
USERS, GROUPS, ACCOUNTING,
ACCESS CONTROL

• Covers basic concepts

• Files and commands

• Special procedures

• Diagnosing problems

• Recovery

DEFINITIONS

• User
log on identity
has password, home world in !users
member of groups

Group
identity for access control purposes
granted access to objects
limit of 1000

Access List (ACL) \/-l ••••ld, 'it't/ 4~,,-\AIA\'+S (i"~1) ~~-td+ f<'t. ",-of f
- says which groups have what access

limit of 7 entries

•

•

• Access Types
R read to world, file, or Ada unit
W write to file or Ada unit
C create new objects in a world
o owner of world
D delete a specific world
D and Ware synonyms

• Access Control
a feature to make it clear to someone trying to
access a protected object that they are doing
something wrong
not very secure

DEFINITIONS - COMMON
CONFUSIONS

• Groups are granted access to objects, not users

• D applies to the world itself, not objects within It

• The default access list associated with a world is
what new objects created in that world get as their
ACL. Changing the default ACL has no effect on
existing objects in the world.

Each version has an ACL not each object. Different
versions can have different ACLs. if. IU:. v-; k <:I.L(~ t\" /bIl-t

~I:-. ••.......LT"(' r.. U.frl.~
V'-l.~ V't""/""" - WI'II 'f.....::.I

~ LtM-."'"-,' t ~~'v..~-e. c,""'''+
VJ 0 't~'",',e , d.J c:U., "1-"'-- (vJl.)f

fY> ~k~ rtu.f-e~~.

•

OPERATOR COMMANDS - CREATE
USER

• Create User

creates user logon (1A=>t-r- o},)ec"t)
creates group with same name as user
user made member of that group
user is made member of group public and networkpublic
world is created in !users for the user; links are set
to those in !mode1.R1000
ACL and default ACL are set for the user world from
!Machine.User_ACL_Suffix and !Machine.User_Default_
ACL_Suffix, respectively J-e.tU\.llf /IA 1A..lu..) \.AI<.; IJ'€r~ I> (*•...hu-rr.)

jJF:T JJqAK~ ~fpu. c. '::::.:.{Rweo 1;>
Additionally,

user object is created in !Machine. users
group object is created in !Machine.groups

OPERATOR COMMANDS - GROUP
OPERATIONS

• Create_Group

•

•

6~o""f rde..J"+t e.titt~l;skcl J
l0f);""-- ~ - Ml'df •.•..;-e. oy.--f

Q"-'r cJv.f- 1',,10 ~~c.. t-
These require Operator_Capability except for
Display_Group

Display_Group
shows group members and user information
useful diagnosing access problems

•
\'--'-"'"

• If you remove a user from his home group, confusion
will result. This is legal, but probably a mistake.

• You can also remove users from public or network
public.

• If a customer has complex group arrangements,
you may want to write a skin for create_user that
adds new users to other groups.

• Each group has an id. This Is a small integer.
Ids are not reused when groups are deleted.

L.cU'\ ~t- redCliI'N-&

ICOMMANDS.OPERATOR'V(l)

with Terminal;

packaq. Operator 1.

procedure Disk_Space;

procedure Create_User (User: String :- "»USER NAME«";
Password: String :- ""I
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

-- create a user with the given password on volume (0 -> Host Available)

procedure Delete User (User: String :- "»USER NAME«";
Response: String :- "<PROFILE>");

-- delete user; Operator capability is required (or priv mode)

procedure Change_Password (User: String :- "»USER NAME«";
Old Password: String :- "";
New-Password: String :- "";
Response: String :- "<PROFILE>");

procedure Create_Session (User: String :- "»USER NAME«";
Session: String :- "»SESSION NAME«";
Response: String :- "<PROFILE>");

procedure Create_Group (Group: String :- ">>GROUP NAME«";
Response: String :- "<PROFILE>");

Create the named group. It must currently not exist. It has
no initial members.

procedure Delete_Group (Group: String :- ">>GROUP NAME«";
Response: String :- "<PROFILE>");

Delete the named group. This operation cannot be used to delete the
group with the same name as an existent user. Delete User will
get rid of the group associated with a user. Acl entries
that refer to a deleted group become inoperative and will be
reclaimed during the next access list compaction.

procedure Add_To_Group (User: String :- "»USER NAME«";
Group: String :- ">>GROUP NAME«";
Response: String :m "<PROFILE>");

Add the specified user to the specified group.
Operator privilege is required to execute this operation.

procedure Remove_FrOM_Group (User: String :- "»USER NAME«";
Group: String :- ">>GROUP NAME«";
Response: String :- "<PROFILE>");

Remove the specified user to the specified group.
Operator privilege is required to execute this operation.

procedure Display_Group (Group: String :- "»GROUP NAME«";
Response: String :- "<PROFILE>");

-- Display the names of users in the specified group on Current_Output.

procedure Enable Privileges (Enable: Boolean :_ True);
function Privileged Mode return Boolean;

If the caller is-a member of the predefined group ·privileged",
calling this procedure actually enables or disables the
extra capabilites that such a job can have. General usage is
to not enable privileged mode unless it is really needed so

1 ICOMMANDS.OPERATOR'V(l) 2

-- as to avoid accidently doing something that would no~ally be
-- stopped by access control. All tasks in the job become
-- privileged when the mode is enabled. No output is produced

by any of these procedures. Failure to acquire privileged mode
is indicated only by the absence of the privileges. Privileged MOde
returns false in this case. -

procedure Enable Terminal (Physical Line : Terminal. Port;
- Response-: String :- "<PROFILE>");

procedure Disable_Terminal (Physical Line: Terminal.Port;
Response-: String :- "<PROFILE>");

-- (Dis)allow login on the specified terminal port

procedure Force_Logoff (Physical Line : Terminal.Port;
Commit SUffers : Boolean :- True;
Response: String :- "<PROFILE>");

Force a user off of the specified terminal.
Try to commit modified buffers if Commit Buffers is true.
Each of these operations requires operator capability.

procedure Set System Time (To Be : String :- "»TlME«";
- - Response: String :- "<PROFILE>");

-- Requires operator capability.

procedure Shutdown Warning (Interval: Duration :- 3600.0);
Note that Inter;al is rounded to the nearest minute. Less than

-- 30.0 is rounded to O.

function Get_ShutdoYn_Interval return Duration;

procedure Archive On Shutdown (on : Boolean :- True);
function Get ArchIve-On Shutdown return Boolean;
-- Archive On Shutdo;n causes the next Shutdown to store internal

state in "archive" form, allowing upgrades and conversion of
internal data structures. It typically takes several hours to
complete a shutdown or restart with archive conversions.

procedure Show Shutdown Settings;
procedure Cancel_Shutdown;

procedure Shutdown (Reason : String :-
"COPS";

Explanation : String :-
Customer operations
"Cause not entered");

Shutdown the machine. Enter the cause and explanation in the system
log, wait for the Shutdown interval to expire, then log users
off and shutdown the machine.
Enter Reason - "7" to get list of reasons. The shutdown IIill not
happen unless Reason is a legal value.

procedure Explain Crash;
Reads a shutdo;n cause and explanation from current input and enters
these in the machine's error log. Corresponds to the information
entered by shutdown.

procedure Limit Login (Sessions: Positive :- Positive'Last);
procedure Show Login Limit;
funct10n Get_Login_LImit return Positive;

July 30, 1987 at 9:26:59 AM July 30, 1987 at 9:26:59 AM

'COMMANDS.OP~TOR'V(l) 3

-- Control over the nuaber of s~ultAneously Active user sessions
procedure Internal_Systes_Diagnosis;
-- Requires OperAtor CApability

pragaa Subsystem (Os_Commands);
pragaa Module_Name (4, 3926);

end Operator;

July 30, 1987 at 9:26:59 AM

OPERATOR COMMANDS-GROUP
OPERATIONS (CONT'D)

• Only 1000 Ids are available. When they are used
up, a special procedure (ACL compaction) must be
run to recover free ids.

• If a group Is deleted and then re-created, it is a
"different" group.

ACL: Phil=>RW, Friends =>R
Operator. Delete_Group ("Friends")

ACL: Phil=>RW, <unknown 377> =>R
Operator.Create_Group ("Friends") no effect on ACL

doesn't come back

• Reference to deleted group in an ACL apppears as

<Unknown id#>

• Show_Groups
in System_Maintenance subsystem
displays current free and used group ids
use to see if you are running out of group ids or for
diagnosing problems
create a new group and look at its id to see where
the frontier of allocation is. If the display says
an id is "free", this does not mean that it is
available for allocation.

ACCESS CONTROL - FILES AND
DIRECTORIES

• !Machine.Users
contains user "objects"
must be readable
must have create access to create users

• !Machine.Groups
contains group "objects"
must be readable
must have create access to create users or groups

• !Machine.User ACL Suffix- -
contents of this file appended to ACL of new user
worlds

• !Machine.User Default ACL Suffix- --
contents of this file appended to default ACL of new
user worlds

• !.Machine.Operator _Capability
W access to this file allows execution of restricted
commands

• !Users
contains user home worlds
must have C access to create users

• !Mach ine.Network _Publ ic_Session
session used for identity Network_Public. Recreated
on boot if it is deleted. D(2)bug: if this is ever deleted,
you're screwed.

ACCESS CONTROL - FILES AND
DIRECTORIES (CONT'D)

• !Machlne.Public Session
same for identity public

• !Machine.Temporary
temp files exist in this world. If ACLs are not proper
for it, lots of things will fail to operate. World ACL
must allow anyone to create access. Default ACL must
allow anyone RW access.

ACCESS CONTROL - BASIC RULES

• Open for Read requires Read access

• Open for update (In_Out) requires write access

• No access required for access to Diana trees

• Creating a new object in a world require create
access

• Deleting an object requires write access

• Changing an access list, changing links, frozenness,
and switch file associations require owner access.

• Only files, Ada units, and worlds have access control.
Directories, Users, Groups, Sessions, Devices, and
Pipes do not.

• Viewing or resolving names in a world requires
Read access to the world

• Deleting a world requires delete access to that
world. This applies only to the world.

ACCESS CONTROL - BASIC RULES
(CONT'D)

• A number of other specific rules apply:
adding a link to a world requires owner access to
the world and ~ access to the ~.
to promote a unit, you must have write access to
the unit and read access to any units it withs.
to demote a directly named unit you must have
write access to that unit. You need not have any
access to the demotion closure of the unit.
if you are setting the ACL of a world but do not
have owner access to that world, you will still
be allowed to if you have owner access to the
immediately containing world.
executing a command requires Read access
to all units directly named in the command.

• There are also a number of specific operator
capability checks.

• You have operator capability If:
you are a member of group operator
you have write access to file !Machine.Operator_
Capability
you are running with priviliges enabled

• Affected operations:
most commands in operator
Job.KiII on sessions not belonging to you
terminal set-up commands
scheduler set-up commands
and many more

ACCESS CONTROL - BASIC RULES
(CONT'D)

• Consequences of these rules:
Environment operations may fail in strange ways
if they try to access objects and are denied access.
Delta will be retired before all of these are discovered.

This applies ot Editor operations as well.

To resolve a name, you will likely need read access
to all worlds starting with "!" and on downward.

\ '-+
I '

Wildcard resolution: parts of a naming expression
referencing worlds lacking Read access act as though
the objects you are not allowed to see are not there. ~e a.=-c:s':> e.~.s)

Commands may fail to semanticize because they
reference units not visible due to world Read access
restrictions. This applies to all access including use
clauses and search lists.

!COMMANDS.ACCESS LIST'V(l)

package Access_List 1.

•ubtype Name 1. Strinq; -- ~n object name

Read: con.tant Character :- 'R';
Write: con.tant Character :- 'W';
Delete: con.tant Character :- 'D';
Create: con.tant Character :- 'C';
Owner: con.tant Character :- '0';

objects ~nd worlds
-- objects only
-- worlds only; same bit as W
-- worlds only

-- worlds only

1 !COMMANDS.ACCESS LIST'V(l) 2

•ubtype Acl i. Strinq;
String representations of ~ccess lists have
Acl ::- Acl Entry (',' Acl Entry] *
Acl Entry::- Group '->' Access-
Group ::- Identifier
Access t t « Acc Type+
Acc_Type i :» 'R'-' 'W'

I s:' I ' tI'
Examples: "Phil -> R ,

the following syntax:

Sends messages to a log that is under control of the
Response parameter .

'D' I <c:
'd' I 'e'

TRII -> rw",

, '0' ,
, '0'
"Public->RCOD"

procedure Add Default (To List: Acl :- "Network Public -> RH";
- For World: Name :- "<SELECTION>";

Response: Strinq :- "<PROFILE>");

-- Add the default ACL to the existing value for the specified world(s).
-- Owner access to each world is required.
-- Sends messages to a log th~t is under control of the Response p~r.meter •
-- A log is written indicating success or errors.
-- Wildcards are allowed in the name.

Any non-world objects referenced are ignored.
-- A summary of the number of objects affected is included in the log.

praqaa Subsystem (Os_Commands);
praqaa Module_Name (4, 3507);

end Access_List;

procedure Display (For_Object: Name :- "<CURSOR>");

Display the access list of the specified object(s).
Output and error messages are send to current output.

procedure Set (To List: Acl :- "Network Public -> RWCOD";
For Object: Name :- "<SELECTION>";
Response: Strinq :- "<PROFILE>");

Set the access list for the specified object(s).
Setting the access list requires "Owner" access to the containing world.
Sends messages to ~ log th~t is under control of the Response parAmeter.

procedure Default_Display (For_World: Name :- "<CURSOR>");

Display the default acl of the specified world(s) in an output window.
Error messages are sent to the window in case of any error.
Wildcards in the name are allowed.
Non-world objects ~re filtered out of the display.
A null display is produced if no worlds are referenced.

procedure Set Default (To List: Acl :- "Network Public -> RW";
- For World: Name :- "<SELECTION>";

Response: Strinq :- "<PROFILE>");

Set the default ACL for the specified world(s).
Owner access to each world is required.
Sends messages to a log that is under control of the Response parameter.
A log is written indicating success or errors.
Wildcards are allowed in the name.
Any non-world objects referenced are ignored.
A summary of the number of objects affected is included in the log.

procedure Add (To List: Acl :- "Network Public -> RWCOD";
For Object: Name :- "<SELECTION>";
Response: Strinq :- "<PROFILE>");

Add the access list to the existing value for the specified object(s).
Changing the access list requires "Owner" access to the containing world.

July 30, 1987 .~ 9:27:00 AM July 30, 1987 at 9:27:00 AM

IDENTITY - DEFINITIONS

• Each job has an identity. There are 2 parts to
the identity:

the base user identity; this is a user name
the group identity; this is a set of group names

• The group identity is used to check access when
the job attempts an operation requiring access
checks.

• A session consists of a core editor job, some
object editor jobs, and some user jobs.

• When a job is started, it inherits both base
identity and group identity.

• The group identity for a session is established
at log in time.

adding/removing a user from groups will not
affect existing sessions.

• The base identity is associated with a session.
This has implications.

IDENTITY - DEFINITIONS (CONT'D.)

• Special groups

Public all users on a machine

all users on a machine and
servers processing network
requests

Privileged members can override access
control (~.e.~l..icP"'~""~)

- the mail systemMailer

Spooler - the print spooler

System - the "system". That is, other
system jobs

• Users public and network public exists, but you
cannot log on to them

• The public/network public dlsttnctlon is a convention
that network servers must follow

'COMMANDS. PROGRAM' V (1) 1 !COMMANDS.PROGRAM'V(l) 2

with Machine;
with Simple_Status;

package Program i.

.ubtype Job Id i. Machine.Job Id;

.ubtype Condition i. Simple_Status.Condition;

procedure Run (S : String :z "<SELECTION>";
Context: String :- "S";
Response: String :- "<PROFILE>");

-- sets root of job_garbage_unit, dangerous to run concurrently in one job

procedure Run Job (S : String :~ "<SELECTION>";
- Debug : Boolean :E False;

Context: String := "S";
After: Duration := 0.0;
Options: String :z "";
Response: String :- "<PROFILE>");

procedure Create Job (S : String :- "<SELECTION>";
- Job : out Job Id;

Status : in out Condition;
Debug : Boolean := False;
Context: String :~ "SO;
After: Duration :- 0.0;
Options: String :z "";
Response: String :- "<PROFILE>");

Run Job and Create Job are identical except that Create Job
returns the job number of the job just started and a status indicating
success Or failure.

Debug -> True starts the debugger on the newly started job

The following options are defined:

Output
Input
Error

Specifies the name of the new job's output file.
New job's standard input file.
New job's error file.
File names given are resolved in the directory
context of the caller, NOT the Context parameter.

User Causes the new job to run with the identity
of this user. Password must be valid unless
running job is privileged. If not specified
new job runs with same identity as parent.

Password Password used in conjunction with User.

Session Session used in conjunction with User.

function Started Successfully (Status : Condition) return Boolean;
-- True => Job has been started successfully

procedure Wait For (Job: Job Idl;
-- Wait until the job specified has terminated.

procedure Change_Identity (TO_User : String :_ "".,

August 4, 1987 at 8:43:50 AMAugust 4, 1987 at 8:43:50 AM

Password: String := "";
Options: String :- "";
Status: in out Condition);

Change the identity of the calling job to the specified
user. Password must be supplied and correct unless the
caller is privileged. Options specifies additional
characteristics to be changed. If To User is null,
the options are processed. -

Note that only the access control identity is changed.
The actual username and session of the job are NOT changed.
This operation should never be used to change identity and
execute untrusted code. The identity can always be changed
back to the original job identity.

Options presently
Privileged

defined are:
enable privileged mode. The specified user
must be a member of group PRIVILEGED
disable privileged. No effect if caller
was not already privileged.
Change the identity back to the original
identity of the job. Password is not
required to do this.

Privileged -> False

Restore_Identity

function Current (Subsystem: String :- "»SUBSYSTEH NAME«";
Unit: String :- "»PROCEDURE NAME«";
Parameters: String :- ""I
Activity : String :- "<ACTIVITY>") return String;

Constructs a procedure call suitable for Run or Run Job that references
the appropriate view, has the appropriate quotes, etc. Unit name is
the Ada name to be called; it will be found anywhere in the
view. If the procedure being called has parameter they may be

-- provided. If the current view of ISubsystem is Rev8 4 0 and package
View is in the Commands directory, then: - -

Current ("ISubsystem", "View.lnitial", "INew_Tool") returns:

"ISubsystem.Rev8_ 4_ O. Units. Commands". View. Initial t" INew_Tool");

pragma Subsystem (Commands);
pragma Module Name (4, 3930);

end Program;

IDENTITY - CHANGING

• Program.Change_ldentity

Sets group identity to group membership of a
specified user

Does not change base identity

• Program.Run_Job/Create_Job

Options parameter allows setting user (with password)

- This sets the base identity of the new job (as well as the
group identity)

If user not specified, it is inherited

If the base identity is changed, the job is associated
with a particular session. Editor operations, termination
messages, scheduling decisions, etc, are based on the
session)

You can specify the session in the options parameter.
"S 1" is the default CA ••.(wt'// ~t ddt'l/,' 'i - tkJ- S~'('(-- e.,. if s--~ la~ u.~~"'" .sa~ ,.:seSSI'O •••.•.

• Program.Change_ldentlty w/options =>"restore"

changes group identity back to that of the base identity
group membership

Following a Run_Job that changed the base identity,
restore changes to that new base identity, not that
of the initiating job

• Program.Change_ldentity can also be used to enable
and disable privileged mode

IDENTITY-MACHINE.INITIALIZE

• When Machine.lnitialize runs after the R1000 boot,
its base identity is "*system" (that is, none) and
its group identity is

Public
Network Public
Privileged
System

• If initialize executes commands that require
operator capability, one of these groups must have
write access to !Machine.Operator_Capability

• If initialize starts served with Run_Job, they will
inherit this identity unless the user parameter is set

IDENTITY-DISPLAYING A JOB'S
IDENTITY

• What.Users or

IO.Echo _ Line (System_Utilities. User_Name
(System_Utilities.Get __Session(job#»)

will display a job's base identity

• The Show_Identity command (from System_Main-
tenance) will provide information about a job's
current identity. It shows both the base and
group identities.

Show_Identity (Job#)

Show_Identity - - defaults to current job

PRIVILEGED MODE

• Access checks will always pass if privileges are
enabled

• Privileges applies to a Job only, not a session.
It applies to all tasks in the job

• The editor (core and object) run as jobs. There is
no way to enable privileges for these jobs. This
implies that porotected objects cannot be brought
into editor windows by enabling privileges

• Privileges must be explicitly enabled. Just being a
member of group privileged is not sufficient

Operator.Enable_Privileges;

if not Operator.Privileged_Mode then
IO.Put_Line ("Privileges not enabled");
raise Failure;

end if;

RUNNING ACL COMPACTION

• To recover unused group ids, the ACL compaction
procedure must be run

• This procedure removes entries for deleted groups
from all ACLs on the machine

• It takes about 5 to 20 minutes during which the
system is unusable

• Procedure

Daemon.Set.Access _List_Compaction;
Daemon.Run ("directory");
Daemon.Run ("file");
Daemon.Run ("Ada");

• You can run Set_Access_List_Compaction and let the normal
overnight daemon run do the work

• And compaction is automatically disabled after it is run

UNIVERSE ACLs

• Users can set whatever they want for thei r own stuff
and other stuff not in the pre-defined universe

• Setting restrictive ACLs on other objects can cause
system problems, Including making it impossible to
log on or execute commands

• The set-universe ACLs procedure allows you to
set up various levels of protection for a system. It
sets ACLs to known workable valves

• See handout

• Enable privileges, then call Set_Universe_Acls
(.se,e, ":f!.xt- f Q."'!- ')

• Levels

o None
1 Open
2 Safe
3 Secure

• At this time, operation is not very well understood.
Don't set things to safe or secure until further
advised

'COMMANDS.SYS~ MAINTEHAMCB.RBV9 WORKrNG.UNITS.SET UNIVERSE ACLS'V(3)

procedure Set_Universe_Acls (Level : Natural :- 0; -- none
Implementation Okay : Boolean :- True;
Network Read Okay : Boolean :- True;
Network-Write Okay : Boolean :- True;
Trace_Only: Boolean :- False);

Level 0 -> none
1 -> Open

anyone can do anything.
anyone can do anything, but they may have to change
acls to do it.
Systa. and u~er~ are protected. The operator must
change acl~ to create new area~ and allow others to
thing~ that users can do under level-l.
Like safe, but more limited net~ork acce~s and les~
read acce~s.

2 -> Safe

- 3 -> Secure

Set acls for the ~tandard univer~e to be as described above.
Level 3 is about the mo~t re~trictive the system can be and still
run. Level 3 will prevent most u~ers other than Operator from
succe~sfully executing operator commands even if they have operator
capability via write access to IHachine.Operator_Capability.

Implementation Okay m> access is given to IImplementation and
ICompiler Inte~face. Actually, ICompiler Interface needs to be
readable anyway because it contains the switch file for the
standard universe.

Network Read Okay -> Network Public is granted read to most things, except
when Secure (level=3) i~ specified.

Network_Write_Okay is analogous to Network_Read but for Write access.

Be sure to update Imachine.fusee acl suffix, user default acl siffixJ
so that new users will get the acls you wish. - --
Don't forget about !machlne.operator_capabl11ty, either.

July 30, 1987 ~ 12:21:35 PH

1

UNIVERSE ACLS - DIAGNOSING AND
REPAIRING

• Customers may change ACLs and break things

• There is a tool to check that ACLs are properly set.
This can be run to see if customer-changed ACLs are
the cause of the problem

• This tool is presently incomplete, but may be helpful

UNIVERSE ACLS - DIAGNOSING AND
REPAIRING

• If things get badly messed up, you can run
Set_Universe_Acls to reset ACLs. If customers have
manually changed ACLs, this may overwrite those
changes

• If you can't execute commands or log on at all,
drastic measures may be required. The access
control system can be diasabled from the lOA
console:

EEDB: e ed

ED: x ac off

is
ED: - access control j/ off

<log on and fix ACLs>

ED: x ac on - access control is on

ED: quit

• See handout

!USERS.PHIL.GURU COURSE.HANDOUT ED TESTS'V(2) 1

running version

Running ed tests

V.EDB: e ed
TESTS.9.0.0D

••.D: x ac off
AC OFF st arted
AC-OFF finished
ED~ < go fix things >

2/08/87 05:53:25

ED: x ac on
AC ON started
AC-ON finished
ED: quit

EEDB:

If Ed tests configuration won't elaborate, it can be rebuilt:

EEDB: e ed
A subsystem with name NETWORK is already elaborated

EEDB: delete ed
EEDB: running

D 9 20 1- - -'~DB: bu ed d 9 20 1 D 9 20 1 is the current

Parent subsystem: eoe
Subsystem. Version: ed tests.9.0.0d
Subsystem. Version:
EEDB: e ed -- should work now.

August 4, 1987 at 8:45:23 AM

ACCESS LIST TOOLS PACKAGE

• Programmatic interface for access control

• See handout

• Set/get set and retrieve access lists of objects
can be used with directory package

• Check test if specified access is allowed
can check based on job identity or user
name

- also can be used with directory versions

• Check_validity checks on ACL string for legality

• Normalize remove any references to deleted groups

• Amend contruct an amended ACL granting a user
access

!TooLS.ACCESSLIST TooLS'V(l) 1 !TooLS.ACCESSLIST TooLS'V(l) 2

with Simple Status;
with Bounded Strinq;
with Directory;

with Machine;

package Access_List_Tools ia

aubtype Name ia Strinq; -- an object name

aubtype Access Class 1a Strinq; -- of only the following characters:
Read: conatant Character :- 'R'; -- objects and worlds
Write: conatant Character :- 'W'; -- objects only
Delete: conatant Character :- 'D'; -- worlds only; same bit as W
Create: conatant Character :- 'C'; -- worlds only
Owner: conatant Character :- '0'/ -- worlds only

-- An object string name is as defined by the directory
-- package. No wilcards are accepted; each operation in this
-- package operates on one object.

aubtype Acl ia Strinq;
Max Acl Lenqth : conatant :- 512; -- max length for access list string
-- The max size will not be exceeded whep an Acl is returned.

String representations of access lists have the following syntax:
Acl
Acl Entry
Group
Access
Acc_Type

::- Acl Entry {',' Acl Entry}-
t :» Group '->' Access-
t :» Identifier
::- Acc Type+
i :» 'R'-' 'II'

'r' I 'w'
·Phil -> R ,

'D' I <c:
I'd' I 'c'
rR" -> rw",

I '0' I
I '0'
·Public->RCOD"Examples:

AcceSS_Tools_Error : exception; -- Raised by functions

function Get (For Object : Name) returD Acl;
function Get (For-Object: Directory.Version) retUrD Acl;
procedure Get (For Object : Name;

List: out Bounded Strinq.Variable Strinq;
Status: in out s~ple Status.CondItion);

procedure Get (For Object : Directory~Version;
List: out Bounded Strinq.Variable Strinq;
Status: in out S~ple_Status.CondItion);

procedure Set (For Object : Namel
To List : Acl;
Status: in out Simple Status.Condition);

(For Object : Directory~Version;
To List : Acl;
Status: in out Simple_Status.Condition);

procedure Set

Get or Set the access list for the specified Object.
Setting the access list requires "Owner· access.
function Get r.ises Access Tools Error if an error occurs.
The procedure version should be called in that case to get the

actual error information.
ACL for world must be contain only R, C, 0, or D access. Others
must be only R or W access.

function Check (User Name: Strinq :- .";
Object Id : Directory.Version;
Desired : Access Class) return Boolean;

function Check (User Name: Strinq :- "";
Object Name : Strinq;
Desired : Access Class) retUrD Boolean;

function Check (User Id : Directory.Version;
Object Id : Directory.Version;
Desired : Access Class) return Boolean;

function Check (Job: Machine.Job Id;
Object Id : Directory.Version;
Desired : Access_Class) retUrD Boolean;

Check if the specified user has the indicated access to the
specified object. Only meaningful for Ada objects, Files, and Worlds.
The null string for the User Name parameter means the identity of
the calling job. If a user name is specified, the access control
identity of that user (its member qroups) is used for the test.
If an error is detected during the test, the value false is returned.
The most cammon errors are illegal values Ear Desired and references
to objects that do not exist. If an object that does not have .n
access list is referenced, the value true is returned.

function Get Default (For World : Name) retUrD Acl;
procedure Get Default (For World : Name;

- List: out Bounded Strinq.Variable Strinq;
Status: in out Simple Status.CondItion);

procedure Set Default (For World : Name; -
- To List : Acl;

Status: in out Simple Status.Condition);
Get or set the default ACL for new objects-created in the specified
world. The function raises the exception Access_Tools_Error if
an error is detected. The procedure version returns a status
that indicates the cause of the error.

procedure Check_Validity (FOr List : Acl;
Status: in out Simple Status.Condition);

the specified access list. Return status
okay, or the error, if any.

Check the validity of
indicating that it is

function Has Operator Capability return Boolean;
-- Return true if the-calling job has operator capability. This is

true if the job has an identity that includes the group
·operator", is on the access list for "Imachine.operator capability·,
or is priviledged. -

function Normalize (Initial Acl : Acl) return Acl;
Scan the acl and eliminate any entries for groups that do
not currently exist. Return the revised acl. If the
acl is otherwise illegal, raise Access_Tools_Error.

function Amend (Initial Acl : Acl; New Group : Name; Desired : Access Class)
return Acl; - -

Amend Initial Acl so that New Group is granted Desired access. If
necessary, the right-most acl-entry is removed to do this.

July 30, 1987 at 9:26:58 AM July 30, 1987 at 9:26:58 AM

ITOOLS. ACCESS LIST TOOLS' V (1) 3

-- Ra1.~eAcce~~_Tool~_Error 1.f any parameter 1.~1.llegal.

prlllpl& Subsystem (Os COIIIIIIands);
praqaa Module_Name (4, 3508);

end Access_List_Tools;

July 30, 1981 ~~ 9:26:58 AM

SIMPLE STATUS

• A status reporting abstraction.
access control operations and
envi ron ment.

Used by some
other parts of the

• S:: Simple_Status.Condition;

Acreess_List_ Tools.Check_ Validity ("Phil =>RK", S);
if Simple_Status.Error(s) then

IO.Put_Line (Simple_Status.Display_Message (S));
end if;

• Status condition contains

Severity Normal, Warning, Problem, Fatal

Condition Name Up to 63 characters

Message Up to 400 or so characters

• Usage

- condition name is a fixed string that identifies the err,~~
- message provides additional information (f(,t:>r-~-- /

!TooLS.SIMPLE STATUS'V(l) 1 !TooLS.SIMPLE STATUS'V(l) 2

packaqe Simple_Status i.

Error status reporting package

A simple status. condition can be used to return error inEormation Erom
-- procedure calls. They are relatively large and should always
-- be passed in out (by convention to avoid copies).

-- A Condition consists of a Condition Name and a Hessage.
The Condition Name indicates the tYPe oE error UE any) and how
how serious the error is (or iE completion was
successful). The Message provides additional information about
the error.

In simple applications, A Condition Name alone can be used to
indicate status. -

By convention, condition names in an application should be
standardized so that error conditions can be tested

-- programmaticly.

type Condition_Name i. private; -- A short name Eor the error type
type Condition_Class i.

(Normal, -- operation completed normally
Warning, -- operation completed, but something unexpected happened
Problem, -- operation did not complete, but no harm done
Fatal); -- operation did not complete. Proceeding is dangerous.

type Condition i. private; -- Contains the above plus a message
Conditions are selE-initializing to

-- severity Normal and null names

procedure Initialize (Status: 1D out Condition);
The empty condition has null name and severity normal
a declared condition is initialized; This procedure will set the
Condition to be Normal (ie, successEul).

function Name (Error Type : Condition Name) return String;
function Name (Status : Condition) return String;
-- get the human-readable name oE this Condition_Name (Condition)

function Severity (Error Type : Condition Name) return Condition Class;
function Severity (Status : Condition) return Condition_Class; -

function Error Type (Status : Condition) return Condition Name;
-- provide the-Condition_Name on which a Condition is built

function Error (Error Type : Condition Name;
Level-: Condition Class :- Warning) return Boolean;

function Error (Status : Condition; Level : Condition Class :a Warning)
return Boolean; -

True <=> Severity (Error_Type/Status) >- Lc·,tcli
usage:

Do Something (Status);
if-Simple Status.Error (Status) then

..~ Put (Display_Message (Status);

function Display Message (Status : Condition) return String;
-- given a condition that indicates and error, this function returns

a string suitable Eor display to users. It includes the
string form of the condition name and any additional problem-
specific inEormation recorded in the condition.

function Message (Status : Condition) return String;
-- return just the message part oE the Condition.

procedure Create Condition (Status : 1D out Condition;
- Error_Type : String;

Message: String :- "";
Severity: Condition_Class :- Problem);

procedure Create Condition (Status : 1D out Condition;
- Error Type : Condition Name;

Message : String :- "Of;
Create a new error condition. The Error rype is intended to
specify the class of error (limited to 63 characters), generally
in a few words (eg, "Illegal name"). Hessage is intended to
supplement the error type with more speciEic inEormation
(eg, ": 'I' is an illegal character"). Function Display Message
would then return "Illegal name: 'f' is an illegal character".

function Create Condition Name
(Error Type :-String; Severity
return-Condition_Name;

Condition_Class :- Problem)

function Equal (Status : Condition; Error_Type : String) return Boolean;
function Equal (Status : Condition; Error_Type : Condition_Name)

return Boolean;
function Equal (Status : Condition_Name; Error_Type : String)

return Boolean;
function Equal (Status : Condition_Name; Error_Type : Condition_Name)

return Boolean;

return true iE the error type string oE Status is equal to the
right errOr type string (the second parameter). The severity
does not participate in the comparison. The strings must
match exactly (except for index range). Sample usage:

Directory.Open(File, Status);
if SS.Equal (Status, "Nonexistent Eile") then
elsiE SS.Equal (Status, "Internal error") then ...
etc.

The strings in the example should be constants, oE course.

praqaa Subsystem (Miscellaneous);
praqaa Module_Name (4, 810);

end Simple_Status;

July 30, 1987 ·t 2:50:42 PM July 30, 1987 at 2:50:42 PM

ACCOUNTING

• Same as gamma, except:

- controlled by existence of file

Imachine.accounting.enabled

not existence of directory Imachine.accounting as
in gamma

