HO\E&M :Dyr \’t%& ,

Rational Environment Trammg
Advanced Topics |

haie

e

Copyrxght © 1986,, 1987 by’sRaﬁlona.l _
B | i

: ,Docﬁme,nt Conti{'oiifNﬁmber: 8014A

Rev. 0.0, September: 1986 i

‘Rev. 1 O ‘February 1987 .
. Rev 2 O July 1987 (Delta)

- This document sﬁbject to cha.nge"ywithOut notice.

[XFY-

- Noté the Reader’s Commeﬁts form on the last page of this book, wh"icﬁkéfequests
.. the user’s evaluation to assist Rational in preparing future documentation:

g
= A

A
el

Ada is a registered trademark of the U.S. Government (Ada Joint Pro‘gré"fﬁrOﬁice)i

WQ{"“
Ratxonal a.nd R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational. on
| Ap. M
ik
~ Rational
1501 Salado Drive ¢y
Mountain View, California 94043 e

i 7/1/87 BA\TIONAL

Workspace Management
Introduction
General Aids

More Window Management

More Library Operations
Sessions

Switches

Searchlists

Login Procedures

Job Contrql.

. Access Gontrol = oo 1 cu

Archiving
Basic Networking

Environment. Command Interface .,

Environmeni Facilities
‘Objects and- Naming
Logs and Profiles
Keymap Modifications
Tool Building

Development Mechanisms
Coding Aids
Subunits

<r,§
AP

Slidea

Contents

.
.
Bk

5w
i

Rational Environment TrammgAdNancerl Topic‘g"t

w87
© 795
S0

1120

128

136
148

iii

Debugger Operations
Link Operations
Incremental Operations
Testing

Reusable Components

Basic Subsystems and Configuration Management

Project Management Issues

Project Structuring with Subsystems

Subsystem Construction

Basic ‘Development Methodology
Source Reservation with CMVC
Parallel Development with Subpaths

ix

155
166
170
180
185

190
206
222
232
243
248

RATIONAL

Seminar Outline

Workspace Management -
e Introduction o
General Aids

More Window Management .- .
More Library Operatlons |
Sessions o
Switches
Searchlists -
Login Procedures

- Job Control
Access Control
Archiving
Basic Networking

Environment Command Interface

Development Mechanisms

% Basic Subsystems and Configuration Management

RATIONAL 1

Introductlon
vk) £

Course Objectives

e Introduces additional Environment concepts
and mechanisms

e Broadens.the experience of users with various
EnV1ronment features and facilities

.9 Pri)"’ifié'e‘s an ‘introduction to project
" development using Rational Subsystems and

CMVC

2 RATIONAL

Bl T
Introduction

® : e
Course Materials it

~$\r.f. i g e
Tk 7 PR

e Rational Environment T'razmng

Advanced Topics ik .

H‘!g 'f

e Rational Environment Baszc Operatzons -

— Sequence of steps, commands,; and keys
used to perform common Envn'onment
functions |

— Basic Keymap

e Rational Environment Reference Manual
(11-volume set)

e Reference Summary (Volume 1 of Reference

Manual)

— List of Environment commands

— Naming symbols and attributes
— Keymap

— Master Index

RATIONAL 3

Lk

Seminar Outline

Workspace Management
- Introduction
e General Aids
More Window Management
More Library Operations
Sessions
Switches
Searchlists
Login Procedures
Job Control
Access Control
Archiving
Basic Networking

Environment Command Interface
Dévelo;i;ment Mechanisms

Basic Subsystems and Configuration Management

4 RATIONAL

General Aids

Macros

e Provide a way of repeating a series of .-
keystrokes :

e Can be bound to any smgle key or key
combination

e Are created with

— Begin the macro: [Markl - [Begin Of

® — Enter all keystrokes in the macro

— Complete the macro: [Mar - [Ead 0f]

A1

e Can be used in two ways

— Execute the macro: :I;Marki - [Promote] 91ﬁ~ @@/

— Bind the macro to any key: [Mark - lDeﬁnmonJ
and then press the key to which to bind
the macro

e Can be used with argument prefix keys to
execute the macro several times

RATIONAL 5

General : Aids

Macros (cont.)

o Can:be saved and reused: Macro.save -
it R i d Fo-> {ent i V‘xn\,. (" mwn W"ﬁwzcb

o Example: A: iﬂa;"cro that displays both parts
of ¢he Ada unit at the cursor

RATIONAL

General Aids’

Exercise: Using Macros R

1. Build a macro that comments out aldine of

e e code in an Ada unit and adds,your inifials Lot]

e ~to identify your change. The macro sheuld ‘™ 4~

fj,r N comment out the entire line regardless of e
VA the cursor’s position on the line. The cursor

v &30 should be moved to the next line in the Ada
 unit so that the macro can be executed
several times to comment out several lines
‘ without additional keystrokes.

2. Test this macro on a unit in the Experiment
world. Make sure the macro can be
executed several consecutive times to
comment out several lines.

3. Test the macro using an argument prefix
key or keys. Does pressing [numeric 3 - [Mark] -
[Promote) comment out three successive lines?

4. Bind the macro to [F1]. Verify that it works

singly and with argument prefixes.
WAL - Def e ivies — Fq

RATIONAL 7

Genéral Aids

Exercise: Using Macros (cont.)

5. Return the unit to its original configuration.

8 RATIONAL

General Aids.,

Optional Exercise: Using Macros

1. Build a macro that removes the comment :
characters and your initials from a line in
an Ada unit. The macro should remove
the leading comment characters regardless
of the cursor’s position on the line. The
cursor should be moved to the next line
in the Ada unit so that the macro can
be executed several times to remove the

. comment charactes from several lines
without additiona: keystrokes.

9 Test this macro on a unit in the Experiment
world. Make sure the macro can be
executed several consecutive times to
remove comments from several lines.

3. Test the macro using an argument prefix
key or keys. Does pressing [numeric 3| - [Mark| -
remove the comments from three
successive lines?

RATIONAL 9

General Aids

Optional Exercise: Using Macros (cont.)

4. Bind the macro to [sun[Fi. Verify that it
works singly and with argument prefixes.

5. Verify that both the original macro on
71 and the macro on work. Which
macro is executed when you press -

Promote| ?

6. Return the unit to its original configuration.

10 RATIONAL

General -Aids <

Mark Stack

e Is often used to save and return to cursor
locations in windows -

e Contains the 100 most recently marked
cursor locations in a ring buffer

e Commands

— Explicitly push a mark onto the stack: b

— Go to the mark at the top of the stack:

Mark, - [ﬂ

— Go to the next or previous mark in the
stack: [Mark] - [=] Or [Mark] - [<]

— Consult the Keymap for commands that
edit the stack |

a7
{f*ﬁ 1 o

sovreny, C-20 Voo e Morke

RATIONAL 11

vjx:-/
e

General Aids

Mark Stack (cont.)

12

Mark | =

Mark
~ Top

Mark |— | @

Mark
Previous

/ v

Most
Recent

Mark |—| ¥
Mark
Push
Mark | = |-
Mark
Next

RATIONAL

General Aids

|
Exercise: Using the Mark Stack

1. Go to your home library and place the
cursor at the beginning of the image.

2. Push a mark at the top of the image. wou

3. Move down in the image several lines. Push
another mark on the stack. 2 PR

4. Cycle through the marks on the stack.
. Notice that there are only two marks on the
stack and the remaining 98 stack locations
are not used. Wpnke €

5. Remove the window from the screen by
pressing [Window - [0). Remember that this
operation will leave the window in the
Window Directory.

6. Return to the top mark by pressing [Mark -
7. Notice that the window containing the
mark returns to the screen.

RATIONAL 13

General Aids

Exercise: Using the Mark Stack (cont.)

7. Delete the window by pressing -
or [obiect] - [6. This operation removes the

window from the Window Directory. rpac iz 1w wek
FOSEQUE sihirnd

8. Return to the top mark. Notice that the
mark previously saved has been removed
from the stack because the window has been
deleted.

14 RATIONAL

General Aids™

®
Region (Hold) Stack vweloe dele af dexk

olb 08 doledes qutles g checled

e Can be used to recover deleted regions of
text

o Contains the 100 most recently used regions
arranged in a ring buffer

e Also contains regions implicitly pushed onto
the stack by all line and region deletions

e Commands

— Explicitly push a region onto the stack:

[Region| -
— Recover the top region from the stack:
[Region] - [1]

— Recover the next or previous region from
the stack: [Region] - [=] or [Region] - [—]

— Consult the Keymap for commands that
edit the stack

RATIONAL 15

General Aids

Exercise: Using the Region Stack

16

. In the Experiment WOI’ld, edit the

Line_Copy’body unit.

. Select the loop in the Locate_Comment

function. Use either region or object keys.
Select only the loop, not the whole function.

. Push this region onto the region stack.

Crgie- b

. Move to the statement region of the

strip_Blanks function.

. Recover the top of the region stack by

pressing [Region] - [1].

Notice that the region is inserted into the

~ function at the current cursor position.

. Return to the Locate_Comment function and

select just the if statement. Push it onto the
region stack.

RATIONAL

General Aids

Exercise: Using the Region Stack (cont.)

Delete the return statement from the
function using line, region, or object
operations.

Remember that deletions are automatically
pushed onto the region stack.

. Move to the statement region of the

Has_Comment function.

Rec wer that top of the region stack. Then,
without moving the cursor, recover the next
region from the stack. Continue cycling
through the regions on the stack, noticing
that each replaces the previous region at the

cursor position.

If the cursor is moved in some way, then
the region currently displayed from the
stack will not be replaced by the next
region recovered from the stack. Notice
that regions recovered from the stack are
not removed from the stack.

RATIONAL 17

General Aids

Screen Stack

e Can be used to save and return to screen
configurations after browsing

e Contains the 100 most recently used screen
configurations (windows and placement) in a
ring buffer

e Commands

— Explicitly push a screen onto the stack:
[Control| Metal S ift! || .

— Recover the screen on the top of the
stack: [Control| Metal| Shift] 1]

— Recover the next or previous screen in the
stack: [Control|Meta| Shift] —] OT [Control| Meta] Shift| —|

— Consult the Keymap for commands that
edit the stack

18 RATIONAL

, _ General Aids
%gf{yr%ee SUWM«/_ C - 20‘

{)Om:, Lnag & f‘ac Ve vy

Exercise: Using the Screen Stack

1. Build a macro that first pushes the screen
image and then does a definition. Bind it to

F2l.

Build another macro that first pushes the
screen image and then does an enclosing .
object. Bind this to [Fs]. T

2. Now browse around using the macros.

3. Return to the first screen image by pressing
| Control|| Meta| Shift] —|.

4. Go back to the last screen and “unwind”
through your browsing by pressing
[Control| Meta| Shift|—] several times.

RATlONAL 19

Seminar Outline

Workspace Management
Introduction
General Aids

e More Window Management
More Library Operations
Sessions
Switches
Searchlists
Login Procedures
Job Control
Access Control
Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

20 RATIONAL

More Window Management

& = ekl
& N\

Window Operations

e Controlling window replacement

— If the window is unlocked, make the
current window the next window to be
replaced: [Window] - [Edit] OT [Window] - [Demote]

— If a window has been demoted, return it
to a normal window and make another
window the next one to be replaced:

' Window = : Promote

e Removing a lock on a window

— Unlock a locked window: [Window] - [Demote]

— Transpose a locked window: - (7

— Explicitly remove a locked window from
the screen: - [D]

“{\ N e o

RATIONAL 21

More Window Management

Exercise: Using Window Operations

This exercise should be completed without
locking any windows.

1. Go to your home library.

2. Go to the Experiment world without
creating another window by pressing
| Window - | Edit| - | Definition|. B S Q\;;’ff Ly ei/z«\"ff N

Notice that the window’s contents are
replaced with the new world.

3. Look at the package spec of Line by
pressing [Definition In Place).

Again, the window’s contents are replaced.

4. Return to the home library without creating

another window by pressing [Eaclosing In Place].
che e £y

22 RATIONAL

More Window Management

Window Directory Operations

e Go to the image pointed to by the cursor:

Definition

e Save the selected image: [Enter] & va) lock ol
e Save all images (without selection): [Enter]
e Promote the selected object: [Promote]

e Demote the selected object:

e Delete the selected image or window:
Object| - [D] OI [Object] -

e Edit the selected image:

e Remove the Window Directory without
choosing another window: - [G] or

Object| -

RATIONAL

23

More Window Management

Exercise: Using Window Directory
Operations

1. Create a macro that saves the current
window location, enters the Window
Directory, saves all images, and returns to
the previous window location.

2. Test the macro by making minor editing
changes to units in the Experiment world.
Verify that the changes are saved by the
macro.

V/}ﬁle [Q————\ o /L«_)S e 07

: (WlMEUW - P Rowolt)~ hie W Evs g 20T
; W tvgevy - i Lo

\ {Pewwy envreel

i
§

Vuvtigrers - \/

Wirpon - S0 0 L bale d{
. &

Marn ¢ 3D

S

fFiwne S r:\f”\ AR

24 RATIONAL

| Seminar Outline

Workspace Management
Introduction
General Aids
More Window Management
e More Library Operations
Sessions
Switches
Searchlists
Login Procedures
Job Control
Access Control
Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 25

More Library Operations

Library Commands

e Copy a library object from one place to
another: Library.Copy

e Move a library object to another location:

Library.Move
e Rename a library object: Library.Rename

e Delete a library object or set of objects:
Library.Delete

e Freeze an object, preventing inadvertent
changes: Library.Freeze

e Display the resolution of a namlng
expression: Library.Resolve =~

e Set the number of deleted versions retained

in a]ibrary' Library.Set_Retention_Count
i) eve 2 V» S

e Consult package Library for other operations

26 RATIONAL

More Library Operations

Library Object Operations

e Save the selected object: [Eater
e Promote the selected 0}3&160131 Promote

(% '\/‘”«lg,Le c’»hjra b Lrer phrﬂ/: ey 1
My e el ooy o e

e Demote the selected objﬁ'ect:A

e Change the state of the selected object: [Sourcel,
| Installl, OT |[Code

e Edit the selected object:
e Delete tlie selected object: [Obiect] - (D or

[Object] - [K]

e Copy a selected object to the cursor position:

Object| - @

Gt —-)

RATIONAL 27

More Library Operations

Library Object Operations (cont.)

e Directly execute the selected coded
procedure:

— Creates a Command window for
procedures with parameters without
defaults

— Directly executes parameterless
procedures or procedures with all default
parameters

e Directly execute under Debugger control:
| Meta) Promote] “5¢ 4l -

— Must be parameterless or have a complete
set of defaults

28 RATIONAL

More Library Operations

@
Library Display Operations

e Library displays can contain units and
versions of unlts not shown by default

o There are elght dlsplay combmatlons

— Include deleted units or not
— Include subunits or not

— Include previous versions or not

i . e Midpoint is the default display defined by

your session switches
e Commands to cycle the display

— Cycle down to another display
combination: - [

— Cycle up to another display combination:

Obeet] - [] o kool

RATIONAL 29

More Library Operations

Library Display Operations (cont.)
c?(:_z‘»ch { £ |
(“"r(i - %
e Display combinations

— {versions}: Show all nondefault versions
and deleted library units and subunits

— versions: Show all nondefault versions
of library units and subunits (but not
deleted units)

— {1ib vers}: Show all nondefault versions
and deleted library units (but not
subunits)

— 1ib vers: Show library units and all
nondefault versions (but not subunits or
deleted units)

— {units)}: Show library units, subunits,
and deleted units

— (blank): Default

{ . i A} v . .,
TR SO < N y 5,
. [T ST e A ; ~ B Y
[]

30 RATIONAL

More Library Operations

Library Display Operations (cont.)

— {1ib units}: Show all library and
deleted library units (but not subunits
or nondefault versions)

— 1ib units: Show all library units (but not
subunits or deleted units)

RATIONAL 31

More Library Operations

Library Display Operations (cont.)

e Library displays can show one of three sets of
information for each listed object

— Basic display with object’s name

— Standard information display with
object’s class

— Miscellaneous information display with
update information, state of Ada units,
size, retention count, and frozen status

e Visible library display information is
controlled by

— Cycling between sets of information:
Eggmf O%cet ?

— Setting session switches for library
operations

32 RATIONAL

More Library Operations

Exercise: Using Library Operations

obet-2
1. Go to the Experiment world and use

to find out if the Program_Profile program
is coded. Make the program coded if it is
not. chprel a7

2. Directly execute the main program by
selecting the Program_Profile subprogram

and pressing [Promotel.

3. Enter the unit Test_Inputi at the first
prompt and press [Promote again.

4. Demote the unit Line’body by selecting it

and pressing [Source Unit].

5. Cycle through the three different library
displays.

Notice that, with the cursor on a particular
unit, only the display of that unit is
changed.

RATIONAL 33

More Library Operations

Exercise: Using Library Operations (cont.)

6. Move the cursor to the top of the library
display. Adjust the library display to show
the state of the Ada units in the library.

Notice that the display of the entire library
is changed.
7. Delete the selected unit Line’body using

Object| - [D..

8. Cycle through the different levels of hiding
in the library.

Notice that the deleted object reappears at
some levels of hiding.

9. Undelete the deleted object Line’body Wlth
[Object] - [T].
Notice that the display of the unit
Line’body changes.

10. Promote the previously deleted unit directly
to coded.

34 RATIONAL

® Seminar QOutline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
e Sessions
Switches
Searchlists
Login Procedures
Job Control
. Access Control
Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 35

Sessions

Sessions

e Users can create several sessions, each with
different characteristics

— Each session is an object in a user’s home
library

— TUsers choose a session when logging in

e Sessions can be tailored to define

— Screen characteristics: scrolling behavior, ®
number of windows, Message window size

— Command response characteristics: error
responses, log generation

— Image characteristics: content of library
image displays

— Initial workspace configuration: command
visibility, initial library destination

36 RATIONAL

Sessions

Uses of Sessions

e Organize your Workspace on an 1nd1v1dual or

SR Q L C s e ey AN .

project basis r e e e S e

e Tailor Environment behavior and setup for
specific lifecycle phases of a project

e Customize your individual workspace

e Provide session-specific behavior in login
procedures

RATIONAL 37

Sessions

User-Tailored Sessions

e Sessions are created and controlled by the
Environment

— Are created when logging into a new
session

— Can be created by the user:

Operator.Create_Session

— Have default characteristics initially

e Sessions can be tailored by the user

— Each characteristic is tailored with
facilities from packages switches, Log,
Profile, and Search_List

— Session characteristics are saved for use in
all subsequent logins

38 RATIONAL

Seminar Outline

Workspace Management
~ Introduction
General Aids
More Window Management
More Library Operations
Sessions

o Switches s¢, s7 v elvsce Somory /5 bl s

Searchlists

Login Procedures
Job Control
Access Control
Archiving

Basic Networking

Environment Command Interface

Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL

I 0
t oy e

39

Switches

Characteristics of Switches

e Provide a way of tailoring the behavior of
various Environment facilities

e Consist of two classes

— Library switches affect library operations,
including compilation in that library and
Ada unit formatting

— Session switches affect screen and
command behavior

)

e Rt
—

A

(S

Y gk‘“'}é/ N Qf’ , [S ._, (gt Cr;//S)/ vy e {v 4 - S ' A

L7 o Zemgdeno . UL LLlgite el e =
.
_ S j T [defaw
L ;
)
-) ETNPRY P
§ ‘BM — git;"fh A= ~L KN D Lo A zt.

40 RATIONAL

Switches

Operations on Switches

e Create a library switch file in the current
library: switches.Create

e Edit library switches: switches.Edit

e Apply a library switch file to a library object:

Switches.Associate

e Edit session switches:

Switches .Edit_Session_Attributes
e Change a selected switch: ele metln v
e Get help on the current switch: [Belm o6+~
e Save the changes to the switches:

RATIONAL 41

Switches

Exercise: Editing Session Switches

1. Edit your session switches with
Switches.Edit_Session_Attributes.

2. Press (<] when you are on the left margin.
Notice that the Environment beeps or
flashes.

<
3. Select the Beep on_Errors switch and press
(Edit). Save your change by pressing [Enter].

@t

4. Now press [—] agam Note that there is no ‘
beep this time.

0 | RATIONAL

Switches

Exercise: Editing Session Switches (cont.)

5. Search for the window_Command_size switch.
This controls the size of Command windows
when they are created.

6. Select and edit the switch. Note that a two-
line Command window is created with the
Change command.

7. Change the parameter to 4. Promote the
o command and save your change.

8. Create another Command window
somewhere and notice its new size.

Q_ Lf(\)\(Yo el
f./ hiff“t/ WJ\, o A,7,,5 o ;1“7 R N

e

g 7"}((‘/1 \

RATIONAL 43

Switches

Cinéey - v77%

(SQ;Q"""‘DVLP R T = -t- ;,,»,Afwl;';k_
(@.ﬁg e S s e {’/‘-'ww w3 /

£ [W‘f“:‘fr’ /VS?&?’(‘ ton or 9\, e b f}t{?{,{/

Dyt ece. - L
My < = wsl& {—b«‘g (-\""““&*

Exercise: Editing Library Switches

44

Go to the Experiment world in your home
library.

Create a switch file in that world and
associate 1t with the Experiment world using
the switches.Create command.

Associate the new switch file with
the Experiment world with the
Switches.Associate command.

Edit the switch file.

Change the Major_iIndentation switch from
4 to 2 and save your change.

Get the definition of the body of the rine
package.

Select the entire body and execute the
Library.Reformat_Image command.

Try changing other format switches.

RATIONAL

® Seminar Qutline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
Sessions
Switches

e Searchlists
Login Procedures

Job Control
. Access Control

Archiving
Basic Networking
Environment Command Interface

Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 45

Searchlists L : U o %
|

Characteristics of Searchlists

e Define visibility in Command windows

e Specify an ordered set of libraries to search
for name resolution

~ e Are unique for each session .
e Systemwide default:
W

.8
‘ ! COMMANDS
S qﬁvﬂr{£5 'LOCAL
e Clee ' COM» ANDS . ABBREVIATIONS®
- !MAC! INE.RELEASE.CURRENT.COMMANDS"
'I0
!TOOLS
!{TOOLS.NETWORKING

[

r~— § = Search current context™ "

\

— = Also search through the library’s
links

— Located in 'Machine.Search _Lists.Default

46 RATIONAL

Searchlists

Searchlist Modification

e Modify a searchlist to provide visibility to
project or user-defined tools in Command
windows

e [Edit a session’s searchlist:
S Search_List.Show_List

e Modify the searchlist with common editing
commands

o — Prompt for ind insert a searchlist entry at
the cursor position: [Object - [

— Delete a selected searchlist entry:

(Gbject] - D)

— Get the definition of a searchlist entry:
!Deﬁnition

RATIONAL 47

Searchlists

Exercise: Using Searchlists

1. In a Command window, execute the
command: Text_Io.Put_Line ("test"):.

Notice that you do not have to with Text_Io
for this to work. This is true because
Text_Io 1s referenced in your searchlist.

2. Edit the searchlist.

3. Remove the entry for 1.

4. Attempt to reexecute vhe command.

The attempt fails because Text_Io 1S no
longer visible in the searchlist.

5. Replace the 110 entry in your searchlist.
THIS IS IMPORTANT. GET YOUR
INSTRUCTOR TO HELP YOU IF
NECESSARY.

48 RATIONAL

o Seminar Outline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
Sessions
Switches
Searchlists

e Login Procedures
Job Control

o Access Control

Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 49

Login Procedures

Login Procedure Basics

o Procedure executes automatically whenever
you log into the Environment

e Basic method

— Create a parameterless procedure called
Login in your home library

— Enter any Ada code and use any
Environment facilities

— Promote the procedure to coded when
complete

50 RATIONAL

Login Procedures

Some Uses of Login Procedures

e Call different setup commands based on the

sesslon name

e Examples

— Set the number of windows

— Display any status from overnight

compiles or tests

— Go to your project library

— Change your keymap

RATIONAL

Yo -
PP A S N Ee

A 2
b T — cxjt:vu—n(‘ - e

i ¢ N
B b= e Sessit Mg - o S i .
\ e ST < e b

yideo “fpe A _
,,‘f‘fv >__ L,IL e &(U‘U
/ l‘ - ~o 4 ! s
i R T
e oy v B ‘i‘h;e:“;

N4 1:5 - T\’a‘)‘;’l“/v\ .
i\:"vb/"i [
:.l)
e (Y)
l’\,l«; ,,. 'H@“G‘L&» (k
2 /
‘\ -

f
i<

ST
N i,/_./f’%,\w f *rg‘-?"ml\} .{'L

i

t -

i e a

L, = wf«a 1#~(,f’b\.51

\lyl&‘z 1
IR
TAL] 106~ [

Login Procedures e B N i‘j;:.-}- o i
[

P S P T

Exercise: Using Login Procedures

ok 1. Modify the login procedure in your home
Py library. For a new session called Testing,

create the following initial conditions:

resle dexwf&
— The number of screen frames is 4

TNt J 3 praTes Ejones
— The Program_Profile System llbrary 1S
displayed. cwwon vonio L

[

Eito, i) fon

— A Command window appears off the
Program_Profile_System library. . ‘

— The users logged into the Environment
are displayed. whe (e

2. Log out and back in with the new Testing
session and verify that your new login
procedure works.

E
elo:
- p i-"a/ ¢ ; {
v o 4 (O L . £
o o
. Vv i 3 f
P oy o - o

52 RATIONAL

@ Seminar Qutline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
Sessions
Switches
Searchlists
Login Procedures

e Job Control

® Access Control

Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL ' 53

Job Control

Basics of Job Control

e Any job can be created and disconnected to ;
continue execution in the background 1

— Disconnect from any JOb m.

— Job becomes a background VJob different
scheduling applies

e Disconnected jobs can be reconnected

Gl
— Reconnect to specific job: [Tob Connect]

and enter job number

— Job number is available from the
disconnect message

— Job scheduling returns to foreground
characteristics

e Currently connected or most recently
disconnected job can be killed: MG

A1 ?' /:«’
CAad

54 RATIONAL

Job Control

@
Basics of Job Control (cont.)

e Procedures can be constructed to run as
background jobs by including a call to

Job.Disconnect

e Dynamic display of all jobs: what.Jobs

— Display idle or disabled jobs: - or
[Object] - []

— Kill a selected job: - [D]

— Terminate the jobs display: -
e You can log off with background jobs running

— Must redirect I/O to files: Log.Set_output

T

¥
53

fihy - o v,
Vol venke od Ve
V\l‘:v:{’(’,?él;/ - C«{{'Q’fﬂ"}{ - ‘:Cs{/LIE [;«v’)mblﬁs

T

LTI e [r? “C2.Y oy e
- L TR Ctley

RATIONAL 55

Job Control

Exercise: Controlling Jobs

Use the Rational Environment Basic
Operations, the Rational Environment
Reference Summary, and your notes to
assist you.

1. Determine the users and jobs currently
running on the system through the jobs
display. R

o i }
T Y o g S oo N
g P S W e 2

2. Start the following job: de1ay 1000.0.

While watching the jobs display:

— Disconnect from the job. ,

Ty L=

— Reconnect to the job.
Db

A\— Disable the job.

- — Reenable the job.

— Kill the job.
o i

— Eliminate the jobs display.

(ak= e {»

56 RATIONAL

@® Seminar Outline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
Sessions
Switches
Searchlists
Login Procedures
Job Control
. e Access Control
Archiving
Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 57

Access Control

Access Control

e Controls access to worlds

e Controls access to individual objects

— Ada units
— Text and binary files

e Controls execution of programs and
commands

e Can be used to

— Isolate projects from one another on the
same machine

— Exclude unauthorized users from a project
or machine

— Prevent accidental modifications or
deletions

— Enforce design decisions

— Limit access to certain privileged
commands

58 RATIONAL

Access Control

@
Access Lists (ACLs)

e ACLs are the basis of access control

e Each world and each version of Ada or file
objects has its own ACL

e ACLs consist of a list of groups and the
access rights granted to each group

. — Nocumentation : Directory
— Testing : World
ACL
Proj => R S
Project : World — o — P : Pack_Spec
ACL Design => RC ACL
Test => RCOD Proj => R
Proj =>RC Sue => RW
Design => rcop| [— Units : Directory — John => RW
— Input : Text
ACL
Proj => R

Sue => RW
John => RW
Test => RW

RATIONAL 59

Access Control

Groups

e A group consists of a list of usernames
— Groups cannot reference other groups

e Every user belongs to at least one group,
which has the same name as the user

e Having access to a world or object means
that the user belongs to at least one group in
the ACL that has been granted the required

access rights

o Access rights for a job are determined by the
access rights granted to the owner of the job

60 RATIONAL

Access Control

® Special Groups

e Public: All users on the local machine

e Network_Public: All users on the local
machine and all users on other machines

e Privileged: Users in this group can run jobs
in privileged mode, which disables all access
checks

e Operator: Users in this group have operator

. capability, which allows execution of system
management commands such as enabling

terminals, creating user accounts, and so on

RATIONAL 61

Access Control

Access to Worlds

e Four kinds of access: owner, read, create,
delete

e Owner access

— Can change the ACL for the world and
for any objects in the world

— Can change the links for the world

— Can associate/dissociate a switch file with
tue world

— Can freeze/unfreeze the world or objects
in the world

62 RATIONAL

Access Control

Access to Worlds (cont.)

e Read access
— (Can look at the world and its contents

— Must have read access to every library in
the world’s full pathname

— Must have read access to the switch file
associated with the world

— If read access is not granted, Environment
acts as if the world does not exist

e Create access

— Can create new objects in the world

— Can create new versions of existing
objects in the world

e Delete access

— Can delete a world

RATIONAL 63

Access Control

Access to Objects

e Two kinds of access rights: read, write

e Read access

— Can look at an object

— Can demote Ada units

— Must have read access to every library in
the object’s full pathname

— If read access is not granted, Environment
acts as if the object does not exist

— If read access is not granted, the unit
cannot be executed

e Write access

— Can make changes to the object
— Can delete the object

— Can promote an Ada unit

64 RATIONAL

Access Control

|
Default ACLs for New Objects

e Each world has a default ACL

— Defines the initial ACL for new non-
library objects created within the world

e New versions of existing objects inherit their
ACL from the previous version

— Documentation : Directory

. — P : Pack_Spec

. ACL
Project : World — Proj => R
ACL Sue => RW

John => RW

Proj =>RC — Units : Directory —

Design => RCOD

— New_Data : Text

ACL
Proj => R
Defa.ult ACL Sue => RW
Proj => R Test => RW
Sue => RW

Test => RW

RATIONAL 65

Access Control

Default ACLs for New Objects (cont.)

e New worlds inherit their ACL from the ACL
of the enclosing world and their default ACL
from the default ACL of the enclosing world

e ACLs (and default ACLs) for user home
libraries are created by concatenating

— Read and write access granted to the
newly created user group with

— The machk.ane default defined in

IMachine.User_Acl_Suffix

66 RATIONAL

Access Contro}

Commands

e Display the ACL for an object: Ac1.pisplay
e Set the ACL of an object: Ac1.set
e Set the default ACL of a world:

Acl . Set_Default

e Add a group or list of groups to the ACL of
an object: Ac1.Add

e Create an ACL group’ Operator.Create_Group

e Display the users who are members of a
group: Operator.Display_Group

e Add a user or list of users to a group:
Operator.Add_To_Group

RATIONAL 67

Access Control

Exercise: Using Access Control

1. Go to your home library.

2. Try to delete the world Ac1_worid in your
home library. Notice the error message. .

3. Display the ACL for Aci_woria with the
command:

= L

Access_List.Display (For_Object => " &_ orld"); N

4. Notice that Ac1_wor1d has as an ACL that
does not provide delete access yco v el

5. Give yourself access to Ac1_worid with the
command:

Access_List.Set
(To_List => "Network_Public => RWCOD",
For_Object => "$.Acl_World",
Response => "<PROFILE>");

6. Display the ACL for Ac1_worid again.
Notice that the ACL has been changed.

68 RATIONAL

Access Control

Exercise: Using Access Control (cont.)

7. Now try to delete the world Ac1_worid.
Notice that this time you can delete the
world.

8. Find out which users belong to the group
Network_Public With the command:

Operator.Display_Group
(Group => "Network_Public", /
Response => "<PROFILE>"); qu\‘% e
S

9. Find out which groups you belong to with
the command:

Operator.Display_Group
(Group => "Advanced_N", -- Your username
Response => "<PROFILE>");

/ '8 . F)}J' -7 ,5:3«)
Y an b D
/i L

RATIONAL 69

Seminar Outline

70

Workspace Management

Introduction

General Aids

More Window Management
More Library Operations
Sessions

Switches

Searchlists

Login Procedures

Job Control

Access Control
Archiving

Basic Networking

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL

Archiving

o o

Archiving 114 stocver

e Provides mechanism for transferring entire
library structures in original form

— Move structure to another place on the
same machine

— Move structure to another R1000 via
network or tape

e Provides archive storage on tape

— Structures can be deleted and restored
later if necessary

e Provides additional backup mechanism with
incremental recovery

RATIONAL 71

Archiving

Archive Commands

2

J Loy IR - 2 e - I S BRSPS
T = S NN I e SeT - L R Y Y e

® Archive.Save ¢~ .

— Saves a set of objects onto tape or into a
library

— options parameter specifies tape format
and object filters

® Archive.Restore

— Restores one or more objects from a
library or tape

— Use_Prefix and For_Prefix parameters
are used for placing the objects in a
different place in the library structure

— Options parameter specifies overwrite
properties, promotion of Ada units, and
resulting access control

72 RATIONAL

LS Archiving
e g

- -~ \

Fra) e Cinty 21

n i
5;'1’{ .
G Y }‘\} NN N

) - NN

N«

Archive Commands (cont.) “

“.
) 1 N i M
{fc){éigf,(;‘ .;‘ 3_;.) ses °€£9:J’~’30 ke war ,

o

® Archive.Copy P op() Mlygers F-29)

— Transfers objects to new location without
using a tape or intermediate library

— New location can be on another R1000

— Use_Prefix and For_Prefix parameters
are used for placing the objects in a
different place in the library structure

) ok) o
Qﬁw { &=, 1’ i) s (5 e

<

Flthe 10 R0T6,

e e

RATIONAL 73

7 y o .
LS g o 'ugers, QCX/_Q.\ fest — Frendes sl

(omic)

Archiving

Options

74

Many commands, including Archive
commands, have an options parameter

— Options are string parameters listing the
options active for the command

— Options reduce the number of parameters
on commands when many options are
possible

— Individual options are separated by a
comma or space

Important save options

— Nonrecursive: Specifies that only the
listed units and not the objects contained
within them are to be saved

— After = <time_expression>: Speciﬁes
that only those objects modified after the
specified time are to be saved

RATIONAL

Archiving

Options (cont.)

e Important restore options

Promote: Specifies that restored objects be
promoted to their original state

Overwrite = All_Objects: Specifies that
all specified objects be restored

Overwrite = New_Objects: Specifies that
only specified objects that do not already
exist are to be restored

Replace: Specifies that the object is to be
replaced even if other objects need to be
unfrozen or demoted

Object_Acl = <acl_value>: Speciﬁes that
the ACL for the object be set to the
specified list

Become_Owner: Specifies that the ACLs be

modified such that the restorer becomes
the owner

RATIONAL 75

Archiving

Exercise: Using Archive

- 1. Create a new directory called Archive in
your home library.

2. Save the Program_Profile_System world into
the Arcnive directory with the following
command:

Archive.Save
(Objects => "Program_Profile_System",
Options => "R1000",
Device => "Archive",
Response => "<PROFILE>");

3. Restore the world with a new name and
promote the Ada units to their original
state with:

Archive.Restore
(Objects => "7",
Use_Prefix => "!Users.Advanced_N.New_System",
For_Prefix => "!Users.Advanced_N.Program_Profile_System",
Options => "R1000, Promote",
Device => "Archive",
Response => "<PROFILE>") ;

76 RATIONAL

Archiving

Exercise: Using Archive (cont.)

/4. Restore the Program_Profile_System world
. inside the Archive directory with:

Archive.Restore
(Cbjects => "?",
Use_Prefix => "!Users.Advanced_N.Archive”,
For_Prefix => "!Users.Advanced_N",
Options => "R1000",
Device => "Archive",
Response => "<PROFILE>");

RATIONAL 77

Seminar Outline

Workspace Management
Introduction
General Aids
More Window Management
More Library Operations
Sessions
Switches
Searchlists
Login Procedures
~ Job Control
Access Control
Archiving
e Basic Networking r¢ . . x

Environment Command Interface
Development Mechanisms

Basic Subsystems and Configuration Management

78 RATIONAL

Basic Networking

v :”, : LW ”‘}('{"{‘

Telnet

e Provides a virtual terminal interface to other

machines on the network

Establish a session with another machine:

Telnet.Connect

Normally only the remote machine name is
provided

All defaults are derived from the session
switches

Important parameters:

— Remote_Machine: Specifies network name
of desired machine

— session: Specifies session when creating
multiple Telnet sessions

- :
/ — Escape: Specifies character used to return

|

to the original session; [Gontrol[]] is the
default |

e oe s.ary

RATIONAL . 79

Basic Networking

Telnet (cont.)

e Break the Telnet session: Telnet.Disconnect

Important parameters:

— Remote_Machine: Specifies machine name
of the connection

— Session: Specifies session number if
multiple sessions have been created

80 RATIONAL

Basic Networking

File Transfer (oad e

V i Le/f ’"\« e I (‘zrﬁ) ‘f}'f’f; X

R S
(JEXL)T pe geq _! N

N,

File Transfer Protocol (FTP) provides the
ability to move files from one machine to
another

Basic method

— Connect and log into remote machine

— Transfer files to/from remote machine

— Disconnect from remote machine

Combined operations are available

Session switches can be used to set default
parameters for

— Remote machine name

— Login name and password

— Password prompting (available for
additional security)

RATIONAL 81

Basic Networking

File Transfer (cont.)

e Establish a TCP/IP connection to a remote
machine: Ftp.Connect

Important parameters:

— To_Machine: Specifies name of remote
machine -

— Auto_Login: Specifies whether you want
to log in (should be set to true)

— Username: Specifies remote machine login
name

— Password: Specifies remote machine
password

82 RATIONAL

Basic Networking

File Transfer (cont.)

|
/@
/

Move a file from the lccal machine to the
remote machine: Ftp .Store

M”I‘m"portant parameters:

— From_Local_File: Specifies name of local

file

— To_Remote_File: Specifies name of new

file

Move a file from the remote machine to the
local machine: Ftp.Retrieve

Important parameters:

— From_Remote_File: Specifies name of
remote file v/ »ovnea

— To_Local_File: Specifies name of new file

Log out from the remote session and break
the FTP connection: Ftp.Disconnect

RATIONAL 83

Basic Networking

File Transfer (cont.)

e Other commands

— Ftp.Put: Same as Ftp.Store but also does
connection, login, and disconnect after the
transfer

— Ftp.Get: Samne as Ftp.Retrieve but also
does connection, login, and disconnect
after the transfer

— Ftp.Get_List: Same as Ftp.Get but
transfers a specified list of files

84 RATIONAL

Basic Networking

Exercise: Transferring a File

Transfer a file to yourself by looping back
over the network to the same machine you are
currently logged into.

1.

Go to your home library and create a
Command window.

Enter the command: rtp.cet

Enter 1users. >>Your_Username<<.Login’body
for the Frc _Remote_File parameter.

Enter Login_Body for the To_Local_File
parameter

Enter appropriate values for the re-
mote_Machine, Username, and Password pa-

rameters.
Execute the command.

Compare the image of the Ada unit
Login’body and the Login_Body file.

RATIONAL 85

Basic Networking

Rehosting Software

e Move files to R1000
— Multiple calls to Ftp

— Copy files from ANSI-labeled tapes:

Tape.Read

e Convert the files into Ada units:

Compilation.Parse

— Use wildcard to specify all files

— Use another library for the pirectory
parameter to avoid name conflicts

e Compile the software: [Code (This World)]

86 RATIONAL

@ Seminar Outline

Workspace Management

Environment Command Interface
e Environment Facilities
Objects and Naming
Logs and Profiles
Keymap Modifications
Tool Building

Development Mechanisms

. Basic Subsystems and Configuration Management

RATIONAL 87

Environment Facilities

Environment Interfaces

e Common facilities are in libraries in world
— Most commands are in world !'Commands

— I/O facilities are in world 110

— Tools and utilities are in world 'Tools

— LRM-specified facilities other than I/O

are in world 'Lrm

e Interfaces for other products (for example,
Networking) are in the worlds 'commands or

!Tools

88 RATIONAL

Environment Facilities
I/0 Facilities

e Package 10 provides streamlined operations
similar to package Text_Io

— Append operation

— Standard error file in addition to standard
input and output files

— Preinstantiated Boolean, Integer, and
Float I/O operatiors

— Functional form of Get_Line
e TE e ni,

e Package Polymorphic_Sequential_Iowy'pI’OVideS
reading and writing of several types of data
into the same file

— Generic operations read or write multiple
user-defined data types into a single file

— File must be read in exactly the same
- order in which it i1s written

RATIONAL | | s

Environment Facilities

I/0O Facilities (cont.)

e Package pipe provides message passing
between jobs

— Higher performance than reading and
writing files

— Implicit queuing of messages

— Correct synchronization properties (can
be opened by two jobs simultaneously)

e Package window_Io provides programmatic
control of I/O to windows

— Allows creation of menus, custom
displays, report templates, and so on

— Can control cursor placement and
contents of window

— Allows reading of keystrokes from the
terminal

90 RATIONAL

Environment Facilities

Tools

e Package string_Utilities augments Ada’s
string-handling facilities

— Case conversion

— Conversion between numeric values and
strings

— Substring location

e Packages unbounded_string and
Bounded_String provide dynamic-length
string handling

— Conversion between strings and variable
strings

— Copy, move, and append

— Insert, delete, and replace of characters or
substrings

RATIONAL 01

Environment Facilities

Tools (cont.)

92

Generic packages List, Set, Map, Queue, and
stack provide abstract type operations

Package Table_Formatter displays a
formatted table of data

Package Table_sort_Generic sorts a table
containing any type of data

Package pDebug_Tools provides programmatic
access to Debugger functions to

— Set a breakpoint in the program
— Display messages in the Debugger window

— Specify symbolic task names that can be
referenced when debugging

— Provide user-defined display of object
values

— Get the name of any raised exception

RATIONAL

Environment Facilities

Tools (cont.)

e Package system_Utilities provides access to
system information

— Get CPU time consumed by job

— Get current user or session name

e Package Time_utilities provides additional
facilities for manipulating time

. — Manipulate durations

— Convert between time formats and string
representations

e Package profile provides facilities for
determining command error response and
log formats

| ‘i)(‘vs;‘ Mo D)Ci)

e s

RATIONAL 03

Environment Facilities

Optional Exercise:
Using Environment Facilities

1. Using the system_utilities and
Time_Utilities packages in a Command
window, write a program that measures
and reports the elapsed and CPU time for
the execution of a fragment of Ada code or
procedure.

2. Test the following kinds of constructs:

— A delay statement for 10 seconds

— A rendezvous

— A loop with a large number of iterations

calling a simple procedure with a null
body

3. Make your previous solution generic with a
single parameterless procedure (the one to
test). Use the Table_Formatter package to
format the output.

04 RATIONAL

® Seminar Outline

Workspace Management

Environment Command Interface
Environment Facilities
e Objects and Naming
Logs and Profiles
Keymap Modifications
Tool Building

Development Mechanisms

Basic Subsystems and Configuration Management

RATIONAL 05

Objects and Naming

Object Characteristics

e All objects have a name, class, and subclass

— Classes: Library, Ada, File, Session, and
others

— Subclasses of class Library: World,
Directory, Subsystem, Mallbox, and
others

— Subclasses of class File: Text, Binary,
Switch, Activity, Mail, and others

— Subclasses of class Ada: Package_Spec,
Package_Body, Generic_Function, and
others

e Ada and file objects have versions

— New versions are created whenever an
object is edited

06 RATIONAL

Objects and Naming

Object Characteristics (cont.)

e Ada units have four states:

archived, source, installed, coded

. A f’,”—"}-[{r

e Archived state Betbee.)
. (e, F

— Lower space requirements SR

— No selection allowed

— Use Compilation.Demote to demote source
. units to archived

— Use [Promote] to restore units in the archived
state to the source state

— Used for compact storage of deleted
objects and versions

RATIONAL o7

Objects and Naming

Special Naming Characters

e Provide convenient expression of object
names in the Environment

e Specify a name context

— Root of the Environment: !
— Enclosing context: -~
— Enclosing library: §
— Enclosing world: s$s &
e Specify names of deleted objects
— Resolve this name even if it is deleted:

{name}
o &

98 RATIONAL

Objects and Naming

Wildcard Characters

e Are used to specify more than one object or
to abbreviate parts of a name

e Wildcard character meanings
— #: A single character in a simple name

- — @: Zero or more characters in a simple
name

— 2: Zero or more simple name segr ents
(does not match worlds or their contents)

— 27: Zero or more simple name segments
(does match worlds) |

- rli}?\'f;M{;\Jj‘b{/viTQL! —-—&(_f A
10 o el 25 e
\.

N - I

RATIONAL 99

Objects and Naming

Wildcard Characters (cont.)

e Examples

— nInput#": All simple names with six
characters beginning with Input

e

— winev: All simple names beginning with
the characters In

— wen: All simple names

— m1users.??": All objects and their
contents inside !Users

100 RATIONAL

Objects and Naming

Additional Naming Constructs

,7 ¢ 14 -t !
. fos A 4 . Aty £ +h S Il
i [n“,; - MJ”f'éM'Ylm &{/:g"'e r ;r(v I Jee C)‘(\ Vi bl L@—(’_) -—-V)é)t{:ﬁ' I aaaN .2 ({‘s.’}\ﬁ“ T

?’“’5 Whle) - o
e Specitying sets of names

— Use the contents of the specified file (or

activity): "Filename
s ”\%v/"\’"\m T “‘ ' lenoe.

— Use the set of names in brackets:
Cwm.m‘p%VQC[‘rjamei , name?2, .. £>
A

— Exclude some names from a set:

[names®, “name7]
. L beve Shke “noneZ
o Specifying use of searchlists

— Search the libraries in the session’s
. searchlist: \ e

— Example: "\projects" means to find
an object called projects in one of the
libraries on the current searchlist

f?c,\(,vtg(;
' o N
oy HED T .) kY L e o] g P o Yoo
VAT Doee Vel M) e e A oy e e,

RATIONAL 101

Objects and Naming

Additional Naming Constructs (cont.)

— Another example: pes ("\1ib"); allows
you to move to objects on the current
session’s searchlist without knowing the
full pathname

e Ada naming

— Provides naming for Ada units not on
- your searchlist

— Used for execution in Command windows
or for binding keys

- Example: @ommands@.What .Time;

—

102 RATIONAL

Objects and Naming

Use of Attributes

e Attributes specify subsets of objects: Ada
parts, versions, classes, subclasses, Ada unit
state, and nicknames

— Ada unit attributes specify either
specifications or bodies of named units:

:spe OI'

— Version attributes select a particular

. version of an object: N ved ex lrewty e ke (s))

— Class and subclass attributes select V()
specific kinds of objects: *c(class or -
subclass name) [‘l’myﬂﬁek{e("%/@ (Fhﬂg alle %‘Mﬁeﬂ%{o

— State attributes select objects in a
specified state: *s(archived or source

or installed or coded)

RATIONAL 103

Objects and Naming

Use of Attributes (cont.)

— Nickname attributes allow selecting
a specified declaration from a set of
overloaded declarations: *N(nickname)

104 RATIONAL

Objects and Naming

Exercise: Using Naming Expressions

Cr ko

several of the naming constructs introduced
in the previous section.

At a minimum, try the following in a
Command window attached to your home

library:
7
v .
— Experiment.Q alte— evhade (g { ypop oo
®
— ¢’'C(World) g aorc o) (s
Kt %

E(g Y
— [se, Le] — ol da Bg yuors "ﬂ)@{g :‘Q)

U . & .

— ~adv@® - Qfllbog CEdaS(ﬁGDWie&#)
£

— @ —-dlle ednere | [itbet
(3

— Q@Qio

2. Create a text file in your home library
and edit it to list some naming constructs.
Submit this file, using the indireet
filenaming mechanism, to Library.Resolve.

‘ <o _
26 LAEHE 6E 9 O |
\QA Ci— 7 \V‘(),‘,;/Z‘v’«.\fé?f) 5
i" \/ ({‘1 oA :: L g
RATIONALY .. S 105

(Z‘C- {’ Tt Q N 4 o \\e
e el _velscben) -~ b ied dasler) Literr (Avelelrit?)

Objects and Naming

Use of Links in Naming

e Names can be resolved relative to the links in
the nearest enclosing world

— Symbol used to include links in the
resolution of names: -

e Example

— 1Users.Advanced_3.Login refers to a login
procedure locally declared in a home
library

— Login" refers to the procedure Login,
located either in the current context or
in the set of links in the nearest enclosing
world

106 RATIONAL

Objects and Naming

hb'(m';u ((\‘g»’n/
(Fromez " Nemiye Tonls, § 77
Substitution Characters To =2 usees 3y, i T 327 B

e Specify how to form target (output)
pathnames from wildcard expressions in
source strings (input pathnames)

— Wildcard characters in source string
identify substrings for replacement

— Substitution characters in target strings
identify modifications to replacement

. substrings

e Substitution characters specify what part
of a wildcard expression to include in the
formation of target strings

e Are used primarily with Library.copy and
Archive.Restore commands

RATIONAL 107

Objects and Naming

Substitution Characters (cont.)

e Substitution character meanings

— @: Matches zero or more characters in a
simple name

— #: Matches a single segment of a
pathname

— 22: Matches zero or more simple name
segments

e Examples

— Copy all objects in Sue’s Too1s library
into Jim’s New_Tools library:

Library.Copy
(From => "!Users.Sue.Tools.Q",
To => "1Users.Jim.New_Tools.#") ;

108 RATIONAL

Objects and Naming

Substitution Characters (cont.)

— Restore all objects in the archive
that match the wildcard name in the
For_Prefix parameter and replace that
preﬁx with Use_Prefix:

Archive.Restore 4
(Objects => "?7", €
For_Prefix => "!Users.B@.@_Documents.Chaptera",
Use_Prefix => "!Users.#.0_New_Documents.#") ;

The new use_Prefix maintains old
usernames, renames @_Document
directories to @_New_Documents, and
retains all old chapter names

D@'{ - 5()%2"‘@(}’

Dywieele, worlrin Mo

RATIONAL 109

Objects and Naming

Abbreviations

® Are found in ICommands .Abbreviations
— Placed on the default searchlist
e Are defined by

— Building skins with simpler names

— Links to procedures, again with simpler
link names

e Commonly used abbreviations
— Def. Common.Definition
— Send:. Message.Send
—— Diff. File_Utilities.Difference
— Sledit. Search_List.Show_List

e Users also can define abbreviations

110 RATIONAL

@ Seminar Outline

Workspace Management

Environment Command Interface
Environment Facilities
Objects and Naming

e Logs and Profiles
Keymap Modifications
Tool Building

Development Mechanisms

@ Basic Subsystems and Configuration Management

RATIONAL 111

Logs and Profiles

Log Generation

e Many commands in the Environment produce
log output

— Compilation commands in package

!Commands .Compilation

— Library commands in package

!Commands.Library

e Logs are displayed in the current output
window by default

e Types of messages are denoted by three-
character symbols

— Eight types of Environment messages
occur

— Additional symbols are provided for user-
defined messages

— Procedure for adding a message to log:

Log.Put_Line(">>message<<")

112 RATIONAL

Logs and Profiles

Log and I/O Redirection

e Logs, and all I/O, can be redirected through
commands In !Commands.Log

— Redirect output to a file: Log.Set_Output

— Close the output file, saving its contents:
Log.Reset_Output

e Changes to source or destination of I/O can
be saved on a stack

— Multiple I/O files can be switched with
this stack

e Commands can set, reset, or pop I/ O source
or destination

e Commands individually control standard
input, standard output, or standard error

RATIONAL 113

Logs and Profiles

Log Filters 2

e Logs can be filtered to remove unwanted
types of messages

e Several predefined filter procedures exist in
package 'Commands.Log

— Get all messages: Log.Filter

— Get only summary messages:

Log.Summarize

— Get only error messages:

Log.Filter_Errors

e Any filter can be created by changing
parameter values

114 RATIONAL

Logs and Profiles

Profiles

e Profiles are used by many commands to
determine

— Response to errors
— Format of logs
— Filtering of logs

— Activity to use (for Rational Subsystems
development)

?{(;ﬁf e CO#’LW;M@A&
| \

R

™

it VRO upen
Y Ay

r I TPy e -~}
&(AT - Sa U o\

RATIONAL 115

Logs and Profiles

Profiles (cont.)

e One of three different profiles is used for a
particular job

— Each job can have a specific profile

— Each session has a default profile that is
used by that session’s jobs if a job does
not specify another profile

— The Environment has a default profile
that is used by each session unless a
session specifies another profile

e Facilities for manipulating any of the three
profiles exist in !Tools.Profile

e Session profile can also be changed by editing
session switches

116 RATIONAL

Logs and Profiles

Predefined Profiles

e Many Environment commands have Response
parameters |

— These parameters are often defaulted with
"<PROFILE>"

— This default takes the currently defined
profile for the job

e Other useful inputs
— n<quIiET>": Display no output
— w<vERBOSE>": Display all possible output

— "<SESSION_PROFILE>": Ignore the current
profile and take the profile defined by the
current session switches

— Others are defined in package

!Tools.Profile

RATIONAL 117

Logs and Profiles

Exercise: Using Logs and Profiles

1. Go to the Program_Profile_System dlrectory
in your home library.

2. Redirect the output of the compilation.Make
command to a file called compilation_Log.

— Create a Command window.

— Enter the following Commands and
promote:

Log.Set_Output ("Compilation_Log"):
Compilation.Make;

3. Go to the file and verify the output. 0

P

118 RATIONAL

Logs and Profiles

Exercise: Using Logs and Profiles (cont.)

4. Return to the Command window and filter

.)
the log with: los F I+ Brors
g CLOs _}:"\ez> ”Coyvea k"{ ves 12&;;
Log.Summarize("Compilation.-Leg")+ Teghinedin > “Filbe_la %,

Qoxlieries, => ?a.(sa)

Compare the results W’rtfﬁp}t}rle original log.
A o) 4%

5. Modify the log format by changing the
prefixes:

.

— Return to the Command window.

— Enter and promote:

Profile.Set_Prefixes (Profile.Symbols,
Profile.Nil, -
Profile.Nil);
Compilation.Make;
6. Repeat step 5 with your own combination of

prefixes.

RATIONAL 119

Seminar Outline

Workspace Management

Environment Command Interface
Environment Facilities
Objects and Naming
Logs and Profiles

e Keymap Modifications
Tool Building

Development Mechanisms

Basic Subsystems and Configuration Management ®

120 RATIONAL

Keymap Modifications

@
Key Bindings

e Users can define or redefine the meaning of
any key

— Macro definitions

— Environment or user-defined procedures

e Bindings can be either temporary or
permanent

RATIONAL | 121

Keymap Modifications

Temporary Key Bindings

e Change a key binding for the duration of the
current session

e Basic method

— Identify the procedure two blndtoa,keky

e nird o — Add a link to the procedure in your home
e e library

— Identify the name of the key to which to
bind the procedure: [Hep Oz Key gives the
name of any key

— Bind the procedure to the key from a
Command window off your home library:
Editor.Key.Define

122 RATIONAL

Keymap Modifications

Permanent Key Bindings

e Two choices for permanent key bindings

— Change key bindings at every login via
Login procedure (simplest method for a
few changes)

Focit

— MOdlfy local Ratiohal_Commands
procedure (most efficient method for
substantial changes)

. e Login procedure can contain calls to
Editor .Key.Define

— Key binding seems permanent because
keys are defined at every login

— Keymap changes can be session specific
by testing for session name with
System_Utilities.Session_Name in a login
procedure

RATIONAL 123

Keymap Modifications

Permanent Key Bindings (cont.)

4o
TGt
e Local Rati6nal_Commands procedure is used to

create user-customized key bindings

toc m‘- ~
——-]?arse 'Machlne Edltor Data Ratyénal- uwﬁmﬂW”%zi |
Crompy ;—*"‘(, — = I ’)
" User_Commands INtO your “home library
— Add case alternatives for new keys that

you want to bind

— Promote procedure to
omplete

e Legal key names for all supported terminals
are defined in 'Machine.Editor_Data-
.Visible_Key_Names

124 RATIONAL

Keymap Modifications

®
Systemwide Changes to Key Bindings

e Default keymaps for the entire system are in
the library 'Machine.Editor_Data

e
— Standard Ra;crioﬁa.l Terminal defaults are

in the procedure Rat; _Commands

— Other terminals can have default keymaps
in this library

e Changing the appropriate procedure in this
@ library changes the default keymap for all
users of the system

e Changes take effect when the machine is
rebooted

RATIONAL 125

Keymap Modifications

Exercise: Binding Keys

|
O

126

. Promote the procedure to the coded state

: Verlfy that the key takes you to the Tools

1. Create a new world called Too1s in your

home library. «c cv @

2. In that world, create a procedure that

contains the followmg statement:

bk
‘ Common Definition

("tUsers.>>your username<<.Tools");

Substitute your username in the command.
Call the procedure whatever you like.

when complete.

. Return to your home library.

. Temporarily bind this procedure to a key

USIIlg Key.Define. /. ,.¢ e v
\

_ ; 3 1‘ N \ oy f /"f
t it e Vs e it : ﬂﬁ
4

directory from any other window.

RATIONAL

Keymap Modifications

Exercise: Binding Keys (cont.)

7. Permanently bind the same operation

~ to another key by creating your own

'/ Rational_Commands procedure in your home
~ library. "

RATIONAL 127

Seminar Outline

Workspace Management

Environment Command Interface
Environment Facilities
Objects and Naming
Logs and Profiles
Keymap Modifications

e Tool Building
Development Mechanisms

Basic Subsystems and Configuration Management

128 RATIONAL

Tool Building

Tool Building

e User-defined tools are written in Ada

— Language consistency
— Full power of Ada

— Full power of the Environment for
development of tools

e Three major forms
o — Scripts of commands
— System programming tools

— Customization of Environment interfaces
and products

RATIONAL 129

Tool Building

System Programming Interfaces

e Ada interfaces to I/O, editor, directory
system, DIANA

e Package '10.Window_Io

— Used for window-based user interfaces

— Supports menu, form, box graphics
interfaces available in Software Library

— Provides access to raw character stream
from keyboard

® Packages !To.Polymorphic_ Sequentlal Io
and 'Io. Polymorphic_Io

— Support writing and reading of multiple,
user-defined data types

— Used for archiving analysis databases for
later use

130 RATIONAL

Tool Building

System Programming Interfaces (cont.)

e Package !Tools.Object_Editor

— Provides access to Environment Editor

— Provides pathnames for selections, images,
cursor position

— Allows tools to work relative to selection,
image, cursor

® Package !Implementation.Diana
— Is used for building analysis tools

— Provides access to semantic resolution of
the compilation system

— Package Lrn_Interfaces provides higher-
level interface

e Package !Tools.Link_Tools

— Is used for traversing and decomposing
the links associated with a world

RATIONAL 131

Tool Building

System Programming Interfaces (cont.)

L Package ITools.Directory_Tools

— Provides programmatic interface to the
Environment library system

— Defines type object.Handle similar to
Text_Io.File_Type

— Defines type object.Iterator for lists of

handles

— Resolves pathnames to handles/iterators

— Provides traversal to parent, enclosing
world, subunits

— Provides size and update statistics

— Generates Ada unit dependencies

132 RATIONAL

Tool Building

@
® Releasing Tools

e Various methods include

— Copy program into “release” library
— Add skin to “release” library

— Keep program in place and add searchlist
entry

— Add link to a library already on the
. searchlist whose links are also searched

e Use of Library.Freeze procedure prevents
inadvertent changes

— Frozen units can be viewed but not

modified

RATIONAL 133

Tool Building Progme Meava e Wy
; %OWfr("C' . 'Y),(:jl_,/ '\/E\ L\/§5€(

pod) o sl
; - it {/.c‘ ;ﬁ,{;{:d}’?\'z{vgﬂe Z

Releasing Tools (cont.)

e Use of pragma Main improves performance

~ '
fvf'(»cc,s}v‘mi_ Lo

Va
G e

— Applies only to library subprograms

— Saves link time when executed

— Still requires loading

— Main programs are demoted to installed
when any unit in their closure is demoted

e Create loaded main programs:

, Compilation.Load
Covrir o g

— Loaded image is stored with an object of
- e gubelass Loaded_Main

fi;j

e — Similar to .ere objects on other systems

- £t :
}f(’ﬁ__;, Trre | LC"TI::W)' Ve
i

— Unit remains executable even if changes
to closure are made

— Only subprogram specification is visible

134 RATIONAL

Tool Building

Exercise: Using Directory Tools

In a Command window off your home
library, enter the following code:

declare
package Object renames Directory_Tools.Object;
package Naming renames Directory_Tools.Naming;

Iter : Object.Iterator;
An_QObject : Object.Handle;
begin
Iter := Naming.Resolution ("Q@");
while not Object.Done (Iter) loop
An_Object := Object.Value (Iter);
Io.Put_Line (Naming.Simple_Name (An_Object));
Object.Next (Iter);
end loop:
end;

Enter other naming expressions for the
input'U)Naming.Resolution.

Try using the unique_Ful1_vame function
from the nvaming package in directory tools.

Try some of the functions in the statistics
package.

RATIONAL 135

Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms
e Coding Aids
Subunits
Debugger Operations
Link Operations
Incremental Operations
Testing
Reusable Components ®

Basic Subsystems and Configuration Management

136 RATIONAL

Coding Aids

Templates

e Create template for unit body: [Create Body]

— Applies to library units or individual
declarations

— Works on nested declarations in bodies

— Works on declarations added via
incremental operations el s e Proc i e

CHe oy

— Handles arbitrary nesting and subunits
— Spec can be in any state but archived
— Unit name must be registered in library

e Create template for package private part:

| Create Private]

— Creates template for all private types and
deferred constants in package spec

— Spec must be in source state

RATIONAL 137

Coding Aids

Incomplete Programs

Can be saved permanently (even with
syntactic and semantic errors) with [Eater

Packages can be coded and executed with
[statement] prompts

Incomplete programs are typically used
instead of stubbing a unit

— Need not make all subprograms legal Ada
units

— Can easily find remaining [(statement]
prompts

Execution of a [statement] prompt results in
Program_Error exception

RATIONAL

Coding Aids

Registration of Unit Names in Libraries

e Register the unit name by promoting the
unit

— This will not work if the unit contains
semantic errors

e Register the unit name without promoting
the unit: Instalil_stub

— The unit name must be in the library for
. some commands

— The unit name should be registered as
soon as reasonable

RATIONAL 139

Coding Aids

Modification of Unit Names

e Ada units and text objects can be renamed
with the Library.Rename procedure

e A unit can also be withdrawn from the
library to change its name

— Unit kind and parameter profile can be
changed without withdrawal

e Basic method

— Select a unit to change and withdraw:

. i 4 N .
 Withdraw: ~ sle| coigiges el goiiiove

— Order is critical: bodies before specs and

. SO oI

— Use Install_Stub Or when the
name change is done

140 RATIONAL

Coding Aids

6{7\7" ?
@ , v\/‘/\/\ﬂ/\/’\

Changes in Identifiers

e Change only identifiers, not substrings or
comments: Replace_Id

— Operates on a selected part of a unit

— Example: Need to change index variable
in for loop from 1 to Index L, for lomp =

PO ol iy
. / R e M /
e Basic method "

’ — Ada unit must be in source state

— Select region of Ada unit

— Press | Create Command!, enter Replace_1Id, and

press

— Provide old and new identifier names

RATIONAL | 141

Coding Aids

Exercise: Using Coding Aids

1. Create a new package called New_Package In
the Experiment world off your home library. sy

P

2. Add a type declaration called My_tType
and several procedures and functions that
reference it.

3. Install the unit in the library with
Install_Stub. ' (covw g ~ho,

4. Rename the package to My_Type_Package
VVﬁﬁlLibrary.Rename.

9. Use Replace_Id to rename My_Type to
My_New_Type.

6. What happens to the substring uy_Type in
the package name?

hJ oy

S

142 RATIONAL

Coding Aids

Conflicts in Error Displays

e Mixture of old and new syntactic errors can
hide actual problems

— Unit has syntactic or semantic errors

— In fixing old errors, new syntactic errors
are introduced

— Both sets of errors remain displayed

e Conmmands

— Remove all underlines: [Underlines 0ff (/ﬁ/c)j

— Redisplay underhnes to display only new

€rrors: |Show Errorsl >>>>>> /Q)

RATIONAL 143

Coding Aids

Show Usage

e Provides another browsing facility
complementing

e Display usages of any selected identifier:
| Show Usage|

— Underlines usages in the current unit if all
usages are local to the unit

— [Show Usage (Umit)] underlines only usages in the
current unit

— [Show Usage (Indirect)] includes indirect references

vl Ut fmE

— Creates a menu of units that have usages
of the identifier if the usages occur in
more than one unit

e Underline declarations that are not
referenced: [Show Unused

144 RATIONAL

Coding Aids

Exercise: Using Show Usage

1. Go to the library Experiment in your home

library.
9. Code the library if it is not already /
consistent. e ey -

3. Get the definition of Unit’spec. 2ol |+

4. Select the identifier statistics and press
[Show Usage (Unit)].

Notice that each local usage is underlined.

5. Select the first underlined statistics and
press [Show Usage|.

Notice that this time a menu appears with
several units listed. Each unit contains at
least one reference to the selected identifier.

RATIONAL 145

Coding Aids

Exercise: Using Show Usage (cont.)

6. In the xref menu, place the cursor on a unit
name and press [Defition!.

Notice that the unit appears with all
references to statistics underlined.

146 RATIONAL

Coding Aids

Xref Tool

e Provides noninteractive cross-reference
listings

e Commands in !Tools.Xref_Utility
— List all usages: xref.Used_By
— List the defining occurrences: xref.Uses

e Boolean parameters specify which references
are included in the list

RATIONAL 147

Seminar Qutline

Workspace Management
Environment Command Interface

Development Mechanisms
Coding Aids

e Subunits
Debugger Operations
Link Operations
Incremental Operations

Testing
|

Reusable Components

Basic Subsystems and Configuration Management

148 RATIONAL

Subunits

: fogxcrrmit fbf;l/)éh)(?f
@ -7

Subunit Operations

e Subunits can be created from an Ada stub

— Ada code is entered for stub (for example,

procedure Report is separate;)

— Selecting and editing the stub creates the
corresponding subunit: [Ed]

e Subunits also can be created by extracting

code from the enclosing unit: [Make Separate]
. £>1:'1F‘c§;/c,«rec~i~r ool / %&7 Mmi@-gi‘@f‘”m{'@

— Enclosing unit must be source or installed

— Subunit is created in the source state

'— Subunits cannot be overlz)‘a—zieT’;

(LRM rule)

RATIONAL 149

Subunits

Subunit Operations (cont.)

e Subunits appear in library displays as units
nested under parent units

— Example

Some_Package
.A_Subunit
.Another_Nested_Subunit
.Another_First_Level_Subunit

Deyn i @
L
__r--—-—«-—-—u'tj .
E} i
\“ 3
Lo
y .
P
. B
&
) :
.
e

150 RATIONAL

Subunits

Subunit Management

e Subunits can be merged back into parent

unit: 0 Okl 1898 .
Sdecke goperie ik~ Crpote ~w~w“wd/ FIAke - [Love”
— Parent unit must be source or installed

— Subunit can be in any state

— Merging may fail because of syntactic or
semantic errors in subunit

® e Subunits have a compilation state separate
from their parent unit

— Subunits must be installed after parent
unit

— [Code (This World)] can be used to complete
coding of subunits in the correct order

RATIONAL 151

Subunits

Exercise: Using Coding Aids . . = -
and Subunits

An incomplete version of the Program_Profile
program is provided in the subunit_Exercise
world in your home library. Complete the
program so that it exhibits the following
characteristics:

— The package system is renamed to unit.
] All existing references to system must be
o changed to unit as well.

— The actual private type definition for
Statistics IN Unit’spec should be
implemented in the private part as:

type Statistics is
record

Name : String (1..100);
Lines : Natural := 0;
Comments : Natural := 0;

end record;

152 RATIONAL

Subunits

® Exercise: Using Coding Aids

and Subunits (cont.)

— Line.Locate_Comment 1S a subunit.

— The code for Line.Kind’body 1s in-line
and completed as in the following:

if Clean_Line’Length = 0 then
return Blank;

elsif Comment_Location = 1 then
return Comment_Only;

else
return Other_Line;

end if;

. — L._ae.Strip_Blanks 1S added as a subunit
local to the package body. The code for
the subprogram is:

function Strip_Blanks (The_String : String) return

String is
begin
for I in The_String’Range loop
if The_String (I) /= ' ’ then
return The_String (I..The_String’Last);
end if;
end loop;
return "";

end Strip_Blanks;

RATIONAL 153

Subunits

Exercise: Using Coding Aids
and Subunits (cont.)

— Unit.Analyze’body is a subunit.
— All program units are coded.

— The Program_Profile program executes
correctly using Test_Inputi as a test case.

154 RATIONAL

o Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms
Coding Aids
Subunits

e Debugger Operations
Link Operations
Incremental Operations

. Testing

Reusable Components

Basic Subsystems and Configuration Management

RATIONAL 155

Debugger Operations

Execution Commands

e Several forms

e ol

— Single-step: [Rua v wioren 0

— Run free until breakpoint or exception

raise: | Execute!

— Execute entire local statement:

— Run until the current subprogram returns:

! ; ' \ ;o900
. Run Returned, /gfyv\ weod ©\

3

/ : : }
4 . L s P
e 4 l(G it R ey Tt e R ? ¢
R S e R o e
X .o : O
Iy

156 RATIONAL

Debugger Operations

® Additional Debugger Commands

e Display the current source position: [Show Source

& Wasinie T vigy ?YOC.‘
e Display the current value of the selected
identifier: [Put]

\ e Display the current execution stack: [sig#]stack
| < hele lealdel roc L.’(fmc, ol pr.

e Set a breakpoint at the,selected statement:
[Breakl —ob o (vabiow
IM-' <€ Acl vals &_‘ 085

. e Activate all defined breakpoints: [Activate] geriygtc Rt

e Remove a breakpoint: [Remove Breaks| = DEACTIHTE B@EKG@H\‘T

e Propagate a named or selected exception:
Propagate

Qg{mé%e Surne v

CC‘P v m,as
C 2>
VR o
iy i ‘|
Q(G QfC?)UY{’_ :r(‘ Y ol
| ”)
A _fewel doo e s
RATIONAL e .

oL
e e

Debugger Operations

Debugger Options

e The Debugger contains options for altering
— Format of output
— Handling of stacks, tasks, and breakpoints
— Amount of detail in displays of objects

e Commands

— Change options specified in type Option:
Debug.Enable

— Change options specified in type Numeric:
Debug.Set_Value

— Three key bindings for pebug.Set_value:
| Set Pointer Level|, | Set Element CountJ, | Set First Element|

7
Af’
j’/ *
. s — Change all other options: pebug.F1ag
A ",

158 RATIONAL

Debugger Operations

Exceptions

e The Debugger provides control of exception
handling

— Stop when any exception is raised
— Stop when a specified exception is raised
— Ignore an exception when it is raised

— Stop or ignore an exception when raised
by a specified task at a specified location

e Commands

— Stop when exception is raised:
Debug.Catch ([Catch])

— Propagate exception to enclosing scope:
Debug.Propagate ()

— Ignore exception when raised:
Debug.Forget ()

RATIONAL 159

Debugger Operations

Selection ¢ oot e A

e Selection in Ada units can identify the
argument for Debugger commands

— For Putl and [Modify), use selection of object
identifiers

— For [Propagate], use selection of exception
declarations and explicit raise statements

e Selection also works on output in the
Debugger vindow

— Go to Ada unit for specific stack frame
selection: | Show Source|

— Display the parameter values for a
selected frame:

— Go to object declaration for a selected put
Or Modify command: [Show Source]

— Dereference selected access values
displayed in the Debugger window:

160 RATIONAL

Debugger Operations
Hex
, oA
Hoer ‘)(O*f/i& V)m’ «"?v Vicivin # ;29‘} DR
v
@ Multiple Tasks s of

e Tede_ Dizgpue,

e The Debugger provides control of individual
tasks |

— Any task can be executed, stopped,
single-stepped, displayed, or viewed

— Task control can be done either
asynchronously or synchronously
across all tasks in a program

. — Exceptions, obj: cts, breakpoints, stacks,
traces, and histories can be specified or
controlled on a per-task basis

e Commands

— Display status of tasks: pDebug.Task_Display
— Stop individual task: pebug.Stop

— Change task control model: Freeze_Task
flag

Teebe Lo
Sp‘i M';}»Qf)é(o~ f\é}i “ e ‘/f{ F\(‘}@\ i ’

. } - - . . A | !
. CBoeon o tiers Ssdaded (o
i

}‘\G)A - VzC'A‘JM%\ -

RATIONAL ' 161

Debugger Operations

Multiple Tasks (cont.)

e Control context

— The Debugger defaults to interacting with
the main program task

e Basic commands work relative to the control
context

— Single-step execution

-— Source display

e Set the control context to another task:
Debug.Context

— Need to specify task name

— Hex name taken from Debug.Task_Display

162 RATIONAL

Debugger Operations

Special Displays

e Debugger allows users to define their own
display routines for values of types

e Basic method

— Define an 1mage function (returning a
string) for the type

— Instantiate the generic Register
procedure In !Tools .Debug_Tools

— QCall the register procedure in the
elaboration of the code of the program

RATIONAL | 163

Debugger Operations

Exercise: Using Debugger Selection

1. Go to the Program_Profile_System directory
in your home library.

' 2. Execute Test_bdriveri under control of the ‘
Debugger.

. Single-step five times: [5[Ru.

3
4. Select the case statement inside the Analyze
function and set a breakpoint.

- 9. Execute to the breakpoint and single-step
" once more.

/6. Display the stack.

= { V. 7
Tt WGver

164 RATIONAL

Debugger Operations
Exercise: Using Debugger Selection (cont.)

7. Select the fourth stack frame and press [Putl.

8. Select the second stack frame and press

| Show Source,.

9. Select the reference to the object unit_1ine
and press [Putl.

10. Select Put ("%ROOT_TASK._3.UNIT_LINE"); In
the Debugger window and press [Show Source].

RATIONAL | 165

Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms
Coding Aids
Subunits
Debugger Operations

e Link Operations
Incremental Operations
Testing .

Reusable Components

Basic Subsystems and Configuration Management

166 RATIONAL

Link Operations

Link Operations

e View a world’s links: Links.Display

e Edit a world’s links: Links.Edit

e Copy links from one world to another:
Links.Copy

e Delete the selected link: [Object] - [D] or

Object! - EK'

o Insert a link: Links.Add oOr [Object - [I]

e Change the source of the selected link: [Edit]
e Expand the display of links: - 1

e Contract the display: - [

e View the source of the current link:

RATIONAL 67

Link Operations

Link Operations (cont.)

e Obtain information on the uses of a link:
[Explin] ci e %

— Adds comment lines below link showing
units that utilize the link

— Removes comments when pressed again

RATIONAL

168

Link Operations

Exercise: Using Link Operations

1. Execute Links.Edit on the Experiment
world in your home library.

2. Place the cursor on the link for the Line
unit and press [Definition).

3. Return to the links display and try the
definition on an external link.

4. Press - [] several times. Notice
that the display returns to its original
configuration after several changes.

5. Press - [several times. Notice that
the links displayed return to the full set
after several changes.

6. Try on several links.

7. Delete the link for the Line unit.
8. Try to delete the link for Text_1o.

RATIONAL | -

Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms
Coding Aids
Subunits
Debugger Operations
Link Operations

e Incremental Operations

Testing
Reusable Components ([

Basic Subsystems and Configuration Management

170 RATIONAL

Incremental Operations

Characteristics of Incremental Operations

e Are used to make changes to semantically
valid programs to reduce turnaround time

— Add one or more statements, declarations,
or comments

— Modify a statement, declaration, or
comment

— Delete a statement, declaration, or
. comment

e Allow changes/additions of declarations to
coded specifications

e Allow additions/changes to comments in
coded units

e Allow changes to declarations and statements
in bodies in the installed state

RATIONAL 171

Incremental Operations

Obsolescence Menus

e List first level of units in all libraries made
obsolete by attempted change

— Does not include full transitive closure

e Commands

— Change state of a listed unit: [Promote,
[Demotei, iInstall!, OT |Source

— Yiew a listed unit: [Definition]

— Edit a listed unit: [Ed
— Expand to see full pathname: [Object] - [J
— Return to simple pathname: - [

172 RATIONAL

Incremental Operations

Obsolescence Menus (cont.)

e Useful for incrementally modifying
declarations in package specifications

e Basic method

— Select the declaration to modify
— Press [Edit| to get an obsolescence menu

— Use menu demotion to remove
‘ dependencies

— Extract the declaration ([Eda) to make the
change

— [Promote] to replace modified declaration

— Make consistent with [Code (AT Worlds)]

RATIONAL 173

Incremental Operations

Controls on Extent of

Compilation Commands

174

® The Promote_Scope parameter limits the
units affected by the compilation commands
Make and Promote

— Value singile_unit allows compilation of
unit only

— Value unit_on1y allows compilation of
unit spec and body and units in with
clauses

— Value subunits_Too allows compilation
of unit, its subunits, and units in with
clauses

— Value a11_prarts allows compilation of
unit and its body, its subunits, and units
in with clauses

RATIONAL

Incremental Operations

Controls on Extent of
Compilation Commands (cont.)

e The Linit parameter controls the libraries
affected by the compilation commands Make,
Promote, and Demote

— Value <p1recTorIES> allows changes only
to units in current library

— Value <worLps> allows changes to units in
. enclosing world

— Value <aLL_worrps> allows compilations to
cross world boundaries via external links

RATIONAL 175

Incremental Operations

Controls on Extent of
Compilation Commands (cont.)

e The Effort_only parameter specifies whether
to estimate the effort for a compilation or
to do the compilation for the compilation
commands Make and Demote

— False value executes compilation (the
default)

— True value estimates compilation effort

176 RATIONAL

Incremental Operations

® Additional Key Bindings

e Additional key bindings have been defined
with various forms of the compilation control
parameters

— [Code (This World) / [Tustall (This World)]
Codes/installs all units within the current
world

— [Code (All Worlds); / | Install (Al%‘ffWOrlds)]
Codes/installs the transitive closure even
(] if units are in other worlds

— [Source (This World)] / [Tncode (Fhis World)|
Demotes the transitive closure of all de-
pendent units to the source/installed state
within the current world only

— [Source (AIl Worlds)| / (Uacede (Al Worlds)|
Demotes the transitive closure of all
dependent units to the source/installed
state within all worlds

RATIONAL 177

Incremental Operations

Exercise: Using Incremental Operations

Add the use of the package string_Utilities
to the Program_Profile program using incre-
mental opera,tions iIl the Incremental_Exercise
world.

1. Replace Line.Locate_Comment and
Line.Strip_Blanks with comparable
functions from package string_Utilities.

178 RATIONAL

Incremental Operations

Exercise: More Incremental Operations

Rename the function Anaiyze in the package
Unit to Analyze_Statistics.

1.

Select the declaration of the function
Analyze and press [Edit] to get an
obsolescence menu.

Demote each dependency by selecting eéch
dependent unit and pressing [Source Unit.

. Incrementally extract the function Anaiyze

with [Edit} and change the name.

Promote the declaration back into the
specification.

Change any references to the function in the
demoted units.

Make the world consistent.

RATIONAL T

Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms
Coding Aids
Subunits
Debugger Operations
Link Operations
Incremental Operations
e Testing
Reusable Components ()

Basic Subsystems and Configuration Management

180 . : RATIONAL

Testing

Simple Automation of Testing

e (Create test drivers

— Create prototype in Command window "
— Move to library unit When»sta";blg"x

e Regression approach to testing n
— Create correct results by liand or

— Manually verify the outpﬁt of some test
® run o i

— Use file comparison operations in package
File_Utilities to determine if program
generated correct results

RATIONAL e

“Testing

Use of File Utilities

o Package File_Utilities provides facilities for
comparing a,nd mampulatmg ﬁles such as test
results = TR

e Commands
- Flnd differences bet‘“\?veen'ﬁles: Difference
— Merge two dlffermg files: Merge
— App@ﬁd one file to aﬁother file: Append
— Find a spemﬁed pattern in a file: Find

 Check whether two files are 1dent1cal

v.‘l

Equal |
e e -
o a r e Ly -
i . -
o Db - Es .
S H PR LED
o~ o - 4 -
i LAk Vowd i i
e 'y
. .
o~) ’
) . - - T
I : L ¢

182°% RATIONAL

Testing i~
e Exercise: Testing LTI e

Test the Program Profile program in. the .
Program_Profile_System World, prev1ously
completed Automate the test process so
regression testing can be done.

e b3
v e . |

& &
RN

1. Go to the Program Proflle System WOI‘ld m
your home hbrary "

2. Set up a golden results ﬁle by runnlng
Program_Proflle on’ Test_Input_1 units and

‘ copying the ouvput into a Golden_Results
ﬁle. S Ty g S IS - “ AR L) S

3. In a Command window, create a test:driver
that runs the Program_Profile progrant on
Test_Input_1 and compares the results to
those in Golden_Results. The test driver
should then print out a passed or failed
message to the terminal.

RATIONAL 183 5

Testing

Exercise: Testing (cont.)

4. When the test driver in the. Command
window works, create a hbrary unit
containing the driver.o a0 e

5. Execute the library: iumt:versmn of the test
driver. Sl

6. Modify the test driver ‘to take-a parameter
that is the name of the’ unit to have
statistics collected on its line chara,cterlstlcQ.
You will also need to ge eralize the rest of
the test driver to opera,te on the parameter

‘roirather:than Test. Input B, BECIGES S S R

184 _ RATIONAL

R B .
PR S N R TS

@ Seminar Outline - ==+ . .~

Workspace Management NI SRR O 1a SR <

H ¥
TIRT Trioe ot ety ST 0T T mwa

fYL e -

Environment Comma,nd _Intérface Z,:g_:;f o

Development Mechan1sms~~> o aT ead X
Coding Aids i
Subunits
Debugger Opemtions Lo ros bl B

Link Operations:, ; . - -~ ooy »f 227

Incremental, Operatlons BRI

Testing ~ ..
o e Reusable Components T N

v adi oo BTRTS. L NT IOVIL L D29L 3T

o andt, A AT INREN -

Basic Subsystems and Conﬁgama*tmn Management

RATIONAL | g5

Reusable .Compenents. 5

Reusability 2E0ET0

e Reuse of software can dramatically increase
productivity

7 - -« -
..';‘,)“‘C' . A ‘“”: X * - .’..4,.
el & ot " a wd

® !Tools, prov1des 7nufnerous reusable packages

e wﬁ’mt--v'&: d v\"—i«.. - s

— Envn'onment executlon is achleved by
addlng a link and 3 with clause in the
standard way ' :: 17 toi-c-es

= Crogs-Development Facilities provide
bodies for inclusion in:target- applications @

e Two kinds of reusable components are

i It UE N R -~
itk SO

o et BLT e o

— Generic data abstractions
— Utilities

e Rational Software Library provides
— Public domain software

— Tools developed by Rational technical
representatives

186 . RATIONAL

Retisable’i Componerits:

Data Abstractions A A e

Q)
\

° Packages 1P APeeF s~ il . PISWIIOR

-

»42

— Set_Generic: Unordered sets

r ot
A‘z" el L r B g e
LR AN 4&%«

— List Generlc. Or&e}ed LISPII(I{G llév S

-
dﬂ’ b1 .“
1\}5" T ¥ v .\...,g..

— Stack_ Generlq Fll‘St 1n la.sﬁ outw ‘

T .I‘-x\) ?‘"}t %@« mJ' 3 ,‘.“j‘:'f}

— Queue_Generic: First in,,ﬁl’%@@@ﬁmbu&

— Bounded cs‘euz&in%QAiabltrary-Iengthdstﬁngs
with masdsnam:’ &£ .ozl ~es .0 od

— Unboundad iStximg: -No snaximums;iuses
heap allocation

ECOITOE LU SSu0 MIRRecr -

o ‘z:""‘f‘«fﬂf . o ;:q lg P L"‘? r-v* :.«k N 4‘:.. f_ﬂ? .
SRITOTT O CRTGLL SISWITTIC . TA0CIIEsL #

P & RS SRARS DN f}j..g.b«?ﬁ.,-u .

”21
-

}

3

o~ J\ {M‘ - ! ¥ e b - ‘ ot o .
.fi :u v .L.E; :Ca £ i‘,‘.} g —;5 &5 fﬁrﬁ S o *\ j. -
FAE TN 10 ET

EAT'ONAL 18751

Reusable - Componentsisx

Data Abstractions (cont.)

— Map_Generic: Maps doma'u}“}galues to
range values

i .» . : & by -
= R . - & h&&

— Concurrent_Map_Generic. Supports
. concurrent access

¢ -
EA - RN & :'ci .
s

— Strlng Map Generic. Domam type 1S
Strlng

S5 £ gl
—String Table: Table lookupfor string
values Cat

ES o & -
. € -
e e
~ = F

188: : RATIONAL

‘Retsible:Componernts -

Utilities SRR e SR 5 1 4 st I

o Utility padkafés im-1Tools: -=iexui Q,, o

;'.,.ﬁ‘
'*.’ .'

z - }i“’ \7
— String_ Ut111t1es Mampula,tes Str1ng

. - -

values' - RTRLu N AL sar TR ST

et

— Table_Formatter: Formats data?’in labeled
columBsti - T owme T grvneimad e

— Table_Sort_Generic: Sorts a tafblec?{r'
objectsrhecarding th:a useméeﬁ;aed <
. function FIL

— Time_Utilities: Manipulates type Time
and type Duration

RATIONAL 1863

Seminar Outline

Workspace Management
Environment Command Interface

Development Mechanisms

Basic Subsystems and Configuration Management

e Project Management Issues

Project Structuring with Subsystems

Subsystem Construction
Basic Development Methodology
Source Reservation with CMVC

Parallel Development with Subpaths

190

RATIONAL

