Rational Networking Training

Copyright © 1987 by Rational

Document Control Number: 1033
Rev. 1.0, April 1987

This document subject to change without notice.

IBM is a registered trademark of International Business Machines Corporation.
DEC, VAX, VMS, and VT100 are trademarks of Digital Equipment Corporation.

Rational and R1000 are registered trademarks and Rational Environment is a trade-
mark of Rational.

Sun Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T.

Rational
1501 Salado Drive
Mountain View, California 94043

ii 4/18/87 BA\TIONAL

Rational Networking Training

Slides
Contents
Rational Networking—TCP/IP
Course Introduction 1
Product Introduction 4
Product Components 7
Networking Applications 14
Terminology 17
Telnet
Introduction 21
How to Form and Terminate a Telnet Session 25
How to Resume a Telnet Session 30
How to Manage Multiple Sessions 32
Use of Telnet Defaults 36
Use of Telnet 41
FTP
Introduction 45
How to Form and Terminate an FTP Session 49
How to Transfer Single Files 52
Transfer Types 57
Mapping of Names 65
Naming Contexts 69
Use of FTP Defaults 77
How to Transfer Multiple Files 80

iii

Additional FTP Operations : 89
RPC

Introduction 95
Terminology 101
Use of RPC 106

RATIONAL

iv

Seminar QOutline

Ratlonal Networking—TCP/IP
Course Introductlon
Product Introduction
Product Components
Networking Applications
Terminology

Telnet
FTP
RPC

RATIONAL

Course Introduction

Course Objectives

e Introduce the features and benefits of the
Rational Networking—TCP/IP product

e Introduce the fundamental concepts and
mechanisms required for understanding how

to use basic product features

e Provide hands-on experience in using these
concepts and mechanisms

2 RATIONAL

Course Introduction

Documentation

e Rational Networking Training
e Rational Networking—TCP/IP
e Rational Environment Reference Summary

e Rational Environment Basic Operations

RATIONAL 3

Seminar Outline

Rational Networking—TCP/IP
Course Introduction

e Product Introduction
Product Components
Networking Applications
Terminology

Telnet
FTP
RPC

4 RATIONAL

Product Introduction

Rational Networking—TCP/IP

e Provides the means for integrating the
Rational Environment into an existing
computing base

e Enables distributed machine development in
a local area and across long distances

e Is based on industry-standard protocols
enabling interface to off-the-shelf solutions
available for many computers

— Ethernet
— TCP/IP

— FTP
— Telnet

e Forms foundation for host/target
development

RATIONAL 5

Product Introduction

Rational Network Architecture

Main Facility
R1000 R1000 R1000
Target/ Target/
test bed test bed
Ethernet
i]
Communi-
cation Gate-
server way
VAXs
i mainframes
Workstations/PCs
Giis G
Terminals/PCs
Satellite Facility Subcontractor
R1000 R1000 R1000 R1000
]
C]
6 RATIONAL

Seminar Outline

Rational Networking—TCP/IP
Course Introduction
Product Introduction

¢ Product Components
Networking Applications
Terminology

Telnet
FTP
RPC

RATIONAL

Product Components

Overview of Product Components

e Ethernet
e TCP/IP: Transport layer protocol

e FTP: File transfer protocol facility
e Telnet: Remote login facility
e RPC: Remote procedure call facility

8 RATIONAL

ISO Model

Machine A Machine B
Application < — — — -p| Application
Presentation ¢ — — — 9 Presentation

B

I

Session <4 — — — » Session
I I
Transport <4 — — — ¥ Transport
I I
Network <4+ — — — »{ Network
I i
Data link <4+ — — — - Data link
I {
Physical < —» Physical
RATIONAL

Product Components

Product
Component

FTP, Telnet, RPC

TCP/IP

Ethernet

Product Components

Ethernet—TCP/IP

e Allows interface to any computer system
using Ethernet and running TCP/IP as the

transport protocol

e Offers 1 to 2 Mbits per second effective
throughput

o Offers reliable transmission of bytes

e Provides compatibility with ARPANET and
MILNET

10 RATIONAL

Product Components

Telnet Remote Login

e Allows RS232 devices connected to
a terminal server to establish logical
connections to an R1000

e Allows a user at a terminal on one machine
to log into another machine on the network

e Enables a user connected to an R1000
to log into other systems on the network
with no need for point-to-point terminal
interconnection

e Enables a user of any terminal supported by
the Rational Environment to log in and use
the R1000 facilities while directly connected
to a different machine

e Is a widely used standard

RATIONAL 11

Product Components

FTP—File Transfer Protocol

e Allows transporting text and arbitrary binary
data files among R1000s and other computers

e Is fully compatible with the U.S. Department
of Defense (DoD) standard FTP file transfer

protocol

e Has a command and programmatic interface

12 RATIONAL

Product Componenis

RPC—Remote Procedure Call

e Allows a program on one system to call
facilities exported by programs on other

systems

e Allows values of all Ada types (except access
and task types) to be passed as parameters
or results

e Enables exceptions to be propagated back to
the caller

e Extends the semantics of subprogram calls
across multiple machines

RATIONAL 13

Seminar Outline

Rational Networking—TCP/IP
Course Introduction
Product Introduction
Product Components

e Networking Applications
Terminology

Telnet
FTP
RPC

14 RATIONAL

Networking Applications

Overview

e Multiple R1000 projects

— Development of large projects distributed
across multiple R1000 hosts

e Multihost development

— Development of projects on the R1000
with access to tools on non-Rational
systems

e Host/target development

— Development of software on the R1000 for
execution on target computers

RATIONAL 15

Networking Applications

Use of Product Components

e FTP: Transfer source files or data objects
between computer systems for processing or
storage

e Telnet: Be simultaneously logged into several
computers from a single terminal

e RPC: From one machine invoke project tools,
databases, and other software resident on a
different machine

e RPC: Build a test scaffold on an R1000 (for
functional integration) that accesses target-
dependent libraries or device drivers on other
systems

16 RATIONAL

Seminar Outline

Rational Networking—TCP /IP
Course Introduction
Product Introduction
Product Components
Networking Applications

e¢ Terminology

Telnet
FTP
RPC

RATIONAL

17

Terminology

Clients and Servefs

§ R1000
Client —]
i VAX
[server
R1000
Server ——]

VAX §
[F—— Client i

e A client is the machine attached to the
terminal that initiates communication

e A server must be present on the receiving
machine for communication to take place

18

RATIONAL

Terminology

Connections and Sessions

e To begin communication, a client asks a
server to establish a connection. If the
server responds positively, a connection is

established

e When a connection is established, a session is
considered to be under way

e The client must log into this session before
issuing further commands or requests

e To terminate communication, the client must
log out and disconnect from the session

RATIONAL 19

Terminology

Symbology

e Used in slides and exercise instructions

® >>Host Name<< Imeans enter string that is
name of host

e Typical examples

— >>Host Name<<

>>Remote Host Name<<

— >>Username<<

>>Remote Username<<

— >>Password<<

>>Remote Password<«
—— >>Filename<<

— >>Pathname<<

>>Remote Pathname<<

20 RATIONAL

Seminar Outline

Rational Networking—TCP/IP

Telnet
e Introduction
How to Form and Terminate a Telnet Session
How to Resume a Telnet Session
How to Manage Multiple Sessions
Use of Telnet Defaults
Use of Telnet

FTP
RPC

RATIONAL 21

Introduction

Telnet

e Enables login to an R1000 from other
systems on the same network

e Enables login from an R1000 to other
systems on the same network

e Can be used with any terminal (or emulator)
supported by the Rational Environment

e Supports multiple, simultaneous sessions

e Enables RS232 devices connected to
a terminal server to establish logical
connections to an R1000

22 RATIONAL

Introduction

Telnet Sessions

Local
\N
N
Telnet
Client
Remote 1
Telnet
J Server
Remote 2
Telnet
Server

e A client can form multiple Telnet sessions
with a single server and/or multiple servers

e The client logs into each session separately

RATIONAL 23

Introduction

Telnet Sessions, cont.

e A user can be simultaneously logged into
multiple contexts from one terminal

e A user can switch between sessions rapidly

24 RATIONAL

Seminar QOutline

Rational Networking—TCP/IP

Telnet
Introduction
e Howto Form and Terminate a Telnet Session

How to Resume a Telnet Session
How to Manage Multiple Sessions
Use of Telnet Defaults

Use of Telnet

FTP
RPC

RATIONAL 25

How to TForm and Terminate a Telnet Session

Basic Model

e Form a Telnet session by connecting to a
remote machine

e Log into the Telnet session

— Gain access to some context on the
remote machine

e Terminate the session when done working in
this context

— Return automatically to the initial local
context

26 RATIONAL

How to Form and Terminate a Telnet Session

How to Form a Telnet Session

e Form a Telnet session by connecting to a
remote machine and specifying the machine
name

— Telnet.Connect (

Remote_Machine => ">>Host Name<<");

— The terminal is now in ANSI mode

— The terminal appears to be directly
connected to the remote machine

— Telnet remembers the initial local context

e Log into the Telnet session

— Use the normal login procedure for
gaining access to the desired context on
the particular remote

RATIONAL 27

How to Form and Terminate a Telnet Session

How to Terminate a Telnet Session

e The procedure varies with different Telnet
servers

e With most Telnet servers

— You log out from the remote

— The machines are disconnected

— You are returned to the initial local
context

— The Telnet session is terminated

e If the session is not disconnected
automatically

— Escape from the Telnet session:

— You are returned to the initial local
context

— Disconnect the Telnet session:

Telnet.Disconnect

28 RATIONAL

How to Form and Terminate a Telnet Session

How to Terminate a Telnet Session, cont.

— The machines are disconnected

— The Telnet session is terminated

RATIONAL 29

Seminar Outline

Rational Networking—TCP/IP

Telnet

Introduction

How to Form and Terminate a Telnet Session
e How to Resume a Telnet Session

How to Manage Multiple Sessions

Use of Telnet Defaults

Use of Telnet

FTP
RPC

30 RATIONAL

How to Resume a Telnet Session

Basic Model

e Form a Telnet session and log into it

e Return to the initial local context, leaving
the Telnet session intact

— Escape from the current session:

— Telnet remembers the remote context so
you can resume working in it without
logging in again

— The machines remain connected

e Resume the Telnet session

— Return to the remote context and
continue work without logging in again

e Terminate the Telnet session

— Log out from the remote context

RATIONAL 31

How to Resume a Telnet Session

Basic Mechanisms

e Form a session and log in as before

e From the remote context, return to the initial
local context, leaving the Telnet session
intact

— | Break] (l Control| Meta]LMari])

e Resume the Telnet session, using the same
mechanism you used when you initially
connected

— From the local context
Telnet.Connect (

Remote_Machine => ">>Host Name<<") ;

— No need to log in this time; use the

Editor.Screen.Redraw command ([Controll[T])
to redraw the screen

e Terminate the Telnet session, logging out as
before

32 RATIONAL

Seminar QOutline

Rational Networking—TCP/IP

Telnet
Introduction
How to Form and Terminate a Telnet Session
How to Resume a Telnet Session
e How to Manage Multiple Sessions
Use of Telnet Defaults
Use of Telnet

FTP
RPC

RATIONAL 33

How to Manage Multiple Sessions

How to Form Multiple Sessions

e Form a first Telnet session and log in

e Return to the initial local context, leaving
the session intact

e Form a second Telnet session and log in

— From the local context
Telnet.Connect (

Remote_Machine => ">>Host Name<<",

Session => 2);

— Specify a new session number
— Log into the desired context

e Return to the initial local context, leaving
the second session intact

34 RATIONAL

How to Manage Multiple Sessions

How to Form Multiple Sessions, cont.

e Show all active Telnet sessions:

Telnet.Show_Sessions;
e Resume either Telnet session

— Specify the appropriate session number

e Terminate all sessions by logging out

RATIONAL 35

Seminar Outline

Rational Networking—TCP/IP

Telnet
Introduction
How to Form and Terminate a Telnet Session
How to Resume a Telnet Session
How to Manage Multiple Sessions
o Use of Telnet Defaults
Use of Telnet

FTP
RPC

36 RATIONAL

Use of Telnet Defaults

Command Default Parameters

e Many commands have default parameter
values that can be used to save time and

typing

— The user can default some parameter
values and enter others

— Default values can be used repeatedly,
without entering them each time a
command is invoked

e Many default Telnet parameter values are
assigned indirectly using session switches

— The user doesn’t get simply a system
default value before command invocation

— The user can provide a default value
before command invocation

— This provides even greater flexibility and
customization than ordinary command
default parameters

RATIONAL 37

Use of Telnet Defaults

Alteration of Telnet Defaults

e Indirectly assignable default Telnet parame-
ters begin with the prefix Teinet_Profile

e A list of all initial Telnet default values can
be viewed by looking at the user session
switches for the Telnet function

e To alter a default value for a parameter
with the Telinet_Profile preﬁx, set the
corresponding session switch

38 RATIONAL

Use of Telnet Defaults

Examples of Default Parameters

® Telnet_Profile.Remote_Machine

— This parameter allows connecting
repeatedly to the same machine without
typing in its name each time

— The user assigns the Telnet .Remote_Machine
switch to the desired machine name

® Telnet_Profile.Escape

— This parameter allows any key to be used
for switching from remote to local context
while leaving a Telnet session intact

— The user assigns the Telnet.Escape switch
to the desired key

RATIONAL 39

Use of Telnct Defaults

Examples of Default Parameters, cont.

® Telnet_Profile.Escape_0On_Break

— This parameter allows to be disabled
or enabled for switching from remote
to local context while leaving a Telnet
session intact

— The user assigns the Telnet.Escape_0On_Break
switch to True Or False

40 RATIONAL

Seminar QOutline

Rational Networking—TCP/IP

Telnet
Introduction
How to Form and Terminate a Telnet Session
How to Resume a Telnet Session
How to Manage Multiple Sessions
Use of Telnet Defaults
e Use of Telnet

FTP
RPC

RATIONAL 41

Use of Telnet

Exercise: Forming a Telnet Session

1. Log into the R1000.

2. Form a Telnet session, supplying only the
Remote_Machine parameter. Use the network
name of your machine.

3. Log into the remote machine as your remote
user (">>Remote Username<<").

4. Traverse to the 1users library.

5. Switch back to the R1000, leaving the
Telnet session intact.

6. Resume the same Telnet session. Note that
you are reconnected to the same context.

7. Switch back to the R1000 again without
disconnecting the Telnet session.

42 RATIONAL

Use of Telnet

Exercise: Forming Multiple Telnet Sessions

1. Form a second Telnet session with the same
machine by specifying the same machine
name and Session => 2.

2. Log in as you did before but with a different
session.

3. Switch back to the R1000 without
disconnecting the Telnet session.

4. You can now quickly resume either Telnet
session, enabling simultaneous work in
multiple contexts. Try it.

5. Terminate both Telnet sessions.

RATIONAL 43

Use of Telnet

Exercise: Setting Telnet Defaults

1. Bring up your session switches for editing.

2. Set the appropriate switch to the name of
your machine.

3. Select a new key to use for switching from
remote to local context, and assign it to the
corresponding switch.

4. Repeat the exercise called “Forming a
Telnet Session,” using minimal typing and
using your new key for switching from
remote to local context.

5. Terminate all the sessions you formed.

44 RATIONAL

Seminar Outline

Rational Networking—TCP /IP
Telnet

FTP
e Introduction

How to Form and Terminate an FTP Session
How to Transfer Single Files

Transfer Types

Mapping of Names

Naming Contexts

Use of FTP Defaults

How to Transfer Multiple Files

Additional FTP Operations

RPC

RATIONAL 45

Introduction

FTP

e Enables transferring text files between
R1000s and other computers

e Enables transferring binary data files
between R1000s and other computers

e Offers operations for manipulating files on a
remote machine

e Has a command and programmatic interface

e Is fully compatible with the DoD standard

46 RATIONAL

Introduction

FTP Sessions
S Local
N
Ftp
Client .
Remote

Ftp
Server

e A client must form an FTP session with a
server and log in before transferring files

RATIONAL

47

Introduction

FTP Sessions, cont.

e When an FTP session is formed, the client
can

— Transfer files to the server

— Request receipt of files from the server
— Query the status of the FTP session

— Manipulate files on the remote machine
via the server

e When communication is complete, the FTP
session should be terminated

RATIONAL

48

Seminar Outline

Rational Networking—TCP/IP
Telnet

FTP
Introduction
¢ How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
Mapping of Names
Naming Contexts
Use of FTP Defaults
How to Transfer Multiple Files
Additional FTP Operations

RPC

RATIONAL 49

How to Form and Terminate an FTP Session

Basic Model

e Form an FTP session by connecting to a
remote machine and logging in

— Galin access to a remote context without
leaving the local context

— Can now transfer files and issue other
FTP commands

e Terminate the session when done using the
FTP connection

— Form a new session to perform further
FTP operations

50 RATIONAL

How to Form and Terminate an FTP Session

Basic Mechanisms

e Form an FTP session:

Ftp.Connect (

To_Machine => ">>Host Name<<",

Auto_Login => True,
Username => “">>Remote Username<<",

Password => ">>Remote Password<<");
— Specify the machine name

— Set Auto_Login => True and supply the
remote Username and Password for login to
occur as part of this command

e Terminate an FTP session: Ftp.Disconnect;

RATIONAL 51

Seminar Outline

Rational Networking—TCP/IP
Telnet
FTP

Introduction

How to Form and Terminate an FTP Session
e How to Transfer Single Files

Transfer Types

Mapping of Names

Naming Contexts

Use of FTP Defaults

How to Transfer Multiple Files

Additional FTP Operations

RPC

52 RATIONAL

—ews wingle Files

Use of Basic Commands

e Form an FTP session and log in:

Ftp.Connect

o Transfer a file from local to remote:
Ftp.Store (
From_Local_File => “">>Filename<<®,
To_Remote_File => “>>Filename<<",

Append_To_File => False);

e Transfer a file from remote to local:
Ftp.Retrieve (
From_Remote_File => ">>Filename<<",
To_Local_File => ">>Filename<<®",

Append_To_File => False);

e Terminate an FTP session: Ftp.Disconnect;

TIONAL 53

How to Transfer Single Files

Macro FTP Commands

e Allow you to issue a single command that
will perform the following operations:

— Form an FTP session

— Log in

— Transfer file(s)

— Log out

— Terminate an FTP session
e Can save time and typing

e Eliminate potential resource conflict for
connections |

54 RATIONAL

How to Transfer Single Files

Macro File Transfers

e To transfer a file from local to remote:

Ftp.Put (

RATIONAL

From_Local_File => ">>Filename<<",
To_Remote_File => ">>Filename<<",
Remote_Machine => ">>Host Name<<",
Username => ">>Remote Username<<",

Password => ">>Remote Password<<");

55

How to Transfer Single Files

Macro File Transfers, cont.

e To transfer a file from remote to local:
Ftp.Get (
From_Remote_File => ">>Filename<<",
To_Local_File => ®>>Filename<<",
Remote_Machine => ">>Host Name<«<",
Username => ">>Remote Username<<",

Password => ">>Remote Password<<") ;

e With these commands, you don’t need
to i1ssue Ftp.Connect and Ftp.Disconnect
commands separately

56 RATIONAL

Seminar QOutline

Rational Networking—TCP/IP
Telnet
FTP

Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
e Transfer Types
Mapping of Names
Naming Contexts
Use of FTP Defaults
How to Transfer Multiple Files
Additional FTP Operations

RPC

RATIONAL 57

Transfer Types

Transfer Types

e FTP uses one of the following file
representations whenever a file is transferred

— Asciil: text files
— Image: byte-aligned

— Binary: bit-aligned (R1000 to R1000
only)

— QOthers

e These are called transfer types

e Selecting an appropriate transfer type yields
a more efficient transfer

58 RATIONAL

Transfer Types

Ascii (Text) Transfer Type

e This type is used for transferring text files
between machines

e It can also be used for transferring Ada units
between R1000s and to other systems

e The file looks the same under the editor on
either machine

e In making the transfer, FTP

— Understands the file format on both
machines

— Converts the text to FTP transfer format
— Sends the text

— Reconverts the text to remote file format

RATIONAL 59

Transfer Types

Image Transfer Type

e This type is used for transferring binary data
between machines

e It is also a more efficient means of
transferring text files from R1000 to R1000

e The type is called byte-aligned transfer mode
o It transfers a raw stream of bytes
e Examples

— Program output

— Program input

60 RATIONAL

Transfer Types

Binary Transfer Type

e This type should be used only for transfer
from R1000 to R1000

e It is used to transfer binary data with a
specific bit length that must be retained

e The type is called non-byte-aligned transfer
° Bit length of data is the same at both ends
e In doing the transfer, FTP

— Pads the final byte before sending

— Strips the same amount of padding upon
receipt

e Examples
— Polymdrphic I/0 files
— Keyboard macro files

— Source_Archive data files

RATIONAL 61

Transfer Types

Binary Transfer Type, cont.

e This represents an addition to FTP beyond
the standard

62 RATIONAL

Transfer Types

Ways to Set the Transfer Type

e The default transfer type is Ascii

e Some ways to specify a different transfer type
include

— Ftp.Connect (

Transfer_Type => ...);
— Ftp.Put (

Transfer_Type => ...);
— Ftp.Get (

Transfer_Type => ...);

— Ftp.Use_Type (

Value => ...)

RATIONAL 63

Transfer Types

Transfer of R1000 Objects
with Source_Archive

e Note that this is the best means for transfer
from R1000 to R1000

e Use for transferring Ada units, whole
libraries, subsystem views, and so on

L Use the command: Source_Archive.Transfer

e Note that the object transferred is identical
on the other end

e Note that the command is built on top of
TCP/IP and RPC

e Use only for small- to medium-sized
collections of items; use tape for large
collections of items to improve performance

64 RATIONAL

Seminar Outline

Rational Networking—TCP/IP
Telnet

FTP
Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
¢ Mapping of Names
Naming Contexts
Use of FTP Defaults
How to Transfer Multiple Files
Additional FTP Operations

RPC

RATIONAL 65

Mapping of Names

Basics of Name Mapping

e I'TP can automatically generate legal
filenames for files transferred to a remote
machine

e Remote machine types whose naming
conventions are currently supported include

— Rational
— UNIX
— AOS

— VMS

e Name differences among machines primarily
pertain to punctuation

e Examples
My_Program’Ada
My_Program_Ada

My_Program.Ada

66 RATIONAL

Mapping of Names

Selection of Automatic
Name Mapping

e Specify the desired remote type (Rational,
UNIX, AOS, VMS):

— Ftp.Connect (

Remote_Type => ...);
— Ftp.Put (

Remote_Type => ...);
— Ftp.Get (

Remote_Type => ...);

— Ftp.Use_Remote_Type (

Value => ...);

e Note that the default remote type is

Rational

RATIONAL 67

Mapping of Names

Selection of Automatic
Name Mapping, cont.

e Set the destination file parameter to the FTP
transfer command to be “”

— Ftp.Store (

To_Remote_File => "n, .);
— Ftp.Put (
To_Remote_File => "n, ..);

— Ftp.Retrieve (

To_Local_File => wv, .);
— Ftp.Get (
To_Local_File => wu),

68 RATIONAL

Seminar QOutline

Rational Networking—TCP/IP
Telnet
FTP

Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
Mapping of Names
e¢ Naming Contexts
Use of FTP Defaults
How to Transfer Multiple Files
Additional FTP Operations

RPC

RATIONAL 69

Naming Contexts

Local and Remote Contexts

70

e Names of source and destination files are

resolved relative to the current local and
remote contexts

The current local context is the context of
your Command window when you issue an

FTP command

Some ways to establish the remote context
include

— The context you log into when forming an
FTP session

— Ftp.Connect (

Remote_Directory => ...);
— Ftp.Put (

Remote_Directory => ...);
— Ftp.Get (

Remote_Directory => ...);

RATIONAL

Naming Contexts

Local and Remote Contexts, cont.

— Ftp.Change_Working_Directory (

Remote_Directory => ...);

RATIONAL 71

Naming Contexts

Naming Example 1

Local mote
\ N
A5 B/Y\M

AN \

e Local context: L
e Remote context: r
e Goal: Transfer file A into remote directory v
e Solution:
Ftp.Store (
From_Local_File => “X.A",

To_Remote_File => Y. A") ;

72 RATIONAL

Naming Contexte

Naming Example 2

Lig\%l Remote
5 {5
a)

e Local context: L
e Remote context: r

e Goal: Transfer file ¢ into remote directory »

e Solution:
Ftp.Store (
From_Local_File => "X.M.G",

To_Remote_File => un).

RATIONAL 73

Naming Contexts

Naming Example 3

Local Remote
L R
N N
A B M B M
/\ \
G H H

e Local context: x
e Remote context: v

e Goal: Transfer file ¢ into remote directory w

e Solution:
Ftp.Store (
From_Local_File => “"M.G",

To_Remote_File => "%);

74 RATIONAL

Naming Contexts

Exercise: Using Local to Remote

FTP Transfer

1. Go to the R1000 Test_software library.

2. Use rtp.Put to transfer the text file
Sample_Input to the remote. Set the
To_Remote_File parameter to be sampie-
_Input. Note that this macro command
connects, logs in, transfers, and then
disconnects the FTP session.

3. Telnet to the remote. Note that the file has
been transferred.

4. Return to the R1000, leaving your Telnet
session intact.

5. Now form an FTP session between the
R1000 and the remote, so that you can
perform multiple FTP operations without
connecting and disconnecting each time.

RATIONAL 75

Naming Contexts

Exercise: Using Local to Remote
FTP Transfer, cont.

6. Using Ftp.Store, transfer pisplay_complex_-
Sums ’Body to the remote. This time default
the To_Remote_File parameter to get auto-
matic name generation.

7. Telnet to the remote to view the transferred
unit. Note the name that has been assigned.

8. Return to the R1000, leaving your Telnet
session intact.

76 RATIONAL

Seminar Outline

Rational Networking—TCP/IP
Telnet

FTP
Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
Mapping of Names
Naming Contexts
e Use of FTP Defaults
How to Transfer Multiple Files
Additional FTP Operations

RPC

RATIONAL 77

Use of FTP Defaults

Basics of FTP Defaults

e Many FTP commands have default
parameter values that can be assigned
indirectly

e Indirectly assignable default FTP parameters
begin with the prefix Ftp_Profile

e Initial default values are resolved as follows

— The switch file associated with the
enclosing library for the current context
i1s checked first

— The user session switch file is checked
next

e To alter a default value with the Ftp_profiile
prefix, set the corresponding session or
library switch

78 RATIONAL

Use of FTP Defaults

Examples of Default Parameters

® Ftp_Profile.
® Ftp_Profile
® Ftp_Profile
® Ftp_Profile.
® Ftp_Profile.
® Ftp_Profile.

® Ftp_Profile.

RATIONAL

Auto_Login

.Username

.Password

Remote_Machine
Transfer_Type
Remote_Directory

Remote_Type

79

Seminar QOutline

Rational Networking—TCP/IP
Telnet
FTP

Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
Mapping of Names
Naming Contexts
Use of FTP Defaults
e How to Transfer Multiple Files
Additional FTP Operations

RPC

80 RATIONAL

How to Transfer Multiple Files

Terminology

e FTP commands are available for transferring
multiple files at once

e Each command for transferring multiple files
expects either a set or a [1st of filenames

o A set of files is specified by a name that
resolves to many filenames

— The names are resolved on the machine
from which the files are taken

o A [ist of files is specified using a text file
stored on the local machine

— The list contains one full pathname per
line

— The list contains no comments or extra
white space

— The names are resolved on the machine
from which the files are taken

RATIONAL 81

How to Transfer Multiple Files

Multiple File Transfer Commands

82

e Commands expecting a set of files
— Ftp.Btore_Set
— Ftp.Retrieve_Set

e Macro commands expecting a set of files
— Ftp.Put_Set
— Ftp.Get_Set

e Commands expecting a list of files
— Ftp.Retrieve_List

e Macro commands expecting a lzst of files
— Ftp.Get_List

e Some FTP servers implement only a subset
of these commands

RATIONAL

How to Transfer Multiple Files

Local and Remote Roofs

e Multiple file transfer commands have
parameters called Local_Rroof and

Remote_Root

e A roof is an ancestor directory of a group of
files being transferred

e Specifying a local and a remote roof allows
the transfer of a set of nested subdirectories,
preserving their hierarchical organization

RATIONAL 83

How to Transfer Multiple Files

Isomorphic Transfer

e A transfer that preserves hierarchical
structure is called an tsomorphic transfer

e Example
Local Remote before Transfer
N N
R RRY
X Y
A B M M
G H

84 RATIONAL

How to Transfer Multiple Files

Isomorphic Transfer, cont.

— Local context: L
— Remote context: r

— Goal: Transfer all files in x to a remote
directory v, preserving their hierarchical
structure

— Solution:
Ftp.Store_Set (
From_Local_File_Set => "X.?",
Local_Roof =2> "X",

Remote_Roof => "y");

Remote after Transfer
N
N

Y

AN

A B M

/\

G H

RATIONAL 85

How to Transfer Multiple Files

Flat Transfers

e Transferring files scattered within a
hierarchical structure into a single directory

is called a flat transfer

e To accomplish a flat transfer, specify the
source roof as "»,

e Example
Local Remote before Transfer
N N
X Y
A B M M
A

86 RATIONAL

How to Transfer Multiple Files

Flat Transfers, cont.

— Local context: L
— Remote context: r

— Goal: Transfer all files in x to remote
directory M

— Solution:
Ftp.Store_Set (
From_Local_File_Set => "X.7?",
Local_Roof => v,

Remote_Roof => "Y_.M");

emote after Transfer

\\\

Y

N

M

RATIONAL 87

How to Transfer Multiple Files

Rules for Multiple File Transfers

e A source file is transferred isomorphically
if and only if the subdirectories containing
it already exist as subdirectories of the
destination roof

e If a source roof is not an ancestor directory
of any file being transferred, those will be
flattened out under the destination roof

88 RATIONAL

Seminar Outline

Rational Networking—TCP/IP
Telnet
FTP

Introduction
How to Form and Terminate an FTP Session
How to Transfer Single Files
Transfer Types
Mapping of Names
Naming Contexts
Use of FTP Defaults
How to Transfer Multiple Files
e Additional FTP Operations

RPC

RATIONAL 80

Additional FTP Operations

Viewing Remote Directory Listings

e A remote directory listing can be obtained
and stored in a local file using FTP

Ftp.List (
Remote_Pathname =>
">>Remote Pathname<<",

Verbose => False);

90 RATIONAL

Additional FTP Operations

How to Obtain FTP Status Information

e Display status of all FTP sessions formed
with local machine

— Ftp.Status_All

e Display status of the current FTP session
— Ftp.Status

e Display status from the remote machine
— Ftp.Remote_Status

e Display current user session switch values for
all FTP default parameters

— Ftp.Show_Profile

RATIONAL o1

Additional FTP Operations

Exercise: Using Remote to Local
FTP Transfer

92

. Create a world within the R1000

Test_Software library called Ftp_Example.

. Using FTP, from the R1000 change the

working directory on the remote to be the
Remote_Software library.

. Using Ftp.Store_Set, transfer List_Generic

and List_Generic’Body to the remote. Note
that you can use the name List_Generice
to indicate both these units. Use automatic
remote name generation.

. Telnet to the remote and then back, noting

that the files have been transferred to the
remote Remote_Software library and seeing
the names that were generated.

. Go to the Ftp_Example world on the R1000.

RATIONAL

Additional FTP Operations

Exercise: Using Remote to Local

FTP Transfer, cont.

6. From there, use Ftp.Retrieve to transfer
back the List_Generic spec from the remote
to the R1000. Transfer it to an R1000 file

called List_Generic_File.

7. Now use Ftp.Retrieve to transfer the
List_Generic body from the remote to the
R1000, appending it to the same R1000

List_Generic_File.

8. Execute compilation.Parse, specifying
List_Generic_File as the File_Name.
Execute this command, and note that the
R 1000 creates appropriate Ada units for
those found in the List_Generic_File.

9. Now try performing the same movement on
the List_Generic spec and body using the
Source_Archive.Transfer command.

10. Terminate your FTP session.

RATIONAL 03

Additional FTP Operations

Exercise: Using Remote to Local

FTP Transfer, cont.

11. Terminate your Telnet session.

04 RATIONAL

Seminar Outline

Rational Networking—TCP /IP
Telnet

FTP

RPC

e Introduction
Terminology

Use of RPC

RATIONAL

95

Introduction

Rational Remote Procedure Call

e Makes interfaces on one machine program-
matically available on another

e Allows a program on one system to call the
facilities exported by programs on another

e Extends the semantics of procedure and
function calls across multiple machines

e Allows the values of all Ada types (except
access and task types) to be passed as
parameters or as function results

e Enables exceptions to be propagated back to
the caller

%6 RATIONAL

Introduction

Some RPC Applications

¢ Building R1000 functional test scaffolds

— Interface to a database on a remote
system

— Interface to target-dependent software
modules that reside on a target

e Integrating tools running on other hosts with
the Rational Environment

e Building a host/target debugger

RATIONAL o7

Introduction

RPC Model

Local Remote
User \\\
‘; Procedure ™\
_Call L Procedure S
i erver
Client S Call/
Request § 8 Response Service Requesty #Response
RPC RPC
Transport Transport
Network

98

RATIONAL

Introduction

Basic Model

e When a remote procedure is called by a local
program

— The client converts a call to an
appropriate interchange format

— The request goes over the network

— The server and remote RPC receive
the request and convert it from the
interchange format into a format
understood by the remote

— The server calls the required interfaces of
the service

— The server passes the response back from
the service to the client by reversing the
above steps

— The client receives the response, converts
it, and passes the results to the calling
routine

RATIONAL 99

Introduction

Service Options

e Shared service

Local Remote
Users
A B
L{ I ﬁ_j Server
Client Service

!

1 1]
L w——
e Separate service
Users Servers
AjLB]LC A {J B f c
v vy f
A B Af Services \
Clients
\'1 \ 4
11 1]
| S— | —l

100 RATIONAL

Seminar Outline

Rational Networking—TCP/IP
Telnet

FTP

RPC

Introduction
e Terminology

Use of RPC

RATIONAL 101

Terminology

Remote Facilities

e Service

— Is a collection of procedures resident on a
remote machine that are to be called from
programs on a local machine

— Has a specification that must be
expressable in Ada

— Has an implementation that need not be
implemented in Ada

e Server

— Is a program resident on the remote
machine that is associated with a
particular service

— Enables the local machine to access the
facilities of the service

— Can be built from a Rational-supplied
template

102 RATIONAL

Terminology

Remote Facilities, cont.

— Could be coded in any language

RATIONAL 103

Terminology

Local Facility

e Client

— Is an Ada interface resident on a local
machine that enables RPC calls to a
particular remote service

— Has Ada specifications for the service,
allowing local units to compile against
them

— Is built from a Rational-supplied template

104 RATIONAL

Terminology

Common Facility

e <Service Name>_Defs

— Is a common package resident on both
local and remote machines

— Is invoked by both the client and the
server

— Provides a common format that allows
client and server to exchange data

— Enumerates service subprograms for
identification across machines

— Specifies an interchange format that
provides a way of representing Ada types
so that they can be transported in a
machine-independent way

RATIONAL 105

Seminar Outline

Rational Networking—TCP/IP
Telnet

FTP

RPC

Introduction

Terminology
e Use of RPC

106 RATIONAL

Use of RPC

Use of RPC

e Build a client and a server

— Identify remote interfaces that the local
machine intends to access

— Collect these interfaces into a remote
service

— Create: <Service Name>_Defs, server,
and client

e Elaborate the server

e Execute main programs that use the client to
invoke the remote service

RATIONAL 107

Use of RPC

Server Elaboration

e This is done before any client invokes it
e It can be done as part of the machine boot

e Several server tasks are begun upon
elaboration; others begin if needed by a client

108 RATIONAL

Use of RPC

Client Elaboration

e This is done during elaboration of the closure

of the main programs that call the client

e The client has a dynamic pool of tasks so
that multiple threads of the main program
can use the client simultaneously

e Several client tasks are started upon
elaboration; others begin if needed

e The Finalize command can be inserted in
any thread of the program; if encountered,
this causes all client tasks to terminate so
that the client and the main program can
terminate

RATIONAL

109

Use of RPC

Exercise: Using RPC

110

1. Go to the R1000 rpc_ciient library and

from there to the ciient subdirectory. This
is where an RPC client spec arid body
reside. Bring up a window containing the
client spec and expand it for a fuller view.

This client provides a local Ada interface

to the subprograms declared in a remote
service. This spec is identical to the spec of
the remote service you’ll be calling.

Note that there is an exception declared

in the client also. This, too, is identical to
the one defined in the remote service and is
exported to the local machine by the RPC
client and server.

RATIONAL.

Use of RPC

Exercise: Using RPC, cont.

2. Return to the R1000 rpc_ciient library
and from there go to the user subdirectory.
This is where a main program that makes
a remote procedure call resides. Bring up
a window containing the main program
body and find the statement that makes
the remote procedure call. Note that from
the user perspective, it is transparent that a
remote interface is being accessed.

3. Telnet to the remote. Go to the remote
Rpc_Server library and list it. Note that
the directory contains an RPC server as well
as a program for elaborating the server.

4. Elaborate the RPC server by running the
program that elaborates the server. Now
the remote is set up to respond properly to
a remote procedure call from the local.

RATIONAL 111

Use of RPC

Exercise: Using RPC, cont.

112

. Lezving the server running and the Telnet

session intact, return to the R1G00.

. Run the user progiam with valid input. You

have just executed a remcte procedure.

. Execute the program agz'n, this time with

iuvalid input (e.g., --1). Note the remote
exception uropagation.

. Return to the remote and kill the server.

Terminate the Telnet session.

. (Optional) Try adding another subprogram

to the client and server.

For further information about clients and
servers, rcad the chapter on “kational
Remote Procedure Call Facility” in the
“Introduction to Networking” sectica of the
Rational Networking— TCP/IP manual.

RATIONAL

