System Operation

» Console

« Error Log

» System Availability
« Boot Process

e Shutdown

» Servers
 Daemons

» Loading Updates

Error Log
» Written by lots of clients in the
environment

— Records both normal major environment events
and error conditions

 In stable storage

— Immediately permanent. Not subject to
snapshots.

- Lot
wwa,yn‘ e aboJt /on‘ Shpas S
activity Ehot won. s = due T ovon,

Error Log - Format

« Each entry contains 4 fields
— Time
— Severity
* --- Normal
* +++ Warning of normal environment event

o 11t Error of some sort

o **%* Latal error

— Client - part of systfew -fl\od'/mvciucw Wdomsh

— Condition name. Identifies specific entry

— Comments. Provides additional information

Error Log - Format cont’d...

» Example

21:44:18 !!! Job Manager Bad_Job_Id Id = 224, Count = 1
22:12:29 +++ 87/08/05 Snapshot_Started 1847
22:12:34 +++ Snapshot_Daemon Snapshot_Completed

» Date not in each entry

Error Log - Notes

 Fatal messages result in caller stopping in
wait service

 Continuation lines are blank up to
column 10

» Error Log Daemon

— Copies "current” log into a file in
'Machine.Error_Logs

— Once copied, the log can be read as an ordinary
file

Error Log - Notes cont’d...

* Displaying the Current Error Log

— From Kernel: Show_Error_Log

— From Environment:
Op.Internal_System_Diagnosis to EEDB to
Kernel

— From Environment: Show_Error_Log command

» Start=0 means to display the end of the error
log

Messages other than --- are displayed on
the console

e Thvo Hled e th\mvj’“ O\MN VAL ‘«*

cisfe 1o

Error Log - Things to Look For

* Any *** or !!! messages

device problems

Wait service, Out of action ids

 Etc

Notes about disk, memory, network, or

Other Error Logs

« Session Logs
— Appear in !Machine.Error_Logs also
— Have name of user and session, e.g., Phil_S_1

— Contain lots of messages from the editor about
operations

— When commands fail silently on the user
terminal, there are often messages in the session
log

— Very helpful if thege are retured with problem
reports

— Logs are reset when user logs in

« Other Error Logs

— Servers also place output and error files in
'Machine.Error_Logs

— Machine.Initialize creates a log file called
'Machine.Error_Logs.Machine_Initialize

System_Availability Subsystem

* Provides report generation from error
logs

* Provides programatic interface for
reading error logs and producing reports

 Also provides:
— Machine 1d and board information
— Disk bad-block information

» Future

— Accounting file reports - will be added soon

System Availability

« Located in !Tools.System_Availability
Subsystem

« Reports Generated -
System_Report.Generate

— Availability - Uptime/Downtime by Class
— Usage - User Load by 1/2 Hour

— Disk - Used Disk Space each Day

— Devices - Errors found

— Daemons - Sizes and Times

— Outages - Downtimes

— Trouble - Potential Trouble Areas

— Advice -

Usage - System usage report

Display indicates, for each half hour, number of users
and 1f disk garbage collection is running (D), and if
system 1s out of service (X)

Time Users Info
87/07/15 12:00:00 0 X
87/07/15 12:30:00 0 X
87/07/20 13:00:00 8
87/07/20 13:30:00 8

87/07/20 14:00:00 10
87/07/20 14:30:00 10
87/07/20 15:00:00 11
87/07/20 15:30:00 11
87/07/20 16:00:00 1t b
87/07/20 16:30:00 11 D
87/07/20 17:00:00 10
87/07/20 17:30:00 9
87/07/20 18:00:00 7
87/07/20 18:30:00 6
87/07/20 19:00:00 6
87/07/20 19:30:00 5
87/07/20 20:00:00 5
87/07/20 20:30:00 0

Daemons

Daemon Information Display

Shows at end of day final run of daemon.
indicates size before compaction and final size

This

in pages.
Date Ada File Action Directory DDB

87/07/14 291 -> 291

87/07/15 5369 -> 4974 5153 -> 4761 291 -> 291 7586 -> 703 1336 -> 129)
87/07/16 5130 -> 4878 4991 -> 4604 291 -> 291 7406 -> 6892 1305 -> 1283
87/07/17 5130 => 4878 4698 ~> 4290 291 -> 291 7974 -> 6419 1289 -> 1210
87/07/18 4608 -> 4509 4359 -> 4241 291 -> 291 6565 -> 6382 1216 -> 1216
87/07/19 4637 -> 4516 4443 -> 4295 291 -> 291 €750 -> 6439 1234 -> 1234
87/07/20 4521 ~-> 4517 4297 -> 4295 46 -> 46 6449 -> 6439 1235 -> 123§
87/07/21 4700 -> 4455 4544 -> 4316 177 => 177 1059 -> 6424 1257 -> 1203
87/07/22 4640 ~> 3931 4475 => 3900 177 -> 177 10129 -> 5760 12168 -> 1163
87/07/23 4004 -> 3938 3945 ~> 3904 177 => 177 5827 -> 5768 1171 -> 1171
87/07/24 4121 ~> 3997 4094 -> 3989 177 => 177 6116 -> 5905 1194 -> 1194
B7/07/25 4331 -> 4133 4381 -> 4125 177 => 177 6831 -> 6142 1229 -> 1229
B7/07/26 4182 -> 4157 4167 -> 4150 185 => 185 6227 -> 6176 1234 -> 1234
87/07/27 4298 -> 4163 4279 -> 4197 185 -> 185 6395 -> 6258 1246 -> 1228
87/07/28 4298 -> 4163 4279 -> 4197 185 -> 185 6395 -> 6258 1246 -> 1228
87/07/29 4715 -> 4202 4683 -> 4229 185 -> 185 7389 -> 6292 1292 -> 1266
87/07/30 4398 -> 4259 4451 ~> 4284 185 -> 185 6507 -> 6360 1286 -> 1286
87/07/31 4457 -> 4180 4578 -> 3957 185 -> 185 8997 -> 6298 1301 -> 1285
87/08/01 4290 -> 4172 4123 -> 3957 185 =-> 185 6532 -> 6268 1290 -> 1290

Disk

For each disk, this display indicates the amount of
used space after garbage collection has finlshed that
day.

Date Volume 1 Volume 2 Volume 3 Volume 4

87/07/14 266320 258063
87/07/15 222615 267220 239492 253634
87/07/16 185128 253727 237118 253224
87/07/17 174932 246691 223758 257998
87/07/18 179457 247632 230918 254930
87/07/19 182650 248119 233465 257605
87/07/20 183441 249979 233736 257906
87/671/21 176473 232125 223107 197839
87/07/22 151652 238938 201771 196464
87/07/23 152726 234208 206866 197093
87/07/24 158163 239490 209258 199518
87/07/25 162686 239696 214954 210075
€7/07/26 169817 233495 215301 210958
87/07/27 158523 235053 204711 203910
87/01/28 158523 231718 204711 203910
87/07/29 162037 239181 204246 203840
87/07/30 172870 225327 208416 208225
87/07/31 172662 225327 201321 224953
87/08/0) 182726 225558 202768 215602

Disk Daemon cont’d...

Disk Daemon Information

Shows, for each day, last disk garbage collector

run and amount of used space before and after
The time in minutes

collection in megabytes.
the collection is also sho

Date Vol 1

wWh .

the
to do

Vol 3

87/07/14

87/07/15 269 ~> 223 00:37
87/07/16 281 -> 185 00:38
87/07/17 235 -~> 175 00:32
87/07/18 203 -> 179 00:28
87/07/19 212 -> 183 00:30
87/07/20 187 -> 183 00:26
87/07/21 265 -> 176 00:36
87/07/22 235 -> 152 00:33
87/07/23 165 -> 153 00:26
87/07/24 182 -> 158 00:29
87/07/25 224 -> 163 00:31
87/07/26 184 -> 170 00:29
87/07/27 208 ~> 159 00:31
87/07/28 208 -> 159 00:31
87/07/29 266 ~> 162 00:41
87/07/30 198 ~> 173 00:32
87/07/31 258 ~> 173 00:37
87/08/01 211 ~-> 183 00:34

295
315
295
294
283
249
294
294
269
276
294
2498
259

325
288
298
290
287

00:50
00:40
00:51
00:47
00:33
00:29
00:41
01:03
00:34
00:34
00:40
00:30
00:35
00:37
G0:43
00:34
00:36
00:36
00:31

00:37
00:35
00:43
00:29

301
328
254
284
280
279
259
302
214
203
211
258
227
226
226
274
235

247

216

00:29
00:24
00:26
00:29
00:25
00:25
00:24

Devices

Device Events

Total Disk messages - 4
Total Tape messages - 236
Total Memory messages - 6
Total Ethernet messages - 982

Log messages concerning disk errors:

87/07/16 07:38:31 Disk ATTEMPT: (258, DATA, 83646,
83834)

(UNIT => 2, COMMAND => READ)

RMER1: ECC_ERROR_IN_READ (DCK) => TRUE

RMEC1: ECC_RIGHT_BIT_OF_ERROR => 606

RMEC2: ECC_CORRECTING_PATTERN ~> 00000000001

RMDC: CYLINDER => 174

RMDA: TRACK => 13

SECTOR => §

Log mesyagés concerning memory errors:

87/07/18 10:53:35 Memory Count of ecc errors since IPL => 1
Bits with errors (since IPL) =>
Board 0 (M) Plane 0 Val Bit 16#31%
ECC eventa =>
16#3F04C3200000B8F14 1642C89000C57929609+4
Time => 18-JUL-87 10:50:00
Board 0 (M) Plane 0 Set 16424 Line 16#4C3#
Word 164314 val Bit 16#314 1->0 PHYSICAL not TRANSIENT

Log messages concerning Ethernet errors:

87/07/14 13:39:46 Ethernet EXOS CODE 0003 rxmt 41, 2 sec
87/07/14 13:43:10 Ethernet EXOS CODE 0003 rxmt #1, 2 sec
87/07/15 05:15:55 Ethernet EXOS CODE 0115 FF1B0258 <- 3024059
87/07/1% 08:01:29 Ethernet TCP/IP Module V3.Sd

87/07/15 08:01:29 Ethernet Internet Address: 89.64.2.3
87/07/15 08:01:29 Ethernet Ethernet Address: 08-00-14-40-02-56
Total messages concerning re-transmits - 776

726 messages were not displayed.

Toe many messages: additional messages not displayed.

103)

-

Outages

System Outages

Each system outage s listed, including the length

of the outage measured from the last successful
snapshot to the elaboration of the environment.

The entered cause or system dlagnosed cause and any
comments entered in Shutdown or Explain_Crash are shown.

Time Length Cause Comments
87/07/15 00:46 COPS by SMP.S_1 Cause not entered
87/07/16 00:05 None
87/07/20 01:48 COPS by SMP.8_1 Cause not entered

87/07/21 07:30:06 00:33 COPS by OPERATOR.S_} Cause not entered

87/07/26 16:54:21 01:10 None
87/07/28 21:30:19 01:10 None
87/07/30 11:55:25 01:06 None

Availability

System Availability statistics

Total Outages - 7

Total Downtime - 06:39
Total report time - 17/17:10
Downtime due ta system problems = 00:00
Downtime due to planned operations = 06:39
Total up time fraction - 98.4
System availability fraction = 100.0

No cauwde =7 59M‘M
TS O = 5W(y > 4”)‘““)?;x)h\fw'-['b

Trouble

Exception conditions in log - may indicate serious problem

87/07/18 03:
87/07/20 20:
87/07/20 20:

*** Calling

87/07/20 22:

87/07/22 07
87/07/29 13

15:39 !!! Compaction Exception !Lrm.System.Type_Error, from PC...
12:52 !!! EEDB Assert_Failure Unexpected Exception: Tasking_BError.
12:54 *** Snapshot_Daemon Exception In worker task: ...

task (164DE15C044) will be stopped in wait service

14:31 !!! Mall Oe Unexpected Exception Storage Error (name)
:37:45 !!! IMAGE_OBJECT UNHANDLED_EXCEPTION in task 16#3DCCE4
:48:17 !!! core_editor_task unexpected_death <Exception: ...>

Machine Information System_Availability - bugs

» System_Report.Show_Machine_Info * Bugs

I/0 Adaptor

Part Number - 1 — Constraint_Error if not files in
etaalumber - 2% Machine.Error_Logs to read
ECO Level - 3
Bulild Date - 85/10/11
Sysbus/1/0 Controller — Gets into infinite loop if beginning of log is
Serial mumber - o junky. Workaround: Delete first error log file
2o tever - 19 and let it start on second.
Build Date - 86/12/02
Sequencer
Part Number - 5
Serial Number - 0
Artwork Rev - 2
ECO Level - 5
Build Date - 86/12/02

Console Interface

« Multiple Clients
— Each has unique banner
— AZ to toggle between clients
— If a client is waiting for input and is aborted,

request still appears. Characters will not be
echoed. Type AZ to get console working.

e Common Clients
— EEDB
— Kermnel
— Console command interpreter
— Tape operator interface

— Daemons (output only)

Console - Break
» Break key wakes IOP (M200) or cluster
manager (M100)

— Can crash system, redisplay output, or enter
debugger

» Be careful about pressing return without
knowing what console is asking

— Type Break-Redisplay first

Boot Process

» Steps on IOP
— Load microcode and R1000 registers
— Load "wired"” memory code segments
— Start R1000 CPU running

— Send information packet describing system
configuration

— Start IOP IO kernel running to service R1000

Boot Process cont’d...

« Steps on R1000
— Initialize basic machine packages
— Initialize low level 1/O packages
— Initialize and start kernel debugger
— Elaborate and start Kernel
— Elaborate environment debugger
— Elaborate utilities

— Start Environment elaborator database (EEDB)

Kernel startup

» Scan disks to check for integrity

» Traverse kernel disk data structures to
return system to a consistent state

e Start virtual memory

EEDB

» Controls elaboration and sequencing of

environment subsystems Frome. Cw‘c,-am)ﬁw

» Elaborates each subsystem in turn

* Once all environment subsystems are
elaborated, processes additional
commands

— Command reference summary available

» Diagnostic configurations can also be run
from EEDB

Major Steps in Environment
Elaboration

» Object management system abandons
uncommitted actions at time of last
smapshot

» Object managers perform archive restore

if system was shutdown with
Archive-on-shutdown

« Editor reads help files

» Deleted code segments are actually

Aoctrnuad
UL ol U] Al

* Temp heaps are destroyed

Major Steps in Environment Elaboration
cont’d...

« Keymaps are read from
'Machine.Editor_Data

e !'Machine.Devices is created to match the
devices that exist on the machine

* Terminal 16 is enabled for login

e Machine.Initialize is started

Machine.Initialize Machine.Initialize cont’d...

« Broken into a number of procedures — Initialize_Servers

» Starts print spooler and console command

— Initialize_Houskeeping interpreter

» Clears !Machine.Temporary; sets scheduler

— Initialize_Site
parameters

e e + Reserved for customer use
— Initialize_Daemons

— Initialize_Mail
» Sets daemon parameters

__Initialize_Terminals + Will be used to start mail product

» Enables terminals for login - hardwire and — Initialize_Cross_Compilers

1
telnet » Will be used to set up cross development

— Initialize_Network products

— Initialize_Pni
¢ Boots network controller and starts servers tialize_Print_Spooler

+ Internal machines only - configures spooler

Shutdown

» Op.Shutdown/Schedule_Shutdown
— Op.Shutdown waits shutdown warning time
— Controlled with Op.Shutdown_Warning
— Display with Op.Show_Shutdown_Settings

— Schedule_Shutdown taskes a time and shuts
down then system then

* Shutdown from EEDB
— Quit command

— Not as orderly. It warns you

e Break -0

— Not orderly. Doesn’t take snapshot. No warning
to users

Shutdown cont’d...

 Shutdown steps

— Warn users

— Disable terminals

— Force logoff users

— Kill batch jobs

— Wait for things to quiesce f
— Abandon actions in progress
— Delete action manager state

— Snapshot

— Crash to DFS

ZEDR sTur's

g

L)

"Unplanned" Crash

e No warning or snapshot

o Several flavors of crash

— Software detected crash

Kernel assert failure
Explicit call to crash microcode

Kernel debugger catches exception from
kernel

Stub kernel debugger (installed in customer
machines) then prints warning on the console
and crashes the machine

Non-stub allows remote debugger to be
connected

"Unplanned" Crash cont’d...

— Microcode crash

» ucode detects machine or ucode problem and
crashes machine

— Hardware machine check

+ Internal hardware failure detected

. expleincrshs ofir s
k

Crash Dump

» IOP normally asks you if you want to
take the dump

» Other ways
— Type AC to get to CLI> prompt

— Type "X Crashdump"

« Mount 2400’ tape at 1600 BPI

o Takes about 10-15 minutes

R1000 Configuration information

* Boot/Crash/Maintenance Options
« DFS "cedit" configuration

» EEDB configuration

Boot/Crash/Maintenance Options

Can be set when key switch in
"Interactive" position

Options

— Modem Dialout - allows R1000 to initiate
dialout

» Needed for response center to get crash
notification

— Modem Answer - allow R1000 to accept
incomming calls o Wil alummuamf R

Fo promadih 7t 7‘“/""‘%
» Needed to connect remote debuggers
— IOP auto boot - if false, asks to boot from tape

— Auto crash recovery - automatically reboots after
crash. Not recommended - disiC prblewA>

— Console Break key - can be disabled

— Are these new defaults - if not, they apply to this
boot only!

Boot/Crash/Maintenance Options cont’d...

» Display

— Crash machine with key switch in "interactive”
position

— Kemel Show_Configuration_Bits command

DFS Configurations

« Specifies options and versions of
subsystems up to EEDB

 File name *config

— Can get list of them with DFS CLI command
"dir *config"

« Display and edit with cedit command
— CLI> x cedit
— Asks name of configuration to edit and save
— If you just press returns, no changs will be made

— General: press return till you see what you want
to change, then type the new value

» After fresh DFS load

— Need to run cedit to change establish hardware
configuration

—- Pressing return a bunch of times will do the right

thing

DFS Configurations cont’d...

» Other flags
— Auto Boot Kernel Debugger

» If false, elaboration will stop after kernel
debugger and environment debugger. This
allows debugging of elaboration code. If this
gets turned on in a configuration, you cannot
boot that configuration without connecting a
remote debugger.

— Wait for Remote Debugging on Crash

* Only operates with non-stub kernel debugger.

Causes debugger to wait for a remote
connection if an exception is detected.

— Call Rational on Crash

» Causes debugger to call out for software
crashes and disk errors

— Auto Boot Kernel

» Causes kernel to start virtual memory. If not,
kernel elaborates and starts kernel command
interpreter, but virtual memory does not start.

— Auto boot environment elaborator

o Causes EEDB 1o eiaboraie defauli
configuration

» Others are or were used for special
debugging and should not be changed.

DFS configurations cont’d... EEDB Configurations

* Standard « Specify a list of subsystems to be
— Boots to EEDB and elaborates default elaborated
configuration]) .
« Configurations are structured in a tree
- EEDB

» There is a default configuration
— Boots to EEDB. Doesn’t have EEDB elaborate

anything — Elaborated when EEDB first starts if auto boot
env. elaborator CEDIT configuration bit is set.

* Kernel — Display: EEDB: Show_Default

— Boots to Kernel. Doesn’t start virtual memory. __Set: EEDB: Default <config name>

EEDB Configuration Operations
* Replacing a subsystem in an existing
configuration

— EEDB: Replace <Configuration>
<Subsystem>.X.Y.Z

— Changes an existing configuration by changing
the version of the subsystem.

— Current configuration can’t be elaborated

» Making a new configuration
— EEDB: Copy <current config> <new config>

— Then replace subsystems in the new
configuration.

— EEDB: Default <new config>

— Then shutdown and reboot. New configuration
will be ealborated.

EEDB Configuration Operations cont’d...
« Elaborating a configuration
— EEDB: e <config name> -- e for Elaborate
— Must be a branch of the currently elaborated tree
» What is running?
— EEDB: Running

— Reports all elaborated or partially elaborated
configurations

Test Configurations

» Provide various diagnostic tests
— Disk_Exerciser
— Port_Exerciser

— etc_Exerciser

Servers

» Starting

— Generally by Machine.Initialize, but can be
started anytime

— Need to be careful about I/O because starting
session may go away

— Good idea to put log in !Machine.Error_Logs,
but there are access and space issues

Servers cont’d...

« Rational Servers
— FTP - for file transfer
— Archive Server
* Processes Archive.Copy requests
 Server always receives units

+ If the copy source is on the local machine, the
command sends the units

« If the copy source is on the remote machine,
the server on that machine sends the units,
and the sever on this machine receives them

— Console Command Interpreter

» Processes console login and command
execution

Servers cont’d...

— Print Spooler
* Local print spooler

* Runs as a system job; special commands to
control it

— Queue Server

+ Network print spooler

Daemons

» Action Daemon
— Run frequently (20 min - 2 hours)

— Does not compact anything so sizes always the
same

— Abandons actions for dead tasks

» Ada, File, DDB, and Directory Daemons
— Runs daily (nightly) for 1-5 minutes
— Copies valid data in manager space

— If size doesn’t decrease, exceptions are reported,
or the size seems to grow very large, there is a
problem

Daemons cont’d...

* Snapshot
— Runs snapshots; doesn’t compact anything
— Recommended interval is 30 minutes

— Time for snapshot is proportional to the amount
of information modified since the previous
snapshot

 Other sources of snapshots
— Backups
— Disk garbage collection (per volume)
— manual command
* Daemon.Run("Snap")

 EEDB: sn

Daemons cont’d...

» Archived_Code

— Manager for code databases of subsystem code
views and loaded main programs

» Code_Segment
— Manages all code segments

— Size is not interesting

« Configufations

— Not used

e Error_lLog

— Copies error log to file. Does not compact
anything

» User, Group, Session
— Manages these small objects

— Fast running and size should be small

Daemons cont’d...
« Link
— Manages all links on the system

— Should be small and fast running

» Null_Device, Tape, Terminal

— These are device managers. Small size and fast
running. ‘

* Pipe

— Manages pipe objects. Small and fast running.
» Image_Tree

— Starts a job

— Checks consistency between all Ada unit images
and Diana trees

— Reports errors to error log

Daemon Information

e Daemon.Status

— Daemon.Status; -- information on major
daemons

— Daemon.Status(""); -- information on all
daemons

— Daemon.Status("Disk");

* Provides additional information about state of
disk garbage collection daemon

Loading Updates

» AK tapes
— Read using DFS CLI command: CLI> load

— Includes code segment files and DFS
configuration files

— Automatically sets Standard, EEDB, and Kernel
configurations

— If alternate configurations were created, they
may not be updated.

— If changes were made to the standard
configurations, they are oWerwritten.

» AE tapes
— Read using EEDB command: EEDB: read

— Loads subsystems (segments and descriptive
information) and creates configurations

— Configuration has the name of the version of the
release, for example, D_9 20 2

{ TOOLS . SYSTEM AVAILABILITY.REV9 1 SPEC.UNITS.SYSTEM REPORT'V(1l)

package System Report is

~- Report generation from system availability information.
~— Provide a varliety of reports.

type Report Class is (Availability, -- Uptime/downtime by classes

Usage, -- Per half hour, # users, etc.
Disk, -- Used disk space each day
Devices, -- Disk, Mem, Tape, etc errors
Daemons, ~~ Daemon state sizes and times
Outages, —-- System outages and reasons
Trouble, -~ Potential trouble areas
Advice, -— Advice on cleaning things up
Everything); -- All of above

procedure Generate (Report Type : Report_Class := System Report.Everything;
Start_Time : String := "";
End _Time : String := "7;
Log Directory : String := "I!Machine.Error_Logs");

-- Run a report of the specified type. Output goes to current
-- output. Start_Time null or illegal means "earliest time for
-- which there is information”. End Time null of illegal

-~ means "now". Log Directory is directory from which error

-- log files will be read; this is changed mostly for testing.

procedure Show Bad Blocks;
procedure Show Machine_Information;
-~ Produce a specific report about some specific subject.

end System Report;

August 6, 1987 at 8:15:17 AM

!TOOLS . SYSTEM AVAILABILITY.REVY 1 SPEC.UNITS.SHOW ERROR LOG’V{l)

procedure Show_Error Log (Start : Natural := 0; Count : Natural := 30);
~- Start = 0 => show end of log

August 6, 198" -t 8:15:16 AM

1TOOLS. SYSTEM AVAILABILITY.REV9 1 SPEC.UNITS.SYSTEM INFORMATION’V(1)

1 YTOOLS.SYSTEM AVAILABILITY.REVY9 1 SPEC.UNITS.SYSTEM INFORMATION'V(1l)

with Simple_Status;
with Time Utilities;
with Bounded String:

package System_Information is
-- Interfaces to extract information used to produce System Report output.

procedure Generate (Start_Time : String := "©;
End Time : String := "";
Log Directory : String := "!Machine.Error_Logs";
Log_Time : out Duration:
Status : in out Simple Status.Condition);

~- Must be called prior to using the following operations. They, then
-- can be used to read the reducad data. Log Time indicates the

-- actual duration between the first and last entries used in this

—-— report.

-—- Each iterator has a type and returng certain information.
-— General paradign for each is:

-— I : xxx_Iterator;
- Info : xxx_Information;

- Initialize (I);

-= while not Done (I) loop

- Info := Value (I);

-= -~ Do something with Info
- Next (I);

- end loop;

type Usage Iterator is private;

type Outage_lterator is private;
type Event Iterator is private;
type Device_lterator is private;
type Daemon_Iterator is private;

procedure Initialize (I : out Usage Iterator);
procedure Initialize (I : out Outage Iterator);
procedure Initialize (I : out Event_Iterator);
procedure Initialize (I : out Device Iterator);
procedure Initialize (I : out Daemon_Iterator);

procedure Next (I : in out Usage Iterator);
procedure Next (I : in out Qutage Iterator);
procedure Next (I : in out Event_Iterator);
procedure Next (I : in out Device Iterator);
procedure Next (I : in out Daemon_Iterator);

function Done (I : Usage_ Iterator) return Boolean;
function Done (I : Outage_Iterator) return Boolean;
function Done (I : Event_Iterator) return Boolean;
function Done (I : Device_Iterator) return Boolean;
function Done (I : Daemon_Iterator) return Boolean;

type Pstring is access String; -- Strings are accessed by dereferencing

pointers.

-~ Usage information is available for each half-hour during the

-- report period.
type Usage_Information is

record
Time : Time Utilities.Time; -- Time of this sample
Users : Natural; -~ # users logged on
Disk_Running : Boolean; —— Disk Daemon running
Outage : Boolean; ~~ System 1s down

end record;

-- Outage information is available for each system service outage.
type Outage_Information 1is

record
Time : Time Utilities.Time; -- time of outage
Length : Duration; -~ length of outage
Cause : Pstring; -- Cauge entered
Explanation : Pstring; -~ Explanation entered

end record;

type Event_Class is (User_Operation, Exception_Cond,
System_Boot, Other_ Event);

—— Event information i3 available for asach "interesting” event.
—-— The Event_Class gives some idea of the what the event is.
-~ The Info is the log entry for the event and has the standard
-- format for a log entry.
type Event_Information is
record
Time : Time Utilities.Time;
Info : Pstring;
Event_Kind : Event_Class;
end record;

type Device Class is (Disk, Tape, Ethernet, Memory, Other Device);

-~ Device information 1s available for each device error or other
-- event of Interest. Class indicates for which device it i3, and
-- Info 1s the log entry for the event.
type Device_Information is
record
Time : Time Utilities.Time; -- Time of entry
Info : Pstring; -- Log entry for device
Class : Device_Class; -- Class of device
end record;

-— Daemon information i3 available for each run of a daemon.
~- The information 1s as listed below.
type Daemon_Information is
record
Time : Time Utilities.Time; —— time of start
Name : Bounded String.Vari{able String (40);-- Daemon name
Length : Duration; -—- length of run
Pre_Size : Natural; -—- pages at start
Post_Size : Natural; -— pages of state at end
Explanation : Pstring; -~ Other info
end record;

-— The value functions return the actual information for
~- each value of the iterator.

August 6, 1987 at 8:15:15 AM

August &, 1987 at 8:15:15 AM

!TOOLS . SYSTEM AVAILABILITY.REV9 1 SPEC.UNITS.SYSTEM INFORMATION'V (1)

function Value
function Value
function Value
function Value
function Value

private

(1 :

(1
(1
(1

end System Information;

Usage_Iterator) returm Usage Information;

¢ Outage Iterator) return Outage Information;
¢ Event_Iterator) return Event_Information;

: Device_Iterator) return Device Information;
(1 :

Daemon Iterator) return Daemon_Information;

type Usage Iterator is new Integer;
type Outage Iterator is new Integer;
type Event_Iterator is new Integer;
type Device Iterator is new Integer;
type Daemon_Iterator is new Integer;

August 6, 1987 -t 8:15:15 AM

1 TOOLS.SYSTEM AVAILABILITY.REVY9 1 SPEC.UNITS.LOG READER'V (1)

with Time Utilities;
with Simple_ Status;

package Log Reader is
—-— Abstraction for reading the system error log.

Provides an Iterator that automatically crosses log files and also
—- extends into the current active error log. Thus, log messages
~- can be read right up to the last one issued by the system.

The date part of the date/time for an entry may be unknown for the first
-- few entries in the log. In this case, 1/1/1901 is returned.

Continuation lines are automatically incorporated into each entry so that
each call to Next moves to a complete new entry. Continuation lines

are read as part of the Message field and are preceeded by ASCII.1f
~— characters.

procedure Load Logs (From Directory : String := “!machine.error logs”};
-- Initialize the module. Must be called before any other operations.
~— Builds map of log files in the specified directory.

type Iterator is private;
procedure Initialize (I : out Iterator;
Status : in out Simple Status.Condition);

procedure Next (I : {n out Iterator;
Status : im out Simple_Status.Condition};

function Done (I : Iterator) retura Boolean;

function Current Entry (I : Iterator) return String;

function Current Time (I : Iterator) return Time Utilities.Time;
function Current_Severity (I : Iterator) return String;
function Current_Client (I : Iterator) return String;

function Current_Condition (I : Iterator) return String;
function Current_Message (I : Iterator) return String;

function Current File (I : Iterator) return String;

function Get_Time (Log Entry : String) return Time Utilities.Time;

-~ Note that only the HH:MM:SS part of the time is set by this operation
function Severity (Log Entry : String) return String;

function Client (Log_Entry : String) return String;

function Condition (Log_Entry : String) return String;

function Message (Log_Entry : String) return String;

function Number Of Log Files returm Natural;

== Returns number of log files that exist. Defined only after call
-- to Load Logs.

private

type Iterator Data;
type Iterator 1is access Iterator Data;

end Log_Reader;

August 6, 1987 at 8:15:14 AM

1 COMMANDS . DAEMON’ V (1)

1

! COMMANDS . DAEMON’ V(1)

with Calendar;
package Daemon is

—~ There are five types of Daemon tasks controlled by this package, their
—= characteristics and default scheduling:

- Snapshot . Frequent. ~1 minute slowdown. Hourly.
- Action. Frequent, unobtrusive. Every two hours.
- Weekly. Unobtrusive. Neekly at 2:30 AM.

- Code_Segment Group Session Tape Terminal User

- Daily. Variable, possibly significant interruption.
- Nightly at 3:00 AM.
- Ada DDB Directory Error Log File Disk

- Disk. Daily or as needed. Prolonged slowdown.
- Last portion of the Daily run

—-— If no other action is taken, all clients will be scheduled at a

~~ frequency and time normally appropriate. These schedules can be
—-- changed to sult specific needs. Note that Disk i3 included in the
-= Dally category and will be run with the other Daily Daemons.

-- Clients that interfere with normal operations warn all users.

—-— There is a group of clients referred to as Major Clients that are
~~ expected to be of interest in monitoring the state of the machine:
- Snapshot, Action, Disk, Ada, DDB, Directory, and File.

Major_Clients : constant String := m"#~;

procedure Run (Client : String := "Snapshot";

Response : String :m "<PROFILE>"):
—- Cause the named Client to run the specified operation immediately;
-- Has no effect on the next scheduled run of Client.

procedure Schedule (Client : String := ">>CLIENT NAME<<";
Interval : Duration;
First Run : Duration := 0.0;
Response : String := "<PROFILE>");

—— Sets the interval at which the Client operation will take place.

procedure Quiesce (Client : String := ">>CLIENT NAME<<";
Additional Delay : Duration := 86 400.0;
Response : String := "<PROFILE>");
-- Reschedule the Client not to run at the next scheduled time.
-~ Equivalent to Schedule with a new First ._Run, but the same Interval.
-— Defaults to a 1-day delay; use Duration’Last for indefinite delay.

nracadure Stat. (Client : Strin R RN

procecura Statu LallT HE Lll i-)i

-- print a [oxmatted display of current status for given Client

-- Matches on prefix of Client name, "" is prefix of all clients

-- Major Clients (*): Actions, Ada, DDB, Directory, Disk, File, Snapshot
—-- The Disk Client provides additional information when run Separately.

procedurae Warning Interval (Interval : Duration := 120.0);
functlon Get Warning Interval raeturn Duration;

-~ Narning given before starting Daily clients to allow time to Quiesce.

function In Progress (Client : String) returm Boolean;
function Next_Scheduled (Client : String) return Calendar.Time;
function Last Run (Client : String) return Calendar.Time;
function Interval (Client : String) return Duration;
procedure Get Size (Client : String;
Size : out Long_Integer;
Size After Last_Run : out Long_Integer;
Size Before Last Run : out Long_ Integer);
—- Sizes are set to -1 if invalid

-- Control of the Disk Daemon
—-- The Disk Daemon runs in response to a number of gtimuli:

-- Daemon.Schedule Runs at priority 6; intended for machine idle.
- Daemon.Run Runs at priority -1; background collection.

-- Daemon.Collect Runs at specified priority

-- over threshold Starts at priority 0 with escalation

-—- Messages to all users are issued for each of the three explicitly
-- called collections. In addition, a message is sent when a Set Priority
-- 18 called and it causes a change in priority.

-~ A background task monitors over threshold situations and sends messages
-- of interesting events. Threshold Narnings (False) allows an
-— installation-provided job to tailor policy.

-- Additional control over Disk operations is available in the
-~ Disk_Daemon tools package.

subtype Volume is Integer range 0 .. 31;

subtype Collection Priority is Integer range -1 .. 6;

~— -1 1ig the ananIr and lmp!_(na very low-level haﬂknrnnnd actd .1:.

-~ 0 guarantees progress in collection but has some effect on response
~~ 6 causes collection to take over the machine

procedure Collect (Vol : Volume; Priority : Collection Priority := 0);
-- If this call initiates a collection, it waits for its completion.

procedure Set Priority (Priority : Collection Priority := -1});
-- Set the priority of a currently running collection to Priority

procedure Threshold Warnings (On : Boolean := True);
—— Cause messages to be sent when collection thresholds are passed.

-- Control of snapshot messages

procedure Snapshot Warning Message (Interval : Duration := 120.0);
procedure Snapshot_Start Message (On : Boolean := True);
procedure Snapshot Finish Message (On : Boolean := True);
procedure Show Snapshot_Settings;
procedure Get Snapshot Settings (Warning : out Duration;
Start Message : out Boolean;
Finisﬁ_Messaqe : out Boolean);

~August 6, 1987 at 11:00:43 AM

hugust 6, 1987 at 11:00:43 AM

'COMMANDS . DAEMON’ V (1)

-~ Control of the contents and permanence of the operations error log

type Condition Class is (Normal, Warning, Problem, Fatal);
type Log_Threshold is (Console_Print, Log_To Disk, Commit Disk);

procedure Show Log_ Thresholds;
procedure Set_Log Threshold (Kind : Log_Threshold; Level : Condition Class);
function Get_Log Threshold (Kind : Log_Threshold) return Condition Class;

—- Options on client compactions.

-~ Consgistency checking doas additional work to assure that the internal
~- state of the system 13 as it seems. This is normally only run when

—-— there are suspected problems. Consistency checking slows operations

~—~ for which it is meaningful by between one and three orders of magnitude.

~= Access_List _Compaction is the process of removing non-existent groups
—-— from the access lists of objects. This condition occurs when groups
-- are removed from the machine. Access List Compaction is only done

-— for Ada, Directory and File clients. All other clients reqested will
—-= be silently ignored. All three must be compacted for any old group
—- numbers to be freed.

-- The default is disabled. The default is restored after
—- the next appropriate daemon run has completed.

procedure Set_Consistency Checking (Client : String := "";

On : Boolean := True;

Response : String := "<PROFILE>");
function Get_Consistency Checking (Client : String := "") raeturn Boolean;

procedure Set Access_List Compaction (Client : String := "v;

On : Boolean := True;

Response : String := "<PROFILE>");
function Get_Access_List Compaction (Client : String := "") return Boolean;

pragma Subsystem (Os_Commands);
pragma Module Name (4, 3932);

end Daemon;

August 6, 1987 at 11:00:43 AM

