Rational Environment
Basic Operations

Facit Terminal

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-51 (803-002318)

Rev.
Rev.
Rev.
Rev.
Rev.

4.0, November 1985
4.1, December 1985
4.2, March 1986

4.3, July 1986

5.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

ii

Rational
1501 Salado Drive
Mountain View, California 94043

e RATIONAL

Contents

Chapter 1. Loggmglnand Out
LoggingIm e .
Logging Out L.
Saving Changes

Chapter 2. GettingHelp
Getting Help on Help e
Getting Help on a Specific Item
Getting Helpon Keys
Displaying Ada Specifications S
Displaying the Help Window
Getting Helpon Errors C

DD =t ek et

v b W B W W

Chapter 3. Executing Commands .
Creating and Executing a Command Window Program
Expanding a Command Window
Shrinking a Command Window
Getting Command Completion . . . e
Moving to the Next Prompt or Underlme o
Moving to the Previous Prompt or Underline :
Turning Off a Prompt ..
Reexecuting the Same Command
Changing and Reexecuting a Command
Entering a New Command in the Same Command Window
Clearing a Command Window of Unneeded Text
Going Back to Previous Commands
Getting the Parameters of a Command Bound to a Key

O © O O © 00 00 00 00 00 = ~J =~ =3

RATIONAL 7/1/87 iii

Chapter 4. Managing Windows11

Finding a Window Using the Window Dlrectory . § |
Deleting Windows from the Window Directory11
Moving between Windows1
Expanding a Window 12
Shrinking a Window . . . S b
Expanding Current Window to Include Next Frame R §/
Expanding Current Window to Include Previous Frame | 12
Transposing Windows . . . e b
Realigning the Windows on the Screen R P
Removinga Window13
Locking a Window on the Screen13
Unlocking a Window on the Screen 14
Scrolling the Image14
Chapter 5. Traversing the Environment 15
Viewing a Library . . . S
Viewing an Object in a lera.ry S 1)
Viewing a Library’s Parent15
Viewing Your Home Library 1
Viewing the Specification of an Envxronment Package S { ¢
Chapter 6. Using General Editing Operations17
Selecting an Arbitrary Regionof Text17
Moving Selected Text17
Copying Selected Text17
Searching fora String18
Searching and Replacing a String S ¢ -
Searching and Replacing All Occurrences of a qtnng S
Deleting Text19
Joining Lines19
Trapsposing Text2
Changing the Caseof Text21

iv 7/1/87 R)ATIONAL

Chapter 7. Writing Text Files
Creating a File)
Viewing a File .

Editing an Existing File

Saving a File

Setting Tabs .

Setting Overwrite Mode On
Setting Insert Mode On

Setting Wordwrap for Text
Changing the Wordwrap Column
Turning Wordwrap Off

Chapter 8. Writing Ada Programs
Creating an Ada Package Specification

Creating an Ada Package Body

Creating an Ada Subprogram

Creating a Subunit

Importing Units : o
Adding a Statement, Declaratlon or Comment
Changing a Statement, Declaration, or Comment
Deleting a Statement, Declaration, or Comment
Changing the Name or Kind of an Ada Unit
Adding a Subprogram to a Package .
Making a Package Body or Subprogram Body mto a Subumt
Making a Subunit In-line in the Parent
Demoting a Unit and Its Dependents

Making a Library Program Executable
Executing a Library Program .

Saving the Changes of Incomplete Umts

Setting Overwrite Mode On

Setting Insert Mode On

Chapter 9. Browsing Ada Programs

Getting the Definition or Use of an Identifier

Viewing the Specification of an Environment Package
Viewing a Unit’s Specification from Its Body

Viewing a Unit’s Body from Its Specification

Viewing a Unit’s Parent .

Showing the Using Occurrences of a Deﬁned Ada Name

RATIONAL 7/1/87

. 23
. 23
. 23
.23
. 24
. 24
. 24
. 25
. 25
.25
.25

.27
.27
. 28
.29
.29
. 29
.30
. 31
. 32
. 33
. 34
. 36
. 36
. 36
. 36
.37
.37
.37
.37

. 39
. 39
. 39
. 39
. 40
. 40
. 40

Chapter 10. Debugging S .41

Starting the Debugger 41
Stopping the Debugger L. . 41
Displaying the Program Being Debugged 41
Displaying the Value of a Program Variable 41
Displaying the Call Stack CL. 42
Displaying Source for a Call Stack Frame 42
Displaying Parameters for a Call Stack Frame oL . 42
Stepping Through the Program A ¥
Executing the Program 43
Setting Up Exception Handling43
Setting Breakpoints e ... 43
Showing Breakpoints 43
Removing Breakpoints ¥
Modifying a Program Variable 44
Returning to the Point of Program Suspension 44
Displaying the Debugger Window 44
Chapter 11. Managing Libraries =45
Controlling the Library Display45
Creating Libraries 46
Deleting Objects in a Library Y ()
Undeleting Objects or Previous Versions in a Library Y ¥4
Copying Objects in a Library 47
Moving Objects in a Library 48
Renaming Objects in a Library 48
Printing Objects Contained in a Library C e49
Chapter 12. Managing Links51
Listing Links—Simple Method51
Adding Links—Simple Method 51
Getting the Pathname for an Environment Package 51
Editing Links fora World52
Controlling the Link Display 82
Insertinga NewLink52
Deletinga Link053
Viewing the SourceofaLink 583
Exiting from the Link Display 83
Addinga Setof Links C e .. .53

vi 7/1/87 RAT'ONAL

Replacing a Link

Chapter 13. Managing Session Switches
Editing Session Switches . -
Controlling the Session Switch Dlsplay
Modifying Session Switch Values
Getting Help on Session Switches .

Saving Session Switches o
Exiting from the Session Switch Dlspla.y .

Chapter 14. Managing Searchlists
Editing the Searchlist for a Session
Adding a Component to a Searchlist
Deleting a Component from a Searchlist
Replacing One Component with Another .
Viewing the Library Named by a Searchlist Entry
Exiting from the Searchlist Display

Chapter 15. Managing Jobs
Disconnecting from a Job
Reconnecting to a Job :
Killing the Current Job or the La.st Job Created
Killing Any Job

Chapter 16. Customizing Your Workspace
Building Macros . . o
Defining Your Own Login Procedure
Rebinding Keys

Chapter 17. Using CMVC
Creating a Subsystem .
Adding, Changing, or Deletmg Ada Umts in a Vxew
Making Ada Units Controlled
Making a Subpath . .
Checking Out a Unit for Changes
Checking In a Unit after Changes
Making a Frozen Release
Accepting Changes
Getting Information

RATIONAL 7er

. 53

. 55
. . 55
.. 85
. 56
. 87
. 87
. 87

. 59
. 989
. 59
. . 59
. 60
. 60
. 60

. . 61
. 61
. 61
. 61
. 62

. 63
. 63
. 64
. 64

. 65
. 65
. 65
. 65
. 66
. 66
. . 66
. 67
. 67
. 68

vii

Chapter 18. Networking69

Logging Into Another System with Telnet A 3¢
Interrupting a Telnet Session69
Resuming a Telnet Session70
Terminating a Telnet Session70
Copying a Single Object or Library onto Another RIOOO
Copying Objects or Libraries from Another R100072
Copying Objects onto a Non-R1000 System S T3
Copying Objects from a Non-R1000 System73

viii 7/1/87 RATIONAL

Preface

This Rational Environment Basic Operations manual describes, with simple step-
by-step procedures, how to perform various common operations in the Rational
Environment™ using the Facit Terminal.

Not intended as a self-study guide, this manual assumes some familiarity with the
Environment. No conceptual discussions are included. Familiarity typically is ac-
quired through the Rational Environment Training: Fundamentals course or the
Rational Environment User’s Guide.

This manual focuses on fundamental areas of the Environment necessary to begin
work on small Ada® programs in single libraries. Some of the areas are: executing
commands, managing windows, writing and debugging programs, and editing text
files. Areas not included are multilibrary development, sophisticated use Rational
Subsystems™, and optional products such as the Rational Design Facility, Rational
Mail Utility, host-target development products, and so on.

RAT'ONAL 7/1/87 ix

RATIONAL

Chapter 1. Logging In and Out

Logging In
Begin with the terminal turned on.

1. Start the login sequence:
2. At the Enter user name: prompt, enter your username and press [Rewurn.

3. At the Enter password: prompt, enter your password (it will not be echoed)
and press Rewn

4. At the Enter session name: prompt, enter a gsession name and press [Rewwrn. (just
press [Rewurn] for the default session named S_1).

The Environment momentarily displays a message indicating the last time you were
logged in, the screen goes blank, and the Environment sesgion appears on the screen.
A Login procedure in your home library is executed if it exists and is in the coded
state.

Logging Out

Begin in any window.

1. Create a Command window: [Create Command]
2. Enter quit and press Fromou]

If no uncommitted (unsaved) images exist and if no programs requesting interactive
input are running, the command is displayed in reverse video; the screen goes blank
and you are logged out.

If any images were left without saving or promoting, or if a program requesting
interactive input is running, an error message is displayed in the Message window
indicating that images were left with unsaved changes. You can save all changed
images (see below) and terminate any such running programs. Otherwise, enter
quit {true) and press [Fromerd. This logs you off the Environment without saving
any uncommitted images.

RATIONAL 71/ 1

Chapter 1. Logging In and Out

Saving Changes

Begin in any window.

Saving changes one smage at a time

1.

2.
3.
4

5.

Go to the Window Directory: [Window] - [Defniticn]

Place the cursor on a line containing an asterisk (*) in the Mod column.
Select the Window Directory entry: -3

Save the selected image:

The Mod column is now blank.

Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see “Killing Any Job”
in Chapter 15).

Continue saving the changes desired by repeating the steps above.

Saving changes in all tmages in a single operation

1.
2.
3.

Go to the Window Directory: [Windos] - [Definition]
Place the cursor on the top line of the image: [Imacel- [Begin o]
Save all changes: [Enter

All images that have been changed now have a blank in the Mod column.

Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see “Killing Any Job” in
Chapter 15).

i RATIONAL

Chapter 2. Getting Help

Getting Help on Help

To determine the available help for the Environment:
1. Ask for help:

The Environment displays the available help options in the Help window.

Getting Help on a Specific Item

To get help on an Ada stem (for ezample, a command) in an Ada or a Command
window

Begin in the window containing the Ada item.

1. Place the cursor on the item for which you want help.

2. Press Hep. The Environment creates a Command window and displays the
command What .Does ("")};

3. Execute the command by pressing
If help is available for the command, it is displayed in the Help window.

To get help on a named topsc, command name or name fragment, and so on

1. Ask for help: [Ha3)
The Environment creates a Command window and displays the command
What .Does(Name => ""};

2. At the prompt, enter the topic, command name, or command name fragment
for the area of interest and press [Promot]

If more than one command related to that topic exists, all the related commands
are listed in the Help window. If you want to see the help for one of these items,

lace the cursor on the line on which the item is located and press ©bieat} - (7. The
Eelp for that item is displayed in the Help window.

RATIONAL T/1/87 3

Chapter 2. Getting Help

If only one command about that topic exists, information about that command,
including a brief command description and a list of any keys bound to the command,
is displayed in the Help window.

If no commands can be found about that topic, a message appears indicating that
no help is available for that topic.

Getting Help on Keys

To determine what commands are bound to a key or key combination:

1. Ask for help on a key:
The Environment displays the following prompt in the Message window:
Press key to be described:

2. Press the key or key combination of interest.

The command name bound to the key or key combination is displayed in the Mes-
sage window. Additional help about the command, if any exists, is also displayed
in the Help window.

Displaying Ada Specifications
To go to the Ada specification for an item described in the Help window:
Begin in the Help window in the entry for the message of interest.

1. Place the cursor on the line in the Help window containing the text for the Ada
code for the item.

2. Ask for the definition of the designated item: [Defiaicion]

If there is an Ada spec for the item, it is displayed and highlighted in an Ada
window.

Displaying the Help Window
Begin in any window.

1. Ask to go to the Help window:

The Help window is brought onto the screen and the cursor is placed in it. You can
now scroll through the contents of the window to view the help messages that have

been requested since you logged in.

4 7/1/87 RAT'ONAL

Chapter 2. Getting Help

Getting Help on Errors
To get additional information about an error in your program or command:

1. Move the cursor onto the underlined error.
2. Ask for help on the error: -

Additional messages about the error appear in the Message window if the Environ-
ment has any more information to give you.

RATIONAL 7//er 5

RATIONAL

Chapter 3. Executing Commands

Creating and Executing a Command Window Program

A Command window program can contain any arbitrarily sized Ada code—for ex-
ample, one-line Environment commands, multiple-line test programs, or Ada main
programs.

Begin in any window.

1. Create a Command window: [Create Commana

2. Enter the program, formatting frequently for multiple-line programs: [Formar
3. Semanticize for multiple-line programs: [semanticize]

The Environment marks the errors that exist. Press - [z for further infor-
mation about any errors.

4. Correct any errors and semanticize again.
5. Execute the command program: [Promotd]

Expanding a Command Window
Begin in the Command window you want to expand.

1. Enlarge the window: [Winow! - 1

The window expands by four lines.

Shrinking a Command Window
Begin in the Command window you want to shrink.
1. Shrink the window: -0

The window shrinks by four lines.

BA\TIONAL 7/1/87 7

Chapter 3. Executing Commands

Getting Command Completion
Begin in a Command window.
1. Enter some fragment of the command.

e You may supply only a command name or name fragement. Completion will
fail if you enter any part of the argument list, including the parenthesis that
begins the list.

¢ Completion ignores final semicolons if any exist (for example, if you have
pressed the [rormad key and it has added a semicolon after the name or name
fragment).

2. Complete the command and provide prompting for any parameters: [Compic:e]

If the command fragment is ambiguous, the complete operation fails and the
Environment displays the possibilities in another window. Enter the necessary
characters to make the command unique and press again.

Moving to the Next Prompt or Underline
Begin in the Command window.
1. Move to the next item (highlighted or underlined): -[®

The cursor is now placed at the next item (to the right or below).

Moving to the Previous Prompt or Underline
Begin in the Command window.

1. Move to the previous item (highlighted or underlined): (& - [©

The cursor is now placed at the next item (to the left or above).

Turning Off a Prompt

Begin with the cursor on the prompt that is to be turned into text.
1. Turn off the prompt: [cContrax]

Reexecuting the Same Command
Begin in the Command window containing the command to be reexecuted.

1. Execute the command:

8 7/1/87 BATIONAL

Chapter 3. Executing Commands

Changing and Reexecuting a Command

Begin with the cursor on the command to be changed.

1. Turn the command from a prompt into text: [Comroix]
The command text can now be edited.
2. Execute the changed command: [Fromore

Entering a New Command in the Same Command Window
Begin with the cursor on the old command prompt. ‘

1. Type the new command over the old command.

The old command prompt disappears.

Clearing a Command Window of Unneeded Text
Begin in the Command window to be cleared.

1. Clear the Command window: [

Note that the unneeded text in the Command window has been replaced with a
statement prompt allowing entry of new commands.

Going Back to Previous Commands

A history of commands and Ada programs entered into a Command window is
maintained. You can access and execute any of the commands in this sequential
history.

Begin in the Command window.

Redssplaying a previous command sn the historical sequence (undoing)

1. Redisplay the previous command: [object] -

Redisplaying a later command sn the hsstorical sequence (redoing)
1. Redisplay the next command: - [®]

Getting the Parameters of a Command Bound to a Key
Begin in any window.

1. Create a Command window with the parameters for a command bound to a

—— o e
key: [Esc! = Q' - command key,

QAT'ONAL 7/1/87 9

RATIONAL

Chapter 4. Managing Windows

Finding a Window Using the Window Directory

Begin in any window.

1. Display the Window Directory: [Window] - [Definition]
The Window Directory is displayed in a new window.

2. Place the cursor on the line of the Window Directory entry that names the
window at which you want to look.

3. Ask to view the object: [Defnition]

The indicated object appears in the same frame as the Window Directory window
(or in an empty frame if one exists).

Deleting Windows from the Window Directory
Begin in the Window Directory window.

1. Place the cursor on the line of the window to be deleted.
2. Select the line: [oticr) - (=]
3. Delete the window: [obiect - [D]

The window is removed from the Window Directory. This releases the image.

Moving between Windows
Moving to the window above (with vertical wraparound)

1. Move to the window above: -

Moving to the window below (with vertical wraparound)
1. Move to the window below: -

R)ATIONAL 7/1/81 11

Chapter 4. Managing Windows

Expanding a Window
Begin in the window you want to expand.
1. Enlarge the window: -

The window expands by four lines.

Shrinking a Window
Begin in the window you want to shrink.
1. Shrink the window: -0

The window shrinks by four lines.

Expanding Current Window to Include Next Frame
Begin in the window you want to expand.

1. Join the windows: [Window! - [J}

The current window expands to the size of the current window plus the window
below, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Expanding Current Window to Include Previous Frame

Begin in the window you want to expand.
1. Join the windows: - [Deteie

The current window expands to the size of the current window plus the window
above, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Transposing Windows
You can switch the location of a window with that of the window above it (with
vertical wraparound).

Begin in the lower window.

1. Transpose the windows: [Window; - [1]

The cursor appears in the new lower window. It is in the same position that it was
in when that window was last viewed.

12 7/1/87 IQATIONAL

Chapter 4. Managing Windows

Realigning the Windows on the Screen

Begin in any window.

1. Return windows to their default configuration: [Windew] - [Formay

Removing a Window

You can remove a window from your screen in one of three ways.
Removing a window temporanly

This command removes the window from the screen and leaves it available in the
Window Directory.

1. Place the cursor in the window you want to remove.
2. Delete the window: Window' - D]

Releasing an smage permanently and saving the changes

This command releases the image and removes the window after saving the image.
The window is no longer available in the Window Directory.

1. Place the cursor in the window you want to release.
2. Release the image: [object] - [x

Releassing an smage permanently usthout saving the changes

This command abandons the image and removes the window. The window is no
longer available in the Window Directory. Unsaved changes are discarded.

1. Place the cursor in the window you want to release.
2. Abandon the image: - [q]

Locking a Window on the Screen
Begin in the window you want to lock.

l. LOCk the WindOW: {Window! - | Promote

An at sign (6) appears in the window banner. The window is not removed unless
you explicitly remove it or unlock it.

R)ATIONAL 7/1/87 13

Chapter 4. Managing Windows

Unlocking a Window on the Screen

Begin in the window you want to unlock.

1. Unlock the window: [Window] - [Demote]

The at sign (6) disappears from the window banner.

Scrolling the Image

Begin in the window containing the image to be scrolled.

Scrolling the smage up
1. Scroll the image up: [Imae] -

Scrolling the tmage down

1. Scroll the image down: [imaee] - [3]

Scrolling to the beginning of the smage

1. Scroll to the beginning of the image: [imace] - [Begin of

Scrolling to the end of the tmage

1. Scroll to the end of the image: [imsce] - [End of}

Scrolling the current line to the top
1. Scroll the current line to the top: [Window] - [Begin o7]

Scrolling the current line to the bottom

1. Scroll the current line to the bottom: [wisdow! - [End o1}

14

e RATIONAL

Chapter 5. Traversing the Environment

Viewing a Library

Begin in the world or directory that contains the library.
1. Place the cursor on the line containing the library.

2. View the library: [pefnnion

A window appears, displaying the full pathname of the library underlined and listing
additional library objects, such as Ada units or files, if they exist.

Viewing an Object in a Library
Begin in the library containing the object.

1. Place the cursor on the line of the library object you want to view.
2. View the object: [Defnition

A window displaying the object appears.

Viewing a Library’s Parent
Begin in the library.
1. View the parent: [Encioiine

A window containing the parent library appears.

Viewing Your Home Library
Begin in any library.
1. View your home library: (£ -

A window containing your home library appears.

[QATIONAL 7/1/87 15

Chapter 5. Traversing the Environment

Viewing the Specification of an Environment Package

Here is a convenient shortcut for displaying the specifications for Ada units provided
as part of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.

1. Get a prompt for the Definition command: [£«] - [Q] - [Definition)

2. Enter the simple name of the Ada unit at the prompt for the Name parameter
preceded by the \ character (for example, "\Compilation").

3. Execute the command:
Note that this shortcut for viewing Environment package specifications works for

most Environment packages. If the shortcut fails, an error message appears, and
you will have to traverse to the specification instead.

16 7/1/87 RATIONAL

Chapter 6. Using General Editing Operations

Selecting an Arbitrary Region of Text

Begin in the window containing the text to be selected.

1. Move the cursor to the start of the region of text to be selected.
2. Define the start of the region: [Region - ¥

3. Move the cursor to the end of the region of text.

4. Define the end of the region: Resion - [J

The selected region is highlighted.

Moving Selected Text
Begin in the window containing the text to be moved.

1. Select the region of text.

2. Move the cursor to the location in which the text will be moved. You can move
text within the same image or to some other image.

3. Move the region of text: [Resion] - [M)

The highlighted region of text is deleted from its original location and appears in
the new location.

Copying Selected Text

Begin in the window containing the text to be copied.

1. Select the region of text.

2. Move the cursor to the location in which the text will be copied. You can copy
text within the same image or into some other image.

3. Copy the region of text: [Region] - (]

The region of text appears in its original location and in the new location.

RAT'ONAL 7/1/87 17

Chapter 6. Using General Editing Operations

Searching for a String
Begin in the text in which you want to search for the string.

1.
2.
3.

Move to the beginning of the image: [Ima¢e] - [Begin of]
Start the search command (enter composing mode):

Enter the target string, without quotes. Note that the characters you type in
composing mode appear at the SEARCH prompt in the Message window.

Start the actual search (enter search mode):

If the target string is found, the cursor is positioned one character after the
target string.

To get to each additional occurrence of the string: [Control]F]
To return to a previous occurrence of the string: [control] 8]
To cancel the search, press any key—for example, [21.

The SEARCH prompt is removed from the Message window.

Searching and Replacing a String
Begin in the text with the string to be changed.

1.
2.
3.

10.

18

Move to the beginning of the image: [Ima¢] -
Start the search/replace command: (£ - [¥]

At the SEARCH prompt in the Message window, enter the target string, without
quotes.

Press [Nex: 1iem) to move to the REPLACE prompt.

At the REPLACE prompt in the Message window, enter the replacement string,
without quotes.

Start the actual search/replace: -[¥
The Environment places the cursor one character after the target string.
To replace the target string: - [/

The Environment replaces the string and places the cursor one character after
the next occurrence of the target string.

To get to each additional occurrence of the string without changing the string:
Control @ .

To replace a previous occurrence of the string: - [r)
To abort searching and replacing, press any key—for example, [3].
The SEARCH and REPLACE prompts are removed from the Message window.

e RATIONAL

Chapter 6. Using General Editing Operations

Searching and Replacing All Occurrences of a String
Begin in the text with the string to be changed.

1. Move to the beginning of the image: [imscc] - [Begin 01
2. Start the search/replace command: [E: - [¥]

3. At the SEARCH prompt in the Message window, enter the existing string, without
quotes.

4. At the REPLACE prompt in the Message window, enter the new string, without
quotes.

5. Start the actual search and global replace: [aumeric] - [aumeric 1] - -7
(Use the numeric keypad to enter the —1.)

The Environment replaces all occurrences of the target string and displays the
number of occurrences in the Message window.

Deleting Text

Text such as characters, words, lines, and regions can be deleted. Text can be
deleted from varying cursor positions.

o Delete the character at the cursor: [controll D]

* Delete the character before the cursor position (backspacing): [Deieie]
o Delete the entire word: [word - (D}

¢ Delete from the cursor to the end of the word: [wera, - [k

* Delete from the cursor to the beginning of the word: [werd] - [Derere.

¢ Delete the entire line: [Lind - [D]

¢ Delete from the cursor to the end of the line: - [x]

¢ Delete from the cursor to the beginning of the line: {Lind - [Detese]

o Delete the selected text: [Reeion! - [D]

Joining Lines
This command joins the line on which the cursor is located with the following line.

1. Move the cursor to any position on the first line of the two lines to be joined.
2. Join the second line to the end of the first line: [Line - (&

RATIONAL 7/1/87 19

Chapter 6. Using General Editing Operations

Transposing Text

Transpossng characters

This command switches the character that the cursor is on with the previous char-
acter. Assume, for example, that character 2 follows character 1, and you want
character 1 to follow character 2.

1. Move the cursor to character 2.
2. Transpose the character that the cursor is on and the previous character: [conroll T,

Transposing words

This command switches the word that the cursor is on with the previous word.
Assume, for example, that word 2 follows word 1, and you want word 1 to follow
word 2. Word terminators are blanks, underscores, semicolons, or periods.

1. Move the cursor to any place on word 2.
2. Transpose the word that the cursor is on and the previous word: [¥ed - [T
Transposing lines

This command switches the line that the cursor is on with the previous line. Assume,
for example, that line 2 follows line 1, and you want line 1 to follow line 2.

1. Move the cursor to any place on line 2.
2. Transpose the line that the cursor is on and the previous line: [tind - [T

20 7/1/87 RA\TIONAL

Chapter 6. Using General Editing Operations

Changing the Case of Text

The case of text such as characters, words, lines, and regions can be changed to
lowercase, uppercase, or initial capitals. Begin with the cursor anywhere in the text

to be changed.

¢ Capitalize a character:
¢ Lowercase a character: [controll <]

e Uppercase a word: -
e Lowercase a word: [word -
* Capitalize a word: [werd] - ()

e Uppercase a line: [Line - |
* Lowercase a line: [tire -

Al V]

D]

e Capitalize a line: Line -

¢ Uppercase a selected region: [Region, -

¢ Lowercase a selected region: [Region] -

¢ Capitalize a selected region: [Region’ -

D) [a] (v]

RAT'ONAL 7/1/81 21

RATIONAL

Chapter 7. Writing Text Files

Creating a File
Begin in the library in which you want the file.

1. Create a file: [Create Text!

A Command window with the Text.Create command and its parameter is cre-
ated.

2. At the Image_Name prompt, enter the name of the file to be created and press
Promaote!

A new window is created for the image of your file, and an entry for the file appears
in the library.

Viewing a File

Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Go to the definition: [Defnition!

A window with a read-only image of the file appears.

Editing an Existing File

Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Select the file to be edited: [oviecr - =]

3. Edit the selected file: [£diy

The Environment displays the image of the object in a window. You are now
ready to edit the file.

4. Save the image periodically by pressing "Enter

5. When you have finished editing, promote the file to a read-only image by press-
]ng Promote

BA\T’ONAL 7/1/87 23

Chapter 7. Writing Text Files

Saving a File
A file can be saved in one of two ways.
Saving a file (close for editing)

When you have made some changes and you want to save them and terminate
editing:

1. Place the cursor in the window that has the image of the file.
2. Promote the image to a read-only image:

This command saves the image of the file and allows others to access it.
Saving a file (leave open for editing)

When you have made some changes and you want to save them but continue editing:

1. Place the cursor in the window that has the image of the file.
2. Commit the image: [Enter]

This command saves the image of the file, and you retain update access.

Setting Tabs
Begin in the text.

1. Create a Command window.
2. To set tab stops at every nth column, enter set.tab_width(n) and press Promor

—
Control;

As you edit the text file, pressing 1! indents n spaces.

Setting Overwrite Mode On
Begin in the text.
1. Set overwrite mode on: - [0

The banner is updated to indicate that overwrite mode is in effect in this window.

24 7/1/87 BATIONAL

Chapter 7. Writing Text Files

Setting Insert Mode On
Begin in the text.

1. Set insert mode on: - [0

Setting Wordwrap for Text
Begin in the text.

1. Turn fill mode on: [ims¢e] - [F]

The banner shows that fill mode is in effect and indicates the column number. The
column number default is 72.

Changing the Wordwrap Column
Begin in the text.

1. Create a Command window.
2. To set a different wordwrap column, enter set.fill_column and press [Compict
3. At the prompt, enter n, where n is the desired column number, and press [Fromor-

Turning Wordwrap Off
Begin in the text.

1. Turn fill mode off: (maee - [x]

The banner is updated to remove the fill mode indicator and fill column number.

QAT'ONAL 7/1/87 25

RATIONAL

Chapter 8. Writing Ada Programs

Libraries are of two kinds: directories and worlds. Programs can be written in
either kind of library.

Creating an Ada Package Specification
Begin in the library that will contain the Ada unit.

1.

5.
6.

Create a workspace: [Object! - 1.
A new window is created with a comp_unit prompt for you to begin editing.

Enter the contents of the specification in the new window at the comp_unit
prompt.

Use Cresre Privace, for building the private part of the specification, if appropriate.
Format frequently by pressing

The Environment marks any errors that exist. Use [object] - [7] for information
about any errors.

Semanticize frequently by pressing [semanticize

The Environment marks any errors that exist. Use [obieet] - [7] for information
about any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

Correct any errors.
Promote the specification to the installed state:

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

BA\T‘ONAL 7/1/87 27

Chapter 8. Writing Ada Programs

Creating an Ada Package Body
Begin in the package specification.

1. Use [Creie Boay | to build the skeletal package body.

A new window appears with the skeletal package body for you to edit.
2. Enter the contents of the body.
3. Format and semanticize frequently.

The Environment marks any errors that exist. Use - [1 for information
about any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

4. Correct any errors.
5. Promote the body to the installed state: [Promorc

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

28 7/1/87 RAT‘ONAI_

Chapter 8. Writing Ada Frograms

Creating an Ada Subprogram
Begin in the library that is to contain the Ada unit.

1. Create a workspace: - [

The Environment creates a new window with a comp_unit prompt.
2. Enter the body of the subprogram.
3. Format and semanticize the unit.

The Environment marks any errors that exist. Use - [7] for information
about any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

. Correct any errors.
5. Promote the subprogram to the installed state:

The Environment replaces the temporary name in the library with the Ada name
for the unit. It also creates a separate specification for the unit in the library.

Creating a Subunit
Begin in the Ada unit that will contain the subunit.

1. Enter the Ada subunit stub notation. You might enter, for example, procedure
foo 1s separate;

Format.

Place the cursor on the stub.
Select the stub: -
5. Edit the selected stub:

Ll

A new window containing the skeletal subunit appears. The name of the subunit
appears in the library under the parent unit.

Importing Units
To import units, see “Adding Links—Simple Method” in Chapter 12.

RATIONAL 1yer 29

Chapter 8. Writing Ada Programs

Adding a Statement, Declaration, or Comment

Adding to an Ada unst in the source state

Begin in the Ada unit in which you want to make the addition.

1.
2.

3.
4.
5.

Edit the Ada unit, if it is still in read-only mode:

Go the position where the new statement, declaration, or comment is to be
added.

Enter the changes.
Format and semanticige.
Correct any errors.

Adding to an Ada unit tn the snstalled or coded state

Begin in the Ada unit in which you want to make the addition.

1.

5.
6.
7.

If the Ada unit is a package specification or if the addition you want to make
contains only Ada comments, gkip to the next step.

If it is already coded, demote the Ada unit to the installed state: [iniitan

Go to the position where the new statement, declaration, or comment is to be
added.

Open an insertion point: -0

A new window appears with the banner labeled either statement or declaration,
depending on the location of the insertion point.

The library now contains a temporary name of the form _Ada_#_, where # is
some number, under the library unit you are editing.

Enter the new statement, declaration, or comment.

Note that multiple statements, declarations, or comments can be entered per
insertion point.

Format and semanticize.
Correct any errors.
Promote the statement, declaration, or comment:

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

30

e RATIONAL

Chapter 8. Writing Ada Programs

Changing a Statement, Declaration, or Comment

Making changes tn an Ada unit sn the source state

Begin in the Ada unit in which you want to make the change.

1.
2.

3.
4.
5.

Edit the Ada unit, if it is still in read-only mode:

Go to the position where the statement, declaration, or comment is to be
changed.

Enter the changes.
Format and semanticize.
Correct any errors.

Making changes sn an Ada unit sn the snstalled or coded state

Begin in the Ada unit in which you want to make the change.

1.

6.
7.
8.

If the Ada unit is a package specification or if the change you want to make
consists only of Ada comments, skip to the next step.

If it is already coded, demote the unit to the installed state: [nian vaic
Go to the end of the statement, declaration, or comment to be changed.
Select the entire statement, declaration, or comment: -

Edit the selected statement, declaration, or comment: [Eq]

The selected statement, declaration, or comment becomes a prompt, and a
window with the statement, declaration, or comment appears on the screen.

The library now contains a temporary name of the form _Ada_#_, where # is
some number, under the library unit you are editing.

Note that if the selected declaration has dependents, the edit operation will not
succeed until all dependents are demoted to source.

Enter the changes.

Note that multiple declarations, statements, or comments can be entered.
Format and semanticize.

Correct any errors.

Promote the statement, declaration, or comment:

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

RATIONAL 7/1/87 31

Chapter 8. Writing Ada Programs

Deleting a Statement, Declaration, or Comment
Deleting in an Ada unit tn the source state

Begin in the Ada unit in which you want to make the change.

1. Edit the Ada unit, if it is still in read-only mode:
2. Go the position where the statement, declaration, or comment is to be deleted.
3. Use line delete or region delete to remove the statement, declaration, comment.

The unit remains in the source state for further editing.
Deleting sn an Ada unst in the snstalled or coded state

Begin in the Ada unit in which you want to make the change.

1. If the Ada unit is a package specification or if the deletion you want to make
contains only Ada comments, skip to the next step.

If it is already coded, demote the unit to the installed state: [insan tnid
2. Go to the end of the statement, declaration, or comment to be deleted.
3. Select the entire statement, declaration, or comment: - =]
4. Delete the selected statement, declaration, or comment: - [0

The selected statement, declaration, or comment is removed.

Note that if the selected declaration has dependents, the delete operation will not
succeed until all dependents are demoted to source.

32 7/1/87 RAT'ONAL

Chapter 8. Writing Ada Programs

Changing the Name or Kind of an Ada Unit

Changing the name or kind of an Ada unst sn the source state

Begin in the library containing the Ada unit to be changed.

1.
2.
3.

4.

Move the cursor to the line containing the Ada unit.
Select the Ada unit: -[=]
Edit and withdraw the selection:

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit can be edited.

Change the unit name, parameter profile, or unit kind.

The temporary name in the library is replaced by the new actual name for the
Ada unit when you promote the unit. The unit is still in the source state to allow
continued editing.

Changing the name or kind of an Ada unst sn the snstalled or coded state

Begin in the library containing the Ada unit to be changed.

1.
2.
3.

N o oA

Move the cursor to the line containing the Ada unit.
Select the Ada unit: [Otiect] - =]
Edit and withdraw the selection: [Witharaw Cane

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit is in the source state.

Note that if the selected unit has dependents, the withdraw operation will not
succeed until all dependents are demoted to source.

Enter the changes.
Format and semanticize.
Correct any errors.
Promote the unit: ‘Promotc!

The temporary name in the library is replaced by the new actual name for the Ada
unit.

RAT'ONAL 7/1/87 33

Chapter 8. Writing Ada Programs

Adding a Subprogram to a Package

These steps assume that the subprogram is to be added to both the specification
and the body of the package.

Adding to an Ada unit sn the source state

Begin in the package specification in which you want to add the subprogram speci-
fication.

1. Edit the Ada unit, if it is still in read-only mode: [Ean]

2. Go to the position in the package where the new subprogram specification is to
be added.

Enter the new subprogram specification.
Format and semanticize.

Select the subprogram specification: [object’ - "=

Create the body: [Creste Body]
The skeletal subprogram body is placed at the end of the existing package body.

3
4
5. Correct any errors.
6
7

8. Enter the subprogram body.
9. Format and semanticize frequently.

10. Correct any errors.

34 7/1/87 R)ATIONAI_

Chapter 8. Writing Ada Programs

Adding to an Ada unit sn the snstalled or coded state

Begin in the package specification in which you want to add the subprogram speci-

fication.

1. Go to the position in the package where the new subprogram specification is to
be added.

2. Open an insertion point: - [
A new window with a declaration prompt is created for editing. A temporary
name appears in the library under the package specification to which you are
adding the subprogram.

3. Enter the new subprogram specification at the prompt.
Note that multiple subprogram specifications can be entered per insertion point.

4. Format and semanticize.

5. Correct any errors.

6. Promote the declaration:
The new window disappears and the prompt in the package specification is
replaced with the added subprogram specification. The temporary name in the
library disappears.

7. Select the subprogram specification: [obiect! - []

8. Create the body: TcrastcBoay]
A new window appears on the screen with the skeletal subprogram body.

9. Enter the subprogram.

10. Format and semanticize frequently.
11. Promote the subprogram body:

The window is replaced by a window dispiaying the existing package body with the
new subprogram installed.

RATIONAL 7/1/87 35

Chapter 8. Writing Ada Programs

Making a Package Body or Subprogram Body into a Subunit

Begin in the parent unit containing the declaration stub in either the source or the
installed state.

1. Select the unit that you want to make into a subunit: -
2. Create a Command window.
3. Enter make_separate and press [Promotc

A new window with the subunit appears and the parent unit has an appropriate
subunit stub. Note that the subunit is now in the source state.

Making a Subunit In-line in the Parent
Begin in the parent Ada unit in either the source or the installed state.
1. Select the subunit stub.

2. Create a Command window.
3. Enter make_inline and press [Promote!

The subunit stub is replaced by the actual subunit code. Note that the in-line unit
is in the same state as the parent.

Demoting a Unit and Its Dependents

Begin in the library that contains the program unit.

1. Place the cursor on the line containing the program unit to be demoted.
2. Select the unit to be demoted: [otje’ - [}

3. Demote the program unit: [Source (Tois worta)]

The progress of the command is displayed in the Environment 1/0 window. The
unit, plus any units that depend on it, is demoted to source.

Making a Library Program Executable
Begin in the library that contains the program.
1. Make the program executable: [Code (Thix Worta)

All units in the library are promoted to the coded state. The progress of the
command is displayed in the Environment 1/0 window.

36 7/1/87 'QATIONAL

CAOapier . vvriling Adad I'TOEralns

Executing a Library Program

Begin in the library containing the program.
1. Create a Command window.

2. Enter the Ada name for the program.

3. Execute the program:

The Environment then executes the program just as it executes any Environment
command.

Saving the Changes of Incomplete Units

Begin in the Ada unit that is incomplete—that is, the unit still may have errors or
you want to do further development on the unit before promoting it.

1. Save the image:

A message appears in the Message window indicating that the unit has been saved
(committed). The banner of the Ada unit now has a blank in the first character
position.

Setting Overwrite Mode On
Begin in the Ada unit you are editing.

1. Set overwrite mode on: [imsge] - [o]

The banner is updated to indicate that overwrite mode is in effect in this window.
Overwrite mode is set on a window-by-window basis.

Setting Insert Mode On

Insert mode is the default. Begin in the window that is currently in overwrite mode.

1. Set insert mode on: [Imaee, - 1

The banner is updated to remove the overwrite mode indicator.

QATIONAL 7/1/87 37

RATIONAL

Chapter 9. Browsing Ada Programs

Getting the Definition or Use of an Identifier
Begin with the cursor on the identifier.

1. Select the identifier: - =
2. Go to the definition: [Desnition

A window containing the definition of the declaration appears.

Viewing the Specification of an Environment Package

Here is a convenient shortcut for displaying the specifications for Ada units provided
as part of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.

1. Get a prompt for the Definition command: - [Q] - [Defnition

2. Enter the simple name of the Ada unit at the prompt for the Name parameter
preceded by the \ character (for example, "\Compilation").

3. Execute the command: [Fromote

Note that this shortcut for viewing Environment package specifications works for
most Environment packages. If the shortcut fails, an error message appears, and
you have to traverse to the specification instead.

Viewing a Unit’s Specification from Its Body
Begin in the body.

1. Go to the specification: [owher Part

A window containing the specification appears.

RAT'ONAL 7/1/87 39

Chapter 9. Browsing Ada Programs

Viewing a Unit’s Body from Its Specification
Begin in the specification.
1. Go to the body: [oter Par]

A window containing the body appears.

Viewing a Unit’s Parent
Begin in the unit.
1. Go to the parent:

A window containing the parent object appears.

Showing the Using Occurrences of a Defined Ada Name
Begin in the window containing the Ada name of interest.

1. Place the cursor on an occurrence of the Ada name.
Select the Ada name of interest: - =]

2.
3. View the using occurrences: [Skow Ussge]
4

The using occurrences of the Ada name within the current unit are underlined.
Use [Eid - {8 or [Esd - [U] to step through.

For using occurrences of the Ada name in other units, a window containing the
names of these units appears.

5. Place the cursor on a unit.
6. Select the unit: [obiect; - =]
7. View the unit with the using occurrence: [befniticn)

A window appears displaying the selected unit with all occurrences of the Ada
name of interest underlined.

8. Use [E:d] - [8 or [Ed - [U] to step through.

40 7/1/87 R)ATIONAL

Chapter 10. Debugging

Starting the Debugger

Begin in the Command window containing the name of the program to be debugged.
1. Invoke the Debugger: -

The Debugger window appears, and a debugging session begins.

Program execution does not begin until further debugging commands are entered.

Stopping the Debugger

A debugging session is terminated automatically when you begin to debug a new
job or when you log off.

Displaying the Program Being Debugged

A window automatically displays a section of the program around the point where
execution was suspended. The statement or declaration to be executed next is
highlighted (selected).

Displaying the Value of a Program Variable

Begin in any window.

1. Place the cursor on an occurrence of the program variable.
2. Select the program variable: -=

3. Display the value: [Pu

The value of the variable is displayed in the Debugger window.

RAT‘ONAL 7/1/87 41

Chapter 10. Debugging

Displaying the Call Stack
Begin in any window.
1. Display the stack:

The call stack is displayed in the Debugger window with the most current call on
the top of the stack (it is frame number one: “_1%).

Displaying Source for a Call Stack Frame
Begin in the Debugger window.

Display the stack:
Place the cursor on the frame you want to display.

Select the frame: -
Display the source for the frame: [show Source!

N -

The Ada unit corresponding to the frame is displayed with the program counter
location (either current or saved) highlighted.

Displaying Parameters for a Call Stack Frame
Begin in the Debugger window.

1. Display the stack: [stac
Place the cursor on the frame for which you want to display the parameters.

2.
3. Select the frame: - =
4. Display the parameters for the frame:

Stepping Through the Program

You can step in one of two ways. Note that in either case you can step multiple
times with a single command by pressing a numeric prefix key ((numencn } before you
press the key to step.

Begin in any window.

Stepping by every statement
1. Press [run

Stepping by statements without stopping in called subprograms

1. Press (RunLoal

42 7/1/87 R)ATIONAL

Chapter 10. Debugging

Executing the Program

Begin in any window.
1. Execute the program:

The program runs to completion or until an exception or breakpoint is encountered.

Setting Up Exception Handling
The Debugger stops when any exception is encountered, unless that exception has
been propagated.

Begin in an Ada window containing the unit that declares the exception or a unit
that handles the exception.

Propagating a particular ezception

1. Place the cursor on an occurrence of the exception name.

2. Select the exception: [oviectj - (=]

3. Press [Propaente]

Catching a previously propagated ezception

1. Place the cursor on an occurrence of the exception name.
—

2. Select the exception: [obicc] -
3. Press ‘caten,

Setting Breakpoints
Begin in the window displaying the Ada unit in which you want to set a breakpoint.

1. Place the cursor on the statement or declaration in the Ada unit.

2. Select the entire statement or declaration by pressing - [£] repeatedly.

3. Set the breakpoint: {Brear

A breakpoint number is assigned. This breakpoint is in effect until the Debugger
segsion terminates or until it is explicitly deactivated.

Showing Breakpoints
Begin in any window.

1. ShOW brea.kpoints: !Show Breaks

The display shows all active and inactive breakpoints.

EATIONAL 7/1/87 43

Chapter 10. Debugging

Removing Breakpoints
Begin in any window.

Removing all breakpoints
1. Remove all breakpoints: [Remove Breakd]

Removing a specific breakpoint

1. Prompt for the remove command: (E:d - [Q] - [Remove Breaks]

2. At the Breakpoint prompt, enter the number of the breakpoint you want deac-
tivated and press

Modifying a Program Variable

Begin in the window displaying the program variable.

1. Place the cursor on an occurrence of the program variable you want to change.
Select the program variable: [ovjecc =

2
3. Prompt for the modify command: Mcai;
4

At the New_Value prompt, enter the desired new variable value (in double quotes)
and press [Promote!

Returning to the Point of Program Suspension

Begin in any window.

1. Go to the program suspension point: [show source]

A window containing the definition of the program being debugged appears with
the statement or declaration to be executed next highlighted.

Displaying the Debugger Window

Begin in any window.

1. Create a Command window: [Greate Command)

2. Enter debug.current_debugger and press [Promot

The Debugger window appears on the screen and the cursor is in it.

44 7/1/87 '?AT'ONAL

Chapter 11. Managing Libraries

Controlling the Library Display
Begin with the cursor in the library.

Toggling snformation on library objects

1. Move to the beginning of the library: {imsce’ - [Begin of]

2. Change the display: [object! - =

Repeating this command toggles the library display so that you view one of the
following: only the names of the library objects; the name and the type of library
objects; and the name, type, Ada unit state plus update information.

Showting more detasl on the objects sn the library

1. Show more detail: [object)- ¥
This causes deleted units, versions, and o on to be added to the library display.
This step can be repeated if necessary until the desired detail level is reached.

Showing less detasl on the objects sn the lsbrary
1. Show less detail: [Obiect)- []

This causes deleted units, versions, and 8o on to be removed from the library display.

This step can be repeated if necessary until the desired detail level is reached.

RAT'ONAL 7/1/87 45

Chapter 11. Managing Libraries

Creating Libraries
Creating a directory

Begin in the directory or world that is to contain the new directory.

1. Create the directory: [Create Direciory

The Environment creates a Command window containing the Library.Create-
—Directory command and prompts for its parameters.

2. At the Name prompt, enter the name for the new directory and press [Promote,

The Environment creates a directory. In the containing library, you see the new
directory name inserted in alphabetical order.

Creating a world

Begin in the directory or world that is to contain the new world.

1. Create the world: [create woria

The Environment creates a Command window containing the Library.Create-
—World command and prompts for its parameters.

2. At the Name prompt, enter the name for the new world and press [Preme:e.

The Environment creates a world. In the containing library, you see the new world
name inserted in alphabetical order.

By default, this world has links to commonly used Ada and Environment packages
such as Text_Io, Calendar, and String-Tools. These links are from the model world
Model.R1000.

Deleting Objects in a Library
Deleting a library

Begin in the library containing the library to be deleted.

1. Place the cursor on the line containing the library to be deleted.
2. Select the library to be deleted: [obect] - [-]

3. Create a Command window: [Greate Commana

4. Enter compilation.delete and press Promotc

The 1/0 window displays the progress and results of the Delete command. When
the command is complete, the library to be deleted disappears from the library.

Deleting an Ada unist or file
Begin in the library containing the object to be deleted.

46 7/1/87 RATIONAL

Chapter 11. Managing Libraries

1. Place the cursor on the line containing the object to be deleted.
2. Select the object: [object] - [—]
3. Delete the object: [objeq] - b}

If an Ada unit has no dependents, the declaration is removed from the library.

Undeleting Objects or Previous Versions in a Library
Begin in the library containing the deleted object or version.

1. Expand detail in the library (if necessary) so you can see the object or version
to be undeleted: -0

Repeat as necessary until you can see the deleted object or version you want
to undelete. A deleted object is enclosed in braces ({}) to indicate that it is
deleted. A previous version has its name prefixed with a minus (-), indicating
that it is not the default version.

2. Select the object or version to undelete: [obiect] - [=]
3. Undelete it: [oveal - (1}

The object or version is now undeleted and is displayed without the braces around
it or without the minus in front of it.

Copying Objects in a Library
Copying snto a different lsbrary
Begin in the library containing the object (library, Ada unit, file) to be copied.

1. Place the cursor on the object to be copied.

2. Select the object to be copied: -5

3. Place the cursor in the new library to which the existing object is to be copied.
4. Copy the selected object: [object] -

A Command window appears with the Library.Copy command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press Promore

The progress of the command is displayed in the Environment 1/0 window.
Copying snto the same library

Begin in the library containing the object (library, Ada unit, file) to be copied.

R)/N”ONAL 7/1/87 47

Chapter 11. Managing Libraries

1. Select the object to be copied: -3
2. Copy the selected object: [obiect - [c]

A Command window appears with the Library.Copy command and prompts for
its parameters.

3. At the To prompt, enter the name of the object into which you want to copy.
4. Press

The progress of the command is displayed in the Environment 1/0 window.

Moving Objects in a Library
Moving to a different lsbrary

Begin in the library containing the object (library, Ada unit, file) to be moved.

1. Place the cursor on the object to be moved.

2. Select the object to be moved: [obicey; - (=

3. Place the cursor in the new library to which the existing object is to be moved.
4. Move the selected object: - M

A Command window appears with the Library.Move command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press Promote.

The progress of the command is displayed in the Environment 1/0 window.

Mouving to the same library

This is equivalent to renaming a library object. See “Renaming Objects in a Li-
brary,” below.

Renaming Objects in a Library

Begin in the library structure containing the object (library, Ada unit, file) to be
renamed.

1. Select the object to be renamed: -3

2. Create a Command window:

3. Enter library.rename and press

4. At the To prompt, enter the new name and press [Fromote)

The progress of the command is displayed in the Environment I1/0 window. Ada
units are demoted to source.

48 7/1/87 RATIONAL

Chapter 11. Managing Libraries

Printing Objects Contained in a Library
Printing a file or an Ada unst

Begin in the library containing the object to be printed.

1. Move the cursor to the line containing the object to be printed.

2. Select the object: - =]
3. Print the object:

The progress and status are displayed in the Message window. A listing appears on
the printer.

Printing a library, sts unsts, and sts subunits

Begin in the library containing the objects to be printed.

1. Pl‘int: @ - E - {Print

A Command window appears with the Queue .Print command and prompts for
its parameters.

2. At the Name prompt, enter the wildcard symbol ? and press [Promore!

The progress and status are displayed in the Message window. A listing appears on
the printer.

QAT'ONAL 7/1/87 49

RATIONAL

Chapter 12. Managing Links

Listing Links—Simple Method
Begin in the world for which you want to see the links.
1. Create a Command window: [Creatc Commang

2. Enter links.display and press [Promote

A list of the links appears in the standard 1/0 window.

Adding Links—Simple Method
Begin with the cursor in the world to which you want to add the link.
1. Create a Command window: “Create Commana’

2. Enter links.add and press [Complese

3. At the Source prompt, enter the full pathname of the Ada unit to which you
want the link to refer and press [Promote]

The new link is added to the world. The link name is the simple Ada name derived
from the full pathname.

Getting the Pathname for an Environment Package
Begin in any window.

1. Create a command window: [Create Command]
2. Enter library.resolve and press ‘Compiei

3. At the Name_Of prompt, enter the simple name of the Ada unit for which you
want the pathname prefixed with the \ character (for example, \Text_lo).

4. Execute the command: [Promot
The full pathname is displayed in the I/O window. If you want to use this pathname

as a parameter to another command, you can select the text of the pathname in
the I1/0 window and then copy this region into a Command window.

BATIONAL 7/1/87 51

Chapter 12. Managing Links

Note that this shortcut for getting pathnames works for most Environment pack-
ages. If the shortcut fails, an error message appears, and you have to look for the
pathname in the World ! section of the Reference Summary (in Volume 1 of the
Rational Environment Reference Manual) or in the reference manual for the product
area in question.

Editing Links for a World
Begin in the world for which you want to edit the links.

1. Create a Command window:
2. Enter links.edit and press

A window displaying the links appears. You can now edit the links. See the indi-
vidual editing operations that follow.

Controlling the Link Display
Begin with the cursor in the link display.
Toggling the order of the link display

1. Change display order: [objeaj - [1]

Repeating this command toggles the display so that it appears alphabetically either
by source name or by link name.

Toggling the contents of the link dssplay
1. Change display contents: -1

Repeating this command toggles the display so that you view one of the following:
only internal links, only external links, or all links.

Inserting a New Link
Begin with the cursor in the link display.

1. Open an insertion point: [ovjea] - [I

A Command window appears attached to the link display window with the
Insert command and its parameter.

2. At the prompt, enter the full pathname of the Ada unit to which you want the
link to refer and press (Promote

The link display is updated to show the new link. The link name is the simple Ada
name derived from the full pathname.

52 7/1/87 R)ATIONAL

Chapter 12. Managing Links

Deleting a Link
Begin with the cursor in the link display.

1. Move to the link you want to delete.
2. Select that link: -=
3. Delete the link: - [@

The link is deleted and the link display is updated.

Viewing the Source of a Link
Begin with the cursor in the link display.

1. Move to the link whose source you want to view.
2. Select that link: -
3. Go to the definition:

A window appears containing the definition of the Ada unit to which the link refers.

Exiting from the Link Display
Begin with the cursor in the link display.

1. Release the link image: Torject! - X

The window containing the link display disappears.

Adding a Set of Links

Begin in the world to which you want to add a set of links.

1. Create a Command window: [Create Command!
2. Enter links.add and press [Complete]

3. At the Source prompt, enter a name (using substitution characters and wild-
cards, if desired) that specifies the complete set of links and press {Promotc

All links are added.

Replacing a Link

Begin in the world containing the link you want to replace.

1. Create a Command window:
2. Enter links.replace and press [Compicte

3. At the Source prompt, enter the new source name you want to have associated
with an existing link and press [Promere]

The source for the link is replaced.

RATIONAL 710 53

RATIONAL

Chapter 13. Managing Session Switches

Editing Session Switches
Begin in any window.

1. Create a Command window: [Create Command]
2. Enter switches.edit_session_attributes and press [Promote

A window displaying the session switches appears. You can now edit the switches.
A session switch file called Current_Sesston. Name_Suwitches appears in your home
library, if it does not already exist.

Controlling the Session Switch Display

Begin with the cursor in the session switch display. Two commands toggle the
session switches display so that you see one of the following views: all switches or
nondefault switches (switches that you have modified).

1. Change the display to all switches: [ovject - [
2. Change the display to nondefault switches: [ovject? - []

RAT'ONAL 7/1/87 55

Chapter 13. Managing Session Switches

Modifying Session Switch Values

Begin with the cursor in the session switch display.

Modifying a Boolean switch
1. Place the cursor on the session switch whose value you want to modify.

2. Edit the selected session switch:

The value toggles between true and false. The session switch display is updated
to show the new value.

3. Save the session switch image:

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

Modifying a non-Boolean switch

1. Place the cursor on the session switch whose value you want to modify.

2. Edit the selected session switch:

A Command window appears with the Change command and a prompt for its
parameter.

3. At the prompt, enter the new parameter value and press [Promorc,
The session switch display is updated to show the new value.
4. Save the session switch image:

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

56 7/1/87 BA\TIONAL

Chapter 13. Managing Session Switches

Getting Help on Session Switches
Begin with the cursor in the session switch display.

Getting an ezplanation

1. Place the cursor on the session switch for which you want to have further infor-
mation.

2. Ask for help: -

An explanation of the session switch, if it exists, appears in the switch display below
the selected session switch.

Removing an ezplanation

1. Place the cursor on the explanation that you want to remove.
2. Remove the explanation: -

The explanation disappears from the session switch display.

Saving Session Switches
Begin with the cursor in the session switch display.

1. Save the image: Enter
A message appears in the Message window indicating that the session switches have

been saved (committed).

Exiting from the Session Switch Display

Begin with the cursor in the session switch display.

1. Release the switch image: Totject - [X

The window containing the session switch display disappears.

RATIONAL 7/1/87 57

RATIONAL

Chapter 14. Managing Searchlists

Editing the Searchlist for a Session
Begin in any Command window.

1. Enter search_list.show_list and press Promote!

A window displaying the session searchlist appears. You can now edit your search-
list.

Adding a Component to a Searchlist

Begin with the cursor in the searchlist display.

1. Move to the line where the new entry is to be added.
2. Open an insgertion point: Osject] - [T

A Command window appears with the Add command and prompts for its pa-
rameters.

3. At the Component prompt, enter the new searchlist entry and press Fromoic!

The searchlist display is updated to show the new entry.

Deleting a Component from a Searchlist
Begin with the cursor in the searchlist display.

1. Put the cursor on the searchlist component you want to delete.
2. Select the searchlist component: [Object] - [=]
3. Delete the searchlist component: [otiect] - [D]

The entry is deleted and the display is updated.

RATIONAL 7/1/87 59

Chapter 14. Managing Searchlists

Replacing One Component with Another
Begin with the cursor in the searchlist display.
Select the entry to be replaced: -=
Create a Command window:

Enter replace and press [Complete
At the New_Component prompt, enter the new entry and press

Lol

The old entry is replaced with the new one.

Viewing the Library Named by a Searchlist Entry
Begin with the cursor in the searchlist display.

1. Move to the searchlist entry you want to view.
2. Go to the definition: [Defnition

A window appears containing the library.

Exiting from the Searchlist Display

Begin with the cursor in the searchlist display.
1. Release the searchlist image: [obiect] - [X

The window containing the searchlist disappears.

60 7/1/87 R)ATIONAL

Chapter 15. Managing Jobs

Disconnecting from a Job

1. Disconnect the jdb: [Control] 6]

A user-interrupt message is displayed in the Message window. You can now move
the cursor and perform other tasks. The job continues to execute.

Note that logging out does not terminate disconnected jobs that are still executing
unless these jobs attempt to perform input or output to Editor windows.

Reconnecting to a Job
Begin in any window.

1. Determine the number of the job to be reconnected. The job number is displayed
on the banner of the I/O window for the job (if used). Otherwise, to display all
the jobs currently running on the system, press [what Users

2. Get a prompt for the connect command: [Eic - [Q) - [Job Connect
3. At the The_Job parameter, enter the number of the job and press [Fromo:.

Killing the Current Job or the Last Job Created
Begin in any window.
1. Kill the last job: Gos kii

A job-abort message is displayed in the Message window.

RATIONAL 7/1/87 61

Chapter 15. Managing Jobs

Killing Any Job
Begin in any window.
1. Disconnect from the current job if necessary:

2. Determine the number of the job to be killed. The job number is displayed on
the banner of the I/0 window for the job (if used). Otherwise, to display all the
jobs currently running on the system, press

3. Prompt for the command to kill the job: [Ed - [Q - [er kil

4. Enter the job number at the The_Job prompt and press [Promo:e
Note that the default job number is that of the job from which you just discon-
nected.

A message is displayed in the Message window indicating that the job has been
killed.

62 7/1/87 RATIONAL

Chapter 16. Customizing Your Workspace

Building Macros

You can bind a series of keystrokes to a single key by building a macro.

Defining the macro

1. Start the definition: Mar] - [Begin OF
2. Press the keystrokes that are to make up the macro.
3. End the definition: [Mark - [End o]

Ezecuting the macro

1. Execute the last macro you entered: [Marx - [Promote]

Binding the macro to a function key

1. Press ‘Mark' = [Kﬁnlﬂon}

You are prompted in the Message window for a key to bind to the last macro
entered.

2. Press the key to be bound.
The key remains bound only until you log out, unless you explicitly save it.

Saving the macro

1. Create a Command window.
2. Enter macro.save and press [Promot

All macros currently bound to keys are permanently saved.

RATIONAL 7/1/87 63

Chapter 16. Customizing Your Workspace

Defining Your Own Login Procedure
Begin in your home library.

1. Create a procedure named Login with the commands you want to have executed
each time you log into the Environment.

See “Creating an Ada Subprogram” in Chapter 8 for details.
2. Promote the procedure to the coded state: [code Unit

The Login procedure is now executed automatically as part of the login process.

Rebinding Keys
Before starting, you may want to press to see if the key is already bound.

You can rebind commands to keys in one of two ways.
Begin in any window.

Rebinding temporarily

1. Create a Command window:

2. Enter key.define and press [Compicid]

3. At the Key_Name prompt, enter the key you want to rebind to the new command.

If you do not know the name of the key, press and then press the key
for which you want to know the name. The key name for that key is displayed

in the Message window.

4. At the Command_Name prompt, enter the name of the command you want bound
tO this key and preSS +Promote;

The new key binding is in effect until you log out.
Rebinding permanently

Begin in your home world.

1. Create a procedure named Facit_Commands by copying the text from the tem-
plate in !Machine.Editor_Data.Facit_-User_Commands into an Ada window.

See “Creating an Ada Subprogram” in Chapter 8 for details.

2. Edit the body of Facit—-Commands so that the case statement contains alterna-
tives for those keys you want to rebind.

3. Promote the procedure to the installed state: [Promore

The changes will be in effect when you next log in.

64 e RATIONAL

Chapter 17. Using CMVC

CMVC is an abbreviation for Configuration Management and Version Control.

Creating a Subsystem
Begin in the library that is to contain the subsystem.

1. Create a Command window: [Creste Commang;
2. Enter cmvc.1niti1al and press Complet
3. At the Subsystem prompt, enter the name of the subsystem and press [Promotc'

The command generates logging messages to the 1/0 window. When the command
completes, the subsystem appears in the library. It contains an initial view called
Revl_Working.

Adding, Changing, or Deleting Ada Units in a View

Begin in the view’s world (for example, Revl_Working).
1. Go to the directory called Units.
2. Add, change, or delete Ada units as necessary.

Note: You cannot change controlled objects unless they are checked out.

Making Ada Units Controlled

Begin in the units directory for the view containing the units to be controlled.

1. Create a Command window: [Create Command)
2. Enter cmvc.make_controlled and press Complece,

3. At the What_Object prompt, enter the wildcard ? and press

The command generates messages to the I/0 window. All units in the view are now
controlled.

Note: If units are later added to the view, they will not be controlled unless you
perform the above operations again.

RAT'ONAL 7/1/87 65

Chapter 17. Using CMVC

Making a Subpath
Begin in the subsystem.

1. Place the cursor on the working view for the path from which the subpath is to
be created (typically, Revn_Working).

2. Create a Command window:
3. Enter the command cmvc.make_subpath and press

4. At the New_Subpath_Extension prompt, enter the name of the subpath (for
example, the name of the developer who will be working in the subpath) and

press

The command displays messages in the I/0 window. When it completes, a new view
appears in the subsystem that is the working view for the subpath. This view has
a name of the form Pathname_Subpathname_WUorking.

Checking Out a Unit for Changes
Begin in the unit to be changed.

1. Create a Command window: [Creste Gommana,
2. Enter cmvc.check_out and press Compiete,
3. At the Comments prompt, enter the reason for the change and press Fromote’

The command displays its output. When it completes, the unit can be modified.

Checking In a Unit after Changes

Begin in the unit to be checked in after changes.
1. Create a Command window:

2. Enter cmvc.check_out and press
3. At the Comments prompt, enter a summary of the changes made and press [Promote

The command displays its output. When it completes, the unit can no longer be
changed and a new generation will have been created for the unit.

66 7/1/87 RAT'ONAL

Chapter 17. Using CMVC

Making a Frozen Release

Begin in any library in the working view to be released or in the world for the
working view. All controlled units in the view must be checked in.

1. Create a Command window:

2. Enter cmvc.release and press [Promote

The command generates messages to the 1/0 window. When it completes, a new
view, which is a frozen copy of the working view, appears in the subsystem world.

The Environment automatically generates a release number. The form of the name
of the released view is Pathname/Subpathname_n.m.

Note: Since the released view is frozen (units cannot be edited, promoted, and so
on), be sure that the units in the working view are at the proper state (typically
coded) before releasing.

Accepting Changes

Begin in the world of the view you want to make current.

If you do not want to accept any changes that will cause units tn your view to be
demoted

1. Place the cursor on the first line of the library display.

Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Create a Command window: [Create Command;
3. Enter cmvc.accept_changes and press [Fromote

The command displays its output. All objects in the view are updated to the most
current generation unless updating them causes demotions in your view.

If you want to accept all changes even sf they cause units tn your view to be demoted

1. Place the cursor on the first line of the library display.

Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Create a Command window:
3. Enter cmvc.accept_changes and press [Compiete
4. At the Allow_Demotion prompt, enter true and press [Promo:]

The command displays its output. All objects in the view are updated to the most
current generation.

RATIONAL 7/1/87 67

Chapter 17. Using CMVC

Getting Information
Determining out-of-date units sn a view

Begin anywhere in the view.

1. Create a Command window:
2. Enter cmvc.show_out, press [Compiete], and then press

The list of units that are not the most recent generations available are displayed in
the 1/0 window.

Determining unsts that are checked out in a view

Begin anywhere in the view.

1. Create a Command window:
2. Enter cmvc.show_checked_out_in_view and press [Fromoic

The units that are checked out in the view are digplayed in the 1/O window.
Determining units you have checked out (any view)

Begin anywhere in a view that defines the set of units that you may have checked
out in that view or other views sharing its reservation tokens.

1. Create a Command window: [Create Commang]
2. Enter cmvc.show_checked_out_by_user and press

A list of units you have checked out and the views to which they are checked out is
displayed in the I/0 window.

Change history for a unit

Begin in the unit of interest.

1. Create a Command window: [Create Commang

2. Enter cmvc.show_history_by, press [Comsiete], and then press [Fromote
The history for the unit is displayed in the I/0 window.

General information on a unit

Begin in the unit of interest.

1. Create a Command window:

2. Enter cmvc.show and press

The command generates output to the 1/0 window. This output tells you what views
share reservation tokens (this is, are subject to check-in/check-out synchronization

of changes). It also tells you what generation of the unit you have and how many
generations exist, who has the unit checked out, and so on.

68 e RATIONAL

Chapter 18. Networking

Logging Into Another System with Telnet
Begin in any window.
1. Create a Command window: [Creste Command]

2. Enter telnet.connect and press

3. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes) and press [Promot

Messages appear in the 1/0 window, the screen clears, and you are now connected
to the remote machine and can begin logging in.

Interrupting a Telnet Session

Interrupting a Telnet session leaves the connection intact and takes you back to
your original machine. You can later resume the interrupted session to continue
work on the remote machine.

Begin in a Telnet session connected to a remote machine.

1. Interrupt the session: [Break

The connection to the remote is interrupted and your original R1000 session reap-
pears on the screen.

Note: If the above steps do not work, the key that interrupts Telnet sessions may
have been changed from to another key. Check with your system manager.

RAT'ONAL 7/1/87 69

Chapter 18. Networking

Resuming a Telnet Session
Begin in any window.
1. Create a Command window:

2. Enter telnet.connect and press

3. At the Remote_Machine prompt, enter the name of the remote machine with
which the connection was interrupted (enclosed in double quotes) and press

The screen clears and the interrupted connection with the remote system is resumed.

You have to press the key that redraws the screen on the remote system (if the
remote machine is another R1000, press to redraw the screen).

Terminating a Telnet Session
If you are stsll connected to the remote machine

1. Log off the remote machine.

For most remote Telnet servers, this terminates the Telnet session and returns you
to your original session.

If you are not returned to your original session, interrupt from the session as de-
scribed above and then follow the steps below.

If you are in your original R1000 session

Begin in any window.
1. Create a Command window: [cCreste Command

2. Enter telnet.disconnect and press [Compiete

3. At the Remote_Machine prompt, enter the name of the remote system to which
the session you want to terminate is connected.

4. Execute the command: [Promote

The Telnet session is disconnected.

70 7/1/87 PAT'ONAL

Chapter 18. Networking

Copying a Single Object or Library onto Another R1000

Copying into an sdentical lsbrary structure keepsing the same ssmple names for the
ttems copied

Begin in the object or the library to be copied onto the other machine. Make sure
that there are no selections in this window.
1. Create a Command window:

2. Enter archive.copy and press
3. At the Use_Prefix prompt, enter the name of the machine onto which to copy
prefixed with the string “!'”—for example, “!!m1”.

4. Execute the command:

The object and its children, or the library and its contents, are copied onto the
designated machine in the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on the
target machine, it is created automatically.

Copying snto another lsbrary structure keeping the same ssmple names for the stems
copted

Begin in the object or the library to be copied onto the other machine. Make sure
that there are no selections in this window.

1. Create a Command window:

2. Enter archive.copy and press [Complete

3. At the Use_Prefix prompt, enter the name of the machine and the pathname
of the target library to contain the object or library—for example, “!'m1tusers-
.8})l.example”.

4. Execute the command: [Promoie
The object and its children, or the library and its contents, are copied onto the
designated machine in the specified library structure and with the same names as

on the source machine. Note that if the library structure does not already exist on
the target machine, it is created automatically.

QAT'ONAL 7/1/87 71

Chapter 18. Networking

Copying Objects or Libraries from Another R1000

Copying snto an sdentscal lsbrary structure keeping the same ssmple names for the
stems copsed

Begin in any window.
1. Create a Command window:

Enter archive.copy and press

3. At the Objects prompt, enter the name of the machine and the pathname of
the object from which to copy—for example, “!!m1!users.sjl.some_object”.

4. Execute the command:

The object and its children, or the library and its contents, are copied from the
designated machine into the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on
your machine, it is created automatically.

Copying into another library structure keeping the same ssmple names for the stems
copied

Begin in the library to contain the copied item.

1. Create a Command window: [Creste Command,

2. Enter archive.copy and press [Compiete

3. At the Objects prompt, enter the name of the machine and the pathname of
the target library to contain the object or library—for example, “!'m1'users.sjl-
.example”.

4. At the Use_Prefix prompt, enter $

5. At the For_Prefix prompt, enter the name of the library in which the ob-
ject is located on the source machine without the machine name—for example,
“lusers.sjl”.

6. Execute the command:

The object and its children, or the library and its contents, are copied from the
designated machine into the specified library structure and with the same names as
on the source machine.

72 7/1/87 EATIONAL

Chapter 18. Networking

Copying Objects onto a Non-R1000 System

Begin in the object to be moved.

1.
2.
3.

Create a Command window:

Enter ftp.put and press

At the To_Remote_File prompt, enter the simple name (without a directory
name prefix) of the object on the target system.

At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

At the Username prompt, enter your username on the remote machine (enclosed
in double quotes).

At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

If you want the object to go to a directory on the remote machine other than
your home directory, at the Remote_Directory prompt, enter the full pathname
of the directory to contain the object on the target (enclosed in double quotes).

Execute the Command: [Promote

Copying Objects from a Non-R1000 System
Begin in the library to contain the object to be moved.

1.
2.
3.

Create a command window:
Enter ftp.get and press [Complete

At the From_Remote_File prompt, enter the simple name (without a directory
name prefix) of the object on the remote system.

At the To_Local_File prompt, enter the name you want the object to have on
your system.

At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

At the Username prompt, enter your username on the remote machine (enclosed
in double quotes{

At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

If the object on the remote machine is not in your home directory, at the Re-
mote_Directory prompt, enter the full pathname of the directory on the remote
machine containing the object.

Execute the command:

[QATIONAL 7/1/87 73

RATIONAL

Rational Environment
Basic Operations

Basic Keymap: Facit Terminal

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-51 (803-002325)
Rev. 6.0, November 1985
Rev. 6.1, March 1986

Rev. 6.2, July 1986
Rev. 7.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

VT100 is a trademark of Digital Equipment Corporation.

Rational
1501 Salado Drive
Mountain View, California 94043

il 7/1/87 BA\—HONAL

Contents

How to Use the Basic Keymap
Keymap Overview
Quick Reference to Key Blndmgs
Detailed Reference to Key Bindings .

Master Reference to Key Bindings by Command

Environment Key Combinations
Item-Operation Key Combinations

Patterns among Item-Operation Combmatlons

Modified Key Combinations

Basic and Accelerated Keystrokes
Keymap Notation

Symbols .

Numeric Arguments

Case Sensitivity of Key Bmdmgs

Quick Reference to Key Bmdmgs
Getting Help .
Traversing the Enwronment
Logging Off
Selecting Items .

Executing Commands
Managing Windows .
Moving within an Image
Writing Text Files

General Editing Operations
Writing Ada Programs
Debugging Ada Programs
Managing Libraries

Using CMVC

RATIONAL 7//er

W O LW W W W N B B bt ek b e

© © © 00 00 ~J ~J I OO M» W

iii

Managing Links .
Using Environment 1/0 Resources
Managing Jobs

Detailed Reference to Key Bindings
Getting Help and Other Information
Traversing the Environment
Logging Off
Selecting Items
Executing Commands
Maraging Windows .

Moving between Windows
Resizing and Repositioning Windows
Redrawing the Screen
Retaining Windows
Removing Windows
Finding Windows
Moving within an Image
By Character
By Word o .
By Underline or Prompt
By Line
In a Region
By Tabs .
By Scrolling
By Marking Your Place
General Editing Operations
Selecting an Arbitrary Region
Moving and Copying Text
Deleting Text
Searching and Replacing Text
Entering Text
Transposing Text
Controlling Case
Holding and Retrieving Text
Formatting Text
Writing Text Files
Accessing Text Files

iv

. 10
. 10
11
.12
.12
12
.13
.13
.13
.13
.14
.14
.14
.14
. 14
.15
.15
.15
. 15
. 15
. 16
. 16
. 16
. 16
17
.17
17
.17
17
. 18
. 18
. 18
. 19
. 19
. 20
. 20

e RATIONAL

Saving Changes

Terminating Edit

Selecting Substructures within Text
Writing Ada Programs

Creating Ada Programs

Accessing Ada Programs : :

Saving Changes and Terminating Edlt

Checking for Errors . .

Changing the Compilation State

Changing to a Higher Compilation State

Changing to a Lower Compilation State
Selecting Structures within Ada Programs
Modifying Ada Programs S
Entering Comments and Special Strings
Browsing Ada Programs
Checking Using Occurrences

Debugging Ada Programs
Stepping and Executing
Setting and Removing Breakpoints
Viewing Stacks . . :
Displaying and Modifying Varlables
Handling Exceptions

Managing Libraries
Creating Libraries .
Manipulating Objects in berarles
Controlling Library Display

Using CMVC

Managing Links
Accessing Links)
Removing the Link Editor
Selecting Links
Modifying Links .
Traversing Linked Ada Unxts
Controlling the Display

Managing Searchlists
Accessing the Searchlist
Removing the Searchlist Editor
Selecting Entries

RATIONAL 71/er

. 20
. 20
. 20
.21
.21
.21
.21
.21
. 22
.22
.22
.22
.23
.23
.23
.23
.24
. 24
.24
. 24
.24
. 24
. 25
.25
. 25
. 25
.25
. 26
. 26
. 26
. 26
. 26
. 26
. 26
.27
.27
.27
.27

Modifying the Searchlist

Using Keyboard Macros 28
Using Environment I/O Resources 28
ManagingJobs o000 Lo 28
Master Reference to Key Bindings by Command = . . 29

e RATIONAL

vi

How to Use the Basic Keymap

The Rational Environment Basic Keymap is designed to acquaint new users with
the keys that have been bound to Environment commands. Users have the option
of modifying these key bindings for their own use, following procedures described
in Rational Environment Basic Operations, also in this manual.

Note that there is a more complete reference to Environment key bindings in the
Rational Environment Keymap, in Volume 1 of the Ratsonal Environment Reference
Manual. 1t is intended as the primary key reference for Environment users.

Keymap Overview

The Keymap has been divided into the following three sections. The first two
sections apply to the Facit terminal only. The last section includes key bindings for
both the Facit terminal and the Rational Terminal.

Quick Reference to Key Bindings

The Quick Reference is a guide to the most commonly used key combinations,
organized by topic. The Quick Reference entry for each key combination includes:

¢ A brief description of what the combination does
¢ The full name of the command that is bound to it

Detailed Reference to Key Bindings

The Detailed Reference provides a nearly complete list of key combinations, orga-
nized by topic and subtopic. The Detailed Reference entry for each key combination
includes:

¢ A brief description of what the combination does
e The full name of the command that is bound to it

¢ Alternative key bindings, including accelerated key combinations (see “Basic and
Accelerated Keystrokes,” below

Master Reference to Key Bindings by Command

This section provides a complete, alphabetic list of the commands that are bound
to keys on both the Facit terminal and the Rational Terminal. Each entry includes:

BA\TIONAL 7/1/87 1

How to Use the Basic Keymap

¢ The full name of an Environment command
o The key combination(s) to which the command is bound on the Facit terminal
"o The key combination(s) to which the command is bound on the Rational Terminal

Environment Key Combinations
Environment commands are bound to two types of key combinations:

¢ Item-operation combinations
¢ Modified key combinations

These two types of ke;” combinations differ in how they are executed.

Item-Operation Key Combinations

Each item-operation key combination contains an item key (“E:ic, [Obiect, TRegion,
Window , ‘Imsge . ‘Line, ‘word, OF Marx') followed by an operation key (either alphabetic
or nonalphabetic). The item key identifies the item affected by the operation; the
operation key identifies the action that applies to the indicated item.

The keystrokes must be sequential in an item-operation key combination. To exe-
cute an item-operation key:

1. Press and release the item key.
2. Press and release the operation key.

The notation indicates sequential keystrokes by separating them with a hyphen:

item key. - :operation key',

Patterns among Item-Operation Combinations

In general, commands that execute similar operations are bound to combinations
that contain a common operation key. Some examples include:

(rem] - (G Commands that copy items are bound to combinations such as
[Ling - [c], (Reston] - [c], and [obie] - [cl, which share the operation key
<.

Lirem] - (D} Commands that delete items are bound to combinations such as
rLine - D], [Word) - (0], and [window] - (D], which share the operation key

(item] - (7] Commands that transpose items are bound to combinations such
as [word - [T, - [1], and - (1], which share the operation
key (1.

2 7/1/87 RATIONAL

How to Use the Basic Keymap

Modified Key Combinations

Each modified key combination contains one or more modifier keys ([sviti, [Contror),
along with another key (either alphabetic or nonalphabetic). Modifier keys are
never used with item keys.

The keystrokes must overlap in a modified key combination. To execute a modified
combination:

1. Press and hold the modifier key(s).
2. While holding down the modifier key(s), press the key to be modified.

The notation indicates overlapping keystrokes by naming the keys adjacently:

Fnodlﬁer keyH other key].

Basic and Accelerated Keystrokes

Certain key combinations (namely, item-operation combinations and modified func-
tion keys) are considered basic combinations because they involve explicitly labeled
keys, such as [word] or [Defininion]. Basic key bindings are recommended if you are new
to the Environment, because they are eagsy to remember.

However, experienced users may find accelerated key bindings more convenient.
Accelerated bindings generally involve the modifier keys in combination with keys
on the main keyboard so that you can use them without moving your hands away
from normal typing position.

Many commands are bound to both basic and accelerated key combinations. As
an example, you can delete a word using either [weord] - [p] or the corresponding
accelerated key combination, - (o).

Keymap Notation

The following notations apply to all sections of the Keymap except the “Master
Reference to Key Bindings by Command.”

Symbols

(er1] - (¥ey) Press and release [xv1]; then press [ker3).
Press and hold [x1] while pressing [xe3].
[(umeric 1] Press [1] on the numeric keypad.

Numeric Arguments

You can give a numeric argument to many of the commands that are bound to
keys. Indicate the desired number using the numeric keypad, and then press the
key combination bound to the command. For example, - [o] deletes one word,;
the following combination deletes four words: [sumeric 4 - [word] - [D.

QAT'ONAL 7/1/87 3

How to Use the Basic Keymap

Indicate negative numbers by pressing first. For example, the following
combination shrinks a window by seven lines { “expands” it by —7 lines):

[numerlc —] - [numetlc 7] - [WIndtm - E

Case Sensitivity of Key Bindings

Although keys are shown as uppercase, the unshifted equivalent also works. This is
true for the nonalphabetic characters as well. For example, [6bict] - [4] is equivalent
to [ovies] - {p] and {obie} - 71 i8 equivalent to [obiet] - 3],

4 7/1/87 [QATIONAL

Quick Reference to Key Bindings

RATIONAL 7y/sr

Quick Reference to Key Bindings

Getting Help

Descriptsion | Banc Keys Command
Determine what help is available :Help on Help, What.Does
; Get help on item Help| What.Does

Get help on key
Display Help window

. Help on Key

R —
<Help Window!
lhild At |

Editor.Key.Name
Editor.Image.Find :

Traversing the Environment

‘ Description Basc Keys Command
View object cursor is on Common.Definition |
Get to parent object (Encloting! Common.Enclosing |
Get to your home library Esd] - E What.Home_Library

Logging Off

Description Bane Keys Command
Log off, unless changes aren’t saved | - Editor.Quit
Log off. ignoring unsaved changes : - : Editor.Quit(True)
Selecting Items
Description Basic Keys | Command
It
Select successively larger structures [Obfect] . E | Common.Object.Parent
— |
‘ Select successively smaller structures Object! .|] Common.Object.Child

Select previous structure, same level

Select next structure, same

Turn off selection cursor is in

level

Common.Object.Previous
Common.Object.Next |
Editor.Set.Designation_Off

Executing Commands

” Description Basic Keys Command ;

i Create a Command window [Create Command, Common.Create-.Command

i Complete command name and parameters {Complete] Common.Complete

! Execute a command @ Common.Promote

! Move to the next parameter E - N] Editor.Cursor.Next

I Move to the previous parameter @ - @ Editor.Cursor.Previous :

i Turn a prompt into text Control} X| Editor.Set.Designation-Of i
Redisplay the previous command (undo) - E Common.Undo :
Redisplay the next command (redo) @ Y Common.Redo 1

s RATIONAL

Managing Windows

Quick Reference to Key Bindings

Description

Move to the next window

Move to the previous window

Join with the next window

Transpose current window with previous
Realign windows

Redraw the screen

Lock a window on the screen

Release a locked window

Remove a window temporarily

Release image p~rmanently, saving changes
Display the Window Directory

View Window Directory entry cursor is on

Delete selected Window Directory entry

{Window
[Window] - [Format]
[Window] . [Promote]

Window! .

Object)

A

5

"Window! -

i Definition)

Definition

Object .

MLk

Editor.Window.Next
Editor. Window.Previous
Editor.Window.Join (1)

Editor.Window.Transpose
Editor.Window.Focus !
Editor.Screen.Redraw
Editor.Window.Promote
Editor.Window.Demote
Editor. Window.Delete

Common.Release

Editor.Window.Directory
| Common.Definition

i Common.Object.Delete

Moving within an Image

Description

Base Keys

Command

Move to beginning of line i
Move to end of line }

‘Line; . . End Of!

Scroll up Image - :
Scroll down Image. . :
Scroll to top of image Image . Begin Of

Scroll to end of image

-Image. .
[k, 251

End Of

Editor.Line. Beginning-Of
Editor.Line . End-Of
Editor.lmage.Up
Editor.Image.Down
Editor.Image.Beginning.Of
Editor.Image . End-Of

Writing Text Files

Description ! Basic Keys Command
Create a new text file { Creste Text Text.Create
View existing text file Definitlon; Common.Definition

Edit existing text file

Revert to last saved version
Save, leaving open for editing
Save, making read only

(Ean]

Common.Commit

Common.Edit

Common.Revert

Common.Promote

RATIONAL 7y/e1

Quick Reference to Key Bindings

General Editing Operations

Description

®
§
a
S

Command

Select start of region

Select end of region

Copy a selected item

Move a selected item

Delete character — forward
Delete character — backward
Delete word

Delete line

Delete selected item

Search for next occurrence

Replace next occurrence

Region| .

@@Hgg

{ Contro

1Bt

Deiete

L4
a
o

-[0)
(o]

Reglon! . (5’

L

e

)
1 Control i F

(Esc - (]

Editor.Region.Start
Editor.Region.Finish
Editor.Region.Copy
Editor.Region Move

Editor.Char.Delete_Forward
Editor.Char.Delete_Backward

Editor.Word.Delete
Editor.Line.Delete
Editor.Region.Delete
Editor.Search.Next

Editor.Search.Replace.Next

Writing Ada Programs

Description

Bassc Keys

Command

Create an Ada unit in library
Build a body

Build a private part

Demote to source, open for editing
Revert to last saved version

Save, leaving open for editing
Save, regardless of errors
Complete and check syntax

Check for semantic errors

Explain underlined error

Move to next underlined error
Move to previous underlined error
Promote to next higher state

Change to source state

"Object. . | 11

i Create BodL!

|

|
| Create Private|
Edit

|

[Object] . 'L

I Enter
[l AL

 Enter

{ Format

! PRy
:Semanticize
emantielry

ElEE

TRAANAAS
Source Unlt

!

Common.Object.Insert

Ada.Create_Body
Ada.Create-Private
Common.Edit
Common.Revert
Common.Commit
Common.Commit
Common.Format
Common.Semanticize
Common.Explain
Editor.Cursor.Next

Editor.Cursor.Previous

Common.Promote
Ada.Source.Unit

Change to installed state Ada.Install.Unit
Change to coded state @] Ada.Code-Unit
Demote to next lower state @] Common.Demote
Compile unit and those it depends on @] Compilation.Make
Demote units and its dependents [Source (This World)] Compilation.Demate
Get to other part of Ada unit Ada.Other.Part
7/1/87

RATIONAL

Quick Reference to Key Bindings

Debugging Ada Programs

Z Description Basic Keys Command

; Execute program with Debugger on [Esd] - Command.Debug

! Contimue program execution Debug.Execute

; Step one statement @ Debug.Run

I’ Step one statement at same level Run Local } Debug.Run (Local) :
Display values of variables TPuc ‘ Debug.Put :
Set breakpoints . {Bresk] . Debug Break

% Display breakpoints { Debug.Show

Managing Libraries

i Show Access List

Show access list for designated object Access.List.Display

Description : Banc Keys ' Command
Create a world T [Create World! Library.Create_World
Create a directory ‘; “Create Directory Library.Create_Directory
Delete selected object from library :—OE - D Common.Object.Delete
Print image or selected object {Print, i Queue.Print
Toggle information in library display {Object . B “ Common.Explain

|

Using CMVC

Description Basic Keys Command

Check out designated object : -) Cmvc.Check.Out
Check in designated object | - ! Cmve.Check_In
Accept changes for designated object - ! Cmvc.Accept_Changes

Show objects that are checked out
In this view - ‘ Cmvc.Show_Checked-Out_In_View
By you, any view - [Cmvc.Show_Checked-Out_By_User

Show info about designated object - \ Cmvc.Show

Show out-of-date objects in this view - | Cmvc.Show_Out_Of_Date_Objects |

Managing Links

i Description Basnic Keys Command “
List links - Links Display !
Add a new link - Links.Add !

IQA—HONAL 7/1/87 9

Quick Reference to Key Bindings

10

Using Environment I/O Resources

Description Banc Keys Command

Indicate end of input to program Text.End-Of.Input

Commit interactive input Common.Promote !
j

Managing Jobs

Description Basc Keys Command
Disconnect job from terminal [Control] 6] Job.Interrupt
Kill job Job.Kill{0)

e RATIONAL

RATIONAL 7y

Detailed Reference to Key Bindings

11

Detailed Reference to Key Bindings

Getting Help and Other Information

Banc Keys !

‘ Descripton Accelerated Keys Command
Determine what help is available What.Does
Get help on item @ What.Does i
Get help on key [- @ Editor.Key.Name i
Display Help window Editor.Image.Find l

Explain underlined error

Show time and date
Show system load

Show current users

Show lock information for object in window

Show full name of object in window

Show access list for designated object

;

Object

-1

What Usery
What Locks
What Object|

! Show Access List

i

Common.Explain

|
What.Time !
What.Load (True) |
What.Users (True)
What.Locks
What.Object

i1 Access_List.Display {

Traversing the Environment

Description Banc Keys Accelerated Keys Command
Display the Window Directory "Window - Definition, . Windowj . E f Editor.Window.Directory
Display object cursor is on "Definition! i Common.Definition
Display object, same window mi@ : Common.Definition
Display parent object “Enclosing ; ' Common.Enclosing
Display parent object, same window [Enclosing In Place’ : K Common.Enclosing
Display parent Library, same window @ : ' Common.Enclosing
Display your home library (Eic] . 1] : What.Home_Library :
| ! | |
1 Set mark at current location Erﬂ . Editor Mark.Push ‘
(' Cycle through marks in stack (Mark] - [—] [Esc] - (M ! Editor Mark.Next J
Cycle back through marks in stack MMark . [=] ’ Editor Mark.Previous ‘
Return to most recent mark @ . E 1‘ Editor Mark.Top
Logging Off
Description Banc Keys Accelerated Keys Command
Log off, unless changes aren't saved - - Editor.Quit
Log off, ignoring unsaved changes - - Editor.Quit(True) i

12

e RATIONAL

Detailed Reference to Key Bindings

Selecting Items

' Description Banc Keys Accelerated Keys Command
Select successively larger structures Object] . E] Common.Object.Parent
Select successively smaller structures . B Common.Object.Child

! Select previous structure, same level @ . Common.Object.Previous
Select next structure, same level - Common.Object.Next
Select first structure - . Common.Object.First.Child
Select last structure . - E] Common.Object.Last_Child
Turn off selection cursor is in Control Editor.Set.Designation-Off

Executing Commands

T
| Description ' Basic Keys Accelerated Keys Command ‘
‘ !

Create a Command window i { Create Command Common.Create-Command |
i
Complete command name and parameters i :Complete Common.Complete :

Execute a command

Execute command in background

Move to the next parameter prompt
Nove to the previous parameter prompt
Turn a prompt into text

Redisplay the previous command (undo)
Redisplay the next command (redo)
Provide prompts for the next key pressed

‘Promate’

Shift . Promote;

Esc - ;
—_ —
1Esc . U
Controly X,

- Object. . Ul
| Object . ?

|

i Escj -@

Common.Promote
Command.Spawn
Editor.Cursor.Next
Editor.Cursor.Previous
Editor.Set.Designation-Of
Common.Undo
Common.Redo
Editor.Key.Prompt

Managing Windows

| Description

B

asic Keys

Accelerated Keys

Command

Moving between Windows

Move to the next window
Move to the previous window

Move to next attached window

i Move to previous attached window

Window| «
(Window] -
Window| .
Window| -

olnjels

& - (), ml)
(£=d - (2, (soml)

Editor. Window.Next
Editor.Window.Previous
Editor.Window.Child
Editor.Window.Parent

RATIONAL 7/1/er

13

Detailed Reference to Key Bindings

Managing Windows (Continsed)

Description Basic Keys 1] Accelerated Keys Command i

Resising and Repositioning Windows

{9 Editor.Window.Join (1)
Editor.Window.Join (-1)
Expand a window 4 lines Window| - E] Editor.Window.Expand
Shrink a window 4 lines Window] - [] Editor.Window.Expand (-4)
-1 Editor.Window.Transpose

Join with the next window Window! .

Join with the previous window

Transpose current window with previous
Realign windows Window| .

Copy a window Window| -

Editor.Window.Focus
Editor.Window.Copy

AEIAgE

Redrawing the Screen

H

1
Redraw the screen ;[Controlj L] ! | Editor.Screen.Redraw
‘ Editor.Screen.Clear

(=]

Erase the screen, resetting the terminal ! iEsci-iL

Retaining Windows

Lock a window on the screen | [Window]. Promote] | | Editor.Window.Promote
Release a locked window | [Window] . [Demote, © [Window; - (Edit' | Editor.Window.Demote

Removing Windows]
Remove a window temporanly : [Window] - {D}, 1 Editor.Window.Delete

Window| « @ ;

Release image, discarding changes Object . @ | Common.Abandon |
Release image, saving changes Object| . E Common.Release |
Delete selected Window Directory entry Object] . [D] Common.Object.Delete

Finding Windows

Display Window Directory [Window] - [Definition) (window] . E Editor.Window .Directory i
Display Window Directory entry {Definition; | Common.Definition :

14 7/1/87 PAT'ONAL

Detailed Reference to Key Bindings

Moving within an Image

Description Banc Keys Accelerated Keys Command
By Character
Move right 1 character =] [Central]J] Editor.Cursor.Right
Move right 8 characters numeric ¢ - (=] Esc| . [ControlllJ] Editor.Cursor.Right(8) !
Move left 1 character Editor.Cursor.Left
Move left 8 characters {numeric 8] . Esc| - | Control Editor.Cursor.Left(8)

By Word
T T T
Move to next word | Word| . E « E - E ! Editor.Word.Next
i Move to previous word ; | Word| - E] ' @ . [__l’_l_] 1 Editor.Word.Previous
i Move to beginning of word i [Word] . [Begin OF] (Eec] . [A], [Exc) - [B] ! Editor. Word.Beginning -Of
Move to end of word ’ @ . (Ena od] E . E] | Editor.Word.EndOf

t
i
1

By Underline or Prompt

Move to next underline or prompt . Eac . E ‘ Editor.Cursor.Next |
P— ! |

Move to previous underline or prompt | |Esc @] 1 Editor.Cursor.Previous i
I ! |

By Line

Move up 1 line i Z "Contrar U! 1 Editor.Cursor.Up

Move up 8 lines numeric 8] - D (Esc. . Comrol"E Editor.Cursor.Up(8)

Move down 1 line m Controlil N Editor.Cursor.Down

Move down 8 lines t laumeric 8] - (41 [Esc) - [Controll N! Editor.Cursor.Down(8)

Move to beginning of line . (Line; . Begln of] ’ “Control] B] Editor.Line Beginning - Of

Move to end of line [Line| . [End Of] [Control] E] Editor.Line . End..Of

RAT'ONAL 7/1/87 15

Detailed Reference to Key Bindings

Moving within an Image (Continsed)

Description Basic Keys Accelerated Keys Command
In a Region
Move to beginning of region Reglon; . Begin Of Reglon; . E Editor.Region.Beginning . Of :
: Move to end of region Region| . ! End Of] Region| . E] Editor.Region.End-Of !

By Tabs
Tab forward [Coatrol]1] Editor.Char.Tab_Forward
Tab backward - [Control][T] Editor.Char.Tab_Backward
By Secrolling

Seroll up Image] . i 7] i [Comrol 2] ‘ Editor.Image.Up ‘
Scroli down [Imagel . () i v i Editor.Image.Down
Scroll right image; . ‘ ' Editor.Image.Right K
Scroll left Image| . ‘ Editor.Image.Left |

Scroll to top of image

Scroll to end of image

Seroll current line to top
Scroll current line to bottom

Image| . . En

U pilE

of

d Of

[Window] . [Begln Of]

e

Window)|

: —_—
Window| . i End Of;

o () ™

' window:
v ndow,

Editor.Image.Beginning . Of
Editor.Image End-.Of
Editor.Window.Beginning. Of
Editor. Window.End-Of

By Marking Your Place

Set mark at cursor position

Cycle through marks in stack

i
Cycle back through marks in stack !

Return to most recent mark

Control :
-

]

|
|

Editor Mark.Push
Editor Mark.Next
Editor Mark.Previous
Editor Mark.Top

16

e RATIONAL

Detailed Reference to Key B:indings

General Editing Operations

|
Description Banc Keyn Accelerated Keys i Command
Selecting an Arbitrary Region
Select start of region - m - Editor.Region.Start
Select end of region {Region: . 5] Eec] - m Editor.Region.Finish

Unselect a region

Editor.Region.Off

Moving and Copying Text

Copy a selected item
Move a selected item

Duplicate a single line

:
i Reglonj . @

i Line' . E i !Esci - [Control” C!

Editor.Region.Copy
Editor.Region Move
Editor.Line.Copy

Deleting Text

Delete character — forward
Delete character — backward
Reduce multiple blanks to one

Delete word
Delete to end of word

Delete to beginning of word
Delete line
Delete to end of line

Delete to beginning of line

Delete selected item

[

T T
[Control Di

Deletej

—_—
Control Delete]

]

(Word - D, [(Eg-iD

Word: . E ! Esc *JS“

i Word: « | Delete! 1 Escl| « [Delete
— — e—
Line £ { Esc; - Conlrol-i

R i ——
‘Line K i Control;i K|
i Line] - | Delete ; | Escj - Cunno!'i_?j

;

(=]

Editor.Char.Delete_Forward
Editor.Char.Delete.Backward
Editor.Char.Delete_Spaces

Editor.Word.Delete
Editor.Word.Delete_Forward
Editor.Word.Delete_Backward

Editor.Line.Delete
Editor.Line.Delete_Forward

Editor.Line.Delete_Backward

Editor.Region.Delete

Searching and Replacing Text

Search for next occurrence

Search for previous occurrence

Replace next occurrence

Replace previous occurrence

(Gontrol] F]

Control

Q

G

Editor.Search.Next
Editor.Search.Previous

Editor.Search.Replace_Next
Editor.Search.Replace_Previous

RATIONAL /e

17

Detailed Reference to Key Bindings

General Editing Operations (Continsed)

Descniption Basc Keys Accelerated Keys Command
Entering Text
Quote a special character - Editor.Char.Quote

Split line, cursor on new line
Split line, cursor on old line
Join 2 lines

Enter text in insert mode
Enter text in overwrite mode

Show current line number

Control

@'@'
[Ee] - [Comrot] 0

Editor.Line.Insert
Editor.Line.Open
Editor.Line.Join

Editor.Set.Insert_Mode(True)
Editor.Set.Insert_Mode({False)

What.Line

Transposing Text

Transpose with previous character
Transpose with previous word
Transpose with previous line

{Control T}

|

Word| . ' T

iLine| « E]

il

—
(Ed - [T
Esc| . | Control} T}

Editor.Char.Transpose
Editor.Word.Transpose
Editor.Line. Transpose

Controlling Case

Capitalize to end of word
Capitalize words to end of line

Capitalize every word in region

Make lowercase to end of word
Make lowercase to end of line

Convert entire region to lowercase

Make uppercase to end of word
Make uppercase to end of line
Convert entire region to uppercase

-3
Linel . B
Reglonj . E]

1Word[-@
| Line -

(werd] - [3]
(Lind] - (3]
[Regicn] . [5]

& - [

Esc -

Editor.Word.Capitalize
Editor.Line.Capitalize
Editor.Region.Capitalize

Editor.Word.Lower_Case
Editor.Line.Lower_Case

Editor.Region.Lower_Case

Editor.Word.Upper—-Case
Editor.Line.Upper_Case
Editor.Region.Upper_Case

18

e RATIONAL

General Editing Operations (Costinsed)

Detailed Reference to Key Bindings

| Description Banc Keys Accelerated Keys Command
Holding and Retrieving Text
Hold selected text . m [Control] C] Editor.Hold—_Stack.Push
Retrieve most recently held text Region] - [Control] Y] Editor.Hold_Stack.Top
Retrieve previous held text - E] Editor.Hold-Stack.Previous
Retrieve next held text -[=1 (£ - [c], [Esd] - [¥] Editor.Hold-Stack.Next

Formatting Text

Center the line cursor is on

Fill text in selected region
Justify text in selected region

Automatically wrap lines

Do not wrap lines

Line| « E

H

—
‘ Region;
——

I e—
- |Format

\Reglonj

. Complnz]

H —_

i Image . F!

Image: . L

Editor.Line.Center

Editor.Region.Fill
Editor.Region.Justify

Editor.Set.Fill.Mode(True)
Editor.Set.Fill.Mode(False)

RATIONAL 7/er

19

Detailed Reference to Key Bindings

Writing Text Piles

Description Basnc Keys Accelerated Keys Command
Accessing Text Files
Create a new text file Text.Create
Display existing text file Common.Definition
Common.Edit

Open text file for editing
Revert to last saved version

Object] . [L]

Common.Revert

Saving Changes

Save, leaving open for editing
Save, making read only

|

. Enter

=
i Promote!

Common.Commit

|
Common.Promote I

Terminating Edit

Remove image, discarding changes

Remove image, saving changes

{
|
|
1
|

i Object! . :-GT

—

[object] . [X]

1

Common.Abandon

Common.Release i

Selecting Substructures within Text

Select current word

Select current sentence

Select current paragraph

Select smaller structure

Select previous structure, same level
Select next structure, same level

Turn off selection

jObject: « . — |
| S, SR | [—

—
t .

1

numeric 3; . Objec

!
i numeric 3} B 'Ob]ect! -

{Object; .

i Object] -

| Object| .

B E—
Control’@

SIBIN

Common.Object.Parent
Common.Object.Parent i
Common.Object.Parent ‘
Common.Object.Child
Common.Object.Previous
Common.Object.Next
Editor.Set.Designation-Off

20

e RATIONAL

Detailed Reference to Key Bindings

Writing Ada Programs

Descriptsion

Banc Keys Accelerated Keys

Command

Creating Ada Programs

Create an Ada unit in library
Build a body

Build a private part

Put temporary name in library

a0
Create Body
Create Private

Common.Object.Insert
Ada.Create_Body
Ada.Create_Private
Ada.lpstall_Stub

Accessing Ada Programs

Display Ada unit, read only

Demote to source, open for editing

Definition
Edit|
=2

Common.Definition
Common.Edit

Saving Changes and Terminating Edit

Save, leaving open for editing

Release image, discarding changes
Release image, saving changes

Revert to last version

T

Enter 1
Object] . l
1 Oblect| . @ 1

i Object, . @

Common.Commit
Common.Abandon
Common.Release

Common.Revert

Checking for Errors

Complete and check syntax
Check for semantic errors

Explain underlined error

Move to next underlined error
Move to previous underlined error

Remove underline from error

Clear all underlined errors

Redisplay cleared errors

Semanticlse

{Esci - E
[Eic) - (Y

Contral[X

Underlines Of] |
Show Errorn

Common.Format
Common.Semanticize
Common.Explain
Editor.Cursor.Next
Editor.Cursor.Previous

Editor.Set.Designation . Of
Common.Clear.Underlining

Ada.Get_Errors

RATIONAL 7/yer

21

Detailed Reference to Key Bindings

Writing Ada Programs (Continsed)

Description

Basse Keys

Accelerated Keys

Command

Changing the Complila

tion State

Change unit to source state from any state
Change unit to installed state from any state
Change unit to coded state from any state

Install Unit
Code Unlt

AdaSource_Unit
Ada.lnstall_Unit
Ada.Code_Unit

Changing to a Higher Compllation State

Promote unit to next higher state

Code unit and those it depends on
In this world only
Across worlds

Install unit and those it depends on
In this world only

Code (This World)

Install (Tbis World)!
-

Common.Promote

Compilation Make
Compilation Make

Compilation.Promote

Changing to a Lower Compllation State

Demote unit to next lower state

Demote unit and dependents to source

i In this world only

T
!
; i
(Demote t

/

[Source (This World):

Common.Demote

Compilation.Demote

Selecting

Structures within Ada Programs

Select successively larger structures
Select successively smaller structures

Select previous structure, same level

! Select next structure, same level
! Select first structure
T Select last structure

Turn off selection cursor is in

o] - 5]
b - (5]
o] - [
Goea] - [

{Object] . [Begin Of]

[ObJect] .

r

Object] . [End 01]

[object] - [E]

[Consrol] X]

Common.Object.Parent
Common.Object.Child
Common.Object.Previous
Common.Object.Next
Common.Object.First_Child
Common.Object.Last_Child
Editor.Set.Designation. Off

22

e RATIONAL

Writing Ada Programs (Continsed)

Detailed Reference to Key Bindings

Description

Banc Keyn

Accelerated Keye

Modifying Ada Programs

Edit selected Ada structure
Insert Ada structures(s) in program
Delete selected Ada structure

Copy selected Ada structure
Move selected Ada structure
Withdraw Ada unit stub

Object| .

Object| .
ObjJect| .

Object| .

a0
(][] = [¢) =

Object] .

Withdraw Unlit

Common.Edit
Common.Object.Insert
Common.Object.Delete

Common.Object.Copy
Common.Object Move
Ada Withdraw

Entering Comments and Special Strings

Comment selected item or region
Uncomment selected item or region

Tab forward to comment

—

Region.Comment

Region.Uncomment

Editor.Char.Tab_-To-Comment

Browsing Ada Programs

Display other part of Ada unit
Display other part, same window
Display Ada unit cursor is on
Display parent object

Set mark at current location
Cycle through marks in stack
Cycle back through marks in stack

Return to most recent mark

- Other Part]

|

' Other Part In Place

——
Definition| |

2
B

- [

Ada.Other..Part
Ada.Other_Part
Common.Definition
Common.Enclosing
Editor Mark.Push
Editor Mark Next
Editor Mark .Previous
Editor Mark.Top

Checking Using Occurrences

Show uses of selected identifier
In this unit only
In any unit
Show unused declarations
In this unit only
Check other units

T

—_——————————
! Show Usage {Unlt)
Show Usage

[Shov Unused (Unil)]

Show Unuted

Ada.Show_Usage
Ada.Show_Usage

Ada.Show_Unused
Ada.Show_Ugnsed

RATIONAL 71/er

23

Detailed Reference to Key Bindings

Debugging Ada Programs

Description Basic Keys Accelerated Keys Command

Execute program with Debugger on [Ead] - @ Command.Debug

Display Debugger window [Debugger Window] Debug.Current_Debugger
Show current statement in source @] i Debug.Source

l

Stepping and Executing

Continue program execution Debug.Execute
Step one statement Debug.Run
Step one statement at same level Debug.Run (Local)
Stop task execution Debug.Stop
Display information about tasks Debug.Task..Display t
Display task rendezvous info - | Debug.Information |
Setting and Removing Breakpoints
Set breakpoints with default lifetime . {Break: , Debug Break
Display breakpoints {Show Breaks] i Debug.Show
Reactivate existing breakpoints o [Activare] . Debug.Activate
Remove breakpoints _Remove Breaks: ! I Debug.Remove
Viewing Stacks
) T
Display calling stack } Stack! ‘ ! Debug.Stack
Displaying and Modifying Variables
Display values of selected variables i Put Debug.Put
Modify value of selected variable ; [Modify Debug Modify
Handling Exceptions
Stop execution when exception raised ! Debug.Catch '
Do not stop when exception raised ! [Propagate Debug.Propagate !
Remove handling for this exception : - Debug.Forget

24 7/1/87 RATIONAL

Detailed Reference to Key Bindings

Managing Libraries

! Description Basic Keys Accelerated Keys Command
Creating Libraries
Create a directory [Create Directory Library.Create_Directory !
Create a world Create Warld Library.Create-Worid ,

Manipulating Objects in Libraries

Create an Ada unit in library
Create a text file in library
Delete selected object from library

i Undelete selected object from library
Print selected object

Show access list for designated object

Object] - [1

Create Text

| Object| .

i

Object| .

[e] [x] [o]

fObject| .

I;

‘Print|

—_—
Show Access Liss

Common.Object.Insert
Text.Create
Common.Object.Delete

Common.Object.Undo
Queue.Print

Access_List.Display

Controlling Library Display

]

Toggle information on library objects i Object. . 7! ! Commoc.Explain
Show more detail Object: . Z I Common.Expand
Show less detail Objectl. : ' | Common.Elide
Using CMVC
I
Description Banc Keys i Accelerated Keys Command

Check out designated object
Check in designated object
Accept changes for designated object
Show objects that are checked out
In this view
By you, any view
Show info about designated object

Show out-of-date objects in this view

Cmve.Check..Out
Cmve.Check-In
Cmvec.Accept-Changes

Cmvc.Show_Checked-Out-In.View
Cmve.Show..Checked_Out.By_User
Cmvc.Show
Cmvc.Show_Out_Of_Date_Objects

RATIONAL +1/er

25

Detailed Reference to Key Bindings

Managing Links

Description Basic Keys Accelerated Keys Command
Accessing Links
List links - Links.Display
Links.Edit

Edit links display
Refresh link image

(Oblea] . [1]

Common.Revert

Removing the Link Editor

Remove window temporarily
Release image permanently

[Finin] - (8]
ovgeed] - (1

Editor. Window.Delete

Common.Release

Selecting Links

Select link cursor is on
Select all links

Select previous link
Select next link

Select first link in image
Select last link in image

Object| .

Object| .

[«}
o
Ky
a

1t
Object] . |1

Object| .

il
EE-mm

Object] «

o5 - (8

Common.Object.Child
Common.Object.Parent
Common.Object.Previous
Common.Object . Next
Common.Object.First..Child
Common.Object.Last_Child !

Modlfying Links

Add a new link—simple method
Add a new link

Give selected link another source
Delete selected link

i Object| .

Object| . | D,

e
[zl &

Object| «

Links.Add
Common.Object.lnsert
Common.Edit
Common.Object.Delete

Traversing Linked

Ada Units

Go to source unit of current link
Go to world associated with links

List Ada units that use current link

Object] .

Common.Definition
Common.Eunclosing

Common.Explain

Controlling the

Display

Toggle order of kind of link
Toggle classes of source of link

[oue] -
(o] -

Common.Expand
Common.Elide

26

s RATIONAL

Detailed Reference to Key Bindings

Managing Searchlists

Description

Basic Keyn

Accelerated Keye

Command

Accessing the Searchlist

Edit or view searchlist
Refresh searchlist image

o) - [

Common.Revert

Removing the Searchlist Editor

Remove window temporarily
Release image permanently

[(Window] - [D]
(objea] . [x]

Editor.Window.Delete

Common.Release

Go to world named by current entry

| e —
Definition]

Selecting Entries
Select entry cursor is on @ - E] Common.Object.Child
Select all entries [@ - E] Common.Object.Parent
Select next entry @ - Common.Object.Next
Select previous entry @ - [j i Common.Object.Previous
Select first entry on list [Object) . (Begin O] . [Objea] - [B] Common.Object.First_Child
Select last entry on list [Object] . (End Of] [Object] . EE:’ Common.Object.Last_Child

Common.Definition

Modifying the Searchlist

Add a new entry
Delete selected entry

Move selected entry

AT

i Object| .

| Object] .

[Giee)

i Object| .

] [0])

=

] [=

Common.Object.Insert
Common.Object.Delete

Common.Object Move

RATIONAL 7/1/s0

27

Detailed Reference to Key Bindings

Using Keyboard Macros

Description Bassc Keys Accelerated Keys Command

Start macro definition [Mark] . [Mark] . [{ Editor Macro.Start

End macro definition [Marx] . [Man] . []] Editor Macro.Finish

Execute macro @ - @ . @ Editor Macro.Execute

Bind macro to key @ . Editor Macro Bind
Using Environment 1/0 Resources

Description Basic Keys Accelerated Keys Command

Indicate end of input to program Text.End.Of_Input

Commit interactive input Common.Commit

Managing Jobs

Description Basne Keys Accelerated Keys Command !
Disconnect job from terminal @ Job.Interrupt |
Kill job (Esd] - [6] Job.Kill{0) P
Stop running jobs Job.Disable(0) |
Resume stopped jobs Job.Enable(0) ‘
Reconnect job Job.Connect(0) ‘[
L j

28

e RATIONAL

Master Reference to Key Bindings by Command

C = l Co nl!_q-l] X1

ESC = [Eac x2
EsC_C =[x - [Comrol] x3
5 = PE1
x4 =[Promot] PF2 =
|xs =[Compieie] PE3
X6 =[Formay PE4

Access_List .Display

- (o]
- [feuzd]
- [windes)
[t

Facit

=====

ESC_L_FS

Access_List .Display (For_Object...

.Code_init
.Create_Body
.Create_Private
.Delete_Blank_Lins

.Get_Errors
Insert_Blank _Line

.Install_Stub
.Install_lnit
.Make_Inline
.Make_Separate
.Other_Part (Name

.Shov_Unused (In_Unit
.Shov_Unused (In_Init

.Source_Unit
.Withdraw

1333313111331 R 18313

=> “<Image...
.Other Part (Name => “<Image...
=> %<Y.,.
=> M<I..
.Shov_Usage (Name => “<Cureo...
.Shov_Usage (Name => “<Curso...
.Show_Ussge (Name => “<Curso...

8_Fé6
8_Fe
ESC_C F9

s rlio

reé

r9

8_F9

. Crio
ESC_C F10
ESC F9
C_F9

C_F7
ESC_C F7

Onvc Accept_(hanges (Destinatin...
Cmve.Check _In (What_Object => %, .,

1t

Cave.
Cmve.

Show_Lhacked_Out_By User (.
Carve.

H

Command .Debug

Command . Spawn
Common . Abandon

.Check_Out (What_Object => ...
Show (Objects => “<Cursor>...

Show_Checked_Qut_In View (...
.Bhow_Out_0f _Date_Objects (...

ESC_ L M

R-tioml

M5_F20
C.F13
§_F15
MS_F15
a5 X
(o, W ¢

5._F16
Ms_1

oM

§_F13

F13
MS_F17
aMS_F18
C_F10
CS_F10
M_F17

M F17
M_F16

QL F16
MS_F16
C_F14

M Fl4

M F12
M_F12
C_F12
CS_F12
MS_F12
Ms_F11
§_F11
M_PROMOT
MS_CARRIAGE_RETURN
M_CARRIAGE_RETURN
MS_ENTER
M_ENTER
C_PROMOT
OBJECT. ‘G’
OBJECT. ' g’

Common .

Common .

Common
Common

Common .
.Definition
Common .
Common .
Common .
Common .
Common .

Common

Common .
Common .
Cozmon .
Common .
Common .

Common .

Coamon .
Common .

Common .

Coxmmon .

Coimon .

Cormon.

Common .

Common .

Common .

Common

.Object.

.Object

Clear_Underlining
Commit

.Complete
.Create_Command
Common .

Definition

Definition

Definition
Definition
Demote
Edit

Elide

.Enclosing

v

Encloaing (
Enclosing (
Enclosing (
Enclosing {
Expand

v

i nn

v

Explain

Format

Object.Child

Object.Copy
Delete

Objoct .First_hild

Ovject. Insert

Object .Last_Child

Ot ject .Move

Ob ject .Next
.Parent

Object.Previous

.Promote

v
Myt

ESC F10
ENTER

Fd
X1.F4

.. F4
. B.F4

" s5_F7

E7
x1.'.'

C.F4

.. ESC_F4
.. ESC_C_F4
T xy.r1

X'

ESC_SLASH
ESC_PLUS
¥1.'/"
u. L] + L]
ESC_QUERY
x1.'?*

X6
Xi.RIGHT

Xi.'¢c’
x1.'c’
X1.'k’
xl' IDD
X1. 'k’
X1.'ad’
X1.'B’
X1.'b’
X1.BEGIN_OF
X1.'%°
X1.'r!

Xl.'e'
X1.END_OF
xl- IEI
X1.'M*
X1.'m'
X1.DOWN

X1.LEFT
X1.Up

X4

C_F16

S_ENTER
C_CABRIAGE_BRETURN
ENTER
CS_CARRIAGE_RETUBN
COMPLT

F15

OBJECT.F10
QM_RIGHT

5_RIGHT

Fl0

§_F10

5. Fl4

Fl4
OBJECT.".'
OBJECT.'>'
M_F10
OQM_LEFT

5_LEFT
M5_F10
QM5_F10
C_EXCLAM
OBJECT. ‘1"
ca
OBJECT. *1*
OBJECT.'?'
F17
C_QUERY
OBJECT */'
C_SLASH

FOBMAT
OBJECT.RIGHT
C_RIGHT
OBJECT. ‘c*
OBJECT. 'C'
OBJECT. 'd’
OBJECT. 'D*
OBJECT. 'k’
OBJECT. 'X*
OBJECT.BEGIN_OF
C_BEGIN_QF

OBJECT. ‘4’
CF15
OBJECT.'I'
C_END_QF
OBJECT.END_OF

OBJECT. 'M*
OBJECT. 'm'
C_DOWN
OBJECT.
OBJECT.
C_LEFT
OBJECT.UP
c.up
PROMOT

DOWN
LEFT

94

Common . Redo

Common .Rel ease
Commcn . Revert

Comnon . Semanticize
Comsson . Sor t_Image

Editor

Editor
Editor

Editor.

Editor.

.Information (Debug.Rendex...
.Modify (New_Value => "", ..
.Propagste

Put

.Remove (Breukpoint => 0)
.Run

.Run (Debug.Returned)
.Run (Stop_At => Debug.Loc...
.Set_Value (Variable
.Set_Value (Variable
.Set_Value (Variable
.Show

.Show (Debug.Exceptions)
.Source

.Source (Location => *", §. .
.Stack

.Stop

.Stop (Name => "")
.Task Display

>
>
>

.Char.Capitalize

.Char .Delete_Backvard
.Char .Delete_Forvard

Char .Delete_Spaces

Editor .Char.Insert_String ("")")

777

X1.'®’
X1.'r’
x1.'x*
X1.'x’
X1.'L’
X1.°'1'
Fl0

X1.'u'
X1.'U"

ESC_F7
C_Fé
ESC_C F$

ESC_F6
ESC_F2
S_F2
S_ri3

S Fl

Common . Undo

Compilation.Demote (Unit => "<8. .
Compillation.Demote (Unit => “<§..,
Compilation.Demote (Unit => "<§...
Compilation.Demote (Unit => ™<§...
Compiiation. Make (Unit => "<Ima...
Compilation.Make (Unit => "<Ima...
Compilation.Promote (Unit => "< .
Compilation.Promote (Unit => "< .,
Debug.Activate (Breakpoint => 0)
Debug.Break

Debug.Brewk (Default Lifetime =...
Debug.Catch

Debug.Current_Debugger ("%)
Debug.Execute

Debug.orget

Debug

. ESC_C_F)

ESC_F3
F3
cra
F1

ESC_Fr1

" esc.cr3

ra

cry
C.F1

ESC_C Fr1
DELETE

cD
ESC_BACKSLASH

Char.Insert_Character (1...

OBJECT.'1*
OBJECT. 'L’
F16
OBJECT.'S'
OBJECT.'s’
OBJECT. ‘U’
OBJECT. 'u’
MS_Fl4
CS_F14
CMs_F 14
MM F1l4

M F13
MMS_F13
MS_F13
M_F13
M_F7

C_F7

S_F7

C_F8
MS_¥9
S_F6

S_Fe
MS_Fe
QX9
M_F8

E9

ar7

F6

M_F6

C_F6

C_F9

8 F9

M_F9
MS_F7
arse

F7
F8

OM_F6
CMS_F6
c_6
C_CIRCUMFLEX
DELETE
cp

Cs_D
C_DELETE
CS_DELETE
MS_SPACE
CS_SPACE
CM_SPACE
M_SPACE
CMS_SPACE
C_SPACE
S_SPACE

C_RIGHT_PAREN

Editor

Editor

Editor

Editor.

Editor.

Editor

Editor

Editor

Editor

Editor

Editor

Editor.

Editor

Editor.

Editor.

Editor.

Editor.

Editor
Editor
Editor

Editor

Editor.
Editor.
Editor.

Editor

Editor

Editor

.Char.

.Char

.Char.

Char .

Char

.Char.

.Char.

.Char.

Insert String ("("")

.Insert_String (":=")

Insert_String ("=>")

Lowver_Case

.Quote

Tab_Backward
Tab_Forvard

Tab_To_Corment

.Char . Transpose
.Char .Upper_Lase

.Cursor .Backward

Cursor .Down

.Cursor .Dovn (8)

Cursor .Forwvard

Cursor.lLeft

Cursor.Left (8)

Cursor .Next

.Cursor .Next (Prompt => F...
.Cursor .Next (Prompt => T...
.Cursor .Next (Prompt => T...

.Cursor .Previous

Cursor .Previous (Prompt ...
Cursor .Previous (Prompt ...
Cursor .Previous (Prompt ...

.Cursor .Right

.Cursor .Right (8)

.Cursor .Up

ESC_TICK
ESC_STAR

ESC_C X
cI

c.r

CN
DOWN

ESC_C N

CH
LEFT

ESC_C_H

ESC_S_N
ESC_N

ESC_U
ESC_S U

cJ
RIGHT

ESC_CJ

co
c.9
C_LEF¥_PAREN
C_COLON
C_SEMICOLON
C_EQUAL
C_PLUS
C_LESS_THAN
C_OOMMA
C_TICK
c_QuoTE
CS_TICK
CS_TAB
C_TAB

S_TAB

TAB

MS_TAB
OBJECT . TAB
M_TAB

c_1

cs_t
C_PERIOD
C_GREATER _THAN
cs_B

c.B

CN
LINE.DOWN
CS_N

DoWN

N

M8_N

c.r

CS_F

Cs_H

C_H

LEFT

CM_H

MSs_H
M_DOWN

8_ris
M F18
ris
MN
MS_N
MU
M5 _U
M_up
Cs_F18
CM_F18
CFi8
cJ
Cs_J
RIGHT
Ms_F
o 1 3
s _J
g
cu

cs_ v

30

Editor

Edite:

Editor

Editor.
Editor.

Editor.

Editor.
Editor.

lEditor.
Editoer,

Editor.
Zditer.

Editer.

Editor.

Editor.
Editor.

Editor.
Editor.
Edicur.

Ec'tor,

Edito:.

Cursor.Up (8)
Hold_Stack.Copy_Top

Hold_Stack.Delete_Top

.Hold_Stack.Next

Hold_Stack.Previous
Hold_Stack.Push

Hold_Stack.Rotate
Hold_Stack.Swap

Hold_Stack.Top

Image.Beginning_Of

Image.Dovn

Image.End_0Ot

.Inrge.Find ("")

Image.Find ("Felp Window")
Inage.Find (Name => “Nam...

Image.lLeft

Ivmpe.Fight

Izaga.p

Koy .Name

Yoy .Proxpt

.Key.Prompt { Xey Code => "™
Editor.

Lins.Beginning Of

ESC_C U

ESCY
ESC_C
X2.RIGHT
ESC_sS. Y
ESC_s. C
X2.LEFT
cce

X2 .DOWN

cxY
X2.up

PF1.'d’
PF1.BEGIN_OF
PF1.'B’

cVv

PF1.DOWN

PF1.END_OF
PF1.'E’
PFl.'e’
PF1.TAB

ESC_FS
PE1.'+'
PF1.'/*
PEL.'?"
Pr1.LEFT

PF1.RIGHT

PF1.UP
cCZ

C_FS
ESC_AT_SIGN
ESC_QUOTATION
ESC_2
ESC_S_Q
£SC_Q

up
LINE.UP

MS_U

MU

REGION. 'p*
RECION. 'P*
REGION .DELETE

REGION .RIGHT

REGION.LEFT

cXY
S_BECGIN_OF
IMAGE .BEGIN_OF

cv

S_DOWN
IMAGE . DOWN
Cs_v
IMAGE . END_OF
S_END_QOF

IMAGE. ' 2"’
IMAGE. ' /'
CF11

Editor
Editor

Editor.

.Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

'Editor.
Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Line

Line

Line

Line

Line

Line
Line

Line

Line

Line

Line

Line.

Line.

Line.

Line.

.Capitalize

.Center

Copy

.Delete

.Delete Backward

.Delete_Forvard

. Indent
.insert

.Insert (- (1))

Join

.Lover_Case

Open

.Transpose

.Upper_Case

.Macro.Bind

.Macra . Ex~ _.ace

PE2.'B'
PF2 .BEGIN_OF

PE2.'""*
PF2.'6"'
PE2.*'~"

PF2.'4’
PF2.'9"
ESC C C
PF2.'c’
PF2.'C'

ESC_CD
PF2.'D'
PF2.'d’

ESC_C_F
PF2 .DELETE

PE2. 'k’
cKx
ESC.C.X
PF2.'K’
PF2.END_OF
PF2.TAB
PE2.'es’
PF2.'E'
C_E
ESC C E
CM
PF2.'%"
PF2.'I"’

PF2.'J'
ESC_C 0O
ESC_S_0
ESC_0

PF2.'§"

PEF2.'<’

PF2.'0"
PF2.'0'
ESC_C_T
PF2.'T"
PF2.'t*

PF2.'>*

PFA.T4
PF4 .ENTER

LINE . BEGIN_OF
MS_A
BEGIN_OF
CM_CIRCUMFLEX
a6
LINE.'"'
LINE.'6"'
LINE.'s'
LINE.'4'
LINE.'C'

i _C
LINE.'c’

s _C

D

a4s_p

LINE. 'D'
LINE.‘d’
LINE .DELETE
CM_DELETE
CMS_DELETE
Ccs X

LINE. 'K’
LIEZ. 'k'

cx

ME

Ce_E

(MS_E

END_OF

C.E
LINE.END_OF
ZARRIAGE _RETURN
S_LARRIAGE _RETURN
LINE.'%?
LINE.'I"

cx

Cs.1

LINE. 'J'

M_O

o

M5_O

s _0
LINE.'J'
LINE.',"®
LINL.'<'
CM_LESS_THAN

Macro.Finish

Macro.Start

Mark

Mark.
Mark.

Mark

Mark.

Mark.
Region.Beginning _0f

.Copy_Top

Mark.
Mark.

Delate_Top
Next

Previous
Push

.Rotate

Swvap

Top

Region.Capitalize

Region.Comment

Region.Copy
Region.Delete

Region.End_0Of

Region.Fi11l
Region.Finish

Region.Justity
Region.Lover_Case

Region.Move

Region.Off

Region. Start

PE4.' ("

ESC_ M
PFA.RIGHT
ESC_S M
PF4.LEFT

PF4 .DOWN

PF4.UP
X2.'p’
X2.'B'
X2.BEGIN_OF
X2.'6’

xz' LA}

x)- tar

X2.'c’
X2.°'Cc'
X2.'D*
X2.'d’
x2.'x’
X2. 'k’
X2.'e’
X2.END_OF
X2.'e’
X2.X6
X2.'}"
xa2.')!

ESC_RIGHT_BRACE

X2.X5
Xx2.'<’

X2.'m'
X2.'M*
X2.'x’
X2.'X’

ESC_LEFT_BRACE

x2.°{

REGION. '[!

MARY ENTER
MARK . PROMOT

MARK . CARRIAGE_RETURN
. MS_X

MARK. ‘'
M_RIGHT _BRACE
MARK. '}’

MARK END_OF
M_RIGHT_BRACKET
M_LEFT_BRACKET
MARK ' [’
M_LEFT_BRACE
MARK . '{*
MARK.BEGIN_OF
MARK . ‘p*
MARK.'P*
MARK.DELETE
MS_M

M_M

MARK . RIGHT
MARY . LEFT
MARK . DOWN

s M

CM

MARK. 'R’

MARK. 'r'

MARK. 't
MARK.'T’
MARK . UP
REGION.BEGIN_OF

REGION.'6"
REGION.'""

REGION. ' '
REGION.'-*
REGION. ‘¢’
REGION.'C'
REGION. 'K’
REGION. 'k’
REGION. 'd"
REGION. ‘D'
REGION.END_OF

REGION . FORMAT
REGION. '}’
C_RIGHT_BRACKET
C_RIGHT_BRACE
REGION. '}’
REGION.COMPLT
REGION. ‘<’
REGION. ',
REGION. ‘M’
REGION. 'n’
REGION. 'x’
REGION. 'X*
C_LEFT_BRACKET

(| Editar

Editor

Editor.
Editor.
Editor.
Editor.
Editor.
Editor.
Editor.

Editor.
Editor.

Editor.
Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Editor.

Ed: or.

Editor.

Editor.

.Region.Uncomment

.Reglon.Upper_Case

Screen:, Cliear
Screen.Down
Screen . Left
Screen. Next
Screen.Previous
Screen.Push
Screen.Redrav

Screen.Right
Screen. Top

Screan Up
Search.Next

Search.Previous
Search.Replace_Next
Search.Replace_Previous
Set.Argument _Digit (O)
Set .Argument _Digit (1)
Set . Argument Digit (2)
Set.Argument Digit (3)
Set . Argument_Digit (4)
Set .Argument Digit { 5)
Set . Argument Digit (6)

Set.Argument _Digit (7)

Set .Argument_Digit (8)

X2.'>"

ESC_L
ESC_S_L

CL

cr
CR

ESC B r
ESC_F
ESC_R
ESC_S_R
NUMERIC_O

NUMERIC_1

NUMERIC 2

NUMERIC_3

NUMERIC_4

NUMERIC_5

NUMERIC_6

NUMERIC_7?

NUMERIC_B

REGION. ' ('
C_LEET_BRACE
REGION. ' -
REGION. *+°
REGION.'.'
REGION. *>'
M_L

MS_ L
CS_DOWN
CS_LEEFT
CMS_RIGHT
QMS_LEFT
MS_DOWN
cs_L

C.L
CS_RIGHT
a4s_up
CMS_BEGIN_OF
cs_up

c_s

CS_3

Cs_R

C_R

MSs

M5_5

MR

MS_R
M_NUMFRIC_O
C_NUMERIC_O
NUMERIC_O
8_NUMERIC_O
M_NUMERIC_1
C_NUMERIC_1
NUMERIC_1
§_NUMERIC_1
NUMERIC_2
M_NUMERIC_3
8_NUMERIC_2
C_NUMERIC_2
C_NUMERIC_3
M_NUMERIC_3
8_NUMERIC_3
NUMERIC_3
NUMERIC_4
C_NUMERIC_4
M_NUMERIC_4
S_NUMERIC_4
C_NUMERIC_S
M_NUMERIC_5
S_NUMERIC_S
NUMERIC_S
C_NUMERIC_6
S_NUMERIC_6
M_NUMERIC_6
NUMERIC_6
C_NUMERIC_?
NUMERIC_?
M_NUMERIC_7
§_NUMERIC_7?
C_NUMERIC_8

Editor.

Editor.

Editor.

Editor.

Editor.
Edivlor.
Editor.
Editor.

Editor.

Editor

Editor.

Editor.

Editor

Editor

Editor.

Editor
Editor
Editor

Editor
Ecditor

Editar.

Set . Argument Digit (9)

Set . Argunent_Minus

Set .Argument_Prefix

Set .Designation Off

Set.Fill Mode (False)

Set.Fill Mods (True)

Set..Insert _Mode (False)

Set.Insert_Mode (True)

Window.

.Window.

Windcw.

Window.

.Wirndow.

.Window.

Window.

.Window.
.Window.
.Window.

.Window.
.Window.

Wirdew

Editor .Window

Beginning Of
Child

Zopy

Delate

Demote

Directory

End_Of

Expand

Expand (- (4))
Focus

Join (- (1))
Join (1)

.Next,

.Parant

NUMERIC_9

DASH

NUMERIC_COMMA

cX

PFi.'X’
PF1.'x’
PF1.'f*
PF1 'F'
PF1.'0’
PFl.'o!’
PF1.'%’
PF1.'I’
X3.'b*
X3.BEGIN_OF
X3.'B’
X3.RIGHT
X3.'¢c’
X3.'c!
X3.'D*
X3.'Xx'
X3.'k*
X3.'d'
X3. 'k’
X3.'x’
X3.F7
X3.5_F7
xX3.'/
X3 .F4
X3. '+
X3.'?'
X3.'e'
X3.END_OF
X3.’E*
X3.1!
X3.'21"
X3.'."

X3.X%
X3.DELTITE
X3.°J*
X3.'§"
ESC.Y
S_DOWN
X3.D00N
ESC_ S ¥
X3 LEET

WINDO'.. WFET

S_NUMERIC_B
M_NUMERIC_B8
NUMERIC_8
M_NUMERIC_9
S_NUMERIC_S
NUMERIC_9
C_NUMERIC_9
C_DASH

DASH

S_DASH

M_DASH
NUMERIC_COMMA
M_NUMERIC_COMMA
C_NUMERIC _COMMA
S_NUMERIC_COMMA
(5 ¢

CF17

c_X

IMAGE. ‘X"

IMAGE . 'x’

IMGZ. 't

IMAGE . 'F*
IMAGE.'o’

IMAGE. 'O’
IMAGE.'I"*

IMAGE. 'Ly’
WINDOW. BEGIN_OF
QM_BEGIF_OF

WINDOW.RIGHT
WINDCH. ‘¢’
WINDOW.'C*
WINDOW. *x'
WINDOM . ‘X"
WINDOW. '’
WINDOW. ‘K’
WINDOW. 'd*
WINDOM. 'D*
WINDOW.5_F14
WINDOW.F14
WINDOW.F10
WINDOW. ' 7'
WINDOW. ' /'

M_ING_OT
WINDOW.END_OF

WINTOW. 1
WINDOW. '1°
WINDOW. *>*
WINDOW. ' '
WINDOW. FORIAT
WINDOW. DELETE
WINDOW. * 4"
WINDOW, *J*
Q4_DOWN
WINDOW . DOWN
MS_V

M_V

Editor .Window.Previous

Editor .Window.Promote
Editor .Windov.Transpose

Editor.Word.Beginning DOf

Editor .Word.Capitalize

Editor .Word.Deletle

Editor .Word.Delete_Backward

Editor .Word.Delete_Forward

Editor .Word.End_0Of

Editor .Word.Lover_Case

Editor . Word.Faxt

Editor .Word.Previous

Editor .Word.Trsnspoase

Editor Word.Uprer_"ise

Jo! . C unect { G
Job.Disable (O)
Job_Ensble (0)

ESC_8_Z
ESC.Z

s_Up

X3.UP
X3.X4
X3.'t'
X3.'t
PF3.BEGIN_OF
ESC_A
PE3.'B’
PF3.'b’
ESC_S_B
ESC_S_A
ESC_B
PF3.'6"
PE3.'"*
PE3. '~
ESC_TILDE
ESC 6
ESC_CIRCUMFLEX
PE3.'D’
ESC_S5_D
PE3.'d’
ESC_D
PFJ3.DELETE
ESC_DEL

ESC_X
PF3.'k'
ESC_8_X
PF3. 'K’
PEF3.TAB
ESC_S_
PE3.'e'
ESC_E
PF3.‘'E'
PEI.END_OF
PE3. ‘<
ESC_LESS_THAN

PF3.RIGHT
ESC_5_J
ESC_J

PE3.LEFT
ESC_S_H
ESC_H

ESC_5_T
PF3.'t!’
PF3.'T'

ESC_F11
ESC_C Fi1
|2 §

WINDOW . UP

M2z

MS_Z

a_up

WINDOW . PROMOT
WINDOW. 'T'
WINDOW. 't*
M_A
WORD . BEGIN_OF
MS_A
M_BEGIN_OF
MS_B

M_B

WORD. ‘6"

M6
M_CIRCUMFLEX
WORD. ‘"'

Ms_D

M_D

WORD. ‘A’
WORD. ‘D!
M_DELETE
WORD . DELETE
MS_CELETE
MS_X

WORD 'k’
M_%

WOBRD . 'K’
M_E
WORD . END_CF
MS_E
M_END_OF

M_LESS_THAN
WORD. " <'
M_COMMA
WCRD.','
M
M_RIGHT
WORD . RIGHT
Ms _J
M_LeET
WCRD . LEFT
M_H

MS_H

WORD. '<'
WCRD. 'T'
Ms_T

M T

WCRD. ‘.’
WORD. ‘'
M_GREATER_THAN
M_PERIOD
M_F19

F19

§_F19

33

Job. Interrupt

Job.Ki11 (0)

Library.Create_Directory (Name ...

Library.Create_World (Name => uw)
Queue .Print

Text.
Text.

What
What

What

What.

Create (Inqo_lh.‘ => ")
End_Of_Input

.Does ("")

.Does ("Help_On_Help")
What.
What.

Home_Library
Line '

.Load (Verbose => True)
What.
What.
What.

Locks (Name => "<Image>")
Object
Tabs

Time

[of ¢

ESC_C
Cc_rii
ESC_S_ G
ESC_G
ESC_F@
ESC_C_F8
F11

C_F8

DOT

§_FS
FS

_ ESC_UP

PF2.'?’
PF2.'+'
PF2.'/’
§ F12

ESC_C_F12
C_F12

F12

c_G
Cs G
C_F19

MS_ G

M_F15
CS_F15
a4 ri11
QML F1S
DOT
M F19
Fl1
8_F11
M F10

LINE.'/"

LINE.'?’

8_F20
M_F20
QM F20
CQMS_TAB

F20

34

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manua! name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 monthsorless _ iyear 3 years or rnore
Name (optional) Date__
Company
Address _
City State ZIP Code
Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Basic Operations, Basic Keymap: Facit Terminal, 8001A.-51

