
Rational Environment
Basic Operations

Facit Terminal

Copyright (Q 1985, 1986, 1987 by Rational

Document Control Number: 800lA-51 (803-002318)
Rev. 4.0, November 1985
Rev. 4.1, December 1985
Rev. 4.2, March 1986
Rev. 4.3, July 1986
Rev. 5.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader's Comments form on the last page of this book, which requests
the user's evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and RIOOO are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive

Mountain View, California 94043

11 7/1/87 RATIONAL

Contents

Chapter 1. Logging In and Out
Logging In
Logging Out
Saving Changes

1
1
1
2

Chapter 2. Getting Help
Getting Help on Help . . .
Getting Help on a Specific Item
Getting Help on Keys
Displaying Ada Specifications
Displaying the Help Window .
Getting Help on Errors

Chapter 3. Exec:uting Commands
Creating and Executing a Command Window Program
Expanding a Command Window
Shrinking a Command Window
Getting Command Completion .
Moving to the Next Prompt or Underline
Moving to the Previous Prompt or Underline
Turning Off a Prompt .
Reexecuting the Same Command
Changing and Reexecuting a Command . .
Entering a New Command in the Same Command Window
Clearing a Command Window of Unneeded Text . . .
Going Back to Previous Commands
Getting the Parameters of a Command Bound to a Key

3
3
3
4
4
4
5

7
7
7
7
8
8
8
8
8
9
9
9
9
9

RATIONAL 7/1/87 III

Chapter 4. Managing Windows
Finding a Window Using the Window Directory
Deleting Windows from the Window Directory
Moving between Windows
Expanding a Window
Shrinking a Window .
Expanding Current Window to Include Next Frame
Expanding Current Window to Include Previous Frame
Transposing Windows
Realigning the Windows on the Screen
Removing a Window .
Locking a Window on the Screen .
Unlocking a Window on the Screen
Scrolling the Image

Chapter 5. Traversing the Environment
Viewing a Library
Viewing an Object in a Library
Viewing a Library's Parent
Viewing Your Home Library .
Viewing the Specification of an Environment Package

Chapter 6. Using General Editing Operations
Selecting an Arbitrary Region of Text
Moving Selected Text
Copying Selected Text
Searching for a String
Searching and Replacing a String
Searching and Replacing All Occurrences of a String
Deleting Text
Joining Lines
Transposing Text
Changing the Case of Text

lV

11
11
11
11
12
12
12
12
12
13
13
13
14
14

15
15
15
15
15
16

17
17
17
17
18
18
19
19
19
20
21

7/1/87 RATIONAL

Chapter 7. Writing Text Files
Creating a File
Viewing a File
Editing an Existing File
Saving a File
Setting Tabs
Setting Overwrite Mode On
Setting Insert Mode On . .
Setting Wordwrap for Text
Changing the Wordwrap Column
'fuming Wordwrap Off

23
23
23
23
24
24
24
25
25
25
25

Chapter 8. Writing Ada Programs
Creating an Ada Package Specification
Creating an Ada Package Body
Creating an Ada Subprogram
Creating a Subunit
Importing Units
Adding a Statement, Declaration, or Comment
Changing a Statement, Declaration, or Comment
Deleting a Statement, Declaration, or Comment
Changing the Name or Kind of an Ada Unit . .
Adding a Subprogram to a Package
Making a Package Body or Subprogram Body into a Subunit
Making a Subunit In-line in the Parent
Demoting a Unit and Its Dependents
Making a Library Program Executable
Executing a Library Program
Saving the Changes of Incomplete Units
Setting Overwrite Mode On
Setting Insert Mode On

27
27
28
29
29
29
30
31
32
33
34
36
36
36
36
37
37
37
37

Chapter 9. Browsing Ada Programs
Getting the Definition or Use of an Identifier
Viewing the Specification of an Environment Package
Viewing a Unit's Specification from Its Body
Viewing a Unit's Body from Its Specification
Viewing a Unit's Parent
Showing the Using Occurrences of a Defined Ada Name

39
39
39
39
40
40
40

RATIONAL 7/1/87 v

Chapter 10. Debugging
Starting the Debugger
Stopping the Debugger
Displaying the Program Being Debugged
Displaying the Value of a Program Variable
Displaying the Call Stack
Displaying Source for a Call Stack Frame
Displaying Parameters for a Call Stack Frame
Stepping Through the Program
Executing the Program
Setting Up Exception Handling
Setting Breakpoints
Showing Breakpoints
Removing Breakpoints
Modifying a Program Variable
Returning to the Point of Program Suspension
Displaying the Debugger Window

Chapter 11. Managing Libraries
Controlling the Library Display
Creating Libraries
Deleting Objects in a Library
Undeleting Objects or Previous Versions in a Library
Copying Objects in a Library
Moving Objects in a Library
Renaming Objects in a Library
Printing Objects Contained in a Library

Chapter 12. Managing Links
Listing Links-Simple Method .
Adding Links-Simple Method .
Getting the Pathname for an Environment Package
Editing Links for a World
Controlling the Link Display
Inserting aNew Link
Deleting a Link
Viewing the Source of a Link
Exiting from the Link Display
Adding a Set of Links

VI

41
41
41
41
41
42
42
42
42
43
43
43
43
44
44
44
44
45
45
46
46
47
47
48
48
49

51
51
51
51
52
52
52
53
53
53
53

7/1/87 RATIONAL

Replacing a Link

Chapter 13. Managing Session Switches
Editing Session Switches .
Controlling the Session Switch Display
Modifying Session Switch Values
Getting Help on Session Switches . . .
Saving Session Switches
Exiting from the Session Switch Display

53
55
55
55
56
57
57
57

Chapter 14. Managing Searehlists
Editing the Searchlist for a Session
Adding a Component to a Searchlist
Deleting a Component from a Searchlist
Replacing One Component with Another
Viewing the Library Named by a Searchlist Entry
Exiting from the Searchlist Display

59
59
59
59
60
60
60

Chapter 15. Managing Jobs
Disconnecting from a Job
Reconnecting to a Job
Killing the Current Job or the Last Job Created
Killing Any Job .

Chapter 16. Customizing Your Workspace
Building Macros
Defining Your Own Login Procedure
Rebinding Keys

61
61
61
61
62

63
63
64
64

Chapter 17. Using CMVC
Creating a Subsystem . . .
Adding, Changing, or Deleting Ada Units in a View
Making Ada Units Controlled
Making a Subpath
Checking Out a Unit for Changes
Checking In a Unit after Changes
Making a Frozen Release
Accepting Changes
Getting Information

65
65
65
65
66
66
66
67
67
68

RATIONAL 7/1/87 Vll

Chapter 18. Networking .
Logging Into Another System with Telnet
Interrupting a Telnet Session
Resuming a Telnet Session
Terminating a Telnet Session
Copying a Single Object or Library onto Another RlOOO
Copying Objects or Libraries from Another RlOOO
Copying Objects onto a Non-RlOOOSystem
Copying Objects from a Non-RlOOOSystem

VJll

· 69
· 69
· 69

70
70
71
72
73
73

7/1/87 RATIONAL

Preface

This Rational Environment Basic Operations manual describes, with simple step-
by-step procedures, how to perform various common operations in the Rational
Environment TM using the Facit Terminal.

Not intended as a self-study guide, this manual assumes some familiarity with the
Environment. No conceptual discussions are included. Familiarity typically is ac-
quired through the Rational Environment Training: Fundamentals course or the
Rational Environment User's Guide.

This manual focuses on fundamental areas of the Environment necessary to begin
work on small Ada @ programs in single libraries. Some of the areas are: executing
commands, managing windows, writing and debugging programs, and editing text
files. Areas not included are multilibrary development, sophisticated use Rational
Subsystems™, and optional products such as the Rational Design Facility, Rational
Mail Utility, host-target development products, and 80 on.

RATIONAL 7/1/87 lX

RATIONAL

Chapter 1. Logging In and Out

Logging In
Begin with the terminal turned on.
1. Start the login sequence: I Returnl

2. At the Enter user name: prompt, enter your username and press :R.turn!

3. At the Enter pas suior-d: prompt, enter your password (it will not be echoed)
and press i Return:

4. At the Enter session name: prompt, enter a session name and press I Return! (just
press i Return! for the default session named S_I).

The Environment momentarily displays a message indicating the last time you were
logged in, the screen goes blank, and the Environment session appears on the screen.
A Login procedure in your home library is executed if it exists and is in the coded
state.

Logging Out
Begin in any window.
1. Create a Command window: I Cre~ •• Commandi

2. Enter qo i t and press :Promo •• !

If no uncommitted (unsaved) images exist and if no programs requesting interactive
input are running, the command is displayed in reverse video; the screen goes blank
and you are logged out.

If any images were left without saving or promoting, or if a program requesting
interactive input is running, an error message is displayed in the Message window
indicating that images were left with unsaved changes. You can save all changed
images (see below) and terminate any such running programs. Otherwise, enter
qur t (true) and press ! Promot.!. This logs you off the Environment without saving
any uncommitted images.

RATIONAL 7/1/87 1

Chapter 1. Logging In and Out

Saving Changes
Begin in any window.

Saving change3 one image at a time

1. Go to the Window Directory: 'Wlndo •••1 - 1 Definition 1

2. Place the cursor on a line containing an asterisk (*) in the Mod column.
3. Select the Window Directory entry: 'ObJectl - B
4. Save the selected image: 1 Enter 1

The Mod column is now blank.
Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see "Killing Any Job"
in Chapter 15).

5. Continue saving the changes desired by repeating the steps above.

Saving changes in all images in a single operation

1. Go to the Window Directory: 1 Wlndo .•. i - 1 D<I;nltlonl

2. Place the cursor on the top line of the image: Ilmar+ 1 Berln Ofj

3. Save all changes: i Enwl

All images that have been changed now have a blank in the Mod column.

Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see "Killing Any Job" in
Chapter 15).

2 7/1/87 RATIONAL

Chapter 2. Getting Help

Getting Help on Help
To determine the available help for the Environment:
1. Ask for help: I Help on Htlpl

The Environment displays the available help options in the Help window.

Getting Help on a Speeifie Item
To get help on an Ada item (for example, a command) in an Ada or a Command
window

Begin in the window containing the Ada item.
1. Place the cursor on the item for which you want help.
2. Press: HtIP:. The Environment creates a Command window and displays the

command Uhat. Does ("");

3. Execute the command by pressing IPromo •• 1

If help is available for the command, it is displayed in the Help window.

To get help on a named topic, command name or name fragment, and 30 on

1. Ask for help: I Helpl

The Environment creates a Command window and displays the command
Uhat. Does (Nane => "");

2. At the prompt, enter the topic, command name, or command name fragment
for the area of interest and press I Promo •• 1

If more than one command related to that topic exists, all the related commands
are listed in the Help window. If you want to see the help for one of these items,
place the cursor on the line on which the item is located and press IOb)<e1i - [!]. The
help for that item is displayed in the Help window.

RATIONAL 7/1/87 3

Chapter 2. Getting Help

If only one command about that topic exists, information about that command,
including a brief command description and a list of any keys bound to the command,
is displayed in the Help window.

If no commands can be found about that topic, a message appears indicating that
no help is available for that topic.

Getting Help OD Keys
To determine what commands are bound to a key or key combination:
1. Ask for help on a key: I Help on Keyl

The Environment displays the following prompt in the Message window:
Press ke~ to be described:

2. Press the key or key combination of interest.

The command name bound to the key or key combination is displayed in the Mes-
sage window. Additional help about the command, if any exists, is also displayed
in the Help window.

Displaying Ada Speeifleations
To go to the Ada specification for an item described in the Help window:

Begin in the Help window in the entry for the message of interest.
1. Place the cursor on the line in the Help window containing the text for the Ada

code for the item.
2. Ask for the definition of the designated item: IDefinition!

If there is an Ada spec for the item, it is displayed and highlighted in an Ada
window.

Displaying the Help Window
Begin in any window.
1. Ask to go to the Help window: IHeip Wlndowl

The Help window is brought onto the screen and the cursor is placed in it. You can
now scroll through the contents of the window to view the help messages that have
been requested since you logged in.

4 7/1/87 RATIONAL

Chapter 2. Getting Help

Getting Help on Errors
To get additional information about an error in your program or command:
1. Move the cursor onto the underlined error.
2. Ask for help on the error: IObjonl - [!]

Additional messages about the error appear in the Message window if the Environ-
ment has any more information to give you.

RATIONAL 7/1/87 5

RATIONAL

Chapter 3. Exec:uting Commands

Creating and Exec:uting a Command Window Program
A Command window program can contain any arbitrarily sized Ada code-for ex-
ample, one-line Environment commands, multiple-line test programs, or Ada main
programs.

Begin in any window.

1. Create a Command window: !Cm••Command:
2. Enter the program, formatting frequently for multiple-line programs: I Form.';
3. Semanticize for multiple-line programs: !S.man,lcI.!l

The Environment marks the errors that exist. Press! Object I - [2J for further infor-
mation about any errors.

4. Correct any errors and semanticize again.
5. Execute the command program: !Promo••1

Expanding a Command Window
Begin in the Command window you want to expand.

1. Enlarge the window: !Wlndo..•1 - G

The window expands by four lines.

Shrinking a Command Window
Begin in the Command window you want to shrink.

1. Shrink the window: 'wlndowl- []

The window shrinks by four lines.

RATIONAL 7/1/!7 7

Chapter 3. Executing Commands

Getting Command Completion
Begin in a Command window.
1. Enter some fragment of the command.

• You may supply only a command name or name fragement. Completion will
fail if you enter any part of the argument list, including the parenthesis that
begins the list.

• Completion ignores final semicolons if any exist (for example, if you have
pressed the 'Forma.1 key and it has added a semicolon after the name or name
fragment).

2. Complete the command and provide prompting for any parameters: ICompl<le!

If the command fragment is ambiguous, the complete operation fails and the
Environment displays the possibilities in another window. Enter the necessary
characters to make the command unique and press ! Compl·.·1 again.

Moving to the Next Prompt or Underline
Begin in the Command window.
1. Move to the next item (highlighted or underlined): IE.cl - [8

The cursor is now placed at the next item (to the right or below).

Moving to the Previous Prompt or Underline
Begin in the Command window.
1. Move to the previous item (highlighted or underlined): ! E.ci - [S

The cursor is now placed at the next item (to the left or above).

Turning Off a Prompt
Begin with the cursor on the prompt that is to be turned into text.
1. Turn off the prompt: ! COD.rol~ xl

Reexecntlng the Same Command
Begin in the Command window containing the command to be reexecuted.
1. Execute the command: ! Promo.e!

8 7/1/~7 RATIONAL

Chapter 3. Executing Commands

Changing and Reexecuting a Command
Begin with the cursor on the command to be changed.

1. Turn the command from a prompt into text: IcOD"oll~

The command text can now be edited.
2. Execute the changed command: IPromottl

Entering a New Command in the Same Command Window
Begin with the cursor on the old command prompt.

1. Type the new command over the old command.

The old command prompt disappears.

Clearing a Command Window of Unneeded Text
Begin in the Command window to be cleared.

1. Clear the Command window: IEdl'!

Note that the unneeded text in the Command window has been replaced with a
statement prompt allowing entry of new commands.

Going Back to Previous Commands
A history of commands and Ada programs entered into a Command window is
maintained. You can access and execute any of the commands in this sequential
history.

Begin in the Command window.

Redisplaying a previous command in the historical sequence (undoing)

1. Redisplay the previous command: IObJwl - ~

Redisplaying a later command in the historical 3equen.ce (redoin.g)

1. Redisplay the next command: IObJwl - ~

Getting the Parameters of a Command Bound to a Key
Begin in any window.

1. Create a Command window with the parameters for a command bound to a
key: I E.c! - @: - Icommand hy I

RATIONAL 7/1/!7 9

RATIONAL

Chapter 4. Managing Windows

Finding a Window Using the Window Direetory
Begin in any window.

1. Display the Window Directory: IWlndowl - ID<I;nl'lonl

The Window Directory is displayed in a new window.
2. Place the cursor on the line of the Window Directory entry that names the

window at which you want to look.
3. Ask to view the object: ID.flnl,lonl

The indicated object appears in the same frame as the Window Directory window
(or in an empty frame if one exists).

Deleting Windows from the Window Directory
Begin in the Window Directory window.

1. Place the cursor on the line of the window to be deleted.
2. Select the line: IObjw i - El
3. Delete the window: !Obj.c·l - [E]

The window is removed from the Window Directory. This releases the image.

Moving between Windows
Moving to the window above (with vertical wraparound)
1. Move to the window above: IWlndowl - CD

Moving to the window below (with vertical wraparound)
1. Move to the window below: IWlndowl - CD

RATIONAL 7/1/87 11

Chapter 4. Managing Windows

Expanding a Window
Begin in the window you want to expand.

1. Enlarge the window: IWindow! - [!]

The window expands by four lines.

Shrinking a Window
Begin in the window you want to shrink.

1. Shrink the window: IWlndo •• ! - 0

The window shrinks by four lines.

Expanding Current Window to Include Next Frame
Begin in the window you want to expand.

1. Join the windows: IWindo .••.! - ~

The current window expands to the size of the current window plus the window
below, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Expanding Current Window to Include Previous Frame
Begin in the window you want to expand.

1. Join the windows: IWlndo •• ! - 10.1 ••• 1

The current window expands to the size of the current window plus the window
above, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Transposing Windows
You can switch the location of a window with that of the window above it (with
vertical wraparound).

Begin in the lower window.

1. Transpose the windows: IWlndo •• ! - [!)

The cursor appears in the new lower window. It is in the same position that it was
in when that window was last viewed.

12 7/1/!7 RATIONAL

Chapter 4. Managing Window!!

Realigning the Windows on the Screen
Begin in any window.

1. Return windows to their default configuration: IWlndowl - I"orma.1

Removing a Window
You can remove a window from your screen in one of three ways.

Removing a window temporarily

This command removes the window from the screen and leaves it available in the
Window Directory.

1. Place the cursor in the window you want to remove.
2. Delete the window: IWlndo •• ! . ~

Rele~ing an image permanently and .saving the changes

This command releases the image and removes the window after saving the image.
The window is no longer available in the Window Directory.

1. Place the cursor in the window you want to release.
2. Release the image: IObjW! • ~

Releasing an image permanently without .saving the changes

This command abandons the image and removes the window. The window is no
longer available in the Window Directory. Unsaved changes are discarded.

1. Place the cursor in the window you want to release.
2. Abandon the image: IObjectl • @]

Locking a Window on the Screen
Begin in the window you want to lock.

1. Lock the window: IWlndowl - IPromo •• 1

An at sign (~) appears in the window banner. The window is not removed unless
you explicitly remove it or unlock it.

RATIONAL 7/1/87 13

Chapter 4. Managing Windows

Unlocking a Window on the Screen
Begin in the window you want to unlock.

1. Unlock the window: 'Wlndo •••j - IDemotej

The at sign (€i) disappears from the window banner.

Scrolling the Image
Begin in the window containing the image to be scrolled.

Scrolling the image up

1. Scroll the image up: Ilma~ei - CD

Scrolling the image down

1. Scroll the image down: Ilmarel - CD

Scrolling to the beginning of the image

1. Scroll to the beginning of the image: Ilmarel - IBerin Of I

Scrolling to the end of the image

1. Scroll to the end of the image: Ilmarci - I End Of I

Scrolling the current line to the top

1. Scroll the current line to the top: IWlndo ••.1 - IBerin Of I

Scrolling the current line to the bottom

1. Scroll the current line to the bottom: IWlndowl - IEnd Of I

14 7/1/87 RATIONAL

Chapter 5. Traversing the Environment

Viewing a Library
Begin in the world or directory that contains the library.

1. Place the cursor on the line containing the library.
2. View the library: ! Dtfinltloni

A window appears, displaying the full pathname of the library underlined and listing
additional library objects, such as Ada units or files, if they exist.

Viewing an Objeet in a Library
Begin in the library containing the object.

1. Place the cursor on the line of the library object you want to view.
2. View the object: !D.finl.lon:

A window displaying the object appears.

Viewing a Library's Parent
Begin in the library.

1. View the parent: ! Enclollnl!

A window containing the parent library appears.

Viewing Your Home Library
Begin in any library.

1. View your home library: IEici - ~

A window containing your home library appears.

RATIONAL 7/1/87 15

Chapter 5. Traversing the Environment

Viewing the Speeifleatlon oC an Environment Package
Here is a convenient shortcut for displaying the specifications for Ada units provided
as pari of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.
1. Get a prompt for the Definition command: IElcl - @) - IDeflnltlonl

2. Enter the simple name of the Ada unit at the prompt for the Nane parameter
preceded by the \ character (for example, "\COf1l'ilation").

3. Execute the command: I Promotel

Note that this shortcut for viewing Environment package specifications works for
most Environment packages. If the shortcut fails, an error message appears, and
you will have to traverse to the specification instead.

16 7/1/87 RATIONAL

Chapter 6. Using General Editing Operations

Selecting an Arbitrary Region of Text
Begin in the window containing the text to be selected.

1. Move the cursor to the start of the region of text to be selected.
2. Define the start of the region: i R<lloni - OJ
3. Move the cursor to the end of the region of text.
4. Define the end of the region: i R«ioni - OJ

The selected region is highlighted.

Moving Selected Text
Begin in the window containing the text to be moved.

1. Select the region of text.
2. Move the cursor to the location in which the text will be moved. You can move

text within the same image or to some other image.
3. Move the region of text: IR<llonl - GJ
The highlighted region of text is deleted from its original location and appears in
the new location.

Copying Selected Text
Begin in the window containing the text to be copied.

1. Select the region of text.
2. Move the cursor to the location in which the text will be copied. You can copy

text within the same image or into some other image.
3. Copy the region of text: IR<llon! - @]

The region of text appears in its original location and in the new location.

RATIONAL 7/1/87 17

Chapter 6. Using General Editing Operations

Searching for a String
Begin in the text in which you want to search for the string.
1. Move to the beginning of the image: Ilm.~el - IB.~ln Of I
2. Start the search command (enter composing mode): Ico ••••oll,.1
3. Enter the target string, without quotes. Note that the characters you type in

composing mode appear at the SEARCH prompt in the Message window.
4. Start the actual search (enter search mode): IControl~FI

H the target string is found, the cursor is positioned one character after the
target string.

5. To get to each additional occurrence of the string: IControll! FI
6. To return to a previous occurrence of the string: ICon"oll~
7. To cancel the search, press any key-for example, [D.

The SEARCH prompt is removed from the Message window.

Searching and Replacing a String
Begin in the text with the string to be changed.
1. Move to the beginning of the image: Ilma~.! - IBe~ln ofl

2. Start the search/replace command: IE.el - 0
3. At the SEARCH prompt in the Message window, enter the target string, without

quotes.
4. Press INext heml to move to the REPLACE prompt.
5. At the REPLACE prompt in the Message window, enter the replacement string,

without quotes.
6. Start the actual search/replace: IE.el - 0

The Environment places the cursor one character after the target string.
7. To replace the target string: IE.el - 0

The Environment replaces the string and places the cursor one character after
the next occurrence of the target string.

8. To get to each additional occurrence of the string without changing the string:
I Controrl0

9. To replace a previous occurrence of the string: IE.el - ~
10. To abort searching and replacing, press any key-for example, [D.

The SEARCH and REPLACE prompts are removed from the Message window.

18 7/1/87 RATIONAL

Chapter 6. Using General Editing Operations

Searching and Replacing All Occurrences of a String
Begin in the text with the string to be changed.
1. Move to the beginning of the image: !Imac<! - ! B<cID Ofl

2. Start the search/replace command: I£Icl - 0
3. At the SEARCH prompt in the Message window, enter the existing string, without

quotes.
4. At the REPLACE prompt in the Message window, enter the new string, without

quotes.
5. Start the actual search and global replace: I Dumcrlc -I - IlIum<r1c II - 1£1<1 - [!]

(Use the numeric keypad to enter the -1.)
The Environment replaces all occurrences of the target string and displays the
number of occurrences in the Message window.

Deleting Text
Text such as characters, words, lines, and regions can be deleted. Text can be
deleted from varying cursor positions.
• Delete the character at the cursor: ! Controlle£]

• Delete the character before the cursor position (backspacing): ! D<let<1

• Delete the entire word: j Word! - iEJ
• Delete from the cursor to the end of the word: ! wordl - ~

• Delete from the cursor to the beginning of the word: I Word! - 10<1< •• :

• Delete the entire line: I Lln<! - @]

• Delete from the cursor to the end of the line: ~ - ~
• Delete from the cursor to the beginning of the line: I Lln<1 - ! D<let<:

• Delete the selected text: ! R<Clon: - @J

Joining Lines
This command joins the line on which the cursor is located with the following line.
1. Move the cursor to any position on the first line of the two lines to be joined.
2. Join the second line to the end of the first line: ILine! - [!]

RATIONAL 7/1/87 19

Chapter 6. Using General Editing Operations

Transposing Text
Tran.$po!ing characters

This command switches the character that the cursor is on with the previous char-
acter. Assume, for example, that character 2 follows character 1, and you want
character 1 to follow character 2.

1. Move the cursor to character 2.
2. Transpose the character that the cursor is on and the previous character: ~L.!J

Transposing words

This command switches the word that the cursor is on with the previous word.
Assume, for example, that word 2 follows word 1, and you want word 1 to follow
word 2. Word terminators are blanks, underscores, semicolons, or periods.

1. Move the cursor to any place on word 2.
2. Transpose the word that the cursor is on and the previous word: IWord; - [!J

Transpo!ing lin.e!

This command switches the line that the cursor is on with the previous line. Assume,
for example, that line 2 follows line 1, and you want line 1 to follow line 2.

1. Move the cursor to any place on line 2.
2. Transpose the line that the cursor is on and the previous line: ILln.1 - [!}

20 7/1/87 RATIONAL

Chapter 6. Using General Editing Operations

Changing the Case or Text
The case of text such as characters, words, lines, and regions can be changed to
lowercase, uppercase, or initial capitals. Begin with the cursor anywhere in the text
to be changed.

• Capitalize a character: ! Con"ol~ >1
• Lowercase a character: ~@

• Uppercase a word: ! Word! - 0
• Lowercase a word: ! wordl - @

• Capitalize a word: ! wordl - 0

• Uppercase a line: ! L1n<! - 0
• Lowercase a line: ~ - @

• Capitalize a line: llin<: - U

• Uppercase a selected region: i R«ion! - ~

• Lowercase a selected region: i Ro,loni - @

• Capitalize a selected region: ! ROllonj - CJ

RATIONAL 7/1/87 21

RATIONAL

Chapter '1. Writing Text Files

Crea ting a File
Begin in the library in which you want the file.

1. Create a file: Iem" Tu.1

A Command window with the Text.Create command and its parameter is cre-
ated.

2. At the I mage_Name prompt, enter the name of the file to be created and press
I Promote;

A new window is created for the image of your file, and an entry for the file appears
in the library.

Viewing a File
Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Go to the definition: I Definillon!

A window with a read-only image of the file appears.

Editing an Existing File
Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Select the file to be edited: IObjWI - B
3. Edit the selected file: IEdl.1

The Environment displays the image of the object in a window. You are now
ready to edit the file.

4. Save the image periodically by pressing IEnter I
5. ~hen you have finished editing, promote the file to a read-only image by press-

Ing Promott

RATIONAL 7/1/!7 23

Chapter 7. Writing Text Files

Saving a File
A file can be saved in one of two ways.

Saving a file [close for editing)

When you have made some changes and you want to save them and terminate
editing:
1. Place the cursor in the window that has the image of the file.
2. Promote the image to a read-only image: IPromotel

This command saves the image of the file and allows others to access it.

Saving a file (leave open for editing)

When you have made some changes and you want to save them but continue editing:
1. Place the cursor in the window that has the image of the file.
2. Commit the image: [Ent •• 1

This command saves the image of the file, and you retain update access.

Setting Tabs
Begin in the text.
1. Create a Command window.
2. To set tab stops at every nth column, enter set. tab_width{n) and press i Promo,,;

As you edit the text file, pressing [conuoti[!] indents n spaces.

Setting Overwrite Mode On
Begin in the text.
1. Set overwrite mode on: [lmaf·1 - @J

The banner is updated to indicate that overwrite mode is in effect in this window.

24 7/1/87 RATIONAL

Chapter 7. Writing Text Files

Setting Insert Mode On
Begin in the text.

1. Set insert mode on: !Imac.! - W

Setting Wordwrap for Text
Begin in the text.

1. Turn fill mode on: !lma,·1 - [!]

The banner shows that fill mode is in effect and indicates the column number. The
column number default is 72.

Changing the Wordwrap Column
Begin in the text.

1. Create a Command window.
2. To set a different word wrap column, enter set. fi 1Lcolumn and press :Compl •••

3. At the prompt, enter n, where n is the desired column number, and press :Promote.

Tnrning Wordwrap Off
Begin in the text.

1. Turn fill mode off: i Ima,el - G

The banner is updated to remove the fill mode indicator and fill column number.

RATIONAL 7/1/87 25

RATIONAL

Chapter 8. Writing Ada Programs

Libraries are of two kinds: directories and worlds. Programs can be written In
either kind of library.

Creating an Ada Package Speclfieation
Begin in the library that will contain the Ada unit.
1. Create a workspace: IObj«ti - [!}

A new window is created with a comp_uni t prompt for you to begin editing.
2. Enter the contents of the specification in the new window at the comp_uni t

prompt.
Use :Crnt. Prlvaul for building the private part of the specification, if appropriate.

3. Format frequently by pressing IForma.1

The Environment marks any errors that exist. Use I Obj.ct I - [i] for information
about any errors.

4. Semanticize frequently by pressing I S.man'leI,.!

The Environment marks any errors that exist. Use IObj.ctl - [2J for information
about any errors.
The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

5. Correct any errors.
6. Promote the specification to the installed state: I Promo •• 1

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

RATIONAL 7/1/87 27

Chapter 8. Writing Ada Programs

Creating an Ada Package Body
Begin in the package specification.
1. Use ICre.te Body I to build the skeletal package body.

A new window appears with the skeletal package body for you to edit.
2. Enter the contents of the body.
3. Format and semanticize frequently.

The Environment marks any errors that exist. Use IObJectl - Q] for information
about any errors.
The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

4. Correct any errors.
5. Promote the body to the installed state: IPromote!

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

28 7/1/87 RATIONAL

Chapter 8. Writing Ada Programs

Creating an Ada Subprogram
Begin in the library that is to contain the Ada unit.

1. Create a workspace: IObject I - [!]

The Environment creates a new window with a comp_'-"'i t prompt.
2. Enter the body of the subprogram.
3. Format and semanticize the unit.

The Environment marks any errors that exist. Use IObject I - [2J for information
about any errors.
The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

4. Correct any errors.
5. Promote the subprogram to the installed state: IPromo •• 1

The Environment replaces the temporary name in the library with the Ada name
for the unit. It also creates a separate specification for the unit in the library.

Creating a Subunit
Begin in the Ada unit that will contain the subunit.

1. Enter the Ada subunit stub notation. You might enter, for example, procedure
foo is separate;

2. Format.
3. Place the cursor on the stub.
4. Select the stub: IOb)oc·i - B
5. Edit the selected stub: I Edl.1

A new window containing the skeletal subunit appears. The name of the subunit
appears in the library under the parent unit.

Importing Units
To import units, see litAdding Links-Simple Method" in Chapter 12.

RATIONAL 7/1/!7 29

Chapter 8. Writing Ada Programs

Adding a Statement, Deelaratlon, or Comment
Adding to an Ada unit in the source state

Begin in the Ada unit in which you want to make the addition.

1. Edit the Ada unit, if it is still in read-only mode: IEdhl

2. Go the position where the new statement, declaration, or comment is to be
added.

3. Enter the changes.
4. Format and semanticize.
5. Correct any errors.

Adding to an Ada unit in the installed or coded state

Begin in the Ada unit in which you want to make the addition.

1. If the Ada unit is a package specification or if the addition you want to make
contains only Ada comments, skip to the next step.
If it is already coded, demote the Ada unit to the installed state: i In ••• 11 L'nlt'

2. Go to the position where the new statement, declaration, or comment is to be
added.

3. Open an insertion point: IObJ.nl - OJ
A new window appears with the banner labeled either statement or declaratlon,
depending on the location of the insertion point.
The library now contains a temporary name of the form _Ada_#_1 where # is
some number, under the library unit you are editing.

4. Enter the new statement, declaration, or comment.
Note that multiple statements, declarations, or comments can be entered per
insertion point.

5. Format and semanticize.
6. Correct any errors.
7. Promote the statement, declaration, or comment: I Promo,.1

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

30 7/1/87 RATIONAL

Chapter 8. Writing Ada Programs

Changing a Statement, Declaration, or Comment
Making changes in an Ada unit in the aource atate

Begin in the Ada unit in which you want to make the change.

1. Edit the Ada unit, if it is still in read-only mode: IEdltl

2. Go to the position where the statement, declaration, or comment IS to be
changed.

3. Enter the changes.
4. Format and semanticize.
5. Correct any errors.

Making changes in an Ada unit in the i~talled or coded ,tate

Begin in the Ada unit in which you want to make the change.

1. If the Ada unit is a package specification or if the change you want to make
consists only of Ada comments, skip to the next step.
If it is already coded, demote the unit to the installed state: Ilnmll Unit!

2. Go to the end of the statement, declaration, or comment to be changed.
3. Select the entire statement, declaration, or comment: IObjw I- B
4. Edit the selected statement, declaration, or comment: I Edl'!

The selected statement, declaration, or comment becomes a prompt, and a
window with the statement, declaration, or comment appears on the screen.
The library now contains a temporary name of the form _Ada_#_, where # is
some number, under the library unit you are editing.
Note that if the selected declaration has dependents, the edit operation will not
succeed until all dependents are demoted to source.

5. Enter the changes.
Note that multiple declarations, statements, or comments can be entered.

6. Format and semanticize.
7. Correct any errors.
8. Promote the statement, declaration, or comment: IPromo •• 1

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

RATIONAL 7/1/87 31

Chapter 8. Writing Ada Programs

Deleting a Statement, Dedaration, or Comment
Deletin.g in. an. Ada un.it in. the $ource .tate

Begin in the Ada unit in which you want to make the change.
1. Edit the Ada unit, if it is still in read-only mode: I£dlCl

2. Go the position where the statement, declaration, or comment is to be deleted.
3. Use line delete or region delete to remove the statement, declaration, comment.

The unit remains in the source state for further editing.

Deletin.g in. an. Ada un.it in. the in.&talled or coded date

Begin in the Ada unit in which you want to make the change.
1. If the Ada unit is a package specification or if the deletion you want to make

contains only Ada comments, skip to the next step.
If it is already coded, demote the unit to the installed state: Iinnall Unl.!

2. Go to the end of the statement, declaration, or comment to be deleted.
3. Select the entire statement, declaration, or comment: IObJectl - G
4. Delete the selected statement, declaration, or comment: IObJwl - [Ql

The selected statement, declaration, or comment is removed.

Note that if the selected declaration has dependents, the delete operation will not
succeed until all dependents are demoted to source.

32 7/1/87 RATIONAL

Chapter 8. Writing Ada Programs

Changing the Name or Kind or an Ada Unit
Changing the name or kind 01 an .Ada unit in the ,ouree ,tate

Begin in the library containing the Ada unit to be changed.
1. Move the cursor to the line containing the Ada unit.
2. Select the Ada unit: IObJectl - B
3. Edit and withdraw the selection: IWithdraw Unltl

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit can be edited.

4. Change the unit name, parameter profile, or unit kind.

The temporary name in the library is replaced by the new actual name for the
Ada unit when you promote the unit. The unit is still in the source state to allow
continued editing.

Changing the name or kind 01 an Ada unit in the in$talled or coded state

Begin in the library containing the Ada unit to be changed.
1. Move the cursor to the line containing the Ada unit.
2. Select the Ada unit: IObjoc'l - El
3. Edit and withdraw the selection: i Withdraw Unltl

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit is in the source state.
Note that if the selected unit has dependents, the withdraw operation will not
succeed until all dependents are demoted to source.

4. Enter the changes.
5. Format and semanticize.
6. Correct any errors.
7. Promote the unit: IPromo«!

The temporary name in the library is replaced by the new actual name for the Ada
unit.

RATIONAL 7/1/87 33

Chapter 8. Writing Ada Programs

Adding a Subprogram to a Paekage
These steps assume that the subprogram is to be added to both the specification
and the body of the package.

Adding to an Ada unit in the source state

Begin in the package specification in which you want to add the subprogram speci-
fication.

1. Edit the Ada unit, if it is still in read-only mode: IEdltl

2. Go to the position in the package where the new subprogram specification is to
be added.

3. Enter the new subprogram specification.
4. Format and semanticize.
5. Correct any errors.
6. Select the subprogram specification: !objwl - El
7. Create the body: Iem •• Body i

The skeletal subprogram body is placed at the end of the existing package body.
8. Enter the subprogram body.
9. Format and semanticize frequently.
10. Correct any errors.

34 7/1/87 RATIONAL

Chapter 8. Writing Ada Programs

Adding to an Ada unit in the irutaJled or ciXUd ,tate

Begin in the package specification in which you want to add the subprogram speci-
fication.

1. Go to the position in the package where the new subprogram specification is to
be added.

2. Open an insertion point: IObject I - [!]

A new window with a declaration prompt is created for editing. A temporary
name appears in the library under the package specification to which you are
adding the subprogram.

3. Enter the new subprogram specification at the prompt.
Note that multiple subprogram specifications can be entered per insertion point.

4. Format and semanticize.
5. Correct any errors.
6. Promote the declaration: IPromo •• 1

The new window disappears and the prompt in the package specification is
replaced with the added subprogram specification. The temporary name in the
library disappears.

7. Select the subprogram specification: IObJ<ctl - B
8. Create the body: ICre ••• Body I

A new window appears on the screen with the skeletal subprogram body.
9. Enter the subprogram.
10. Format and semanticize frequently.
11. Promote the subprogram body: IPromo •• 1

The window is replaced by a window dispiaylng the existing package body with the
new subprogram installed.

RATIONAL 7/1/87 35

Chapter 8. Writing Ada Programs

Making a Package Body or Subprogram Body into a Subunit
Begin in the parent unit containing the declaration stub in either the source or the
installed state.
1. Select the unit that you want to make into a subunit: IObJfct! - G
2. Create a Command window.
3. Enter make_separate and press IPromote!

A new window with the subunit appears and the parent unit has an appropriate
subunit stub. Note that the subunit is now in the source state.

Making a Subunit In-line in the Parent
Begin in the parent Ada unit in either the source or the installed state.
1. Select the subunit stub.
2. Create a Command window.
3. Enter make_inl ine and press IPromote!

The subunit stub is replaced by the actual subunit code. Note that the in-line unit
is in the same state as the parent.

Demoting a Unit and Its Dependents
Begin in the library that contains the program unit.
1. Place the cursor on the line containing the program unit to be demoted.
2. Select the unit to be demoted: ~ - B
3. Demote the program unit: ISource (Tbll World)!

The progress of the command is displayed in the Environment I/O window. The
unit, plus any units that depend on it, is demoted to source.

Making a Library Program Exetutable
Begin in the library that contains the program.
1. Make the program executable: ICode (Thh World)!

All units in the library are promoted to the coded state. The progress of the
command is displayed in the Environment I/0 window.

36 7/1/87 RATIONAL

\.iOaplier e. vynung I\.oa r rogr arns

Executing a Library Program
Begin in the library containing the program.

1. Create a Command window.
2. Enter the Ada name for the program.
3. Execute the program: I Promo •• 1

The Environment then executes the program just as it executes any Environment
command.

Saving the Changes of Incomplete Units
Begin in the Ada unit that is incomplete-that is, the unit still may have errors or
you want to do further development on the unit before promoting it.

1. Save the image: I Enwl

A message appears in the Message window indicating that the unit has been saved
(committed). The banner of the Ada unit now has a blank in the first character
position.

Setting Overwrite Mode On
Begin in the Ada unit you are editing.

1. Set overwrite mode on: IlmaJ': - @]

The banner is updated to indicate that overwrite mode is in effect in this window.
Overwrite mode is set on a window-by-window basis.

Setting Insert Mode On
Insert mode is the default. Begin in the window that is currently in overwrite mode.

1. Set insert mode on: Ilma(,; - [iJ

The banner is updated to remove the overwrite mode indicator.

RATIONAL 7/1/87 37

RATIONAL

Chapter 9. Browsing Ada Programs

Getting the Definition or Use of an Identifier
Begin with the cursor on the identifier.

1. Select the identifier: §8 -El
2. Go to the definition: I D<llnl.loni

A window containing the definition of the declaration appears.

Viewing the Specification of an Environment Package
Here is a convenient shortcut for displaying the specifications for Ada units provided
as part of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.

1. Get a prompt for the Definition command: IEsel - @] - I DoIlnitlon!

2. Enter the simple name of the Ada unit at the prompt for the Name parameter
preceded by the \ character (for example, "\Compilation").

3. Execute the command: I Promo •• !

Note that this shortcut for viewing Environment package specifications works for
most Environment packages. If the shortcut fails, an error message appears, and
you have to traverse to the specification instead.

Viewing a Unit's Specification from Its Body
Begin in the body.

1. Go to the specification: IO.her Panl

A window containing the specification appears.

RATIONAL 7/1/87 39

Chapter 9. Browsing Ada Programs

Viewing a Unit's Body from Its Speelfleation
Begin in the specification.
1. Go to the body: IOCher P •.n!

A window containing the body appears.

Viewing a Unit's Parent
Begin in the unit.
1. Go to the parent: IEaclo.laJ!

A window containing the parent object appears.

Showing the Using Oeeurrenees of a Defined Ada Name
Begin in the window containing the Ada name of interest.
1. Place the cursor on an occurrence of the Ada name.
2. Select the Ada name of interest: ~ - G
3. View the using occurrences: IShow u"'J'!

4. The using occurrences of the Ada name within the current unit are underlined.
Use IE.c! - G or IE.c! - @) to step through.
For using occurrences of the Ada name in other units, a window containing the
names of these units appears.

5. Place the cursor on a unit.
6. Select the unit: IObj.cc! - G
7. View the unit with the using occurrence: 10.lInlllool

A window appears displaying the selected unit with all occurrences of the Ada
name of interest underlined.

8. Use IEocl - ~ or IE.cI - @) to step through.

40 7/1/87 RATIONAL

Chapter 10. Debugging

Starting the Debugger
Begin in the Command window containing the name of the program to be debugged.
1. Invoke the Debugger: t E.c! - t Promo •• !

The Debugger window appears, and a debugging session begins.

Program execution does not begin until further debugging commands are entered.

Stopping the Debugger
A debugging session is terminated automatically when you begin to debug a new
job or when you log off.

Displaying the Program Being Debugged
A window automatically displays a section of the program around the point where
execution was suspended. The statement or declaration to be executed next is
highlighted [selected}.

Displaying the Value of a Program Variable
Begin in any window.

1. Place the cursor on an occurrence of the program variable.
2. Select the program variable: IObJect! - B
3. Display the value: t Put I

The value of the variable is displayed in the Debugger window.

RATIONAL 7/1/!7 41

Chapter 10. Debugging

Displaying the Call Staek
Begin in any window.

1. Display the stack: IStack!

The call stack is displayed in the Debugger window with the most current call on
the top of the stack (it is frame number one: "_1").

Displaying Sonree for a Call Staa Frame
Begin in the Debugger window.

1. Display the stack: IStack!

2. Place the cursor on the frame you want to display.
3. Select the frame: IObJect! - B
4. Display the source for the frame: ISho", Soum!

The Ada unit corresponding to the frame is displayed with the program counter
location (either current or saved) highlighted.

Displaying Parameters for a Call Staek Frame
Begin in the Debugger window.

1. Display the stack: ! Stack I
2. Place the cursor on the frame for which you want to display the parameters.
3. Select the frame: ! ObJoct! - B
4. Display the parameters for the frame: IPut!

Stepping Through the Program
You can step in one of two ways. Note that in either case you can step multiple
times with a single command by pressing a numeric prefix key (nUrn.,lc n) before you
press the key to step.

Begin in any window.

Stepping by every statement

1. Press i Run'

Stepping by statements without stopping in called subprograms
1. Press I Run Locall

42 7/1/87 RATIONAL

Chapter 10. Debugging

Executing the Program
Begin in any window.

1. Execute the program: IEmu •• 1

The program runs to completion or until an exception or breakpoint is encountered.

Setting Up Exc:eption Handling
The Debugger stops when any exception is encountered, unless that exception has
been propagated.

Begin in an Ada window containing the unit that declares the exception or a unit
that handles the exception.

Propagating a particular exception

1. Place the cursor on an occurrence of the exception name.
2. Select the exception: i Object i - El
3. Press I Prop.ra •• ;

Catching a pretJio~ly propagated exception

1. Place the cursor on an occurrence of the exception name.
2. Select the exception: iObJect! - El
3. Press: C •• ch!

Setting Breakpoints
Begin in the window displaying the Ada unit in which you want to set a breakpoint.

1. Place the cursor on the statement or declaration in the Ada unit.
2. Select the entire statement or declaration by pressing IObJwl - G repeatedly.
3. Set the breakpoint: i8mkl

A breakpoint number is assigned. This breakpoint is in effect until the Debugger
session terminates or until it is explicitly deactivated.

Showing Breakpoints
Begin in any window.

1. Show breakpoints: IShow Br •• k.1

The display shows all active and inactive breakpoints.

RATl0NAL 7/1/87 43

Chapter 10. Debugging

Removing Breakpoints
Begin in any window.

&moving all breakpoint8
1. Remove all breakpoints: IIl.move B,•••• I

Removing a 8pecific breakpoint
1. Prompt for the remove command: IEocl - @] - Ia.move Break.1

2. At the Breakpoint prompt, enter the number of the breakpoint you want deac-
tivated and press IPromo •• 1

Modifying a Program Variable
Begin in the window displaying the program variable.

1. Place the cursor on an occurrence of the program variable you want to change.
2. Select the program variable: ! ObjW! G
3. Prompt for the modify command: IModify!

4. At the NeUJ_Value prompt, enter the desired new variable value (in double quotes)
and press i Promo •• :

Returning to the Point of Program Suspension
Begin in any window.

1. Go to the program suspension point: ISho .•• Source!

A window containing the definition of the program being debugged appears with
the statement or declaration to be executed next highlighted.

Displaying the Debugger Window
Begin in any window.

1. Create a Command window: ICr •• ,. Comm.ndl

2. Enter debug. current_debugger and press IPromo,.1

The Debugger window appears on the screen and the cursor is in it.

44 7/1/87 RATIONAL

Chapter 11. Managing Libraries

Controlling the Library Display
Begin with the cursor in the library.

Toggling information on library objects

1. Move to the beginning of the library: IIma(t ' - IB.(ln Of:

2. Change the display: IObj.,,! - [!]

Repeating this command toggles the library display so that you view one of the
following: only the names of the library objects; the name and the type of library
objects; and the name, type, Ada unit state plus update information.

Showing more detail on the objects in the library

1. Show more detail: IObjw i- [!]

This causes deleted units, versions, and so on to be added to the library display.

This step can be repeated if necessary until the desired detail level is reached.

Showing less detail on the objects in the library

1. Show less detail: IObj.ni- 0

This causes deleted units, versions, and so on to be removed from the library display.

This step can be repeated if necessary until the desired detail level is reached.

RATIONAL 7/1/~7 45

Chapter 11. Managing Libraries

Creating Libraries
Creating a directory

Begin in the directory or world that is to contain the new directory.

1. Create the directory: I Crea •• DIr.nory!

The Environment creates a Command window containing the Library .Create-
_Directory command and prompts for its parameters.

2. At the Name prompt, enter the name for the new directory and press IPromo •• !

The Environment creates a directory. In the containing library, you see the new
directory name inserted in alphabetical order.

Creating a world

Begin in the directory or world that is to contain the new world.

1. Create the world: ICmu worldl

The Environment creates a Command window containing the Library.Create-
_ World command and prompts for its parameters.

2. At the Name prompt, enter the name for the new world and press i Promote.

The Environment creates a world. In the containing library, you see the new world
name inserted in alphabetical order.

By default, this world has links to commonly used Ada and Environment packages
such as Text LIo, Calendar, and String..Tools. These links are from the model world
!Model.RlOOO.

Deleting Objects in a Library
Deleting a library

Begin in the library containing the library to be deleted.

1. Place the cursor on the line containing the library to be deleted.
2. Select the library to be deleted: §B -B
3. Create a Command window: ICreau Commandi

4. Enter compilation.delete and press IPromo.e!

The I/O window displays the progress and results of the Delete command. When
the command is complete, the library to be deleted disappears from the library.

Deleting an Ada unit or file

Begin in the library containing the object to be deleted.

46 7/1/87 RATIONAL

Chapter 11. Managing Libraries

1. Place the cursor on the line containing the object to be deleted.
2. Select the object: IObI.'" I - G
3. Delete the object: IObl·",1 - [E]

If an Ada unit has no dependents, the declaration is removed from the library.

Undeleting Objec:ts or Previous Versions in a Library
Begin in the library containing the deleted object or version.

1. Expand detail in the library (if necessary) so you can see the object or version
to be undeleted: lObI."'! - [!]

Repeat as necessary until you can see the deleted object or version you want
to undelete. A deleted object is enclosed in braces ({ }) to indicate that it is
deleted. A previous version has its name prefixed with a minus (-), indicating
that it is not the default version.

2. Select the object or version to undelete: IOble"'! - B
3. Undelete it: IOble",! - @l

The object or version is now undeleted and is displayed without the braces around
it or without the minus in front of it.

Copying Objec:ts in a Library
Copying into a different library

Begin in the library containing the object (library, Ada unit, file) to be copied.

1. Place the cursor on the object to be copied.
2. Select the object to be copied: IOblect! - B
3. Place the cursor in the new library to which the existing object is to be copied.
4. Copy the selected object: ! Oblwi - @]

A Command window appears with the Library .Copy command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press i Promot·1

The progress of the command is displayed in the Environment I/O window.

Copying into the "ame library

Begin in the library containing the object (library, Ada unit, file) to be copied.

RATIONAL 7/1/87 47

Chapter 11. Managing Libraries

1. Select the object to be copied: IObj.ct I - El
2. Copy the selected object: IObj<e·i - @]

A Command window appears with the Library .Copy command and prompts for
its parameters.

3. At the To prompt, enter the name of the object into which you want to copy.
4. Press IPromo••1

The progress of the command is displayed in the Environment I/O window.

Moving Objec:ts in a Library
Moving to a different library

Begin in the library containing the object (library, Ada unit, file) to be moved.

1. Place the cursor on the object to be moved.
2. Select the object to be moved: IObject I - El
3. Place the cursor in the new library to which the existing object is to be moved.
4. Move the selected object: IObject I - ~

A Command window appears with the Library .Move command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press: Promo••:

The progress of the command is displayed in the Environment I/O window.

Moving to the same library

This is equivalent to renaming a library object. See "Renaming Objects in a Li-
brary," below.

Renaming Objeets in a Library
Begin in the library structure containing the object (library, Ada unit, file) to be
renamed.

1. Select the object to be renamed: ~ - El
2. Create a Command window: ICm••CommandI
3. Enter 1 ibr-ar-q . rename and press ICompl·••1

4. At the To prompt, enter the new name and presslpromo••1

The progress of the command is displayed in the Environment I/O window. Ada
units are demoted to source.

48 7/1/87 RATIONAL

Chapter 11. Managing Libraries

Printing Objec:t8 Contained in a Library
Printing a file or an Ada unit

Begin in the library containing the object to be printed.
1. Move the cursor to the line containing the object to be printed.
2. Select the object: IOblocol - El
3. Print the object: IPrlntl

The progress and status are displayed in the Message window. A listing appears on
the printer.

Printing a library, it~ unit», and it~ 8ubunit~

Begin in the library containing the objects to be printed.
1. Print: IEtcl - @J - IPrint:

A Command window appears with the Queue. Pr int command and prompts for
its parameters.

2. At the Name prompt, enter the wildcard symbol? and press IPromo •• !

The progress and status are displayed in the Message window. A listing appears on
the printer.

RATIONAL 7/1/87 49

RATIONAL

Chapter 12. Managing Links

Listing Links-Simple Method
Begin in the world for which you want to see the links.

1. Create a Command window: i Cr.at. Command I
2. Enter 1inks. di splay and press I Promo •• ;

A list of the links appears in the standard I/O window.

Adding Links-Simple Method
Begin with the cursor in the world to which you want to add the link.

1. Create a Command window: I Cmt. Command!

2. Enter links.add and press ICompl.t.!

3. At the Source prompt, enter the full pathname of the Ada unit to which you
want the link to refer and press IPromot.!

The new link is added to the world. The link name is the simple Ada name derived
from the full pathname.

Getting the Pathname Cor an Environment Package
Begin in any window.

1. Create a command window: I Cr •••• Command I
2. Enter 1 ibrary. resol ve and press ICompl.t·1

3. At the Name_Of prompt, enter the simple name of the Ada unit for which you
want the pathname prefixed with the \ character (for example, \ Text_I 0).

4. Execute the command: I Promot·1

The full pathname is displayed in the I/O window. If you want to use this pathname
as a parameter to another command, you can select the text of the pathname in
the I/O window and then copy this region into a Command window.

RATIONAL 7/1/87 51

Chapter 12. Managing Links

Note that this shortcut for getting pathnames works for most Environment pack-
ages. If the shortcut fails, an error message appears, and you have to look for the
pathname in the World ! section of the Reference Summary (in Volume 1 of the
Rational Environment Reference Manual) or in the reference manual for the product
area in question.

Editing Link8 for a World
Begin in the world for which you want to edit the links.
1. Create a Command window: I Cr •••• Commudl

2. Enter links .edi t and press IPromo •• 1

A window displaying the links appears. You can now edit the links. See the indi-
vidual editing operations that follow.

Controlling the Link Display
Begin with the cursor in the link display.

Toggling the order of the link display

1. Change display order: IOblenl - CD

Repeating this command toggles the display so that it appears alphabetically either
by source name or by link name.

Toggling the contents of the link display

1. Change display contents: I Obl.nl - D
Repeating this command toggles the display so that you view one of the following:
only internal links, only external links, or all links.

Inserting a New Link
Begin with the cursor in the link display.
1. Open an insertion point: I Oblenl - [!)

A Command window appears attached to the link display window with the
Insert command and its parameter.

2. At the prompt, enter the full pathname of the Ada unit to which you want the
link to refer and press I Promote I

The link display is updated to show the new link. The link name is the simple Ada
name derived from the full pathname.

52 7/1/87 RATIONAL

Chapter 12. Managing Links

Deleting a Link
Begin with the cursor in the link display.
1. Move to the link you want to delete.
2. Select that link: IObJ.col - G
3. Delete the link: I obJ.col - [Q]

The link is deleted and the link display is updated.

Viewing the Source or a Link
Begin with the cursor in the link display.
1. Move to the link whose source you want to view.
2. Select that link: IObj.col - El
3. Go to the definition: ID<finhlonl

A window appears containing the definition of the Ada unit to which the link refers.

Exiting from the Link Display
Begin with the cursor in the link display.
1. Release the link image: ! ObjW; - [E

The window containing the link display disappears.

Adding a Set or Links
Begin in the world to which you want to add a set of links.
1. Create a Command window: i Cr •••• Command!

2. Enter l ink s .add and press !Compl·'·i

3. At the Source prompt, enter a name (using substitution characters and wild-
cards, if desired) that specifies the complete set of links and press I Promo!,

All links are added.

Replaeing a Link
Begin in the world containing the link you want to replace.
1. Create a Command window: ICr.a,. Command I
2. Enter I inks. replace and press ICompl· •• 1

3. At the Source prompt, enter the new source name you want to have associated
with an existing link and press I Promo •• 1

The source for the link is replaced.

RATIONAL 7/1/87 53

RATIONAL

Chapter IS. Managing Session Switches

Editing Session Switches
Begin in any window.

1. Create a Command window: ICrn •• Comm.nd!

2. Enter swi tches .edi t_session_attributes and press IPromot.:

A window displaying the session switches appears. You can now edit the switches.
A session switch file called CummLSe&&ion..Name_Swi tches appears in your home
library, if it does not already exist.

Controlling the Session Switch Display
Begin with the cursor in the session switch display. Two commands toggle the
session switches display so that you see one of the following views: all switches or
nondefault switches (switches that you have modified).

1. Change the display to all switches: IObJect I - [i]

2. Change the display to nondefault switches: IObJwl - []

RATIONAL 7/1/!7 55

Chapter 13. Managing Session Switches

Modifying Session Switch Values
Begin with the cursor in the session switch display.

Modifying a Boolean ,witch

1. Place the cursor on the session switch whose value you want to modify.
2. Edit the selected session switch: IEdltl

The value toggles between true and false. The session switch display is updated
to show the new value.

3. Save the session switch image: IEn••• I

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

Modifying a non-Boolean $tDitch

1. Place the cursor on the session switch whose value you want to modify.
2. Edit the selected session switch: IEdltl

A Command window appears with the Change command and a prompt for its
parameter.

3. At the prompt, enter the new parameter value and press IPromo,.!

The session switch display is updated to show the new value.
4. Save the session switch image: IEn••• 1

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

56 7/1/87 RATIONAL

Chapter 13. Managing Session Switches

Getting Help on Session Switc:hes
Begin with the cursor in the session switch display.

Getting an ezplanation
1. Place the cursor on the session switch for which you want to have further infor-

mation.
2. Ask for help: IObJect I - [2J

An explanation of the session switch, if it exists, appears in the switch display below
the selected session switch.

&moving an ezplanation
1. Place the cursor on the explanation that you want to remove.
2. Remove the explanation: IObJwl - [2J

The explanation disappears from the session switch display.

Saving Session Switc:hes
Begin with the cursor in the session switch display.
1. Save the image: i En ••• I

A message appears in the Message window indicating that the session switches have
been saved (committed).

Exiting from the Session Switch Display
Begin with the cursor in the session switch display.
1. Release the switch image: IObjectj - [K

The window containing the session switch display disappears.

RATIONAL 7/1/!7 57

RATIONAL

Chapter 14. Managing Searehlists

Editing the Searehlist for a Session
Begin in any Command window.
1. Enter search_list.show_l1st and press IPromo •• !

A window displaying the session searchlist appears. You can now edit your search-
list.

Adding a Component to a Searehlist
Begin with the cursor in the searchlist display.
1. Move to the line where the new entry is to be added.
2. Open an insertion point: IObjWI - [!]

A Command window appears with the Add command and prompts for its pa-
rameters.

3. At the Component prompt, enter the new searchlist entry and press IPromo •• :

The searchlist display is updated to show the new entry.

Deleting a Component from a Searehlist
Begin with the cursor in the search list display.
1. Put the cursor on the searchlist component you want to delete.
2. Select the searchlist component: IObjWI - G
3. Delete the searchlist component: IObj«.! - @J

The entry is deleted and the display is updated.

RATIONAL 7/1/87 59

Chapter 14. Managing Searchlists

Replacing One Component with Another
Begin with the cursor in the searchlist display.

1. Select the entry to be replaced: ~ - G
2. Create a Command window: ICr.at< Command!

3. Enter replace and press ! Compl.,.'

4. At the New_Componentprompt, enter the new entry and press 'Promote!

The old entry is replaced with the new one.

Viewing the Library Named by a Searc:hlist Entry
Begin with the cursor in the searchlist display.

1. Move to the searchlist entry you want to view.
2. Go to the definition: 'Definl,lon!

A window appears containing the library.

Exiting from the Searehlist Display
Begin with the cursor in the searchlist display.

1. Release the search list image: 'Object i - ~

The window containing the searchlist disappears.

60 7/1/87 RATIONAL

Chapter 15. Managing Jobs

Diseonneeting from a Job

1. Disconnect the job: ~tGl

A user-interrupt message is displayed in the Message window. You can now move
the cursor and perform other tasks. The job continues to execute.

Note that logging out does not terminate disconnected jobs that are still executing
unless these jobs attempt to perform input or output to Editor windows.

Reconnecting to a Job
Begin in any window.

1. Determine the number of the job to be reconnected. The job number is displayed
on the banner of the I/O window for the job (if used). Otherwise, to display all
the jobs currently running on the system, press! What UHf.J

2. Get a prompt for the conned command: IEocl- @] - !Jobconnwl
3. At the The_Job parameter, enter the number of the job and press!ptOmo••!

Killing the Current Job or the Last Job Created
Begin in any window.

1. Kill the last job: !JobKilil

A job-abort message is displayed in the Message window.

RATIONAL 7/1/87 61

Chapter 15. Managing Jobs

Killing Any Job
Begin in any window.
1. Disconnect from the current job if necessary: ICo.trol! 01
2. Determine the number of the job to be killed. The job number is displayed on

the banner of the I/O window for the job (if used). Otherwise, to display all the
jobs currently running on the system, press [What Um.[

3. Prompt for the command to kill the job: IE.e[- @l - IJob Kill[

4. Enter the job number at the The_Job prompt and press [PromoHI

Note that the default job number is that of the job from which you just discon-
nected.

A message is displayed in the Message window indicating that the job has been
killed.

62 7/1/87 RATIONAL

Chapter 16. Customizing Your Workspace

Building Macros
You can bind a series of keystrokes to a single key by building a macro.

Defining the macro

1. Start the definition: IMarki - I8.(ln Ofl
2. Press the keystrokes that are to make up the macro.
3. End the definition: IMark! - IEnd Of!

Executing the macro

1. Execute the last macro you entered: IMark! - IPromo •• !

Binding the macro to a function key

1. Press IMark! - ID<finl.10n!

You are prompted in the Message window for a key to bind to the last macro
entered.

2. Press the key to be bound.

The key remains bound only until you log out, unless you explicitly save it.

Saving the macro

1. Create a Command window.
2. Enter macro. save and press IPromo •• !

All macros currently bound to keys are permanently saved.

RATIONAL 7/1/87 63

Chapter 16. Customizing Your Workspace

Defining Your Own Login Proeednre
Begin in your home library.

1. Create a procedure named Login with the commands you want to have executed
each time you log into the Environment.
See "Creating an Ada Subprogram" in Chapter 8 for details.

2. Promote the procedure to the coded state: 'Code Unltl

The Login procedure is now executed automatically as part of the login process.

Rebinding Keys
Before starting, you may want to press I Help on Key I to see if the key is already bound.

You can rebind commands to keys in one of two ways.

Begin in any window.

Rebinding temporarily

1. Create a Command window: 'Creal< Command I
2. Enter ke!:j. def ine and press I Comple •• 1

3. At the Ke!:j_Name prompt, enter the key you want to rebind to the new command.
If you do not know the name of the key, press 'Help on Keyl and then press the key
for which you want to know the name. The key name for that key is displayed
in the Message window.

4. At the Command_Name prompt, enter the name of the command you want bound
to this key and press I Promotel

The new key binding is in effect until you log out.

Rebinding permanently

Begin in your home world.

1. Create a procedure named Facitc.Commands by copying the text from the tem-
plate in !Machine.Editor_Data.FaciLUser_Commands into an Ada window.
See "Creating an Ada Subprogram" in Chapter 8 for details.

2. Edit the body of FaciLCommands so that the case statement contains alterna-
tives for those keys you want to rebind.

3. Promote the procedure to the installed state: I Promote I

The changes will be in effect when you next log in.

64 7/1/87 RATIONAL

Chapter 17. Using CMVC

CMVC is an abbreviation for Configuration Management and Version Control.

Creating a Subsystem
Begin in the library that is to contain the subsystem.

1. Create a Command window: ! Cm •• Command:

2. Enter cmvc. irii t ia l and press ! Compl· •• 1

3. At the Subsystem prompt, enter the name of the subsystem and press !Promo'.:

The command generates logging messages to the I/O window. When the command
completes, the subsystem appears in the library. It contains an initial view called
Rev l.,Working.

Adding, Changing, or Deleting Ada Units in a View
Begin in the view's world (for example, RevL Working).

1. Go to the directory called Units.
2. Add, change, or delete Ada units as necessary.

Note: You cannot change controlled objects unless they are checked out.

Making Ada Units Controlled
Begin in the units directory for the view containing the units to be controlled.

1. Create a Command window: ! Cm'. Command I
2. Enter cmvc. make_controlled and press ! Compl".1

3. At the What_ObJect prompt, enter the wildcard? and press ! Promo •• 1

The command generates messages to the I/O window. All units in the view are now
controlled.

Note: If units are later added to the view, they will not be controlled unless you
perform the above operations again.

RATIONAL 7/1/87 65

Chapter 17. Using CMVC

Making a Subpath
Begin in the subsystem.

1. Place the cursor on the working view for the path from which the subpath is to
be created (typically, Revn., Working).

2. Create a Command window: ICr.a'.CommandI
3. Enter the command cmvc .make_slbpath and press ICompl·,.1
4. At the New_Subpath_Extension prompt, enter the name of the subpath (for

example, the name of the developer who will be working in the subpath) and
press IPromot.1

The command displays messages in the I/O window. When it completes, a new view
appears in the subsystem that is the working view for the subpath. This view has
a name of the form Pathname_Subpathname_Working.

Checking Out a Unit for Changes
Begin in the unit to be changed.

1. Create a Command window: ICr••t<CommandI
2. Enter cmvc. check _out and press ICompl•••1

3. At the Comments prompt, enter the reason for the cha.nge and press IPromo'.!

The command displays its output. When it completes, the unit can be modified.

Checking In a Unit after Changes
Begin in the unit to be checked in after changes.

1. Create a Command window: ICmt. Command!
2. Enter cmvc. check_out and press! Complete!
3. At the Comments prompt, enter a summary of the changes made and press i Promo'.

The command displays its output. When it completes, the unit can no longer be
changed and a new generation will have been created for the unit.

66 7/1/87 RATIONAL

Chapter 17. Using CMVC

Making a Frozen Release
Begin in any library in the working view to be released or in the world for the
working view. All controlled units in the view must be checked in.

1. Create a Command window: j Cre ••• Comluadj

2. Enter cmvc. release and press j Promot.j

The command generates messages to the I/O window. When it completes, a new
view, which is a frozen copy of the working view, appears in the subsystem world.
The Environment automatically generates a release number. The form of the name
of the released view is Pathname/Subpathname_n-m.

Note: Since the released view is frozen (units cannot be edited, promoted, and so
on), be sure that the units in the working view are at the proper state (typically
coded) before releasing.

Accepting Changes
Begin in the world of the view you want to make current.

If you do not want to accept any changes that will ceuse units in your view to be
demoted

1. Place the cursor on the first line of the library display.
Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Create a Command window: j Crut. Comm.nd;

3. Enter cmvc. accept_changes and press j Promot.!

The command displays its output. All objects in the view are updated to the most
current generation unless updating them causes demotions in your view.

If you want to accept all changes even if they cause units in your view to be demoted

1. Place the cursor on the first line of the library display.
Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Create a Command window: ICre.t. Comm.ndj

3. Enter cmvc. accept_changes and press IComp, ••• j

4. At the Allow_Demotion prompt, enter true and press jPromwj

The command displays its output. All objects in the view are updated to the most
current generation.

RATIONAL 7/1/&7 67

Chapter 17. Using CMVC

Getting Information
Determining out-of-date unit$ in a view

Begin anywhere in the view.

1. Create a Command window: ICrea'eCommand!
2. Enter omvc . show_out, press IComplete!,and then press IPromote!

The list of units that are not the most recent generations available are displayed in
the I/O window.

Determining uniu that are checked out in a view

Begin anywhere in the view.

1. Create a Command window: I Crea'eCommand!
2. Enter cmvc.show_checked_out_in_view and presslpromo«!

The units that are checked out in the view are displayed in the I/O window.

Determining unit$ you have checked out (any view)

Begin anywhere in a view that defines the set of units that you may have checked
out in that view or other views sharing its reservation tokens.

1. Create a Command window: ICrea'eCommand!
2. Enter cmvc. show_checked_out_b~_user and press I Promo••1

A list of units you have checked out and the views to which they are checked out is
displayed in the I/O window.

Change history for a unit

Begin in the unit of interest.

1. Create a Command window: ICrea••Command!
2. Enter cmvc. show_histor~_b~, press Icompletel,and then press I PromoteI

The history for the unit is displayed in the I/O window.

General information on a unit

Begin in the unit of interest.

1. Create a Command window: ICm'e Command!
2. Enter cmvc. show and press IPromo'el

The command generates output to the I/O window. This output tells you what views
share reservation tokens (this is, are subject to check-in/check-out synchronization
of changes). It also tells you what generation of the unit you have and how many
generations exist, who has the unit checked out, and so on.

68 7/1/87 RATIONAL

Chapter 18. Networking

Logging Into Another System with TeInet
Begin in any window.

1. Create a Command window: I Cm.e Command:

2. Enter telnet. connect and press I Comple.el

3. At the Remote_Machme prompt, enter the name of the remote machine (enclosed
in double quotes) and press I Promo •• 1

Messages appear in the I/O window, the screen clears, and you are now connected
to the remote machine and can begin logging in.

Interrupting a TeInet Session
Interrupting a Telnet session leaves the connection intact and takes you back to
your original machine. You can later resume the interrupted session to continue
work on the remote machine.

Begin in a Telnet session connected to a remote machine.

1. Interrupt the session: I Break!

The connection to the remote is interrupted and your original RlOOO session reap-
pears on the screen.

Note: If the above steps do not work, the key that interrupts Telnet sessions may
have been changed from I Breakl to another key. Check with your system manager.

RATIONAL 7/1/87 69

Chapter 18. Networking

Resuming a Telnet Session
Begin in any window.
1. Create a Command window: I Cr.ate Commandl

2. Enter telnet" connect and press I Compl ••• 1

3. At the Remote_Machine prompt, enter the name of the remote machine with
which the connection was interrupted (enclosed in double quotes) and press
I Promot.1

The screen clears and the interrupted connection with the remote system is resumed.

You have to press the key that redraws the screen on the remote system (if the
remote machine is another RIOOO, press IConuoIIILI to redraw the screen).

Terminating a Telnet Session
II you are still connected to the remote machine

1. Log off the remote machine.

For most remote Telnet servers, this terminates the Telnet session and returns you
to your original session.

If you are not returned to your original session, interrupt from the session as de-
scribed above and then follow the steps below.

II you are in your on"ginal Rl000 session

Begin in any window.
1. Create a Command window: I Cr.ate Command I

2. Enter te l ne t .disconnect and press I Compl···1

3. At the Remote_Machine prompt, enter the name of the remote system to which
the session you want to terminate is connected.

4. Execute the command: I Promot.1

The Telnet session is disconnected.

70 7/1/87 RATIONAL

Chapter 18. Networking

Copying a Single Object or Library onto Another RlOOO
Copying into an identical library ,trudure keeping tM ,ame ,imple names for the
iiem« copied

Begin in the object or the library to be copied onto the other machine. Make sure
that there are no selections in this window.

1. Create a Command window: ICm •• Commandl

2. Enter archi ve. copy and press ICompl •• ·1
3. At the Use_Prefix prompt, enter the name of the machine onto which to copy

prefixed with the string "!!"-for example, -!!m1".
4. Execute the command: IPromotol

The object and its children, or the library and its contents, are copied onto the
designated machine in the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on the
target machine, it is created automatically.

Copying into another library structure keeping the same simple names for the items
copied

Begin in the object or the library to be copied onto the other machine. Make sure
that there are no selections in this window.

1. Create a Command window: Ic ••••• Comm.ndl

2. Enter archi ve. copq and press IComplet·1

3. At the Use Pr-ef ix prompt, enter the name of the machine and the pathname
of the target library to contain the object or library-for example, "!!ml!users-
.sjl.example" .

4. Execute the command: [Promo •• 1

The object and its children, or the library and its contents, are copied onto the
designated machine in the specified library structure and with the same names as
on the source machine. Note that if the library structure does not already exist on
the target machine, it is created automatically.

RATIONAL 7/1/87 71

Chapter 18. Networking

Copying Objec:ts or Libraries from Another RlOOO
Copying into an identical library ,trudure keeping th.e ,ame ,imple names for the
item» copied

Begin in any window.
1. Create a Command window: ICreate Commandl

2. Enter archi ve .copy and press /Complete/

3. At the Objects prompt, enter the name of the machine and the pathname of
the object from which to copy-for example, -!!m1!users.sjl.some_object".

4. Execute the command: IPromotel

The object and its children, or the library and its contents, are copied from the
designated machine into the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on
your machine, it is created automatically.

Copying into another library structure keeping the same simple names for the items
copied

Begin in the library to contain the copied item.
1. Create a Command window: Icreat. Command I
2. Enter archi ve. copy and press IComplwl

3. At the Objects prompt, enter the name of the machine and the pathname of
the target library to contain the object or library-for example, "llmllusers.sjl-
.example" .

4. At the Use_Prefix prompt, enter $
5. At the For _Prefix prompt, enter the name of the library in which the ob-

ject is located on the source machine without the machine name-for example,
"lusers.sjl" .

6. Execute the command: IPromot.1

The object and its children, or the library and its contents, are copied from the
designated machine into the specified library structure and with the same names as
on the source machine.

72 7/1/87 RATIONAL

Chapter 18. Networking

Copying Objeets onto a Non-RlOOO System
Begin in the object to be moved.

1. Create a Command window: I Cre.te commudl

2. Enter ftp.put and press I Complet·1

3. At the To_RemoteJi l e prompt, enter the simple name (without a directory
name prefix) of the object on the target system.

4. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

5. At the Username prompt, enter your username on the remote machine (enclosed
in double quotes).

6. At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

7. If you want the object to go to a directory on the remote machine other than
your home directory, at the Remote_Directory prompt, enter the full pathname
of the directory to contain the object on the target (enclosed in double quotes).

8. Execute the Command: I Promotel

Copying Objects from a Non-RlOOO System
Begin in the library to contain the object to be moved.

1. Create a command window: I Cmt. Command I
2. Enter ftp. get and press i Compl···1

3. At the From_RemoteJi le prompt, enter the simple name (without a directory
name prefix) of the object on the remote system.

4. At the To_LocaLFi le prompt, enter the name you want the object to have on
your system.

5. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

6. At the Username prompt, enter your username on the remote machine (enclosed
in double quotes).

7. At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

8. If the object on the remote machine is not in your home directory, at the Re-
mote_Directory prompt, enter the full pathname of the directory on the remote
machine containing the object.

9. Execute the command: I Promot.1

RATIONAL 7/1/87 73

RATIONAL

Rational Environment
Basic Operations

Basic Keymap: Facit Terminal

Copyright ~ 1985, 1986, 1987 by Rational

Document Control Number: 8oo1A-51 (803-002325)

Rev. 6.0, November 1985
Rev. 6.1, March 1986
Rev. 6.2, July 1986
Rev. 7.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader's Comments form on the last page of this book, which requests
the user's evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and RIOOO are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

VT100 is a trademark of Digital Equipment Corporation.

Rational
1501 Salado Drive

Mountain View, California 94043

11 7/1/87 RATIONAL

Contents

How to U se the Basie Keymap
Keymap Overview .

Quick Reference to Key Bindings
Detailed Reference to Key Bindings
Master Reference to Key Bindings by Command

Environment Key Combinations .
Item-Operation Key Combinations

Patterns among Item-Operation Combinations
Modified Key Combinations
Basic and Accelerated Keystrokes

Keymap Notation
Symbols .
Numeric Arguments
Case Sensitivity of Key Bindings

1
1
1
1
1
2
2
2
3
3
3
3
3
4

Quic::kReference to Key Bindings
Getting Help .
Traversing the Environment
Logging Off
Selecting Items . . .
Executing Commands
Managing Windows .
Moving within an Image
Writing Text Files
General Editing Operations
Writing Ada Programs
Debugging Ada Programs
Managing Libraries
Using CMVC

5
6
6
6
6
6
7
7
7
8
8
9
9
9

RATIONAL 7/1/87 III

Managing Links .
Using Environment I/O Resources
Managing Jobs

9
10
10

Detailed Reference to Key Bindings
Getting Help and Other Information
Traversing the Environment
Logging Off
Selecting Items . . .
Executing Commands
Managing Windows

Moving between Windows
Resizing and Repositioning Windows
Redraw ing the Screen
Retaining Windows
Removing Windows
Finding Windows

Moving within an Image
By Character
By Word
By Underline or Prompt
By Line
In a Region
By Tabs ..
By Scrolling
By Marking Your Place

General Editing Operations
Selecting an Arbitrary Region
Moving and Copying Text . .
Deleting Text .
Searching and Replacing Text
Entering Text
Transposing Text
Controlling Case
Holding and Retrieving Text
Formatting Text

Writing Text Files
Accessing Text Files

11
12
12
12
13
13
13
13
14
14
14
14
14
15
15
15
15
15
16
16
16
16
17
17
17
17
17
18
18
18
19
19
20
20

IV 7/1/87 RATIONAL

Saving Changes .
Terminating Edit
Selecting Substructures within Text

Writing Ada Programs
Creating Ada Programs
Accessing Ada Programs
Saving Changes and Terminating Edit
Checking for Errors
Changing the Compilation State
Changing to a Higher Compilation State
Changing to a Lower Compilation State
Selecting Structures within Ada Programs
Modifying Ada Programs
Entering Comments and Special Strings
Browsing Ada Programs
Checking Using Occurrences

Debugging Ada Programs
Stepping and Executing . .
Setting and Removing Breakpoints
Viewing Stacks
Displaying and Modifying Variables
Handling Exceptions

Managing Libraries
Creating Libraries .
Manipulating Objects in Libraries
Controlling Library Display

Using CMVC
Managing Links

Accessing Links
Removing the Link Editor
Selecting Links
Modifying Links
Traversing Linked Ada Units
Controlling the Display

Managing Searchlists
Accessing the Searchlist
Removing the Searchlist Editor
Selecting Entries

20
20
20
21
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26
26
26
26
27
27
27
27

RATIONAL 7/1/87 v

Modifying the Searchlist
Using Keyboard Macros .
Using Environment I/O Resources
Managing Jobs

Master Referenc:e to Key Bindings by Command

VI

· 27
· 28
· 28

28

29

7/1/87 RATIONAL

How to Use the Basic:Keymap

The Rational Environment Basic Keymap is designed to acquaint new users with
the keys that have been bound to Environment commands. Users have the option
of modifying these key bindings for their own use, following procedures described
in Rational Environment Basic Operations, also in this manual.

Note that there is a more complete reference to Environment key bindings in the
Rational Environment Keymap, in Volume 1 of the Rational Environm~nt Reference
Manual. It is intended as the primary key reference for Environment users.

Keymap Overview
The Keymap has been divided into the following three sections. The first two
sections apply to the Facit terminal only. The last section includes key bindings for
both the Facit terminal and the Rational Terminal.

Quitk Reterence to Key BindiDg.
The Quick Reference is a guide to the most commonly used key combinations,
organized by topic. The Quick Reference entry for each key combination includes:

• A brief description of what the combination does
• The full name of the command that is bound to it

Detailed Reterence to Key Bindings
The Detailed Reference provides a nearly complete list of key combinations, orga-
nized by topic and subtopic. The Detailed Reference entry for each key combination
includes:

• A brief description of what the combination does
• The full name of the command that is bound to it
• Alternative key bindings, including accelerated key combinations (see "Basic and

Accelerated Keystrokes," below

Muter Referenee to Key Binding. by Command
This section provides a complete, alphabetic list of the commands that are bound
to keys on both the Facit terminal and the Rational Terminal. Each entry includes:

RATIONAL 7/1/87 1

How to Use the Basic Keymap

• The full name of an Environment command
• The key combination(s) to which the command is bound on the Facit terminal

.• The key combination(s) to which the command is bound on the Rational Terminal

Environment Key Combinations
Environment commands are bound to two types of key combinations:

• Item-operation combinations
• Modified key combinations

These two types of ke;: combinations differ in how they are executed.

Item-Operation Key CombinatioDJ

Each item-operation key combination contains an item key (~, IObjW" ~,

Wlndo",! <lmac., : Lin.I, ~! or ,Mark!) followed by an operation key (either alphabetic
or nonalphabetic). The item key identifies the item affected by the operation; the
operation key identifies the action that applies to the indicated item.

The keystrokes must be sequential in an item-operation key combination. To exe-
cute an item-operation key:

1. Press and release the item key.
2. Press and release the operation key.

The notation indicates sequential keystrokes by separating them with a hyphen:
I item key; - i opHadon key~.

PaUeMll amoDg Item-Operatlo» Combination.

In general, commands that execute similar operations are bound to combinations
that contain a common operation key. Some examples include:

~ - @} Commands that copy items are bound to combinations such as
ILln·1 - [9, I R'clonl - @J, and I ObJ.'" I - @, which share the operation key
@].

~ - ~ Commands that delete items are bound to combinations such as
~ - ~, I-"ord! - [Q], and IWlndow! - [Q], which share the operation key
@].
Commands that transpose items are bound to combinations such
as I Word! - [!], I LI •• I - [!], and IWI.dow! - [!], which share the operation
key [!].

2 7/1/87 RATIONAL

How to Use the Basic Keymap

Modified Key CombiDaUoDi
Each modified key combination contains one or more modifier keys Q Shlhl, I Control),

along with another key (either alphabetic or nonalphabetic], Modifier keys are
never used with item keys.

The keystrokes must overlap in a modified key combination. To execute a modified
combination:

1. Press and hold the modifier key(s).
2. While holding down the modifier key(s), press the key to be modified.

The notation indicates overlapping keystrokes by naming the keys adjacently:
i modifier key iother key I.

Buic ud Accelerated Keyatroket
Certain key combinations (namely, item-operation combinations and modified func-
tion keys) are considered basic combinations because they involve explicitly labeled
keys, such as ,Wordj or i Definltlonl. Basic key bindings are recommended if you are new
to the Environment, because they are easy to remember.

However, experienced users may find accelerated key bindings more convenient.
Accelerated bindings generally involve the modifier keys in combination with keys
on the main keyboard so that you can use them without moving your hands away
from normal typing position.

Many commands are bound to both basic and accelerated key combinations. As
an example, you can delete a word using either ! Wordl - ~ or the corresponding
accelerated key combination, I (;,cl - @].

Keymap Notation
The following notations apply to all sections of the Keymap except the "Master
Reference to Key Bindings by Command."

Symbols

Press and release 1 .ey11; then press I key'l.

Press and hold ~ while pressing I key,!.

Press [!J on the numeric keypad.

Numeric Arguments
You can give a numeric argument to many of the commands that are bound to
keys. Indicate the desired number using the numeric keypad, and then press the
key combination bound to the command. For example, ! Word! - [Q] deletes one word;
the following combination deletes four words: ! numeric 41 - I Word! - @J.

RATIONAL 7/1/87 3

How to Use the Basic Keymap

Indicate negative numbers by pressing I numeric -I first. For example, the following
combination shrinks a window by seven lines (Ilexpands- it by -7 lines):

I numeric -I - I numeric 71 - i .•••Indowl - [j]

Cue Senaitivity Or Key BindiDp

Although keys are shown as uppercase, the unshifted equivalent also works. This is
true for the nonalphabetic characters as well. For example, i Obj,'" 1- ~ is equivalent
to jOb),,,,1 - ~ and lOb),,,,! - [j] is equivalent to IOb),,,,I- [!].

4 7/1/87 RATIONAL

RATIONAL 7/1/87

Quid Reference to Key Bindings

5

Quick Reference to Key Bindings

Getting Help

Description

Determine what help i. available

Get help on item

Get help on by

Display Help window

!
What.Doe.

What.Doei

Editor .Key.N &me

Editor.lmace.Find

I
I Help on H~lpi

I H.IPI

I H.lp on K.yl
~ Help Windo,,1

Traversing the Environment

Delcripto01l Btuic Keyr

View object cursor i! on

Get to parent object

Get to your home library

I Deflnl.lonl

t Enelo.lncl

i E.el· CD

Common.Definition

Common.Enclorinc

What.Home_Library

Logging Off

DelCrlphon

LoC off. unless chancu aren't saved

LoC off. ignorinC unsaved chance!

Editor.Quit

Editor .Quit (True)

Selecting Items

Descnptso« ComI714n4

Select successively larger structures

Select successively smaller structures

Select previous structure, same level

Select next Itr\lcture, .&me level

Turn olF selection cursor is in

i Objectl. G
j Object! • 3
I Object I • h
I Objectl· CD
~EJ

Executing Commands

Common.Object.Parent

Common.Object.Child

Common.Object.Previous

Common.Object.N ext

Editor.Set.Desipation_Off

Delcription

Create a Command window

Complete command name and par&meten

Execute a command

Move to the next parameter

Move to the previous parameter

Turn a prompt into text

Redisplay the previous command (undo)

Redisplay the n~xt command (redo)

Btuic KeY'

I Create Command!

, Compl •• el

I Promo •• 1

IE.el·~

~.@]
~0
IObJect I . @]
I Objecti • ~

Common.Create_Command

Common.Complete

Common.Promote

Editor.Guntor.Next

Editor.Guntor.Previow

Editor .5d.Desipation-OIF

Common.Undo

Common.Redo

6 7/1/87 RATIONAL

Managing Window8

Quick Reference to Key Bindings

Descrwuo«

Move to the next window

Move to the previous window

JoiD with the next window

TraD6pose curnut window with previous

RealiKDwindows

Redraw the sereen

Lock a window on the screen

Release a locked window

Remove a window temporarily

Rele..,e imare p'nnaneDtly, savmr chanre,

Dispby the WiDdow Directory

Vie.••.Windo .••.Directory entry cursor is on

Delete selecred Window Directory entry

Bw Ke!l'

'Window! • GJ
IWlndow!. Q]
1Window!. []

IWlndow! • [!]
'Window! ·1 Forma,!

, ConuolU LI

1Window! • , Promo •• 1

IWlndow!·IO.mo,.!

! Window! • llil
~.~
[Windowl 6 'i D-.II-n-I-'I-o'n!

i Ddinhlon!

I Objectl • ~

Editor. WiDdow.Next

Editor. Window .Previous

Editor.WiDdow.JoiD (1)

Editor. Window. TraD6po."

Editor. WiDdow.Focus

Editor~een.Redraw

Editor.WiDdow.Promote

Editor. WiDdow.Demote

Editor. WiDdow.Delese

Common.Rele..,e

Editor. WiDdow.Diree tory

Common.Definition

Common.Objecv.Delet e

Moving within an Image

Descriptson

Move to beri.J1ninl of line

Move to end of line

Scroll up

Scroll down

Scroll to top of imare

Scroll to end of imare

Command

Editor.LiDe~Pmllnr-Of

Editor .LiDe.End-Of

Editor.lmare.Up

Editor.Image.Down

Editor.Im ageBeginning..Of

Editor .Image .End_Of

Writing Text Files

Descrvptum

Create a new text file

View nirtiD& text Iile

Edit exirtiDg text Iile

Revert to Ian laved version

Save, leaving open for editiDr

Save, makiDJ read only

'Cr •••• Tn'!
10.lInltlon!

1 Edl.!

1 ObJ.e.! • [!]
~
, Promo,·1

Text.Create

Common.Definition

Common.Edit

Common.Revert

Common.Commit

Common.Promote

RATIONAL 7/1/87 7

Quick Reference to Key Bindings

General Editing Operations

Ducnption Ba.ftc K eyr j

Select start of repoD

Select end of repoD

Copy a selected item

Move a selected item

Delete character - forward

Delete character - backward

Delete word

Delete line

Delete selected item

I Reclonl • []

I Reclonl· W
I Rellonl • @]
I Reclonl· ~

! ConHoll~

! Deletel

I Wordl· @J
I Llnel • [Q]
I Reclon! • io1
~:--I
! Control:~

i E.ci • [!J

Editor .RePOD.5tart

Editor .RePOD.Finish

Editor.RePoD.COPY

Editor.RepoDMove

Editor .Char .Delete_Forward

Editor.Char.Delete-B:ac.kward

Editor. Word.Delete

Editor .Line .Delete

Editor .Region.Delete

Editor .Search.N ext

Editor .Search.ReplacecN ext

Search for next occurrence

Replace next occurrence

Writing Ada Programs

Descrspuon Bane Keljl

Create an Ada unit iD library

Build a body

Build a private part

Demote to source, open for editiD~

Revert to last saved vernon

Save, le aving open for editin~

Save, regardless of errors

Complete and check !YIltax

Check for semantic errors

Explain underlined error

Move to next underlined error

Move to previous underlined error

Promote to next higher state

Chan~e to source state

Chan~e to installed state

Chan~e to coded state

Demote to next lower state

Compile unit and those it depends on

Demote units and its dependents

Get to other part of Ada unit

'Object, • ~
--- -- Common.Object.ln5ert

Ada.Create-Body

Ada.Creates.Private

Common.Edit

Common. Revert

Common.Commit

Common.Commit

Common.Format

Common.Semanticize

8

i Create Bod2:J

I Create pr\\'&HI

, Edit!

: Object: .' L,

; Fo r m e t

: Sema.nticiz~

:Object;. JJ
~.~
~.~
I Promot.i

I Source Vnltl

Iln.t~1l Unltl

i Code Unltl

I DemoteJ

i Code (Thi. World)1

I Source (Thl. World)1

I Other p~rtl

Common.Explain

Editor .Oursor.N ext

Editor .Cursor .Previous

Common.Promote

Ada.Source_Unit

Ada.Install- Unit

Ada.Code_Unit

Common.Demote

Compilation.Make

Compilation.Demote

Ada. Other _Part

7/1/87 RATIONAL

Quick Reference to Key Bindmgs

Debugging Ada Programs

De.enption

Encute proll'aJD with Debuner on

Continue proll'aJD necution

Step one natemeDt

Step one natement at fame level

Display value! of variable!

Set breakpoint!

Display breakpoint.

BtUic KeY'

~ ·IPromoul

I f:xecu •• i
I Runi

I Run Locali

I Pu,!
I Br~akl

IShow Bruk.,

Command.DebllI

Deblll·Encuu

Debur;.RUD

Debug.Run (Local)

Debug.Put

Debur;.Break

Debur;.Show

Managing Libraries

Dercrvptvm Command

Create a world

Create a directory

Delete select ed object from library

Print image or selecred object

Tonie information in library display

Show ac cen Iist for desir;nated object

I Create World!

; Create Direnory!

: Object; • ; D:

Library.Create.; World

Library.Creaeec.Directory

Common.Objer t.Delet e

Queue.Print

Common.Explain

Acceu_Lin.Display

i Print;

iObjf'ct. :3
! Show Acce •• Llltl

Using CMVC

Descrspuon Command

Check out designated object

Checlt in desir;nated object

Accept chanr;el for desir;nated object

Show object! that are checlted out

In this view

By you, any view

Show into about desir;nated object

Show out·of·date objecb In thh view

Cmvc .Checlt_Out

Cmvc .Check_1n

Cmvc .Accept_Chanr;e!

Cmvc.Show_Checked_Out_ln_ Vie •••.

Cmvc .Show _Checlted-Out_By _ User

Cmvc.Show

Cmvc .show _Out..Of_D ate_Objects

Managing Links

Ducription Command

List link.

Add a new link

BtUic KeY'

Links.Display

Link • .Add

RATIONAL 7/1/87 9

Quick Reference to Key Bindings

Ualng EnviroDJDent I/O Resources

I De.enption Buic KeY' Comm4n4 !
! Indicate end of input to procram 1 numeric .1 Ten.EDd-Of_lDput

II Commit interactiv~ inpui 1 Promoc.1 CommOD.Promote

Managing Job.

I Ducnption Butc KeY' Comf7l4lld i

I
Diseonneee job from terminal 1 Controll! 01 .Job.lDienupt

iKill job 1 Job KIIiI .Job.Kill(O)
I

10 7/1/87 RATIONAL

RATIONAL 7/1/87

Detailed Referenee to Key Bindings

11

Ducnpbon Buic KeY' AccdenlletI KeY' CcmI7141ld
I
I
I

D~termin~ what h~lp it ~able ! Help OD Help! What.Do~s

Get help ODit~m ! Helpl What.DoH

Get help ODk~y IHelp OD Keyl IE.cl·~ Editor .K~y.N am~

DitplJo' H~lp window I Help WIDdowl Editor .Jmall~ .Find

I Explain underlined error I Obl·n i . [!] Common.Explain

Show tim~ and date I Wba' Tlmel What.Tim~

Show tyft~m load I Wba' Loadl What.Load (True)

Show curr~Di wen i Wha' uI.,,1 I What.Usen (True)
i

Sho .•. lock iDlormation for object in window I Wha' Lock.!

I
What.Locks ;

I Show full name of object in window I I Wha' Objec,1 What.Object !

I ! i

Detailed Reference to Key Bindings

Getting Help and Other Information

Show accelS list for denr;uated object i Show Accell Llltd Acc~n_Llst.Dlsplay

Traversing the Environment

Bane KeY'

Display the Window Directory

Displa~' object cursor is on

Displ ay object. same .••.indo .•.

Display parent object

Display parent object. same "'indow

Display parent library. same window

Ditplay your home library

; \\-·indo ••.1 • ; Definition; I "'Indo..,! ~ [2]
j Definition!

: Ddinition In P!&ce-i

, E:nclollnC'1

[Enclolinc In Place!

i Enclollnl" Llbraryl

iE,ci· ~

Set mark at current location

Cycle through mark. in stack

Cycle back through mark. in stack

Return to most recent mark

l M.,k • l-l
: Marki· Gl

Editor.Windo .•·.Directory

Common.Definition

Common.Definition

Common.Encloring

Common.Encloring

Common.Enclosing

What.Home_Library

Editor Mark .Pll.!h

EditorMark.Next

Editor _~{ark .Previous

Editor Mark. Top

Logging Off'
I
I Ducnpbon Buic KeY' Acceknsktl KeY' Ccmman4
I

LOll olr, unless ch&Dllte. &ren't .aved - - Editor.Quit

LOll olr, ir;uorinll unsaved chanlle. - - Editor. Quit [True]

12 7/1/87 RATIONAL

Detailed Reference to Key Bindings

Seleeting Items

I Ducnpbon BtUic KeY' AcceJuaUri KeY' Comrn.anJ

Select rucce.avely luy;tr JUucturn IOble",l· B Common.Object.Parent

Select ruccelavely .malltr JUucturn IOble",l· G Common.ObjKt.Child

Select previow JUucture, .lUIIle level I Oble'" I . [] Common.Object.Previow

Select nen JUucture, llUIIle level I Oble",! • GJ Common.Object.Nen

Select 6rri JUucture I I Oblwl·1 Be,ln Ofl IOble"'l· ~ Common.Object.Fint_Child

I
Select Ian JUucture

I
I Oble'" I • I End Ofl I Oble"'!. 0 Common.Object.Lut_Child i

Turu olr .election cunor is in I Control~ xl Editor.Set.Desipation-OIF I
I I

Executing Commands

Comm4ndBillie KeY'

Create a Command ••.indo ••.

Complete command name and paramtten

Execute a command

Execute command in background

~{o"e to the next par amet er prompt

~{ove to the previous parameter prompt

Turn a prompt into t ezt

Redi!play the previous command [undo]

Reditplay the next command (redo)

Provide prompts for the next key pressed

I Crtat~ Commandj

; Compl~HI Common.Complete

Common.Promote

Common.Oreates.Command

: Shiftii Promo'~i

~.~
Command.Spa ••.n

Editor.Cunor.!'> ext

Editor .Curs or .Previous~.@)
~~
! Objee,! . ~

i Oblcn! . fRl
lE.el· @]

Editor.Set.Designation-OIF

Common.Undo

Common.Redo

Editor.Key.Prompt

Managing Windows

Descripuo«

Moving between Windows

i
Move to the next ",indo ••. i Wlndo ••.1 . GJ IE.el·~,~ Editor.Windo ••..Next

I Move to the previous ••.indow I Wlndo ••.1 • [] I E.el • [!), ~ Editor. Window .Previous

I Move to next attached window jWindo ••.l·G Editor. W indo ••..Child

I Move to previous attached window IWlndo ••.l· G Editor. Window. Parent

RATIONAL 7/1/87 13

Deta.iled Reference to Key Bindings

Managing Window. (CorUin..etl)

De.cnption BtUic KeY' Acc:ektu14l KeY' Comm4nd

Rnlalng and Repoeltlonlng Window.

Join with the next window 'Wlndowl • [] Editor.Window.Join (1)

Join with the previous window ,Wlndowl· IDele •• I Editor.Window.Join (.1)

E:rpand a window 4 line. 'Window! • [!] Editor. Window.E:rpand

Shrink a window 4 line. 'Wlndowl • 0 Editor.Window.E:rpand (-4)

Truupo.e euneDi window with previous 'Wlndowl • [!] Editor.Window.Truupose

Reallcn window. 'Wlndowl • ,Forma,1 Editor. Window.Focus
I Copy a window ! Windowl • @] Editor. Window.Copy
I

Ii

Redrawing the Screen

Redraw the screen

Erase the screen, resdting the terminal
~ I
!E.c!.~ I

Editor.Screen.Redraw

Editor .Screen. Clear

Retaining Wln~owa

Lock a window on the screen
iI Windowl • I Promote] I

! Windowi • 'D.mol.! I i Windowi • i Edil:
!

Editor. Window.Promote

Editor. Window.DemoteRelease a locked window

Removing Win:dowa

Remove a window temporarily i 1 Window! • @J, I
~ ,iI WIndow! • ~,

I

Editor.Window.Delet e

Release imale, discardinl chanles

Releue imale, .avinl chanp;u

Delete selected Window Directory entry

i Window!. ~

!ObjW].@]
i Obj.ctl· ~
I Obj.ct! . @]

Common.Abandon

Common.Release

Common.Object.Delete

Finding Window.

DilPlay ~'indow Directory

DilPlay Window Directory entry

, Windowl· I Ddlnhionl I Window! • 13 Editor. Window.Direct ory

Common.DefinitionIDefinitionl

14 1/1/81 RATIONAL

Detailed Reference to Key BIndings

Moving within an Image

I A=knslttt KeY' ! ComrMnd i
Descriptson BIUic KeY' ,

By Character

Move "1M 1 cha.racter G I Conorol! JI Editor .Cunor .Richt

Move "Ibt 8 cha.racten I num er1c 81 . B I Esel • I CODuol![] Editor.Cunor.Richt(8)

Move left 1 character ! G IConoroli HI Editor .Cunor .Left I

iMove left 8 cha.racten i numeric -I • B ! r:.cl . I CODlroll~ Ectitor.Cunor.Left(8) I
I

By Word
I

! Move to next word IWordl·G ! E.el· []] Ectitor.Word.Next
i Move to previous word IWordl·G ! E.el . [!!J Editor.Word.PreviousI
I Move to bePnninI of word I Wordl • I B.,ln ofl IE.el·~, IElel· ~ Editor.Word.IkPnninI_Of

Move to end of word i Wordl • I End Ofl IEle'.~ Editor.Word.End_Of,

By Underline or Prompt

Move to nert underline or prompt 'Etel. G I Editor.Cunor.NextI, I

i MO"e to previous underline or prompt I EIC; . @] I Editor.Cunor .Previousi

By Line
I

I I
IMove up 1 line [!J ~ I Editor.Cunor. Up I

Move up 8 line, I I nu mer!c iii . CD i Ele! . , Conorol!@]
I

Editor.Cursor.Up(!) I
I

Move down 1 line CD I ConlrodG Editor.Cunor.Down i
I

Move down e line! I num er lc iii . CD ! E.el . ! Conlroli~ i Editor.Cunor.Down(8) I
I i

Move to bePnninl of line I i Lln.1 ., B.,ln ofl ~~ Editor.Line.BePnninI_Of I
I IMove to end of line I i Lln.1 • IEnd Ofl ! Con.rolli EI Editor.Line.End..Of

RATIONAL 7/1/87 15

Detailed Reference to Key Bindings

Moving within an Image (Co,uirne4j

! De.erlptwn Baeic Ke!/f AcceknskJ Ke!/f ! Comm4n4 I

In a Region

Move to b~pnninr of r~pon 1 Re.,lonl· 1 Be.,ln Ofl 1 Re ••lon!. ~ EWtor.RePon~r_Of

Move to end of repon ! Re ••lonl • I ~nd Ofl I Re ••lon! • [!] EWtor .Repon.End-Of

By Tab.

I
Tab forward 1 Control I I! EWtor.Char.Tab_Forward

Tab backward I ~.cl • 1 Control![!j EWtor.Char. Tab..Backward !
! i

By Serolllng

I Ima ••el • CD IScroll up ~ Edit.or.Image.Up

Scroll down i Im.c~1 . CD
I

ICon.rolG EWtor.lmare.DoWD

1 Scroll richt Ilma ••e!. B EWtor.lmar~·Right

Scroll left Ilma ••ei· B I EWtor.lmare.Lpft

Scroll to top of imare !Ima ••el • i Be ••ln Ofl I hna ••el· ~ EWtor.Imare .B~p;inning_Of

Scroll to end of imag~ i Ima ••el • : ~nd Of! Ilma ••el· ~ EWtor.lmare.End_Of

Scroll current Iine to top I Window!. I Be ••ln Of! I ""Indowl • [!] EWtor.Window.Beginning_Of

Scroll currens line to bottom i Window!. 1 End Of! I ""Indowl· ~ EWtor.Window.End_Of I
!
!

By Marking Your Plaee I
I

I

I

! j! Set mark at cursor position ! Mark!. CD ~

i

Editor .Mark.Push

Cycle throurh mark. in stack I !Markl· L3 It:·cl· ~ Editor Mark.l'i ext
Cycle back throurh marks in stack I IMarkl· B EWtorMark.Previow I
Ret\UD to mort recent mark EWtorMark. Top

16 7/1/87 RATIONAL

Detailed Reference to Key Bindings

General Editing Operation.

DucnptWn

Selecting an Arbitral')' Region

Select nan of rer;ioD

S~)ect end of rer;ioD

UDRI~ct a r~r;ioD

I ROlloDI • []

! ROlloDI • []

IRolloDI· @

I I:,el • []
I I:,el . []

Edi~or.RecjoD.Stan

Edi~or.RecjOD.FiDi5h

Edi~or.RecjOD.Otr

Moving and Copying Text

Copy a selected item

Move a selected item

Duplic ate a rinr;le line

I ROllonl • @]
I ROllon! • ~

I Llnol • @] I
I

I E,e! . I Controlll ci

Editor .Region.Copy

Editor .Rer;ioD.Move

Editor .Line.Copy

Del.etlng Text

iDelete character - forward

Delete cheacter - bac.kward

Reduce multiple blank! to one

I Control:i vi
i 001"01

~Delete!

Editor .Char .Delete _Fbrward

Editor.Char.Delete-Bac.kward

Ediror.Cbar.Delet ec.Spac es

Editor. Word.Delete

Editor.Word.Delete Lforward

Editor. Word.Delete-Bac.kward

Editor .Line .Delet e

Editor.LiDe.Delete_Rlrward

Editor.LiDe.Delete-Bac.kward

Editor .Region.Delet e

Delete word

Delete to end of word

Delete to berinninr; of word

Delete line

Delete to end of line

Delete to beginning of line

Delete selected item

--, -
. Lf n el > Of

I Lln.! • fKi
1Llno! • ! 0.1 ••• 1

IE.cl·~lDl
I Control!LEJ

I E,ei . r~""o-n-tr-o-'Ir,r:L!j=-t!

Searching and Replacing Text

Search for next occurrence

Search for previous occurrence
~
I Control~ R]

Editor .Search.N ext

Editor .Search.Previous

Editor .5earch.Replace_N ~xt

Editor .5earch.R~place_Previow

Replace next occurrence

Replace previous occurrence

RATIONAL 7/1/87 17

Detailed Reference to Key Bindings

General Editing Operations (Co.'ined)

,
Ducnptwn Ba.ftc Key. Aa:denJtett K eyt Ccmm4nd

Entering Text

Quot~ a Ip~cial charact~r

I
I I:.cl· 0 Editor.Char.Quot~

Split line, cunor on n~w line I Llnel • [!] Editor .Lin~.Insert

Split lin~, cunor on old lin~ I Llnel· @] I Conuoli 01 Editor .Lin~.Open

Join 2 lin~. ILlnel· ~ II:.cl • @], Editor.Lin~.Join
I I:.cl . I Control~ 01 ,

I Ent~r text in m.,ert mode I Imalel . [!] Editor.Set.lmert_'\!ode(1lue) I
I

I
Enter text in overwrite mode I Imalel . @]

I

Editor .Set .lmertJ,.!o de(False) I,
I

Show current line number i Llnel . [2J What.Line
,
,

I
,

i Transpose with previous character I i Controlll!J Editor.Char.Transp ose
I Transpose with previous word I I Word! . [!J ~ ,-, Editor. Word.Transp ose!

I
E.c .!..!J

Transpose with previous line iLlnel· [!] IE.c).~L!J Editor.Line. 'Ibl.Dspos~ :
I i

Controlllng Cue

Capitalize to end of word I Wordl • Ll II:·cl • Ll Editor. Word.Capitalize I,
I Line! . Ll I

Capitalize worlU to end of line Editor.LiDe.Capitalize
I

Capitalize every word in rerion I Relloni • Ll Editor.R~gion.Capitalize I

~iake lowercase to end of word I Word I .@ IE.ci· ~ Editor. Word.Lower_Case

Make lowerca5eto end of line ILlne!.@ Editor .Line.Lower_Case

Convert entire region to lowercase IRellon! . [3J Editor.Region.Lower_Case

Make uppercase to end of word 1 wordl· ~ IE.cl·~ Editor.Word.Upper_Ca5e

Make uppercu~ to end of line ILlnel· 0 Editor.LiDe.Upper_Ca5e

Convert entin rerion to uppercue I Rellonl· ~ Editor .Region,Upper_Ca5e

18 7/1/~7 RATIONAL

Detailed Reference to Key Bindings

General Editing Operationa (CorUiuetlj

I DucriptWn BtUic Ke!ll Acn:luGlert K e!ll CommGndI

Holding and Retrieving Text

Hold selected ten 1aoclonl· 0] 1Controll ci Editor .HolLStack.Puah

Rdrieve molt recently held ten I aoclonl • ill 1ControlB Y 1 Editor .HoILStack.1bp

Retrieve previous held ten 1aoclonl· G Editor.HoILStack.Pnviow

Retrieve Den held ten 1a.clonl· G IE.cl • [9, IE.cl • [!] Editor.HoILStack.Nen

Formatting Text

I Center the line cursor i, OD i Llnoi • [!]

I

Editor .Line .Center

I
I

Fill text iDselected re~oD i Relioni • j Formatl Editor.Re~oD.Fill

I Jurtify ten iDselected re~oD I Reclonj • i Completel I !
Editor.Re~oD.Jurtify

I
I !I

.~utomatically wrap lines

Do Dot wrap liDes

, Im>"oi . :!l
i Im·col· ~

Editor .Set.f'ilL.l\iode (1h1e)

Editor .Set.Fill_Mode(False)

RATIONAL 7/1/87 19

Detailed Reference to Key Bindings

Writing Text Piles

Descrwuo« Bane KeY' Acx:denlteft KeY' CommGnd !

Aeeeuing Text File.

Create a new ten file I Cre.te Text! Ten.Create

Di!play eD~ ten file I DefinitIon! Common.Definition

Open ten file for editin! I Edit! Common.Edit

Revert to lui saved version I Oble"'!' ~ Common.Revert

Saving Change.

.. ! I
Save. leaving open for edi~

Save. mum~ read only

Common.Commit

Common.Promote! Promot;~i

Termlnating Edit

Remove image, discarding chan~e8

Remove image, savin~ chan~e~

iObjecti·iG;

•Oblo",!. ~

Common.Abandon

Common.Rele ase I

I

~
Selecting Substructures within Text

Select current word

Select current sentence

Select current paragraph

Select smaller structure

Select previous structure, same level

Select next structure. same level

Turn off selection

~.---=--.J

numeric 2;. iObj~ct: .. =:J
i numeric 31 .• ! Object I .. R
: Object! .. g
: Object I • c.j

I obJwl. GJ
~~

Common.ObjectParent

Common.Object .Parent

Common.Object.Parent

Common.Object.Child

Common.Objee r.Previous

Cornmon.Object.N ext

Edit or.Set.Designatl onc.Off

20 7/1/87 RATIONAL

Detailed Reference to Key Bindings

Writing Ada Programs
:
; Description Billie KeY' AcceknsteJ KeY' CommGnd

Creating Ad. Programs

I
Crut~ aDAda unit in library ! Obl«'! • [!] Common.Obj~ct.1nsert

Build a body ICr es t e Bodyj Ada.Cruh-Body
I Build a privat~ part ! Crn'o Prlva •• j Ada.Cnate_Privat~ I

I I
Put temporary n&IDein library - Ada.lDnalLStub

Aeeeuing Ad. Programs
I

I
Di'lliay Ada unit, read only iDoHnhlon! Common.De6.n.ition

Demote to source, open for editiq ! !:dhi Common.Edit I
r ,

Saving Change. and Termlnatlng Edit

Save, leavin« open for editin~ IEnwl

I
Common.Commit I

I
I

Release ima~e, di!car~ ch~e. IOblw i • @] Common.AbaDdon !

Release ima~e, u\"in~ chan~tI ! ObIW! • ~ Oommon.Release

Revert to lart vernon I ! ObJon) • [IJ I Common.Revert

Checking (or Error.

Complete and checi ryntu

Checi for .emantic errors

Explain underlined error

Move to nert underlined error

Move to previous underlined error

Remove underline from error

Clear all underlined errors

Redi-Vlaycleared errors

~
I Soman'leI •• !
! Oblonl • G
iE.cl·~

~.[g
! Control! xl
I Vndorllno. Off!

i Show Erroul

CommoJl.Format

Common.Semanticize

Common.Explain

Editor.Cunor.Nert

Editor .Cursor.Previous

Editor .5et.Desiplation-OIf

Common.Clear_Underlinin~

Ada.Gd_ElTon

RATIONAL 7/1/87 21

Detailed Reference to Key Bindings

Writing Ada Programs (Cor&tiued)

Deseriptio« &nc Keye Accdualeft KeY' Comm4n4 !
Changing &heCompllaUon State

Chanre unit to .ource Rate from UJY Rate I Source VDIeI Acb.50urce_Unit

Chan&eunit to Inrtalled Rate from aD1 Rate Iln.t.1I Vnlel Ada.lnstall- Unit

Chanre unit to coded Rate from aD1 Rate I Cod. VDI.I Ada.Code_Unit

Changing &0• HIgher CompllaUon State

Promote unit to next hi&herRate I Promotel Common.Promote

Code unit and those it depends on

In thh world only I Cod. (Tbl. Worldll Compilation.Make I
Across worlds I Cod. (All World'll Compilation.Make I

lnrtall unit and those it depends on

I I I
In thi. world only 1101'.11 (Tbh Worldll Compilation.Promote i

I I I
I

Changing to a Lower Compilation State

Demote unit to next lower state jOemolej ! Common.Demou I

I
I

Demote unit and dependents to source
I
I

In this world only ! Source (Tbh Worldll I Compilation.Demote !
I i

Selecting Structura within Ada Programa

Select mcceuively larp;er structures I ObJectl· G Common.Object.Parent
,

Select successively smaller structures ! ObJoctl· G Common.Object.Child !
Select previous structure, same level 1Objoct I • CD Common.Object.Previow

Select next structure, same level I Objeetl· CD Common.Object.N ext

Select first structure i Object I • I Bo(ln orl 10bjWI·~ Common.Objeet.Ftrst i.Child

I
Select last structure

I
i Object! ·1 End orl 10bjWi·~ Common.Object.Last.s.Child

i Turn off selection cursor is in 1Con"ol~ xi Editor .Set.Deri~ation-OIF
!

22 7/1/!7 RATIONAL

Detailed Reference to Key Bindings

Writing Ada Program. (Cor&tinetl)

Ducnphcn B&ftc Ke,. AcceIenIltrtI Kef' Command i
I

Modifying Ada Programa I
E<ti~ ~IK~~d Ada rtructun I Edltl CommoD.Edii

IDurt Ada rtructur~t(l) ill pro«J"aDl I Object J • [!) CommoD.Obj~ct.lnaert

Delete selected Ada rtructure I ObJectJ. @l. CommoD.Object.Delrle

JObJectJ. ~

Copy selected Ada rtructure I ObjectJ • @] CommoD.Object.Copy
,

Move seleceed Ada structur~ ! Obj.ct! • ~ CommoD.ObjectMov~

Withdraw Ada unit rtub I Withdraw Unl,l Ada.Withdraw

Entering Comment. and Speclal Strlng8

! i
Comment selected item or re~oD - Re~oD.Comm~1l1 I

I I
1

Uncommeot selected item or r~gion - R~~on.Uncomment,,
Tab forward to comm~Dt Editor.Char.Tab_ To_Comment

Browslng Ada Programs

Di!pby other part or Ada unit

Di!plav other pan !ame wiDdow I

I -i i Odinl,lonl

I
I Display Ada unit cursor is on CommoD.DefinitionI I

! Di!play parent object !l:nclo,lnel I CommoD.Eoclo5iDr;

Set mark at current location ; iMarkl· ~

I
Editor Mark .Push

,
!

I I IMarkl·a !I:I<I· ~ I
Cycle throur;h mark! ill rtack Editor.Mvlr. .Nen I

iMarkl·3
I !

i Cycle bac.k throur;h marks ill rtac.k i

I
EditorMark.Previous I,

I[I
[Markl· ~Return to mort recent mark i Editor Mark. Top

I
I

Checking V.lng Occurrence.

Show uses of selected identifier

!
!

In this unit only i Show Ulaee tVnl'l! Ada.Show_Usar;e

In any unit I Show Vlae.1 AdaShow_Utar;e

Show unused d~claratiolU

10 thil unit only 1 Show Unu •• d (Unlll! Ada.Shaw _UDU.!led

Chec.k other unit. !Show Vnu •• d I Ada.Shaw _UlJ1l!ed

: Ot her Part In PI.c~1

Ada.Other _Part

Ada Other Part

RATIONAL 7/1/87 23

Detailed Reference to Key Bindings

Debugging Ada Progra.me
,

i Ducnpbon BtUic Key. Ac:uknsterl Key. Comm4nd

I Ezecme proKJ'&Dlwith De~er on I !:Icl • I Promo •• 1 eommmd.Debur;
I Dllpllo' Debuun window I D.burru Wlndowl Deb\l&.Curnut_DebuuerI

I Show current statemnli in foune I Show sourcel Deb\l&.50une

I -
Stepping and Executing

Continue procram execution I !:xecu •• 1 DebU(.Ezecute

Step one statrment [Runt Deb\l&.Run

Step one statement at IAlDe level I Run Loc.11 Debur;.Run (Local)

Stop task execution I s.opl Debur;.5top

Dilpl.,.- information abou~ tub I T•• t DI.pl.yl I Debur;.Task_Display I

I I
Dilpl.,.- task rendezvous info I - i Debur;.information i

I I
I

Setting and Removing Breakpoint.

Set breakpoints with default lifetime

Display breakpoints

Reactivate erirtinr; breakpoint.

Remove breakp oints

! Show Break.1

I Actlvatel

Debur;.Brealt

Debug.Show

Deb\l& .Acti''3te

Debug.Remove! Remove Breat.1

V1ewlng Stacka

Debur;.Stack

Displaying and Modifying Variable.

Display values of selected variable.

Modily value of selected variable

I Putl
i Modify]

Debug.Put

Debug Mo dify

Handling Exception.

Stop execution when exception railed

Do not stop when exception rai.ed

Remove hmdlinJ for thil exception

~
I Prop.r· •• 1

Debug.Catch

Debur;.Propap;ate

Debur;.Forr;et

24 7/1/87 RATIONAL

Managing Librariea

Detailed Reference to Key Bindings

DucnptWn Buic KeY' Aa:derated Kegt Comman4 I
I

CreaUng Llbrarte.

-~
~eate a directory I Cre.te Directory I Libr~.~ate_Dinrlory I
~eate a world I Crute Worldl Llbrary.~ate_ World

Manipulating Object. In Llbrarte. I
~eate aD Ada unit in library I Object I • [] Common.Object.Insert -1
~eate a ten file in library I Cre •• e Tex.1 Ten.~eate

Delete selected object from library ! ObJec·1 • [QJ, Common.Object.Delete I;
IObJwl·~

,
:,

i Undelete selected object from library i ~.@] Common.Object.Undo
,
i

I
,

i Print seler ted object
I

' Plin,1 ! Queue. Print i,
Show aeeess list for detn~ated object Show Acc~ •• Lltt: Access_LIrt..Duplay

Controlllng Library Ol.plll)'

Tonie information on library object'

Show more detail

Show les detail

CommoD.Explain

Common.ExpaDd

Common.Elide

Using CMVC

Descnotio« Bane KeY'

I,
Check out designated object

Check in designated object

Accept chan~es for deri~ted object

Show objects that are checked out

In this view

By you, aQYview

Show iDlo about de5i~ated object

Show out·of·date objects in thi. view

RATIONAL 7/1/87

I

Cmve .Check_Out

Cmvc.Chec.k_In

Cmvc .Accept_ChaD~e,

Cmvc.show_Checked_Out_In_ View

Cmvc.show_Checked-Out-By_U.er

Cmvc.show

Cmvc.show_Out_Of_Date_Objech

25

Detailed Reference to Key Bindings

Managing Link.

i Ducnpbon Btuic KeY" Acuktuted KeY" Comm4nd,

Aeeeuing Llnka

List liDk. - LiDls.Dispby

Edit liDkl display - LiDlI.Edit

Refrelh liDk imace I Obje"'l • rn Common.Revert

Removing the Link Editor

Remove window temporarily IWlndowl • @] Editor. Window.Delet e

Release imace permanently I objectl· ~ Common.Rele •• e

Selecting Llnka

Select liDk cunor Is on I Obj..,.l· G Common.Object.Child

Select allliDkl IObje",I·G Common.Object.Parent

Select previous liDk I Obje'" I • CD Common.Object.Previow

Select next liDk 1 Obje"'l· CD Common.Object.N en

Select lint liDk in imace I Obje"'l • IBe(ln Ofl IObje"'l· ~ Common.Object.First_Child

Select last liDkin imace I Obje'" 1 . 1 End Ofl I Oble'" 1 . [!] Common.Objece.Lastc.Child

Modifying Llnka

Add a new liDk-simple method - LiDl•.Add

Add a new liDk i Obje'" 1 . [!] Common.Object.Insert

Give selected liDk another source I Edhl Common.Edit

Delete selected liDk 1 Oble"'! • @], Common.Object.Delete

1 Object 1 . llil

Traversing Linked Ada Units

Go to source unit of current liDk I Dellnltlon! Common.Definition

Go to world associated with liDk. I f;nclo.ln~ Common.Enclosinc

List Ada units that we current liDk 1 Obje"'! • [!] Common.Explain

Controlllng the Display

ToCgleorder of kind of liDk I Oble",1 • OJ Common.Expand

ToUle classes of source of liDk IOble"'!. G Common.Elide
I

26 .7/1/87 RATIONAL

Detailed Reference to Key Bindings

Managing Seuehliat.

Ducn"hon B4nc Ke,. AcceJerakJ Key. Comf7l4lJ&

Aeeeuing the Sea.rehllat

Edn or vi", .earchlillt - Search-Lm.Edii

Rdruh .earchlin imale 'Objon!. ~ Common.Rn-nt

Removing the Searehllat Editor

'Window! • @]RemOft wiDdowtemporarily Ediior. WiDdow.Delete

Rdeue imAle permauem.ly 'Objon!. ~ CommOD.Releue

Seleetlng Entries

Select eDtry cunor it on IObjW!·G I I
Common.Object.Child

i Select all eDtrie. 'Objon!. G I Common.Object.Parent

Select nnt eDtry i Objon!. CD I Common.Obj ect.Nen

ISelect previous eDtry 'Objon!. CD Common.Objed.Previous

Select lint eDtry on lin , Objon: • 'Boclo Of! : Objo",! • ~ Common.Object.First_Child I

Select lut eDtry on lin I Objon!. ! End Of! ,Objo"'! • ~ Common.Object.Lut_Child I
Go to world D&IIledby currem eDtry i Deftnltlon! Common.Delinition

I,
Modifying the Sea.rehUat

I
,

Add a new entry i Objecti . ~ Common.Objecr.Iasert

Delete selected entry i Object! • fDl Common.Object.Delete

I 'ObJW!. [EJ

I Move selected entry : ObJee'i· ~ Common.Object.Move

RATIONAL 7/1/87 27

Detailed Reference to Key Bindings

Using KeyboaJ'dMacros
~.

I I
! DucrtptWn BW Key. Accduwtatl Ke,. Comm4nd

I
Stan macro defDUtjOD I Narkl • IBeclD Ofl I Narkl • 01 Editor .Macro.5tan

End macro deliDitioD I Narkl • I End Ofj j Markl· n Editor .Macro.FiDish

I Execute macro I Narkj. I Promotel IE.cj.~ Editor Macro.Execute

I
BiDd macro to by I Markl·1 Deflnltlonl EditorMacroJBiDd

Using Environment I/O Resources

I [)ucn"tWn Buic Ke,. Aca.knsletl Key. Comm4nd
I

I
Indicate end or iDput to procram I numeric .j Text.End..Of_Input

ICommit iDteractive Input I Promo.el I En\erl Common.Commit

Managing Jobs
i I I
I Deserwtio« Buic Key. Accelemletl Key. Comm4n4
I

Disconnect job from terminal ! Controll@] Jcb.Iarerrupe

Kill job I Job KIIII lid·@] Job.Kill(O)

Stop nmnin~ job. I Job Dhablel Job.Disablefn]

Remme stopped job. I Job Enablel Job.Enable(O)

Reconnect job I Job Connectj Job.Connect(O)

28 1/1/S1 RATIONAL

tA9'end
._--- ------_._--------_ .._---------

Master Reference to Key Bindings by Command

C ;;: I Con"o~J Xl = @bJ~
ESC = Iw:·c] Xl = [Aqi;nl
ESCJ: = IE.c] - ICon"oll Xl = [W-Ind~

S =1510"&] PFl = Ilmac.1

U = IFromo ••] PU = ILln.1
X5 =~~ Pfl = I Word]
X6 = (Forma.) PF4 = 1~"r.1

eo.und r.cit

Acce.a-Liat.Oiaplay
Acce •• -Liat_Oiaplay (For..,J:l)jec:t ...
Ada .CodeJ1n.1 t
Ada .Cr.ateJody
Ada.Cr.ate-Private
Ada. Del.te.JUankJ.1ne

Ada. GetJ;rrora
Ada.Inaert.J5lankJ.1ne

Ada.Inatal1~tub
Ada.lnata11-Dnit
Ada. MalatJn1iN1
Ada. MalatJeparate
Ada.Other J'art (N..- => "<1_,. .
Ada.Other J'art (N..- => "<1_,. .
Ada.Shov-Pnu.ed (In-Unit => "<I .
Ada.Shov-Pnu.ed (I~t => -<I .
Ada.Shov_U •• ,. (N..- => -<CUr.o .
Ada. Shov_U•• ,. (N..- => "<CUr.o .
Ada.ShovJ)aa,. (N..- => "<CUr.o .
Ada .Source.J1n1 t
Ada.Withdrav
a.vc.Accept...J:llan ••.•• (De.tinatil.l ...
a.vc.Owc.k...ln (WhatJlbjec:t => " •••
a.vc .0\ec:k...J)Ut (WhatJ)b jec:t => .
Cave.Shov (Objec:t. => "<Cur.or> .
Cave.Shov~tJty_U •• r (
Cllrve.Shov~tJn-Vi.v (
c.vc.Shov..J)utJ)tJ)at.Jlbjec:t. (...
Co~.Debu9

Co..and. Spawn
Co....,n .•\bandon

SJ4
Xl. '9"
Xl. 'G'

ESCJ:J'S

816
818
ESCJ:..l'9

S110

r6

r9
SJ'9
C110
ESCJ:..l'10
ESC19
C..l'9

C..l'1
ESCJ:..l' 1

ESCJ:Jt

lI.ational

CMSJ'lO
CJ'lJ
SJ'lS
018J'1S
018.,J
otJ
SJ'16
O18J
01J
SJ'll
Fll
018J'17
018..1'18
CJ'10
CSJ'lO
HJ17
ot..117
HJ16
ot..1l6
018J'16
CJ'14
HJ14
Qot..J'll
HJll
CJ'll
CSJ'll
HS..1'll
018J'1l
SJ'U
MJ'II.CMlT
HS~IACE-RETURN
H~IACEJlETURN
HSJNTEII.
H....ENTER
CYRCMlT
OBJECT.'G'
OBJECT.'9"

... '."--_._---'.'-_._-

Common.Clear_UnderlinLn9'
Co~n Co~t

COllllllOn.Complete
COllllllOn.Create...command
Common.Definition

CommonDefLnition
COllllllOn.Definition
COllllllOn.Definition
CommonDefinition
CollllllOnDemote
Common.Edit
Co..on. Elide

Co..on. Ene1o• .in9'

Comaon.Encloain9
eo-on. Enelo.1n9
Comeon.Enelo.in9
Co-.on.Enelo.in9
eo...on. Expand

Comeon. Explain

Co·...an.F.oraat
Co..on.Object.Child

Co...,n. Object. Copy

Comeon. Object. Delete

COllDlon.O~,j<tCt. In •• rt

InJ'lace .0> .N.- => "<Cu .
N••• .::.> "<Cu .
N..- ,,> "<Cu .

ESC.IIO
EHTEII.

X5Fa
Xl.F4

F4
SJ'4

SJ'7
F7
Xl.' .'

C..f4

InJ>lae. => F ... ESCJ'4
lnJ'lace => : ...
InJ'lace => T... ESCJ:J'4
lnJ'lace => r...

Xl. 'I'
n. ' I'

Co~n.Object.La.t-Chlld

Co...,n.Obj~t.Fir.t-Child

CG...on.O~ject.Hov.

Common.Object.Next

Co...on. Object .Parent

Co...,n_Object.Previoua

CollllllOn.Promote

[sC"SLASH
rsCJ'LUS
J.1.' I'
Xl.'+'
ESC...QUD't
Xl. '1'
X6
JJ..II.IGHT

xr. 'c'
Xl.'C'
Xl. '('
Xl.'O'
Xl. 'k'
xr. 'd'
xi , 'B'
Xl. 'b'
Xl.BEGINJ)F
Xl. 'i'
Xl. 'I'

Xl. '.'
Xl.ENDJ>F
xi. 'E'
Xl.'H'
Xl. '.'
Xl.DOWN

Xl. LEFT

Xl.UP

14

CJ'16
S...LNTEII.
C.J:AII.JlIACEJi.ETUR.N
ENTEII.
CS..J:ARlllACEJlETURN
CXH'LT
FlS
OBJECT.F10
CHJlIGHT
SJlIGHT
FlO

SJ'lO
6J'14
Fl4
OBJECT.'. '
OBJECT.'>'
HJ'lO
QLl.U'T

IU.•UT
MliJ'10
Ot8..l'lO
CJ;XCLA't
OBJl.CT.'I'
CJ
Os.n:CT. '1'
OBJECT.'1'
Fl7
C...QI1D't
OBJECT 'I'
C"SLASH

FCIlHA1'
OBJECT.RIGHT
CJlIGHT
Os.n:CT. 'c'
OBJECT.'c'
OBJECT.'d'
OBJECT.'0'
OBJECT.'k'
OBJECT.'('
OBJECT.BEGINJ)F
C.JtEGINJ)F

OBJECT.'i'
CJ'15
OBJECT.' I'
C.....ENDJ)F
OBJECT.ENDJ)F

OBJECT.'H'
OBJECT.'.'
C~
OBJECT.DOWN
OBJF.CT.u:FT
CJ.EFT
OBJECT.UP
C_UP
P5!.CKlT

.)'1

Co•••n.Redo
CO•••n.R ••I••••

Co•••n. S~ticiz.
Co•••n.Sor tJ ••~
Co~.Undo
Co~il.tlon.o...ot. Unit => "<S .
Co~il.tion.Demot. Unit => "<S .
CO~il.tion.Demot. Unit => "<S .
Co~il.tlon.Demot. Unit => "<S .
Co~il.tlon.Hak. (Unlt => "<I••...
Co~ll.tion.Mak. (Unit => "<I••...
Co~ll.tion.Pro_t. (Unit => "< .
Co~ll.tlon.Pro_t. (Unit => "< .
Oebuq.Actlvat. (Br.akpoint => 0)
Oebuq. Break
Oebuq.Br ••ak (Det.ultJ.1t.t~
Oebuq. Catch
Oebuq. Current..J)ebu~r ("")
Debug. Execut.
Debuq.2'or'18t
Debug.lntoraatlon (Debug. Rende.:...
Debu'1.ModJ.ty ("__ Value => "".
Debug. Prop.gat.
Debug.Put
Debug.R..,_ (Br.akpoint => 0)
Debug. Run
Debug. Run (Debug. R.turned)
Debug. Run (Stop...At=> Debug. Loc .
Debug. S.t_Valu. (VarlabI. => De .
Debug.Set_Valu. (Varlabl. => De •..
Debug. Set_Valu. (Var labI. => De ...
Debug. Show
Debug. Show (Debug. !xceptlona)
Debug. Source
Debug.Source (Loc.tion => "". S ...
Debu'il.St.ck
Debug. Stop
Debug.Stop (If_ => "")
Debug.T.~l.pl.y
Edltor.Char.Caplt.liz.
Editor.Char.Del.t.-B.ckYard
Edltor.Char.Del.t.-forv.rd
Edltor.Char.Del.te-Bp.c ••
Edltor.Char.ln ••rt-Char.ct.r (1...

Xl. 'II.'
Xl. 'r'
Xl.'X'
Xl. 'x'
Xl. 'L'
XI.'l'
no

Xl. 'u'
Xl.'U'

I!SCJ" 7
CJ"6
I!SCJ;-f6
I!SCJ"6
ESC-fl
S-fl
SJ"3
SJ"1

I!SCJ;J"3
I!SCJ" 3
F3
CJ"l
Fl

I!SCJ"1

I!SCJ;J"l
Fl

C..I3
C..II
I!SCJ;..I1

DP.:LI!TI!
CJ)
I!SC..JlACI:SLASH

P.:dltor.Char.In••rt-Btring (••••)")

OBJECT. 'r'
OB.1ECT.'R'
OBJECT. 'x'
OBJECT. 'X'
OBJECT. 'I'
OBJECT. 'L'
Fl6
OBJECT. 's'
OBJECT. '.'
OBJECT. 'u'
Oll-.TF;CT.'u'
MS-f14
CS-f14
CMSJ"14
CM.J14
CM.J13
CMSJ"13
MSJ"13
M..E13
M..E7
CJ"7
S..E7
C..E8
CMS-f9
SJ"6
S-f8
CMSJ"8
CM.J9
M.J8
F9
CMJ7
F6
M-f6
C-f6
CJ"9
S-f9
M-f9
CMS-f7
CM.J8
F'7
F8
CMJ6
CMS-f6
C_6
CJ;IRCUMFLEX
DELETE
CJ)
CSJ)
CJ)ELETI!
CSJ)ELETl
MS-BPACECS....5PACE
CM....5PM:E
H....5PACE
CMS-BPACP.:
C....5PACE
S....5PACl:
CJHGHTJ'AREN

Edltor.Ch.r.Iri••rt~trinq " (N")

Edltor.Ch.r.ln ••rt....5trinq ": =")

Editor.Ch.r.ln •••rt....5trinq "==>11)

Editor.Ch.r.LoverJ; •••
Editor.Ch.r.Quot.

Editor.Ch.r.Tab-".ckv.rd
Editor.Ch.r.Tab-forv.rd
Editor.Ch.r.Tab-Io-Comment

Editor.Ch.r.Tran.po ••
Editor.Ch.r.UpperJ;a ••
Edltor.Cursor.B.ckYard
Edltor.Cursor.Down

Edltor.Cursor.Down (8)
Editor.Cur.or.Forward
lditor.Cur.or.Lett

P.:dltor.Cur.or.Lett (8)
P.:ditor.Cur.or.Next
ldltor.Cur.or.lfaxt
Editor.Cur.or.N ••xt
Editor.Cur.or.Next

Prollpt => r .
Prowpt => T .
Pro~t => T .

Editor.Cur.or.Pr.vlou.

Editor.Cursor.Pr.viou.
Editor.Cursor.Prevlou.
Editor.Cursor.Previou.
Editor.Cursor.Right

Prollpt
Prompt
Prompt

Editor.Cursor.Right (8)

Editor.Cur.or.Up
--------------- -------------------

!SC-II~
ESC-BtAR
ESCJ;J
CJ

C_O
C_9
CJ.EFTJ'AREIf
CJ;OLON
C.JlEMICOLON
CJ:QUAL
CJ'I..US
CJ,ESS JHAIf
CJXM\A
C-II~
C....QUOTl!
CS-I ICJ:
CSJ'AB
C-tAB
S-tAB
TAB
MSJ'AB
OBJECT. TAB
M-1AB
C-I
CS-I
CJ'ERIOD
CJ;REATERJHAIf
CS-"C-"CJf
LINI!.DOWN
CSJf
DOWN
CIUf
CMSJf
CJ"
CSJ
CSJl
CJI
Ll!rT
QUi
CMSJIIt..J)OWK

CJf
ooWlf

I!SCJ;Jf

CJI
LEFT
!SCJ;JI
!SCJlJf
ESCJf

1..I18
MJ"IB
rIB
MJf
MSJf
fLU
MS_U
fLUP
CSJ18
CM.J18
C-f18
CJ
CSJ
RIGHT
CMSj
CM.J
CMSJ
CMJ
C_U
CS_U

CJ
RIGHT

30

Editor.Cur.or.Up (8)

Editor.Hol~tack.Copy-lop
Editor.Hol~tack.Delete-lop
Editor.Hol~tack.Next

Editor.Hol~tack.Previou.
Editor.Hol~tack.Pu.h

l[dito~.Hold-Stack.Rotate
Editcr.Hol~tack.Svap
Editor.Hol~tack.top

Editur. Ima98. !ndLPt

"fielp Window")
N••• => "M•••..

Editot·.1-98. rind
Editor. 1-98. Find

Edit~r.Ima98·Lett

[di~::..r.hUlV·•. :)P

Ec! ', \:<Jr . r..y.N •••

Edit;o:·.!Cay. Prolapt
Editor.~.Prompt (Iey~de => ••"~
Ed~tor.L~ •.Be9inn1n9-Pt

ESCJ
ESC_C
Xl.RIGHTESC....sJ
ESC....s_C
Xl. LEFtC..J:
Xl.DOWN

CJ
Xl. UP
PFl. 'b'
prl.BEGIN~
PF1. '15'
c.s
PFl.DOWN

PFl.Dm~
PFl. 'E'
PFl. 'e'
PFl. tAB

ESCJ'5
PF1.' t'
PFl.' I'
Pl"l.'l'
Prl.LEFt
PFl.RIGHT
~l.UP
C..z

C..I5
ESC~t....sIGN
ESC-OUOtAtION
ESC.J
ESC....s-O
fSC-O
ESC..J:JI
PFl. 'b'C_,
C.A
E!,r;_C~

UP
LINE.UP
O1S_U
O1_U
REGION. 'p'
REGION. 'P'
REGION. DELETE
/LY
MS_Y
M_C
REGION.RIGHT
MS_C
REGION. LEFT
C_C
REGION.DOWN
CS_C
REGION. 'r'
REGION. 'R'
REGION.'T'
~EGION. 't'
REGION.UP
CSJ
C.3
SJlr:GI!LOF
Itw:;E.8EGIN-PF
c.s
S.DOWN
Itw:;E.DOWN
CS_V
Itw:;E.END-PF
SJ:ND-PF

I"'~.'?'
Itw:;E.'I'
c.r u

MS..LEFT
Itw:;!:.LEFTMS...PIGHT
Itw:;E.RIGHT
I~.UPCS..z
~_I.JP
C..z
C-O
r:LQ
MJ·ll
M-O
MS-O
£11
O1SJI
01J1
OI..A
CSJ\C_"

Editor.Line.Capitalize

Editor.Line.Center
Editor.Line.Copy

Editor.Line.Delete

Editor.Line.Deletejaackvard

Editor. Line. Delete.Iorvard

Editor.Line.EndLOt

I
IEditor.Line.Indent
Editor.Line.inaert

Edi tor. Line. Inaert (. (1))

Editor.LirIe.Join

Editor.Line.Lover-Ca.e

Editor. Line. Open

Editor.Line.Tranapo.e

IEditor.Line.upper-Ceae

I
I
Editor.MacrO.Bind
Editor·.!'Iacr:..fx,- _ui::e

0- ~ •• _. •••••

PFl. '15'
P!'1.BEGIN.J)l'
PFl. ,.,
PFl. '6'
PF1.'·'
PF1. '4'
PF1. ','ESC..J:-C
PFl. 'c'
PF1. 'c'

ESC_CJ)
PFl. '0'
PF1. 'd'
ESC-C..J'
PF:l.DELETE
PF1. 'I<'C.J
l!SC-C.J
PF1. 'I:'PF:l.END....or"
PF:l.tAB
PFl. 'e'
PF1. 'E'
CJ:
ESC..J:J:
CJ4
PFl.' i'
PF1. 'I'

P!'l.'J'
ESC-C-PESC....s-p
ESC-P
PF1.' j'

P!'l.'<'

PFl. '0'
C_O
PFl. '0'

ESC_C-l
PF1. 'T'
PFl. 't'
PF1. '>'

PF4.F4
PF4.ENTER

LINE.BEGINJlFCHS...A
BEGIN-PF
O1_C IRCUMF LEX
01_6
LINE. ,-,
LINE. '6'
LINE. ','
LINE. '4'
LINE. 'c'CH..C
LINE. 'e'
CHS-C
au>
CHSJ)
LINE. '0'
LINE. 'd'
LINE .DELETE
O1J)ELETE
O1SJ)ELETE
CSJ
LINE. 'j('
LH=:!. 'I<'C.J
'>u:
C!:J:
ll'4SJ:
END-PF
CJ:
LINE. END...oF
CAIUUAGEJETUR!f
SJ;ARR IAGEJETURlf
!.INE.'i'
LINE. 'I'
CJ
CSJ
LINE. 'J'M...O
au
MB-P
CHS-P
LINE.' j'
LINE.', '
L1Nl:.'<'O •.....LESS....!HAN
0LCCM1A
C~
t:'S_O
L:.:.:a:. '0'
LINE. '0'
OCT
LINE. 't'
LINE. 'T'
O1S_T
CH~EATER...rHAN
LINE.'. '
04..J'ERIOD
LIKE.' >'
MAIU.FlO
MJ

3]

__ A _________ .----~------. - ---- ---' ..-

I
-----_._----- -- ----------

PF4.X4 MAAJ':.£NTI':R X~.· [. REGION. '{'ESC~.J(MAAI.PRCH:lT ~ CJ.UTJlRACEESC] M.',RK. . CARR IAGI!.JtETURN Edil~r.Reqion.Unc~t REGION. ,- ,
MS_;(REGION.' t'Editor.H.cro.F~ah PF4. 'e' MAAie' J' Editor.Reqion.Upper~ae xa.: >' REGION. , ,

Pf4. 'E' MY l CHT JlRACE REGION. ' .'Pf4. '}' MAAI. '}' Edit.or.Screen.Clear I!SCJ. HJ.
PF4.l!HDJ)f" MARl. ENDJlf ESC.-$J. MSJ.Pfot..'J' M.JtIGHTJlRACn:T Editor.Screen.Dovn CSJ)ONlfEditor.Macro.Start PF4.8EGllfJ)f" HJ..EfTJlRACKET Edltor.Screen.Lett CSJ.EFTPF4. 'b' MARl.' [' Editor.Screen.Next 04S.JtIGHTPF4. '{' HJ.EfTJlRACf Editor.Screen.Pr.vioua 04SJ.[fTPF4. 'D' M.\R1.:{' Editor.Screen.Puah 04SJ)OWNPF4.' [' M.\R1.DEGINJ)f Editor. Screen. Redrav CJ. CSJ.Editor.~k.Copy-lop MARl(.'p' CJ,

MARl. 'P' Editor.Screen.Rlqht CS.JtIGHTEditor.Mark.Delete-lop M.\R1.DELfTE Editor.Screen.Top 04S_UPEditor.Mark.Next ESCJ4 MSJ4 04SJlEGIN_OFFr4.RIGHT "'.....11 Editor.Screen.Up CS_UPESC.-$J4 MAAI(.RIGHT Editor.Search.Next CJ C.-$
Editor.Mark.Pr.vioua Pf4.LEFT M.\R!.LEfT CS..3
Editor.Mark.Puah NUL MAAI.DOWN Editor.Search.Pr.vioua CJl CS..Jl

PF4.DOWIf CSj! C.Jt
CJ4 Edltor.Search.Replace~t ESCJlJ "-SEditor.~k.Rotate MAAI:.'R' ESC-," MSJIMARl(.'r' Editor.Search.Replace-Prevloua ESC..J KJlfdltor.Mark.Svap MAAI(.'t' ESC.JIJl HSJlM.\RI:.'T' Edltor.Set.ArqwDent-Plqit (0) NUHEllIC_O IUfUHDIC_OEditor.Mark.Top Fr4.UP MAAI.UP C..JfUMERIC_OEditor.Region.Beqinn!ngJ)f X.:I.'b' REGION. DI!GINJ)F IfIJMEJ!IC_OX.:I.'8" S..JfUMERIC_OX.:I.DEGllfJ)f" Editor.Set.Ar9U880tJ)lglt (1) HtKRIC....l tUfUHERIC....l

Edltor.Region.Capltal1&. X:!.'6' RI!GIOIf.'6' C..JfUMERICJ
D. '., REGION. ... IMCERIC....l
D. ,., S..JfUMERICJEdltor.Reglon.eo...nt RECION. , , Editor.Set.ArqwDentJ)igit (.:I) HtKRIC.,J IMCERIC.,J

RI!GION.' -
, tUfUHlRIC.,JEditor.Reglon.COpy D.'c' REGION. 'c' 8..JfUHERIC.,J

D.'C' REGION. 'c' C..JfUMERIC.,J
Edltor.Re9lon.Delete Xl. 'D' RECION. 'I:' Editor.Set.ArqwDentJ)19it (J) NUMD.ICJ CJlUHERICJ

Xl. 'd' REGIOIf.'k' I(..JfUHERIC...J
Xl. '1[' REGION. 'd' S..JfUMERICJX.:I.'k' REGION. '0' IM1ERIC...J

Edltor.Reglon.~r X.:I.'E' REGION.ENDJ)f" Edltor.Set.Ar9U880tJ)19lt (4) NUMD.IC_4 NtlHERIC_4X.:I.ENDJlF C..JfUMERIC_4X.:I.'e' KJroHERI C_ 4Edltor.Reglon.Flll X.:I.X6 REGION. FORHAT S..JfUHERIC_4Editor.Reqion.Finiah X.:I.'}' REGION. "l • Editor.Set.ArqumentJ)igit (5) NUHEllIC3 C..JfUHERIC3X.:I.'j' C..JHCHT JlRACJa:T K.JfUMERIC3ESC.JtIGHT.JmA(2 C.JtIGHT JlRACE 8..JfUMERIC3
REGION.' }' NtlHERIC3Edltor.Region.Juatlty X.:I.XS REGION.COMPLT Ed,-or.Set.ArqumentJ)i9it (6) NUHERIC.J> C..JfUMERIC_6Editor.Reqion.Lo •• r~ae X.:I.'<' REGION. '< ' S..JfUHERIC_6
REGION. , . K.JfUMERIC_6Editor.Region.Ma •• X.:I.'a' REGION. 'M' NtlHERIC_6X.:I.'M' REGION. '.' Edltor.Set.ArqumentJ)19it (7) NUMERIC_7 C..JfUHERIC_7

Editor.Region.Ott X.:I.'x' REGION. 'x' NtlHERIC_7X.:I.'X' REGION. 'X' K.JfUMERIC_7Editor.Region.Start ESCJ.FIT...J!RACl; CJ.Ef TJlRACJa:T S..JfUHERIC_7X.:I.'{' REGION.' r: Editor.Set.ArqumentJ)iqit (8) NUHERICJ C..JroHERIC_B---- --.------~- -------------

32

-~- .. -_._-_ ..._---_ ..._.- -_ .._-_ ..._---

Editor.Set.Arqument-Digit (9)

Editor.Set.Arqument-Hinua

Editor.Set.Arqument-Prefix

Editor.Set.Deai~atio~Off

Editor.Set.Fi11-Hode Fa1.e)

Ed1~or.Set.F111-Hod5 True)

Editor.Set.lnaert-Hode Fa1.e)

Ed1tor.Set.In.ert-Hoo. True)

Ed1tor.Windov.Beg1nning-Pt

Ed1tor.Windov.Ch11d
Ed1tor.WinGcv.So~-

Ed1tor.Windov.De1ete

Ed1tor .W1~Aov.Demote

Ed1tor.Windov.D1rectory

Ed1tor.Windov.Expand

Editor.Windov.Expand (- (4»

Editor.Windov.Focu.
Editor.Windov.Join (- (1»
Editor. Windov. Join (1)

Edltor.WirAoY.N~~

Editor.Windov.Par~t

DASH

HUMERIC.J:(M4A

C..J(

PFl.'X·
PFL 'x'
PFL 't'
PF1 'F'
PFL '0'
PFL '0'
PFl.'i'
PFL 'I'
xa. 'b'
Xl.BEGllf.J)!"
xa. 'B'
Xl.RIGHT
Xl. 'c'
xa. 'c'
xa. 'D'
xa. 'X'
xa. 'r.:'
xa. 'd'
xa. 'k'
xa. 'x'
Xl.F7
Xl.S..I7
xa. 'I'
X3.F4
xa. '+'
xa.: ?'
xa. 'e'
Xl.END-PF
xa. 'E'
Xl.', '
xa ."] •
Xl.'. '

Xl.X'>
Xl.DEL!:":E
xa. 'J'
XJ.' j'
ESC_V
S_J)OWN
Xl.Dm.~
ESC.J>_'1
Xl LEFT

SJfUHERI CJJ
H.JruMER ICJJ
NUHERIC_8
HJruHERIC_9
SJruMERIC_9
NUMERIC_9
CJruMERI C_9
C-DASH
DASH
S-DASH
H-DASH
NUHERI C_c::cH1A
HJruHERI CJXlMH,\
CJruMER I C.J:(M4A
SJruMERIC~
CS..J(
C..II7
C.Jt
lMAGl!. 'X'
IM.\Gl. 'x'
IHtoGl! . ' C·
IM.\Gl. 'F'
lHAGE. '0'
lHAGE. '0'
IM.\Gl. 'I'
IM.\Gl. 'i'
WINDOW.lIEGIN-PF
O1.....lIEGH'-Dr

WINDOW.RIGHT
WINDCW.'c'
WII'roOW.'C'
WINDOW.'x'
WI/I!D(y.pf. • X '
WINDOW.'i('
WINIY.)W.• r.: '
WINDOW.'d'
WI:-moW. 'D'
WINDOW.SJ14
WINTXllol.Fl4
WINDOW.no
WIm>OW.' r
WINDOW.' I'

CH....!ND_O~
WItoOW. tND-PF

WINnOW.', •
WINDOW.'1'
WINDOW.' >'
WIl'1DOW.• _•
WINDOW.FOR:IAT
WIN'X)IoI.DELETE
WINDOW.' j'
WINDO",.: J'
OU>O~
WINOOW.DOWN
HS_\'
H_V
WINOO':. :J:FT

Editor.Windov.Previoua

Editor_Windov.Promote
Editor.Windov.Tranapo.e

Editor.Word.Capita1i%e

Editor.~or4.Dele~e

Editor.Word.Delete....8ackvard

Editor.Word.Delete..Iorvard

Editor.Word.Lover-Ca.e

Edl t .sr .Word. Po _net

Editor.Word.Previou.

Ed.i.t.or . Word. ':,·o.napo.e

Jo~,. C .•';'lee': ((\,
J~b.Dia.bl. (0)
Job.Enable (0)

ESC~...z
ESC...z
S_UP
Xl.UP
Xl.X4
xa. 'to
xa. 'T'
PFJ . BEGIN-PF
ESC-"
PFl. 'B'
PFl. 'b'
ESC~...B
ESC~-"
ESC...B
PFl. '6'
PFl.' -,
PFl. ,.,
ESCJILDE
ESC.-6
ESC-CIRCllHFLEX
PFl. '0'
ESC~-D
PFl. 'd'
ESC-D
PF3.D!L!Tl
ESC-DEL

ESC....x
PF3. 'k'
ESC~J
PFl. 'r.:'
PFJ.TAB
ESC~.J!
PFl. 'e'
ESC....l
PFl. 'E'
PF3 . Dm.J)!"
PFl. '<'
ESCJ,ESSJHAH

PFl.RIGHT
ESC~J
ESCJ

PFl. LEFT
ESC-.SJi
ESCJi

ESC~.-T
PFl. 't'
PFl. 'T'
ESCJ
PFl .: >'
ESCJ;REATERJHAH

ESC..Ill
ESC-CJll
S5-'.1

WINDOW.UP
H..2
HS...z
CH_UP
WINDOW. PRm10T
WINDOW_'T'
WINDOW.'toH-"
WORD_BEGIN..J)F
HS-"
H...BEGIN..J)F
HS...B
H...B

WORD. '6'"-6
H-C: RCUHFLEX
WORD.'-'

MS-D
flU)
WORn. 'd'
WOm>. '0'
KJ)1!LETl
WORD.Df.Ul'E
MSJ>£[.~l'E
MSJ
WORD 'k'
"-l!:
WORD.' r.:'
H....l
WORD .lND.J1C
MSJ
"-F.N!>_OF

MJ.ESS,JHAN
WORD. '<'
H....CCMtA
wt'RD. ' , '
HJ
HJ~GHT
WORD.RIGHT
HSJ
MJ.r.FT
wt'RD.LEFT
K-li
HSJi
WORD. 't I

wt'RD. ''I'
HS..-!
HJ
wc,RD.v.:

WORD.•.••
H-GREATERJHAN
H_PERIOD
HJ19
FI9
Sj'19

33

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

6 months or less _ 1 year _ 3 years or more _

How much experience have you had with the Ada programming language?

6 months or less _ 1 year _ 3 years or more _

Name (optional), Date _
Company _
Address _
City State ZIP Code _

Please return this form to: Publications Department
Rational
1501 Salado Drive
Mountain View, CA 94043

Rational Environment Basic Operations, Basic Keymap: Facit Terminal, BOOlA-51

