owepLs
sy 00l
Il.l““-” lllllllllllllll T ] | ] H (¥13v2v'910D15°68) (u)ssaippy
05l "001
__1d T -] T (azd so1’s1wpivoq xaduy) awy
T (g7 °d ise4"61vpiooq‘xadwy) OIS
ZoloN | 066 ovE 08L  OSI
_ _ _ _ H (g9°d 4534”41 vpinoq ‘xadwy)  DOS
Sv/L 5591 Pzl 5511 SvZ  SSt
1 [ 1 1 I (v145¥v '200215) (S)eL
I (6-6¥¥ “200D15) (n)eL
I (12205 ‘Z0021S) (€)8L
vzl sl {7 559
1 [ I (91a5¥¥ ‘200015) (8L
0001 0c6 00$ 34
| J I (0g-(2¥ '200D15) (D8l
ShL 559 424 551
L1l ] I (s-6¥¥ "200D1S) (o)L
0051 | el 005 0eY
7 I (zv1zr’10001S)  sunidys
00G1 | OEvl
—_ I (L1v£0S “100D1S5) PYLS
5Zel 00Z1 005 oey
L | ] I (628205 “100215) nda) g
005t | oevl 005 ey
—_ ] I 029 19)oW
ot + ¢ oot su Wil
(0)oos | 0001 005 0
Sy 0L70h7 79 %742 HOOWOLI0LO OV69e0€L

TB AND CORE STORE TIMING FOR READ INSTRUCTION AND READ DATA (DOUBLE)

RC4000

6 < ADDRESS < WORD LIMIT
Timing Chart

V11200




S¥.2 5692 744 5512 ¥ 6l
- ] I B |
(744 5512 Sysl G591
| . I
000Z | O0g6l 0001 06
] [
svzi SSit S/ 659

L1 L1 1

0001 0g6 005 oey
] I

Sve 569 4 561

1 1 1

oosz | oeve 005 oY
] 1

0052 0£vT

— 1] 1

A% 0022 00s %34
l ] | I

000z] 0g6l 00SL| oert

] | I

oeve 00 oey
11 | I

(0)00sZ 000Z Ul 0051 005t 0001 00$ 0

. DL 9L 9042 7P 049942 HDOWOL9010

(¥ 14S¥¥ “200D15)

(6-S¥¥ '200D1S)
(1722405 '200D15)
(91QSHy ‘200D1LS)
am- 12y ‘200D1S)

(S-S¥¥ “200D1S)

(zvizy '100D1LS)
(11v£06 '100215)
(628405 “100D1S)
01aS (1 '810DdW)

(62611 '810DdW)
m:

OV69L0E |

(s)8lL
(neL
(e)gL

(2)al

sunipls
SpylLs
ndo|g
(ro)ow

(€9)OW

IWIL

TB AND CORE STORE TIMING FOR READ SPLIT - SPLIT WRITE

RC4000

6 < ADDRESS < WORD LIMIT
Timing Chart

V11201




gS Ojul padqo4ys aup pyop MaN € 94oN
SUOL-00Z 5! YiPIM 5|nd 3 210N
“134ul/gug x0uddo S| yd1ym ADjap 3|GPD By §O014GNS Of uaqWIBWSL 'B1aY PainsDaw B0 sPuBls s 4| “(OYWLYE ‘S00D1S): LMWY (0FWrZY 'S00DLS):1DIS (0YW8Zy “S00D15):1DOS 1 21N
_ oz sosv | L e )
Y I o AR R S ~ 1 (v£1805 ‘810015) 44424 PPO
0802 ce61 101 86 )
i T I (zedvyv '£00DLS)  §S 2|qou3
£ 210N
sligl  olel 18
T T T (oizz 1 [~ T 7] T T T T T ™= 1 (vdvie’9sonyy 69) (ves
0591 A , ,
N I [ | S [ (8ewiry’0zod15°6°9) eioplS
0S¥y 00t
S e (e e T [T- [ (riarew’otodLs 879) (y)sseippy
0572 019 08¥ 001 _
T ) i ] (827d #0461 ypinog xaduy) - mivy
T 2oN 0681 OV8L 0891 0591
|l 1 [ (@vd4sei’s1vpioog’xaduy) OIS
TN | 066 OVE 08l 05!
O [J ] (89 "d 4sa4’g1ypionq xaduy)  DOS
t 1 1 1 ! 1 at i i 4 } 1 { 1 il 1 1 i 1 1 i ! $ 1 i
¥ T 4 1 T T T T T T L ' T 1 T T T T 1 T T T ) 1 mc u<<:.
0052 0002 005t 0001 00§ 0
o 94%047"  PYOLI%AZ NDOWOLI0I0  OVE9ELOEL

TB AND CORE STORE TIMING FOR READ SPLIT - SPLIT WRITE

RC 4000

(o

6 < ADDRESS < WORD LIMIT
Timing Chart

V11202




SUQL +00Z S! YPIm 35|0d 17 240N

szel SoLL | 68 069 ,
| ] | 1 H:voﬁs 900D15) § ss21ppy paxiq’-
00Z1 18
B — [CTTTTITIITITIT T ety (s
089
| I I (8EW 1YY '020D15°6°9)  (u)oyop)s
05y 001
R TT [ ] I (r13vzr’910015°679) (u)ssesppy
0s¥ 1 "001
__11 [ T (62:disei’6rvpaooq xeduy) mny
T (8v-d 4sas’gwpavoq xadwy) OIS
ZoON | 066 O¥E 08l 05l
1 1 T (899 1504 ‘61 ypiooq ‘xadwy) DO
SvLL 5691 74| S5t SvZ 551
1 (1 | I (714Sv¥ "200015) (9)eL
I (6-S¥¥'200015) (r)el
I (1¥2£05 "200D15) (e)8L
Srel St 2 59 _
L1 [ ] I (91as¥y “200215) (2)e1
0001 0e6 005 54
] I (0e-12v '200215) (D81
Svs 559 Sy - 56l
1 ] I (5-S¥¥ ‘Z00D1S) (o)L
0051 | oevl 00$ oeY
| i (evizy '1o0D1Ls)  sunidys
0051 | OEvL
I (11v£0S '100215) PylS
5zl 00z 1 00 0eY
| | J I (628205 *100D15) ndajg
0051 | Oevl 005 oey
—11 ] I 029 19)OW
T . . T su IwiL
(0)oos L 0001 00S 0
Sy 0LI04T 77 %7947 %OOWOL9010 OV69E0EL

TB AND CORE STORE TIMING FOR READ INSTRUCTION AND READ DATA (DOUBLE)

RC4000

6 < ADDRESS < WORD LIMIT
Timing Chart

V11200




SYL2 §$9T syze 5S1Z vz ool
- ] | E |
§¥ze 5512 741 6591
1 1 I
000Z| 0g6l 0001 0g6
] [
S¥et Sl S 559

1 || 1

0001 0g6 00§ oey
] I

SyL 559 Sre SS1

- T 1

005Z | 0gve 005 oy
1 ] I

oosz | oeve

GZET 0022 005 %34

1 ] I
000z| ogst 00s1| oevi
| - I
oeve 00§ ot :
— 11 1 I
{0)0052Z 0002 Ul gog1 0061 000t 005 0

‘ - 26049047 PP 049942 NOOWOL9010

(Y 136¥¥ '200D1S)

(6-Sv¥ '200D1S)

(1¥D£06 ‘Z00D15)

(91asvy ‘20021S)

(og-12¥ ‘200D18)

{$-S¥¥ ‘'200D1S)

(zv12% '100D15)

(11v£0S "100215)

(629206 “100D15)

01asLL '8102dW)

(62611 °810DdW)

WC

OV69€0€ L

(s)a1
(rel
(e)8L
()81
(V81
(0)g1
sunidLs
SPYLS
ndoyg
(r9)oW

(£9DW

IWIL

TB AND CORE STORE TIMING FOR READ SPLIT - SPLIT WRITE

RC4000

6 < ADDRESS < WORD LIMIT
Timing Chart

viiz20l



gS Ojul pPaqodys 910 pyop MmN RION
SUOL 00T 5! YiPIM 35| T 240N
“13j8ul/5u9 "x01ddo 51 yd1ym ADjap 3|qDD By §014gNS O} JaquIBWRL 318y PaINsDaW 3.0 s|PUBls 3y 4| “(OYWLYE “S00DLS) LMWY (OPWPZY ‘S00DLS):LDIS (0vW8ZY 'S00DLS):1D0S  t1 2ioN
N R ¢1t4 4 5951 | I
7 R [ - (¥£1805 '810015) A440d PPO
I . AP W— —— — — — - — b i Gname e CoMEEe G S — — — . A AN G R S S — — —— — — G S —— — — — —— -—
0807 cesl 5101 6 _
i T 11 I (ze4vyy '£00D1S) €S °[9Pu3
€ SION
siet otel 18
i (o2 ] [T — T T T T T T T T Gavie’osonuy 679) (u)gs
S ———— 50 A - \
i [ | S [ (8ewivy 0zod1s B2) 240p) S
0S¥ 001
- - - - == Al N T [~° [ (i3ver'910015783) (u)sseippy
057 019 08¥ 00t _
7T [C-71 [ 777 ] (8z7d sei’slypanoqxaduy)  mwy
Z 21N | 0681 0V8L 0891 0591
[ [ [ (8vdsei’6rwpioog’xaduy) DS
Z 2N | 06€ Ore 08L 06!
O 0 ] (89 *d isai’g1wpionq’xaduy) 3OS
[ - i ] 1 1 i L H 1 I I 1 1 ] 1 Il | 1 1 | 1 1 L 1 !
1] T 1 1] T ] 1 T T T 1 T T T T T T T T T T T T 1 mr_ uz_._,
0052 0002 005t 000! 00§ 0
o0 949047"  pPOLIOAZ HOOWOLIOL0 — OVE9E0EL

T8 AND CORE STORE TIMING FOR READ SPLIT - SPLIT WRITE

RC4000

2

6 < ADDRESS < WORD LIMIT
Timing Chart

V11202




4L 099 ove 8l
] _ _ T (€€3277/900015) ¥ sseappy poxiy ‘-
olel s/l oLE 51
—_| _ [ _ I (£296¥¥ '€00D1S) 40113 appY
I | osr 001 001 _
I R o [TT 1 3wy o1ooLs 8°9) (u)sseippy
019 08y 00!
C -1l [ 77 ] (@9 4ssi’s1vpioog’xaduy)  mwy
[ (87 d isei’61wpaoog’xadwy) DS
] ®9d 1594 61 vpuvog xeduy)  DOS
svzl  Ssll SL 559 svz__ sl
1 [ 1 1 1 (v14sv¥ ‘200D1S) (911
| (6-6¥¥ '200D1S) ()L
1 (1¥2£0S “200D1S) (e)alL
1  (stasry ‘20001s) (2L
1 (0£-12¥ '200215) (D81
G/ 559 324 551 .
1 ] 1 (s-6¥¥ ‘200D1S) (081
000! 086 005|  ogb
] I (zvizy ‘100015)  sunudis
5z8 00/ 005| __ogv
[ ] ] I (629205 “100DLS) ndoyg
06 v
— 11 [  (veos “1oodis) opyLs
0001 086 00s|  osy
— | 1 0+(£9:19)OW
S T su o 3L
000l 005 0
o4 0LI04Z 2B 0499AZ NOOWOL0L0  OV69EOEL

T8 AND CORE STORE TIMING FOR READ INSTRUCTION, READ DATA, AND READ SPLIT

RC4000

ADDRESS > WORD LIMIT

Timing Chort

V11203




SUQL+00Z 5! YiPiMm 35|0g 3T 240N

0891

0gL

74\

1

6691

- —— T ——— — — — — — — . t——

— e | e

08¥1

0cé

L

-4

C 91N
05  Ove 081

Syel GGl

Sve

[ —

051

GGl

L1

9741

.

G691

_ I

1274

659

S¥e

GGl

924 gatl

|

Sve

GGt

oEv L

00S oty

0yl GlEl  00¢l

SO I [

0L~

Gl

08 PS- O¥ - 00C-

L1 71

00St

000t

005
D& 0L 9042

0
770 09947 YOOW0L9010

I (sewivv ‘020015 6°9)

I (vwsze’e1001s°6°3) (YasngLs

(Wp4opLS

I (r13vzr’910015°679) (u)sseippy
(829 150361 vPIpOq ‘xadwy)  MWY
H (g "d 1591 61 YPIPOq ‘xadwy)  DIS

I @9 1534 /4| ypI00q ‘xadwy)  DOS

(zvsvy '200D1S)  (€)°Pual
(et-1z¥'20001S)  (2)°Pyal
(8195¥¥ '200DLS)  (1)°Pygl
{zvsyy ‘zoooLs)  (oyopuslL
(zvizr10004S)  sunddIs
jdodoy ' -=

(11v£0S "100D1S) oPYLs
(628205 "100D1S) nd)g
(1LvEYY "100DLS)  PP3Y DAH

(LVéey ‘SZOIDH) 1{PD POoY DAH

(8€1016'SZ01DH) 11°D DAH

Su awi]

OV69E0EL

TBhde AND CORE STORE TIMING FOR HDC READ

RC4000

Timing Chart

V11204




0161 $9z1 ,
1T I R e T I 1 (¥€1805 '810D1S) 4it4od PPO
0161 $101 DQH woyy ping
| I [~ T 77T T (rwsce'el0015°879)  (u)9snels
1 0LE 1L 089
T TTIIIION COIJIIIITIIITIIIII0T Gewormoous o9 (s
e 1 L0z oL | ____ ,
lllll T T~ I (r13v2v'910015°678) (v)sseuppy
T Tl _ssel SU[TTTTT T T T J(ecrdasaisiypionq raduy) My
_ 220N 0191 09S1[00¥|_ 0s€l : .
SUOL+002 5! d 1 T (v d ssai’s1ypiog xadwy) - DS
Yipim 35)ngd 17 3J0N ¢ 21N 06 0¥e 081 061
1 {1 I (89°d #2441 ypioog xodwy) DO
3744 5512 v 5591 Ve st
L1 7 | I (zvery 'zooDLs)  (€)opuaL
sl0e ovél StoL | ove 51 DAHISNELS!D=
1 [ ] I (e1-12v'200015)  (2)2Pusl
SvLL 5691 VLo SS9 A
| { [ I (818577 '200D1S)  (1)°PugL
Shzl SSIl S¥Z GGl
1 [ I (zvsyy 'z0021S)  (0)°Pygl
0Ev i 00S|  OEv
11 T 1 (zv1zy’100DLS)  suniDys
pest  SZ8L  00/1 04- jd@ooy ‘o=
R N | | I (11v£05 '100215) 2PYLS
I (628405 100D15) ndayg
0561 Gl
__11 | I | (L1vevy '10001S)  PO2y DAH
||||||||||| R U 44 0zl-
I R R I D C I  (1v6ErSZOIDH) 11°D PRRY DGH
_ oozt 08 05- OV L~ 00Z-
1 [ ] MM I (8£7016‘SZ0IDH)  11°D DaH
1 1 [ L i 1 1 | ] 1 1 1 1 1 !
T L] L] L 1] L) L) LS 1] ) ¥ 1 L] t 11 mc QEWF
0002 0051 0001 00$ 0
P 06 7042 7Y % 7042 HDOOW0L010 OV69E0E |

T8hde AND CORE STORE TIMING FOR HDC WRITE

RC4000

Timing Chart

V11205




RCSL: 51-VB720
Author: P. E. Pedersen
Edited: January 1970

CONTROL UNIT

FOR
THE RC 4000 COMPUTER

A/S REGNECENTRALEN
Palkoneralle 1
2000 Copenhagen F



CONTENTS:

1.

2.

3.

5-

6.

Te

NP ——

MICROPROGRAM STORE scecceocccccosscsscsccocsosccocsscsccoscsas
l.l. Introduction ceeeessecocesscsccocsssccocccsscsccccccns
1.2, Word Selection sececessscessscssccccssccscccccsscscces
1.3, Data Detection seeecccccscecocccssccccscceccccsccsccne
Fige 1 Chematic Diagram of the Control Unit ecevecccecccecse
Fig. 2 Timing Diagram for MAR(0:9) cccecccccscscscscscscccss
Fige 3 Jump Conditions esececesecescccccccssccossscsccccccnce

EVALUATION OF NEXT MICRO ADDRESS ssceccccccscecccccscccccnsne
2.1. MAR Computer Controlled cceccscscesccccccccssscvcescece
2.2. MAR Manual Controlled seeeccccccccccescccccsccccvrcccsce
2.5, MAR Power Controlled secescccscccccccocccossccscencvasce
Fig. 4 Timing Disgrem for Primary Clock PulSeS eceescecsscssse

JUMP SELECTOR AND MICRO COMMAND REGISTER eecceeccccccccccess

CmCK PmISE Tmm% 0 000 000000006000 0000006080000 00080080000d00
h'l. hiwy Clock Mse Generator 0000000 SOCIEONIOIEPNOCEOEBOROIPCSOIPOOSTPRPDS
4,2, Timing Adjustment of MC and JS cesesscececscnccccssscns

mwm SMRT_IJP AND S}M"mwN XA NEERENENENENNE NN NN NN NN NN NN NN N NN

CONTROL MODES sceecscscecvoscccsccsocccscscoccccsscocscscvcsvascs
6.1, Reset, Start, and Autoload cesvescceccccccccsccrcscoce
6.2. Running MOde scsecescrcosssccccccrcossosocccrccssccsses
6.3. Core Store and MPS Parity Control ceeccccccecccccccsses
6.4. Control of ARU DiBPlAY eecseovosscccccsscccscsscccsces
6.5, Normal Mode cceecosscccsscccccccccesvossssccessscccnce
Fig. 5 Timing Diagram for ARU DiSplay cceccocccecscccccccscs

PROGRAM DESCRIPTION OF THE CONTROL UNIT cceeccecccccocococone

VBT720

mﬂmwmr:g

10
10
11
12
13

14

15
15
17

19

20
20
21
23
25
25
26



PREFACE

The Control Unit consists of a Micro Program Store, MPS, and a Micro Program
Controller, MPC.

This chapter starts with a comprehensive description of the microprogram
stores, including realization, performence, and external control logic. Sec-
tion 4 gives an exsmination of the clock pulse generator, the task of which

'

is to generate the necessary timing pulses and to descripe all timing adjust
ments.

In section 5 we discuss what happens during the period of start-up and shut-
down, and how the power supply volteges are supervised. The computer can op-
erate in different modes, and the meaning of these modes is explained in the
subsequent section. The finel section is devoted to a program which gives a
concise description of the Control Unit, interpreted in its entirety.

VB720



1. MICROPROGRAM STORE

- e o i e ol 2 o it s e T o o

ot - - -

The RC 4000 Computer is controlled by & microprogrem residing in the Read-
Only Store (MPS). MPS is orgenized like & general store having & capacity of
1024k words, each of 100 bits. The cycle time is 500 nanoseconds and the ac-
cess time is approximately 300 nanoseconds. Control of the computer is ac-
complished in the following way (confer Fig. 1): The micro address register
(MAR) selects the word to be read, and 300 nenoseconds later, the selected
word is ready to be read into the output register. This 100-bit register con-
sists actually of two registers, namely the Micro Command Register (MC), and
the Jump Selector Register (JS). MC is a 70-bit register, and its bit pattern
determines the micro operations to be executed. In consequence of odd parity
for MPS words, one of the 70 MC bits is used as a parity bit. The 30 bits of
JS select 10 out of 80 possible branch conditions, which form the next ad-
dress to be read into MAR. This process is repeated every 500 nanoseconds,
hence the computer is said to operate in a synchronous mode having & clock
frequency of 2 Mc. The abovementioned is also expressed in this program:

sequence MICROPROGRAM STOREj
begin
register MAR(0:9), MC(1:70), JS(71:100);
register array MPS[0:1023](1:100);
Time O: Next Word:
MCconJS:= MPS[MAR]; wait 90
Time 90:
MAR:= next address;
comment The following 110 nanoseconds are used to decode the address and to
generate the outputs
wait 4103 goto Next Word
end MICROPROGRAM STORE;

VB720



1.2. Word Selection

- s s e - > -

(MPC 002:011)
(MPS 001:003)

The next microaddress is evaluated and read into the MAR register at maximum
116 nanoseconds after the JS register has been set up.

The word selection includes a full binary decoding of the nine most signifi-
cant bits in the MAR register. As MAR(9) is not implied in the decoding, two
word addresses, 2N and 2N+1 where 0 { N £ 511, will select the very same
double-word 2N,

The first level in the decoding includes three 3-bit binary decoding circuits
concerning MAR(0,1,5), MAR(2,3,4), and MAR(6,7,8). Outputs from a group are 8
lines having logical zero on the 7 not-selected outputs and a logical one on
the selected output line.

The next decoding level decodes the group outputs into a maximum of

8x8x8 = 512 double-words. The logical values of the output signals are one
for all the not-selected double-word outputs end zero for the selected double-
word output line.

1.3. Data Detection

- —— - - -

(MPS 004:016, 049:130)

The date detection circuit consists of 100 NAND-gates, one multi input NAND
gate for each of the 100-bit positions in MPS. The size of the NAND-gate at
output n is given by the total amount of one-bits in position n in all the

stored words.
Due to the fact that MAR(9) is not implied in the word selection, it has to

be included in the data detecting. This is done by means of & 2-input multi-
plexer, steared by MAR(9) so that all one-bits in even address words have ac-

VBT720



v . S e e s A ARt ad e

suonipuo) dwnp ; ) , SpUDWWOD) 01I1W ,

> §
__
. ’
- (0£:2)0W . ‘
Jajjosuo) dwnp —
<= {oot:1)st
18 Apiog ;
|
H
6 ¥YW 0 ool s iz oz oW 2 I ;
0\ [\
DdW 5
T YT . e
(00L:12)SdW (Wsdw (0z:2) SaW ()sdw =
' @iele|ml @t wyw 8
- \ ~ 7 O
1 ! o
. N\H\/ 8/1 \Kw\_ \/ 8/1 \ “ " £
! “ s
| ! E |
i | S
BIIVW - ] " 5 |
SV i ] A
“ o 2
]
Lo .m» - ..m :
215/t | PPO ‘- yiog ‘- uny ‘- g
i - .
r————"""""="""""""1"" """~ "~""/"7/7/7vv/cmmm=e——- M
i |
i ] —_
“ | .
I ] 2
I | L.
| |
L | |
, - |
*PIOM 2iqneq "~ ittt SoRe| ¢ WALIRDI U] 39155 ANV Jo BUTISIN05 BUTITi Wo B0y SISy v
AW ol
H H )
o m N
e . o pp——— s x -’»a




16€ 128
9Lt 98y
TSIy } 4 U Ssaippy Ho
. §
124} 080 610 oy
| . L | l ] Hw
€91 200
., — w T I°
651 000
U J—‘ w uﬂ Hw
000 OoEy
T T iy B {
L
|74 080 oYy OtV
— L 1 I°
L
le a
09
€cl L0 000
— 1 r I°
L11 090
| [ ]  I°
00
—{ (%) Piom — { (9) Poom — Jo
t
¢ -+ +—t——r Pt —r— ettt +—+—t—+ 4
s 0¥ 00€ 00z 00t 0 00¥

IWE9Z 151

apoyy Bujuuny

(6:0)4YW

josay 10 435 Jajndwo)) ajqoul

ssauppy paxid

(6:0°£:2)Df suotipuo)

(00L:t£) Sruo>(0Z:1)OW

(W utodysayy g uod DWW d)

juawysnipo Burwiy

dDd 0014000 2wi

oot40cy swiy

(00t:1) SdW wodj ynding

os0g swi|

d3dé9ziagt

i
R

o R

e

A R RSN

_Timing Diagram for MAR(0:9)

Fig. 2

RC 4000

{
i
IR
i

,,wm

334 S/v¥

oL BA N

e e

L




posmion | pomion | pomin | e 2f | i I T e | ey | e oo o0 Cit
& 250 ; a;uu._. 20T Liar4 ol huzem...mﬁ.w W aor T oor T asr 5T wasr
punoy G_m%oﬁz. SpoWwW (z2)48 :-z< pasn jou pasn jou (0¥4 1 (94 pasn jou pasn jou 011
WIS WIN| waw|  moer| st wo oS wosr|  Tor QR
(0)3g 0#8S (0)gs (€2)ug (e2QvH 0#(e220)x3 (o1)38 pasn jou (2)ug = (1)u8 (0)A410) Lot
{&7r B7Sor (79)or (575)or] [GORE 7S)or E9)or @9)ar 90T 1079or]
idasoy (514 (v)¥4 (124 H (e)yd (2)u4 (D¥v = (v | (2)av = (1¥v| (O = (1-)v 001
&7)oT] Tor] [v48 )07 Wvor TPoT WPoT 7T TTPoT TCPoT LGl
(11034 1 (01)yd VE Joly (11)08 ER (0r¥4 qnsa4 (11)38 pasn jou (6244 (8)4d4 t Lo
0#4V  HIPOW -2 (S)44pIPOW '~ 8 (PNU4hIPOW '~ B (L) piPow - 2 (0)ap!PoW - 8 (E)¥dlPow - 8 (Z)yd|  posn fou y9<8S 59->4S oLoO
wEoor ®or oor LCar4jold woor wooT 0T Tor woor 05T
1 1 1 1 t L L 1 l t too
W@ oT| w®OoT or woor ©or Wor Tenor 0T mr T or
0 0 0 0 0 0 0 0 0 0 000
180T T80T 10T 570001 | TE0IT | T oIoT | TEoor TZOoT. TCooT| T0000T | ]
(001'86)ST (£6766)ST (v6:26)Sr (16:68)S1 (88:98)ST (s8:€8)ST (z8:08)Sr (62:£0)5r (9229281 (ez:10sr ._,
6=y Go=u Z6=u 68=u 98=u £8=y 08=y ££=u /=y l£=u (Wsr
(1+u)sr
(Z+u)sr
(6)avw (8Nvw (D¥YW (orevw (Shavw (VW (e)avw (2vw (yvw (odvw

TWEPZIS0 7 dIdETLIBD

e

Jump Conditions

(s}
.

R

U,

o 0 A R

i
!

o




cess to the NAND-gates when MAR(9) is logical zero, and all the one-bits in
odd address words have access to the NAND-gates when MAR(G) is logical one.

The fact that many of the one-bits in the stored microprogram are stored both
on a word address 2N and on the following word address 2N+1 has implied that
the 2-way multiplex can be made as a 3-way multiplex, where the extre way in
serves to let all one-bits stored both in the even and in the following odd
words have access to the NAND-gate independently of the value of MAR(9).

In short, the one-bits in the microprogram are stored as ) even-bits<{,
>>0dd-bits<<, or >>both-bits<{{. Zero-bits have no effect at all.

Each of the input ways to the descripted NAND-gates includes 2 terminals, a
and b,

By using 16-input AND-gates in two levels, it is possible to store up to 512
>>even-bits<<, 512 D odd-bits<<, and 512 >>both-bits<< on one bit position in
the microprogram.

VB720



- 10 -

2., EVALUATION OF NEXT MICRO ADDRESS

- - - ) > - - o " — - o - -

(MPC 002:011) MAR
(MPC 019:021) Js
(MPC 027) Control of MAR

The Micro Address Register (MAR) contains the address of the selected word in
MPS. This addreas can, in principle, be controlled in three different ways:
computer controlled, manual controlled, or power controlled.

- i o o e g e o O D D O S S o

In this mode of operation the address of the next step in the microprogram
will depend on JS end the jump conditions (JC). JS is divided into 10 groups,
each of 3 bits, in such a way that the value of group p controls the p'th bit
in MAR. The relation between MAR, JS, and JC is seen in fig. 3. For example,
MAR(1) equals JC(4,1) provided JS(74:76)= L,

Moreover the address 1023 (x31y31) has an exceptional position, because it
can be generated explecitly in spite of the contents of JS. This address is
controlled by means of the signal Fixed Address as explained in the chapter
about the Store Controller.

The computer controlled address calculation is described in details in the
following sequence:

sequence Evaluate Comp Address;

begin
Boolean array JC(0:7,0:9), a(0:9); comment a is a temporary varisble;
integer n,ps
for p:= O step 1 until 9 do

VB720



- 11 -

begin
n:= Ti+3xp;
a[p]:= JS(n:n+2)= 0 A JC(O,p)
v JS(n:n+2)=s 1 A JC(1,p)
v JS(n:n+2)= 2 A JC(2,p)
v JS(n:m+2)= 3 A JC(3,p)
v JS(n:m+2)= 4 A JC(4,p)
v JS(n:n+2)= 5 A JC(5,p)
v JS(n:n+2)= 6 A JC(6,p)
v JS(n:n+2)= T A JC(7,p)
v Fixed Address
end;
begin
comb net Comp Address (0:9)=
a(0)cona(1)cona(2)cona(3)cona(l)cona(5)cona(6)cona(7)cona(8)cona(9)
end; | ’
end Evaluate Comp Address;

2.2. MAR Menusl Controlled

—————— o~ —————— — " o ot T ot S i s S

In Technical Mode it is possible to change the control of MAR from computer
controlled to menual controlled by depressing the pushbutton MAR MANUAL CON-
TROLLED. Hereafter MAR can be set manually by the aid of 20 buttons mounted
on the ROS DISPLAY field.

sequence Eveluate Manual Addresss
begin
register
MANUAL SET Make(0:9), MANUAL SET Breek(0:9),
MANUAL RESET Make(0:9), MANUAL RESET Break(0:9);
comb net
MANUAL SET(0:9) = MANUAL SET Make(0:9) A MANUAL RESET Break(0:9),
MANUAL RESET(0:9) = MANUAL RESET Make(0:9) A MANUAL SET Break(0:9);
comment These declarations define the 20 outputs from the push-buttons.
It follows that SET and RESET cannot both be 1;

if Manual Mode A Stopped Mode A -,GIMARf992 A -,GiMARf31 then
MAR(0:9):= MANUAL SET(0:9) v - ,MANUAL RESET(0:9)
end Evaluaste Manual Address;

VB720



- 12 -

e e e o ——— - i 27 - oot ot 7o

The two micro addresses 992 (x31y0) and 31 (xOy31) can at any time be read
into MAR, no matter how MAR is otherwise controlled.

MAR is set to 992 during the periods of power shut-down and start-up under
supervision of the signal - ,GiMARf992. See Section 5.

The facility of setting MAR to 31 is not employed.

A suming up of the sbovementioned three categories of addresses gives the
following total expression for the next address:

if - ,Power OK then MAR:a 992
else
begin
if Manual Mode A Stopped Mode then MAR:= Manual Address;
if Manual Mode A Running Mode then MAR:= MARj;
if Computer Mode A Stopped Mode then MAR:= MAR;,
if Computer Mode A Running Mode then MAR:= Comp Address

end;

VB720



- 13 -

. ———

1 I I Aw
0
I !
0
l 1 _
[Z706%N
£Z7001-06%N
TZ7001+05°N
027 05X
| L_ 1 H_u
L_J L L] L1 ] S| I I A_u
- J j S _llﬁ_f | 1 m
| — a1
59005 ' oor 00€ 002 . 01 ' 0

d2d0Sv4050 3!l

dDd0GCH06E dwll

d2d0Syi05e awif =N

abpa Buljipy Jayjo Aub of Buijioly o woy

abpa Buippa| sayjo Aup o4 Buijioy B woyy

abpa Bui|ioyy Jsyjo Aup o Buipoaj o wouy

abpa Buippa| sayjo Aup oy Buippa| b woyy

(05£ZNndD)

(85£ZndD)

(vsezZndd)

a1=2v1

IWN69Z 181

dJd 0014000 sw!}

| Qm_Dn— JUO_U _OC‘_O“C_

\-4 a5inyg JUO_U joulajuy

sjuaunsnlpy asing 3209

espg awi)

434692141

Timing Diagram for Primary Clock Pulses

4
umov
[

{
!

e




-1l -

3. JUMP SELECTOR AND MICRO COMMAND REGISTER

o - — o " -

(MPC 019:21) JS register
(MPC 012:018) MC register
(MPC 026)

The output from the selected word in MPS is normally read into MC and JS by
means of the strobe pulses CpMC and CpJS.

Jump Selector Register.
The contents of JS changes every 500 nanoseconds in accordance with the se-
lected word in MPS.

sequence JUMP SELECTORS;
begin
Time Oy
JS:= MPS(MAR)(71:100);
wait 500; goto Time O
end JUMP SELECTORS;

Micro Command Register.

The contents of MC change normally every 500 nanoseconds in accordance with
the selected word in MPS. In the case where the microprogram is stopped, MC is
cleared to zero. Since this is not permissible for some micro commands,
MC(1:10) is only excited when the microprogram runs.

sequence MICRO COMMANDS;

begin

Time O:
MC:= if Running Mode then MPS(MAR)(1:70) else MC(1:10)conO;
wait 350s

Time 350:
comment Running Mode can only change its velue at time 3503
wait 150; goto Time O

end MICRO COMMANDS;

VB720



- 15 -

L, CLOCK PULSE TIMINGS

- . —— - > - -

- o . > A P T S - - . - — > > — > " —

It has been mentioned that the repetition rate for the microprogram store is
500 nanoseconds, which implies that all the micro operations specified in one
microstep are active in this period. Certain of the logical operations, de-
rived from the micro operations, must even within this time interval follow a
strictly timed format in order for the computer to execute its instructions.
The period of 500 nanoseconds is therefore subdivided into 10 intervals de-
layed 50 nanoseconds with respect to each other as seen from Fig. 4. The cir-
cuit which accomplishes this is the primary clock pulse generator (PCP).

The PCP consists, in principle, of a 10-bit shift register with feed-back to
the first bit only, while the remaining bits are excited by the contents of
the previous bit. Registers with this property are known in the literature as
feed-back shift registers., The feed-back to the first bit is determined by

two constraints:

1) The contents of PCP equal 001100000 (or any of the other nine bitpatterns
derived by means of cyclic shifts) after & maximum of nine clock periods
no matter the original contents of PCP, i.e. PCP 1s self-generating and

error correcting.

2) PCP operates as a cyclic register after the generating of the bitpattern
mentioned in 1).

A more precise definition of PCP is:

sequence PRIMARY CLOCK PULSES;

begin register PCP(0:9);

SHIFT:
PCP(0):= FCP(0:7)= 0 v ECP(0) A - ,PCP(1);
PCP(1:9):= PCP(0:8);
wait 505 goto SHIFT

end PRIMARY CLOCK PULSES;

VB720



- 16 -

Thus it follows that PCP(n) will assume the logical value 1 in 100 nanoseconds
and O in 400 nanoseconds. The reverse i1s naturally the case for the comple-
mented output -,PCP(n).

PCP is in the actual design constructed of R-S elements, where R and S are ex-
cited from a two-phase 10 Mc oscillator.

All output signals from the Primary Clock Pulse generator have descriptors in-
dicating the time interval in which they are logical 1. The time descriptors
indicate an ideal timing scale which cannot be realized, but may be defined
as a timing scale located exactly in the middle of two timing scales, one of
them based upon the very fastest of the fast output pulses, and the other bas-
ed upon the slowest of the slow output pulses. Compared with this ideal timing
scale, the tolerances of all PCP signals are within +12 nanoseconds. Due to
the fact that this ideal timing scale is & teoretical one, we have to define a
time reference that can be measured and used as the basic time reference for

the central processor.

As explained, sll timing signals in the entire computer are derived from the
PCP, which makes it desirsble to use one of its outputs as a time reference,
therefore the time O is defined to be the time where PCP(0) changes from O to
1, or more specific when the test point for PCP(0) passes the 1.5 V level,
which is the threshold voltage of Texas Series Ti. PCP(0) is identified as
Time000t100PCP (the interval in which it is 1) and - ,PCP(0) as TimelOOtOOOPCP.
000 is used instead of 500 because indication of time is modul 500.

As a consequence of using one of the PCP pulses as timing reference, the tole-
rances of all the other pulses must be expressed by referring to the selected
PCP pulse, and therefore the tolerances of all other PCP pulses have to incor-
porate the tolerances of that particulary PCP pulse that is defined to indi-
cate the timing reference. See fig. U.

The correct tolerences of all the output signals from PCP can be obtained by
adjusting the length and the phase of the output pulses from the 10 Mc oscil-
lator (Ccko2). The first and preliminary adjustment of the 10 Mc oscillator

VB720



- 17 -

will give two 50-nanosecond output pulses with a phase shift of approximately
180 degrees between their leading edges. Then, the exact phase adjustment is
carried out in the following way:

On circuit BF402 the internal two phase clock signals are accessible on test-
points A and B. The time difference TB from the leading edge of the clock
pulse on testpoint A to the leading edge of the clock pulse on testpoint B
must be exactly equal to the time difference TA from the leading edge of the
clock pulse on testpoint B to the leading edge of the clock pulse on test>
point A. The correct time difference is 50 nenoseconds and can be obtained by
adjusting the phase-potentiometer on circuit CCH02. (On the assumption that
the two output pulses from circuit CCLO2 are still about 50 nanoseconds, the
PCP adjustment is completed, otherwise the two output pulses must be re-ad-
Jjusted and then the exact phase adjustment must be repeated).

- ——— o~ - ——— T — - ——— - —— -~ -

(MPC 026, 012:022)

Normally, the proper timing of register MC and JS can be obtained by adjust-
ing the leading edge of signal Timel20t100.

The signals CpMC and CpJS are adjusted so that all bits of MC and JS are
ready at time 500 (= 000). This time is, by definition, when the signel
Time000t100PCP changes from O to 1. Since the meximum delay in a J-K element
is 50 nanoseconds, it implies that the clock pulse, having the greatest de-
lay, arrives not later than the time 450. As temperature and voltage varia-
tions may affect the delay, the adjustment should be carried out under normal
running condition and the time of arrival of the clock pulse having the
greatest delay should therefore be set to 440.

In case of replacement of circuit card involved in the abovementioned logic
diagrems, it is necessary to perform a complete adjustment procedure: With
the computer in Running Mode, the time difference is measured between the
trailing edges of the signals -,CpMC(1:70) and -,CpJS(71:100) on (CPUL06E)
and (CPU106D). If the time difference is greater than 3 nanoseconds, the

VB720



- 18 -

12AC401 circuit card in (CPU106) must be replaced by another circuit card hav-
ing closer tolerances. Then all the 10 signals, CpMC, and CpJS, measured on
testpoint M on the BG4O3 are examined. If the time difference is greater than
10 nanoseconds between the fastest and the latest of the leading edges, the
most outstending circuit cards must be replaced until the desired close tole-
rances are obtained. Hereafter the potentiometer A on the delay circuit in
POS CPUO37 is adjusted so that the leading edge of the latest CpMC, or CpJS,
appears exactly at time 440,

Hereby the time adjustment of MC(1:70) and JS(71:100) is finished, and the
contents of the registers can now be guaranteed from time 000 to 430.

VB720




- 19 -

5. POWER START-UP AND SHUT-DOWN

To be defined later as the circuits for Start/Stop are not made out yet.

VB720




- 20 -

6. CONTROL MODES

——— e s o - o -

For maintenance purposes, we have designed the Control Unit to operate in dif-
ferent modes. These modes can be controlled from either the QPERATOR CONTROL
PANEL, OCP, or the TECHNICAL CONTROL PANEL, TCP, as described in an introduc-
tory menner in the section DESCRIPTION OF INDICATORS AND CONTROL SWITCHES. We
shall now elaborate this description and, at the same time, examine the hard-
ware realization. Before doing so it is worth noticing the differemt modes

and their interdependence,

Operator Mode

Normal Mode = - Technical Mode
Running Mode = - Stopped Mode
Computer Mode = - Masnual Mode

6.1. Reset, Start, and Autoload

B e L e

(MPC 033:034)

Reset, Start, and Autoload are three bistable elements controlled by the push-
buttons of the same name and by the OPERATOR CONTROL key.

Reset enters the jump condition
JC(7,5) = Main Power Key ON A - ,Reset A Core Store Power OK

and JC(7,5) equals O as long as the pushbutton is pressed. The jump condition
is interrogated once in every instruction cycle and if it becomes O, the mi-
croprogram will execute the reset program and wait until START or AUTOLOAD is

ectivated.

A 500-nanosecond Stert signal equivelent to JC(7,1) is generated once every
time we press the button START. The reason for this short signal is that it
prevents & restart if the microprogram should once more go to the reset situ--
ation. This could actuelly happen if an autoload instruction (aw) is used in
the beginning of the start progrem. The start signal is implemented by means
of an auxiliary bistsble called Enable Start Autoload as seen from the prog-

ram description below.

VB720



- 21 -

begin
AGAIN: wait until START Break A AUTOLOAD Breek;
Ensble Start Autoload:= 1;
walt until START Make;
wait until Time 320; wait 30;
Time 350: Start:= Enable Start Autoload A START Make; wait 30
Time 380: Enable Start Autoload:= 0; wait 470;
Time 850: Start:= Oy
goto AGAIN
end

A 500-nanosecond Autoload signal equivalent to JC(7,2) is generated once eve-
Ty time we press the button AUTOLOAD in exactly the same way as the Start
signal. 7

- ——— " - o o

(MPC 029:030)

As already seen from the previous description, Running Mode is one of the
most essentisl variables in the Control Unit. The characteristic of Running
Mode is that in this mode the computer executes the microprogram, whereas in
Stopped Mode (= -,Running Mode) no new micro commands are executed and no
new micro address is strobed into MAR. Notice that MC(1:10) may be different
from O in Stopped Mode. In Stopped Mode, however, we can manually set up a
new micro address or alter the contents of the registers in the arithmetic u-
nit.

The Running Mode element operates as follows:

A. Running Mode is set to O if
(A1) the button MAR MANUAL CONTROLLED is activated.
(A2) the button MAR COMPUTER CONTROLLED is activated.
(A3) a parity error in the microprogram store occurs.
(Al4) a parity error in the core store occurs.

VB720



B.

c.

D.

- 22 ~

Running Mode is set to 1 if

(B1) the mode selector key MODE SELECTOR NORMAL/TECHNICAL is switched to
the NORMAL position. This signifies that the control unit operates in
Normal Mode.

(B2) the button CONTINUE is activated in technical mode. This is achieved
by a 500-nanosecond signal on the J side of Running Mode.

SINGLE MICRO INSTRUCTION.

When SINGLE MICRO INSTRUCTION is activated, the J side of the JK bistable
Running Mode 1is set to 1 for a period of 500 nanoseconds, whereas the K
side remains 1 as long as the pushbutton is activated. Therefore, in case
Running Mode is initially 1, it is cleared to O, and in the other case
where Running Mode is initially O it will become 1 for a period of 500 na-
noseconds and thus execute one microinstruction.

SINGLE INSTRUCTION.

As in case C, the J side is set to 1 for 500 nanoseconds but the K side is
only 1 provided the pushbutton SINGLE INSTRUCTION is depressed and the mi-
croprogram executes an instruction where the jump condition JS(71:73)= 3.
This jump condition is inserted once in every instruction cycle, and this
makes it possible to execute the microprogram instruction by instruction.

The two cases C and D are spelled out in the program description to follow.

The 500-nanosecond signel on the J side of Running Mode is generated via two
auxiliary varisbles called Running Start(1,2), which operate as & single shot
generator (monostable) when one of the buttons CONTINUE, SINGLE MICRO INSTRUC+
TION, or SINGLE INSTRUCTION is activated.

begin

if SINGLE MICRO INSTRUCTION then

begin
Single Micro Instruction:= 1; wait 200;

Time 50: Running Start(1,2):= b10; wait 300;

VB720



- 23 -

. Time 350: Running Mode:= if Running Start = 2 then - ,Running Mode else Oj
wait 200s
Time 550: Running Start(1,2):= lconRunning Start(1); wait 300
Time 850: Running Mode:= if Running Start = 2 then - ,Running Mode else Oy
comnent Running Mode= Og
end;

if SINGLE INSTRUCTION then
begin
Single Instruction:= 1s; wait 200
Time 50: Running Start(1,2):= b10;y wait 300;
Time 350: if (Running Start= 2)A(JS(71:73)=3)
. then Running Mode:= - Running Mode;

- 1f (Running Start= 2)a -,(JS(71:73)s3) then Running Mode:= 1g
if -,(Running Start= 2)A(JS(71:73)=3) then Running Mode:= Oj
comment JS(71:73) equals 3 once in every instruction cycle;
wait 200;

Time 550: Running Start(1,2):= iconRunning Start(1); wait 300;
Time 850: if (Running Start= 2)A(JS(71:73)=3)
then Running Mode:= - ,Running Mode;
if (Running Stert= 2)A -,(JS(71:73)=3) then Running Mode:= 1;
if - ,(Running Start= 2)A(JS(71:73)=3) then Running Mode:= Oj
wait 200; if Running Mode = 1 then goto Time 550;
comment Running Mode:= O3

‘ end

end

6.3. Core Store and MPS Parity Control

o . " - - — -~ - -

(MPC 032) Core Store Parity Control
(MPC 022:025,031) MPS Parity Control

Both the core store and the read-only store are under normal conditions check-

ed for parity errors. By this means it is possible to detect an error as soon
as it occurs and thereby diminish the time which is necessary for locat-

VB720



- 24 -

ing the faulty circuit. A parity failure stops the microprogram and the red
indicator MACHINE ERROR will light. Two indicators, mounted on the TECHNICAL
CONTROL PANEL, meke it possible to distinguish between Core Store parity er-
rors and Micro Program Parity errors.

Core Store Parity Control.

The core store is initiated by the micro commands Read Instruction, Read Da-
ta, and Read Split. On receipt of one of these commands, the store will read
the data from the selected word into the combined register

SBconPROTECTconPARITY

no later than 1348 nanoseconds after the leading edge of the command pulse.
The formation of the logical parity expression

0ddSBeconPROTECTconPARITY

lasts 225 nsnoseconds, end the bistable element Core Store Parity Error is
set in accordance with this result at time 1665 (= 165).

In the event of an error, a restart is only possible after the Core Store
Parity Error flip-flop is cleared. This is done by switching to Technical
Mode and depressing the pushbutton CORE STORE PARITY CONTROL OFF.

A specisl program is provided which cancels all parity errors in the entire

store.

MPS Parity Control.
The microcommand store is subjected to parity control when the following two

requirements are met:

1) MPS Parity Control = 1
2) Running Mode = 1

The first condition is obvious. The second condition arises from the fact
that MC(11:70) is set to zero when the computer is not in Running Mode.

In the event of an error, a restart is only possible after the MPS Parity

Control flip-flop is cleared. This is done by switching to Technical Mode
and depressing the pushbutton MPS PARITY CONTROL OFF.

VB720



- 25 -

e s o e o - -

The ARU DISPLAY field serves not only to display the contents of a register
but also to alter this contents by the aid of manually operated pushbuttons.
The ARU DISPLAY functions when the three signals, A, B, and C, are continu-
ously generated from a 3-bit counter. The counter starts itself as soon as
the microprogram stops (Running Mode = 0) provided the MODE SELECTOR key-
switch is in TECHNICAL position and none of the pushbuttons on the TECHNICAL
CONTROL field are activated. The counter stops either because the abovemen-
tioned key-switch is turned to NORMAL position or because one of the pushbut-
tons are depressed. Fige. 5 shows the A, B, and C, and their use in the arith-
metic unit.

6,5. Normsl Mode

- - o - n o

The control unit operates nearly always in Normal Mode and the operator
should only switch over to Technical Mode for maintenance purposes, and na-
turally in the event of errors. In this connection we would like to point
out that although it is possible to debug a program by stepping through in-
struction by instruction, this approach is very time consuming, and we would
instead advise the programmer to use the standard debugging programs.

The normal status of the main variables appears from the following statement.

if Normal Mode A Power OK A -,(Core Store Parity Error v MPS Parity Error)
then
begin

Core Store Parity Control:= ROS Parity Control:= 1;

Running Mode:= 1,

Single Micro Instruction:= Single Instruction:= O

Running Start(1,2):= O;

Menual Mode:= O;

ARU Display Running:= 0

end

VBT720



| N I s I —
— L L LT
] . [ ] i LT i
U 1T 1 L—
o L L_J L] ] L
&
| L
LI L I 1 1]
1 i _ :
I L _J 1 1 L
-

+

L 3

1

+

+

+

-

-+

-+

-

(9012ndD)

(3671NdD)

(26¥1NdD)

(86¥1NdD)

(V6 1NdD)

(vzol ndD)

(D66 NdD)

(866 NdD)

(V66 NdD)

(4901NdD)

SNg46ey 19 uop s

dd uod yQay
SNEd uod sNGID Loy
dg uod yq 4O
Bay o dD uow

69419545ng1D uoW

Buyuuny Aojdsiq NyY

(|eo1uyda) Jojoajag spow v
Spow vw&&obmv;l

AP/ T3agn| as0g awy)

TWEZISL . dadsgrIst

| RC 4000

Diagram for ARU Display

ming

T

Fig. 5

VII718

A L e e




- 27 -

7. PROGRAM DESCRIPTION OF THE CONTROL UNIT

e . o e s i e D o e T o P D T O S e D S O ) 2B D D B 28 il A e S0 a2

(MPC 002:011) MAR
(MPC 012:021) Mc(1:70), JS(T71:100)
(MPC 027) GiMARFG92
(MPC 033:034) Operator Mode, Reset, Start, Autoload,
Fnable Start Autoload
(MPC 028) Menual Mode
(MPC 030) Single Micro Instruction, Single Instruction,
Running Start
(MPC 029) Running Mode, Technical Mode
(MPC 032) Core Store Parity Control, Core Store Parity Error
(MPC 022:025,031) MPS Parity Control, MPS Parity Error,
Enable Parity Control
(MPC 035) ARU Display Running

The last section of this chapter is devoted to a program, which gives a tho-
rough and concise description of how the Control Unit functions. The program
is divided into subprograms in order to facilitate the understanding. The

names of the subprograms are:

MICROPROGRAM STORE

SUPFRVISION OF POWER

SUPERVISION OF START AND AUTOLOAD
" CONTROL LOGIC

CORE STORE PARITY CONTROL

MPS PARITY CONTROL

ARU DISPLAY CONTROL

DISPLAY OF OPERATOR CONTROL PANEL

DISPLAY OF TECHNICAL CONTROL PANEL

VB720



- 28 -

This table shows in which subprograms & bistable element participates
. and at which time the value of the element may change. When bistables are
controlled by asynchronous signals, they are denoted by A in this 1ist.

S E o g
& z 2 B £
FE =, = A 2 4 % %
=) O O < &
E ; o S © >
B BEHE 8 w8 » %
8 W @0 B = 5 & =
.58 E< g BHE 2z B
§ E o Z o " o = A
Sig™ &% E B o B
= (D} 0 O O % <<
P P P L L TP P LR [ S (R, ‘f--—‘---‘:------ ------- P R L L -
ARU Display Running ; t : L30
Ty Iy rrrrrrrr T -------- P T L T T T Y T SCT L T T ¥ 999
Autoloed ____________ e A 350 .. B
Q Core Store Parity : ;
Control _____ —————— hoeeee IS S A A 000 e ——--
Core Store Parity i :
Error i H : } 030 g
LA L L XX X J L L R LR X L L. f..-----..__----.é’-------.g------_.!--lé‘é.-.3--..---;..------
Enable Start Auto- | ; :
1‘999-- ----- L L X X X 1 ;p ----- -en wp on 0B w .d---é---q’---ésgq; ----- -;-—----- ----- -
! !
IS(T12100) el 000 e S
Manusl Mode S TS A RS S -L MR S I .
%‘8 -------- - ‘—-9?9-#----5------—--: --------------- d‘ -------------
GIMARE992 B8O A e
ggglc:zgl-----—-------‘-_999--&-----------—--q--------’- ...... JE-- -------- - - w
Operator Mode | ..o esememeciemmcmdee 220 e eiaes -
Reset ! : ; . 350 § :
. - WP DD D e - S - -1-------j-------é---‘---ﬂ:--------!--.-----‘:------E -------
MPS Parity !__000_; ; ~ ‘f |
e et Ll q=-==s- ety qem—=e-- Amem———- “memesscoqesecos m====-
MES Perity Comtrol o cdeeeees B P S ———euee 4990 -
MPS Parity Error f Q 1 | 030
o eceweenwesoe --‘-----i ------ ;--.----{--------é ----- ---; ------- T-é}ig-;-------
T : § :
Running Mode ______. demmnnn S S dommmcede 22 e -
i ! : ; |
Running Stert (1,2) | ... B[ SN RO A
§zesls_£9§‘sz'99§199--;i ...... U S 4aaa220 ... S S A
Single Micro Instruction . _____._____. Jmi ..... e
stert_________ e
Technical Mode ____ 1J%ﬂ]] ...... -

VBT720




- 29 -

CONTROL UNIT:
begin
Boolean Power OK;

comment The signal Power OK is governed by the power control circuit;

register

MAR(0:9),

MC(1:70), Js(71:100),

GiMAR£992(0:0),

Operator Mode(0:0),

Reset(0:0), Start(0:0), Autoload(0:0), Enable Start Autoload(0:0),

Manual Mode(0:0),

Single Micro Instruction(0:0), Single Instruction(0:0),
Running Start(1:2),

Running Mode(0:0), Technical Mode(0:0),

Core Store Parity Control(0:0), Core Store Parity Error(0:0),

MPS Parity Control(0:0), MPS Parity Error(0:0),

ARU Display Running(0:0);

comb net
Stopped Mode(0:0) = - ,Running Mode,
Normal Mode(0:0) = -,Technical Mode,
Computer Mode(0:0) = - ,Manual Modeg
comment The two variables on each side of the equality sign represent the
true and the complemented output from a J-K elements

comment The varisbles, in the next three declarations, serve to calculete
Comp Address. JC are the jump conditions, a are auxiliary variables,
and Fixed Address is a signal generated from the Store Controller;

Boolean array JC(0:7,0:9), a(0:9);

Boolean Fixed Address;

comb net
Comb Address(0:9) = a(0)cona(1)cona(2)cona(3)cona(l)cona(5)cona(6)con

a(7)cona(8)cona(9);

VB720




- 30 -

comment The following declaration defines the pushbuttons and the keys on the
OPERATOR CONTROL PANEL and the TECHNICAL CONTROL PANEL.
register
OPERATOR CONTROL ON Make(0:0), OPERATOR CONTROL ON Break(0:0),
RESET Mske(0:0), RESET Break(0:0),
START Meke(0:0), START Break(0:0),
AUTOLOAD Make(0:0), AUTOLOAD Break(0:0),

MDODE SELECTOR NORMAL Meke(0:0), MODE SELECTOR TECHNICAL Make(0:0),
CONTINUE Make(0:0), CONTINUE Bresak(0:0),
. SINGLE INSTRUCTION Make(0:0), SINGLE INSTRUCTION Break(0:0),
‘ SINGLE MICRO INSTRUCTION Make(0:0), SINGLE MICRO INSTRUCTION Break(0:0),

MAR COMPUTER CONTROLLED Meske(0:0), MAR COMPUTER CONTROLLED Break(0:0),
MAR MANUAL CONTROLLED Make(0:0), MAR MANUAL CONTROLLED Break(0:0),

MANUAL SET Make(0:9), MANUAL SET Break(0:9),
MANUAL RESET Make(0:9), MANUAL RESET Bresk(0:9),

CORE STORE PARITY CONTROL ON Make(0:0),
CORE STORE PARITY CONTROL ON Break(0:0),
CORE STORE PARITY CONTROL OFF Make(0:0),
CORE STORE PARITY CONTROL OFF Break(0:0),
./ MPS PARITY CONTROL ON Make(0:0), MPS PARITY CONTROL ON Break(0:0),
MPS PARITY CONTROL OFF Make(0:0), MPS PARITY CONTROL OFF Break(0:0),

TECHNICAL CONTROL Field Connected Make(0:0);

comment The declaration shows the switching logic, that is the logic imple-
mented by meens of internal connections between the Meke and the Break parts
of the switches;

comb net
MANUAL SET(0:9) = MANUAL SET Make(0:9) A MANUAL RESET Breek(0:9),
MANUAL RESET(0:9) = MANUAL RESET Make(0:9) A MANUAL SET Bresk(0:9),

VBT20



- 31 -

MAR COMPUTER CONTROLLED(0:0) = MAR COMPUTER CONTROLLED Make,
MAR MANUAL CONTROLLED(0:0) = MAR MANUAL CONTROLLED Make
A MAR COMPUTER CONTROLLED Break,

SINGLE MICRO INSTRUCTION(0:0) = SINGLE MICRO INSTRUCTION Make
A MAR COMPUTER CONTROLLED Break
A MAR MANUAL CONTROLLED Break
SINGLE INSTRUCTION(0:0) = SINGLE INSTRUCTION Mske
A MAR COMPUTER CONTROLLED Break
A MAR MANUAL CONTROLLED Bresk
A SINGLE MICRO INSTRUCTION Break,
CONTINUE(O:0) = CONTINUE Make
A MAR COMPUTER CONTROLLED Break
A MAR MANUAL CONTROLLED Break
A SINGLE MICRO INSTRUCTION Breek
A SINGLE INSTRUCTION Break,
ALL BUTTONS BREAK(0:0) = MAR COMPUTER CONTROLLED Break
A MAR MANUAL CONTROLLED Break
A SINGLE MICRO INSTRUCTION Break
A SINGLE INSTRUCTION Break
A CONTINUE Break,
MODE SELECTOR TECHNICAL(O0:0) = MODE SELECTOR TECHNICAL Make
A MAR COMPUTER CONTROLLED Bresk
A MAR MANUAL CONTROLLED Break
A SINGLE MICRO INSTRUCTION Breek
A SINGLE INSTRUCTION Break
A CONTINUE Breek,
MODE SELECTOR NORMAL(0:0) = MODE SELECTOR NORMAL Make,

CORE STORE CONTROL ON(0:0) = CORE STORE CONTROL ON Maske
A CORE STORE CONTROL OFF Breek,
CORE STORE CONTROL OFF(0:0) = CORE STORE CONTROL OFF Make
A CORE STORE CONTROL ON Breek,
MPS PARITY CONTROL ON(0:0) = MPS PARITY CONTROL ON Make
A MPS PARITY CONTROL OFF Break;
MPS PARITY CONTROL OFF(0:0) = MPS PARITY CONTROL OFF Meke
A MPS PARITY CONTROL ON Breek;

VB720




- 32 -

sequence MICROPROGRAM STORE;
comment The function of the microprogrem store appears from this sequences
begin ,
register array MPS(0:1023)(1:100);
comment The program stored in MPS is defined in Chapter 8;
Time O:
MCconJS:= if Running Mode then MPS(MAR)
else MPS(MAR)(1:10)con60extOconMPS(MAR)(71:100)
begin comment Evaluate Comp Address;
integer n,p; wait 303
Time 30:
for p:= 0 step 1 until 9 do
begin
ni= 71+5xps
a(p):= JS(n:n+2)= 0 A JC(0,p) v JS(n:n+2)= 1 A JC(1,p)
v JS(n:n+2)= 2 A JC(2,p) v JS(n:in+2)= 3 A JC(3,p)
v JS(n:n+2)= 4 A JC(4,p) v IS(n:n+2)= 5 A JC(5,p)
v JS(n:n+2)= 6 A JC(6,p) v IS(n:in+2)= T A JC(7,p)
v Fixed Address
end;
comment Comp Address % a(0)cona(1)con ... cona(9);
end; wait 60;
Time 90:
if Computer Mode A Running Mode A -,GiMARF992 then X MAR:= Comp Address;
wait 190;
Time 280:
1f Power OK then ¥ GIMARF992:= 0y
comment Running Mode may change at time 3503 wait 170;
Time 450:
if Manual Mode A - ,Running Mode A -,GIMARf992 then
% MAR:= MANUAL SET(0:9)
v - ,MANUAL RESET(0:9) A MAR;
end MICROPROGRAM STORE;

£

VB720



- 33 -

sequence SUPERVISION OF POWER;
comment This sequence controls the asynchronous signal Power 0K
begin
AGAIN:
wait until - ,Power OKj
Core Store Parity Error:= MPS Parity Errori= Oj
Start:= Autoload:= Oj
MAR9G2:= 1,
if MAR992 then MAR:= 992
wait until Power OK; goto AGAIN
end SUPERVISION OF POWER;

sequence SUPERVISION OF START AND AUTOLOADg
comment This sequence controls the switches START and AUTOLOAD;
begin
AGAIN:
wait until START Break A AUTOLOAD Bresk;

Enable Start Autoload:= 1g
wait until -,(START Break A AUTOLOAD Break); goto AGAIN

end SUPERVISION OF START AND AUTOLOAD;

VB720




- 34 -

sequence CONTROL LOGIC;
comment This sequence describes the different modes of operation. All
operations are synchronous. The asynchronous operations are found in the
sequences SUPERVISION OF POWER and SUPERVISION OF START AND AUTOLOAD;
begin |
register Running Start(1:2);
comment The J-side of the J-K bistable Running Mode is 1 if
Running Start = 2;
wait 503
Time 50:
1 Running Start(1):= (Technical Mode A -,ARU Display Running
A (Single Micro Instruction v Single Instruction v CONTINUE))
A - ,Running Start(1)
v -,(ALL BUTTONS BREAK v -,Technical Mode) A Running Start(1)

% Running Start(2):= Running Start(1);
wait 3003
Time 350:
% Operator Mode:= (OPERATOR CONTROL ON Make A Normal Mode) A -,Operator Mode
v -,(OPERATOR CONTROL OFF Mske v - ,Normal Mode) A Operator Mode;

if Operator Mode then
% Reset:= (RESET Make A Operator Mode) A -,Reset
v -,(RESET Break) A Reset
else X Reset:= O3

if Power OK then
% Start:= (START Maske A Operator Mode A Ensble Start Autoload) A -,Start
v -,(-,Enable Start Autoload) A Start;

if Power OK then
1 Autoload:= (AUTOLOAD Mske A Operator Mode A Enable Start Autoload)
A -,Autoload

v -,(-,Enable Start Autoload) A Autoload;

VB720




- 35 -

Time 350:
X Manual Mode:= (MAR MANUAL CONTROLLED A Technical Mode A - ,Running Mode)
A - ,Manual Mode
v -,(MAR COMPUTER CONTROLLED A -,Running Mode v -,Power OK
v -,Technical Mode) A Manual Mode;

% Single Micro Instruction:= (SINGLE MICRO INSTRUCTION A Technical Mode)
A —-,5ingle Micro Instruction

v -,(ALL BUTTONS BREAK v -,Technicel Mode)

A Single Micro Instructiong

% Single Instruction:= (SINGLE INSTRUCTION A Technical Mode)
A -,5ingle Instruction

v -,(- ,Running Mode A (-,Technical Mode v ALL BUTTONS BRFAK)

v - ,Technical Mode v Single Micro Instruction v CONTINUE)

A Single Instruction;

X Normal Mode:= (-,TECHNICAL CONTROL Field Connected v MODE SELECTOR NORMAL)
A -~ ,Normal Mode

v -,(MODE SELECTOR TECHNICAL) A Normal Mode;

% Running Mode:= (-,Core Store Parity Error A - ,MPS Parity Error
A (Normal Mode v - ,Power OK
v Running Start(1) A -,Running Start(2))) A -,Running Mode
v -,(Technical Mode
A (MAR MANUAL CONTROLLED v MAR COMPUTER CONTROLLED)
v Core Store Parity Error
v MPS Parity Control A Ensble Parity Control
A - ,0ddMCcondSconMPS Parity
v Single Instruction A -,JS(71) A JS(72) A JS(73)
v Single Micro Instruction) A Running Mode
wait 304
Time 380:
if -,Operator Mode then % Reset:= O;

if (-,START Bresk v -,AUTOLOAD Bresk) A (Start v Autoload) then
X Ensble Start Autoload:= 0,
wait 1203 goto Time O

end CONTROL LOGIC;

VBT720



- 36 -

sequence CORE STORE PARITY CONTROL;
comment The sequence describes the necessary logic for checking the core
store. TB(3) is & flip-flop in the Store Controller (STC). Addr ST = 1
signifies that the address is a valid core store address., The selected
core store word is read into the combined register SBconPROTECTconPARITY:
begin
register SB(0:23), PROTECT(2u4:2L4), PARITY(25:25), TB(3:3), AdarST(0:0);
Time 0O:
X Core Store Parity Control:= ((-, Technical Mode v CORE STORE PARITY CONTROL ON)
A Power 0K) A -,Core Store Parity Control
v -,(Technical Mode A CORE STORE PARITY CONTROL OFF v -,Power OK)
A Core Store Parity Controlg
wait 30
Time 50:
if Power 0K then
X Core Store Parity Error:= Core Store Parity Control
A Core Store Parity Error;
wait 1553
Time 165:
% Core Store Parity Error:= Core Store Parity Control
A -,0ddSBconPROTECTconPARITY A TB(3) A Addr ST
wait 335; goto Time O
end CORE STORE PARITY CONTROL;

VB720



- 37 -

sequence MPS PARITY CONTROLg
comment The sequence describes the necessary logic for checking the micro-
program store;
begin
Time O:
% MPS Parity Control:= ((-,Tectnical Mode v MPS PARITY CONTROL ON)
A Power OK) A -,MPS Parity Control
v -,(Technical Mode A MPS PARITY CONTROL OFF v - ,Power OK)
A MPS Parity Controlg
wait 303
Time 30:
if Power 0K then
1 Mps Parity Error:= MPS Parity Control A MPS Parity Error;
walt 315;
Time 345:
% MPS Parity Error:= MPS Parity Control A even MCconJS A Running Mode
v MPS Parity Error;
wait 1553
goto Time Oy
end MPS PARITY CONTROL;

sequence ARU DISPLAY CONTROL;
comment The ARU DISPLAY functions when the three signals Enable Register
Selection, Register To BUS, and BUS To Register are continuously gen-
erated from the counter; |
begin
register A(0:0), B(0:0); comment Two elements of the counter;
comb net
ARU Display Start(0:0) = MODE SELECTOR TECHNICAL A -,Running Mode,
ARU Display Stop(0:0) = - ,MODE SELECTOR TECHNICAL,

Fnable Register Selection(0:0) = A A B A ARU Display Running
A time O30‘t1¥30-

Register To BUS(0:0) = ARU Display Running,
BUS To Register(0:0) = -,A A B A ARU Display Running A time 030t430;

VB720



- 38 -

COUNTER:

wait )-&50;
Time 430:
% A:= (B v ARU Display Rumning) A -,A;
X B:= AexorBs
% ARU Display Running:= (-,A A -,B A ARU Display Start)

A - ,ARU Display Running
v -,(ARU Display Stop A A A B) A ARU Display Running;

wait 5003 goto Time 430

end ARU DISPLAY CONTROLg

sequence DISPLAY OF OPERATOR CONTROL PANEL;

comment This sequence defines the indicators on the OPERATOR CONTROL PANEL.
An indicator lamp lights when the corresponding comb net variable has the
value 1;

begin
Boolean Core Store Power 0K, BLR Power 0K, BLS Power 0K, BLT Power 0K;
comment These Boolean variables equal 1 if the power supplies in the

respective units function correctly;

Boolean MR Control; integer nj
Microprogram stopped:
MR Control:= Oj
wait until Normel Mode A JS(86:88) = 2 A -,Core Store Parity Error
A -,MPS Parity Errorg
Microprogram running:
for n:= 0 step 500 until 40000 do
begin .
conment The MICROPROGRAM RUNNING lamp lights 40 microseconds after
the above Boolean expression is satisfied. This condition
JS(86:88) = 2 appears once in every instruction cycle;
MR Control:= 1; wait 500;
if Normal Mode A JS(86:88) a 2 A -,Core Store Parity Error
A - ,MPS Parity Error then
goto Microprogram Running
end
goto Microprogram stoppeds

VB720




- 39 -

begin
comb net
SYSTFM POWER(0:0) = Power 0K A Core Store Power 0K A BLR Power OK
A BLS Power 0K A BLT Power 0K,

MICROPROGRAM RUNNING(0:0) = MR Control,
MACHINE ERROR(0:0) = Core Store Parity Error v MPS Parity Error,

RESET(0:0) = Operator Mode A Power OK,
START(0:0) = Operator Mode A Power OK,
AUTOLOAD(0:0) = Operator Mode A Power OK:
end
end DISPLAY OF OPERATOR CONTROL PANELj

sequence DISPLAY OF TECHNICAL CONTROL PANEL;
comment This sequence defines the indicator on the TECHNICAL CONTROL PANEL.
An indicator lemp lights when the corresponding comb net variable has the
value 13
begin
comb net
MICRO COMMAND REGISTER(1:70) = MC(1:70),
JUMP SELECTOR REGISTER(71:100) = J5(71:100),

MICRO ADDRESS REGISTER(0:9) = MAR(0:9),
NEXT ADDRESS(0:9) = Comp address(0:9),

CORE STORE PARITY FRROR(0:0) = Core Store Parity Error,
CORE STORE PARITY CONTROL(0:0) = Core Store Parity Control,
CORE STORE POWER 0K(0:0) = Core Store Power OK,

MPS PARITY BIT(0:0) = MPS Parity,
MPS PARITY FRROR(0:0) = MPS Parity Error,
MPS PARITY CONTROL(0:0) = MPS Parity Control,

RUNNING MODE(0:0) = Running Mode,

NORMAL MODE(0Q:0) = Normal Mode,

MANUAL MODE(0:0) = Manual Mode,

ARU DISPLAY ON(0:0) = ARU Display Runnings
end DISPLAY OF TECHNICAL CONTROL PANEL;

VB720



- o -

comment All quantities in the control unit are herewith declared;

start MICROPROGRAM STORE; start SUPERVISION OF POWER;

start SUPERVISION OF START AND AUTOLCAD; start CONTROL LOGIC;

start CORE STORE PARITY CONTROL; start MPS PARITY CONTROL;

start DISPLAY OF OPERATOR CONTROL PANEL;

comment The externael controlled quantities, for example the pushbuttons, the
signals Power OK snd Fixed Address, and the microprogram store MPS, are not
initiated in this program and further information sbout them must be ob-
tained in their respective chapters;

end CONTROL UNIT;

VB720




* E 8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

HEADQUARTERS: FALKONER ALLE1 . DK-2000 COPENHAGEN F . DENMARK
TELEPHONE: (01)105366 . TELEX: 6282 RCHQ DK . CABLES: REGNECENTRALEN




