Rational Environment User’s Guide

Copyright © 1987 by Rational

Document Control Number: 8001A-05
Rev. 1.0, November 1987 (D-9-25_1)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

VT100 is a trademark of Digital Equipment Corporation.

Rational
1501 Salado Drive
Mountain View, California 94043

ii 11/2/87 RATIONAL

Contents

How to Use This Book .. Xi

Key Concepts: Rational Environment xiii

Part I. Getting Started

Chapter 1. The Rational Terminal Keyboard A 9|
The Rational Terminal Keyboard Layout I-2
Main Keyboard S
Function Keyso I-4
Numeric Keypad C .. I-4
Cursor Keys Lo I-5
Modifier Keyso 1-5
Item Keys Lo I-5
Auxiliary Keys Lo I-6
Executing Key Combinations I-6
Item-Operation Key Combinations I-6
Executing an Item-Operation Key Combination I-6
Modified Key Combinations I-7
Executing a Modified Key Combination I-7
The Rational Terminal Keyboard Overlay I-8
How the Keyboard Overlay Is Organized I-8
Reading the Keyboard Overlay I-8
Summary of Key Notation I-10
Symbolso I-10
Numeric Arguments L. I-10
Caseof Keys I-11
Chapter 2. Logging In and Logging Out I-13
Logging Into the Rational Environment I-13

QATIONAL 11/2/87 iii

The Basic Login Process e I-13

Logging Into Nondefault Sessions I-15
Logging Into Multiple Sessions I-15
Checking the Terminal Type I-16
Changing Your Password I-17
Logging Out e e e I-18
Logging Out with Unsaved Changes I-18
Chapter 3. Traversing the Rational Environment I-21
What You See When You Logln I-21
Message Window o000 I-22
Major Windowo 1-22
Home Libraryo I-22
Command Window I-23
Customized Library Display Format 1-23
Customized Login Display I-24
Moving between and within Windows I-24
Objects in the Environment I-25
Files Lo I-25
Ada Compilation Units C e e I-26
Libraries (Worlds and Directories) I-27
Environment Objects and Access Control I-28
The Environment Library Structure I-28
Fully Qualified Object Names I-30
The Current Context in the Library Hierarchy I-30
Traversing the Environment Library Structure I-31
Traversing from a Library to an Objectin It I-32
Traversing between Ada Specifications and Bodies I-36
Returning Home o000 I-38
Traversing to the Enclosing Library I-40
Traversing the Environment: Summary I-42
Chapter 4. Managing Windows I-45
Windowsand Imageso o000 I-45
ScrollinganImage 145
Window Bannerso 147
Modification Symbols in the Window Banner 148
How Windows Are Placed on the Screen I-49
Windows and Frames I-49

iv 11/2/87 EATIONAL

Moving between Windows

Default Window Placement

Controlling Window Placement by Lockmg Wmdows

Controlling Window Placement through Traversal Commands
Redisplaying Windows Using the Window Directory

Displaying the Window Directory

Redisplaying Replaced Windows

Checking the Window Directory Before Loggxng Out
Changing Window Size and Placement .

Joining Frames .

Expanding Windows

Shrinking Windows)

Making Frame Sizes Equal

Removing Windows from the Screen

Rearranging Windows on the Screen

Changing the Number of Frames

Chapter 5. Executing Commands
Using Command Windows .
Unrecognized Commands
Correcting Typing Errors
Canceling Command Execution . .
Command Windows and Attached Wmdows
Ada Usage in Command Windows
Entering Parameters . .
Using the Command Window Declare Block
Getting Prompting Assistance .
Getting Formatting Assistance through the Promote Key
Getting Semantic Completion through the Complete Key
Filling In Parameter Prompts
Moving between Prompts i
Completing Ambiguous Name Fragments
Completion Menu Entries
Abbreviating Commands
Clearing a Command Window
Reusing Command Windows .
Executing Subsequent Commands
Reexecuting the Same Command
Modifying and Reexecuting Commands

RATIONAL 11/zs

. I-50
. I-51
. I-51
. I-52
. 1-52
. 1-53
. I-54
. . I-55
. 1-56
. I-56
. 1-57
. I-58
. I-58
. 1-58
. 1-59
. 1-60

. 1-63
. 1-64
. 167
. 1-68
. 1-68
. 1-68
. 1-69
. 1-69
-1
. 1-72
. 1-72
N
. I-73
.. I-73
. I-74
. I-75
.. I-76
.. I-76
=TT
77
=77
. 1-78

Recalling Previous Commands | C e .. I-79

Keys and Command Windows 1-79
Environment Commands I-80
Fully Qualified Ada and Environment Names I-80
Visibility in Command Windows I-81
Special Names and Parameter Placeholders I-81
Chapter 6. Getting Help I-83
How Do the Help Keys Work? I-83
What Command Does This Key Execute? I-84
Reading Help Messages I-84
What Does This Command Do? I-85
What Commands Pertain to This Topic? 1-86
Reading Help Menus 1-87
Getting Further Help from a Menu I-88

Part I1. Editing Text

Chapter 7. Creating and Saving Text Files II-1
Creating Text Files I1-1
Entering Text e e I1-3
Saving Changes as You det e e e I1-4
Versionsof Fileso I1-4
Discarding Changes Since the Last Save -4
Opening Existing Files for Editing II-5
Example 1: Opening a Displayed File II-5
Example 2: Opening a Selected File I1-5
Write Lockso II-6
Closing Files for Editing II1-7
Chapter 8. Modifying Text I1-9
Adding Texto oL I1-9
Operating on Designated Text Items II-10
Text Items II-10
Patterns in Editing Operations II-11
Selecting Text Items II-11
Selecting an Arbitrary Stretch of Text II-11
Using Object Selection II-12
Selecting within a File’s Structural Hierarchy II-12
Turning Selections Off I1-13

vi 11/2/87 RA\-”ONAL

Summary of Selection Operations .
Deleting Text e e e e e
Retrieving Deleted Text e e e e e
Copying and Moving Text
Copying Text

Duplicating a Line
Moving Texto

Summary of Copy and Move Operatlons
Transposing Text
Searching and Replacing

Example: Searching for a String

Summary of Search and Replace Operations
Controlling Case and Text Format

Changing Character Case

Adjusting Text Format

Setting Word Wrap for Text

Filling Existing Lines of Text
Justifying Text .

Centering Lines .
Changing the Fill Column
Inserting Page Breaks .

Part III. Developing Simple Ada Programs

Chapter 9. Overview of Ada Unit Development
Ada Compilation Units
Ada Unit States

Source State

Installed State

Coded State

The Environment’s Compxlatxon System S
A Sample Library e e e
Example: Creating and Executing an Ada Procedure

Chapter 10. Creating, Saving, and Promoting Ada Units
Creating Ada Units . o -

Determining Ada Unit Names a.nd Subclasses

Creating Subprograms .

Creating Package Specifications a.nd Bodles

RATIONAL 11/7er

II-13
II-14
II-14
II-15
II-15
II-15
II-16
II-16
II-16
n-17
II-18
II-19
I1-20
11-20
II-21
II-21
I-22
1-22
I1-23
I1-23
I1-23

. II-1
. 1II-2
.. III-3
. I-3
. 1I1-3

.. III-5
. I11-6
. OI-7

Im-13
nI-13
I1-14
II-15
II-15

vii

Saving Work in Progress . . . T |0 65

Discarding Changes Since the La.st Save C e e e ..o D17
Opening Existing Units for Editing III-18
Write Locks e e e HI-18
Versions of Units C e e e e . D19
Closing Source Units for Edltmg e e e I-20
Promoting Units to the Installed State III-20
Installing Units with Dependencies coe .. I-22
Reading the Compilation Log | § £
Overview of Operations for Changing Unit Sta.te ITI-25
Changing to a Relative State III-25
Changing to a Specific State P 1§ €54
Changing the State of a Systemof Units III-26
Chapter 11. Using Ada-Specific Editing Operations III-27
Using the Format Key C e e e oo IOI-27
Example: Using Format to Enter a I“unctlon Coe e IN-28
Hirts for Using the Format Key T 3 C
Checking for Semantic Errors e e . o HII-36
Syntactic and Semantic Error Reporting HN-37
Selecting Ada Constructs -39
Kinds of Selection Operations . . . O | § 3]
Selecting Larger or Smaller Ada Constructs IlI-40
Selecting the Next or Previous Ada Constructs I[I-42
Creating Private Parts O | § B &
Creating Bodies T 1§ S 1)
Entering Comments I-47
Operations for Entering Comments III-47
Inserting Page Breaks I-48
Chapter 12. Executing and Testing Ada Programs III-49
Promoting Units to the Coded State III-49
Coding Individual Units S | § G [
Coding Units with Dependencies HOm-s0
Executing Programs HI-51
Using a Command Window H>OI-51
Using Selection . . . e e e .. o HI-52
Operations for Job Control T 11 657/
Common Errorso Lo II-52

viii 11/2/87 R)ATIONAL

Testing Units and Systems
Saving Interactive Test Programs Coe

Chapter 13. Debugging Ada Programs .
Starting the Debugger e
The Debugger Window
Controlling Program Execution
Automatic Source Display
Stepping Through a Program
Following the Program’s Flow of Control
Stepping Over Subprogram Calls
Setting Breakpoints
Breakpoint Characteristics
Executing to a Breakpoint
Displaying Variable Values
Modifying Variable Values
Redisplaying the Current Location
Reexecuting a Program
Catching Exceptions
Examining the Stack of Sabprogram Calls
Displaying the Call Stack :
Displaying Qualified Names in the Stack
Traversing from the Call Stack
Displaying Parameter Values for a Frame
When You Have Finished Debugging

Chapter 14. Browsing Ada Programs

Where Is This Defined?
If Definition Fails :
Example 1: Viewing the Deﬁmtlon of a Subprogram
Selection versus Cursor Position
Some Browsing Options
Example 2: Viewing the Deﬁmtxon of a Varlable

Where Is This Used?
Example 1: Showing Variable References
Example 2: Showing Usages in Multiple Units

Chapter 15. Modifying Installed or Coded Programs
Elements That Can Be Changed Incrementally
If Dependencies Exist

RATIONAL 11/2/87

I-53
II1-55

O1-57
IT1-58
I1-59
I11-60
I11-60
nI-61
I11-63
I11-66
11167
11168
111-69
1-70
II-71
-7
II1-71
1-73
I11-74
I1I-74
n1-76
II-76
11-77
I1-77

1I1-79
II1-80
111-80
[11-81
I11-83
I11-83
M1-83
I11-86
1-87
II1-88

11-91
I11-92
I1-92

ix

Units and States O, I11-93

Using Incremental Operations 93
Incrementally Modifying an Element [II-94
Selecting One or More Elements II-96
Using the Window Provided by an Incremental Operation II-97
Incrementally Deleting an Element H1-97
Incrementally Adding an Element II1-99
Adding a New Declaration HI1-99
Adding the Corresponding BodyHI-100
Determining the Kind of Element That Is AddedIHI-103
Some Common Problems I-105
Removing an Unwanted Prompt II-105
Forgetting to Demote a Body U § § £ U 1
Selecting a Construct That Cannot Be EdltedHI-106
Attempting to Change a Declaration That Has DependentsII-106
Making Changes That Require Demotion I-107
Index Index-1

x e RATIONAL

How to Use This Book

The Ratsonal Environment User’s Gusde is intended for use by both beginning and
more experienced users:

e If you are a beginning user with no previous formal instruction on the Rational
Environment™, you can use this book to teach yourself the basic concepts and
operations for using the Environment.

e If you have completed the Fundamentals trairing course, you can use this book
to reinforce and supplement what you have learned about the Environment with
additional detail.

The User’s Guide is similar in scope to the Fundamentals training course. Whereas
the Fundamentals training course provides hands-on experience with the Environ-
ment through guided exercises, the User’s Guide provides descriptions of Environ-
ment concepts illustrated with example scenarios and sample screens. You can use
the User’s Guide when no other experts are available to answer your questions.

The User’s Guide can be used in conjunction with the Rational Environment Bassc
Operations. The Basic Operations is a quick reference that provides the specific
steps for accomplishing a particular task. If you have questions on the tasks or
steps listed in the Basic Operations, you can refer to the User’s Guide. The User’s
Guide provides context for each task and supplements the steps with definitions of
terms, explanatory material, and examples.

For a quick overview of the Rational Environment itself, see “Key Concepts: Ra-
tional Environment,” following this section.

Organization of This Guide

The User’s Guide presents information about the Environment in three parts.
Part 1, “Getting Started,” describes the following general features of the Environ-
ment:

¢ Using the keyboard
¢ Logging in
¢ Finding and displaying Environment objects

QAT'ONAL 11/2/87 xi

e Using multiple windows
¢ Executing commands
e Getting help

Part 11, “Editing Text,” describes how to create, edit, and save text files containing
documentation, test data, and the like. Basic text editing operations are covered

here; note that these are also used when editing Ada® units.

Part I, “Developing Simple Ada Programs,” describes what you need to know to
create, edit, execute, debug, browse, and modify Ada programs.

This guide often refers you to the Rational Environment Reference Manual for fa-
cilities not covered in this guide. The Ratsional Environment Reference Manual also
gives detailed information about each Environment command.

What You Should Read

You can think of this book as a textbook resource on the Environment. As with
any textbook, you can read through all the chapters sequentially, at your own pace.

For a more accelerated approach, you can read the table of Contents and then
study only selected sections of immediaie interest. Aliernatively, you can scan each
chapter, reading in detail where desired. Your familiarity with other computer
systems should help you decide which sections you need to read and which details
you can skip.

For example, to start developing an Ada program right away, you can scan the
chapters in Parts I and I and then read the following chapter in detail:

¢ “Overview of Ada Unit Development,” Chapter 9.

This chapter summarizes the basic information about creating, editing, compiling,
and executing Ada units. (More information about these issues is available in
Chapters 10 through 12.) Also recommended for detailed reading are:

¢ “Debugging Ada Programs,” Chapter 13.
¢ “Browsing Ada Programs,” Chapter 14.
¢ “Modifying Installed or Coded Ada Programs,” Chapter 15.

xii 11/2/87 RATIONAL

Key Concepts: Rational Environment

The Rational Environment is a software development environment that provides
highly integrated facilities for designing, implementing, debugging, and maintain-
ing programs written in Ada. In addition, the Environment provides facilities for
managing the design, decomposition, and implementation of large software projects.

At a very general level, the bulk of your work on the Rational Environment consists
of editing various kinds of objects. Objects are structured representations of various
kinds of information; editing means applying various operations to view or modify
the form or content of objects. The basic types of Environment objects include:

e Files, which can contain documentation, test data, and the like.

o Ada compilation units, which contain Ada code represented in an underlying
structure distinct from files. This underlying structure embodies the syntactic
and semantic constructs of the code.

o Librartes, which are analogous to directories on other computer systems. Libraries
contain objects such as files, Ada units, and other libraries.

The Environment provides a consistent set of operations for editing the different
types of objects. Basic editing operations allow you to create, view, modify, preserve,
and delete objects or elements within objects. Additional kinds of operations are
available where appropriate.

Though distinct in important ways, text files and Ada units have a number of
features in common. Objects of both kinds can be opened for editing, modified
with text editing operations, and saved. Multiple versions can be retained. Objects
in use are protected by write locks, which prevent modification by other users.

Powerful editing operations are available specifically for Ada urnits. These oper-
ations take advantage of the information in the underlying represenation of Ada
units. Important Ada-specific operations include:

o Pretty-printing, syntactic completion, and error checking in source code
e Semantic error checking in source code

* Generation of skeletal package bodies from package specifications and generaticn
of skeletal private parts from private type declarations -

RATIONAL 1126 xiii

Libraries form the basis for the hierarchic organization among Environment objects.
The root of this hierarchy is the library ! (pronounced “bang”). The library hierar-
chy forms the basis for naming Environment objects. For example, !Users.Anderson
names a library called Anderson contained in a library called Users in the root li-
brary. Each user with an account on the Environment has a home library in !Users
that is named with his or her username. Thus, !Users.Anderson can be the home
library of a user whose username is Anderson.

You can traverse the library hierarchy to view the various objects in it. Traversing
to an object in the library hierarchy displays that object and makes it the current
editing context.

When you traverse to an Environment object, it is displayed in a window on the
screen. You can have multiple windows, which you can scroll, enlarge, shrink, join,
transpose, remove from the screen, and redisplay.

The basic way to communicate with the Environment is by entering commands.
Through Environment commands, you can perform traversal operations, editing
operations, window management operations, and the like. A command can be
executed in one of two ways:

¢ By pressing a key or combination of keys to which the command is bound

¢ By opening a special window, called a Command window, in which you can enter
and then promote the command and its arguments

The Environment’s command language is Ada. That is, the commands and tools
provided by the Environment are Ada procedures and functions. These subpro-
grams are defined in packages, whose names reflect the various Environment ob-
jects and other functional groupings of Environment operations. The specifications
of these packages are located in the libraries !Commands and !Tools; you can view
the package specifications by traversing to them.

Because Environment commands are written in Ada:

e Command naming and syntax follow Ada rules.

¢ The same interfaces for entering commands (Command windows or key bindings)
can be used for executing your own Ada subprograms.

Under the standard key bindings provided by the Environment, the most frequently
used commands are bound to keys or combinations of keys. (You can change these
bindings to suit your own needs.) Your keyboard has an overlay that lists the
various operations you can perform with particular key combinations. You can
think of this overlay as an analog to pull-down menus on other computer systems—
from the overlay, you can locate the operation you want to perform and then invoke
it with the indicated key combination.

Xiv 11/2/87 RATIONAI_

In general, operations that act on objects (or elements within objects) involve two
steps:

1. Pointing to (designating) the object or its representation on the screen

2. Requesting the appropriate action, either by pressing a key combination or
entering a command

Some operations allow you to designate an object through cursor position; other
operations require that you select the object so that it appears in a highlighted
font. Designation is analogous to using a mouse on other computer systems and
provides an alternative to entering full object names as arguments to commands.

On-line help is provided for each Environment command. Requesting help on a
command results in a display of a description of the command and its parameters.
The help facility also provides information about key bindings.

When you compile a program on the Environment, the compilation order is de-
termined automatically from the dependencies among program units. In addition
to batch compilation tools, the Environment provides an interactive compilation
system that breaks the compilation process into phases. Under this system, com-
piling a unit entails promoting the unit through a series of states, one for each
phase. The generation of object code for execution defines the final state in the
series. Thus, errors can be checked and dependencies verified at intermediate states
without waiting for complete compilation.

In contrast to batch compilation on other computer systems, preparing a unit for
execution on the Environment does not produce additional objects such as object
files or executable images. Therefore, you are ensured that the program you are
executing always matches its source code.

You can debug Ada programs interactively with the source-level Rational Debugger.
Using multiple windows, the Debugger tracks an executing program’s progress in
the program source. With “point and act” operations as described above, you can
set breakpoints, query variable values, inspect stack frames, and the like.

You can browse systems of Ada units by pointing to an Ada identifier and asking to
see its defining occurrence. Furthermore, you can point to an Ada identifier and ask
to see its using occurrences within a single unit or across all units on the system.
When you browse an Ada system, the Environment follows the dependencies intro-
duced by with clauses, so that it can display the appropriate Ada units no matter
what libraries they are in.

Upward-compatible changes can be made in compiled programs without requiring
the recompilation of dependent units. By using sncremental operations, you can
make incrementally compiled changes to statements, comments, and declarations
that are not referenced elsewhere in the program.

RATIONAL 11/ssr xv

RATIONAL

Part 1. Getting Started

Contents

Chapter 1. The Rational Terminal Keyboard
The Rational Terminal Keyboard Layout

Main Keyboard

Function Keys

Numeric Keypad

Cursor Keys

Modifier Keys

Item Keys

Auxiliary Keys
Executing Key Combinations

Item-Operation Key Combinations Coe

Executing an Item-Operation Key Combination
Modified Key Combinations
Executing a Modified Key Combmatlon

The Rational Terminal Keyboard Overlay

How the Keyboard Overlay Is Organized

Reading the Keyboard Overlay
Summary of Key Notation

Symbols . .

Numeric Arguments

Caseof Keys

Chapter 2. Logging In and Logging Out
Logging Into the Rational Environment
The Basic Login Process S
Logging Into Nondefault Sesswns Co

R)ATIONAL 11/2/87

I-1
I-2
I-4
I-4
I-4
I-5
I-5
I-5
I-6
I-6
I-6
I-6
I-7
-7
I-8
I-8
I-8

. 1-10

I-10

. I-10

I-11

. I-13
.. 1113
. I-13
. I-15

Logging Into Multiple Sessions
Checking the Terminal Type .
Changing Your Password
Logging Out i e e
Logging Out with Unsaved Changes Ce

Chapter 3. Traversing the Rational Environment
What You See When You Log In
Message Window
Major Window
Home Library
Command Window .
Customized Library Display Forma.t
Customized Login Display
Moving between and within Windows
Objects in the Environment
Files
Ada Compllatlon Unlts .
Libraries (Worlds and Directories)
Environment Objects and Access Control
The Environment Library Structure
Fully Qualified Object Names :
The Current Context in the Library Hlerarchy
Traversing the Environment Library Structure
Traversing from a Library to an Object in It
Traversing between Ada Specifications and Bodies
Returning Home C e e e
Traversing to the Enclosmg lerary
Traversing the Environment: Summary

Chapter 4. Managing Windows
Windows and Images
Scrolling an Image
Window Banners
Modification Symbols in the Window Banner

How Windows Are Placed on the Screen
Windows and Frames
Moving between Windows
Default Window Placement

I-ii

. I-15
. . I-16
.17
. I-18

I O L

. I-21
. I-21
. I-22

T 24

. 1-22

. 1-23

. I-23

. 1-24

. I-24

. I-25

. I-25

. I-26

. 1-27

. 1-28

. I-28

. 1-30

. I-30

. I-31

. I-32

oo .. 1-36
..... 1-38
. . 1-40

. 1-42

T O &

. I-45
. 1-45

R 1

. 1-48
. I-49

R (8 1)
..... I-50
..... I-51

11/2/87 QATIONAL

Controlling Window Placement by Locking Windows

Controlling Window Placement through Traversal Commands
Redisplaying Windows Using the Window Directory

Displaying the Window Directory

Redisplaying Replaced Windows

Checking the Window Directory Before Loggmg Out
Changing Window Size and Placement

Joining Frames .

Expanding Windows

Shrinking Windows .

Making Frame Sizes Equal

Removing Windows from the Screen

Rearranging Windows on the Screen

Changing the Number of Frames

Chapter 5. Executing Commands
Using Command Windows .
Unrecognized Commands
Correcting Typing Errors
Canceling Command Execution
Command Windows and Attached Wmdows
Ada Usage in Command Windows
Entering Parameters
Using the Command Window Declare Block
Getting Prompting Assistance
Getting Formatting Assistance through the Promote Key
Getting Semantic Completion through the Complete Key
Filling In Parameter Prompts
Moving between Prompts .
Completing Ambiguous Name Fragments
Completion Menu Entries
Abbreviating Commands
Clearing a Command Window
Reusing Command Windows .
Executing Subsequent Commands
Reexecuting the Same Command
Modifying and Reexecuting Commands
Recalling Previous Commands
Keys and Command Windows

RATIONAL 11z

. I-51
.. I-52
. I-52
. 1-53
. 1-54
. I-55
. 1-56
. 1-56
. 1-57
. 1-58
. 1-58
. 1-58
. 1-59
. 1-60

. 1-63
. 1-64
. 167
. 1-68
. 1-68
. 1-68
. 1-69
. 1-69
. I-71
. 1-72
. I-72
. I-72
. 1-73
. 1-73
. I-74
. 1I-75
. I-76
. 1-76
. LT7
. I-77
=77
. 1-78
. I-79
. I-79

I-iii

Environment Commands, 1-80

Fully Qualified Ada and Environment Names I-80
Visibility in Command Windows I-81
Special Names and Parameter Placeholders I-81
Chapter 6. Getting Help I-83
How Do the Help Keys Work? I-s83
What Command Does This Key Execute? I-84
Reading Help Messages I-84
What Does This Command Do? I-85
What Commands Pertain to This Topic? I-86
Reading Help Menus oL 1-87
Getting Further Help fromaMepu 1-88

I-iv 11/2/87 RAT'ONAL

Chapter 1. The Rational Terminal Keyboard

Many Rational Environment commands are executed by pressing various keys and
combinations of keys. Therefore, it is important for you to become acquainted with

key usage in the Environment.

The Rattonal Environment User’s Guide assumes that you are using the standard
key bindings that are provided by the Rational Environment. As you become more
familiar with the Rational Environment, you can tailor your key bindings to re-
flect your specific needs (see “Rebinding Keys,” in the Rational Environment Basic
Operations).

This guide additionally assumes that you are using a Rational Terminal, which
has been customized for use with the Rational Environment. Therefore, examples
throughout this guide are written using key names as they appear on the Rational
Terminal keyboard and keyboard overlay. (Key names appear in small boxes—for
example, TDerere’.)

If you are using a VT100™ terminal, a VT100-compatible terminal, or a Facit termi-
nal, you can find equivalent standard key bindings listed in the Keymap (located in
the Reference Summary, Volume 1 of the Rational Environment Reference Manual)
and in the Basic Keymap (located in the Rational Environment Basic Operations).

This chapter describes:

¢ Where to find keys on the Rational Terminal keyboard

¢ How to use item keys and modifier keys in key combinations

o How to read the Rational Terminal keyboard overlay

* How to interpret the notation used to indicate keys and key combinations

For a more complete description of the Rational Terminal and its keyboard, see the
Rational Terminal User’s Manual.

QATIONAL 11/2/87 I-1

Part I. Getting Started

The Rational Terminal Keyboard Layout

The overall layout of the Rational Terminal keyboard is shown in Figures 1-1 and
1-2.

As Figure 1-1 shows, the keys on the keyboard fall into seven functional groups,
including:

Main keyboard Modifier keys
Function keys Item keys
Numeric keypad Auxiliary keys

Cursor keys

The following sections identify these groups of keys and briefly describe what the
keys do when you are logged into the Rational Environment. (Later chapters contain
more information about the usage of individual keys as appropriate.)

L

AUXILIARY KEYS\
FUNCTION

KEYS\([
i 8y R

ITEM KEYS
B
MA'N
KEYBOARD
J_ A
|
MODIFIER KEYS CURSORKEYS ~ NUMERIC KEYPAD !

Figure 1-1. Groups of Keys on the Rational Terminal Keyboard

I-2 11/2/87 IQATIONAL

Chapter 1. The Rational Terminal Keyboard

2 g
& g0 (- |E
e -}
L § L © ™
[-
-4
w x © n o~
= 3
w H ~ - - o
F
© g i o 1
w - s
-] g
8 s e || ——
= o
-
w0] 5 ‘
e] 5
et
-
w
£
o = :
w
o~ & -
- = H g
e g g £ £
< H 3
—— H 8
-
b +
- . <
= &
— - E 3
Il o~
a
e A
'S _—
-
o
- VoL
('S ~ B
i x
©
i I =
-
-
~
w o~ z
X
>
o
(TS <« L)
(4
[
Ew >
w
[+ 4
0
w " < g
o
w g
-
w = o x ;
»n
3
2 ® ~ N g
« k3
[+
o~ N
w P H
{&]
g
" £
T | 3

Figure 1-2. The Rational Terminal Keyboard Layout

RATIONAL 11/2/87 I-3

Part 1. Getting Started

Main Keyboard

The main keyboard contains all alphanumeric and punctuation keys in the standard
ANSI typewriter keyboard layout.

Some particularly useful keys in this portion of the keyboard include:

¢ [Daad, which deletes the character just to the left of the cursor.

¢ The unshifted underscore and unshifted double quote, which simplify the entry
of Ada identifiers and quoted strings.

o [Rewrn|, which enters a new line.

o [Repeat), which, when held down along with another alphanumeric key, rapidly
enters multiple instances of the alphanumeric character indicated by the other
key. (Using is faster than simply holding down an alphanumeric key until
the character repeats.)

e [smift], [Conwrot], and [Meta], which are discussed under “Modifier Keys,” below.

¢ The space bar, which enters a blank character.

Function Keys
The function keys are a row of 20 keys at the top of the keyboard.

These keys are used alone or in combination with modifier keys (see *Modifier
Keys,” below). Most function keys, whether used alone or in combination, are
bound to specific Environment commands. You can bind the unbound keys and
key combinations and you can change the existing bindings (see “Rebinding Keys,”
in the Rattonal Environment Bassc Operations).

Numeric Keypad

The numeric keypad is a block of 14 keys, including 10 number keys, [Ent], and
three keys with punctuation symbols: minus ([), comma ([.]), and period ([-}).

Under the standard key bindings, the number and punctuation keys on the numeric
keypad are used very differently from the corresponding keys on the main keyboard:

¢ Number keys: The number keys on the numeric keypad enter numeric arguments
for certain Environment commands bound to keys. For example, to move the
cursor up three lines, press [3] on the numeric keypad, followed by (7].

In contrast, the number keys on the main keyboard enter numeric characters into
text. For example, to enter numeric test data into a file, use the main keyboard
number keys. (Do not use numeric keypad keys for this purpose.)

¢ Minus key ([3): The minus key on the numeric keypad indicates a negative value
for a command argument.

In contrast, the minus key on the main keyboard enters a minus sign or hyphen
character into text.

I-4 11/2/87 RAT'ONAL

Chapter 1. The Rational Terminal Keyboard

o Period key (Z): The period key on the numeric keypad sends an end-of-file
terminator during interactive input.

In contrast, the period key on the main keyboard enters a period character (or
decimal point) into text.

o Comma key (7]): The comma key on the numeric keypad converts a subsequent
main keyboard number key into a numeric argument.

In contrast, the comma key on the main keyboard enters a comma character into
text.

To distinguish numeric keypad keys from main keyboard number keys, you will see
the following notation:

¢ The word “numeric” inside the box notation indicates a key on the numeric
keypad——for example, [numeric 3! and [numerlc -],

e The names of main keyboard keys are simply boxed—for example, (3] and {Z.

Cursor Keys
The cursor keys are a group of six keys to the left of the numeric keypad.

The cursor keys can be used alone or in combination with modifier or item keys
(see “Executing Key Combinations,” below). The cursor keys primarily move the
cursor on the screen, although some combinations with the cursor keys execute other
kinds of operations. The direction of cursor movement is indicated by the arrows

on the arrow keys (=}, (=, (=, &). [Beginof and [End o5 move the cursor directly to

[}

the beginning or end of an item such as a line of text.

Modifier Keys

The modifier keys include [skint}, [Comrall, and [Meaa]. A set of three modifier keys is
located in each of the two lower corners of the main keyboard.

Modifier keys are used only in combination with another key—for example, a key
on the main keyboard, a function key, an auxiliary key, or a cursor key. By forming
key combinations to which Environment commands can be bound, the modifier keys
extend the use of the keyboard. See “Executing Key Combinations,” below.

Item Keys

The item keys are a row of seven keys above the numeric keypad. Item keys refer to
items that you frequently need to reference during Environment editing operations:
words, lines, regions, and so on. The item keys are shown in Figure 1-3.

Item keys are used only in combination with another key—for example, a key on

the main keyboard, a function key, an auxiliary key, or a cursor key. See “Executing
Key Combinations,” below.

RATIONAI_ 11/2/87 I-5

rars 1. Gening siarvec

Auxiliary Keys

The three auxiliary keys are located directly above the cursor keys and are bound
to specific, frequently used Environment commands. Note that, although the key
names are abbreviated on the actual keycaps, these key names are spelled out in
the documentation notation: [Promote, [Compiete), and [Format.

Executing Key Combinations

Item and modifier keys (see above) are not used alone but are used only in combi-
nation with another key, such as a key on the main keyboard, a function key, an
auxiliary key, or a cursor key. In this way, both item and modifier keys extend the
use of the keyboard by providing for more key-binding possibilities. Note that the
standard Environment key bindings are given in the Basic Keymap, in the Rational
Environment Basic Operations; even more detail is given in the Keymap, found in
the Reference Summary (Volume 1 of the Rational Environment Reference Manual).

A key combination consists of two or more sequential or overlapping keystrokes,
depending on whether the first keystroke is an item key or a modifier key.

Item-Operation Key Combinations

A key combination that contains an item key (such as [werd], [Lind, and the like) is
typically bound to a command that operates on the item named by the item key.
The second keystroke in such a combination is called the operation key, because it
identifies the action that applies to the indicated item. This combination is referred
to as an ttem-operation combination.

Operation keys can be main keyboard keys, function keys, auxiliary keys, or cursor
keys. In general, commands that execute similar operations are bound to combina-
tions containing a common operation key. For example, the combinations - [o},
[word) - (D], and "window] - [0} all delete an item, as indicated by the shared operation

key, [D.

Executing an Item-Operation Key Combination

The keystrokes must be sequential in an item-operation key combination. The item
key acts as a command prefix, indicating that the following keystroke should be
interpreted as a command and not as a character to be inserted. Item-operation
combinations are executed as follows:

1. Press and release the item key.

2. Press and release the operation key.

In the notation for an item-operation combination, the two keys are separated with
a hyphen to remind you that the keystrokes are sequential: [item sey] - [operation xey].

I-6 11/2/87 QATIONAL

Chapter 1. The Rational Terminal Keyboard

Note that once you have pressed an item key, the next key you press is interpreted
as part of a key combination, no matter how long you wait before pressing the next
key. In other words, an item key does not “expire” after a delay. In fact, if you wait
a few seconds after pressing an item key, the item key name is displayed at the top
of the screen as a reminder.

If you unintentionally press the wrong item key, you can cancel it by pressing the
(Cemrol 6] key combination (see “Modified Key Combinations,” below). Alternatively,
you can supply a second keystroke that forms an unbound combination, so that no
command is executed. Since, in the standard key bindings, no commands are bound
to key combinations containing two item keys, you can cancel a given item key by
pressing it a second time.

Modified Key Combinations

A key combination that contains one or more modifier keys ([seits], [Control], OF [Meta])
is a modified key combination. Any combination of [shits], [Contrel], OF [Meta] can modify
keys on the main keyboard, function keys, cursor keys, or auxiliary keys. However,
modifier keys are not used in combination with item keys.

Note that an alphanumeric key modified by inserts either a capital letter or
punctuation. Furthermore, when an alphanumeric key is modified by OT [Meta],
the use of [suir] is generally ignored. (That is, is equivalent to
in the standard key bindings.)

Executing a Modified Key Combination

The keystrokes must overlap in a modified key combination. That is, the combina-
tion is executed as follows:

1. Press and hold the modifier key or keys.

2. While holding down the modifier key(s), press the key to be modified.

In the notation for a modified key combination, the two keys are shown with-
out a hyphen to remind you that the keystrokes overlap: [moaificr iey[Tunction key] OF
lmodlﬁcr key“ alphanumeric keﬂ_

The use of different combinations of modifiers allows a family of related commands
to be bound to a common modified key. For example, a family of commands that
provides system help is bound to and its modified key combinations:

[F1y) displays help on selected Environment objects.
swin][ru] displays an explanation of the help facility.

. displays help on keys.
® [comrolf P11l moves the cursor into a Help window.

EAT'ONAL 11/2/87 I-7

Part 1. Getting Started

The Rational Terminal Keyboard Overlay

In the standard key bindings for the Rational Environment, many commands are
bound to modified function keys. These commands, and the key combinations to
which they are bound, are indicated on the Rational Terminal keyboard overlay
that is provided with your Rational Terminal.

The Rational Terminal keyboard overlay fits over the function keys, covering the
upper portion of the keyboard. The overlay has two transparent pockets that con-
tain removable cards on which the standard key bindings are printed. (If you change
your key bindings, you can remove the cards, write the new bindings on them, and
reinsert the cards into the overlay pockets. You can also write directly on the over-
lay, and the back can be used for your special applications.) The keyboard overlay
is shown in Figure 1-3.

How the Keyboard Overlay Is Organised

The information on the keyboard overlay is organized in columns, one for each
function key that has commands bound to it. At the top of each column, a single
word indicates the family of Environment commands bound to the corresponding
key and to its modified key combinations. For example, note in Figure 1-3 that the
commands bound to provide help, the commands bound to create things,
and the commands bound to [¥e), [¥7], [Fs], and are used in debugging.

The entries within each column indicate the specific commands that are bound
within each command family. Note that the column entries are abbreviated forms
of the corresponding command names, not the actual command names themselves.
(You can find the actual command names using the help facility; see Chapter 6,
“Getting Help.”)

Within the columns, the command entries are aligned in eight rows. The bot-
tom row corresponds to the unmodified use of each function key. The next seven
rows correspond to the seven possible combinations of modifier keys—namely, [skit,
Controll, [Meta], [Control][shits], [Controt|Meta], [Meta][snire], and [ComroiMeta][smin], The seven modi-
fier combinations are printed in red in the center and on either side of your keyboard
overlay. Therefore, each command entry on the keyboard overlay labels a unique
combination of zero or more modifiers and a function key. (Note that a blank entry
in a column indicates that a particular combination has not been bound.)

Reading the Keyboard Overlay

At this point, it is clear that a given modified function key combination can be
referred to in either of two ways:

¢ Using the actual key names that appear on the keycaps—for example, [Meu][F11]

¢ Using the logical key names that appear as entrics on the keyboard overlay—for
example,

I-8 11/2/87 EATIONAL

Chapter 1. The Rational Terminal Keyboard

F1

Help

Print

Help
On Key

Help
Window

Help
On Help

Help

F11

F2

cMve
Checked
Out lo View

Checked
Dut By User

Accept
Changes

Show
info

Check In

Check
Out

Show Qut
of Date

Prompt
For

F12

F3

Promate
Code
(AN Werids)

tnstall
AN Worids)

Code
{Thes World)

Ingialt
{This World)

Code
Unnt

Ingtall
Stud

install
Unit

F4

Demate
Seurce
(AU Worlds)

Uncode
{AH Worids)

Source
{This Warld)

Uncode
{This World)

Withdraw
Unit

Source
Unnt

Demots

Edit

Fi13 Fl14

F5

Create
Create
Private

Create
Text

Create
World

Create
Directory

Create
Ada

Create
Body

Create
Command

F15

CONTROL
META
SHIFT
META
SHIFT
CONTROL
META
CONTROL
SHIFT

META
CONTROL

SHIFT

CONTROL
META
SHIFT
META
SHIFT

CONTROL
META

CONTROL
SHIFT
META

CONTROL

SHIFT

Debug
Task
Display

Stop

Run
Returned

Run
Local

Execute

Run

Fé

Show
Show
Usage
{Indrect}

Show
Usage

Show
Usage (Unn

Underlines
ott

Show
Errors

Semanticize

F16

Debug
Show
Braaks

Remove
Breaks
Acuvate
Break
Break

~Default

Show
Source

F7

Misc
Make
lnline

Show
Unused

Show
Unused {Unith

Item
off

Exptain

F17

DOebug Osbup Traverse
infe Window Library
Enclosing
in Place
Show Moty Home
Exceptions Library
Other
Part
In Place
Propagate Se1 Pointer Enclosing
Level
Carch Set Element Other
Count Part
Forget Set First Definion
Element In Place
Stack Put Definmion

F8

Items
Maike
Separate

Previous
Prompt

Previgus
Underhine

Next
Prompt

Previous
liem

Next
Underhne

Next
ltem

F18

F9

Jobs

Eng Ot
Input

Job
Cannect

Joh
Kili

Job
Enabie

Job
Disable

F19

F10

lafs.
Show
Access List

What
Object

What
Locks

What
Users

What
Load

What
Time

F20

RATIONAL

Figure 1-3. The Rational Terminal Keyboard Overlay

11/2/87

I-9

Part 1. Getting Started

Examples throughout the Rational Environment documentation refer to modified

function keys by using the logical key names, since these are more meaningful

than actual keycap names like and [r1]. Furthermore, the logical key names

from the Rational Terminal keyboard overlay are also used on overlays for vT100-

::iompatible or Facit terminal keyboards, where the actual key combinations may be
ifferent.

When an example refers to a key combination by its logical name, you can use the
keyboard overlay to find the actual keys to press. For example, to find the key
combination corresponding to [3os kiil:

1. Locate the logical key name “Job Kill” on the keyboard overlay. (Use the
column headings—in this case, “Jobs”—to help you narrow down the search to
the appropriate topic area.)

2. Note the function key that corresponds to the column that contains the logical
key name. In this example, “Job Kill” is in the column corresponding to [Fis].

3. Note the modifier key combination that corresponds to the row that contains
the logical key name. In this example, “Job Kill” is in the row corresponding

tO Controlj,
4, Use the combination ControifF19] when instructed to press [Jos ki,

Summary of Key Notation

The following notational conventions are used in this Rational Environment User’s
Guide and in all other Rational Environment documentation.

Symbols

{key name Press the key with “key name” on its keycap.

[Key namej Press the key or key combination designated by “key name” on the
overlay.

[keyt] - [keya) Press and release [xev1]; then press [key3].

(key 1) keva) Press and hold while pressing [xeva).

Mrumeric 1] Press 0] on the numeric keypad.

Numeric Arguments

You can give numeric arguments to many Environment commands that are bound
to keys. To do so:

1. Press and release the appropriate number key on the numeric keypad.

2. Press the key combination bound to the desired command.

For example, [weral - (0] deletes one word. The following combination deletes four
words: [mumeric 4 - [Word - [D].

I-10 11/2/87 R)/A\TIONAL

Chapter 1. The Rational Terminal Keyboard

You can indicate negative numbers by pressing and releasing first. For
example, the following combination shrinks a window by seven lines (“expands” it
by —7 lines):

meeric —J - Lnurnerlc 7] - | Window| ~ E]

Case of Keys

Although keys are shown in the documentation as uppercase, the unshifted equiva-
lent also works. This is true for the nonalphabetic characters as well. For example,
- (4 i8 equivalent to - [0} and - [] is equivalent to -0l

RATIONAL 11/2/87 I-11

RATIONAL

Chapter 2. Logging In and Logging Out

This chapter describes how to:

e Log into the Rational Environment
» Log into multiple sessions

o Change your password

¢ Log out

Logging Into the Rational Environment

You must have access to a user account in the Rational Environment in order to log
in. With a user account, you are identified to the Environment through a username
and a password. If you do not have a valid username and password, see your system
manager.

You can log into the Rational Environment from a Rational Terminal, a VT100
terminal, a VT100-compatible terminal, or a Facit terminal. Logging in follows the
same steps, regardless of the terminal type.

The Basic Login Process

To log in, you must respond to a series of login prompts. Note that:

¢ You can enter login information in uppercase or lowercase letters.

¢ You must press [Rewwrn] to complete each response and display the next prompt.

¢ If you discover an error before you press [Reurm], you can press to erase
individual characters, or you can press to erase your entire input for
that prompt.

IQATIONAL 11/2/87 I-13

rart 1. Geltlng otarted

To log in:

1.

Make sure your terminal is turned on. Your terminal displays the following
prompt when it is connected to the Rational Environment and ready for you to
log in:

Commence Login

Press to display the prompt that requests a username:

Enter user name:
Enter your username at the prompt and press [Retura).
The system responds with a prompt that requests a password:

Enter password:
Enter your password at the prompt and press [rewrn]. Note that your password
does not appear on the screen as you type it.

o If your username and password are accepted, the system responds with a
prompt that requests a session name:
Enter session name:

Sesstons provide a means by which you can customize certain aspects of your
work environment for individual projects. Associated with each account is a
default session, called S_1, along with any number of additional user-created
sessions.

e If your username and password are not accepted, the system responds with
the following message:

Incorrect user name or password.
Commence Login

Verify your username and password, and then repeat steps 2-4 to try again.

If you are a new user or if you do not require a customized session, log into the
default session, S_1. To do this, press at the session prompt.

(See also “Logging Into Nondefault Sessions,” below.)

When you have logged in successfully:

The Environment displays a message indicating the last time you were logged
into the specified session (there is no message for new sessions).

The screen briefly goes blank.

A login procedure is executed, which causes your Environment session to appear
on the screen. The next chapter explains what you see on the screen at this point.

I-14 11/2/87 I?ATIONAL

Chapter 2. Logging In and Logging Out

Logging Into Nondefault Sessions

As indicated by steps 4 and 5 above, logging into your Environment user account
entails logging into a specific session that is associated with your account. You can
always log into the default session, S-1 (as in step 5). Furthermore, whenever you
log in, you have the option of creating a new session or logging into a previously
created session. The main advantage of having multiple sessions is that each session
can serve as an individual work environment that you can set up specifically for a
particular ongoing activity. (For more details about sessions and customizing the
Environment, see the Session and Job Management (SIM) book of the Ratsonal
Environment Reference Manual.)

To create a new session or log into an existing nondefault session:

1. Follow steps 1 through 4 of the basic login process, above.

2. When the session prompt is displayed, enter a name for the new session. A
session name can be any Ada identifier—for example, S_2. Then press [Retura):
Enter session name: s_2 [Return]

3. If you specify an existing session name, the login process continues as described
above.

If you specify a new session name, the following prompt asks you to verify that
you want to create that session:

<name> does not exist. Do you want it created? (Y or return => Yes):

o Press [reumn) to create the session and continue the login process.

¢ If you made an error specifying the session name, enter n to redisplay the
Enter session name: prompt. You do not need to press [Rewrn). Continue
with step 2.

Once a session is created, it exists in your home library even when you are not
logged into it.

Logging Into Multiple Sessions

Besides allowing you to create and preserve customized editing environments for
individual projects, sessions also provide a means for you to log in concurrently
from several ports. For example, if you are logged into your default session, S_1,
and you want to log in a second time on a different terminal, you can create a
second session—say, S_2—for this purpose.

Note that you cannot log into the same session twice. If you try, the following
message is displayed:

Last login on July 1, 1987 at 3:17:73 PM
<name> 1s 1n use. Choose another session or try again later.

Try another session? (Y or return => Yes):

R’AT‘ONAL 11/2/87 I-15

Part I. Getting Started

At this point, you can:
o Press [Rewurn] to display the Enter session name: prompt and continue the login
process.

¢ Enter n to cancel the login and redisplay the Commence Login prompt. You do
not need to press [Return].

Checking the Terminal Type

The Rational Environment automatically checks the terminal you are using and
adjusts the port to the correct terminal type. If the Environment cannot determine
the correct terminal type, the following prompt is displayed automatically after you
have specified the session name:

Enter terminzal type:

If you want to ensure that the port’s terminal type is correct before you try to log
in, you can display and adjust the terminal type yourself. However, this procedure
normally is not necessary.

To display and adjust the terminal type:

1. At either the Commence Login or the Enter user name: prompt, enter an equals
sign (=) and press [Return]:
Enter user name: =
The system responds by displaying the Enter terminal type: prompt with the
current terminal type for the port you to which you are connected:
Enter terminal type (RATIONAL):

2. If the terminal you are using matches the terminal type given in the prompt,
press [Rewwrn]. Continue with step 3.

If the type of terminal you are using differs from the type displayed in the
prompt, enter the correct type (for example, Facit or VT100) and press [Return].
The port retains the new terminal type until you change it again.

3. The Enter user name: prompt is redisplayed. Log in as usual.
In the unlikely event that you have logged into a terminal that does not match the
port’s terminal type (for example, the automatic adjustment has failed), keystrokes

will not be interpreted correctly and you will not be able to log out. See your system
manager.

I-16 11/2/87 RAT'ONAL

UG WL & LVHHHLD 4 BLUAM VBB E U

Changing Your Password

At many installations, new users are given temporary passwords when their accounts
are created. It is then each user’s responsibility to change his or her password to
ensure the security of the account.

To change your password:

1. Once you have logged in and the Environment is displayed, press [creatc Commana
to open a window in which you can enter a command. (This window is called a

Command window.)

2. In the Command window, enter the following command, where the values of
stringl, string?, and string3 are explained below. Be sure to enclose each
string in double quotation marks and to separate the three parameters with
commas:

operator .change_password("stringl”,"string2","string3"};

stringl Your username.

string? The current password for the account. If this password is not
known, see your system manager.

string3 The new password for the account.

3. Press Promote].

When the command has executed, it is displayed in reverse video in the Command
window. Use your new password the next time you log in.

For example, a user named Anderson whose old password is “temp” enters the
following command to change the password to “hello”:

operator .change_password{ "anderson", "temp", "hello"};

For details about entering Environment commands, see Chapter 5, “Executing Com-
mands.”

RATIONAL 11/2/87 I-17

Part I. Getting Started

Logging Out

To log out of each Environment gession:

1.

Press [Create Command] to open a Command window in which you can enter a com-
mand.

In this window, enter the following command:
quit;
PreSS Promote,,

For details about entering Environment commands, see Chapter 5, “Executing
Commands.”

The Quit command executes if there are no unsaved editing changes and if
there are no executing jobs (programs or commands) that are reading input
interactively:

o The command is displayed in reverse video.
o The screen goes blank.
¢ The Commence Login prompt is displayed on the screen.

If there are editing changes that have not been saved, or if there are running jobs
reading input interactively, the Quit command fails and a message is displayed.

At this point, you can save uncommitted editing changes, terminate pending
jobs, and then repeat steps 1 through 3 to log out. (See “Checking the Win-
dow Directory Before Logging Out,” in Chapter 4.) Alternatively, you can log
out, di)scarding unsaved changes. (See “Logging Out with Unsaved Changes,”
below.

Note that if you are logged into multiple concurrent sessions, you must log out of
each one individually.

Logging Out with Unsaved Changes

You can log out with editing changes that have not been saved or with jobs (ex-
ecuting commands or programs) that are reading interactive input. If you do so,
unsaved changes are discarded and jobs wait indefinitely for input.

To log out regardless of unsaved changes or pending jobs:

1.

Press [Create command] to open a Command window in which you can enter a com-
mand.

In this window, enter the following command:
quit{true);
PreSS ‘Promote. .,

I-18 11/2/87 E)ATIONAL

Chapter 2. Logging In and Logging Out

The Quit command with the parameter true executes without warning you if
there are unsaved editing changes or pending jobs:

¢ The command is displayed in reverse video.
o The screen goes blank.
¢ The Commence Login prompt is displayed on the screen.

[?ATIONAL 11/2/87 I-19

RATIONAL

Chapter 3. Traversing the Rational Environment

This chapter describes:

e The basic layout of the screen as it appears when you log in

¢ An overview of several impcrtant kinds of objects in the Environment
e An overview of the Environment directory structure

e The basic method for viewing elements in the directory structure

What You See When You Log In

After you have logged in, ycur screen will look similar to Figure 3-1:

Rational Environment
D.9_25_1 Copyright 1884, 1885, 1986,
i RSON . S - -

1887, by Rational.
.Rational «(Oella} ANDE -

| A .
Calculation ! Ada (Pack_Spec),
Calculation | Ada {Pack.Body);
Documentation . Library (Directory),
Factorial : § Ada (Func.Spec);
Factorial S Ada (Func_Body),;
Login C Ada (Proc_Spec);
Login C Ada (Proc-Body),
Memo_12_.08_86 File (Text),
My_Test_Data File (Binary);

S_1 : Session;
S_1_Switches File {Switch);
Tools : Library (¥Yorld);

Figure 3-1. A Typical Screen at Login

QATIONAL 11/2/87 I-21

Part I. Getting Started

The screen in Figure 3-1 shows the Environment display for a user called Anderson.
This screen contains several kinds of windows in which various kinds of information
are displayed, such as system messages, a list of Environment objects belonging
to the user Anderson, and a prompt for entering Environment commands. The
following sections describe the basic types of Environment windows and what they
contain when you log in.

Message Window

At the top of the screen is the Message window, which displays system status infor-
mation, error messages, messages from the operator, and informative messages from
jobs. The Message window in Figure 3-1 displays the messages that appear when-
ever you log in. The Message window retains all messages received since logging in,
and you can scroll through this window to redisplay earlier messages.

The lower edge of the Message window is marked by a banner, which is a heavy, re-
verse video line containing information about the associated window. The Message
window banner displays the name of your installation’s R1000®, your username,
and the name of the session you are logged into. In addition, whenever you execute
a command or run a job in the foreground, the Message window banner indicates
this by displaying the ...running message.

Major Window

Directly below the Message window and its banner is a major window containing
your home library (which is described in the next section). Major windows are
typically larger than other types of windows, for it is in major windows that you
view and edit Environment objects such as Ada units, text files, library listings,
and job output. A major window is automatically opened whenever you request to
view or edit such an object. Since the screen can contain several major windows
(the default number is 3), you can view several objects at a time.

As with the Message window, the lower edge of a major window is marked by a
banner. This banner displays the name and other information about the object that
is displayed in the window. The format and contents of major window banners are
further described in “Window Banners,” in Chapter 4.

Home Library

When you log in, a list of your Environment objects is displayed automatically in
a major window. In general, such a list is called a lsbrary. Libraries are where you
collect and organize your work. They are analogous to directories on other systems
you may have used.

The particular library displayed at login is your home library. Your home library is
associated with your user account and is named using your username. For example,
in Figure 3-1, the name of the home library for user Anderson is !Users.Anderson
and is displayed in the major window’s banner. The library’s name also appears
underlined in the first line in the window.

A library lists an entry for each object it contains. In the example, the library
IUsers.Anderson already contains a number of objects, including files, Ada units,

[-22 11/2/87 'QAT'ONAL

Chapter 3. Traversing the Rational Environment

and login sessions. The first time you log in, your home library will be empty except
for listing your login session, S_1. As you create new objects, your home library

will list more entries.

(See “Objects in the Environment,” later in this chapter, for more information on
libraries and what they contain.)

Command Window

Below the major window and its banner, Figure 3-1 shows a two-line Command
window. Command windows are where you enter Environment commands for ex-
ecution. At login, a Command window is created automatically and the cursor is
placed in it, ready for you to enter a command. You can enter successive commands
in a single Command window, or you can create additional Command windows us-
ing [Create Commana’. (Note that “Changing Your Password” and “Logging Out,” in

g [Crea

Chapter 2, illustrated the creation and use of Command windows.)

Command windows are typically attached to major windows (as in this example),
but they can also be attached to the Message window or even to other Command
windows. Command windows are fully described in Chapter 5.

Customised Library Display Format

Figure 3-1 illustrates how user Anderson’s screen looks at login. This screen may
differ from yours with respect to the amount of information that is displayed about
each entry in libraries such as your home library. This and other aspects of the
screen layout (such as the size of the Message window) are determined by session
switches, which you can set to customize many features of your work environment;
see the Session and Job Management (SIM) book of the Rational Environment
Reference Manual.

The examples in the Rational Environment User’s Guide use the library display
format that is shown in Figure 3-1. You may find the examples easier to follow if
your library display format matches the format used in this guide. To make your
format match this one, you can do one of two things:

* You can adjust the display for an individual library by placing your cursor in the
library and pressing [Exei=in]. As you display multiple libraries, you can repeat this
process for each library, as desired.

* You can ask your system manager to change the following switches to the given
settings so that the next time you log in, all libraries will automatically match
the display layout in this guide:

Library_Show_Standard 1=
Library_Std_Show_Unit_State := True

The second of these alternatives is the most convenient; however, it may reduce
performance when viewing large libraries. It is recommended that you choose this
alternative while learning to use the Environment and then restore the two switches
to their default values when you become a more experienced user.

[QATIONAL 11/2/87 I-23

Part I. Getting Started

Customised Login Display

Each time you log in, an Ada procedure is executed to set up your session and
determine exactly what appears on your screen. For new accounts, tke system-
wide default login procedure is used, which displays your home library, creates a
Command window, and displays a message of the day, if there is one. It is possible,
however, to create your own customized login procedure, which determines the
windows that automatically appear on the screen at login. For example, as you
work on different projects, you can have these displayed at login instead of your
bome library. For details about creating a customized login procedure, see Chapter
16 in the Rational Environment Basic Operations.

Moving between and within Windows

When you log in, the cursor is automatically in the Command window. You can
move the cursor to the other windows on your screen as follows:

o Press {window] - [1] to move the cursor from the window it is in to the window above

it.
o Press - [1) to move the cursor from the window it is in to the window below
it.

You can move several windows at a time by pressing a number on the numeric
keypad first—for example, [numertc 3] - [Window] - [1. Further window management
operations are fully described in Chapter 4.

Once the cursor is in a window, you can use the cursor keys to move the cursor up,
down, left, or right.

Finally, you can scroll the contents of a window—for example, you can scroll up to
see earlier messages in the Message window, or you can scroll down to see further
entries in your home library:

¢ Make sure the cursor is in the window you want to scroll.

o Press [imse] - [1] to scroll up. Alternatively, you can scroll up by moving the cursor
up until you reach the upper window boundary.

o Press Tmae:] - 1] to scroll down. Alternatively, you can scroll down by moving the
cursor down until you reach the lower window boundary.

Note that for many item-operation key combinations, such as -[tJ and -0,
there are alternative “accelerated” key combinations, such as [control][2] and [cContra[V].
Experienced users find accelerated key combinations somewhat more convenient
to use. The Basic Keymap, in the Rational Environment Basic Operations, lists
the accelerated alternatives to the key bindings given in this guide; for even more
detail, see the Keymap in the Reference Summary, in Volume 1 of the Rational
Environment Reference Manual.

I-24 11/2/87 RATIONAL

Chapter 3. Traversing the Rational Environment

Objects in the Environment

From the previous section, recall that major windows (like the one displayed at
login) are where you view and edit Environment objects such as your home library.
This section briefly describes the basic kinds, or classes, of Environment objects
that you will work with most frequently. These include:

o Files
¢ Ada compilation units
o Libraries (more specifically, worlds and directories)

Note that there are other classes of objects in the Environment—for example, login
sessions—many of which are introduced in other chapters. For now, the basic objects
you need to know about are the ones described in the following sections.

Files

Environment files, like files on other computer systems, contain information. For
example, files can contain binary test data, text for documentation, and the like.
Different kinds of information are stored in different subclasses of files. Accordingly,
documentation is stored in tezt files (files of subclass text) and binary test data are
stored in binary files (files of subclass binary).

For the most part, the subclass of a file is established automatically by the Environ-
ment command that creates it. For example, the Text.Create command creates files
of subclass text. Therefore, explicitly setting or changing a file’s subclass, although
possible, normally is not necessary. Note that the subclass of a file is set as an
intrinsic attribute of the file and so does not depend on filenaming conventions such
as filename extensions or suffixes.

In Figure 3-1, the library 'Users.Anderson contains several entries for files. These
entries indicate the files’ subclasses in parentheses. For example:

Memo_12_08_86 : File (Text};
My_Test _Data File {(Binmary);

In such a display, the subclass serves as a useful reminder of what the file contains.

File subclasses like text and binary are predefined in the Environment. Other file
subclasses that you are likely to encounter are switch files, which contain switches
for tailoring various aspects of the Environment, and activity files, which pertain
to large-system development using Rational Subsystems™. The Environment pro-
vides specialized commands for editing certain subclasses of files, such as text files
and switch files.

Of the various subclasses of files, this guide covers only text files (see Part 11, “Edit-

ing Text”). Switch files, activity files, and the Environment resources for creating
binary files are covered in the Rational Environment Reference Manual.

RATIONAL 11/2/87 I-25

Part 1. Getting Started

Ada Compilation Units

On other computer systems that you may have used, Ada programs are written
as text in files. In contrast, Environment files are not intended for use in creating
and editing Ada programs (for example, there is no predefined file subclass for Ada
programs). Rather, Ada compilation units such as packages, subprograms, and
subunits constitute a separate class of Environment objects, for they are stored
in data structures that have much richer representations than files. This richer
underlying representation enables the Environment to provide features such as the
following:

* Editing operations that act on the specific structure of the Ada programs you
write—for example, syntactic formatting and completion

e A compilation management system that determines which units need to be com-
piled in a given Ada system and determines the correct compilation order

e A source-level debugger

Part I of this guide covers the various Environment facilities for developing Ada
systems.

If necessary, Environment Ada units can be converted or copied into text files—
for example, when transferring Ada programs to other computer systems or when
including lines of Ada code in documentation. Furthermore, Ada programs that
are in files can be parsed into Environment Ada units, as when transferring Ada
programs from another computer system. However, as long as an Ada program is
stored as a file, none of the Environment Ada editing facilities are available for it.
Therefore, unless otherwise indicated, the term “Ada compilation unit” (or “Ada
unit”) in this guide refers to an Environment Ada object, not to Ada source code
written in a file.

The class of Ada compilation units has subclasses—one for each type of Ada compi-
lation unit, as defined by the Reference Manual for the Ada Programming Language.
Ada compilation units include the following:

o Procedure specifications and bodies

¢ Function specifications and bodies

o Package specifications and bodies

¢ Generic specifications and bodies

¢ Generic instantiations

o Subunits (including package, procedure, function, generic, and task bodies)

1-26 11/2/87 RAT'ONAL

Chapter 3. Traversing the Rational Environment

Figure 3-1 shows several entries for Ada compilation units in the library !Users.An-
derson, including the specifications and bodies for the Login procedure, the Factorial
function, and package Calculation. These entries indicate the units’ subclasses using
the abbreviated notation shown in parentheses:

Calculation : C Ada (Pack_Spec)
Calculation : C Ada (Pack_Body)
Factorial : S Ada (Func_Spec)
Factorial : S Ada (Func_Body)
Login : C Ada (Proc_Spec)
Login . | Ada (Proc_Body)

Note that entries for an Ada unit also contain a single letter (C, I, or S) that
indicates the unit’s comptlation state. The letter C stands for the coded state, the
letter I stands for the snstalled state, and the letter S stands for the source state.
Ada unit compilation states are covered in Chapter 9.

Libraries (Worlds and Directories)

Environment libraries constitute the third basic class of Environment objects. Li-
braries are used for collecting and organizing objects into projects, Ada systems,
and the like. There are two kinds of Environment libraries—worlds and directories.
At this point, you do not need to know how worlds and directories differ. between
them is of utility when you are ready to systems (see Part V, “Large-Scale Devel-
opment”). For now, you can think of worlds and directories as equivalent in the
following basic respect: Environment worlds and directories contain objects such as
files, Ada units, and other worlds or directories.

Environment libraries, therefore, are counterparts to directories on other computer
systems you may have used.

Environment worlds and directories are both referred to as Iltbraries because both
can be used as Ada program libraries as defined by the Reference Manual for the
Ada Programming Language. That is, for each of your Ada programs, you can create
an Environment library that contains the program’s compilation units.

As Figure 3-1 shows, a library’s name appears underlined in the first line of its
display. Also in this line, the library is identified as either a world or a directory;
in Figure 3-1, the library !'Users.Anderson is identified as a world. Note that home
libraries are always worlds, so it is also correct to refer to them as “home worlds.”

The display of a library has an entry representing each object it contains. (The
previous two sections showed entries for files and Ada compilation units from the
world !Users.Anderson in Figure 3-1.) !Users.Anderson also contains several entries
for libraries. These entries indicate whether the library is a world or a directory:

Documentation : Library (Directory)};
Tools : Library (World);

BA\-”ONAL 11/2/87 I-27

Part I. Gettiug Started

Environment Objects and Access Control

Like other computer systems that you may have used, the Environment provides
access control, which allows you to grant or restrict permission for other users to
access libraries, files, or Ada units.

For files and Ada units, either of the following classes of access rights can be granted
to particular groups of users:

* Read access: Indicates permission to view the object, but not to modify it.
e Write access: Indicates permission to both view and modify the object.

For libraries, classes of access rights include permission to view the library display,
to create new objects in the library, to change the access classes for objects in the
library, and to delete the library.

Default access classes are assigned to each object when it is created; you can change
the original access assignment to objects as permitted. For further information, see
the Library Management (LM) book of the Rational Environment Reference Manual.

The Environment Library Structure

As mentioned in the previous section, libraries can contain other libraries. Such
arbitrarily nested libraries form the hierarchic structure in which Environment ob-
jects are organized. The Environment’s hierarchic library structure is similar to
directory structures on other computer systems.

The root of the Environment library structure is a single world called ! (pronounced
“bang”). Within the world ! are the basic worlds that support the Environment
plus any other worlds or directories that have been created at your installation. The
diagram in Figure 3-2 shows a core portion of the Environment library structure,
starting with the root world ! and including the sample home library for user
Anderson.

I-28 11/2/87 RATIONAL

Chapter 3. Traversing the Rational Environment

|

!Commands

o iLrm 1Tools Users

Anderson .

Calculation Documentation

Figure 3-2. The Environment Hierarchy

Figure 3-2 shows five of the worlds in world ! that will be most useful to you. These
worlds, which are part of the standard Rational Environment, are described below:

!Commands

Io

'Lrm

Tools

'Users

Contains the specifications of the Ada packages that define the
majority of the Environment commands.

Contains the specifications of the Ada packages that define the
Environment input/output facilities.

Contains specifications of the standard Ada packages (the world’s
name stands for “Language Reference Manual”).

Contains predefined Ada tools you can use to build other pro-
grams.

Contains the home libraries for each user in the Environment. For
example, as Figure 3-2 shows, the home library for user Anderson
is located in the world !Users.

The Reference Summary, in Volume 1 of the Rational Environment Reference Man-
ual, lists the complete contents of the worlds !Commands, !Io, 'Lrm, and !Tools.

RATIONAL

11/2/87 I-29

Part I. Getting Started

Fully Qualified Object Names

Every object in the Environment has a unique fully qualified pathname that reflects

the object’s unique place in the hierarchic library structure. A fully qualified path-

pame begins with !, which stands for the root world, and contains one or more name

components, one for each of the libraries in the hierarchy between the root world !
lus the object itself. The rightmost name component is the object’s simple name.
ultiple name components are separated by periods.

For example, following are the fully qualified names of some of the objects shown
in Figure 3-2:

e Usgers is the name of the world Users located within the root world !.

. !gsers.Anderson is the name of the world Anderson located within the world
'Users.

o !Users.Anderson.Calculation is the name of the Ada package Calculation that is
located within the world !Users.Anderson.

An Ada unit name such as !Users.Anderson.Calculation refers either to the unit’s
specification or to its body. (Some commands choose one of these as the default
reference when you supply this kind of Ada name as a parameter.) To refer specifi-
cally to a unit’s specification or body, you can append the appropriate attribute to
the unit’s name. An attribute is separated from the unit’s simple name by a single
quotation mark (’°):

o !Users.Anderson.Calculations’Spec names the specification of 'Users.Anderson-
.Calculation.

o !Users.Anderson.Calculations’Body names the body of !Users.Anderson.Calcula-
tion.

The Current Context in the Library Hierarchy

When you view objects in the library hierarchy, those objects are displayed in major
windows on the screen. Placing the cursor in one of these major windows helps
to establish the current contezt, or “where you are” in the Environment library
hierarchy. The current context is an important notion for referring to objects in
Environment commands that create objects, view objects, and the like.

The current context is always a library or an Ada unit. Following are guidelines by
which you can determine the current context:

¢ If the object containing the cursor is a library or an Ada unit, the current context
is that library or Ada unit.

o If the object containing the cursor is a file, the current context is the library that
contains the file.

o For other objects, the current context is determined on a case-by-case basis.

o If the cursor is in a Command window, the current context is determined by
contents of the window to which the Command window is attached.

1-30 11/2/87 QATIONAL

Chapter 3. Traversing the Rational Environment

Note that you can make an absolute reference to an object from any context by
using its fully qualified name. You can also refer to an object relatsve to the current
context, using only a portion of the fully qualified name.

For example, you can use the fully qualified name !Users.Anderson.Calculation in
any context to refer to the package Calculation in the world !Users.Anderson. In
addition, you can refer to this package using a relative name from the following

three contexts:

¢ If the current context is 'Users.Anderson, you can use the simple name Calcula-
tion.
o If the current context is !Users, you can use the name Anderson.Calculation.

o If the current context is !, you can use the name Users.Anderson.Calculation.

Traversing the Environment Library Structure

When you log in, your home library is displayed automatically by the default login
procedure. This section describes how to find and display other objects in the
Environment in addition to your home library.

The basic method for finding and displaying objects exploits the hierarchic structure
of the Environment. Under this method, you can move, or traverse, from object
to object within the library hierarchy until you find the object you want. You can
traverse downward within the hierarchy by starting in a library and displaying one
of the objects that the library contains. You can also traverse upward within the
hierarchy, starting at an object and displaying the library that encloses it.

The four basic operations for traversal are bound to modified function key combi-
nations. On the Rational Terminal keyboard overlay, these key combinations are
named [Dehnition], "Other Part], [Home Libraryl, and [Enctosing. You can find these key combina-

tions in the column labeled “Traverse.”

Besides using the basic traversal operations, you can also cut across the library
hierarchy to display any arbitrary object by specifying the object’s name in an
Environment command (examples are given in “Ada Usage in Command Windows,”
in Chapter 5).

The following sections show how to use Environment commands bound to key com-
binations to:

o Traverse from a library to an object in that library ([pefnition])
¢ Traverse between an Ada specification and the corresponding body in either di-

rection ([Other Pan))
o Traverse from an object to the library that encloses it ([Enciosing)

e Return to your home library from any context in the Environment ([Home tibrary))

[QATIONAL 11/2/87 I-31

Part I. Getting Started

Traversing from a Library to an Object in It

When a library like your home library is displayed in a window, you can use its
display to bring up a window for any of the objects in that library. This way of
viewing, or getting the definstson of, objects involves using [Definition).

For example, assume that you are user Anderson and you want to view the contents
of one of the libraries listed in your home library—for example, the Tools world.

Starting with the screen as it appears at login (recall Figure 3-1):

1. Move the cursor into the window that contains your home library (see “Moving
between and within Windows,” above.)

2. Use the cursor keys to position the cursor on the entry for the Tools world. You
can put the cursor anywhere on the line containing the entry. Note that in long
libraries, you may need to scroll through the library entries to find the desired
one (see “Moving between and within Windows,” above).

Figure 3-3 shows your home library with the cursor next to the entry for the
Tools world:

Rational Environment
D_9.25.1 Copyright 1884, 1985, 1986, 1987, by Rational.

= Ralionail- {Delta} ANDERSON S_1 ,

~

Calculation ©) Ada (Pack.Spec):

Calculation .1 Ada (Pack_Body):
Documentation : Library (Directory);
Factorial S Ada {Func_Spec);
Factorial : § Ada (Func_Body);
Login : C Ada (Proc_Spec);
Login . C Ada (Proc_Body};
Memo_12.08_86 File (Text);
My _Test_Data File (Binary);
S.1 : Session;
S.1_Switches File (Switch);
B Tools : Library (¥orld);

Figure 3-3. Designating the Tools World for Viewing

1-32 11/2/87 BATIONAL

Chapter 3. Traversing the Rational Environment

3_ PrPRS {Beﬁnition‘,.
[Denition’ Opens another major window and displays the designated object, !Users-
.Anderson.Tools, in it. The cursor is placed in the new window at the beginning
of the first line, as shown in Figure 3-4:

Rational Environment
D_G_25_1 Copyright 1984 1885, 1986, 18987, by Rational.

=-gFational- (Delta) ANDERSON S_1

Calculation ~ | Ada {Pack_Specj)

Calculation .| Ada (Pack_Body});
Documentation Library (Directory);
Factorial © § Ada (Func_Spec);
Factorial © § Ada (Func.Body) .
Login . C Ada (Proc.Spec) ;
Login © C Ada (Proc_Body),;
Memo_12_08_86 . File (Text);
My..Test_Data File (Binary),
S.1 Session;
S.1_Switches File (Switch);
Tools : Library (¥World},

Ada {Pack_Spec);
Ada (Pack_Body) ;
Ada (Pack_Spec),
Ada (Pack._Body) .
Ada (Pack._Spec);
Ada (Pack_Body)

Math_Tools
Math_Tools
Scan_Tools
Scan_Tools
String_Tools
String_Tools

OOO0O0O0

Figure 3-4. After Pressing [Definition

PATIONAL 11/2/87 I-33

Part I. Getting Started

You can use [Denition] to view any kind of objects, including Ada units and files.
When you get the definition of an Ada unit or a file, the display is read-only; to
make changes to an Ada unit or a file, you must make an explicit request to open
it for editing (see Chapters 7 and 10).

For example, now that you have displayed !Users.Anderson.Tools, you can use
to display one of the units in this world—say, the specification for package
String_Tools:

1. In the world !Users.Anderson.Tools, move the cursor to the entry for the String-
—Tools package specification, as shown in Figure 3-5:

Rational Environment
D_8_25_.1 Copyright 1884, 1985, 1986, 1887, by Rational.
= -Rali1onal:1Beltai ANDERSO -

Calculation . | Ada (Pack.Spec);

Calculation : | Ada (Pack_Body}),
Documentation : Librery (Directory});
Factorial : § Ada (Func.Spec};
Factorial : § Ada (Func.Body);
Login - C Ada (Proc_Spec):
Login . C Ada (Proc.Body) .
Memo_12_08_86 File (Text),
My_Test_Data File (Binary);
S.1 : Session;
S_1._Suitches File (Switch);
Tools : Library (¥World);
[dCatemert

end,

| : i
Math_Tools Adea (Pack.Spec) .

c
Math_Tools C Ada (Pack.Body);
Scan_Tools . C Ada (Pack.Spec).;
Scan_Tools C Ada (Pack_Body);

B String_Tools : C Ada (Pack.Spec);
String.Tools : C Ada (Pack_Body);

= - ISERS < ANDERSON-TOOLS «t+11brary +

Figure 3-5. Designating the Specification for Package String_Tools

1-34 11/2/87 RATIONAL

Chapter 3. Traversing the Rational Environment

2. Press [Depnivion). The designated Ada unit is displayed with read-only access in a
third major window, as shown in Figure 3-6:

Rational Environment
D_S_25.1 Copyright 1984, 1085, 1986, 1987, by Rational.

=.Ketional (Deltai ANDERSON S_1

Calculation © | Ada (Pack_Spec);

Calculation | Ada (Pack_Body);
Documentation : Library (Directory);
Factorial S Ada (Func.Spec);
Factorial . S Ada (Func_Body),;
Login . C Ada (Proc.Spec);
Login . C Ada (Proc_Body);
Memo_12_08_86 : File (Text);
My_Test_Data File (Binary).
S.1 : Session;
S.1_Switches File (Switch),
Tools : Library (¥orld);

Math_Tools C Ada (Pack Spec) ;
Math_Tools C Ada (Pack._Body};
Scan_Tools . C Ada (Pack_Spec);
Scan_Tools C Ada (Pack_Body);
String.Tools C Ada (Pack_Spec) .
String.Tools C Ada (Pack_Body);

Gackage String.Tools is
function Equal (Stringl : String; String2 : String;
lgnore_Case : Boolean := True) return Boolean;
function Greater_Than (Stringl : String; String2 : String;

Ignore_Case : Boolean := True) return Boolean;
function Less_Than (Stringl : String; String2 : String;
Ilgnore_Case : Boolean := True) return Boolean;

function Lower_Case (S : String) return String;
function Upper_Case (S : String) return String;
end String.Tools;

Figure 3-6. After Pressing

;QATIONAL 11/2/87 I-35

Part 1. Getting Started

The use of (Defnition; illustrates a basic pattern underlying Environment operations.
This pattern can be characterized as a “noun-verb” pattern. According to this
pattern, two-part operations have the following order:

1. An object is designated—for example, by cursor position.
2. An action is indicated—for example, by pressing [Definition].

This pattern is consistent with the item-operation type of key combination (see
Chapter 1).

Traversing between Ada Specifications and Bodies

Having displayed the specification for the Ada package String_Tools, you can easily
bring up a window for the body of this package, as well. There are several ways to
do this. You can always use the methods described in the previous section—namely,
moving the cursor back into the Tools library, putting the cursor on the entry for
the String_Tools package body, and then pressing [pesnition]. Alternatively, you can
traverse directly to the package body from its specification by pressing [owner Pari].

other Part) uses the Environment’s underlying Ada unit representation to find an Ada
unit’s body from its specification or to find an Ada unit’s specification from its body.
You can use [ower part) with Ada procedures, functions, packages, and generics.

For example, to traverse from the specification of package String_Tools to its body:
1. Leave the cursor in the window containing the package specification, as in Figure
3-6 on the previous page. The cursor can be anywhere in this window.

2. Press [other Par.
On the next page, Figure 3-7 shows that opens a new major window and

displays !Users.Anderson.Tools.String_Tools’Body in it. Like [Defnition], [other Par]
displays Ada units with read-only access.

Note that, in previous examples, new windows were simply added below existing
ones. In this example, however, the new window has replaced the window containing
your home library, so that the new window appears at the top of the screen. This
is because, by default, the screen can contain only three major windows at a time
(you can change this default; see Chapter 4, “Managing Windows”gl. Therefore,
when you display a fourth object, its window must replace a window that is already
on the screen. Chapter 4 describes the order in which windows are replaced.

I-36 11/2/87 RAT'ONAL

Chapter 3. Traversing the Rational Environment

Rational Environment
D.G.25_1 Copyright 1984, 1985, 1986, 1987, by Rational.

= Rational iDeltai ANDERSON S_1

Eackage body String_Tools is
function Equal (Stringl : String; String2 : String;)
Ignore_Case : Boolean :® True) return Boolean is

begin
1f Ignore_Case then
declare
Upperl . constant String = Upper_Case (Stringl),
Upper2 . constant String = Upper_Case (String2);
begin
return Upperl = Upper?;
end,
else
return Stringl = String2;
end if;

2.2 - TOOLS . STRING_TOOLS 'BODY "vi61-iada.

IUs
Pack._Spec) ;

Math_Tools C Ada {

Math_Tools C Ada (Pack_Body) .
Scan_Tools - C Ada (Pack_Spec);
Scan_Tools . C Ada (Pack_Body);
String_Tools C Ada (Pack.Spec);
String_Tools C Ada (Pack.Body);

package String_Tools is
function Equal (Stringl : String, String2 : String;
Ignore_Case : Boolean := True) return Boolean;
function Greater_Than (Stringl : String; String2 : String;

tgnore_Case : Boolean := True) return Boolean;
function Less_.Than (Stringl : String; String2 : String;
Ignore_Case : Boolean := True) return Boolean;

function Lower_Case (S : String) return String;
function Upper_Case (S : String) return String,
end String_.Tools;

Figure 3-7. After Pressing

QATIONAL 11/2/87 I-37

Part 1. Getting Started

Returning Home

You can use to return to your home library directly from any context in
the Environment library structure. For example, now that you have traversed to
another library and viewed several objects in that library, you can bring your home
library back onto the screen as a starting point for further traversal.

To return home:

Press [Home Library]. The cursor can be in any window on the screen.

As shown in Figure 3-8 on the following page, your home library is redisplayed,
replacing another window as necessary. The cursor is returned to the entry for
the Tools world, which is the cursor’s most recent position in that window.

Using is a convenient way of retrieving your home library once it has
been replaced. (Note that Command windows, such as the one attached to your
home library, are replaced and redisplayed along with the major windows to which
they are attached.) If you press while the home library is still displayed,
the cursor simply moves into the appropriate window.

I-38 11/2/87 RAT'ONAL

Chapter 3. Traversing the Rational Environment

Rational Environment
D_9_25_1 Copyright 1984, 1985, 1886, 1987, by Rational.

=-Rational 1Delta) ANDERSON S_1 :

package body String_Tools is
function Equal (Stringl : String; String2 : String;
Ignore_Case : Boolean := True) return Boclean is

begin
1f Ignore_Case then
declare
Upperl : constant String := Upper_Case (Stringl).
Upper2 : constant String := Upper.Case (String2).
begin
return Upperl = Upper2;
end;
else
return Stringl = String?2;
end if;

IUs .] .
Calculation | Ada (Pack_Spec);
Calculation : | Ada (Pack_Body};
Documentation ! 1brary (Directory):
Factorial S Ada (Func.Spec}),
Factorial S Ada (Func_Body) ;
Login C Ada (Proc_Spec};
Login . C Ada (Proc_Body);
Memo_12.08_86 - File (Text);
My_Test_Data File (Binary);

S_1 Session;
S_1_Suwitches File (Switch);
E Tools Library (¥orld);

package String.Tools 1is
function Equal (Stringl : String: String2 : String;
tgnore_Case : Boolean = True) return Boolean;
function Greater_Than (Stringl : String; String2 : String,
Ignore_Case : Boolean & True) return Boolean;
function Less.Than (Stringl : String; String2 : String:
lgnore_Case : Boolean := True) return Boolean;
function Lower_Case (S : String) return String;
function Upper_Case (§ : String) return String;
end String_Tools;

Figure 3-8. After Pressing [Home Library

[QAT'ONAL 11/2/87 -39

Part 1. Getting Started

Traversing to the Enclosing Library

In contrast to [Defnnion), which traverses “down” the Environment hierarchy, [Enciosing
enables you to to traverse “up” the Environment hierarchy. That is, using [Enciosing],
you can start from an object and traverse to the library that contains, or encloses,
that object.

For example, to view the world !Users, you can use from your home library,
since the world !Users encloses your home library.

To display the world !Users:

1. Start with the cursor in your home library, as in Figure 3-8.

2. Press [Endosing. Use the keyboard overlay to locate among the function
keys. Note that [Enciosing] is in the column labeled “Traverse” on the keyboard
overlay.

As shown in Figure 3-9 on the following page, the world !Users is displayed,
replacing another window as necessary. The cursor appears next to the entry
for Anderson and this entry is highlighted, because you traversed from the world
'Users.Anderson.

Note that, with the cursor in the window for !Users, you have several options for
further traversal:

e You can press Enciosing one more time to view the root world !. Note that you
cannot use [Endosing to traverse beyond the world ! because no further world
encloses it.

¢ You can reposition the cursor within the world 'Users and then use [befiniion! to
display another user’s home library. For example, if you need to read a memo
in user Miyata’s home library, you can move the cursor to the entry for Miyata
and press peannion) to display !'Users.Miyata. Then you can use [Definiion] again to
display the desired memo.

I-40 11/2/87 QATIONAL

Chapter 3. Iraversing the Rational nvironment

Rational Environment
D_9_25_1 Copyright 1984, 1985, 1986, 1987, by Rational.
S

=. gKational ..iDellat ANDERSON

package body String.Tools 1is
function Equal (Stringl : String; String2 : String;
ignore.Case : Boolean := True) return Boolean is

begin
if tgnore_Case then
declare
Upperl : constant String := Upper_Case (Stringl);
Upper2 : constant String := Upper_Case (String2);
begin
return Upperl = Upper2;
end,
else
return Stringl = String2;
end if;

EEER ~ Coged

=] QOL8 - TRING_TOOLS 'BODY-" Vi 6 i

Calculation .| Ada (Pack_Spec);
Calculation . | Ada (Pack_Body);
Documentation . Library (Directory);
Factorial - S Ada (Func_Spec);
Factorial - § Ada (Func_Body) ;
Login - C Ada (Proc_Spec);
Login . C Ada (Proc_Body) .
Memo.12_08_86 File (Text):
My_.Test_Data File (Binary});
S_1 Session,
S_.1_Switches File (Switch});
Tools Library (¥orld;;

lerarj—XVorld X

:)
Bes : Library (Vorld);
Blb : Library (World);
Bls : Library (¥World);
Bolz : Library (¥orld},;
Dbh : Library (¥Yorld);
Dbp : Library (World);
Dce : Library (World);
Dcg : Library (¥orld);
Demo : Library (V¥orld);
Demol0 : Library (V¥orld);
Demoll : Library (¥Yorld),

Figure 3-9. Displaying !Users with

EAT'ONAL 11/2/87 1-41

Part I. Getting Started

Traversing the Environment: Summary

The examples in the previous four sections showed how to traverse a portion of
the Environment library structure using [Defnition], [Other Part], [Home Library], and [Enciosing].
The diagram in Figure 3-10 shows the objects that were viewed in the previous
examples, indicating the sequence of keys that was used:

|
Users
Enclosing
Anderson
Mo
/ \
String_Tools'Spec String_Tools'Body

Figure 3-10. The Objects Viewed Using Traversal Operations

Figure 3-10 represents only one of several possible ways to traverse these objects,
because you can always use combinations of [Dennision] and [Enciosing as less direct equiv-

alents of and [Home Library],

I-42 11/2/87 EAT'ONAL

Chapter 3. Traversing the Rational Environment

For example, instead of using to traverse from the specification of package
String-Tools to the body, you can use to return to the Tools world, and
then use to display String-Tools’Body. Both alternatives are represented
in Figure 3-11, one by a solid line and one by a dotted line:

Tools
/) \\'

String_Tools'Spec String_Tools'Body

Figure 3-11. An Alternate Route from String_Tools Specification to Body

Similarly, instead of using to traverse from String_Tools’Body to your

home library, you can “retrace your steps” by pressing twice, as shown in
Figure 3-12:

Anderson @ - - .

-
-
-

e]

Tools v

/ \‘\ :

]

(4

String_Tools'Spec String_Tools'Body _ _ .+

Figure 3-12. An Alternate Route Home from String_Tools'Body

RATIONAL 11/2/s0

1-43

Part 1. Getting Started

When you traverse to an object, that object is displayed in a window on the screen
and the cursor is placed in the object’s window. As shown in the previous set of
examples, windows are added to the screen until the screen is full, after which exist-
ing windows are replaced. (See Chapter 4 for further information about windows.)
Note that if you traverse to an object whose window is still on the screen, the cursor
simply moves to that window. (In this case, you can equivalently use [Window] - [7] or
[Window] - (1 to move the cursor.)

As you traverse the Environment, bear in mind that Environment objects are subject
to access control. In particular, if you try to traverse to an object to which read
access has been restricted, a message is displayed indicating that you cannot view
that object. (For more information on access control, see the Library Management
(LM) book of the Rational Environment Reference Manual.)

Finally, it is important to note that the traversal operations [Defnition], [Eaciosing, and
other Pare] can be used to browse Ada systems (see Chapter 14). You can think of
traversing the library structure as a special case of this more general usage.

I-44 11/2/87 RATIONAL

Chapter 4. Managing Windows

When you log in, your screen contains several windows. As you display more objects,
more windows are created. This chapter describes the various ways in which you and
the Environment can manage multiple windows. Specifically, this chapter describes:

o How objects and information are displayed in windows

¢ How multiple windows are placed on the screen

¢ How you can redisplay windows that have been replaced

* How you can change the number, size, and location of the windows on the screen

Windows and Images

Work in the Environment is accomplished through various kinds of windows. Three
kinds of windows were introduced in “What You See When You Log In,” in Chapter
3—namely, the Message window, major windows, and Command windows. A fourth
kind of Environment window, called minor windows, is introduced in Chapter 15.
Each kind of Environment window contains, or displays, objects and other informa-
tion. More precisely, Environment windows contain the displayable representations,
or tmages, of objects and information.

An image is a user-readable textual representation that is suitable for displaying in
a window. Sometimes it is useful to refer specifically to images—for example, when
describing operations such as scrolling, which act exclusively on displayed images.
Typically, however, reference to an image is omitted where it can be inferred. That
is, in this guide, you will see phrases like “the window containing the object” rather
than “the window containing the image of the object.”

Serolling an Image

At any one time, a window actually displays only a portion of the entire image of
an object. This is because each Environment window is finite in size, whereas an
object’s image can extend arbitrarily far to the right or down. You can think of an
image as lines of characters surrounded by an indefinite expanse of white space.

The diagrams in Figure 4-1 represent various ways in which you can position a

window relative to the image it contains. In diagram A, the top of the image (the
first line) coincides with the top of the window, and the left edge of the image

QAT'ONAL 11/2/87 1-45

Part I. Getting Started

coincides with the window’s left edge. Most images are displayed this way initially;
you can always bring the top of an image into view using - [Begin O],

Diagram A shows that the lines toward the bottom of the image are not visible
within the window. You can bring these lines into view by using - [to scroll
down by one full window of lines, as indicated in diagram B. Conversely, -

scrolls up by one full window of lines.

Diagram A also shows that an image can extend beyond the right edge of the
window. You can bring this portion of the image into view by using - =
Each use of this key combination scrolls 16 columns to the right (diagram C).
Conversely, [Tmaee] - scrolls 16 columns to the left.

Finally, you can use [Imsg] - to display the last full window of lines directly,
without viewing any intervening lines (diagram D).

A
Windwws end images
Work e - brauhy of wndem. These
inds f windows wers inirescsd in What You Sae Wharleu Log In” in Chapier
3-—narraly, hu Mimnoge wndow, fajer windemn, and Clvrand windeme. A lmuht

Mors precisely, Ervronment mnduws centem he deplethbis rapresenisbens.

An mmege & 2 uswr rendebie Bt rapraseriten het @ euilmiie fir depieying in
o window. Semetmes it 8 veski W el specitoally W meges—isr mampla, when
deecribng oparabons much as soraiing, which sct exciusvely on demeyed mages
Typcally, however, sstersncs 1 ar rmage is omtad where it can be nfered. That
0 e guide you will ses phrases e “he mndow contmnng he olpect rther
Fan “he window conlmnmg e rmage of the shyct.”

Sawing o irnge

Al my ene ime, @ window sctually dapleys erdy o porten of e enire image of

an siyect. Tha s becauss sesh Ervwenment wndew & s n sirs, wheress on
ehjects immge sen srind arkivarily fr b he right or Semn. Y ven tink of an
imege o3 ines o shemctars sumsunded by @n indsirits sxperes of whits spsce.

[Image] - [Begin Of]

- e e EE e .-

B utrcoms ons imagon]

Buvart in the Ervironnent i amemplished ey varous Bnoe of awndows. Three

vt of winduws wers invedsesd in ‘What You Sue When pm: Lag 1" in Chapher

3—namely, he Msssags windem, mujw windiow, and Co_vnand windews. A lmurht

Biindt of Ervirmnwvant wodem, salled mnes wndows, s infhducad i Chapter 15

Ench Jond of Ervwenment wirdow comtmine, o dapleys. agects and elher informason.
-

o w e e mn e ® ==

An vmge is o vew-rudbie B rpressrmfen Bt is bolisbie kr dapizyng v
& window. Semetmes it is vaskul © ruler speeiically i [rages —hwr exampie, when
spersiona such ma screling, whish act suciuswily on displeyed images.
Tymcaly, homeve. refwrencs 1 88 "ge 8 mimc wnerd it can be e That
18, 1 his guids, yeu wil ses phrases ks The mncow coflmining e emect raher

Baraltng on image

At oy me frm, & winduw artaly dasinys enly 5 parion of he wnirs wrage of
o sigect The & besmse anch Ervrenment windsw is ol 0 e, wharses e
shjouts imege sun ming arbracly fur & the Aght & dmwn. Yau aen Bunk of an
image s nas of charselrs surrsunded by o indednila smpanss of whil apace.

[Image] - [¢]

C

Windows and images
mmummummmhdmmJ
§ s of windmas weralinrestoesd n What You See Wher B Lay 1, in Onaper
g ey, o Moseds mnden, majer windwrs, end wedews. A laibht
nd of Ervrasmunt wihdem, sstied miner woduen, io infosvoed in Chapher 15.
1 Esch nd of Erwwencibnt windme sentsine, o dupieys, diiorn and other inlemiion.
3 Yre wesesh. Enveiment windem senimn e depimiia reprsmeninions, o
g wee

Atany ens bma. o windaw setsaly dhepiers enly 1 parien of e anbre image of
o siyect Ths & beciuse sach Envrerment madew is Snm 4 size, wheram an
ety megs con sxind arbivacly i B e ngh! o demn. You tmn Punk of an
image a0 nes of sharscin aurrsundad By B0 deinie experes of whin epace.

[imege) - &

D

Windemm ored iruges
Wark in e Erwirmwnent is assemgished Sweuhy veneus hinds of windews. Three

Figure 4-1. Displaying Different Portions of an Image

1-46

e RATIONAL

Chapter 4. Managing Windows

Window Banners

All windows except Command windows display a banner beneath the visible portion
of the image. The banner is a reverse video line containing information about the
image in the window. In the banners for major windows, this information falls into
several fields, as shown in Figure 4-2:

Figure 4-2. The Fields of a Typical Window Banner

A. The leftmost field of the banner contains a symbol that indicates whether the
image can be modified and, if so, whether it actually has been modified. These
symbols are described in “Modification Symbols in the Window Banner,” below.

B. The next field names the contents of the window. A fully qualified name appears
for objects like Ada units, files, and libraries. When a job opens a window for
input or output, this field in the banner displays the name of the context from
which the job was initiated, followed by the job name. Long names are truncated
on the left; truncation is indicated by three dots preceding the name fragment.

C. Following the name and enclosed in parentheses is an indication of the editing
facilities that are available for the object in the window. This typically corre-
sponds to the class or subclass of the displayed object. Typically, you will see
(ada), (text), or (library) here.

D. The next field may contain a blank, a tilde (~), or an at sign (e). The tilde
indicates the next window to be replaced, and the at sign indicates a window
that cannot be replaced; see “How Windows Are Placed on the Screen,” below.

E. The rightmost field of the banner contains further information about the con-
tents of the window. For Ada units, the unit state (for example, Source, In-
stalled, or Coded) is displayed (see Chapter 9). For libraries, the subclass
(Wwor1d or Directory) is displayed.

The banner for the Message window is unique. This banner contains the name of
your installation’s R1000, your username, and the name of the session you are logged
into. Furthermore, this banner is where certain messages, such as the .. .running
message, are displayed.

RAT'ONAL 11/2/87 1-47

Fart 1. Getting Startea

Modification Symbols in the Window Banner

When you edit an object such as an Ada unit or a file, the changes you make appear
in the image, where you can view them. However, the changes you make to an image
are not permanent. To update the object itself, you must explicitly save, or commit,

the changes.

The symbols in the leftmost field of a window banner indicate whether the image in
a window can be modified. For modifiable images, these symbols indicate whether
the image has in fact been modified. The modification symbols include:

(blank)

Indicates that the image is read-only. Some images are inherently
read-only—for example, images of libraries. Images of files and Ada
units are read-only if you have not explicitly opened such objects
for editing. For example, using displays a file or an Ada
unit with a read-only image.

Indicates that the image is modifiable and that no changes have
been made since the last time it was saved. The blank symbol
appears in the banner of an unchanged file or Ada unit that is open
for editing.

Indicates that the image is modifiable and that changes have been
made to it since the last time it was saved. In a window created by
a job, the * symbol indicates that the job requires interactive input.

Indicates that the image of an Ada unit is modifiable and that the
image has been changed since the last time it was saved; addition-
ally, these changes have been assimilated into an internal repre-
sentation through an operation called formatting (see Chapter 11,
“Using Ada-Specific Editing Operations”). In a job window, the #
indicates that the job is requesting interactive input.

Indicates that the image is currently read-only because a job has
obtained access to the object in that window.

Note that the Quit command will fail if a window banner contains an * or # symbol
when you log out.

1-48

11/2/87 E)ATIONAL

Chapter 4. Managing Windows

How Windows Are Placed on the Screen

As you traverse the Environment to view and edit objects, windows are automati-
cally opened on the screen. When the available screen space is full, new windows
cause existing windows to be replaced. The following sections describe the Envi-
ronment’s basic strategy for placing windows on the screen and the various ways
you can further control the placement of windows.

Windows and Frames

The Environment divides the screen space below the Message window into frames
for the purpose of managing window placement. Each frame is a separate logical
area on the screen in which a major window can be placed. Any windows that are
attached to a major window—namely, Command windows and minor windows—
share the same frame along with the major window to which they are attached.
Frames are not visually represented on the screen; they are marked only by the
boundaries of the windows within them.

The diagram in Figure 4-3 represents a screen that is divided into three frames,
whose boundaries are indicated with dotted lines. Each frame contains a major
window; the top and bottom frames contain major windows with attached Com-
mand or minor windows. Note that the Message window itself is not in a frame and
is fixed at the top of the screen.

Frames define the basic number, size, and screen location of major windows. By
default, the Rational Terminal screen is divided into three frames (terminals with
smaller screens default to fewer frames). Since each frame can contain at most one
major window, the default Rational Terminal screen can contain up to three major
windows at a time. You can increase the number of frames to view more objects;
conversely, you can decrease the number of frames to view fewer objects in larger
windows. {See “Changing the Number of Frames,” below.)

Also by default, frames divide the screen into equal portions, so that changing the
number of frames also changes the basic size for each individual frame. However, the
basic frame size is flexible—that is, frames can stretch or shrink when you resize the
windows in them (see “Changing Window Size and Placement,” below). Enlarging
windows is especially useful when several attached windows share a single frame.

Note that frames can be empty, as they are before windows have been placed in

them or after windows have been deleted. Empty frames appear as empty screen
space.

QAT'ONAL 11/2/81 1-49

Part 1. Getting Started

Message Window

Major Window
Frame A

[Command Window

Frame B

Minor Window . .
Major Window Frame C

Figure 4-3. A Screen with Windows in Three Frames

Moving between Windows

The key combinations -1 and -] move the cursor between windows,
either within or between frames.

For example, assume that the cursor is in the major window in the top frame in
Figure 4-3 above. Pressing - (i) moves the cursor into the attached Command
window within the same frame. Pressing - [1] again moves the cursor into
the major window in the middle frame. (Note that pressing [sumeric 3] - [Window] - [1] i8
the same as pressing - 1] twice.)

When you move the cursor far enough in either direction, the cursor wraps around
the screen. For example, when the cursor is in the bottommost window on the
screen, pressing - [i] puts the cursor in the Message window at the top of the
screen.

I-50 11/2/87 EA\TIONAL

WAL TTYT T TITTmETOSC"D T fEEmmTm T

Default Window Placement

The Environment automatically opens a major window for each object you view
or edit and for each job that produces a display or requires interactive input. By
default, a major window is placed on the screen as follows:

o If there is an empty frame on the screen, the window is placed in that frame.

e If all frames are full, the window is placed in the least recently vissted frame,
replacing the major window plus any attached windows that were in that frame.

To wisst a frame is to move the cursor into a window in that frame—for example,
by using [Windew] - [1] Or [Winaew] - [3] or by using traversal operations such as [Definitical.
If a frame contains more than one window (say, a major window with an attached
Command window), putting the cursor into any one of those windows counts as
visiting the frame. The least recently visited frame is the frame whose windows
have gone the longest without being touched by the cursor. The Environment
assumes that the unvisited frames contain the windows of least current interest, so
these windows are the best candidates for replacement by a more recently requested
object.

The major window in the least recently visited frame displays a tilde (~) in its
banner, so that you do not have to keep track of the order in which you visited each
frame. Figure 4-2 shows where the tilde appears in a window banner. This visual
indicator simplifies what you have to remember about window placement—namely,
the next major window to be replaced displays a tilde (~) in its banner.

Controlling Window Placement by Locking Windows

You can lock a major window on the screen to prevent it from being replaced by
a more recently requested window. Once locked, a window is no longer subject to
the “least recently visited” condition, so that it remains on the screen regardless of
whether the cursor has visited its frame. For example, if you are working on an Ada
unit specification and body and you periodically need to look at other related units,
you can lock the two windows you are working on so that subsequent traversal will
not cause them to be replaced.

To lock a major window on the screen:

1. Make sure the cursor is in the window you want to lock.

2. Press [Window] - [Promote|,

3. Note that an at sign (e) is displayed in the banner of the locked window. The at
sign appears in the same position in the window banner as the tilde (see Figure
4-2, above).

A locked window remains locked until you explicitly unlock it. When you unlock a
window, it becomes eligible for replacement again.

To unlock a locked major window:

'QATIONAL 11/2/87 I-51

Part I. Getting Started

Make sure the cursor is in the window you want to unlock.

2. Press[window] - [Demote]. You can find on the keyboard overlay in the column
labeled “Demote.”

3. Note that the at sign (@) is removed from the banner of the window you just
unlocked.

You can force an unlocked window to become the next window to be replaced,
independently of the “least recently visited” condition. Designating a window for
" replacement is a quick way to make sure that other windows remain on the screen
without locking them, at least for the next traversal operation.

To designate a window for replacement:

1. Make sure the cursor is in the appropriate window.

2. PreSS iWindow} - {Demotc].

3. Note that the tilde (~) appears in the banner of the window, indicating that
this window will be replaced next. The tilde remains in this window even if you
visit it with the cursor.

Controlling Window Placement through Traversal Commands

The traversal operations you have seen so far display objects using default window
placement. That is, when you display an object using [Defnition], [Other Part], [Enclosing], Or
(Home Library), 2 major window is opened in the least recently visited frame.

—

Two variant traversal operations offer an alternative to default window placement.
These are [Definition In Place] and [Enciosing In Pace], Both of these keys are identical to their
counterparts ([Defintion) and [Enclosing, respectively), except that the new keys display
objects in place, as their names suggest. That is, when you use either
or [Enciasing In Piace], the window for the requested object is placed in the current frame
(the frame that contains the cursor) rather than in the least recently visited frame.

Note that the presence or absence of the tilde in window banners is irrelevant to
both [Definition In FPiace] and [Enclosing In Piace]. Furthermore, both keys cause the current
window to be replaced even if that window is locked.

Redisplaying Windows Using the Window Directory

The Environment maintains a list of the major windows that have been opened since
you logged in. This list, called the Window Disrectory, has an entry for each object
you have displayed, for each job involving input or output, and for Environment
services such as the Message window and the Window Directory itself.

When a window is replaced by a more recently requested window, the replaced win-
dow retains its entry in the Window Directory. Window Directory entries provide
an easy way to redisplay replaced windows. In addition, Window Directory entries
indicate whether or not images in windows have been modified, even for images in
replaced windows that are currently not on the screen.

I-52 11/2/87 BAT'ONAL

Chapter 4. Managing Windows

Displaying the Window Directory
To display the Window Directory:
Press [Window] - [Denniionl. The cursor can be in any window on the screen.

The Window Directory is displayed in a major window in the least recently
visited frame.

A sample Window Directory is shown in Figure 4-4. Note that the banner of this
window identifies it as the Window Directory. The tilde (~) in the banner indicates
that the Window Directory will be the next window to be replaced, regardless of
when other windows on the screen were visited.

Rational Environment
D.9._25_1 Copyright 1984, 6 1985 1986, 1987, by Rational.
- Rational «{DelltatANDERSON 8_1 .)

Mod Lines Type Buffer Name

* 1 (text) {USERS . ANDERSON MEMO.12.0B_86'V(2)

22 (text) IUSERS . ANDERSON % WHAT .USERS

4 73 (ada) 1USERS . ANDERSON. TOOLS . STRING_TOOLS 'BODY 'V(6)
= 11 (eda) IUSERS . ANDERSON . TOOL S . STRING_.TOOLS 'V{6)

= 8 (library) IUSERS . ANDERSON . TOOLS

= 14 (library) JUSERS . ANDERSON

1 Help Vindow
Message Window

nn
] — Mo
o0

11 (windows) ¥indow Directory

O L i 2 TN

Figure 4-4. The Window Directory

Information about each Window Directory entry is arranged in four columns. From
left to right, the Window Directory entry for a given window shows the following:

Mod Indicates whether the image in the window can be or has been
modified. This column contains the modification symbol that
appears in the leftmost field of that window’s banner (see “Mod-
ification Symbols in the Window Banner,” above). Using this
column, you can tell at a glance whether any images contain un-
saved changes—namely, those with * or # in the Mod column.

Lines Indicates the number of lines of text displayed in the window.

Type Indicates the editing facilities that are available for the object in
the window. This indication appears enclosed in parentheses in
that window’s banner and typically corresponds to the class or
subclass of the displayed object.

Buffer Name Indicates what is displayed in the window. The name that ap-
pears here is the same as the name that appears in that window’s
banner. Note that long names are truncated on the left; trunca-
tion is indicated by three dots preceding the name fragment.

RATIONAL 11/zs I-53

Part 1. Getting Started

Redisplaying Replaced Windows

You can use the Window Directory to bring replaced windows back to the screen.
Using the Window Directory can be a convenient alternative to redisplaying objects
using traversal operations.

To redisplay a window using the Window Directory:

1. Display the Window Directory (see the previous section). Leave the cursor in
the Window Directory window.

2. Check the Buffer Name column in the Window Directory until you find the entry
for the window you want to redisplay.

3. Place the cursor anywhere on the line containing the appropriate entry.

4. Press [Definition].

The window you requested is displayed in an empty frame or else it replaces the
Window Directory window. Note that the redisplayed window is brought back
to the screen along with any attached Command windows or minor windows.

Note that you have seen two uses for so far. You can use in:

e Libraries to display objects listed there
¢ The Window Directory to redisplay windows listed there

Further uses for [peanition] are covered in Chapter 14, “Browsing Ada Programs.”

I-54 11/2/87 BAT'ONAL

Chapter 4. Managing Windows

Checking the Window Directory Before Logging Out

You can use the Window Directory for other operations besides redisplaying win-
dows. For example, you can display the Window Directory before logging out to see
whether or not any images contain unsaved changes. (If there are modified images,
the Quit command will fail; see “Logging Out,” in Chapter 2.) You can save the
changes in all images directly from the Window Directory. Saving changes from the
Window Directory is equivalent to redisplaying individual windows and performing
the operation from there.

More specifically, say you have entered the Quit command and the following message
is displayed in the Message window:

There are uncommitted images.

You can take the following steps:

1. Display the Window Directory.
2. Check the Mod column in the Window Directory. Entries for modified images
have » or # in this column.

3. At this point, you have several alternatives:

* You can use to redisplay each window individually so that you can
inspect the changes. To save the changes in a given window, press {Enter.

¢ You can save all changes in all images directly from the Window Directory
by pressing {Enterj. The cursor can be on any line in the Window Directory
window.

¢ You can log out and discard any unsaved changes by entering the Quit com-
mand with the parameter True. (See “Logging Out with Unsaved Changes,”
in Chapter 2.)

The Editing Specific Types (EST) book of the Rational Environment Reference Man-

ual contains information about other possible operations, such as saving changes in
selected images from the Window Directory.

R)ATIONAL 11/2/87 I-55

Part I. Getting Started

Changing Window Size and Placement
Once on the screen, windows can be resized, removed, and rearranged. You can:

¢ Expand or shrink any window to view more or less of the object it contains.
¢ Delete windows when you no longer want to view them.

¢ Change the top-to-bottom order of the windows on the screen—for example, to
bring two objects closer together for easy comparison or to bring a particular
object to eye level.

Joining Frames

When you need fewer and larger windows (for example, a single full-length window
in which to view an entire page of documentation), you can join the frames pairwise
to adjacent frames. When two frames are joined, they form a single, larger frame
that occupies the screen space of the two original frames. The contents of one of the
original frames is displayed in the new frame, replacing the contents of the other
original frame. The replaced windows remain listed in the Window Directory for
convenient redisplay. The Message window is not in a frame, so it cannot be joined.

To join a frame to the frame below:

1. Place the cursor in the frame you want to enlarge. If the frame contains more
than one window—for example, a major window and a Command window—you
can put the cursor in any window in the frame.

2. Press [Window] - 3],

The frame containing the cursor is joined with the frame below it, if any; otherwise,
it is joined to the frame above it.

To join a frame to the frame above:

1. Place the cursor in the frame you want to enlarge.

2. Press Window| = | Delete|,

The frame containing the cursor is joined with the frame above it, if any; otherwise,
it is joined to the frame below it.

In Figure 4-5, [Windou] - is used to join frame B with frame C to form a single
frame. Because the cursor is in frame B, the windows in this frame expand to
occupy the resulting frame.

Joining frames reduces the number of frames on the screen—for example, from

three to two in Figure 4-5. The third frame will return the next time you redisplay
a window or use a traversal operation to display an object.

1-56 11/2/87 PATIONAL

Chapter 4. Managing Windows

A A
B | B]
N'\ //'
T~ cursor —
Cc
Before After

Figure 4-5. Before and After Joining Two Frames

Expanding Windows

You can expand any window to display a greater portion of the object in that
window. It can be especially useful to expand Command windows, for reasons
given in “Ada Usage in Command Windows,” in Chapter 5. Unlike joining two
frames, expanding a window does not necessarily reduce the number of windows on

the screen.

To expand a window:
1. Put the cursor in the window you want to expand.
2. Press - .

The window containing the cursor expands by four lines.

By default, a window expands four lines at a time. You can use the numeric keypad
to specify a different number of lines. For example, pressing [aumeric 7] - [Window] - [1]
expands the window by seven lines.

You can expand any window, including the Message window. When you expand
a major window, the frame containing it expands, causing an adjacent frame to
shrink. However, when you expand a Command window or a minor window, the
other windows within the same frame shrink as much as possible before the overall
frame size is adjusted to accommodate the expansion.

QATIONAL 11/2/87 I-57

Part I. Getting Started

Shrinking Windows

When you do not need to view as much of an object but you still want it on your
screen, you can shrink its window down to a minimum size of two lines. When you
shrink a major window, the frame that contains it shrinks and an adjacent frame
expands accordingly. When you shrink a Command window or a minor window,
the frame size stays the same and the other windows in the same frame expand to
compensate for the shrinkage.

To shrink a window:
1. Put the cursor in the window you want to shrink.
2. Press [winaow] - []. Use the period key on the main keyboard.

The window containing the cursor shrinks by four lines.

By default, a window shrinks four lines at a time. You can use the numeric keypad
to specify the different number of lines. For example, pressing [sumeric 7] - [Window] - [
shrinks the window by seven lines.

Making Frame Sizes Equal

After expanding, joining, and shrinking windows, you can readjust the variously
sized frames in a single operation so that they once again divide the screen equally.
As a result, windows expand or shrink to fit the equally sized frames. To reset
window sizes:

Press (Window] - [Format). The cursor can be in any window.

All frames are realigned so that they are of equal size.

The [Window! - [Format] operation is based on the current number of frames. Therefore,
pressing (Windew] - [Format] after joining windows adjusts the remaining frames to be
of equal size. Note that the [window] - [Formai] operation does not restore the original
number of frames; it simply resizes existing frames. (The full number of frames is
restored the next time you display an object or redisplay a window.)

Removing Windows from the Screen

When you no longer want to view the object in a particular window, you can simplify
your screen by deleting that window.

To delete a window from the screen:

1. Place the cursor in the window you want to delete.
2. Press - (ol

The designated window is removed from the screen.

I-58 11/2/87 BATIONAL

wiapicl @, lvialldplill Vv 1LUUOWS

If you delete a major window, any attached Command windows are also deleted.
In contrast, if you delete a Command window, the remaining windows within the
frame expand to compensate for the deletion. Deleting the last window in a frame
leaves empty screen space, without affecting the sizes of the surrounding frames.
You can use the [Window] - [Format] operation to resize the remaining frames.

When you delete a window using [Window] - [0, the deleted window remains listed in
Window Directory, where it can be redisplayed easily. However, if you are finished
with an object in a window and have no interest in redisplaying it during your
session, you can:

e Release the object using - xJ. Releasing an object deletes its window from
the screen and from the Window Directory, saving any changes, if necessary.

o Abandon an object using [obiect] - [6]. Abandoning an object releases it without
saving changes.

Releasing or abandoning objects can help keep your Window Directory smaller,
making it easier to locate entries listed there. Releasing or abandoning objects has
other effects; see “Write Locks,” in Chapter 7.

Rearranging Windows on the Screen

Besides being resized and deleted, windows can be rearranged. That is, if you want
to change the top-to-bottom order of the major windows on the screen, you can
transpose, or exchange, the contents of any two adjacent frames until your major
windows appear in the desired order. Transposing wraps around the screen so that
you can transpose the contents of the top and bottom frames. The Message window
is not in a frame, so transposing ignores it.

Note that you cannot transpose windows within a frame. That is, you cannot change
the relative position of a major window and a Command window that is attached
to it. Rather, you can only transpose windows between frames, relocating major
windows along with any attached windows.

To transpose two frames:

1. Place the cursor in the lower of the two frames you want to transpose. If the
lower frame contains more than one window—for example, 2 major window and
a Command window—you can put the cursor in any window in the frame.

2. Press Winaow - [T,

The contents of the current frame are transposed with the contents of the frame
above it. The cursor is left in the lower of the two frames.

Figure 4-6 represents the use of - to exchange the windows in frame B
with the windows in frame A. The cursor remains in frame B. If the cursor had
been in the top frame (frame A), pressing - [1] would exchange the windows
in frames A and C, since transposing wraps.

QATIONAL 11/2/87 I-59

Part 1. Getting Started

XXX

Before After

Figure 4-6. Before and After Transposing Windows

Changing the Number of Frames

You can display more or fewer objects on the screen at a time by changing the
number of frames into which the screen is divided. The Window.Frames command
specifies the maximum number of frames that the screen can contain before existing
windows are replaced by new windows.

For example, to increase the number of frames to four:

1. Press to open a window in which you can enter a command.
2. In this window, enter the following command:
window.frames(4);

3. Press [Promotd].

The fourth frame is created the next time a window is opened (for example,
the next time you traverse to an object or display a window from the Window

Directory).
4. You can equalize the frame sizes by pressing [Window] - [Format].

I-60 11/2/87 BA\TIONAL

Chapter 4. Managing Windows

To decrease the number of frames back to three:

1. Press [create command] t0 Open a window in which you can enter a command.
2. In this window, enter the following command:

window.frames(3);

3. Press [Promore].

The fourth frame remains until you delete a major window or join two frames.
From then on, only three frames will be used.

4. You can equalize the frame sizes by pressing [Window] - [Formad].

The number of frames set by the Window.Frames command stays in effect until
you log out (unless, of course, you change it again). You can change the number
of frames more permanently by changing the values for the Window_Frames and
Window_Frames_Startup session switches. Changing the value of these switches
changes the default number of frames, which stays in effect across subsequent logins;
see the Session and Job Management (SIM) book of the Rational Environment
Reference Manual.

IQAT'ONAL 11/2/87 1-61

RATIONAL

Chapter 5. Executing Commands

Your interactions with the Environment are carried out through Environment com-
mands. Using Environment commands, you can invoke operations that create, dis-
play, and modify objects, manage windows, display information, and the like. The
Reference Summary, in Volume 1 of the Rational Environment Reference Manual,
provides a complete list of Environment commands.

There are two basic mechanisms for executing Environment commands. You can
execute commands by entering them in Command windows; for example, “Logging
Out,” in Chapter 2, shows you how to log out by entering the Quit command in
a Command window. In addition, many commonly used commands are bound to
key combinations; pressing the appropriate key combinations executes these com-
mands. For example, the traversal operations presented in Chapter 3 are invoked
by commands bound to key combinations. The Basic Keymap, in the Ratsional En-
vironment Basic Operations, provides a list of those Environment commands that
are bound to key combinations. For a more detailed list, see the Keymap in the
Reference Summary, Volume 1 of the Rational Environment Reference Manual.

An important feature of the Environment is that it uses the Ada programming
language as its command language. The Environment commands listed in the Ref-
erence Summary are thus predefined Ada procedures and functions that are pro-
vided for your use. As with user-created Ada programs, Environment commands
are compiled and executed when you enter them through Command windows or
key combinations. With Ada as the command language, you do not have to learn
a separate grammar for a system-specific command language.

The following sections describe how to:

e Use Command windows

» Get assistance for completing command name fragments and parameter profiles
» Reuse Command windows

¢ Modify and reexecute commands in a Command window

» Change the default values of commands that are bound to keys

¢ Take advantage of using Ada as the Environment command language

RAT'ONAI_ 11/2/87 I-63

Part 1. Getting Started

Using Command Windows

All Environment commands, including commands that are bound to key combina-
tions, can be executed from a Command window. In fact, commands that are not
bound to keys can be executed only from a Command window.

To illustrate the basic Command window mechanisms, consider the Definition com-
mand. The default form of the Definition command uses the cursor’s position to
determine which object to display. You have already seen one way of executing
the Definition command in its default form—namely, by positioning the cursor and
pressing [Defnition]. You can perform the same operation using a Command window.

For example, if you are viewing the world !Users.Anderson.Tools, you can display
the specification for package String_Tools as follows:

1. Within the window for !Users.Anderson.Tools, position the cursor on the entry
for the String_Tools package specification, as shown in Figure 5-1:

Rational Environment
D Q_25_1 Copyright 1984, 1985 1986, 1987, by Rational.

C Ada (Pack.Specj) .
Math_Tools C Ada (Pack_Body);
Scan.Tools : C Ada (Pack.Spec);
Scan_Tools : C Ada (Pack_Body);

#l String_Tools : C Ada (Pack.Spec);
String.Tools : C Ada (Pack_Body) .

Math_Tools

ON -TOOLS 111Drarv)

Figure 5-1. Before Creating a Command Window

2. Press [Greaie Command) to open a two-line Command window below the window
containing !Users.Anderson.Tools (see Figure 5-2). The Environment places
the cursor in the Command window and remembers the original cursor position
in the image of !Users.Anderson.Tools.

Observe that the Command window contains a reverse video prompt that con-
tains the text [statement], followed by the word end;. The prompt indicates
where to enter commands (or other Ada statements), and the cursor is placed
on the first character of this prompt. The word end; is part of the Ada block
statement that is supplied in each Command window so that Ada statements
(such as Environment commands) can be executed.

1-64 11/2/87 EATIONAL

UG VL Ve ALY URVIAS WV RLASATREEAEE

Rational Environment
D.9_25.1 Copyright 1984 1985, 1986, 1987, by Rational.
N S . N

'Users_ Anderson.Tools Library (¥Yorld):
Math_Tools . C Ada (Pack_Spec);
Math_Tools Ada (Pack_Body

c)
Scan_Tools C Ada (Pack._Spec);
Scan_Tools . C Ada (Pack.Body),
String_Tools C Ada (Pack_-Spec);
String Tools : C Ada (Pack_Body)

S N.TOOLS 111Dbrary.

Jvoterent]

Figure 5-2. After Creating 8 Command Window

3. Leaving the cursor on the [statement] prompt, enter the Definition command
as shown in Figure 5-3. Note that the prompt disappears as you type. You can
enter the command in lowercase letters; case is ignored.

You can correct typing mistakes using text editing operations. Some useful
operations are summarized in “Correcting Typing Errors,” below.

Ratiomal Environment
D_ 9 25.1 Copyrlght 1984, 1985, 1986, 1987, by Rational.
Pel - P P

Math_Tools . C Ada (Pack_Spec),

)
Math_Tools . C Ada (Pack.Body);
Scan.Tools . C Ada (Pack.Spec);
Scan_Tools . C Ada (Pack.Body)

String.Tools - C Ada (Pack.Spec);
String_Tools : C Ada (Pack_Body):

.deflnltlorl
end,

Figure 5-3. Entering the Definition Command

4. Press[promoie] to execute the command. At this point, the Environment compiles,
links, and then runs the Ada block statement in the Command window.

As shown in Figure 5-4, the command name in the Command window becomes
a reverse video prompt after it has been successfully compiled and linked. (The
purpose of the prompt is explained in “Reusing Command Windows,” below.)
Furthermore, as an Ada statement, the command is displayed in formatted,
syntactically complete form—it is capitalized and followed by a semicolon.

EAT'ONAI_ 11/2/87 I-65

Part 1. Getting Started

If processing the command takes longer than a few seconds, the word . . .running
appears in the Message window banner. If you attempt to use the keyboa.rd
while the ...running message is displayed, your keystrokes are remembered
and the requested action is taken only after the message disappears.

Rational Enviromment
D_9_25_1 Copyright 1884, 1985, 1986, 1987, by Rational.

=. Logo ANDERSON §_ ruNN1INg

Math_Tools
Math_Tools

Ada (Pack_Spec);
Ada (Pack_Body

Scan_.Tools

String_Tools

Str1ng Tools
4 8

Ada (Pack._Spec);
Ada (Pack Body ;
N

c
- C
Scan_.Tools . C Ada (Pack_Spec
C
C
C

).
).
Ada (Pack_Body) .
).

Figure 5-4. While the Command Is Executing

The .. running message remains in the Message window banner until the Def-
inition command finishes executing. At this point, the String_Tools package
specification is displayed in another frame, as shown in Figure 5-5.

Rational Environment
D_8_25_1 Copyright 1984, 1085, 1986, 1987, by Rational.
ON S S

=x:Rtatronal 40

Math_Tcols C Ada (Pack._Spec);
Math_Tools C Ada (Pack_Body),
Scan_Tools C Ada {Pack_Spec);
Scan_Tools . C Ada (Pack.Body);
String.Tools C Ada (Pack._Spec);
String_Tools C Ada (Pack_Body);
3 N TOOLS (libraryi-

] ANDERS

end;

[Backage String._.Tools is
function Equal (Stringl : String; String2 : String;
lgnore_Case : Boolean := True) return Booleen;
function Greater_Than (Stringl : String; String2 : String;
ignore_Case : Boolean := True) return Boolean;
function Less_Than (Stringl : String,; String2 : String;
Ignore_Case : Boolean := True) return Boolean:
function Lower_Case (S : String) return String,
function Upper_Case (S : String) return String;
=.-JUSERS .-ANDERSON TOOLS STRING_TOOLS'Vi6B. 8339

Figure 5-5. After the Command Has Executed

1-66 11/2/87 I?ATIONAL

Unrecognised Commands

Step 4 in the previous example shows what happens when the Environment is able
to compile and link a command successfully. If, however, you enter a command that
is not recognized by the Environment, the following occur after you press [Fromotd:

Chapter o. LXecutilng Lommands

e A message is displayed in the Message window.

¢ The command name remains displayed in normal video, but underlined, in the
Command window.

For example, if you enter a misspelled command name, such as “defition,” your

screen will look something like this:

Semantic error(s),

=-Rational {(Delta) ANDERSON S_1 - . . -

command abor ted

I
Math_Tools
Math_Tools
Scan.Tools
Scan_Tools

String_Tools :
String.Tools

C
C
c
- C
c
c

Ada (Pack_Spec);

ON-TOOLS ilibraryi

)
Ada (Pack_Body)
Adea (Pack_Spec) ;
Ada (Pack.Body),
Ada (Pack_Spec);
Ada (Pack_Body) ,

Figure 5-6. When a Command Is Not Recognized

If you identify an error in the underlined command name, you can:

1. Make the necessary corrections (see “Correcting Typing Errors,” below).
2. Press [Promoid] again to execute the corrected command.

If you cannot find an obvious spelling error and the command still is not accepted,
press [Expain] to display further information about the error in the Message window.
If the resulting message indicates that the command you entered is undefined, then:

¢ You may be thinking of a command with a similar name. Check the Reference
Summary to verify that the command you entered is in fact defined.

¢ Some command names contain several name components (see “Environment
Commands,” below). Make sure you have entered all the necessary components
of the command name.

e It may be that the command you entered is not visible based on the way Ada
names are resolved in Command windows. This should not be a problem for the
standard set of Environment commands (see “Environment Commands,” below).

RATIONAL 1/z/s0

1I-67

Part I. Getting Started

Correcting Typing Errors

As you enter a command in a Command window, you can use text editing operations
to correct typing errors. You can use these operations to make changes either before
you press or after a command name has been underlined. Note that if you try
to make changes to a command name that is displayed as a prompt, the prompted
name will disappear (see “Modifying and Reexecuting Commands,® below). You can
redisplay a prompted name that disappeared by pressing - [u] (see “Recalling
Previous Commands,” below).

Table 5-1. Some Useful Editing Operations in Command Windows

Key Operation

=] Moves the cursor one character to the left.

=] Moves the cursor one character to the right.
[Begin Of), [Enda Of] | Moves the cursor to the beginning or end of a line.
Any character Inserts the character to the left of the cursor.
Deletes the character the cursor is on.

Deletes the character to the left of the cursor.

[Control][K] Deletes from the cursor to the end of the line.

. Deletes from the cursor to the beginning of the line.
- [0 Deletes an entire line.

Canceling Command Execution

After you press a key combination that is bound to a command or after you press
Promote] With a2 command in a Command window, the Environment compiles, links,
and executes the command. You can interrupt and kill this process by taking the
following step:

Press to stop command processing and execution. Note that the .. .run-
ning message is turned off so that you regain use of the keyboard.

Command Windows and Attached Windows

A Command window bears a special relationship to the window from which it was
created and to which it is attached. For example, many Environment commands,
such as the default form of the Definition command, are sensitive to the cursor’s
position in an image. When such a command is bound to a key, the command uses
the cursor’s actual position at the time the key is pressed. However, as shown above,
when such a command is executed from a Command window, the command uses
the cursor’s most recent position in the attached window. That is, the command
executes as if the cursor is still in the attached window, rather than in the Command
window.

1-68 11/2/87 BA\TIONAL

Chapter 5. Executing Commands

Furthermore, as shown in the next section, many commands accept pathnames as
parameter values. When such a command is executed from a Command window,
the current context for resolving pathnames is determined by the object in the
window to which the Command window is attached.

Ada Usage in Command Windows

The use of Ada as the command language provides a number of possibilities for
entering commands in Command windows. That is, because Command windows
contain Ada block statements and because Environment commands are entered as
Ada procedure call statements:

e The rules of Ada syntax allow alternative ways to specify parameter values for
those commands that have parameters.

e You can declare variables, constants, and the like within Command windows, and
you can build multiple line programs.

Entering Parameters

To illustrate some Command window possibilities, consider the Definition command
in greater detail. You can pass information to the Definition command through
three parameters, which are shown in the specification for the command:

procedure Definition (Name : String = "<CURSOR>";
In_Place : Boolean := False;
Visible : Boolean := True);

These three parameters are characterized briefly as follows:

Name Requires a string that names the desired object. The default string
“<CURSOR>” displays the object indicated by cursor position. See
“Special Names and Parameter Placeholders,” below.

In_Place Requires a Boolean value to specify where the requested object is
displayed. The default value, false, means that the object is dis-
played in the least recently visited frame. (Note that
is bound to the Definition command with the In_Place parameter
set to true.)

Visible Requires a Boolean value to specify which part of an Ada unit
(the visible part or the body) is displayed if the specified name is
ambiguous. The default value, true, means that the specification is
displayed.

By Ada syntax rules, when you enter a command with parameters, you must:

o Enclose the parameters in a set of parentheses following the command name.
o Separate multiple parameters with commas.

o Enclose each string value, such as the name of an Environment object, in quota-
tion marks.

E)ATIONAL 11/2/87 I-69

Part I. Getting Started

You can use positional parameter association, which means that parameters must
be listed in the order in which they are given in the command specification. You can
also use named parameter association, which allows you to list parameters in any
order by explicitly naming the formal parameter. Finally, you can omit parameters
for which you want to use default values (however, you must use named parameter
association to specify any parameters that follow an omitted parameter).

You have already seen the Definition command entered using the default parameters
as follows:

Definition;

Alternatively, you can supply a value for the Name parameter to request an object
by name rather than by cursor position. That is, when the current context does
not contain the object you want to display, you can use the Name parameter to
traverse to that object directly without displaying all intervening objects in the
library hierarchy.

Because the name you specify is resolved relative to the current context, you can
give all or part of an object’s pathname, depending on where the Command window
is attached. For example, if the cursor is in the window containing the world
'Users.Anderson, you can display the package specification for 'Users.Anderson-
.Tools.String_Tools by creating a Command window and entering the following
command:

Definition ("tools.string_tools"};

If, however, the cursor is in a window containing the file !Users.Miyata.Memo, you
can create a Command window there and enter the command using a fully qualified
pathname:

Definition ("!users.anderson.tools.string_tools");

In the following command, the first two parameters are specified, so that the named
object is displayed in the current frame instead of the least recently visited frame:

Definition ("l!users.anderson.tools.string_tools"”, true);

However, you must use named parameter notation to omit the first parameter and
specify the second, as in the following command. This command finds the object
indicated by the cursor and displays it in the current frame:

Definition (In_Place => true};

Note that the parameter value true is an Ada identifier and therefore is not enclosed
in quotation marks.

I-70 11/2/87 RAT'ONAL

Chapter 5. Executing Commands

Using the Command Window Declare Block

Each Command window contains a complete Ada block statement, as shown in
the expanded Command window in Figure 5-7. (Details about the use clause are
explained in “Environment Commands,” below.) To reveal the block statement in
a Command window, press - [1 several times, and then press - [Begin OF],

declare

use Editor, Library, Common;
begin

[(atatement |
end;

Figure 5-7. The Ada Block Statement in 8 Command Window

You can write declarations within the declarative part of the block, between declare
and begin. For example, the following command is another way to display the
package specification for !Users.Anderson.Tools.String_Tools. In this Command
window, a constant is declared and used in an expression to produce a string value
for the Name parameter:

declare

use Editor, Library, Common;

Name_Prefix : constant string := "lusers.anderson.tools"”;
begin

Definition (Name_Prefix £ ".string_tools”};
end;

One or more Environment commands (or other Ada statements) can be put in the
body of the block statement, between begin and end. Multiple statements must be
separated by semicolons. For example, the following displays the Window Directory,
searches for (and puts the cursor on) an asterisk (which indicates a modified image),
and then displays the window indicated by the cursor:

declare
use Editor, Library, Common;
begin
Window.Directory;
Editor.Search.Next("*");
Definition;
end;

QATIONAL 11/2/87 I-71

Part 1. Getting Started

Getting Prompting Assistance

The Environment provides several kinds of assistance for entering commands—
namely, formatting and semantic completion. Formatting is the process of veri-
fying and, if necessary, completing the command syntax according to Ada syntax
rules. Once the command syntax is considered complete, the formatted command
is pretty-printed. Semantic completion, in contrast, is based on the resolution of
Ada names, supplying a completed name and a parameter profile for unambiguous
command name fragments.

Getting Formatting Assistance through the Promote Key

When you press to execute the contents of a Command window, the block
statement in the window is formatted as the first step in the compilation process.
Therefore, when entering a command, you can omit redundant syntactic elements
such as final punctuation. For example, you can enter a command as follows and
then press [Promote]:

definition{"!users.anderson.tools.string_tools

When the command has been compiled and linked, it will be displayed as a prompt
in the Command window, formatted like this:

Definition ("l!users.anderson.tools.string_tools"};

Getting Semantic Completion through the Complete Key

Before pressing [Promote], you can get semantic completion by pressing [Compicte]. Press-
ing [Compicte] after entering an unambiguous command name fragment provides a
completed command name and a parameter profile, if any. also formats the
contents of a Command window, inserting the required punctuation and performing
pretty-printing.

For example, you can get semantic assistance for the Definition command as fol-
lows:

1. In a Command window, enter a fragment of the command name, such as the
following: defi

2. Press [Compiete] (located next to [Fromotd).

After a pause, the full command name appears in the Command window, along
with the parameter profile in named parameter notation. Note that the com-
mand is formatted, the default parameter values appear as prompts, and the
cursor is placed on the first prompt:

Definition (Name => EEIGEUZE, n_Place => AR, Visible =>),
3. At this point, you can fill in the parameter prompts as desired (see “Filling In
Parameter Prompts,” below) and press to execute the command.

Note that you can use to provide semantic assistance after you enter a
partial or a complete command name. However, cannot provide assistance
if you have supplied any parameters or parameter syntax such as the left parenthe-
gis: (. In other words, cannot provide a partial parameter profile, only a
whole one.

I-72 11/2/87 PAT'ONAL

Chapter 5. Executing Commands

Filling In Parameter Prompts

As shown in the Definition example above, when the parameter profile for a com-
mand is displayed, each parameter name is associated with a reverse video prompt.
The prompt for a given parameter displays the default parameter value, if there is
one. Otherwise, the prompt includes the parameter’s type in brackets. For example,
the first parameter of the Io.Create command is of type File_Type, as indicated by
the prompt in the following:

fo.Create (File =>

Parameter prompts provide you with several alternatives:
e You can use the supplied default parameter value, if any. To do this:

1. Leave it in prompt form. Do not type on the prompt.
e You can replace the supplied value with another value. To do this:
1. Put the cursor on the appropriate prompt. You can use the cursor keys to

move the cursor between prompts or you can move the cursor directly (see
“Moving between Prompts,” below).

2. Enter the desired value. As usual, the prompt disappears when you start to
type on it.

Note that prompts for string values already include quotation marks, which
remain after the prompt disappears, so that you do not have to type the
enclosing quotation marks.

¢ You can modify the supplied value to create a new value. To do this:

1. Put the cursor on the appropriate prompt.

2. Press [iiem 0n] to turn off the prompt and display the supplied value as regular
text. Now the value will not disappear when you type on it.

3. Use text editing operations to modify the value as desired.

Moving between Prompts

You can move directly from one prompt to the next without repeatedly pressing
the cursor keys as follows:

o Press either [Next item] Or [Next Prompt] {0 move the cursor to the next prompt.

o Press either [Previcus tem] OF [Previous Prompe] to move the cursor back to the previous
prompt.

Note that [Next 1rem] and [Previouws em] can be used to move between underlined items as
well as prompted ones.

BA\TIONAL 11/2/87 I-73

Part 1. Getting Started

Completing Ambiguous Name Fragments

In the sample completion of the Definition command above, the correct command
name is found because the name fragment “defi® is resolved uniquely—that is, only
one command name contains the string “defi®. If you supply a name fragment that
is shared by multiple commands, displays a list of those commands. You
can decide which command in the list is correct, modify the name fragment in the
Command window accordingly, and press again.

For example, pressing to complete the name fragment “de” produces a
display like the one in Figure 5-8. As shown, completion opens a window, called
a menu window, which displays a list of Ada specifications that contain the given
name fragment. Note that the cursor remains in the Command window.

Rational Environment
D_9.25_1 Copyright 1984 6 1985, 1986, 1987, by Rational.
= Rational (Deltai ANDERSON S_1

' . . .
Calculation . C Ada (Pack._Spec) ;

Calculation . C Ada (Pack_Body) .
Documentation : Library (Directory);
Factoriel . C Ada (Func_Spec);
Factorial : C Ada (Func_Body);
Login . € Ada (Proc.Spec) ;

List of possible completions
De =>
procedure Def (Name : String := "<CURSOR>";
Iin_Place : Boolean := False; Visible : Boolean = True),
procedure Definition (Name : String := "<CURSOR>";
In_Place . Boolean := False Visible : Boolean := True),;
procedure Demote;

= { menu) - .

Figure 5-8. A List of Possible Completions for the Name Fragment “De”

From the menu, you can determine that “defi” is the minimal string that uniquely
identifies the Definition command. At this point, you can change the name fragment
in the Command window to “defi” and press again.

I-74 11/2/87 R)ATIONAL

Chapter 5. ixecuting Commands

Completion Menu Entries

Completion tries to resolve name fragments by searching through visible Ada decla-
rations. Therefore, entries in the completion menu correspond to Ada declarations,
which include:

» Compilation units that are defined directly in the library hierarchy
» Declarations that are nested within compilation units

Furthermore, a completion menu can contain entries for user-defined Ada units
in addition to predefined Environment commands. Finally, since name resolution
depends on what is visible in the current context, the menu for a given name
fragment can contain different entries, depending on where the Command window
was created.

When the menu for a fragment is first displayed, each entry is the specification
of a possible completion of the name fragment, as shown in Figure 5-8. In the
case of the Definition command, the specification in the menu provides enough
information for you to make the command name fragment unambiguous. Sometimes
this information will not be sufficient. When this is the case, you can expand the
menu entries to get the full pathnames of each of the specifications in the menu.

For example, completing the name fragment “de” produces a completion menu
containing the following entries:

List of possible completions

De =>
procedure Def (Name : String := "<CURSOR>";
In_Place : Boolean := False; Visible : Boolean := Truej;
procedure Definition (Name : String := "<CURSOR>";
In_Place : Boolean := False; Visible : Boolean := True);

procedure Demote;

To expand these menu entries:

1. Move the cursor into the menu window. The cursor can be anywhere in the
window.

2. Press [ovie] - [1] to display the fully qualified Environment pathnames for all
entries, as shown:

List of possible completions

De =>
procedure !COMMANDS . ABBREVIATIONS .DEF (Name : String := "<CURSOR>";
In_Place : Boolean := False; Visible : Bool=zan := True);
procedure !COMMANDS .COMMON.DEFINITION (Name : String := "<CURSOR>";
in_Place : Boolean := False; Visible : Boolean := True);

procedure !COMMANDS .COMMON.DEMOTE;

RAT'ONAL 11/2/87 I-75

FPart 1. Getting Started

If you still want more information about a particular entry, you can position the
cursor on the entry and press [Defniica]. The Ada specification for the command is
displayed in a separate window.

When you have decided which command you want:

1. Return the cursor to the Command window.

2. Enter the correct, fully qualified Ada name for the command. Note that the
expanded menu entries do not show the form of the command as you would ac-
tually enter it. That is, you cannot invoke a command from a Command window
by entering its fully qualified Environment pathname or its attributes (for exam-
ple, !Commands.Common.Definition). See “Environment Commands,” below,
for a discussion of command names.

3. If necessary (when names are overloaded), enter the command’s parameters
(without completion assistance) to make the command unambiguous.

4. Execute the command.

For more information about menus, see “Menus” in the Editing Specific Types (EST)
book of the Rational Environment Reference Manual.

Abbreviating Commands

For your convenience, the Environment recognizes abbreviated forms for a number
of commands. Each of the abbreviated command names is defined by an Ada
procedure in the world !Commands.Abbreviations.

For example, the menu in Figure 5-8 contains an entry for Def. The expanded
form of this entry—namely, !{Commands.Abbreviatons.Def—indicates that Def is
indeed an abbreviation. To verify that Def abbreviates the Definition command,
you can display the body for the Def procedure and note that it calls the Definition
command.

By creating procedures similar to those provided, your project team can define
projectwide abbreviations in !Commands.Abbreviations.

Clearing a Command Window

If you find you have entered a command incorrectly, or if semantic completion
supplies a command other than the one you wanted, you may find it easier to start
over from a fresh Command window rather than making corrections using editing
operations.

I-76 11/2/87 QATIONAL

Chapter o. kxecuting Commands

To clear a Command window:
1. Put the cursor in the Command window you want to clear.
2. Press (Eai.

A fresh block statement and [statement] prompt are displayed.

After clearing a Command window, you can recall its previous contents; see “Re-
calling Previous Commands,” below.

Reusing Command Windows

After commands have been executed, Command windows remain available for fur-
ther use. As long as a Command window is displayed, you can execute another
command in it, modify and reexecute the same command, or recall and reexecute
previous commands.

Note that [Crearr Command] helps you reuse existing Command windows. If the window
containing the cursor already has a Command window, then pressing
moves the cursor into it, instead of creating an extra one.

Executing Subsequent Commands

Recall from “Using Command Windows,” above, that commands turn into prompts
after they have been successfully compiled and linked. By turning into prompts,
previously entered commands disappear when you type on them. This allows you
to enter subsequent commands without having to explicitly delete the previous
command or create a new Command window.

To use the same Command window for entering another command:

1. Move the cursor into the Command window.

2. With the cursor anywhere on the prompt, enter the new command. The prompt
containing the old command disappears.

3. Press Promote.

Reexecuting the Same Command

Occasionally you may need to execute the same command several times—for ex-

ample, you can execute the Queue.Display command periodically to check on the

progress of the printer queue. To reexecute the same command without modifying

it:

1. Move the cursor into the Command window containing the command in prompt
form.

2. Without typing on the prompt, press [Fromote].

RATIONAL 11/2/87 I-77

Part I. Getting Started

Modifying and Reexecuting Commands

You can modify the name or parameters of a previously executed command without
having to reenter the entire command. If the command you want to modify is
displayed as a prompt, you must use to display it as regular text so that it
won’t disappear when you try to modify it.

For example, say you want to display the specification for the package !Users-
.Anderson.Tools.Scan_Tools, and the following command appears as a prompt in
the Command window:

begin
Definition i 'users anderson Lools -8§Lring

You can change string to scan and reexecute the command as follows:

1. Move the cursor into the appropriate Command window.

2. With cursor on the prompt, press [iem os]. This turns off the reverse video
prompt, leaving the text of the command in the regular screen font.

3. You can now use text editing operations to change the word string to scan.
4. Press (Promote] to execute the modified command.

Another approach to modifying commands is to use to display just the
parameter values as prompts. This makes it easy to change one or more parameter
values without losing the rest of the command. You can use with commands
that appear as prompts or with commands that appear as regular text.

For example, assume that the Definition command appears in a Command window
as a prompt, as shown above, and you want to display the body of the procedure
'Machine.Editor_Data.Rational _Commands. If you were to turn the entire com-
mand into regular text, as shown above, you would have to delete most of the old
parameter value before entering the new value, since the two values have so little
in common. A more convenient alternative is to leave just the parameter value as
a prompt so that it will disappear when you type on it. To do this:

1. With the cursor anywhere in the Command window, press [Compiete].
The existing parameter value is turned into a prompt, leaving the rest of the
command in regular text, as shown:
begin
Definition (NN TGRSR

2. You can now type the new parameter value. Note that the quotation marks
from the previous value remain.

3. Press to execute the modified command.

Note that when is used to modify previously executed commands, it changes
only the given parameters into prompts; it does not supply prompts for any param-
eters that were omitted when the command was executed.

I-78 11/2/87 RATIONAL

Lhapter o. LXecullng Lommanas

Recalling Previous Commands

Each Command window maintains a history of what was executed in it since it
was created. This history allows you to redisplay, edit, and reexecute previously
executed commands.

A Command window history is maintained as a series of Ada block statements. Each
time you press {Promotd OT [Compieid), the current contents of the Command window
are added to the series. Furthermore, using to clear a Command window
simply adds a block statement containing a [statement} prompt into the series.
It is important to emphasize that it is not just the command statements that are
remembered, but the entire block, including anything you declared in the block’s
declarative portion.

You can step through the history series to redisplay any of the remembered block
statements as follows:

¢ Press - [v] to step backward in the series, toward the original block that
contains the [statement] prompt. [v] stands for “undo.”

* Press - (8] to step forward in the series, toward the more recently executed
commands. [gr] stands for “redo.”

Once you have redisplayed a block statement from the Command window history,
you can modify and then reexecute it. In addition to using text editing operations,
you can press [Compicee]] to change parameter values into prompts. When you modify
and reexecute an intermediate block statement in a history series, the modified
block is inserted into the series at the intermediate point. Thus, the most recently
executed command is not necessarily in the last block in the history series.

A Command window history is preserved even if you use - [0] to delete the
Command window or the window to which it is attached. In fact, if you delete a
Command window and then press [Creste Command] again, the deleted Command window
is reopened with the same contents and the same history. However, a Command
window history is destroyed if you use -{glor - [x] to delete the Command
window or its associated major window.

Keys and Command Windows

So far, you have used key combinations that execute commands directly, using
default parameter values. Certain key combinations (for example, [Create Texi]) do not
use default values automatically; instead, they prompt you for values by opening a
Command window containing the command you want to execute. You can then fill

in the prompts and press [Promord].

You can use to cause any key combination to open a Command window
containing the associated command. For example, if you want to use nondefault
values in the Definition command, you can use the following shortcut to display the
command in a Command window:

QATIONAL 11/2/87 I-79

Part I. Getting Started

1. Press [Promp: For),

2. Press [Dehnition].

A Command window is opened containing the Definition command with prompts
for all its parameters.

Environment Commands

As Ada units, the predefined Environment commands have specifications and bod-
ies. The command specifications are available for you to inspect; however, the
bodies are provided only in object code form.

Environment command specifications are declared in Ada packages that reside in
Environment worlds. A number of key packages are defined in the world !Com-
mands, including Ada, Common, Compilation, Debug, Editor and its subpackages,
Job, Library, Links, Switches, Text, and What. The world o also contains packages
of frequent use, including packages Io and Text_Io.

Fully Qualified Ada and Environment Names

It is important to distinguish a command’s fully qualified Environment name from
its fully qualified Ada name. The latter, which you can enter in a Command
window, contains a simple name preceded by a name component for each en-
closing unit—for example, Common.Definition or Editor.Cursor.Up. The former,
which locates a command in the Environment, starts with ! and includes name
components for Environment libraries as well as Ada units—for example, !Com-
mands.Common.Definition or !Commands.Editor.Cursor.Up.

You can. always use a command’s fully qualified Ada name in a Command window.
In some cases, however, you can use a simpler name by virtue of the use clause
in the Command window. For example, if a Command window use clause refers
to packages Editor, Library, and Common, you can omit the corresponding name
components for commands that are defined in these packages, as shown:

declare

use Editor, Library, Common;
begin

Cursor .Up;

Definition;
end;

Note that different packages are included in a Command window use clause because
of context. That is, Command windows opened in a library context contain a use
clause for packages Editor, Library, and Common, whereas Command windows
opened in an Ada unit context contain a use clause for packages Editor, Ada, and
Common. You can always edit the use clause in a Command window to suit your
needs.

I-80 11/2/87 RAT'ONAL

Chapter 5. Executing Commands

To help simplify fully qualified Ada names, abbreviated names are available for
many of the packages in !Commands, including:

Acl Access_List
Comp Compilation
Lib Library

Q Queue

Visibility in Command Windows

When the contents of a Command window are compiled, Ada names that are not
declared in the Command window itself are resolved using a mechanism called a
searchlist in place of a formal wsth clause. A searchlist is an ordered list of libraries.
When a Command window contains an Ada name to be resolved, the Environment
searches through each of these libraries until a unit is found that has the name
in question; the found unit is then used for semantic analysis of the Command
window contents. More specifically, units that are found through the searchlist are
used in constructing for the Command window an implicit with clause that provides
visibility to names being resolved.

By default, your searchlist includes the current context; therefore, in a Command
window attached to a library, you can reference subprograms, packages, and decla-
rations within packages that are defined there. Your default searchlist also contains
the libraries you need to execute standard Environment commands. When you cre-
ate your own programs, you may have to update your searchlist to execute these
programs from contexts other than where they are defined. See the Session and Job
Management (SIM) book of the Ratsonal Environment Reference Manual for further
discussion of searchlists. Furthermore, the Rational Environment Basic Operations
summarizes operations for updating a searchlist.

Special Names and Parameter Placeholders

A final point is that many Environment commands have parameters of type String
that default to predefined Environment values called special names and parameter
placeholders. You have already seen an example of a special name in the Definition
command:

Definition (Name => “<CURSOR>",

As shown, a special name is enclosed in angle brackets and provides a way of
designating an object without having to name it in the command. Two commonly
used special names include:

"<CURSOR> " Refers to the object designated by the cursor’s position.
"< IMAGE>" Refers to the object whose image is the current context.

Other special names are described in the Key Concepts of the Library Management
(LM) book of the Rational Environment Reference Manual.

RATIONAL 11/2/87 I-81

Part 1. Getting Started

Some commands have parameters of type String whose default values are given
as placeholders. Unlike special names, placeholders do not actually refer to any
object. Instead, a given placeholder provides a clue about what you should enter in
its place. Therefore, placeholders cannot be used as parameter values; they must
be replaced. Following is an example of a placeholder indicated by a double pair of
inverted angle brackets:

Library.Create_World (Name => ">>WORLD NAME<KL",

Other placeholders are described in the Key Concepts of the Library Management
(LM) book of the Rational Environment Reference Manual.

1-82 11/2/87 BA\TIONAL

Chapter 6. Getting Help

The Environment help facility provides a number of ways to get on-line help for
Environment resources such as commands and tools. Various help operations are
bound to the function keys in the “Help” column of the keyboard overlay. You can
use these keys to answer the following questions:

¢ How does the Environment help facility work?

e What command does this key execute?

¢ What does this command do?

¢ What Environment commands and tools pertain to this topic?

In all cases, the requested information is displayed in an Environment window called
the Help window.

How Do the Help Keys Work?
To display a description of all of the help keys:

Press ety on Hetpl, The cursor can be anywhere on the screen.

The Help window is opened, displaying a summary of what each help key does.
The Help window is identified in its window banner.

To read the entire summary, you may need to scroll or enlarge the window.

QATIONAL 11/2/87 1-83

Part I. Getting Ctarted

What Command Does This Key Execute?

You can use [Help 0n Key] to find out what command is bound to a particular key or
key combination. For example, to digplay help for [Defnition):

1.

Press [Heir on Key]. The cursor can be anywhere on the screen.

The Message window prompts you to press the key or key combination for which
you want help:

Press key to be described:

Press the desired key or key combination—in this case, [Befiniion]. (You can
press any single key, any modified key combination, or any item-operation key
combination.)

The Message window echoes the name of the key you pressed. Because [Defnition)

is the function key [rio}, the display reads:

Press key to be described: F10

The Help window displays the help message for the command that is bound
to the specified key. In this example, the command is Common.Definition, as
shown in Figure 6-1, in the next section.

Reading Help Messages

Figure 6-1 shows the help message for Common.Definition as it appears in the Help
window:

Press key to be described: FIZ

sionsi-~+bei tat-ANDE

I COMMANDS . COMMON .DEF INITION is bound to: F1@, S_F18, S_RIGHT, CM_RIGHT, OBJECT

procedure Definition (Name . String = "<CURSOR>";
in_Place : Boolean := False,
Visible : Boolean := True),

Finds the defining occurrence of the named or designated item and
displays that defining occurrence in a new window.

This procedure finds the location where the item is defined. The
procedure attempts to find the most reasonable definition of the
object, given the current editing context.

Specifically, this procedure has the following effects:

o Ada 1images. Finds the defining occurrence of the designated
element and brings up 1ts 1mage in a window on the screen,

Figure 6-1. The Help Message for the Common.Definition Command

1-84 11/2/87 IQATIONAI_

Chapter 6. Getting Help

Note that a help message for a command consists of:

o A dashed line indicating the beginning of the message.
o A list of all the key combinations to which the command is bound.

o The specification for the command, including its parameter profile and default
parameter values.

o A description of the command extracted from the Rational Environment Ref-
erence Manual. If the description is long, you can scroll or enlarge the Help
window.

The help messages for other topics may have different formats. For example, the
help message for a package typically contains introductory material pertaining to
all commands in that package.

Each subsequent help message you request is appended to the last message in the
Help window. (Thus, the dashed line at the top of a message separates it from the
previous message.) The Help window contains all the help messages you request
from the time you log in until you log out. To see previous messages, scroll back
through the Help window.

Note that if the Help window has been replaced by other Environment windows,
you can redisplay it by pressing [Help Window].

What Does This Command Do?

If you know a command’s name, you can use the help facility to find out what the
command does. For example, to display help for the command Common.Definition:

1. Press Prompi For] - [Hep). The cursor can be anywhere on the screen.

A Command window is automatically opened containing the following com-
mand:

Uhat .Does (Name => "");

2. At the parameter prompt, enter the name of the command for which you want
help. (Note that help messages are available for packages as well as commands.)

Enter as much of the name as you know—if you can, enter a qualified name
such as common.definition; otherwise, enter a simple name (definition):

Uhat .Does (Name => "definition");
3. Press [Promotd.

If there is no help for the name you entered, a message is displayed in the
Message window.

If the name you entered resolves to a single command, the Help window dis-
plays the help message for that command. Because both Definition and Com-
nion.Deﬁnition resolve uniquely, the help message shown in Figure 6-1 is dis-
played.

E)ATIONAL 11/2/87 I-85

Part 1. Getting Started

If the name you entered requires further qualification to resolve to a single
command, the Help window displays a menu of fully qualified command names
for you to choose from. (See “Reading Help Menus,” below.)

What Commands Pertain to This Topic?

You can use the steps given in the previous section to find out what Environment
resources are available for a given topic. For example, to find out what commands
and tools are available for moving the cursor, you can supply “cursor” as a clue
instead of a command name:

1. Press [Prompt Forj - [Help] t0 open a Command window containing the What.Does
command.

2. At the prompt, enter the topic clue—in this case, cursor:

What .Does (Name => "cursor"};
3. Press [Promoty). The index entries in the help facility are searched. As before:
o If there is no help for the topic you entered, a message is displayed in the
Message window.

o If the clue matches only a single entry, the help message for that entry is
displayed.

e Otherwise, the Help window displays a menu of topics and command names
that contain the clue you entered. (See “Getting Further Help from a Menu,”
below.)

In this example, entering the word “cursor” displays the menu shown in Figure
6-2, in the next section.

1-86 11/2/87 TIONAL

Chapter 6. Getting Help

Reading Help Menus

A help menu presents you with choices for getting further help. The Help window
displays a help menu when:

e You specify a command name that requires further qualification.
* You specify a topic that matches some portion of more than one command name.

For example, the help menu for the topic “cursor” is shown in Figure 6-2:

Prompt For: F11
= Ralional i1Delias ANDEFSON S_1i

Calculation . | Ada (Pack_Spec).

Calculation : | Ada (Pack_Body);
Complex_Numbers : Library (¥orld);

Display_Factorial C Ada (Proc_Spec);
Display.Factorial : C Ada (Proc_Body);
Documentation : Library (Directory);
Factorial C Ada (Func.Spec);
Factorial Ada (Func_Body) .

O

= TUSERS ANDERSON (11brary 1 worid

vhat Does (Name => ‘cursor

end,;

Index entries related to "cursor”
ICommands Editor Cursor Up
tCommands .Editor . Cursor Right
ICommands Editor Cursor.Previous
|Commands Editor Cursor . Next
ICommands Editor Cursor Left
ICommands .Editor . Cursor Forward
!Commands .Editor Cursor . Down
ICommands .Editor Cursor.Backward
ICommands .Editor Cursor
'1o.¥indow_!o Move_Cursor
'lo.¥Vindow_lo.Position_Cursor
I'lo. ¥indow.lo Report_Cursor

Figure 6-2. The Help Menu for the Topic “Cursor”

Note that the word “cursor” is found in the simple name as well as in other name
components of these command names. In general, the help facility matches the topic
(or name) you enter against fully qualified command names. The match succeeds if
the word you enter is found as a segment of a command name—that is, if a command
name contains the specified word between periods or underscores. Thus, “cursor”
is fmilnc(li in Move_Cursor and in Cursor.Up. In some cases, partial segments are
matched.

BATIONAL 11/2/81 1-87

Part 1. Getting Started

Getting Further Help from a Menu
From the help menu, you can:

o Display the help message for a given command or package.
o Traverse to the Environment Ada specification for the command or package.

To display a help message from a help menu:

1. Put the cursor on the entry for which you want help.

2. Press [Expiain],

The appropriate help message is displayed in the Help window following the
menu.

To display a help message for a different entry on the menu, you can scroll back
to the menu in the Help window and repeat the process for that entry.

To traverse to the Ada specification for an entry on the help menu:

1. Put the cursor on the desired entry.

2. Press [Dehnition],

A window is opened containing the appropriate specification.

1-88 11/2/87 QATIONAL

Part II. Editing Text

Contents

Chapter 7. Creating and Saving Text Files .
Creating Text Files
Entering Text
Saving Changes as You Edlt
Versions of Files i i
Discarding Changes Since the Last Save
Opening Existing Files for Editing

Example 1: Opening a Displayed File

Example 2: Opening a Selected File
Write Locks .
Closing Files for Edltlng

Chapter 8. Modifying Text
Adding Text
Operating on DeSJgnated Text Items
Text Items .
Patterns in Edltlng Operatlons :
Selecting Text Items .
Selecting an Arbitrary Stretch of Text
Using Object Selection

Selecting within a File’s Structural Hlerarchy

Turning Selections Off
Summary of Selection Operations
Deleting Text o
Retrieving Deleted Text
Copying and Moving Text

BATIONAL 11/2/87

. 1111
. II-1
. II-3
.. 114
. 11-4
.. 11-4
. 1I-5
. 1I-5
. II-%
. 1I-6
. I-7

-9

II-10

I1-10
II-11
II-11
II-11
II-12
-12
II-13
II-13
I1-14
II-14
II-15

Copying Texto L L II-15

Duplicatinga Line o-15
Moving Text00 II-16
Summary of Copy and Move Operations II-16
Transposing Text II-16
Searching and Replacing n-17
Example: Searching fora String II-18
Summary of Search and Replace Operations I1-19
Controlling Case and Text Format II-20
Changing Character Case I1-20
Adjusting Text Format II-21
Setting Word Wrap for Text -21
Filling Existing Linesof Text I1-22
Justifying Text I1-22
Centering Lineso I1-23
Changing the Fill Column I1-23
Inserting Page Breakso I1-23

I1-ii 11/2/87 RAT'ONAL

Chapter 7. Creating and Saving Text Files

Environment text files are used for composing and storing documentation, memos,
nonbinary test data, and the like. This chapter describes the basic Environment

operations for:

¢ Creating a text file

Entering text

o Saving the text you entered

¢ Opening existing text files for editing

Closing text files when you are finished editing them

Operations for modifying text are described in Chapter 8, “Modifying Text.”

Although it is possible to store Ada source code in a text file, doing so means that
you will not be able to take advantage of Environment facilities for editing Ada
units. To create Ada units, see Part 111, “Developing Simple Ada Programs.”

Creating Text Files

Text files exist in libraries, so before you create a text file, you must decide where
it will reside. By specifying a fully qualified pathname, you can create a text file in
any library from any context. Typically, however, you will create text files directly
in a library that you are currently viewing.

For example, assume that you are working in the library !Users.Anderson.Docu-
mentation, and you want to create a file there called Research_Notes. To do so:

1. Put the cursor anywhere in the window containing the appropriate library—in
this case, !Users.Anderson.Documentation.

2. Press [cresce Tex]. A Command window is opened containing the Text.Create
command and its parameter profile.

3. With the cursor on the Image_Name parameter prompt, enter the name of the
file you are creating—in this case, Research_Notes. Filenames are strings that
have the same syntax as Ada identifiers.

RAT'ONAL 11/2/87 II-1

Part II. Editing Text

Leave the default value for the second parameter, Kind.

5. Press [Promotel. After the command executes, the screen appears as shown in
Figure 7-1. Specifically:

¢ The directory !Users.Anderson.Documentation contains an entry for the text
file Research_Notes.

* A window is created containing the new, empty file, and the cursor is placed
in this window.

6. At this point, you can enter text (see “Entering Text,” below).

Rational Environment

D_9_25_1 Copyright 1984, 1885, 1986, 1987, by Rational.
; A DOILBIANDERSON Sl - — - - i e e e -
-!_U . -
History_lLog : File (Text);
Research_Notes File (Text);
Status_keport File (Text),

Figure 7-1. After Creating the File 'Users.Anderson.Documentation.Research_Notes

Note in Figure 7-1 that the window banner for the new file displays the rightmost
portion of the file’s fully qualified pathname (the name is too long to be displayed
entirely). The pathname is followed by an attribute indicating which version of the
file you are viewing. For a newly created file, the version attribute is 'vV(1), because
this is the first version of the file. Versions are described in “Saving Changes as
You Edit,” below. Following the filename in the banner, the word (text) indicates
that text editing operations are available for editing this file.

I1-2 11/2/87 RATIONAL

Chapter 7. Creating and Saving Text Files

Entering Text

Executing the Text.Create command both creates a file and opens that file for
editing. In fact, the window banner of a newly created file contains the blank
symbol to the left of the filename to indicate that you can modify the file (see
“Modification Symbols in the Window Banner,” in Chapter 4).

Because the file is open for editing, you can enter text simply by typing. As you
enter text, bear in mind the following:

¢ You can type indefinitely to the right or down.

— You can start a new line by pressing [Retura].

— You can keep text lines within a specific column width by requesting auto-
matic word wrap; see “Controlling Case and Text Format,” in Chapter 8.

e To enter numeric data, use the number keys on the main keyboard, not on the
numeric keypad.

¢ You can make changes to the text you enter using the operations shown in Chapter
8, “Modifying Text.”

As shown in Figure 7-2, the modification symbol on the banner changes from a blank
to an asterisk when you enter text, indicating that the file’s image has been changed
but the file itself has not yet been updated. If you try to log out at this point, the
Quit command with default parameters will fail because there are unsaved changes.

Rational Environment
D_9_25_1 Copyright 1984, 6 1985, 1886, 1987, by Rational.
S . PP E—

kational- 1OelEa)-ANDERSON. 81 % . —ows L o oo
| cume ; .
History_Log : File (Text);
Research_Notes File (Text);
Status_Report File (Text),

Bl D0 2 AMO RS Al S
| Morid il oAb IS ON SDOULE
RO Tt N

end;

Following is a compilation of research done on local Chinese restaurants
that feature inexpensive lunch specials:
-~ House of Yee. Lunch special: $3.75

Ordered the Kung Pao Chicken (#*=*x1/2), Beef Zucchini (**x), and Almond
Chicken (***). Soup of the day was Hot and Sour Soup.

Figure 7-2. After Entering Text

IQATIONAL 11/2/87 I1-3

Part II. Editing Text

Saving Changes as You Edit

You can periodically update the file you are editing by saving the text you have
entered. Use to save changes and leave the file open for further editing:

1. Put the cursor anywhere in the file’s image.

2. Press [Enter].

The following message appears in the Message window to indicate that the
changes were saved, or committed:

Commit of IUSERS.ANDERSON.DOCUMENTAT ION.RESEARCH_NOTES'V{2) 1s complete.

The modification symbol in the banner changes from an asterisk to a blank,
indicating that changes have been saved and that the file is still open for up-
dating. You can continue entering or modifying text. At this point, you can log
out without losing changes.

Two other operations can be used to save changes—namely, pressing or
pressing [otiect] - [x]. These operations have additional effects, which are described
in “Closing Files for Editing,” below.

Versions of Files

The message in step 2 above names the saved file with the version attribute 'v(2)
because each time you save changes to a file, a new version of the file is created.
By default, the Environment retains one version in addition to the current version;
other versions are permanently deleted. In the above example, version 2 is now
the current version, and version 1 is retained. If you make changes and press [En.r
another time, version 3 becomes the current version, version 2 is retained, and
version 1 is permanently deleted.

Previous versions of Environment objects are retained so that you can undo saved
changes. You can cause a retained version to become the current version and you can
also increase the number of versions that are retained; see the Library Management
(LM) book of the Rational Environment Reference Manual.

Discarding Changes Since the Last Save

If you decide that you do not want to save your most recent changes, you can discard
all unsaved changes by reverting the file to the way it was the last time you saved
it. To discard unsaved changes and leave the file open for further editing:

With the cursor anywhere in the file, press - [1].

A Command window is created containing the Common.Revert command. Press
to execute the Common.Revert command.

I1-4 11/2/87 BATIONAL

Chapter 7. Creating and Saving Text Files

Opening Existing Files for Editing
When you create a file, it is automatically opened for editing, and you can continue
to edit it as long as it remains open. However, if you want to modify an existing

file that is not already open, you must explicitly open it. (Of course, you can open
a file only if you have been granted write access to it.)

Example 1: Opening a Displayed File

Assume that you have used to view the contents of an existing file called
1Users.Anderson.Documentation.Status_Report. Upon reading the file, you notice
an error. However, you cannot modify Status_Report at this point, because
does not open objects for editing. In fact, the window banner for the file contains
an equals sign (=), indicating that the file is read-only. If you try to type on the
file’s image, the following message is displayed in the Message window:

This image 1s read-only

To open the Status_Report file for editing:

1. Put the cursor anywhere in the window containing Status_Report.

2. Press [ea]. Note that the banner symbol changes to a blank to indicate that
the file is now open for updating.

Example 2: Opening a Selected File

Assume that you are viewing the library !Users.Anderson.Documentation and you
want to edit the file History_Log, which is not yet displayed. One option is to
display the file using and then open it for editing using the steps in the

previous example.

Alternatively, you can select the library entry for History_Log and then use to
both display and open the selected file, without using as a separate step.

To both display and open the History_Log file for editing:

1. Start with the cursor in the library containing History_Log—mnamely, !Users-
.Anderson.Documentation.

2. Select the directory entry for History_Log by putting the cursor on it and then
pressing - [=]. The entry is now highlighted.

3. Leave the cursor in the highlighted selection and press [£ai]. The History_Log
file is displayed in a window with a blank banner symbol indicating that the file
is open for updating.

Note that this use of exemplifies a prevalent Environment usage pattern—
namely, the pattern of first designating something to operate on and then operating
on it. You have seen this pattern of usage with [Defaitics], where cursor positioning
designates what is to be displayed. follows this pattern, except that selection
must be used along with cursor positioning to designate what to open for editing.
That is, selection serves as a more explicit form of designation than cursor position-
ing alone. Therefore, selection is generally required by operations like [ean], which

QAT'ONAL 11/2/87 II-5

Part II. Editing Text

can potentially change objects, whereas cursor positioning is accepted by relatively
harmless operations like [Defisiticn).

Selection is used in a number of ways throughout the Environment. Further uses
of selection are covered in Chapter 8, *Modifying Text,” and *Selecting Ada Con-
structs,” in Chapter 11.

Write Locks

When you press to open a file for editing, you are given a wrste lock on that
file. Aslong as you have a write lock on a file, only you can update the file. Other
users can view the file, but they cannot open it for editing.

The write lock on a file is retained until you explicitly release it. Any of the following
operations release the write lock on a file (these are described in “Closing Files for
Editing,” below):

¢ Pressing

o Pressing - X

o Pressing - (¢

If you do not release the write lock on a file before logging out, the write lock is
automatically released when you log out.

You will get a message when you display a file that another user is editing. For exam-
ple, if user Miyata is editing a file called !Projects.Documentation.Bulletin_Board
and you display that file using [Desaitics], the following message appears in your Mes-
sage window:

Warning: !PROJECTS.DOCUMENTATION.BULLETIN_BOARD 1is currently open.

This message alerts you to the possibility that the file may change while you are
looking at its image. You can periodically press - [1] to refresh the file’s image.

If, at this point, you press to open that file for editing, the file remains read-only
and the following message appears in the Message window:

Unable to obtain file: LOCK_ERROR

I1-6 11/2/87 QAT'ONAL

Chapter 7. Creating and Saving Text Files

If you urgently need to work on that file, you can find out who is editing it:

With the cursor anywhere in the window containing the file, press [wuat Loct].

Information such as the following is displayed in an output window. This in-
formation includes the username and session of the user who currently has the
write lock on the file:

'PROJECTS .DOCUMENTAT ION.BULLETIN_BOARD’V(8)
Updater: Miyata.S_1 Job 224

Closing Files for Editing

Closing a file for editing releases your write lock on it and, if the file remains
displayed, converts the image to read-only. Unless you want to make files available
to other users, it is not imperative that you close files after you have finished
with them; however, closing files when you no longer want to work on them is
recommended as a good housekeeping practice.

You can close a file for editing using any of the following operations, depending
on whether you want the file to remain displayed and whether you want unsaved
changes to be discarded. With the cursor in the window containing the file:

o Press Promot to save changes to the file and leave the file displayed in its window.
Note the equals sign (=) in the window banner, indicating that the file is now
read-only.

o Press [obj«t] - [X] to save changes and remove the file’s window.
e Press [oviet] - (] to discard changes and remove the file’s window.

If you want to edit a file after it has been closed, you must use to open it again
and regain the write lock.

RAT'ONAL 11/2/87 II-7

RATIONAL

Chapter 8. Modifying Text

The Environment provides standard text editing capabilities, including:

¢ Inserting new text

¢ Deleting, moving, copying, and transposing portions of text
o Retrieving deleted text

o Searching for and, optionally, replacing specified strings

o Adjusting character case within portions of text

¢ Centering, justifying, and filling text

These editing capabilities are available not only for editing text files, but for mod-
ifying other kinds of images as well. Operations for searching and copying (for
“cut and paste? are available in any window. Operations for inserting, deleting,
rearranging, and searching for text are especially useful for editing Ada units and
Command windows, in addition to text files. Operations for adjusting case and
formatting are particularly useful for editing text files; these operations are less
important for modifying Ada source code, since source code pretty-printing is per-
formed by operations provided specifically for editing Ada units (see “Using the
Format Key,” in Chapter 11). Note, however, that operations for controlling text
format and case can be useful when modifying comments within Ada units.

Adding Text

By default, editing is done in snsert mode, so that you can add or insert text by
positioning the cursor at the desired location and then entering the desired charac-
ters. New characters are entered immediately to the left of the cursor. Subsequent
characters on the same line are shifted to the right as necessary to make room for
the new text.

Some users prefer to edit in overwrite mode, in which subsequent characters on the
line are not shifted to the right but instead are replaced one for one by each new
character entered.

QAT'ONAL 11/2/87 I1-9

Part II. Editing Text

You can change the mode of the particular file you are editing, without changing
the default mode. To edit a particular file in overwrite mode:

1. Put the cursor anywhere in the window containing the file you are editing.
2. Press - [o]. The window banner displays the word OVERWRI TE.

To return the file to insert mode:

1. Put the cursor anywhere in the window containing the file.
2. Press [imige] - [1]. The OVERURITE indicator is removed from the window banner.

You can make overwrite mode the default by changing the value of the Image-
—Insert_Mode session switch; see the Session and Job Management (SIM) book of
the Ratsional Environment Reference Manual.

Operating on Designated Text Items

Most of the editing operations covered in the following sections (for example, delet-
ing, moving, and copying) act on specific structural components of text. The fol-
lowing sections describe the various kinds of text items to which such operations
are sensitive and how you can designate each kind of text item.

Text Items

At a basic level, text is composed of characters, which are grouped into one or more
lines.

Further groupings within text include:

¢ Words, which are contiguous sequences of characters delimited by blank spaces,
most punctuation characters, and Ada delimiters. Word delimiters are defined
by the Word_Breaks session switch.

¢ Sentences, which consist of one or more words delimited by either a blank line
or a sentence delimiter. Sentence delimiters are any of the following characters:
period (.), question mark (?), and exclamation mark (!). A sentence delimiter
must be followed by two or more blank spaces.

o Paragraphs, which consist of one or more sentences delimited by blank lines.

In addition, you can define any arbitrary stretch of contiguous characters, possibly
spanning multiple lines, up to the entire file.

II-10 11/2/87 R/A\TIONAL

Chapter 8. Modifying Text

Patterns in Editing Operations

The Environment provides specific operations for editing characters, words, lines,
and larger regions such as sentences, paragraphs, and arbitrary stretches of text.
These editing operations fall into several patterns, according to the kind of text
item they affect and how you must designate the item to be affected:

e Operations that act on characters are typically bound to key combinations modi-
fied by [comrat. Such operations affect the character on which the cursoris located.

¢ Operations that act on words or lines are typically bound to item-operation key
combinations containing [werd] or [Lind, respectively. Such operations affect the
word or line on which the cursor is located.

o Operations that act on sentences, paragraphs, or arbitrary stretches of text in-
volve two steps:

1. Select the desired text item (see “Selecting Text Items,” below).

2. Press the appropriate item-operation key combination. Key combinations
that pertain to selected items typically contain [Region].

Selecting Text Items

Selection is a means of designating an item for various Environment operations.
Note that some editing operations—typically those that affect characters, words,
and lines—do not require selection; use of cursor position alone is sufficient. How-
ever, other operations—typically those that affect sentences, paragraphs, or arbi-
trary stretches of text—require that those items be designated by selection. (Note
that some operations—for example, moving—operate only on selected items, so
even words and lines need to be selected for these operations.) Selecting an item
causes that item to be displayed in a highlighted font; only one item on the screen
can be selected at a time.

Selecting an Arbitrary Stretch of Text

To select an arbitrary stretch of text, you need to define the beginning and end-
points. You can use the following method to select any contiguous set of one or
more characters, including whole or partial words, lines, and the like:

1. Move the cursor to the start of the text to be selected.
2. Define the starting point by pressing - [1.

3. Move the cursor to the end of the text to be selected.
4

Pe}fnz the endpoint by pressing - [l. The selected stretch of text is high-
ighted.

RAT'ONAL 11/2/87 IT-11

Part II. Editing Text

Using Object Selection

You can always select a sentence or paragraph by defining its beginning and end-
points. Alternatively, you can take advantage of the editor’s knowledge of objects
like words, sentences, and paragraphs by using object selection operations, such as
-[=Jand - [=1. Object selection operations allow you to select such items
without using the cursor to delimit them. (Note, however, that you can use object
selection to select only a single sentence or paragraph at a time. If you want to
select two or more consecutive items—for example, two paragraphs within a five-
paragraph file—you must use - [and - [to define the beginning and
endpoints of the two paragraphs.)

To select a sentence:

1. Put the cursor anywhere on the sentence to be selected.
2. Press [obiet] - [=]. The word nearest the cursor is highlighted.

3. Press - [=] a second time. The sentence containing the highlighted word
is selected.

Similarly, to select a paragraph:

1. Select a sentence within the desired paragraph.

2. Press - (5] again. The paragraph containing the highlighted sentence is
selected.

You can use number keys on the numeric keypad as an alternative to repeatedly
pressing - (=]. For example, you can select the sentence the cursor is in by
pressing [numeric 3] - [0bject) - [=]. Similarly, you can select the paragraph the cursor is
in by preSSing [numeric 8] = [Object] = E

Selecting within a File’s Structural Hierarchy

Successively pressing - [=] selects increasingly higher-level text items in the
following structural hierarchy, starting with words:

¢ Word

e Sentence
¢ Paragraph
¢ Entire file

You can select successively smaller items in this hierarchy by pressing - [=)
For example, if you have selected a paragraph, and you decide you want to select
just a sentence within that paragraph:

1. Position the cursor on the desired sentence within the selected paragraph.
2. Press - =

I1-12 11/2/87 RATIONAI_

vaapier . hModllying iexi

You can select the next or previous item at the same level in this hierarchy by

pressing [Ovieetj - [1] or [Obiect] - [1], respectively. For example, if you have selected a
sentence, and you decide you want the next sentence selected instead:

1. Leave the cursor in the current selection.

2. Press - .
3. At this point, you can press - [to return to the previous sentence.

Turning Selections Off
A selected text item in a file is automatically “unselected” if you:

o Select another item (in any window on the screen).
o Enter or otherwise modify text anywhere in the file.

You can also explicitly turn a selected item off and return it to the normal display
font:

1. Put the cursor anywhere in the selection.
2. Press [iemon.

—_ —

[Region] - [x] turns off a selection no matter where the cursor is, providing a somewhat
more convenient alternative to [iem onj:

Summary of Selection Operations

Table 8-1. Operations for Selecting Text

Operation , Key Combination

=

Select starting point of arbitrary stretch of text

=]

Select ending point of arbitrary stretch of text

Select successively larger items
Select successively smaller items
Select next item at same level

Select previous item at same level

Turn off selection cursor is in

2 DERE e
elalnfin

]

Turn off selection, regardiess of cursor position

See also “Selecting Ada Constructs,” in Chapter 11.

QAT'ONAL 11/2/87 I1-13

Part II. Editing Text

Deleting Text

The Environment provides operations for deleting any of the text items listed in
“Text Items,” above. The most useful of these operations are listed in the following
table. Note that some operations delete an entire item and other operations delete
from the cursor to either the beginning or end of the designated item.

Table 8-2. Operations for Deleting Text

Operation Key Combsnation
Delete the character under the cursor [Control] D]

Delete the character to the left of the cursor

Delete the entire word containing the cursor

Delete from the cursor to the end of the word
Delete from the cursor to the beginning of the word
Delete the entire line containing the cursor

Delete from the cursor to the end of the line

Delete from the cursor to the beginning of the line

JEEERL
@E@@E@@

Delete the entire selected item

Retrieving Deleted Text

Each time you delete a text item larger than a character, the deleted item is auto-
matically pushed onto the hold stack, from which the item can be recovered. The
hold stack can hold up to 100 items at a time; items are dropped from the bottom
of the stack as necessary to make room for new ones.

Several operations automatically push items onto the hold stack besides deletion,
including copying and moving operations (see “Copying and Moving Text,” below).
In addition, there is an operation for pushing a selected item onto the hold stack,
without having to delete, copy, or move it first. This is useful when you want to
insert the same item at various points in your text.

To retrieve text from the hold stack:

1. Press - [1] to retrieve the item most recently pushed onto the stack. The
item is inserted to the left of the cursor and is highlighted as a selection.

2. Press [Reion - [=] to retrieve items that were pushed onto the stack earlier.
Successively pressing this key combination cycles through the stack. Each suc-
cessively retrieved item replaces the highlighted item at the cursor. Stop when
you find the item you want.

II-14 11/2/87 EATIONAL

Chapter 8. Modifying Text

The following table summarizes hold stack operations:

Table 8-8. Operations for Retrieving Held Text

Operation Key Combsnation

Retrieve most recently held item
Retrieve next held item

Retrieve previous held item

diL 1
=inliols

Push selected item onto hold stack

Copying and Moving Text

The Environment provides operations for copying or moving selected text items.
Both copying and moving insert the selected text in the location indicated by the
cursor’s position. However, moving deletes the selected text from its original loca-
tion, whereas copying leaves the selected text in place.

Note that you can copy or move text from one window to another, provided that the
object in the “target” window has been opened for editing. (When you move text,
the “source” object must also be opened for editing.) Moving or copying between
windows is useful not only for transferring text between two text files, but also for:

¢ Copying material from a job output window into a log file

¢ Copying messages from the Message window into a file

* Copying Ada code from a Command window into an Ada unit

¢ Copying information from a library image into a file, and the like

Copying Text
To copy text:

1. Select the text to be copied. Note that the object containing the selected text
can be read-only.

2. Move the cursor to the target location, which can be in the same window or in
a different one.

3. Press [Reion] - (). A copy of the selected text is inserted to the left of the cursor.
The newly inserted copy remains highlighted for subsequent operations.
Duplicating a Line

A special-purpose copy operation exists for making a copy of a single line directly
below the original line. To duplicate a line:

1. Designate the line by putting the cursor on it.

2. Press Linc - [l

EATIONAL 11/2/87 II-15

Part II. Editing Text

Moving Text

To move text:

1. Select the text to be moved. Note that the object containing the selected text

must be open for editing.

2. Move the cursor to the target location, which can be in the same window or in

a different one.

3. Press - [M. The selected text is deleted from its original location and
inserted to the left of the cursor. The newly inserted text remains highlighted

for subsequent operations.

Summary of Copy and Move Operations

Table 8-4. Operations for Copying and Moving Text

Operation

Key Combinetion

Copy a selected item

Move a selected item

Duplicate a single line

(s - @
[Reeien] - (1

[Lind . []

Transposing Text

The following table shows the Environment operations for reversing the order of
two characters, two words, or two lines. The cursor’s position designates the second

of the two items to be transposed.

Table 8-5. Operations for Transposing Text

Operation Key Combination
Transpose the current and previous characters
Transpose the current and previous words - E]
Transpose the current and previous line - E}

I1-16

uer RATIONAL

Chapter 8. Modifying Text

Searching and Replacing

The Environment provides operations for searching for strings and, if desired, re-
placing those strings. You can use search operations in any window—for example,
in library displays, the Message window, a job output window, the Window Direc-
tory, and the like. The replace operations can be used only in images that can be
updated—for example, files, Ada units, and Command windows.

The search and replace operations are directional. Forward searching finds the
next occurrence of a string, starting from the cursor’s position and continuing the
search to the end of the image, if necessary. Reverse searching finds the previous
occurrence of a string, starting from the cursor’s position and continuing the search
to the beginning of the image, if necessary. You can change the direction of the
search at any point.

Search and replace operations are initiated when you press one of four key combi-
nations:

Table 8-6. Search and Replace Key Combinations

Direction Search Replace
Forward [Controt][s]
Reverse IB

When you start either a search or a replace operation, the Environment enters
composing mode to allow you to compose the search string and, when relevant,
the replacement string. Prompts for these strings appear in the Message window
and the ...composing message appears in the Message window banner. While
composing mode is in effect, any characters you enter appear at the appropriate
prompt, although the cursor remains in the image you are searching.

Composing mode is terminated and the actual searching or replacing begins when
you press one of the four key combinations listed in Table 8-6. The Environment
remains in search/replace mode until:

* No more occurrences of the search string are found.

¢ You press any key—for example, to start making changes at the found/replaced
string or to move the cursor.

When search/replace mode is terminated, the prompts are removed from the Mes-
sage window.

R/A\T'ONAL 11/2/87 II-17

Part II. Editing Text

You can resume a terminated search or replace operation by pressing the appropriate
key combination from Table 8-6. The prompts are redisplayed, containing the
strings from the previous operation. Since these are in prompt form, you can:

* Reuse the previous strings by pressing the search/replace key combination again.

e Enter new strings; the old ones disappear automatically.
¢ Turn a given prompt to text by pressing and then modifying the text.

Example: Searching for a String

To search forward from the cursor’s position:

1.

Start the search operation and enter composing mode by pressing [comrei[s]. The
SEARCH prompt appears in the Message window and the ...composing message
appears in the Message window banner.

Enter the string you want to find. The string you enter appears at the SEARCH
prompt in the Message window.

Leave composing mode and start the actual search by pressing [control[5] again.
The ...composing message is removed from the Message window banner. The
cursor appears one character after the first occurrence of the string to be found.

At this point, you can:

e Find each subsequent occurrence of the string by pressing [Control][s].
e Find a previous occurrence of the string by pressing [Control[®].

o Stop the search by pressing any key—for example, [1].

II-18 11/2/87 RATIONAL

Chapter 8. Modifying Text

Summary of Search and Replace Operations

Table 8-7. Operations for Searching and Replacing

Operation

Key Combinastion

Start search operation, forward/reverse

Search for the next/previous occurrence of a string

Start search and replace operation, forward/reverse
Go from SEARCH prompt to REPLACE prompt
Go from REPLACE prompt to SEARCH prompt

I Controll 31/1 Conroll l'
| Controll SV Conuolu R

[Mera]s)Mera]m]
Previous Jtem

Complete composing, find next/previous occurrence [Mesa]s|/[Mesa] B]
Replace current occurrence, find next/previous occurrence MIB

Do not replace, find next/previous occurrence
Replace current occurrence, discontinue operation
Replace all occurrences, forward

Replace all occurrences, reverse

Abort from composing mode

Abort from searching {and replacing) mode

Coutroll S|/ Comrolﬂ R
numeric Of - lMeuI S

[numerlc - l] - [MeuH S]

numeric — li - [Meun R]

[¢]
Any key—for example, D

QATIONAL 11/2/87

1-19

Part II. Editing Text

Controlling Case and Text Format

The operations discussed below are useful primarily when you are editing documents
that require simple text formatting. When you are editing Ada units, the character
case of identifiers is automatically adjusted by the Environment’s pretty-printing
facility. (Note that some of the formatting operations may be of use when editing
comments in Ada code.)

Changing Character Case

The Environment provides operations for changing the character case in the follow-

ing ways:

¢ You can capitalize text, so that words start with uppercase characters; any non-
initial uppercase characters are made lowercase.

¢ You can uppercase text, so that all characters are uppercase.

e You can lowercase text, so that all characters are lowercase.

The following table lists the operations for controlling case within various text items.

Note that some of these operations affect only the text from the cursor position to
the end of the designated item; other operations affect the entire item.

Table 8-8. Operations for Controlling Case

Operation Key Combination
Capitalize the character under the cursor [Control][]
Capitalize from the cursor to the end of the designated word SR
Capitalize from the cursor to the end of the designated line {Lind . [7]
Capitalize the entire selected item . [3
Uppercase* the character under the cursor

Uppercase from the cursor to the end of the designated word
Uppercase from the cursor to the end of the designated line

¥Me

Uppercase the entire selected item

Lowercase the character under the cursor [ZJ
Lowercase from the cursor to the end of the designated word -
Lowercase from the cursor to the end of the designated line @] -
Lowercase the entire selected item .

* Uppercasing a character is equivalent to capitalizing it.

I1-20 11/2/87 RATIONAL

Chapter 8. Moditying "l'ext

Adjusting Text Format

The Environment provides simple formatting operations for determining text width,
producing filled or justified paragraphs, and centering lines of text. You can perform
these formatting operations as you edit; the results are displayed in the window.

Setting Word Wrap for Text

Recall that images extend indefinitely to the right, beyond the window edge. By
default, you can enter text indefinitely to the right on any line; the image is scrolled
automatically as you continue to type. If you choose, you can use to start a
new line at appropriate points—for example, if you want to keep lines within the
width of the screen so that entire lines are visible at a glance.

Alternatively, you can set fill mode on to provide automatic word wrap, so that
you can type continuously without using to keep text within the desired
column width. When fill mode is on, the Environment fills successive lines as you
enter text, automatically starting new lines when necessary to prevent text from
extending beyond the specified fill column. New lines are started at the nearest
word break. (Note that when fill mode is on, you can still use [R<tursj to start new
lines as desired.)

Fill mode is off by default; you can set fill mode on for particular images without
changing the default mode. When fill mode is on, the default fill column is 72 (see
also “Changing the Fill Column,” below).

To edit with automatic word wrap, set fill mode on as follows:

1. Put the cursor anywhere in the window containing the image you are editing.

2. Press [imaee] - [F. The window banner displays the word FiLL followed by a
number indicating the fill column that is in effect for that image.

From now on, the text you enter in this window is automatically wrapped on
or before the fill column.

When you no longer need automatic word wrap for the image you are editing, you

can turn fill mode off as follows:

1. Put the cursor anywhere in the window containing the image.
2. Press Timage, - 'x]. The FILL indicator is removed from the window banner.

You can change the fill mode default so that all images are edited with automatic

word wrap by changing the value of the Image_Fill_Mode session switch; see the

i;ssion and Job Management (SJM) book of the Rational Environment Reference
anual.

R)AT‘ONAL 11/2/87 I1-21

Part II. Editing Text

Filling Existing Lines of Text

The fill operation allows you to fill text that has already been entered. Filling text
adjusts the placement of words within a selected area so that each line contains as
much text as it can without extending beyond the fill column.

You can use the fill operation whether or not fill mode is on. When fill mode is on,
text is filled as you enter it; in contrast, the fill operation fills short lines and wraps
long lines within existing text. If fill mode is already on, you probably will not need
to use the fill operation unless you have modified the text after entering it.

To fill existing text:

1. Select the area within which text is to be filled (for example, [numeric 3] - [Obi=ct] -
selects a paragraph).

2. With the cursor in the selection, press - [Format).

If you are editing comments in an Ada unit, you can request that the fill oper-
ation preserve (or insert) comment delimiters at the beginning of each line. See
the Editor.Region.Fill command in the Editing Images (EI) book of the Rational
Environment Reference Manual; see also “Entering Comments,” in Chapter 11.

Justifying Text

The justify operation both fills and justifies text, adjusting word placement so that
all lines extend exactly to the fill column. Blank spaces can be inserted between
words to create an even right margin. You can use the justify operation whether
or not fill mode is on. Note that you do not need to use the fill operation before
justifying text.

To justify text:

1. Select the area within which text is to be justified (for example, [numeric 3] - [Object)
- [=] selects a paragraph).

2. With the cursor in the selection, press [Region] - [Comptete],

If you are editing comments in an Ada unit, you can request that the justify oper-
ation:

¢ Insert comment delimiters at the beginning of each line

» Preserve or change the indentation level established by the first line in the selected
area

For more information, see “Entering Comments,” in Chapter 11.

I-22 e RATIONAL

Chapter 8. Modifying Text

Centering Lines
You can center individual lines of text within the established fill column as follows:

1. Put the cursor anywhere on the line to be centered.

2. Press [Lind - [3].

Changing the Fill Column
The fill column determines the maximum line length allowed by:

¢ Automatic word wrap

. - operation
¢ [Region] - [Gompiere] operation

The fill column is also used to determine where to position a centered line.
By default, the fill column is 72. You can change the fill column for a particular

image as follows:

1. With the cursor in the appropriate window, create a Command window.
2. Enter set.fill_column and press [Compiete],

3. At the prompt, enter the desired column number.

4. Press Promot.

You can change the default fill column for all images by changing the value of
the Image_Fill_Column session switch; see the Session and Job Management (SIM)
book of the Rational Environment Reference Manual.

Inserting Page Breaks

If you plan to print out your file, you can insert page breaks where you want the
printing device to start a new page. The page break control character is [conroft].

To insert a page break:

1. Determine where to put the page break. The page break control character
should be inserted at the beginning of a blank line between the last line of the
current page and the first line of the new page.

2. Prepare to enter a control character by pressing [control] 1.
3. Enter the page break control character by pressing [controi]L].

The page break control character is displayed as a highlighted capital L in your
file.

RATIONAL 117277 123

RATIONAL

Part II1. Developing Simple Ada Programs

Contents

Chapter 9. Overview of Ada Unit Development
Ada Compilation Units
Ada Unit States

Source State

Installed State

Coded State

The Environment’s Compllatlon Systern

A Sample Library

Example: Creating and Executlng an Ada Procedure

Chapter 10. Creating, Saving, and Promoting Ada Units
Creating Ada Units . . o
Determining Ada Unit Names and Subcla.sses
Creating Subprograms .
Creating Package Specifications and Bodles
Saving Work in Progress : .
Discarding Changes Since the La.st Save .
Opening Existing Units for Editing
Write Locks

Versions of Units e e

Closing Source Units for Edltlng
Promoting Units to the Installed State
Installing Units with Dependencies Co .
Reading the Compilation Log Ce e
Overview of Operations for Changing Unit State

Changing to a Relative State

RATIONAL 117260

Changing to a SpecificState HOI-25

Changing the State of a System of Umts e e e I11-26
Chapter 11. Using Ada-Specific Editing Operations III-27
Using the Format Key C e e e e D27

Example: Using Format to Enter a Functxon III-28

Hints for Using the Format Key II-32
Checking for Semantic Errors II-36
Syntactic and Semantic Error Reporting coe ... HI-37
Selecting Ada Constructs III-39

Kinds of Selection Operations I-39

Selecting Larger or Smaller Ada Constructs S IlII-40

Selecting the Next or Previous Ada Constructs I-42
Creating Private Parts 143
Creating Bodies Il-45
Entering Comments C e coe ... 1147

Operations for Entering Comments §) £ ¥4
Inserting Page Breaks II-48
Chapter 12. Executing and Testing Ada Programs [III-49
Promoting Units to the Coded State III-49

Coding Individval Units HI-49

Coding Units with Dependencies WO-50
Executing Programs H-51

Using a Command Windowo o ... HI-51

Using Selection . . . T | § £Y4

Operations for Job Control T | | £4Y)/

Common Errors e e . o I-52
Testing Units and Systems HI-53

Saving Interactive Test Programs II-55
Chapter 13. Debugging Ada Programs II-57
Starting the Debugger I-58

The Debugger Window II-59
Controlling Program Execution e e e HO-eo0

Automatic Source Display Il-60

Stepping Through a Program o HI-61

Following the Program’s Flow of Control III-63

Stepping Over Subprogram Calls IlI-e6
Setting Breakpoints T | § S Y4

I uzer RATIONAL

Breakpoint Characteristics
Executing to a Breakpoint

Displaying Variable Values

Modifying Variable Values :
Redisplaying the Current Location
Reexecuting a Program
Catching Exceptions
Examining the Stack of Subprogram Calls
Displaying the Call Stack
Displaying Qualified Names in the Stack
Traversing from the Call Stack
Displaying Parameter Values for a Frame
When You Have Finished Debugging

Chapter 14. Browsing Ada Programs
Where Is This Defined?
If Definition Fails . .
Example 1: Viewing the Deﬁnmon of a Subprogram
Selection versus Cursor Position
Some Browsing Options
Example 2: Viewing the Deﬁmtlon of a Varlable
Where Is This Used? S
Example 1: Showing Variable References
Example 2: Showing Usages in Multiple Units

Chapter 15. Modifying Installed or Coded Programs

Elements That Can Be Changed Incrementally

If Dependencies Exist C e e
Units and States
Using Incremental Operations
Incrementally Modifying an Element
Selecting One or More Elements .
Using the Window Provided by an Incremental Operatxon

Incrementally Deleting an Element

Incrementally Adding an Element

Adding a New Declaration .

Adding the Corresponding Body

Determining the Kind of Element That Is Added
Some Common Problems

RATIONAL /e

I11-68
I11-69
I1-70
I-71
a1-71
11-71
II1-73
HI-74
I11-74
I11-76
11-76
HI-77
11-77

111-79
I11-80
ITI-80
H1-81
IT1-83
I11-83
I11-83
I11-86
111-87
II1-88

1-91
I11-92
I11-92
I11-93
I11-93
I11-94
I11-96
I11-97
11-97
I11-99
I11-99

. [11-100
. III-103
. [II-105

OI-iii

Removing an Unwanted Prompt II-105

Forgetting to Demotea Body HI-105
Selecting a Construct That Cannot Be Edited III-106
Attempting to Change a Declaration That Has Dependents II1-106
Making Changes That Require Demotion I-107

III-iv 11/2/87 EA\TIONAL

Chapter 9. Overview of Ada Unit Development

This and the following chapters in Part III cover the fundamental Environment
facilities for developing Ada programs within a single library. This chapter describes
many of the basic concepts that pertain to developing Ada compilation units in the
Environment, including:

e The distinction between Ada units and text files in the Environment

o The unst states through which you can promote or demote Ada units as you de-
velop them, establish dependencies among them, and prepare them for executing

¢ How Ada programs appear in Environment libraries

These concepts are then tied together in a short example showing the development
process of a simple Ada procedure, from unit creation through execution.

“Creating, Saving, and Promoting Ada Units,” Chapter 10, provides more detailed
information about creating new Ada units, opening existing units for editing, saving
changes to units, and then promoting Ada units to the next state to facilitate parallel
program development.

“Using Ada-Specific Editing Operations,” Chapter 11, describes how to take advan-
tage of the Environment’s facilities for entering and modifying Ada code, including
operations for providing syntactic completion and for checking syntactic and se-
mantic consistency.

“Executing and Testing Ada Programs,” Chapter 12, describes how to prepare a
program for execution and then execute it. In addition, suggestions are given for
testing programs through Command windows.

“Debugging Ada Programs,” Chapter 13, describes how to use the Environment’s
source-level Debugger to analyze and, if desired, modify the behavior of your pro-
gram as it executes.

“Browsing Ada Programs,” Chapter 14, describes how to use the Environment’s
interactive cross-referencing facilities.

“Modifying Installed or Coded Programs,” Chapter 15, describes Environment facil-
ities for making incrementally compiled changes to installed or coded Ada programs.

QATIONAL 11/2/87 II1-1

Part III. Developing Simple Ada Programs

Ada Compilation Units

Ada programs are built from Ada compilation units. According to the Reference
Manual for the Ada Programming Language, Ada compilation units are:

e Procedure specifications and bodies

¢ Function specifications and bodies

¢ Package specifications and bodies

¢ Generic specifications and bodies

¢ Generic instantiations

e Subunits

Recall from Chapter 3, “Traversing the Rational Environment,” that Ada compi-
lation units (Ada units) constitute a distinct class of Environment objects. That
is, unlike other computer systems you may have used, the Environment does not
store Ada units in files. Instead, the Environment stores Ada units in a structured
representation to which information is added as units pass through various unit

states (see below). This rich underlying representation (called DIANA) enables the
Environment to provide:

o Editing operations that act on the specific structure of the Ada programs you
write—for example, syntactic formatting and completion

¢ A compilation management system that automatically determines which units
need to be compiled in a given Ada system and determines the correct compilation

order
* A source-level debugger

* Facilities for browsing Ada programs—namely, finding where Ada identifiers are
defined and where they are used

III-2 11/2/87 IQATIONAI_

Chapter 9. Overview of Ada Unit Development

Ada Unit States

At any given time, an Ada unit is in one of four unit states:

o Source
o Installed
¢ Coded
o Archived

The first three states (source, installed, and coded) represent distinct phases in
the development of Ada units. Much of Part I is devoted to describing when to
change a unit from one state to the next during development and the consequences
of putting units into each state.

The fourth state (archived) is available for the compact storage of units that are
not of current interest. For example, deleted units are automatically placed in the
archived state until they are expunged; see the Library Management (LM) book of
the Rational Environment Reference Manual.

Source State

When created, Ada units begin in the source state. You will typically enter the bulk
of a program’s source code into units that are in the source state. You can also
make arbitrary editing changes in a source unit using basic text editing operations
see Chapter 8, “Modifying Text”) as well as more powerful Ada editing operations
see Chapter 11, “Using Ada-Specific Editing Operations”).

An important feature of the source state is that you can use Ada editing operations
to interactively detect and correct syntactic and semantic errors such as missing
punctuation, misspelled keywords, and unresolved Ada identifiers. In fact, although
you can save a syntactically incorrect or semantically inconsistent unit, you cannot
advance (promote) such a unit to the next state (installed).

Installed State

When a unit is syntactically correct and semantically consistent, you can promote
it to the installed state. At this point, the unit can be referenced from other units
(for example, named in with clauses).

Installing a unit registers it in the library in which it was created. Once registered

in a library, the unit’s name can be resolved. Consequently, any units that with an
installed unit can then be made semantically consistent and installed, if desired.

IQAT'ONAL 11/2/87 I11-3

Part IIl. Developing Simple Ada Programs

When dependencies exist among Ada units, the units must be installed in the order
specified by Ada compilation rules. For example, a unit specification must be
installed before its corresponding body.

Because the process of installing Ada units allows you to build systems of depen-
dencies among these units, the following restrictions guarantee and preserve the
integrity of Ada systems:

e Units can be put in the installed state only if they are syntactically and seman-
tically correct.

o Units in the installed state cannot be modified arbitrarily using basic text editing
operations (compare to the source state). Instead, installed units can be modified
only by using sncremental operations, which check for dependencies to prevent
the invalidation of the Ada system.

o Units in the installed state can be demoted back to the source state if arbitrary
changes must be made. However, to demote an installed unit that has dependents,
you must demote its dependents as well.

Coded State

When you are ready to execute an Ada program or to unit-test some part of it, you
can promote the relevant units to the coded state. Promoting units to the coded
state causes object code to be associated with those units.

Like installed units, coded units are guaranteed to be syntactically correct and
semantically consistent. Furthermore, coded units cannot be modified arbitrarily,
although incremental operations can be used to make changes in certain coded units,
provided that the changes do not invalidate any dependencies. Coded units can be
demoted to either the source or the installed state, depending on the nature of the
changes that need to be made.

Note that units can remain in the installed state until you are ready to execute your
program. Keeping Ada units in the installed state allows you to build and verify a
system of Ada dependencies without actually incurring the overhead of generating
object code.

Alternatively, units can be promoted directly from the source to the coded state if
no further development is needed before execution.

IT1-4 11/2/87 RAT'ONAL

NARRELVVS WE WM FYWEIYEETS TR TTTTTT T OEET EEwAwETDTTT T

The Environment’s Compilation System

In contrast to other computer systems you may have used, the basic way of compil-
ing a program in the Environment is not done by invoking a batch-type compiler.
Instead, as the previous sections suggest, compiling a program consists of promot-
ing all of the program’s units from the source state to the coded state, at which
point the program can be executed. Thus, the logical phases of compilation are
distributed across the various unit states. For example:

¢ Syntactic error checking (parsing) is done while units are in the source state.
¢ Semantic rules are verified and dependencies are set up in the installed state.
¢ Object code is generated only when a unit is promoted to the coded state.

By breaking up the compilation process across unit states, you do not incur the
overhead for complete compilation until you are ready to execute a program. More
specifically, you don’t need to wait for object code to be generated to check for
compiler-detected errors. The Environment also provides batch compilation facili-
ties; see the Library Management (LM) book of the Rational Environment Reference
Manual.

The Environment’s compilation system thus is organized around a very different
model than you may be used to. For example:

¢ On other computer systems you may have used, Ada units are represented as
text files; batch tools (such as a compilers and linkers) transform these files into
other files (such as object files, executable images). Thus a single executable Ada
unit is represented as a series of files.

* In contrast, the Environment represents each Ada unit as a single object that
passes through the phases of the compilation process as you change the unit’s
state. Multiple states replace the notion of multiple files.

Because each Ada unit is a single object in the Environment, you are ensured that
the program you are executing matches the source code. That is, changing the
program source code in a unit automatically destroys the object code as the unit
changes state. On more conventional computer systems, changes made to source files
may invalidate but do not destroy any corresponding object files. These remaining
files can be mistaken for current files and executed.

RATIONAL 11/2/87 III-5

Part III. Developing Simple Ada Programs

A Sample Library

Figure 9-1 shows a sample library containing the units for a program that con-
structs and operates on complex numbers. In this program, the main proce-
dure, Display_Complex-Sums, uses resources from packages Complex and Com-
plex_Utilities.

Ada (Pack_Spec);
Ada (Pack.Body);
Ada (Peck_Spec);

Complex g
Ada (Pack_Body;;
)
)
)

Complex
Complex.Utilities
Complex_Utilities
. Image :
Display_Complex_Sums :
Display.Complex_Sums :
List_Generic :
List_Generic

Ada (Func.Body);
(Proc.Spec) ;
Ada (Proc.Body);
(Gen_Pack} ;
Ada (Pack.Body);

OO0O0OL—000
>
a
(7]

Sample.Input E File;

Figure 9-1. A Sample Library

The library entry for each unit shows, from left to right:

e The unit’s name.

e The unit’s state: S for source, | for installed, or C for coded. The library display
is automatically updated whenever the unit state is changed.

o The unit’s class (Ada) and subclass (for example, Proc_Spec and Proc_Body for
procedure specification and body).

In this example, the function body Image is a subunit of the package body Com-
plex_Utilities. Image is listed under Complex_Utilities and the name Image is pre-
ceded by a period to indicate that Complex_Utilities.Image is the qualified name
of the subunit.

This example also shows that a library can contain other objects besides compiled
units—for example, files such as Sample_Input.

I1I-6 11/2/87 RATIONAL

Lhnapier 3. Uverview ol Ada Vit evelopment

Example: Creating and Executing an Ada Procedure

The following example shows how user Anderson creates and executes a short pro-
cedure, called Display_Factorial, in his home library. The specific operations pre-
sented in this example are discussed in detail in subsequent chapters.

1. Anderson first displays the library in which he wants to create the procedure.
With the cursor in the library display, Anderson creates an empty Ada unit by

pressing [Groae Ass.

Anonymous is created

Calculation . | Ada (Pack.Spec);
Calculation . | Ada (Pack_Body);
Complex_Numbers : Library (Vorldj},
Documentation : Library (Directory);
Factorial . 8§ Ada (Func_Spec);
Factorial . § Ada (Func.Body);
Login . C Ada (Proc_Spec);
Login : C Ada (Proc_Body);
Memo_12_08_86 : File (Text);
My_Test_Data : File (Binary);
S.1 : Session;
S.1_Switches : File (Switch),

Tools »lerary (Vorld)

Figure 9-2. An Empty Ada Unit

As Figure 9-2 shows, a window is opened containing a prompt for a compila-
tion unit, [comp_unit]. Note that the banner of this window also contains the
compilation unit indication.

RAT'ONAI_ 11/2/87 -7

Part TIi. Developing Simple Ada Programs

2. Starting with the cursor on the [comp_unit] prompt, Anderson enters some text
and then requests syntactic assistance by pressing [Format]. (Note that the prompt
disappears when typed on.)

procedure display_factorial(n: natural)is

Figure 9-8. Before Pressing

3. The text he gives indicates that the unit will be a procedure body. This is
enough information for the format operation to supply other necessary keywords
(such asbegin and end Display_Factorial;) and to display a prompt for further
information. Specifically, a [statement] prompt is displayed to indicate that one
or more statements are required for minimal syntactic completeness. Note that
the image is pretty-printed as well.

procedure Display_Factorial (N : Natural) is
begin

SLBLORNR
end Displey.Factorial;

Figure 9-4. After Pressing

I11-8 11/2/87 E)ATIONAL

Chapter 9. Overview of Ada Unit Development

4. Putting the cursor on the [statement] prompt, Anderson enters part of the first
statement and presses again. (Once again, the prompt disappears.)

procedure Display_Factorial (N : Natural) is
begin

for 1 in 1. .n
end Display_Factorial;

Figure 9-5. Building the First Statement, Before Pressing Format;

5. The format operation once again provides minimal syntactic completion and
pretty-prints the results. Another [statement] prompt indicates the need for
one or more statements to complete the for statement.

procedure Display._Factorial (N : Natural) is
begin

for 1 iIn1 . N loop

end loop,;
end Display_Factorial;

Figure 9-6. Building the First Statement, After Pressing [Format

R)ATIONAL 11/2/87 II1-9

Part III. Develeping Simpie Ada Programs

6. Anderson continues to add text, using basic text editing operations and period-
ically pressing [Formad), until the procedure seems reasonably complete. He then
checks for semantic errors by pressing [semanticise].

Semantic erro

S rs found

£81 ANDERSON S_1 - - -

- . ORA

(Users . .
Calculation . | Ada (Pack_Spec);
Calculation .} Ada (Pack.Body);
Complex_Numbers Library (Vorld),
Documentation : Library (Directory};
Factorial . S Ada (Func.Spec});
Factorial : § Ada (Func_Body);
Login - C Ada (Proc.Spec);
Login . C Ada (Proc_Body);
Memo_12_08_86 : File (Text);
My_.Test_Data : File (Binary):

S_1 : Session;
S_1_Switches File (Switch);
Tools : Library (World);
_Ada_8. - S Ada (Proc.Body);

with Text.lo;
procedure Display_Factorial (N : Natural) is
begin

for I in 1 .. N loop

Ihe.Result := JThe_Result * I;

end loop,

Text_lo Put_Line (Natural'image (N} & " ! " & Natural'Image (The_Result));
end Display_Factorial;

Figure 9-7. Checking for Semantic Errors

As Figure 9-7 shows, the semanticize operation:

e Finds and underlines several errors
¢ Displays a message in the Message window

o Displays the Environment’s temporary name for the unit (_ADA_8_) in the
window banner and in the library containing the unit

7. Anderson presses (Exeain) to display further information about the errors in the
Message window:

THE_RESULT denotes no defined object or value

I1I-10 11/2/87 BATIONAL

Chapter 9. Overview of Ada Unit Development

8. To correct the errors, Anderson moves the cursor to the declarative portion of
the procedure and enters the text of the required variable declaration:
the_result:natural ;=1

He formats and semanticizes the unit again to pretty-print it and verify that
there are no other errors.

9. Now that Display_Factorial is syntactically and semantically consistent, Ander-
son presses [Promoted to promote the unit to the installed state.

DISPLAY FACTORIAL Body changed to INSTALLED
ciDeltar ANDERSON.S_1 R

Calculation
Calculation
Complex_Numbers
Display_Factorial
Display._.Factoriei

Ada (Pack._Spec),
Ada (Pack-Body) .
Library (World):
Ada (Proc_.Spec),
Ada (Proc_Body);

Documentation Library (Directory),
Factorial S Ada (Func.Spec);
Factorial © 8§ Ada (Func_Body):
Login . C Ada (Proc_Spec),
Login : C Ada (Proc_Body)
Memo.12_08.86 File (Text);
My_Test_Data File (Binary};

S-1 Session;
S_1_Switches File {Switch);

Tools

h1brary tVorld]

with Text_

procedure Display_Factorial (N : Natural) is

The_Result : Natural := 1;
begin
for | 1n1 . N loop
The_Result := The_Result * | ;
end loop;
Jext_lo Put_Line {Natural'Image (N) & " ! " & Natural'lImage (The_Result));

end Display _Factorial,

Y_FACTORIAL 'BODY "Vil: i8dai

- ¢nstalied - --

Figure 9-8. After Installing the Unit

As Figure 9-8 shows, the word Installed appears in the unit’s window ban-
ner and the procedure’s actual name, Display_Factorial, replaces its temporary
name in the library. For convenience, the specification for the procedure has
been created and installed automatically.

RATIONAL 1126

II-11

Part III. Developing Simple Ada Programs

10. To test Display_Factorial, Anderson presses [Fremoic; again to promote the unit
to the coded state (for convenience, the procedure specification is coded au-
tomatically, too.) He then opens a Command window, enters the procedure
name and an argument at the [statement] prompt, and presses TPromotel one
more time to execute the procedure. The procedure’s output is displayed in the
Environment’s standard output window.

with Text_lo;
procedure Display_Factorial (N : Natural) is

The.Result : Natural .= 1;
begin

for t in 1 .. N loop

The_Result = The_Result * 1;

end loop,

Text_lo.Put_Line (Natural image (N) & " ! " & Natural’image {The_Result));
end Display_Factorial:

STASTET TS
end;

51 120

Figure 9-9. Testing the Display-Factorial Procedure

I11-12 11/2/87 FQATIONAL

Chapter 10. Creating, Saving, and Promoting Ada Units

This chapter describes how to:

¢ Create Ada units
¢ Save changes in Ada units
¢ Open existing units for editing

¢ Promote Ada units to the installed state so that other units caa name them in
with clauses

Operations for entering and modifying Ada code are described in Chapter 11, “Using
Ada-Specific Editing Operations.”

Creating Ada Units

“Example: Creating and Executing an Ada Procedure,” in Chapter 9, illustrated
the basic steps for creating an Ada unit. (These steps are summarized in this
section.) You can use these steps to create an Ada unit of any kind. Further details
about creating specific subclasses of units are described in “Creating Subprograms”
and “Creating Package Specifications and Bodies,” below.

Note that each Ada compilation unit in your program must be created individ-
ually. This is necessary because each Ada unit in the Environment is a distinct
object, whereas file-based development systems allow multiple units (for example,
a specification and a body) to be put into a single file.

To create an Ada unit:

1. Display the library in which you want to create the new Ada unit. If you need
to create a new library, see the Rational Environment Basic Operations.

RATIONAL 11/2/87 I11-13

Part III. Developing Simple Ada Programs

2. With the cursor anywhere in the library, press [creaic 2a2l. As a result:
o The following message appears in the Message window:

Anonymous 1s created

¢ A window is created for the empty Ada unit. This window contains a
[comp_unit] prompt indicating that a compilation unit is required. The in-
dication [COMP_UNIT] appears in the window banner, as well.

¢ The empty Ada unit is in the source state (indicated in the window banner)
and is open for editing (the leftmost field of the window banner contains a
blank).

3. Put the cursor on the [comp_un1t] prompt and begin entering the desired Ada
code. As you enter your program, bear in mind the following:

¢ You can type indefinitely to the right or down, and you can use the basic
text editing operations described in Chapters 7 and 8 to insert, delete, move,
copy, search for, and replace text.

¢ You do not normally need to capitalize characters, start new lines, indent
lines, or enter cosmetic blank spaces, because pretty-printing is available using
the Ada-specific format operation (see Chapter 11). The format operation
also provides minimal syntactic completion and error checking.

¢ Semantic error checking is available using the semanticize operation, and
there are other Ada-specific operations for selecting Ada structures, entering
comments, and so on (see Chapter 11).

Determining Ada Unit Names and Subclasses

The Ada code you enter determines an Ada unit’s name and subclass (its identifi-
cation as the specification or body of a subprogram, package, and the like). Each
Ada unit starts out empty, or “anonymous.” Then, when you enter a line such as
the following, the unit’s subclass is determined and can be listed in the library:

function Factorial (X : Natural) return Natural 1is

In this example, the unit is listed as a function body (Func_Body); note that with-
out the reserved word is, the unit would be listed as a function specification
(Func_Spec). You can change a unit’s subclass at any time by changing the ap-
propriate reserved words; the library listing is updated automatically.

I11-14 11/2/87 QAT'ONAL

Chapter 10. Creating, Saving, and Promoting Ada Units

A unit’s name is also determined by its contents, although, unlike the subclass,
the name does not appear in the library until you install the unit. Until then, the
library lists the unit using a temporary name assigned by the Environment. For
example, the library entry for the uninstalled unit mentioned above looks something
like this:

_Ada_8_ : S Ada (Func_Body);

Once the unit is installed, its library entry contains the name Factorial:

Factorial : | Ada (Func_Body);

Naming Ada units is thus very different from naming files. An Ada unit name is
intrinsic to the unit itself and reflects its contents. In contrast, files are named as
you create them and before you enter any text; the name is specified as part of the
Text.Create command. A filename is thus a mnemonic tag that may but need not
reflect the contents of the file.

Creating Subprograms

You can use the basic steps given above for creating both the specification and
the body for library-level subprograms. However, because the specification for a
subprogram repeats a portion of the subprogram body, the Environment can create
the subprogram specification automatically. Accordingly, to create a function or
procedure in a library:

Create the subprogram body, following the basic steps for creating an Ada unit
and entering the appropriate reserved words.

When you install the subprogram body (see “Promoting Units to the Installed
State,” below), a unit for the subprogram specification is created automatically.

Creating Package Specifications and Bodies

You can use the basic steps given above for creating both the specification and the
body for packages. However, a more convenient alternative to creating a package
body “by hand” is to use the Environment’s automated facility for generating a
package body from its specification.

To create a package in a library:

1. Create the package specification first, following the basic steps for creating an
Ada unit and entering the appropriate reserved words. (Note that you can use
[Create Private] to generate templates for private types in package specifications; see
“Creating Private Parts,” in Chapter 11.)

You can leave the package specification in the source state or promote it to
installed.

RATIONAL 11/2/s7 1I-15

Part III. Developing Simple Ada Programs

2. With the cursor anywhere in the window containing the package specification,
press Create Body'. As a result:

¢ The Environment uses the declarations in the package specification to gener-
ate a skeletal package body containing a template for each visible subprogram.
The [statement] prompts indicate where statements need to be filled in.

¢ The package body is displayed in its own window. The body is in the source
state and is open for editing.

Figure 10-1 shows the skeletal package body that was generated from the spec-
ification for package Complex, which is displayed in the upper window.

package Complex 1s
type Number 1s private;
function Make (X, Y : Float) return Number
function Real_Part (X : Number) return Float;
function Imaginary_Part (X Number) return Float;
function Plus (X, Y Number) return Number
private
type Number 1s
record
Real, Imag @ Float:
end record,
end Complex

- ZADA_1_'¥i124 iada: - -~ Source

e OME) A ME3
EAR—— WA E e

package body Complex 1s
function Make (X, Y Float] return Number 1is
begin
Lelatansnly
end Make
function Real_Part (X : Number) return Float 1is
begin
I toment
end Real_Part,
function imaginary_Part (X : Number) return Float is
begin
end imaginary_.Part;
function Plus (X, Y : Number) return Number is
begin
e

Pk 12

end Plus;
end Complex,

Figure 10-1. After Using ' Creste Bodyi from the Package Specification for Complex

3. Complete the package body using basic text editing operations and the Ada-
specific operations described in Chapter 11:

¢ Enter one or more statements at each [statement] prompt. The prompts
disappear as you type on them.

e Add any desired nonvisible elements (that is, context clauses, subprograms,
and the like, which are in the body but not in the specification).

1I-16 nzer RATIONAL

Chapter 10. Creating, Saving, and rromoting Ada Units

Saving Work in Progress

As you develop Ada units in the source state, you can periodically save your editing
changes by pressing [Enier]. You can use to save units that contain errors or are
incomplete.

To save changes in an Ada unit:

1. Put the cursor anywhere in the image of the Ada unit.

2. Press [Enter].

The modification symbol in the banner changes from * or # to a blank, indicating
that the changes have been saved and that the unit is still open for editing. You
can continue entering or modifying Ada code. At this point, it is also safe for
you to log out.

Use 'Ener to preserve work in progress while units are in the source state. (In fact,
since you cannot open installed or coded units for editing, saving with applies
only to editing source state units.) Note that you can save units that contain
prompts and error indications.

Promoting a unit to the installed or coded state implicitly saves changes, too (see
“Promoting Units to the Installed State,” below?. However, a source unit can be
promoted only if it is semantically or syntactically consistent, so using [Eme] is the
only way to save unfinished units that contain errors.

Pressing Tori~w - X also saves changes, in addition to removing the window and
closing the unit for editing.
Discarding Changes Since the Last Save

If you decide you do not want to save the most recent changes that you have made
to a source unit, you can discard all unsaved changes by reverting the unit to the
way it was the last time you saved it.

To discard unsaved changes and leave the unit open for further editing:

1. With the cursor anywhere in the unit, press - [1.
A Command window is created containing the Common.Revert command.
2. Press [Promoe] to execute the Common.Revert command.

Pressing [obict] - (6] also discards unsaved changes, in addition to removing the
window and closing the unit for editing.

RAT'ONAL 11/2/87 I1-17

Part III. Developing Simple Ada Programs

Opening Existing Units for Editing

When you create an Ada unit, it is automatically opened for editing, and you can
continue to edit it as long as it remains open. However, if you want to modify an
existing unit that is not already open, you must explicitly open it. (Of course, you
can open a unit only if you have been granted write access to it.) If you try to type
on z?in Ada unit that is not open, the following message is displayed in the Message
window:

This image is read-only

As with opening text files, there are two alternatives for opening an Ada unit,
depending on whether the unit is already displayed:

o If the desired Ada unit is already displayed, you can open it for editing as follows:

1. Put the cursor anywhere in the window containing the unit.
2. Press raic. Note that the banner symbol changes from an equals sign (=) to

a blank to indicate that the unit is now open for updating.

o If the desired Ada unit is not already displayed, you can both display the unit
and open it for editing as follows:

1. Start with the cursor in the library containing the desired unit.

2. Select the library entry for the unit by putting the cursor on it and then
pressing owet - -1 The entry is now highlighted.

3. Leave the cursor in the highlighted selection and press [e4ii. The selected unit
is displayed in a window with a blank banner symbol indicating that the unit
is open for updating.

You can open any unit that is in the source state. In addition, you can open an
installed or coded unit for editing, provided that no other units depend on it. Note
that opening an installed or coded unit automatically demotes that unit to the
source state. If you attempt to open a unit that has dependencies, an obsolescence
menu is displayed listing the dependent units that will have to be demoted to source
as well. Extra steps are required to demote the desired unit and its dependents
to source; alternatively, you may be able to modify the unit using incremental
operations (see Chapter 15, “Modifying Installed or Coded Programs”).

Write Locks

When you press to open an Ada unit for editing, you are given a wrste lock on
that unit. As long as you have a write lock on a unit, no other user can view or edit
that unit. Note that Ada units differ somewhat from text files in that a locked file
can be viewed by other users (for example, using [Deniticn)), whereas a locked Ada
unit cannot be viewed.

The write lock on a unit is retained until you explicitly release it. SSee “Closing

Source Units for Editing,” below.) If you do not release the write lock on a file
before logging out, the write lock is automatically released when you log out.

I11-18 11/2/87 BA\TIONAL

Chapter 10. Creating, Saving, and Promoting Ada Units

You will get a message if you attempt to view or edit a unit for which another user
has the write lock. For example, if user Anderscn is editing a unit called !Users-
.Anderson.Complex_Numbers.Display_Complex_Sums and you try to display that
unit using {peraivion], the following message appears in your Message window:

Operation failed - object is in use

If, alternatively, you use to try to open that unit for editing, the following
message appears in the Message window:

Object locked - DISPLAY_COMPLEX_SUMS currently in use

If you need to work on that unit, you can find out who is editing it:

1. Select the library entry for the unit by putting the cursor on it and then pressing
_ovject; - . The entry is now highlighted.

2. Leave the cursor in the highlighted selection and press [what Locki].

Information like the following is displayed in an output window. The display
lists entries for the selected unit and its image. Below each entry is the username
and session of the user who currently has the write lock:

TUSERS . ANDERSON . COMPLEX _NUMBERS .D ! SPLAY _COMPLEX_SUMS 'BODY’'V(2)
Updater: Anderson.S_1 Job 241

'USERS . ANDERSON . COMPLEX _NUMBERS .D [SPLAY_COMPLEX_SUMS’BODY’V(2)’ Image
Updater: Anderson.S_1 Job 241

Versions of Units

Each time you open an Ada unit for editing, a new version of the unit is created.
The unit’s version number is displayed as a version attribute %or example, 'V{2))
following the unit name in the window banner. By default, the Environment retains
one version in addition to the current version; previous versions are permanently
deleted. You can increase the number of versions that are retained; see the Library
Management (LM) book of the Rational Environment Reference Manual.

Ada units and text files differ with respect to when versions are created. Text file
versions are created when files are saved, not when they are opened for editing. Ada
unit versions are created when units are opened for editing, but not when they are
saved.

Therefore, you can use [enr] frequently to save changes in Ada units without creating
a new version each time. This means that you can return the unit to either of two
earlier stages in its development:

* You can revert the unit to the way it was the last time you saved it (see “Dis-
carding Changes Since the Last Save,” above).

¢ You can restore the previous version of the unit, effectively discarding all changes
(saved and unsaved) that were made since you opened the unit for editing (see
“Undeleting Objects or Previous Versions in a Library,” in the Rational Environ-
ment Basic Operations).

RAT'ONAL 11/2/87 II1-19

Part lll. Developing Simple Ada Programs

Note that you can view retained versions of Ada units, although you cannot execute
them unless they are restored. To view a previous version of an Ada unit, enter
the Definition command, supplying the unit name with the appropriate version
attribute. For example:

Definition ("Display_Complex_Sums’'Body’'V(1)}");

Closing Source Units for Editing

When you no longer want to edit an Ada source unit, you can use any of the
following operations to close the unit for editing. Closing a unit releases the write
lock on it so that it is available for other users to view or edit. Note, however, that
you do not need to close a unit in order to promote it or to log out.

With the cursor in the window containing the unit you want to close:

¢ Press or- - X', which additionally saves changes and removes the unit’s window.
Note that the unit can contain syntactic or semantic errors.

* Press ‘ovicr - [, which additionally discards changes and removes the unit’s
window.

e Promote the unit to the installed or coded state, which can be done only if the
unit is error-free.

If you want to edit a unit after it has been closed, you must use 'esi to reopen it
and regain the write lock. Note that opening the unit again creates a new version.

For installed or coded units, [otiect] - [x] and - [¢] have the same effect-—namely,
removing a unit’s window from the screen and from the Window Directory.

Promoting Units to the Installed State

When a unit is syntactically and semantically consistent and you are ready to
integrate it with other units, you can promote the unit to the installed state. When
a unit is installed, other units can name it in with clauses without incurring semantic
errors. Promoting to installed also allows you to integrate a system of units without
waiting for object code to be produced. When you are ready to actually test your
program, see Chapter 12, “Executing and Testing Ada Programs.”

To promote a single unit to the installed state:

1. Put the cursor in the window containing the unit you want to install. The unit
can, but need not, be open for editing.

2. PreSS either [PromoteJ or [lnnlll Unlt].

A message is displayed in the Message window indicating that the unit is
changed to installed and the word Installed appears in the window banner.

111-20 11/2/87 EATIONAL

wilapitl 1U. Vitatilly, Yvavillyy el 1 1VLVLMIE AUa VLIS

When you install a unit for the first time, its Ada name (for example, Factorial) is
listed in the enclosing library, replacing the temporary name that was assigned by
the Environment (for example, ~Ada_8_). The Ada name remains in the library
even if you demote the unit to source again. Note that until you install the unit
for the first time, you can change a unit’s name arbitrarily; however, once the unit
has been installed, you can change its name only by withdrawing the unit from the
library, regardless of the current unit state. (See “Changing the Name or Kind of
an Ada Unit,” in the Rational Environment Basic Operations.)

Installing a unit has several other effects, depending on the unit:

o If the unit was open for editing, installing it automatically saves changes, if any,
and releases the write lock. As a result, the image becomes read-only and the =
symbol appears in the window banner.

e If the unit is a subprogram body, installing it automatically creates a separate
specification. Note that this does not apply to packages.

¢ If the unit names other installed units in with clauses, those other units are locked
so that they cannot be demoted to source without taking extra steps to demote
the newly installed unit, too.

The install operation implicitly checks for syntactic and semantic errors. If errors
are found, the unit cannot be installed, and a message like the following is displayed
in the Message window:

Promote failed - Semantic errors found

If the install operation fails:

1. Press Exviain to display further information about the error(s).

2. Correct the error(s), using (Fermat; and [Semsnticize] t0 verify that all errors have been
corrected. Use [Ene] to save changes until the unit is ready to be installed.

3. Press [Fromote; to install the unit.

Although a unit must be free of errors before it can be installed, it need not be
complete. That is, a unit can contain [statement] prompts such as those inserted by
[Create Body] and [Formati operations. (A unit cannot be installed if it contains any other
kind of prompt, however). Promoting a unit that contains [statement] prompts
allows continued development against partially completed work. For example, if a
package contains two subprograms, one complete and one containing a prompt, you
can install and ultimately code the package to test the finished subprogram. (If
you try to execute the subprogram that contains the prompt, the Program_Error
exception is raised when the prompt is encountered.)

R)ATIONAL 11/2/87 II1-21

Part III. Developing Simple Ada Programs

Installing Units with Dependencies

When dependencies exist among Ada units, the units must be installed in the order
specified by Ada compilation rules. For example:

¢ A unit specification must be installed before its corresponding body.
¢ A unit specification must be installed before other units that refer to it.
¢ A subunit must be installed after its parent unit.

If you install units individually using [Promote] OF [tastan une], you must follow the spec-
ified order. For convenience, however, if you install a unit body first, the Environ-
ment will automatically install the unit’s specification. (In fact, for subprograms,
the Environment both creates and installs the specification.)

As an alternative to installing units individually, you can use [tastani (This Worla)] to
install a designated system of dependent units. This operation automatically detects
dependencies and uses them to determine which units to install and the order in
which to install them. Note that you can install a system of units even if some of
those units are already in the installed state.

Before pressing [instail (This Worid)]; you must designate the system of units you want to
install. There are several ways to do this:

o You can designate all the units in a library by putting the cursor anywhere in
the window containing that library.

* You can designate a specific unit and all the units on which it depends by selecting
the library entry for that unit. Alternatively, if that unit is already displayed,
you can put the cursor in its window.

For example, consider the units in the world !Users.Anderson.Complex_Numbers,
shown in Figure 10-2:

! r
Complex
Complex
Complex_Utilities
Complex_Utilities
. Image :
Display.Complex._Sums :
Display._Complex.Sums :
List_Generic : Ada (Gen_Peck) ;
List_Generic . : Ada (Pack.Body) .
Sample.input : File;

Ada (Pack_Spec);
Ada (Pack_Body);
Ada (Pack.Spec);
Ada (Pack_Body);
Ada (Func_Body);
Ada (Proc.Spec);
Ada (Proc_Body) ;

—_—numunununnw

S USERS ANDERSON . COMPLEX_NUMBERS 11Drarv wO LU

Figure 10-2. The World !Users.Anderson. Complex_Numbers

II1-22 11/2/87 RATIONAL

Chapter 10. Creating, Saving, and Promoting Ada Units

The units in Figure 10-2 constitute a single program with Display_Complex_Sums
as the main procedure. The dependencies among the units in this program are
represented by arrows in the diagram in Figure 10-3 (unit bodies are shaded):

Display_CompiexF
Sums 3

Complex_Utilities

Complex

List_Generic

SRR Py N PR32

Figure 10-3. Dependencies among Units in 'Users.Anderson. Complex_Numbers

To install all the units in the program represented in Figure 10-3:

1. Select the library entry for the the program’s main procedure (Display_Com-
plex_Sums) by putting the cursor on the entry and pressing -=1. You can
select either the specification or the body. (As a shortcut, you can simply put
the cursor in the library without selecting anything, since this library contains
only units for this program.)

2. Press [install (This Woria)],

A log of messages indicating the operation’s progress is displayed in an Envi-
ronment output window. (A sample log is shown in “Reading the Compilation
Log,” below). In the library display, the symbol indicating installed state (1)
replaces the symbol indicating source state (S).

Note that you can install a subset of a program by selecting a unit other than the
main procedure. In the above example, selecting Complex_Utilities instails all units
except Display_Complex_Sums.

[QATIONAL 11/2/87 I11-23

Part IIl. Developing Simple Ada Programs

Reading the Compilation Log

Figure 10-4 shows a sample compilation log for installing the units in world !Users-
.Anderson.Complex_Numbers.

'USERS . ANDERSON . COMPLEX..NUMBERS % COMPILATION. PROMOTE STARTED 1:29:28 PM

87/87/30 13:29:29 ::: [Compilation.Promote ("<Image>",6 ALL_PARTS, INSTALLED,
87/87/30 13:29.29 ... "<WORLDS>",6 FALSE, PERSEVERE).].

87/07/30 13.29.31 +++ 'USERS. ANDERSON.COMPLEX_NUMBERS .D!SPLAY_COMPLEX_SUMS
87/07/30 13:28:31 . has been INSTALLED

87/@7/30 13 29 .33 +++ 'USERS ANDERSON.COMPLEX_NUMBERS.COMPLEX has been
87/07/3@ 13:29°33 ... INSTALLED

87/087/38 13 29:33 ::. [USERS ANDERSON.COMPLEX_NUMBERS L{ST_GENERIC is already
87/07/30 13:29 33 ... INSTALLED

87/07/38 13 28 36 +++ 'USERS ANDERSON.COMPLEX_NUMBERS .COMPLEX_UTILITIES has
87/07/30 13.29.36 .. been INSTALLED

87/@7/30 13:29 46 --- Messages generated while promoting 'USERS. ANDERSON.
87/07/30 13.29 4€ COMPLEX_NUMBERS .DISPLAY_COMPLEX_SUMS 'BODY to INSTALLED

87/07/38 13.29.46 >>> Procedure call TEXT_10 PAT (" "),
87/07/30 13 2946 ***» Expanded name TEXT_I0 PAT is undefined.
87/@7/30 13:28.48 ++* SEMANTIC_ERROR returned while attempting to promote

87/97/3@ 13:29 48 - 'USERS . ANDERSON COMPLEX_NUMBERS

87/07/30 13 28:48 DISPLAY_COMPLEX_SUMS 'BODY to INSTALLED

87/07/30 13.28.49 ++x LOCK_ERROR returned while opening !'USERS . ANDERSON .
87/07/30 13 23 48 . COMPLEX_NUMBERS . COMPLEX 'BODY .

87/07/3% 13 29 52 ++* |LOTK_EPROR returned while attempting to promote 'USERS
87/07/3@ 13 29 50 ANDERSON COMPLEX_NUMBERS COMPLEX 'BODY to INSTALLED
87/87/30 13 .29 50 . TUSERS ANDERSON COMPLEX_NUMBERS LIST_GENERIC 'BODY 1s
87/07/30 13 29 50 . already INSTALLED

87/07/30 13 .29 53 +++ !USERS ANDERSON. COMPLEX_NUMBERS . COMPLEX_UT!LITIES 'BODY
87/07/3@ 13 29 89 has been INSTALLED

B7/87/30 13:30 @2 +++ !USERS ANDERSON COMPLEX_NUMBERS COMPLEX_UTILIT:ES.
B7/87/30 13 33 .02 .. . |IMAGE 'BODY has been INSTALLED

87/07/30 13.38 €3 . 2 umits were already INSTALLED

87/07/30 13:30 €3 +++ 5 units were INSTALLED.
87/07/30 13 30 @3 ++* 2 units could not be INSTALLED
;. [End of Compilation.Promote Command].

87/07/30 13.36 73

b e

Figure 10-4. Log Generated by Installing !Users.Anderson. Complex_Numbers

The log begins with a banner containing the world’s name and the name of the com-
mand that is bound to [Insesi (his Worta)], Each entry in the log shows a time stamp, a
three-character symbol, and a message; the three-character symbols indicate infor-
mation about the contents of the message (see below). The last four entries in this
example summarize the results of installing the world !Users.Anderson.Complex-
—Numbers. Note from the summary that two units could not be installed because
of errors reported earlier in the log.

I11-24 11/2/87 EAT'ONAL

Chapter 10. Creating, Saving, and Promoting Ada Units

The following three-character symbols characterize the messages in this log:

::: Indicates current status information

+++ Indicates forward progress

... Indicates message continuation

--- Indicates commentary

«»x Indicates an error occurred

>>> Indicates the line containing the error

++* Indicates a major step failed in the operation

In particular, note that the messages preceded by ++* report that units could not
be promoted for each of the following reasons:

¢ Display_Complex_Sums’Body contains a semantic error because a subprogram
name was misspelled (and therefore could not be resolved).

¢ Complex’Body causes a lock error because another user had it open for editing
when [install (This Worid)] was pressed.

Note that if you display Display-Complex_Sums’Body at this point, the error that
was reported is underlined. (See “Syntactic and Semantic Error Reporting,” in
Chapter 11.)

Overview of Operations for Changing Unit State

[Promote], [Install Ui, and [Tnseali (Tnis World)] are part of a set of operations for promoting
and demoting units and systems of units. Within this set are several groups:

¢ Operations that change a unit’s state relative to its current state.

» Operations that change a unit’s state to a specific state, regardless of its current
state.

o Operations that change the state of a unit and all the units on which it depends.
These operations invoke the Environment’s automated compilation facility to
determine and use the correct compilation order.

Changing to a Relative State

Two operations change a unit’s state relative to its current state:

® [Promote] advances a unit from one state to the next—for example, from source to
installed or from installed to coded.

® [Demore] changes a unit’s state in the reverse direction—namely, from coded to
installed or from installed to source.
Changing to a Specific State

Three operations move a unit from any state directly to a specific state. Designate
the unit by putting the cursor in the unit’s window or by selecting the unit’s entry
in the library that contains it.

EATIONAL 11/2/87 I11-25

Part III. Developing Simple Ada Programs

o [source Unit] changes a unit’s state from installed or coded directly to source (provided
that there are no dependencies).

) changes a unit’s state from either source or coded directly to installed
(provided that the unit contains no errors).

¢ [Code Uniyj changes a unit’s state from source or installed directly to coded (provided
that the unit contains no errors).

Changing the State of a System of Units

A number of operations exist for changing the state of systems of units with depen-
dencies. These operations differ with respect to:

o The direction of the change (whether units are promoted or demoted)
¢ The goal state (source, installed, or coded)

o The limit imposed on the change (whether units outside the current world can
be affected)

These operations are summarized in Table 10-1:

Table 10-1. Changing the State of a System of Units

[Souree Installed Coded].
Promote | [Gode (Thin Warid)]
Install (All Worlds)
Demote | [Source (This World)} [Uncade (This World)]
[Source (A1l Worlds)] [Uncode (Al Worlds)]

In the key names, the limit of the change is indicated as follows:

¢ “This World” means that only units within the current world are changed, even
if the system contains dependencies on units in other worlds.

¢ “All Worlds” means that units in any world can be changed, if required.

Thus, [Imtail (This worid)] promotes units to the installed state, whereas [Uncode (This Worid))
demotes units to the installed state. Furthermore, [ineai (Thie Worid)] looks only in the
current world for units to install. If your program contains dependencies on units
outside the current world, these units must already be installed or else you must

use [Install (All Worlds)|,

II1-26 11/2/87 RATIONAL

Chapter 11. Using Ada-Specific Editing Operations

After you have created a new unit or opened an existing unit for editing, you can

enter and modify Ada code. You can use any of the basic text editing operations

(see Chapter 8, “Modifying Text”). In addition, you can use Ada-specific editing

operations, including:

 [Format), which provides syntactic completion, syntactic error checking, and pretty-
printing.

® [semantucize], which provides semantic error checking.

¢ Operations for selecting structural components of Ada code, such as statements,
parameter lists, expressions, identifiers, and the like. Once selected, these struc-
tures can be acted on by operations such as move, copy, and delete.

o Operations for entering comments and for commenting out portions of code.

® [Create Pivatg and [Create Body], which generate templates for private types and unit
bodies.

You are encouraged to make frequent use of Ada-specific editing operations. The
first two operations listed above—{Formatj and [Semanticize}—are particularly important
because they enable you to detect and correct all syntactic and semantic errors dur-
ing the process of entering code. This is essential in preparing a unit for promotion
to the installed or coded state.

Using the Format Key

As you enter Ada code, you can use to help you enter the code faster, with
less typing and fewer errors. does several important things in one step:

. provides minimal syntactic completion for incomplete Ada constructs, in-
serting:
— Prompts for missing statements, expressions, identifiers, and the like

— Ending punctuation such as right parentheses, closing quotation marks, and
semicolons

— Reserved words such as begin, return, end if;, and the like

R)ATIONAL 11/2/87 I-27

Part III. Developing Simple Ada Programs

¢ rormat underlines any remaining uncorrected syntactic errors, such as out-of-
context reserved words and punctuation. See “Syntactic and Semantic Error
Reporting,” later in this chapter.

¢ Formau pretty-prints the code to adjust the character case of identifiers, line breaks,
indentation level, and spacing around certain delimiters and operators.

Therefore, when entering Ada code, you can enter short program fragments instead
of complete Ada constructs, provided that you have given enough syntactic informa-
tion to allow [rormat! to fill in missing reserved words and punctuation. Furthermore,
you do not need to enter code exactly as it should appear; rather, you can enter
code in lowercase without line breaks or indentation.

Format i8 able to perform syntactic error checking, completion, and pretty-printing
because it constructs an internal structured representation from the code you enter.
Each time you press [Forma: |, the syntactic information in the underlying structure is
updated to reflect any changes you made to the Ada code. The Ada unit you see in
a window is actually the human-readable image of the underlying structure. Note
that the underlying structure is the basis for other Ada-specific editing operations
(such as selection), for browsing and cross-referencing facilities (see Chapter 15,

“Browsing Ada Programs”), and the like.

Example: Using Format to Enter a Function

Assume that you have created an empty Ada unit and you want to begin entering
a function. The following steps show how you might use Format. to do this:

1. In the empty Ada unit, enter the Ada code fragment shown in Figure 11-1.
This fragment contains enough information to be analyzed as a function named

Example.

function example

~{WEABY - = 2 -FOUREGE - e

Figure 11-1. Entering a Fragment for a Function

2. Press Format to format the fragment. As Figure 11-2 shows, [Formst! supplies the
reserved word return, a prompt for a required expression following the reserved
word, and a final semicolon. You can fill in the prompt now or later.

I11-28 11/2/87 RAT'ONAL

Chapter 11. Using Ada-Specific Editing Operations

Note that after you press Formst), the # symbol replaces the * symbol in the
window banner. (The * symbol indicates that the image has been changed; the
symbol indicates that the changed image has also been formatted.)

function Example return IS IETad.

Figure 11-2. After Pressing [Format|

3. Now you want function Example to have a parameter called X. You can enter
(X in the parameter list location, as shown in Figure 11-3:

function Example(X return [{ZIIEIIFCGN .

Figure 11-3. Adding a Parameter

4. Press [Format] to format the fragment. As Figure 11-4 shows, [Formay supplies the
punctuation for a single parameter specification and a prompt where you can
fill in the type mark and any initializing expression.

function Example (X & RISSAITAN) return [EITERIIFCRY .

Figure 11-4. After Pressing Format]

RATIONAL 11/2/87 I11-29

Part IIl. Developing Simple Ada Programs

5. So far, minimal completion has caused this unit to be a function specification,
since the previous fragments did not cue to complete the unit as a body.
You can leave the unit as a function specification or you can change it to a
function body by adding another syntactic cue, such as the reserved word is,
as shown in Figure 11-5:

function Example (X | EEEICW) return IBIIEEEGGY] is:

Figure 11-5. Adding Another Syntactic Cue

6. Press ‘rormat. The appropriate reserved words and a [statement] prompt are
added, as shown in Figure 11-6:

function Example (X . [CEien=LFCwdl) return STSR=CERLGH is
begin

=

b i ',-‘...
end Example,

Figure 11-6. After Pressing {Formst

This example illustrates several important points:
¢ [Fermad) can introduce one or more prompts into the code. Bear in mind that:

— These prompts behave just like prompts in Command windows. Prompts dis-
appear when you type on them, and you can move between multiple prompts
USing (Next Item,, Previous Item}’ {Nex& Promp?i’ or rPrevioul Prompt|,

— Each prompt must be filled in to produce syntactically correct code. Depend-
ing on the requested item, a given prompt can be filled in with one or more
items. For example, you can add one or more statements at the [statement]
prompt.

— You are not restricted to entering code only at prompts; you can enter code
anywhere it makes sense. For example, you can add declarations before begin,
although no prompts are supplied there (declarations are not required to make
a syntactically valid function).

111-30 user RATIONAL

Chapter 11. Using Ada-Specific Editing Operations

e [Format provides syntactic assistance dynamically, based on code you have entered
or modified, rather than by expanding text templates.

For example, to change the name of the function Example to Format_Example,
you need to edit only the first occurrence of the name before pressing [Format], as
shown in Figure 11-7:

.

function format_Example (X @' NESREEIEl) return IEEEICEERGAN 1S
begin
[statement

end Example,

Figure 11-7. Changing the Unit’s Name to Format_Example

Figure 11-8 shows that automatically changes the name in the function
terminator (end Format_Example;) to match the name you edited.

function Format_Example (X . [IEIS=XrErCayl) return is
begin

end Format_Example;

Figure 11-8. After Pressing [Format

o Finally, [Format allows you to include as much or as little information in an Ada
fragment as you want to. Figures 11-1 through 11-6 show that you can start
by formatting a small fragment, then add more syntactic cues and format again,
and so on. However, you can achieve the same results by starting with a more
complete fragment, such as function example(x is. In fact, if you enter a syn-
tactically complete Ada construct, just checks its syntax and pretty-prints
it.

EATIONAI_ 11/2/87 I11-31

Part III. Developing Simple Ada Programs

Hints for Using the Format Key

You are encouraged to experiment with to develop your own strategies for
using it. The following are hints for successful use of [Formas].

Use Format) frequently. Using [Fermat frequently, pressing it after entering short pro-
gram fragments or making small changes, yields better results than pressing it once
after accumulating changes. Frequent formatting is faster, provides immediate feed-
back regarding errors, and prevents errors by supplying required syntactic elements.

Take advantage of [rormai] for entersng compound statements. is especially
useful when entering tf, case, and loop statements. For example, to enter a case
statement, you can enter the reserved word case, as shown in Figure 11-9:

function Example (X : Natural) return Natursal is
begin
case

end Example,

Figure 11-9. Entering a Case Statement

After pressing [Formatj, you are prompted for an expression and at least one alterna-
tive, as shown in Figure 11-10:

function Example (X : Natural) return Natural is

begin
case BELRGS 8. 1.6 18
EETANT L]
end case,;

end Example;

Figure 11-10. After Pressing

I11-32 11/2/87 BAT'ONAL

Chapter 11. Using Ada-Specific Editing Operations

If you want several alternative clauses, you can enter several instances of the reserved
word when in the alternative prompt, as shown in Figure 11-11:

function Example (X : Natural) return Natural is
begin
[1T W expression | IS
when when when
end case;

end Example;

f-{COMP._UNIT] iada) Source

Figure 11-11. Providing Cues for Three Alternative Clauses

Pressing [rormat] provides syntax for alternative clauses that prompt for expressions
and statements, as shown in Figure 11-12:

function Example (X : Natural) return Natural is
begin
case 1s
when [V ST BYT =>
{sTaltchent |
uhen [E77-SYTE =>
uhen [ELEZIFCaN =>
[sTatement

end case;

end Example;

Figure 11-12. After Pressing

RATIONAI_ 11/2/87 IT1-33

Part III. Developing Simple Ada Programs

Use a semicolon to terminate syntactic constructs. When entering a fragment
among other Ada constructs, it is good practice to terminate the fragment you
enter with a semicolon. The semicolon tells to ignore the subsequent con-
structs so that the new fragment can be completed as an independent statement or

declaration.

Including a semicolon is especially important when entering:

e A compound statement among other existing statements
¢ A new subprogram among existing subprograms in a package

If you omit the semicolon, the newly completed fragment may incorporate subse-
quent constructs in an undesired way—for example, causing unwanted nesting of
statements.

For example, assume that function Example contains the statement ¥ := x + 1;
and you want to insert an tf statement before it. To do this, enter the reserved
words if then followed by a semicolon, as shown in Figure 11-13:

function Example (X : Natural) return Natural is
begin if then;
Y =X +1;

end Example,

Figure 11-13. Entering an If Statement

Pressing [rormaj results in two separate statements as, shown in Figure 11-14 (note
that the terminator end if; has been put before the assignment statement):

function Example (X : Natural) return Natural is

begin
1f [ETIIIEVEN then
end if;
Y =X+ 1;

end Example;

Figure 11-14. After Pressing [Format

1I1-34 11/2/87 QATIONAL

Chapter 11. Using Ada-Specific Editing Operations

If you had omitted the semicolon in Figure 11-13, pressing (Forma:] would have the
effect shown in Figure 11-15:

function Example (X : Natural) return Natural is

begin
8l expression Ry
Y =X + 1;
end 1if;

end Example,

Figure 11-15. After Pressing {Format

Some common problems. [Format) completes fragments by interpreting the syntactic
cues you give it. Sometimes this produces unintended results.

For example:

¢ As shown above, if you omit a semicolon after a fragment, [Formsy may result in
unwanted nesting of statements or subprogram declarations.

» If you enter a statement in the declarative portion of a block (before the begin),
Format; formats the statement as a declaration.

o If you misspell a reserved word, {Fermat! may interpret it as an identifier and format
it as a procedure call or variable declaration, depending on its context.

To correct unintended formatting, delete the unwanted lines and enter a more com-
plete fragment in the correct location.

R)ATlONAL 11/2/87 I11-35

Part III. Developing Simple Ada Programs

Checking for Semantic Errors

You can use to find semantic errors. should be used periodically,
although typically not as often as [Format]. You need not wait until a unit is complete
before semanticizing it.

To check a unit for semantic errors:

1.

Put the cursor anywhere in the window containing the unit. The unit must be
open for editing.
Press [semamicize].

semanticize] Updates the unit’s underlying structure with semantic information and
verifies that this structure conforms to the semantic rules of the Ada language.

For example, checks whether:
¢ Type compatibility is preserved among variables, expressions, and the like.
e Subprograms are used with the correct parameter profiles.

¢ Named objects have been declared. even checks the structures of
units referenced in with clauses to make sure all Ada names can be resolved.)

The Message window displays a message indicating whether errors were found.
(See “Syntactic and Semantic Error Reporting,® below.)

semamicize] has several other effects:
e [semanuicize] 8aves changes, so that a blank replaces # or * in the window banner.

When you press [semamicize] for the first time after creating a unit, the unit’s tem-

porary name appears in the window banner.

If you_semanticize an unforn?atted unit, Semanticiee performs an implic.it
operation and reports syntactic errors first, if there are any. No semantic errors

are reported until you correct existing syntactic errors.

‘semanucize] makes it possible to use to browse through a unit (see Chapter

14, “Browsing Ada Programs”).

Note that promoting a unit to installed implicitly semanticizes it, adding seman-
tic information to the unit’s underlying representation and reporting any errors.
Therefore, you can press before installing a unit, but it is not required.

I11-36 11/2/87 BA\TIONAL

Chapter 11. Using Ada-Specific Editing Operatious

Syntactic and Semantic Error Reporting

If one or more errors are found by [Format, [Semanticize], OF an operation that installs a
unit, then:

e A message is displayed in the Message window, indicating whether syntactic or
semantic errors have been found.

e The errors in the unit are underlined.

For example, pressing [semanucize] reports two semantic errors in the unit in Figure
11-16. These errors are underlined, and the cursor is positioned at the first error.

Semantic errors found

function Test (X : Integer) return Boolean is
Answer @ Boolean = False;
begin
ifgY > @ then
Answer = True;
end if,
return_X_

end Example,

Figure 11-16. After Pressing | Semanticize

You can get more information about an underlined error by putting (or leaving)
the cursor on the error and pressing [Exetsin]. As shown in Figure 11-17, the detailed
error message appears in the Message window:

Y denotes no defined object or value
.] ~of- RION . -

function Test (X : Integer) return Boolean is
Answer : Boolean := False;
begin
1fEY > @ then
Answer = True;
end if;
return_X_

end Example;

Figure 11-17. Explaining the First Error

RATIONAL 11277 11-37

Part III. Developing Simple Ada Programs

You can correct the error immediately or fix it later. In this example, you make
the correction by changing Y to X.

Now, you move the cursor to the next error. You can move the cursor directly from
one error to another by using the following keys:

® [NextItem! OF [Next Underiineg moves the cursor to the next error. Note that [Nextiem]
moves the cursor to prompts as well as errors, whereas skips prompts.

® [Trevious iem| OF [Previous Underting moves the cursor to the previous error. Note that
(Previows tem; mMoves the cursor to prompts as well as errors, whereas {Previous Undertine
skips prompts.

With the cursor on the second error, you can press again to obtain more
information, as shown in Figure 11-18:

INTEGER parameter X 1s not a value of type BOOLEAN
TYETYE - . ——

function Test (X Integer) return Boolean is
Answer : Boolean := False,
begin
1f_x_> 0 then
Answer = True;
end 1f;
returngX_

end Example;

Figure 11-18. Explaining the Second Error

Note that, depending on the nature of a correction, some or all of the underline
may remain until the next time you check for errors. You can remove all underlines

by pressing [Underiines o],

Errors need not be corrected immediately. However, units containing errors cannot
be installed. Until the errors in a unit are corrected, you can save the unit by

pressing Encerl,

I11-38 11/2/87 QATIONAL

Chapter 11. Using Ada-dSpecific Editing Operations

Selecting Ada Constructs

As with text files, you can select portions of Ada units and then operate on the
highlighted selections. For example, you can delete a selection with - [D], copy
it with [Resion] - [c], and so on. However, selection in Ada units is important for other
reasons besides editing in the source state:

¢ Selection can be used in units of any state for browsing (see Chapter 14, “Brows-
ing Ada Programs”).

o Selection is used in installed or coded units for performing incremental operations
(see Chapter 15, “Modifying Installed or Coded Systems™).

¢ Selection is necessary for effective use of the Rational Debugger (see Chapter 13,
“Debugging Ada Programs”).

Kinds of Selection Operations

You can select portions of Ada units using the selection operations that were intro-
duced for text files (see “Selecting Text Items,” in Chapter 8):

¢ You can use [Region] - [1] and - [1] at desired cursor positions to define the
beginning and endpoint of a selection.

e You can use object selection operations (such as - [=] and - [=) to

select structures without having to move the cursor to delimit them.

¢ You can use 1 or to turn off a selection (be sure the selection contains the
cursor).

Object selection operations are based on the structure of the object in which they
are used. Therefore, in Ada units, object selection operations do not select text
structures such as words, sentences, and paragraphs. Instead, these operations use
the underlying representation of Ada units to select Ada constructs at the desired
level of program structure. Such constructs include declarations, statements, pa-
rameters, expressions, identifiers, and the like. Note that Ada comments constitute
elements of program structure, so object selection operations do not treat them as
text, even though they may contain words, sentences, and paragraphs.

Because object selection operations use the underlying representation constructed
by the (rermar: operation, object selection will fail if you have made changes since the
last time you pressed {Formet] OT [Semanticize]. If @ message such as the following appears
in the Message window, simply press and try selecting again:

Selection failed - image 1is unformatted

RATIONAL 11280 111-39

Part III. Developing Simple Ada Programs

Seleciiig Larger or Smaller Ada Construets

Two of the object selection operations—namely, - [~} and - F]—allow
you to select constructs at different levels of program structure. Taken relative to
a given point in the program, this means selecting successively larger or smaller
constructs. For example, you can use these operations to select an entire block
statement, an expression or statement within it, expressions and identifiers within
any of the statements, and even identifiers or operators within the expressions.

To select an Ada construct:

1. Put the cursor in or near the construct you want to select.

2. Presseither [otiet) - (=] or [oiect] - [=] to select the smallest Ada construct enclosing
the cursor. Depending on the cursor’s exact location, the initial selection may
be larger or smaller than the construct you want to select.

3. If necessary, adjust the initial selection as follows:

o Press Tobject] - [=] repeatedly to select successively larger constructs enclosing
the current selection.

¢ Press ovieet} - (=] repeatedly to select successively smaller constructs within the
current selection. When no smaller construct exists, the selection is turned
off so that nothing is selected.

e You can use number keys on the numeric keypad as an alternative to repeat-
edly pressing Obiect’ - =7 Or [Otject} - T,

For example, Figure 11-19 shows a fragment of an Ada program with the cursor on
the line containing the reserved word begin:

loop
declare
Current_Player : Baseball Player_Statistics;

B begin
Data_inputter . Get_Record (Current_Player);

Baseball Percentage (Current_Player);

Baseball.Sum (Current_Player, Team_Sums);

Baseball . Add (Current_Player, Team_Statistics);

end;

end loop;

. Source

oS ¥ S TEM BASEBALL _STATIZTICSBODY Vil i33al -

Figure 11-19. A Program Fragment with Nested Statements

I11-40 11/2/87 QATIONAL

Chapter 11. Using Ada-Specific Editing Operations

Pressing - [=] selects the block statement within the loop statement, as shown
in Figure 11-20, because the block statement is the smallest complete construct
enclosing the cursor:

end loop;

. _SYSTEM BASEBALL_STATISTICS BOUY vil 803

Figure 11-20. After Making the Initial Selection

Pressing - [=] narrows down the selection to a smaller construct containing or
following the cursor. In this case, the statement list within the block is selected, as
shown in Figure 11-21 (note that the cursor has moved automatically):

loop
declare
Current_Player : Baseball.Player_Statistics;
begin

end; I
end loop;

- _SYSTEM BASEBALL_STATISTICS 'BODY Vil 1803, Source

Figure 11-21. Selecting the Statement List

BATIONAL 11/2/87 II1-41

Part III. Developing Simple Ada Programs

Pressing [oviect] - [=] again selects the first statement within the statement list, as
shown in Figure 11-22:

loop

declare

Baseball .Sum (Current_Player, Team_Sums),
Baseball Add (Current_Player, Tesm_Statistics).

Source

Figure 11-22. Selecting the First Statement in the List

You can continue pressing [obiect] - [=] to select Data_Inputter .Get_Record and then
Data_lnputter. Alternatively, you can press {ovica] - [=] to “retrace your steps.” For
example, pressing [sumeric 3] - [Objet] - [=] in Figure 11-22 enlarges the selection two
levels to select the block statement again. Finally, pressing - [=] one more
time selects the enclosing loop statement.

[Object] - anfi [08ieet] - [=] can be qsed gimilarly in declarations. For example, if you
select an entire variable declaration, you can use - [=Z] to narrow down the
selection to just the variable name.

Selecting the Next or Previous Ada Constructs

After selecting a construct at some level of program structure, you can select another
construct at the same level as follows:

1. Move the cursor to the desired construct.

2. Press [obieat] - [2].

The old selection is “unselected” and the new one is highlighted.

Alternatively, you can use - [1] and - [1] as shortcuts for selecting the

next and previous constructs at the same level without moving the cursor.

I11-42 uszer RATIONAL

Chapter 11. Using Ada-Specific Editing Operations

For example, assume that the first statement in the statement list is selected and
that the cursor is in the selection, as shown in Figure 11-22, above. Pressing [obiec]
- [1] selects the next statement in the list, as shown in Figure 11-23:

loop

declare
Current_Player : Baseball .Player_Statistics;

eam_gbms);

urren ayer

a

Sum (- .
Baseball .Add (Current_Player, Team_Statistics);
end,
end loop;

Figure 11-23. Selecting the Next Statement

At this point, you can reselect the previous statement by leaving the cursor in the
current selection and pressing - [1.

Similarly, a variable name and its type are treated as constructs at the same level
of structure. Thus, when a variable name is selected in a declaration, you can use
[orviect] - 1] to select the type mark and [obiest] - [1] to return to the variable name.

Creating Private Parts

You can use [Create Privard to generate completions for private parts in source state
package specifications.

For example, assume that the specification for package Complex contains a private
type declaration, as shown in Figure 11-24:

package Complex is
type Number is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number,

end Complex;

Figure 11-24. A Package Containing a Private Type Declaration

RA\T'ONAL 11/2/87 I11-43

Part III. Developing Simple Ada Programs

To create a private part for this type:

1. With the cursor anywhere in the window containing the package specification,
press Create Private].

As a result, the Environment creates a completion for a private region at the end
of the package specification, as shown in Figure 11-25. Note that, by default,
the completion is for a derived type:

package Complex 1is
type Number 1is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
private
type Number 1is new [TEINCIRCHN .

end Complex,

suADAZL N2 -1 ada i Source - -

Figure 11-25. Creating a Private Part Completion

2. Fill in the [expression] prompt and make any other necessary changes to com-
plete the private part. Note in Figure 11-26 that the reserved word new has
been deleted because Number is not a derived type:

package Complex is
type Number 1is private,
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
private
type Number 1is
record
Real, Imag : Float,
end record;
end Complex;

Figure 11-26. Completing the Private Part

If a specification contains more than one private type declaration, pressing
once creates a private part containing completions for all of them.

I11-44 11/2/87 BA\TIONAL

Chapter 11. Using Ada-Specific Editing Operations

Creating Bodies

You can use to:

o Create a skeletal body for an entire unit specification. In this case, the created
body is itself a unit. (For an example, see “Creating Package Specifications and
Bodies,” in Chapter 10.)

o Create a skeletal body for a new addition to an existing unit specification. The
new body is created within the existing unit body. (An example of this case
follows.)

Assume that the specification and body for package Complex exist as source state
units, as shown in Figure 11-27:

package Complex is
type Number is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float,
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
private
type Number is
record
Real, Imag : Float;
end record;
end Complex;

s COMPLEX NUMBERS COMPLEX ' Vi2 i 1 ada Source

package body Complex is
function Make (X, Y : Float) return Number is 1
begin
return (X, Y);
end Make
function Resl_Part (X : Number) return Float is
begin
return X.Real;
end Real_Pert;
function Imaginary_Part (X : Number) return Float is
begin
return X.Imag;
end Imaginary_Part;
function Plus (X, Y : Number) return Number is
begin
return (X.Real + Y.Real, X.Imag + Y.Imag);
end Plus;
end Complex;

C COMPLEX _NUMBERS COMPLEX 'BODY vi 1l {30a. Source

Figure 11-27. An Existing Package Specification and Body

If you add a function called Minus to the package specification, you can create a
body for the new function by using the following steps.

IQATIONAL 11/2/87 IT1-45

Part III. Developing Simple Ada Programs

1. Select the function declaration within the package specification, as shown in
Figure 11-28:

package Complex is
type Number 1s private;
function Make (X, Y : Float) return Number,
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Flost;
function Plus (X, Y : Number) return Number;

private
type Number is
record
Real, Imag : Float;
end record,
end Complex;

ooy ACOMPLEX_NUMBERS . COMPLEX ' Vi2) iada

Figure 11-28. Selecting the Declaration for the Minus Function

2. Press[Create Body,. As a result, a skeletal body for the Minus function is added at
the end of the package body for Complex, as shown in Figure 11-29:

package body Complex is
function Make (X, Y : Float) return Number is

begin
return (X, Y);
end Make ;
function Real_Part (X : Number) return Float is
begin

return X .Real;
end Real_Part;
function Imaginary_Part (X : Number) return Float is
begin
return X Imag;
end Imaginary_Part,
function Plus (X, Y : Number) return Number is
begin
return (X.Real + Y. Real, X.Imag + Y.Imag).
end Plus;
function Minus (X, Y : Number) return Number is
begin
end Minus;
end Complex;

Figure 11-29. The New Skeletal Body for the Minus Function

I11-46 11/2/87 RA\T]ONAL

Chapter 11. Using Ada-Specific Editing Operations

Entering Comments

No special treatment is needed for entering Ada comments, which are delimited on
the left by two or more hyphens (--) and on the right by the end of the line. You
can enter two kinds of comments:

e A right-trailing comment is on the same line and to the right of a line of Ada
code.

e A stand-alone comment is on a line by itself.

and ignore both kinds of comments, although adjusts the
indentation level of certain stand-alone comments. pretty-prints comments
as follows:

¢ Right-trailing comments are left in place; the number of blank spaces you leave
between the Ada code and the comment are preserved.

e Stand-alone comments that are aligned under a right-trailing comment are left
in place to form a multiline comment block at the same indentation level as the
initial right-trailing comment.

¢ Stand-alone comment lines that begin in column 1 are left in place.

e Any other stand-alone comment lines are automatically indented to the level
used for statements or declarations in the same position. Pretty-printing indents
comments by inserting blanks to the left of the comment character (--).

A block of stand-alone comments gcontiguous lines containing only comments) is
treated as a single Ada construct and can be selected as a block using object selection
operations. You must use - [and - 1] to select individual lines within
a comment block or to select a right-trailing comment line.

Operations for Entering Comments

The Environment provides several operations for automatically entering right-trailing
comments and for commenting out portions of code.

To enter a right-trailing comment:

1. With the cursor anywhere on the line to contain the comment, press [mea[Tsb).
As a result, a blank is inserted to the right of any Ada code on that line, followed
by the comment characters (--). The cursor is positioned after the comment
characters.

To comment out a portion of code:

1. Select the code you want to comment out.

2. Press - [to insert the comment characters (--) at the beginning of each
line in a selected portion of code.

R)ATIONAL 11/2/87 1147

Part III. Developing Simple Ada Programs

To “uncomment” code that had been commented out:

1. Select the code you want to restore.

2. Press [Redion] - [+] to remove the comment characters (--) from the beginning of
each line in a selected portion of code.

Note that all text editing operations are available for editing comments. In partic-
ular, comment characters can be inserted or preserved by the operations that fill
and justify text (see “Controlling Case and Text Format,” in Chapter 8).

Inserting Page Breaks

If you plan to get a printout of your Ada units, you can insert page breaks where
you want the printing device to start a new page. The page break control character
iS ,Conlrol'@.

To insert a page break:

1. Determine where to put the page break. The page break control character in an
Ada unit should be inserted at the end of the last line to appear on the current
page.

2. Prepare to enter a control character by pressing [Control [

3. Enter the page break control character by pressing [contrell1].

The page break control character is displayed as a highlighted capital L in the
unit.

IT1-48 11/2/87 RATIONAL

Chapter 12. Executing and Testing Ada Programs

This chapter describes how to:

s Prepare a program for execution by promoting it to the coded state
e Execute a program
¢ Use Command windows to interactively test units and systems

Promoting Units to the Coded State

When you are ready to execute an Ada program or to unit-test some part of it, you
need to promote the desired unit (for example, the main procedure) and any units
on which it depends to the coded state. Promoting units to the coded state causes
object code to be associated with the underlying representation of those units.

The operations for coding units are parallel to the operations for installing units.
In particular, there are two main ways of coding units:

¢ You can code units individually using [coac Unif] OF [Promore]. This method is most
useful when you want to test a few units where dependencies are not involved.

¢ You can code a system of units with dependencies using the automated com-
pilation facility [Code(This worta)]. This method lets the Environment manage the
compilation order.

For more information on these operations, see “Overview of Operations for Chang-
ing Unit State,” in Chapter 10.

Coding Individual Units
To promote an individual unit to the coded state:

1. Put the cursor in the window containing the unit you want to code. The unit
can be in the source or installed state.

2. Press [code niyj to put the unit directly into the coded state. (Alternatively, if
the unit is already in the installed state, you can code it by pressing [Promore].)

A message is displayed in the Message window indicating that the unit is
changed to coded, and the word Coded appears in the window banner.

BATIONAL 11/2/87 I11-49

Part III. Developing Simple Ada Programs

If you promote a source unit directly to coded, the unit is implicitly installed as
well. Therefore, coding a source unit has the same consequences as installing a unit.
Furthermore, coding and installing can fail for the same reasons—for example, if the
unit contains syntactic or semantic errors. (See “Promoting Units to the Installed

State,” in Chapter 10).

Coding Units with Dependencies

To code a system of units in a library, use the automated compilation facility as
follows:

1. Put the cursor anywhere in the library containing the units you want to code.

2. Press (Gode (tbis Woria)]. The Environment determines the compilation order among
the units and changes all the units in the library to coded.

A log of messages indicating the operation’s progress is displayed in an Envi-
ronment output window.

To code a specific unit and all the units on which it depends, use the automated
compilation facility as follows:

1. Select the library entry for the unit.

2. Press codc(this worid), The Environment determines the compilation order among
the units and changes the unit and its closure to coded.

A log of messages indicating the operation’s progress is displayed in an Envi-
ronment output window.

The log produced by “code (this Worid)] is similar to the log produced by [Tastaii (This Werid)j,
particularly with respect to error reporting. (For more information, see “Reading
the Compilation Log,” in Chapter 10).

I11-50 11/2/87 R)ATIONAI_

Chapter 12. Executing and Testing Ada Programs

Executing Programs

Because the Environment uses Ada as its command language, you can execute your
programs the same way you execute Environment commands—namely, by promot-
ing them. Promoting to execution is thus the final step in a series of promotions,
as indicated by Figure 12-1:

Source [————»1 Installed #1 Coded [——— Executed

State State @ State

Figure 12-1. The Role of from Source State to Execution

Using a Command Window
The basic way to execute a program is through a Command window:

1. Press to open a Command window from the library containing the
program’s main procedure.

2. At the [statement] prompt, enter the name of the program’s main procedure
with parameters as required (units must be in the coded state).

3. Press [Promote).

Your program is linked dynamically to create an executable representation. The
program is then elaborated and executed.

All of the operations and features of Command windows are available for entering

and executing user-developed programs. For example, you can press to get
semantic completion for the procedure name and parameters.

RATIONAL 11/ser IM-51

Part III. Developing Simple Ada Programs

Using Selection

When executing a coded procedure, you can use the following shortcut as an alter-
native to using a Command window:

1. Select the library entry for the procedure.
2. Press [promord to execute the procedure.

3. If the procedure requires parameters, a Command window is opened auto-
matically, displaying the procedure name and parameter prompts. Fill in the
prompts and press [Promote].

Operations for Job Control
Following are useful operations for job control:

¢ To execute your program in the background as a batch job, press
instead of [Promere] in either of the methods described above.

» To interrupt your program, press [comroifG). Interrupting a job allows you to enter
other commands while the interrupted job continues to run in the background.

¢ To kill your program before it completes, press [3.t k.

Common Errors
When you execute a program, you may encounter some common errors:
Not all units in the program are sn the coded state. If you attempt to execute a

program that contains one or more units that are in the source or installed state, a
message like the following is displayed in the Message window:

1: ERROR !USERS .ANDERSON.COMPLEX_NUMBERS .COMPLEX 'BODY'V(5) 1s not coded

Note that such messages are prefixed with a number (for example, 1:) so that you
can tell when multiple errors have been encountered.

To recover from this error, press to code the entire system of units.

An attempt was made to ezecute a subprogram that contains a [statement] prompt.
It is possible to install and code units that contain incomplete subprograms (subpro-
grams that contain [statement] prompts). This feature allows you to test completed
subprograms in a package while other subprograms are still under development.

However, a program call to an incomplete subprogram raises the Program_Error
exception, so that a message like the following is displayed in the Message window:

I11-52 11/2/87 RATIONAL

Chapter 12. Executing and Testing Ada Programs

ANDERSON . COMPLEX _NUMBERS .COMPLEX’BODY’'V(5} NUM terminated due to unhandled
exception Program_Error (prompt executed)

To recover from this error, remove calls to the subprogram or complete its imple-
mentation.

Testing Units and Systems

Because you can enter and execute any Ada code in a Command window, you can
use Command windows to build interactive unit and system tests quickly without
having to build a separate, permanent program for every test. Testing through
Command windows is useful when you need immediate feedback on specific aspects
of your program’s behavior. Of course, interactive testing is not intended to replace
a permanent library of test programs. In fact, you can save interactive tests as
permanent Ada units (see below).

The following example shows how you can use a Command window to unit-test
the functions in a package. Assume that you have completed the implementation
for most of the subprogram bodies in the package body !Users.Anderson.Complex-
~Numbers.Complex, shown in Figure 12-2:

package body Complex is
function Make (X, Y Float) return Number 1is

begin
return (X, Y},
end Make;
function Real.Part (X : Number) return Float is
begin

return X Real,;
end Real_Part;
function Imaginary_Part (X : Number) return Float is
begin
return X Imag,
end Imaginary.Part;
function Plus (X, Y : Number) return Number is
begin)
return (X.Real + Y .Real, X.Imag + Y.lImag);
end Plus;
function Minus (X, Y : Number) return Number is
begin
sLatenent:
end Minus;
end Complex;

Figure 12-2. The Package Body !Users.Anderson. Complex_Numbers. Complex

QAT'ONAL 11/2/87 ITI-53

Part III. Developing Simple Ada Programs

To exercise each completed function in package Complex, you can:

1.

Create a Command window and enter a short program like the one in Figure 12-

3. This test adds a complex number to itself and then invokes an Environment

input/output operation (Io.Put) to display the results in a window.

package body Complex 1is

declare

function Make (X, Y : Float) return Number is
begin

return (X, Y),
end Make;
function Real_Part (X : Number) return Float is
begin

return X.Real;
end Real_Part ;
function Imaginary_Part (X : Number) return Float is
begin

return X.imag,
Imaginary.Part

o T g R s

OMPEEX--NUMBERS --

end

use Editor, Ada, Common, Debug;
Num : Complex. Number := Complex Make (1.6.,2 0);

begin

end,

Num = Complex Plus (Num, Num);
lo.Put ("The real part 1s ");

lo Put (Complex Real.Part (Num));
to. Put {"The 1imaginary part is "),
lo Put {Complex Imag.Part (Numj);

Figure 12-3. A Sample Unit Test

Note that the following Command window features and Ada-specific editing
features are available to help you enter test programs in Command windows:

¢ You can declare variables such as Num in the declarative portion of the Com-
mand window block statement.
* You can use [Compiete] o provide parameter prompts for each function. (How-

ever, to complete a function that occurs in the declarative region, such as
Complex.Make, you must select the function name before pressing [compiets].)

¢ You can use Formad to provide syntactic completion as you enter program
fragments and to check for syntax errors.

e You can use [semanticize] t0 check for semantic errors.

Execute the test program by pressing [Fromoic]. (Because the test program is in a
Command window, no state change is involved; one press of is sufficient

to execute it.)

As usual, the statement portion of the test program turns into a prompt after
you execute it. At this point, the following Command window features are

helpful:

111-54 11/2/87 RATIONAL

Chapter 12. Executing and Testing Ada Programs

* You can modify and reexecute the test program, for example, to change the
initial parameters for Complex.Make. Before modifying the statement portion
of the program, however, press to turn off the prompt.

¢ You can use [ovicet] - [U] and [ovieet] - (K] to redisplay previously executed versions
of the test program.

Saving Interactive Test Programs

Test programs written in Command windows are not permanent like Ada units
created using [Create Ada]. That is, a test program in a Command window will not
persist after you log out or use - [c] to remove the Command window or the
window to which it is attached. If you want to save a test program that you wrote
in a Command window:

1. Display the library in which you want to store the test program.
Press create a4s' to create an empty Ada unit.

Select the test program in the Command window.

Use {Region] - [c] to copy the selected program into the empty Ada unit.

RN A

Edit the program as necessary and save it using [Enter] OF [Promotel.

EATIONAL 11/2/87 ITI-55

RATIONAL

Chapter 13. Debugging Ada Programs

The Rational Debugger provides a variety of facilities for controlling and exam-
ining Ada programs during execution. The Debugger acts as an outside agent to
a single executing program, allowing you to stop and restart it, step through it,
display selected variable values, examine task state, and the like. Each interaction
with the Debugger is reported in a special-purpose Debugger window, while the
current location in the program source is automatically displayed in other Envi-
ronment windows. Using these facilities, you can debug Ada programs at the Ada
source level without having to know memory addresses or details of the underlying
representations.

This chapter describes operations for:

e Starting, stopping, and restarting the Debugger

e Controlling program execution by stepping, setting breakpoints, and requesting
continuous execution

¢ Displaying and modifying variable values
e Handling exceptions raised by the program
e Displaying and examining the stack of subprogram calls made by the program

The Debugger operations that are bound to function keys are found on the keyboard
overlay under columuns titled “Debug.”

This chapter covers only facilities for debugging programs that do not use task-
ing. In addition, the Debugger provides facilities for controlling and analyzing the
individual tasks in programs that involve multiple tasks. For information on the
Debugger and tasks, task state, and task control, see the Debugging (DEB) book of
the Ratsonal Environment Reference Manual.

RATIONAL 11/2/87 II1-57

Part III. Developing Simple Ada Prograins

Starting the Debugger

Starting the Debugger for a program is just like executing the program normally,

except that you press rather than [Promord. You do not need to specify
special options in the program or to recompile it specially for debugging.

To start the Debugger for a particular program:

1. In a Command window, enter the main procedure (and parameters, if any) for
the program you want to debug. All units in the program must be in the coded
state.

As a convenient alternative to using a Command window, you can designate
the program’s main procedure by selecting its library entry.

2. Press [Mets[Promotel.

After a brief pause, the Debugger window is displayed as shown in Figure 13-
1, in the next section. You can now start and stop program execution using
operations described in “Controlling Program Execution,” below.

You can debug only one program at a time. If you start a second program under
the Debugger before the current program has completed, the Debugger will kill
the current program so that you can debug the next one. As a consequence, you
can follow the steps above to restart a program or start a new program under the
Debugger without waiting for the current program to complete.

Note that you can debug programs written in Command windows as well as in Ada
units. For example, if you have used a Command window to write a test program,
you can execute it under the Debugger by pressing Meu][Promote] as indicated above.

111-58 11/2/87 BATIONAL

Chapter 13. Debugging Ada Programs

The Debugger Window

The Debugger window is displayed automatically when you start the Debugger.
All interactions with the Debugger are displayed in this window as a sequential
log. For example, assume that you have started executing the main procedure
Display_Complex-Sums under the Debugger. As a result, the Debugger window is
displayed, as shown in Figure 13-1:

Complex : C Ada (Pack.Spec);

Complex . C Ada (Pack.Body);
Complex_Utilities . C Ada (Pack.Spec};

Complex_Utilities : C Ada (Pack Body)
L C Ada (Func_Body) ;

Dlspléy Complexisums : C Ada (Proc‘Bodya

List_Generic . € Ada (Gen_Pack);
List_Generic . C Ada (Pack-Body);
Sample_lnput : File (Text),;

Beginning to debug: !USERS. ANDERSON.COMPLEX_NUMBERS ¥ !USERS .ANDERSON.
COMPLEX_NUMBERS .DISPLAY_COMPLEX_SUMS
Stop at: .command_procedure, Root task: [Task : ROOT_TASK, ¥CCCC7].

Figure 13-1. The Debugger Window

The Debugger window is identified by the word (debugger) in its window banner.
The Debugger window banner also displays the words R1909 Native, which indicate
that you are debugging a program executing “natively” on the R1000 Development
System. (If your R1000 has a Rational Cross-Development Facility, you can also
start a host/target debugger to debug programs that are executing on another
target processor%

Inside the Debugger window, several messages already appear in the log:

o The first identifies the name of the program that you are running under the
Debugger.

¢ The second indicates that the Debugger is stopped just before executing the
implicit command procedure that will in turn execute your program. Note that,
although this program does not explicitly use tasking, messages such as this one
refer to a program’s main thread of control as the root task.

As you debug the program, a message is added to the log to record each Debugger
operation you use. You can scroll through the log in the Debugger window to see
previous interactions, and you can save the log into a file by using the Text.Write-
-File command.

QATIONAL 11/2/87 I11-59

Part III. Developing Simple Ada Programs

Controlling Program Execution

After starting the Debugger, program execution is under your control. You can
cause the program to make forward progress or you can cause program execution to
stop and wait for you to request further progress. While a program is stopped, you
can use Debugger operations to display variable values, set breakpoints, examine
the call stack, and the like.

There are several ways to make forward progress:

¢ You can run the program one step at a time, automatically stopping after each
declaration is elaborated and each statement is executed. Stepping through a
program allows you to analyze program behavior in great detail. The operations
for stepping are [run) and [Run (tocan)], described below.

¢ You can let the program execute continuously until some stopping point is reached
—for example, an exception is raised, a breakpoint is encountered, or you stop
the program with [5tos]. The operation for continuous execution is [Exccute].

There are several ways to cause continuous execution to stop:

» Before executing a given portion of the program, you can define a predetermined
stopping place in that portion by setting a breakpoint. Program execution stops
every time a breakpoint is encountered. (See “Setting Breakpoints,” below.)

¢ You can stop a program as it executes—for example, if you suspect the program
is in an infinite loop. The operation for stopping execution is [Stes].

A typical debugging session involves a combination of ways of controlling program
execution. For example, you can set a breakpoint first and then let the program
execute to the breakpoint, then single-step through various statements, then execute
further until an exception is raised, and so on.

Automatic Source Display

When a program has stopped after making forward progress, the Debugger auto-
matically displays the current location in the program source. More specifically, the
Debugger automatically brings up the relevant Ada unit in a normal Environment
window (similar to using [pefinition)) and highlights the statement or declaration that
will be executed or elaborated next. The current location is shown each time ex-
ecution stops—for example, after a caught exception, a breakpoint, or a stepping
operation.

If your program consists of multiple Ada units, the Debugger automatically displays
the unit corresponding to the currently executing code. If the program calls a
subprogram that is defined in another unit, the Debugger displays that unit in
another Environment window. You can always use to display other program
units at any time during the debugging session.

I11-60 11/2/87 BA\TIONAL

Chapter 13. Debugging Ada Programs

Thus, when the program source is displayed, you can track your debugging progress
in two ways:

e You can track the current location in the window containing the Ada unit.
¢ You can monitor the messages that are logged in the Debugger window.

Finally, if you debug Ada code that was composed in a Command window, this code
is not automatically displayed in a separate window with the current location high-
lighted. However, if the code in the Command window code calls any subprograms
that are defined in Ada units, the source for these subprograms is displayed.

Stepping Through a Program

The Debugger’s stepping operations allow you to run a program one step at a time
so that you can examine its behavior in detail. Following is the basic way to step
through a program:

1. Press [®u). The cursor can be anywhere on the screen.

As a result, a single declaration is elaborated or a single statement is executed.
The next statement or declaration to be stepped through is automatically high-
lighted in the Ada unit.

2. If you want to progress faster than one step at a time, you can use keys on the
numeric keypad to specify how many steps to elaborate or execute. Use
- to run three steps.

For example, after you start the Debugger for Display_Complex_Sums, the program
is stopped, waiting for you to request forward progress (see Figure 13-1, above).
Assume that you decide to step through the program to examine it in detail.

When you use stepping to start a program such as Display_Complex_Sums, you
need to press [ru) twice to get into the program itself. Pressing the first time
executes the implicit command procedure that calls Display_Complex_Sums. Press-
ing the second time actually executes the call to Display_Complex_Sums, at
which point this unit is automatically displayed. The result of these first two steps
is shown in Figure 13-2. Note that:

¢ Each [run] operation has added a message to the Debugger window log.

o The first declaration in Display_-Complex_Sums is highlighted, since that is the
current location in the program’s execution. This means that the next time you
step, the highlighted declaration will be elaborated.

RATIONAL 1y/er 1161

Part III. Developing Simple Ada Programs

COMPLEX_NUMBERS .D!SPLAY_COMPLEX_SUMS
Stop at: .command_procedure, Root task: [Task : ROOT_TASK, JCCCC7].

Run (STATEMENT, 1, "¥ROOT._TASK");
Step: .command_procedure.ls ([Task : ROOT.TASK, JCCCC7].

Run (STATEMENT, 1, “¥ROOT_TASK"),
Step: .DISPLAY_COMPLEX.SUMS.1d [Task : ROOT_TASK, JCCCC7}.

= F100Q Native (debuggaer

with Complex, Complex Utilities, Text_lo;
procedure Displa lex_Sums is

Sum Complex Number

Input.Line : String (1 .. 100} ;
Line_Length : Natural := 0;
input.File : Text_io.File_Type;
Header : constant Str1ng &

Figure 13-2. After Stepping Twice

Pressing a third time elaborates the highlighted declaration and causes the next
declaration to be highlighted, as shown in Figure 13-3:

Run (STATEMENT, 1, "%ROOT_TASK").
Step: .command.procedure.ls [Task : ROOT_TASK, NCCCC7].

un {STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS .1d [Task : ROOT.TASK, KCCCC7].

Run (STATEMENT, 1, “SROOT_TASK"):
Step: .DISPLAY.COMPLEX_SUMS.2d [Task : ROOT.TASK, JCCCC7].

B39 Nalive |gedugg

with Complex, Complex_Utilities, Text_lo;
procedure Display_Complex.Sums is

ackage Complex_List renames Com-lex Utilities.Complex_List;
i_}Exgg Ty = ———
Sum : Complex.Number
tnput_Line : String (1 .. 100),
Line_Length : Naturasl = @;
Input..File : Text_lo.File.Type;
Header : constant String =

DISPLAY _COMPLEX_SUMS "BODY "vicdy «aJdas L0aeEd

Figure 13-3. After Stepping a Third Time

I11-62 11/2/87 BATIONAL

Chapter 13. Debugging Ada Programs

Following the Program’s Flow of Control

Stepping with allows you to follow a program’s flow of control. That is, when
executing a statement that contains a call to a subprogram, steps you through
each declaration and statement in the called subprogram before returning to the
portion of the program that contains the calling statement. Similarly, when elab-
orating a declaration that calls a function, steps through the function before
returning to the calling declaration.

To illustrate how follows subprogram calls, assume that the current location
is the highlighted statement shown in Figure 13-4. The corresponding message
in the Debugger window indicates that this is statement 24 of Display_Complex-
—Sums (.DISPLAY_COMPLEX_SUMS.24s). This statement makes a call to the function
Complex.Plus, and one of the parameters of Complex.Plus is itself a call to the
function Complex_List.Head.

Run (STATEMENT, 1, "SROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS.23s [Task : ROOT_TASK, §CCCC7].

Run (STATEMENT, 1, "XROOT_TASK");
Step: .COMPLEX_UTILITIES.COMPLEX_LIST.IS_NULL (new .LIST_GENER!IC.IS_NULL).1s
[Task : ROOT_TASK, §CCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS 24s [Task : ROOT.TASK, ¥CCCC7].

= R1009 Native idebugger :

Text_ .lo Put_Line ("+" & Header & "+"};
Text_lo . Put_Line
("1 Yalue Running Total "),
Text_lo. Put_Line ("I" & Header & "!1"};
Sum = Complex.Make (0.0, 8.9);

currert

while not

>Text_|o?3 ("t

Text_lo.Put (Complex_Utilities.!mage
(Complex_List .Head (List_Of_Numbers)));

Figure 13-4. Ready to Execute Statement 24 in Display_Complex_Sums

R)A—HONAI_ 11/2/87 I11-63

Part III. Developing Simple Ada Programs

Since the most deeply nested subprogram must be executed first, pressing fol-
lows the function call to Complex_List.Head. Because Complex_List instantiates
the generic package List_Generic, the source for List_Generic is automatically dis-
played, as shown in Figure 13-5. The first (and only) statement in the called func-
tion is highlighted, which is reflected in the corresponding message in the Debugger
window.

Run (STATEMENT, 1, “¥ROOT_TASK"),
Step: .DISPLAY_COMPLEX_SUMS.23s [Tesk : ROOT.TASK, JCCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .COMPLEX_UTILITIES.COMPLEX_LIST.IS_NULL (new .LIST_GENERIC.IS_NULL).1s
[Task : ROOT_TASK, KCCCCT7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS.24s [Task : ROOT.TASK, JCCCC7].

Run (STATEMENT, 1, "%ROOT_TASK"};
Step: .COMPLEX_UTILITIES COMPLEX_LIST . HEAD (new .LIST_GENERIC.HEAD).ls [Tesk :

ROOT..TASK, KCCCC7].

current

function Head (0f.The_List : in List) return Element is

function Tail (O0f_The.List : in List) return List is
begin

return Of_.The._List all Next;
end Tail;

function 1s.Null (The_List : in List) return Boolean is
begin

$ L4ST_GENERIC'BODY 'vi 11 1805

Figure 13-5. Ready to Execute Statement 1 in List-Generic.Head

I11-64 11/2/87 QATIONAL

Chapter 13. Debugging Ada Programs

Pressing [rer at this point executes the highlighted statement and follows the next
subprogram call to Complex.Plus. As Figure 13-6 shows, the first (and only) state-
ment in Complex.Plus is now highlighted:

return (X, Y);
end Make;
function Real_Part (X : Number)} return Float is
begin
return X .Real;
end Real_Part;
function Imaginary.Part (X : Number) return Float is
begin
return X. Imag,
end |maginary_Part;
function Plus (X, Y : Number) return Number is
begin
Tebunn-EA - Ren

end Plus;

end Complex;

Run (STATEMENT, 1, "¥ROOT.TASK"}),
Step: .DISPLAY_COMPLEX_SUMS 24s [Task : ROOT_TASK, NCCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: COMPLEX_UTILITIES COMPLEX_LIST.HEAD (new .LIST_GENERIC HEAD).ls [Task
ROOT_TASK, JCCCC7}

Run (STATEMENT, 1. "¥ROOT_TASK");
Step: COMPLEX .PLUS.1ls [Task : ROOT.TASK, KCCCC7)

-1 gdebuggenr 3. - current

function Head (Of_The_List : in List) return Element is
begin

return Of_The_List all Item;
end Head

function Tail (Of_The_lList : in List) return List is
begin

return Of_The.List.all Next,
end Tail,

function Is_Null (The_List : in List) return Boolean is

Figure 13-6. Ready to Execute Statement 1 in Complex.Plus

R)ATIONAL 11/2/87 I11-65

Part III. Developing Simple Ada Programs

Finally, pressing once more returns to the original subprogram, Display_Com-

plex_Sums. Now that statement 24 is completely executed, the next statement is
hlghhghted (the Debugger refers to this statement as .DI SPLAY _COMPLEX_SUMS . 2Ss),
as shown in Figure 13-7:

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .COMPLEX_UTILITIES.COMPLEX_LIST.IS_NULL (new .LIST_GENERIC.IS_NULL).1s
[Task : ROOT_TASK, HCCCCT].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS.24s [Task : ROOT_TASK, JCCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .COMPLEX_UTILITIES.COMPLEX_LIST HEAD (rew .LIST_.GENERIC.HEAD).1ls ([Task :
ROOT_TASK, HCCCC7].

Run (STATEMENT, 1, "SROOT_TASK");
Step: .COMPLEX.PLUS.1s [Task : ROOT_TASK, FCCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY.COMPLEX_SUMS.25s [Task : ROOT_TASK, NCCCC7].

current

Text_lo.Put_Line ("+" & Header & "+"};
Text_lo.Put_Line
("t Value Running Totel "),
Text_lo.Put_Line ("1" & Header & "1");
Sum = Complex.Make (0.0, 0.0);

while not Complex_List.Is_Null (List._Of_Numbers) loop
Sum = Complex Plus (Sum, Complex_List Head (List_Of_Numbers
e e , N

Text_lo. Put (Complex Utilities. image
(Complex List Head (L1st Of Numbers)))

Figure 13-7. Ready to Execute Statement 25 in Display. Complex_Sums

Stepping Over Subprogram Calls

The Debugger provides a second stepping operation that allows you to “step over”
calls to subprograms. This operation elaborates declarations and executes state-
ments within each called subprogram without stopping after each individual step.
Thus, you can step from one statement to the next within the same subprogram
without stepping through any subprogram calls.

To step over subprogram calls:

Press [Rus (toaan). The cursor can be anywhere on the screen.

As a result, the program is executed or elaborated up to the next statement or
declaration at the same level of program structure.

For example, using [Run (Local)] at statement 24 of Display_Complex_Sums allows you
to step directly to statement 25 without the two intervening steps.

IT1-66 11/2/87 QAT'ONAL

Chapter 13. Debugging Ada Programs

Setting Breakpoints

You can define predetermined stopping places in a program by setting breakpoints.
Whenever a breakpoint is encountered, the program stops executing so that you
can examine its behavior more closely at that point. For example, you can step
through individual statements, examine variable values, and the like.

To set a breakpoint:

1.

Display the Ada unit that contains the statement or declaration at which exe-
cution is to stop. If the unit has not been displayed already by the Debugger,
use or other traversal operations.

Find the last statement or declaration you want executed or elaborated before
stopping.. Use searching, scrolling, or stepping operations to find the desired
program location.

Select the nezt statement or declaration. (If that statement or declaration is
the highlighted current location, it is already selected.)

With the cursor in the selection, press (eresx]. A breakpoint is set just before
the selected location. This means that execution will continue up to but not
including the selected location.

For example, assume that you selected and set a breakpoint at statement 25 in
Display_Complex_Sums. A message reporting this is displayed in the Debugger
window, as shown in Figure 13-8:

Run (STATEMENT, 1, “¥%ROOT_TASK");
Step: .COMPLEX PLUS.1s [Tesk : ROOT_TASK, §CCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS 25s [Task : ROOT_TASK, JCCCC7].

Break (" .DISPLAY_COMPLEX_.SUMS 255", 1, “"al1", "TRUE");
The breakpoint has been created and activated:
Active Permanent Break 1 at .DISPLAY_COMPLEX_SUMS.25S [any task]

=-R1908 Nalive tdebuggeri current

Text_lo.Put_Line ("+" & Header & "+");
Text_lo.Put_Line
("1t Value Running Total 1"y
Text_lo. Put_Line ("1" & Header & "1");
Sum = Complex .Make (0.0, ©6.0),;

while not Complex_List. Is_Null (List_Of_Numbers) loop
Sum = Complex.Plus (Sum, Complex_List Head (List_Of_Numbers)),

Text Io Put (Complex Utilities. Image
(Complex_List . Head (List_Qf_Numbers)));

Figure 13-8. Setting a Breakpoint at Statement 25 of Display_Complex_Sums

RAT'ONAL 11/2/87 II1-67

Part III. Developing Simple Ada Programs

Breakpoint Characteristies

The message in Figure 13-8 reports that the breakpoint has been both created
and activated. As long as a breakpoint is active, it will stop program execution.
Breakpoints can be deactivated, for example, by using [Remove Breats]. Inactive break-
points have no effect on program execution, although information about them is
remembered so that they can be reactivated using [acuvacd].

Active breakpoints are deactivated automatically whenever you start a new program
or restart the same program under the Debugger. If you restart the same program,
you can press [acaivate] to reactivate any existing breakpoints.

The message in Figure 13-8 also indicates that the breakpoint is permanent. A
permanent breakpoint remains active as long as the program runs under the De-
bugger. A temporary breakpoint becomes inactive automatically after the first time
it is encountered. Under the standard key bindings, sets permanent breaks
and (Break Deraui sets temporary breaks. $For more information on temporary break-
poix;ts, see the Debugging (DEB) book of the Rational Environment Reference Man-
ual.

Finally, breakpoints are numbered, as shown in Figure 13-8, where the breakpoint
is identified as Break 1. Various operations allow you to specify breakpoints by
number. For example, you can deactivate a specific breakpoint by pressing its
number on the numeric keypad and then pressing [Eemove Breats]. (With no numeric
prefix, Remove Brearsj deactivates all breakpoints.)

Press [show Breaka] to display a list of all breakpoints, active or not, in the Debugger
window.

I11-68 11/2/87 QATIONAL

Chapter 13. Debugging Ada Programs

Executing to a Breakpoint

Notice from Figure 13-8 that the breakpoint has been set within a loop statement.
Therefore, pressing causes the program to execute the rest of the loop, start
the loop again, and stop just before statement 25.

As shown in Figure 13-9, statement 25 is highlighted and the last message in the
Debugger window identifies the breakpoint that has been encountered:

Step: .COMPLEX PLUS.1s ([Task : ROOT_TASK, ¥CCCC7].

Run (STATEMENT, 1, "¥ROOT_TASK");
Step: .DISPLAY_COMPLEX_SUMS.25s [Task : ROOT_TASK, HCCCC7].

Break (".DISPLAY.COMPLEX_SUMS. 255", 1, "all", "TRUE"};
The breakpoint has been created and activated:
Active Permanent Break 1 at .DISPLAY_COMPLEX_SUMS 25S [any task]

Execute ("all"),;
Break 1: DISPLAY_COMPLEX_SUMS .25s [Tesk : ROOT_.TASK, KCCCC7].

Text_.lo Put_Line ("+" & Header & "+");
Text_lo Put_Line
(1 Value Running Total 1"y,
Text_lo Put_Line ("I" & Header & "I1");
Sum ‘= Complex .Make (0.9, 0.9},

while not Complex List. ts_Null {List_Of_Numbers) loop
Sum Complex Plus (Sum, Complex._List Head (List_.Of_Numbers));

zieit;ﬁh,P = = — - -
Text_lo. Put (Complex Utilities. image
(Complex L1st Head (Llst of. Numbers)))

Figure 13-9. Executing to the Breakpoint

W\TlONAL 11/2/87 111-69

Part III. Developing Simple Ada Programs

Displaying Variable Values

While execution is stopped, you can examine the values of variables to gather clues
about program behavior up to this point. To display the current value of a variable:

1.

Display an Ada unit containing an occurrence of the variable whose value you
want to display.

Select the occurrence of the variable.
Press [put].
The variable’s current value is displayed in the Debugger window.

For example, Figure 13-9, above, shows that Display_Complex_Sums has stopped
just after executing statement 24, a statement that assigns a value to the variable
Sum. You can see whether Sum has been assigned the correct value at this point
by selecting Sum and pressing [ful. Note that when you select Sum, the current
location is “unselected” (it is no longer highlighted). Since Sum is a record, its
values are displayed in Ada aggregate notation, as shown in Figure 13-10:

The breakpoint has been created and activated:
Active Permanent Break 1 at .DISPLAY_COMPLEX.SUMS.25S [any task]

Execute ("all");
Break 1: DISPLAY_COMPLEX_.SUMS 258 [Tesk : ROOT_TASK, HJCCCC7].

Put ("¥ROOT_TASK._1.5UM"),
[REAL => 9 699999999999999E+0000 [5460614548186726 * (2 ** -49)]

IMAG => 1 220000000000000E+0001 [6867989431740006 * (2 ** -49)]

current

Text_.lo.Put_Line ("+" & Header & "+");

Text_lo . Put_Line
(") Value Running Total "y,

Text.lo Put_Line ("1" & Header & "[");

Sum := Complex Make (8.8, 0.0),

while not Complex.List. !s_Null (List.Of_Numbers) loop
B8 = Complex.Plus (Sum, Complex.List Head (List_Of_Numbers));
TJext_lo.Put ("I ");
Text_lo.Put (Complex_Utilities. Ima
(Complex_List Head (List.O0f_Numbers))).

© DISPLAY_COMPLEX_SUMS "BODY V20 335

Figure 13-10. Displaying the Value of Sum

For more information on displaying portions of complex variables, see the Debugging
(DEB) book of the Rational Environment Reference Manual.

I11-70 11/2/87 BATIONAL

Chapter 13. Debugging Ada Programs

Modifying Variable Values

Sometimes it is useful to analyze a program’s behavior when its variables have
different values. You can modify the values of scalar variables using [Medin]. To
change the current value of a scalar variable to a desired value:

1. Locate and select an occurrence of the variable you want to modify.

2. Press [Modin] to open a Command window that contains the Debug.Modify com-
mand.

3. Enter the desired value at the New_value prompt and press to execute
the command.

A message is displayed in the Debugger window reporting the variable’s name,
its old value, and its new value. The new value is used when you execute further.

To change the value of nonscalar variables, you must modify each of their scalar
components individually. See the Debugging (DEB) book of the Rational Environ-
ment Reference Manual.

Redisplaying the Current Location

As you debug a program, you typically have occasion to scroll through the current
program unit, view other program units, and use selection for a variety of Debugger
operations, such as Put), [Modity], and - Consequently, the unit containing the
current location may no longer be displayed and, even if it is displayed, the specific
statement or declaration may no longer be highlighted.

To return to the current location:

1. Press {show source]. The cursor can be anywhere on the screen, but not in a selec-
tion.

2. The Ada unit containing the current location is redisplayed if necessary, and
the next declaration or statement to be elaborated or executed is highlighted.
The current location is also reported in the Debugger window.

If you are debugging Ada code that was entered in a Command window, the
current location in the code is displayed in the Debugger window.

If the Debugger window is replaced by subsequently displayed windows, you return
to it by pressing [Debugser Window],

Reexecuting a Program

In the course of analyzing a program’s behavior, you may need to execute it under
the Debugger more than once. This is the case if you have stepped or executed
beyond a point of particular interest, if you have several sets of input to test, or if
you have several different debugging strategles to try.

RATIONAL 112767 II-71

Part III. Developing Simple Ada Programs

To restart the program under the Debugger, simply repeat what you did to start it:

o In a Command window, enter the name {and parameters) of the program’s main
procedure and press [Meu]Promotd].

¢ Alternatively, select the library entry for the program’s main procedure and press
[Meta] Promote],

You do not need to wait for a program to finish executing under the Debugger in
order to restart it. The unfinished job is killed automatically when the program is
restarted.

For example, assume that you now want to execute Display.Complex _Sums under
the Debugger with different input. To do this, you restart Display_Complex_Sums
by selecting its library entry and pressing [MecuJfromow], as shown in Figure 13-11.
Messages in the Message window and in the Debugger window indicate that Display-
—Complex_Sums has been aborted and restarted.

TUSERS . ANDERSON . COMPLEX_NUMBERS % !USERS . ANDERSON.COMPLEX_NUMBERS .DISPLAY_
COMPLEX_SUMS bas been aborted

= Rational «iDelta)l ANDERSON S_1

Complex . C Ada {Pack_Spec).

Complex : C Ada (Pack.Body);
Complex_Utilities : C Ada (Pack.Spec);
Complex_Utilities : C Ada (Pack.Body};

. Image © C Ada (Func_Bady);

Display.Complex.Sums . C Ada (Proc.Body) .

List_Generic : C Ada (Gen_.Pack) ;
List.Generic : C Ada (Pack_Body),
Sample_ |nput : File (Text);

= 4USERS . ANDERSON. COMPLEX_NUMBEKS ilibrar

Killing current job to begin debugging a new one.

Beginning to debug: !USERS . ANDERSON.COMPLEX_NUMBERS % !USERS.ANDERSON.
COMPLEX_NUMBERS .D! SPLAY_COMPLEX_SUMS
Stop at: .command.procedure, Root task: [Task : ROOT_.TASK, ¥59CE4].

= R199P2 Nalive idebugger i current

Figure 13-11. Restarting Display_Complex_Sums

Note that any breakpoints you set still exist, but they are inactive. When you
restart a program, you can reactivate the breakpoints by pressing [acivatd.

I1-72 11/2/87 BA\TIONAI_

Chapter 13. Debugging Ada Programs

Catching Exceptions

Exceptions raised in a program often signal some event of interest to you during
debugging. Therefore, the Debugger automatically stops program execution when-
ever exceptions are raised so that you can examine program behavior more closely
at that point. This is called catchsng an exception.

For example, assume you have pressed to run Display_Complex._Sums. As
it executes, this program requests input of the form <real_part, imaginary_part>,
and you enter incorrect input by omitting the angle brackets. As a result, the Illegal-
—Complex_Number exception is raised, execution stops, and a message reporting
the exception is displayed in the Debugger window, as shown in Figure 13-12:

Enter source for complex numbers (t=terminal, f=file): t

Enter complex numbers in pairs of the form ‘<real_part, imeginary_pert>’,
terminate imput with a line containing a single
3.4,7.2

L LexT JOB cen STARTED ¢ 37 .15

. COMPLEX_NUMBERS DISFLAY_COMPLEX_SiIS

Run (STATEMENT, 1, "¥ROOT_TASK"},
Step: .command.procedure.ls [Task : ROOT_TASK, J59CE4].

Run (STATEMENT, 1, "¥ROOT_TASK"),
Step: .DISPLAY_COMPLEX_SUMS.1d [Task : ROOT_TASK, N59CE4).

Execute ("all"});
Exception .COMPLEX_UTILITIES. ILLEGAL_.COMPLEX_NUMBER caught at .
COMPLEX_UTILITIES.VALUE . STRIP_LEADING_ANGLE .3s [Task : ROOT_TASK, ¥5S9CE4).

Current,

procedure Strip.lLeading_Angle (X : String;
Start_At : in out Scan_Range) is

begin
Strip.Spaces (X, Start_At);

Start. At = Start_At + 1;
end Strip_lLeading.Angle;

procedure Strip.Trailing_Angle (X : String;
= . _NUMBERS COMPLEX_UTILITIES BODY vi5, vaaa

~ Cogea

Figure 13-12. Catching the Illegal. Complex_Number Exception

If specific exceptions are not of interest to you during debugging, you can request
that execution continue when they are raised. Consequently, these exceptions are

RAT'ONAL 11/2/87 I11-73

Part III. Developing Simple Ada Programs

handled as usual by the program without being reported by the Debugger. Such
exceptions are said to be propagated by the Debugger.

To request that the Debugger propagate a specific exception:

1. Display the Ada unit containing an instance of that exception—for example,
the declaration for the exception or the exception handler.

2. Select the exception (or the statement containing it) and leave the cursor in the
selection.

3. With the cursor in the selection, press [Fropsestd. A message is displayed in the
Debugger window. The next time that exception is raised, program execution
continues with no special reporting by the Debugger.

To request that the Debugger resume catching a specific propagated exception:

1. Select the raise statement for the exception and leave the cursor in the selection.

2. Press[caicn). A message is displayed in the Debugger window. The next time that
exception is raised, program execution is stopped and the exception is reported
by the Debugger.

Examining the Stack of Subprogram Calls

As a program executes, the Debugger maintains a record of the program’s flow of
control in the form of a call stack. Every time a subprogra.m is called, a frame for
that call is pushed on the stack. The frame for a given subprogram call contains,
among other things, a reference to the statement or declaration in the subprogram
that made the call. The top, most recent frame in the stack always contains a
reference to the current location in the program. Therefore, by examining the call
stack for a program, you can reconstruct the sequence of calls that leads to the

current location.

Examining a program’s call stack can be especially useful when:

o The program raises an exception and stops automatically.

e The program has been executing an abnormally long time and you press [stcp]
because you suspect an infinite loop.

In situations such as these, you can display the call stack to see where the program
is and how it got there.

Displaying the Call Stack

To display a program’s call stack:

1. H necessary, press (sws] to stop program execution.

2. With the cursor anywhere on the screen, press [sua]. The call stack is displayed
in the Debugger window.

11-74 7270 RATIONAL

Chapter 13. Debugging Ada Programs

Note that when a program consists of a multiple tasks, each task maintains its own
stack and these stacks can be displayed individually. For more information, see the
Debugging (DEB) book of the Rational Environment Reference Manual.

For example, assume that Display_Complex_Sums has stopped executing because it
raised the Illegal_Complex_Number exception. To see how the program got there,
you press [sua], which displays the stack shown in Figure 13-13:

Execute ("all");
Exception .COMPLEX_UTILITIES. ILLEGAL_COMPLEX_NUMBER caught at .
COMPLEX_UT!LITIES.VALUE . STRIP_.LEADING.ANGLE.3s [Task : ROOT_TASK, J¥59CE4].

Stack ("%ROOT_TASK",6 @, 0).
Stack of task ROOT_TASK, H58CE4:
-1 STRIP.LEADING.ANGLE .3s
2. VALUE . ls
3. GET.LIST.OF_NUMBERS 4s.1s
4. GET_LIST_OF_NUMBERS .4s
5. DISPLAY_COMPLEX_SUMS . 7s
6. command.procedure.ls
7: command_procedure [library elsboration block]

current

procedure Strip._lLeading.Angle (X : String;
Start.At : in out Scan_Range) is

begin
Strip_Spaces (X, Stsrt_At);

if X {Start_At) <’ then

Start_At = Start_At + 1;
end Strip_Leading_Angle;

procedure Strip_Trailing.Angle (X : String;

Figure 13-13. Displaying the Call Stack for Display_Complex_Sums

The stack in Figure 13-13 contains seven frames. Each frame contains the location
at which the program’s flow of control changed. The topmost frame, frame _1,
shows that the current location is statement 3 of the subprogram Strip_Leading-
-Angle. The next most recent frame, frame -2, indicates that Strip_Leading_Angle
was called by statement 1 of the subprogram Value. Note that frame 4 records
the activation of a block—namely, statement 4 of the subprogram Get._List_Of-
—Numbers. The next subprogram call is in statement 1 of this block, as indicated
by frame _3. The earliest frames, frames _6 and _7, record the execution of Dis-
play_Complex_Sums itself.

RAT'ONAL 11/2/87 I-75

Part III. Developing Simple Ada Programs

Displaying Qualified Names in the Stack

The call stack displayed in Figure 13-13 refers to subprograms by their simple
names. To request that the stack display qualified names:

1. In a Command window, enter the following command and press [Promotd:

Debug.Enable(Debug.Qualify_Stack_Names);

2. Redisplay the stack by pressing [swa]. The stack with qualified subprogram
names is shown in Figure 13-14:

.6: command_procedure.ls
~7: command_procedure [library elasboration block]

Enable (QUALIFY_STACK_NAMES, TRUE);
The QUALIFY_STACK.NAMES flag has been set to TRUE.

Stack ("¥ROOT_TASK", @, 8);
Stack of task ROOT_TASK, N59CE4:
1: .COMPLEX_UTILITIES.VALUE.STRIP_LEADING_ANGLE .3s
2. .COMPLEX_UTILITIES VALUE. l1s
3. .DISPLAY_COMPLEX.SUMS GET.LIST_OF_NUMBERS .4s.1s
-4: . DISPLAY_COMPLEX_SUMS .GET_LIST_OF_NUMBERS .4s
5: .DISPLAY_COMPLEX_.SUMS.7s
6. .command_procedure.ls

7. .command_procedure [library elaboration block]}

current .
tack _Names |

Figure 13-14. The Call Stack with Qualified Names

Traversing from the Call Stack
You can use to view any subprogram referenced in the stack. To do this:

1. Select the frame that contains the subprogram you want to view. Leave the
cursor in the selection.
2. With the cursor in the selection, press [Defnition].

As a result, the Ada unit containing the subprogram is displayed. Within the
subprogram, the statement or declaration containing the next subprogram call
is highlighted.

I11-76 11/2/87 RAT'ONAL

Chapter 13. Debugging Ada Programs

Displaying Parameter Values for a Frame

It is often useful to know what parameter values were passed to a subprogram when
it was called. You can use to display the parameter values that were passed to
any subprogram referenced in the stack. To do this:

1. Select the frame that contains the desired subprogram. Leave the cursor in the
selection.

2. With the cursor in the selection, press [pu.

As a result, the Debugger window displays the values that were passed to the
selected subprogram at the time it was called.

Each frame also contains the values of local variables as they were when the subpro-
gram was called. For information about displaying variable values for a given frame,
see the Debugging (DEB) book of the Rational Environment Reference Manual.

When You Have Finished Debugging

You are not required to take any special action to terminate the Debugger when you
have finished debugging a program. The Debugger is terminated automatically if
the program finishes executing or if you kill the program (for example, by pressing
.o k). However, you can continue working in the Environment and even log out
without taking extra steps to terminate the program you were debugging.

Note, however, that if your program is waiting for interactive input, the Quit com-
mand will display a warning. This is true whether or not a program is executed
under the Debugger. At this point, you can kill the program or use Quit(True) to
log out.

[QATIONAL 11/2/87 ITI-77

RATIONAL

Chapter 14. Browsing Ada Programs

The Environment provides facilities for browsing systems of dependent Ada units.
Browsing a system of units allows you to look up cross-references mteractlvely,
without having to use printed cross-reference listings. For example, browsing is
useful when you are:

* Analyzing someone else’s program and you need to find type definitions for pro-
gram variables

¢ Tracking down a problem with the Debugger and you need to see where and how
a particular subprogram is implemented

e Considering a change to a subprogram and you want to know exactly where that
subprogram is used

This chapter describes the Environment’s facilities for browsing Ada programs,

including:

o [Deinition), which answers the question: “Where and how is this object defined?”

¢ [show Usage;, which answers the question: “Where aid how is this object used?”

The examples in the following sections show how to browse portions of the Ada

program Display_Complex_Sums. You may find it helpful to refer to Figure 10-3
in Chapter 10 to see how the units in this program are related.

RATIONAI_ 11/2/87 I11-79

Part III. Developing Simple Ada Programs

Where Is This Defined?

In the process of analyzing, maintaining, or debugging a program, you typically
need to know where and how various program elements are defined. With [Defnition],
you can browse an Ada program to find this information. For example, you can use
to display the Ada unit in which:

e A given subprogram is declared or implemented
e A given variable or its type is declared

To view the defining occurrence of a program element such as a subprogram, a
variable, or a type:

1. In an Ada unit, put the cursor on any occurrence of that element.

Alternatively, you can select any occurrence of the element. Selecting an element
makes it easier to see what you’ve chosen. If you select the element, leave the

cursor in the selection.

2. Press Deﬁnlzlon

As a result, the Ada unit containing the defining occurrence of the element is
displayed.

(Note that Dehnition 1n Piace; has the same effect, except that the new window re-
places the current one instead of being displayed in the least recently visited
frame.)

By displaying various program units, [Desniion] enables you to traverse an Ada pro-
gram just as it enables you to traverse through the Environment library system,
the list of windows in the Window Directory, the call stack for a program under the
Debugger, and the like. Because [pesnivion] has such general usage, you are encouraged
to try [Dernition) whenever you want to traverse among related program elements.

If Definition Fails

You can use [pefinition] in source, installed, or coded umnits. In a source state unit,
[Denivion] will fail with the following message if you made changes since you seman-
ticized, demoted, or attempted to promote the unit:

Definition failed - mot found

If this happens:

1. PreSS Semanticize|,

2. Press[Deniion again. Note that [pesnition] may fail if the cursor is on an underlined
name (a name that cannot be resolved).

You can use [Behnition] from a Command window only after executing the command
or pressing Semanuicize] for an unexecuted command.

I11-80 11/2/87 RAT'ONAL

Chapter 14. Browsing Ada Programs

Example 1: Viewing the Definition of a Subprogram

Assume that you are viewing the body of the procedure Display..Complex_Sums,
which contains a call to the function Complex.Plus. You want to know more about
this function, so you select the function’s identifier, as shown in Figure 14-1:

Text_lo Put_Line
(! Value Running Total 1"},

Text_.lo.Put_Line ("I" & Header & "1");

Sum = Complex.Make (0.0, 0.0);

Text_lo. Put ("| ")
Text_lo.Put (Complex Utilities. Image
(Complex_List Head (List_Of_Numbers)));
Text_lo.Put (" ");
_COMPLEX_SUMS 'BODY V2@ 123z - {oaed

Figure 14-1. Selecting the Identifier Complex.Plus

Pressing [pernition] displays the specification of package Complex, which contains the
declaration for Plus. Within the declaration, the identifier Plus is highlighted, as
shown in Figure 14-2:

Text_.lo.Put_Line
(" Value Running Total 1),

Text_ lo.Put_Line ("1" & Header & "1");

Sum = Complex . Make (0.0, 0.0);

while not Complex.list.is_Null (List_Of_Numbers) loop
Sum := Complex.Plus (Sum, Complex_lList . Head (List_Of_Numbers));
Text. lo. Put ("I "),
Text_lc Put (Complex.Utilities.image
(Complex_List .Head (List_Of_Numbers)});
Text_lo.Put (" "),
DISPLAY._ COMPLEX_SUMS "BODY "V el | ada .

package Complex is
type Number is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary._Part (X : Number) return Float;

function (X, Y : Number) return Number;
function Minus (X, Y : Number) return Number;
private

type Number is
COMPLEX_NUMBERS COMPLEX "vi3: 133da:

Figure 14-2. After Pressing

RATIONAL 11/2/87 HII-81

Part III. Developing Simple Ada Programs

For more information about Plus, you can press again. This time,
displays the body of package Complex, which contains the subprogram body for
Plus. Again, the identifier Plus is highlighted, as shown in Figure 14-3:

Text_lo.Put_Line
(" Value Running Total "),

Text.lo.Put_Line ("1" & Header & "1");

Sum = Complex Make (0.0, 2.0);

while not Complex.List. Is_Null (List_Of_Numbers) loop
Sum = Complex.Plus (Sum, Complex.List Head (List_0f_Numbers));
Text_lo.Put ("1 ");
Text_lo.Put (Complex_Utilities. Image
(Complex_L ist Head (List.0f_Numbers)));
Text_lo.Put (" ");

DISPLAY_COMPLEX_SUMS BODY "vi 20 . aAad= .

package Complex is
type Number is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
function Minus (X, Y : Number)} return Number;
private
type Number is
record

& e GOMPLEX NUMBERS . COMPLEX "vi3) 1 aaa.

package body Complex is
function Make (X, Y : Float) return Number is
begin
return (X, Y);
end Make;
function Real_Part (X : Number) return Float is
begin
return X . Real;
end Real_Part;
function Imaginary_Part (X : Number) return Float is
begin
return X.imag;
end Imaginary_Part;

function (X, Y : Number) return Number is
begin
return (X.Real + Y.Real, X.imag + Y.Imag);

end Plus;
- COMPLEX_NUMBERS COMPLEX BODY 'V 311 «aad3aq ~ Coded

Figure 14-3. After Pressing Again

If you press again, the cursor returns to the subprogram declaration in the
package specification. Subsequent presses of toggle the cursor between the
specification and body for Plus. In this way, [Defnisicn] and [osher Pant] behave similarly.

111-82 uzer RATIONAL

Chapter 14. Browsing Ada Programs

Selection versus Cursor Position

Note that selection is used in this example to designate Complex.Plus because
selection is the most visually explicit means of indicating what you want to see.
Alternatively, you can use cursor position alone, although you must pay careful
attention to where you put the cursor:

e Putting the cursor in the identifier Plus is equivalent to selecting the qualified
name Complex.Plus, causing [penivion] to display package Complex and highlight
the Plus function.

e Putting the cursor in the identifier Complex has a somewhat different effect, caus-
ing [penition) to display package Complex without highlighting the Plus function.

Some Browsing Options

Under the standard key bindings, repeated uses of display a unit’s specifi-
cation first, its body next, and then toggles between them. In the example above,
Plus is found first in the specification of Complex and then in the body of Complex.

This sequence of events is controlled by the Visible parameter of the Definition
command. Under the standard key bindings, Visible has the value true, so the
specification (or visible part) is displayed first. To traverse directly to a unit’s
body, you can enter the Definition command with Visible set to false. (If this is
your normal preference, you can rebind to use this parameter value.)

Example 2: Viewing the Definition of a Variable

Assume that you have returned to the body of Display_Complex_Sums and you are
looking once again at the assignment statement that contains Complex.Plus. Now
you want to know more about the variable Sum, so you select the occurrence of
Sum, as shown in Figure 14-4:

Text_lo.Put_Line ("+" & Header & "+");
Text.lo Put_Line
("1 Value Running Total (I
Text_lo.Put_Line ("I" & Header & "1");
Sum = Complex.Make (2.0, @.9);

while not Complex_List.Is_Null (List_Of_Numbers) loop

Bam = Complex.Plus (Sum, Complex.lList . Head (List_Of_Numbers));
Text.lo . Put ("1 "),

Text_.lo.Put (Complex_Utilities. image

(Complex.List Head (List_Of_Numbers)));

Text_lo. Put (" ");

Text_lo Put (Complex_Utilities. !mage (Sum));
DISFLAY_COMPLEX_SUMS 'BODY 'V 20 (ada)

Figure 14-4. Selecting the Identifier Sum

RAT'ONAL 11/2/87 I1-83

Part III. Developing Simple Ada Programs

Pressing displays the declaration for Sum. Because this declaration is lo-
cated earlier in the body of Display_Complex _Sums, the unit is scrolled in the
gsame window. Within its declaration, the identifier Sum is highlighted, as shown
in Figure 14-5:

with Complex, Complex_Utilities, Text.lo;

procedure Display_Complex_Sums is
package Complex_List renames Complex_Utilities Complex.lList;
List_Of _Numbers : Complex.List List;
3 : Complex . Number
Input_Line : String (1 .. 100),;
Line.Length : Natural := @;
Input_File . Text_lo.File_Type;
Header : constant String :=

Figure 14-5. Displaying the Declaration of Sum

Note that Sum is of Complex.Number type. Pressing again displays the
type declaration for Complex.Number, as shown in Figure 14-6:

with Complex, Complex.Utilities, Text.lo;

procedure Display.Complex_Sums is
package Complex_List renames Complex.Utilities. Complex_List;
List_Of _Numbers : Complex_lList List;
Sum : Complex Number
Input_Line : String (1 .. 100);
Line_Length : Natural = 0@;
Input_File : Text_lo.File_Type;
Header : constent String :=

DISPLAY_COMPLEX_SUMS 'BODY 'vi20:1 yada coded

package Complex is
type BGEEEE is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float,
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number,
function Minus (X, Y : Number) return Number;
private
type Number is
record
¥ CEX_NUMBERS COMFLEX v100 1 ade.

Figure 14-6. Displaying the Declaration of Complex.Number

I11-84 11/2/87 EATIONAL

Chapter 14. Browsing Ada Programs

Because Complex.Number is a private type, pressing one more time high-
lights the corresponding private part, as shown in Figure 14-7:

package Complex is
type Number is privste;
function Make (X, Y : Float) return Number;
function Resl_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Flost;
function Plus (X, Y : Number) return Number;
function Minus (X, Y : Number) return Number;
private

end Complex;

@ o« COMPLEX_NUMBERS COMPLEX Vi3t 1aga.

Figure 14-7. Displaying the Private Part for Complex.Number

Subsequent presses of toggle between the private type declaration and its
completion in the private part.

QATIONAL 11/2/87 I11-85

Part III. Developing Simple Ada Programs

Where Is This Used?

In the process of analyzing, maintaining, or debugging a program, you often need
to know where and how various program elements are used. With [Show Unee], you
can trace the usage of program elements throughout the program’s units. More

specifically, you can use to:

o List all units in which a given program element is used
¢ Underline all using occurrences of that element within any of the listed units

To view the using occurrences of a program element such as a subprogram, a vari-
able, or a type:
1. In an Ada unit, put the cursor on any occurrence of this element.

Alternatively, you can select any occurrence of the element; if you do, leave the
cursor in the selection.

2. Press {show Usage].

One of two actions results:

o If usages are found only in one Ada unit, these usages are underlined.

¢ If usages are found in multiple units, a cross-reference listing of these units
(called an zref) is displayed in a separate window. Use to view these
units, in which usages appear underlined.

3. Use [Rexiiiem, and [Previow 1eem| to move among underlined usages. You can remove
the underlines by pressing [Undertines of1].

reports occurrences only in units that are installed or coded.

Note that the keyboard overlay lists other related keys in the column labeled

“Show.” shows using occurrences only in the current unit, whereas
[Show Usage (Indirect)] shows using occurrences as well as indirect references in any unit.
These keys are bound to variants of the Ada.Show_Usage command. For more in-
formation, see the Editing Specific Types (EST) book of the Rational Environment
Reference Manual.

I11-86 11/2/87 R/A\TIONAL

Chapter 14. Browsing Ada Programs

Example 1: Showing Variable References

Assume that you are viewing the declaration of the variable List_Of_Numbers in
the body of Display_Complex_Sums. You want to know where this variable is used,
so you select it, as shown in Figure 14-8:

with Complex, Complex_Utilities, Text_lo;
procedure Display.Complex_Sums is

package Complex.List renames Complex_Utilities.Complex_List;

8 . Complex_List List;
Sum : Complex.Number

Input_Line : String (1 .. 100},
Line_Length : Natural := 0,
Input_File : Text_lo.File_Type;

Header : constant String .=
= -~ DISPLAY_COMPLEX_SUMS "'BODY "V. 21+ +ada. ingtaliea

Figure 14-8. Selecting the Variable List.Of_Numbers

Because List—-Of_Numbers is a local variable within Display_Complex_Sums’Body,
pressing underlines all references within that unit, as shown in Figure 14-9:

while not Complex.List.Is_Null (List Of Numbers) loop
Sum := Complex.Plus (Sum, Complex_List.Head (List.Of Numbers});
Text_lo. Put ("1 "),
Text_lo.Put (Complex_Utilities.Image
(Complex.list Head (List.Of Numbers))).

Text_lo Put (" "),
Text_ o Put (Complex_Utilities.Image (Sum));
Text.lo Put_Line (" "y,

i ;= Complex.List Tail (List.Of _Numbers):;

end loop;

ingtallea -

Figure 14-9. Showing the References to List-Of_Numbers

If you scroll back to the declaration of List_Of_Numbers, you will notice that this
occurrence of the identifier is not underlined. This is because reports only
the using occurrences of an object, not its defining occurrence.

If List_Of_Numbers had occurrences in other units, a cross-reference listing of these
units would be displayed (see the next section).

R)A-“ONAL 11/2/87 I1-87

Part III. Developing Simple Ada Programs

Example 2: Showing Usages in Multiple Units

Assume that you are viewing a using occurrence of the function Complex.Make in
the body of Display_Complex_Sums. You want to know where else this function is
used, so you select this occurrence, as shown in Figure 14-10:

Text_lo.Put_Line ("+" & Header & "+");
Text_lo . Put_Line

(" Statistics on a set of Complex Numbers 1"},
Text_lo.Put_Line (“+" & Header & “+");
Text_lo.Put_Line

("1 Value Running Total 1"y,
Text_lo.Put_Line ("I" & Header & "1");

: S L ek i (09, ﬂﬂ),

while not Complex.list.ls_Null (List_Of_Numbers) loop
Sum = Complex Plus (Sum, Complex_List Head (List_Of_Numbers));
Text_io.Put ("1 "),

Figure 14-10. Selecting a Using Occurrence of Complex.Make

Because Complex.Make is used in multiple units, pressing displays a cross-
reference listing of these units, as shown in Figure 14-11:

Text.lo Put_Line ("+" & Header & "+");
Text.lo. Put_Line

("1 Statistics on a set of Complex Numbers 1),
Text.io.Put_Line {"+" & Header & "+");
Text.lo.Put_Line

("1 Value Running Totsl 1y,
Text.lo . Put_Line ("1" & Header & "1"};
E x-make (0.0, 0.9);

while not Complex.List.!s_Null {List_Of_Numbers) loop
Sum .= Complex Plus (Sum, Complex_lList Head (List_Of_Numbers));
Text_to.Put ("1 ™),

DISPLAY_COMPLEX_SUMS "'BODY "V 200 {ada:

'USERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX

IUSERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX ‘' BODY

1USERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX_UT IL I TIES 'BODY
IUSERS . ANDERSON . COMPLEX_NUMBERS . D I SPLAY_COMPLEX_SUMS 'BODY

COMPLEX_NUMBEKRS COMRLEX MAKE xret . Fluu _NAMES

Figure 14-11. The Cross-Reference Listing for Complex.Make

I11-88 11/2/87 RAT'ONAL

Chapter 14. Browsing Ada Programs

To see the usages of Complex.Make in the unit Complex_Utilities’Body, you put
the cursor on the entry for that unit in the cross-reference listing and press [pefaition],
as shown in Figure 14-12:

IUSERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX
|USERS_ANDERSON, COMPLEX_NLMBERS . COMPLEX_ BODY__

TSERS ANOERSON . COMPLEX T MEERS D] SPLAY COMELEX SUMS BODY

- COMPLEX_NUMBERS COMPLEX MAKE xref

Imaginary_Part, Scan_Location);
Scan_lLocation := Scan_lLocation + 1;
Strip_Trailing_Angle (X, Scan_Location);
return Complex.Make (Real_Part, Imaginary_Part);
exception
when others =>
raise |llegal_Complex.Number;
end Velue;
end Complex_Utilities;

< _NUMBERS COMPLEX_UTILITIES BODy vi5: 335

Figure 14-12. Displaying Complex_Utilities’Body from the Listing

It is important to note that not all units in a cross-reference listing necessarily
contain a using occurrence of the specified element. Rather, cross-reference listings
are determined by current and former dependencies among whole units; therefore,
a given entry in a listing is actually a candidate unit that potentially contains a
using occurrence.

RAT'ONAL 11/2/87 IT1-89

Part III. Developing Simple Ada Programs

If you attempt to view a candidate unit that does not contain a using occurrence,
its entry is removed from the cross-reference listing. In this example, assume that
you use [Definition] to try to view Complex’Spec from the cross-reference listing. Be-
cause Complex’Spec contains only a defining occurrence for Complex.Make, pressing
(Defnition] eliminates the entry for Complex’Spec from the listing, as shown in Figure
14-13:

Eliminating line - COMPLEX has no references

='Rational iDelta! ANDERSON S_1

JUSERS . ANDERSON . COMPLEX_NUMBERS COMPLEX 'BODY
'USERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX_UTIL ITIES 'BODY
TUSERS . ANDERSON . COMPLEX_NUMBERS .D | SPLAY_COMPLEX_SUMS 'BODY

= COMPLEX _NUMBERS . COMELEX MAKE 1 xref) FULL _NAMES-

Imaginary._Part, Scan_location);
Scen_lLocation = Scan_tocation + 1;
Strip.Trailing_Angie (X, Scan_location),
return Complex . Make (Real_Part, Imasginary_Part);
exception
when others =>
raise |llegal_Complex_Number
end Value;
end Complex_Ut:lities,

= MNUMBERS COMPLEX_UTILITIES "BODY v 51 3oy ~ Coged

Figure 14-13. Eliminating Complex’Spec from the Listing

You can eliminate all “false” candidates from a cross-reference listing as follows:

1. Put the cursor in the window containing the cross-reference listing.
2. PreSS ' Semanticize!,

Note that this operation can be quite time-consuming for long listings.

111-90 ns2er RATIONAL

Chapter 15. Modifying Installed or Coded Programs

Programs typically require some amount of modification after they have been pro-
moted to the installed or coded state. For example, you may need to change installed
or coded units because:

¢ Testing and debugging have revealed problems that must be corrected.
o New requirements entail corresponding enhancements to program behavior.
¢ Comments must be added for better program documentation.

One way of changing installed or coded units is to demote them to the source
state and make the corrections using basic editing operations. However, if you
demote a unit to the source state, you must demote any units that depend on it,
as well. Therefore, using this method to change a single unit can potentially entail
recompiling a whole program after the change is made.

As an alternative, the Environment provides operations for making certain kinds of
changes without having to demote and then repromote units. Using these opera-
tions, you can add, change, or delete specific elements in installed or coded units.
These operations are called stncremental operations because they allow individual
changes to be compiled incrementally instead of requiring complete recompilation.

This chapter describes:

¢ The kinds of program elements that can be changed with incremental operations

¢ How to add, modify, and delete program elements from unit bodies and unit
specifications

* How to make changes when incremental operations cannot be used

RAT'ONAL 11/2/87 I11-91

Part III. Developing Simple Ada Programs

Elements That Can Be Changed Incrementally

On other computer systems you may have used, the compilation unit is the smallest
program element that can be changed and recompiled. On such systems, adding a
statement to a unit body requires recompiling the entire body. Similarly, adding
a declaration to a unit specification requires recompiling the specification and any
other units that depend on it.

In contrast, the Environment allows you to change and recompile program elements
at a finer level of granularity. More specifically, you can incrementally add, modify,
and delete the following kinds of program elements:

o Stand-alone comments (comments on lines by themselves)
e Statements

¢ Declarations that have no dependencies

¢ Context clauses

Thus, on the Environment, the statement or declaration is the smallest program
element you can change and recompile. gTo change an expression or a field within a
record, you must incrementally recompile the whole statement or declaration that

contains it.)

If Dependencies Exist

To preserve the validity of your program, the Environment allows you to incre-
mentally change or delete only those program elements that are not referenced by
other program elements. Therefore, you can perform incremental operations on any
stand-alone comment or statement, because nothing can reference a comment or a

statement.

In contrast, declarations can be, and typically are, referenced by other program
elements. (Such elements are said to depend on the declarations they reference.)
For example, a dependency to a declaration is introduced whenever a statement or
declaration calls a subprogram or references a variable. Because the Environment
manages dependencies on individual declarations (as well as on whole units), it
prevents you from incrementally changing or deleting any declaration on which a
statement or another declaration already depends.

Whenever you are thus prevented from making a change incrementally, you must

demote the relevant units to the source state to make that change (see “Making
Changes That Require Demotion,” below.)

I11-92 11/2/87 EATIONAL

Chapter 15. Modifying Installed or Coded Programs

Units and States

You can use incremental operations to change elements in any installed unit. How-
ever, making an incremental change to a coded unit depends on the kind of element
you want to change and on the kind of unit that contains the element. Table 15-1
summarizes the permitted states for incremental changes:

Table 15-1. Unit States in Which Incremental Operations Can Be Used

Unit Body Unit Specification
Comments Installed or coded Installed or coded
Statements and Declarations Installed only Installed or coded*

* Automatically demotes the corresponding unit body to installed.

Note that changing statements or declarations in a coded unit specification auto-
matically demotes the corresponding unit body to the installed state. The reason
for putting unit bodies in the installed state follows from the fact that incremen-
tal changes update a unit’s underlying representation, but they do not update the
object code associated with that structure. Therefore, old object code must be dis-
carded and new object code must be generated both for changed unit bodies and for
unit bodies with changed specifications. (Because comments have no object code,
they do not require that units be demoted and then recoded.)

Thus, you can generally leave a unit’s state unchanged when you want to use in-
cremental operations, with the following exceptions (at most, you need to recode a
body, even if other units are coded against its specification):

¢ You must demote a coded unit body to installed before you can incrementally
change statements or declarations in it.

* You must repromote a unit body to coded after incrementally changing its coded
specification.

Using Incremental Operations
The examples in the following sections show how to:

¢ Modify one or more selected elements using

¢ Delete one or more selected elements using [oticer] - [p]

o Add one or more new elements at the cursor position using -0

Any of these incremental operations can be applied to comments, statements, and

declarations in both unit bodies and specifications, subject to the restrictions noted
in the previous sections.

R)ATIONAL 11/2/87 111-93

Part III. Developing Simple Ada Programs

The following examples refer to portions of the coded Ada program Display_Com-
plex_Sums. You may find it helpful to refer to Figure 10-3 in Chapter 10 to see

how the units in this program are related.

Incrementally Modifying an Element

Assume that you need to correct an error in the coded body of package Complex.
Specifically, the return statement in the Minus function contains plus (+) operators
instead of minus (—) operators. Rather than demoting the entire unit to the source
state, you can incrementally demote the specific statement to source, edit it, and

then promote the statement back into the unit, as shown in the following steps:

1. Adjust the state of Complex’Body, if necessary. Because you are incrementally

modifying a statement, you must demote the body to installed.

With the cursor in the window containing Complex’Body, press to
change the body from coded to installed. Make sure the cursor is not in a

selection; otherwise, the operation will fail.

2. Select the element you want to change—namely, the return statement in the
Minus function, as shown in Figure 15-1. (Although the desired change affects

only part of the statement, you must select the entire statement.)

COMPLEX Body changed to INSTALLED

package body Complex is

function Make (X, Y : Float) return Number is
begin

return (X, Y);
end Make;
function Real_Part (X : Number) return Float is
begin

return X Real;
end Real_Part;
function Imaginary_Part (X : Number) return Float is
begin

return X.Imag;
end [maginary_Part;
function Plus (X, Y : Number) return Number is
begin

return (X.Real + Y.Real, X.imag + Y.Imag;
end Plus

~- The following function contains a bug

function Minus (X, Y : Number) return Number is
begin

end M1nus
end Complex;
- COMPLEX NUMBERS COMPLEX BODY 'viB3 1 1 adas tnsral led

Figure 15-1. Selecting the Statement to Be Modified

I11-94 11/2/87 '?ATI ONAL

Chapter 15. Modifying Installed or Coded Programs

3. With the cursor in the selection, press to extract the selected element. As
shown in Figure 15-2:

o A message in the Message window confirms that a statement has been incre-
mentally demoted.

e A window is opened containing the statement in the source state. This win-
dow is a msnor window because it shares the frame with the major window
containing Complex’Body. The cursor is put in the minor window.

e A [statement] prompt replaces the extracted statement in Complex’Body.

Incrementally demoted Statement

=-Rational 1Deltai- ANDERSON S_1

EBeturn (X.Real + Y.Real, X.imag + Y.Imag),

~{STATEMENTS] iadaji - Source
begin
return (X.Real + Y.Real, X.Imag + Y.Imag),

end Plus;

—- The following function contains a bug.

function Minus (X, Y : Number) return Number is
begin
end Minus;

end Complex;

COMPLEX BODY "viB4) ads. IngLallea

Figure 15-2. After Pressing

4. Make the desired changes to the statement (in this case, changing + to —). You
can use basic editing operations and Ada-specific editing operations. Use
and to check for errors.

Note that you are not limited to modifying the existing demoted element. In
this window, you can enter additional statements, comments, or even levels
of structure (for example, by surrounding the demoted statement with an if
statement).

RAT'ONAL 11/2/87 I11-95

Part III. Developing Simple Ada Programs

5. With the cursor in the minor window, press to promote the modified
statement and return it to Complex’Body, as shown in Figure 15-3. Note that:

¢ The minor window disappears; its contents replace the [statement] prompt
in Complex’Body.

e A message in the Message window confirms that the statement is now in-
stalled.

As usual, will fail if there are syntactic or semantic errors.

Statement list changed to INSTALLED

= Rational iDelta, ANDERSON S_|

function Plus (X, Y : Number) return Number is
begin

return (X.Real + Y.Real, X.Imag + Y.imag);
end Plus;

-- The following function contains a bug.

function Minus (X, Y : Number) return Number is
begin

B return (X.Real - Y.Real, X.Imag - Y.Imag);
end Minus;

end Complex;

Ingralled

Figure 15-3. After Pressing

6. Press again to recode Complex’Body. The program can now be executed.

Selecting One or More Elements

You can use any selection operation to designate one or more elements for incre-
mental modification {or deletion, described below). The following guidelines may
be helpful:

o Use object selection operations (such as - [=]) to select a single element at
any level of program structure. An entire list of statements or declarations at the
same level counts as a single element. For example, in Complex’Body, you can
use - [=] to select the entire Minus function or the entire list of functions,
from Make to Minus.

e Use [Region] - [and - 1] to select multiple elements at the same level, such as
a partial list of statements or declarations. For example, in Complex’Body, you
can use these operations to select just the two functions Plus and Minus.

111-96 user RATIONAL

Chapter 15. Modifying Installed or Coded Programs

Using the Window Provided by an Incremental Operation

A minor window is opened when an element is incrementally modified (or added; see
below). The window banner identifies the element you are modifying or adding—in
Figure 15-2, the minor window is identified as a [STATEMENTS] window.

This window is logically connected to the prompt that marks its place in the parent
unit. For example, if you delete the prompt, the window and its contents are
discarded. (See “Incrementally Deleting an Element,” below.)

If you cannot repromote the contents of the window because of errors, you can
use to save your work until the errors are corrected. (You can use and
for syntactic and semantic assistance.) The demoted portion of the unit
appears in the library with a temporary name (such as _Ada_4_), which is listed
under the parent unit’s name.

To enlarge a minor window, you can make it into a major window by pressing
- [Promote]. Note that you can use [Defnition] and [Encloring] to traverse between the prompt
in the parent unit and the element you are incrementally editing.

Incrementally Deleting an Element

Having corrected the error in the Minus function, you now delete the comment lines
above it, as shown in the following steps. You can use incremental deletion here
because these are stand-alone comment lines rather than right-trailing comments.

1. Check the state of Complex’Body. Because you are incrementally deleting a
comment, you can leave Complex’Body in the coded state.

2. Select the element you want to delete—namely, the comment above the Minus
function, as shown in Figure 15-4:

COMPLEX '‘Body changed to CODED
= Raltional tDeitai ANDERSON S_1 -

function Plus (X, Y : Number) return Number is
begin

return (X.Real 4+ Y.Real, X.Imag + Y.Imag);
end Plus,

function Minus (X, Y : Number) return Number is
begin
return (X.Real - Y.Real, X.!mag - Y.Imag);
end Minus;
end Complex

COMPLEX_NUMBERS COMPLEX 'BODY 'vi65¢ 1a&0a

Figure 15-4. Selecting the Comment to Be Deleted

RATIONAL 11/2/87 I1-97

Part III. Developing Simple Ada Programs

3. With the cursor in the selection, press - [0]. As shown in Figure 15-5, a
message in the Message window confirms that the element has been deleted:

Comment is deleted

= kalional (Deltas ANDERSON S_1 .

function Plus (X, Y : Number) return Number is
begin
return (X.Real + Y.Real, X.Iimag + Y.imag);

end Plus;

B function Minus (X, Y : Number)} return Number is
begin
return (X.Real - Y.Real, X.imeg - Y.Imag);
end Minus;

end Complex;

e - ACOMPLEX_NUMBERS -COMPLEX "BODY "v: 661 iada.

Figure 15-5. After Deleting the Selected Element

An entire block of comment lines counts as a single element for incremental opera-
tions. That is, you cannot select just one comment line from a block of contiguous
lines and then incrementally delete it. Instead, you must use the method described
in “Incrementally Modifying an Element,” above, to extract the entire block of
comment lines and then edit the block to delete the unwanted line.

I11-98 11/2/87 RATIONAL

Chapter lo. Modilying instale€d Oor Loded rrograms

Incrementally Adding an Element

Assume that you want to add a new function called Times to package Complex.
To do this, you need to add a new declaration to Complex’Spec and then build
a corresponding function body within Complex’Body, as shown in the following
sections.

Adding a New Declaration

The following steps show how to add a declaration for the Times function to Com-
plex’Spec. You can leave Complex’Spec in the coded state because it is a specifica-
tion. (Note that modifying Complex’Spec automatically changes Complex’Body to
the installed state.)

1. In Complex’Spec, position the cursor after the last function declaration, as
shown in Figure 15-6:

package Complex is
type Number is private;
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Floast,
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
function Minus (X, Y : Number) return Number; |[§
private
type Number is
record
Real, Imag : Float;
end record,;
end Complex;

= COMPLEX _NUMBERS COMPLEX 'Vi 13 18day

Figure 15-6. Designating the Location of the New Declaration

RATIONAL 11/2/87 I11-99

Part III. Developing Simple Ada Programs

2. Press [obict] - [1]. As shown in Figure 15-7:

¢ A minor window is Qgsened with a [declaration] prompt in the source state.
The banner under this window identifies it as a [DECLARATIONS] window.

e A matching [declaration] prompt appears in Complex’Spec where the new
declaration will be inserted. This [declaration] prompt is automatically
selected; that is, it is both in reverse video and in the selection font.

{A=claralion

s DECLARATIONS | i®agay Source
function Make (X, Y : Float) return Number
function Real_Part (X : Number) return Float,
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number
function Minus (X, Y : Number) return Number,

Figure 15-7. After Pressing -0

3. With the cursor on the [declaration] prompt in the minor window, enter the
desired declaration, as shown in Figure 15-8. Use [Format] and [semanticize] for com-
pletion and error checking. You can add arbitrarily many declarations and
comment lines.

~- This function is for demonstration purposes only:
function Times (X, Y : Number) return Number

* [DECLARAT.IONS] (ada) Source
function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
function Minus (X, Y ¢ return Number ;

private
type Number is
- COMPLEX_NUMBERS COMPLEX vi 14

Figure 15-8. Entering a New Declaration and Comment Lines

III-100 11/2/87 RAT'ONAL

Chapter 15. Modifying Installed or Coded Programs

4. With the cursor in the minor window, press to promote the new decla-
ration into Complex’Spec, as shown in Figure 15-9. As a result:

¢ The minor window disappears and its contents replace the [declaration]
prompt in Complex’Spec.

¢ A message in the Message window confirms that the new declaration is now
coded.

Declaration list changed to CODED

function Make (X, Y : Float) return Number;

function Real_Part (X : Number) return Float;

function Imaginary.Part (X : Number) return Float;

function Plus (X, Y : Number) return Number;

function Minus (X, Y : Number} return Number

-- This function is for demonstration purposes only:
B function Times (X, Y : Number) return Number,

private
type Number 18

X_NUMBERS COMFPLEX V151 1303

Figure 15-9. After Pressing

Adding the Corresponding Body

The following steps show how to incrementally build a body for the Times function
from its declaration in Complex’Spec. The new body is inserted in the correct order
in Complex’Body. As a result of adding the new declaration to Complex’Spec,
Complex’Body has already been changed to the installed state.

1. Select the declaration for Times in Complex’Spec, as shown in Figure 15-10.

function Make (X, Y : Float) return Number;
function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
function Minus (X, Y : Number) return Number;

private
type Number is
: COM X_NUMBERS COMPLEX V1151 1303

Figure 15-10. Selecting the Declaration for the Times Function

RATIONAL 112/ 1I-101

Part III. Developing Simple Ada Programs

2. Press [CreatcBody]. As shown in Figure 15-11:
e Complex’Body is automatically displayed.
¢ A skeletal function body for Times is displayed in a minor window above
Complex’Body.

o A [declaration] prompt is inserted at the end of Complex’Body, marking
the location of the new function body.

function Make (X, Y : Float) return Number;

function Real_Part (X : Number) return Float;
function Imaginary_Part (X : Number) return Float;
function Plus (X, Y : Number) return Number;
function Minus (X, Y : Number) return Number;

—-— This function is for demonstration purposes only
function Times (X, Y : Number)} return Number

B function Times (X, Y : Number) return Number is
begin

end Times;

=~ DEGLARATGNS] +8da - - 80U GE
function Minus (X, Y : Number) return Number 1is
begin
return (X.Real - Y.Real, X.Imag - Y.Imag);
end Minus,
E=={declaralion | ===
end Complex,

- GOMPLEX_NUMBERS GOMPLEX 'BODY v.i67: 303! Insralled

Figure 15-11. After Pressing

3. With the cursor on the [statement] prompt in the minor window, complete the
function body for Times. Use and for syntactic completion and
semantic checking.

I11-102 11/2/87 BA\-”ONAL

Chapter 15. Modifying Installed or Coded Programs

4. With the cursor in the minor window, press to promote the new body

into Complex’Body,

as shown in Figure 15-12. As before, the minor window

disappears and a message is displayed in the Message window.

No semantic errors

Declaration list changed to INSTALLED

function Make (X, Y :
function Real_Part (X :

Float) return Number;
Number) return Float;

function Imaginary_Part (X : Number) return Float;

function Plus (X, Y :
function Minus (X, Y :

Number) return Number,
Number) return Number

-- This function is for demonstration purposes only
function Times (X, Y : Number) return Number;

L COMFLEX V1151 1a@gat

function Minus (X, Y : Number) return Number is
begin
return (X.Real - Y.Real, X.Imag - Y.Imag),;
end Minus;
B function Times (X, Y : Number) return Number is
begin
return (X.Real = Y Real, X.Imag * Y.Imag);
end Times,;
end Complex;

installed

Figure 15-12. Promoting the Body for the Times Function into Complex’Body

5. Press{Promotd] again to recode Complex’Body. The program can now be executed.

Determining the Kind of Element That Is Added

The location of the cursor in a unit determines what kind of element you are
prompted for when you press - (1. Putting the cursor in a declaration list
produces a [declaration] prompt in a window labeled [DECLARATIONS]. Likewise,
putting the cursor in a statement list produces a [statement] prompt in a window
labeled [STATEMENTS]. If you try to add a statement where a declaration is expected,
the statement is syntactically completed as a declaration, and vice versa. (If this
happens, delete the prompt and start over.)

R)ATIONAL 11/2/87 II1-103

Part III. Developing Simple Ada Programs

Certain other constructs, such as exception handlers, can be added incrementally
using special cursor placement. For example, you can add an exception handler to
the body of the Times function by putting the cursor at the beginning of the end
statement for that body, as shown in Figure 15-13:

function Minus (X, Y : Number) return Number is

begin

return (X.Real - Y.Real, X.Imag - Y.Imag);
end Minus,
function Times (X, Y : Number) return Number is
begin

return (X.Real * Y Reel, X.imag * Y.Imag);
B end Times;
end Complex;

IMBERS .COMPLEX 'BODY "vi 771 1adai ‘ingtalleg

Figure 15-13. Positioning the Cursor to Add an Exception Handler to Times

When you press [obiect] - [1], the reserved word exception is added, followed by a
prompt for an alternative. The corresponding minor window also contains an [al-
ternative] prompt, as shown in Figure 15-14:

falternallive

FAALTERNATAVES] fadat - Source -

end Minus
function Times (X, Y : Number) return Number is
begin

return (X.Real * Y Real, X.Imag * Y.Imag);

exception

inglallea

S e GOMPLEX _NUMBERS: COMPLEX 'BODY v 78+ yada:

Figure 15-14. After Pressing -0

Note that placing the cursor at the end of the previous statement (the return state-
ment in Times) would have resulted in a [statement] prompt instead of an exception
handler. '

ITI-104 11/2/87 QATIONAL

Chapter 15. Modifying Installed or Coded Programs

Some Common Problems

The following sections discuss common problems that can arise when you use in-
cremental operations.

Removing an Unwanted Prompt

After using - 1, you may decide that the resulting prompt is in the wrong
place or prompts for the wrong kind of program element. For example, if the cursor
was positioned incorrectly, an exception handler may appear when you wanted a
[statement] prompt. To remove an unwanted prompt:

1. Select the prompt in the major window, if it is not already selected. (In some
cases, the prompt is automatically selected when it is first inserted.)

2. Press - [p] to delete the prompt and remove the corresponding minor
window and its contents.

Deleting the [alternative] prompt in an exception handler automatically deletes
the reserved word exception. In fact, when a construct like an exception handler
consists of a reserved word followed by a list of items, the only way to delete the
reserved word is to delete the list below it. (You cannot select and delete the
reserved word directly.)

Forgetting to Demote a Body

Unit bodies must be in the installed state before statements or declarations can be
added, modified, or deleted. If you forgot to demote a body to installed, a message
like the following is displayed in the Message window when you try to complete the
incremental operation:

1: ERROR Incremental operations in coded units are only allowed for
library unit package specs

If this message is displayed:

1. Turn off any selections in the unit body.
2. With the cursor in the window containing the unit body, press [instan uait].
3. Repeat or continue the desired incremental operation.

EAT‘ONAL 11/2/87 | I1I-105

Part III. Developing Simple Ada Programs

Selecting a Construct That Cannot Be Edited

Not every selectable construct can be edited or deleted. For example, assume that
you want to change the names of the parameters in the Plus function. If you select
just the parameter list and press [£ai, a message in the Message window reports
that this construct cannot be edited, as shown in Figure 15-15:

Demote failed - "X, Y : Number” is not an editable construct.

a-Rational +Delltar ANDERSON S_1 -

package Complex 1is
type Number is private;
function Make (X, Y : Float} return Number;
function Real_Part (X : Number) return Float,;
function Imaginary._Part (X : Number) return Float;
function Plus EE=F—1
function Minus (X, Y : Number) return Number;

= COMPLEX_MNUMBERS COMPLEX'VilS5y iada: L oded

Figure 15-15. Attempting to Edit a Parameter List

Attempting to Change a Declaration That Has Dependents

You cannot incrementally edit or delete a declaration on which other program el-
ements depend. For example, assume that you select the entire declaration for
the Plus function in order to change its parameter names. However, because Plus
is referenced by statements or declarations in other units, pressing causes an
obsolescence menu to be displayed, as shown in Figure 15-16:

Demote failed - would obsolesce other units

=-Rataonel~{Deltal ANDERSON S_1 - :

package Complex 1is

type Number 1is private;

function Make (X, Y : Float) return Number,

function Real_Part (X : Number) return Float;

function Imaginary.Part (X : Number) return Float;
i el e e =

function Minus (X, Y :

Units that are obsolesced by PLUS Spec

IUSERS . ANDERSON . COMPLEX_NUMBERS . COMPLEX ‘BODY 'V(68)
VUSERS . ANDERSON . COMPLEX_NUMBERS .DISPLAY_COMPLEX_SUMS ‘BODY 'V(21)

Figure 15-16. Attempting to Edit Plus, Which Has Dependents

IT1-106 11/2/87 RATIONAL

Chapter 15. Modifying Installed or Coded Programs

This menu lists the names of all units that contain references to Plus. The named
units therefore need to be recompiled when Plus is changed. You can traverse to
a listed unit by pressing [bermwion]. You can get more specific information (each
reference underlined) by selecting Plus and pressing [Show Ussse).

Making Changes That Require Demotion

Some changes cannot be made incrementally because they require the recompilation
of other units or other portions of the same unit. Such recompilation is required to
modify or delete a declaration on which other program elements depend. If you try
to incrementally change or delete a declaration that has dependents, an obsolescence
menu is displayed, as described in the previous section.

When an incremental operation produces an obsolescence menu, you can use the
automatic compilation facilities to demote and repromote the affected units. For
example, the following steps show how to change the names of the parameters in the
Plus function. Changes need to be made in both Complex’Spec and Complex’Body.

1. Select the library entry for Complex’Spec or, if the cursor is in the window
containing Complex’Spec, select the entire unit by repeatedly pressing [ovi] -

2. Press [Source (this worta)). As shown in Figure 15-17, a log is displayed showing the
dependent units that are now demoted to the source state:

ANDERSON . COMPLEX_NUMBERS . COMPLEX'V(16) % COMPILATION DEMOTE STARTED 9:41:83 PM

87/08/29 21:41:94 ::: [Compilation.Demote ("<SELECTION>",6 SOURCE, "<WORLDS>",
87/08/29 21:41:85 ... FALSE, PERSEVERE) ;]

B87/08/29 21:41:05 -—~ Attempting to demote !USERS. ANDERSON.COMPLEX_NUMBERS .
87/08/29 21:41:05 ... COMPLEX.

87/08/29 21:41:05 +++ !'USERS.ANDERSON.COMPLEX..NUMBERS .COMPLEX ‘BODY demoted to
87/08/29 21:41:05 ... SOURCE.
87/08/29 21:41:06 +++ !USERS . ANDERSON.COMPLEX_NUMBERS COMPLEX_UTILITIES.

87/08/29 21:41:06 ... IMAGE'BODY demoted to SOURCE.
87/08/29 21:41:06 +++ 1USERS. ANDERSON.COMPLEX_NUMBERS .COMPLEX_UTILITIES ‘80DY
87/08/29 21:41 .06 ... demoted to SOURCE.

87/88/29 21:41:06 ++4+ !USERS. ANDERSON.COMPLEX_MUMBERS.

87,/068/29 21:41:06 ... DISPLAY_COMPLEX_SUMS 'BODY demoted to SOURCE.
87/08/29 21:41:06 +++ JUSERS. ANDERSON.COMPLEX_NUMBERS . COMPLEX_UTILITIES
87/08/29 21:41:86 ... demoted to SOURCE.

87/088/29 21:41:07 +++ 'USERS.ANDERSON.COMPLEX_NUMBERS .COMPLEX demoted to
£7/08/29 21:41:07 ... SOURCE.

87/08/29 21:41:07 ::: [End of Compilation.Demote Command].

S COMPLEX Y1 iB1 » COMPILATION DEMOTE 1+ texl

Figure 15-17. Demoting Complex’Spec to the Source State

RAT'ONAL 11/2/87 II-107

Part III. Developing Simple Ada Programs

3. After opening the appropriate units for editing, make the desired changes. In
this case, change the parameter names X and Y to Left and Right in both
Complex’Spec and Complex’Body, as shown in Figure 15-18:

package Complex is
type Number is private;
function Make (X, Y : Floast) return Number;
function Real_Part (X : Number) return Float;
function Imaginary.Part (X . Number) return Float;
function Plus (Left, Right : Number) return Number;
function Minus (X, Y : Number) return Number;

. COMPLEX_NUMBERS COMPLEX V124 1aGa: Source

begin

return X.!mag;
end Imaginery_Part;
function Plus (Left, Right : Number) return Number is
begin
return (Left . Real + Right.Real, Left Imag + Right.imag); B
end Plus;
function Minus (X, Y : Number) return Number is
begin

return (X.Real - Y.Real, X.Imag - Y.limag):
end Minus;

~ e SOOMPLEX _NUMBERS COMPLEX 'BODY "V 105, 1 8da ~ Source

Figure 15-18. Changing the Names of the Parameters in the Plus Function

4. Repromote the program to the coded state. In this case, select the library
entry for the program’s main procedure, Display_Complex_Sums, and press

Code {This World})|,

I11-108 11/2/87 RATIONAL

Index

! (root world)

! banner symbol

!1Commands

tIo

Lrm

ITools

{Users .

banner symbol
* banner symbol
= banner symbol
@ banner symbol
~ banner symbol

-- comment character .

abbreviations
command names .
package names .

access control .

key (Debugger)
activity files

Ada block statement

Ada compilation units . .
changing unit state
closing source units for editing .

RATIONAL 11/2/er

. 1-28
. 1-48
. 1-29
. 1-29
. 1-29
. 1-29
. 1-29
. 1-48
. 1-48
. 1-48
. 1-47
1-47, 1-51
M-47

. I-76
. 1-81

. 1-28
1168
. 1-26
. -1

. 1-26
I1-25
a1-20

Index-1

Ada compilation units, continued

creating

determining umt names a.nd subclasses
package specifications and bodies

subprograms
defined
editing .
checking for semantxc errors
‘creating bodies
creating private parts
entering comments
[Format] key :
inserting page breaks
selecting Ada constructs

Environment compilation system .
opening existing units for editing .

write locks
overview of development
sample library
sample procedure
promoting to coded state
coding individual units .
coding units with dependencies
promoting to installed state

installing units with dependencies .

reading the compilation log
saving work in progress . .

discarding unsaved changes .
testing
unit states

archived

coded

installed

source .

Ada programs

browsing .
definition
options
selection versus cursor posmon
showing usage

debugging . .
automatic source dlsplay
catching exceptions .
controlling program executlon
Debugger window . .
displaying variable values
modifying variable values
redisplaying current location
reexecuting a program .

Index-2

m-13
m-14
m-16
mI-15

.. . m-2
-9, M-27
.. m-36
MI—45
m-43
47
m-27
48
-39

.. . .5
M-18, M-19
.. Im-18
. HI-1

. -6

. m-7
49
I-49
m-50
IM-20
M-22
II-24
m-17
m-17
m-53

. -3

. Mm-3

. H1-4

. m-3

. Mm-3

nI-79
m-80
m-83
n1-83
Im-86
n1-57
1m1-60
m-73
o1-60
m-59
m-70
m-71
m-71
m-71

11/2/87 QATIONAL

Ada programs, continued

debugging, continued
setting breakpoints m-87
starting the Debugger [-58
steppmg through a program . . P 11) |

examining the stack of subprogram calls T 11 S L

executing b1
COmMMmON errors«« .« e e e e e e . o m-52
job control operations b2
using aCommand window D51
using selection . . . T 1 £]

modifying installed or coded O | § ¢) |
adding an element Im99
common problemsMI-105
deleting an element e 11 E Y 4
incrementally changeable elements T £ 5t]
making changes that require demotion @107
modifying an element I-94
using incremental operations 93

testing . . . R ¢ o X
saving mteractlve test prog'rams O 1 1 651

Ada.Show_Usage command I-86

Ada-specific editing operations m-27
checking for semantic errors IN-36
creating bodies H-45
creating privateparts 43
entering comments Ilm-47

[Fermad key oL 27

entering a functiom H-28
hints forusing m32
inserting page breaks II-48
selecting Ada constructs S ¢ § E 0]
syntactic and semantic error reportmg o | ¥4
testing programs I54

Adasyntax rules189

Ada usage, in Command windows169
entering parameters1%9

adding text, see editing text

archivedstatem3
arrowkeys 1-5
attribute oL L 0oL ... 1-30
auxiliary keys 18

QAT'ONAL 11/2/87 Index-3

bang (!)

banner, window .
fields . .
modification symbols .

[Besin O] key .
binary files .
block statement .

bodies, creating .

Break] key (Debugger)
key (Debugger)

breakpoints
characteristics
activated .
permanent
temporary
executing to a breakpoxnt
setting

browsing . .
definition
options
selection versus cursor posntlon
showing usage . .
see also moving; traversmg

call stack

case
changing character case .
in key notation

key (Debugger)

changing
number of frames
password

placement and size of wmdows .

terminal type
characters

classes of objects .
Ada compilation units
files
libraries

Index—4

. 1-28

. 1-22
. 147
. 148

. 1-5, 1-46
. 1-26
-1

II-15, mI—45
m-67
m-68

m-68
m-68
m-68
m-68
m-69
m-67

m1-79
m-80
m-83
m-83
m-86

mi-74

n-20
. I-11

m-74

. 160
. 1-17
. 1-66
. I-16

n-10

. 1-25
. 1-26
. 1-2b
. 127

11/2/87 QATIONAL

[Codeawortanlkey Im26
(Code (This Wortd)l key « « « « « v« o« IN-26 M-49
key 26,149
coded programs, modifying, see Ada programs

codedstate e e v e oIIlI4,mMm49

coding
individual units oL Im49
units with dependencies II-60

comma key, numerickeypad -4

Command windowI1-17,1-23,1-63
Ada block statement-
Adausage 189
attached windows 0.0, . 168
clearing L L. ... T8
editing . . . S | e
executing programs P ¢ 1 43 |
history L. I-T9
keys I
recalhng prekus commands e]
reusing . . T o 4
testmg through e e e e e e e e e I>b3
using L . ..o e oL 164
visibility L 8

commands18
abbreviating . . . e (4
Ada and Envxronment names8 -+« v e e e e e e1-80
canceling execution . . . O 1
completing ambiguous name fragments e S L]
correcting typingerrors168
executing . . . D &k

subsequent commands T &
filling in parameter prompts173
getting prompting assistance1"1
formatting . . . O (4]
semantic completxon e
modifying and reexecuting178
reexecuting the samecommand1-77
unrecognized87

comments, entering o0 m47
commit1-48, 04
Common.Definition command 1-64, 1-68, 1-69, I-70, I-72, I-84, I-85, I11-20

Common.Revert command 0417

RAT'ONAL 11/2/87 Index-5

compilation, incremental, see incremental operations

key

completion, semantic
ambiguous name fragments
getting prompting assistance
menu entries

composing mode

key

controlling case and text format, see editing text
conventions, in key notation

copying text, see editing text

Create Ada] key .
Create Body key

Create command
Io.Create
Text.Create

Erelle Command key
Een(e Private key

i Create Text) key .
creating Ada units, see Ada compilation units

current context

cursor keys .

Debug.Modify command .

Debugger

catching exceptlons

controlling program executlon
automatic source display .
stepping through a program

dlsplaymg variable values

examining the stack of subprogram calls
displaying parameter values for a frame
displaying qualified names in the stack .
displaying the call stack .
traversing from the call stack .

modifying variable values

redisplaying current location

Index—6

1-6, 1-72, 1-74

. 1-74
. 72
. 1-75

n-17
I-5, I-7, 1-8, 0-11, O-19, 0-20

. I-10

. mM-7, m-14
II-16, IM-45

... . 1-18
'1-25, -1, -3
1-17, 1-77
II-15, IM-43
o-1

. 1-30

m-71

m-57
m-73
m-60
o160
Im-61
-70
nI-74
m-77
mi-76
m-74
m-76
m-71
m-71

e RATIONAL

Debugger, continued
reexecuting a program
setting breakpoints .

characteristics

executing to a breakpomt
starting . .

Debugger wmdow .
window .

key .
debugging Ada programs, see Debugger
default access classes

default session

default window placement

defining occurrence, displaying

Definition command
Common.Definition

Definition In Place key
key
Detete] key

deleting
text, see editing text
windows, see windows

{Demote key

dependencies
codmg units . . .
in incremental compxlatxon

directories
see aleo lxbranes, worlds

displaying terminal type

[Edit] key

editing text .

adding text

closing files for edltmg

controlling case and text format
adjusting text format
centering lines
changing character case
changing fill column .

RATIONAL 1y/2er

m-71
m-67
n1-68
169
mI-568
nm-59
m-59

m-71

. 1-28
. I-14
. I-61
o1-80

1-64, 1-68, 1-69, 1-70, 1-72, 1-84, I-85, II-20
1-52, 1-69

1-31, 1-32, 1-36, 1-40, 1-55, I-79

1-4, 1-13, I-56

. 1-52, III-25

m1-50
Im-92

. 127

. 1-16

. 1-77, 11-6, 111-93

n-9
-9
n-7
o-20
o-21
n-23
n-20
n-23

Index-7

editing text, continued
controlling case and text format, continued
filling existing lines of text ©I-22
inserting page breaks D23
justifying text Lo, DI-22
settingwordwrap D21
COPYINE e e e e e e e e e e e e e e e e e D-1b
deleting . . . P | &5 €
duphcatmg a lme O | C 1
movmg o S ¢ &9 ()
opening an exlstmg ﬁle T ¢ 2
patterns in operations Il
retrieving deleted text II-14
savingchanges I4
searching and replacing I17
summary (table) 5I-19
selecting text items . . T § £ 3 |
arbitrary stretch of text S ¢ £ D |
summary (table) 0D-13
turning off selection @©$-13
using object selection O-12
within a file’s hierarchy . S | & ¥4
summary of copy and move (table) e e e e m1-1e
transposing ¢« e i i i e e e e e e e D16
write locks S | 4]
see also Ada-specific edmng operatxons

Editor.Quit command I-18,1-48

(EnclosingIn Plac key1-52
Enclesingikey 1-31,1-40,1-52

Endoffkey1-51-46

[Emerlkey14,1-55 14
see also commit

errors
correcting typing168
in program execution ImNIN-b2

exceptions
catching, W73
propagating . . . e e e e e e e e e m1-74
Standard. Program.Error e, m—21 m-562

executing
Adaprograms mbl
commands e e ... 103

Index-8 11/2/87 RATIONAL

executing, continued
key combinations
previous commands

(Exelain] key

files, text
closing for editing
creating
editing
entering text
opening for editing .
saving changes .
write locks

fill
column
mode .

| Formati key

formatting
adjusting e
getting prompting assistance
frames . e
changing number
joiming
making sizes equal
fully qualified pathname

function keys .

help
getting
help keys
Help window
reading help menus .
reading help messages

Help On Help| key
key

Help window
reading menus .

[Feiy Windex] key
hold stack

RAT'ONAL 11/2/87

. I-6
. I-79

1-23, 1-67, I-10

. 1-25
n-7
-1
n-9
n-3
-5
-4
-6

11-21
n-21

. 1-8, III-8, M-27, MI-32

1-48, 11-20
n-21
L I-T2

. 149, I1I-74
. 1-60
. 1-56
. 1-58

. 1-30
1-4

. 1-83
. 1-83
1-83, 1-85
1-87, 1-88
. 1-84
. 1-83
. 1-84

1-83, 1-85
1-87, 1-88

. 1-85
1I-14

Index-9

home
library e s e e e e e e e s s L IF22
world e e e L 121

Home Libayl key 1-31,1-38,1-62

magc key e e e i ... o I-b,1-24,146
Image_Fill_Column sessionswitch «I23
Image_Fill_Mode sessionswitch $o-?1
Image_Insert_Mode sessionswitch 0O10

images L1456
scrolling 145

incremental compilation, see incremental operations

incremental operationsIl-4 091
adding anelement II9
common problemsHIN05
deleting anelement 97
incrementally changeable elements mM-92

dependencies m92
units and states HI-93
making changes that require demotion 0107

modifying an element0 oo L. .. -94
using L. oo e e s s s .. 93

insert mode 0§00

Unstall (A Wortds) key L L . . L L L L . L L Im-26

Install (This World) key IN-22 mMm-26
saiUnifkey IlI-20, III-26

installed programs, modifying, see Ada programs; incremental operations
installed stateHIN3MW-20
interactive testing, Adaprograms IN-53

Io.Create command73
Io.Put command, . Il-b4
itemkeys 151
key 1-73,1-78, m-39

item-operation key combinations I-6 011

Index-10 11/2/87 RATIONAL

job control .

key bindings

key combinations .
and Command wmdows .
executing .
item-operation key combmatlons .
modified key combinations

key names
logical

key notation, summary

keyboard, Rational Terminal
layout ..
auxiliary keys
cursor keys .
function keys .
item keys
main keyboard
modifier keys .
numeric keypad .
overlay .
how to read
organization
summary of key notatxon

keycaps

keys, #ee individual key names; keyboard, Rational Terminal

L
layout, Rational Terminal keyboard

libraries
current context .
customized display format
directories
pathnames
structure

traversing .
worlds

Library_Show_Standard session switch
Library_Std—-Show_Unit_State session switch .
[Lind key

RATIONAL 11/2/87

m-52

-1

1-63, I1-11
. 1-79

1-6

1-6

-7

-1, 1-6, I-8
-8

. 1-10

-1
-2
1-6
-5
1-4

5
4
5
I-4
8
8
1-8

. I-10
1-6, 1-8

-2

1-22, 1-27
. 1-30
. 1-23
. 1-27
. 1-30
. 1-28
. 1-31
O 1-27

. 1-23
. 1-23
1-5, I-6, I-11, I-20

Index-11

lines .
locking windows

logical key names

login ..
basic process .
changing password .
customized display .
multiple sessions .
nondefault sessions .
terminal type

what you see

logout

with unsaved .cha.nges .

main keyboard
major window
managing windows
[Mark] key .

menu
completion
obsolescence .

menu window .
Message window
key .

minor window

minus key, numeric keypad .

modification symbols, in window banner .

modified key combinations
modifier keys .

Modify command
Debug.Modify

key
modifying

installed or coded programs, see Ada programs

text, see editing text

Index-12

n-10
. I-61
1-8

. I-13
. I-13
. I-17
. 1-24
. I-15
. I-18
. I-16
. I-21

. 1-18
. I-18

1-4
. I1-22
. 1-45
I-6

... .. I-T5

. I-18, M-106

. 1-74

. 1-22

. 1-5, I-7, 1-8, I-19
. 1-45, I1-95

1-4

. 1-48

-7

-5

mI-71
m-71

e RATIONAL

moving
between and within windows
between prompts .
in the Environment
text, see editing text
within the library hierarchy
see also browsing; traversing

multiple sessions
login

name components .

name fragments, completing

names of objects

negative numeric arguments, key notation
[Next feem] key

{(Next Prompt] key

[Next Tnerting key .

nondefault sessions
login

notation conventions, key
number keys, numeric keypad
numeric arguments, key notation

numeric keypad .

object classes
Ada compilation units
files

libraries
! Object key
object names .

objects
abandoning
releasing

obsolescence menu
on-line help

operation keys

RATIONAL 126

1-24, 1-50
. 1-73
. 1-21

. 131

. I-15

1-30, I-80

. 1-74

. 1-30

-1

1-73, 1-19, II-38
. 1-73

m-38

. 1-15
. I-10

1-4
. I-10

. 1-25
. 1-26
. 1-28
. 127

1-5, 1-59, 1-79, II-4, [1-6, IN-39, II-93
. 1-30

T 1Y
. 1-59

m-18
. 1-83
I-6

Index-13

:Other Part key

overlay, Rational Terminal keyboard .

how to read .
organization .

overwrite mode .

package specifications, creating

page breaks, inserting
Ada compilation units
text files

paragraphs .
parameter placeholders

parameters
entermg . .
filling in prompts

password .
changing
temporary

pathnames
period key, numeric keypad

placement of windows ..
changing placement and size .
default

key
TProitae Porrmel
Previous Prompt key
Previous Underline key

private parts, creating .

Program_Error exception
Standard.Program_Error

programs, Ada, see Ada programs
key .

promoting Ada units, see Ada compilation units

prompt .
filling in parameter prompts .
getting prompting assistance

formatting

semantic completlon in Command wxndows .

in incremental operations
moving between prompts

Index-14

1-31, I-36, 1-62

I-8
I-8
1-8

-9

m1-15

IM-48
n-23

n-10
. 1-81

. 1-69
. 1-73

1-13, I-14
.17
. 1-17

. 1-30
I-4

. 1-49
. 1-56
. 1-61

1-73, I-19, M-38
. I-73
m-38
m-43

IM-21, HI-52
1-6, 1-17, -4, I-6, M-25, III-49

. 1-64

. I-73

.. 1-T2

. I-72, m-27

S N

m-95 m 100 III—104, 1m1-106
Coe . . I-78

11/2/87 RA\TIONAL

Prompt Forj key .
key (Debugger) .

Put command
Io.Put

Quit command
Editor.Quit

Rational Terminal keyboard

layout
auxiliary keys
cursor keys .
function keys .
item keys
main keyboard
modifier keys .
numeric keypad .
overlay o
how to read
organization .
summary of key notation

read access .

rearranging windows, see windows

[Region] key
Remove Breaks| key (Debugger)

removing windows, se¢ windows

key
reserved words
key

Revert command
Common.Revert

root task .

root world

saving
Ada editing
changes, see commit
interactive test programs
text editing

R)ATIONAL 11/2/87

. I-79
n1-74

m-54

. . 1-56
I-18, 1-48

. 1-8
. I-10

. I-28

. 1-5, I-11, I-20, -39

I11-68

I-4
m-14
. 14, 1-13

-4, O1-17
m-59
. 1-28

m-17

1-55
-4

Index-15

scrolling an image .

searching and replacing text, see editing text

searchlist
selecting text, see editing text

selection

Ada units . .

executing programs

text items
arbitrary stretch of text
summary (table)
turning off . .
using object selection .
within a file’s hierarchy

versus cursor position, in browsing .

semantic completion
getting prompting assistance

semantic errors
checking for .
reporting

{ Semanticize key)
sentences
session name

sesgsion switches
Image_Fill_Column
Image_Fill_Mode
Image_Insert.Mode . .
Library_Show_Standard

Library_Std_Show_Unit_State .

Word..Breaks
sessions
[shitjkey
key (Debugger)
key (Debugger)
[Show Usage (Indirect)] key
key
key .

Show_Usage command
Ada.Show_Usage

showing usage

Index-16

. 1-45

. I-81

n-41
m-52
I-11
n-11
om-13
n-13
n-12
o-12
183

. =72

m-36
m--37

m1-10, 111-36
n-10
I-14, I-15

. 1-23
n-23
n-21
n-10
. 1-23
. 1-23
n-10

I-14, 1-15
1-5, I-7, 1-8
m-68

m-71
mI-86
m-86
m-79

m-86
m-86

waer RATIONAL

simple name

key

]:Source {(This World)] key

source state

[Sewree Gatd] key .

special names .

key (Debugger)

stepping operations, Debugger
structure of libraries .

subclasses

switch files .

switches, session, see session switches

symbols
key notation .
window banner

syntactic errors
reporting

systems, testing .

temporary password .

terminal type
changing
checking at login .
displaying .

text files . .
closing for editing
creating
editing
entering text
opening for editing .
saving changes .
write locks

Text.Create command .
Text.Write_File command

transposing
text, see editing text
windows, see windows

RATIONAL 11/2er

. 1-30
m-26
m-26
. -3
m-26
. I-81
m-74
m1-61
. 1-28
. 1I-25
. I-25

. I-10
. I-48

n-37
m-53

. I-17

. I-16
. 1-16
. I-16

. I-26
n-7
n-1
n-9
-3
n-b
-4
n-6

1-25, -1, II-3
m-59

Index-17

traversing

between Ada specifications and bodies136
Environment library structure31
from library toobject inito 0. ... 1-32
Rational Environment 121
returning to home library 1-38
summary . . T . 4
to the enclosmg llbrary T S)
see also browsing; moving

[Uncode (AN Woria] key IN-26

[Uncode (This Wortd)l key D26

[Gnaciinr O KEY . .« o o o e e e m-38

unit states -2, m-3
archived13
changing m25
coded Lo o . T4
installed, .m3
SOUXCe v« v e e e e e e e e e e e e e e e ... m-3

unsaved changes, logout 1-18
usage, showing, . ImIB86
useraccount 4 . 4w e e e e e e e e e e . 113
USETDAME « « « v e e e e e e e e e e e e e e e e e 113, 114

using Command windows 1-64

variable values, Debugger
displaying 70
modifying -1

versions

Adacompilationupits m19
files0204

vigibility, in Command windows8

Window Directory . . e oY]
checklngbeforelogout.........................1—55

displaying e S E]
redxsplaymgreplacedwmdows......................1—54

[Window] key I-51-6,1-24, I-50, I-51, I-52, I-56

Index-18 11/2/87 QATIONAL

Window.Frames command

windows .

and frames

and images

banner in .
fields
modification symbols

changing number of frames

changing size and placement .

Command
Ada block statement
Ada usage .
attached windows .
editing . .
entering parameters .
executing programs
testing through .
using
visibility . .

controlling placement
locking .
traversal commands .

Debugger

editing

expanding .

Help

joining frames .

major

makxng frames equal

managing .

menu .

Message

minor

moving between and wnthm

placement on screen
default

rearranging . -

redisplaying replaced wmdows ..

redlsplaymg using Window Dlrectory .

removmg

scrolling an image
shrinking
transposing

[Word] key .

word wrap, setting
Word_Breaks session switch

words

RATIONAL 12/

. I-60

. 1-22
. 1-49
. I-45
. 1-22
. 1-47
. 1-48
. 160
. 1-b6
. 1-23
. -1
. 1-69
. 168
n-9

. 1-69
m-561
mi-53
. 1-64
. 1-81

. 1-51

. 1-52
m-59

. -9
. . 1-67
I-83, 1-85
. 1-56

. 1-22

. 1-58

. 1-45

. 1-74

. 1-22
m-95
1-24, 1-50
. 1-49

. I-51

. I-59

. 1-54

. 1-52

. 1-58

. 145

. 1-58

. 1-59

1-6, 1-6, I-11, 1-20
-21
n-10
o-10

Index-19

world ! . . . L L e e 1-28

worlds e e e e e e e e e e e s e e s s 1-27
see also libraries

WIte 3CCESS L . e o e e e e e e e e e e s I-28
write locks
Ada compilation units0 oL Lo Lo o oL L. m-18
text files L L L L o e e e e -6
Write_File command
Text.Write.File -89
X
xref images L L L L Lo Lo oo e e 11-86

Index-20 11/2/87 RA\TIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code
Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment User's Guide, 8001A-05

