
Rational Environment Training-
Large-System Development

Copyright C 1986, 1987 by RaJ;oral

Document Control Number: 1032
Rev. 0, September 1986
Rev. 1.0, March 1987

This document subject to cha.'!:e without notice.

Ada 1. a regi.tered trademark of the U.S. Government (Ada Joint Program Office).

Rr.tional and Rl000 are registered trademarks and Rational Environment and Ra-
tional Sub.y.teDll are tradem~ke of Rational.

Rational
1501 Salado Drive

Mountain View, California 94043

ii 3/2/87 RATIONAL

Rational Environment Training-
Large-System Development

Slides

'-;•.: tr .,.

Contents

Concepts of Subeysteme
Introduction
Key Ooncepte
Sub8Y8tem Structure
Traversal
Execution

1
14
30
40
44

Oonstructlon and Modification of Subsystems
Sub8Y8tem Constructlon
Basic Modification Concepts
Change. to Load Vlews
Changee to Nonexported Specs
Changee to Exported Specs
Chanle. to Dependenciee

Additional Topice
Helpful Hints
Teet and Release Alternative8
Change Tracking

50
64
7!
75
7~

103

Hl
!IS
122

iii

RATIONAL

Seminar Outline

Concepts of Subsystems
• Introduction

Key Concepts
Subsystem Structure
Traversal
Execution

Construction and Modification of Subsystems

Additional Topics

RATIONAL 1

Introduction

Seminar Objectives

• Introduce concepts and mechanisms of
Rational Subsystems

• Provide experience in modifying, testing, and
releasing systems using subsystem facilities

RATIONAL

Introduction

Seminar Materials , ',,\ '0"" ,
, \

• Rational Environment Training - Larqe-
System Development .' ",.",.,.

- Seminar slides
.

• Rational Environment Project Management

- Introduction

- Packages Activity, History, View, and
Check

• Rational Environment Reference 5~ummary

• Rational Environment Basic Operations

RATIONAL

Introduction

Motivations for Rational Subsystems

• Subsystems originated with Rational's
experience in developing the Environment

• Existing development facilities were
discovered to be inadequate in

- Reducing the time and costs of making
and testing changes to a large Ada system

- Managing the complexity of the project
and design

- Supporting parallel team development
and testing

- Supporting multihost and multisite
development

RATIONAL

Introd uctlo.i

Changes to Ada Systems

• Recompilation is required to verify the
correctness of changes

• Recompilation may not be limited to the
changed unit

• Recompilation time can become a rnajor
factor in development delays

RATIONAL

1n~roductioD

Changes to Ada Systems, cont.

Changed JIf
Unit /'

) RATIONAL

Introduction

Design Degradation

• Dependencies in a system reflect part of the
overall design

• Unwanted dependencies are easily added by
any developer inserting a with clause

• Conventional library facilities have no
safeguards for the integrity of the design

RATIONAL

Introduction

Design Degradation, cont.

Unwanted
Dep ndency

8 RATIONAL

Introduction

Large Ada Systems

• Difficult to understand the application by the
picture

• Difficult to reason about the dependencies

• Recompilation can take hours or days

• Difficult to allow individuals to develop in
parallel because of Ada's strong dependencies

• Difficult to partition for individual developers
to implement

RATIONAL 9

Introduction

Large Ada Systems, cont.

10 RATIONAL

Introduction

Partition of Large Systems

• Subsystem partitioning improves understand-
ing of the application

• Dependencies can be defined at the
subsystem level

• Dependencies between subsystems can be
enforced through tool enforcement

• Each subsystem can be assigned to an
individual developer or implementation team

• Subsystems provide the opportunity to
firewall compilation through use of closed
private parts

RATIONAL 11

Introduction

Partition of Large Systems, cont.

12 RATIONAL

Introduction

Rational Subsystems

• Provide designers and project managers with
a powerful decomposition and structuring
mechanism

• Provide enforcement of design decisions

• Reduce time to make and test changes by
minimizing recompilation requirements

• Facilitate multihost, multisite development

• Allow parallel development and testing

RATIONAL 13

Seminar Outline

Concepts of Subsystems
Introduction

• Key Concepts
Subsystem Structure
Traversal
Execution

Construction and Modification of Subsystems

Additional Topics

14 RATIONAL

Key Concepts

System Structure

Application

DSubsystem A

DSubsystem B

DSubsystem C

• An application is an entire software system
that can be composed of subsystems

• An application can contain any number of
subsystems

RATIONAL 15

Key Concepts

Subsystems

• Each subsystem should be a complete logical
component of the application

• Each subsystem contains

- A series of implementations

- Resources needed in this subsystem
(irnports)

- Resources made available to other
subsystems (exports)

- Historic logs about creation and
modification of the subsystem

- Optional test information or documenta-
tion

16 RATIONAL

Subsystems, cont.

RATIOf'JAL

Exports

I
I Implementations

-
~

Imports

Key Concepts

17

Key Concepts

1mplementations

• Are called load views

• Define a logical part of the entire application

- Contain the Ada units

- Are analogous to Ada package bodies

- Are a specific instance of a subsystem

• Are generally derived from a previous load
•VIew

I
I Load Views

~

f--

-

-

18 RATIONAL

Key Concepts

Exports

• Are called spec 'Views

• Define the interface between subsystems

- Contain a subset of units in a subsystem
that are visible for other subsystems to
import

- Are analogous to Ada package
specifications

- Are used in compiling other subsystems

• Have one or more corresponding load views

10 I Spec View

I
I

J\t -
UlJ

RATIONAL 19

Key Concepts

Imports

• Define the set of spec views that this
subsystem can use

• Are analogous to adding with clauses to an
Ada package

101
I

I

~

~
10-

List of Spec Views

20 RATIONAL

Key Concepts

Dependencies between Subsystems

• Spec views (exports) define the units of a
subsystem that are available for importing
into another subsystem

• Imports define the set of spec views that a
subsystem can use

• Ada units in a load view can reference units
in the spec view of another subsystem if they
have been imported

RATIONAL 21

Key Concepts

Dependencies between Subsystems, cont.

I 0 I
r

I
IJl-O "'"--

L.~~
~\

~ Imports,
IDDf' Exports

r
r

~

~

"-

22 RATIONAL

Key Concepts

Dependency Restrictions

• Subsystems cannot be nested

• Circular dependencies between subsystems
cannot exist

RATIONAL 23

Key Concepts

Dependency Restrictions, cont.

• Library-level generic instantiations cannot be
exported

Example:
with List_Generic;
package Complex_List is new List_Generic (Float);

24 RATIONAL

Key Concepts

Sample Application

• Application counts various kinds of lines in
an Ada program

• Application consists of three subsystems

RATIONAL

/ '\

f, ~

+/ ,

,
~

t ,

, ../

25

Key Concepts

Sample Application, cont .

• Unit_Layer contains the Ada units that
analyze each line and collect the statistics
for an Ada unit

Unit

~

Unit

~
Line

c::;::>

26

<no imports>

RATIONAL

Key Concepts

Sample Application, cont .

• System_Layer contains the Ada units
that determine the set of Ada units to be
analyzed and collects statistics for all units

w~T
Systems

~

Subsys Spec: View
Unit unl;
Layer

J

~~

RATIONAL 27

Key Concepts

Sample Application, cant .

• Report_Layer contains the Ada units that
format the output and provide the user
interface and the main driver

Program_Profile

EJ
Program_Profile

r--

,.
R.~

Report_IO

~

Subsys Spec. View
System systems-[\Layer -
Unit Unit ~L.ayer

./ •SY.i!Lms ...•
~~J

28 RATIONAL

Execution of an Application

Key Concepts

• Requires specifying the load view to use for
each subsystem via activities

• Executes as does any other program once an
activity is specified

Activity

Program_
Profile

System_
Layer

Unit
Layer

Subsystem Load View

RATIONAL 29

Seminar Outline

Concepts of Subsystems
Introduction
Key Concepts

• Subsystem Structure
Traversal
Execution

Construction and Modification of Subsystems

Additional Topics

30 RATIONAL

Subsystem Structure

Application Notation

• Each application is typically a world
containing

A world for each subsystem

Optional project-level libraries for
documentation

An optional main driver

Optional activities

• Example

lTraining Deyelopment Subsystems Deyel Software program profile System . Libra
Development_Activity : File (Activity);Hodel : Librery (Vorld);
Progrem_Profile_Driver : C Ade (Proc_Spec);Progrem_Profile_Driver : C Ade (Proc_Body);
Report_Leyer : Librery (Vorld);System_Layer Librery (Vorld);
Te.ting Librery (Directory);Unit_Layer Librery (Vorld);

RATIONAL 31

Subsystem Structure

Subsystem Notation

• Each subsystem is a world containing

- A I.oga directory for logs from each
cornmand that manipulates the subsystem

- A State directory for information
about the genealogy of each view in the
subsystem

- A world for each spec or load view

- Optional libraries for tests or documenta-
tion

- Optional activities

• The Environment creates Logs and State

directories and spec and load view worlds

• The user supplies test or documentation
libraries and activities

32 RATIONAL

Subsystem Structure

View Names

• Load view names are created from two parts:
a base name and a set of release numbers

• Example with load view name of Rev1_0_2

- Rev1 is the base name

- _o_2 is the pair of release numbers

• Spec view names are created from load
view names by removing the last _N and
appending _Spec

• Example

- Corresponding spec view name is
Rev1_0_Spec

RATIONAL 33

Subsystem Structure

Subsystem Notation Examples

• Subsystem library

Libra

• Logs directory in a subsystem listed by user
and session

IU,er, Rtb AdYOOCed Training Example, Subsystem Line Analyzer Unit LOyer Log3 .Llb_S __ Destroy_Log : File (Text);
Llb_S_l_Freeze_Log File (Text);
Llb_S_l_Spewn_Log File (Text);Rjb_S_l_Freeze_Log File (Text);
Rjb_S_l_Sp8U1'l._Lr:;g Fi Ie (Text);

1111I ';1'';1, II INI r lAIEF LOt.,S ,lllJrar t Da rec t or 15LO InfOI

34 RATIONAL

Subsystem Structure

Subsystem Notation Examples, cont .

• State directory in a subsystem listed by view

JUsers Rib Adyooced.Troining Examplcs Subsystem Line Anolyzer Unit Layer State'Revl_0_0_Aoceatry : Filc;
Revl_0_0_Hiatory Filc;Revl_0_1_Aoceatry Filc;
Re~1_0_1_Hiatory File;Revl_0_2_Aoceatry Filc;Revl_0_2_Hiatory File;
Rev1_0_Spec_Aoccatry Filc;
Revl_0_Spcc_Hiato~y File;
Revl_l_0_Ancestry File;
Revl_l_0_Hiatory File;Revl_l_Spec_Anceatry File;
Revl_l_Spec_Hiatory File;Thia_la_The_Root_Of_A_Subsystcm File;

I IIJJ ArJAl T. ~ l- IINI r..LAVEF: STATE r t i orer-v I rr-ccen DIrectory r s to i nt

RATIONAL 35

Subsystem Structure

View Notation

• Each spec or load view is a world containing

- An Export s directory for specifying
indirect files defining subsets of the units
in spec views to be imported into other

•VIews

- A Logs directory for logs from each
command that manipulates the view

- A St ate directory for files and activities
used by subsystem commands for this
particular view

- A Units directory for the actual Ada code
for the view

- Optional libraries for tests or documenta-
tion

36 RATIONAL

Subsystem Structure

View Notation, cont .

• The Environment creates Exports, Logs,

State, and Units directories

• The user supplies Ada units to be placed
in the Units directory and optional test or
documentation libraries

RATIONAL 37

Subsystem Structure

Examples of View Notation

• View library

fU.er. Rib AdYOOCed Training Examples Sybsystem Line Analyzer Unit Loyer Reyl 1
Exporta Library (Directory);
Logs Library (Directory);
State Library (Directory);Unita Library (Directory);

• Loga directory in a view

fUsers Rib AdYOQced,Tcaining Examples Sybsystem Line Analyzer Unit-Layer Rey! 1
Compilation_Summery File;Llb_S_l_lmport_Log File (Text);
Llb_S_l_Promote_Log File (Text);
Rjb_S_l_Promote_Log File (Text);

• Stat e directory in a view

fUler' Rjb AdYDOCedLTraining Examples Subsystem Line Analyzer Unit-Layer Reyl 1Compiler_Switchea : File;
_---}Exporta FiIe;

IlI'IpOrta FiIe (Activity);Model File (Activity);
Referencerl File (Objects);Thil.II_The-Root_Of_A_View File;
Tool_State Library (Directory);

38 RATIONAL

Subsystem Structure

Examples of View Notation, cont .

• Unit. directory in a spec view

I ; I I Ii ~llt1~ I.) It r l~ I I Jt If III 1

ITrlining Ocyelagmact Subsystems Deyel Software Program Profile SY3tem Unit LeycUnit: C Ada (Peck_Spec);

• Unit. directory in a load view

IUler' Bib AdYDOCed Training Exemples Subsystem Line Analyzer Unit Leyer RCY! !
Line Ada (Pack-Spec);
Line Ada (Pack_Body);.Analyze_Context_Region Ada (Fuoc_Body);.Analyze_Declaration_Region Ada (Fuoc_Body);

.Analyze_Statement_Region Ada (Fuoc_Body);.Analyze_Subprogram_Parameter_Region Ada (Fuoc_Body);

.Analyze_Subprogram_Region Ada (Fuoc_Body);
Line_Utilitie. Ada (Pack_Spec);Line_Utilitie. Ada (Pack_Body);
Stack Ada (Pack_Spec);

RATIONAL 39

Seminar Outline

Concepts of Subsystems
Introduction
Key Concepts
Subsystem Structure

• Traversal
Execution

Construction and Modification of Subsystems

Additional Topics

40 RATIONAL

Traversal

Mechanisms for Traversal

• Using basic traversal keys

- Move up one level in the structure:
I Enclosing Object I

- Move down one level in the structure:
I Definition I

- Prefix to display a unit in the same
window: IWindow I - IDemote I

• Using library naming in the Definitiion

command

- Move up to the nearest enclosing view
or subsystem world to resolve the name:
dou ble dollar sign (s s)

- Move up one level in the structure to
resolve the name: caret (...)

- Move to the unit in the library specified
in the session searchlist: backslash (\)

RATIONAL 41

Tra.versal

Mechanisms for Traversal, cont.

• Using I Definition I on spec views

- Move to a corresponding load view from
the current activity: I Definition I

• Using subsystem-tool-supplied commands

- Move to a specified view in the same
subsystem: View.Goto_View

- Move to a load view from a corresponding
•spec VIew: Vi ew. Got 0_ Vi ew

- Move to the display of the log for a
specified command: View. Find_Log

• Using keybindings

- Login procedure with key rebindings to go
to common locations

- Macros to go to common locations

42 RATIONAL

Traversal

Examples of Library Naming
Program_Profile_System

Report Layer

Rev1 0 3 Rev1 0 4

A

• Move from point A to point B

Definition ("Rev1_0_4.Unita");
assuming session searchlist contains

Prosram_Profile_Syatem.Report_Layer

RATIONAL 43

Seminar Outline

Concepts of Subsystems
Introduction
Key Concepts
Subsystem Structure
Traversal

• Execution

Construction and Modification of Subsystems

Additional Topics

44 RATIONAL

Execution

Activities

• Specify various views that make up a set
of subsystems that are to be linked and
executed

• Consist of entries of specific spec and load
views for each subsystem

• Example

Sbtlu·tlm I Actiyity Spec View I Actiyity Locd View I Con
COMPA TlBI L ITY
DIRECTORY_TOOLSSLSSYSTEM_TOOLS
REPORT_LAYER
SYSTEM_LAYERLJ,iIT..LAYER

(ACTIVITY)-> REV3_0_SPEC I (ACTIVITY)-> REV3_0_0 I !TO
(ACTIVITY)~> REVZ_l_SPEC I (ACTIVITY)=> REVZ_l_7 I !
(ACTIVITY)-> REV3_2_SPEC I (ACTIVITY)-> REV3_3_2 I !

REVL0_SPEC I REVL0_0 I !TRREVl_0_SPEC I REVl_0_0 I !TR
REVL0_SPEC I REVl_0_0 I lTR

RATIONAL 45

Execution

Current Activity

• Users can have multiple activities related to
an application

• Current activity is the activity to be used by
the Environment when executing a program

• Current activity by default upon logging in is
!Relea.e.Current.Activity

• User can change current activity to be any
activity

• Key commands

- Set the specified activity to be the
current activity for the session:
Activity.Set_Default

- Display the activity name associated
with the current job or session:
Activity.Current

46 RATIONAL

Execution

Modification of Activities

• Activities are a type of object (file)

• Activity files must be saved to make changes
permanent

• Commands
- Edit the current activity: Activity. Edit

- Edit the selected activity: IEdit I

- Add a new entry to an activity: IObject I - []

- Delete a selected entry in an activity:
IObjecti - em

- Save changes to an activity: IEnterl

RATIONAL 47

Execution

Exercise: Managing Activities

Execute the Program Profile program with
two different implementations of the same
subsystem.

1. Run the Program_Profile_Driver program
located in the Activities_Exercise library
in your home world with the following
subsystem configuration:
Unit_Layer.Rev1_0_0
Sy.tem_Layer.Rev1_0_0
aeport_Layer.Rev1_0_0

- Edit the Current_Release activity in
the Activities_Exercise world. Use
the activity entry for the Unit_Layer

as a sample to add the entries for the
other two layers of the system. Save the
activity file after all changes are~aae.
Make this the default activity.

48 RATIONAL

Execution

Exercise: Managing Activities, cont.

- Test the application by trying a few
units in the Test_Data subdirectory in
the Activities_Exercise world.

2. Run the Program_Profile_Driver program
again with the same configuration for the
Unit_Layer and Systems_Layer, but with
Report_Layer.Rev1_0_1.

This requires changing only the CU.r-

rent_Relea.e activity before rerunning any
tests. Note that the output is now in a tab-
ular form.

RATIONAL 49

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
• Subsystem Construction

Basic Modification Concepts
Changes to Load Views
Changes to Nonexported Specs
Changes to Exported Specs
Changes to Dependencies

Additional Topics

50 RATIONAL

Subsystem Construction

Early Design Methodology

• Prototype the design in a single world on the
Rational Environment

- As the initial structure stabilizes,
partition it into logical components
(that is, what you think will become
subsystems)

- Put each logical component into a
sublibrary

• Suggested partitioning criteria:

- A subsystem should be a complete, logical
component of the system

- A subsystem should have a well-defined,
narrow interface

RATIONAL 51

Subsystem Construction

Early Design Methodology, cont.

- Package interfaces should export private
types and avoid reexporting declarations
from other subsystem interfaces

- A subsystem eventually should contain
a manageable amount of code (5K-25K
lines)

- A subsystem should have 1-3 developers
working on it

52 RATIONAL

Subsystem Construction

Transition to Subsystems

• When should a preliminary design be moved
into subsystems?

- The set of units forming subsystem
interfaces is defined and stable

- The interdependence (linkage) between
subsystems is defined and stable'''· ..-+

- Environment resources to be used in the
system are defined and stable

• First steps:

- Identify all components in each subsystem

- Identify all exports and imports of each
subsystem

RATIONAL 53

Subsystem Construction

Transition to Subsystems, cant.

- Identify any external resources required
fro:mthe Environment and any required
cornpilation switches

- Check for possible cycles across the
current subsystem partitioning

54 RATIONAL

Subsystem Construction

Models

• External resource requirements are defined
for each application with a model

• A project model is built as part of the design
process

• Models can contain other project-specific
tailoring of naming conventions and
compilation switches

• Models can be built anywhere

- Greater flexibility results if models are
kept with application project library

- Standard Environment models are kept in
world !Model

RATIONAL 55

Subsystem Construction

Utilization of Resources

• From outside the view

- Links are managed by explicit importing
or defined in the model

- A view's links should never be changed
manually with link commands

• From other subsystems

- Dependencies are created between the
current load view and other spec views

- Dependencies never exist between load
•views

56 RATIONAL

Subsystem Construction

Method for Building Systems
from Bottom Up

• Basic model

- Build a project model

- Build a load view and spawn a spec view
for the lowest subsystem first

_. Establish imports and exports

- Add each subsystem on top of existing
subsystems

-. Build all subsystems and their
dependencies in a single pass

RATIONAL 57

Subsystem Construction

Method for Building Systems
from Bottom Up, cont.

• Basic :method for each subsystem, starting
with the lowest

- Create an empty subsystem and load
•VIew: View. Initial

- Import any necessary subsystems:
View. Import

- Add Ada units to the units directory of
the load view (partial skeletons acceptable
for bodies)

- Edit the file Exports in the view's State

directory to reflect the set of units to be
exported

- Create a spec view: Vi ew. Export

-Make each view consistent with Vi ew. Make

58 RATIONAL

Subsystem Construction

Exercise: Building an Application
in Subsystems

Build a subsystem structure for the Program
Profile program using the project library
called Proj ects in your home world. Build
each subsystem in the Subsystem.Application
directory. A stable design currently is in the
subworld Design.

1. Create each subsystem inside the Proj ects

world. Use the model in Proj ects. Design.

2. Copy the actual Ada units from the corre-
sponding directories in Proj ects. Design.

3. Set up all the necessary imports and
exports, referring to the diagram in the
Sample Application section of Key Concepts
(page 28).

4. Make each view consistent with a
View.Make command.

RATIONAL 59

Subsystem Construction

Exercise:: Building an Application
in Subsystems, cont.

5. Build an activity specifying the initial load
view for each subsystem and verify that the
execution matches the system defined in
Design. Add new subsystem entries in the
existing current release activity inside the
Subsystem. Application directory.

60 RATIONAL

Subsystem Construction

Method for Building Systems
from Top Down

• Basic model

- Build a project model

- Build a view for the top subsystem first

- Add subsystems under existing
subsystems

- Build all subsystems and their
dependencies in two passes

RATIONAL 61

Subsystem Construction

Method for Building Systems
from Top Down, cant .

• Basic method builds all subsystems without
interdependencies, starting with the top
subsystem

- Create an empty subsystem and load
•VIew: View.Initial

- Add all specifications for the subsystem
and promote to installed

- Edit the file Exports in the view's State

directory to reflect the set of units to be
exported

- Create a spec view: Vi ew. Export

- Repeat for all remaining subsystems

62 RATIONAL

Subsystem Construction

Method for Building Systems
from Top Down, cont.

• Basic method builds all interdependencies
between subsystems, starting again with the
top subsystem

- Import any necessary subsystems:
View. Import

- Repeat for all remaining subsystems

RATIONAL 63

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
Subsystem Construction

• Basic Modification Concepts
Changes to Load Views
Changes to Nonexported Specs
Changes to Exported Specs
Changes to Dependencies

Additional Topics

64 RATIONAL

Basic Modification Concepts

Ongoing Development Activities

• Create new load views from the current
release

• Implement changes to fix bugs and/or add
functionality

• Test
- Unit

- Integration or layer level

- System level

• Release the modified and tested subsystem
for other project members to use

RATIONAL 65

Basic Modification Concepts

Creation of New Load Views

• Is called spawning: Vi ew. Spawn

- Creates a load view from an existing view

- Copies the contents of the existing view
including links into the new view

- Promotes all units in the Units directory
to the installed state

- Disconnects as soon as copy begins

- Adds a command log to the subsystem
Log_ directory

66 RATIONAL

Basic Modification Concepts

Implementation of Changes

• Editing operations on Ada units still apply

• Incremental operations on Ada units still
apply

• Compiling views: Vi ew. Make

- Is conceptually the same as compiling
worlds

- Automatically maintains a history log in
the view's Logs directory

- Operates only on units in the current
•view

RATIONAL 67

Basic Modification Concepts

Design Visibility Management

• From outside the view

- Links are managed by explicit importing
or defined in the model

- A view's links should never be explicitly
changed

• From other subsystems

- Dependencies are created between the
current load/spec view and other spec

•views

- Dependencies never exist between two
load views

68 RATIONAL

Basic Modification Concepts

Testing

• Can use test scaffolds, which can be built
within the view

• Does not require additional copying or
recompilation

• Does not interfere with users of the released
system

• Basic method
- Ensure that units in all load views that

make up the test are coded

- Modify a local development activity to
include the new load view

- Verify that the local activity is the default
activity

- Execute the subprogram in a Command
window

RATIONAL 69

Basic Modification Concepts

Release of Views

• Means freezing a view and making it
available for use by other members of the
application development team

• Basic method

- Freeze the released load view:
View. Freeze

- Note that the Logs directory in the view
is updated with the results of the Freez e
command

- Modify the current release activity in the
subsystem to include the new load view

70 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
Subsystem Construction
Basic Modification Concepts

• Changes to Load Views
Changes to Nonexported Specs
Changes to Exported Specs
Changes to Dependencies

Additional Topics

RATIONAL 71

Changes to Load Views

Modification of Load Views

• Is similar to changes in nonsubsystem
libraries

• Basic method

- Create a new load view to make changes:
View. Spawn

- Implement the changes using incremental
changes

- Make the view consistent: Vi ew. Make

- Check the log if there are errors:
View.Find_Log ("make");

- Test the modified units and the subsystem
as a whole

- Release the changed subsystem for others
to use

72 RATIONAL

Changes to Load Views

Exercise: Changing Load Views

Complete the implementation of the body of
package Line in the Program_Profile_System

library in your home world. Package Line is in
the Unit_Layer subsystem.

1~ Spawn a new load view to make the changes
in the subsystem containing package Line.

Use the most current release of the load

2. Make the following changes:

- Incrementally add (edit the statement
prompt) the following statement to
Line.Haa_Semi_Colon:

RATIONAL 73

Changes to Load Views

Exercise: Changing Load Views, cont.

- Incrementally add the following
statement to Line. Is_Assignment:

return Lu.Is_Assignment (Su.Strip (The_Line»:

- Incrementally add the following
statement to Line. Is_Loop:

return Lu.Is_End_Loop (Su.Strip (The_Line»:

3. Use Vi ew. Make to make the view consistent.

4. Update the activity local to the Uni t_Layer

subsystem and make it the default.

5. Verify your changes by rerunning the
program using Test_Driver1 in the Testing

subdirectory in Program_Profile_System.

6. Release the new view by freezing the view
and updating the current release activity.

74 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
Subsystem Construction
Basic Modification Concepts
Changes to Load Views

• Changes to Nonexported Specs
Changes to Exported Specs
Changes to Dependencies

Additional Topics

RATIONAL 75

Changes to Nonexporled Specs

Modification of Nonexported Specs

• Nonexported specs refer to package
specifications in a load view that are not
included in the corresponding spec view

• Changes to nonexported specs do not change
the spec view

• The basic method is the same as when
changing bodies in load views

- Spawn a new load view in which to make
changes

- Change nonexported specs (and bodies)

- Make the load view consistent

- Test changes

- Release the new load view

76 RATIONAL

Changes to Nonexported Specs

Exercise: Making Changes
to Nonexported Specs

Incrementally add a function that checks
for the occurrence of an if statement to
the spec and body of package Line in the
Program_Profile_System library. Package Line

is in the Unit_Layer subsystem.

1. Spawn a new load view in the subsystem
containing package Line.

2. Incrementally add the following function to
the spec and body of Line.

function Is_If (The_Line : String) return Boolean is
begin

return Lu.Is_End_If (Su.Strip (The_Line»;end I__ If;

RATIONAL 77

Cha.nges to Nonexported Specs

Exercise: Making Changes
to Nonexported Specs, cont.

3. Incrementally modify the following if
statement in the body of Unit to read as
follows:
if Line.Is_Assignment (Unit_Line) then

The_Statistics.Assignments :=
The_Statistics.Assignments + 1:

eleif Line.Is_Loop (Unit_Line) then
The_Statistics.Loops :-

The_Statistics.Loops + 1:

eleif Line.Is_If (Unit_Line) then
The_Statistics.lfs :=

The_Statistics.lfs + 1;

end if:

4. Use Vi ew. Make to make the view consistent.

5. Verify your changes using the local
development activity.

6. Release the new view.

78 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
Subsystem Construction
Basic Modification Concepts
Changes to Load Views
Changes to Nonexported Specs

• Changes to Exported Specs
Changes to Dependencies

Additional Topics

RATIONAL 79

Changes to Exported Specs

Classes of Changes to Exported Specs

• Three classes of changes can be made

- Changes to closed private parts of specs

- Other upward-compatible changes to
specs

- Incompatible changes to specs

• Each class of change uses a different method
for making the change

- Closed private part changes are similar to
changes to load views

- Other compatible changes are similar
to changes to load views but require
recoding of dependent views

- Incompatible changes can require
significant reconstruction of the system

80 RATIONAL

Changes to Exported Specs

Private Parts of Exported Specs

• Closed private parts

- Environment provides support for
conceptual separation of private part from
visible package declarations

- Changes to private parts behave as if a
change was made to the package body in
the load view

- By default, private parts are "closed" in
subsystems

RATIONAL 81

Changes to Exported Specs

Private Parts of Exported Specs, cont.

Is used in package spec in view

Identifies units in context clauses that are
needed only for the private part

Makes specified units unnecessary in a
•spec VIew

Applies to all context clauses following
the pragma

• Example
with Time_Utilities;
pragma Private_Eyes_Only;
with Time_List;
package Event_Log is

type Log i8 private;
function Make return Log;function Start_Time (L : Log)

return Time_Utilities.Time;
private

type Log is new Time_List.List;en~ Event_Log;

82 RATIONAL

Changes to Exported Spec!

Modification of Private Parts

• Changes to closed private parts do not
require recompilation of external dependents

• Basic method

- Spawn a new load view

- Change the private part of the exported
specification in the load view

- Make the load view consistent

- Test changes

- Release the new load view

RATIONAL 83

Changes to Exported Specs

Exercise: Changing a Private Part

Modify the data structure representation for
type Statistics in package Systems of the
Program_Prof i 1e_Syst em. This change requires
modification to the load view only. Package
Syat ems is in the Syst em_Layer subsystem.

1. Spawn a new load view in the subsystem
containing package Systems. Set the
parameter Goal to Compilation. Source.

2. Make the following modifications:

- Add a context clause for Un-

bounded_String to the spec of package
Syst ems.

- Change the private part of the spec of
package Systems to appear as in the
private part provided on the following
page. The changed or new lines are
indicated by _ ***.

84 RATIONAL

Changes to Exported Specs

Exercise: Changing a Private Part, cant.

private
package Name_String is new Unbounded_String; -- ***
type Statistics is

record
Name : Name_String.Variable_String; -- ***
Units : Natural := 0;
Lines : Natural :- 0;
Statements : Natural := 0;
Declarations : Natural := 0;
Withs : Natural := 0;
Assignments : Natural := 0;
Comments : Natural :- 0;

end record;
type Unit_Iterator is access Obj ect_Naming. Iterator;

end Systems;

Replace all statements in Systems. Set-

_Name with the following:
The_Statistics.Name := Name_String.Value (The_Name);

Replace the statement in Syst ems. Name-

_Of _Syet em with the following:
return Name_String.lmage (The_Units.Name);

RATIONAL 85

Changes to Exported Specs

Exercise: Changing a Private Part, cont.

3. Make the view consistent.

4. Verify your changes. (The execution should
be identical.)

,

5. Release the new view.

86 RATIONAL

Changes to Exported Specs

Other Compatible Spec Changes

• Three other kinds of changes are considered
upward compatible

- Adding context clauses

- Adding package renaming declarations
anywhere in the package

- Adding new declarations at the end of the
package

RATIONAL 87

Changes to Exported Specs

Other Compatible Spec Changes, cant .

• Upward-compatible changes require
consistent changes to spec and load
views within a subsystem and recoding of
dependent views in other subsystems

- Making compatible additions requires
demoting the spec view to the installed
state

- Subsystem tools demote dependent views
in other subsystems to the installed state

- Incremental operations are used in both
spec and load views

- Dependent views can be recoded with
View.Make

88 RATIONAL

Changes to Exported Specs

Method for Making
Upward-Compatible Changes

• Spawn a new load view

• Demote the affected units in the spec view to
installed

~ Incrementally make changes to the affected
•spec VIew

• Make a consistent set of changes to the
new load view and any previous views as
necessary

• Recode all load views that were uncoded

• Test changes

• Release the new load view

RATIONAL 89

Cha.nges to Exported Specs

Exercise: Making Upward-
Compatible Changes

Add a new function to calculate the average
statements per unit to package Syst ems in
the Program_Profile_System following these
steps. Package Syst ems is in the Syst em_Layer

subsystem.

1. Spawn a new load view in the subsystem
containing package Syst ems.

2. Modify the new load view to include the
new function.

- Incrementally add the subprogram
declaration defined below to the
specification of package Syst ems. Note
that the subprogram spec must be
placed at the end of the declarations in
the spec of package Systems.

function Average_Statements_Per_Unit
(The_Units: Statistics) return Float;

90 RATIONAL

Cha.nges to Exported Specs

Exercise: Making Upward-
Compatible Changes, cont.

Incrementally add the subprogram body
defined below to the body of package
Syat ema.
function Average_Statements_Per_Unit

(The_Units : Statistics) return Float is
begin

if The_Units.Units /- 0 then
return Float (The_Units.Statements) /

Float (The_Units.Units);
else

raise Bad_Data;
end if;

3. Make the load view consistent.

4. Modify the spec view corresponding to the
new load view to include the new function.

Unfreeze the spec view and all externally
dependent load views with the command
Library.Unfreeze.

RATIONAL 91

Changes to Exported Specs

Exercise: Making Upward-
Compatible Changes, cont.

- Demote the exported unit Systems

with the View.Demote command,
setting the Goal parameter to
Compi 1at i on . Ins tall ed and the Li mit

parameter to Compilation. All_Worlds.

- Incrementally add the subprogram
declaration provided to the specification
of package Syst ems.

function Average_Statements_Per_Unit
(The_Units: Statistics) return Float;

Make the spec view consistent.

5. Make any dependent load views in the
Report_Layer consistent and refreeze them.

6. Verify your changes by adding the new
functionality to the body of package Report

in the Report_Layer.

92 RATIONAL

Changes to Exported Specs

Exercise: Making Upward-
Compatible Changes, cont.

- Spawn a new load view for the
Report_Layer.

- Add the following statement to
Report.Display (The_System: ...):

Rio.Put (Systems.Average_Statements_Per_Unit
(The_System» :

which should follow the statement
Rio.Put (III Average Statements ...•

Make the new view consistent and
execute.

7. Release the new views in the System_Layer

and Report_Layer subsystems.

RATIONAL 93

Changes to Exported Specs

Incompatible Spec Changes

• Are considered to be design changes

• Require a new spec view

• Require new load view(s) and possibly new
spec view(s) in other subsystems that import
the new spec view

• Imply that each user of that subsystem must
be recompiled

94 RATIONAL

Changes to Exported Specs

Method for Making
Incompatible Changes

• Create a new load view in the subsystem
requiring the change

- Spawn a new load view

- Make all changes and make consistent

• Create the new spec view from the modified
load view: Vi ew. Export

- Copies only the exported units from the
load view

- Hides the private parts of exported
packages

RATIONAL 95

Changes to Exported Specs

Method for Making
Incompatible Changes, cont.

• Create a new load view to use the changed
import in each subsystem that imports the
changed subsystem

- In the State directory of each new load
view, create a copy of the imports activity
called Activity_Far_Spawn. The State
will need to be unfrozen in order to do
this.

activity.create ("activity_far_spawn".
"imports")

- Edit the new activity, changing the
modified views to their new release

- Spawn a new load view as before:
View. Spawn

- Make any necessary changes in the new
load view to utilize the newly imported

•VIew

96 RATIONAL

Changes to Exported Specs

Method for Making
Incompatible Changes, cont.

• Repeat the entire process as necessary
for other subsystems if any changes cause
another spec view to be created

RATIONAL 97

Changes to Exported Specs

Exercise: Making Incompatible Changes

Add a new type Status_Code to the spec-
ification of package Uni t in the Pro-

Iram_Profile_System. Package Unit is in the
Unit_Layer subsystem.

1. Add an enumeration type to the declarative
part of the package specification of Unit in
the load view of Unit_Layer.

type Status_Code is (Normal.
Illegal_Unit_Name.
Inaccessible_Unit.
Data_Error.
Unknown);

2. Change the declaration of the function
Analy~. to a procedure with the following
definition:
procedure Analyze (The_Unit: Unit_Name;

The_Statistics: in out Statistics;
The_Status : out Status_Code);

98 RATIONAL

Changes to Exported Specs

Exercise: Making Incompatible Changes, cont.

3. Modify the corresponding body of Analyze.

- Change the function to a procedure and
change the parameter profile.

- Delete the declaration of The_Statistics

(this is now declared as a parameter).

- Replace the return statement with the
following:
The_Status :- Normal:

4. Spawn a new spec view of Unit_Layer.

5. Rebuild the Systems_Layer by spawning a
new load view that imports the new spec
view of Unit_Layer. Since the spec view
also depends on the Unit_Layer, a new view

. importing the new Unit_Layer spec view
must also be created.

RATIONAL 99

Changes to Exported Specs

Exercise: Making Incompatible Changes, cont.

\:-
'.

6. Rebuild the Report_Layer by spawning a
new load view that imports the new spec
view of Unit_Layer and System_Layer. Note
that, .since the spec of Program_Prof i 1e does
notchange, a new spec view is not required.

7. Modify the main program unit Pro-

gram_Profile in the new load view to in-
clude the new parameter profile for Analyze.

- Add the following declaration:

- Also change the call to Analyze to the
following:
Unit.Analyze

(Sy.tems.Value (Units_Iterator).
Unit_Statistics.
Unit_Status):

8. Make the view consistent

9. Verify your changes.

10. Release the new views.

100 RATIONAL

Changes to Exported Specs

Compatibility of Changes Revisited

• Following methods in this module should
maintain compatibility between the spec view
and the corresponding load view(s)

• The Environment does not prevent changes
that would make spec views incompatible
with load views

- Any change can be made to a load view
without changing the corresponding spec

•VIew

- Incompatibilities will produce nondeter-
ministic errors when the system is run

• Compatibility can be checked with proce-
dures from package !Tools .Compatibility-

.aevn.Unit •.Check

- Compares a spec view and a load view

- Compares two load views

RATIONAL 101

Changes to Exported Specs

Compatibility of Changes Revisited, cont.

- Compares all spec view and load view
pairs in an activity

102 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems
Subsystem Construction
Basic Modification Concepts
Changes to Load Views
Changes to Nonexported Specs
Changes to Exported Specs

• Changes to Dependencies

Additional Topics

RATIONAL 103

Cha.nges to Dependencies

Changes to Imports

• Imports are governed by the subsystem tools

- Changes to imports are considered to be
design changes

- Additional history is maintained in the
subsystem

- Once defined for a view, imports can be
modified or deleted only by creating a

•new view

• Four types of changes to imports can be done

- Importing a subsystem not previously
imported into the view

- Importing a spec view that has new units
in it

- Importing a different view of a subsystem
than the view currently imported

104 RATIONAL

Changes to Dependencies

Changes to Imports, cont.

- Removing a subsystem from the set of
imported subsystems

RATIONAL 105

Changes to Dependencies

Importation of a New Subsystem

• Imports can be added to an existing
subsystem: Vi ew . Import

- Adds the necessary links and other
information to the current view

- Immediately allows units in the current
view to utilize the new subsystem

• Imports from subsystems that have newly
exported units can also be updated without
creating a new view

106 RATIONAL

Changes to Dependencies

Removal of a View or Importation
of a Different View

• Once a view is imported, removing or
changing an imported view requires a new
load view

• Basic method

- Create a copy of the imports activity
called Acti vi ty _Fer _Spawn in the state
directory of the current load view:

activity.create ("activity_fer_spawn".
"imperts")

- Edit the new activity, deleting or
changing the view(s) imported

- Spawn a new load view as before:
View. Spawn

- Make any necessary changes in the new
load view to utilize the newly imported

•VIew

RATIONAL 107

Changes to Dependencies

Removal of a View or Importation
of a Different View, cont.

- Repeat the entire process as necessary
for other subsystems if any changes cause
another spec view to be created

108 RATIONAL

Cha.nges to Dependencies

Changes to Exports

• Changing the set of exported specs

- Requires a new spec view

- Is similar to making incompatible changes
to exported specs

• Exported specs are selected from the set of
units in a load view via an Exports file in the
view's Stat e directory

• Basic method

- Change all necessary units in the current
load view

- Edit the file Export s in the St ate

directory of the current load view

- Change the file to represent the new set of
exported units

- Spawn a new spec view: Vi ew. Export

RATIONAL 109

Changes to Dependencies

Changes to Project Models

• Changing the project-specific model

- Is considered to be a design change

- Should be done by the system designer

- Changes the links, switches, or other
objects in the model

• Changes to the model are incorporated into
all views created after the model is changed

110 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems

Additional Topics
• Helpful Hints

Test and Release Alternatives
Change Tracking

RATIONAL 111

Helpful Hints

Workspace Management

• A view can be destroyed: View.Destroy

- Unfreezes and deletes entire view

- Records a log of the deletion

• Information about a view can be displayed:
View. Information

- Displays imports and exports

- Displays model, dependencies, and units

- Displays switches, creation time, and
ancestry

112 RATIONAL

Helpful Hints

Typical Errors

• Activity does not specify necessary views for
execution: Error in subsyst em_spec look-

through for VIEW

• Units in view specified in activity are not
coded

• Context for command is incorrect: Vi ew name

not resolved

RATIONAL 113

Helpful Hints

Management of Design Changes

• Many kinds of design changes to exported
units are costly

- Incompatible changes require recon-
struction of subsystems that import the
changed subsystem

- Dependencies can cause much of the
entire system to be reconstructed

• Design changes should be collected and
integrated

- Integrate changes when a subsystem
is reconstructed to consolidate change
impact

- Should schedule such reconstructions at
regular intervals

114 RATIONAL

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems

Additional Topics
Helpful Hints

• Test and Release Alternatives
Change Tracking

RATIONAL 115

Test and Release Alternatives

Test and Release

• Locations for building tests are

- In Units directory of view

- In a user-created directory in a view

- In a separate subsystem

• Recombinant testing requires simply
changing the test activity

• Releases are managed with activities

- Release a view with a current release
activity in the subsystem

- Release a system with a system release
activity in the project library

116 RATIONAL

Test and Release Alternatives

Activities

• Can be created in three forms: differentials,
exact copy, value copy

- Differential activities contain pointers to
other activities

- Exact-copy activities contain exactly what
was in the source activity

- Value-copy activities contain the
dereferenced values of the source activity

• Can be managed in several ways:

- Use a value activity for each development
or release activity

RATIONAL 117

Test and Release Alternatives

Activities, cont.

- Use a current release activity for each
subsystem and a differential activity that
points to the current release activity in
each subsystem

- Make a value activity from a differential
activity for each release

118 RATIONAL

Test and Release Alternatives

Creation of Activities

• Activities typically are created from
Environment default

- The default activity, !Releases. Current-

.Activity, is supplied to the Source

parameter of the Acti vi ty. Creat e

command

- Automatic access is provided to latest
versions of Environment-supplied tools
released via subsystems

• Empty activities are created with the default
parameter value, Activity.Nil, in the
Activity.Create command

RATIONAL 119

Test and Release Alternatives

Alternative View Management

• The view management used in this course is
based on always creating and working in a
new load view after every release

- Tools handle all naming of new views

- The location of work is always changing

• The alternative is to have a fixed develop-
ment view and to spawn released views from
it

- Utilizes one view for all development (for
example, Davel)

- Requires spawning explicitly named
released views: Vi ew. Spawn_Named

120 RATIONAL

Test and Release Alterna.tives

Alternative View Management, cont.

• Command parameters allow the tailoring of
the command

- The Level parameter specifies which
revision level should be incremented
(default is lowest)
Level 0 creates Rev1_0_1 from Rev1_0_0

Levell creates Rev1_1_0 from Rev1_0_0

- Other parameters specify the goal state of
promotion, view to copy, imports for new
view, and whether to run as a foreground
or background job

RATIONAL 121

Seminar Outline

Concepts of Subsystems

Construction and Modification of Subsystems

Additional Topics
Helpful Hints
Test and Release Alternatives

• Change Tracking

122 RATIONAL

Change Tracking

Histories

• Allow annotation of changes in a view

- Annotate changes to a particular unit:
History.lndicate_Change

- Annotate changes to all changed units in
•a VIew: History.Change

• Track the units that have not been annotated
since changed:
Hiatory.Show_Undocumented_Changes

RATIONAL 123

Change Tracking

Histories, cont.

• Display history, both user annotations and
compilation summaries, of changed units in a

•view

- Display list of changed units: His-
tory.Show~Changed_Unit8

- Display user annotations for changed
units: History. Show_Change_History

Display compilation summaries for a view:
Hiatory.Show_Compilation_History

124 RATIONAL

