MEDIUM TERM SCHEDULER

» Job Attributes and States
* Priorities

« Load

» Scheduling Decisions

» Scheduling Parameters

» Diagnosing Problems

» Scheduler Anomalies

* details in System Management Utilities

JOB ATTRIBUTES AND STATES

Job Kind

— Provided to scheduler from environment; biases
scheduling decisions

— Core Editor, Object Editor, Attached, Detached,
Server, Queued

Job State

— Run: job is runnable

— Wait: job is runnable but being withheld

— Idle: job is runnable, but not using any time

— Queued: job is detached and queued in a stream
— Disabled: job has been externally disabled

— Terminated: job has finished (sort of)

see !Commands.Scheduler

PRIORITIES

CPU Priorities
~— 16 Priority Levels
— 0 is best priority, 15 is worst

— Short Term Scheduler implemented in
microcode

— Strict pre-emptive priority-based scheduling
MTS Priorities

— 7 priority levels

— 6 is best priority, 0 is worst

— Only 6 and 0 supported for Foreground and
Background

— Serves as a base for Ada priorities

PRIORITIES cont’d...

» Ada Task Priorities

— LRM does not specify a required priority range,
but does define how priority levels interact:
lower priority task cannot be executing when a
higher priority task could execute (note that in
face of virtual memory, this cannot always be
guaranteed)

— Priority is inherited from creating task; in Delta,
the default priority is 1

— Use Pragma Priority to change priority; R1000
CG defines range of 0..5 (see LRM, appendix F)

— Task priorities are mapped to CPU priorities via
MTS base priority

PRIORITY RELATIONSHIPS

Kernel
Environment

4 5 Foreground Range
5 4 ~ core editors
6 3 - object editors
7 2 - attached jobs
8 1
9 6 0
10 5 Background Range
11 L} - aged attached jobs
12 3 ~ detached jobs
13 2 ~ servers
14 1 - batch jobs
15 0 0

LOAD

» Represents number of tasks attempting to
use a resource

» Maintained for running tasks, page I/O
waits, and withheld tasks

 Latest value plus averages for last 1, 5,
and 15 minutes

» Withheld jobs and disabled jobs included
in withheld load

» What.Load, use Verbose option or
Scheduler.State for detailed load

SCHEDULING DECISIONS

» Schedules jobs not tasks

— Attempts to provide fair sharing of resources:
CPU time, disk 1/O, and memory

* Reviews job activity every 100 ms
— Decisions made in response to past behavior

— Does not guarantee any particular job will get
time

» Microcode charges jobs for CPU time
consumed

— All tasks are grouped into one charge for the job

— System time is charged back to the user job,
affects rendezvous only

SCHEDULING DECISIONS cont’d...

» Job Groups
— Job groups are given equal time

— Core Editor is root of a job group; all jobs started
in the session are mapped to this job

— Job Groups have a budget of CPU time which is
shared by all foreground jobs in the group (CE,
OE, attached)

— Budget is limited to a range specified by MTS
parameters

— As a job group executes its budget is debited;
when it waits for disk or memory its budget is
credited

— Job Groups with a positive budget are not
withheld until budget becomes negative

~— Allows jobs to "burst” after being idle, up to the
limit set by the budget parameters

SCHEDULING DECISIONS cont’d...

» Percent For Background

— Foreground jobs are withheld to allow
background jobs to run

— Includes server jobs; will impact print spooler
and network activity

» Foreground Time Limit

— Limits elapsed time that a job may consume
foreground resources

— Job will become "aged" and treated as
background

— Intended to maintain interactive performance by
limiting time-consuming foreground jobs

— Requires sensible stream parameters

MICROCODE SUPPORT

— Independent of scheduling decisions
— Remembers tasks that must be paged out
— Does delays for paged out tasks

— Provides throttling function for disabled tasks
which are still paging

— Job activity may be distorted due to microcode
requirements

SCHEDULING PARAMETERS

-~ Default values shown
-- Usually adjusted by 'Machine.Initiallze_Housekeeping

Cpu_Scheduling : Enabled
Disk_Scheduling : Enabled
Memory_Scheduling : Enabled

Percent_For_Background : 20%

Min_ and Max_Foreground_Budget :-250 .. 250 milliseconds
Withhold_Run_Load s 130

Withhold Multiple Jobs t FALSE

Environment Wsl : 11000 pages

Daemon_Wsl : 200 pages

Min_ and Max Ce Wsl : 150 .. 500 pages

Min_ and Max Oe_Wsl : 75 .. 750 pages

Min_ and Max_Attached Wsl : 50 .. 2000 pages

Min_ and Max_Detached Wsl : 50 .. 4000 pages

Min_ and Max_Server_ Wsl t 75 .. 1000 pages
Min_Available Memory : 1024 pages

Wsl Decay Factor : 50 pages/5 seconds

Wsl Growth_Factor : 50 pages/100 milliseconds
Page_Withdrawal Rate : 1*640 pages/second

Min_ and Max Disk_Load : 200 .. 250

Foreground Time Limit : 1800 seconds
Background_Streams 3
Strict_Stream Policy : FALSE

Stream Time and _Jobs 1 : 2 minutes, 2 jobs
Stream_Time and _Jobs 2 : 8 minutes, 1 job
Stream_Time and _Jobs 3 : 50 minutes, 0 jobs

DIAGNOSING PROBLEMS

» Talk to users

 Scheduler.Display, Scheduler.State
— Shows parameters, job state, load, and streams

— Check for strange combinations, unusual load
values

e What.Jobs, What.Users, What.Load

— Observe job states and percentages assigned to
jobs

e Show_Jobs, Show Tasks

— Find out what job is waiting on

 Use Kernel Command Interpreter
— Show_Mits_Params, Jobs_Mts, Load, MtsQ

— Enable_Job, Disable_Job

SCHEDULER ANOMALIES

» Priority Conflicts

— interfere with CE, gets equal time with CE

input/output tasks; normally, only other CE jobs
compete

» Editor Operations
— Large search and replace
— Command.Spawn: job detaches and is queued

before CE finishes execution; results in hung
session; wait or kill job from another session

* Memory Scheduling
— Archive Server - bumps into page limits

— MT'S doesn’t know about page creates; can cause
poor choice of victim

* Cross-VP charge back

— Disable a job stuck in rendezvous will have no
effect

Topics

Scheduler

Disk Garbage Collection

Disk Errors

Remote Debugger

Miscellaneous Topics

Disk Garbage Generation

« Everything you do creates garbage
— Commiting a unit creates grabage

— Promoting a 100K unit to installed creates
50-200K of garbage

— Coding a unit leaves the previous code segment
as garbage that is not reclaimed until the next
boot

— Elaborating a big program whose size in N
Mbytes whose working set limit is L Mbytes will
generate N-L Mbytes of garbage

— We suggest that customers use small packages
for editing and compilation efficiency. Since
each package consumes several pages at a
minimum, this makes runtime performance
worse and creates more garbage.

Disk Garbage Generation cont’d...

— Consider the following:

subtype Length_Type is Positive range 1..65536;
type Bounded String (Limit : Length Type := Length’last) is
record
Length : Length_Type;
Chars : string (l..Limit);
end record;

Table : array (1..250) of Bounded_String;
— This will initialize 16 Mbytes of data stack, or hit
it’s job page limit. This will often hit the disk at
the rate of several Mbytes per minute.

— Job disable will not disable the job before the
space is allocated because the allocation is done
by a single instruction.

— Resolving names creates garbage
— Temp Heaps

* The environment uses lots of temp heags.
These become garbage if not explicitly
deleted. Thus, killing jobs, force logoff, and
bugs leave garbage temp heaps which are not
reclaimed until the next system boot.

Collector Operation

» Zapping moldy vps and spaces

— Delete stuff that the kernel knows is to be
recycled

» Traversing
— Search to find all allocated disk space

— If disk is empty, this is fast

» Reclaiming

— Return garbage to the free space map

GC Priority

 Priority -1

— Backoff during traversal phase if load is "big".
Restart if load is "small".

 Big: Withheld_Last_Sample > 0 or
Run_Last_Sample > 2.0

e Small: Withheld_Last_5 Min < .75 and
Run_Last_5_Min < .75

— Backup parameters are set by operations in
'Tools.Disk_Daemon

 Priority 0
— No backoff

— Collector makes progress; some performace
degradation

— Doesn’t make much progress if load is moderate
to high

GC Priority cont’d...

 Priority 2

— Will preempt most background jobs. Runs on
par with a background job that uses the best
‘priority.

 Priority 3

— Runs on par with most foreground jobs. Tends
to have a big impact on performance, since it
will compete with commands.

 Priority 4

— Preempts most foreground jobs. Should still be
able to edit. But commands will run VERY
slowly.

* Priority 6

— No backoff; Preempts virtually all activity,
except that from the console.

— No guarantee of progress in face of high CPU
load or Job 4 activity.

Collector Thresholds

Start GC Threshold

— When disk space on a volume drops below its
start threshold, the GC starts at priority -1.
Recall that the GC is a single task and can only

collect one volume at a time. picks [owest fres

Raise Priority

— Priority is raised so that collector can make
better progress

— Kill current GC and start again at higher priority.

Suspend System
— Don’t allocate any more space on the volume
— Typically hangs the machine

— Must reboot to make progress if this happens

Interaction with Backup

— GC and backup cannot run concurrently. This is
limitation of the retained snapshot mechanism.

— By default, GC will run a job.kill on an
in-progress backup which has not yet requested
the blue tape

— To change this, use
Disk_Daemon.Set_Backup_Killing in !Tools

not A;)Mr\rt& lee tiven. oo b

Checking Remaining Disk Space

¢ Operator.Disk_Space

Volume Capacity Avallable Used % Free

e - - mmmmmm momxxxe

1 515889 244737 271152 47
2 269280 218664 50616 81
3 269280 215190 54090 79
4 269280 236713 32567 87

Total 1323729 915304 408425

e Kernel: Show_Volume_Summary

Kernel: show_volume_summary
Volume Status Summary

Vol Total Unused Rate
Num Capacity Capacity Blks/Min

1 515889 244690 2
2 269280 218579 5

low space thresholds for volume 1:
START COLLECTION threshold at 25% (waiters exist)
RAISE_PRIORITY threshold at 15% (walters exist)
STOP_JOBS threshold at 12% (walters exlist)
SUSPEND_SYSTEM threshold at 7% (walters exist)
SPACE_04 threshold at 0% (no walters)
next trigger at 128972 blocks

low space thresholds for volume 2:
START _COLLECTION threshold at 25% (walters exist)
RAISE PRIORITY threshold at 15% (walters exlist)
STOP_JOBS threshold at 10% (walters exist)
SUSPEND_SYSTEM threshold at 8% (walters exlst)
SPACE_04 threshold at 0% (no waiters)
next trigger at 67320 blocks

Debugging information:
OUT_OF_SPACE_EVENT_PAGE_ADDR => (1023, DATA, 259, 504)

Out of Disk Space?

» Check error log
« Kernel: Show_Volume_Summary
» Messages in message windows

« Kernel Show_Volume_Summary says 0

— This means that the suspend system threshold
has been crossed.

— Reboot immediately (to EEDB). If a snapshot
goes by, even more space will be lost, putting the
system into peril.

— System is hung, so no loss by rebooting

Is GC Running?

« Daemon.Status("Disk")

— Shows what phase collector is in and how far it’s
got

» Check error log
eend : Shsw_Ge - stute

 It’s running, but is it making progress?

—Look at CPU and disk use on Job 5 with (kernel)
Job or (environment) Show_Jobs.

 Waiters

— Check the show_volume_summary kernel
display. Does it indicate waiters for each
volume? If not, GC is probably running on the
volume that says "no waiters".

Manual Controls

o Start GC

— Daemon.Run("Disk") - runs on all volumes in
order of which has the least available space

— Daemon.Collect(volume#) - runs GC on
specified volume,

« Priority Control

— Daemon.Set_Priority(pri) - set priority of a
currently running GC

» Other operations

— See !Tools.Disk_Daemon

Disk Eaters

« To find a job that is consuming disk
space

— If space is dropping and/or keeping the GC
running, here are some ways to find the job that
is doing it

— Run Show_Jobs (or kernel Jobs). Look for:

» High Disk Wait count or D/S. Each new page
allocated requires a few disk waits

» Large Job Segment

» Large Disk Page Count
Ol Tte shows tn DIS
st /a,cf/% Job &?m«){’

Disk Eaters cont’d...

 Try disabling or killing such a job to see
if allocation stops

— Don’t be afraid to disable editor jobs

— The simplest strategy is to leave the jobs
disabled until the next boot.

— Disabling a job will not recovery space it has
comsumed.

Disk Eaters cont’d...

e Job 4 Problems

— If the consumer appears to be job 4, it is harder
to locate the actual cause.

— If disk space is very low, crash the system. This
will stop allocation and disk collection can start
when it reboots.

— You cannot disable job 4, and disabling the job
"responsible” for the allocation will have no
effect.

Disk Eaters cont’d...

» The GC itself will consume disk space
during its operation

— It should not run the system out of space

— It will stop before it is done collecting if space
gets too low.

— The GC will have to run a second time to
complete collection

GC Threshold Settings

« Suggested values
— Start - 25%
— Raise priority - 15%
— Stop Jobs - 10%

— Suspend System - 8%

* Volume 1 is more critical

— Stop Jobs at 12%

Suspend Threshold

» System Hangs

— Users will probably know why - messages
displayed

— Check error log and Show_Volume_Summary
command

» Reboot

— There is no other recovery from the suspend
system threshold

Suspend Threshold cont’d...

* Recovery procedure
— Boot the Kernel configuration

— Using the kernel command interpreter, lower the
Suspend_System threshold for the affected
volume (from 8% to 3% is good)

Kernel: change_gc_thresholds

VOLUME NUMBER [11: 2

THRESHOLD [START_COLLECTION]: suspend system
REMAINING CAPACITY (%)} {10]: 3

Suspend Threshold cont’d...

— Start virtual memory: Defaults command
(privileged)

— Once EEDB is up, elaborate to the disk cleaner
subsystem.

 Build a configuration DDC (if necessary) and
elaborate it:

EEDB: running

D 9 211
EEDB: bulld ddc
Existing Configuration: d_9 211
Parent subsystem: ddc
Subsystem.Version:

» The DDC configuration is usually shipped
with the system

Suspend Threshold cont’d...

— The GC will start running and should complete
successfully

— Reset the Suspend_System threshold higher, and
elaborate the rest of the configuration

» Don’t be shy about calling for help if
things don’t go well

Action to Free Space

« If the Stop_Jobs threshold has been
reached, take some action to reduce the
disk usage:

— Increase the Start_GC threshold so that there is
better warning before space runs out.

— Run Lib.Expunge to free space held by deleted
version

— Redistribute worlds to better balance disk
utilization

— Lower retention counts
— Demote old units to Archived

— Delete unneeded views and worlds

GC Notes

— NEVER configure a system to automatically
boot without operator intervention. Since the
system creates garbage at each boot, this might
run the system out of space.

— Space gets harder to reclaim the less there is of
it. Don’t procrastinate!

— Assuming there is at least 15% space remaining,
feel free to reboot then system when the
Stop_Jobs threshold is reached. This looses the
reboot time, but definitely stops any jobs that
were consuming the space.

— Reboot weekly to reclaim temp heaps and code

segments

Finding space

» Lib.Space

Lib.Space (For_Object => "!users"”,
Levels => 2, &iylla a'l»"‘\v‘ JMA%S
Recursive => True,
Each_Object => False,
Each_Version => False,
Space_Types =~> False,
Response => "<PROFILE>",
Options => "nm);

» Show_Memory_Hogs

losks fur vobt

— Scans memory for large objects. See example
— Also available in Kernel, Hogs command

— Need to improve it some

Lib.Space Output

= PPN
Bj’ (‘s AT
Object Total
Vol size size Object Name
'USERS
.USERS
.CLP
63 .BIN (DIRECTORY)
1 1352 .LASER_STUFF (WORLD)
1 76 1491 N7 {(WORLD)
4 283 .GURU_COURSE (MORLD)
LJIM
109 .LOGIN_STUFF (DIRECTORY)
467 .PROGRAMS {DIRECTORY)
1 384 .goc (WORLD)
48 1004 LJIM (WORLD)
.MARLIN
558 .COV_TEMP (DIRECTORY)
1 1525 .DISASSEMBLER (WORLD)
1 10 .EDIT {WORLD)
1 279 LENV {WORLD)
1 437 1594 . HISTOGRAM (MORLD)
1 2289 8130 MTS (WORLD)
1 143 . PERFORMANCE (WORLD)
1 67 . SUPPORT {WORLD)
1 57 .TEST_ERROR_LOG {WORLD})
1 346 . XRAY (WORLD)
1 1208 13928 .MARLIN (WORLD)
.OPERATOR
4 11 .TEST {WORLD)
1 284 295 .OPERATOR {MORLD)
.PHIL
1 237 247 .ACCESS_CONTROL (WORLD)
3558 .CRUD_1_ARCHIVE (DIRECTORY)
399 .CRUD_RELEASE_NOTES_D_9_20_2 (DIRECTORY)
1 208 .DEBUGGER_COURSE (WORLD)
134 -DELTA_RELEASE_NOTE {DIRECTORY)
1 1038 1049 .GURU_COURSE (WORLD)
1 141 .SPOOLER_INIT (MORLD)
4 58 .TEST_AREA {WORLD)
4 407 .UNCHECKED_CONVERSION (WORLD)
1 453 7099 .PHIL {WORLD)
1 10 .RATIONAL {WORLD)
.sMp
4 10 416 .DELTA {WORLD)
1 55601 56017 .SMP (WORLD)
.SRP
[} 59 .DOCUMENTATION (DIRECTORY)
1 26 418 .EHR_OE_TESTS (WORLD)
1 101 57% .SRP {WORLD)
1 35 85979 .USERS (WORLD)

Show_Memory Hogs output

Show_Memory Hogs (Vp => 256, Volume => 1,
Size Threshold ~> 250);

256, MODULE, 74471) commit_tlne: 20$
page_count: 273 mark: 227: Image: Permanent editor buffers
256,MODULE, 77631) commit time: 236
page_count: 350 mark: 151: ADA Data
256,MODULE, 82945) commit_time: 278
page_count: 53577 mark: 183: FILE Data
256,MODULE, 83024) commit time: 278
page_count: 1608 mark: 153: FILE Data
256, MODULE, 95839) commit_time: 469
page_count: 262 mark: 151: ADA Data

== Ask kernel to convert virtual address to object id

Kernel: enable priv_cmds
*Kernel: show_space_info
VPID [0]): 256

KIND [MODULE):

SEGMENT (0): 82945
SNAPSHOT_NUMBER [0]: 278

THE_SPACE => (256,MODULE, 82945)
COMMIT_TIME > 278

DELETED => FALSE

USER_DATA => 153: FILE Data

OBJECT => Manager 3Instance 13680

-~ Next convert object id to name
Action Utilitles.Display Object (3, 13680, 1);
-~ Answer:

{USERS . SMP . DATA’V(1}

Diagnostic Tool Summary

« System Maintenance
— Show_Groups - access control
— Show_Identity - access control
— Show_Jobs - system resources and activity

— Show_Job_Names - system resources and
activity

— Show_Locks - object locking; job deadlock

~— Show_Machine_Id - hardware; product
authorization

— Show_Memory_Hogs - disk utilization
— Show_Stats - job statistics

— Show_Tasks - job activity and status
— Check_Universe_Acls - access control
— Set_Universe_Acls - access conirol

— Show_Error_Log - error log display

Diagnostic Tool Summary cont’d...

» Kernel
— Jobs/Job - resource utilization and job activity
— Job_Names/Job_Name - job information
— Jobs_Mts - scheduling

— Show_Volume_Summary - disk space and GC
info

— Show_Gec_State - GC info

— Show_Disk_Summary - disk use and errors

— Show_Task_States - status of interesting tasks
— Show_Error_Log - error log display
— Show_Vps - vp -> disk mapping

— Show_Space_Info - map from VM address to
object

— Roust - roust a task out of wait service

— Hogs - find large memory use Diagnostic Tool Summary cont’d...

— LMR/LMW - read/write memory » System Availability

— Abort_Task - kill any task (or job) — System_Report.Generate

Diagnostic Tool Summary cont’d... Miscellaneous Topics

o 1o EEDB TF oyt

* Environment Commands —_ OM tests om_Tests s read ¥ Lol ou
— i ; : vd %' (e
Daemon.Status - daemon information __OM file system ” "'*‘f““; bt :fd »
1 wt
"y " 't = id
— Daemon.Status("Disk") - disk collection info if —_ Editor connecid terminal model Z o™
runnin
. L K] . ‘&
— Action_Utilities.Lock_Information - super "yop aﬂ“““&‘ TZM ;M W 3’; E Pl
what.locks Vot bt M{vﬂ 3
. vqo .o T‘(}L e :?Mt/ (ol n &w"‘>
— Action_Utilities.Display_Object - object id to) " e .
name conversion W

— Dy +Leste” . q[vu
- T '()/(/ V\M(&’ (V\)
_.,V\E\rk R ﬁewhd» un ¥ Aow
e

- filuwi')[,”’“m
4

Diagnostic Tool Summary cont’d...

* Environment Commands
¢ Daemon.Status - daemon information

» Daemon.Status("Disk") - disk collection info if
running

» Action_Utilities.Lock_Information - super
what.locks

» Action_Utilities.Display_Object - object id to
name conversion

Disk Errors

— Prior to the message "the virtual memory system
is up", disk errors appear only on the console.

— After the message, disk errors appear on both the
console, and in the system error log.

— Log entries in the error log identify, among other
things, the virtual memory address and disk
block address involved in the failed 10.

— ATTEMPT: (1023, DATA, 259, 10234) <==(3,
10234)

— 4-tuple gives the virtual address of the page
involved in the 10

— -tuple gives the disk block address.
— "arrow" identifies whether the 10 is a read/write.

— Above example: read from block 10234 from
volume 3 into virtual page 10234 of data
segment 259 of vp 1023.

Disk Driver Logic

e Write

— Try to write the addressed disk location. Bad
status results in up to 30 retries

— Then: the block is retargeted (described further
below). Unless retargeting fails, a write will
always be "successful".

Disk Driver Logic cont’d...

» Read

— Try to read the addressed disk location. Initial
good status causes the read to be considered
"successful”. Up to 10 retries.

— Offset heads "advanced”. 10 retries

— Offset heads "retarded"”. 10 retries

— Two successive tries yielding the "same result”
after ECC cause the read to be considered

"successful”.

— If this fails, the block is considered
unrecoverable

— 1If a successful read encountered one or more non
seek errors, the block is retargeted

Retargeting

— Write the good data to a new location, and
redirect all future 10 to the old location to the
new location.

— Displaying retarget database:

» Kernel: Show_Bad_Blocks
+ No output means database is empty

— Messages sent to all users when a retarget occurs

— Machine calls Rational, also

After an Unrecoverable Error

— System continues to do IO to volume with error
— System will usually hang eventually

» Error on kernel VP - will cause snapshots to
hang

+ Page replacement policy will stumble on bad
page

— Error log entries will be made unless disk error is
in error log

— Job involved in bad page will hang immediately.
The job cannot be killed.

After an Unrecoverable Error cont’d...

— Kernel Show_Disk_Summary command shows

number of disk errors

Kernel: show_disk_summary
DISK STATUS SUMMARY

Q 1o0P Total Total Seek Soft Hard Un [otod
~Taotal -
Vol Unt Len Len Reads Writes Errs Ecc Ecc Recod Frrs
Recov——Errs-
1 0 0 0 311312 98342 0 0 0 &* &
9——~- 0
2 1 0 0 102090 119296 0 0 0 & &
L |
3 2 0 0 103753 127907 0 0 0 @ !
g— 1T
4 3 0 0 68767 213141 0 0 0 ® &
S B}

no disk IO in progress

Debugging information:

Ready_Volume mask => 0

Busy_ Event_Page => (1023, DATA, 259, 241)
Volume_Offlline_ Event Page => (1023, DATA, 259, 242)

After an Unrecoverable Error cont’d...

— To find if the system is hung due to a disk error:

* Run Show_Disk_Summary,
Show_Task_States (cache),
Show_Disk_Summary

+ If the 2 Show_Disk_Summary commands
have the same values for Total Reads/Writes
and the Show_Task_States command shows
one or more modules in disk wait, then the
system is probably hung do an unrecoverable
disk error. As further confirmation, one could
compare the page address printed by the
Show_Task_States command with those
printed in the disk error log entries.

|USRRS.PHIL .GURU COURSE.DISK ERROR PROCEDURRS DRLTAO’V(4)

|USERS . PHIL.GURU COURSE.DISK RRROR PROCEDURES DRLTAQ’V(4)

This note describes procedures for handling unrecoverable disk read
errors in the R1000 file system under Deltal software.

This note does NOT cover the following topics: (a) Dealing with disk
errors in the iop file system. (b) Diagnosing drive/controller faults.
That is, this note is not going to tell you how (from the status
2sss2gez, or other (nformatinn) to ascertain whathar the problem stems
from software, controller, drive, hda, media, etc. Assuming that you
have already determined that the problem is a relatively isolated media
defect, then this note will (hopefully) help you.

Prior to the message "the virtual memory system is up”, disk errors
appear only on the console. After the message, disk errors appear on
both the console, and in the aystem error log.

The disk error entries in the system error log identify, among other
things, the virtual memory address and disk block address involved in
the failed 10. The log entry will contain a line which looks like:

ATTEMPT: (1023, DATA, 259, 10234) <== (3, 10234)

The 4-tuple gives the virtual address of the pags involved in the IO,
the 2-tuple gives the disk block address. The "arrow" identifies
whether the IO is a read/write. In this example, the IO 1s a read from
block 10234 from volume 3 into virtual page 10234 of data segment 255 of
vp 1023,

The device driver logic for a write (from memory to disk) is basically
as follows: Try to write the addressed disk location. Bad status results
in up to 30 retries. If the retry limit is reached, or non seek errors
occurred, the block is retargeted (described further below). Unleas
retargeting fails, a write will always be "successful".

The device driver logic for a read (from disk to memory) is basically as
follows: Try to read the addressed disk location. Initial good status
causes the read to be considered "successful”. Bad status results in up
to 30 retries. The first 10 retries are without offset heads. The next
10 retries have the heads advanced. The next 10 retries have the heads
retarded. Two successive tries ylalding the "same result" cause the
read to be considered "successful"”, By same result we mean the value
returned by the controller, after soft eacc correction, 1f necessary.
Otherwise, after exhausting the 30 retries, the read is considered
"unrecoverable”. If a successful read encountered one or moxs non sesek
arrors, the block is retargeted, as discussed below.

By retargeting we mean write the good data to a new location, and
redirect all future IO to the old location to the new location. The
retargat database can be examined by using the Show Bad Blocks command
in the kernel command interpreter, supplying "Retarget” as the answer to

the "Kind" prompt. If the command prints nothing, the retarget database
1s empty.

With the Ragle drives, there have been 3 cases where tha presence of
multiple retarget database entries have predicted a future sevare disk
problem (head crash, multiple hard ecc errors, etc). Parsonal opinion:
If multiple retarget entries showed up on my machine, I would take
incremantals twice a day until either the drive crapped out or several
weeks had passed without additional errors.

The system will continue to do disk IO to a volume that has experienced

an unrecoverable error. This will typically allow log entries to be
made even though volume 1 is experiencing unrecoverable disk errors.

However, it will still be the case that after an unrecoverable error the
system may eventually hang. This will typically happen for one of the
following reasons: (1) If the error involved a kernel disk mapping page
(vp = 1023), snapshot will get hung (waiting for IO to complete, which
will never complete). So, within 2 snapshots, the system will certainiy
be tangled up in disk wait. (2) Regardless of what kind of page was
involved in the unrecoverable disk error, the page 1z left in the cache
"in transit”. The page replacement policy may eventually stumble across
this in transit page, causing jobs to become forever stuck waiting for
the IO to complete. If the above technical explanation for the hang
behaviour doesn’t make any sense, just ignore 1it.

Ragardless of the reason a job gets hung in disk wait, the job cannot be
killed, short of crashing the machine.

The Show Disk Summary command in the kernsel command interpreter can be
used to display the number of disk errors. In particular, the second to
last column (labelled "Un Recov”) shows the number of unrecoverable
errors which have occurred on the volume since last boot. A non-tero
value in any row of this column indicates that the system 1is or will
eventually become hung.

One can determine whether the system is currently hung from
unrecoverable errors by the following procedure: Do a Show Disk Summary
command. Do a Show Task Statesz (with Cache default) ccemmand. Do
another Show Disk_Summary command. If the 2 Show Disk Summary commands
have the same values for Total Reads/Writes and the Show Task Statas
command shows one or more mcodules in disk wait, then the system is
probably hung do an unrecoverable disk error. As further confirmation,
one could compare the page address printed by tha Show Task States
command with those printed in the disk error log entries.

Given the page address involved in the error, one can often discover the
identity of the object via this procedure. The vpid cannot be 1023.
Use the Show_Space Info (privileged) command:

The procedure for identifying the object (demaged by an unrecoverable disk
error) and recovering is as follows:

case vp (from virtual address) 1is
when 4 .. 5 =
The segment kind should be one of CONTROL, TYP, DATA, QUEUR,
or IMPORT. The error occurred in a runtime nodulo/i.-port ._space
of the environment. Increased likelyhood of system hang.
Problem 1s corrected by rebooting.

when 8 .. 26 =>
The segment kind should be CODE. The error occurred in an
environment code segment. Increased likelyhood of systea hang.
Problem is corrected by (a) raebooting toc REDB, (b) deleting tha
bad segment (see example at end of document), (c) reloading all of
the appropriate AR tapes, and (d) elaborating the environment.

when 27 .. 255 =>
The segment kind should be one of CONTROL, TYP, DATA, QURUR, or
IMPORT. The error occurred in a runtime module/import space of
tha job (whose number is the same as the vp). This job cannot be

August 7, 1987 at 9:19:38 AM

August 7, 1987 at 9:19:38 AM

w;m PHIL.GURD .COURSE.DISK ERROR PROCEDURES DELTAO’V(4)

3

|USERS.PRIL. GURU COURSE.DISK ERROR PROCEDURES DELTAO’V(4)

killed. Problem is corrected by robooting.

v when 256 .. 1022 =>
L . . The segment kind should be CODE or DATA.

In the first case (CODR), the error occurred in the code
segment of some coded Ada unit, somewhere in the machine.

In the second case (DATA), the error occurred in some cbject,
somewhere in the machine.

Recommended recovery procedure: Raeboot to EEDB. At the kernel
command interpreter, use the Show Space Info (privileged) command:

*Kernel: show_space_info
VPID [4]: <vp>

KIND [MODULE]:

SEGMENT [0]: <segment>
SNAPSHOT NUMBER [0]:

If the command produces no output, then the disk error occurred in
a temporary or superseded segment, and the problem has gone away.
Otherwise, the command will print

most recent generation: <snap #>
Re-execute the command, supplying <snap #> to the last prompt.
It will print out a bunch of stuff. The last 2 lines of output
should look like: ,

user_data => <name> (<mark>)
acbject => manager <m> instance <I>

For example, if the cbject was an Ada unit, the last lines
would look like:

user_data => Ada Data (150)
object => Manager 1 Instance 457

If the object_1id is not 0, and the mark does not identify manager
state, then with high probability you can (a) elaborate the
environment, (b) use lib.resolve ("<[m, i, 1]>") to get the

full pathname of the object in question. For vanilla files,

you can simply delete the damaged object. You can sometimes
delete damaged Ada units.

If the above fails, further identification and recovery proceeds
as follows:

case <mark> is
when 99 .. 100 | 114..119 | 200..1023 =>
Should not see these, since a mark of this class
identifies a temporary segment, which should have
been deleted by the reboot.

when 101..113 =>
Error occurred in permanent environment state.
Follow procedure outlined below for 120..149.

when 120..149 =>
Rrror occurred in cbject management state.

If you feel
lucky, run all the compaction daemons, followad by disk

garbage collection on all volumes. If this doesn’t
stumble across the disk error, then the disk error
occurred in object management state which is deleted
by crash recovery, and the problem has gone away.
oOtherwise, the recommended recovery procedure is to
restore the system from backup tapes. Feel free to
try to source archive recent work; the source archive
may or may not run across the bad block.

when 150..179 =>
Brror occurred in an cbject with a directory
pathname. LlLocate the cbject via the following
command (from an editor command window):
Disk Space.Name_Space (Vp => <vp>,
Kind => Disk Space.Data,
Segment => <segment>,
Vol Hint => <volume>);
where <vp>, <segment> and <volume> come from the
information contained in the appropriate entry in the
system error log. The command will run for a long
time (on the order of an hour).

If the command produces no useful output, then the
error occurred in some object which is permanent
garbage, or simply not understood by the command.
Two options are available: leave the unknown cbject
damaged, or source archive and restore from backup
and archive tapes.

If the output of the command identifies the object (s)
corresponding to the page address involved in the
disk error then the recovery procedure is:

case <mark> 1is
when 150 =>

The error is in an Ada unit. Deleting
the unit may or may not stumble across
the bad block. If the unit state is
installed or better, deleting the unit
will almost certainly hit the bad block.
Two basic options are available: leave
the unit damaged, or source archive
around it and restore from backup and
archive tapes.

when 152 =>
The error occurred in some "file".
Simply delete the file. Note that the
file may actually contain switches, etc.

when 160 =>

The error occurred in the link pack of
some world. Further compilation commands
in the world may stumble across the bad
block. Two basic options are availablae:
leave the world damaged, or source archive
around it and restore from backup and
archive tapes.

end case;

end case;

August 7, 1987 at 9:19:38 AM

August 7, 1987 at 9:19:38 AM

{USERS .PHIL.GURU COURSE.DISK ERROR PROCRDURES DRLTAO’V(4)

5

1USERS.PHIL.GURU COURSE.DISK ERROR PROCEDURES DELTAO’ V(4)

when 1023 =
The segment kind should be DATA.

The error occurred in a kernel data structure. Reboot to
EEDB. If the boot process stumbles across the bad block, then
the only recovery procedure is to restore from backup tapes.

Otherwise, chances are very good that the error occurred in the
index structure for some virtual memory segment. Use the
Zero_Block command (in the kernsl command interpreter); give it the
disk block address from the error log entry. Better be careful,

or you could really trash permanent state! Elaborate up to

DDC. Set the Start Gc threshold low enough to trigger the

garbage collector on the volume containing the error. If you get
a software crash, the only recovery procedure is to restore from
backup tapes. If the garbage collector finishes without producing
any unusual messages, then the disk error occurred in a temporary
or superseded segment, and the problem has therefore gone away.

or, the garbage collector may identify the segment (s) corresponding
to the zerced block. In this case, feed the segment name(s) to
the Disk_Space.Name Space procedure (from a command window in the
editor) following the procedure described above (undexr vp in the
range 256..1022). Note that in this last case, the garbage
collector will die as part of identifying the bad segment(s).

After zeroing the index block, if you "touch" the segment, the
machine will probably crash; touch includes definition, trying

to delete the cbject, etc.

end case;

Should you choose the cption of leaving the damaged object on the system,
you will need to perform the following, to prevent system backup from
stumbling across the bad block:

if the block is in a kernel data structure
(the vp of the page was 1023) then

*kernel: delete_ space
vPID [4]: <vp>

KIND [MODULE]: <kind>
SEGMENT [0]: <segment>

*kernel: create empty space

VPID ([4]: <vp>

KIND [MODULE]: <kind>

SEGMENT {0]): <segment>

where the <vp> <kind> and <segment> values are those corresponding
to the segment to which the bad index block belongs; recall that
the segment name was identified by running ge. '~ ”

e > e +

else - - N N . Sy e <z Ly ~
use the Zero_Block coumand on the bad block (the éne identified
in the disk error status lgaguggn) .

end if;. - T

R TR 4 E alw g e

S oy g

If you choose.tha recoyery. from_backup tape option instead of the leave it

| damaged option, it 1s recommended’ that you 'temporifily use the leave it
‘| damaged option, in ordet to take a full system backup. That way, if the

to the current state (with the damaged cbject). Of course, following this
recommendation implies that you have to follow the above procedure for
taking the leave it damaged option.

Hint: when using the kernel command interpreter, use it via EEDB, since it 1is
more forgiving.

Hint: many of the correction procedures indicate to reboot. Feel free to
do a shutdown by Quit’ing from REDB; if that doesn’t work (typically because
the system hangs), one can always resort to crashing 1it.

Hint: The Disk_Space.Name_Space command can be used to compute the segment
address for an object by taking default parameters, setting Root to the
name of the object, and Traversals to Directory Only.

‘| rastore (to previous state) falls, this extra backup can be used to return
Migast 711987 et DFI9IE AM I e

oS

Mugust 7,1987 at 9

