Rational Access

User’s Guide

RATIONAL

Copyright © 1992 by Rational

Product Number: 4000-00722
Rev. 1.0, November 1992 (Software Release 1_0_0)

This document is subject to change without notice.

Note the Reader's Comments forms at the end of this book, which request the
user’s evaluation to assist Rational in preparing future documentation.

i -5y .
AIX and RISC System/6000 are trademarks and IBM is a yegistered trademark of International
Business Machines Corporation. | S

s e OSE/Motif is a trademark of Open Software Foundation, Inc.

Rational and R1000 are registered trademarks and Rational Environment and Rational Sub-
systems are trademarks of Rational.

UNIX is a registered trademark of UNIX System Labcratories.

X Window System is a trademark of MIT.

Rational, 3320 Scott Boulevard, Santa Clara, California 95054-3197

Contents

PREFACE

Organization of This Guide xiii ,
What You Should Already Know xiv o
What You Should Read in This Guide - xiv
Conventions Used in This Guide xv

Window Terms xv

Text Conventions xv

Mouse Terms xvi e
Compatibility With Layeréd Products it T
Related Documents xvi: =~ > i

1 GETTING STARTED 1

What Is Access? 1

Logging In through Access 1
Opening an Access Window 2
Logging Into the Environment 2

The Main Access Window 3

Performing Operations in Access Windows
Access Commands 5
Executing Mouse Commands 6
Executing Menu Commands 7

Working in the Environment Area 7
Environment Commands 9

5

Executing a Command from a Command Window 9
Executing Item-Operation Commands 10

Logging Out from Access o
Getting Mofe Information 11

PO

Ueobpvn X

2 USING SPECIAL FEATURES

13

Window-Control Buttons 13
User-Defined Butions 14
Image Palette 15
Function Key Palette 16
Debugger Palette 16
Just-Do-It Mode 18

RATIONAL November 1992

Rational Access User’s Guide

3 GETTING HELP

19

Obtaining Information from the Access Help Window 19
Getting Introductory Information about Access 20
Getting Information about the Online Help System 20
Finding Out What a Menu Contains 20
Getting Help on the Window-Control Button Panel 20
Getting Help on the Mouse 20
Getting Help on Keys 21
Getting Help on Key Bindings 21
Getting Help on Function Keys 21
v Finding What Command a Key Executes 21
Finding Out What Version of Access You Are Using 21
Getting a List of Help Topics 22
» Getting a List-of Environment Commands and Packages
Searching.through-the List 24
Displaying a Subset of Topics in a Filtered List 24
Getting Help on an Environment Command 24
Getting Help on Errors 25
Displaying Ada Specifications 25

22

4 MANAGING ENVIRONMENT WINDOWS

27

Moving between Environment Windows 27
Moving within an Environment Window 27
Traversing in a Window Using a Mark 28
Making a Mark 28
Traversing to a Mark 28

Moving the Cursor to the Beginning of the Window Frame
Moving the Cursor to the End of the Window Frame 28

- Changing the Size of an Environment Window 28
Shrinking a Window 28
Expanding a Window .. 28,

Expanding the Current Window over the Next Frame 29

Expanding the Current Window over the Previous Frame
Expanding the Current Window to Full Size 29
Making All Major Environment Windows the Same Size
Splitting an Environment Window 29
Removing an Environment Window 30
Removing a Window Temporarly 30
Removing an Image Permanently 30
Locking or Unlocking an Environment Window 30
Locking 2 Window 30
Unlocking a Window 31
Setting the Number of Window Frames 31
Getting a List of Environment Windows 31
Redisplaying a Window from the Image Palette = 32
Searching for a Window 32
Updating the Image Palette 33
Setting Up a Standard Set of Windows 33

iv RATIONAL November 1992

28

29

29

Changing the Size of the User Area and Full Image List 33
Closing the Image Palette 33
Finding Windows with Uncommitted Changes 33
Saving and Restoring a Set of Windows 33
Saving a Set of Windows 34
Restoring a Set of Windows 34

Contents

5 TRAVERSING THE ENVIRONMENT 35
Viewing Any Object 35
Viewing an Object in the Current Context 35
Making the Object Appear in the Next Window to Be Replaced 35
Making the Object Appear in the Same Wmdow — '35’
Viewing the Enclosing Library 36 :
Making the Library Appear in the Néxt Window to Be Replaced 36
Making the Library Appear in the Same Wmdow 36
Viewing Your Home lerary 36 Ce E o
% ity
6 BROWSING ADA PROGRAMS o e 37
Moving between the Specification and Body of an Ada Umt 37
Viewing a Unit’s Parent 37
Showing Occurrences of a Defined Ada Name 37
Showing References to a Defined Ada Name 37
Showing Unused Ada Constructs 38
Getting the Definition of an Identifier 38
Viewing the Specification of an Environment Package 38
7 WRITING ADA PROGRAMS 39
Creating an Ada Unit 39
Creating a New Ada Unit 39
Creating a Body from a Specification Automatlcally 40
Building a Unit from a Text File 40 :
Creating a Subunit 41
Promoting Ada Units 41) o
Promoting an Ada Unit to the Next Unit State -~ =42
Promoting Ada Units to'a Specific State 42+ ¢
Demoting Ada Units 43 B
Demoting to the Previous Unit State 44
Demoting Units to a Specific State 44
Selecting Parent/Child Items in an Ada Unit 45
Modifying Units 45
Adding to a Unit 46
In the Source State 46
In the Installed or Coded State 46
Incrementally Changing an Existing Unit 47
In the Source State 47
In the Installed or Coded State 47
Changing Code into a Comment 47
Changing a Comment into Code 47
RATIONAL November 1992 A4

Rational Access User’s Guide

Deleting Part of an Existing Unit 48
In the Source State 48
In the Installed or Coded State 48
Changing the Name or Kind of an Ada Unit 48
In the Source State 48
In the Installed or Coded State 48
Adding a Subprogram to a Package 49
In the Source State 49
In the Installed or Coded State 49
Making a Package or Subprogram Body into a Subunit 50
Making a Subunit In-Line in the Parent Unit 50
Saving Incomplete Units 50
Executing a Library-Level Program 50
Creating a Loaded Main Program 51

8 DEBUGGING

53

Using the Debugger Palette 53
Displaying the Debugger Palette 53
Closing the Debugger Palette 54
Starting the Debugger 54
Redisplaying the Environment’s Debugger Window 54
Displaying the Program Being Debugged 55
Stopping the Debugger 55
Finishing and Killing the Debugging Job 55
Finishing and Detaching from the Debugging Job 55
Stepping through the Program 55
Stepping by a Specific Number of Steps 55
Stepping by Every Statement 55
Stepping without Stopping in Called Subprograms 56
Stepping to the Enclosing Subprogram 56
Stopping a Task 56
Stopping the Current Task 56
Stopping All Tasks 56
Continuing a Task 56
Continuing the Current Task 56
Continuing All Tasks 56
Using Breakpoints 57
Setting Breakpoints 57
Showing Breakpoints 57
Removing Breakpoints 57
Removing a Specific Breakpoint 57
Removing All Breakpoints 57
Displaying the Value of a Program Variable 58
Modifying Variable Values 58
Examining the Call Stack 58
Displaying the Call Stack 58
Displaying Source for a Call-Stack Frame 59
Displaying Parameters for a Call-Stack Frame 59
Displaying the Parameters for the Current Selected Object
Displaying Parameters for a Specific Object 59
Traversing from the Call Stack 59

vi RATIONAL November 1992

59

Setting Up Exception Handling 60
Catching Exceptions 60
Catching Unlisted Exceptions 60
Cartching Any Exception 60
Showing Exceptions 61
Returning to the Point of Program Suspension 61
Showing Information 61
Showing All Debugger Activities 61
Showing Libraries 61
Showing Task information 61
Showing All Tasks 61
Showing Stopped Tasks 61
Showing Held Tasks 61

Contents

CREATING AND MODIFYING TEXT FILES

63

Creating a File 63 :

Viewing a File 63 - SRR
Viewing a File in the Current Library 63
Viewing a File Located Anywhere 64

Opening an Existing File for Editing 64

Saving a File 64
Closing a File 64
Saving a File without Closing 64

Reverting to the Previous Version 65

Setting Tabs 65
Checking Tabs 65

Setting Typing Modes 65
Setting Overwrite Mode 65
Setting Insert Mode 66
Setting Wordwrap (Fill Mode) 66
Changing the Wordwrap Column 66

10 EDITING TEXT

67

Moving the Environment Cursor with the Keyboard 67
Selecting Text 68)
Selecting Text in the Environment 68 o
Selecting a Word 68 e
Selecting the Preceding Word 68
Selecting the Next Word 68
Selecting a Sentence 68
Selecting a Paragraph 68
Selecting an Arbitrary Region of Text 68
Selecting All in a File 69
Selecting the Parent or Child 69
Deselecting Text 69
Selecting Text with Motif 69
Selecting a Region of Text 69
Deselecting a Region of Text 70

RAT'ONAL November 1992

Rational Access User’s Guide

Copying Selected Text 70
Copying an Environment Selection 70
Copying a Motif Selection 70
Copying a Line of Text 70
Moving Selected Text 70
Searching for and Replacing Text 71
Searching for a String 71
Searching and Replacing a String 72
Searching and Replacing All Occurrences of a String
Search Options 72
Deleting Text 73
Transposing Text 73
Transposing Characters 73
Transposing Words 73
Transposing Lines 74
Changing the Case of Text 74
Making Text Uppercase 74
Making 2 Word Uppercase 74
Making a Selected Region of Text Uppercase 74
Making Text Lowercase 74
Making a Word Lowercase 74
Making a Selected Region of Text Uppercase 74
Making Text Capitalized 75
Making a Word Capitalized 75
Making a Selected Region of Text Capitalized 75
Filling a Region of Text 75
Justifying a Region of Text 75
Getting Line Information 75
Saving Changes 76
Saving Changes One Image at a Time 76
Saving Changes in All Images in a Single Operation 76
Saving the Image and Closing the File 76

~J
o

11 MANAGING LIBRARIES

77

Controlling the Library Display 77
Toggling Information on Library Objects 77
Showing More Objects in the Library 78
Showing Fewer Objects in the Library 78
Creating Nonsubsystem Libraries 78
Creating a Directory 79
Creating a World 79
Destroying Objects 80
Copying Objects 81
Moving or Renaming Objects 82
Printing Objects and Images 83
Printing Multiple Objects 84
Selecting the Printer 84
Specifying the Pages to Print 84
Printing All Pages in a File = 84
Printing Specific Pages 84
Format Options 85

viii I?ATIONAL November 1992

Contents

Page-Layout Options 85
Other Options 85

12 USING CMVC 87

Creating a Subsystem 87
Making a Path 89
Making a Subpath 90
Making a Spec View 91
Releasing Configurations 92
Making a Release View 92
Making a Configuration Release 94
Making a Code View 96
Creating a System 96
Making Objects Controlled or Uncontrolled 97
Checking Out an Object for Changes 98
Checking In an Object After Changes 98
Accepting Changes 99
Accepting Changes from a View 99
Accepting Changes If the Destination Is an Object 99
Accepting Changes If the Destination Is a View 101
Accepting Changes from an Object 101
Joining Objects in Different Views 101
Severing Objects in Different Views 102
Reverting to a Previous Generation 103
Creating 2 New Activity 104
Adding an Activity Entry 104
Starting the CMVC Editor 105
Collecting Information about Controlled Objects 105
Creating a Work Order 105
Creating a Work-Order List 106
Creating a Venture 107
Getting Information about a View 107
Getting the History of an Object 108

13 CONTROLLING JOBS 111

Displaying Current Jobs 111

Displaying Your Current Jobs 111

Displaying All Current Jobs 112
Disconnecting from a Job (Putting It in the Background) 112
Reconnecting to a Job (Putting It in the Foreground) 113
Disabling a Job 113
Enabling a Job 114
Killing a job 114

Killing the Current Job or the Last Job Created 114

Killing Any Job 114

RATIONAL November 1992 ix

Rational Access User’s Guide

14 CUSTOMIZING YOUR ACCESS WORKSPACE 117

Executing Menu Commands with User-Defined Buttons 117
Creating a Button for a Menu Command 118
Changing the Size of the Button Area 118
Activating a User-Defined Button 118
Deleting Buttons 118
Saving Buttons 118

Building and Executing Macros 119
Defining 2 Macro 119
Executing a Macro 119
Binding a Macro to 2 Key 119
Saving the Current Macros 119

Rebinding Keys 120
Rebinding Temporarily 120
Rebinding Permanently 120

Changing the Screen to Inverse Video 120

Setting the Visual Bell 120

15 USING COMMAND WINDOWS 121

Creating and Executing a Command-Window Program 121
Getting Command Completion 121
Moving in a Command Window 122
Moving to an Underline 122
Moving to a Prompt or Underline 122
Tuming Off a Prompt 122
Turning Off Underlines 122
Reexecuting a Command 123
Entering a2 New Command 123
Entering a New Command in the Same Window 123
Clearing a Command Window of Unneeded Text 123
Going Back to Previous Commands 123
Redisplaying a Previous Command in the Historical Sequence 123
Redisplaying a Later Command in the Historical Sequence 124
Getting the Parameters of a Command Bound to a Key 124

A SETTING UP ACCESS 125

How Access Works 125
X Application Components 125
Access as an X Application 126
Requirements for Running Access 127
Configurations for Using Access 127

B USER-INTERFACE BASICS 129

Choosing Menu Commands 129
Terms for Describing Menus 129

X RAT'ONAL November 1992

Contents

Using the Mouse to Choose Commands from Menus 129
Clicking with the Mouse 129
Dragging with the Mouse 130

Using the Keyboard to Choose Commands from Menus 130
Using Mnemonics 130
Choosing Directly from the Menu Bar 131

Executing Window-Control Button Commands 131

Responding to Dialog Boxes 131

Terms for Describing Dialog Boxes 132

Using the Mouse to Respond to Dialog Boxes 133
Text-Entry Boxes 133
Other Controls 134

Using the Keyboard to Respond to Dialog Boxes 134
Navigating a Dialog Box 134
Specifying Information 135
Initiating the Action of a Command Button 135
Shortcut for Canceling a Dialog Box 136

C ACCESS EQUIVALENTS: ENVIRONMENT COMMANDS 137

D ACCESS EQUIVALENTS: KEY BINDINGS 151

Fundamental Set of Logical Keys 152
Object Operations 155

Region Operations 157

Window Operations 160

Image Operations 163

Line Operations 165

Word Operations 167

Mark Operations 169

INDEX

173

RAT'ONAL November 1992 xi

Preface

This preface describes the organization of the Rational Access User’s Guide, suggests
appropriate sections for various users to read, and outlines the text and mouse con-
ventions used in this guide.

ORGANIZATION OF THIS GUIDE

The Rational Access User’s Guide is divided into these tabbed sections:

m Getting Started: Chapters 1 through 3 introduce Access and graphical user
interfaces and discuss system information and terminology used in this guide.

s Performing Environment Operations: Chapters 4 through 15 describe, with
simple step-by-step procedures, how to perform common operations in the
Rational Environment™ using the Rational Access graphical user interface.

a Appendixes:

— Appendix A, “Setting Up Access,” describes sample machine configurations for
running Access.

— Appendix B, “User-Interface Basics,” describes Motif™-style user-interface
basics.

—~ Appendix C, “Access Equivalents: Environment Commands,” lists basic Envi-
ronment commands and the Access menu items and buttons that are most sim-
ilar to them.

— Appendix D, “Access Equivalents: Key Bindings,” lists the logical key names
used in Rational’s training and documentation and the Access key bindings,
mouse buttons, menu items, and menu buttons that are most closely related to
them.

m Quick Reference: Quick reference for Access key and mouse bindings.

s Index

This guide focuses on using Access to perform basic operations on Ada programs
and text files in single libraries. Some of the areas are: executing commands, man-
aging windows, writing and debugging programs, and editing text files. Areas not
included are multlibrary development, sophisticated use of Rational Subsystems™,
and optional products such as the Rational Design Facility, Rational Mail Utility, and
host-target development products.

Note that this guide does not provide tasks for all Access commands.

RATIONAL November 1992 xiii

Rational Access User’s Guide

WHAT YOU SHOULD ALREADY KNOW

To follow the instructions in this guide, you need to:

Know basic Environment concepts, including:

-~ Environment library hierarchy

— The Environment’s compilation model, including unit states
Subsystem (CMVC) theory

Basic use of the debugger

Know how to perform basic UNIX® operations in the UNIX shell you are using
(required for Access setup and startup), including how to:

— Log into a UNIX workstation
— Execute UNIX commands

— Edit a file

Have a general understanding of:

— Your X Window System™ (X) environment
— Basic operations common to mouse and menu-driven user interfaces

— Basic window operations provided by the window manager that you are using
(for example, the Motif Window Manager, mwm)

See “Related Documents,” below, for documents that can provide you with this pre-
requisite information.

WHAT YOU SHOULD READ IN THIS GUIDE

Xiv

The Rational Access User’s Guide is written to assist new Environment users, current
Environment users who are new to Rational Access, and new and experienced sys-
tem administrators.

This guide assumes some familiarity with the Rational Environment.

If you are familiar with Motif-style interfaces and the Environment but new to
Access, read Chapters 1 and 2, and refer to Chapters 3-15 for step-by-step task
information. Also see Appendix C, “Access Equivalents: Environment Com-
mands,” for information about direct correlations between Environment com-
mands and Access menu items and buttons, and Appendix D, “Access
Equivalents: Key Bindings,” to find out where in the Access interface you can
find familiar logical keys, such as the item-operations.

If you are new to Motif-style interfaces, read chapters 1 and 2 and Appendix B,
“User-Interface Basics.” Refer to Chapters 315 for step-by-step task
information.

If you are familiar with Motif but not the Environment and Access, read Chapter
2, “Using Special Features,” and refer to Chapters 3-15 for step-by-step task
information. While learning the Environment, you may also want to refer to
Appendix D, “Access Equivalents: Key Bindings,” to find out where in the Access
interface you can find the logical keys referred to by Rational’s documentation
and training.

If you are a system administrator responsible for installing Access and supporting
Access users, read Chapter 1, “Getting Started,” and Appendix A, “Setting Up

RATIONAL November 1992

Preface

Access.” Also consult the Rational Access Installation Note and Rational Access
Release Information.

CONVENTIONS USED IN THIS GUIDE

The following subsections describe window, text, and mouse terminology.

Window Terms

This guide uses examples of Access windows and dialog boxes running the MIT X11
Server. For information on manipulating the X window frames, see the X Window
System User’s Guide (see “Related Documents,” below).

Note that Access window refers to the entire Access-window area, including the
menu bar, button panels, and Environment area. Environment window refers to one
of the individual windows (there are three by default) inside the Access window in
which text files, Ada units, and output appear and where you perform Environment
operations. Window terms are discussed in more detail in Chapter 1, “Getting
Started,” and Appendix B, “User-Interface Basics.”

Text Conventions

The following table lists and defines examples of text conventions used in this guide.

Example Meaning
slider Indicates new terms where they are defined
R1000-name Indicates text you must type in a UNIX command line or in a com-

mand window; for example, enter the name of your R1000
mwm Indicates a UNIX command

Rational Indicates literal characters that you type or see in a dialog box, a
file, an Ada unit, a UNIX command line, or an Environment com-
mand or message window.

Text.Create Indicates Ada identifiers (including Environment command names
and pathnames) in body text

Edit:Cut Identifies a command on an Access menu; for example, Edit:Cut
refers to the Cut command on the Edit menu

oK Identifies command buttons on dialog boxes

[Return} Represents a key that must be pressed to initiate or complete an
action

[Control] [G] Represents keys that must be pressed simultaneously; for example,
while holding down [Control], press [G]

Note: Indicates important, additional information; text is in italics

Alternative: Indicates keyboard alternatives to mouse or command window

operations; text is in italics

RAT'ONAL November 1992 Xv

Rational Access User’s Guide

Mouse Terms

The following table lists and defines terms used in mouse operations.

Term Meaning

Pointer Refers to the visible representation of the mouse on the screen;
moving the mouse moves the pointer

Click Press and release the left button without moving the pointer

Double-click Click the left button twice in rapid succession

[Shift]+click Hold down the [Shift] key while clicking the left button

[Control]+click Hold down the [Control] key while clicking the left button

Drag Hold down the left button while moving the pointer

{Shift]+drag Hold down the [Shift] key and the left button while moving the
pointer

[Control}+drag Hold down the [Control] key and the left button while moving the
pointer

Note: For operations using the right or middle mouse button, the text will specify
which button to use.

COMPATIBILITY WITH LAYERED PRODUCTS

Supported layered products can be started, used, and exited using Access menu
commands. Commands for supported layered products appear in the Tools menu.

If you try to operate a layered product that is not installed or authorized, a message
appears in the message window saying that the product is not authorized.

For more information, see the Rational Access Release Information and consult
online help for specific commands used in layered products.

RELATED DOCUMENTS

Because the Rational Access User’s Guide discusses only basic Environment opera-
tions, you may want to refer to other materials for further information.

For information about Rational Access, see:

m Rational Access Installation Note
s Rational Access Release Information

For information about the Rational Environment, see:

8 Rational Environment User’s Guide
8 Rational Environment Reference Manual
m System Manager’s Guide

XVi RATIONAL November 1992

Preface

For information about the X Window System and OSF/Motif-based user interfaces,
see:

s V. Quercia and T. O'Reilly, X Window System User’s Guide, OSF/Motif Edition
(Sebastopol, CA: O'Reilly & Associates, 1991).

a OSF/Motif User’s Guide (Englewood Cliffs, NJ: Prentice-Hall, 1991).

RATIONAL November 1992 xvii

Getting Started

This chapter describes Rational Access and a standard machine configuration for run-
ning Access. It also describes how to log into the Rational Environment™ and exe-
cute commands through Access.

WHAT IS ACCESS?

Rational Access is an OSF/Motif™-style graphical user interface to the Rational Envi-
ronment, which is an environment for developing and maintaining large software
projects written in Ada. Access allows you to perform standard Environment opera-
tions using such OSF/Motf and graphical user-interface tools as:

m A mouse

Pull-down menus

Dialog boxes

Persistent control palettes

Control buttons

Extensive online help
Access also supports existing Environment paradigms, such as:

m Item operations
s Command windows

Access allows you to start, use, and exit supported layered products.

Access runs as an X Window System™ (X) application on a workstation. Access
brings up the Environment’s interface as a special-purpose X window (the Access
window) on your display (a workstation monitor or an X terminal). Your system
manager has determined which workstation and display you use to run Access. If
you want to know more about how Access works or how it has been set up for you,
see Appendix A.

LOGGING IN THROUGH ACCESS

You use UNIX® commands to start Access and connect to an R1000®. Below are basic
steps for starting Access, including other useful UNIX options. Once you are logged
into the Environment, all operations are performed using Access or Environment
commands.

Note that you can customize characteristics of the Access window in your .Xdefaults
file, including fonts, keyboard-focus policy, location, size, and colors.

RATIONAL November 1992 1

Rational Access User’s Guide

Opening an Access Window

. Begin in an X window that contains a UNIX command prompt.
. Enter rational, including any UNIX command options. Three options are par-

ticularly useful with the rational command:

a -e, which executes a command. To open an Access window and connect to
an R1000 at the same time, follow the -e with the command
telnet R1000-name.

s -geometry, which allows you to set the size and position of the Access win-
dow without using the mouse. For example, entering the parameters
80x24+0+0 creates an Access window that is 80 columns wide and 24 lines
long at coordinates (0,0)—that is, at the upper-left corner of the screen.

m -title, which allows you to give a specific title to the Access window. This
title will also identify the window if you turn it into an icon using the window
manager, unless you separately specify an -icontitle option.

As an example, you could enter the following command:

> rational -title Debug -geometry 80x24+0+0 -e telnet R1000-name &

. Press [Retum].

Wait a few seconds; a Rational Access window will appear. This creates a stan-
dard-sized Access window (unless you specify a -geometry option) connected
to the R1000.

Note: For more information about the rational command, see the rational UNIX
man page (enterman rational ata UNIX prompt) or type rational -help when
logging in at the UNIX command prompt.

Logging Into the Environment

The following steps are the same for all Rational interfaces.

1.

WMo e N

Begin in an Access window that is connected to an R1000.

An Access window connected to an R1000 displays the following:
Trying 89.64.3.3

Connected to R1000 name.

Escape character is '~}’.

If your Access window contains a UNIX prompt, enter telnet R1I000 name and
press [Return]. You will then see the display shown above.

. Press [Retumn] until you get an Enter user name: prompt.
. Enter your username and press {Retum].

At the Enter password: prompt, enter your password and press [Return].

. At the Enter session name: prompt, enter the name of the Environment

session.
m To log into your default session (S_1), press [Return].
s To log into another session, enter the name of that session and press {Return).

If the session does not exist, the Environment will ask if you want it created.
If you do, enter y; if not, enter n.

2 RATIONAL November 1992

Chapter 1: Getting Started

Note: If you take too long to input any of the entries, login will halt. Press [Return] fo
get anew Enter user name: prompt. Some systems may require you to reestablish
the Telnet connection.

THE MAIN ACCESS WINDOW

Menu bar
Window-control
button panel

User-defined
button panel

Sash

Environment
area

Once you have logged in, you will see the main Access window. The main Access
window, the starting point for your work in Access and the Environment, will look
something like the one in Figure 1-1.

Note that your Access window may look different if your system administrator has

customized your display. The examples in this book are based on the Motif Window
Manager.

File Edit Navigate Program CMVC Debug Session Tools

(a] (v (€] (=] (] Ed

[Fowe Library] [Raad Mai1| [Delets Hail Hessage]
-

from Jue :38: ; Snapshot will start in 28 seconds
Snapshot has completed

w_assz,_s_cm
ccess

Rda_Class
Ada_Programs

Basic_0ps Sash control
Basic_Ops_Switches

Crash

R
= ROBET =

LI LT g

Yelcome 1o Roget, home of Technical Documentation and Production for
Rational’s Ada business unit., If you encounter problems, need a software
upgrade, or want a permanent login on this machine, please send mail to

Roieu_nar.

Figure 1-1 Tbe Access Window
The Access window contains the following major elements:

Menu bar: Contains the nine Access pull-down menus. Underlined letters indicate
the keyboard character that can be used in combination with the Meta] key to activate
the menu. Following is a list of the nine pull-down menus:

a The File menu is used for creating, accessing, copying, moving, and deleting
Environment objects.

m The Edit menu is used for performing common editing operations, searching,
and checking spelling.

s The Navigate menu is used for moving the Environment cursor between and
within images.

RAT'ONAL November 1992 3

Rational Access User’s Guide

= The Program menu is used for creating, changing, and compiling Ada programs.

s The CMVC menu is used for controlling, manipulating, and querying for infor-
mation about objects in subsystems.

s The Debug menu is used for debugging Ada programs.

m The Session menu is used for customizing your Environment session or Access
display. It provides access to Environment profiles, switches, and searchlists.

r The Tools menu is used for accessing Rational’s layered software products and
for Environment facilities that provide mail, operator capabilities, and system
information.

s The Help menu is used for getting information about Rational Access and the
Environment.

Window-control button panel: Contains the buttons, each labeled with a graphic,
that control specific Environment window functions. Buttons are activated by plac-
ing the pointer on the button and clicking the mouse. Table 1-1 lists the buttons and
their functions.

User-defined button panel: Contains user-defined buttons. You can create a but-
ton for any menu command. See Chapter 14, “Customizing Your Access Workspace,”
for information on how to create and execute buttons.

Sash: Separates the Environment area from the button panel.
Sash control: Controls the height of the sash.

Environment area: Defines where you do work. See “Working in the Environment
Area,” below, for information about the Environment area.

Table 1-1 Window-Control Buttons

Button Name Function
Scroll Up Scrolls image up
Scroll Down Scrolls image down
Scroll Left Scrolls image left
Scroll Right Scrolls image right
Top of Image Moves cursor to beginning of

image

Bottom of Image

Moves cursor to end of image

Copy Window

Splits window into two frames,
each containing the same image

Join Next Window

Joins current window with next

Join Previous Window

Joins current window with previ-
ous

Expand Window

Expands window four lines

Shrink Window

Shrinks window four lines

([EEER E @ e e

Realign Windows

Makes all windows the same size

4 RATIONAL

November 1992

Chapter 1: Getting Started

Table 1-1 Window-Control Buttons (continued)

Button Name Function
Lock Window Makes the window unable to be
replaced until user releases it
Unlock Window Makes the window able to be
replaced
Show Image Palette Brings up the Image Palette

Show Function Key Palette | Brings up the Function Key Pal-

gl [T 8| E] =]

ette
Show Debugger Palette Brings up the Debugger Palette
Remove Window Removes window from Environ-

EH

ment area (this button also
appears on the Access control
palettes)

Fully Expand Window Expands window to full Environ-
ment area

B

PERFORMING OPERATIONS IN ACCESS WINDOWS

After you open an Access window, you perform Access and Environment operations

by choosing commands from menus in the main window. Access is an OSF/Motf-

based application, which means it follows OSF/Motif standards for menu and dialog-
box operations:

s You use the mouse or mnemonic keys to choose commands from the menus.
s When the chosen menu commands bring up dialog boxes, you use the mouse
and/or keyboard shortcuts to specify the requested information.

If you are relatively inexperienced with this kind of user interface, see Appendix B.
For complete information, see the OSE/Motif User’s Guide.

Operations that affect whole windows (such as moving and resizing) are controlled
by the window manager you are using; see your window-manager documentation
for details.

Note that you can control several characteristics of Access using X Window System
resources. For details, see the UNIX man page for the rational command.

Access Commands

Access provides its own set of commands, called Access commands. These com-

mands are what you see as menu items and buttons. Access commands perform

operations specific to Access, such as saving user-defined buttons, as well as basic
Environment operations, such as creating new files. Access commands are defined
in package 'Commands.Menu_Operations and are built on top of existing Environ-
ment commands (which are available on all Rational user interfaces). For example,
the Text File command (found on the New submenu of the File menu), is the same
as the Environment command Text.Create. File:Open, however, uses the Environment

PATIONAL November 1992 5

Rational Access User’s Guide

command Common.Edit and, if necessary, Cmvc.Check_Qut. For more information
on Environment commands, see “Environment Commands,” later in this chapter.

Access commands
(on menus and buttons)

Environment commands
(in Command windows)

Figure 1-2 Relationsbip of Access Commands to Environment Commands

Key and mouse operations can be bound to either Access or Environment com-
mands. For example, the [F8] key executes the Environment command Common.Pro-
mote, and the [F10] key changes the keyboard focus to the menu bar, which is an

Access-specific operation.

Executing Mouse Commands

This book assumes that you are using a three-button mouse with the right-handed
configuration, as shown below. If you have modified the button configuration on
your mouse, you need to keep in mind what button you would actually use. You
can use the mouse alone to perform some Access, Environment, and Motif opera-
tions, as shown in Table 1-2. Note that there are two kinds of text selection: Envi-

ronment and Motif.

Table 1-2 Access Mouse Functions

Drag

[Control]+drag

Motif Selection

Region Selection

Action Left Button Middle Button Right Button
Click Position Cursor Motif Selection
Copy

[Shift]+click Motif Selection

End
Double-click Definition Endosing
[Shift}+double-click Definition in Place Enclosing in Place
[Control]+click Region Start Region Copy Region End
[Control}+double-click Select Object Select Child

RATIONAL

November 1992

Chapter 1: Getting Started

Executing Menu Commands

This manual uses the notation Menu:Command to refer to commands on menus. For
example, Edit:Copy refers to the Copy command on the Edit menu.

Some commands are executed from submenus. Notation for these commands is
Menu:Submenu:Command. For example, File:New:Text File refers to the Text File command
on the New submenu of the File menu.

To choose 2 command from a menu:
1. Put the pointer on the appropriate menu title in the menu bar and click. This

opens the menu and displays it below the menu bar.

2. Put the pointer on the name of the desired item and click. This initiates the com-
mand. Note that:

m An ellipsis (...) after a command name indicates that a dialog box will appear
requesting further information.

= An arrow after a command name indicates that a submenu will appear with
more command choices.

®» A gray command name indicates that the command is currently inapplicable
and cannot be chosen.

See “Choosing Menu Commands” in Appendix B for more information, including
alternative mouse techniques and using the keyboard to choose a menu command.

WORKING IN THE ENVIRONMENT AREA

The Environment area of your Access window is where you perform all Environment
operations, including creating and editing text files and Ada programs, debugging
Ada programs, and creating and manipulating subsystems. The Environment area, as
shown in Figure 1-3, is the same as in other Rational Environment interfaces (such
as RXT and RWI). Thus, if you are familiar with another Environment interface, you
may not need to read this section.

The Environment area contains the following elements:

Message window: Displays system and error information from the Environment.
Some Environment operations, such as the [Prompt For} command, require input
in the message window.

Message-window banner: Displays the name of your R1000, your username, and
the name of the session you are logged into. In addition, whenever you execute a
command or run a job in the foreground, the message-window banner indicates this
by displaying the . ..running message.

Environment windows: Display some part of an image of an Environment object,
such as a library, text file, or an Ada unit, in which you can write and edit. You can
scroll the image in all directions.

Environment-window banner: Provides information about the object displayed
in the window above, such as its name and class. See Table 1-3.

RATIONAL November 1992 7

Rational Access User’s Guide

Message

B E
[Home Library] [Read Hail] [Delete Mail Message] [open] [Print]
T

window \

Message-
window banner

Environment
windows

Environment-
window banner

Command —%

window

Environment- i

window frame

Rational EnvlronuenL

with Io_Exceptions;
with Text_Jo;
procedure Convert is

ackage Float_Jo is new Text.Io.Float_ Io (Floatx
ive_Ninths : constant Flosy := 5,8 / 9
Celsjus : Float;
Fahrenheit : Floau
begin
Joop

Text_Io.Put_Line ('Please enter te -eraturc in de-rees F
-) L nlty ¢

ahrenheit. ");

| Users. Scalde
Access
fida..
Ada.Programs

Basic_Ops
Basic_Ops.Switches
Crash
Library.Suitches
#Hailbox
Meil_Utilities

Environment cursor

Figure 1-3 The Environment Area

Table 1-3 Symbols in Environment-Window Banner

Symbol Definition

= Indicates that the image is read-only

(blank) Indicates that the image is modifiable and that no changes have been
made since it was last saved

* Indicates that the image is modifiable and that changes have been
made to it since it was last saved

Indicates that the image of an Ada unit is modifiable and that the image
has been changed since it was last saved

! Indicates that the image is currently read-only because a job has
obtained access to the object in that window

Environment cursor: Appears as a reverse-video rectangle around a character or
space. It marks the text-insertion point within a window.

Command window: Allows you to enter and execute any Environment command.
Command windows are attached to the major window above them.

Environment-window frame: Defines the screen space occupied by an Environ-
ment window, its banner, and any attached command windows. The available

RATIONAL. November 1992

Chapter 1: Getting Started

screen is divided into several frames, within which windows can be placed. You can
tesize the window frames using the window control buttons. See Chapter 4, “Man-
aging Environment Windows,” for specific information about manipulating Environ-
ment-window frames.

Mouse pointer (not shown): Marks the location of the mouse. It appears as an
arrow or I-beam, depending on the location within the Access window, and as a
watch when a job is executing.

Environment Commands

In addition to performing operations through the Access menus, you can use the
Environment’s command-window interface. Command windows are special-pur-
pose windows through which you execute Environment commands.

Environment commands are predefined Ada procedures and functions that are pro-
vided for your use. These subprograms are defined in packages, whose names
reflect the various Environment objects and other functional groupings of Environ-
ment operations. The specifications of these packages are located in the !Commands
and 'Tools libraries.

Environment commands perform most of the operations available through Access,
as well as other, more complex operations. Using Environment commands, you can
create, display, and modify objects, manage windows, display information, and the
like. Environment commands and command windows are especially useful for:

m Performing several operations in a single instruction

m Performing complex operations, such as copying multiple objects between
machines

The use of Ada as the Environment’s command language provides a number of pos-
sibilities for entering commands in command windows. Because command windows
contain Ada block statements, and because Environment commands are entered as
calls to Ada procedures:

m The rules of Ada syntax allow alternative ways to specify parameter values for
those commands that have parameters.

m You can declare variables, constants, and the like within command windows,
and you can build multiple-line programs.

Command windows appear in the Environment area of the Access window and are
available in all Rational user interfaces. Environment commands are documented in
the Rational Environment Reference Manual. Access menu and button equivalents
for many Environment comnmands are listed in Appendix C, “Access Equivalents:
Environment Commands.”

Executing a Command from a Command Window

To execute a2 command from a command window:

1. Press [Cmd Window] to open a command window.

2. Enter the command or a unique fragment of the command name.
3. Press [Complete] to display any parameter prompts.

4. Enter any necessary parameter values.

RATIONAL November 1992 9

Rational Access User’s Guide

10

5. Press [Promote] to execute the command.

See Chapter 15, “Using Command Windows,” for more information.

Executing Item-Operation Commands

Item operation refers to particular key combinations that consist of a special kind of
key, called an item key, followed by another key indicating the operation to be per-
formed on that item.

This command paradigm is available on all Rational interfaces, including Access,
although many Access commands offer alternatives to the item-operation technique.
New Environment users should note that although Access provides alternatives to
the item-operation paradigm, all the material in the Rational Environment Reference
Manual and the Rational Environment User’s Guide contains examples using item
operations. See Appendix D, “Access Equivalents: Key Bindings,” for a list of item-
operation commands and corresponding Access commands.

Table 1-4 lists the seven item keys and their respective positions on an unmodified
keyboard.

Table 1-4 Item Keys

Item Key Location

Object [Control][F1]
Region [Control][F2]
Window [Control][F3]
Image [Control}[F4}
Line [Control][F5)
Word [Control][F6]
Mark [Control][F7]

Operation keys can be main keyboard keys, function keys, auxiliary keys, or cursor
keys. In general, commands that execute similar operations are bound to combina-
tions containing a common operation key. For example, the combinations [Line] - [D],
[Word] - [D], and [Window]- [D] all delete an item, as indicated by the shared operation key,
18

For a complete list of operation keys, see Appendix D in this guide or open the Func-
tion Key Palette and click on one of the item keys. An active template will appear
containing all the operation keys for that item key.

QAT'ONAL November 1992

Chapter 1: Getting Started

LOGGING OUT FROM ACCESS

1. Choose File:Exit.
The following dialog box appears:

tional Access Exi

’ Do you want to log out

of this Rational session?

2. Click the Yes or No button.
a Click No to exit from Access but remain logged into your session.

This is useful if the R1000 becomes nonresponsive; otherwise, you cannot exit
Access through the Access window.

s Click Yes to log out.

If there are any uncommitted changes, a second dialog box appears:

The following buffer(s) are modified:
1USERS ,SCALDE .WAR_AND_PEACE”V{5)
Quit anyway?

Note that the dialog box lists the last three modified buffers brought up in Envi-
ronment windows.

3. Click the OK or Commit button.
s Click OK to log out without committing the changes.
m Click Commit to save the changes before logging out.

The Access window disappears.

GETTING MORE INFORMATION

Rational Access offers extensive online help for Access and Environment commands
(see Chapter 3, “Getting Help”). For more information on Environment commands
and procedures, also see the Rational Environment Reference Manual. The rest of
this guide offers more information about Rational Access:

RATIONAL. November 1992

11

Rational Access User’s Guide

12

For information about specific, basic Environment operations using Access, see
Chapters 3-15.

For information about setting up configurations to run Access, see Appendix A.

For information about basic graphical user-interface operations, see Appendix B.
For a list of basic Environment commands and the Access menu items and but-

tons that are most closely related to them, see Appendix C, “Access Equivalents:
Environment Commands.”

For a list of the logical key names used in Rational’s training and documentation,
including the item-operation key combinations, and the Access key bindings,

mouse buttons, menu items, and menu buttons that are most closely related to
them, see Appendix D, “Access Equivalents: Key Bindings.”

'?ATIONAL November 1992

Using Special Features

This chapter describes features specific to Access:

Window-control buttons
User-defined buttons
Image Palette

Function Key Palette
Debugger Palette

Just-Do-It mode

WINDOW-CONTROL BUTTONS

Window-control
button panel

A panel of window-control buttons, shown in Figure 2-1, allow you to manage the

visual characteristics of the Environment area in your Access window. See Chapter
1, “Getting Started,” for a list of button names and their functions. To activate a but-

ton, place the pointer on the button and click.

File Edit Navigate Program CMVC Debug Session Tools Help

NuEElEEEEEEEE R R EEE

fHome Library| [Read Mail] [Delete Mail Hessage| [Open] [Save] [Print] fCut] [Copy] [Paste] [Close]

M d

Rational Environament
0712_?_1_§o- : ht_ by Rat

soaLle,

1332,

ional.

Rccess

Rda.Class
Rda_Programs
Basic.Ops
Basic.Ops_Switches
Crash
Library_Seitches
Mailbox
Mail_Utilities
New

Falp . Ul

GxER . SUAL
[>tatenent]

e e e ok ok ook

= ROGET » []

o o o o

Yelcome to Roget, home of Technical Documentation and Production for
Rational‘’s fida business unit. If you encounter problems, need a software
upgrade, or want a permanent 1ogin on this machine, pliease send mail to
Roget_Ngr

Figure 2-1 Tbe Window-Control Button Panel in tbe Main Access Window

RATIONAL November 1992

13

Rational Access User’s Guide

USER-DEFINED BUTTONS

Depending on which menu commands you use often, you may want to create your
own user-defined buttons (see Figure 2-2). These buttons allow you to execute a
menu command by clicking on the button.

File Edit Navigate Program CMVC Debug Session Tools Help

NurClEEElEeEElanE R ENEE

User-defined
bleita{'oneF;gse] [fHome Library| {Read Hail| {Delete Hail Message| [Open] iSave] Print] iCopy| {Paste| {CIOS:-:L

Rational Environment
-7.1 Copyrig
= ROpET - A)

ht 1932, by Rational.
A1e RO

k L

! r
Access
Rda_Class
Ade_Prograns
Basic.0ps
Basic_Ops.Switches
Crash
Library_Suvitches
Mailbox
Mail_Utilities
New

oo 3 e e
= ROGET » [

e e e ke ok ok ok

Yelcome to Roget, home of Technical Documentation and Productlion for
Rational’s ARda business unit. If you encounter problems, need a software
upgrade, or want a permanent login on this machine, please send mail 1o
Roget _Mgr.

Figure 2-2 Tbe User-Defined Button Panel in tbe Main Access Window

The user-defined buttons are displayed as the name of the command enclosed in a
rectangular border, and they appear directly below the window-control buttons and
above the sash. You c¢an create as many buttons as you wish, making space for them
by pulling down the sash in the Environment area. The buttons appear left to right,
in the order that you create them. Buttons can be saved and deleted between logins,
and they are user-specific, not session-specific.

Following are some commands for creating, activating, deleting, and saving user-
defined buttons:

» To create a user-defined button, place the pointer on a menu command and
press [Control]+click.
» To activate a user-defined button, place the pointer on the button and click.

= To delete a user-defined button, place the pointer on the button and press
[Control]+Click.

s To save user-defined buttons, choose Session:Screen:Save Button Panel.

See Chapter 14, “Customizing Your Access Workspace,” for more instructions on how
to create, execute, and save buttons, and how to change the size of the user-defined
button panel.

14 RATIONAL November 1992

Chapter 2: Using Special Features

IMAGE PALETTE

HTUSERS , SCALDE . ADA_CLASS, CONVERT” BODY
Search /

box

/ 1 Eational_ﬂccess Mailbox
Sash

The Rational Access Image Palette provides an updatable listing of the images open
under your Environment session. The Image Palette gives you the ability to list all
the current images, including those that are not currently displayed in an Environ-
ment window, and to recall any of these images to the Environment area.

To display the Image Palette, click the following button on the window-control

panel: @]

indd| iRemove| iRefresh| {Help| E{} > Button panel
Search
;AI;@"" W arrow

Hain Mailbox
User area

Humor Mailbox

1USERS ,SCALDE, MAIL _UTILITIES,REYL_1_WOF
1USERS . SCALDE .MAIL _UTILITIES,REVi_WORK]
1USERS, SCALDE, MRIL_UTILITIES

1USERS, SCALDE,, ADA_CLASS . CONVERTBOBY
IUSERS ., SCALDE ,ADA_CLASS

Main Mailbox

[Loginl

Full image list

Figure 2-3 Tbe Image Palette

The top panel of the palette—the button panel—contains buttons that control the
palette. The Refresh button must be pressed every time you want to update the Image
Palette to include new images brought up in the Environment area. (The Image Pal-
ette is updated automatically, when you open it.)

The middle panel—the user area—contains a user-defined list of Environment win-
dows that can be recalled to the associated main Access window. You can keep a
list of important images in the user area by using the Add and Remove buttons.

The bottomn panel—the full image list—contains 2 list of the Environment windows
that are on the associated main Access window or have been replaced by other win-
dows but not closed. You can change the relative size of the bottom two panels by
placing the pointer on the sash control and dragging it up or down.

To search through the full image list, you can use the scroll bars or search for a spe-
cific image using the search box and search arrows.

In the Image Palette:

m To redisplay a listed image, double-click the enuy in the image list.
s To manually search through the image list, drag the scroll bars.

RAT'ONAL November 1992 15

Rational Access User’s Guide

m To search for a specific image in the list, enter a character string in the search
box, using wildcards if desired, and direct the search with the search arrows.

» To add an image from the image list into the user area, click the image name
(highlight it), and click the Add button.

m To remove an image from the user area, click the image and click the Remove
button.

m To update the Image Palette, click the Refresh button.

m To close the Image Palette, click: Ly
AR

For more information on the Image Palette, see Chapter 4, “Managing Environment
Windows.”

FUNCTION KEY PALETTE

The Function Key Palette brings up a list of the commands that are bound to each
function key and allows you to execute a function-key command by clicking on its
entry in the palette.

To bring up the Function Key Palette, click the following button on the window-
control panel: Fa

i unct 1on Keusi:
Contrel [Object... | [Regionr. | [Windew... | [image.. | [Liew][Worde:][Maico] E]z
swift {Promptfor|! Edt || UndOr || Checkin | | Defnp]| Compiete || Enca®]| Demete] lmlhml[mmml{mli
{_tew || open]| Explain |[checkout] [vefisition | [Cmd Windew] [Enclesing | [Promete | | Formet][menaBor |[crestevet] [Next]
F1 F2 F3 F4 Fs i 7 F8 Fs F18 m F12

Figure 2-4 The Function Key Palette
In the Function Key Palette:

m To execute a function-key command, click the command on the palette.

m To close the Function Key Palette, click: ug
A

Note: The top seven control buttons on the palette support the item-operation para-
digm used in other Rational user interfaces. Clicking on one of these buttons brings
up a second-level control palette with object operations buttons.

DEBUGGER PALETTE

The Debugger Palette allows you to debug Ada programs using a persistent control
palette.

To display the Debugger Palette, choose Debug:Debugger Commands Palette or click the fol-
lowing button on the window-control panel:

16 '?ATIONAL November 1992

Slider—""_ |

Popup

menu \

Chapter 2: Using Special Features

iContinue | iContinue Al || [Heip |
§Stop J EStop Al l Option
i Breakpoints o menu
s
repes iBreak Here]
\
w §Temporar9 Break Here J \
[Break | N
iPut | iput... | iActivate All Breaks |
oty] iActivate Break:| I | Button
Frame¥ Count iDeactivate All Breaks | group
iDeactwate Break:l ll *\
iDelete All Breaks 1 N
F'\ Entry
iDelete Break:| |1 i / box
10 §Show Breakpoints I /
Show =>

Figure 2-5 Tbe Debugger Palette

The top-left section of the Debugger Palette contains controls for executing a pro-
gram running under the debugger. The bottom-left section of the palette contains
controls that pentain to variables. The right side of the palette contains the debugging
option menu, which controls sets of buttons for:

Breakpoints

Exception Handling

Task Information

Task Control

Debugger Control

Tracing

Target

Machine and Memory
Quit

In the Debugger Palette:

s To display a set of buttons from the option menu, click the option menu label to
reveal the options. Then click the option you want. The new set of buttons
replaces the old set.

m To close the palette, click: g
AR

RAT'ONAL November 1992 17

Rational Access User’s Guide

JUST-DO-IT MODE

18

You can suppress the dialog box for certain commands. This is especially useful if
you execute the command with the same dialog-box settings many times in a row,
or if you use the default settings. If you want to bypass a dialog box when executing
a menu operation, use the Just-Do-It mode, which executes the command without
displaying the dialog box.

To execute with Just-Do-It mode, press [Meta] while executing the command. The
Environment completes the command using the default selection in the dialog box.

You can change the default settings of a dialog box by setting the new parameters
in the box and executing the command or pressing the Cancel button. The next time
you execute the command with Just-Do-It mode, it will execute using the new
default parameters.

Note that this mode has no effect on most menu commands. If this mode is not
implemented for a menu command, pressing [Meta] while clicking brings up the fol-
lowing dialog box:

ational Access Error Hessa

® Just-Do-It not supported for this item

‘UK| Help

Figure 2-6 Tbe Error Message for an Unsupported Operation in Just-Do-It Mode

Press OK or Cancel to exit the error message and continue to the menu command dia-
log box.

Note that if a second dialog box is required, Just-Do-It mode does not bypass the
second box.

The following commands can be executed using Just-Do-It mode:
File:Print

CMVC:Accept Changes

Program:Promote to Coded

Program:Promote to installed

Program:Promote to Source

Program:Demote to installed

Program:Demote to Soutce

Program:Demote to Archived

RATIONAL November 1992

Getting Help

This chapter describes how to obtain help and navigate through the various kinds
of online help available with Access. Note that there are two help windows:

m# The Access help window, which is a separate window from your main Access
window

m The Environment help window, which appears in the Environment area of your
main Access window

OBTAINING INFORMATION FROM THE ACCESS HELP WINDOW

When you request information about a menu, a dialog box, or a topic on the Help
menu, Access generally displays the information in the Access help window. Figure
3-1 shows the help displayed by Help:On Getting Started.

; ationiﬂd:ess Help!
Getting Started [v] [

Rational Access is a Motif-style graphical user interface
to the Rational Envirorment, Access allows you to perform
standard Ervironment operations using such Motif conven-
tions as a mouse, pull-down menus, dialog boxes, and
persistent control panels. fccess also supports existing
Environment paradigms such as item operations and command
windous,

This Help on Getting Started contains?
* Introduction to the Access Nindouw

% Choosing Entries from Merus

* Special Features in Access

* See filso

Introduction to the fAccess Window

The Access window is composed of:

% A title bar, indicating the name of the Access window.
You can specify the title when starting Rccess by
using the -title option,

% The main menu bar, home of Access’s nine pull-down
menus.,

i yindou—control panel, containing buttons for
controlling the size and contents of Environment windouws
and for bringing up special-purpose Access windows, such
as the Image Palette, the Function Key Palette, and the

Figure 3-1 The Access Help Window

QAT'ONAL November 1992 19

Rational Access User’s Guide

In the Access help window you can:

® View more text by dragging the slide bars
® Skip to the next heading in the help entry by using the search arrows

a Close the window by clicking: [gy
AR

GETTING INTRODUCTORY INFORMATION ABOUT ACCESS

Choose Help:On Getting Started.

An Access help window appears with basic Environment and Access information,
including an introduction to the Access window, how to choose entries from menus,
and special features in Access.

GETTING INFORMATION ABOUT THE ONLINE HELP SYSTEM

Choose Help:On Help.

The Access help window appears with information about how to get help for Envi-
ronment commands, key and mouse bindings, the window-control button panel,
menus, and dialog boxes.

FINDING OUT WHAT A MENU CONTAINS

Choose Help:On Menu: Desired Menu.

The Access help window appears with information about the items on the desired
menu.

GETTING HELP ON THE WINDOW-CONTROL BUTTON PANEL

1. Choose Help:On Window Panel.
The Access help window appears, and the pointer becomes a question mark
when you move it outside the dialog box.

2. Using the question-mark pointer, click on one of the window-control buttons.
A help entry for that button appears in the Access help window.

3. To turn the pointer back into an arrow, click the mouse anywhere in the Environ-
ment area.

GETTING HELP ON THE MOUSE

Choose Help:On Mouse.

The Access help window appears with a list of the mouse operations.

20 EATIONAL November 1992

Chapter 3: Getting Help

GETTING HELP ON KEYS

Getting Help on Key Bindings

Choose Help:On Key Bindings.
The Access help window appears with a list of all standard Access key bindings.

Note: Site-specific or personal key bindings are not reflected in this text.

Getting Help on Function Keys

Choose Help:On Function Keys.

The Access help window appears with a list of all function keys and their operations,
including all item-operation keys and their operations.

Finding What Command a Key Executes

1. Choose Help:On Key.
A message appears in the message window prompting: Press key to be
described.

2. Press the key or key combination to be described.

The Environment help window appears with the name of the command and the

key(s) to which it is bound. An explanation from the Rational Environment Refer-
ence Manual also appears in the window.

FINDING OUT WHAT VERSION OF ACCESS YOU ARE USING

Choose Help:On Version.

A dialog box appears, showing the version of Rational Access that you are currently
using.

m To get help with this dialog box from an Access help window, press the Help
button.

s To close the Version dialog box, click OK.

RATIONAL November 1992 21

Rational Access User’s Guide

GETTING A LIST OF HELP TOPICS

Getting a List of Environment Commands and Packages

Through the Access help facility, you can obtain information on Environment com-
mands and packages. (Environment commands are Ada subprograms that you usu-
ally execute through command windows.) To get a list of help topics:

1. Choose Help:On Environment.
The following dialog box appears:

T4
AK

Filters:
Topic: Pattem:
! All_Topics =N Filter
Filtered Topics:

Selected Topic:

Search Pattem:

oK Alle A 4 Help

2. Click the Topic option menu and choose the help topic area (or All_Topics) for
which you would like information.

The topic areas are the same as the topics for the books of the Rational Environ-
ment Reference Manual. To get a list of Access commands, choose #Rational Access
from the Topic option menu.

3. Specify a pattern for the list of commands to follow when you filter it.

m To list all commands for the topic you chose, leave the @ sign in the Pattem
entry box.

22 RAT'ONAL November 1992

Chapter 3: Getting Help

w To list only certain commands in the list, type an entry (using Environment
wildcards for matching library objects) in the Pattem entry box.

4. Click the Filter button to produce a list of related commands/topics for that help
topic area.

For example, choosing Editing Images on the Topic menu, entering @copy in the Pattem
entry box, and pressing Filter displays a list of Environment editing commands that
have the word copy in them:

.... S

Rational Environment Help

Filters:
Topic: Pattem:
2 Editing Images fuu I Geopy Filter

Filtered Topics:

tommands, Editor Hold_Stack, Copy_Top
ICommands .Editor.Line,Copy
ICommands . Editor Mark,Copy_Top
ICommands.Editor ,Region.Copy
ICommands .Editor ,Screen.Copy_Top
ICommands Editor . Window,Copy

Selected Topic:

| Commands ,Editor.,Hold_Stack .Copy_Top

Search Pattem:

oK ‘ e V Help

Note that the first command in the list is highlighted in reverse video by the loca-
tion cursor and listed in the Selected Topic entry box.

Once the list is displayed, you can:
m Search through the list (see below)
u Scroll through the list by dragging the scroll bar with the mouse

m Select an item by clicking on it with the mouse and click OK to get help

The Environment help window appears in the Environment area of your main
Access window and displays information about the selected command.

RAT'ONAL November 1992 23

Rational Access User’s Guide

Searching through the List

You can scroll through the filtered list of commands stopping only at a specific com-
mand or at commands that match a designated pattern.

1. Enter a specific command name or name fragment in the Search Pattem entry box.
Search patterns can include the pattern-matching wildcards shown in Table 3-1.

Table 3-1 Wildcards

Wildcard Function

?,0% Match any character

{3} Match beginning and end of line,
respectively

[xyz] Means “The character in this posi-
tion is x or y or 2V

A Means “The following character is
not a wildcard, even if it looks
like one.”

* Means “Zero or more occurrences

of the preceding character.”

@ Is a synonym for ?* (zero or more
occurrences of anything).

Searching is not case-sensitive. An empty search pattern matches nothing.
2. Click the search arrows to search up or down in the filtered list.

Every time you click an arrow, the location cursor will stop only at commands
that match your search pattern.

3. Click OK to get help for the selected command.
Alternative: Drag the scroll bar to search through the list manually.

Displaying a Subset of Topics in a Filtered List

1. Enter the topic name or fragment (with wildcards) in the Pattem entry box.

2. Press the Filter button.
The filtered list now displays only those commands that match your entry in the
Pattem box.

ARernative: Type directly into the Selected Topic box. Wildcards are ignored, but
incomplete topics are accepted.

GETTING HELP ON AN ENVIRONMENT COMMAND

If you know the name of the Environment command for which you want help, fol-
low these steps. If not, see above for getting a list of topics.

1. Press [Help].

24 RAT'ONAL November 1992

Chapter 3: Getting Help

A command window appears containing the Environment What.Does command.

2. Atthe Name parameter, enter the topic, command name, or command-name frag-
ment for the area of interest, and press [Promote].

If only one command exists with that string in its name, information about that com-
mand, including a brief description and a list of any keys bound to the command, is
displayed in the help window.

If more than one command exists with that string in its name, all the matching com-
mands are listed in the help window. If you want to see the help for one of these
items, place the cursor on the line on which the item is located and press [Explain].
The help for that item is then displayed in the help window.

If no commands can be found about that topic, a message appears indicating that
no help is available for that topic.

GETTING HELP ON ERRORS

To get additional information about an error in your program or command:

1. Move the cursor onto the underlined error.
2. Choose Help:Explain.

If the Environment has any more information, additional messages about the error
appear in the message window.

Alternative: Instead of choosing Help:Explain, press [Explain].

DISPLAYING ADA SPECIFICATIONS

To see the Ada specification for an item described in the Environment help
window:

1. Place the cursor on the Ada code segment for the item in the Environment help
window.
2. Double-click the left mouse button.

The Environment opens a new window containing the Ada specification.

QATIONAL November 1992 25

Managing Environment Windows

This chapter describes how to manipulate, navigate, and restore Environment win-
dows with Access.

MOVING BETWEEN ENVIRONMENT WINDOWS

1. Place the pointer completely in any part of any Environment window (text or
white space).

2. Click the left mouse button.
The Environment cursor appears at the exact location of the pointer.

Note: If the cursor overlaps two windows, the message window displays the message:
The cursor is not in a window.

Alternative: To move the Environment cursor to the Environment window above,
press [Control][Meta][U] or [Control][Meta][T]. 7o move to the Environment window below,
press [Control][Meta][N] or [Contral][Meta}{l].

MOVING WITHIN AN ENVIRONMENT WINDOW

Table 4-1 lists the window-control buttons that move your view of the image.

Table 4-1 Window-Control Buttons for Movement

Button

Function

Alternative

F §

Moves your view of the image up toward the
beginning of the file

[Shift} [T], Meta]{V],
[Control){Z], [Page Up]

Moves your view of the image down toward

[Shift][1], [Control][V],

the end of the file [Page Down)
Moves your view of the image to the left [Shift] [«]
Moves your view of the image to the right [Shift)[—]

Moves the Environment cursor and your view
to the top line of the image.

[Shift][Home], [Shift][Page Up]

ta]| (]| (¥ [&] | [«

Moves the Environment cursor and your view
to the bottom line of the image.

[Shift} [End],
[Shift][Page Down]

RATIONAL November 1992

27

Rational Access User’s Guide

Traversing in a Window Using a Mark

Making a Mark

1. Place the Environment cursor at the location you want to mark.
2. Press [Controf][M] or [Control][@].

The location is marked by the Environment, but no change is visible.

Traversing to a Mark
Press [Control][Meta][M].

The cursor returns to the marked location.

Moving the Cursor to the Beginning of the Window Frame

Press [Control}[Meta][Home].

Moving the Cursor to the End of the Window Frame

Press {Controlj{Meta]{Home].

CHANGING THE SIZE OF AN ENVIRONMENT WINDOW

Shrinking a Window

1. Begin with the cursor in the window to be shrunk.

2. Click: [+o

The window shrinks by four lines.

Alternative: Press [Control][] or[Control]<].

Expanding a Window

1. Begin with the cursor in the window to be expanded.
2. Click: f5]

The window expands by four lines.

Alternative: Press [Contiol][.] or[Controf}{>].

28 RATIONAL November 1992

Chapter 4: Managing Environment Windows

Expanding the Current Window over the Next Frame

1. Place the Environment cursor in the window you want to expand.
2. Click: =
e {" N8

The current window expands to the size of the current window plus the window
frame below, replacing any window that might have been in that frame. The window
returns to its normal size automatically when the next object is viewed, unless it is
locked.

Note: If your current window is at the bottom of the Environment area, pressing the
button shown above expands the window over the window directly above.

Expanding the Current Window over the Previous Frame

1. Place the Environment cursor in the window you want to expand.
2. Click: E/ D

The current window expands to the size of the current window plus the window
frame above, replacing any window that might have been in that frame. Unless it is
locked, the window returns to its normal size automatically when the next object is
viewed.

Note: If your current window is at the top of the Environment area, pressing the but-
ton shown above expands the window over the window directly below.

Expanding the Current Window to Full Size

1. Place the Environment cursor in the window to be expanded.

2. Click: R A
KN

The current window fills the Environment area (except the message window).

Making All Major Environment Windows the Same Size

Click:

=

SPLITTING AN ENVIRONMENT WINDOW

1. Place the Environment cursor in the window to be split.
2. Click: 0+8

The window divides into two windows with identical contents. Each image can be
scrolled independently. Making changes to one of these images affects both images.

RAT'ONAL November 1992 29

Rational Access User’s Guide

REMOVING AN ENVIRONMENT WINDOW

Removing a Window Temporarily

1. Place the Environment cursor in the window you want to remove.

2. Click: fuv
Ak

The window disappears, but remains listed in the Image Palette and Environment
window directory.

Alternative: Press [Control][Meta][K].

Removing an Image Permanently

1. Place the Environment cursor in the window that contains the image.
2. Choose File:Close.

If changes have been made to the image, the following dialog box appears:

Save Changes?

Cancel

3. Release the image.
m To save the changes and release the image, click Yes.
s To release the image without saving the changes, click No.

The window is no longer listed in the Environment window directory and will
disappear from the Image Palette the next time the palette is refreshed.

LOCKING OR UNLOCKING AN ENVIRONMENT WINDOW

30

Locking a Window

1. Place the Environment cursor in the window to be locked.
2. Click:
&

RATIONAL November 1992

Chapter 4: Managing Environment Windows

An gt sign (@) appears in the window banner.
This window will not be removed unless you explicitly remove or unlock it.

Alternative: Press|[Control][Meta][P] until the at sign (@) appears in the window banner.

Unlocking a Window

1. Place the Environment cursor in the window to be unlocked.

2. Click: =

The at sign (@) disappears from the window banner.
Alternative: Press [Control][Meta][E] to unlock the window.

SETTING THE NUMBER OF WINDOW FRAMES

1. Choose Session:Screen:Window Frames.
The following dialog box appears:

Set Window Frame:

Maximum number
of window frames:

o]

2. Drag the slider to set the maximum number of window frames you want to appear
in the Environment area. The default is 3, and the maximum is 16.

3. Click OK to implement the change.

Note: You can bave more than the maximum number of windows by using the Copy
Window button.

GETTING A LIST OF ENVIRONMENT WINDOWS

The Rational Access Image Palette provides an updatable listing of the images open
under your Environment session. The Image Palette gives you the ability to list all
the current images, including those that are not currently displayed in an Environ-
ment window, and to recall any of these images to the Environment area.

To display the Image Palette, click: %

RATIONAL November 1992 31

Rational Access User’s Guide

32

H-IGERS . SCALDE , ADA_CLASS . CONVERT * BODY
Search /

box

iAdd] iRemove| {Refresh| iHelp| [;B > Button panel

Al . Wil Search

arrow

Main Mailbox
User area

Rational _Access Mailbox Sash
Humor Mailbox

{USERS, SCALDE ,MAIL _UTILITIES,REV1_1_WOF
1USERS, SCALDE .MAIL _UTILITIES,REV1_WORK]
{USERS, SCALDE ,MAIL _UTILITIES Full image list
IUSERS,SCALDE ,ADA_CLASS, CONVERT "BODY
1USERS, SCALDE ,ADA_CLASS

Main Mailbox

[Loginl

s The top panel of the palette contains buttons that control the palette.
» The middle panel contains a user-defined list of Environment windows that can

be recalled to the associated main Access window.

The bottom panel contains a complete list of the Environment windows that are

on the associated main Access window or have been replaced by other windows
but not closed.

Note: If the patbnames listed in the Image Palette extend beyond the visible window
area, or if the list extends below the visible window area, scroll bars will appear on
the right and bottom of the Image Palette.

Redisplaying a Window from the Image Palette

Double-click the entry for the window you want to redisplay.

The window reappears in the Environment area of the associated main Access
window.

Searching for a Window

. Enter the full name of the image, or a partial name using wildcards, in the search

box in the Image Palette.

. Click the search arrows to search forward or backward in the list for the string

you entered.

The location cursor in the Image Palette will move to the first occurrence of the
string.
Click the arrow again to continue the search.

RATIONAL November 1992

Chapter 4: Managing Environment Windows

Alternative: You can search through the image list manually by dragging the scroll
bar with the mouse.

Updating the Image Palette

Once the Image Palette has been displayed, the image list must be updated by you
to reflect changes made in the Environment area.

Click the Refresh button.
The image list is updated.

Note: If you close the Image Palette and then reopen it, the image list is updated
automatically.

Setting Up a Standard Set of Windows

1. Click the entry of the window you want to save in the Image Palette. This places
the entry in reverse video.

2. Click the Add button in the Image Palette.

The entry appears in the user area of the Image Palette and will remain until you
log out, even if you close the Image Palette.

Changing the Size of the User Area and Full Image List

Place the pointer on the sash control and drag it up or down to change the size of
the middle panel and bottom panel.

Closing the Image Palette

To close the Image Palette, click: fuv
AR

Finding Windows with Uncommitted Changes

To find which windows have uncommitted changes, use the Environment window
directory.

Press [Control][/] or [Contral][?} to display the window directory.

The window directory is displayed in a new Environment window. Objects that are
closed for editing are marked by an equals sign (=). Objects that have unsaved
changes are marked by an asterisk (*).

SAVING AND RESTORING A SET OF WINDOWS

You can save your current set of windows and recall it at any time.

RAT'ONAL November 1992 33

Rational Access User's Guide

Saving a Set of Windows

Choose Session:Screen:Screen Push.

The Environment saves the current configuration of windows.

Restoring a Set of Windows

Choose Session:Screen:Screen Pop.

The last saved set of windows appears in the Environment area of your Access
window.

34 RATIONAL November 1992

Traversing the Environment

This chapter describes how to traverse the Environment library hierarchy.

VIEWING ANY OBJECT

1. Choose File:Browse.
The following dialog box appears:

poacatac)

File Brouse

Name:

‘ OK Cancel Help

2. Enter the name of the object you want to view in the Name entry box.
3. Click OK.

R ovoo

The specified object is displayed in an Environment window.

Note: The standard wildcards for matching library objects are accepted.

VIEWING AN OBJECT IN THE CURRENT CONTEXT

Making the Object Appear in the Next Window to Be Replaced

Place the Environment cursor on the name of the object to be viewed and double-
click the left mouse button.

The object appears in a window.

Alternative: Press [Definition] or execute the Navigate:Defintion menu command.

Making the Object Appear in the Same Window

Place the Environment cursor on the name of the object to be viewed and
[Shift}+double-click the left mouse button.

'?AT'ONAL November 1992 35

Rational Access User’s Guide

The new object replaces the object in the current window.

Alternative: Press [Definition in Place] or [Control][Meta][—].

VIEWING THE ENCLOSING LIBRARY

Making the Library Appear in the Next Window to Be Replaced

Double-click the right mouse button.
The enclosing library appears in a window.

Alternative: Press[Enclosing] or execute the Navigate:Enclosing menu command.

Making the Library Appear in the Same Window

Press [Shift] and double-click the right mouse button.
The enclosing library replaces the object in the current window.

Alternative: Press [Enclosing in Place] or [Control][Meta]fe].

VIEWING YOUR HOME LIBRARY

36

Choose Navigate:Home Library.
Your home library appears in a window.

Alternative: Press [Home Library].

RATIONAL November 1992

Browsing Ada Programs

This chapter describes how to traverse through specifications and bodies of Ada
units and packages.

MOVING BETWEEN THE SPECIFICATION AND BODY OF AN ADA UNIT

Choose Navigate:Other Part.

If you are in an Ada specification, its body appears in a window. If you are in a body,
its specification appears in a window.

VIEWING A UNIT’S PARENT

Double-click the right mouse button.
If the Environment cursor is in:

m A subunit, the parent unit body appears in an Environment window
m A unit, the enclosing library appears in an Environment window
Alternative: [Shit)+double-click the right mouse button or press[Control] Meta] [«].

SHOWING OCCURRENCES OF A DEFINED ADA NAME

Showing References to a Defined Ada Name

1. Begin in the window containing the Ada name of interest.
2. Select an occurrence of the Ada name.
3. Choose Program:Show Usage.

References to the Ada name within the current unit are underlined. To step
through, choose Navigate:Next tem to move to the next underlined item or
Navigate:Previous ltem to move to the previous underlined item.

References to the Ada name in other units are listed in a separate window.
4. Select a unit.
5. Double-click the left mouse button to view the unit with the using occurrence.

A window appears displaying the selected unit with all occurrences of the Ada
name of interest underlined.

6. Use Navigate:Next item or Navigate:Previous ltem to step through.

RATIONAL November 1992 37

Rational Access User’s Guide

Note: The default limit of this operation is immediate dependents, and the default
scope is all worlds.

Alternative: Press|Nextem], [Meta][N] or{Meta][l] to mouve the Environment cursor to the

next occurrence; press [Previous ltem], [Meta][U], or Meta][T] o step back to the previous
occurrence.

Showing Unused Ada Constructs

The Ada unit must be in the installed or coded state.
Choose Program:Show Unused.

Unused occurrences of all Ada constructs are underlined.

GETTING THE DEFINITION OF AN IDENTIFIER

Place the pointer on the identifier and double-click the left mouse button.

A window containing the definition of the declaration appears.

VIEWING THE SPECIFICATION OF AN ENVIRONMENT PACKAGE

38

Here is a convenient shortcut for displaying the specifications of Ada units provided
as part of the Environment (for example, for viewing the specification of package
Compilation, which contains the compilation commands).

1. Press [Prompt Forl.

A Prompt For message appears in the message window.

2. Press [Definition].

3. Enter the simple name of the Ada unit at the prompt for the Name parameter pre-
ceded by the backslash (\) character (for example, \Compilation).
The \ character causes the Environment to use your searchlist when looking for
the name following it. For information about searchlists, see package Search_List
in the Session and Job Management (SJM) book of the Rational Environment Ref-
erence Manual..

4. Press [Promote] to execute the command.

Note: This shortcut for viewing Environment package specifications works for most
Environment packages. If the shortcut fails, an error message appears, and you bave
to traverse to the specification instead.

RAT'ONAL November 1992

Writing Ada Programs

In the Environment, each library-level Ada unit is stored as a separate library object
of class Ada. Environment Ada units differ from text files in that they have an under-
lying structured representation (called DIANA).

Compiling a program in the Environment entails promoting all of its units through a
series of state changes, each of which adds information to the unit’s DIANA repre-
sentation. Each unit state represents a distinct phase in compilation:

m Units that are not of current interest can be stored in the archived state.

m Entering and parsing code is done interactively in the source state.

m Integration between units occurs when they are promoted to the installed state.
m Executable code is generated when units are promoted to the coded state.

These states are ordered from low to high; a unit must be promoted from source (or
archived) through installed to coded before it can execute. Thus, multiple states
replace the notion of multiple files; no additional library objects are created to con-
tain object code or executable images. (Note that if you are using the R1000 code
generator, linking and loading are done dynamically as part of execution.)

Demoting units is the counterpart to promoting them. Whereas promoting a unit
adds information to the unit’s DIANA representation, demoting a unit releases infor-
mation from the DIANA representation. Most often you demote units so that you can
edit them. Units also may need to be demoted to maintain semantic consistency and
to allow the demotion of units on which they depend. Note that many changes can
be made to units that are installed or coded without demoting them.

This chapter describes how to create, edit, and compile Ada units using Access. For
an introduction to writing Ada programs, see the Rational Environment User’s Guide.
For complete information about the Environment’s compilation model and the Envi-
ronment commands available for compilation, see the Library Management (IM)
book of the Rational Environment Reference Manual.

CREATING AN ADA UNIT

Creating a New Ada Unit

1. Place the Environment cursor in the library in which you want to create a new
Ada unit.

Ada units can be created in any library; however, in subsystem views, units gen-
erally are created in the Units directory or one of its subdirectories.

2. Choose File:New:Ada.

RATlONAL November 1992 39

Rational Access User’s Guide

40

A window is created for the new Ada unit. The window displays a corp_unit
prompt in which you can enter the Ada specification or body. The library now con-
tains a temporary name of the form _Ada_# where # is some number. The tempo-
rary name is replaced with the simple name of the unit the first time it is promoted
to the installed state.

Note that each Ada compilation unit in your program must be created individually.
This is necessary because each Ada unit in the Environment is a distinct object,
whereas file-based development systems allow multiple units (for example, a spec-
ification and a body) to be put into a single file.

Alternative: Press [Create Ada] to create a new Ada unit.

Creating a Body from a Specification Automatically

You can use the steps described in “Creating a New Ada Unit,” above, to create both
the specification and the body. However, you can also use the Environment’s auto-
mated facility for generating a unit body from its specification:

1. Place the Environment cursor in the unit specification.
2. Choose Program:Build:Buiid Body.

The Environment uses the declarations in the unit specification to generate a skeletal
package body containing a template for each visible subprogram. The [statement]
prompts indicate where statements need to be filled in. The unit body is in the
source state and is open for editing.

Building a Unit from a Text File

Because Environment Ada units differ from text files in that they have an underlying
structured representation (called DIANA), you usually create and edit Ada source
code directly in Ada units.

Occasionally, however, Ada source code may already exist in a text file. For exam-
ple, the Ada source code may have been created on another host and need to be
transported to the R1000. In this case, you will need to parse the source file into an
Ada unit. To do so:

1. Place the Environment cursor in the text file.
2. Choose Program:Build:Parse Source Files.

The following dialog box appears:

Source File(s): Text_of_Package_Record,

Destination Library: {USERS . SCALDE

RATIONAL November 1992

Chapter 7: Writing Ada Programs

3. Enter the name of the file(s) to be parsed in the Source File(s) entry box.

4. Enter the name of the destination library in the Destination Library entry box.

5. Click OK.

The newly created objects are characteristic of Ada units in the Environment and are

created in the source state. The original text file containing the Ada source remains
intact and unchanged.

Creating a Subunit

1. Place the Environment cursor in the Ada unit body that is to be the parent of the
subunit.

2. Enter the Ada subunit stub notation. You might enter, for example, procedure
foo is separate;

3. Press [Format].
4. Select the stub.
5. Press [Edit] to edit the selected stub.

A new window containing the skeletal subunit appears. The name of the subunit
appears in the library under the parent unit.

PROMOTING ADA UNITS

Compiling a program in the Environment consists of promoting all of its units from
the source state (or the archived state) through the installed state to the coded state,
at which point the unit can be executed. You can promote units to either the next
higher unit state or directly to a specific unit state.

Note that to ensure semantic consistency, the Ada units that compose a2 program
must be promoted in the order specified by the Reference Manual for the Ada Pro-
gramming Language. In general:

u A unit specification must be promoted before any units that depend on (with) it.
® A unit specification must be promoted before its corresponding body.

m A unit body must be promoted before its subunits. (Note that when promoting to
the coded state, a package subunit, generic package subunit, or task subunit
must be promoted before its parent body.)

The Environment maintains databases of dependencies between units that allow it
to compute the compilation order. If an attempted state change would violate com-
pilation-order rules, the operation is rejected and the state change does not take
place. Furthermore, Access commands determine the additional units that need to
be promoted to maintain semantic consistency and usually attempt to promote them
accordingly.

For more information about compilation order and promoting Ada units, see the
Library Management (LM) book of the Rational Environment Reference Manual.

QATIONAL November 1992 41

Rational Access User’s Guide

42

Promoting an Ada Unit to the Next Unit State

You can promote an Ada unit to the next higher unit state (for example, from source
to installed) without bringing up a dialog box or setting parameters.

1. Place the Environment cursor in the Ada unit to be promoted.
2. Choose Program:Promote.

The Ada unit is promoted, and a message appears in the message window describing
the procedure. Note that this operation promotes only the specified unit and, if the
specified unit is a body, its corresponding specification.

ABternative: Press [Promote] instead of choosing Program:Promote.

Promoting Ada Units to a Specific State

1. Place the Environment cursor in the Ada unit (or in one of multiple units) to be
promoted. To promote all the units in a library, place the Environment cursor on
the name of the library.

2. Choose the desired compilation level:
m Program:Promote to Source
m Program:Promote to Installed
a Program:Promote to Coded

The following dialog box appears:

ataac)

Name: 1USERS, SCALDE , ADA_CLASS . CONVERT "BODY
Goal state: Compile:
& Coded & This unit only
< Installed < This and all prerequisite specs
R Source 4 ... and all subunits

<& ... and all units needed to execute
Limit compilation to: Log to:
4 This world/view only 4 Window
< No limit on compilation < File: Users.Scalde.Compile_Log

3. Ensure that the units you want to promote are specified in the Name entry box:
a To promote a single unit, specify the name of that unit.
m To promote all the units in a library, specify the name of that library.

RAT‘ONAL November 1992

Chapter 7: Writing Ada Programs

s To promote multiple units, specify an appropriate naming expression using
set notation (funitl, unit2]) or the standard wildcard characters for specifying
pathnames:

- # matches any single character

— @ matches zero or more characters

— ? matches zero or more nonworld name components

— % matches zero or more name components, including worlds

4. Verify that the compilation level you chose is reflected in the Goal state field.

. In the Compile field, choose the set of related units that are to be promoted

automatically:
a To compile only the named unit (with no prerequisites), select This unit only.

s To compile the named unit and any prerequisite specs needed for compila-
tion, select This and all prerequisite specs.

a To compile the named unit and its subunits (including all prerequisite specs),
select ...and all subunits.

a To compile the named unit and all subunits and prerequisite bodies and specs
needed for compilation, select ...and all units needed to execute.

. In the Limit compilation to field, choose the area in the library hierarchy in which the

command can operate:

m To limit compilation to only objects in the current world or subsystem view,
select This world/view only.

a To allow compilation to include everything in the closure, select No limit on com-
pilation. Note that selecting this option may slow compilation.

Choose where to write the log of the procedure in the Logto field:
s To display the log of the compilation in an I/O window, select Window.

m To route the log to a file, select File. The Environment will create a default text
file, or you can edit the filename in the File entry box.

. Click OK.

DEMOTING ADA UNITS

Demoting units is the counterpart to promoting them. Whereas promoting a unit
raises it to a higher state, demoting a unit changes the state of the unit to a lower
state. For example, changing a unit from the coded to the installed state entails
demoting the unit. There are two main reasons for demoting a unit:

To edit the unit. Demoting a unit to the installed state allows you to edit it using
incremental operations. Demoting a unit to the source state allows you to arbi-
trarily edit it using basic text-editing operations.

To allow the demotion or deletion of another unit (specifically, a unit withed by
the specified unit), thus preserving semantic consistency and maintaining the
compilation order.

As when promoting units, the Ada units that compose a program must be demoted
in the order specified by the Reference Manual for the Ada Programming Language.
This is the exact opposite of the order summarized in “Promoting Ada Units,” above.

For more information about compilation order and demoting Ada units, see the
Library Management (LM) book of the Rational Environment Reference Manual.

RATIONAL November 1992 43

Rational Access User’s Guide

44

Demoting to the Previous Unit State

You can demote an Ada unit one level (for example, from installed to source), with-
out bringing up a dialog box or setting parameters.

1. Place the Environment cursor in the Ada unit to be demoted.
2. Choose Program:Demote.

The Ada unit is demoted, and a message appears in the message window describing
the procedure.

Alternative: Press [Demate] instead of choosing Program:Demote.

Demoting Units to a Specific State

1. Place the Environment cursor in the Ada unit to be demoted.

To demote all the units in a library, place the Environment cursor on the name of
the library to be demoted.

2. Choose the desired compilation level:
= Program:Demote to Installed
m Program:Demote to Source
s Progam:Demote to Archived
The following dialog box appears

| JUSERS, SCALDE . ADA_CLASS . CONVERT “BODY

Demote only if demotion affects:
¥ Installed <& This unit only

< Source <> Only units in the same world or view

& Archived 4 Any Ada units anywhere
Cox]

3. Ensure that the units you want to demote are specified in the Name entry box:

m To demote a single unit, specify the name of that unit.
s To demote all the units in a library, specify the name of that library.

s To demote multiple units, specify an appropriate naming expression using set
notation ([unitl, unit2]) or the standard wildcard characters for specifying
pathnames:

matches any single character
— @ matches zero or more characters
— ? matches zero or more nonworld name components
— % matches zero or more name components, including worlds
4. Verify that the compilation level you chose is reflected in the Goal state field.

RATIONAL November 1992

Chapter 7: Writing Ada Programs

5. Choose the desired option in the Demote only if demotion affects field.
m To demote only the named Ada unit, click This unit only.

m To demote only the named Ada unit and its prerequisite units in your current
world or subsystem view, click Only units in the same world or view.

m To demote the named Ada unit and all of its prerequisite units anywhere,
click Any Ada units anywhere.

Caution: This may cause massive demotion.
6. Click OK.

A log of the procedure appears in an I/O window.

Note: Once an Ada unit is demoted to archived state, it must be promoted to source
before you can view or modify it.

SELECTING PARENT/CHILD ITEMS IN AN ADA UNIT

Selecting the parent selects successively larger items in an Ada unit, and selecting
the child selects successively smaller items, based on the following hierarchy:
Identifier that the Environment cursor is on

Assignment that includes that identifier

Statement

Block

Subprogram within the unit

Entire unit

Note: These operations work differently in a text file. See “Selecting the Parent or
Child” in Chapter 10, “Editing Text.”

MODIFYING UNITS

You can make changes to existing units in any state; however, your changes will
affect the unit based on its compilation level. For major changes, you may need to
demote the unit.

m Source state: Because semantic dependencies are not established by or to units
in the source state, units in the source state can be edited, copied, moved, or
deleted without making related units obsolete.

» Installed state: Installed units cannot be edited arbitrarily, but they can be modi-
fied using incremental operations, which check for dependencies to prevent
invalidation of the program. On units in the installed state you can:

- Insert new pragmas, statements, upwardly compatible declarations, and stand-
alone comments (comments on a separate line)

— Delete or change existing pragmas, statements, declarations with no depen-
dents, and stand-alone comments

m Coded state: Coded units also cannot be edited arbitrarily, although some
changes are allowed using incremental operations. The incremental operations

that can be performed on coded units are determined by the target for which the
units are being compiled. For the R1000 target, the incremental operations

QAT‘ONAL November 1992 45

Rational Access User’s Guide

46

allowed on coded units are the same as those listed for installed units, with two
restricions:

— Incremental operations on statements are not allowed in coded specifications.
— Incremental operations are not allowed in coded bodies, except on comments.

Adding to a Unit

In the Source State

1.
2.

Place the Environment cursor in the unit.
If the Ada unit is still in read-only mode, choose File:Open to open the file.

3. Go to the position where the new statement, declaration, or comment is to be

4.

added.
Enter the changes using basic editing operations.

Alternative: Press [Open)] instead of choosing File:Open.

In the Installed or Coded State
Adding a Declaration or Statement

1.
2.

6.

Place the Environment cursor in the unit.

If the unit is a body and is in the coded state, choose Program:Demote to Installed. (You
do not need to demote the unit if it is a specification.)

. Place the Environment cursor at the location that you want to insert the new state-

ment or declaration.

. Choose Program:Program Incremental:incremental insert.

A new window appears with the banner labeled either statement or declaration,
depending on the location of the insertion point.

. Enter the new statement or declaration.

Note that multiple statements or declarations can be entered per insertion point.
Choose Program:Promote to Coded to return the unit to the coded state, if so desired.

The new window disappears, and the prompt in the unit is replaced by the actual
statement or declaration.

Note: If there are any errors, the promotion will fail. Errors will be underlined in the

unit.

Adding a Comment

1. Place the Environment cursor at the location that you want to insert the new
comment.

2. Choose Program:Program Incremental:incremental Insert,
A new window appears with the banner labeled either statement or declaration,
depending on the location of the insertion point.

3. Enter the new comment.

Note that multiple comments can be entered per insertion point.

4. Format and semanticize.

. Correct any errors.
. Choose Program:Promote to Coded to return the unit to the coded state, if so desired.

RAT'ONAL November 1992

Chapter 7: Writing Ada Programs

The new window disappears, and the prompt in the unit is replaced by the actual
comment.

Incrementally Changing an Existing Unit

In the Source State

Place the Environment cursor in the unit.

If the Ada unit is still in read-only mode, choose File:Open to open the file.

Go to the position where the statement, declaration, or comment is to be changed.
Enter the changes using basic editing operations.

Format and semanticize.

ISR

Correct any errors.

In the Installed or Coded State

1. Place the Environment cursor in the unit.

2. If the Ada unit is not a package specification and is already coded, choose Pro-
gram:Demote to Installed to demote the unit to the installed state.

Note that if the change you want to make consists only of Ada comments, you do
not need to demote the unit.

3. Go to the end of the statement, declaration, or comment to be changed.
4. Select the entire statement, declaration, or comment.
5. Choose Program:incremental:incremental Edit.

The selected statement, declaration, or comment becomes a prompt, and a win-
dow with the statement, declaration, or comment appears on the screen.

Note that if the selected declaration has dependents, the edit operation will not
succeed until all dependents are demoted to source.

6. Enter the changes.
Note that multiple declarations, statements, or comments can be entered.
7. Choose Program:incremental:incremental Promote to promote the changes.

Note: If there are any errors, the promotion will fail. Errors will be underlined in the
unit.

Changing Code into a Comment

1. Select the string to be made into a comment.
2. Choose Edit:Make into Comment.

Two dashes will appear before the string, signifying a comment.

Changing a Comment into Code

1. Select the region to be uncommented.
2. Choose Edit:Uncomment.

The two dashes before the region will disappear.

RAT‘ONAL November 1992 47

Rational Access User’s Guide

48

Deleting Part of an Existing Unit

In the Source State

. Place the Environment cursor in the unit.

If the Ada unit is still in the read-only mode, choose File:Open to open the unit.
Go to the position where the statement, declaration, or comment is to be deleted.
. Select the statement, declaration, or comment.

. Choose Edit:.Cut.

VI N SR

Alternative: Press [Open)] instead of choosing File:Open.

In the Installed or Coded State

1. Place the Environment cursor in the unit.

2. If the Ada unit is not a package specification and is already coded, choose Pro-
gram:Demote to Installed to demote the unit to the installed state.

Note that if the deletion you want to make consists only of Ada comments, you
do not need to demote the unit.

3. Select the statement, declaration, or comment.
4. Choose Program: Incremental: Delete to delete the statement, declaration, or comment.

The selected statement, declaration, or comment is removed.
Note: All dependents must be in source state. If not, the Environment will display a
list of the units and constructs in those units that must also be demoted. You can:

s Select units in the list, press [Complete] to show indirect dependencies, and then
demote them.

m Go to units in the list and incrementally demote just the dependent constructs.

Changing the Name or Kind of an Ada Unit

In the Source State

1. Place the Environment cursor on the library name of the Ada unit to be changed.
2. Move the cursor to the line containing the Ada unit.
3. Choose Program:Build:Withdraw.

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit can be edited.

4. Change the unit name, parameter profile, or unit kind.

In the Installed or Coded State

1. Place the Environment cursor in the library containing the Ada unit to be changed.
2. Select the Ada unit.

3. Choose Program:Build:Withdraw.

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit is in the source state.

RATIONAL November 1992

Chapter 7: Writing Ada Programs

Note that if the selected unit has dependents, the withdraw operation will not suc-
ceed until all dependents are demoted to source.

4. Change the unit name, parameter profile, or unit kind.
5. Choose Program:Promote:Desired Compilation Level to promote the unit.

The temporary name in the library is replaced by the new actual name for the unit.

Note: Ifthere are any errors, the promotion will fail. Errors will be underlined in the
unit.

ADDING A SUBPROGRAM TO A PACKAGE

These procedures assume that the subprogram is to be added to both the specifica-
tion and the body of the package.

In the Source State

1. Place the Environment cursor at the location in the package where the new sub-
program specification is to be added.

2. Choose File:Open to open the specification of the Ada package.

3. Enter the new subprogram specification.

4. Format and semanticize.

5. Correct any errors.

6. Promote the unit specification to the installed state using Program:Promote to Installed.
7. Select the subprogram specification.

8. Choose Program:Build:Build Body to create the subprogram body.

The skeletal subprogram body is placed at the end of the existing package body.
The subprogram body may contain prompts where you need to enter code.

9. Go to the subprogram body and add any necessary code.
10. Promote the package body to installed.

Note: Ifthere are any errors, the promotion will fail. Errors will be underiined in the
unit.

Alternative: Press [Open)] instead of choosing File:Open.

In the Installed or Coded State

1. Place the Environment cursor at the location in the package where the new sub-
program specification is to be added.

2. Choose Program:incremental:Incremental Insert.
A new window with a declaration prompt is created for editing. A temporary

name appears in the library under the package specification to which you are
adding the subprogram.

3. Enter the new subprogram specification at the prompt.

Note that multiple subprogram specifications can be entered per insertion point.
4. Choose Program:Incremental:incremental Promote to promote the declaration.

QAT'ONAL November 1992 49

Rational Access User’s Guide

5. Select the subprogram specification.

6. Choose Program:Build:Build Body to create the body.

7. Enter the subprogram.

8. Choose Program:Promote to Installed or Program:Promote to Coded to promote the subpro-
gram body.

The window is replaced by a window displaying the existing package body with the
new subprogram installed.

Note: If there are any errors, the promotion will fail. Errors will be underlined in the
unit.

MAKING A PACKAGE OR SUBPROGRAM BODY INTO A SUBUNIT

1. Select the region you want to make into a subunit.
The unit must be in the source or installed state.
2. Choose Program:Buiid:Make Separate.

A new window with the subunit appears and the parent unit has an appropriate sub-
unit stub. Note that the subunit is now in the source state.

MAKING A SUBUNIT IN-LINE IN THE PARENT UNIT

This operation changes the subunit in the image or selected subunit stub from a sub-
unit to an in-line program unit.

1. Place the Environment cursor in the parent Ada unit in either the source or the
installed state.
2. Choose Program:Build:Make In-Line.

The subunit stub is replaced by the actual subunit code. Note that the in-line unit is
in the same state as the parent.

SAVING INCOMPLETE UNITS

The unit must be in the source state.

1. Place the Environment cursor in the unit.
2. Choose File:Save.

The source code is saved.

Note: Unless the unit bas already been installed once, its name will remain in the
form _Ada_#, where # is some integer.

EXECUTING A LIBRARY-LEVEL PROGRAM

50

1. Select the program to be executed.
2. Choose File:Run.

PATIONAL November 1992

Chapter 7: Writing Ada Programs

The program executes. If the program needs parameters filled in, the Environment
opens a command window and prompts for parameters.

Note: If the program to be executed is not coded, File:Run codes it. If the Environ-
ment cursor is on a program that can be executed but it is not selected, a message
appears in the message window informing you to select something. If the cursor is
not on something that can be executed, the following dialog box appears:

Command:

] Debug

Altemate Machine:

I OK Cancel Help

3. Enter a program name in the Command entry box.

4. Select the Debug check box to run the program under the debugger.
5. Click OK.

CREATING A LOADED MAIN PROGRAM

A loaded main program is an executable program that does not depend on its source
code; that is, a loaded main program does not become obsolete if the source code
from which it was created is modified. Loaded main programs are useful for fre-
quently used tools and programs. They are also useful for transporting programs
between R1000s because they can be moved without having to move and recompile
the associated source code.

Loaded main programs are created from coded main programs. (A coded main pro-
gram is a subprogram containing pragma Main that has been promoted to the coded
state.) To create a loaded main program from a coded main program:

1. Place the Environment cursor in the coded main program.
2. Choose Program:Buid:Load.

The following dialog box appears:

Main Program Name: TUSERS, SCALDE .ADA_CLASS HELLO

Load Proc/Func Name: 1USERS , SCALDE ADA_CLASS, THNRINEES

l OK Cancel Help

QAT'ONAL November 1992 51

Rational Access User’'s Guide

52

3. Verify the name of the coded main program (from which the loaded main pro-
gram is to be created) in the Main Program Name entry box.

The specified unit must contain pragma Main and be in the coded state.

4. Enter the name of the loaded main program to be created at the prompt in the
Load Proc/Func Name entry box.

5. Click OK.

The load procedure automatically inserts pragma Loaded_Main in place of pragma
Main in the newly created Ada specification.

Note: Because its code segments are independent of its source code, a loaded main
program is unaffected by demoting, and even changing, the source code.

RATIONAL November 1992

Debugging

This chapter discusses basic debugging operations using the Debugger Palette. For
more detailed information about debugging, see the Debugging (DEB) book of the
Rational Environment Reference Manual..

USING THE DEBUGGER PALETTE

The Debugger Palette aliows you to debug Ada programs using a persistent control
palette.

The top-left section of the Debugger Palette contains controls that operate the exe-
cution of the program running under the debugger. The bottom-left section of the

palette contains controls that deal with variables. The right side of the palette con-
tains the debugging option menu that controls sets of buttons for:

Breakpoints

Exception Handling

Task Information

Task Control

Debugger Control

Tracing

Target

Machine and Memory

Quit

To display a set of buttons from the option menu:

1. Click the option menu label to reveal the options.
2. Click the option you want.

The new set of buttons replaces the old set.

Displaying the Debugger Palette

Use the Debugger Palette to perform all standard debugging operations.

Click:

ABernative: Choose Debug:Debugger Commands Palette.

RAT‘ONAL November 1992 53

Rational Access User’s Guide

iContinue | iContinue Ali | Help
{Stop | Stop Al | [{ __ Option

i Breakpoints O ["— menu
iBreak Here |

iempom Break Here J \

{Break ... H

iPut | iput... | IActivate All Breaks |
%
|

Slider—""

oaty] {Activate Break:| {1

Button
-m Frame# Couat §Deactivate All Breaks group
iDeactivate Break:| [1 !
—m iDelete All Breaks "] N
Entry
Popup iDelete Break:] | 1 o
men
u \rh* 10 §smm Breakpoints J /
Sllow => 1

Closing the Debugger Palette

On the Debugger Palette, click: fyv
AR

STARTING THE DEBUGGER

1. Select the Ada unit or part to debug. You may select:
m A command in a command window

m A procedure in an Ada unit
= A main program name
2. Choose Debug:Start Debugging of Command.

The debugger window appears in the Environment area of your Access window.

Alternative: To debug a main program, choose File:Run for that program and click
the Debug radio button in the subsequent dialog box. You can also press [Meta}[Retum] fo
start the debugger if you bave selected the unit to debugged in a command window.

REDISPLAYING THE ENVIRONMENT’S DEBUGGER WINDOW

You can recall the debugger window if it becomes replaced by another window.

54 QAT'ONAL November 1992

Chapter 8: Debugging

Choose Debug:Debugger Window.

The debugger window appears in the Environment area of your Access window.

DISPLAYING THE PROGRAM BEING DEBUGGED

A window automatically displays a section of the program around the point where
execution was suspended. The statement or declaration to be executed next is high-
lighted (selected).

STOPPING THE DEBUGGER

Finishing and Killing the Debugging Job

This operation kills the job being debugged and/or the debugger for the session.
Choose Debug:Finish Debugging Job and Kill.

Note: The debugger should not need to be killed in normal use.

Finishing and Detaching from the Debugging Job

Choose Debug:Finish Debugging Job and Detach.

STEPPING THROUGH THE PROGRAM

You can run the program one step at a time to examine its behavior in detail.

Stepping by a Specific Number of Steps

1. Slide the Step repeat count slider on the Debugger Palette to reflect the number of
steps you want to go to.

2. Click the Step Stmt button on the Debugger Palette.

Stepping by Every Statement

Click the Step Stmt button on the Debugger Palette.

A single declaration is elaborated or a single statement is executed. The next state-
ment or declaration to be stepped through is automatically highlighted in the Ada
unit.

RATIONAL November 1992 55

Rational Access User’s Guide

Stepping without Stopping in Called Subprograms

This operation elaborates declarations and executes statements within each called
subprogram without stopping after each individual step.

Click the Step Local button on the Debugger Palette. (The cursor can be anywhere on
the screen.)

The program is executed or elaborated up to the next statement or declaration at the
same level of program structure.

Stepping to the Enclosing Subprogram

Click the Step Ret button on the Debugger Palette.
The debugger steps back one level up the stack.

STOPPING A TASK

Stopping the Current Task

Click the Stop button on the Debugger Palette.

The task is stopped at the beginning of the next executing statement in that task.

Stopping All Tasks

Click the Stop All button on the Debugger Palette.

All tasks are stopped at the beginning of the next executing statement in each task.

CONTINUING A TASK

56

Continuing the Current Task

Click the Continue button on the Debugger Palette.

The debugger will continue with the current task.

Continuing All Tasks

Click the Continue All button on the Debugger Palette.

The debugger will continue all tasks.

RATIONAL November 1992

Chapter 8: Debugging

USING BREAKPOINTS

Setting Breakpoints

1. Display the Ada unit that contains the statement or declaration at which execution
is to stop. If the unit has not been displayed already by the debugger, left double-
click the mouse or use other traversal operations.

2. Find the last statement or declaration you want executed or elaborated before
stopping. Use searching, scrolling, or stepping operations to find the desired pro-
gram location.

3. Select the next statement or declaration. (If that statement or declaration is the
highlighted current location, it is already selected.)

4. With the cursor in the selection, choose Breakpoints in the option menu on the
Debugger Palette.

5. Click the Break Here button.

A breakpoint is set just before the selected location. This means that execution will
continue up to but not including the selected location.

ARernative: If you know the specific location at which you want to enter a break-
Dpoint, you can choose Break on the Breakpoints option menu in the Debugger Palette.
Note that this uses debugger naming of the form 1s_25.

Showing Breakpoints

1. Choose Breakpoints in the option menu on the Debugger Palette.
2. Click the Show Breakpoints button.

A list of all breakpoints, active or not, is displayed in the debugger window.

Removing Breakpoints

Removing a Specific Breakpoint

1. Choose Breakpoints in the option menu on the Debugger Palette.
2. Enter the number of the breakpoint you want to delete in the Delete Break entry box.
3. Click the Delete Break button.

The breakpoint is deleted.

Removing All Breakpoints

1. Choose Breakpoints in the option menu on the Debugger Palette.
2. Click the Delete All Breaks button.

All breakpoints are deleted.

RAT'ONAL November 1992 57

Rational Access User’s Guide

DISPLAYING THE VALUE OF A PROGRAM VARIABLE

1. Display an Ada unit containing an occurrence of the variable whose value you
want to display.

2. Select the occurrence of the variable.
3. Click the left Put button (the one without the ellipsis) on the Debugger Palette.

The selected object and its value are displayed in the debugger window. Formatting
is based on the type of object.

MODIFYING VARIABLE VALUES

1. Place the Environment cursor on the variable.
2. Click the Modify button on the Debugger Palette.
The following dialog box appears:

Name: | JUSERS, SCALDE ,ADA_CLASS ,CONVERT . FIVE_NINTHS

New Value:

l OK Cancel Help

3. Enter the new variable value in the New Value entry box.
4. Click OK to modify the variable.

EXAMINING THE CALL STACK

58

A stack frame contains the values of local variables and parameters to a subprogram.
When a subprogram is called, a stack frame is pushed on the stack of the task exe-
cuting a call.

Displaying the Call Stack

The call stack is the stack of subprogram calls that records the program’s flow of
control.

Click the Stack button on the Debugger Palette.

The call stack is displayed in the debugger window with the most current call on the
top of the stack (it is frame number 1: _1).

QATIONAL November 1992

Chapter 8: Debugging

Displaying Source for a Call-Stack Frame

1. Click the Stack button on the Debugger Palette to display the call stack.
2. Place the cursor on the frame you want to display.
3. Click the Source button on the Debugger Palette.

The Environment cursor traverses to the specified location in the code of the Ada
unit.

Displaying Parameters for a Call-Stack Frame

Displaying the Parameters for the Current Selected Object

By default, this procedure displays the value of the selected object in the frame you
designate.

1. Move the Frame# slider on the Debugger Palette to the number of the frame you
want to search.

2. Click the left Put button (the one without the ellipsis) on the Debugger Palette.

The debugger window displays the values that were passed to the selected subpro-
gram at the time it was called.

Displaying Parameters for a Specific Object

1. Click the right Put button (the one with the ellipsis) on the Debugger Palette.
The following dialog box appears:

Variable:

’ oK Cancel Help

2. Enter the name of the variable whose parameters you want to see in the Variable
entry box.

3. Move the Stack Frame slider to the number of the stack frame you want to search.
4. Click OK.

Traversing from the Call Stack

You can view any subprogram referenced in the call stack.

1. Place the cursor in the frame that contains the subprogram you want to view.

RAT'ONAL November 1992 59

Rational Access User’s Guide

2. Double-click the left mouse button.

SETTING UP EXCEPTION HANDLING

60

Catching Exceptions

Catching Unlisted Exceptions

1. Choose Exception Handling in the option menu on the Debugger Palette.
2. Click the Catch Unlisted button.

Catching Any Exception

1. Choose Exceptions in the option menu on the Debugger Palette.
2. Click the Catch button.

The following dialog box appears:

ebugger Exception:

Name:

Task:

Location:

@ Catch { Propagate < Forget

‘ OK Cancel Help

3. Enter the name of the exception in the Name entry box.

4. Enter the name of the task that should be monitored for the exception in the Task
entry box.

5. To designate a specific location restriction for the exception catch request, enter
the name of the location in the Location entry box. By default, exceptions will be
caught anywhere they are raised.

6. Click OK.

The debugger stops at the first occurrence of the exception.

RATIONAL November 1992

Chapter 8: Debugging

Showing Exceptions

1. Choose Exception Handling on the option menu.
2. Click the Show Exceptions button.

A list of exceptions appears in the debugger window.

RETURNING TO THE POINT OF PROGRAM SUSPENSION

Click the Source button.

A window containing the definition of the program being debugged appears. The

statement or declaration to be executed next is highlighted.

SHOWING INFORMATION

Showing All Debugger Activities

Choose Al Debugger State in the Show popup menu on the Debugger Palette.

A list of debugger activities is displayed in the debugger window.

Showing Libraries

Choose Libraries in the Show popup menu in the Debugger Palette.

A list of libraries in use appears in the debugger window.

Showing Task information

Showing All Tasks

Choose All Tasks in the Show popup menu in the Debugger Palette.
A list of tasks appears in the debugger window.

Showing Stopped Tasks
Choose Stopped Tasks in the Show popup menu in the Debugger Palette.
A list of stopped tasks appears in the debugger window.

Showing Held Tasks
Choose Held Tasks in the Show popup menu in the Debugger Palette.
A list of held tasks appears in the debugger window.

RATIONAL November 1992

61

Creating and Modifying Text Files

This chapter describes how to create, modify, and save text files.

CREATING A FILE

1. Place the Environment cursor in the library in which you want the file.
2. Choose File:New:Text File.
The following dialog box appears:

EREE

ile New Textfil

Name:

[users. scaLoe. TommNE

3. Enter the name of the new file in the entry box.
4. Click OK.

A new window is created for the image of your file, and an entry for the file appears
in the library.

Alternative: Press [Create Texi] to create a new text file.

VIEWING A FILE

Viewing a File in the Current Library

1. Move the mouse pointer to the line containing the file declaration.
2. Double-click the left mouse button.

A window with a read-only image of the file appears.

IQATIONAL November 1992 63

Rational Access User’s Guide

Viewing a File Located Anywhere

1. Choose File:Browse.

The following dialog box appears:

File Brouse

l OK Cancel Help

2. Enter the name of the file you want to view in the entry box.
3. Click OK.

Names

A window with a read-only image of the file appears.

OPENING AN EXISTING FILE FOR EDITING

Place the Environment cursor in the window of the file to be edited.
Choose File:Open.
Note: For specific editing operations, see Chapter 10, “Editing Text.”

SAVING A FILE

64

Closing a File

Place the Environment cursor in the file to be saved.

1. Choose File:Save.
The file is saved.
2. Choose File:Close.

The file is closed for editing and disappears from the Environment area of the Access
window.

Saving a File without Closing

Click File:Save.

The file remains visible and open for editing.

RATIONAL November 1992

Chapter 9: Creating and Modifying Text Files

REVERTING TO THE PREVIOUS VERSION

This command reverts the file to the last saved version.

1. Choose Edit:Revert.
The following dialog box appears:

Object is modified, Lose changes?

2. Click OK to revert to the previous saved version.

Note: If this version is saved, revert does not return the previously saved version.

SETTING TABS

1. Press [Cmd Window] to create a command window.
2. To set tab stops at every nth column, enter set.tab_width(n).
3. Press [Promote].

As you edit the text file, pressing [Tab] indents 7 spaces.

Note: Setting tabs in a particular file affects only that file.

Checking Tabs

1. Place the Environment cursor in the window whose tabs you want to see.
2. Press [Control][Meta][Tab].

Tab markers appear in the message window.

SETTING TYPING MODES

Setting Overwrite Mode

The overwrite mode allows you to type text over existing text.

1. Choose Edit:Typing Modes.

RAT'ONAL November 1992 65

Rational Access User’s Guide

66

The following dialog box appears:

{ Overwrite Mode Il Fill Mode On

4 Insert Mode Fill Column:

A

'OK [Cancel |

2. Click the Overwrite Mode radio button.

Setting Insert Mode

The insert mode allows you to insert text when you type.

1. Choose Edit:Typing Modes.
A dialog box appears (see above).
2. Click the Insert Mode radio button.

Setting Wordwrap (Fill Mode)

The fill mode automatically moves the cursor to the next line when it hits a certain
column (the default is column number 72).

1. Choose Edit:Typing Modes.
2. Click the FifiMode check box.

Fill mode is on when the check box is filled in.

Changing the Wordwrap Column

You can change the column number that marks the spot where the cursor moves to
the next line when the fill mode is on.

1. Choose Edit:Typing Modes.
A dialog box appears (see above).
2. Enter the new fill column number in the Set Fill Column entry box (default is 72).

RAT'ONAL November 1992

Editing Text

This chapter describes basic Environment text-editing operations. Note that Access
allows for both Environment and Motif text selections and operations. Environment

text selections are marked in bold, and Motif text selections are represented by

reverse video.

MOVING THE ENVIRONMENT CURSOR WITH THE KEYBOARD

Table 10-1 lists the keys that move the Environment cursor within an Environment

window.

Table 10-1 Moving tbe Environment Cursor witb tbe Keyboard

Key

Action

[T] or [Control}[U]

Moves cursor up one space

[4] or [Control][N]

Moves cursor down one space

[«], [Control][H], or [Control){B}

Moves cursor left one space

[-3], [Contrel}{J], or [Control][F]

Moves cursor right one space

[Home] or [Controf}{A]

Moves cursor to the beginning of
the line

{End] or [Control][E]

Moves cursor to the end of the
line

[Meta}{J] Moves cursor to the next word

[Control] [[] Moves cursor to the beginning of
a region of selected text

[Control] []] Moves cursor to the end of a

region of selected text

[Controi]{Meta][Home]}

Moves cursor to the beginning of
the window frame

[Control}{Meta][End]

Moves cursor to the end of the
window frame

RAT'ONAL November 1992

67

Rational Access User’s Guide

SELECTING TEXT

68

Selecting Text in the Environment

Selecting a Word

Place the mouse pointer on any character of the word to be selected and [Control]+
double-click the left mouse button.

The word is selected.

Selecting the Preceding Word
Press [Control][T].

The word before the word that contains the Environment cursor is selected.

Selecting the Next Word
Press [Control][d].

The word after the word that contains the Environment cursor is selected.

Selecting a Sentence

1. Place the mouse pointer on any word in the sentence.
2. Press [Control] and double-click the left mouse button.
3. Repeat step 2.

The sentence is selected.

Selecting a Paragraph

1. Place the mouse pointer on any part of the paragraph.

2. Press [Control] and double-click the left mouse button.
The word that the cursor is on is selected.

3. Repeat step 2 twice.

First the sentence is selected, and then the entire paragraph is selected.

Selecting an Arbitrary Region of Text

1. Place the pointer at the beginning of the text to be selected.
2. Press [Controf} and click the left mouse button.
The Environment cursor marks the beginning of the selected text.
3. Move the pointer to the end of the text to be selected.
4. Press [Control] and click the right mouse button.

The cursor appears at the end of the selected text, which is now bold.

Alternative: Press|Control] and drag the mouse pointer over the text. When you
release the mouse button, the text that the pointer passed over is selected. Or place the

RATIONAL November 1992

Chapter 10: Editing Text

pointer at the beginning of the region and press [Control|[[]. Then place the pointer at
the end of the region and press {Control][]].

Selecting All in a File

1. Place the cursor anywhere in the file.
2. Press [Control] and double-click the left mouse button.

The word or white space that the cursor is on is selected.
3. Repeat step 2 four times.

First the sentence the Environment cursor is on is selected, then the paragraph, then
any white space between paragraphs, and then the entire file.

Selecting the Parent or Child

Selecting the parent selects successively larger items, and selecting the child selects
successively smaller items, based on the following hierarchy:

Word that the Environment cursor is on
= Sentence

m Paragraph

m Entire file

To select the parent, press [Control]{«<].
To select the child, press [Control][—)].

Note: These operations work differently in an Ada unit. See ‘Selecting Parent/Child
Items in an Ada Unit” in Chapter 7, “Writing Ada Programs.”

Deselecting Text

1. Place the Environment cursor anywhere in the selected region.
2. Choose Edit:Deselect.

Any selected text becomes deselected.

Alternative: Press [Control]+click, [Control)[X], or[Control}]\] to deselect text.

Selecting Text with Motif

Motif selection allows you to select text to be copied to a non-Access window.

Selecting a Region of Text

1. Place the mouse pointer at the beginning of the text you want to select.
2. Drag the pointer over the text.

The selected text is reverse video.

Alternative: Place the Environment cursor at the beginning of the region you want
to copy. Then move the pointer to the end of the region and press [Shift] and click the
left mouse button.

RAT‘ONAL November 1992 69

Rational Access User’s Guide

Deselecting a Region of Text
Click the mouse or move the Environment cursor using the arrow keys.

The region is no longer highlighted. Note that the Motif selection is still retained on
the memory buffer until another selection is made.

COPYING SELECTED TEXT

Copying an Environment Selection

1. Choose Edit:Copy.
The text is copied onto the Environment memory buffer.

2. Place the Environment cursor at the exact insertion point where you want to copy
the text.

3. Choose Edit:Paste.
The text is inserted at the location of the Environment cursor.

The text can be copied multiple times until you copy another selection onto the
memory buffer using the Edit:Copy or Edit:Cut operation.

Alternative: Press [Control][C] to copy the selected text onto the Environment memory
buffer, and press [Control][Y] to paste the text.

Copying a Motif Selection

The Motif copy operation allows you to copy text to another X-window or another
Access window, as well as within the current Access window.

1. Select the text using the Motif selection operation (see “Selecting Text with Motif,”
above).

2. Place the Environment cursor at the insertion point where you want to copy text.
3. Click the middle mouse button.

The text is copied at the location of the Environment cursor.

Copying a Line of Text

1. Place the Environment cursor anywhere on the line.
2. Press [Control}{Meta][C].

The line is copied directly below. The cursor remains in its original position.

MOVING SELECTED TEXT

1. Choose Edit:.Cut.
The selected text is deleted from the screen.

70 RATIONAL November 1992

Chapter 10: Editing Text

2. Place the Environment cursor at the exact insertion point where you want to move
the text.
3. Choose Edit:Paste.

The text is inserted at the location of the Environment cursor.

The text can be copied multiple times until you copy another selection onto the
memory buffer using the Edit:Copy or Edit:Cut operation.

SEARCHING FOR AND REPLACING TEXT

Searching for a String

1. Choose Edit:Search/Replace.
The following dialog box appears:

Search For:
Change To:
Search Options Search Direction
{1 Consider Case @ Forward
{1 Preserve Case < Backward
£ Wildcards

{ Current Selection

{ Search l { Replace l I Replace & Search J ineplase Alll

Cose Help

2. Enter the string to be searched for in the Search For entry box.
3. Click the Forward or Backward radio button to specify the direction of the search.
4. Press the Search command button.
The cursor moves to the first occurrence of the string.
5. Press the Search command button to go to the next occurrence.
Note: No wraparound search occurs.
ARlernative: Press [Control)[S] to begin searching forward from the Environment cur-

sor. Next, enter the string at the Search: prompt that appears in the message window.
Press [Control|[S] again to search for the first occurrence and repeat to search for other

QAT'ONAL November 1992 71

Rational Access User's Guide

72

occurrences. To search backward from the Environment cursor, press [Controf}[R]
instead.

Searching and Replacing a String

1. Choose Edit:Search/Replace.
A dialog box appears (see above).
. Enter the string to be replaced in the Search For entry box.
. Enter the new string in the Change To entry box.
. Click the Forward or Backward radio button to specify the direction of the search.
. Click the Replace & Search command button in the dialog box.

The new entry replaces the first occurrence of the string and moves to the next
occurrence.

6. Continue to click the Replace & Search command button to replace the next occur-
rences of the string.

(NS

Alternative: Press [Control][Meta][S] to begin the search and replace operation. Next,
enter the string to search for at the Search: prompt in the message window and the
replacement string at the Replace: prompt. Press [Control][Meta][S] to replace the first
occurrence and repeat for other occurrences. To search and replace backward from
the Environment cursot, press [Control][Meta][R].

Searching and Replacing All Occurrences of a String

1. Choose Edit:Search/Replace.
A dialog box appears (see above).
. Enter the string to be replaced in the Search For entry box.
. Enter the new string in the Replace & Search entry box.
. Click the Forward or Backward radio button to specify the direction of the search.
. Press the Replace Al command button in the dialog box.

AV NS A o)

The new string replaces all occurrences of the original string.

Search Options

a Consider Case: Replaces text with the case of the text entered in the Change To field.

m Preserve Case: Keeps the case of the text as it finds it in the string that is being
replaced.

» Wildcards: Treats wildcard characters as wildcards. When this option is not
selected, all characters are treated as literal characters.

= Current Selection: Searches only selected text.

Note: If you do not bave a session-switch file for your current session, you cannot
make the search case-sensitive. See the Session and Job Management (SIM) book of the
Rational Environment Reference Manual for more information on session-switch files.

RAT'ONAL November 1992

Chapter 10: Editing Text

DELETING TEXT
Table 10-2 lists various ways to delete text.
Table 10-2 Deleting Text
Text to Be Deleted Operation
Selected region of text Edit:Cut, [Control][W], [Shift][Delete], or
[Shift}{Backspace]
Character the Environment cursor is on [Control][D]
Previous character [Delete] or [Backspace]
Entire word the Environment cursor is on [Meta][D]
From the Environment cursor to the end of [Meta][K]
the word
Entire line [Control}[Meta][D}
From the Environment cursor to the end of [Control][Delete] or [Controf} [Backspace] or
the line [Control]{K]
White space [Control][Meta] [Backspace] or
[Control][Meta] [Delete]
TRANSPOSING TEXT
Transposing Characters

This operation switches the character that the cursor is on with the character preced-
ing.

1. Place the cursor on the second character.
2. Press [Control][T].

The characters transpose. The Environment cursor remains in its original position.

Transposing Words

This operation switches the word that the cursor is on with the preceding word.
Word terminators are blanks, underscores, semicolons, or periods.

1. Place the cursor anywhere on the second word.
2. Press [Meta][T].

The words transpose. The Environment cursor remains in its original position.

I?ATIONAL November 1992 73

Rational Access User’s Guide

Transposing Lines

This operation switches the line that the cursor is on with the preceding line.

1. Move the cursor to any place on the lower line.
2. Press [Control][Meta][T].

The lines transpose. The Environment cursor remains in its original position.

CHANGING THE CASE OF TEXT

74

Making Text Uppercase

Making a Word Uppercase
This operation affects the text from the location of the cursor to the end of the word.

1. Place the Environment cursor on the first letter of the word, or the space directly
before, to make the entire word uppercase.

2. Press [Meta][.] or Meta][>].

The word becomes uppercase, and the cursor traverses to the first space after the
word.

Making a Selected Region of Text Uppercase

1. Select the text that you want to modify.
2. Choose Edit:Uppercase.

All selected text becomes uppercase.

Making Text Lowercase

Making a Word Lowercase
This operation affects the text from the location of the cursor to the end of the word.

1. Place the Environment cursor on the first letter of the word, or the space before,
to make the entire word lowercase.

2. Press [Meta][,] or [Meta]<].

The word becomes lowercase, and the cursor traverses to the first space after the
word.

Making a Selected Region of Text Uppercase

1. Select the text that you want to modify.
2. Choose EditLowercase.

All selected text becomes lowercase.

QAT'ONAL November 1992

Chapter 10: Editing Text

Making Text Capitalized

Making a Word Capitalized

1. Place the Environment cursor on the first letter of the word, or the space directly
before.

2. Press [Meta][] or [Meta][6].

The first letter of the word is capitalized.

Making a Selected Region of Text Capitalized

1. Select the text that you want to capitalize.
2. Choose Edit:Capitalize.

The first letter of every word of selected text is capitalized, and the cursor traverses
to the first space after the region.

FILLING A REGION OF TEXT

This operation fills in the white space in a selected region of text, leaving two spaces
between sentences.

1. Select a region of text.
2. Choose Edit:Fill.

The region is filled.

JUSTIFYING A REGION OF TEXT

1. Select the text to be justified.
2. Choose Edit:Justify.

The text becomes right-justified. The column number default is 72.

GETTING LINE INFORMATION

Press [Control][Home].

The message window displays the line and column number of the Environment cur-
sor and the total number of lines in the file.

RATIONAL November 1992 75

Rational Access User’s Guide

SAVING CHANGES

76

Saving Changes One Image at a Time

1. Begin with the cursor in the window of the image to be saved.
2. Choose File:Save.

The object is saved and its image remains open for editing.

Alternative: Press [Shift][Enter] or [Control][Return] to save changes.

Saving Changes in All Images in a Single Operation

1. Press [Cmd Window] to create a command window.
2. Enter Window.Directory and press [Promote}.
The window directory appears in an Environment window and lists all Environ-

ment images that you have opened during your session. Images with unsaved
changes have a * in the Mod column.

3. Place the Environment cursor on the top line of the image, designating all the
objects listed in the window directory.

4. Choose File:Save.

All objects that have been changed are saved and now have a blank in the Mod col-
umn of the window directory.

Saving the Image and Closing the File

1. Choose File:Close.
The following dialog box appears:

2. Click Yes to save the changes.

RATIONAL ovember 1992

Managing Libraries

Libraries are the basic structuring mechanism in the Environment. They can be used
to separate different projects, parts of projects, test cases, documentation, and so on.
In this sense, they are similar to directories on other systems. The library system in
the Environment is a nested hierarchy of several kinds of libraries:

m Directories are the most basic kind of library. For the most part, directories
assume the characteristics of their parent world or view. For this reason, they are
generally used only to partition groups of objects.

m Worlds are the control point for certain Environment resources, including
resources for managing disk volume, access rights, and Ada compilation. Worlds
determine the units that are potentially visible to the Ada units in them and in
nested subdirectories and determine the target for which units will be compiled.

m Subsystems and subsystem views are special-purpose libraries for use with the
Environment's facilities for configuration management and version control
(CMVCQ). For the most part, views have the same features as worlds. (For more
information about subsystems and views, see Chapter 12, “Using CMVC.”)

Any kind of library can contain any or all of the following objects:

m Other libraries. For the most part, the nesting of libraries is arbitrary; however,
subsystems and subsystem views can contain only directories.

s Ada compilation units.

m Files, including activity, binary, switch, text, and others.

m Other objects such as sessions.

This chapter describes how to create and maintain libraries and library objects in the

Environment. For more information about the Environment library system, see the
Library Management (LM) book of the Rational Environment Reference Manual.

CONTROLLING THE LIBRARY DISPLAY

Toggling Information on Library Objects

1. Place the Environment cursor on the top line of the library.
2. Press [Explain].

Repeating this command toggles the library display so that you view one of the
following:

a The default level of detail, containing only the name of each object

QATIONAL November 1992 77

Rational Access User’s Guide

= The standard level of detail, containing the name, class, subclass, and unit state
of each object

» The miscellaneous level of detail, containing the name, unit state, date and time
of last update, user who last updated, size in bytes, number of deleted versions
to be retained, and an indication if the object is frozen for each object

Note that you can change the amount of detail you see when you first log in and the
specific information displayed in the standard and miscellaneous levels of detail by
editing your session switches (see Session Switches in the Session and Job Manage-
ment (SJM) book of the Rational Environment Reference Manual).

Showing More Objects in the Library

At any level of detail (default, standard, miscellaneous), a library display can also be
adjusted “vertically” (expanded and elided) to show more or fewer objects in the
library. At the system-defined default level of elision, the default versions of all unde-
leted objects are displayed. To display additional objects:

m Press [Meta]{l]

Repeatedly pressing [Meta][l] expands the display through several levels. These levels
are indicated in the window banner:

{versions} indicates all deleted and undeleted versions.

versions indicates all undeleted versions.

{lib vers} indicates all deleted and undeleted versions; no subunits.

1ib vers indicates all undeleted versions; no subunits.

{units} indicates all deleted and undeleted objects.

units indicates all undeleted objects.

{1lib units) indicates all deleted and undeleted objects; no subunits.

1ib units indicates all undeleted objects; no subunits.

Showing Fewer Objects in the Library

At any level of detail (default, standard, miscellaneous), a library display can also be
adjusted “vertically” (expanded and elided) to show more or fewer object in the
library. At the system-defined default level of elision, the default versions of all unde-
leted objects are displayed. To display fewer objects:

m Press [Meta][)]

Repeatedly pressing [Meta](!] expands the display through several levels. These levels
are indicated in the window banner and described above, in “Showing More Objects
in the Library.”

CREATING NONSUBSYSTEM LIBRARIES

To create subsystems and subsystem views, which are also libraries, see Chapter 12,
“Using CMVC.”

78 RAT'ONAL November 1992

Chapter 11: Managing Libraries

Creating a Directory

1. Place the Environment cursor in the library that is to contain the new directory.
2. Choose File:New:Directory.

The following dialog box appears:

.... Jrae

Directory Name:

IUSERS. SCALDE . EETINTTESREnan.

' OK Cancel Help

3. Enter the name of the new directory in the Name entry box.
4. Click OK.

The Environment creates the directory. In the enclosing library, you see the new
directory name inserted in alphabetical order.

Creating a World

1.

Place the Environment cursor in the library that is to create the new world.

2. Choose File:New:World.

5.

The foliowing dialog box appears:

Name: | 1USERS,SCALDE, TERNIIRENE.

Model:

Enter the name of the new world in the Name entry box.

To create a world based after a specific model, enter the name of the model world
in the Model entry box. When creating a world, you can specify a mode! world for
the new world to copy. In particular, model worlds determine the initial set of
links, the library-switch file, and the target key associated with the new world.

Click OK.

The Environment creates the world. In the enclosing library, you see the name of
the new world inserted in alphabetical order.

RATIONAL November 1992 79

Rational Access User’s Guide

DESTROYING OBJECTS

Caution: This operation is unrecoverable. Destroyed objects cannot be recovered,
regardless of the retention count of the object or enclosing library. To remove objects
while maintaining a recoverable version, see the Library.Delete procedure in the
Library Management (LM) book of the Rational Environment Reference Manual.

1. Select the name of the object (or one of multiple objects) to be destroyed.
2. Choose File:Deiete Fiie.

The following dialog box appears:

Enter names of objects to delete.

|USERS, SCALDE , SESNENTER

l OK Cancel Help

3. Verify the name of the object(s) to be destroyed:

m To destroy a single object, specify the name of that object.

s To destroy multiple objects, specify an appropriate naming expression using
set notation ([objectl, object2]) or the standard wildcard characters for speci-
fying pathnames:

— # matches any single character.

— @ matches zero or more characters.

— ? matches zero or more nonworld name components.

— 7 matches zero or more name components, including worlds.
4. Click OK.

If you have specified a single object to be destroyed and no other objects would

be affected (such as dependent Ada units), that object is destroyed.

If you have specified multiple objects or there are other objects that would be
affected by the deletion, a second dialog box appears with a list of the number
of libraries, text objects, and other objects that will be destroyed:

Deleting

tUSERS, SCALDE, ADA_CLASS
will delete

11 Text objects

11 Ada objects

1 Library

1 other object

80 RATIONAL November 1992

Chapter 11: Managing Libraries

5. Verify that the appropriate number and kind of objects are listed.

If you named a library to be destroyed, this operation destroys the library and all
of its contents, including other libraries, files, and Ada units.

If you named an Ada unit to be destroyed, this operation destroys:

a The named units(s)

m The corresponding subunits when unit bodies are named

m The corresponding body and subunits when unit specifications are named

If you think the wrong set of objects will be destroyed, click Cancel and try the
operation with a different name or naming expression in the entry box.

If the correct set of objects is listed, click OK.
The named objects and all of their child objects are destroyed. Destroying an object
permanently deletes and expunges all versions of the specified object, regardiess of

the retention count for the object or the enclosing library. A destroyed object has no
entry in the library display and cannot be recovered.

Any dependent Ada units are demoted. In particular, this operation:

s Demotes any units that with the deleted units
» Demotes any units that with the demoted units

COPYING OBJECTS

1. Select the name of the object (or one of multiple objects) to be copied.
2. Traverse to the destination library.
3. Choose File:Copy File.

The following dialog box appears:

Source: HUSERS . SCALDE . WAR_AND, PERCE

Destination: | 'USERS,SCALDE , IEXEWE

4. Verify the name of the Source object(s) to be copied:
s To copy a single object, specify the name of that object.

a To copy a library and all of its contents, specify the name of that library.

s To copy multiple objects, specify an appropriate naming expression using set
notation ([objectl, object2]) or the standard wildcard characters for specifying
pathnames:

— # matches any single character.

— @ matches zero or more characters.

~ ? matches zero or more nonworld name components.

~ ? matches zero or more name components, including worlds.

'?AT'ONAL November 1992 81

Rational Access User’s Guide

5. Verify the Destination to which the object(s) are to be copied:

m To copy the objects into a particular library, while preserving their simple
names, specify the full name of that library.

m To copy the objects and change their simple names, specify the full path-
name, including the new simple names. You can use the following substitu-
tion characters:

— @ expands to the string(s) matched by a wildcard in the Source entry box.
— # expands to a name component from the Source entry box. Name compo-
nents are matched from right to left.
6. Click OK.

See “Parameter-Value Conventions” in the Reference Summary (RS) book of the
Rational Environment Reference Manual for more information and examples using
set notation, wildcard characters, and substitution characters.

MOVING OR RENAMING OBJECTS

82

1. Select the name of the object (or one of multiple objects) to be moved.
2. Traverse to the destination library.
3. Choose File:Move File.

The following dialog box appears:

Source: 1USERS, SCALDE , HAR_ANI, PEACE

Destination; | !USERS.SCALDE, IENEWE

4. Verify the name of the Source object(s) to be moved:
= To move a single object, specify the name of that object.
= To move a library and all of its contents, specify the name of that library.

m To move multiple objects, specify an appropriate naming expression using set
notation ([object, object2]) or the standard wildcard characters for specifying
pathnames:

— # matches any single character.

— @ matches zero or more characters.

~ ? matches zero or more nonworld name components.

— 7 matches zero or more name components, including worlds.
5. Verify the Destination to which the object(s) are to be moved:

a To move the objects into a particular library, while preserving their simple
names, specify the full name of that library.

s To move the objects and change their simple names, specify the full path-
name, including the new simple names. You can use the following substitu-
tion characters:

RATIONAL November 1992

Chapter 11: Managing Libraries

—~ @ expands to the string(s) matched by a wildcard in the Source entry box.

— # expands to a name component from the Source entry box. Name compo-
nents are matched from right to left.
s To rename the objects, simply enter the new simple name, while preserving
the original library pathname.

6. Click OK.

The progress of the command is displayed in an Environment I/O window. Ada units
are demoted to source. The old object name is removed from the library and
replaced by the new name, which is inserted in the library in alphabetical order.

See “Parameter-Value Conventions” in the Reference Summary (RS) book of the
Rational Environment Reference Manual for more information and examples using
set notation, wildcard characters, and substitution characters.

PRINTING OBJECTS AND IMAGES

1. Select the name of the object to be printed or place the Environment cursor in its
image.
2. Choose File:Print.

The following dialog box appears:

.... acaaiaaia e A A A A A A A A A e AT A A A A AT e e A)

Name: | IUSERS,SCALDE .WAR_N_PEACE

Print Options: [E Border
PROD_LASER i
MLASER IE Date
MFG_LP I Filename
LP_LA B Ada Format
DRISY
gﬁgLQSER Page Layout: € Twoup
NEC_WEST < Portrait
SPIN
KR_APPLE <$ Landscape
LP

4 All Pages
Selected Printer:

Q First Page: |1
MLASER

Last Page: | 993

Other Options:

, OK Cancel Help

3. Click OK to print using the default options.

RAT'ONAL November 1992 83

Rational Access User’s Guide

84

Printing Multiple Objects

To print multiple objects, enter the names of the objects in the Name entry box of the
Print dialog box (see above), using an appropriate naming expression.

Table 11-1 Naming Expressions for Printing Multiple Objects

Characters Description
Matches a single character other than a period: T#### matches Tools.
@ Matches zero or more characters not containing a period:

1U@. @.Tools matches !Users. Anderson.Tools.

? Matches zero or more nonworld name components: ! Users.Ander-
son? matches !Users.Anderson and all the objects in it except worlds.

27 Matches zero or more name components of any kind: ! Usersg??
matches !Users, all home worlds, and all their contents.

[. . .3 Encloses a set of names: [!Users.Anderson.Letter,
'Users.Anderson.Notes] matches two files, Letter and Notes.

~name Excludes a name from a set: [@, ~Tools] matches everything
except Tools.

Selecting the Printer

Click the name of the printer you want to use in the printer listing. (Note that this
list is built from the printer-configuration information set up through !Machine.Ini-
tialization. If your system manager has set up printer configurations using another
mechanism, this list will be empty.)

The name appears in the Selected Printer entry box.
ARernative: Directly type in the name of the printer in the Selected Printer entry box.

Specifying the Pages to Print

Printing All Pages in a File
Click the All Pages check box in the Print dialog box.

Printing Specific Pages

1. Click the First Page check box in the Print dialog box.

2. Enter the number of the first page of the file you want to print in the First Page entry
box. Note that this operation assumes you have entered the physical page num-
ber, not the page number that will be printed on the page.

3. Enter the number of the last page you want to print in the Last Page entry box.
To print one page of a file, enter that page number in both entry boxes.
4. Click OK to print the page(s).

RATIONAL November 1992

Chapter 11: Managing Libraries

Format Options

m Border: Prints a border around the page. If the Twoup option (see below) is also
selected, a border is printed around both text areas on the page.

m Date: Prints the date and time of the printout at the bottom of each page.
s Filename: Prints the full pathname of the file at the top of each page.
= AdaFormat: Pretty-prints Ada reserved words in bold when printing source code.

Page-Layout Options

m Twoup: Prints two text areas (in book form) across the length of the page.
a Portrait: Prints the page vertically.
w Landscape: Prints the page horizontally.

Other Options

You can enter specific print options in the Other Options entry box. See package Queue
in the Session and Job Management (SJM) book of the Rational Environment Refer-
ence Manual for more information.

RATIONAL November 1992 85

Using CMVC

The Rational Environment provides support for project management through its sys-
tem of configuration management and version control (CMVC). CMVC provides sup-
port for:

Project partitioning: You can break a project into a manageable number of
higher-level components called subsystems, each containing a group of logically
related objects. For Ada programs, subsystems are units of decomposition similar
to, but larger than, the Ada package, which preserve on a larger scale the Ada
notion of separate specification and implementation.

Version control: You can control and track changes to individual objects within
each subsystem and record what changes are made and why they were made.

Configuration management: You can construct, release, and maintain multiple
consistent sets (or configurations) of versions within each subsystem. (Each
alternative configuration constitutes a view of that subsystem.) At a higher level,
configuration management refers to combining views from each subsystem in
order to create entire applications.

This chapter describes basic CMVC operations for creating and maintaining sub-
systems and subsystem views. For more information about creating, manipulating,
and maintaining subsystems, see the Key Concepts of the Project Management (PM)
book of the Rational Environment Reference Manual.

CREATING A SUBSYSTEM

Subsystems are a kind of library used to encapsulate a program’s compilation units
by grouping Ada units or other objects. Subsystems are more powerful than other
libraries for the following reasons:

Subsystems, like Ada packages, provide a means for defining and enforcing
interfaces among an application’s components. These interfaces provide explicit
control over dependencies among units in different subsystems.

Subsystem interfaces impose explicit bounds on the recompilation required after
changes are made to the implementation.

Subsystems provide a mechanism for developing alternative implementations of
an application’s components. Execution and testing of the entire application is a
matter of specifying the desired combination of precompiled implementations,
one from each subsystem within an application.

CMVC operations are available within subsystems for tracking unit changes,

coordinating access to shared units, and propagating changes across shared
units,

RATIONAL November 1992 87

Rational Access User's Guide

88

To create a subsystem:

1. Choose File:New:Subsystem.
The following dialog box appears:

1USERS, SCALDE , JEMMNSIERE

Initial View:

Name: | Revl_Korking

Kind: Model: | !Model.R1000

2. In the first Name entry box, enter the name of the subsystem to be created. The

default is Current_LibraryNew_Subsystem.

3. In the Initial View Name entry box, enter the name of the initial working view to be
created. The default is Revl_Working.

4. From the Kind option menu, choose the kind of subsystem to create. The two kinds

of subsystems determine the kinds of views that can be created as well as whether
hierarchic importing is enforced:

m Spec_load creates a subsystem that can contain either spec and load views or
combined views:

— A load view contains an implementation of a subsystem.
— A spec view expresses a subsystem’s exports.

— A combined view both contains a subsystem implementation and expresses
the exports from that implementation.

Within a spec/load subsystem, ali imports must be hierarchic, in that no view

is permitted to be in its own import closure.

m Combined creates a subsystem that can contain only combined views, among
which circular import relations may hold.

5. In the Model entry box, enter the name of the model from which to create the initial

working view. The model determines the initial links, the settings in the Compil-
er_Switches file, and the target key associated with the view. The default is Mod-
€l.R1000.

6. In the Comments entry box, enter any comments, such as purpose of the subsystem.
7. Click OK.

RAT'ONAL November 1992

Chapter 12: Using CMVC

The progress of the procedure is displayed in an I/O window. The newly created
subsystem contains three libraries: Configurations (a directory that contains summary
information about each view in the subsystem), Revl_Working (a program library in
which your ongoing work takes place), and State (a directory that contains informa-
tion about the underlying objects in the subsystem).

Making a Path

Separate development efforts within a single subsystem are maintained in multiple
development paths. When you create a subsystem, the Environment automatically
creates one working view that serves as the primary path. You can create additional
paths by creating other working views from an existing view.

To create a path:

1. Place the Environment cursor in the subsystem in which you want to make a
path.

2. Choose File:New:Working View.
The following dialog box appears:

Name: REV1_1_Working

Kind: ® Join

Copy Of: IUSERS, SCALDE ,MAIL _UTILITIES.REV1_WORKING

4 Same Imports

$ New Imports:

Comments:

Model: IMODEL ,R1000

3. In the Name entry box, enter the simple name of the new path. If the parent path
is Revl_Working, the default name is usually of the form Revl_1_Working.
4. From the Kind option menu, choose the kind of view to create.

a Spec_lLoad creates a load view. A load view contains the implementation of a
subsystem. Using spec and load views minimizes the recompilation required
after changes are made and eliminates the need for recompilation during
recombinant testing. (To create a spec view, see “Making a Spec View” on
page 91)

RAT'ONAL November 1992 89

Rational Access User’s Guide

u Combined creates a combined view. A combined view both contains the sub-
system implementation and expresses the exports from that implementation.
Using combined views does not reduce the recompilation requirements; how-
ever, you must use combined views when generics or inlined subprograms
are exported from implementations for non-R1000 targets.

5. Decide whether or not to join the new path to the parent path and check the Join
check box, as decided:

= You should join the two paths if most of the controlled objects in them are to
be joined. Joined objects cannot be checked out or modified independently.

m You should not join the two paths if most of the controlied objects in the two
paths are to be worked on independently.

6. Enter or edit the name of the parent path in the Copy Of entry box. The pathname
can be:

m A combined or load view (not a spec view)
= A working view or a release view
All units in the parent path must be checked in.
7. Choose either the Same Imports or New Imports radio button:

m If you choose Same Imports, the new view will have the same imports as the
parent view, regardless of the contents of the New Imports entry box.

a If you choose New Imports, the new view will have only the imports you specify
in the associated entry box.

8. Enter any comments in the Comments entry box.

9. In the Mode!l entry box, enter the model from which to create the new view. The
model determines the initial links, the settings in the Compiler_Switches file, and
the target key associated with the view. The default is IModel.R1000. By default,
the model is inherited from the parent view.

10. Click OK.

The command displays messages in an I/O window. When it completes, a new
working view, indicating the new path, appears in the subsystem.

Making a Subpath

When a team is assigned to implement a subsystem, a separate subpath can be cre-
ated for each individual on the team. Subpaths are working views in which changes
can be made and tested; they are created as full copies from the path’s working view.

To create a subpath:

1. Place the Environment cursor in the subsystem in which to create the subpath.
2. Choose File:New:Working View.

The New Working View dialog box appears (see above).
3. Enter the full name of the subpath in the Name entry box.

If the path is Revl_Working, the subpath usually has a name in the form of
Revl_Subpath_Working.

4. Choose Spec_Load or Combined in the Kind option menu (usually you will want to
make the subpath the same kind as the parent path).

5. Fill in the Join check box if it is not already selected.

90 RAT'ONAL November 1992

Chapter 12: Using CMVC

6. Enter or edit the name of the parent path in the Copy Of entry box.

All units must be checked in so they can be joined with the new subpath.
7. Choose either the Same Imports or New Imports radio button.

If you choose New Imports, enter the new imports in the associated entry box.
8. Enter any comments in the Comments entry box.

9. To base the new subpath on a particular model, enter the model name in the
Model entry box.

10. Click OK.

The command displays messages in an [/O window. When it completes, a new view
appears in the subsystem that is the working view for the subpath.

Making a Spec View

In a spec/load subsystem, a spec view defines the set of implemented units that are
potentially available, or visible, to units in views of other subsystems. Spec views
thus define a subsystem’s exports; as such, spec views can be imported by client
views in other subsystems. In a sense, a spec view is analogous to an Ada package
specification, which defines the resources that are available to client units.

To create a spec view:

1. Place the Environment cursor in the subsystem in which to create the spec view.
2. Choose File:New:Spec View.

The following dialog box appears:

Name: REV1_1_Spec

g Join

Copy Of: TUSERS,SCALDE MATL _UTILITIES,REVL_WORKING

4 Same Imports

& New imports:

Comments:

Model: 'MODEL .R1000

3. In the Name entry box, you can edit the name of the spec view.
4. In the Copy Of entry box, verify the name of the view to be copied.

QAT'ONAL November 1992 91

Rational Access User’s Guide

5. Select the Same imports or New Imporis radio button.

If you choose New Imports, enter the new imports in the associated entry box.

6. Enter any comments in the Comments entry box.

7. In the Model entry box, enter the name of the model from which to create the initial
working view. The model determines the initial links, the settings in the Com-
piler_Switches file, and the target key associated with the view. The default is
Model. R1000.

8. Click OK.

RELEASING CONFIGURATIONS

92

As you develop units in a working view, you can preserve certain significant com-
binations (configurations) of generations. You can do this by making a release from
the working view. A release typically represents a baseline configuration that has
been compiled and tested, and thus is considered stable and usable for execution
by other subsystems. Releases also can serve as reference points in the development
history of a single subsystem.

Several kinds of releases can be made, depending on your needs:

m Release views (also called full-view releases), which preserve both the source
code and the compilation information to permit execution.

n Configuration releases, which preserve enough information about configuration
state to permit reconstruction of release views.

m Code views (also called code-only releases), which permit execution without
making program source code available. Code views typically are made from a
working view for use by the developers of other subsystems, particularly when
the subsystems are developed on different R1000s.

Making a Release View

A release view is a complete frozen copy of a working view. As such, a release view
contains program source code, and, if the release view has been compiled, the units
in the release view can be executed. You should make a release view from a com-
piled working view whenever you want to both preserve a configuration in a work-
ing view and be able to execute its units. (Note that the original working view itself
is not frozen, so it is always available for further development.)

To make a release view:

1. Place the Environment cursor in the subsystem in which to create the release
view.

2. Choose File:New:Release View.

RAT'ONAL November 1992

Chapter 12: Using CMVC

The following dialog box appears:

Release Yie

Name: REV1 1

Kane: O o

Copy Of: {USERS.SCALDE.MAIL_UTILITIES.REVI_WORKING

4 Same Imports

<& New imports:

Comments:

Model: 'MODEL.R1000

4 Buiid Full View Copy

<{ Save Release Generation Information Only

3. In the Name entry box, enter the simple name of the release view. If the source
view is Revl_Working, the default name is usually of the form Rev1_1.

4. From the Kind option menu, choose the kind of view to create. Usually you will
want to choose the same kind as the source view:

m Spec_Load creates a load view. A load view contains the implementation of a
subsystem.

m Combined creates a combined view. A combined view both contains the sub-
system implementation and expresses the exports from that implementation.

5. Decide whether or not to join the release view to the source view and check the
Join check box, as decided:

m You should join the two views if most of the controlled objects in them are to
be joined. Joined objects cannot be checked out or modified independently.

s You should not join the two paths if most of the controlled objects in the two
paths are to be worked on independently.

'?AT'ONAL November 1992 03

Rational Access User’s Guide

94

6. Enter or edit the name of the source view in the Copy Of entry box. The pathname
can be:

» A combined or load view (not a spec view)
m A working view or a release view
All units in the source view must be checked in.
7. Choose either the Same Imports or New Imports radio button:

w If you choose Same Imports, the release view will have the same imports as the
source view, regardless of the contents of the New Imponts entry box. Usually
you will want the release view to have the same imports as the source view.

» If you choose New Imports, the release view will have only the imports you
specify in the associated entry box.

8. Enter any comments in the Comments entry box.

9. In the Model entry box, enter the model from which to create the release view.
The model determines the initial links, the settings in the Compiler_Switches file,
and the target key associated with the view. The default is !Model. R1000. By
default, the model is inherited from the source view.

10. Check the Build Full View Copy box.

11. Click OK.

Making a Configuration Release

A configuration release preserves the state of a working view, without creating a
release view. As such, a configuration release is a summary of configuration infor-
mation from which a release view subsequently can be constructed, if desired. You
should make a configuration release when you want to keep a record of a particular
configuration, but you do not need to execute the units immediately. Making a con-
figuration release is faster and uses less storage than making a release view.

To make a configuration release:

1. Place the Environment cursor in the subsystem in which to create the configura-
tion release.

2. Choose File:New:Release View.

RATIONAL November 1992

Chapter 12: Using CMVC

The following dialog box appears:

New Release View

Name: REV1_1

Kind: Q Join

Copy Of: 1USERS,SCALDE MATL_UTILITIES,REVI_WORKING

4 Same Imports

<& News Imports:

Comments:

Model: IMODEL ,R1000

< Build Full View Copy
4 Save Source in Database Only

.

3. In the Name entry box, enter the simple name of the configuration release. If the
source view is Revl_Working, the default name is usually of the form Revl_1.

4. From the Kind option menu, choose the kind of view to create. Usually you will
want to choose the same kind as the source view:

m Spec_Load creates a load view. A load view contains the implementation of a
subsystem.

s Combined creates a combined view. A combined view both contains the sub-
system implementation and expresses the exports from that implementation.

5. Enter or edit the name of the source view in the Copy Of entry box. The pathname
can be:

s A combined or load view (not a spec view)
s A working view or a release view
All units in the source view must be checked in.
6. Choose either the Same Imports or the New Imports radio button:

» If you choose Same impotts, the configuration release will have the same
imports as the source view, regardless of the contents of the New Imports entry
box. Usually you will want the configuration release to have the same imports
as the source view.

m If you choose New Imports, the configuration release will have only the imports
you specify in the associated entry box.

7. Enter any comments in the Comments entry box.

RATIONAL November 1992 95

Rational Access User's Guide

8. In the Model entry box, enter the model from which to create the configuration
release. The model determines the initial links, the settings in the Compiler-
_Switches file, and the target key associated with the view. The default is Mod-
el.R1000. By default, the model is inherited from the source view.

9. Check the Save Source in Database Only box.

10. Click OK.

Making a Code View

Code views are copies of views that contain only the executable code from the view.
Code views are especially useful when security requirements restrict visibility to por-
tions of source code.

To make a code view:

1. Place the Environment cursor in the view.
2. Choose File:New:Code View.

Name: ool __L_LIOREIHNER

Copy of: {USERS, SCALDE . MAIL _UTILITIES,REV1_1_WORKING

Comments:

‘ OK Cancel Help

In the Name entry box, you can enter a different name than the generated prompt.

In the Copy Of entry box, enter or edit the name of the source view.
In the Comments entry box, enter any comments.
Click OK.

W kW

CREATING A SYSTEM

When an application consists of multiple subsystems, these subsystems optionally
can be included in an Environment object called a system. A system pulls an appli-
cation’s components together by logically grouping particular releases from several
component subsystems. Systems:

m Provide a way of identifying particular subsystems as components of a given
application or of a major portion of an application

m Provide an automated means of tracking the latest release from each subsystem
and building activities that reference those releases

96 RATIONAL November 1992

Chapter 12: Using CMVC

m Establish a parent-child relationship between the system and the subsystem
a Have the same internal library structure as subsystems

To create a system:

1. Choose File:New:System.
The following dialog box appears:

Name:

Initial View Name:

IUSERS., SCALDE . MAIL_UTILITIES, IENNENERy

' OK Cancel Help

2. In the Name entry box, you can enter a new name for the system at the prompt.
3. In the Initial View Name entry box, enter a name for the initial view of the system.

4. Click OK.

MAKING OBJECTS CONTROLLED OR UNCONTROLLED

When a component of an application is encapsulated in a subsystem, individual

objects in the component can be controlled—that is, made subject to version control.
Controlled objects must be checked out to be modified and, when desired, the mod-
ified object can then be checked in and made available for other users to check out.

To change the control status of an individual object:

1. Choose CMVC:Control/Uncontrol.
The following dialog box appears:

.... doas

View:

*

IUSERS . SCALDE. MAIL _UTILITIES

Units to control or uncontrol:
& All
o All Ada units

4 Control

< Uncontrol

REV1_1_WORKING

2. Verify the view name in the View entry box.
3. Click the desired radio button in the Units to control or uncontrol field.

RATIONAL ~ovember 1992

97

Rational Access User’s Guide

If you choose the third radio button with the entry box, you select the listed Ada
unit to be controlled or uncontrolled. You can enter the name of a new Ada unit
or units in the entry box or edit the one that is there.

4. Click the Control or Uncontrol radio button to determine the desired state of the
unit(s).

5. Click OK.

CHECKING OUT AN OBJECT FOR CHANGES

Controlled objects must be checked out to be modified; checking out an object
reserves it for editing by acquiring the object’s reservation token. When desired, the
modified object then can be checked in and made available for other users to check

out.
To check out an object:

1. Choose CMVC:Check Out.
The following dialog box appears:

Name: | AUSERS,SCALDE ,MAIL_UTILITIES,.REV1_1_WORKING

Commentis:

B Automatic Demotion if needed

I Automatic accept latest generation
Cox]

2. Verify the pathname in the Name entry box.

3. Enter any comments in the Comments entry box.
4. Click the desired check boxes.

5. Click OK.

Alternative: Press [Check Out] to check out a unit for changes.

CHECKING IN AN OBJECT AFTER CHANGES

When you have finished modifying a controlled object and you want the changes
you made to be recorded in the CMVC database, you must check in the object.

o8 QATIONAL November 1992

Chapter 12: Using CMVC

To check in an object:

1. Choose CMVC:Check In.
The following dialog box appears:

Name: | JUSERS,SCALDE.MAIL_UTILITIES,REVI_1_WORKING

Comments:

=)

2. Verify the pathname in the Name entry box.

3. Enter any comments in the Comments entry box.
4. Press OK.

Alternative: Press [Check In] to check in a unit after changes.

ACCEPTING CHANGES

A subpath can become out of date when objects are checked out and modified in
other subpaths. Objects in a subpath can be brought up to date by accepting
changes, usually from the latest generation into that subpath. Accepting changes is
useful is you want to:

s Synchronize the development of controlled objects that are joined to objects in
other views.
m Update out-of-date objects to the latest generation.

m “Go backward in time” to a previous generation of a controlled object that is
joined to a less-recently updated object in another view.

s Copy new controlled objects between views.

Accepting Changes from a View

Accepting Changes If the Destination Is an Object

1. Place the Environment cursor in the Units directory of the view into which you
want to accept changes.

2. Choose CMVC:Accept Changes.

QAT'ONAL November 1992 99

Rational Access User’s Guide

100

The following dialog box appears:

piataiad:

View to update: | |USERS,SCALDE,MAIL_UTILITIES,REY1_WORKING

Units to update:
<& All {and add new units)

€ | UNITS.TEST_UNIT”SPEC

Update from:
4 Latest

< View or Configuration: REV1_1_WORKING
REY1_2_WORKING

REVA_WORKING

Selected View or Configuration

Restrict to units:

3. Verify that the View to update entry box contains the name of the view into which
you want to accept changes.

4. In the Units to update area, choose the objects you want to update:

m If you want to copy new controlled objects from the source view to the new
view, check All (and add new units). You should also check this button if you want
to update all objects in the view.

s If you want to update only certain objects, list those objects in the entry box
and check the radio button next to that box.
5. Choose the source from which you would like to accept changes:

= If you want to accept changes from the latest generation of each controlled
object, check Latest. If the View to update already contains the latest generation of
a particular object, that object will not be updated.

= If you want to accept changes from a particular view or configuration, check
View or Configuration and select the view or configuration from the list on the
right. If the view or configuration from which you want to accept changes is

RAT'ONAL November 1992

Chapter 12: Using CMVC

not in the list, you can enter its name directly in the Selected View or Configuration
entry box.

6. 1f you want to restrict the objects from which to accept changes, enter those
objects in the Restrict to units entry box. Note that this entry box differs from the Units
1o update option in that this specifies the objects from which changes will be
accepted; Units to update controls the objects into which changes will be accepted.
If the Restrict to units entry box is empty, all objects from the specified view or con-
figuration are assumed.

7. Click OK.

Accepting Changes If the Destination Is a View

1. Place the Environment cursor in the view you want to make current.
2. Choose CMVC:Accept Changes.
The Accept Changes dialog box appears (see above).
3. Click the All (and add new units) radio button.
4. Click the View or Configuration check box.
5. Click the view you want in the list box.

The name of the view appears in the Selected View or Configuration entry box.
6. Click OK.

Note: If you want to update the object to the most recently checked-in generation,
click the Latest radio button in the Update from field.

Accepting Changes from an Object

1. Place the Environment cursor on the object you want to make current.
2. Choose CMVC:Accept Changes.

The Accept Changes dialog box appears (see above).
3. Click the Alf (and add new units) radio button.

4. Click the View or Configuration check box.
5. Click the view that you want in the list box.
The name of the view appears in the Selected View or Configuration entry box.
6. Enter the unit(s) you want the update restricted to in the Restrict to units entry box.
7. Click OK.

Note: If you want to update the object to the most recently checked-in generation,
click the Latest radio button in the Update from field.

JOINING OBJECTS IN DIFFERENT VIEWS

When a team of developers needs to work on objects in the same subsystem, mul-
tiple development subpaths are usually set up. Subpaths usually are created such
that the objects in them are joined automatically. Joining objects in different subpaths
facilitates parallel development because:

a Objects that are joined share a single reservation token. Consequently, a joined
object can be checked out in only one view at a time.

RATIONAL November 1992 101

Rational Access User’s Guide

m Objects that are joined are represented as a single series of generations stored in
the CMVC database. Consequently, changes made to one object can be propa-
gated to the other objects to which it is joined.

If subpaths are set up such that the objects in them are not joined automatically, you
can join two objects provided that:

m The objects have the same pathname within their respective views.
m The objects to be joined are textually identical.

To join two objects:

1. Choose CMVC:Join.
The following dialog box appears:

oin Controlled CMVC Objec

Sever the following objects:

IUSERS,, SCALDE . MAIL_UTILITIES, SRFWMINERTR

then Join to corresponding objects in view:

EYL_1_LIORK MG
REV1_2_WORKING
REVA_WORKING

Selected View
REV1_1_WORKING

2. Verify that the object(s) to be severed are listed in the Sever the following objects entry
box.

3. Double-click the view you want to join the object(s) to in the list box.
The view is highlighted and displayed in the Selected View entry box.
4. Click OK to join the objects.

SEVERING OBJECTS IN DIFFERENT VIEWS

If two users need concurrent access to a controlled object, you can sever the object
between views. Severing provides each copy of the object with its own reservation

102 '?AT'ONAL November 1992

Chapter 12: Using CMVC

token, so that each copy can be checked out independently. Separate sets of gener-
ations are kept for severed objects.

1. Choose CMVC:Sever.
The following dialog box appears:

aver Controlled CHVC Dbjects

Objects:

1USERS, SCALDE , MAIL_UTILITIES, SRSINMITEREE

' OK Cancel Help

2. Enter the name of the object(s) to be severed. By default, the selected object is
named in the entry box.

3. Click OK.
Progress of the procedure is displayed in an /O window.

REVERTING TO A PREVIOUS GENERATION

Each time you check out an object, 2 new generation of that object is created in the
CMVC database. Editing changes are collected in the new generation and saved in
the CMVC database when you check in the object. Thus, generations capture the
changes made from checkout to checkout.

Each generation of an object is numbered, starting with generation 1. Generation 1
is created when you make an object controlled; initially generation 1 contains the
text of the object at the time it was made controlled. Over time the CMVC database
builds up a series of numbered generations for each controlled object.

You can revert an object to any previous generation stored in the CMVC database.

1. Place the Environment cursor on the object you want to revert to a previous gen-
eration.

2. Choose CMVC:Revert to Generation.
The following dialog box appears:

Object Name: AUSERS.SCALDE.MAIL _UTILITIES,.REVI_WORKING.UNITS,TES

Revert object to prior generation number:

£] create new latest generation

RAT'ONAL November 1992 103

Rational Access User’s Guide

v

. Verify the name of the object in the Object Name field.

. Enter the number of the generation you want to return to in the Revert object to prior

generation number entry box.

. To create a new latest generation, check the Create new latest generation box.
. Click OK.

CREATING A NEW ACTIVITY

104

An activity is an execution table that must be set up to specify which of the alterna-
tive load views is to be used from each subsystem. The activity contains one entry
for each subsystem that is required for execution.

1.

W

5.

Choose File:New:Activity.
The following dialog box appears:

Name: |USERS , SCALDE. MAIL_UTILITIES, ESNEEERERON

Copy Of: IMACHINE . RELERSE . CURRENT .ACTIVITY

4 Exact copy preserving references
< Exact copy replacing references with values

& Differential

. In the Name entry box, enter the name of the new activity.
. In the Copy Of entry box, enter the name of the activity from which the new activity

is to be created.

. Click the desired radio button.

To create a new activity with indirect entries for all subsystems in the source activ-
ity 'Machine.Release.Current.Activity, click the Differential radio button.

Click OK.

The new activity is listed in the subsystem directory.

Adding an Activity Entry

To view the activity that you have as the default, choose CMVC:Activity.

. Place the Environment cursor in the activity.

3. Choose Edit:Add Entry.

A command window opens with empty parameters for the names of the sub-
system, spec view, and load view.

4. Enter the parameter names.

. Press [Promote] to add the new activity entry.

RATIONAL November 1992

Chapter 12: Using CMVC

STARTING THE CMVC EDITOR

The CMVC editor displays a configuration image for the specified view or configu-
ration object or for the view enclosing the specified object. A configuration image
for a view is a library-like display of CMVC information pertaining to that view. A
configuration image for a view:

s Contains an entry for each controlled object in the view
m Indicates the latest generation that exists for that object in any view

To start the CMVC editor:

1. Place the Environment cursor in the view for which you want information.
2. Choose CMVC:Editor.

Information about the view is displayed in an Environment window. The initial dis-
play lists all of the controlled objects in the view and the generation of each. A two-
part generation indicates that the specified view does not have the most current gen-
eration (for example, 4/8 indicates generation 4 of 8).

From this display, you can obtain more information about each object, such as date
and user who last modified it, by pressing [Expand] (generally bound to Meta]['D. To
display the release history for the view, press [Explain] (generally bound to [F3D.

COLLECTING INFORMATION ABOUT CONTROLLED OBJECTS

Information about a CMVC-based project can be gathered in several ways. Each gen-
eration of every controlled object has notes associated with it, which can be used as
a scratchpad for arbitrary commentary. In addition, the date, time, and comments
from checkout and checkin operations are automatically logged in an object’s notes.
These notes are the basis for three kinds of objects that can be associated with user
sessions to collect and convey data about the project:

a Work orders are designed to communicate details about specific tasks to be
accomplished. When development proceeds in reponse to a given work order,
time-stamped comments are logged to the work order whenever any command
from package CMVC (or from the CMVC menu) is executed.

m Work-order lists are composed of a group of work orders.
w Ventures contain information about groups of work orders and work-order lists
and control their use. Each work order must have a venture that is its parent.

For complete information about using work orders, work-order lists, and ventures,
see the Project Management (PM) book of the Rational Environment Reference
Manual.

Creating a Work Order

Work orders are designed to communicate details about specific tasks to be
accomplished.

To create a work order:

1. Choose File:New:Work Order.

QATIONAL November 1992 105

Rational Access User’s Guide

The following dialog box appears:

Name: \USERS, SCALDE MAIL _UTILITIES. TN
Notes:
Venture:
Work Order List:
oK Cancel Help

2. In the Name entry box, enter the name of the work order.
3. In the Notes entry box, enter notes about the work order.

4. In the Venture entry box, enter the name of the work order venture (see “Creating
a Venture,” below).

5. In the Work Order List entry box, enter the name of the work-order list (see “Creating
a Work-Order List,” below).

6. Click OK.
Progress of the procedure is displayed in an [/O window.

Creating a Work-Order List

Groups of related work orders constitute a work-order list. For example, a work-
order list may relate to a particular module of code or it may be the set of work
orders assigned to an individual developer.

To create a work-order list:

1. Choose File:New:Work Order List.
The following dialog box appears:

.... 1.

Name: 1USERS, SCALDE . MAIL _UTILITIES, I e R Es
Ventures:
a Make Default

106 PATIONAL November 1992

Chapter 12: Using CMVC

2. In the Name entry box, enter the name of the new work-order list.
3. In the Ventures entry box, enter the name of the parent venture.

4. To make the new list become the new default work-order list in the specified ven-
ture, click the Make Default check box.

5. Click OK.
Progress of the procedure is displayed in an 1/O window.

Creating a Venture

A venture is a management tool that contains information about groups of work
orders and work-order lists and controls their use. Each work order must have a ven-
ture that is its parent.

1. Choose File:New:Venture.
The following dialog box appears:

TUSERS,SCALDE ,MAIL_UTILITIES. (A g

a Make Default

2. In the Name entry box, enter the name of the new venture.
3. In the Notes entry box, enter any notes or comments.

4. To make this venture the default venture for the current session, click the Make
Default check box.

5. Click OK.

Progress of the procedure is displayed in an /O window.

GETTING INFORMATION ABOUT A VIEW

Table 12-1 shows the commands in the CMVC:CMVC Report submenu that list infor-
mation in an I/O window.

RATIONAL November 1992 107

Rational Access User’s Guide

Table 12-1 CMVC Report Commands

Command Lists
CMVC:CMVC Report:List Controlled Controlled objects
CMVC.CMVC Report:List Uncontrolled Uncontrolled objects
CMVC:CMVC Report:List Out-of-Date Objects Out-of-date objects

CMVC:CMVC Report:List Checked-Out Objects Checked-out objects

CMVC.CMVC Report:List View imports View imports
CMVC:CMVC Report:List View Exports View exports
CMVC:CMVC Report:List View Referencers View referencers
CMVC:CMVC Report:List View Model View model

Getting the History of an Object

1. Choose CMVC:.CMVC Report:Object History Information.
The following dialog box appears:

Object Name: | JUSERS.SCALDE.MAIL_UTILITIES.REVI_WORKINC
Starting .
Generation: | 'UYSERS.SCALDE.MAIL_UTILITIES.REV1_WORKINC
Ending

Generation:

B Show Changed Regions

, oK Cancel Help

2. Verify the pathnames of the object and its starting generation in the Object Name and
Starting Generation entry boxes.

3. In the Ending Generation entry box, enter the pathname of the last generation whose
history you want to see.

108 RATIONAL November 1992

Chapter 12: Using CMVC

4. To see the changes that have occurred between the starting and ending genera-
tions you specified, select the Show Changed Regions entry box.

If this box is unselected, you will see only check in/out information and
comments.

5. Click OK.

A log appears in an /O window with information about the object.

RATIONAL November 1992 109

Controlling Jobs

A job consists of one or more commands that are executed together. A job is initiated
each time you edit an object or execute a command, using the menus, the mouse, a
key combination, or a command window. Jobs also can be initiated programmati-
cally from other jobs using commands in package !Commands.Program (see the Ses-
sion and Job Management (SJM) book of the Rational Environment Reference
Manual).

When a job is created, the Environment assigns it a job identification number (job
ID). The job ID is often required by commands that connect, disable, enable, or kill
jobs.

This chapter describes how to display, disconnect from, disable, enable, and kill jobs
using Access. Normally, these operations can be performed only on jobs associated
with your username. To manipulate a job that belongs to another user, you must
have operator capability. (For information about operator capability, see package
Operator in the System Management Utilities (SMU) book of the Rational Environ-
ment Reference Manual)

DISPLAYING CURRENT JOBS

Displaying Your Current Jobs

Choose Session:Jobs:Show Jobs.
The I/O window appears with a list of your current jobs:

m Line indicates the port number through which you are logged in.

m Job indicates the job identification number. You need to know the job number if
you want to connect, disable, enable, or kil a job.

s S indicates the job state. Job states include the following:
— RUN indicates that the job is consuming CPU time or is eligible to consume CPU
time.
— IDLE indicates that the job is not consuming CPU time and has no unblocked
tasks. An idle job may be waiting for input or requests for service.

— WAIT indicates that the job is able to run but is temporarily ineligible for CPU
time.

— DISABLED indicates that the job has been explicitly disabled by a user.

— QUEUED indicates that the job is waiting to run in one of the background
queues.

RATIONAL November 1992 111

Rational Access User’s Guide

m Time indicates the elapsed time since the job began. The time for the editor and
command jobs indicates how long you have been logged in.

m Job Name identifies the command or commands that are being executed as part
of the job. The editor and command jobs represent your session.

Displaying All Current Jobs

Choose Session:Jobs:Show All Jobs.

The /O window appears with a log of all current user activity:

m User indicates the username under which the job is running. The username
*SYSTEM indicates jobs that belong to the Environment itself.

® Line indicates the port number through which the user is logged in. A dash (-)
indicates that the user is not currently logged into the Environment.

® Job indicates the job identification number. You need to know the job number if
you want to connect, disable, enable, or kill a job.

m S indicates the job state. Job states include the following:
— RUN indicates that the job is consuming CPU time or is eligible to consume CPU
time,
— IDLE indicates that the job is not consuming CPU time and has no unblocked
tasks. An idle job may be waiting for input or requests for service.
— WAIT indicates that the job is able to run but is temporarily ineligible for CPU
time.
— DISABLED indicates that the job has been explicitly disabled by a user.
— QUEUED indicates that the job is waiting to run in one of the background
queues.
m Time indicates the elapsed time since the job began. The time for the editor and
command jobs indicates how long you have been logged in.

® Job Name identifies the command or commands that are being executed as part
of the job. The editor and command jobs represent your session.

DISCONNECTING FROM A JOB (PUTTING IT IN THE BACKGROUND)

112

Normally, user-initiated jobs are run in the foreground as connected (or attached)
jobs. However, you can cause user-initiated jobs to execute in the background, mak-
ing them disconnected (or detached) jobs. Disconnecting from a job allows you to
enter other commands while the job continues executing.

To disconnect from the current job:
a Press [Control}[G].

A user-interrupt message is displayed in the message window. You can now move
the cursor and perform other tasks. The job continues to execute. Note, however,
that background jobs are allocated the remaining resources after foreground jobs are
handled; thus, they may execute more slowly.

Note: There is a Disconnect Current Job option omn the Session menu. This command is not
Junctional from the menu, however, because menu operations cannot be executed

RATIONAL November 1992

Chapter 13: Controlling Jobs

while a job is running. The entry is only a reminder that [Control)[G] will disconnect a
Job.

RECONNECTING TO A JOB (PUTTING IT IN THE FOREGROUND)

If you have disconnected from a job, you can reconnect to it, making it a connected
(or attached) job and bringing it into the foreground. A connected job maintains
control of your session, preventing you from entering other commands. However,
connected jobs are allocated the majority of system resources and, thus, execute
more quickly than disconnected jobs.

To connect to a previously disconnected job:

1. Choose Session:Jobs:Connect to Job.
The following dialog box appears:

Jobh Number:

’ oK Cancel Help

2. Enter the number of the job to which you want to reconnect in the Job Number entry
box.

3. Click OK.

Your session is reconnected to the specified job and the . . .running message
appears in the banner of the message window.

DISABLING A JOB

To temporarily stop a job from executing without terminating the job:
1. Choose Session:Jobs:Disable Job.
The following dialog box appears:

e

:Job Enable/Disable/Kill:

Job Number:

Session:

’ OK Cancel Help

QATIONAL November 1992 113

Rational Access User’s Guide

2. Enter the number of the job you want to disable in the Job Number entry box.

3. Enter the name of the session under which the job is running in the Session entry
box.

4. Click OK.

Note: To find a list of job numbers, see “Displaying Current Jobs,” above.

ENABLING A JOB
To restart a job that has been explicitly disabled:
1. Choose Session:Jobs:Enable Job.
The following dialog box appears:
Job Enable/Disable/Kil
Job Number:
Session:
' OK Cancel Help
2. Enter the number of the job to be enabled in the Job Number entry box.
3. Enter the name of the session under which the job is disabled in the Session entry
box.
4. Click OK.
Note: To find a list of job numbers, see “Displaying Current Jobs,” above.
KILLING A JOB
Killing the Current job or the Last Job Created
To kill the current job or last job created, press [Meta][G).
The job is terminated, and a job-abort message is displayed in the message window.
All files declared as Current_Output, Current_Error, or Current_Input, or files on the
current-output, current-error, or current-input stacks, are closed. All other files are
abandoned, and temporary files are deleted.
Killing Any Job
1. Choose Session:Jobs:Kill Job.
114 RAT'ONAL November 1992

The following dialog box appears:

Job Number:

Session:

b Enable/Disable/Kil

oK

Cancel

Help

Chapter 13: Controlling Jobs

2. Enter the number of the job to be killed in the Job Number entry box.
3. Enter the name of the session under which the job is running in the Session entry

box.
4. Click OK.

The job is terminated, and a job-abort message is displayed in the message window.
All files declared as Current_Output, Current_Error, or Current_Input, or files on the
current-output, current-error, or current-input stacks, are closed. All other files are

abandoned, and temporary files are deleted.

RATIONAL

November 1992

115

Customizing Your Access Workspace

This chapter describes how to create and execute user-defined buttons and key-
board macros, redefine keys, and manipulate the sash control on a main Access
window.

EXECUTING MENU COMMANDS WITH USER-DEFINED BUTTONS

User-defined
button panel

l: {Home Library| IRead Maill {Delete Mail Hessage| iDpen| isave| IPrint| {copy] {Paste] {Close]

Depending on what menu commands you use often, you may want to create your
own user-defined buttons (see Figure 14-1). These buttons allow you to execute a
menu command by clicking on the button.

Help

Bl

)] (<] [E (]

S

_12_7_1 Copyright 1332, by Rational.

ccess
Ada_Class
Ada_Progranms
Basic_0Ops
Basic_Ops.Switches
Crash
Library_Suwitches
Mailbox
Mail Utilities
Neuw
PUSERG. DLRLU
[statensnt]

Vbirary J]

LT T PP
*« ROGET = d

L2 LT 2

¥elcome to Roget, home of Technical Documentation and Production for
Rational’s Ada business unit. If you encounter problems, need a software
upgrade, or want a permanent login on this machine, please send mail to
Roget._Mgr.

Figure 14-1 User-Defined Button Panel

The user-defined buttons are displayed as the name of the command enclosed in a
rectangular border, and they appear directly below the window-control buttons and
above the sash. You can create as many buttons as you wish, making space for them
by pulling down the sash in the Environment area. The buttons appear left to right,
in the order in which you create them. A button can be deleted at any time; remain-
ing buttons are relocated to maintain packing. You can save the set of defined but-

RATIONAL november 1992 117

Rational Access User’s Guide

118

tons at any time. The last saved set of buttons is presented automatically when you
create future main Access windows.

Note: If your Access window is as tall as the screen allows, creating a user button that
starts a new row (for example, the very first button you create) bhas no visible effect;
you have to pull down the sash manually to see the button.

Creating a Button for a Menu Command

1. Move the pointer to the desired menu or submenu command.
2. Press [Control] and click the left mouse button.

A button with the name of the command appears above the sash.

Buttons appear from left to right above the sash in the order they are created. You
can create multiple rows of buttons.

Note: You cannot create buttons for File:Exit, for the Session:Screen toggle switches, for
Help menu items except forHelp:Explain Underline arndHelp:On Key, or for commands on the
Function Key Palette.

Changing the Size of the Button Area

You can move the sash that separates the Environment area from the user-defined
button panel.

To move the sash:

1. Place the pointer on the sash control: wwf Jr=
The pointer becomes a cross.
2. Drag the pointer up or down to move the sash.

Activating a User-Defined Button

Place the pointer on the button and click.

Deleting Buttons

1. Place the pointer on the button.
2. Press [Control] and click the left mouse button.

The button disappears.

Saving Buttons

Choose Session:Screen:Save Button Panel.

Your current button panel is saved and will reappear whenever you create a main
Access window.

I?AT'ONAL November 1992

Chapter 14: Customizing Your Access Workspace

BUILDING AND EXECUTING MACROS

Defining a Macro

1. Choose Tools:Macro:Begin Macro Def.

The message Defining keyboard macro appears in the message window.
2. Press the key sequence that you want to make into a macro.
3. Choose Tools:Macro:End Macro Def.

The message End of keyboard macro appears in the message window.
The macro is now defined.

Note: You cannot make mouse operations part of a macro.

Alternative: Press Meta][|] to begin macro definition and [Meta][]] to end macro
definition.

Executing a Macro

Choose Tools:Macro:Execute Macro.
The macro is executed.

Alternative: Press [Meta][X] to execute the macro.

Binding a Macro to a Key

Before starting, you may want to execute the Help: OnKey operation to see if the key
is already bound.

1. Choose Tools:Macro:Bind Macro to Key.

A message appears in the message window prompting you for the key that will
bind the macro.

2. Press the key to be bound.
You can now execute the macro by pressing the key.

Alternative: Press [Control][Meta)[=] or[Control][Meta][+] to bind a macro to a key.

Saving the Current Macros

1. Press [Cmd Window] to create a command window.
2. Enter Macro.Save.
3. Press [Promote].

All macros currently bound to keys are permanently saved.

RAT'ONAL November 1992 119

Rational Access User’s Guide

REBINDING KEYS

Before starting, you may want to execute the Help: On Key operation to see if the key is
already bound.

Rebinding Temporarily

BN N =

. Press [Cmd Window] to create a command window.

. Enter Key .Define.

. Press [Complete].

. At the Key_Name prompt, enter the key you want to rebind to the new command.

If you do not know the name of the key, choose Help:On Key and then press the
key for which you want to know the name. The key name for that key is displayed
in the message window.

. At the Command_Name prompt, enter the name of the command you want bound

to this key.

. Press [Promote].

Rebinding Permanently

4.

. Place the Environment cursor in your home world.
. Create a procedure named Rational_Access_Commands by copying the text from

the template in !Machine.Editor_Data.Rational_Access_User_Commands into an
Ada unit.

See the section titled “Creating an Ada Unit” in Chapter 7 for details.

. Edit the body of Rational_Commands so that the case statement contains alterna-

tives for those keys you want to rebind.
Choose Program:Promote to Installed.

The changes will be in effect when you next log in.

For more information about rebinding keys, see the Key Concepts section of the Ses-
sion and Job Management (SJM) book of the Rational Environment Reference
Manual.

CHANGING THE SCREEN TO INVERSE VIDEO

Choose Session:Screen:inverse Video to toggle the inverse video on or off.

The screen inverts the text color with the Access area background color.

SETTING THE VISUAL BELL

120

Choose Session:Screen:Visual Bell to toggle the bell on or off.

When the visual bell is on, the screen will flash once to indicate an error instead of
beeping.

RATIONAL November 1992

Using Command Windows

Certain operations are not available from Access menus and buttons. To perform
these, you execute Environment commands from command windows. Command
windows are actually small Ada programs; Environment commands are Ada proce-
dures. Command windows are also useful for performing several commands in a sin-
gle operation and for executing your own commands. Note that all Environment
commands and most Access commands can be executed from a command window.
See Appendix C for a list of the Environment commands from which Access com-
mands are built.

To find out which Environment commands are most closely related to a particular
menu item, see the online help for that item. If you want to know the menu item or
button that is most closely related to an Environment command, see Appendix C,
“Access Equivalents: Environment Commands.”

CREATING AND EXECUTING A COMMAND-WINDOW PROGRAM

1. Press [Cmd Window] to open a command window.

2. Enter the Environment command, formatting frequently for multiple-line pro-
grams by pressing [Format].

3. Press [Semanticize] to check for semantic errors.
The Environment underlines existing errors.

4. Correct any errors and semanticize again.

5. Press [Promote] to execute the program.

Alternative: Press Meta)[C] to create a command window. Choose File:Run or
Program:Promote to execute the program.

GETTING COMMAND COMPLETION

1. Place the Environment cursor in a command window.
2. Enter some fragment of a command name.

® You can supply only a command name or name fragment. Completion will
fail if you enter any part of the argument list, including the parenthesis that
begins the list.

m Completion ignores final semicolons if any exist (for example, if you have
used the Format command and it added a semicolon after the name or name
fragment).

3. Press [Complete].

This completes the command and provides prompting for any parameters.

QATIONAL November 1992 121

Rational Access User’'s Guide

Note: If the command fragment is ambiguous, the complete operation fails and the
Environment displays the possibilities in another window. Select the desired com-
mand from the display ([Controll+click), and press [Complete] again. The Environment
will fill in the new command in the command windouw.

Alternative: To get completion, choose Program:Complete.

MOVING IN A COMMAND WINDOW

122

Moving to an Underline

To move to the next underline, choose Navigate:Next Underline.
To move to the previous underline, choose Navigate:Previous Underline.

Alternative: To move to the next underline, press Meta][=] or[Meta]{[+], o7 press [Meta] [-]
or[Meta] [_] to move to the previous underline.

Moving to a Prompt or Underline

To move to the next prompt (in reverse video) or underline, choose Navigate:Next ftem.
To move to the previous prompt or underline, choose Navigate:Previous ltem.

Alternative: Press Next] or[Meta][T}to move to the previous prompt or underiine, or
[Previous] or [Meta][d] to move to the next prompt or underline.

Turning Off a Prompt

1. Place the Environment cursor on the prompt to be turned off.
2. Choose Edit:Deselect.

The prompt becomes normal video, and the text can now be edited.

Alternative: Press [Control][X].

Turning Off Underlines

1. Place the Environment cursor anywhere in the window.
2. Press the {Und Of] key.

All underlines are removed from the current window.

Alternative: Press [Control]{X].

R)ATIONAL November 1992

Chapter 15: Using Command Windows

REEXECUTING A COMMAND

1. Place the Environment cursor in the command window containing the command
to be reexecuted.

2. Press [Promote].

The command is executed again.

ENTERING A NEW COMMAND

Entering a New Command in the Same Window

1. Delete the command.
s If the old command is not in reverse video, clear the command of text (see
below).

m If the old command is in reverse video, place the Environment cursor on the
command.

2. Enter the new command.

If the old command was in reverse video, it will disappear and be replaced by the
new command.

3. Press [Promote] to execute the new command.

Clearing a Command Window of Unneeded Text

1. Place the Environment cursor in the command window to be cleared.
2. Choose File:Revert.

A [statement] prompt appears in place of the text. You can enter a2 new command.

ABRernative: Press [Edi].

GOING BACK TO PREVIOUS COMMANDS

The Environment maintains a history of commands and Ada programs for each com-
mand window. You can access and execute any of the commands in this sequential
history.

Redisplaying a Previous Command in the Historical Sequence

1. Place the Environment cursor in the command window.
2. Press [Control][Meta][<].

The previous command entered in the command window appears.

Repeat the sequence to see earlier commands.

QATIONAL November 1992 123

Rational Access User’s Guide

Redisplaying a Later Command in the Historical Sequence

1. Place the Environment cursor in the command window.
2. Press [Control]jMeta][>].

The next command in the historical sequence appears.

Repeat the steps to see later commands in the sequence.

GETTING THE PARAMETERS OF A COMMAND BOUND TO A KEY

124

1. Press [Prompt For).
A Prompt For: message appears in the message window.
2. Press the key or key combination whose command parameters you want to see.

The command bound to the key you pressed is listed in the message window, and
its parameters appear in the command window.

RATIONAL November 1992

Setting Up Access

This appendix:

m Provides a brief overview of Access components and how they interact

m Describes hardware and software required for running Access and provides sam-
ple machine configurations

HOW ACCESS WORKS

Access runs as an X Window System (X) application on a workstation. As such,
Access has several software components, which interact with X software compo-
nents and with the Rational Environment. The following subsections briefly define
several X concepts and then describe Access in terms of these concepts.

X Application Components

X is a network-based graphics window system that allows you to work with multiple
software applications simultaneously, each in a separate X window. Software appli-
cations that receive input and/or display output through X windows are called X cli-
ents. xclock is a frequently encountered X client, as is one of Access’s two
components.

Whereas an X client performs application-specific tasks, the actual communication
between the X client and an X window is mediated by a software component called
an X server. That is, the X server controls the hardware display, which consists of

one or more screens, plus the associated input devices (generally a keyboard and a
mouse or other pointing device). When you enter input using a keyboard or mouse,
the X server conveys the input to the appropriate X client. Conversely, when the X
client has output, it requests that the X server pass this information to the screen.

One X server is associated with each display. An X server may run on the same work-
station that runs the X client, in which case the X client is said to use a local display.
Alternatively, the X server may run on a different processor on the same network.
For example, the X server may run on a special-purpose display called an X terminal
or it may run on another workstation, controlling that workstation’s display. In this
case, the X client is said to use a remote display.

A special kind of X client called a window manager gives users control over the size

and location of each X window, independent of the X client that controls the win-

dow’s contents. For more information on X, see V. Quercia and T. O'Reilly’s X Win-
dow System User’s Guide, OSE/Motif Edition (Sebastopol, CA: O'Reilly & Associates,

1991).

[?ATIONAL November 1992 125

Rational Access User’s Guide

126

To summarize:

X client: A software application, such as xclock, Motif Window Manager
(mwm), or Access, which communicates with users through one or more X win-
dows on a display.

Display: The screen, keyboard, and mouse you use to communicate with appli-
cations in X windows.

X server: The software that mediates between a display and an X client. An X
server controls each display and passes information between X clients. An X
server can run on a variety of hardware. Two examples are a workstation and a
special-purpose display called an X terminal.

Access as an X Application

Access has two components:

Access X Client: The portion of Access that runs as an X client on the workstation
and that provides the elements of the graphical user interface (menus, command
buttons, dialog boxes, and so on). The Access X Client is also a client of (passes
information to and from) the Access Server.

Access Server: The portion of Access that runs as a background Environment job
on the Rational R1000 Software Engineering Server (the R1000 hardware). The
Access Server responds to information from the Access X Client by executing
commands in the Environment.

When you type characters (or use the mouse to click) in an Access window:

. The X server directs the characters/pointer actions to the Access X Client.
. The Access X Client forwards the characters/pointer actions to the Access Server.

. The Access Server uses the keymap to translate characters/pointer actions into

Environment commands.

. The Access Server then invokes the appropriate Environment commands and

passes information about the command’s output to the Access X Client.

. The Access X Client requests that the X server display any user-visible changes to

the screen on your display.

Mouse/key - —1 I
input

ispl
Display X Server Access R1000
X Client Access
Server
- -

Figure A-1 Sample Information Flow in a Standard Access Setup

RATIONAL November 1992

Appendix A: Setting Up Access

REQUIREMENTS FOR RUNNING ACCESS

Each Access user needs:

m A login on a UNIX workstation running a window manager such as the Motif
Window Manager (mwm). This workstation must also be able to run the Access
X Client software. (See the Rational Access Release Information for a list of sup-
ported workstations.)

m A display running an X server. This display can be:

— Alocal display (that is, a screen connected directly to the workstation that runs
the Access X Client).

— A remote display (that is, a screen associated with some other processor net-
worked to the Access workstation). A remote display may be an X terminal or
a screen connected to any workstation that runs an X server.
s An Environment account on the R1000 running the Access Server. If you are not
sure whether the Access Server is running, ask your system manager; alterna-
tively, you can:

1. Enter the What.Users command from a non-Access interface to the R1000 (for
example, from an RXI window).

2. Look for the name of the Access Server. It will look something like:
Rational_Access Commands Rev#

3. If the job is not listed, have your system manager start the job or install Access
if necessary.

Configurations for Using Access

The elements listed above can be configured in several ways. The two most typical
configurations are described in the following examples.

Example 1. In the most typical setup, the Access X Client, the X server, and the win-
dow manager all run on the same UNIX workstation, as shown in Figure A-2. Access
windows are displayed on the workstation’s local display. The Access X Client con-
nects to the Access Server on the R1000 through Telnet.

RATIONAL November 1992 127

128

Rational Access User’s Guide

UNIX Workstation

Access X Client*

R1000*

Telnet

Window Manager
X Client

* Supported by Rational

Access
Server*

Figure A-2 A Typical Configuration witb a UNIX Workstation and a Local Display

Example 2. In an alternative setup, shown in Figure A-3, the Access X Client and
the window manager run on a UNIX workstation, while the Access window is dis-
played remotely on an X terminal (a processor that has only an X server running on
it). Note that one workstation can interact with numerous X terminals. As before, the

Access X Client connects to the Access Server on the R1000 through Telnet.

X Terminal

Remote Display

X Server

A

Access X Client

P

UNIX Workstation R1000
\&Vgnn%%vgr Environment
X Client

Access
Server

Figure A-3 A Configuration with a UNIX Workstation and a Remote Display

RAT'ONAL November 1992

User-Interface Basics

Rational Access is an OSF/Motif-based application, which means that it follows OSF/
Motif standards for mouse, menu, and dialog-box operations. This appendix pro-
vides a brief overview of basic terms and operations for users who are inexperienced
with this type of user interface. For more detailed information, see the OSF/Motif
User’s Guide.

CHOOSING MENU COMMANDS

Rational Access commands are available from menus you pull down from the menu
bar at the top of an Access window.

Terms for Describing Menus

This manual uses the notation Menu:Command to refer to commands on menus. For
example, Edit:Copy refers to the Copy command on the Edit menu.

Some commands are executed from submenus. Notation for these commands is
Menu:Submenu:Command. For example, File:New:Text File refers to the Text File command on
the New submenu of the File menu.

As described in the following sections, you can use the mouse or the keyboard to
pull down menus from the menu bar and then choose Access commands from them.
Note that:

s When you choose a command whose name is folowed by an ellipsis (...), a dia-
log box appears requesting further information.

m When you choose a command whose name is followed by an arrow, a submenu
appears with more command choices.

s If a command name appears in gray, it is currently inapplicable and cannot be
chosen.

Using the Mouse to Choose Commands from Menus

There are two ways to choose a command from a menu: clicking with the mouse
and dragging with the mouse.

Clicking with the Mouse

1. Put the pointer on the appropriate menu title in the menu bar and click. This
opens the menu.

[?ATIONAL November 1992 129

Radonal Access User’s Guide

130

2. Put the pointer on the name of the desired command and click. This initiates the
command.

If the command is followed by an arrow, a submenu will appear when you click on
the command.

Put the pointer on the name of the desired command in the submenu and click. This
initiates the command.

Dragging with the Mouse
1. Put the pointer on the appropriate menu title; press and hold the left mouse but-
ton to pull down the menu.

2. Drag the pointer to the desired command (a shaded rectangle appears around the
command designated by the pointer).

3. Release the button to initiate the command.

If you drag on a command with a2 submenu, the submenu appears; it disappears
when you pass the command.

Drag to the right to the desired command on the submenu and release to initiate the
command.

Table B-1 Summary of Mouse Operations in Menus

Mouse Operation Result
Click on a menu name from the Pulls down the menu
menu bar

Click on 2 command name froma | Initiates the chosen command from the chosen

menu menu
Drag on a menu, releasing on a Initjates the chosen command from the chosen
command name menu

Using the Keyboard to Choose Commands from Menus

You can use keyboard alternatives to choose menu items, or you can move the key-
board focus to the menu bar and manually traverse through the menu structure.

Using Mnemonics

You can use mnemonics to pull down menus and choose commands without using
the mouse. A mnemonic is a letter that you can type from the keyboard to activate
a particular menu or command. The mnemonic for a given menu or command is the
underlined character in the menu title or command name.

You use a modifier key with the mnemonic for a menu to distinguish the mnemonic
from other characters you type. The modifier key is indicated in this manual by the
logical key name [Meta].

For most users, the [Meta] key is mapped to a physical key labeled [Al] or 01 1f you
have customized your key bindings, keep in mind the key you would actually press.
Note that the X Window System refers to this key as Meta or Mod1, and OSF/Motif
uses MAIt.

RATIONAL November 1992

Appendix B: User-Interface Basics

To use mnemonics to choose a command from a menu:

1. Hold down [Meta] and then press the letter that is underlined in the menu’s title;
release both keys. This pulls down the menu.

2. While the menu is displayed, type the letter that is underlined in the command’s
name (you do not need to hold down {MetaD. This initiates the command.

Note that some menu commands have a keyboard shortcut listed next to the menu
command name (for example, Session:Jobs:Kill Job has a Meta+G command-key entry
next to the menu command). You can execute the menu command from the key-
board by pressing the designated keys without opening the menu.

Choosing Directly from the Menu Bar

1. Press [Menu Bar].

The keyboard focus moves the File menu, which becomes surrounded by the
location cursor (a shaded rectangle).

2. Use [«] and [-] to move the location cursor to the desired menu.
3. Use [{] to open the menu and reveal its list of commands.

4. Use [7] and [{] to move to the command you want to execute. If the command has
a submenu (designated by an arrow next to the command), press [—)], [Space Bar],
or {Return] to open the submenu.

5. To execute the command, press [Space Bar] or [Return].

Executing Window-Control Button Commands

You can execute window-control operations from the buttons on the window-
control panel, located below the menu headings.

To execute a button command, put the pointer on the button and click.

For information on the window-control button panel, see Chapter 1, “Getting
Started.”

Alternative: You can move the keyboard focus to the window-control button panel
by pressing [Control|[Tab). To execute a button command, use the arrow keys to move the
location cursor (it appears as a shaded box around the button) to the button and
press [Return} or[Space Bar].

Pressing [Tab] or [Control]{ Tab] will move the keyboard focus to the user-defined button
panel, and repeating will move it to the sash and then back to the Environment area.
Note that you cannot move the sash with the keyboard.

RESPONDING TO DIALOG BOXES

Dialog boxes are windows that appear when commands require additional informa-
tion. Dialog boxes may appear right after you choose a command from a menu, or
they may appear during command execution to ask you a question, inform you of
an error, or warn you about a potential loss of data.

Note: Some of the operations described in this section may be affected by the
keyboard-focus policy set in your X resources. Contact your UNIX system administra-
tor for more information on X resources.

I?AT‘ONAL November 1992 131

Rational Access User’s Guide

Terms for Describing Dialog Boxes

Dialog boxes can contain various types of elements:

Label JUSERS, SCALDE WAR_N_PERCE

Print Options: WE Border

PROD_LASER S Check
List box 4 ASER " box
MFG_LP B Filename
LP_LR B Ada Format
DAISY
DC_LASER Page Layout: € Twoup
Slider — 0'&\ Radi
1{_ Radio
Scroll bar ES,_QPPLE © Landscape puten

——s’él'/’- 4 Al Pages
Stepper —— 1] ected Printer: .
arrow MLASER z < First Page:

Last Poge: [550]

Entry
Other Options: - box
Default oK
button ‘ ,_—-ﬁr_—‘ Cancel Help

Command buttons

Figure B-2 A Typical Access Dialog Box

m Labels represent the name of a particular part of a dialog box. In the Print dialog
box example, the label refers to the Name entry box.

s List boxes present a scrollable list of items from which to choose. Typically the
chosen item appears in a related text-entry box.

a Scroll bars are used to change a user’s viewpoint of a list. You can click the scroll
arrows to move the slider, or drag the slider itself.

m Command bulttons are controls that cause immediate action. The following com-
mand buttons appear at the bottom of most dialog boxes:
— OK, which causes the chosen command to execute
— Cancel, which closes the dialog box and terminates the chosen command

— Help, which displays information about the dialog box in the Access help win-
dow
w The default button is highlighted and can be activated by pressing [Retumn],
regardless of current keyboard focus within the dialog box. The only exception
is when you are entering text in an entry box (see below) that accepts [Retumn} as
a literal text entry (for example, the Comments entry box in CMVC:Check In).

132 RAT'ONAL November 1992

Keyboard
focus
(shaded
rectangie)

Prompt

Default
button

Appendix B: User-Interface Basics

Entry boxes are where you type information such as filenames.

~— The information inside a text-entry box is the text field displayed by the box.
If the text field is longer than the box itself, you can scroll it.

— An insertion point (A) indicates where characters are inserted in the text.

Radio buttons set options that affect a command’s behavior. Within a group of
radio buttons, only one can be selected (indicated by the solid diamond).

Check boxes also set options that affect a command’s behavior; however, unlike
radio buttons, any number of check boxes can be selected (indicated by a solid
square).

Scale bars (not pictured) provide numeric input to a command. The number
specified by a scale bar is determined by the position of the slider inside the bar.

Option menus (not pictured) reveal a list of commands or other selections. To
display an option menu, click the option button (distinguished by a graphic box
next to the label). The new selection becomes the label on the option button.
Popup menus (not pictured) are menus inside a dialog box. Click on the menu to
reveal the menu commands, and then click on the command to execute it.
Popup menus have an arrow symbol (=>) next to the label.

Using the Mouse to Respond to Dialog Boxes

Text-Entry Boxes

To start typing in a text-entry box, put the pointer in the text-entry box and click;
start typing.

To erase adjacent characters in a text-entry box, put the pointer on the first
unwanted character, press the left mouse button, and drag the pointer across the

rest of the unwanted characters. The selected characters disappear when you
start to type on them.

To erase the entire contents of a text-entry box, put the pointer in the text-entry
box and double-click. The contents of the box appear in reverse video to indi-
cate that they have been selected using Motif selection. The characters in the
Motif selection disappear when you start to type.

1USERS. SCALDE . TENNGIWEY

Figure B-3 A Typical Dialog Box with a Text-Entry Box, Command Buttons, and a
Motif-Selected Prompt

RATIONAL November 1992 133

Rational Access User’s Guide

134

Other Controls

= To initiate the action of 2 command button, put the pointer on the button and
click.

m To specify an option associated with a radio button, put the pointer in the empty
diamond and click. The diamond is filled in with a solid color and the previously
selected radio button in the same group of buttons is deselected (its solid dia-
mond becomes an outline).

m To specify an option associated with a check boz, put the pointer in the empty
box and click. The box is filled in with a solid color.

s To select an item from a list box, put the pointer on the desired item and click.
The item is displayed in reverse video in the list and appears in the associated
text-entry box.

s To deselect an item from a list box, put the pointer on the selected item and
double-click.

m To specify a number using a scale bar, put the pointer on the slider and drag it in
the appropriate direction until the desired number appears beside the scale bar.

m To activate a2 window-control button or user-defined button, click the button.

s To activate a search arrow in a dialog box, click the arrow to search for the next
specified item in the direction the arrow is pointing.

a To remove a help window or a control palette, click: [y
AR

Using the Keyboard to Respond to Dialog Boxes

You can use keyboard alternatives to navigate a dialog box, specify information, and
initiate the actions of command buttons, all without using a mouse. (If you have cus-
tomized key bindings, keep in mind the keys you would actually press.)

Note: The operations in this section do not apply if you have set your keyboard-focus
policy to pointer; you must first explicitly move the keyboard focus to the particular
dialog box. Once the keyboard focus is on the box, you can execute these operations.
Contact your UNIX system administrator for belp on focus policy.

Navigating a Dialog Box

When you use keyboard shortcuts to respond to a dialog box, you must establish
which element of the dialog box has the keyboard focus—that is, which element is
to receive input from the keyboard. The keyboard focus is indicated by a shaded
rectangle around the element (see Figure B-2).

When a dialog box first appears, the keyboard focus is usually around the OK button.
You can move the keyboard focus to other elements and groups of elements in the
dialog box. To do this, press [Tab] to move the focus forward around the dialog box,
and press [Shift)Tab] to move the focus in the reverse direction.

For example, choosing the File:New:Text File command brings up a dialog box (see Fig-
ure B-2) in which the keyboard focus is on the text-entry box. Start typing, and the
prompt disappears. Press [Tab] to move the keyboard focus to the group of command
buttons.

Note that [Tab] and [Shift][Tab} alone do not move to every element in the box. Rather,
these keys move the focus among;

RAT'ONAL November 1992

Appendix B: User-Interface Basics

a Individual text-entry boxes and list boxes

s Groups of radio buttons, check boxes, or command buttons. Each group is
called a field. (Within each group, a predetermined element receives the key-
board focus.)

To move the keyboard focus among the elements within a group or among the items
within a list box, press the arrow keys to move the focus up, down, left, or right, as
appropriate.

For example, use [-=] to move the focus from the OK button to the Cancel button
within the group of command buttons at the bottom of a dialog box.

Note: You can also use[Control][Tab] instead ofTVab] to navigate in a dialog box. This is
useful because some entry boxes (for example, theComments entry box in the CMVC:Check
In and Check Out dialog baxes) accept [Tab] as a literal part of the text entry and do not
move the location cursor to the next field.

Specifying Information

To toggle the settings of check boxes and radio buttons, or to select an item from a
list box:

To move the keyboard focus to the desired box, button, or list box item, use [Tab] or
[ControlffTab] and/or the arrow keys.

To select or deselect the element, press [Space Bar] (this is equivalent to putting the
mouse pointer on it and clicking).

Initiating the Action of a Command Button

Within a dialog box, one command button is designated as the default button. As
shown in Figure B-2, the default button has a special outline that is different from
the keyboard-focus border. A given dialog box has only one default button.

To initiate the action of a default button, press [Return]. You do not need to move the
keyboard focus to the default button first. This is equivalent to putting the pointer
on the button and clicking.

For example, when you finish typing in the text-entry box of the File:New:Text File com-
mand’s dialog box, you can press [Return] to activate the default button (OK) while the
keyboard focus remains on the text-entry box.

To initiate the action of another command button, you first turn it into the default
button:

1. Use [Tab] and/or the arrow keys to move the keyboard focus to the desired com-
mand button. Moving the keyboard focus to a command button automatically
moves the default designation as well.

2. Press [Retum).

For example, if you wanted to cancel the File:New:Text File command’s dialog box
instead of activating it, you would move the keyboard focus to the Cancel button and
press [Retumn).

RATIONAL November 1992 135

Rational Access User’s Guide

136

Shortcut for Canceling a Dialog Box

Note that pressing [Escape] cancels a dialog box regardless of the keyboard focus or
default designation.

Table B-4 Summary of Keys for Responding to Dialog Boxes

Note: If you bave customized your key bindings, keep in mind the keys you would
actually press

Key Action

[Tabl or Moves the keyboard focus forward to an element or group of ele-

[Controf}{Tab] ments in the dialog box

[Shift][Tab] Moves the keyboard focus back to an element or group of elements
in the dialog box

=1 M Moves the keyboard focus among elements in a group

[Space Bar] Selects the element with the keyboard focus

[Return] Initiates the action of the default button

[Escape] Cancels the dialog box

Table B-5 Summary of Keys for Editing Text-Entry Boxes

Note: If you bave customized your key bindings, keep in mind the keys you would
actually press.

Key Action

[«] Moves the insertion point in the direction of the arrow, scrolling if

[-1 necessary

[Home] Moves the insertion point to the beginning of the field

(End] Moves the insertion point to the end of the field

[Shift]{«] Selects characters in the direction of the arrow, starting at the inser-

[Shift][—] tion point; typing deletes the selected characters

[Shift] [Home] Selects characters from the insertion point to the beginning of the
field; typing deletes the selected characters

[Shift]{End] Selects characters from the insertion point to the end of the field,
typing deletes the selected characters

[Delete] or Deletes previous character

[Back Space]

[Control][D] Deletes next character

RATI O NAL November 1992

Access Equivalents:
Environment Commands

This appendix lists basic Environment commands and the Access menu items and
buttons that are most closely related to them. This appendix will help if you know
the Environment command that you would enter in a command window and are try-
ing to perform the same operation through the Access menus and buttons.

Note that many of these operations can also be performed through key and mouse
bindings. If an operation is available only through key and mouse bindings, that is
noted. (See Appendix D or the Rational Access Quick Reference for key and mouse
bindings.) Environment commands that are not listed in this appendix must be exe-
cuted through command windows.

If you want to start with the name of an Access menu item and find out which Envi-
ronment command or commands are similar to that menu item, see the Access online

help.

Table C-1 Environment Commands and Access Equivalents

Environment Command

Access Menu Items or Buttons

Abbreviations.Print File:Print
Access_List.Set File:Properties
Access_List.Set_Default File:Properties
Activity.Create File:New:Activity
Activity.Edit CMVC:Activity
Activity.Set_Default Session:Profile

Ada Create_Body

Program:Build:Build Body

Ada.Create_Private

Program:Build:Build Private Part

Ada Make_Inline

Program:Build:Make Inline

Ada Make_Separate Program:Build:Make Separate
Ada.Other_Part Navigate:Other Part
Ada.Show_Unused Program:Show Unused
Ada.Show_Usage Program:Show Usage

Ada. Withdraw Program:Build:Withdraw
Command.Debug Debug:Start Debugging of Command
Common.Abandon File:Close
Common.Clear_Underlining Edit:Underlines Off
Common.Commit File:Save

Common. Complete Program:Complete

Common.Create_Command

Not available from menus or buttons. See
Function Key Palette online.

RAT'ONAL November 1992

137

Rational Access User’s Guide

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Common.Definition
In_Place => False

In_Place => True

File:Browse

Navigate:Definition

Not available from menus or buttons. See
Function Key Palette online.

Common.Demote Program:Demote
Common.Edit
Open object for editing File:Open
Clear command window File:Revert
Withdraw Ada construct for editing Program:incremental:incremental Edit
Edit entry in an activity Edit:Edit Entry
Edit entry in a searchlist Edit:Edit Entry
Edit entry in a switch file Edit:Edit Entry

Common.Elide

Not available from menus or buttons. See
object operations in Appendix D.

Common.Enclosing
In_Place => False
In_Place => True

Navigate:Enclosing
Not available from menus or buttons. See
Function Key Palette online.

Common.Expand

Not available from menus or buttons. See
object operations in Appendix D.

Common.Explain

Help:Explain

Common.Format

Format Ada unit
Format library or mailbox

Program:Format
File:Revert

Common.Insert_File

File:Insert File

Delete construct from Ada unit
Delete mail message

Delete entry from an activity
Delete entry from a set of links
Delete entry from a searchlist
Delete entry from a switch file

Common.Object.Child Not available from menus or buttons. See
object operations in Appendix D.
Common.Object. Copy File:Copy File
Common.Object.Delete
Delete any object File:Delete Fiie

Program:incremental:incremental Delete
Tools:Mail:Delete Mait Message
Edit:Delete Entry

Edit:Delete Entry

Edit:Delete Entry

Edit:Delete Entry

Common.Object.First_Child

Not available from menus or buttons. See
object operations in Appendix D.

Common.Object.Insert
Create new Ada unit
Add construct to Ada unit
Add entry to an activity
Add entry to a set of links
Add entry to a searchlist
Add entry to a switch file

File:New:Ada
Program:Incremental:Incremental insert
Edit:Add Entry

Edit:Add Entry

Edit:Add Entry

Edit:Add Entry

Common.Object.Last_Child

Not available from menus or buttons. See
object operations in Appendix D.

Common.Object. Move

File:Move File

138 RATIONAL

November 1992

Appendix C: Environment Commands

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Common. Object. Next

Not available from menus or buttons. See
object operations in Appendix D.

Common. Object.Parent

Not available from menus or buttons. See
object operations in Appendix D.

Common. Object.Previous

Not available from menus or buttons. See
object operations in Appendix D.

Common.Promote
Close any object
Promote Ada unit
Promote Ada unit stub
Send mail message

File:Close

Program:Promote
Program:incremental:Incremental Promote
Tools:Mail:Send Mail Message

Common.Redo

Not available from menus or buttons. See
object operations in Appendix D.

Common.Release

File:Close

Common.Revert

File:Revert

Common.Semanticize
Check most objects
Check mail message

Program:Semanticize
Tools:Mail:Check Mail Message

Common.Sort_Image
Sort mailbox
Sort other objects

Tools:Mail:Sort Mailbox
Not available from menus or buttons. See
object operations in Appendix D.

Common.Undo
Undelete mail message
Undo other operation

Tools:Mail:Undelete Mail Message
Not available from menus or buttons. See
object operations in Appendix D.

Compilation. Demote
Goal => Installed

Program:Demote to Instalied

Goal => Source Program:Demote to Source

Goal => Archived Program:Demote to Archived
Compilation. Destroy File:Delete File
Compilation.Load Program:Build:Load
Compilation.Parse Program:Build:Parse Source Files

Compilation.Promote

Goal => Source Program:Promote to Source
Goal => Installed Program:Promote to Installed
Goal => Coded Program:Promote to Coded
Cmvc.Abandon_Reservation CMVC:Abandon
Cmvc.Accept_Changes CMVC:Accept Changes
Cmvc.Check_In CMVC:Check in
File:Properties
Cmvc.Check_Out CMVC:Check Out
File:Open
File:Propetties

RAT'ONAL November 1992

139

Rational Access User’s Guide

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Cmvc.Copy
Create_Combined_View => True File:New:Working View
Create_Load_View => True File:New:Working View
Create_Spec_View => True File:New:Spec View
Any kind and freeze copy File:New:Release View
Cmvce.Destroy_Subsystem File:Delete File
Cmve.Destroy_System Fle:Delete File
Cmvc.Destroy_Views File:Delete File
Cmve.Edit CMVC:CMVC Editor
Cmvc. Import CMVC:Imports/Model

Cmvc.Information
Show_Exported_Units => True
Show_Imports => True
Show_Model => True
Show_Referencers => True

CMVC:CMVC Report:List View Exports
CMVC:CMVC Report:List View imports
CMVC:CMVC Report:List View Model
CMVC:CMVC Report:List View Referencers

Cmuvec.Initial
Systemn_Object_Type =>

Cmvc.Combined_Subsystem File:New:Subsystem
Cmvc.Spec_Load_Subsystem File:New:Subsystem
Cmvc.System File:New:System
Cmvc . Join CMVC.Join
Cmvc.Make_Code_View File:New:Code View
Cmvc.Make_Controlled CMVC:ControlUncontrol
File:Properties
Cmvc.Make_Path File:New:Working View
Cmvce.Make_Spec_View File:New:Spec View
Cmvc.Make_Subpath File:New:Working View
Cmvc.Make_Uncontrolled CMVC:Control/Uncontrol
File:Properties
File:Delete File
Cmvc Release File:New:Release View
Cmve.Revert CMVC:Revert to Generation
Cmvc.Sever CMVC:Sever

Cmvce.Show_All_Checked_Out

CMVC:CMVC Report:List Checked-Out Objects

Cmvc.Show_All_Controlied

CMVC:CMVC Report:List Controlled

Cmvce.Show_All_Uncontrolled

CMVC:CMVC Report:List Uncontrolled

Cmvc.Show_History

CMVC:CMVC Report:QObject History Information

Cmvc.Show_Out_Of_Date_Objects

CMVC:CMVC Report:List Out-of-Date Objects

Debug.Activate

Activate Breaks and Activate All Breaks buttons in
the Breakpoints buttons on the Debugger Pal-
ette

Debug.Address_To_Location

Address To Location... button in the Machine and
Memory buttons on the Debugger Palette

Debug.Attach_Process

Attach Process button in the Target buttons on
the Debugger Palette

QATIONAL November 1992

Appendix C: Environment Commands

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Debug.Break Break..., Break Here, and Temporary Break Here
buttons in the Breakpoints buttons on the
Debugger Palette

Debug.Catch Catch... and Catch Unlisted buttons in the Excep-

tion Handling buttons on the Debugger Palette

Debug.Clear_Stepping

Clear Stepping button in the Debugger Control
buttons on the Debugger Palette

Debug.Connect

Connect button in the Target buttons on the
Debugger Palette

Debug.Context

Set Control Context and Set Evaluation Context
buttons in the Debugger Control buttons on the
Debugger Palette

Debug.Current_Debugger

Debug:Debugger Window

Debug.Debug Off
Kill_Jobs => False

Kill Jobs => True

Debug:Finish Debugging Job and Detach

Detach Job button in the Quit buttons on the
Debugger Palette

Debug:Finish Debugging Job and Kill

Kili Job Being Debugged button in the Quit but-
tons on the Debugger Palette

Debug.Disable Disable... button in the Debugger Control but-
tons on the Debugger Palette
Debug.Enable Enable... button in the Debugger Control buttons

on the Debugger Palette

Debug Exception_To_Name

Exception To Name... button in the Machine and
Memory buttons on the Debugger Palette

Debug.Execute

Continue and Continue All buttons on the
Debugger Palette and the Continue Task button
in the Task Control buttons on the Debugger
Palette

Debug.Forget

Forget... and Forget All buttons in the Exception
Handling buttons on the Debugger Palette

Debug. Hold

Hold Task and Hold All buttons in the Task Con-
trol buttons on the Debugger Palette

Debug.Information

Info_Type => Debug.Exceptions
Info_Type => Debug.Rendezvous
Info_Type => Debug.Space

Buttons in the Task Information buttons on the
Debugger Palette:

Exceptions - All Tasks

Rendezvous Info - All Tasks

Space Information - All Tasks

Debug.Invoke Invoke... button in the Target buttons on the
Debugger Palette
Debug Kill Terminate Debugger button in the Quit buttons

on the Debugger Palette

Debug. Location_To_Address

Location To Address... and Object To Address...
buttons in the Machine and Memory buttons on
the Debugger Palette

Debug.Memory_Display

Display Memory... button in the Machine and
Memorty buttons on the Debugger Palette

RATIONAL November 1992

141

Rational Access User’s Guide

Table C-1 Environment Co

nds and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Debug.Memory_Modify

Modify Memory... button in the Machine and Mem-
ory buttons on the Debugger Palette

Debug Modify Modify... button on the Debugger Palette

Debug.Propagate Propagate... and Propagate Unlisted buttons in
the Exception Handling buttons on the Debug-
ger Palette

Debug.Put Put and Put... buttons on the Debugger Palette

Debug Reconnect Reconnect button in the Target buttons on the

Debugger Palette

Debug.Register_Display

Display Registers... button in the Machine and
Memory buttons on the Debugger Palette

Debug Register_Modify

Modify Register... button in the Machine and
Memory buttons on the Debugger Palette

Delete => False
Delete => False, Breakpoint => 0
Delete => True
Delete => True, Breakpoint => 0

Debug.Release Release Task and Release All buttons in the Task
Control buttons on the Debugger Palette
Debug.Remove Buttons in the Breakpoints buttons on the

Debugger Palette:
Deactivate Break
Deactivate All Breaks
Delete Break

Delete All Breaks

Debug Reset_Defaults

Reset fo Defaults button in the Debugger Control
buttons on the Debugger Palette

Debug Run
Stop_At => Debug.Local_Statement
Stop_At => Debug. Retumed
Stop_At => Debug.Statement

Buttons on the Debugger Palette:
Step Local

Step Ret

Step Stmt

Debug.Set_Value

Set... button in the Debugger Control buttons
on the Debugger Palette

Debug.Show

Values_For => Debug.All_State
Values_For => Debug.Breakpoints

Values_For => Debug.Contexts
Values_For => Debug.Exceptions
Values_For => Debug.Flags

Values_For => Debug.Libraries
Values_For => Debug.Stops_And_Holds

Values_For => Debug.Traces

Menu items and butions on the Debugger
Palette:

Show:All Debugger State

Show Breakpoints button in the Breakpoints but-
tons

Show Contexts button in the Debugger Control
buttons

Show Exceptions button in the Exception Han-
dling buttons

Show Debugger Switches button in the Debugger
Control buttons

Show:Libraries

Show Stops and Holds button in the Task Control
buttons

Show Tracing button in the Tracing buttons

Debug.Source

Source button on the Debugger Palette

Debug.Stack

Stack button on the Debugger Palette

RATIONAL

November 1992

Appendix C: Environment Commands

Table C-1 Envirc t Co ds and Access Equivalemts (continued)
Environment Command Access Menu Items or Buttons
Debug.Stop Buttons on the Debugger Palette:

Current task Stop
Specific task Stop Task in the Task Control buttons
All tasks Stop All

Debug Target_Request

Target Request... button in the Target buttons
on the Debugger Palette

Debug Task_Display

Task_Set => Debug All_Tasks

Task_Set => Debug Blocked

Task_Set => Debug. Held

Task_Set => Debug.Not_Running
Task_Set => Debug.Running

Task_Set => Debug.Stopped

Menu items and buttons on the Debugger
Palette:

Show:All Tasks

List All Tasks button in the Task Information but-
tons

List Blocked Tasks button in the Task Information
buttons

Show:Held Tasks

List Held Tasks button in the Task Information
buttons

List Tasks Not Running button in the Task Informa-
tion buttons

List Running Tasks button in the Task Information
buttons

Show:Stopped Tasks

List Stopped Tasks button in the Task Information
buttons

Debug Trace

Any parameter settings
On => True
On => False

Buttons in the Tracing buttons on the Debug-
ger Palette:

Tracing Control

Activate All Tracing

Deactivate All Tracing

Debug.Trace_To_File

Tracing Control button in the Tracing buttons on
the Debugger Palette (choose from the
options menu)

Dependents.Show

Program:Show Usage

Editor.Char.Quote

Not available from menus or buttons. See
Quick Reference for key binding.

Editor.Char.Tab_To_Comment

Not available from menus or buttons. See
object operations in Appendix D.

Editor.Char.Transpose

Not available from menus or buttons. See
Quick Reference for key binding.

Editor.Cursor.Next
Prompt => True, Underline => True
Prompt => False, Underline => True

Navigate:Next ltem
Navigate:Next Underline

Editor.Cursor.Previous
Prompt => True, Underline => True
Prompt => False, Underline => True

Navigate:Previous ftem
Navigate:Previous Underiine

Editor.Hold_Stack.Copy_Top

Not avaijlable from menus or buttons. See
region operations in Appendix D.

Editor.Hold_Stack.Delete_Top

Not available from menus or buttons. See
region operations in Appendix D.

Editor.Hold_Stack.Next

Not available from menus or buttons. See
region operations in Appendix D.

RATIONAL

November 1992

143

Rational Access User’s Guide

144

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

line operations in Appendix D.

Editor. Hold_Stack.Previous Not available from menus or buttons. See
region operations in Appendix D.

Editor.Hold_Stack.Push Edit:=Copy

Editor.Hold_Stack.Rotate Not available from menus or buttons. See
region operations in Appendix D.

Editor.Hold_Stack.Swap Not available from menus or buttons. See
region operations in Appendix D.

Editor. Hold_Stack.Top Edit:Paste

Editor.Image.Beginning_Of Top of Image button

Editor.Image.Down Scroll Down button

Editor.Image End_Of Bottom of Image button

Editor.Image.Left Scroll Left button

Editor.Image Right Scroli Right button

Editor.Image.Up Scroll Up button

Editor.Key.Name Help:On Key

Editor.Key.Prompt Not available from menus or buttons. See
Function Key Palette online.

Editor.Line.Beginning Of Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Capitalize Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Center Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Copy Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line Delete Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Delete_Forward Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.End_Of Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Insert Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line . Join Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Lower_Case Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Open Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line. Transpose Not available from menus or buttons. See
line operations in Appendix D.

Editor.Line.Upper_Case Not available from menus or buttons. See

Editor.Macro.Bind

Tools:Macro:Bind Macro to Key

Editor.Macro.Execute

Tools:Macro:Execute Macro

RATIONAL November 1992

Appendix C: Environment Commands

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Editor.Macro.Finish Tools:Macro:End Macro Def

Editor.Macro.Start Tools:Macro:Begin Macro Def

Editor.Mark.Copy_Top Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark Delete_Top Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark Next Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark Previous Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark.Push Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark Rotate Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark Swap Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Mark . Top Not available from menus or buttons. See
mark operations in Appendix D.

Editor.Quit File:Exit

Editor.Region. Beginning Of Navigate:Top of Region

Editor.Region.Capitalize Edit:Capitalize

Editor.Region.Comment Edit:Make into Comment

Editor.Region.Copy Edit:=Copy and Edit:Paste in combination

Editor.Region. Delete Edit:Cut

Editor.Region.End_Of Navigate:Bottom of Region

Editor.Region.Fill Edit:Fill

Editor.Region.Finish Not available from menus or buttons. See
region operations in Appendix D.

Editor.Region.Justify Edit:Justify

Editor.Region.Lower_Case Edit:Lowercase

Editor.Region. Move Edit:Cut and Edit:Paste in combination

Editor.Region. Off Edit:Underines Off

Editor.Region. Start Not available from menus or buttons. See
region operations in Appendix D.

Editor.Region. Uncomment Edit:Uncomment

Editor.Region. Upper_Case Edit:Uppercase

Editor.Screen.Clear Session:Screen:Full Reset

Editor.Screen.Push Session:Screen:Screen Push

Editor.Screen.Redraw Not available from menus or buttons. See
Quick Reference for key binding.

Editor.Screen. Top Session:Screen:Screen Pop

Editor.Search.Next Edit:Search/Replace

Editor.Search. Previous Edit:Search/Replace

Editor.Search.Replace_Next Edit:Search/Replace

RATIONAL

November 1992

145

Rational Access User’s Guide

Table C-1 Environment Commands and Access Equivalents (continued)

Enviroament Command

Access Menu Items or Buttons

Quick Reference for key binding.

Editor.Search.Replace_Previous Edit:Search/Replace
Editor. Set. Designation_Off Edit:Deselect
Edit:Underlines Off
Editor.Set.Fill_Column Edit:Typing Modes
Editor.Set.Fill_Mode Edit:Typing Modes
Editor.Set.Insert_Mode Edit:Typing Modes
Editor.Set. Window_Frames Session:Screen:Window Frames
Editor. Window.Beginning Of Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window.Child Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window.Copy Copy Window button
Editor. Window.Delete Remove Window button
Editor. Window.Demote Unlock Window button
Editor. Window .Directory Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window.End_Of Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window .Expand
Lines => 4 Expand Window button
Lines => 4 Shrink Window button
Lines => 99 Fully Expand Window button
Editor. Window .Focus Realign Windows button
Editor. Window Join
Repeat => 1 Join Next Window button
Repeat => -1 Join Previous Window button
Editor. Window .Next Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window .Parent Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window .Previous Not available from menus or buttons. See
window operations in Appendix D.
Editor. Window.Promote Lock Window button
Editor. Window . Transpose Not available from menus or buttons. See
window operations in Appendix D.
Editor. Word.Beginning Of Not available from menus or buttons. See
word operations in Appendix D.
Editor.Word.Capitalize Not available from menus or buttons. See
word operations in Appendix D.
Editor. Word.Copy Not available from menus or buttons. See
word operations in Appendix D.
Editor. Word.Delete Not available from menus or buttons. See
word operations in Appendix D.
Editor. Word.Delete_Backward Not available from menus or buttons. See

146 RATIONAL

November 1992

Appendix C: Environment Commands

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Editor. Word.Delete_Forward

Not available from menus or buttons. See
word operations in Appendix D.

Editor.Word.End_Of

Not available from menus or buttons. See
word operations in Appendix D.

Editor. Word.Lower_Case

Not available from menus or buttons. See
word operations in Appendix D.

Editor. Word. Next

Not available from menus or buttons. See
word operations in Appendix D.

Editor. Word.Previous

Not available from menus or buttons. See
word operations in Appendix D.

Editor. Word . Transpose

Not available from menus or buttons. See
word operations in Appendix D.

Editor. Word.Upper_Case

Not available from menus or buttons. See
word operations in Appendix D.

Job.Connect Session:Jobs:Connect to Job
Job.Disable Session:Jobs:Disalbe Job
Job.Disconnect Session:Jobs:Disconnect Current Job
Job.Enable Session:Jobs:Enable Job
Job.Interrupt Session:Jobs:Disconnect Current Job
JobXKill Session:Jobs:Kill Job
Library.Copy File:Copy File
Library.Create_Directory File:New:Directory
Library.Create_World File:New:World
Library.Destroy File:Delete File
Library Freeze File:Properties
Library Move File:Move File
Library. Resolve Navigate:Resolve Name
Library.Unfreeze File:Properties
Log.Set_Output (for compilation) Program:Promote (Log File option)
Mail. Answer
To_All => False Tools:Mail:Reply
To_All => True Tools:Mail:Reply to All
Mail.Create
Main for new user Tools:Operator:Create/Edit User
Other for existing user File:New:Mailbox
Mail Edit Tools:Mail:Read Mail
Mail Expunge Tools:Mail:Expunge Mailbox
Mail Forward Tools:Mail:Forward
Mail Remail Tools:Mail:Remail
Mail Reply
To_All => False Tools:Mail:Reply
To_All => True Tools:Mail:Reply to All
Mail.Send Tools:Mail:New Mail Message

RATIONAL November 1992

147

Rational Access User’s Guide

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Operator.Add_To_Group
add single or multiple users
add single user

Tools:Operator:Create/Edit Group
Tools:Operator:Create/Edit User

Operator.Cancel_Shutdown

Tools:Operator.Cancel Shutdown

Operator.Change_Password

Tools:Operator:Create/Edit User

Operator.Create_Group

Tools:Operator:Create/Edit Group

Operator.Create_User

Tools:Operator:Create/Edit User

Operator.Delete_Group

Tools:Operator:Create/Edit Group

Operator.Delete_User

Tools:Operator:Create/Edit User

Operator.Disk_Space

Tools:System Info:Disk
Tools:System Info:Configuration

Operator.Force_Logoff

Tools:Operator: Force Logoff

Operator.Remove_From_Group
Remove single or multiple users
Remove single user

Tools:Operator:Create/Edit Group
Tools:Operator:Create/Edit User

Operator.Show_Shutdown_Settings

Tools:Operator:Shutdown System

Operator.Shutdown

Tools:Operator:Shutdown System

Operator.Shutdown_Warning

Tools:Operator:Shutdown System

Profile.Get_Default

Session:Profile

Profile.Include_In_Default

Session:Profile

Profile.Set_Default

Session:Profile

Profile.Set_Default_Activity

Session:Profile

Profile.Set_Default_Filter

Session:Profile

Profile.Set_Default_Log File Session:Profile
Profile.Set_Default_Prefixes Session:Profile
Profile.Set_Default_Reaction Session:Profile
Profile.Set_Default_Remote_Passwords Session:Profile
Profile.Set_Default_Remote_Sessions Session:Profile
Profile.Set_Default_Response Session:Profile
Profile.Set_Default_Width Session:Profile
Program.Create_Job File:Run

Program.Run File:Run

Queue.Print File:Print

Remote.Run

File:Run (Atemate Machine option)

Remote_Passwords.Set_Default

Session:Profile

Search_List.Show_List

Session:Searchlist

Speller.Check_Image

Edit:Speliing:Check Image

Speller.Check_Text

Edit:Spelling:Check Word

Speller.Exchange Word

Edit:Spelling:Replace Word

Speller.Explain_Next

Edit:Spelling:Next Spelling Error

Speller.Learn_Replacement

Edit:Spelling:Learn Replacement

Speller.Learn_Word

Edit:Spelling:Add Word to Dict

RATIONAL

November 1992

Appendix C: Environment Commands

Table C-1 Environment Commands and Access Equivalents (continued)

Environment Command

Access Menu Items or Buttons

Speller.Speller_Window

Not available from menus or buttons. See
word operations in Appendix D.

Switches.Associate

File:Properties

Switches.Create

File:New:Switch File

Switches.Edit

Program:Compiler Switches

Switches.Edit_Session_Attributes
Any session switch
A Profile.@ switch

Session:Session Switches
Session:Profile

System_Availability’Spec_View.Units.System-
_Report.Generate

Tools:Operator.Report Generation

Verify_Backup

System_Backup.Backup Tools:Operator:Backup
System_Backup. History Tools:Operator:Backup History
System_Maintenance’Spec_View.Units- Tools:Operator: Verify Backup

System_Utilities. System_Boot_Configuration

Tools:System Info:Configuration

System_Utilities. Terminal

Tools:System Info:Users

My_Jobs_Only => False

Text.Create File:New:Text File
Text.End_Of_Input Session:End-of-Input
What.Command Help:On Environment
What.Does Help:On Environment
What.Home_Library Navigate:Home Library
What Jobs

My_Jobs_Only => True Session:Jobs:Show Jobs

Session:Jobs:Show All Jobs

What.Line Not available from menus or buttons. See
line operations in Appendix D.

What Load Tools:System Info:System Load

What.Locks Tools:Files Info:Locks

What.Object Tools:Files Info:Name/Version

What.Tabs Not available from menus or buttons. See
Quick Reference for key binding.

What.Users Toolls:System Info:Users

What.Version Tools:System Info:Configuration

Work_Order.Create File:New:Work Order

Work_Order.Create_List File:New:Work Order List

Work_Order.Create_Venture

File:New:Venture

RATIONAL

November 1992

149

Access Equivalents: Key Bindings

Different keyboards have different configurations of physical keys. For this reason,
Rational’s training and documentation refer to logical keys. A logical key names an
operation in the Environment that is generally bound to one or more physical keys.
The physical keys to which a particular logical key is bound depends on the inter-
face you are using. For example, [Definition] is a logical key that displays the object indi-
cated by the cursor; in Access, [Definiion] is bound to the physical key [F5].

This appendix lists the logical key names used in Rational’s training and documen-
tation and the Access key bindings, mouse buttons, menu items, and menu buttons
that are most closely related to them. Note that unlike the Rational X Interface (RXD)
and Rational Windows Interface (RW1), which are delivered with several sets of key
bindings to support keyboard variants, Access is delivered with a single set of key
bindings. These bindings use only the function keys, arrow keys, and alphanumeric
keys with the [Shift], [Control], and [Meta] modifiers.

This appendix contains the following tables:

Table D-1, “Fundamental Set of Logical Keys,” on page 152
Table D-2, “Object Operations,” on page 155

Table D-3, “Region Operations,” on page 157

Table D-4, “Window Operations,” on page 160

Table D-5, “Image Operations,” on page 163

Table D-6, “Line Operations,” on page 165

Table D-7, “Word Operations,” on page 167

Table D-8, “Mark Operations,” on page 169

For a quick look at function key bindings, including the itemn operations available,
you can display the Function Key Palette from the main Access window. For a quick
look at all the operations bound to Access keyboard and mouse operations, see the
Rational Access Quick Reference.

RAT‘ONAL November 1992 151

Rational Access User's Guide

FUNDAMENTAL SET OF LOGICAL KEYS

Table D-1 Fundamental Set of Logical Keys

Physical Key or
Logical Key Mouse Button Menu Item or Button
[Begin Of} [Home] Not applicable
[Break] Not available Break Here button in the Breakpoints but-
tons on the Debugger Palette

[Code (This World)] Not available Program:Promote to Coded
[Cede Unit] Not available Program:Promote to Coded
[Commit] {Control][Return] File:Save
[Complete] (Shift][F6] Program:Complete
[Create Ada] [Shift] [F11] File:New:Ada
[Create Body] Not available Program:Build:Build Body
[Create Command] [F6) Not available
[Create Directory) Not available File:New:Directory
[Create Text] (F11] File:New:Text File
[Create World} Not available File:New:World
[Debug] [Meta]{Retum] Debug:Start Debugging of Command
[Definition] [F5) Navigate:Definition

dbl dlick left
[Definition (in Place)] [Shift] [F5] Not available

[Shift]+dbl click left
[Demote] [Shift][F8] Program:Demote
[Edit] [Shift][F2] Program:Incremental:Incremental Edit
[Enclosing] [F7] Navigate:Enclosing

db} click right
[Enclosing (In Place)] [Shift][F7) Not available

[Shift]+dbl click right
[End Of] [End] Not applicable
[Explain] [F3] Help:Explain
[Format) {Fa] Program:Format

[Go]

Not available

Continue button on the Debugger
Palette

[Help on Command] [Help] Help:On Environment
[Help on Key] [Control][Q] Help:On Key
RAT'ONAL November 1992

Appendix D: Key Bindings

Table D-1 Fundamental Set of Logical Keys (continued)

Physical Key or
Logical Key Mouse Button Menu Item or Button

[Help Window] Not available Not available

[Home Library} [Shift]{F10] Navigate:Home Library

[Image] [Control][F4] Most {Image] operations can be found
on the window-control button panel

[Instalt Unit] Not available Program:Promote to Installed
Program:Demote to installed

[tem Off] [Control][X] Edit:Deselect

[Line} [Control][F5] Most [Line] operations can be per-
formed by using [Control][Meta] in com-
bination with an alphanumeric
operation key

[Mark] [Control]{F7] Macro operations are available on the
Tools:Macro menu; mark operations are
not available

[Next Item) [F12] Navigate:Next ftem

[Object] [Control][F1} Most [Object] operations can be per-
formed from the File menu

[Other Part] Not available Navigate:Other Part

[Previous ttem] [Shift][F12] Navigate:Previous ttem

[Promote] [Fg) Program:Promote

[Prompt For] [Shift][F1] Not available

[Put] Not available Put button on the Debugger Palette

[Replace] [Control][Meta][S] Edit:Search/Replace

{Replace (Backward)] [Control}{Meta][R] Edit:Search/Replace

{Region] [Contral}{F2] Most {Region] operations can be per-
formed from the Edit menu

[Search] [Control}[S] Edit:Search/Replace

[Search (Backward)] [Control][R] Edit:Search/Replace

[Semanticize] [Shift][F9] Program:Semanticize

[Show Source] Not available Source button on the Debugger Palette

[Source (This World)] Not available Program:Promote to Source
Program:Demote to Source

[Source Unit] Not available Program:Promote to Source
Program:Demote to Source

[Stack] Not available Stack button on the Debugger Palette

RATIONAL

November 1992

153

Rational Access User’s Guide

Table D-1 Fundamental Set of Logical Keys (continued)

Physical Key or
Logical Key Mouse Button Menu Item or Button

[Step] Not available Step Stmt button on the Debugger
Palette

[Step Local] Not available Step Local button on the Debugger
Palette

[Window] [Control]{F4] Most [Window] operations can be per-
formed from the window-control but-
ton panel

[Word] [Control]{F6) Most [Word] operations can be per-
formed using [Meta] in combination
with an alphanumeric operation key

RATIONAL

November 1992

Appendix D: Key Bindings

OBJECT OPERATIONS

Table D-2 Object Operations

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Object] - [A] Select first child [Control][F1] - [A] Not available
[Controf][F1] - (B]
[Object] - [B] Select first child [Control][F1] - [A] Not available
{Control][F1] - [B]
[Obiject] - [C] Copy object [Control][F1] - [C] File:Copy File
[Object] - D] Delete object [Control][F1] - [D] File:Delete File
[Control][F1] - [K] Edit:Delete Entry
Tools:Mail:Delete Mail Message
Program:incremental:incremental Delete
[Obiject] - [E] Select last child [Control][F1] - [E] Not available
[Object] - [G] Abandon object [Control}{F1] - [G] File:Close
[Object] - [H] Select parent [Control][«] Not available
{Control}[F1] - [«]
[Control][F1] - [H]
[Controljdbl click left
[Object] - [I] Insert object [Shift][F11] File:New:Ada
[Control][F1] - [1] Edit:Add Entry
Program:Incremental:Incremental Insert
[Object] - J] Select child [Control][—] Not available
[Control][F1] - [}
[Control]{F1] - [J]
[Controll-dbl click right
[Object] - [K] Delete object [Control][F1] - [D] File:Delete File
{Controf][F1] - [K] Edit:Delete Entry
Tools:Mail:Delete Mail Message
Program:incremental:Incremental Delete
[Object] - [M] Move object {Control][F1] - [M] File:Move File
[Object] - [N] Select next [Control][] Not available
[Control][F1] - [4]
[Control}[F1] - [N]
[Object] - [R] Next history/ [{Control][F1] - [R] Not available
command [Control][F1] - [V]
[Control][Meta][.]
[Control][Meta] [>]
[Object] - [S] Sort object [Control][F1] - [S] Tools:Mail:Sort Mailbox
[Obiject] - U} Previous history/ [Control][F1] - [U] Tools:Mail:Undelete Mail Message
command [Control][Meta][.]
[Control}{Meta][<]
RATIONAL November 1992 155

Rational Access User’s Guide

Table D-2 Object Operations (continued)

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Object] - [v] Next history/ [Contral][F1] - [R] Not available
command {Controt}[F1} - {V]

[Control][Meta][.]

[Control][Meta}[>]
[Object] - [x] Release object [Control][F1] - [X] File:Close
[Object] - {1] or Expand object Metal{1} Not available
[Object] - 1 [Meta][']

[Control]{F1]- 1]

[Control][F1}-[1]
[Object] - [] or Elide object [Metaj(0] Not available
[Object] - [>) [Meta]D)}

[Control][F1]-{]

[Control][F1] - [>]
[Obiject] -] or Explain [F3] Help:Explain
[Object] - [7] [Metall/]

[Meta][?]

[Control][F1]- 1]

[ControllfF1] -2
[Object] - [Tab] Tab to comment [Control}[F1] - [Tab] Not available

[Object] - [Promote]

Commit object

{Control}[Return]
[Control][F1] - [Retum]

File:Save

[Object] - [Begin Of]

Select first child

[Controf}{F1] - [A]
[Control][F1] - [B]

Not available

[Object] - {End Of]

Select last child

[Control][F1] - [E]

Not available

[Object] - [T]

Select previous

[Control]{T]
{Control{F1] - [T}

Not available

[Object] - [1]

Select next

[Controf}{{]
[Control][F1] - [{]
{Control]{F1]- IN]

Not avaijlable

[Object] - [«]

Select parent

[Control](«]
[Control][F1] - [«]
[{Control}[F1] - [H}
[Controlpdib click left

Not available

(Object] - {—]

Select child

[Control][-]
[Control][F1] - [-]
[Control][F1] - [J]

[Control}l+dbl click right

Not available

156

RATIONAL

November 1992

Appendix D: Key Bindings

REGION OPERATIONS

Table D-3 Region Operations

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Region] - [A] Beginning of region [Control][F2] - [A] Navigate:Top of Region
[Control}[F2] - [B]
[Region] - [B] Beginning of region [Control]{F2] - [A] Navigate:Top of Region
{Control][F2] - [B]
[Region] - [C] Copy region [Control][F2] - [C] Edit:Copy and Edit:Paste in conjunction
[Control}+click middle
or [Control][C] and
[Control][Y] in conjunction
[Region] - [D] Delete region [Control){W] Edit:Cut
[Shift]Delete]
{Control][F2] - [D]
{Control][F2] - [K]
[Region] - [E] End of region [Control][F2] - [E] Navigate:Bottom of Region
[Region] - [F] Fill region [Control][F2] - [F] Edit:Fill
[Region] - [H] Previous region on [Control][F2] - [H}] Not available
stack [Control][F2] - [«]
{Region] - [1} Next region on stack | [Meta][Y] Not available
{Control][F2] - (1]
[Control}{F2] - [-]
[Region] - [K] Delete region {Control][W] Edit:Cut
{Shift}[Delete]
[Control][F2] - [D]
[Control][F2] - [K}
[Region] - M] Move region [Control][F2] - [M] Edit:Cut and Edit:Paste in conjunction
or [Control][W] and
[Control][Y] in conjunction
{Region] - [N] Push region onto [Control][F2] - [N] Edit:Copy
stack
[Region] - [P} Copy top region on [Control][F2] - [P} Not available
stack onto stack
[Region} - [Q] Justify region [Control][F2] - [Q] Edit:Justify
[Region] - [R] Move bottom region | [Control}[F2] - [R] Not available
on stack to top of
stack
[Region] - [T] Exchange top two [Control][F2] - [T} Not available
regions on stack
[Region] - {U} Paste region fromtop | [Control][Y] Edit:Paste
of stack [Control][F2] - U]
[Control}{F2] - [T]
RAT'ONAL November 1992 157

Rational Access User’s Guide

Table D-3 Region Operations (continued)

[Region] - ["]

[Control}{F2] - [4]
[Control}[F2] - []
[Control][F2] - ['}

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Region] - [X] Deselect region [Control][\] Edit:Underiines Off
[Control}[F2] - [X}
(Region] - (6] or Capitalize region [Control][F2] - [6] Edit:Capitalize

[Region] - [9] or
(Region] - (]

Start region

[Control][[]
[Control}[F2] - {9]
[Controf}{F2] - [(
[Control}[F2] - [
[Control][F2] - [{
[Control}+click left

Not available

{Region] - [0] or
[Region] - []

Finish region

[Control](Tl
[Control][F2] - [0]
[Control}{F2] - [
[Control][F2] - []]
[Control][F2} - [}
[Controllclick right

Not available

[Region] - [-] or

Make region into

[Control][F2] - [

Edit:Make into Comment

[Control][F2] - [{]
{Control]{F2] - [9]
[Control][F2] - {d
[Control}rclick left

[Region] - [] comment [Control]{F2] - []

[Regionj - [=] or Uncomment region {Control]{F2] - [=} Edit:Uncomment
[Region] - [+] [Control){F2] - [+]

[Region] - [[] or Start region {Control][]) Not available
[Region] - [{] [Control){F2] - [}

[Region] - I} or
[Region] - [}]

Finish region

[Contral][]]
[Control][F2] - [I]
{Control][F2] -)]
[Control][F2] - [0]
[Control){F2] -]
[Controfp+click right

Not available

[Region] - [] or
[Region] - ["]

Capitalize region

[Control][F2] - [
[Control){F2] - [1]
[Control][F2] - [6]
[Control}[F2} - [N

Edit:Capitalize

[Region] - [} or

Lowercase region

[Controf][F2] - [.]

Edit:Lowercase

[Region] - [<] [Control][F2] - [<]
[Region} - [] or Uppercase region {Control][F2] - [.] Edit:Uppercase
(Region] - {>] {Control][F2] - [>]
[Region] - [Delete] Remove top region [Control]{F2] - [Delete] Not available
from stack
158 RAT'ONAL November 1992

Table D-3 Region Operations (continued)

Appendix D: Key Bindings

{Control][F2] - [=]
[Control][F2] - [J}

Physical Key or
Logical Key Operation Mouse Button Menu Itemn or Button
[Region] - {Begin Of] Beginning of region [Control)[F2] - [A] Navigate: Top of Region
[Control][F2] - [B]
[Region] - {End Of] End of region [Control][F2] - [E] Navigate:Bottom of Region
[Region] - [T] Paste region fromtop | [Control][Y] Edit:Paste
of stack {Control][F2} - [T]
[Control}[F2] - [U]
[Region] - [{] Push region onto [Control)[F2] - [4] Edit:Copy
stack
[Region] - [¢] Previous region on [Control][F2] - [«] Not available
stack [Control][F2] - [H]
[Region] - [-] Next region on stack | {Meta][Y] Not available

RATIONAL

November 1992

159

Rational Access User’s Guide

WINDOW OPERATIONS

Table D-4 Window Operations

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

[Window] - [A]

Beginning of window

[Control][Meta] [Home}
[Control][F3] - [A]
[Control][F3] - [B]

Not available

[Window] - [B]

Beginning of window

[Control}[Meta][Home]
[ControfJ{F3} - [A]
{Control][F3] - [B]

Not available

[Window] - [C]

Copy window

{Control][F3] - [C]

Copy Window button

[Window] - [D]

Delete window

[Controfj[Meta][K]
[Control][F3] - [D]
[Control][F3] - [K]
{Control}[F3] - {W]
[Control]{F3]} - [X]

Remove Window button

[Window] - [E]

End of window

[Control][Meta][End]
[Control][F3] - [E]

Not available

[Window] - [F]

Format windows

[Control][F3] - [F]

Realign Windows button

[Window] - H]

Enclosing

[Control][F3] - [H}

Navigate:Enclosing

[Window] - [J]

Join next window

[Control}[F3] -]
[Control][F3] - [O]

Join Next Window button

[Window] - [K]

Delete window

[Control]{Meta][K]
[Control]{F3] - [D]
[Control]{F3] - [K]
[Control][F3] - W]
[Control][F3] - [X]

Remove Window button

[Window] - [M]

Promote window

{Control][Meta][F]
[Control]{F3] - [M]
[Control][F3] - [Z]
[Control][F3] - [Retum]

Lock Window button

[Window] - [N}

Next window

[Controf][Meta]{N]
[Controf}[Meta][{]
[Control}[F3] - [N]
[Control}{F3] - [4]

Not available

[Window] - [O}

Join next window

[Control][F3] - {J]
[Control}[F3} - [O]

Join Next Window button

[Window] - [T]

Transpose windows

[Control]{F3] - [T]

Not available

[Window] - [U]

Previous window

[Controlj[Meta] {U]
[Controf}[Meta}{T]
[Controf][F3] - [U]
[Control][F3] - [T]

Not available

160

RATIONAL

November 1992

Table D-4 Window Operations (continued)

Appendix D: Key Bindings

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

[Window] - [V]

Child window

[Control][F3] - [V]
[Control][F3] - [-]

Not available

[Window] - W]

Delete window

(Control][Meta] [K]
{Control][F3] - [D}
{Control](F3] - [K]
[Control}{F3] - [W]
[Control][F3] - [X]

Remove Window button

[Window] - (X]

Delete window

[Control][Meta} [K)
[Control][F3] - [D]
[Control](F3] - [K]
[Control}(F3] - (W]
[Control)(F3] - [X]

Remove Window button

[Window] - [¥]

Demote window

[Control][Meta] [E]
[Control][F3] - [Y]

Unlock Window button

[Window] - [Z]

Promote window

[Control][Meta][P]
{Control}[F3] - [M]
{Control][F3] - [Z]
[Control)[F3] - [Retum]

Lock Window button

[Window] - [1] or
[Window] - 1]

Expand window

[Control]{.]
[Control][>]
[Control]){Meta][Y
[Control][F3] - [1]
[Control][F3] - [1]

Expand Window button

[Window] - [.] or
[Window] - [>]

Elide window

[Control][}
[Control]j<]
[Control}[Meta]])]
[Control][F3] - []
[Control][F3] - [>]

Shrink Window button

[Window] - [[] or
[Window] - [7]

Window directory

{Control][/]
[Control][?]

[Control][F3] - []
[Control]{F3] - [7]

Not available

[Window] - (1]

Previous window

{Control][Meta][T]
[Control}[Meta] [U}
[Control][F3] - [T]
[Control][F3] - [U]

Not available

[Window] - [4]

Next window

[Control][Meta][{]
[Control}[Meta][N]
[Controf][F3] - [{]
{Control][F3] - [N}

Not available

[Window] - [~}

Parent window

[Controlj[F3] - <]

Not available

[Window] - [-)

Child window

[Control][F3] - [-3]
[Control][F3] - {V]

Not avaijlable

[Window] - [Delete}

Join previous win-
dow

[Control][F3] - [Delete]

Join Previous Window button

RATIONAL

November 1992

161

Rational Access User's Guide

Table D-4 Window Operations (continued)

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

[Window] - [Promote]

Promote window

[Control][Meta]{P]
[Control}[F3] - [M]
[Control][F3} - [Z]
{Control]{F3] - [Retumn]

Lock Window button

[Window] - [Begin Of]

Beginning of window

[Control][Meta}[Home)]
[Control][F3] - [A]
[Control][F3] - [B]

Not available

[Window] - (End Of] End of window [Control][Meta] [End] Not available
[Control}[F3] - [E]

[Window] - [Demote] Demote window [Contral][Meta][E] Uniock Window button
{Control][F3]- [V

[Window] - [Edit] Demote window [Control][Meta][E] Unlock Window button

[Control}[F3] - [Y]

[Window] - [Format]

Format windows

[Control][F3] - [F]

Realign Windows button

[Window] - [Definition]

Window directory

[Control][/]
[Control][?]

{Control}{F3] -]
[Control][F3] - [7]

Not available

162

RATIONAL

November 1992

Appendix D: Key Bindings

IMAGE OPERATIONS

Table D-5 Image Operations

Logical Key

Operation

Physical Key or
Mouse Binding

Menu Item or Button

[Image] - [A]

Beginning of image

[Shift][Home]
[Shift] [Page Up]
[Control][F4] - [A]
[Control][F4] - [B]

Top of image button

fimage} - [B]

Beginning of image

[Shift][Home]
[Shift](Page Up]
[Control][F4] - [A]
[Control][F4] - [B]

Top of Image button

(Image] - [E]

End of image

[Shift][End]
[Shift]{Page Down]
[Control][F4] - [E]

Bottom of Image button

[image] - [F]

Fill mode on

[Control][F4] - [F]

Edit: Typing Modes

[image] - [H]

Scroll left

{Shift][]
[Control}[F4] - [«]
[Control][F4] - [H]

Scroll Left button

[Image] - [1}

Insert mode

[Control][F4] - [1]

Edit: Typing Modes

{Image] - /]

Scroll right

[Shift}[-]
[Contral][F4] - [-]
[Control){F4] - [J)

Scroll Right button

[image] - [N]

Scroll down

{Page Down]
[Control][V]
[Shiff[]
[Control][F4] - [4]
[Control][F4} - [N]

Scroll Down button

[Image] - [O]

Overwrite mode

[Control][F4] - [O]

Edit: Typing Modes

(Image] - [U]

Scroll up

(Page Up]
[Meta][V}
{Control]{Z]
[Shitf[T]
[Control][F4] - [T]
[Control][F4] - U]

Scroll Up button

{image] - [X]

Fill mode off

[Control][F4] - [X]

Edit: Typing Modes

[Image]- {] or
[Image] - [?]

Find image

Not available

Not available

[image} - [T}

Scroll up

[Page Up]
[Meta]{V]
[Controf]{Z]
[Shift][T]
[Control][F4] - [T]

[Control}[F4] - [U]

Scroll Up button

RATIONAL

November 1992

163

Rational Access User’s Guide

Table D-5 Image Operations (continued)

Logical Key

Operation

Physical Key or
Mouse Binding

Menu Item or Button

[image] - [1]

Scroll down

[Page Down)
[Control][V]
[Shif][4]
[Control]{F4] - [{]
[Control][F4] - [N]

Scroll Down button

[image] - []

Scroll left

[Shiff][e-]
[Control}[F4] - [«]
{Control}[F4] - [H]

Scroll Left button

[image] - [-]

Scroll right

[Shift}{—]
[Control][F4] - [-]
[Control][F4] - [J]

Scroll Right button

[Image] - Begin Of]

Beginning of image

[Shiff] Home]
[Shift][Page Up]
[Control][F4] - [A]
[Control][F4] - [B]

Top of Image button

(Image] - [End Of)

End of image

[Shift}{End]
[Shift][Page Down]
[Control][F4] - [E]

Bottom of image button

164

RATIONAL

November 1992

Appendix D: Key Bindings

LINE OPERATIONS

Table D-6 Line Operations

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Line] - [A] Beginning of line [Home] Not available
[Control][A]
[Control][F5] - [A]
[Control][F5] - [B]
[Line] - [B] Beginning of line [Home] Not available
[Control]{A]
[Control}{F5] - [A]
[Control]{F5] - [B]
[Line] - [C] Copy line [Control][Meta][C) Not available
{Control][F5] - [C]
{Line] - [D] Delete line [Control}{Meta] (D] Not avaitable
[Control]{F5] - [D]
{Line] - [E] End of line [End] Not available
[Control)[E]
[Control]){F5] - [E]
[Line] - [1} Insert line [Control][F5] - [1] Not available
[Line] - {J] Join lines [Control][F5] - [J] Not available
[Line] - K] Delete to end-of-line | [Control][K] Not available
[Control][Delete}
[Control][F5] - [K]
{Control][F5] - [Delete]
[Line] - [O] Open new line [Control}[O] Not available
[Controf}{Fs] - [O]
[Line] - [T] Transpose lines [Control][Meta] [T} Not available
[Control][F5} - {T]
[Line] - [4] or Center line [Control][F5] - {4] Not available
{Line] - [$] [Control}{F5) - [$]
[Line] - [6] or Capitalize line [Control}{F5] - [6] Not available
[Line] - [N [Control]{F5] - [4]
[Line] - [} or Lowercase line [Control][F5] - [.] Not available
[Line] - [<] [Control][F5} - [<]
[Line]-[] or Uppercase line [Controf]{F5] - [.] Not available
[Line] - [>] [Control]{F5] - [>]
[Line]-] or Explain line [Controf){Home)} Not available
[Line] - [7] [Contro][F5] - []
[Control}[F5] - [?]
Line] - [T Line up M Not available
[Control][U]
RATIONAL November 1992 165

Rational Access User’'s Guide

Table D-6 Line Operations (continued)

[Control][F5] - [K]
[Control}[F5] - [Delete]

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Line] - [4] Line down H) Not available
{Control][N]
[Line] - [Delete] Delete to end-of-line | [Control][K] Not available
[Control][Delete}

[Line] - [Begin Of]

Beginning of line

[Home]
[Control][A]
{Control}[F5] - [A]
[Control][F5] - [B]

Not available

{Line] - (End Of}

End of line

{End}
[Control][E]
[Control]{F5] - [E]

Not available

166

RATIONAL

November 1992

Appendix D: Key Bindings

WORD OPERATIONS

Table D-7 Word Operations

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Word] - [A) Beginning of word [Control][F6] - {A] Not available
[Control][F8] - [B])
[Word] - [B] Beginning of word [Controlj{F6] - [A] Not available
[Control]{Fé6] - [B]
[Word] - D] Delete word [Meta][D] Not available
[Control}{F6] - [D]
[Word] - [E] End of word [Control][Fé] - [E] Not available
[Word] - 1] Speller learn word [Control]{F6] - [1] Edit:Speller:Learn Word
[Word] - [J] Next word [Meta][J] Not available
[Meta][—]
[Control][Fé} - [J]
[Control}[F6] - [—]
[Word] - [K] Delete to end-of- [Meta][K] Not availabie
word [Control}{Fé] - [K]
[Control]{F6] - [Delete]
[Word] - [M] Speller check image [Control][F6] - {M] Edit:Spelier:Check Image
[Word] - [N] Speller explain next [Control][F6] - [N} Edit:Speller:Explain Next
[Word] - [R] Speller learn replace- | [Control][F6]- {R] Edit:Speller:Leam Replacement
ment
[Word] - [T] Transpose words {Meta[T] Not available
[Control}[F6] - [T]
[Word] - [W] Speller window [Control}[Fé] - [W) Edit:Speller:Speller Window
[Word] - [X] Speller exchange [Control}{F6] - [X] Edit:Speller:Exchange Word
word
[Word] - [6] or Capitalize word [Meta][6] Not available
[Word] - [[Meta][*)
[Control][F6] - [6]
[Control]{F6] - [N}
[Word] - [)] or Lowercase word {Meta][] Not available
[Word] - [<] [Meta][<}
[Control][F6] - [}
[Control][F6] - [<]
[Word] - [] or Uppercase word [Meta](.] Not available
[Word] - [>] [Meta}{>]
[Control}[F6] - [.]
{Control][F6] - [>]
[Word] - [] or Speller check text {Control]{F6] - [/] Edit:Speller:Check Text
[Word] - {7 [Control]{F6] - {?]

RATIONAL

November 1992

167

Rational Access User’'s Guide

Table D-7 Word Operations (continued)

Physical Key or
Logical Key Operation Mouse Button Menu Item or Button
[Word] - [T] Not bound Not applicable Not applicable
[Word] - [{] Speller explain next ~ | [Control][F6] - [] Edit:Speller:Explain Next
[Word] - [«] Previous word [Meta][«] Not available
[Control}[F6] - [«]
[Word] - [-] Next word [Meta][—] Not available
[Meta][J]
{Control]{Fé} - {—]
[Control][F6] - [J]
[Word] - [Begin Of} Beginning of word [Control][F6] - [A] Not available
[Control][F6] - [B]
[Word] - [End Of] End of word [Control}{F6] - [E] Not available

[Word] - [Delete]

Delete to end-of-
word

[Meta][K]
[Control][F6] - {K}

[Control][F6] - [Delete]

Not available

168

RATIONAL

November 1992

Appendix D: Key Bindings

MARK OPERATIONS

Table D-8 Mark Operations

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

(Mark] - [A]

Start macro

Metal[]
[Control}{F7] - [A]
[Control][F7] - [B]
[Control][F7] - [9]
[Control][F7] - [{]
[Control][F7] - [
[Control}[F7] - {{

Tools:Macro:Begin Macro Def

(Mark] - (B]

Start macro

[Meta}{f}

[Control){F7] - [A]
[Control]){F7] - [B]
[Control][F7] - [9]
[Control][F7] - [(
[Control][F7} - []
[Control}[F7}- (]

Tools:Macro:Begin Macro Def

[Mark] - {E]

Finish macro

[Metal(l]

[Control}[F7] - [E]
[Controi}(F7] - [0]
[Control}{F7] - [}
[Control{F7] -]
[Control)(F7]- [}

Tools:Macro:End Macro Def

[Mark} - [F]

Bind macro to key

{Control][Meta][=]
[Control][Meta][+]

[Control}{F7] - [F]

Tools:Macro:Bind Macro to Key

[Mark] - [H]

Previous mark

[Control] [Meta] M}
[Control][F7] - [H]
[Control}[F7} - [«]

Not available

[Mark] - [J]

Next mark

[Control){F7] - V]
[Control][F7] - [-]

Not available

(Mark} - M}

Execute macro

[Meta](X]
{Control][F7] - M]

[Control][F7] - [X]
[Control][F7] - [Retumn]

Tools:Macro:Execute Macro

[Mark] - [N]

Push mark

[Control){M]
[Control)[@]

[Control][F7] - [N}
[Control][F7] - [4]

Not available

[Mark] - [P]

Copy top mark

[Control}[F7] - [P]

Not available

[Mark] - [R]

Rotate top marks

[Control)[F7] - [R]

Not available

[Mark] - [T]

Swap marks

[Control]{F7] - {T]

Not available

[Mark] - U]

Top mark

[Contral]{F7] - [U}
{Control][F7] - [T]

Not available

RATIONAL

November 1992

169

Rational Access User’s Guide

Table D-8 Mark Operations (continued)

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

(Mark] - [X]

Execute macro

[Meta][X]
[Control)[F7] - [M]
[Control][F7] - [X]
{Control][F7] - [Return]

Tools:Macro:Execute Macro

[Mark] - [9] or
(Mark] - [(}

Start macro

[Meta]([)

[Control}{F7] - [A]
[Control}[F7] - [B]
[Control}[F7] - [9]
[Control][F7) - [(]
[Control][F7] - [[]
[Control][F7] - [{]

Tools:Macro:Begin Macro Def

[Mark] - [0] or
(Mark] - D}

Finish macro

[Meta][]}

[Control][F7] - [E]
[Control][F7] - [0]
[Control][F7] - [)]
[Control][F7] - {]]
[Control}{F7] - []]

Tools:Macro:End Macro Def

[Mark} - [[] or
[Mark] - {1

Start macro

[Meta]([]

[Control]{F7] - [A]
[Control][F7] - [B]
[Control][F7] - [9]
[Controll(F7] - (1

[Control][F7] -]
[Control][F7]- [{]

Tools:Macro:Begin Macro Def

[Mark] - []] or
Mark} - {}]

Finish macro

(Meta](]}

{Control}[F7] - [E]
[Control][F7] - [0]
(Control]{F7] - [)}
[Control}{F7] - (1]
[Control][F7] - [}]

Tools:Macro:End Macro Def

[Mark] - [T]

Top mark

[Control][F7] - [T]
[Control][F7] - [U]

Not available

[Mark] - [{]

Push mark

[Controll[M]
[Controil{@]
[{Controf]{F7] - [{]
[Control][F7] - [N]

Not available

[Mark] - f]

Previous mark

{Control][Meta] M]

[Control][F7] - [«]
[Control]{F7] - [H)

Not available

[Mark] - {—]

Next mark

[Control][F7] - [-]

[Control][F7] - [J]

Not available

170

RATIONAL

November 1992

Table D-8 Mark Operations (continued)

Appendix D: Key Bindings

Logical Key

Operation

Physical Key or
Mouse Button

Menu Item or Button

[Mark] - [Begin Of]

Start mark

[Meta][l}

[Control){F7] - [A]
[Control][F7] - [B]
[Controf][F7] -[9]
[Control}(F7] - [(}
[Control](F7] - [[]
[Controf][F7] - [{]

Tools:Macro:Begin Macro Def

[Mark] - [End O

Finish mark

(Meta](]]

[Control)[F7] - [E]
[Control][F7] - [0)
[Control][F7]-[)]
[Controlj[F7] - []]
[Control}[F7] - [}

Tools:Macro:End Macro Def

[Mark] - [Delete]

Delete mark

[Control][F7] - [Delete]

Not available

[Mark] - [Promote]

Execute macro

[Meta][X]
[Control}{F7] - [M]

[Control][F7] - [X]
[Control]{F] - [Return]

Tools:Macro:Execute Macro

RATIONAL

November 1992

171

Rational Access
QUICK REFERENCE

Version 1_0_0
Page 1

{Key] Control]{Key] [Meta][Xey) [Controlj[MetaliKey]
[A) Beginning of line
[B] . Cursor backward Debug menu
[C] ! Copy region to buffer Command window Copy line
[0} Delete next character Delete next word Delete line
[E] End of line Edit menu Unlock window
{F) Cursor forward File menu
[G) Interrupt job Kill job
gl Cursor left Help menu
0] Navigate menu
Ui Cursor right Next word
K] Delete to end of line Delete to end of word Kill window
(8] Repaint Environment area | Clear Environment area
M] Push mark CMVC menu Go to mark
N | Cursor down { Next item Next window
Q] i Open new line ' Tools menu
[P i | Program menu . Lock window
[Q) | Helponkey ' Prompt for key '
[R] i Search previous i i Replace previous
[S] ! Search next | Session menu ! Replace next
(7] i Transpose characters . Transpose words Transpose lines
I8}] Cursor up Previous item Previous window
V] Scroll down . Scroll up
W] Cut region ;
X] Deselect region/prompt Execute macro
Y] Paste region Paste next region
[Z} Scroll up

Numeric and Symbol Keys

[Key] [Control][Key] [Meta|[Key} [Control]{Meta][Key]
{0.9] Numeric arguments
{1 Expand window
(@] Push mark
(]
{} Insert ¢~ :
0 Insert - i Blideimage’ = ! Shrink window
\] Deselect region) |
g - Insert ~-:
[-Jor[_] | Numeric negative ; Previous underine
[=]or[+] | Insert => : Next underline Bind macro to key
i ! Start region Start macro
[i] { Finish region Finish macro :
[ilot{:] * Insert :=
[Tor{"} ' Quote next character i
[,Jor{<] | Shrink window Lowercase word Previous history/command
[.Jor{>] | Expand window Uppercase word Next history/command
[f]or[?] | Window directory Explain

* Shaded box indicated that the position of the [Shift] key does not affect this operation; [Meta]1] and {Meta]!] are identical.

T Key struck after [Meta} 6] determines the particular RDF annotation inserted.

E < o~
= = -~
= o
35 . %
ooU <
o= Z
et E
< 1= -
& o o
- - w
g g
| <
s
£ 2
2z |&
¢ E)
== | =
8
B
L
= - .
g < w
£ g
) RS
-~ =
4]
) 2 ©
2
g g w
5 S
o
3 &
T
20 | &
B0 1 B ~
w0 0w
% 23 & b
=5 oE, | O
S &g £
=g
g E
2 =3 ©
= | & ET
= = =
A= z.E
Z2|C CE
= =
(=} (=}
. = @ g=1 w
. —_ — [rig
s | S =
S| T= |5
k=
- | Q.E a
s
T B 5 -
% - - (9
8 8
E | 5 S
= | QO @]
i
2.5 |§ (e
T
S B =
3 - O _-—
:
: i ~
=4 !
] [L
=y’ —)
g1E | &
S-S]
vl-t
-]
5 z
RN =
= e)
O | & =
|
—_— !
g |
= —
= = !
[=3 =4 |
[SAN 7 |

Special Keys

[Key] Unmodified [Shift][Key] [Control][Key} [Meta][Key] [Control}{Metaj{Key}
[Retum] Retumn Return Commit Debug
[Tab} Go to next tab stop | Go to next tab stop Show tabs
{Delete] or Delete previous Delete region Delete to end of line | Delete previous word | Delete white space*
[Back Space} | character
m Cursor up Scroll up Select previous Previous item Previous window
4 Cursor down Scroll down Select next Next item Next window
[«] Cursor left Scroll left Select first/parent Previous word Enclosing in place
(-] Cursor right Scroll right Select last/child Next word Definition in place (body)
[Home) Beginning of line | Top of image Line information Top of window
[End) End of line Bottom of image End input Bottom of window
{Page Up] Scroll up Top of image
[Page Down) Scroll down Bottom of image

* Caution: This operation kitls the window manager on an IBM RS/6000.

Action Left Button Middle Button Right Button
Click Position cursor; start Motif selection | Copy Motif selection
[Shift] + click End Motif selection
Double click Definition Enclosing |
[Shift] + double click Definition in place Enclosing in place

[Control] + click

Start region

Copy region

Finish region

[Cantrol] + double click | Select object/parent

Select child

Drag

Motif selection

[Control] + drag

Region sclection

TVNOILVY

7 98
0 O [UOISIOA

Moving within Any iImage

Basic Editing Operations

Operation Key or Key Combination* Operation Key or Key Combination
Cursor up (1), [Control}{U] Create text file [F12]
Cursor down [4], [ControlliN] Open file {F2) e L
Cursor left [«], [Control][H], [Control]{F] Delete previous character | [Delete], [Back Space] 3 L
Cursor right [-], [Control][J], [Control[B] Delete next character [Conto]D]
Next word [Meta][—), [Meta}{J] Delete previous word [Meta)[Delete)
Previous word [Meta][<) Delete next word [Meta][D]
Next item [F12}, [Meta}[l], [Meta}{N) Delete to end of word [Mata)[K] L
Previous item [Shift)[F12], [Meta][T], [Meta}{U] Delete line {Controf){Meta](D]

Next underline

[Meta][=), [Meta][+]

Delete to beginning of line

{Meta][Delete), (Meta)[Back Space]

Previous underline

{Meta][-], Meta][_]

Delete to end of line

[Control]{Delete], [Control][Back Space}, [Controf](K]

Beginning of line

{Home], [Control](A]

Delete white space

{Control][Meta](Delete], [&mrol][Meta][Bﬁk_@ace]‘

End of line {End], [Control][E} Transpose characters [Contro][T]

Top of image [Shitt}[Home}, [Shift)[Page Up] Transpose words [Meta][T}

Bottom of image {Shitt}[Home], [Shift){Page Down] Transpose lines {Controlj[Meta](T]

Top of window (Control)[Meta][Homs] Copy line [Control)[Meta}{C)]
Bottom of window (Control)[Meta){End] Open new line [Control}|O)

Scroll up [Page Up), [Shift]){T), [Control){Z], [Meta][V} Go to next tab stop [Tab), [Shift][Tab)

Scroll down [Page Down], [Shift}{l), [Control])[V] Lowercase word [Meta][,], [Meta][<)

Scroll left [Shiftle} Uppercase word [Metalf.], [Meta}{>]

Scroll right [Shiftf—] Capitalize word {Metal(s], [Meta][7}

Push mark {Control](M], [Control] @] Quote next character {Control)['], [Contral]{ "]

Go to mark (Control][Meta}[M) B Search previous {Control][R]

Expand image {Meta][1], [Meta][!] - Search next {Control][S] o
Elide image [Meta][0], [Meta][)] Replace previous {Control}[Meta][R]

* Left mouse button positions cursor at the location of the pointer.

Traversing the Environment*

Replace next

[Control][Meta][S]

* Caution: This operation kills the window manager on an IBM RS/6000.

Getting Help and Other information*

Operation Key or Key Combination Mouse Operation Operation Key or Key Combination
Definition {F5} Double click left Explain [F3), [Meta](/], [Meta]{?]
Definition in place (spec) | [Shift)[Fs] {Shift] + double click left Help on command [F1}
Definition in place (body) | (ControljMeta)|—} Help on key [Control](Q]
Enclosing [F7) Double click right Prompt for key [Shiff)[F1]
Enclosing in place [Shitt}[F7], [Control|Meta]{«—] | [Shift] + double click right Show tabs o [Controf}{Meta][Tab}
Home library [Shift][F10) Line information [Control)[Home]

* Environment traversal operations are also available from the File and Navigate menus.

* Help is also available through the Help menu and by clicking on the Help button

in dialog boxes.

JO0N3IHd3Id3TH MOINO

SSQ20Y [eUONvY

¢ 98eg

07071 UOISIOA

Managing Windows*
0]

Region and Selection Operations

peration Key or Key Combination Operation Key or Key Combination Mouse Operation
Window directory [Contral][/}, [Control){?} Start region [Control]([) {Control] + click left, [Control] + drag
Next window [{ControljiMeta][L], [Controfj{Meta]{N} Finish region {Control){})) [Conrol] + click right
Previous window [Control][Meta][T], [Control)[Meta]{U] Cut region [Control)W), [Shift]{Delste],
Shrink window [Contral][,], [Contral][<], [Control{Metal{)] (Shifl){Back Space]
Expand window [Control]{.}, {Control]{>], [ControfjMeta](!] | Copy Region {Control](C) (to buffer) [Control} + click middle (and paste)
Lock window [Control]{Meta](P] Paste region [Control][Y}
Unlock window [Control){Meta](E] | Paste next region [Meta]{Y]
Kill window [Control]{Meta][K] Deselect region [Contral](X], [Control]\]
Repaint Environment area | {Control](L] Select previous item [Control}{ 1]
Clear Environment area [(Meta][L) Select next item [Control)[l)
* Windows also can be managed using the window-control buttons at the top Select first/parent [Controllie] [Control] + click left
of the Access window. Select last/child {Control]—] [Control] + click right
Copy Motif selection Click middle
End Motif selection [Shift] + click left

Writing Ada Programs

Operation Key or Key Combination
Create Ada unit [Shitt][F11}
Save [Control}[Return}, [Shift}{Enter]
Promote {F8)
Demote [Shiftl{F8]
Debug [Meta][Return}
Edit unit or construct {Shiff)[F2)
Complete (Shift){Fé]
Format [F9}
Semanticize [Shiff){F9)
Explain [F3], [Meta]{/), [Meta][?]
Underlines off [Shift][F3)
Insert => [Control][=), [Control]+]
Insert : = [Confrol](;], [Control][:]
Insert -- | [Control][1]
Insert RDF annotation* [Meta][2], [Meta)@]
Insert (" [Control)[(]
Insert) [Control]))

* Key struck after [Meta){@] or [Meta][2] determines the particular RDF annotation inserted.

TVNOILLVY

p a3eg
0 O [UOISIoA

Index

Accept Changes dialogbox . 100
accepting changes.9

Access

asanXapplication. 126
commands provided . . . C e . oo oo s
compuatibility with layered products T 4 ¢
configurationsfor . 125
controlling jobs . . . P b
creating and modifying text ﬁles Y <
customizing your workspace 117
debugging.53
defined. 000000000
editing text N -4
equivalents to Envxronment comrnands. P K4
equivalents to key and mouse bindings. 151
gettinghelp19
getting started L 000000001
how it works . . . e V5
logging in through Access e |
logging into the Environment .2
loggingout 00011
main window. . . . D
managing Environment wmdows . 4
managing libragiesT7
opening an Access window.2
performing operations inwindows5
requirements for unning. L . L L L0127
settingup T V5]
traversing Ada programs - Y
traversing the Environment .35
user-interface basics .12
usingCMVC 8T
using special features 0 L 0L .13

Debugger Palette 16 53

Function Key Palette16

Image Palette15

JustDo-ltmode .. .18

user-defined buttons. .14

window-control buttons .13

RATlONAL November 1992 173

Rational Access User’s Guide

Access (continued)
version you are using, helpon.21
writing Ada programs .39

Access commands
equivalents to Environment commands. 137

Accesshelpwindow. o19
Access Server L L L L0126

Access window
see windows, Access

Access X Client. 126

activity
addinganentry ... 104
creating. L L. L L1004
defined. L0014

Ada constructs, showingunused.,38

Ada names, showing occurrences .37

Ada programs
creating loaded main program .51
debugging. .. .5
executing5%
traversing 37
WHHDE 3

Ada specifications
displaying2
traversing 37

Ada subprograms
addingtopackage .. .49
making body intoasubunit. .50

Ada units

creating. 3940
demoting . . Y
makmg subunit m—lme wn.h parenl unit.5

addmg to . . . C e e 46

changing mcrementally R Vi

changing nameorkind. .48

deleting part of . . Y
moving between specnﬁcauon and body . V4
promotingo T |
saving incomplete . . . 0
selecting parent/chlld tems. .45
states. . . . Y - 53
viewing parent37

background, putting jobin. 112
bell, visual, setting. .12

174 RAT‘ONAL November 1992

Index

breakpoints . .57
removing . .57
setting . .57
showing .57

Browse dialog box 35, 64

browsing, see traversing

call stack . .58
displaying . .58
displaying parameters for frarne .59
displaying source for frame . .59
traversing from . .59

case of text, changing .74

check box, in dialog boxes 133

Check In dialog box . .99

Check Out dialog box .98

checking out/in an object for changes. .98

CMVC
accepting changes . . .99
checking out/in an object for changes . . . 98
collecting information about controlled objects . 105
creating a new activity 104
creating a subsystem . . 87
creating a system . 96
creating a venture . 107
creating a work order . 105
creating a work-order list. 106
getting informatjon about a view . 107
getting the history of an object. 108
joining objects in different views . 101
making objects controlled or uncontroned .97
releasing configurations . . .92
reverting to a previous generation 103
severing objects in different views 102
starting the CMVC editor . 105
using. o .87

CMVC editor, starting. 105

CMVC menu. .4

coded state . . 45

command windows . . o . 8
creating and executing a command-wmdow program. 121
entering a new command 123
executing commands from . .9
getting cornmand completion . . 121
getting the parameters of a command bound toa key 124
going back to previous commands 123
moving in . 122

RATIONAL November 1992

175

Rational Access User’s Guide

command window (continued)

reexecuting a command . 23
using. 21
commands
Access . .5
Environment . . 59
Access equivalents 137
getting help on .24
getting list of . . .22
executing from command wmdows . .. 9
executing from menus. . 7,129
with user-defined buttons 117
executing with mouse . .6
item operation
executing .10
configuration management. .87
see also CMVC
configurations
for setting up Access . 125
releasing .92
Control/Uncontrol dialog box. .97
controlling
jobs . 111
objects . .97
conventions
mouse . Xvi
text . . XV
windows XV
Copy File dialog box . .81
copying
objects . .81
text . .70
customizing your Access workspace 117
D
Debug menu . 4
Debugger Paletie . .16
closing . .54
displaying . .53
using. .53
debugging . .53
continuing a task .56
displaying program bemg debugged 55
displaying value of program variable .58
examining call stack S .58
exception handling . . 60
modifying variable values . .58
redisplaying the Environment's debugger wmdow . .54
showing information . .61
176 RATIONAL November 1992

debugging (continued)
starting the debugger .
stepping through a program
stopping a task . .
stopping the debugger
using breakpoints . .o
using the Debugger Palette .

default button, in dialog boxes .
Delete File Confirmation dialog box
Delete File dialog box

deleting text .

Demote dialog box

destroying objects .

dialog boxes. .
Accept Changes .
Browse .
Check In
Check Out.
Control/Uncontrol .
Copy File .
Delete File. .
Delete File Conﬁnnauon
Demote.
elements in
File Close .
File Revert .
Job Connect . . .
Job Enable/Disable/ lel . .
Join Controlled CMVC Obijects .
Load Main Program.
Move File .
navigating .
New Activity .
New Code View .
New Directory
New Release View .
New Spec View .
New Subsystem .
New System .
New Text File
New Venture .
New Work Order
New Work Order List .
New Working View
New World .
Object History Informatxon .
OK S
Print .
Promote .
Rational Access Error Message .
Rational Environment Help
responding to.
using keyboard
using mouse

RAT‘ONAL November 1992

. 113, 114, 115

Index

54
.55
. 56
.55
.57
.53

132, 135
. 80
. 80
.73
. 44
. 80

.98
100
35 64
-9
.98
.97
.81
. 80
. 80
. 44
. 132
30, 76
.65
113

102
.51
.82
134
104
. 96
. .79
93, 95
N
.88
.97
.63
107
106
106
. 89
.79
108
.11
.83
. 42
.18
.22
131
134
133

177

Rational Access User’s Guide

dialog boxes (continued)
Revert to Generation . 103
Run Program . . . 3 |
Search and Replace 4
Set Window Frames . . e |
Sever Controlled CMVC Ob;ects Coe e o103
shortcut for canceling . . . T KT
summary of keys for respondmg to.13
terms for describing R £ 7
TypingModes66

directories
creating. L L . L . LT
defined. LT

eopion L L. Lo s 2
Editmenn3

editingtext L .67
changingease74
copying.7
deleting.07
filingaregion7
getting line infomation .75
justifying a region . . . Y 5
moving Environment cursor wnth keyboa:d Y < YA
movingtext07
saving changes . . . Y ()
searching for and replacmg S |
selectingtext68

in the Environment .68
with Motif69
transposing T3

entry box, indialogboxes. 133
summary of keys forediting 136

Environment area, of Access window .

command window .
Environment cursor
Environment windows

banner in
Environment-window frarne
message window
message-window banner.
mouse pointer

NS
~

Environment commands
Access equivalents .
getting help on .

Environment cursor . . .
moving with keyboard

2

Environment packages
getting list of .
see also packages

N
N

178 RATIONAL November 1992

Index

Environment windows . .7
banner in . .7
symbols used . . 8
changing size . .28
changing size of user area and full unage hst .33
closing the Image Palette. .33
displaying the Image Palette .31
finding windows with uncommitted changes .33
frame of . 8
getting list of . .31
locking and unlockmg .30
managing . .27
moving between. .27
moving within .27
moving cursor . .28
traversing using a mark B .28
redisplaying from the Image Palette . .32
removing . o .30
restoring . .34
saving 33, 34
searching for . . .32
setting number of frames .31
setting up a standard set . .33
splitting . . .29
updating the Image Palette . .33
see also windows, Environment
Environment, see Rational Environment
errors, getting help on . .25
exception handiing .60
catching exceptions e .60
returning to point of program suspension . .61
showing exceptions .61
File Close dialog box. 30, 76
File menu. .3
File Revert dialog box .65
files
creating . . .63
opening existing for edmng .64
reverting to previous version .65
saving .64
setting tabs . .65
setting typing modes . .65
viewing . : . .63
fill mode, setting . .66
Filter button . .22
foreground, putting job in . 113
Function Key Palette . 10, 16

RATIONAL November 1992

179

Rational Access User’s Guide

function keys
getting help 21
G
-geometry option . .2
H
help
displaying Ada specifications .25
getting19
getting list of topics .22
on Access information. .20
on Environment commands . .24
on errors . .25
on key bindings . .21
on keys. .21
on menus . .20
on mouse . S .20
on online help system. .20
on version of Access . .21
on window-control buttons . .20
Help menu . .4
help topics, getting list . .22
help windows . .19
using. .19
I
-icontitle option .2
identifiers, getting definition . .38
image operations . 163
Image Palette 15, 31
closing . . .33
displaying . .31
updating .33
irages
printing . .83
insert mode, setting . . 66
installed state .45
inverse video, changing screen to 120
item keys . .10
180 RATIONAL November 1992

item-operation commands

Index

executing . .10
Job Connect dialog box . 113
Job Enable/Disable/Kill dialog box . . 113, 114, 115
job identification number . 111
jobs
controlling . 111
defined . 111
disabling . 113
disconnecting from (pumng in background) . 112
displaying current . . 111
enabling . 114
reconnecting to (putung in foreground) 113
Join Controlled CMVC Objects dialog box 102
Just-Do-It mode .18
key bindings
getting help .21
keyboard focus. 134
keys
Access equivalents to logical key bindings. 151
binding macros to . 119
function
getting help. .21
getting help .21
item . .10
logical . 152
operation . .10
rebinding . . 120
summary of for edmng text-entry boxes 136
summary of for responding to dialog boxes . 136
label, in dialog boxes 132
libraries
controlling display . .77
copying objects . .81
creating nonsubsystem hbrarnes .78
defined . . .77
destroying objects . .80

RATIONAL November 1992

181

Rational Access User’s Guide

libraries (continued)

moving of renaming objects. .8
printing objects and images., . . .83
traversing ...3

library-level programs, executing .5
lineoperations165
list box, indialogboxes. 132
Load Main Program dialogbox .31
loaded main program, creating .5
logging in through Access .1
logging into the Environment. .2
logging out from Access. .. .1

logical keys, fundamental set and Access equivalents 152

macros, building and executing . 119
managing
Environment windows ..27

mark
making .
traversing to .

mark operations 169
menubar.3

menus
choosing commands from . 129
Debug 4
executing commands from .7
with keyboard. O 130
withmouse. 12
with userdefined buttons 117
with window-control buttons. 131
File . . .
getting help
Help .
Navigate
Program e
terms for describing menu commands1
Tools.
message window .
banner in .

G B aaw e 8w

MNEMONICS+« « v v v e e 130

182 RATIONAL November 1992

Index

mouse
Access equivalents to mouse buttons 151
executing commands . . 6
from menus. 129
gettinghelp20
summary of operations in menus . 130
terminology related to. xvi
using to respond to dialog boxes . 133
mouse pointer . .9
Move File dialog box. .82
moving
Environment cursor .67
objects . .82
text . .70
Navigate menu . .3
New Activity dialog box. 104
New Code View dialog box . 96
New Directory dialog box . .79
New Release View dialog box 93, 95
New Spec View dialog box .91
New Subsystem dialog box - 88
New System dialog box . .97
New Text File dialog box . .63
New Venture dialog box 107
New Work Order dialog box . 106
New Work Order List dialog box 106
New Working View dialog box . .89
New World dialog box . .79
Object History Information dialog box. 108
object operations . 155
objects
accepting changes from . 101
checking out/in for changes. . .98
collecting information about controlied . 105
copying . .81

RATIONAL November 1992

183

Rational Access User’s Guide

objects (continued)

184 RATIONAL November 1992

destroying . .80
getting history of 108
joining in different views. 101
making controlled or uncontrolled .97
moving Or renaming .82
printing83
severing in dxfferem views . 102
OK dialog box . J11
online help . .19
see also help
operation keys . .10
option button, in dialog boxes 133
option menu, in dialog boxes. 133
OSF/Moitif-based user interfaces . xvii, 1
overwrite mode, setting . .65
P
packages
adding subprogram to. . 49
getting list of . .22
making body into a subumt .50
viewing specification . .38
pattern-matching wildcards .24
popup menu, in dialog boxes. 133
Print dialog box .83
printing objects and images .83
format options .85
other options . .85
page layout options .85
selecting the printer . . 84
specifying the pages to print .84
Program menu . .4
project partitioning . 87
see also CMVC
Promote dialog box - .42
prompt
moving to . 122
turning off . 122
R
radio button, in dialog boxes . 133
Rational Access Error Message dialog box .18

Index

Rational Access, see Access
rational command.2

Rational Environment
getting helpon4
logging in through Access e
traversing >
using command wmdows T V7]

Rational Environment Help dialogbox22
regionoperationso 157
releasing configurations. .9
renaming objects82
Revert to Generation dialogbox. 103
reverting to a previous generation 103

Run Program dialogbox .51

sash. 4
sashcontrol4

saving
changestotext7
current MACrOS 119
incomplete Adaunits ..%
set of Environment windows .3
user-defined buttons . 118

scale bar, in dialogboxes . 133
screen, changing to inverse video 12
scroll arrow, in dialogboxes . 132
scroll bar, in dialog boxes o132
Search and Replace dialogbox .71

searching for and replacing text .71
opuons L. o2

selecingtextc8
in the Environment. .68
with Motif 69

Set Window Frames dialogbox .3
Sever Controlled CMVC Objects dialogbox 103
severing objects in different views _ 102
slider, indialog boxes .. 132
source state45

stack frame .s8

RAT'ONAL November 1992 185

Rational Access User’s Guide

186 RATIONAL November 1992

stepping through a program . .55
subprograrns
adding to package . . .49
making body into a subunit. .50
subsystems
creating.87
making a path . . 89
making a spec view . .91
making a subpa .90
defined.87
symbols
in banner of Environment windows . . 8
wildcards . .24
systems
creating . .96
defined . . 96
T
tabs, setting . .65
text conventions .XV
text files, see files
text, editing, see editing text
text-entry box, in dialog boxes 133
summary of keys for editing 136
-title option . 2
Tools menu . .4
transposing text .73
traversing
Ada programs .37
Environment . . .35
from the call stack . .59
Typing Modes dialog box . .66
typing modes, setting. .65
U
underline
moving to . 122
turning off . 122
user interface, basic terms and operations 129
user-defined buttons . 4, 14
activating 118
changing size of button area 118

user-defined buttons (continued)

Index

creating for a menu command . 118
deleting. 118
executing menu commands . 117
saving 118
venture
creating . 107
defined . 107
version control . .87
see also CMVC
version of Access, help on . .21
view
accepting changes from . .99
defined . S .87
getting information about 107
joining objects in different 101
making a code view - .96
making a configuration release. .94
making a release view. .92
making a spec view . .91
severing objects in different . 102
visual bell, setting . 120
wildcards, pattern matching .24
window operations 160
window-control buttons. . 4
getting help .20
movement with . .27
using. .13
windows
Access . N - 1,3
control buttons . 4,13
Environment area. . 4,7
help 19
menu bar .3
opening . .o .2
performing operations in . .5
sash . 4
sash control. . .4
user-defined buttons. 4, 14
command . . Ce 8,6 121
executing commands from . 9

see also command windows

RAT'ONAL November 1992

187

Rational Access User’s Guide

windows (continued)
Environment LT
see also Environment windows
MEeSSage T
terminology for .xv

word operations167
wordwrap column, changing .66
wordwrap, setting.66

work order
ceating. eI
defined. 0s

work-order list
creating. L. ..o 106
defined. .06

workspace, customizing.117

worlds
ceating. L ...
defined. LT

Xdefaults file1

X Window System. o . . oxvil
application components . 125

188 QATIONAL November 1992

RATIONAL

READER’'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and comments
electronically by using the SIMS problem-reporting system. If you use SIMS to submit documentation
comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
Q 6 mo. or less Q 6 mo.-1 year (1-3 years {1 3 years or more

How much experience have you had with the Ada programming language?

Q6 mo. or less 1 6 mo.-1 year (3 1-3 years U 3 years or more
Name (optional) Date
Company
Address
City State ZiP Code
Please return this form to: Publications Department
RATIONAL
3320 Scott Boulevard

Santa Clara, CA 95054-3197

Rational Access User’s Manual 4000-00722

RATIONAL

READER’S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and comments
electronically by using the SIMS problem-reporting system. If you use SIMS to submit documentation
comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
Q6 mo. or less Q6 mo.-1 year (J 1-3 years {J 3 years or more

How much experience have you had with the Ada programming language?

J 6 mo. or less Q6 mo.~1 year O 1-3 years Q 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code
Please return this form to: Publications Department
RATIONAL

3320 Scott Boulevard
Santa Clara, CA 95054-3197

Rational Access User’s Manual 4000-00722

