Y{X‘V' ISPy | 1},LLL (T \‘x (AN V)
e
OeDR-ELete T

Rational Environment Training —
Fundamentals

Copyright © 1986 by Rational

Document Control Number: 1010

Rev. 5, December 1985
Rev. 5.1, January 1986
Rev. 5.2, April 1986
Rev. 5.3, July 1986

This document subject to change without notice.

ii

Rational
1501 Salado Drive
Mountain View, California 94043

nere RATIONAL

Rational Environment Training — Fundamentals

Slides
Contents
Basic Mechanisms
Introduction 1
The Keyboard 4
. The Screen 8
Environment Structure 14
Environment Traversal 18
Window Management 24
Command Execution 36
Help and Documentation 46
General Editing 51
Ada Program Creation
Basic Concepts 64
Ada Editing Aids 71
Ada Units 80
Unit Testing 91
Organization of Ada Units 96
More Ada Editing Aids 110
Multiple-Unit Ada Programs 116
Ada Program Modification
Simple Browsing 140
Introduction to the Debugger 165

’ Program Modification—Single-Unit Method 177

iii

Program Modification—Multiple-Unit Method 204

Additional Topics

Naming Conventions 213
Library Objects Management 221
Future Topics 239

iv RATIONAL

Seminar Outline

Basic Mechanisms

e Introduction
The Keyboard
The Screen
Environment Structure
Environment Traversal
Window Management
Command Execution
Help and Documentation
General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

Introduction

Course Objectives

e To introduce the fundamental concepts and
mechanisms of the Environment used in basic

software development

e To provide experience in creating and
changing small Ada programs using the
Environment

e To build a foundation for further exploration
in the Environment

2 RATIONAL

Introduction

([
Course Materials

e Rational Environment Training—
Fundamentals

— Course slides

— Hard copy of scripts
e Rational Environment Basic Operations

— Sequence of steps, commands, and keys
o used to perform common Environment
functions

— Keymap

¢ Rational Environment Reference Summary
— Keymap
— List of Environment commands

e Rational Environment Reference Manual

— H-volume set

RATIONAL 3

Seminar Outline

Basic Mechanisms
Introduction

e The Keyboard
The Screen
Environment Structure
Environment Traversal
Window Management
Command Execution

Help and Documentation

General Editing
Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

The Keyboard - ous o

The Keyboard

TTTT] FTTTT

Fie "ns

F18 "m "ru "n' “rzo

L EEELFLEPELEEEET T CET™
| E]_]L il O N T ¢ TUUUL
CFEIELTFILLLT ll"ll]l il Ilaaan

CEEET LR ™ ELFT LT

i Bl I 1) 0

RATIONAL

The Keyboard

Key Usage

o Item - operation keys .

— Items: [Object), [Region|, [Window|, [Image], | Li;el, [Word|,

.)]
— Operations: for example, (1], (1], (pettel,
=

— Press and release the item key, and then
press and release the operation key

— Notation: [item key|] - [operation key]|

e Modifier keys

. EsC
— Modifiers: [shift], [Controll, Defal

— Operate with the function keys and basic
alphanumeric keys

— Press and hold the modifier key while
pressing the next key

— Notation: .|4modiﬁer key“ Fn| OT [modifier key| alphanumeric key]|

£eci~ fFn)

6 RATIONAL

The Keyboard

@ |
Function Key Template

Debug Dobug Debuy - Misc. Travarse
CONTROL
META
SHIFT
META
SHIFT
CORTROL Dsbugger Devug” Debug Home
META Window Show Task
{Braaks) Display
CONTROL)
SHIFT
META Debug ‘ Debug Debug Enclosing
Stop Acuvate Propagate Object
CONTROL . Debug Debug Debug Print Ada
< Ren Break Catch Other
) {Local) Part
SHIFT . Debug Debug Debug
: fun Definttion Put
Debug Dsbug Debug Prampt Defimtcr
Execute Display Stack fFor

‘ F1 F2 F3 F4 F$§ 'F6 F7 F8 F9 F10

Help List Promote Demote/ Creste Errors ltoms ftems Jobs Info.
’ CONTROL

META

SHIFT

META

SHIFT
Help Library Compilation Cempilstion Creste CONTROL End What
Window Space Make © Demote Text META of Object

Input

Create CONTROL
World SHIFT

Help Varbose ' Withdraw Creste META Clear Job What
;:y List Directory Errors Connact Locks
Help List Code Seurce Craste CONTROL Show item Previous Job What
on Objects Privete Errors off hem Kill Users
Command Pant
File Demots Creste SHIFT Job What
Ust Body Enable Load
Pant
Help Ada install Edit Creste Semanticize Explain Next Job What
on Help List Command ftem hem Disabie Time

F11 F12 F13 Fi4 FI15 F16 F17 F18 F19 F20

RATIONAL 7

Seminar Qutline

Basic Mechanisms
Introduction
The Keyboard

e The Screen
Environment Structure
Environment Traversal
Window Management
Command Execution
Help and Documentation
General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

The Screen

|
Login

e Login procedure

Commence Login

enter terminal type (RATIONAL):
enter user name: @T/i

enter password:

enter session name: .., — O7__4

—

e Terminate each step by pressing
o e Input is case insensitive
e Terminal types

— Valid terminal types: Rational, V100

— = at Commence Login Or enter user name
prompts brings up the enter terminal
type prompt H\/;\‘; S0 il A C I nal ’/’3 @ St b f;’;v;}

— for the default type indicated in
parentheses

RATIONAL 9

The Screen

Exercise: Logging In

Log into the Environment.

10 RATIONAL

The Screen

@
Types of Windows

e Message window: Displays system status
information

e Major window: Displays images of objects
(libraries, Ada units, files)

e Command window: Displays commands for
execution

e Example

. { Rational Environment

A.5.30_0 Copyright 1984, 1985, 1986, by Rational.

(AN e f oA S Qunp e
A
{ Baseball_System . Library (V¥orld);
Copyright_1986_Rational : File;
Debugging : Library (Directory);
Experiment : Library (¥orld);
Project_1 : Library (Yorld);
} Rational_Commands . Ada (Proc.Spec);
: Rational_Commands : Ada (Proc.Body);
/ Sample_File : File;
& Statistics_System : Library (Yorld);
S 5.1 . Session;
WU EdmEE R e
aM ~1.Swi s : File (Swi ; N
o (Suiten) BENPe(

RATIONAL | | 1

The Screen

Objects, Images, and Windows

‘/‘_\

-

Underlying

Image in
Object

Window

e User sees an image, a representation, of the
object in a window

e Image extends an arbitrary distance to the
right and down

e Object must be updatéd to save changes in
the image

12 RATIONAL

The Screen

Objects

o Environment is oriented around concept of
an object

e Kinds of @ are
— Text (file)
— Ada

— Library ovic oo e

— Other

e Specific form and structure are associated
with each kind of object '

e Environment knowledge of that form allows
for object-specific editing operations

e Similar operations work across objects

RATIONAL

13

Seminar Outline

14

Basic Mechanisms
Introduction
The Keyboard
The Screen

e Environment Structure
Environment Traversal
Window Management
Command Execution
Help and Documentation
General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

Environment Structure

® Components in Environment Structure

e Hierarchical structure of objects
e Classes of objects

— Libraries (worlds and directories)

— Ada units

— Files

— Others
e Root library is the world called “:”

e Arbitrary nesting of worlds and directories

RATIONAL

15

Environment Structure

Environment Hierarchy

Commands ,’Io Lrm - Tools Users
Pt 1 Pt 2 Pt 3 Pt 4
Baseball_System Debugging Sample_ File S 1

16 Q RATIONAL

Environment Structure

Notation of Environment Structure

///ichpjl
e
/’T< !,”] :
" Co . : Librery (Vorld);
lo 4 : Library (VWorld);
Lem \ . Library (VWorld);
Tools | : Library (VYorld);

User@x . Library (¥orld);

PR L C

' .
Pt_1

. Library (Vorld);
Pt.2 : Library (Vorld);
Pt.3 . Library (VYorld);
Pt.4 . Library (Vorld);
L= LUSERS pliorany worla - S
[I e o
- ”l\i,/ :—/l")‘1.,1/" H /,—';
1 — Libr 1d) :
Baseball_System : Library (V¥orld);
Copyright.1986_Rational : File;
Debugging . Library (Directory);
Experiment . Library (VWorld);
Project.l . Library (V¥orld);
Rational._Commands : Ada (Proc.Spec);
Rational _Commands . Ada (Proc.Body);
Sample_File . File;
Statistics._System . Library (Vorld);
-1 . Session; . o . e
S_1_Lost_Keys . Pipe; - IR L ‘ -
S.1_Switches . File (Switeh);

'USERS PT_1 jliorarv.

worla

Baseball :
Baseball :
Baseball_Statistics
Baseball_Statistics :
Data_|nputter
Data_inputter
Formatter

Formatter

RATIONAL

Ada (Pack.Spec);
Ada (Pack.Body) ;

Q
o

. Ada (Proc_Spec) ;

Ada (Proc_Body),

. Ada (Pack.Spec);
. Ada (Pack_Body);
. Ads
: Adas
'HISERS FPT_1 BASEBALL _

(Pack_Spec) ;
(Pack_Body) ;
EM (library.

SYST

17

Seminar Outline

18

Basic Mechanisms
Introduction
The Keyboard
The Screen
Environment Structure

e Environment Traversal
Window Management
Command Execution
Help and Documentation
General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

Environment Traversal

o
Moving to a New Object

e Called traver.éing\

e Uses the hierarchical structure of the
Environment

e Basic model

— Point to the object of interest
— Go to the object

. e How to traverse

— Move the cursor to the line containing the
object

— Go to the object:

Plenn o

RATIONAL 19

Environment Traversal

Moving to a New Object, cont.

e Example
'Users : Library; !Users.Pt 4 : Library;
Pt 1 : Library (World); Baseball_System : Library (World);

Pt_2 : Library (World); —gp gebu%gi;gl o
ample_File ¢ File;

Pt_3 : Library (World);
l Pt 4 : Library (World); S 1

e Additional commands

: Session;

— Qo to outer enclosing library structure or

Ada unit: [Enclosing Object]

— Go to user home world:

— Move to upper window:

— Move to lower window: -

20

RATIONAL

: Library (Directory);

Environment Traversal

Exercise: Traversing the Environment

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Start in your home world.

2. Move your cursor to the line containing the
Experiment world.

C 3 3. Move your cursor to the line containing the
Project_1 world.

4. Go to the Project_1 world.

9. Go to the code_Generator world inside

Project_1.

6. Go to the rRelease_1 world inside

Code_Generator.

RATIONAL 21

Environment Traversal

Exercise: Traversing the Environment, cont.

22

7. Return to the window displaying the
Code_Generator world.

8. Go to the world enclosing code_Generator.
You should be in Project_1 after executing
this step.

9. Go to the world enclosing project_1. You
should be back in your home world after
executing this step. ®

10. Go to the world enclosing your home world.
You should be in the users world after
executing this step.

11. Go to the world enclosing users. You
should be in the root world of the
Environment, “1”.

12. Return directly to your home world.

RATIONAL

Environment Traversal

Exercise: Traversing the Environment, cont.

13. Go to the following places using the keys

just explored. (pt_n indicates your home
world.)

— !Users.Pt_n.Project_1.Linker
— !Users.Pt_n.Project_i.Linker.Release_2

— !Users.Pt_n.Project_1.Code_Generator-

.Release_2

— !'Users.Pt_n

RATIONAL | 23

Seminar Outline

24

Basic Mechanisms
Introduction
The Keyboard
The Screen
Environment Structure
Environment Traversal

e Window Management
Command Execution
Help and Documentation
General Editing

Ada Program Creation

Ada Program Modification
Additional Topics

RATIONAL

Window Management

Window Characteristics

e Environment creates windows

— Overlays using least-recently-used
algorithm

— Marks next window to be overlaid with a

tilde (") in banner
v

e User manages windows

o — Can alter the size and the location

— Can explicitly remove

— Can lock onto the screen

RATIONAL 25

Window Management

Screen Organization

e Screen is a set of frames

e Frame contains a major window plus any
number of Command windows

e Environment default is to divide the screen
into three frames

Major window
Frame 1
[Command window]
Frame 2
Frame 3

RATIONAL

26

Window Management

Window Manipulations

e Managing the current window

— Cursor determines current window

— Current window can be sized, moved,
locked, or removed

e Managing the Window Directory

— Window Directory contains set of all
windows viewed

— User can remove or view any window

RATIONAL

27

Window Management

Current Window Manipulations

e Sizing and positioning major windows

— Expand the current window size:
-

— Transpose the current window and the
window above: - T

i

{ .
Lo e '\,//y . Y e
T S

e Locking major windows

— Lock the window in its current position:
[Window| - [Promote]

R —

o)

— Unlock the window: [Window] - [Demote]

— Note that f@ in banner indicates the
window is locked

28 RATIONAL

Window Management

Current Window Manipulations, cont.

e Removing windows

— Remove the window from the screen:u.c.. n ...

[Window]| - [DJ

— Remove the frame from the screen:

[Window] - [X]

o Removmg 1mages

- |
— Release the object w1thout saving the
changes: [Obedt - [§ . L i
— Release the object and save the changes
[Object] - [X]
) é({;-\:‘,
ser gt
s ke

RATIONAL 29

<

(s

Window Management

Window Directory

e Keeps list of all images viewed and not
released

e Window Directory replaces the next window
to be overlaid

e Window Directory window is overlaid next
e Symbols
— = means read-only image

— (a blank) means read/write image and
not changed since last save

— » means image changed but not saved

30 RATIONAL

Window Directory, cont.

Window Management

® e
Example e e ol
MOD LINES TYPE LAST / BUFFER NAME
RIS EINBREN SXADTNMBNBVIIE |MBIITINTRWMVE
- 15 (text) 11:44:23 AM @1 HISTORY.LOG_#7.12_85" V(a) o
4 (library) 11:44:15 AM ~1.CODE_GENERATOR . RELEASE._1
/a- 5 (library) 11:44:07 AM .PT_1.PROJECT_1. CODE_GENERATOR & %
i 5 (library) 11:44:04 AM 1USERS.PT_1.PROJECT_1 .
TR = 14 (library) 11:39:47 AM IUSERS .PT.1
10 11:44:28 AM Help Vindow
/ - 5 11:44:28 AM Message ¥indow
7 /m 10 (windouws) 11:44:28 AM ¥indow Directory
%% /
g T A
BRI e e “ly
" Z_\\ [A4 ~

RATIONAL

/[«\ \A‘:’Q>

31

Window Management

Window Directory Manipulations

e Display the Window Directory:

| Window| = [Definition|

e Display an image

— Align cursor on image of interest
(cursor keys, scrolling keys)

— View the image:

32

RATIONAL

Window Management

Window Management Hints

e Use the Environment standard window sizing
and placement

o Use - (3 to increase the size of major
windows

e Use the window lock mechanism to retain on
the screen windows of continual interest

e Remove windows from the screen when you
no longer need them at the moment (you can
always get them back by using the Window
Directory)

e Remove images when you’re through with
them (this keeps your Window Directory
smaller and makes it easier to find things
quickly)

€ . \, ¥

RATIONAL | 33

Window Management

Exercise: Manipulating Windows

34

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

Start with three major windows on the screen.
If you don’t have three, use the Window
Directory window to bring additional windows
onto the screen. The screen is divided into
three frames, numbered 1, 2, and 3 from the
top of the screen.

1. Switch the arrangement of the windows so
the major window in frame 1 is in frame 2.

W e, T (5 (e o o

o e

2. Switch the arrangement of the windows so

the major window in frame 3 is in frame 1. »
N

Notice where your cursor is positioned after
the operation. |

[t f -
(_,‘ﬁ;‘ C’ e

RATIONAL

A
S i

J PNy

R RN VAR

Window Management

Exercise: Manipulating Windows, cont.

3. Expand the major window in frame 2 to ~
occupy the space of frames 2 and 3. «, dow -T ..

4. Using the Window Dlrectory, go to the root

of the Env1ronment 2 e -
+\[A@A f{l’ e

- ey S

5. Lock the wmdow displaying on the
screen. How can you tell if a window is
locked on the screen? Wg{j;; Prerere E

® 6. Using the Window Directory, go to

!Users.Pt_n.Project_1.Code_Generator-

“”

7

.Release_1 ’

7. Unlock the window displaying “+”.-

8. Notice which window will be overlayed. Go
to sers;Pt_n,Project_i.Code_Generator-‘
-Release_1.History_Log_07_12_85.

RATIONAL 35

Seminar QOutline

36

Basic Mechanisms
Introduction
The Keyboard
The Screen
Environment Structure
Environment Traversal
Window Management

e Command Execution
Help and Documentation
General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

Command Execution

o
Command Model

e Environment commands are Ada procedures

e Any Environment command can be executed
from a Command window

e Common commands are bound to keys

RATIONAL 37

Command Execution

Keys

e Procedures bound to keys execute identically
from a Command window

e Users can bind any command to any key

e Additional information about any key is
available through on-line help

38 RATIONAL

Command Execution

|
On-Line Help on Keys

o Command: | Help on Key]

e Command operation

— Prompts for key of interest in the Message
window

— Press key of interest
e Help window

— Displays command name, key binding(s),
brief summary from the Reference Manual

— Can be scrolled

RATIONAL 39

Command Execution

Command Window

40

e Displays Ada declare block where commands

can be entered

e Can contain any arbitrary Ada code

e Example

Baseball

Baseball
Baseball_Statistics
Baseball_Statistics
Data_lnputter
Data_inputter
Formatter

Formatter

= tOJERS FT_1 BASEBALL_SY3Siteli 111Drarv,
declare
use Editor, Library, Common;
begin
end;

RATIONAL

Command Execution

Command Window Operations

e Create a Command window from any
window: [Create Command]

e Complete a command fragment 1nclud1ng any

!

parameters: S O™ o4O faiod
e Execute a command:

e Execute another command by entering the
new command on the prompt

e Reexecute a command:

RATIONAL | a

Command Execution

Promote

e Means “I’'m done - go do this operation”
e Is the most frequently used key
e Usage examples

— Execute commands

— Enter interactive I/O
— Change state of Ada objects

— Save text files

42 RATIONAL

Command Execution

Prompts

e Characteristics

— Indicated by reverse video
— Disappear automatically as you type
e Usage

— Double quote remains for string
parameters

— Turn off a prompt to modify the test:
(Ttem—off] [c Tel] K]

— Move between prompts:

| Previous Item|

T2 i

S~ ™
tu\’ &

, N
o {

b)

RATIONAL 43

Command Execution

Exercise: Using Command Windows

44

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1.
2.

Create a Command wmdow

complete the command. What happened |
you started typing on the prompt

oo @

At the prompt, enter 1. What happened to
the prompt and the double quotes as you
started typing? "~ v~

1 407)\;/
Execute the commané A window showing
the root of the Environment appears/ What
happens to the command in the Command
window? Remove the window dlsplaymg the

root world, “+”, from the screen. ' 1,

P

\/f

Return to the Command window and
reexecute the same command.

RATIONAL

Command Execution

Exercise: Using Command Windows, cont.

6. Return to the Command window. Turn the
command into text so you can modify the
parameter.

Ty ’L,‘ | {/)ﬂ

7. Change the parameter to 1users and
reexecute the command.

8. Return to the Command window. Retype
defin over the prompt and complete.

9. Move your cursor to the beginning of the
line. Now move directly to the parameter
(without using the cursor keys).

RATIONAL 45

Seminar Qutline

46

Basic Mechanisms
Introduction
The Keyboard
The Screen
Environment Structure
Environment Traversal
Window Management
Command Execution

e Help and Documentation
General Editing

Ada Program Creation

Ada Program Modification
Additional Topics

RATIONAL

Help and Documentation

| |
Additional On-Line Help

® |Help on Help| key

® Help on Command] key

— Unambiguous names produce help
message

— Ambiguous names produce list of
commands

RATIONAL 47

Help and Documentation

Form of Help Messages

e Keybindings, if any, on first line
e Ada specification of command
e Description of command

— May be longer than the size of Help
window

— Contains information from the Reference

Manual ®

48 RATIONAL

Help and Documentation

Documentation

e Reference Manual (5 volumes)
e Reference Summary

e Other manuals

— System Manager’s Guide
— Networking Tools
® — Site Planning Guide

— Términal User’s Manual

— Project Management Manual

RATIONAL

49

Help and Documentation

Indexes for the Documentation

e Master Index

— Located in back of Reference Summary

— Located in each Reference Manual volume

— Contains alphabetical entries of packages,
subprogram, types, and exceptions

e Tables of Contents

— Located in front of each section in each .
volume

— Contains normal Table of Contents

— Contains alphabetical Table of Contents

50 RATIONAL

Seminar QOutline

Basic Mechanisms
Introduction
The Keyboard
The Screen
Environment Structure
Environment Traversal
Window Management
Command Execution
Help and Documentation
e General Editing

Ada Program Creation
Ada Program Modification
Additional Topics

RATIONAL

51

General Editing

Moving within an Image

e Commands provide movement by character,
word, line, or image scrolling

e “Master Reference to Key Bindings by
Topic” in the Keymap lists the commands
under the “Moving within an Image” section

52 RATIONAL

General Editing

Editing Operations

e Commands provide textual manipulation
of characters, words, lines, or regions for
common editing operations

— Deleting text

— Moving and copyiﬁg text

— Transposing text

— Controlling the case of text
— Searching and replacing text

e “Master Reference to Key Bindings by
Topic” in the Keymap lists the commands
under the “General Editing Operations”
section

RATIONAL 53

General Editing

Editing Operations:
Search and Replace

e Four different operations

Search Replace

Forward Control |[8]

Reverse Control || R M R

54 AR RATIONAL

General Editing

Editing Operations:
Search and Replace, cont.

e Basic model

— Search/replace command is initiated by
pressing the search or replace key

— Editor enters composing mode, which is
indicated in the Message window banner

— Search and replace strings are entered at
o Message window prompts

— Composing is completed and command
execution is started by pressing the search
or replace key

— Cursor is positioned one character after
the target or replacement string (forward
direction)

— Replacement or finding of the next
occurrence is done by pressing the search
or replace key

RATIONAL 5

General Editing

Editing Operation}s:
Search and Replace, cont.

e Additional commands

— Abort from composing mode: [ControllG]
— Exit from search mode:

— Replace “n” occurrences: prefix to
the replace key

— Replace all occurrences: [Numeric -] - [Numeric 1]
prefixes to the replace key

56 RATIONAL

General Editing

Basic Editing
Create
View
‘/E:lgim
Image Underlying
in Window _/ Object
Save

e Basic method

— Retrieve the image of the underlying
object through the create, view, or edit
operations

— Enter the necessary editing changes

— Save the changes in the image to the
underlying object

RATIONAL 57

General Editing

Text Objects
Create Text
Definition
Text Image Underlying

in Window Object

Enter
Promote

e Commands

— Create an object in a library: [Create Texi]

— View the object with read-only access: .~

— View the object with read/write access:

%l{" }l: S

1iny .
. R - S Sl
- (s,..:-”"’

— Save any changes to the object and retain
read/write access:

— Save any changes to the object and
change to read-only access:

58 RATIONAL

General Editing

Exercise: Editing Text

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you

1. Create a text file in your home world ca.lled
Alternate_Log. ‘

2. Locate and go to the image of
the file History_Log_07_12_85 in
!Users.Pt_g.Project_1.Code_Generator-

’iC{ “KReleas e_1.

3. Copy the entire contents of this file into
your newly created Alternate_Log file using
region copy. Use the Alternate_Log file for
the rest of the exercise.

/////////

4. Add the line History log for the week of
o7-12-86 to the beginning of the file.

RATIONAL 59

o
[k WAL

General Editing

Exercise: Editing Text, cont.

5. Use search to find the next occurrence of
DBP.

6. Set the beginning of a region at this point.
7. Use search again to find output.

8. Set the end of the region at this point and
copy it at the end of the file.

9. Save the file but retain read/write access so
you can continue editing.

10. Go to the beginning of the file and kill the
first line.

11. Move to the second line in this revised file.

12. Move two words to the right and delete the
rest of the line.

60 RATIONAL

General Editing

Exercise: Editing Text, cont.

13. Join the first two lines.

14. Search and replace all occurrences of the
word 1ink with the word 10a4, except for
the occurrence that is part of the word
Linked_List.

15. Save the file and change the access from
read/write to read-only.

RATIONAL 61

General Editing

Review

62

What is on the screen?

What are objects, images, and windows?

What are common characteristics of
windows?

Describe the directory structure of the
Environment.

How do you move around the directory
structure?

How are commands invoked?

What does do?

What is in the Rational Environment Basic
Operations and when would you use it?

RATIONAL

General Editing

,/ ’1 » # /y o

Review, cont.

e Where is the Rational Environment Keymap?

e What information does the on-line help
system provide?

e What information would be found in the
Rational Environment Reference Summary?

RATIONAL 63

Seminar Outline

64

Basic Mechanisms

Ada Program Creation
e Basic Concepts
- Ada Editing Aids

Ada Units
Unit Testing
Organization of Ada Units
More Ada Editing Aids
Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

RATIONAL

Basic Concepts

|
Development Models

e Conventional model

compile link/load elaborate/execute

executed

e Rational Environment model

R e W

source installed > coded executed

RATIONAL 65

Basic Concepts

Development Models, cont.

e Conventional model

— Separate file for each “state”

— Inconsistencies can exist between the
actual source and what is being executed

— Compilation management is manual and
by convention only

e Rational Environment model

— One object with “state” information

— Actual image you see is what is being
executed

— Compilation is managed by the
Environment

66 RATIONAL

Basic Concepts

|
Ada Objects and Images

Definition
/m

Ada Image Underlying
in Window Object

~__~—

| Enter

e View the Ada object with read-only access:

e View the Ada object with read/write access:

e Save the changes and retain read/write
access:

RATIONAL 67

Basic Concepts

Ada Objects and Images, cont.

e Ada object expanded

4 Def
4_\991' Def
Ada Image ~ Edit =
in WindOW A el @) installed COdE
_/ U .
nderlying
Enter Object ®

68 RATIONAL

Basic Concepts

o
Ada Object States

e Source
— Editable

— Not necessarily syntactically or
semantically consistent

o Installed
— Not editable but"i"gan be altere;/iiij}

® — Syntactically and seﬁéhﬁédﬂi} consistent

— Can be referenced by other units

e Coded
— Cannot be altered

— Syntactically and seggggﬁiigeajl}y consistent
— Can be referenced by other units

— Machine-code generated

RATIONAL 69

Basic Concepts

Ada Object State Transitions

promote —%
demote ¢—

installed I

source coded executed

e Move the Ada object one state relative to the
current state: [Promote|, | Demote]

e Move the Ada object to a specific state:
[Source|, [Install], [Code], [Edit] |

e Move entire libraries to a specific state with
automated facilities

0 RATIONAL

® Seminar Outline

Basic Mechanisms

Ada Program Creation
Basic Concepts
e Ada Editing Aids
Ada Units
Unit Testing
Organization of Ada Units

More Ada Editing Aids
Multiple-Unit Ada Programs
Ada Program Modification

Additional Topics

RATIONAL

71

Ada Editing Aids

Ada Object Editing

A a A
aaaaa
......
% rce”
aaaaaa

a A A A
'

v

installed\ coded

e Format

— Incremental s%mtactlc checkmg f“ﬁ
— Syntactic completion N
— Pretty printing

e Semanticize

— Incremental checking of Ada semantics

"2 RATIONAL

Ada Editing Aids

Ada Object Editing, cont.

Cheew o Y U7 w“(w:é’ff} :;*Lf\
[

e Incremental additions, changes, and deletions
to statements and declarations allowed

RATIONAL 73

Ada Editing Aids

Format

e Can be done on incomplete programs

@ Checks for syntactic errors (for example,
keyword in the wrong place)

e Provides minimum completion for incomplete
code fragments

e Inserts prompts for required code additions

— Move to the next prompt: [NextTtem| c2~ /) ®

— Move to the previous prompt: [PreviusTiem] : -~ ()

e Pretty prints the program

74 | RATIONAL

Ada Editing Aids

Format, cont.

e Example before

procedure format_exsmple is t:integer

* [COMP_UNIT) 1aaa. Source unil

e Example after

procedure Format_Example is
T : Integer;

begin

end Format_Example;

RATIONAL 75

Ada Editing Aids

Semanticize _) -

e Can be done on program fragments
e Verifies the meaning of Ada structures
e Example

— Type incompatibility

— Parameter profile matching

— Declaration of named objects

- RATIONAL

Ada Editing Aids

Semanticize, cont.

e Example before

procedure Semanticize_Example is
Defined : Boolean := True;

begin
Undefined = Defined;
Text_lo.Put (Undefined);

end Semanticize_Example;

¥ 'USERS PL_180 _ADA_Z_"vi¢ 13aa)

e Example after

source unift

Semantic errors found »
= L0ogo FL_1@0 S_1 running

procedure Semanticize_Example is
Defined : Boolean = True;

begin
Undefined .= Defined;
Textlo Put (Undefined);

end Semanticize_Example;

'USERS PL_1w

vidiy)yaca

#

AUA¢_

RATIONAL om

Ada Editing Aids

Syntactic and Semantic Errors

e Message window displays error notification
and explanations

e Each occurrence is underlined

e Commands

e

— Explain error further: [Ephis Tem] 25 |

g

— Move to the next error: [Fextfem i - -~/ |

— Move to the previous error: [Peviousttem/ 7", i/ ®
& M F j)«v ?é_/
— Remove the current error designation:

Pl — .

f AR I3 - i
(ﬁ g ,"/ {
{5

78 RATIONAL

. Ada Editing Aids

Syntactic and Semantic Errors, cont.

e Example

Sementic errors found .
UNDEF INED denotes no defined object or value ;

= L0ogo PL_10 S_1 running

procedure Semanticize_Example is
Defined : Boolean := True;
begin
Undefined := Defined;
Iext.lo Put (Undefined);

end Semanticize_Example;

4 'USERS PL_18 _ADA_2_ Vi2i 13031 source unil

RATIONAL 79

Seminar Outline

80

Basic Mechanisms

Ada Program Creation
Basic Concepts
Ada Editing Aids

e Ada Units

- Unit Testing

Organization of Ada Units
More Ada Editing Aids
Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

RATIONAL

Ada Units

o T .

e el
\\\\
~

" Ada Unit Creation e

e Find (or create) a library

e Create a workspace in the library: - [

e Enter the program unit using incremental
syntactic completion ([Formatl) and semantic

checking ([Semanicize])

e Promote the Ada unit to the installed state
when there are no semantic errors: ‘

e When the program unit is complete enough
am unit 18
to run, promote to the coded state, [Promote]

M

e Execute the program by openmg a Command
window, entering the program name, and

executing:

RATIONAL 81

Ada Units

Program Execution

e Program driver is executed from a Command
window.

e Command procedure is elaborated and
executed:

— Run-time representation of your program
is created (linked and loaded).

— Ada elaboration of your program is
completed.

— Your program is executed.

82 RATIONAL

Ada Units

Training Scripts

e Detailed instructions provided to accomplish
specific tasks

— Displayed in normal Environment
windows

— Can be overlaid by other windows
e Menu allows selecting one of several scripts

¢ Commands

— Start up the scripts: [F1]
— Return to the menu: [F

— Return to previous step or previous menu
item: [F3

— Go to next step or next menu item:

— Select current menu item: [Fs

RATIONAL 83

Ada Units

Training Scripts, cont.

e Example of script window

= rogo FT_1 5_1

243 STARTED le 9wl w5 FH MOd1Tylng Aga Program

SCRIPT WINDOYW i LexL

84 RATIONAL

Ada Units

|
Script: Creating Ada Programs

Use the “Creating Ada Programs script to
assist you.

Create and execute a program in a library that

prints a “Hello World” message to the screen
using format, semanticize, and promote.

RATIONAL 85

Ada Unite

Optional Exercise: Creating Ada Units

86

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Build a program to print out the phrase
“My name is ” and some name supplied as
the program parameter. Create the program
in the Experiment world in your home world.
Use the specification provided below or one
of your own.

procedure My_Name (The Name: String);

2. Enter the program using format and
semanticize.

3. Execute the program and verify the result.

RATIONAL

Ada Units

Exercise: Creating Ada Units

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Build a program to compute factorials in a
library. Create it in the Experiment world in
your home world.

2. Enter the program provided on the next
page, or your own, using format and
semanticize. It is possible to enter the
program by pressing the key only
2 times. It is also possible to enter the
program using the key only 10 times.

- How close can you come?

RATIONAL 87

Ada Units

Exercise: Creating Ada Units, cont.

88

with Text_Io;
procedure Factorial (N : Natural) is

The_Result : Natural := 1;
begin

for I in 1..N loop
The_Result := The_Result * I;

end loop;

Text_Io.Put_Line
(Natural’Image (N) & " ! " &
Natural’Image (The_Result)):

end Factorial;

3. Execute the program and verify the results.

RATIONAL

Ada Units

Optional Exercise: Creating Ada Units

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1.

Build a program to calculate the area of
a circle, where the diameter is supplied
as the program parameter, and print out
the result. Create the program in the
Experiment World in your home world.

The formula for the area of a circle is pi

* radius squared. The radius of a circle is
diameter / 2. Use the specification provided
below or one of your own.

procedure Area_0f_Circle (Diameter :
Natural);

Enter the program using format and
semanticize.

Execute the program.

RATIONAL 89

Ada Units

Optional Exercise: Creating Ada Units

Use the Rational Environment Bas:c
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Build a program to count the number of
lines in a text file, where the filename is
supplied as the program parameter, and
print out the result. Create the program

in the Experiment world in your home world.

Use the specification provided below or one
of your own.

procedure Count_Lines (File_Name :

String) ;

2. Enter the program using format and
semanticize.

3. Input files have been provided in the
Experiment World. Execute the program
and verify the results. Inputi has 270 lines.
Input2 has 416 lines.

% RATIONAL

Seminar QOutline

Basic Mechanisms

Ada Program Creation
Basic Concepts
Ada Editing Aids
~Ada Units
o Unit Testing
Organization of Ada Units
More Ada Editing Aids
Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

RATIONAL

91

Unit Testing

Command Window Usage

e Executing Environment commands
e Executing user-created commands
e Executing Ada programs

e Testing and prototyping Ada units

92

RATIONAL

Unit Testing

Unit Testing with Command Windows

e Motivation: Provide mechanism to gain
feedback on program algorithms

e Basic method

— Create the Ada unit and promote it to
the coded state - +- <

— Create a Command window attached
to the library containing the unit to be
tested: | Create Command)|

— Enter the test program including any
local variables and any calls to the unit:

use frequently

— Check for semantic errors: use
frequently

— Execute the test program:

RATIONAL 03

Unit Tesiing

Script: Testing Ada Programs

94

Use the “Testing Ada Programs” script to
assist you.

Test the He110 program created in a previous
script in a Command window.

RATIONAL

Unit Testing

Exercise: Testing Ada Programs

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Return to the Experiment library containing
the Factorial program previously created.

2. Create a Command window and test your,

I e 2

Factorial program for a range of values s
@ from 0 through 12. .

3. Change your test program so that it will
print a starting test message before the loop
used in the previous step. Reexecute.

RATIONAL 05

Seminar Outline

Basic Mechanisms

Ada Program Creation
Basic Concepts
Ada Editing Aids
Ada Units
Unit Testing |

e Organization of Ada Units
More Ada Editing Aids
Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

%6 RATIONAL

Organization of Ada Units

e T e it e L T
. e i . S . §

" Motivation

e Ada systems consist of

— Ada code
— Documentation
— Test drivers and data

e Libraries provide a means of organizing these
components of a system

RATIONAL 07

Organigation of Ada Units

Libraries -

e Consist of two kinds

— Worlds -~ .. 7o e

— Directories

e Are closed scope

— Local units

— Explicitly imported units

98

RATIONAL

Organization of Ada Units

@
Kinds of Libraries

- ~__

o Worlds typlcally structure systems at a
prOJect level, such as

— Each user
— Each project
— Each major piece of a large project

° Dlrectorles organize the work within a
® project, such as

— Documentation
— Test data
— Test scaffolds =~ < =00 v A

Ao
E

— Implementatlon of the prOJect

RATIONAL o9

Organigation of Ada Units

Kinds of Libraries, cont.

e Example

Project World

Software Test Ada Units
Design Directory Directory
Files

| |
Unlit A Unit B Unlit o

l l
Test Test T’est
Results Data Cases
Files Files

100 RATIONAL

Organization of Ada Units

Contents of Libraries

e Ada compilation units, such as procedures or
packages

o Files (text objects) for documentation or test
data

e Other libraries (worlds or directories) for
further partitioning

RATIONAL 101

Organization of Ada Units

Visibility in Libraries

e Units in “with” clauses must be either
declared in or imported into the library

{/‘-{ ve? J" A / L7 E ‘p)

e Units imported into the library use lznks)

i o~ o 2 N g ¢ “)
e Utilizing a resource from another 11brary isa

two-step process

— Import resources into the library via links

— Import resources into the Ada unit via
“with” clauses

102 RATIONAL

Organization of Ada Units

Links

e Import references toumts out31dea world™

e Are associated with each world (not
directories)

e Provide a mapping from simple Ada names
to full library pathnames

e Are not inherited from enclosing worlds

RATIONAL 103

Organization of Ada Units

Links, cont.

e Example

Text-Io

Aol el - A L e

104 RATIONAL

Organization of Ada Units

Evaluation of Context Clauses

e A unit that has been “withed” into another
unit is searched for in two places in the
following order

— First look in the local library

— Second look in the enclosing world’s set o
links |

e Absence of the necessary link is a common

. error

RATIONAL | 105

Organization of Ada Units

Internal Links

e Are a second kind of link

e Are created by default

e Provide visibility across directories within a
world

106 RATIONAL

Organization of Ada Units

o
Basic Link Operation

e P el L o
4 Ll ”f o

o View llnksg\jlnks D1sp1ayy

e Add one or more links: !
Links.Add("<full link name>"):

o Ekégﬁiplé

= Logo FT_1 S_1 runni1ng

IUSERS .PT.1 EXPERIMENT % LINKS.DISPLAY STARTED 11:47:54 AM

86/06/26 11:47:56 --- Links from !USERS.PT_1.EXPER!MENT.

. Link Kind Actual Name
. RIEDII2ZNN -1 ¢ | saonmmms
FACTORIAL INT IUSERS .PT_1 .EXPERIMENT .FACTORIAL

f,HELLO-~~m_1NIw”~LUSER§J T-1.EXPERIMENT HELLO
{ TEXT-10 EXT 11O0.TEXT_TO™,

=

o ” e Do e Er«)

PUSERS FT_1 . EXPERIMENT

% LINKS DISPLAY 1Lexl.

SR Factorial : Ada (Proc.Spec);
e Factorial : Ada (Proc_Body);
Er e by HeHo . Ada (Proc:gpec);
A Hello : Ada (Proc_Body);
(- P/>/ Inputl : File;
W LD Input2 : File;

e QL [l

= VUSERS PT_1 EXFERHENT () 1liDrary.
begin

ZH Vi / D

Sl

. (/ ey / - LT (‘:‘
. L C (Ff/ ,.‘>/,,7 Zf/ LT e . o o
et FA (,‘(¢ o ST : "‘x R
/ - ;»}) R)

~
///[/ D M
T L P

RATIONAL . 107

/ {

Organization of Ada Units

Exercise: Links

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

You will need to look up the full pathname
of Text_Io in other documentation.

1. Go to the world called statistics_System in
your home world.

2. List the links for the statistics_sSysten o
world. (There should be none.)

3. Add a link for Text_1o. Where can you find
the pathname for Text_10?

4. List the links for the statistics_System
world again.

108 RATIONAL

Organization of Ada Units

Exercise: More Links

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.
You will need to look up the full pathname
for set_Generic and List_Generic in other

- documentation.

1. Go to the world called Experiment in your
home world.

2. List the links for the Experiment world.
(There should be internal and external

links.)

3. Add a link for Set_Generic.

4. Add a link for List_Generic.

5. List the links for the Experiment world
again. Notice the new external links.

RATIONAL 109

Seminar Outline

Basic Mechanisms

Ada Program Creation
Basic Concepts
Ada Editing Aids
Ada Units
Unit Testing
Organization of Ada Units
e More Ada Editing Aids
Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

110 RATIONAL

More Ada Editing Aids

Edit Histories

e Chain of editing changes is retained

e Each format operation creates a new entry
on the chain

e Step backward through chain: -

)
o Step forward through chain: - [® /

i

7

RATIONAL 111

More Ada Editing Aids

Template Generation

e Uses semantic information about the object

and knowledge of Ada

e Constructs and prompts for completion of
program unit specification: [Create Body Pari]

e Constructs and prompts for completion of a
package private part: [Create Private Part]

112 RATIONAL

More Ada Editing Aids

|
Managing the Compilation of the System

e When the system is complete enough to
run or unit test, use the automated facility
to promote all units to the coded state:
| Compilation Make|

— Manages all compilation dependencies

— Ensures that the semantic consistency of
the system is maintained

RATIONAL 113

More Ada Editing Aids

Using the Automated
Compilation Facility: Make

114

e Promotes all units of an Ada system to the
coded state following Ada compilation rules:

[Compilation Make|

e Sends output logs to the standard output
window

e Log symbols

=== means current status info

+++ means forward progress
--- means commentary
. means message continuation

++* means an error occurred

«** Imeans an error occurred

RATIONAL

More Ada Editing Aids

@
Using the Automated |
Compilation Facility: Make, cont.

e Example

running

'USERS .PT_1.STATISTICS_SYSTEM % COMPILATION MAKE STARTED 11:53:50 AM

86/06/26 11:53:51 ==a [Compilation.Promote ("", ALL_PARTS, CODED, SAME_WORLD,
86/06/26 11:53:52 ... FALSE, PERSEVERE);].
86/06/26 11:53:52 +++ !USERS .PT_1 STATISTICS_SYSTEM.CALCULATE_STATS has been

86/06/26 11:53:52 ... INSTALLED.
86/06/26 11:53:54 +++ !USERS.PT_1.STATISTICS.SYSTEM.FLOAT.STATISTICS has been
86/86/26 11:53:54 ... INSTALLED.
86/06/26 11:53:55 +++ !USERS.PT_1.STATISTICS_SYSTEM. INTERFACE has been
86/26/26 11:53:55 ... INSTALLED.
86/06/26 11:53:58 +++ !USERS.PT_1.STATISTICS_SYSTEM.CALCULATE_STATS 'BODY has
86/06/26 11:53:58 ... been INSTALLED.

. 86/06/26 11:54:87 +++ !USERS .PT.1.STATISTICS_.SYSTEM.FLOAT_STATISTICS 'BODY has
86/06/26 11:54:87 ... been INSTALLED.

86/06/26 11:54:13 +++ !USERS .PT_.1.STATISTICS_SYSTEM. INTERFACE 'BODY has been
86/06/26 11:54:13 ... INSTALLED.

86/06/26 11:54:14 +++ !USERS.PT_1.STATISTICS_SYSTEM.CALCRLATE_STATS has been
86/¢6/26 11:54:14 ... CODED.

86/06/26 11:54:15 +++ 'USERS PT.1.STATISTICS.SYSTEM.FLOAT_STATISTICS has been
86/06/26 11:54:15 ... CODED

86/06/26 11:54:15 +++ !USERS.PT_1.STATISTICS.SYSTEM. INTERFACE has been CODED.

86/06/26 11:54:17 --- Messages rated while promoting !'USERS .PT_1.
86/06/26 11:54:17 ... STATISTICS_SYSTEM.CALCULATE_STATS 'BODY to CODED.
86/06/26 11:54:17 --- 60 instructions for subprog CALCULATE_STATS
86/06/26 11:54:17 --- 149 instructions for segment 990466

86/06/26 11:54:17 +4++ 'USERS.PT_1.STATISTICS_SYSTEM.CALCULATE_STATS 'BODY has
86/06/26 11:54:17 ... been CODED

86/06/26 11:54:20 --- Messages generated while promotxgg 1USERS .PT.1.
86/06/26 11:54:20 ... STATISTI ~SYSTEM.FLOAT_STATISTICS 'BODY to CODED.
86/06/26 11:54:20 -— 167 instructions for package FLOAT_STATISTICS.
86/06/26 11:54:20 -— 328 instructions for segment 991490.

86/06/26 11:54:21 +++ !'USERS.PT_1. STATISTICS _SYSTEM.FLOAT_STATISTICS 'BODY has
86/06/26 11:54:21 ... been CODED.

86/06/26 11:54:24 -—- Messages rated while promoting !USERS.PT.1.
86/06/26 11:54:24 ... STATISTICS_SYSTEM. INTERFACE '‘BODY to CODED.
86/06/26 11:54:24 -— 133 instructions for package INTERFACE.
86/06/26 11:54:24 --- 317 instructions for segment 992514.

86/06/26 11:54:24 +++ 'USERS.PT_1.STATISTICS_SYSTEM. INTERFACE 'BODY has been
86/06/26 11:54:24 ... CODED.

86/06/26 11:54:24 +++ 6 units were INSTALLED.

86/06/26 11:54:24 +++ 6 units were CODED.

86/06/26 11:54.24 === [End of Compilation.Promote Command].
STATISTIUS_SYS1EM % LOMPILATION MAKE 1+ Lext)

RATIONAL 115

Seminar Outline

Basic Mechanisms

Ada Program Creation
Basic Concepts
Ada Editing Aids
Ada Units
Unit Testing
Organization of Ada Units
More Ada Editing Aids
e Multiple-Unit Ada Programs

Ada Program Modification
Additional Topics

116

RATIONAL

Multiple-Unit Ada Programs

Creating Ada Systems—Basic Method

e Create the set of specifications for the
components of the system

e Complete the implementation for all
components of the system

e Verify system functions

RATIONAL 117

Multiple-Unit Ada Programs

Building the Specifications

e Find or create a library and set up the
necessary links

e Create a workspace in the library to enter
the spec for an Ada unit: - 1

‘o Enter each specification using incremental

118

syntax completion ([fomat}) and semantic
checking ([Semanticize))

e As each specification is completed, install the
specification:

RATIONAL

Multiple-Unit Ada Programs

Completing the Implementation

e Use the automated facility to create a
skeletal body for each unit: [Create Body Part)

e Enter the implementation for each body
using incremental syntax completion ([Format))

and semantic checking ([Semanticise))

e As each body is completed, install the body:

e Test completed units as appropriate using
automated compilation facilities and
Command windows

RATIONAL 119

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you in
the next series of exercises on creating Ada
systems. |

Build a calculate_stats program that queries
the user for raw input values and displays the
mean, median, and range of those values.

120 RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems, cont.

® Calculate_Stats program

Calculate_Stats
[
CL

_Float_Statistics Interface
/

RATIONAL 121

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Build Specification of
Float_Statistics

122

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1.

Go to the Statistics_Systenm world in
your home world. This will be the library
used for the series of exercises using the
Calculate_Stats prograrn.

. Enter the specification for the

Float_Statistics into the library using for-
mat and semanticize. The code is provided
on the next page.

Strive to minimize your keystrokes through
the use of the format operation.

RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Build Specification of
Float_Statistics, cont.

package Float_Statistics is

type Values is array (Integer range <>) of Float;
function Smallest (The_Values : Values) return Float;
function Largest (The_Values : Values) return Float;
function Mean (The_Values : Values) return Float;
function Median (The_Values : Values) return Float;

end Float_Statistics;

3. Promote the specification when it is
complete.

RATIONAL

123

Maultiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Build Specification of
Interface

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Go to the statistics_system world in your
home world.

2. Enter the specification for the Interface
into the library using format and
semanticize. The code is provided on the

next page.

Strive to minimize your keystrokes through
the use of the format operation.

124 RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Build Specification of
Interface, cont.

with Float_Statistics;
package Interface is

procedure Get (The_Values : out Float_Statistics.Values):
procedure Put (The_Header : String;

The_Result : Float);
procedure Put (The_Header : String;

The_Values : Float_Statistics.Values);

end Interface;

3. Promote the specification when it is
complete.

RATIONAL 125

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Float_Statistics

1. Enter the package body for Ficat_statistics
~ into the library. Use the code provided on
the following pages.

Use the create body part, format, and
' region copy operations judiciously to
minimize the number of keystrokes.

126 RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—

Complete Implementation of
Float_Statistics, cont.

package body Float_Statistics is

procedure Sort (The_Values : in out Values) is
Switch_Value : Float;

Is_Sorted : Boolean := False;
begin

while not Is_Sorted loop
Is_Sorted := True;

for Index in The_Values'First..The_Values’Last - 1 loop

if The_Values (Index) > The_Values (Index + 1) then

Switch_Value := The_Values (Index + 1);
The_Values (Index + 1) := The_Values (Index);

The_Values (Index) := Switch_Value;
Is_Sorted := Falge;
end if;
end loop;
end loop:;
end Sort;

127

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Float_Statistics, cont.

function Smallest (The_Values : Values) return Float is
Smallest_Value : Float := The_Values (The_Values’'First);

begin
for Index in The_Values’'Range loop
if The_Values (Index) < Smallest_Value then
Smallest_Value := The_Values (Index);
end if;
end loop;

return Smallest_Value;
end Smallest;

function Largest (The_Values : Values) return Float is
Largest_Value : Float := The_Values (The_Values'First);

begin
for Index in The_Values’Range loop
if The_Values (Index) > Largest_Value then
Largest_Value := The_Values (Index);
end if;
end loop:

return Largest_Value;
end Largest;

RATIONAL

128

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Float_Statistics, cont.

function Mean (The_Values : Values) return Float is
Sum : Float := 0.0;
begin
for Index in The_Values’Range loop
Sum := Sum + The_Values (Index);
end loop:

return Sum / Float (The_Values’Length);
end Mean;

function Median (The_Values : Values) return Float is
Sorted_Values :

Values (The_Values’First..The_Values’Last) :=

The_Values;
. begin

Sort (Sorted_Values); _
return Sorted_Values ((The_Values’Length / 2) + 1);
end Median;

end Float_Statistics;

RATIONAL 129

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Float_Statistics, cont.

2. Promote the package body when complete.

3. Unit test the body of F1cat_statistics.

130

Use the automated facility to promote all
the units in your system to the coded state.

Create a test program in a Command
window. A sample test is provided below.
In turn, test the smalilest, Largest, and
Median functions.

You should be able to test each function by e

simply modifying the prompt. o -

declare Xiﬁdﬁ

Max_Size : Natural := b; ;
The_Values : Float_Statistics.Values (1..Max Size) 1=
(7.0, 6.0, 1.0, 2.0, 1.0);
package Flt_Io is new Text_Io.Float_Io (Float) ;
begin
Flt_Io.Put (Float_Statistics.Smallest (The_Values));

end;

RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Interface

1. Enter the package body for 1aterface into
the library. Use the code provided on the
following pages.

Use the create body part, format, and
region copy operations judiciously to
minimize the number of keystrokes.

RATIONAL 131

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Interface, cont.

with Float_Statistics;
with Text_Io;
package body Interface is

package Tio renames Text_Io;
package Fio is new Tio.Float_Io (Float):

procedure Get (The_Values : out Float_Statistics.Values) is

begin
Tio.Put_Line
("Enter" & Integer’Image (The_Values’Last) &

" floating point values one at a time.");
Tio.Put_Line %"Press ENTER after each value.");

for Index in The_Values’Range loop
loop

begin

Tio.Put ("Type input #"
& Integer’Image (Index) & ": ");

Fio.Get (The_Values (Index)):;
exit;

exception
when Tio.Data_Error =>

Tio.Put_Line
("Invalid input value. Try again.");
Tio.Skip_Line;
end;
end loop:;
end loop:
end Get;

132 RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Interface, cont.

procedure Put (The_Header : String;
The_Result : Float) is
begin
Tio.New_Line;
Tio.Put (The_Header & " ");
Fio.Put (The_Result,
Fore => 0, Aft => 2, Exp => 0);
Tio.New_Line;
end Put;

procedure Put (The_Header : String:;
The_Values : Float_Statistics.Values) is
begin
Tio.New_Line (2);
Tio.Put (The_Header & " ");
for Index in The_Values’Range loop
Tio.New_Line;
Fio.Put (The_Values (Index),
Fore => 0, Aft => 2, Exp => 0);
end loop:
Tio.New_Line (2);
end Put;
end Interface;

RATIONAL | 183

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Complete Implementation of
Interface, cont.

134

Promote the package body when complete.

Test your Interface package to see if it is

~ receiving the correct input values. Use the

test program provided or one of your own.

Use the automated facility to promote all
the units in your system to the coded state.

Create a test program in a Command
window. A sample test is provided below.

declare

Max_Size : Natural := 10;
The_Values : Float_Statistics.Values (1..Max_Size);

begin

Interface.Get (The_Values);
Interface.Put (The_Values);

ic p— 5 - 7 4 e - -
end; (‘e TESYT MﬁVS&/"F&““kgktycéﬁ’

Execute your test.

RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Create Main Program

1. Enter the main program unit, calcu-
late_Stats, into the library. Use the code
provided on the following pages.

Use the format and region copy operations
judiciously to minimize the number of
keystrokes.

RATIONAL 135

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Create Main Program, cont.

with Float_Statistics,

Interface;

procedure Calculate_Stats (Number_Of_Values : Natural) is

The_Values :

Float_Statistics.Values (1..Number_0f_Values) :=
(others => 0.0);

begin

Interface.Get
Interface.Put

Interface.Put

Interface.Put

Interface.Put

(The_Values) ;
("The input data values are", The_Values);

("The range is",
Float_Statistics.Largest (The_Values) -
Float_Statistics.Smallest (The_Values)):;
("The mean is",

Float_Statistics.Mean (The_Values)):
("The median is",
Float_Statistics.Median (The_Values));

end Calculate_Stats;

2. Promote the main program unit when

complete.

136

RATIONAL

Multiple-Unit Ada Programs

Exercise: Creating Ada Systems—
Verify the System

1. Use the automated facility to ensure that all
units are in the coded state.

2. Execute the system.

3. The program prompts you for data. Enter
some values as requested to demonstrate
that the program works.

Each data value entered is terminated with
[Promote]. |

RATIONAL | 137

Multiple-Unit Ada Programs

Review

e What is the visibility in libraries?

What do libraries contain and for what are

they used?

e How do you import resources into libraries?

What is object state?

What do formatting and semanticizing do?

In what ways can you transition Ada units

from one state to another?

e How many objects exist for an Ada unit?

e How are Ada units added to libraries?

138

RATIONAL

Multiple-Unit Ada Programs

Review, cont.

e How do you execute Ada programs?
e How can you unit-test program units?

e How would you find out how to create and
execute an Ada program?

e How and where would you find out about
other commands for Ada objects?

RATIONAL | 139

Seminar Outline

Basic Mechanisms
Ada Program Creation

Ada Program Modification

e Simple Browsing
Introduction to the Debugger
Program Modification—Single-Unit Method
Program Modification—Multiple-Unit Method

Additional Topics o

o | RATIONAL

Simple Browsing

Simple Browsing

e Motivation

— What is the exact type definition for a
program variable

— What is the definition of a subprogram
— Where is a subprogram defined

e Commands

® — Move to the enclosing Ada unit or library:

| Enclosing Object|] ©F i1+ v . ig -

— Move from unit specs to bodies and vice
Versa: |[Ada Other Part] o >,

— View the definition of a selected structure:

-~ .

O 7T =

RATIONAL 141

Simple Browsing

Selection for Browsing

e Based on structure of Ada programs
e Examples

— Select entire package or subprogram
in a package body

— Select single declaration or type
components of declarations

— Select entire statement or specific portions
of nested statements

— Select subprogram calls or any parameters

— Select unit in “with” clauses

142 RATIONAL

Simple Browsing

Selection

e Specifies the object on which the command
will operate

e Examples
— What yobject to view
— What object to modify
— What object to delete
® — What object to move

— What object to display the value of in the
Debugger -

RATIONAL 143

Simple Browsing

Selection Commands

e Select the structure at the cursor: [Object] - [<]

e Select successively larger structures:
[Object] - [=] -~ = — ik 0o

e Select successively smaller structures:
[Object] - (=]

144 RATIONAL

Selection Commands, cont.

e Example

— Initially

loop
declare
Current_Player : Baseball .Player_Statistics;
B begin
Data.inputter Get_Record (Current_Player);
Baseball .Percentage (Current_Player);

RATIONAL

Simple Browsing

145

Simple Browsing

Selection Commands, cont.

— After using [Object] - [=]

loop
declare
b Current._Player : Basebsll.Player_Statistics;
e in_ _ . I

146 RATIONAL

Simple Browsing

‘Selection Commands, cont.

e Example

— Initially

i : Baseball .Player_Statistics;

PN — After using [Object] - [—]

RATIONAL 147

Simple Browsing

Selection Commands, cont.

e Select the next structure: -
e Select the previous structure: -

148 | RATIONAL

Selection Commands, cont.

e Example

— Initially

)
Baseball. -Sum (Current_Player, Team.Sums)
Baseball Add (Current_Player, Team.Statlst1cs)
end;

— After using -

begin
nyData Inp tter Get Record Current Player)

Baseball Sum (Current_Player, Team_Sums);
o Baseball . Add (Current_Player, Team_Statxstxcs)
end;

— After using -

Bésebalirperceﬁtége (Current.Player
Baseball .Sum (Current_Player, Team_Sums);
Baseball Add (Current_Player, Team.Statxstxcs)

RATIONAL

Simple

Browsing

149

Simple Browsing

Selection Commands, cont.

e Example

— Initially

¥ . Basebsll .Player_Statistics;

— After using -

Current_Player : ICESRLE PLEyOr S LRLLILLEE |
e Example

— Initially

— After using [Object] - [1] again

Baseball.Add (Current_Player,

150

RATIONAL

Simple Browsing

Selection Commands, cont.

e Select several structures above or below:

| Numeric n| - {Object| - OT | Numeric n| - |Object| -
e Example

— Initially

N Baseball“p°"°°05393*{Cu_rent.Player)‘;Li‘7
Baseball .Sum (ent_Players Team_.Sums);

d Baseball .Add (Curren syer, Team_Statistics);
enda,

— After using | Numeric 3| - | Object| -

begin

Data.l!nputter.Get_Record (Current_Player);
Baseball Percentage (Current_Player);
BaseballdSum Current.Pla er” Team Sumsrlr

'RATIONAL

151

Simple Browsing

Exercise: Using Selection in Ada Units

Use the Rational Environment Keymap and
your notes to assist you.

1. Go to the Baseball_system world in

'Users.Pt_n.

2. View the body of the Basebal1l_statistics
unit. Remember that the body is the second
instance of the unit name in a library. This
program calculates individual team batting
statistics. It prompts the user for input
about players, such as the number of times
at bat, number of hits, and number of runs
batted in. It then calculates and displays
batting percentages and team totals.

152 RATIONAL

Simple Browsing

Exercise: Using Selection in Ada Units, cont.

3. Using the selection operations and without
explicitly moving the cursor, in turn select:

— The entire context clause.

— The entire procedure Base-
ball_Statistics With its context clause.

— Just the context clause again.

[— The entire procedure Base-
ball_Statistics without its context
clause.

— Just the name of the procedure
(Baseball_Statistics).

— The entire first object declaration
(Team_Sums .)

— Just the name of the first object declared

(‘1‘ eam_Sums) . Onesl o

/}'

RATIONAL | 153

Simple Browsing

Exercise: Using Selection in Ada Units, cont.

— Just the type of the first object declared
(Baseball.Total_Players-Statistics).

- — The whole first object declaration again.
— The first statement (Baseball.Init_Team_Stats).

— The entire Baseball_Statistics
procedure.

— Just the first statement again ()
(Baseball.Init_Team_Stats).

— The begin block below the first state-
ment (begin ... exception ... end;).

— The statement below the begin block
(Baseball.Percentage (Team_Sums)).

— The begin block below the first state-
ment again (begin ... exception ... end;).

154 RATIONAL

Simple Browsing

Exercise: Using Selection in Ada Units, cont.

- — The entire loop (100p ... end 1oop;).

— The declare block in the loop
(declare ... begin ... end;).

— The entire object declaration in the
declare block (current_Player : ...).

— The first statement in the declare block
. (Data_Inputter.Get. ce)

— The second statement in the declare
block (Baseball .Percentage (.. .)).

— The subprogram name in the second
statement without its parameters
(Baseball.Percentage).,

— The subprogram parameter without the
subprogram name (Current_Player).

— The next entire statement in the declare
block (Baseball.sum (...,...)).

RATIONAL 155

Simple Browsing

Exercise: Using Selection in Ada Units, cont.

— The first parameter of the subprogram
call (Current_Player).

— The second pararﬁeter of the subprogram
call (Team_Sums). ;,

— The first parameter again.

— The subprogram name without its
parameters (Baseball.Sum).

— The entire while loop near the end of the
procedure (while ... loop ... end loop:).

— The conditional expression in the while
lOOp (not Baseball.Is_Done (...)).

156 RATIONAL

Simple Browsing

Exercise: Using Selection in Ada Units, cont.

— The subprogram call without its
parameters (Baseball.Is_Done).

— Just the subprogram parameter
(Player_Iterator).

— The entire conditional expression again.

— The last statement in the procedure
(Formatter.?rint...).

RATIONAL - 157

Simple Browsing

Optional Exercise:
More Selection in Ada Units

Use the Rational Environment Keymap and
your notes to assist you.

1.

1568

Go to the Baseball_System world in

i{Users.Pt_n.

View the specification of the Basebval1 unit.

Using the selection operations and without
explicitly moving the cursor, in turn select:

— Just the context clause.

— The entire package without the context
clause.

— Just the name of the package.

RATIONAL

Simple Browsing

@
Optional Exercise:
More Selection in Ada Units, cont.

— The third subtype (Number_nits). Use
a numeric prefix to get there with only
three keystrokes.

— The entire record type for
Player_Statistics. Again use a numeric

prefix.

® — Just the name of the type
(Player_Statistics).

— The first record component of the type
(The Name : ... := ...,).

— Just the name of the first component
(The_Name).

— The type of the first component (vame).

RATIONAL 159

Simple Browsing

Optional Exercise:
More Selection in Ada Units, cont.

160

— The initialization of the first component
((others => * ?) ;).

— The entire third component of the type
(The_Number_Hits .. = O;). Use a
numeric prefix.

— The entire record type for
Total_Players_Statistics. Use a
numeric prefix.

— Just the type of the third record compo-
nent (Total_Runs_Batted_In Po... 1= 0;).

— The initialization of the third record
component. This will fail. You can’t
select a literal value.

— The package Tean in the private part.

RATIONAL

Simple Browsing

Exercise: Browsing Ada Systems

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Go to the Baseball_System world in

'Users.Pt_n.

2. Notice the units that make up this system:.

3. Get the definition of the procedure body of
the Baseball_statistics program.

4. Look at the declarative region of
Baseball_Statistics. 1 hree types
are used: Total_Players_Statistics,

" Team_Statistics, and Team_Iterator.

RATIONAL 161

Simple Browsing

Exercise: Browsing Ada Systems, cont.

5. Get the definition of the actual type
declaration for Total_Players_statistics.

Notice that the Environment displays the
Baseball package specification with the type
declaration highlighted.

6. Notice the structure of the type and the
operations.

7. Get the definition of the next type in the
package (Team_statistics).

Notice that the Environment displays the
private part of the package where the type
is further defined.

162 v RATIONAL

Simple Browsing

Exercise: Browsing Ada Systems, cont.

8. Get the definition of the access type

(Team.set)_@d o
/

The Environment displays the type in the
Set_Generic package. The Environment has
traversed a context clause and a link to get
the definition of this package. Notice that
this package is in a different world.

. 9. Return to Baseball_Statistics.

10. Move to the procedure call to
Data_Inputter.Get_Record in the statement

region.
11. Get the definition of the pata_inputter-
.Get_Record.

Notice that the Environment now displays
the pata_Inputter package specification
with the declaration for the cet_Record
procedure highlighted.

RATIONAL 163

Simple Browsing

Exercise: Browsing Ada Systems, cont.

12. Get the definition of the body of

Get;Record.

Notice that you are now in the body of
Data_Inputter.

13. Return to the Baseball_system world.

14. Using the same methods as before, find the
definitions of

— Formatter.Print_Header |

— Baseball.Percentage

— Baseball.Player_Iterator

164 RATIONAL

® Seminar QOutline

Basic Mechanisms
Ada Program Creation

Ada Program Modification

Simple Browsing

e Introduction to the Debugger
Program Modification—Single-Unit Method
Program Modification—Multiple-Unit Method

® Additional Topics

g/ } e i
3 }‘I
o
< . 1
! A ,
]
| [
’ 4 - z /
Zon e e od ! /
] /
/
!
{ e

e T % v 3
. T e Y / ‘ / s Vinl s */I (&
& E 2, }(N “ = R 1) \c re
O D e a) 1 ebieze
RATIONAL oe ‘ 7 e o
jau '\)(/\‘\\,-"‘ Vet E .

Introduction to the Debugger

Debugger Model

,/‘/’/VSAHOWS deb*’iiggin“g‘of Ada programs at the
~ Ada source level

e Acts as an outside agent to your program
- — Not compiled as part of your program

— Used to control your program

166 | RATIONAL

Introduction to the Debugger

®
Debugger Characteristics

e Operation is simply turning on; no
recompilation is required

e Turning off the Debugger is not necessary
e One Debugger per session

e One job running with the Debugger at any
time

RATIONAL | 167

Introduction to the Debugger

Debugger Output

e Debugger displays sequential log in the
Debugger window

— Can scroll through the output

— Can store Debugger output in a text
object: Text.Write_File

— Example

Break ("", 1, "");

Break at selected object.

The breakpoint has been created and activated:

Active Permanent Break 1 at .DEBUG_FACTORIAL.2S [any task]

Execute (un); p \ \(;:v: F . R ' [S SR |
Break 1: ,DEBUG_FACTORIAL.ZQ [Task : ROOT_TASK, FAGOED].
Execute ("");

Break 1: .DEBUG_FACTOR!AL .2s [Task : ROOT_TASK, NAGCED].

Put (""); ——
Pg; selected object: ¥ROOT.TASK..1.THE_RESWLT -
[& -

f Debugger window i Lexl. JO0B ¢S50 STARTED 11 56 o AN

168 - RATIONAL

Introduction to the Debugger

Debugger Output, cont.

e Debugger displays current stopped location
of the Ada unit

— Uses standard Ada windows

— User can use standard traversal
mechanisms

— Example

with Text_lo;

procedure Debug Factorial (N : Natural) is
The_Result : Naturel := |; -

begin

Text_lo.Put_Line
(Natural "Image (N) & "! is equal to " &
Natural ' Image (The_Result));
end Debug Factorial;

~ CQaeq

DEBUGG I NG

DEBUG_FACTORIAL BODY vil 1@das

RATIONAL | 169

Introduction to the Debugger

Selection in Debugger

e Marks current location in stopped program

o Specifies the statement or declaration where
a breakpoint should be placed

e Specifies the object or type to display

170 RATIONAL

Introduction to the Debugger

Basic Debugger Operations

e When the Debugger starts

— Debugger window brought up to record
all interactions

— Starting new job message displayed in
Debugger window

RATIONAL 171

Introduction to the Debugger

Basic Debugger Operations, cont. _

o Commands

— Turn on the Debugger: 1@%&& tem o Yoy

— Allow the program to run until
breakpoints, exceptions, or normal
program action occurs: [Debug Execute]

— Execute one step in the program:

— Set a breakpoint at the selected statement
or declaration: [Debug Break

— Look at the selected value:

172 RATIONAL

Introduction tc the Debugger

Script: Using the Debugger

Use the “Basic Debugger Operation” script to
explore the following Debugger facilities:

1. Starting the Debugger.
2. Showing Debugger outputs.

3. Displaying the values of objects in the
program.

4. Setting breakpoints.

RATIONAL 173

Introduction to the Debugger

Exercise: Debugging the Baseball
Statistics Program

Use the Rational Environment Basic Operations
and your notes to assist you. Execute and
debug the Baseball_Statistics program to
isolate an unhandled exception. The problem
in the program will be fixed in an exercise in
the next section.

1. GO to the Baseball_System WOI’ld in your
home world.

2. Create a Command window and execute the
programnl Baseball_Statistics.

174 , RATIONAL

Introduction to the Debugger

Exercise: Debugging the Baseball
Statistics Program, cont.

3. Enter the following data (following each line
with [Promote]):

Baker

© i doyide
An exception will occur. We need to use
the Debugger to find where the exception is
being raised.

4. Return to the Command window and
reexecute the program with the Debugger.

By default, the Debu.gger catches all
exceptions at the point they are raised.
This is what we need to find the problem.

RATIONAL 175

Introduction to the Debugger

Exercise: Debugging the Baseball
Statistics Program, cont.

176

9.

Execute the program in the Debugger:

| Debug Execute|

Enter the same data as before.

Note what statement was being executed
when the exception was raised.

Display the values of the items in the
numerical expression
(The_Number_Hits / The_Times-At_Bat) :

The exception is raised in the Percentage
subprogram by an attempt to divide by
zero. This problem will be fixed in an
exercise in the next section of the course.

RATIONAL

Seminar Outline

Basic Mechanisms
Ada Program Creation

Ada Program Modification
Simple Browsing
Introduction to the Debugger

e Program Modification—Single-Unit Method
Program Modification—Multiple-Unit Method

() Additional Topics

RATIONAL 177

Program Modification—Single-Unit Method

Motivations

e Conventional model

— Smallest unit that can be changed and
must be recompiled is a compilation unit

— Very small changes often require extensive
recompilation

e Rational Environment model

— Smallest unit that can be changed and
must be recompiled is a statement or
declaration

— Very small changes require minimal
recompilation

178 RATIONAL

Program Modification—Single-Unit Method

Basic Concepts

e Compilation dependencies on each unit and
declaration are managed by the Environment

e Installed state allows incremental adding,
changing, or deleting of statements or
declarations that have no dependencies

e State transition

Single statement or
declaration edited

RATIONAL 179

Program Modification—Single-Unit Method

Basic Method

o Identify smallest element (statement or
declaration) to be modified

e Demote compilation unit containing the
element to installed state:

e Add, change, or delete element

— Add element: - [1; more than one
element can be added at one time

— Change selected element:
— Delete selected element: - [D]

e Format and semanticize as before

e Promote element when complete and no
errors exist

e Recode system with automated compilation
faCility: | Compilation Make|

e Reexecute

RATIONAL

Program Modification—Single-Unit Method

|
Baseball Program

Baseball_Statistics

/1 \

Formatter

. Data_Inputter

N/

Baseball

RATIONAL

181

Program Modification—Single-Unit Method

Baseball Program, cont.

with Set_Generic;
package Baseball is

subtype Name is String;

subtype Times_At_Bat is Natural;

subtype Number_Hits is Natural;

subtype Runs_Batted_In is Natural;

subtype Percent is Float range 0.000..1.000;

type Player_Statisticse is

record
The_Name : Name (1..20) := (others => ' ');
The_Times_At_Bat : Times_At_Bat := 0O;
The_Number_Hits : Number_Hits := 0;
The_Runs_Batted_In : Runs_Batted_In := 0O;
The_Percentage : Percent := 0.0;

end record;

type Total_Players_Statistics is

record
Total_Times_At_Bat : Times_At_Bat := 0;
Total_Number_Hits : Number_Hits := 0;
Total_Runs_Batted_In : Runs_Batted_In := 0O;
Total_Percentage : Percent := 0.0;

end record;

182 RATIONAL

Program Modification—Single-Unit Method

Baseball Program, cont.

type Team_Statistics is private;
procedure Init_Team_Stats
(The_Team_Stats : in out Team_Statistics);
procedure Add (The_Player_Stats : Player_Statistics;
The_Team_Stats : Team_Statistics);
procedure Sum (Increment : in Player_Statistics;
Summation : in out Total_Players_Statistics);
procedure Percentage
(The_Player_Stats : in out Player_Statistics);
procedure Percentage '
(Total_Player_Stats : in out Total_Players_Statistics):

type Team_Iterator is limited private;
procedure Initialize (Iterator : in out Team_Iterator;
The_Team_Stats : Team_Statistics);
function Value_0Of (Iterator : Team_Iterator)
return Player_Statistics;
procedure Get_Next (Iterator : in out Team_Iterator);
function Is_Done (Iterator : Team_Iterator) return Boolean;

private
package Team is new Set_Generic (Player_Statistics);
type Team_Statistics is access Team.Set;
type Team_Iterator is new Team.Iterator;

end Baseball;

RATIONAL 183

Program Modification—Single-Unit Method

Baseball Program, cont.

package body Baseball is

procedure Init_Team_Stats
(The_Team_Stats : in out Team_Statistics) is
begin
‘ The_Team_Stats := new Team.Set;
end Init_Team_Stats;

procedure Add (The_Player_Stats : Player_Statistics;
The_Team_Stats : Team_Statistics) is
begin
Team.Add (S => The_Team_Stats.all, X => The_Player_Stats);
end Add:

procedure Sum (Increment : in Player_Statistics;
Summation : in out Total_Players_Statistics) is
begin
Summation.Total_Times_At_Bat (=
Summation.Total_Times_At_Bat + .
Increment.The_Times_At_Bat;
Summation.Total_Number_Hits (=
Summation.Total_Number_Hits +
Increment.The_Number_Hits;
Summation.Total_Runs_Batted_In :=
Summation.Total_Runs_Batted_In +
Increment.The_Runs_Batted_In;

end Sum;

RATIONAL

Program Modification—Single-Unit Method

Baseball Program, cont.

procedure Percentage
(The_Player_Stats : in out Player_Statistics) is
begin
The_Player_Stats.The_Percentage :=
Float (The_Player_Stats.The_Number_Hits) /
Float (The_Player_Stats.The_Times_At_Bat);
end Percentage;

procedure Percentage
(Total_Player_Stats : in out Total_Players_Statistics) is
begin
if Total_Player_Stats.Total_Times_At_Bat /= O then
Total_Player_Stats.Total_Percentage :=
Float (Total_Player_Stats.Total_Number_Hits) /
Float (Total_Player_Stats.Total_Times_At_Bat);
else
Total_Player_Stats.Total_Percentage := 0.0;
end if;

. end Percentage;

RATIONAL 185

Program Modification—Single-Unit Method

Baseball Program, cont.

procedure Initialize (Iterator : in out Team_Iterator;
The_Team_Stats : Team_Statistics) is
begin
Team.Init (Team.Iterator (Iterator), The_Team_Stats.all);
end Initialize;

function Value_0Of (Iterator : Team_Iterator)

return Player_Statistics is
begin »
return Team.Value (Team.Iterator (Iterator));
end Value_Of;

procedure Get_Next (Iterator : in out Team_Iterator) is
begin
if not Is_Done (Iterator) then
Team.Next (Team.Iterator (Iterator)):
end 1if;

end Get_Next: .

function Is_Done (Iterator : Team_Iterator) return Boolean is
begin '

return Team.Done (Team.Iterator (Iterator));
end Is_Done; ~

| end Baseball;

186

RATIONAL

Program Modification—Single-Unit Method

|
Baseball Program, cont.

with Baseball;
package Data_Inputter is

ﬁ procedure Get_Record
(Value : in out Baseball.Player_Statistics);

End_0Of_Input : exception;

end Data_Inputter;

IS ,
qr(r ¢ Ea s
A= 1 i =
—~ T
o 25 -
P
PO -
\T . ! .
f P
T
&) \
-
- L
. o .
4 N
L T | A
= o . N
_— i ;
HEN 4 '/
T e
e o)

RATIONAL 187

Program Modification—Single-Unit Method

Baseball Program, cont.

with Text_Io;
package body Data_Inputter is

package Tio renames Text_Io;
package Nat_Io is new Tio.Integer_Io (Natural);

procedure Put (Field_Name : String) is
begin

Tio.Put ("Enter the value for " & Field_Name & ": ");
end Put;

188 RATIONAL

. Program Modification—Single-Unit Method

Baseball Program, cont.

procedure Get_Record
(Value : in out Baseball.Player_Statistics) is

String_Length : Natural := 0;
- End_Of_Input_Mark : constant String (1..3) := "xxx";
— begin o
loop \‘Sﬁ““‘tgufim;pg
begin) S ey
Put ("name of player"); e
Tio.Get_Line (Value.The_Name, String_Length); -

if Value.The_Name (1..String_Length) /=
End_Of_Input_Mark then
Put ("number of times at bat ");
Nat_Io.Get (Value.The_Times_At_Bat);
Tio.Skip_Line;

Put ("number of hits ");
Nat_Io.Get (Value.The_Number_Eits);

. Tio.Skip_Line;

Put ("number of runs batted in ");
Nat_Jo.Get (Value.The_Runs_Batted_In);
Tio.Skip_Line;
Tio.New_Line;
exit;
else
raise End_Of_Input;
end if;
exception
when Tio.Data_Error =>
Tio.Skip_Line;
Tio.New_Line;
Tio.Put_Line ("Invalid data. Try again.™);
end; :
end loop:

end Get_Record;
end Data_Inputter;

RATIONAL 189

Program Modification—Single-Unit Method

Baseball Program, cont.

with Baseball;
package Formatter is

procedure Print_Header;
procedure Print_Player_Stats

(Statistics : Baseball.Player_Statistics);
procedure Print_Team_Stats

(Statistics : Baseball.Total_Players_Statistics);

end Formatter;

190 | RATIONAL

Program Modification—Single-Unit Method

@
Baseball Program, cont.

with Text_Io;
package body Formatter is

package Tio renames Text_Io;

package Nat_Io is new Tio.Integer_Io (Natural);
package Flt_Io is new Tio.Float_Io (Baseball.Percent);

procedure Put_Statistic_Values
(At_Bat : Baseball.Times_At_Bat;
Hits : Baseball.Number_Hits;
Runs : Baseball.Runs_Batted_In;
Percentage : Baseball.Percent) is
begin
Nat_Io.Put (At_Bat, 6);
Nat_Io.Put (Hits, b);
Nat_Io.Put (Runs, b);
Tio.Put (" "),
. Flt_Io.Put
(Percentage, Fore => 0, Aft => 3, Exp => 0);
end Put_Statistic_Values;

procedure Print_Header is
begin
- Tio.New_Line;
Tio.Put_Line

("Nme " &
" ab h rbi pet");
Tio.Put_Line
(" _____________________________ " &

end Print_Header;

RATIONAL

191

Program Modification—Single-Unit Method’

Baseball Program, cont.

procedure Print_Player_Stats
(Statistics : Baseball.Player_Statistics) 1is

begin
Tio.Put (String (Statistics.The_Name));

Put_Statistic_Values (Statistics.The_Times_At_Bat,
Statistics.The_Number_Hits,

Statistics.The_Runs_Batted_In,
Statistics.The_Percentage) ;

Tio.New_Line;
end Print_Player_Stats;

procedure Print_Team_Stats
(Statistics : Baseball.Total_Players_Statistics) is

begin

Tio.Put ("Totals ")

Put_Statistic_Values (Statistics.Total_Times_At_Bat,
Statistics.Total_Number_Hits,

Statistics.Total_Runs_Batted_In,
Statistics.Total_Percentage) ; I

Tio.New_Line;
end Print_Team_Stats;

end Formatter;

RATIONAL

192

Program Modification—Single-Unit Method

Baseball Program, cont.

with Baseball, Data_Inputter, Formatter;

procedure Baseball_Statistics is
Team_Sums : Baseball.Total_Players_Statistics;
Team_Statistics : Baseball.Team_Statistics;
Player_Iterator : Baseball.Team_Iterator;

begin
Baseball.Init_Team_Stats (Team_Statistics);

begin
loop
declare
Current_Player : Baseball.Player_Statistics;
begin
Data_Inputter.Get_Record (Current_Player);
Baseball.Percentage (Current_Player);
Baseball.Sum (Current_Player, Team_Sums);
Baseball.Add (Current_Player, Team_Statistics);
end;
end loop:
exception
when Data_Inputter.End_Of_Input =>
null;
end;

Baseball.Percentage (Team_Sums);

Formatter.Print_Header;
Baseball.Initialize (Player_Iterator, Team_Statistics);

while not Baseball.Is_Done (Player_Iterator) loop
Formatter.Print_Player_Stats
(Baseball.Value_Of (Player_Iterator));

Baseball.Get_Next (Player_Iterator);
end loop:

Formatter.Print_Team_Stats (Team_Sums):

end Baseball_Statistics;

RATIONAL 103

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs

Use the Rational Environment Basic

Operations, the Rational Environment
Keymap, and your notes to assist you.

1.

194

Go to the Baseball_system in your home

world.

Execute the Baseball_statistics program.

Identify as many problems with the

program as you can. -

(e

) L~
[
oA
I

RATIONAL

Program Modification—Single-Unit Method

® |
Exercise: Modifying Ada Programs, cont.

4. Notice the following problems, which will be
corrected in the next series of exercises:

— Program output does not allow adequate
visual separation of the team total values
from the last player’s values.

— Program output of the player’s values
does not line up with the headings.

@ — A Numeric_Error exception is raised in

Baseball.Percentage.

— The user of the Baseball_statistics
program has no easy method to
determine how to terminate input.

RATIONAL 195

Program Modification—Single-Unit Method

Script: Modifying Ada Programs—
Adding Statements

Use the “Modifying Ada Programs: Adding
Statements” script to assist you.

Modify Print_Team_Stats iN the Formatter

package of the Baseball_statistics program to
print out a dashed line above the team totals.

196 RATIONAL

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Adding Statements

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. MOdlfy Print_Team_Stats iN the Formatter
package of the Baseball_statistics
program to print out a dashed line below

o the team totals. |

2. Reexecute the program to verify the change.

RATIONAL 197

Program Modification—Single-Unit Method

Script: Modifying Ada Programs—
Changing Statements

Use the “Modifying Ada Programs: Changing
Statements” script to assist you.

Modify Put_Statistics_Values in the

Formatter package of the Baseball_statistics
program to change the field formatting
parameter of the first Nat_1o.Put statement

to align the output under the display headings.

198 RATIONAL

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Changing Statements

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, the previous script, and your
notes to assist you.

1. Modify put_statistics_values in the For-
matter package of the Baseball_statistics
® program to change the field formatting pa-
rameter of the second and third Nat_Io.Put
statements to align the output under the

display headings. (The field format value
should be 8.)

2. Reexecute the program to verify the
changes.

RATIONAL - 199

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Changing a Subprogram

200

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, the previous script, and your
notes to assist you.

1. Modify the first percentage subprogram
in the Basebal1l package of the Base-
ball_Statistics program to ensure that
Numeric_Error does not occur because of an
attempt to divide by zero.

Hint: Notice the second Percentage
subprogram for a possible solution or create
one of your own.

2. Reexecute the program to verify the

changes.

RATIONAL

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Adding a Subprogram

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1. Add a procedure called start_Message to
the pata_Inputter package to print out a
message to the user before the first input
value is requested.

Use the procedure provided below or one of
your own.

procedure Start_Message is
begin
Tio.New_Line;
Tio.Put_Line
("Start of input for player statistics ...");
Tio.Put_Line
("terminate with ’'xxx’ for player’s name");
Tio.New_Line;
end Start_Message:

RATIONAL 201

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Adding a Subprogram, cont.

2. Modify the main program, Baseball-
_Statistics, to print.such a message by
making an appropriate call to the new
procedure.

3. Reexecute the program to verify the
changes. |

202 RATIONAL

Program Modification—Single-Unit Method

Exercise: Modifying Ada Programs—
Changing Declarations

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

Modify the Baseball_statistics program

to change the data representation of the

Times_At_Bat subtype in package Baseball to
. 'subtype Times_At_Bat is Natural range 0..8

(note more constrained range).

1. Attempt to change the data representation
in the Basebal1l package.

2. Stop when you are unable to edit the
declaration because of an obsolescence
message. The next section discusses the
method for dealing with this message.

RATIONAL

\ L v ‘f_y, : i
\J Vi \}(,’ g LT WY ,,‘] T~ T, :
~ R S T

£

R AR s
> £ ﬁ)’ .
SRR

/

203

Seminar Outline

Basic Mechanisms
Ada Program Creation

Ada Program Modification
Simple Browsing
Introduction to the Debugger
Program Modification—Single-Unit Method
e Program Modification—Multiple-Unit Method

Additional Topics ®

204 RATIONAL

Program Modification—Multiple-Unit Method

@
Multiple-Unit Method

e Is necessary only when

— A single-unit method fails because of an
obsolescence message

— Necessary changes are massive

@ Uses an additional automated compilation
feature

o e Requires significantly more recompilation

RATIONAL 205

Program Modification—Multiple-Unit Method

Obsolescence Message

e Displays units obsolesced in a menu window

e Displays units obsolesced, not specific
declarations or statements

e Allows basic traversal mechanism to be used
to view any of the units listed

206 | RATIONAL

Program Modification—Multiple-Unit Method

Automated Compilation Facility: Demote

e Demotes a selected Ada unit and any
~ dependent. umts to the source state:

[Compxlatlon Demote[

e Sends output logs to the standard output
window

e Is similar in output format to [Compilation Make]

RATIONAL 207

Program Modification—Maultiple-Unit, Method

Multiple-Unit Method—Basic Steps

e Identify the minimum elements to be
modified

e Demote the selected unit containing the
elements and all dependent units to the
source state: [Compilation Demote]

o Edit the necessary units:
— Incremental operations are not used
— Arbitrary editing of source units

— Format and semanticize as before

e Promote the system: [Compilation Make]

e Reexecute the system to verify any changes

208 RATIONAL

Program Modification—Multiple-Unit Method

Exercise: Making Changes across
Multiple Units

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

Complete the modification to the Base-

ball_Statistics program. Change the data

representation of the Times_At_Bat subtype in
‘ package Baseball tO subtype Times_At_Bat is

Natural range 0. .8.

1. Use the automated compilation facility to
demote the Baseba11 package and all its
dependent units to the source state.

2. Change the data representation in the
Baseball package. Use semanticize to be
sure there are no errors.

RATIONAL 209

Program Modification—Multiple-Unit Method

Exercise: Making Changes across
Multiple Units, cont.

3. Use the automated compilation facility to
return all units to the coded state.

4. Reexecute the system to verify the change.

210 RATIONAL

Program Modification—Multiple-Unit Method

Optional Exercise: More Changes across
Multiple Units

Use the Rational Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

Change the implementation of start_Message
in the pata_Inputter package so that it passes
back a string that is the end-of-input mark.

@ The start_Message procedure should prompt -
the user for this string rather than specify to
the user what that string is. The cet_Record
procedure should take this end-of-input mark
as a parameter and use it to compare with user
input for the player name to determine if input
is complete. Thus both the specifications and
bodies of both Start_Message and Get_Record
need to be changed. Make the appropriate
changes in Baseball_statistics body to utilize
these changes.

RATIONAL 211

Program Modification—Multiple-Unit Method

Review

e What do you need to do to use the
Debugger?

e How do you find out more about additional
Debugger operations?

e How do you move around Ada programs and
when would you do this?

e How do you change Ada programs with the
minimum recompilation?

212 -~ RATIONAL

Seminar QOutline

Basic Mechanisms
Ada Program Creation
Ada Program Modification

Additional Topics

e Naming Conventions
Library Objects Management
Future Topics

RATIONAL 213

Naming Conventions

Object Names

e Follow hierarchical directory structure
e Consist of two types

— Absolute names

— Relative names

214 RATIONAL

Naming Conventions

o
Absolute Names

e Are constructed from the root of the
Environment (full pathnames)

. — 'Users.Pt_3.Experiment

— 1Jo.Simple_Text_Io

RATIONAL 215

Naming Conventions

Relative Names

e Constructed from the current context

e Caret (*) means look in the parent object for
the name

e Example
— Current context: 'Users.Pt_3.Experiment
— Target: {Users.Pt_3.Debugging

— Relative name: (~Debugging
)

,'///
e .

/ Cor
u’ e rre '})

Y Y T e
e v) &4 '}%‘ TR e jé
/
/
{/
7
P

216 RATIONAL

Naming Conventions

Wildcards in Names

e Provide a shorthand to reference objects

e Symbols R LS+
g L] L
— ¢ means a string of characters of a simple
name

— 7 means 0 or more ¢ or .¢

e Examples from Baseball_system world

- — Baseballae references
Baseball_System.Baseball,
Baseball_System.Baseball_Statistics

— 7 references Basebal1l_system and all its
units

RATIONAL 217

Naming Conventions

Attribute Symbols

e Used to specify a restriction on names
e Ada units: *spec Or ’body
— Examples: Foo’spec, Foo’body

e Versions: 'v

— Examples: Foo’V(1), Foo’V(1,3,5),

Foo’V(-2) eicl b T R O

o Classes: 'c \ s

— Examples: @’c(Ada), @°C(Ada, File),
@’C(Library)

218 RATIONAL

Naming Conventions

Exercise: Naming

Use the Rational Environment Basic Operations
and the Rational Environment Keymap to assist
you.

Execute all steps of this exercise from a
Command window using the Definition
command. Begin in any window.

1. Using the full pathname (absolute naming),
® go to your home world.

2. Using relative naming and attribute
symbols, go to the specification of the
Baseball package.

3. Using relative naming, go to Experi-

ment .Factorial.

RATIONAL 219

Naming Conventions

Exercise: Naming, cont.

4. Using relative naming, go to pt_n+1, where
n 1S your username.

5. Using either absolute or relative naming,
return to your home world.

220 RATIONAL

Seminar Outline

Basic Mechanisms
Ada Program Creation
Ada Program Modification
Additional Topics

Naming Conventions

e Library Objects Management
Future Topics

RATIONAL 221

Library Objects Management

Versions

e Objects other than libraries can have
multiple versions

e Each object has one current version and 0 or
more deleted versions

e Deleted versions denoted by ¢ »

222 RATIONAL

Library Objects Management

Retention Count

° Speciﬁe‘ the number of deleted versions any
object can have

\
e Can be changed for.an object:)
Library.Set_Retention_Count i

~—

RATIONAL 223

Library Objects Management

New Versions

e Creating text object versions: [Eater, [Promote],

[Ofest - [X

e Creating Ada object versions: [Enter], [Promote],
| Install|, | Object| - [X]

224 RATIONAL

Library Objects Management

|
| .

Library Information

e Controlling the library display

,/’ﬂ . ° O e o
(— To display more information about visible
& / objects: Egmmlemt AU |7

NC (— To change the display of the set of

T
objects: [Object M - 1, @/} |

e Creating llbrary llstmgs

o — To display object name, version, object
class, updater’s name, when last modified,
size, and object status: [Verbose List]

— To display Ada units and their object
state:

— To display only the information about
files in library:

RATIONAL 225

Library Objects Management

Workspace Management

e Libraries, Ada units, and files can be
— Created
— Copied or moved

— Deleted or undeleted
— Renamed

— Frozen or unfrozen

— Printed

226 | RATIONAL

Library Objects Management

Create Operations

e Commands are specific to the kind of library
object

e Text objects

— Create named text object: [Greate Toxt

e Ada objects
— Create anonymous Ada unit: - [
e Library objects

— Create named world: [Create World]

— Create named directory: [Create Directory]

RATIONAL 227

Library Objects Management

Copy and Move Operations

e Apply to any library object
e New Ada units are in the source state

¢ Commands

— Copy/move a selected object to another
library: [Objec] m - @ or |0bje¢:] - [_J . A o

— Copy/move a named object and change
the object name: Library.copy or ®

Library.Move

228 RATIONAL

Library Objects Management

Delete Operations

e Apply to any library object
e Recoverable deletion

— Delete selected object with no dependents
or subordinate units: - [D

— Delete selected object and its dependents
or subordinate units: Compllatlon Delete -

e Permanent deletion

— Delete selected object and its depen-
dents/or“srib‘oﬁ‘natﬁrﬁifs Comp:. 1a a- |

“tion. Destroy f I

RSN e

— Make recoverable deletions permanent:

——

lerary Expunge

RATIONAL 229

Library Objects Management

Undelete Operation

e Allows you to return to a specified version
o Applies to deleted files or Ada units

e Command

— Undelete a named object
~ Library. Undelete M

,/v/ -

230 RATIONAL

Library Objects Management

Rename Operation

e Applies to any library object
e Changes Ada objects to the source state

e Command

B e SN

-/. - -
i

— Rename a named object: Library.Rename

RATIONAL 231

Library Objects Management

Freeze and Unfreeze Operations

e Frozen objects cannot be modified
e Any library object can be frozen

e Commands

— Freeze selected object: Library.Freeze

- L‘ibz"*afff“.“U‘anfreeze

232 RATIONAL

Library Objects Management

Printing Operations

e To print a selected object:

e To print a named object: [Prompt For|Print]

—

Pf”’ * e kﬁa vy ,_?/

RATIONAL 233

Library Objects Management

Exercise: Managing Your Workspace

Use the Rational Environment Basic
Operations, the Rational Environment Keymap,
and your notes to assist you.

1. Create a directory called Documents in your
home world.

2. Create a file in your home world.

3. Move the new file into the pocuments
directory.

4. Change the name of the file.

5. Create a directory called units in your
home world.

6. Copy the Factorial program into the units
directory.

234 RATIONAL

Library Objects Management

Exercise: Managing Your Workspace, cont.

7. Create a world called Library_Experiment in
your home world.

8. Copy the pocuments and units directories
into the new world.

9. Control the library display to determine
the object state of the units in the
Baseball_System World in your home world.

® 10. Delete the file in your home world.
11. Delete the units directory.

12. Delete the Librar&-zxperiment world.

RATIONAL 235

Library Objects Management

Exercise: Managing Versions

Use the Rationd! Environment Basic
Operations, the Rational Environment
Keymap, and your notes to assist you.

1.

236

Set the retention count to four for
Baseball_System.Baseball_Statistics’body.

Demote Baseball _System.Baseball_Statistics’body

to the source state.

Set up the library display for Base-
ball_System to show all deleted objects.

Using the various commands that

- create versions in Ada objects, note the

increasing version numbers in the banner
of Baseball_Statistics’body and in the
library display of Baseball_systen.

Undelete one of the deleted versions.

RATIONAL

Library Objects Management

Exercise: Managing Versions, cont.

9.

Freeze the Baseball_system world. Note
that the world and all of its objects are now
frozen. Notice how this is indicated in the
library display.

Try to add a text file to the Base-
ball_system world. (You should be unsuc-
cessful.)

Try to delete the Baseball_system world
itself. (This too should be unsuccessful.
The error log of the delete operation will
say that you can’t delete frozen objects.)

Unfreeze the Bas eball_Systen.

10. Add a text file to the Baseball_system

world. (This should work.)

RATIONAL 237

Library Objects Management

Review

e In what state are Ada units left after you
copy them?

e Where do you find the commands that delete
individual objects and entire libraries?

e Where do you find more information on
naming in the Environment?

238 RATIONAL

® Seminar Outline

Basic Mechanisms
Ada Program Creation
Ada Program Modification

Additional Topics

Naming Conventions

Library Objects Management
e Future Topics

RATIONAL 239

Future Topics

Future Topics

e Work environment customization

— Login procedures ~ic
— Key rebinding -

— Switches

— Profiles and logs
e Environment utilities

— Source management file utilities

— Source archive and restore

240

RATIONAL

Future Topics, cont.

e Multiple library development

— Searchlists

— Links

— Naming conventioﬁs

— Additional Debugger facilities
— Jobs and job scheduling

e Subsystems

—_— T e
. {

RATIONAL

Future Topics

241

RATIONAL

Rational Environment Training

Scripts

Contents

Creating Ada Programs

Testing Ada Programs

Basic Debugger Operatioﬁ

Modifying Ada Programs: Adding Statements
Modifying Ada Programs: Changing Statements

RATIONAL

13
17
21

RATIONAL

Creating Ada Programs

Description

Introduces the steps in writing programs in libraries; introduces syntactic comple-
tion, semantic checking, and simple I/0; and explores moving the program between
states.

The program prints a message in the standard output window using Text_Io. The
program is built in a world in your home world.

RATIONAL 1

Creating Ada Programs .

Part 1.
Step 1.
Step 2.

Step 3.

Steps 1 through 3 set up for program entry. +
‘ Ezc
Locate and go to your home world by pressing [5g<1.

Locate and go to the Experiment world in your home world.

Create a workspace for the program unit by pressing - [

A new window appears with a comp_Qnit prompt in which to enter the
program unit.

Notice the banner of the new window. Note the class of object being
created, Ada, and its object state, source.

RATIONAL

Part 2.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Creating Ada Programs

Steps 4 through 13 enter the program and make it executable.

Enter the following procedure declaration in the new window at the
comp_unit prompt. Make sure the cursor is on the prompt, not adjacent
to it.

procedure hello is
and complete the syntax of the subprogram fragment by pressing [Formas].
Notice that the begin, a statement prompt, and the end Hello; are

automatically added. Also notice that capitalization has been changed
and indentation automatically provided.

Move to the statement prompt by pressing s ,@

Enter the following statement at the statement prompt. Again, make
sure the cursor is on the prompt.

text_io.put_line("Hello World
and format by pressing [Formad].

Notice that the double quote, parenthesis, and semicolon are automati-
cally added to the end of the statement.

Check for semantic errors by pressing [Semaaticise].

Errors are indicated by underlines and a message displayed in the Mes-
sage window.

Notice that a temporary name for the Ada unit has appeared in the
Experiment world. The form of the name is _Ada_#_, where # is some
number.

s =T
More information about the errors is available by pressing , 3

Additional error explanations are displayed in the Message window. -

Repair the error by adding the context clause to the program before the
procedure reserved word. Move the cursor to the line that contains the

procedure by pressing [imsce] - [BeugSi].

=

RATIONAL 3

+

/

Creating Ada Programs

Step 10.

Step 11.

Step 12.

Step 13.

Enter the context clause:
with text_io;
and format.

Again check for semantic errors by pressing (Scmanticise].

Promote the program to the installed state by pressing [Prometd].

A message that the unit has been snstalled appears in the Message win-
dow. The banner indicates the name of the unit and the object state,
installed. The banner also displays a running flag while the command
is executing.

In the world, the temporary name is replaced by the actual subprogram
name for the specification and body.

Promote the program to the coded state by pressing [Fromote].
A message that the unit has been coded appears in the Message window.

The banner of the window displaying the Ada unit indicates the new
object state.

RATIONAL

Part 3.
Step 14.

Step 15.

Step 16.

Step 17.

Step 18.

Creating Ada Programs

Steps 14 through 18 execute the program.
Return to the Experiment world by pressing [Eaciosing objeat].

Open a Command window off the Experiment world by pressing
(Create Commana].

Enter the following statement in the Command window:
hello

Execute the new program by pressing [Promotd].

The Environment links, loads, and elaborates all units of your program
and then executes the program. Notice that the statement you typed is
now reverse video and has become a prompt.

A new window, called the 1/0 window, appears on the terminal screen.
Your message appears in this window.

The window is the standard input/output window used for the Stan-
dard_Input and Standard_Output files defined in the Text_Io packages.
The banner of this window gives the job name and denotes it as a text
object.

You’re done.

RATIONAL 5

RATIONAL

Testing Ada Programs

Description

Introduces the use of Command windows for rapidly testing small programs.
The script uses the Hello program created in “Creating Ada Programs.”

RATIONAL

Testing Ada Programs .

Part 1.
Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Steps 1 through 6 set up a Command window for program entry.

Locate your home world by pressing [Home].

Locate and go to the Experiment world in your home world.

Create or return to a Command window by pressing [Create Commana].

Expand the Command window by pressing - [1] twice to provide

sufficient space to enter the test program.

Go to the beginning of the Command window to see the entire contents

by pressing - [Begtao1),

Move to the statement prompt by pressing [Nex: icem].

RATIONAL

Part 2.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Testing Ada Programs

Steps 7 through 15 expand the Hello program to print the message
repeatedly to illustrate how programs can be rapidly tested in Command
windows.

Enter the program name:
hello

and format.

Place an outer loop statement around the program name by entering the
following code before the subprogram call to Hello;. Move the cursor
to the beginning of the line by pressing [Besta of].

 Enter the statements:

while count<S
count:=count+l;

and format.

Notice that the end loop and indentation are automatically supplied.

Check for semantic errors by pressing [Semasticise],

Errors are indicated by underlines and a message displayed in the Mes-
sage window.

More information about the error can be displayed in the Message win-

dow by pressingTEduirteem]. ~g-o .

Notice that formatting, semanticizing, and error indication and handling
are the same for Command windows as for Ada units in libraries.

Repair the error by introducing an additional declaration before the
begin reserved word. Move the cursor to that line and press [Besia o1].

Enter the declaration:

count :natural :=0;

and format.

RATIONAL 9

Testing Ada Programs

Step 14. Again check for semantic errors by pressing [semaaticis]. No errors should
exist.

Step 15. Reexecute the command procedure by pressing [Fromots. The Hello World
message appears five times in the I/0 window following the job name
between lines of dashes to separate previous results.

10 RATIONAL

Part 3.

Step 16.

Step 17.

Step 18.

Step 19.

Step 20.

Step 21.

Testing Ada Programs

Steps 16 through 21 illustrate how test programs can be rapidly changed
in Command windows.

Return to the Command window by pressing [Creste Commana]. \

cfri X
To change the loop count, turn the prompt off by pressing [i:em onl.
This allows you to modify the text under the prompt.

The cursor should be on the line containing the while. . .loop.
Change the 5 to 10 and [Formad].

Again check for semantic errors by pressing [semanticize].
No errors should exist.
Reexecute the command procedure by pressing [Fromotd.

The Hello World message now appears ten times in the 1/0 window.

You’re done.

RATIONAL 1

RATIONAL

Basic Debugger Operation

Description

Uses the Debugger to debug a simple program.

The program is the Factorial program. An existing version of that program has

a bug in it. Although the bug is simple to find and might be obvious through
observation, the Debugger will be used.

RATIONAL 13

Basic Debugger Operation .

Part 1.

Step 1.
Step 2.
Step 3.

Step 4.

14

Steps 1 through 4 execute the program and discover its erroneous be-
havior.

Locate and go to your home world.
Locate and go to the Debugging directory.
Create a Command window.

Enter the following command and promote it:
debug_factorial (S

The Environment creates an 1/O window, if it does not already exist,
, tndﬁigts the answer, 16, in the window. The answer should not be 16
ut 120 -

e

RATIONAL

Basic Debugger Operation

Part 2. Steps 5 through 21 execute the program with the Debugger and isolate
the program error.

Step 5. Return to the Command window that invoked the Debug_Factorial pro-
gram.

LCe — @gfuﬂw

> S,

Step 6. To invoke the Debugger with the program, press .
The Debugger window appears. The program has not begun execution.

Step 7. Run the program two steps by pressing twice.

This positions the Debugger to the start of your program. The En-
vironment displays the program in a window where the statement or
declaration to be executed next is highlighted (selected).

The Debugger is currently about to elaborate the first declaration of
your program.

Step 8. Set a breakpoint at the second statement. Move the cursor to the second

statement and press - [=] repeatedly until the entire statement is
selected.

Step 9. Create a breakpoint by pressing [Debug Breai],

A message indicating the breakpoint number and location is displayed
in the Debugger window. :

This breakpoint allows you to interrogate the actions of the program
each time through the loop.

Step 10. Execute the program by pressing [Debug Execute],
The program stops at the breakpoint. A message indicating the break-
point number and location is displayed in the Debugger window. The
second statement in the program is still selected.

This is the first time through the loop. The program has not yet exe-
cuted the selected statement.

Step 11. To display the value of I, select the occurrence of I in the for statement
by moving the cursor to I and pressing - =

RATIONAL 15

Basic Debugger Operation

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

Step 18.

Step 19.

Step 20.

16

Display the value of the object by pressing [Debus Putl,

The value is displayed in the Debugger window. It should be 1, because
this is the first time through the loop.

To display the value of The_Result, select the occurrence of The_Result,
which is on the left side of the assignment statement.

Display the value of the object by pressing [Debus Putl.

The value is displayed in the Debugger window. It should also be 1.
This is the initial value because the statement in the loop has not yet
been executed.

Execute the program again by pressing [Debug Exccute],

The program executes until the breakpoint at the second statement is
reached. The window displaying the program unit has the statement
selected.

Display the value of I.

The value is displayed in the Debugger window. It should be 2, because
this is the second time through the loop.

Display the value of The_Result.
The value 2 for The_Result is displayed in the Debugger window.

The Debugger shows that it will next execute statement 2. The program
thus has executed this statement only once. The value of The_Result
should be 1.

Notice that statement 2 sets The_Result to The_Result plus I. This
is wrong. The correct algorithm should be to set The_Result to
The_Result ttmes 1.

You could now use the standard Environment facilities to modify the
unit. You will learn how to use these facilities in the next section.

You’re done!

RATIONAL

Modifying Ada Programs: Adding Statements

Deseription

Provides an example of how to make incremental changes to the algorithm of a
subprogram in a package body. This example shows how to make such a change by
adding statements to existing subprograms.

The program used to make the changes is called Baseball Statistics. It is designed
to calculate individual team batting statistics. It prompts for input about players
(at bats, hits, runs batted in) and then calculates and displays batting percentages
and team totals.

The program is built from these packages: Baseball, Data_Inputter, and Formatter.
These are used in the main procedure called Baseball_Statistics.

///".F—\
The required change is in_package Formatter. It is desired that the team totals,
printed at the bottom of the output from the program, be separated by a line of
dashes. We will add only the first dashed line in the script.

This type of change does not alter or remove any existing statements. It merely

adds statements when printing the team totals. These changes demonstrate the
incremental compilation capability of the Environment.

RATIONAL | 7

Modifying Ada Programs: Adding Statements

Part 1. Steps 1 through 3 find package Formatter, where the changes need to
be made. - - . ,

Step 1. Locate and go to your home world.
Step 2. Locate and go to the world called Baseball System in your home world.
Step 3. Locate and go to the body of package Formatter in Baseball System.

The body will be the second occurrence of Formatter in the Base-
ball_System world.

18 RATIONAL

Part 2.

//Step 4.

Step 5.
Step 6.

Step 7.

Step 8.

Modifying Ada Programs: Adding Statements

Steps 4 through 10 make the first necessary change to the package.

Demote the Formatter package body to the installed state by pressing
- 1// 7

The installed state allows incremental additions or changes without re-
quiring the recompilation of other dependent units.

Find the procedure Print_Team_Stats in the package.
Move to the beginning of the first statement in the procedure.

Create an insertion point for the new statement by pressing - [.

The Environment creates an insertion window in the top half of the
window displaying Formatter. A temporary name is placed in the library
under the body of Formatter.

At the statement prompt in the new window, enter:

tio.put_line 200
", _L,‘,_‘_\,:{:% - J‘”S

el
" T

+
+
-

and format.

(There are 30 dashes on each line.)
T “\\

Step 9. (Semanticize{_{h;)tatement.

This”;hecks to make sure you will be able to add the statement to the
program. There should be no errors.

Step 10. , Pro;pmaatement by pressing [Promote].

Ny

‘Notice that the insertion window disappears and the new statement

replaces the prompt in the subprogram. The temporary name is removed
from the library.

RATIONAL 19

Modifying Ada Programs: Adding Statements

Part 3.
Step 11.

Step 12.
Step 13.

Step 14.

20

Steps 11 through 14 put the program back together again.

" Promote the body of Formatter to the coded state for execution by

pressing [Promotd].
Locate and go to the Baseball_System world by pressing [Excicsiag Gbiea).

Create a Command window, enter Baseball_Statistics, and execute

‘the program to verify the effect of the changes by pressing [Fromotd.

You're done!

RATIONAL

Modifying Ada Programs: Changing Statements

Deseription

Provides an example of how to change incrementally the algorithm of a subprogram
in a package body. This example shows how to make such a modification by changing
statements that already exist in subprograms.

The program used to make the changes is called Baseball_Statistics. It is designed
to calculate individual team batting statistics. It prompts for input about players
(at bats, hits, runs batted in) and then calculates and displays batting percentages
and team totals. .

The program is built from these packages: Baseball, Data_Inputter, and Formatter.
These are used in the main procedure called Baseball_Statistics.

The required change is in package Formatter of the Baseball program. It is desired
that the columns of numbers in the output be formatted with more space between
the columns so that they align with the headers above them. We will fix only the
first column in the script.

This type of change requires that existing 1/0 statements in package Formatter be
changed.

RATIONAL 21

Modifying Ada Programs: Changing Statements

Part 1.

Step 1.

22

Step 1 finds the package that needs to be changed.

Locate and go to the body of package Formatter in Baseball_System.

The body will be the second occurrence of Formatter in the Baseball.

System world.

RATIONAL

Part 2.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Modifying Ada Programs: Changing Statements

Steps 2 through 7 make the first necessary change to the package.

Demote the package body to the installed state by pressing [massil.

The installed state allows incremental additions or changes without re-
quiring the recompilation of other units.

Find the Put_Statistic_Values procedure in the package. This is the
procedure that must be changed.

Locate and select the first statement in the procedure (the one with
At_Bat) by moving the cursor to that line and pressing - =]
repeatedly until the entire statement is selected.

Edit that statement by pressing [£du].

The Environment replaces that statement in the procedure with a state-
ment prompt and creates a window in which to edit the statement.

Notice that the Baseball_Statistics library has a temporary name listed
under the body of package Formatter.

Change the value 5 to 8.

This is the field width for the value. It makes the column eight characters
wide instead of five.

Promote the statement by pressing [Promotd].
The window disappears and the changed statement reappears in the

procedure. The temporary name in the Baseball Statistics library is
removed.

RATIONAL 23

Modifying Ada Programs: Changing Statements

Part 8.
Step 8.

Step 9.

Step 10.

24

Steps 8 through 10 put the program back together again.
Promote the entire package body to the coded state by pressing [Fromote].

Create a Command window, enter Baseball_Statistics, and execute
the program to verify the changes by pressing [Promotd.

You’re done!

RATIONAL

