Rational Environment
Reference Manual

Editing Images (EI)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-22 (803-002306)

Rev.
Rev.
Rev.
Rev.
Rev.

1.0, February 1985
1.1, June 1985

2.0, December 1985
3.0, July 1986

4.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

El-ii

Rational
1501 Salado Drive
Mountain View, C:lifornia 94043

e RATIONAL

Contents

How to Use This Book ix
Key Concepts 1
Commandsand Keys 1
Cursor Movemento Lo Lo 2
Planar Movemento 2
Stream Operations 3
Relative Movement L. 3
Marks L0 4
Search and Replace e e e 4
Editing Operations 4
Editing Text Lo 5
Retrieving Text Co 5
Lines and Tabs 5
Selecting Text 6
Window Management L. 6
Screen Management 7
Macros L Lo 7
Session Switches 0000000 7
package Editer00 9
procedure Alerto 10

procedure Noop 10

procedure Quit L. 10

package Char e e e 11
procedure Capitalize 12

procedure Delete_Backward12

procedure Delete_Forward 12

procedure Delete_.Next T
R)ATIONAL 1/1/87 El-iii

procedure Delete_Previous13
procedure Delete_Spaces13
procedure Insert_Character13
procedure Insert_String13
procedure Lower_Case14
procedure Quote14
procedure Tab_Backward14
procedure Tab_Forward14
procedure Tab_To_Comment15
procedure Transpose15
procedure Upper_.Case15

end Char

package Cursor I
procedure Backward18
procedure Down18
procedure Forward18
procedure Left18
procedure Next19
procedure Previous 19
procedure Right19
procedure Up20

end Cursor

package Hold_Stack21
procedure Copy-Top21
procedure Delete_Top22
procedure Next22
procedure Previous22
procedure Pusho 0oL 22
procedure Rotate22
procedure Swap23
procedure Top23

end Hold_Stack

packageImage25
procedure Beginning.Of25
procedure Down25
procedure End_Of26
procedure Find e e e e e e .26
procedure Left26

El-iv 7/1/87 PATIONAL

procedure Right
procedure Up
end Image

package Key

procedure Define
procedure Name
procedure Prompt
procedure Save .

end Key

package Line
procedure Beginning_Of .

procedure Capitalize . . .

procedure Center .
procedure Copy
procedure Delete

procedure Delete_Backward
procedure Delete_Forward . .

procedure End_Of
procedure Indent
procedure Insert
procedure Join
procedure Lower_Case
procedure Next
procedure Open
procedure Previous
procedure Transpose
procedure Upper_Case

end Line

package Macro

procedure Bind

procedure Execute
procedure Finish
procedure Restore
procedure Save .
procedure Start

end Macro

package Mark
procedure Copy-Top

RATIONAL 71/er

.........

........

. 26

. 26

.27

. 28
. 29
.29
. 29

. 31
. 32

. 32

. 32
. 32

. 32

. 33
. 33

. 33

. 33

. 34

. 34
. 34
. 34

.. 34
. 35

.37
. 38
. 38
. 38

. 38

. 39

. 39

. 41
. 41

El-v

procedure Delete_Top42
procedure Next oo 42
procedure Previous0 0000000 42
procedure Push00 0000000 L 42
procedure Rotate 0. .42
procedure Swap43
procedure Top43
end Mark
package Region45
procedure Beginning_ Of45
procedure Capitalize46
procedure Comment46
procedure Copy46
procedure Delete 46
procedure End-Of46
procedure Fito 000000 4T
procedure Finish 47
procedure Justify48
procedure Lower_Case 48
procedure Move 48
procedure OF 49
procedureOn 49
procedure Start 49
procedure Uncomment49
procedure Upper_Case49
end Region '
package Screen51
procedure Clear52
procedure Copy-Top52
procedure Delete.Top52
procedure Down5
procedure Dump53
procedureLeft53
procedure Next5
procedure Previous53
procedure Push53
procedure Redraw54
procedure Right54

El-vi 7/1/87 RATI ONAL

procedure Rotate .
procedure Swap
procedure Top
procedure Up

end Screen

package Search .
procedure Next
procedure Previous
procedure Replace_Next
procedure Replace_Previous

end Search

package Set . .
procedure Argument_ Dlglt
procedure Argument_Minus
procedure Argument_Prefix
procedure Designation-Off
procedure Fill_-Column
procedure Fill_.Mode
procedure Input_From

procedure Input_Logging.Off

procedure Input_Logging._To
procedure Insert_Mode
procedure Tab_Off
procedure Tab_On
procedure Tab_Width

end Set

package Window
procedure Begmmng..Of
procedure Child
procedure Copy
procedure Delete
procedure Demote
procedure Directory
procedure End_Of
procedure Expand
procedure Focus
procedure Frames
procedure Join

R)ATIONAL 7/1/87

. 54
. 54
. 54
. 54

. 55
. 57
. 87
. 87
. 58

. 59
. 60

LEX-E

. . 61
. 61
. 61
. 61
. 62
. 62
. 62
. 62

. 63

. 64
. 65
. 65
. 65
. 66
. 66
. 66

. 66

. 66

El-vii

procedure Next

procedure Parent
procedure Previous . . .
procedure Promote
procedure Transpose

end Window
package Word

procedure Beginning_Of .
procedure Breaks
procedure Capitalize . .
procedure Delete
procedure Delete_Backward
procedure Delete_Forward
procedure End-.Of . . .
procedure Lower_Case .
procedure Next
procedure Previous
procedure Transpose . .
procedure Upper_Case

end Word

end Editor

Index

El-viii

.............

...... R Y 4
Coe e e R Y 4
. 67

. 68

e e e e .. .69
................ . . 69
............... .. . 170
.......... (1]
.................. 70
e e e T (]
.......... T (1]
....... T |
............... S|
................. .71
e e e e e e e e 71
....... |
.................. 72

e e e e e . .75

syer RATIONAL

How to Use This Book

The Editing Images (EI) book of the Rational Environment Reference Manual de-
scribes the basic editing commands of the Rational Environment™ that are not
dependent on the specific type of image being edited. It contains introductory ma-
terial on the logic and structure of the basic command set, followed by reference
entries for all the packages contained in package Editor. See Editing Specific Types
(EST) for more information on type-specific editing operations.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see the accompanying illustration):

1 Reference Summary
Keymap
Master Index
Editing Images (EI)
Editing Specific Types (EST)
Debugging (DEB)
Session and Job Management (SIM)
Library Management (LM)
Text Input/Output (TIO)
Data and Device Input/Output (DI10)
String Tools (ST)
Programming Tools (PT)
0 System Management Utilities (SMU)
1 Project Management (PM)

O Ua W N

O QO

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 7/1/er El-ix

Organization of the
Rational Environment Reference Manual

L 11 volumes containing 14 books J
| i
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book

Reburoce

Manwal 2
EI

EST

a3) wadewi; Jimpy

Edsung Images D
Edung Spmnte Types (3T

[S
L RaTioNaL §

Rational Environment

o Reference

Key concepts
Manuasl

Book index

Topical section

Unit section

Book

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

e Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

o Master Index; The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under
String_Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

¢ Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

e Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical

RATIONAL 717 El-xi

references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Ratsonal
Environment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

El-xii 7/1/87 RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library”);. I you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition {"\Library"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available

through the on-line help facilities of the Environment. Press the [Heip on Hetp] key
or consult the Ratsional Environment User’s Gutde or the Rational Environment

Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

e Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL +/y/sr El-xiii

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

El-xiv 7/1/87 RATIONAL

Key Concepts

The commands in package Editor, common to all images and wxndows, consti-
tute the means of interacting with the Rational Environment™ at the simplest
level. Regardless of the image type—whether Ada®, command, text, or some
other type—these operations behave the same. For the ‘most part, these frequently
used commands are available at all times for all images, independent of type, and
they include procedures for cursor movement, window management, and routine
editing. Typically, the commands are bound to a single key or a two-key sequence.

The operations defined in package Editor are used for editing images. There are
many of these operations, usually attached or bound to keys. Because these nu-
merous operations would consume many keys, the operations are designed as com-
binations of stems and operations, where each item is a key and each operation is a
key. Thus, most of these operations involve a two-key sequence. The most common
item-operation combinations are bound to single keys.

A detailed discussion of the keymap and the commands that are bound to keys
appears in the Rational Environment Keymap (in Volume 1 of the Rational Envi-
ronment Reference Manual). However, because most of the operations defined in
this package are normally keys, some discussion of the keymap paradigm follows.

Commands and Keys

Items are the units of text in an image that can be edited; each kind of item is
represented on the keyboard by a single key. Operations are the commands that
affect cursor position or items; each operation is also represented by a single key.
Once the basic key bindings are familiar, any editing operation can be invoked by
entering an item key followed by an appropriate operation key.

The first key in an item-operation key sequence acts as a command prefix, indicating
that the following keystroke should be interpreted as a command and not as a
character to insert in the image. The first key also identifies the item (such as
word, line, or region of text) to which the command must apply. For example, [Tind
tells the Rational Editor that a command follows and that it should apply to the
current line (the line containing the cursor).

RAT'ONAL 7/1/87 El-1

Key Concepts

The second key identifies the action that applies to the item. For example, (o] deletes
the item. As a rule, the editor ignores the shift key when interpreting the second
key; commands are not case-sensitive. For example, {p] is equivalent to [4], and
is equivalent to [/]. However, the arrow, or cursor, keys have different meanings for
the shifted or not-shifted versions of the keys.

A command is entered by pressing the item key, releasing it, and pressing the
operation key. Some commands use [Control], [Meta], or [shife] (or combinations of the
three) in combination with another key. These three keys are called modifier keys.
(Control], [Meta], and should be pressed and held down while the other key is
pressed, shown as [Conwrol] F1d], for example, in this documentation. (Keys that are
pressed and released sequentially are shown as -[)

More information about keys and the commands that are bound to keys can be
found in the Rational Environment Keymap (in Volume 1 of the Rational Environ-
ment Reference Manual).

Cursor Movement

The position of the cursor determines where keyboard entries appear in the image.
The cursor position is often important for specifying the location or affected area
for editing operations.

An image has topmost and leftmost boundaries (row 1 and column 1). However,
there are no bottommost or rightmost boundaries. This defines what 1s called the
quarter plane in which the cursor can move.

Except for the top and left boundaries, cursor movement in an image is virtually
unlimited. The cursor can move to any location, regardless of whether text is
present.

The cursor can be controlled in different ways. Planar movement is absolute move-
ment (up, down, left, and right) anywhere on the screen or in an image. Relative
movement is movement by item—whether word, line, or window—and depends on
the cursor’s current context.

The cursor can also be moved to a specific image position that has been previously
saved as a mark (see package Mark) or to a specific portion of text previously
designated as a region for editing purposes (see package Region).

The sections that follow explain these several types of cursor movement.

Planar Movement

Planar, or absolute, cursor movement is movement by fixed size or length. Com-
mands for planar movement include up, down, left, and right. They are defined in
packages Cursor, Image, and Screen, as follows:

EI-2 7/1/87 QAT'ONAL

Key Concepts

¢ Package Cursor contains procedures for movement within a window. These com-
mands are bound to the arrow keys, which move the cursor in the indicated
direction. Cursor movement, however, is restricted by the boundaries of the cur-
rent window. Because window boundaries block further cursor movement, the
Rational Editor scrolls the image to keep the cursor visible in the window.

o Package Image scrolls the contents of the window. These commands are bound
to the arrow keys with the prefix. They scroll the image in the indicated
direction to the next page (windowful). The amount of the previous page that
stays on the screen can be specified with a switch. There are also single-key bind-
ings for scrolling the image; see the Rational Environment Keymap (in Volume
1 of the Rational Environment Reference Manual).

¢ Package Screen contains procedures for unrestricted movement across the screen.

These commands are also bound to the arrow keys with [contrei] and [snire] as prefixes.
They move the cursor in the indicated direction but ignore window boundaries.

Stream Operations

The Rational Editor provides stream operations as well as planar operations. In
stream operations, the editor assumes that lines are separated by a single character
and that the end of one line is contiguous to the next. The Environment provides
stream operations in the following packages and procedures:

¢ Package Char: procedures Delete_Forward, Delete_Backward
¢ Package Cursor: procedures Forward, Backward
o Package Word: procedures Delete_Forward, Delete_Backward

Relative Movement

Relative movement differs from regular cursor movement in that its direction and
extent depend on the location of the cursor and the item to which the procedure
applies. Operations for moving the cursor relative to the current item are defined
in the following packages:

¢ Package Image

o Package Line

e Package Window

e Package Word
These packages define commands for moving to the nezt or previous words, lines,

and windows. They also provide commands for moving to the beginning of and end
of words, lines, windows, and images.

The Rational Editor provides two commands, the Cursor.Next and Cursor.Previous

procedures, for moving between prompts and underlines. These procedures have
parameters that allow users to specify their preferences.

QATIONAL 1/1/87 EI-3

Key Concepts

Marks

Marks are remembered image positions. They can facilitate movement within an
image or between images. They can also mark a location in an image for later
reference. Operations for setting and manipulating marks are defined in package

Mark.

The editor uses the mark stack to keep track of mark positions. There is one
mark stack for all images. Pushing the stack sets a mark, and the Top procedure
retrieves—moves the cursor to—the most recently referenced mark. The Next and
Previous procedures cycle through the stack, wrapping at the top and bottom. The
Copy-Top procedure makes another copy of the top item on the stack on the top
of the stack. The Delete_Top procedure removes the top item from the stack. The
Swap procedure swaps the top two items on the stack. The Rotate procedure moves
the bottom of the stack to the top of the stack.

It is possible to set a mark anywhere in any image. The editor remembers the posi-
tion as an absolute image position, effectively a set of line and column coordinates
on the quarter plane. These coordinates do not change to adjust for insertions or
deletions.

Search and Replace

The Rational Editor provides operations for searching forward and backward and
for replacing strings of text. Search and replace operations are defined in package
Search. Because of the special nature of these commands, they have single-key
bindings that prompt for necessary parameters.

Search and replace procedures can be used for regular expression matching. The
Wildcard parameter allows strings to be interpreted as regular expressions. Regular
expressions allow the user to search for strings matching various combinations of
characters, Ada delimiters, and so on.

By default, each command prompts with the most recently used strings as default
parameters. The user can replace the prompt by typing over it. Editing and
reusing portions of the prompt is done by using the Set.Designation_Off procedure
to convert the prompt to text.

Editing Operations

Text-editing operations make up the majority of procedures in package Editor.
Despite the diversity and extent of the command set, however, the number of keys
the user needs to learn is relatively small because the bindings for specific items
and the bindings for specific operations never change, regardless of how the items
and operations combine to form a particular procedure. [Lind, for example, always
indicates a line, whether the operation is delete, capitalize, or transpose. Similarly,
always indicates lowercase, whether the procedure is applied to a character, word,
line, or region of text.

El-4 7/1/87 '?ATIONAL

Key Concepts

The text-editing operations discussed in this section apply uniformly to all items as
defined in the following packages:

o Package Char
e Package Line

¢ Package Region
o Package Word

Editing Text

No procedure is needed for inserting characters. The Rational Editor normally
inserts characters at the cursor, making room (if necessary) between characters al-
ready on the line. In overwrite mode (overwrite mode or insert mode can be changed
with the Set.Insert_Mode procedure), the editor replaces existing characters with
characters entered from the keyboar

The editor can be set to break lines automatically at a specified fill column as text
is entered by putting a window in fill mode (fill mode can be changed with the

Set.Fill_Mode procedure).

The editor relies on the cursor to indicate which character, word, or line should be
deleted. Depending on the operation, the item is deleted entirely, deleted from the
cursor forward, or deleted from the cursor backward. The Region.Delete procedure
deletes the current region regardless of cursor position.

Text-changing operations transpose the position of items or change the case of the
alphabetic characters in the specified item. The case-changing procedures always
affect the image from the cursor to the end of the specified item. The Transpose
procedure assumes that the cursor is on the second of the items to be transposed.

Retrieving Text

Areas of text that are deleted (other than individual character deletions or multiple
character deletions made using character delete operations with arguments greater
than 1) are saved in a hold stack, which is used for cutting, pasting, and copying
areas of text. The hold stack is used with the procedures in package Hold_Stack.

For each session, there is only one hold stack for all images. It is used to store deleted
words, lines, and regions. The Push procedure also puts the current selection (see
packages Common.Object (EST) and Hold-Stack) on the hold stack.

Lines and Tabs

Procedures for inserting and joining lines are defined in package Line. The cursor
can be moved by lines, and lines can also be deleted, centered, copied, indented, or
have their case changed with procedures in this package.

Procedures for tabbing are defined in package Char. The cursor can be moved by
tab stop with the Tab_Forward, Tab_Backward, or Tab_To_Comment procedures.

R)ATIONAL 7/1/87 EI-5

Key Concepts

Note: Lines and tabs are blank spaces inserted in the image. They are not special
characters. The Tab_Forward procedure inserts blanks in the image up to the next
tab stop. The Tab_Backward procedure, on the other hand, deletes blanks and
characters backward to the previous tab stop. The Tab_To_Comment procedure
tabs to the comment column specified in the Library switch file.

Procedures for setting or changing tab stops are defined in package Set. For each
session, tab stops can be set and removed in particular columns with the Tab_On
and Tab_Off procedures, respectively. For all images, the default tab width can
be changed with the Tab.Width procedure. Procedures that place, remove, and
modify tab stops are defined in package Set.

Selecting Text

Selection commands are defined in packages Region and Common.Object (EST).
Selections can be used for editing, moving, and copying text. Selections made
using package Region contain arbitrary strings of text, whereas selections made
using package Object are hierarchically related (word, line, paragraph, or the entire
image).

For information on using text selections with the hold stack, see “Retrieving Text,”
above.

Window Management

Commands for managing or otherwise manipulating windows are defined in package
Window. All window commands use [window] as a prefix.

The Window.Directory procedure displays a window, called the Window Directory,
that contains a list of all currently active images and indicates their names, sizes,
types, times of last modification, and whether they have been modified since last
committed. From the Window Directory window (whose image type is windows), it
is possible to move to another window by using the {Commands.Common.Definition
command and to perform other operations, such as committing the window’s con-
tents.

The Environment handles routine window management, making a number of deci-
sions about placing and removing windows. However, several procedures defined in
package Window give the user control over several aspects of the screen.

Windows can be copied (split to support two views of an image) and joined (ex-
panded to occupy the space of the next window). They can be deleted altogether
or removed from the screen. They can be transposed (the position of one window
is switched with that of another). The procedure names are consistent with those
for text editing; the actual effects of the commands are analogous but not always

identical.

EI-6 7/1/87 ’?AT'ONAL

Key Concepts

Screen Management

A facility for managing screens is provided by package Screen. This package provides
a screen stack to keep track of a screen of windows, including which windows were
on the screen, their sizes, and the cursor locations in those windows, so that they
can be retrieved later in the same session. Changes made to the screen between the
time a screen is saved and retrieved are reflected on the screen upon its retrieval.
The user can use the Push procedure to add a screen to the top of the stack and
later use the Top procedure to retrieve the most recently referenced screen. The
Next and Previous procedures cycle through the stack of screens, wrapping at the
top and bottom. The Copy_Top procedure copies the top screen of the stack on
top of the stack. The Delete_Top procedure removes the top screen from the stack.
The Swap procedure swaps the top two screens on the stack. The Rotate procedure
moves the screen on the bottom of the stack to the top of the stack.

Macros

A macro is a sequence of editor operations that can be invoked with a single com-
mand. Macros can be saved for immediate and temporary use. Macros are de-
fined with the Macro.Start and Macro.Finish procedures and are invoked with the
Macro.Execute procedure. Frequently used macros can also be bound to keys and
stored permanently.

A new macro definition always replaces an existing definition but does not affect
macros already bound to keys. The current keyboard macro can be invoked while
a new macro is being defined.

Macros are intended for simple, repetitive editing operations. They behave as op-
erations that have no parameters, no local declarations, and no control structures.
For more complex editing operations, such as those requiring parameter passing,
Ada procedures can be used.

Procedures for defining, executing, and saving keyboard macros are defined in pack-
age Macro.

Session Switches

The behavior of many of the facilities provided by the Rational Editor can be
tailored by session switches in addition to the commands provided in package Editor.
For more information on session switches, see Session Switches in the Session and
Job Management (SJM) book of the Rational Environment Reference Manual.

The kinds of editor behavior that can be tailored include:

Setting tab stops.

Defining when to sound the terminal bell.

Determining when to scroll images.

Setting the cursor location after transpose operations.

RAT'ONAL 7/1/87 EI-7

Key Concepts

Setting the default fill and insert/overwrite modes.

Defining the directory from which key binding and macro definitions are taken.
Defining word breaks and prompt delimiters.

Tailoring the display of windows.

EI-8 7/1/87 BA\TIONAL

package Editor

The Rational Environment’s basic editing operations are defined in package Editor.
These operations apply to all objects regardless of type and thus are primarily
text-editing operations. They should be used in conjunction with the type- and
context-sensitive procedures described in the Editing Specific Types (EST) book of
the Rattonal Environment Reference Manual.

The subpackages are named and organized by the objects or items to which editing
operations apply, as follows:

Package Char: Editing operations for single characters.

Package Cursor: Operations for cursor movement within an image (up, down, left,
and right); operations for moving the cursor by designation (prompt or error).

Package Hold_Stack: Operations for manipulating the hold stack and for retriev-
ing deletions.

Package Image: Operations for scrolling the image.
Package Key: Procedures for defining and saving new or custom key bindings.

Package Line: Editing operations for lines; operations for moving the cursor by
relative line position within a window and for inserting and joining lines.

Package Macro: Operations for defining, executing, saving, and binding macros.

Package Mark: Operations for marking locations in an image for future reference
or for moving between images.

Package Region: Operations for defining, editing, and manipulating regions of
text.

Package Screen: Operations for moving the cursor on the screen regardless of
window boundaries; facilities for dumping and refreshing screen contents; facilities
for manipulating the screen stack.

Package Search: Procedures for searching and replacing strings of text.
Package Set: Procedures for modifying default editor parameters.

Package Window: Operations for managing or manipulating windows and frames;
operations for moving between windows.

RATIONAL 7/1/87 EI-9

package !Comimands.Editor

¢ Package Word: Editing operations for words; operations for moving the cursor
by relative word position within a window.

procedure Alert;

Rings the terminal bell.

procedure Noop;

Performs no operation; can be used to define a key to do nothing.

procedure Quit (l!gnore_Changes : Boolean := False);

Ends the current session.

If the Ignore_Changes parameter is false (the default), the Quit procedure ends
the current session only if there are no new or edited images that have not been
committed. If there are images that have not been committed, the Window Direc-
tory can be used to find these images and to commit them before quitting. See the
Editing Specific Types (EST) book of the Rational Environment Reference Manual
for more information on the editing operations available on the Window Directory.

If the Ignore_Changes parameter is true, the Quit procedure does not warn whether
an image needs committing. In that case, it simply ends the current session and
ignores any changes to uncommitted images.

Note that the editor treats I/0 windows with jobs requesting input running in them

as uncommitted images. You cannot log off while such jobs are running without
terminating them or ignoring changes.

EI-10 7/1/87 RAT'ONAL

package 'Commands.Editor.Char

package Char

package Char 1is

procedure Capitalize (Repeat : Integer = 1);
procedure Delete_Backward (Repeat : Integer =1);
procedure Delete_Forward (Repeat : Integer = 1};
procedure Delete_Next (Repeat . Integer = 1);
procedure Delete_Previous (Repeat : Integer = 1};
procedure Delete_Spaces (Remaining : Natural =1};
procedure Insert_String {Value : String);
procedure Insert_Character (Repeat : Integer = 1;
Value : Character);
procedure Lower_Case (Repeat . Integer = 1);
procedure Quote;
procedure Tab_Backward {Repeat : Integer = 1);
procedure Tab_Forward {Repeat . Integer = 1};
procedure Tab_To_Comment;
procedure Transpose (Offset : Integer = 1);
procedure Upper_Case (Repeat . Integer =1);
end Char;
Description

Package Char contains character-editing operations. The cursor always rests be-
tween two characters or blanks. However, the cursor appears to be on the second
character of the two characters it rests between. For example, in the word and,
when the cursor appears to be on n, it i8 actually located between the a and the
n. All character-editing operations affect the characters before or after the cursor
Repeat times.

The case-changing operations move the cursor forward Repeat positions. They
check for an alphabetic character in each position and, if they find one, change its
case.

The Tab_Forward procedure inserts blanks forward to the next tab stop. The
Tab_Backward procedure deletes all characters and blank spaces back to the pre-
vious tab stop.

The Insert procedures insert the value specified in the Value parameter in the image
at the cursor.

By default, characters entered at the keyboard are inserted in the image. If the
editor must make room for a character in the line, it moves any characters that lie
to the right of the cursor. Conversely, when a character is deleted, the editor shifts
characters to occupy the emptied position.

In overwrite mode, characters in the image are not moved to make room for new
insertions. Instead, a character entered from the keyboard replaces the character
under the cursor. (See the Set.Insert_Mode procedure.)

RATIONAL 7y EI-11

package !Commands.Editor.Char

Use the Quote procedure to insert special characters (such as control characters{qin
the image. Special characters appear in the image as highlighted characters. For
example, the Control-L character appears as a highlighted L in the image.

The Delete_Spaces procedure removes blanks between the cursor and the next non-
blank character.

procedure Capitalize (Repeat : Integer := 1);

Capitalizes the words in the next Repeat characters.

If the cursor is within a word, the procedure capitalizes the “word” beginning at
the cursor. The cursor is left after the last word capitalized.

procedure Delete_Backward (Repeat : Integer := 1);

Deletes Repeat characters to the left of the cursor.

When the cursor reaches the beginning of the line, the line becomes joined with the
line before it. The cursor continues deleting on that line.

procedure Delete_Forward (Repeat : Integer := 1);

Deletes Repeat characters to the right of the cursor.
When the cursor reaches the end of the line, the line becomes joined with the line

after it. The cursor continues deleting on that line. The cursor remains in its
original position.

EI-12 7/1/81 QAT'ONAL

package !Commands.Editor.Char

procedure Delete_Next (Repeat : Integer := 1);

Deletes Repeat next characters but does not delete beyond the current line.

If Repeat is greater than the number of characters on the line, the procedure deletes
to the end of the line and stops. The cursor remains in its original position.

procedure Delete_Previous (Repeat : Integer := 1);

Deletes Repeat previous characters but does not delete beyond the current line.

If Repeat is greater than the number of characters on the line, the procedure deletes
to the beginning of the line and stops.

procedure Delete_Spaces (Remaining : Natural := 1};

Deletes blanks and joins lines from the cursor to the next nonspace character (in
both directions), leaving Remaining spaces.

procedure |nsert_Character (Repeat : Integer := 1;
Value : Character);

Inserts the Value character Repeat times at the cursor.

After the operation, the cursor is located after the rightmost character inserted.
procedure Insert_String (Value : String);

Inserts Value at the cursor.

After the operation, the cursor is located after the rightmost character inserted.

RAT'ONAL 7/1/87 EI-13

package !Commands.Editor.Char

procedure lLower_Case (Repeat : Integer := 1);

Converts Repeat characters to lowercase.

The procedure moves forward Repeat spaces and, where it finds an uppercase al-
phabetic character, converts the character to lowercase.

procedure Quote;

Quotes a special character, such as a control character, into the image.

This procedure must be used for each special character inserted into the image. The
procedure cannot be called from a Command window but must be invoked through
a key binding; use the Insert_Character procedure or the Insert_String procedure
to insert special characters from a Command window or program.

procedure Tab_Backward (Repeat : Integer := 1};

Deletes backward to the previous tab stop Repeat times.

This procedure affects only the current line.

procedure Tab_Forward (Repeat : Integer := 1);

Inserts blanks to the next tab stop Repeat times.

This procedure affects only the current line.

El-14 7/1/87 R)ATIONAL

package {Commands.Editor.Char

procedure Tab_To_Comment;

Moves the cursor to the first character of the text in the comment, if there is a
comment on the current line.

If there is no comment on the line and no text currently located at the comment
column (set by the Comment_Column library switch), this procedure inserts the
comment characters (-~) and leaves the cursor at the first character position for
the comment. Otherwise, if there is text at the comment column, the procedure
moves the cursor to the end of the text, inserts the comment characters (--), and
leaves the cursor after the inserted characters.

procedure Transpose (Offset: Integer := 1);

Transposes the Offset characters before and after the cursor.

The cursor actually appears on the second character of the two characters it rests
between. Thus, this procedure transposes the character on which the cursor is
located and the character before it. The procedure transposes characters on the
same line. The cursor position that results depends on the value of the Cur-
sor_Transpose_Moves session switch. If the value is true, the cursor is moved to the
right one character position. If it is false, the position of the cursor is not changed.
For more information on session switches, see SJIM, Session Switches.

procedure Upper_Case (Repeat : Integer := 1)};

Converts Repeat characters to uppercase.

The procedure moves forward Repeat spaces and, where it finds a lowercase alpha-
betic character, converts the character to uppercase.

RAT'ONAL 7/1/87 EI-15

RATIONAL

package {Commands.Editor.Cursor

package Cursor

package Cursor 1is

procedure Doun (Repeat : Integer := 1);
procedure Left {Repeat : Integer := 1);
procedure Right (Repeat : Integer := 1};
procedure Up (Repeat : Integer := 1);
procedure Forward (Repeat : Integer := 1);
procedure Backward (Repeat : Integer := 1);
procedure Next (Repeat : Integer := 1;
Prompt : Boolean := True;
Underline : Boolean := True);
procedure Previous (Repeat : Integer := 1;
Prompt : Boolean := True;
Underline : Boolean := True);

end Cursor;

Description

The Up, Down, Left, and Right procedures move the cursor in the indicated direc-
tion Repeat times.

The Next and Previous procedures move the cursor by prompts or underlines.

The Forward and Backward procedures move the cursor left and right, continuing
cursor movement on the next or previous line when the cursor reaches the end or
beginning of the current line.

Cursor movement is restricted by window boundaries with commands in this pack-
age. (Commands in package Screen can be used to move the cursor across window
boundaries.) At window boundaries, the editor keeps the cursor visible by scrolling
the image.

The cursor highlights a unique location in each image, indicating to the editor where
to place keyboard insertions. The cursor is a point of reference for focusing the
attention of the Environment, specifying the domain for any command in progress or
the object to which an operation applies. The cursor actually appears on a character
but represents the position between the character it is on and the character before
it.

RAT'ONAL 7/1/87 EI-17

package 'Commands.Editor.Cursor

procedure Backward (Repeat : Integer := 1};
Moves the cursor to the left Repeat characters.

When the cursor is at the beginning of the current line, this procedure moves the
cursor to the position after the last character on the previous line. Negative values
move the cursor in the opposite direction, to the right.

procedure Down (Repeat : integer := 1);

Moves the cursor down Repeat lines.

Negative values move the cursor in the opposite direction.

procedure Forward (Repeat : !nteger := 1);

Moves the cursor to the right Repeat characters.

When the cursor is one position past the last character on the current line, this
procedure moves the cursor to the first character on the next line. Negative values
move the cursor in the opposite direction, to the left.

procedure Left (Repeat : Integer := 1};

Moves the cursor Repeat columns to the left, stopping at the beginning of the line.

Negative values move the cursor in the opposite direction, to the right.

EI-18 7/1/87 BA\TIONAL

package !Commands.Editor.Cursor

procedure Next (Repeat : Integer := 1;
Prompt : Boolean := True;
Underline : Boolean := True};

Moves the cursor forward to the next underline or prompt.

Negative values for the Repeat parameter move the cursor in the opposite direc-
tion. If the Prompt parameter is true (the default), the procedure looks for the next
prompt. If the Underline parameter is true, the procedure looks for the next under-
line. When both parameters are true, the procedure looks for the next occurrence
of either a prompt or an underline; if both are false, it does nothing.

procedure Previous (Repeat : Integer := 1;
Prompt : Boolean := True;
Underline : Boolean := True};

Moves the cursor backward to the previous underline or prompt.

Negative values for the Repeat parameter move the cursor in the opposite direction.
If the Prompt parameter is true (the default), the procedure looks for the previous
prompt. If the Underline parameter is true, the procedure looks for the previous

underline. When both parameters are true, the procedure looks for the previous
occurrence of either a prompt or an underline; if both are false, it does nothing.

procedure Right (Repeat : Integer := 1);

Moves the cursor Repeat columns to the right on the current line.

Negatiﬁe values move the cursor in the opposite direction, stopping at the beginning
of the line.

R’ATIONAL 7/1/87 EI-19

package !Commands.Editor.Cursor

procedure Up (Repeat : Integer := 1);

Moves the cursor up Repeat lines.

Negative values move the cursor in the opposite direction.

EI-20

zm RATIONAL

package !Commands.Editor.Hold_Stack

package Hold_Stack

package Hold_Stack 1is
procedure Copy_Top;
procedure Delete_Top;

procedure Next (Repeat : Integer := 1);
procedure Previous {(Repeat : Integer := 1};
procedure Push {Repeat : Integer := 1);
procedure Rotate (Repeat : Integer := 1);

procedure Swap;
procedure Top;
end Hold_Stack;

Description

Package Hold_Stack provides a mechanism for recovering deletions. The Rational
Editor saves the 100 most recent deletions (larger than a single character) in the
hold stack. Deleted selections of any size are also saved. Items in the stack can be
retrieved and inserted at the cursor with the Top, Next, or Previous procedure.

An item retrieved from the hold stack is displayed and treated as a selection.

The Push procedure puts the current selection in the hold stack. The Top procedure
inserts the most recent item back into the image at the cursor. The Next and
Previous procedures provide a mechanism for moving through the items in the
stack. They replace the selection at the cursor with the next or previous item in
the stack. At the bottom of the stack, Next wraps to the top. At the top of the
stack, Previous wraps to the bottom. The Copy_Top procedure makes a copy of the
top item of the stack and puts it on the top of the stack. The Delete_Top procedure
removes the top item from the stack. The Rotate procedure takes the bottom item
of the stack and places it on the top of the stack. The Swap procedure swaps the
top two items on the stack.

procedure Copy_Top;

Copies the top item of the hold stack onto the top of the hold stack.

The result is that there are two copies of the same item on the top of the hold stack.

RATIONAL 7/1/87 ElI-21

package !Commands.Editor.Hold.-Stack

procedure Delete_Top;

Removes the top item from the hold stack.
The item next to the top of the hold stack becomes the top item of the hold stack.

procedure Next (Repeat : Integer := 1};

Retrieves the Repeat item from the hold stack and copies it at the current cursor
location.

At the bottom of the stack, this procedure wraps to the top.

procedure Previous (Repeat : Integer := 1});

Retrieves the previous Repeat item from the hold stack and copies it at the current
cursor location.

At the top of the stack, this procedure wraps to the bottom.

procedure Push (Repeat : Integer := 1);

Pushes the current selection onto the hold stack Repeat times.

procedure Rotate (Repeat : Integer := 1);

Takes the Repeat number of items from the bottom of the stack and places them
on the top of the hold stack in order.

EI-22 1/1/87 RAT'ONAL

package !Commands.Editor.Hold_Stack

procedure Swap;

Swaps the top two items on the hold stack.

The item next to the top of the hold stack becomes the top item of the hold stack.
The original top item becomes the item next to the top of the hold stack.

procedure Top;

Retrieves the top item in the hold stack, leaving that item on the hold stack.

The retrieved item is copied into the current cursor location.

QATIONAL 7/1/87 EI-23

RATIONAL

package !Commands.Editor.Image

package Image

package Image 1s

procedure Up {Repeat : Integer = 0)
procedure Down {(Repeat : Integer = @);
procedure Left (Repeat : Integer = 0};
procedure Right (Repeat : Integer = 9);
procedure Find {Name : String);

procedure Beginning_Of (Offset : Natural =0),;
procedure End_Of (Offset : Natural = 0);

end Image;

Description

Package Image includes operations for finding and scrolling images. The Find pro-
cedure searches for an image of a given name in the Window Directory and displays
it on the screen. The Up, Down, Left, and Right procedures scroll the image Repeat
lines or columns in the indicated direction. The default (Repeat = 0) scrolls the
image one full window. When scrolling a full window, the editor keeps a portion
of the previous view to preserve context (how much it keeps can be specified with

switches).

The Beginning_Of and End-Of procedures move the view as indicated but use
Offset to adjust the new cursor position by Offset lines from the beginning or end
of the image.

procedure Beginning_Of (Offset : Natural := 9);
Moves the cursor to the beginning of the image.

This procedure uses Offset to adjust the new cursor position by Offset lines from
the beginning of the image.

procedure Down (Repeat : Integer := 0);
Scrolls the image forward Repeat lines.

When Repeat = 0, the procedure scrolls one full window. If Repeat is a negative
number, it scrolls down Repeat lines.

RATIONAL 71/er EI-25

package !Commands.Editor.Image

procedure End_Of (Offset : Natural := 0);
Moves the cursor to the end of the image.

This procedure uses Offset to adjust the new cursor position by Offset lines from
the end of the image.

procedure Find (Name : Stringj};

Searches the Window Directory for the specified image, or for an image that contains
a substring of Name in its name, and brings it onto the screen.

If the null string is supplied as Name, the procedure brings back to the screen
the last image the Environment removed from the screen (this does not include
images explicitly removed by users either by deleting them or marking them for
replacement).

procedure Left (Repeat : Integer := 0);
Scrolls the image left Repeat columns.

When Repeat = 0, the procedure scrolls one full window. If Repeat is a negative
number, it scrolls right. If the first character of the image is already in the first
character position of the window, the procedure does nothing.

procedure Right (Repeat : Integer := 0);
Scrolls the image right Repeat columns.

When Repeat = 0, the procedure scrolls one full window. If Repeat is a negative
number, it scrolls left.

procedure Up (Repeat : Integer := 0};
Scrolls the image back Repeat lines.

When Repeat = 0, the procedure scrolls one full window. If Repeat is a negative
number, it scrolls down. If the first line of the image is already at the top of the
screen, the procedure does nothing.

EI-26 1/1/87 IQATIONAL

package !Commands.Editor.Key

package Key

package Key 1is

procedure Define (Key_Name : String = ">>KEY NAME, e.g. CM_F1<<";
Command_Name : String := ">>COMMAND NAME<<";
Prompt : Boolean := False);
procedure Name (Key_Code : String = "),
procedure Save;
procedure Prompt (Key_Code : String = "");
end Key;
Description

Use the procedures in package Key to bind any procedure from !Commands or any
fully qualified Ada procedure call to a key. These bindings are in effect until the

user logs off.

For example, function key names are defined as follows:

F1-F20 Function keys—for example, F10 is the Definition key.

S_key The Shift key pressed along with another key, nonalphanumeric—
for example, S_F10.

C-key The Control key pressed along with another key—for example,
C-G or C.F10.

M_key The Meta key pressed along with another key—for example, M-
-F10.

CS_key The Control and Shift keys pressed along with another key—for
example, CS-F10.

CM_key The Control and Meta keys pressed along with another key—for
example, CM_F10.

MS_key The Meta and Shift keys pressed along with another key—for
example, MS_F10.

CMS_key The Control, Meta, and Shift keys pressed along with another

key—for example, CMS_F10.

To determine the key name for a key, use the !Commands.What.Does or What.Key
procedure.

Another way to change the key bindings is to create a permanent local key binding
procedure. This is outlined below.

At login, the Environment assigns the key bindings defined in the !Machine.Edi-

tor_Data.Rational.Commands procedure, which globally assigns commands to key
bindings for the entire system. This procedure applies to the Rational Terminal.

RATIONAL 7/1/87 El-27

package !Commands.Editor.Key

Other procedures exist for each of the types of terminals that can be specified at
login.

Users who want to create their own local key bindings should build in their home
world a procedure called Rational Commands that uses the same form as the de-
fault procedure, 'Machine.Editor_Data.Rational _Commands. A template for this
procedure, called !Machine.Editor_-Data.Rational_User_Commands, contains the
case statements and the proper context clauses. Like the default procedure, this
local procedure should contain a case statement; it needs only those cases defined
that differ from the cases of the default procedure.

To create a local keymap, create a Rational Commands procedure in your home
world and copy the contents of the !Machine.Editor_Data.Rational_User_Com-
mands procedure into it. Modify the case statement as desired, install the pro-
cedure, quit, and then log in again for the new key bindings to take effect.

The Rational_Commands procedure applies specifically to the Rational Terminal.
Other terminals that the Environment supports need similar procedures with dif-
ferent names for their key bindings. The directory !Machine.Editor_Data contains
procedures and templates for each of the terminals supported by the Environment.

procedure Define ({Key_Name : String = ">>KEY NAME, e.g. CM_F1<K";
Command_Name : String = ">D>COMMAND NAME<K";
Prompt : Boolean := False);

Binds a command to a key.

The Key_Name parameter specifies the key to which the command should be bound.
To find out the name of a key, use the !Commands.What.Does or What.Key pro-
cedure. The Command_Name parameter specifies the command to be bound to
Key_Name—for example, Text.Create. The Prompt parameter specifies whether a
Command window should be brought up containing the command.

The Command_Name parameter either can take simple names (if they are in the
current context) or can be resolved via your searchlist when it is defined. The key
is bound to the object itself, rather than the name. Thus, if there is an object in
the current context with the same simple name as Command_Name, the system
will retrieve the correct one.

To bind a procedure that has parameters and is not in your current searchlist, you
must enclose the name in quotes. For example, to call a procedure called Phone in
'Users.John, with a parameter requesting the name of a person in the phone list,
you would enter:

Key.Define (Key_Name=>"F1", Command_Name=>"""!Users.John"".Phone(""B111"")");

EI-28 7/1/87 RAT'ONAL

package !Commands.Editor.Key

procedure Name (Key_Code : String := "");

Displays help for the next key pressed, including a valid key name and any proce-
dures bound to that key.

procedure Prompt (Key_Code : String := ""};

Displays in a Command window the full procedure, with prompts, that is bound to
the next key pressed.

This allows you to change the default values for the parameters.

procedure Save;

Not implemented in the current release of the Environment.

'?ATIONAL 7/1/87 EI-29

RATIONAL

package !Commands.Editor.Line

package Line

package Line 1s

procedure Beginning_Of (Offset : Natural := 0);

procedure Capitalize (Repeat : Integer := 1);

procedure Center (Right_Margin : Natural := 0);

procedure Copy (Repeat : Integer := 1);

procedure Delete {Repeat Integer := 1};

procedure Delete_Backward (Repeat Integer := 1);

procedure Delete_Forward (Repeat : Integer := 1};

procedure End_Of (Offset : Natural := 0);

procedure Insert (Repeat integer := 1};

procedure Indent (Repeat Integer := 1);

procedure Join (Repeat Integer := 1);

procedure Lower_Case (Repeat Integer := 1};

procedure Open (Repeat Integer := 1);

procedure Transpose {Offset Integer := 1);

procedure Upper_Case {Repeat Integer := 1};

procedure Next (Repeat Integer := 1) renames Cursor.Doun;

procedure Previous (Repeat Integer := 1) renames Cursor.Up;
end Line;
Description

Package Line contains operations for manipulating lines in an image. Except for
the Delete, Center, and Copy procedures, editing operations affect the line starting
at the cursor. The Beginning_Of, End_Of, Delete, Center, and Copy procedures
affect the entire line regardless of where the cursor is on the line.

The Transpose procedure affects the current and previous lines without moving the
cursor. The Join procedure affects the current line and the next line.

The Indent procedure starts a new line, indented to the previous level of indentation.
The Open procedure starts a new line below the cursor but does not affect the
cursor’s position. The Insert procedure inserts a new line, with the cursor remaining
at the first column of the line.

The Beginning_Of and End—_Of procedures move the cursor as indicated but use the
Offset value to adjust the new cursor position by Offset columns from the beginning
or end of a line.

RATIONAL 7/1/er

El-31

package !Commands.Editor.Line

procedure Beginning_Of (Offset : Natural := @);
Moves the cursor to the first nonblank character in the line.

This procedure uses the Offset value to adjust the new cursor position by Offset
columns from the beginning of the line. When repeated in succession, it toggles the
cursor between column 1 and the first nonblank character.

procedure Capitalize (Repeat : Integer := 1};

Capitalizes each word following the cursor in the next Repeat lines and leaves the
cursor at the beginning of the following line.

procedure Center (Right_Margin : Natural := 0);

Centers from the first nonblank character on the line to the last nonblank character
on the line.

This procedure centers the nonblank characters of the entire line between the first
column and the specified right margin. I the right margin is specified as 0 (the
default), the defined fill column is used (see package Set).

procedure Copy (Repeat : integer := 1};

Copies the current line Repeat times and places the new copy immediately below
the current line, pushing all remaining lines down in the image.

procedure Delete (Repeat : Integer := 1};

Deletes the next Repeat lines beginning with the current line. Negative values delete
previous lines beginning with the current line.

EI-32 7/1/87 RATIONAL

package !Commands.Editor.Line

procedure Delete_Backward (Repeat : Integer := 1);

Deletes Repeat lines from the cursor back to the left margin and Repeat - 1 full
line above the current line.

When Repeat = 1, this procedure deletes characters back to column 1 but not the
line itself.

procedure Delete_Forward (Repeat : Integer := 1});

Deletes from the cursor to the end of the line and Repeat - 1 lines following.

procedure End_Of (Offset : Natural := @);

Moves the cursor after the last nonblank character in the line, if Offset = 0.

This procedure uses the Offset value to adjust the new cursor position by Offset
columns from the end of the line toward the beginning of the line.

procedure Indent (Repeat : Integer := 1};

Opens Repeat new lines before the current line and indents to the previous inden-
tation.

If the cursor is within the current line, the procedure splits the line at the cursor
position.

procedure Insert (Repeat : Integer := 1);
Opens Repeat new lines before the current line.

If the cursor is within the current line, the procedure splits the line at the cursor
position. If Repeat = 0, no line is opened. Negative values cause the absolute value
of Repeat lines to be before the current line, without splitting the current line at
the cursor position.

RATIONAL 7/1/87 EI-33

package !Commands.Editor.Line

procedure Join (Repeat : Integer := 1);

Joins the next Repeat lines to the current line, leaving the cursor on the first
character that came from the last line.

procedure Lower_Case (Repeat : Integer := 1);

Converts the next Repeat lines from uppercase to lowercase starting at the cursor
position in the current line and leaves the cursor at the beginning of the following
line.

procedure Next (Repeat : Integer := 1) renames Cursor .Doun;

Moves the cursor down Repeat lines.

procedure Open (Repeat : Integer := 1};

Opens Repeat new lines but does not change the cursor position.

If the cursor is within the line, the line is split. If Repeat = 0, no line is added
and the line is not split. If Repeat is a negative value, the line is not split, but the
absolute value of Repeat lines are inserted before the current line.

procedure Previous (Repeat : Integer := !} renames Cursor.Up;

Moves the cursor up Repeat lines.

procedure Transpose (Offset : Integer := 1);
Exchanges the current and previous lines.

The cursor position that results depends on the value of the Cursor_-Transpose-
—Moves session switch. If the value is true, the cursor is moved down one line. If
it is false, the cursor position is not changed. See SIM, Session Switches, for more
information on session switches. The Offset parameter is currently not implemented.

EI-34 7/1/87 RATIONAL

package !Commands.Editor.Line

procedure Upper_Case (Repeat : Integer := 1);

Converts the next Repeat lines starting at the cursor position in the current line
from lowercase to uppercase and leaves the cursor at the beginning of the following
line.

QAT'ONAL 1/1/87 EI-35

RATIONAL

package !Commands.Editor.Macro

package Macro

package Macro 1s
procedure Start;
procedure Finish;

procedure Execute (Repeat : Integer := 1;
Prior : Natural := 0);

procedure Bind (Key : String = "),

procedure Save (Expanded : Boolean := False};

procedure Restore;
end Macro;

Description

A macro is a sequence of editor procedures that can be invoked with a single com-
mand. Macros can be bound to a key or referenced as the current macro.

To define a keyboard macro:

1. Execute the Start procedure from a key (by pressing [Mars) - [Begin-of on the
Rational Terminal).

2. Enter a sequence of commands or characters from the keyboard. The editor will
remember each keystroke in sequence.

3. Execute the Finish procedure from a key (by pressing - on the
Rational Terminal).

Execute the macro Repeat times with the Execute procedure.

The editor allows only one unbound keyboard macro definition at a time. This
macro is sometimes referred to as the current macro. A new definition replaces an
existing definition. However, the current macro can be invoked while a new macro
is being defined.

A macro can be bound to a key and stored for the duration of the session with the
Bind procedure. Macros can be saved between sessions with the Save procedure.
They are written into a file in the user’s home world. Typically, the filename
identifies the terminal type—for example, Rational_Macros. This file is processed
at login.

A macro file can be edited once it has been saved.

Each macro that has been bound has a number. This number is displayed when
the Bind procedure is executed. This number is also displayed when the Execute
procedure is used to execute macros. The current macro is number 0.

If a macro is executed from an Ada program by calling the Execute procedure, the
macro will not be executed until the job completes.

RAT'ONAL 7/1/87 EI-37

package !Commands.Editor.Macro

procedure Bind (Key : String := "");
Binds the current keyboard macro to Key and assigns it a number.

This procedure prompts for a key for binding the macro and displays the number
assigned to the macro. The key name is the name of the key for the terminal you
are using. You can determine this name by pressing [#ets on kevy]. The key name will
appear in the Message window.

procedure Execute (Repeat : Integer :
Prior : Natural :

Iou
S
Na? - o

Executes a keyboard macro Repeat times.

If Prior = 0, the current macro is executed. If Prior does not equal 0, the macro
with the number indicated by Prior is executed. See the Bind procedure for more
information on macro numbers.

If a macro is executed from an Ada program by calling the Execute procedure, the
macro will not be executed until the job completes.

procedure Finish;
Ends a macro definition.

Note that this command must be executed from a bound key and not from a Com-
mand window.

procedure Restore;
Rereads the macro file.

Macro files are read by the system only when the user logs in. Thus, if the user
edits the macro file, the new contents of the file will not be known to the system
unless it rereads the macro file. The user can execute this procedure to force the
system to read the macro file without logging out and logging back in again.

EI-38 7/1/87 QATIONAL

package !Commands.Editor.Macro

procedure Save (Expanded : Boolean := False);
Saves the current macro file.

The Expanded parameter saves the macro file in user-readable format, which means
that you can edit the macros saved in the file. When you save a macro file, it
overwrites the current macro file.

procedure Start;
Begins a macro definition.

Note that this command must be executed from a bound key and not from a Com-
mand window.

R’AT'ONAL 7/1/87 EI-39

RATIONAL

package !Commands.Editor. Mark

package Mark

package Mark 1is
procedure Copy_Top;
procedure Delete_Top;

procedure Next (Repeat : Integer := 1};
procedure Previous (Repeat : Integer := 1};
procedure Push (Repeat : Integer := 1};
procedure Rotate {Repeat : Integer := 1};

procedure Swap;
procedure Top;
end Mark;

Description

A mark is a remembered image position. The Rational Editor remembers marks
as absolute image positions on the quarter plane. Mark positions do not change to
adjust for inserted or deleted lines and characters.

Use the Push procedure to set a mark. The Top procedure then returns the cursor
to the most recently set mark, returning the image to the screen, if necessary, for
the marked image to be visible. The Next and Previous procedures move from
mark to mark as they are ordered on the stack. At the bottom of the stack, the
Next procedure wraps to the top. At the top, the Previous procedure wraps to
the bottom. The Copy-Top procedure makes another copy of the top mark on the
stack on the top of the stack. The Delete_Top procedure removes the top mark
from the stack. The Swap procedure swaps the top two marks on the stack. The
Rotate procedure moves the bottom mark on the stack to the top of the stack.

The mark stack holds up to 100 marks. Since there is only one mark stack for all
images, marks can be used to move from image to image as well as from point to
point within an image.

procedure Copy_Top;
Makes another copy of the top mark of the mark stack on the top of the mark stack.

The result is that there are two copies of the top item on the top of the mark stack.

RATIONAL 7/y/er EI-41

package !Commands.Editor.Mark

procedure Delete_Top;

Deletes the top item on the mark stack.

procedure Next (Repeat : Integer := 1);

Moves to the position specified by Repeat next mark.

At the bottom of the stack, this procedure wraps to the top. If Repeat = 0, it does
nothing. If Repeat is a negative value, it moves to the Repeat previous mark.

procedure Previous (Repeat : Integer := 1);
Moves to the Repeat previous mark.

At the top of the stack, this procedure wraps to the bottom. If Repeat = 0, it does
nothing. If Repeat is a negative value, it moves to the Repeat next mark.

procedure Push (Repeat : Integer := 1};

Sets Repeat marks at the cursor and pushes them onto the stack.

If Repeat = 0 or a negative value, the procedure does nothing.

procedure Rotate {Repeat : Integer := 1};

Rotates Repeat number of marks from the bottom of the stack to the top of the
stack.

If Repeat = 0, the procedure does nothing. If Repeat is a negative value, it rotates
Repeat number of items from the top of stack to the bottom of the stack.

El-42 7/1/87 BA\TIONAL

package !Commands.Editor.Mark

procedure Swap;
Swaps the top two marks on the mark stack.

The mark next to the top of the mark stack becomes the top mark of the mark
stack. The top mark of the mark stack becomes the mark next to the top of the
mark stack.

procedure Top;

Moves to the mark at the top of the stack.

RAT'ONAL 7/1/87 EI-43

RATIONAL

package !Commands.Editor.Region

package Region

package Region 1is
procedure Beginning_Of;
procedure Capitalize;
procedure Comment;
procedure Copy;
procedure Delete;
procedure End_Of;
procedure Fill (Column : Natural
Leading : String

Wwn
—

procedure Finish;
procedure Justify (Column : Natural
Leading : String

thn
f—

procedure Lower_Case;
procedure Move;
procedure Off;
procedure On;
procedure Start;
procedure Uncomment;
procedure Upper_Case;
end Region;

Description

Package Region contains procedures for making and manipulating selections. To
make a selection with the Region package, indicate the beginning with the Start
procedure, and then move the cursor to the end and indicate it with the Finish
procedure. The commands in package Common.Object (EST) can also be used to
make selections. The Rational Editor highlights the selection in a different font. It
highlights only one selection at a time. You can use the Off and On procedures to
unselect and reselect a selection.

The locations of selections of text can be stored in the hold stack. For further
information, see package Hold_Stack.

procedure Beginning_Of;

Moves the cursor to the beginning of the current selection, if the cursor and the
selection are in the same window.

If there is no selection in the current window, the procedure does nothing.

RAT'ONAL 7/1/87 EI-45

package !Commands.Editor.Region

procedure Capitalize;
Capitalizes the first letter in all the words in the selection.

If the cursor and the selection are not in the same window, the procedure does
nothing.

procedure Comment;

Puts comment characters (--) before the leftmost character of each line in the
current selection.

If a line is already commented in that selection, additional comment characters
(--) are inserted in front of it.

procedure Copy;

Copies the current selection to the cursor location.

The selection and the cursor can be in different windows.

procedure Delete;

Deletes the current selection and pushes it onto the hold stack.

The cursor and the selection must be in the same window.

procedure End_Of;

Moves the cursor to the end of the current selection.

The cursor and the selection must be in the same window.

EI-46 7/1/87 B«T'ONAL

package !Commands.Editor.Region

2;
"");

Adjusts the placement of all words in the selection to fill completely the column
between the left edge of the image and the defined right margin (the Column pa-
rameter).

procedure Fill (Column : Natural :
Leading : String

If Column = O (the default), the fill column defined by the Image_Fill_Column
session switch is used (described in SIM, Session Switches). The Fill command puts
as many words as possible on a line, but it leaves a ragged right margin. It also
leaves only one space between words.

The Leading parameter allows a character string to be inserted at the beginning of
each line in the selection. This can be used, for example, to insert the comment
delimiter, (--), into the selection. If the null string (the default), is used for the
parameter, then the leading string defined by the Image_Fill_Prefix session switch
is used (described in SIM, Session Switches).

procedure Finish;

Marks the endpoint of a text selection.

I?AT'ONAL 7/1/87 El-47

package !Commands.Editor.Region

procedure Justify (Column : Natural :
Leading : String

[t

2;
'l)l);

Adjusts the placement of all words in the selection to justify the selection flush
left between the left edge of the image and the defined right margin (the Column
parameter).

If Column = O (the default), the fill column defined by the Image-Fill_Column
session switch is used (described in SIM, Session Switches). The Justify command
puts as many words as possible on a line and inserts spaces so that the right margin

B

18 even.

The Leading parameter allows a character string to be inserted at the beginning of
each line in the selection. This can be used, for example, to insert the comment
delimiter (--) into the selection. If the null string g‘he default) is used for the
parameter, the leading string defined by the Image_Fill_Prefix session switch is
used (described in SIM, Session Switches{.

By default, the Justify command does not compress extra spaces after the period sl),
exclamation mark (!}, and question mark (?) when filling an image. However, this
default can be changed by modifying the Image_Fill_Extra_Space session switch.
(See SIM, Session Switches, for more information on session switches.)

Also by default, the Justify command indents subsequent lines to the indent level
of the first line of the region. However, this default can be changed by modifyin
the Image_Fill_.Indent session switch. A value of —1 for this switch (the default
specifies that the indentation of the first line of the region should be used for sub-

sequent lines. Values greater than or equal to 0 indent the region the number of
spaces that is the value of the switch.

procedure Lower_Case;

Converts all characters in the selection to lowercase.

The cursor and the selection must be in the same window.

procedure Move;

Deletes the current selection and copies it at the cursor.

The cursor and the selection must be in the same window.

EI-48 7/1/87 BA\TIONAL

package !Commands.Editor.Region

procedure OFff;
Unselects the current selection.

The cursor and the selection must be in the same window.

procedure On;

Reselects a selection that has been unselected with the Off procedure.

The cursor and the selection must be in the same window.

procedure Start;
Marks the start of a selection.

procedure Uncomment;

Removes comment characters (--) from lines in which they are the leftmost three
nonblank characters.

This procedure does not remove comments from the end of lines containing Ada
code. The cursor and the selection must be in the same window.

procedure Upper_Case;
Converts the selection to uppercase.

The cursor and the selection must be in the same window.

RATIONAL 7/1/87 EI-49

RATIONAL

package Screen

package !Commands.Editor.Screen

package Screen 1is

procedure Down (Repeat Integer := 1);
procedure Left (Repeat Integer := 1};
procedure Right {Repeat Integer := 1);
procedure Up {Repeat : iInteger := 1);
procedure Dump (To_File : String = "DO>NAME<K");
procedure Redrauw;

procedure Clear;

procedure Copy_Top;

procedure Delete_Top;

procedure Next (Repeat Integer := 1);
procedure Previous (Repeat Integer := 1};
procedure Push {Repeat Integer := 1};
procedure Rotate {Repeat Integer := 1);
procedure Swap;

procedure Top;

end Screen;

Description

The movement operations of package Screen move the cursor Repeat times in the
indicated direction, regardless of window boundaries.

The Clear procedure erases the contents of the screen. The Redraw procedure erases
the contents and then repaints the screen.

The Dump procedure captures the contents of the screen in a file specified by the
To_File parameter, one screen line per line. Each line contains graphics control
sequences embedded in text. The graphics control sequences signify:

o A graphics font for window borders.

o Selected and unselected fonts for plain text, underlined text, and reverse video
text.

Package Screen provides a mechanism for saving screens on a stack for retrieval at
a later time. The 100 most recent screen saves are kept on the stack.

The screen stack saves the windows currently on the screen, including their size,
the cursor location, and the current viewport into the window.

The Push procedure puts the current screen on the stack. The Next and Previous
procedures provide a mechanism for moving through the items on the screen stack.
They replace the current screen with the Next or Previous screen on the stack. At
the bottom of the stack, Next wraps to the top. At the top of the stack, Previous
moves to the bottom. The Top procedure retrieves the screen at the top of the
stack. The Delete_Top procedure removes the screen at the top of the stack from
the stack. The Copy_Top procedure adds another copy of the screen on top of the

RATIONAL 71/sr

El-51

package !Commands.Editor.Screen

stack to the top of the stack. The Rotate procedure moves the screen at the bottom
of the stack to the top of the stack. The Swap procedure swaps the top two items
on the top of the siack.

If you change the contents of any of the windows, the new contents will be shown
when the screen is retrieved from the stack. More specifically, this means that if you
abandon a window, it will not be displayed when the screen is retrieved. A blank
window will appear in its space. If you have altered the contents of the window—
for example, adding text to the window—the new contents of the window will be
displayed. The Message window will be displayed in its current state, rather than
the state it was in when saved. Also, Command windows will be in the state they
were in when last used, rather than the state they were in when the screen was
saved.

This feature is useful when you are performing one task with a specific set of screens
and then need to perform another task using a different set of screens. You can
save and later retrieve either one or both of the sets of screens.

procedure Clear;

Clears the screen completely and resets the terminal mode to ANSI.

Use this procedure when you need to use the terminal to connect to another system
or when modifying terminal characteristics.

procedure Copy_Top;

Makes another copy of the top item of the screen stack on the top of the screen
stack.

The result is that there are two copies of the original top item of the screen stack
on the top of the screen stack.

procedure Delete_Top;
Removes the top item from the screen stack.

The item next to the top of the screen stack becomes the top item of the screen
stack.

EI-52 7/1/87 RJATIONAL

package !Commands.Editor.Screen

procedure Doun (Repeat : Integer := 1};

Moves the cursor down Repeat lines, regardless of window boundaries.

When the cursor reaches the last line of the screen, the procedure does nothing.

procedure Dump (To_File : String := "D>D>NAME<KK"};

Copies the contents of the screen to the file specified in the To_File parameter, one
screen line per line, as a series of graphics control sequences embedded in text.

The default To_File parameter placeholder must be replaced or an error will result.
If the To_File parameter is the null string, the procedure uses the file specified in
the Screen_Dump_File switch. If a simple name is not supplied to To_File, the file
is created in the user’s home world.

procedure Left (Repeat : Integer := 1);

Moves the cursor Repeat columns to the left, regardless of window boundaries.

When the cursor reaches the left edge of the screen, it stops, regardless of the Repeat
value.

procedure Next (Repeat : Integer := 1);

Retrieves and replaces the current screen with the next Repeat screen from the
screen stack.

At the bottom of the stack, this procedure wraps to the top.

procedure Previous {Repeat : Integer := 1};

Retrieves and replaces the current screen with the previous Repeat screen from the
screen stack. At the top of the stack, this procedure wraps to the bottom.

procedure Push (Repeat : Integer := 1);

Pushes the current screen onto the screen stack Repeat times.

RAT'ONAL 7/1/87 EI-53

package !Commands.Editor.Screen

procedure Redraw;
Clears the screen and then redraws it.

This procedure typically is used following the Clear procedure. The Redraw proce-
dure resets the terminal characteristics to those specified at login.

procedure Right (Repeat : Integer := 1};

Moves the cursor Repeat columns to the right, regardless of window boundaries.

procedure Rotate (Repeat : Integer := 1};

Takes Repeat items from the bottom of the screen stack and places them in order
on the top.

procedure Swap;

Swaps the top two items on the screen stack.

procedure Top;

Retrieves the top item on the screen stack and replaces the current screen with the
screen saved on the top of the stack.

procedure Up (Repeat : Integer := 1};

Moves the cursor up Repeat lines, regardless of window boundaries.

When the cursor reaches the first line of the screen, the procedure does nothing.

EI-54 sy RATIONAL

package !Commands.Editor.Search

package Search

package Search is

procedure Previous (Target : String := "%,
Wildcard : Boolean := False);
procedure Next {Target : String = "7,
Wildcard : Boolean := False);
procedure Replace_Previous (Target : String = "7
Replacement : String := "";
Repeat : Integer := 1;
W1ldcard : Boolean := False);
procedure Replace_Next (Target : String = "";
Replacement : String = """
Repeat : Integer := 1;
t1ldcard : Boolean := False);

end Search;

Description

Package Search contains both search operations and replace operations. The Next
and Previous procedures move through the image in the indicated directions, looking
for a string matching the Target string. The Replace_Next and Replace_Previous
procedures move similarly through the image with the intent of replacing the Target
string with the Replacement string.

All four of these procedures are bound to keys (see the Rational Environment
Keymap in Volume 1 of the Rational Environment Reference Manual).

The search operations find the next or previous occurrence of the Target string.
Using the keys to which these operations are bound, a search for the nth occurrence
can be accomplished by pressing the key n times. The search direction can be
reversed without respecifying the Target string by pressing the key that is bound
to the search operation of the opposite direction.

The replace operations, when the Repeat parameter is greater than 1, search for
and replace Repeat occurrences of the Target string with the Replacement string.
If the cursor is currently on (or, if using Replace_Next, one position beyond) an
occurrence of the Target string, that occurrence is the first one replaced.

The Target and Replacement strings are entered in the Message window. When
one of the keys is pressed, prompts appear in the Message window for the necessary
strings. Cursor-movement keys, character- and line-delete keys, and beginning and
end keys all work while these search and replace strings are composed. You can also
use and to move between the Target and Replacement strings.
The Message window banner also notes that search strings are being composed.
The composing of search and replace strings can be interrupted with the [conroifq]
key combination. Composing of search and replace strings is completed by pressing
the appropriate search or replace key again.

QATIONAL 7/1/87 EI-55

package !Commands.Editor.Search

If the search operations are called from Ada programs instead of being initiated
from keys, the user will not be prompted for the arguments in the Message window;
instead, the arguments supplied in the calls will be used.

The replace operations, when the Repeat parameter equals 1 (the default), search
for the first occurrence of the Target string and then stop, awaiting a response.
There are five choices at that point:

® The occurrence can be replaced and the next occurrence searched for by pressing
one of the replace keys again. The direction of searching can be reversed without
respecifying the Target or Replacement strings by pressing the key that is bound
to the replace operation of the opposite direction.

o The occurrence can be skipped by pressing one of the search keys. The next
occurrence is searched for.

e The occurrence can be replaced and the search discontinued by pressing
followed by the appropriate replace key.

e The occurrence and all remaining occurrences can be replaced by pressing [Numeric -,
followed by [Numeric 1], followed by the appropriate replace key.

¢ The replace operation can be abandoned completely, bypassing any remaining
occurrences of the Target string, by pressing any other key. The command bound
to the other key is executed.

The Next and the Replace_Next procedures always leave the cursor one position
beyond the Target or Replacement string, respectively. The Previous and Re-
place_Previous procedures always leave the cursor on the first character of the
Target or Replacement string, respectively.

The commands in package Search can use regular expressions. Regular expressions
allow pattern matching. A pattern can be specified with special metacharacters in
the Target string that could match many different strings in the image. Matches
can occur within a line; matches never span multiple lines.

The Wildcard parameter specifies whether any metacharacters in either the Target
or the Reilacement strmg should be treated as normal characters (false) or as
wildcard characters (true).

The metacharacters include:

7 Matches any single character.

% Matches any character that is legal in an Ada identifier.
$ Matches any Ada delimiter.

{ Matches beginning of line.

} Matches end of line.

~ Excludes the character or group of characters that follow from the search. For
example, the expression ~-A means any character except A.

* Matches zero or more occurrences of the previous character or set of characters.

EI-56 7/1/87 RATIONAL

package !Commands.Editor.Search

\ Treats the following special character as a regular character.

[| Delimits a class; searches for any of the characters in this group. The class
represents one character. For example, [ABC] matches 2 single character that
is A, B, or C. [-ABC|] matches a single character that is not A, B, or C. Class
searches are case-sensitive.

For any of these procedures, if the Rational Editor cannot find Target, it indicates
so in the Message window and leaves the image and cursor position unchanged.

procedure Next (Target : String := ;
= False);

Wildcard : Boolean :

Searches forward for the next occurrence of the Target string.

When the Wildcard parameter is false (the default), metacharacters are treated as
characters only.

procedure Previous (Target : String

Wildcard : Boolean Faise);

Searches backward for the most recent occurrence of the Target string.

When the Wildcard parameter is false (the default), metacharacters are treated as
characters only.

procedure Replace_Next (Target : String = "";
Replacement : String := "";
Repeat : Integer := 1;
Wildcard : Boolean := False);

Finds the first occurrence of the Target string and awaits a confirm, skip, or abandon
request, if Repeat = 1.

If the cursor is already on an occurrence, the occurrence is replaced and the next
occurrence searched for. If Repeat is greater than 1, the procedure replaces that
many occurrences of the Target string with the Replacement string. When the
Wildcard parameter is false (the default), metacharacters are treated as simple
characters.

A value of —1 for the Repeat parameter replaces everything from the current cursor
location to the end of the image.

RATIONAL 7/1/87 EI-57

package !Commands.Editor.Search

procedure Replace_Previous (Target : String = "M,
Replacement : String := "";
Repeat : Integer := 1;
Wildcard : Boolean := False);

Finds the previous occurrence of the Target string and awaits a confirm, skip, or
abandon request, if Repeat = 1.

If the cursor is already on an occurrence, the occurrence is replaced and the next
occurrence searched for. If Repeat is greater than 1, the procedure replaces that
many previous occurrences of the Target string with the Replacement string. When
tlllle Wildcard parameter is false (the default), metacharacters are treated as simple
characters.

A value of —1 for the Repeat parameter replaces everything from the current cursor
location to the beginning of the image.

EI-58 7/1/87 PATIONAL

package !Commands.Editor.Set

package Set

package Set 1is

procedure Insert_Mode (On : Boolean = True};
procedure Fi1ll_Mode (On : Boolean = True};
procedure Fi1ll_Column {Column : Positive = 64);
procedure Designation_Off;
procedure Input_From (File_Name : String = "<SELECTION>"});
procedure Input_Logging_To {(File_Name : String = ">>Name<<"};
procedure Input_Logging_Off;
procedure Tab_Off {Column : Positive);
procedure Tab_On {Column : Positive};
procedure Tab_Width (Size : Positive = 4},
procedure Argument_Prefix;
procedure Argument_Digit {Argument Integer = 1},
procedure Argument_Minus;

end Set;

Description

Package Set contains procedures for setting editor parameters. Many of these pa-
rameters can also be changed through session switches. See SJM, Session Switches,
for more information on session switches.

The Designation_Off procedure converts the indicated (prompt or selection) to plain
text.

The Insert_Mode procedure sets insert and overwrite modes. The Fill_Mode pro-
cedure, when its parameter specifies true, instructs the editor to wrap text lines
whose length exceeds that specified in the Column parameter of the Fill_Column
procedure.

The Argument procedures cannot be called from a Command window but must be
invoked through key bindings.

The Input procedures all pertain to log files. The Input_Logging_To procedure
specifies a File_Name to which the editor should begin recording all user keystrokes.
The Input_Logging_Off procedure instructs the editor to stop logging keystrokes.
The Input_From procedure instructs the editor to read and execute the keystrokes
saved by the Input.Logging-To procedure in File_Name.

If the Input_From procedure is called from an Ada program, the keystrokes in the
file execute sequentially when the job performing the call completes.

RATIONAL 7/1/er

EI-59

package !Commands.Editor.Set

procedure Argument_Digit (Argument : Integer := 1);
Specifies a count for the following operation.

The procedure is bound to a key; when entered from a Command window, the
procedure has no effect. The count can be used as a repeat count or other parameter
to the following operation. Entering a sequence of argument digits produces a
number. For example, entering the digits 3 and 5 produces an argument digit of 35.

procedure Argument_Minus;
Specifies a negative value for the following argument.

The procedure is bound to a key; when entered from a Command window, the
procedure has no effect.

procedure Argument_Prefix;

Indicates to the editor that a command argument is being entered.

The procedure is bound to a key; when entered from a Command window, the pro-
cedure has no effect. This procedure takes numbers entered on the main keyboard
and converts them to numeric keypad argument digits. For example, this would be
used if a keyboard did not contain a numeric keypad or if the numeric keypad keys
were bound to something else.

procedure Designation_Off;

Converts the prompt or selection in which the cursor is located to normal text.

This procedure makes it possible to edit and reuse prompts.

EI-60 e RATIONAL

package !Commands.Editor.Set

procedure Fill_Column (Column : Positive := 64);

Sets the desired column width for fill mode or for the Region.Fill and Region.Justify
procedures.

The column width can also be specified through a session switch (see SIM, Session
Switches).

procedure Fill _Mode (On : Boolean := True);

Wraps long text lines at the column position specified in the Fill_Column procedure,
when true.

The mode is specified only for the current image. The fill mode can also be changed
by a session switch (see SIM, Session Switches%.

procedure Input_From (File_Name : String := "<SELECTION>");

Specifies a log file in the File_Name parameter (created with the Input_Logging_To
procedure) from which the editor should read and execute keystrokes.

The default is the current selection.

If the Input_From procedure is called from an Ada program, the keystrokes in the
file execute sequentially when the job performing the call completes.

procedure Input_Logging_Off;

Stops logging keystrokes.
procedure Input_Logging_To (File_Name : String := ">>Name<<);

Logs all keystrokes to File_Name.

The parameter placeholder ">>Name<<" must be replaced or an error will result.

RATIONAL 7/1/87 EI-61

package !Commands.Editor.Set

procedure Insert_Mode (On : Boolean := True);
Sets insert or overwrite modes for the current image.

The insert and overwrite modes can also be changed by session switches (see SIM,
Session Switches).

procedure Tab_Off (Column : Positive);

Removes a tab stop from the specified Column for all images.

The tab stops can also be changed permanently using session switches (see SIM,
Session Switches).

procedure Tab_On {Column : Positive);
Sets a tab stop in the specified Column for all images.
The tab stops can also be changed with session switches (see SIM, Session Switches).

You can see the current tab settings by executing the !Commands.What.Tabs pro-
cedure. Tab stops can be added to the settings set by the Tab_Width procedure
with the Tab_On procedure.

procedure Tab_Width (Size : Positive := 4};
Sets the number of spaces between tab stops (in columns) for all images.
The tab width can also be changed (see SIM, Session Switches).

You can see the current tab settings by executing the !Commands. What.Tabs pro-
cedure. Tab stops can be added to the settings set by the Tab_Width procedure
with the Tab_On procedure.

EI-62 7/1/87 RAT'ONAL

package !Commands.Editor. Window

package Window

package Window 1s

procedure Beginning_Of (Offset : Natural = 9);
procedure Child {Repeat Integer = 1};
procedure Copy;

procedure Delete;

procedure Demote;

procedure Directory;

procedure End_Of (Offset : Natural = @),
procedure Expand (Lines Integer = 4),;
procedure Focus;

procedure Frames (Maximum : Positive);
procedure Join (Repeat : Integer = 1});
procedure Next (Repeat : Integer = 1);
procedure Parent (Repeat : Integer = 1};
procedure Previous {Repeat : integer = 1);
procedure Promote;

procedure Transpose (Offset Integer =1);

end Window;

Description

The procedures in package Window provide facilities for managing windows and
include a number of commands that control window size and disposition.

A window can be in one of three states (ordered from highest to lowest):

¢ Frozen (also called locked) (banner symbol: e)
e Normal
¢ Replace (banner symbol:)

The Promote and Demote procedures change the state of a window to the next
higher or lower level.

In the frozen state, the window will not be replaced and will be split only if there
is no other space available for bringing up a new window. In the normal state, the
window can become eligible for replacement if it becomes the least recently visited
window (in this case, it will automatically be changed to the replace state). If it is
in the replace state, the window will be replaced the next time the editor needs to
bring a new window on the screen (only one window can be in the replace state).

Four procedures facilitate window management. The Frames procedure sets the
number of work windows the editor creates on the screen. The editor treats each
frame as a separate area for placing windows. The default configuration is terminal
dependent (for the Rational Terminal, it is three frames). The Directory procedure
displays a list of active images in the Window Directory. The Window Directory
allows various operations on these active images. The Promote procedure elevates

RATIONAL 7/y/er

EI-63

package !Commands.Editor. Window

a minor window to its own frame (making it a major window) or changes a major
window to the next higher state. The Demote procedure changes a window to the
next lower state.

Several operations modify the configuration of windows on the screen. The Join,
Transpose, and Delete procedures behave similarly to their counterparts in packages
Word and Line.

The Child, Parent, Next, and Previous procedures move between windows. The
Beginning_Of and End_Of procedures scroll a window to reposition the cursor to
the first or last line of the window.

The editor manages the size, shape, and position of windows. Nevertheless, the
editor provides the user a procedure for affecting these window attributes. The
Expand procedure increases the size, in lines, of the current or most recently used
window. The most recently used window is the one in which a command (other
than a cursor-movement command) was last entered.

The Focus procedure restores the screen to the state specified by the current de-
faults.

Many of the aspects of how windows are displayed on the screen can be tailored
with session switches. See SJM, Session Switches, for more information on session
switches.

procedure Beginning_Of ({Offset : Natural := 0);
Scrolls the image to move the cursor to the top of the window.

This procedure uses the Offset value to adjust the new cursor position by Offset
lines from the top of the window.

procedure Child (Repeat : Integer := 1);

Moves the cursor Repeat times to the next window in the current frame.

El-64 7/1/87 BA\TIONAL

package 'Commands. Editor. Window

procedure Copy;

Divides the window into two views on the same image.

The procedure does not duplicate the Command window. The two views are sepa-
rate frames.

procedure Delete;

Removes the window in a minor or Command window.

The space for that window is returned to the major window with which it is as-
sociated. In a major window, the procedure removes the major window and its
associated minor and Command windows from the screen. Windows removed from
the screen are not destroyed. Major windows and their contents can be retrieved
from the Window Directory or by retrieving their definition. Command windows
and their contents can be retrieved by creating the Command window again. Minor
windows and their contents can be retrieved by pressing from the enclosing
Ada unit or library or by using the Window Directory.

procedure Demote;

Changes the state of the current window to the next lower state.

A window can be in one of three states (ordered from highest to lowest):

¢ Frozen (banner symbol: e)
¢ Normal
¢ Replace (banner symbol: 7)

The Promote and Demote procedures change the state of a window to the next
higher or lower level.

In the frozen state, the window will not be replaced and will be split only if there
is no other space available for bringing up a new window. In the normal state, the
window can become eligible for replacement if it becomes the least recently visited
window (in this case, it will automatically be changed to the replace state). If it is
in the replace state, the window will be replaced the next time the editor needs to
bring a new window on the screen (only one window can be in the replace state).

RATIONAL 7/1/87 EI-65

package !Commands.Editor. Window

procedure Directory;
Displays a list of the currently active images in an image.

This image, called the Window Directory, allows various operations on these active
images. See EST, Window Directory, for more information.

procedure End_Of (Offset : Natural := 0);
Scrolls the image to move the cursor to the bottom of the window.

This procedure uses the Offset value to adjust the new cursor position by Offset
lines from the bottom of the window. If Offset is greater than the number of lines
in the window, it moves the cursor to the first line of the file and an error results.

procedure Expand (Lines : Integer := 4);

Enlarges the window by the specified number of Lines, taking lines from an adjacent
frame or neighboring window.

procedure Focus;

Restores the frame sizes, dividing the screen equally among the current number of
frames.

procedure Frames (Maximum : Positive);
Sets the maximum number of frames the editor will create on the screen.

A session switch controls the number of frames, but this procedure can be used to
override that value for the current session.

procedure Join (Repeat : Integer := 1);

Increases current window size by joining the current and next Repeat frames.

EI-66 7/1/87 QAT'ONAL

package {Commands.Editor. Window

procedure Next (Repeat : Integer := 1)};
Moves the cursor down Repeat frames.

From the bottom frame, the cursor wraps to the top of the screen.

procedure Parent (Repeat : Integer := 1);

Moves the cursor Repeat times to the previous window in the current frame.

procedure Previous {Repeat : Integer := 1};

Moves the cursor up Repeat frames.

At the top of the screen, the cursor wraps to the bottom of the screen.

procedure Promote;

Changes the current window to the next higher state or makes a minor window a
major window.

A window can be in one of three states (ordered from highest to lowest):

e Frozen (banner symbol: e)
e Normal
o Replace (banner symbol:)

The Promote and Demote procedures change the state of a window to the next
higher or lower level.

In the frozen state, the window will not be replaced and will be split only if there
is no other space available for bringing up a new window. In the normal state, the
window can become eligible for replacement if it becomes the least recently visited
window (in this case, it will automatically be changed to the replace state). If it is
in the replace state, the window will be replaced the next time the editor needs to
bring a new window on the screen (only one window can be in the replace state).

RATIONAL 7/1/87 EI-67

package !Commands.Editor. Window

procedure Transpose {Offset : Integer := 1);
Exchanges the current frame with another.

The default Offset value specifies the previous frame. An Offset value greater than
1 ignores intervening frames. A negative Offset value exchanges the current frame
with a next frame.

The cursor position that results depends on the value of the Cursor_Transpose-
—Moves session switch. If the value is true, the cursor is left in the window that was
the current window or, if no windows are below it, the first window on the screen
below the Message window. If the value is false, the cursor is left in the window
that replaces the window that was the current window. See SIM, Session Switches,
for more information on session switches.

EI-68 7/1/87 E)ATIONAL

package {Commands.Editor. Word

package Word

package Word 1is
procedure Beginning_Of;

procedure Breaks (Break_Set : String = "
Are_Delimiters : Boolean := True);

procedure Capitalize {Repeat . Integer := 1};
procedure End_Of; -
procedure Delete (Repeat : Integer := 1);
procedure Delete_Backward (Repeat : Integer := 1);
procedure Delete_Forward (Repeat : Integer := 1);
procedure Lower_Case {Repeat : Integer := 1};
procedure Next {Repeat : Integer := 1);
procedure Previous (Repeat : Integer := 1);
procedure Transpose {Offset : Integer := 1);
procedure Upper _Case {Repeat : Integer := 1);

end Word;

Description

The operations in package Word manipulate strings of characters separated by word
delimiters. The default includes blank and Ada delimiters. Word delimiters can be
changed with the Breaks procedure.

Except for the Delete procedure, which erases an entire word, the editing and
movement commands affect the next, previous, or current word from the cursor
forward to the next end of word or from the cursor back to the previous beginning
of word.

procedure Beginning_Of;

Moves the cursor to the first character of the current word.

RATIONAL 7/1/87 EI-69

package !Commands.Editor. Word

procedure Breaks (Break_Set : String
Are_Delimiters : Boolean :

Tr&e);

Redefines the set of break characters to be used in the current session.

The Break_Set string is an unordered set of characters. Each character, if the Are-
—Delimiters parameter has been set to true for it, delimits a word boundary. This
procedure can be used to tailor the editor to define words for particular uses.

At login, the break characters for the current session are set to the value of the
Word_Breaks session switch. By default, the break characters are:

« vl#%g’()*+'—./1;<=>?[]-I{I}~”

A value of false for the Are_Delimiters parameter removes the characters specified
by Break_Set from the set of break characters for the current session.

procedure Capitalize (Repeat : Integer := 1};
Capitalizes the first letter of the next Repeat words.

After the operation, the cursor appears on the character after the last target word.

procedure Delete (Repeat : Integer := 1};

Deletes the next Repeat words.

procedure Delete_Backward (Repeat : Integer := 1};
Deletes the previous Repeat words from the cursor backward.
procedure Delete_Forward (Repeat : Integer := 1);

Deletes the next Repeat words from the cursor forward.

EI-70 7/1/87 RAT'ONAL

package !Commands.Editor. Word

procedure End_Of;

Moves the cursor to the last character of the current word.

procedure lLower_Case (Repeat : Integer := 1};

Converts the next Repeat words to lowercase.

After the operation, the cursor appears immediately after the last target word.

procedure Next (Repeat : Integer := 1};
Moves the cursor forward Repeat words.

After the operation, the cursor appears immediately after the Target word.

procedure Previous (Repeat : Integer := 1};

Moves the cursor back Repeat words.

After the operation, the cursor appears on the first character of the target word.

procedure Transpose {Offset : Integer := 1);
Exchanges the current and previous words.

The cursor position that results depends on the value of the Cursor_Transpose-
~Moves session switch. If the value is true, the cursor is moved to the word delimiter
at the end of the exchanged word. If it is false, the position of the cursor is not
changed. See SIM, Session Switches, for more information on session switches.

The Offset parameter is currently not implemented and is reserved for future de-
velopment.

I?AT'ONAL 7/1/87 EI-71

package !Commands.Editor.Word

procedure Upper_Case (Repeat : Integer := 1};
Converts the next Repeat words to uppercase.

After the operation, the cursor appears immediately after the last target word.

EI-72 7/1/87 RA\TIONAL

package !Commands.Editor.

end Editor;

R)ATIONAL 7/1/87 EI-73

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
crogs-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

{Commands.Common.Definition procedure EI6
{Commands.What.Does procedure

Editor.Key package . . e e e e e e e o oo EI27

Editor.Key.Define procedure e e e e e e EI-28
{Commands. What.Key procedure

Editor.Key package . . e e e e e e e EI27

Editor.Key.Define procedure e e e e e o EI-28
{Commands. What.Tabs procedure

Editor.Set.Tab_On procedure EI-62

Editor.Set. Tab_Width procedure . EI-62
{Machine.Editor_Data directory

Editor.Key package EI-28
IMachine.Editor.Data.Rational_Commands procedure

Editor.Key package -« EI-28
IMachine.Editor_Data.Rational_User_.Commands procedure

Editor.Key package -« « < EI-27,EI-28
$ (dollar sign)

metacharacter EI56
% (percent)

metacharacter E-56
* (asterisk)

metacharacter EI56

? (question mark)
metacharacter EIb6

RATlONAL 7/1/87 EI-75

@ (at sign)
indicating frozen window state . .

[] (brackets)

metacharacters
\ (backslash)

metacharacter .
~ (caret)

metacharacter . .
{} (braces)

metacharacters
~ (tilde)

indicating replace window state

A

add comment

Editor.Region.Comment procedure .
Alert procedure

Editor.Alert .
Argument_Digit procedure

Editor.Set. Argument._Digit
Argument_Minus procedure

Editor.Set.Argument_Minus .
Argument_Prefix procedure

Editor.Set.Argument_Prefix .
asterisk (*)

metacharacter . .
at sign (@)

indicating frozen window state .

B

backslash (\)

metacharacter . .
backward

deletion

Editor.Char.Delete_-Backward procedure .

Editor.Line.Delete_Backward procedure

Editor.Word.Delete.Backward procedure .

movement
Editor.Cursor.Previous procedure .
Editor.Line.Previous procedure .
Editor. Window.Previous procedure
Editor.Word.Previous procedure

EI-76

EI-63, EI-65, EI-67

EI-57

EI-57

EI-56

EI-56

EI-63, EI-65, EI-67

EI-46

EI-10

EI-60

EI-60

EI-60

EI-56

EI-63, EI-65, EI-67

EI-57

EI-12
EI-33
EI-70

EI-19
El1-34
EI-67
EI-71

e RATIONAL

backward, continued

search
Editor.Search.Previous procedure
search and replace

Editor.Search.Replace_Previous procedure . .

tab

Editor.Char.Tab_Backward procedure

Backward procedure
Editor.Cursor.Backward

Beginning_Of procedure
Editor.Image.Beginning- Of

Editor.Line.Beginning_Of -

Editor.Region.Beginning Of
Editor.Window.Beginning-Of
Editor. Word.Beginning-Of .

bell
Editor.Alert procedure

Bind procedure
Editor.Macro.Bind .

binding keys
Editor.Key package

bottom
image
Editor.Image.End_Of procedure
of selection
Editor.Region.End.Of procedure
of window
Editor. Window.End_ Of procedure

braces ({})
metacharacters

brackets ([])
metacharacters

break characters e e .

Breaks procedure
Editor.Word.Breakso

capitalize, see also Upper_Case

Capitalize procedure
Editor.Char.Capitalize

Editor.Line.Capitalise

Editor.Region.Capitalize
Editor.Word.Capitalize Coe e

RATIONAL 7y/er

EI-37,

..............

. EI4
E1-57

. EI-4

EI-58

EI-14

EI-18

EI-25
EI-82
EI-45
EI-64
EI-69

EI-10

EI-38

EI-27

EI-26
EI-46

E1-66

EI-56

EI-57
EI-70

EI-70

EI-12
EI-32
EI-46
EI-70

EI-77

caret (~)
metacharacter

case
capitalize
Editor.Char.Capitalize procedure
Editor.Line.Capitalize procedure
Editor.Word.Capitalize procedure .
lowercase
Editor.Char.Lower_Case procedure
Editor.Line.Lower_Case procedure
Editor.Region.Lower.Case procedure
Editor. Word.Lower_Case procedure
uppercase
Editor.Char.Upper_Case procedure
Editor.Line.Upper_Case procedure
Editor.Region.Upper_Case procedure
Editor.Word.Upper_Case procedure .

Center procedure
Editor.Line.Center

Char package
Editor.Char .

characters
case conversion
Editor.Char.Capitalize procedure
Editor.Char.Lower_Case procedure
Editor.Char.Upper_Case procedure
deletion

Editor.Char.Delete_Backward procedure .

Editor.Char.Delete_Forward procedure
Editor.Char.Delete_Next procedure
Editor.Char.Delete_Previous procedure
Editor.Char.Delete_Spaces procedure
editing operations
Editor.Char package .
insert
Editor.Char.Insert_Character procedure
transpose
Editor.Char.Transpose procedure

Child procedure
Editor.Window.Child .

Clear procedure
Editor.Screen.Clear
Redraw procedure .

column
fill
Editor.Set.Fill_Column procedure .

EI-78

EI-56

EI-12
EI-32
EI-70

EI-14
EI-34
EI-48
EI-71
EI-15
EI-35

EI-49
EI-72

EI-31, EI-32

. EI-5, EI-11

EI-12
EI-14
EI-15
EI-12
El-12
EI-13
EI-13
EI-13
EI-11
EI-13

EI-15
EI-64

EI-51, EI-52
. . . EI-b4

EI-61

e RATIONAL

comment

Editor.Char.Tab_To_Comment procedure .

Editor.Region.Comment procedure .
Editor.Region.Uncomment procedure .

Comment procedure
Editor.Region.Comment

Comment_Column library switch

Editor.Char.Tab_To_Comment procedure .

control characters, insert
Editor.Char.Quote procedure

Copy procedure
Editor.Line.Copy
Editor.Region.Copy
Editor.Window.Copy .

Copy-Top procedure
Editor.Hold_Stack.Copy-Top
Editor.Mark.Copy-Top .
Editor.Screen.Copy-Top

current macro

cursor

movement .
Editor.Cursor.Backward procedure
Editor.Cursor.Down procedure
Editor.Cursor.Forward procedure
Editor.Cursor.Left procedure .
Editor.Cursor.Next procedure
Editor.Cursor.Previous procedure .
Editor.Cursor.Right procedure
Editor.Cursor.Up procedure

planar movement .o

relative movement

stream operations

Cursor package
Editor.Cursor

Cursor.Transpose_Moves session switch
Editor.Char.Transpose procedure
Editor.Line.Transpose procedure .
Editor.Window.Transpose procedure
Editor.Word. Transpose procedure

customiring session behavior

Define procedure
Editor.Key.Define

RATIONAL 7yer

EI-15
EI-46
EI-49

EI-46
EI-15
EI-12, EI-14

EI-31, EI-82
. . . EI-46
EI-65

. . . EI-g1

. . . El-4, EI-41
. EI-7, EI-51, EI-58
EI-37

. EI-2, EI-17
. . EI-18
EI-18
EI-18
EI-18
EI-19
EI-19
EI-19
EI-20

. EI-2
EI-2, EI-3
. EI-3

EI-17

EI-18
EI-34
EI-68
EI-71

. EI-7

EI-28

EI-79

Delete procedure
Editor.Line.Delete .
Editor.Region.Delete
Editor. Window.Delete
Editor.Word.Delete

Delete_Backward procedure
Editor.Char.Delete_Backward
Editor.Line.Delete_Backward

Editor. Word.Delete_.Backward

Delete_Forward procedure
Editor.Char.Delete_Forward .
Editor.Line.Delete_Forward .
Editor.Word.Delete_Forward

Delete_Next procedure
Editor.Char.Delete_Next

Delete_Previous procedure
Editor.Char.Delete_Previous

Delete_Spaces procedure
Editor.Char.Delete-.Spaces

Delete_Top procedure

Editor.Hold_Stack.Delete_Top . .

Editor.Mark.Delete_.Top .
Editor.Screen.Delete_Top .

Demote procedure
Editor. Window.Demote .
Promote procedure

Designation_Off procedure
Editor.Set.Designation_Off

digit

Editor.Set.Argument..Digit procedure

Directory procedure
Editor. Window.Directory

dollar sign ($)
metacharacter . . .

Down procedure
Editor.Cursor.Down
Editor.Image.Down
Editor.Screen.Down

Dump procedure
Editor.Screen.Dump

EI-80

EI-31, EI-82
. EI-5, EI-46
EI-64, EI-65
EI-69, EI-70

Er-12
EI-38
EI-70

E1-12
EI-88
EI-70

EI-18
EI-18
EI-12, EI-18

EI-21, EI-22
. EI-4, EI-41, EI-42
. EI-7, EI-61, EI-52

. EI1-63, EI-64, EI-65
. EI6T
. El-4, EI-59, EI-60

EI-60
. E1-6, EI-63, EI-66

EI-56

EI-17, EI-18
.. . EI-85
EI-58

EI-51, EI-58

e RATIONAL

editing operationsE+4

bell

Editor.Alert procedure E-I10
case changing

Editor.Charpackage E-11
characters

Editor.Charpackage E1
cursor movement

Editor.Cursorpackage E-17
do nothing

Editor.Noop procedure E-10
edit text EI-6
editor parameters

Editor.Set package E-b89
find images

Editor.Image package EI-2
holdstackEb

Editor.Hold_Stack package E-21
insert lines

Editor.Line package E31
join lines

Editor.Linepackage ER-31
key bindings

Editor.Key package E-27
keyboard macros

EditorMacropackage EI37
linesandtabsEb

Editor.Charpackage E11

Editor.Line package ER31
log off

Editor.Quit procedure E-10
marks

EditorMark package E-4
retrieve textE5

Editor.Hold _Stack package ERF21
screen management

Editor.Screen package EI51
scroll images

Editor.Image package e e e e e E-2
search and replace

Editor.Search package EI-55
select textF1-%

Editor.Region package EI-45
tabs

Editor.Charpackage E-1

Editor.Set package EI-59
window management

Editor.Window package EI-63

RAT'ONAL 7/1/87 EI-81

editing operations, continued
words
Editor.Word package

Editor package
end, 2ee Quit

End_Of procedure
Editor.Image.End_Of
Editor.Line.End_Of
Editor.Region.End_Of
Editor.Window.End_Of
Editor.Word.End_.Of .

Execute procedure
Editor.Macro.Execute

Expand procedure
Editor. Window.Expand .

expand window size
Editor.Window.Expand procedure
Editor.Window.Join procedure . .

Fill procedure
Editor.Region.Fill

Editor.Set.Fill_Column procedure . . .

Fill_Column procedure
Editor.Set.Fill_Column .
Fill_Mode procedure

fillmode
Editor.Set.Fill_Mode procedure .

Fill_Mode procedure
Editor.Set.Fill_Mode

Find procedure
Editor.Image.Find

Finish procedure
Editor.Macro.Finish
Editor.Region.Finish

Focus procedure
Editor.Window.Focus .

EI-82

.....................

EI-69
El-4, EI-9

EI-26, EI-26
EI-31, EI-88
EI-46
EI-84, EI-66
EI-71

. . EI-1, EI-37, EI-$8
EI-64, EI-66

EI-66
EI-66

EI-47
EI-61

EI-69, EI-61
EI-61

. EI-5, EI-59
EI-61

EI-5, EI-59, EI-61

E1-25, EI-26

. . EI-7, EI-37, EI-88
EI-45, EI-47

EI-64, EI-66

s RATIONAL

forward
deletion
Editor.Char.Delete_Forward procedure
Editor.Line.Delete_Forward procedure .
Editor. Word.Delete_Forward procedure
movement
Editor.Cursor.Next procedure
Editor.Line.Next procedure
Editor.Window.Next procedure .
Editor. Word.Next procedure
search . .
Editor. Search Next procedure .
search and replace . . .
Editor.Search. Replace..Next procedure .
tab
Editor.Char.Tab_Forward procedure

Forward procedure
Editor.Cursor.Forward

Frames procedure
Editor.Window.Frames

frozen window state .

function keys .

key
Editor.Key.Name procedure .

key

hold stack .
current selection
Editor.Hold_Stack.Push procedure
move from bottom to top
Editor.Hold_Stack.Rotate procedure .
replace with next item
Editor.Hold_Stack.Next procedure
replace with previous item
Editor.Hold_Stack.Previous procedure .
retrieve most recent item
Editor.Hold_Stack.Top procedure .
top
Editor.Hold_Stack.Copy-Top procedure
Editor.Hold_Stack.Delete-T op procedure
Editor.Hold_Stack.Top procedure .
transpose top two items
Editor.Hold-Stack.Swap procedure

RATIONAL 7/y/er

EI-17,

EI-63,

EI-12
EI-33
EI-70
EI-19
EI-34
EI-67
EI-71
. EI-4
EI-57
. EI-4
EI-57

EIl-14

EI-18

EI-66
EI-63
EI-27

EI-29
EI-26
. EI-6
EI-22
EI-22
EI-22
EI-22
EI-23
EI-21
EI-22

El1-23

EI-23

EI-83

Hold_Stack package
Editor.Hold-Stack

image

active

Editor. Window.Directory procedure .
bottom of

Editor.Image.End_Of procedure
editing operations

Editor.Image package
find

Editor.Image.Find procedure .
marks

Editor.Mark package
remembered positions

Editor.Mark package
scroll down

Editor.Image.Down procedure
scroll left

Editor.Image.Left procedure
scroll right

Editor.Image.Right procedure
scroll up

Editor.Image.Up procedure . .
top of

Editor.Image.Beginning_Of procedure

Image package
Editor.Image

Image_Fill_Column session switch
Editor.Region.Fill procedure
Editor.Region.Justify procedure

Image_Fill_Extra_Space session switch
Editor.Region.Justify procedure

Image_Fill_Indent session switch
Editor.Region.Justify procedure

Image_Fill_Prefix session switch
Editor.Region.Fill procedure
Editor.Region.Justify procedure

Indent procedure
Editor.Line.Indent

Input_From procedure
Editor.Set.Input-From

Input_Logging-Off procedure
Editor.Set.Input-Logging_ Off

EI-84

. EI-6, EI-21

EI-66
EI-26
EI-25
EI-26
EI-41
El-41
EI-25
EI-26
EI-26
EI-26

EI-25
EI-25

EI-47
EI-48

EI-48
EI-48

El-47
EI-48

EI-31, EI-8S
EI-59, EI-61

EI-59, EI-61

e RATIONAL

Input_Loggir.g_To procedure
Editor.Set.Input_Logging_T o
Input_From procedure .

Insert procedure . .
Editor.Line.Insert

Insert_Character procedure
Editor.Char.Insert_Character
Quote procedure

ingert mode . .
Editor.Set. Insert._Mode procedure

Insert-Mode procedure
Editor.Set.Insert_Mode .

Insert_String procedure
Editor.Char.Insert_String .
Quote procedure

item .
next
Editor.Cursor.Next procedure
off
Editor.Set.Designation-Off procedure
previous
Editor.Cursor.Previous procedure .

key
Editor.Set.Designation. Off procedure .

Join procedure
Editor.Line.Join .
Editor.Window.Join

Justify procedure
Editor.Region.Justify . .
Editor.Set.Fill- Column procedure .

keep window on screen
Editor. Window.Promote procedure .

key
bindings . .
Editor.Key package
change default parameters
Editor.Key.Prompt procedure
define
Editor.Key.Define procedure

RATIONAL 71/sr

EI-59, EI-61
EI-61

EI-11
EI-31, EI-38

EI-18
EI-14

. EI-5, EI-11, EI-59

EI-62

. EI-5, EI-59, EI-62

EI-18
EI-14

. EI-1
EI-19
EI-60

EI-19

EI-60

EI-31, EI-84
EI-64, EI-66

EI-48
EI-61

EI-67

. EI-1
EI-27

EI-29

EI-28

EI-85

key, continued
function keys
help on key
Editor.Key.Name procedure
keymap . . .
log keystrokes
Editor.Set.Input_Logging_T o procedure
macros
Editor.Macro package
modifier keys .
prompt for
Editor.Key.Prompt procedure
rebinding
Editor.Key package
stop logging keystrokes

Editor.Set.Input_Logging_Off procedure .

key concepts

Key package
Editor.Key

keyboard macros . .
Editor.Macro package

keymap
kill buffer

Editor.Hold-Stack package
kill ring

Editor.Hold_Stack package

left brace ({)
metacharacter .

Left procedure
Editor.Cursor.Left
Editor.Image.Left
Editor.Screen.Left

library
switches
Comment..Column

line
beginning of
Editor.Line.Beginning_Of procedure .
case conversion
Editor.Line.Capitalize procedure
Editor.Line.Lower_-Case procedure
Editor.Line.Upper—Case procedure

EI-86

EI-27

EI-29
. EI-1

EI-61

EI-37
. EI-2

EI-29
EI-27
EI-61

. BEr-1

EI-27
. EI-7
EI-37
. EI-1
EI-21

EI-21

EI-56

EI-17, EI-18
EI-25, EI-26
EI-58

EI-15

EI-32
EI-32

EI-34
EI-35

e RATIONAL

line, continued
center
Editor.Line.Center procedure .
copy
Editor.Line.Copy procedure
deletion
Editor.Line.Delete procedure

Editor.Line.Delete_Backward prc;ce.dure.
Editor.Line.Delete_-Forward procedure .

editing operations
Editor.Line package .
end of
Editor.Line.End_Of procedure
join current and next
Editor.Line.Join procedure .
new line and indent
Editor.Line.Indent procedure .
new line before cursor
Editor.Line.Insert procedure
new line below cursor
Editor.Line.Open procedure
next
Editor.Line.Next procedure
previous
Editor.Line.Previous procedure .
transpose current and previous
Editor.Line.Transpose procedure

Line package
Editor.Line

log off
Editor.Quit procedure

Lower_Case procedure
Editor.Char.Lower_Case
Editor.Line.Lower_Case .
Editor.Region.Lower.Case
Editor.Word.Lower_Case

Macro package
Editor.Macro

macros
begin deﬁnmon
Editor.Macro.Start procedure .
bind
Editor.Macro.Bind procedure .
current .

RATIONAL 71/er

. EI-7,

EI-32
EI-32
E1-32
EI-33
EI-33
FI1-31
EI-33
EI-34
EI-33
FI-33
EI-34
El-34
EI-34

EI-34

E1-81

EI-10

EI-14
EI-34
EI-48
EI-T1

Er-87
. EI-7

E1-39

EI-38
EI-37

EI-87

macros, continued
end definition
Editor.Macro.Finish procedure
execute
Editor.Macro.Execute procedure
reread macro file
Editor.Macro.Restore procedure
save macro file
Editor.Macro.Save procedure .

make comment
Editor.Region.Comment procedure .

Mark package
Editor.Mark .

marks .

move from bottom to top

Editor.Mark.Rotate procedure
move to next

Editor.Mark.Next procedure
move to previous

Editor.Mark.Previous procedure
return to most recently set mark

Editor.Mark.Top procedure
set

Editor.Mark.Push procedure
stack
top

Editor.Mark.Copy_Top procedure .

Editor.Mark.Delete_Top procedure

Editor.Mark.Top procedure
transpose top two marks

Editor.Mark.Swap procedure

metacharacters
asterisk (*) .
backslash (\) . .
brackets ([]) . . .
caret (-)
dollar sign ($) . . .
left brace ({) .
percent (%) . . .
question mark (?)
right brace (}) . . .

minus
Editor.Set.Argument_Minus procedure

EI-88

EI-38
EI-38
EI-38

EI-39
EI-46

. EI-4, EI-41
EI-2, EI-4

El-42
EI-42
EI-42
EI-43

EI-42
EI-41

El-41
EI-42
EI-43

EI-43

EI-56
El-56
EI-67
EI-57
EI-56
EI-56
EI-56
EI-56
EI-56
EI-56

EI-60

e RATIONAL

mode
Editor.Set.Fill_Mode procedure .
insert .

Editoi'.S.et:In'se'rt.‘.Mo&e -pl:oc‘ed'ur.e

overwrite

Editor.S.et:hise.rt;Moc.le .pr.oc.ed'ur‘e

modifier keys .

move
between windows
Editor.Window.Next procedure .
Editor.Window.Previous procedure
to next window
Editor.Window.Child procedure
to previous window
Editor. Window.Parent procedure

Move procedure
Editor.Region.Move

Name procedure
Editor.Key.Name

next
Editor.Char.Delete_Next procedure

Next lteml key

Editor.Cursor.Next procedure

Next procedure
Editor.Cursor.Next . . .
Editor.Hold_Stack.Next .
Editor.Line.Next .
Editor.Mark.Next
Editor.Screen.Next .
Editor.Search.Next .
Editor.Window.Next
Editor.Word.Next

key

Editor.Cursor.Next procedure

key
Editor.Cursor.Next procedure

Noop procedure
Editor.Noop .

normal window state

RATIONAL 7/y/er

. EI-5, EI-11, EI-59

. EI-5, EI-59
E1-61

. EI-5, EI-11, F1-59

EI-62

EI-62
. EI-2

EI-67
EI-67

EI-64

EI-67

EI-48

EI-29

EI-13

EI-19

. EI-3, EI-17, EI-19

EI-21, EI-22
EI-34

. El-4, EI-41, EI-42
. EI-7, EI-51, EI-58

EI-55, EI-56, EI-57
EI-64, EI-67
. . . EI-T1

E1-19
EI-19

EI-10
EI-63

EI-89

Off procedure
Editor.Region.Off
On procedure .

On procedure
Editor.Region.On

Open procedure
Editor.Line.Open

operations

overwrite mode . C e e
Editor.Set.Insert_Mode procedure

Parent procedure
Editor. Window.Parent

pattern matching
metacharacters

percent (%)
metacharacter

planar cursor movement

prefix
Editor.Set.Argument_Prefix procedure

previous

Editor.Char.Delete_Previous procedure .

key

Editor.Cursor.Previous procedure

Previous procedure
Editor.Cursor.Previous .
Editor.Hold_Stack.Previous
Editor.Line.Previous
Editor.Mark.Previous .
Editor.Screen.Previous
Editor.Search.Previous
Editor.Window.Previous
Editor.Word.Previous

key

Editor.Cursor.Previous procedure

Previous Underiine key

Editor.Cursor.Previous procedure

Promote procedure
Editor.Window.Promote
Demote procedure

EI-90

E1-45, EI-49
. . . EI-49

EI-45, EI-49

EI-31, EI-84
. EI-1

. EI-5, EI-11, EI-59
. EI-62

EI-64, EI-67
EI-56

EI-56
. EI-2

EI-60
EI-13
EI-19

. EI-3, EI-17, EI-19
EI-21, E[-22

. EI-%
. EI-4, EI-41, EI-42
. EI-7, EI-b1, EI-58
EI-55, E1-66, EI-57
EI-64, EI-67

. . . EI-

EI-19
EI-19

EI-63, EI-67
. . . EI-66

s RATIONAL

prompt
next
Editor.Cursor.Next procedure
previous

Editor.Cursor.Previous procedure .

| Prompt¢ For key
Editor.Key.Prompt procedure

Prompt procedure
Editor.Key.Prompt .

Push procedure
Editor.Hold_Stack.Push
Editor.Mark.Push .
Editor.Screen.Push .

quarter plane .

question mark (?)
metacharacter .

Quit procedure
Editor.Quit

Quote procedure
Editor.Char.Quote .

rebinding keys .
Editor.Key package

Redraw procedure
Editor.Screen.Redraw

refresh screen
Editor.Screen.Redraw procedure

region .

Region package
Editor.Region

relative cursor movement

remove
comment

Editor.Region.Uncomment procedure

spaces

Editor.Char.Delete_Spaces procedure

repaint screen
Editor.Screen.Redraw procedure .

RATIONAL 7/1/sr

EI-19

EI-19

EI-29.

EI-29

. EI-5, EI-21, EI-22

EI-41, EI-42

. EI-7, EI-51, EI-58

. EI-2

EI-56

EI-10

EI-12, EI-14

EI-27

EI-51, EI-54

EI-54
. EI-2

. E1-6, EI-45

EI-2, EI-3

EI-49

EI-13

EI-54

El-91

replace
backward
Editor.Search.Replace_Previous procedure
forward
Editor.Search.Replace_Next procedure .
window state
Replace_Next procedure
Editor.Search.Replace_Next

Replace_Previous procedure
Editor.Search.Replace_Previous

Restore procedure
Editor.Macro.Restore .

right brace (})
metacharacter .

Right procedure
Editor.Cursor.Right
Editor.Image.Right .
Editor.Screen.Right

Rotate procedure
Editor.Hold_Stack.Rotate .
Editor.Mark.Rotate
Editor.Screen.Rotate

save
screen
Editor.Screen.Push procedure

Save procedure
Editor.Key.Save
Editor.Macro.Save

screen
copy to file
Editor.Screen.Dump procedure
down
Editor.Screen.Down procedure
erase and repaint
Editor.Screen.Redraw procedure
erase contents
Editor.Screen.Clear procedure
left
Editor.Screen.Left procedure
management
Editor.Screen package
move from bottom to top
Editor.Screen.Rotate procedure .

EI-92

EI-58

EI-57
EI-63

EI-§5, EI-66, EI-57
EI-55, EI-56, EI-58
EI-88
EI-56

EI-17, EI-19
EI-25, EI-26
. . . EI-5§

EI-21, EI-22
. El-4, EI-41, EI-42
. EI-7, EI-52, EI-54

EI-53

.. . EI-29
E1-37, EI-39

EI-53
EI-53
EI-54
EI-52
EI-53
. EI-7
EI-51

EI-54

e RATIONAL

screen, continued

next

Editor.Screen.Next procedure .
previous

Editor.Screen.Previous procedure
refresh

Editor.Screen.Redraw procedure
retrieve from top of stack

Editor.Screen.Top procedure
right

Editor.Screen.Right procedure
save

Editor.Screen.Push procedure
stack
top

Editor.Screen.Copy-Top procedure

Editor.Screen.Delete_Top procedure .

Editor.Screen.Top procedure
transpose top two items

Editor.Screen.Swap procedure
up

Editor.Screen.Up procedure

Screen package
Editor.Screen

scroll
bottom of image
Editor.Image.End._Of procedure
bottom of window
Editor.Window.End_Of procedure
down
Editor.Image.Down procedure
find image
Editor.Image.Find procedure .
left
Editor.Image.Left procedure
right
Editor.Image.Right procedure
top of image
Editor.Image.Beginning_Of procedure
top of window

Editor.Window.Beginning_Of procedure

up
Editor.Image.Up procedure .

search
and replace backward

Editor.Search.Replace_Previous procedure

and replace forward

Editor.Search.Replace_Next procedure .

RATIONAL 71/sr

. EI-1,

EI-53

EI-563

EI-54

EI-54

El1-54

EI-53

. EI-7, EI-51

EI-52
El-52
El-54
EI-54

El-54

E1-51

EI1-26
EI-66
EI-25
EI-26
EI-26
EI-26
EI-25
El-64

EI-26
. EI-4

E1-58

EI-57

EI-93

search, continued
backward
Editor.Search.Previous procedure
forward
Editor.Search.Next procedure .

Search package
Editor.Search

selection
add comment
Editor.Region.Comment procedure
beginning of current selection
Editor.Region.Beginning. Of procedure
case conversion
Editor.Region.Capitalize procedure
Editor.Region.Lower-Case procedure
Editor.Region.Upper_Case procedure
copy current selection
Editor.Region.Copy procedure
delete current and copy at cursor
Editor.Region.Move procedure
delete current selection
Editor.Region.Delete procedure .
end of current selection
Editor.Region.End_Of procedure
fill
Editor.Region.Fill procedure
justify
Editor.Region.Justify procedure .
make comment
Editor.Region.Comment procedure
mark end of
Editor.Region.Finish procedure .
mark start of
Editor.Region.Start procedure
remove comment
Editor.Region.Uncomment procedure
reselect
Editor.Region.On procedure
unselect
Editor.Region.Off procedure

session

switches
Cursor-Transpose_Moves
Image_Fill_Column . .
Image_Fill_Extra_Space
Image_Fill_Indent
Image..Fill_Prefix .
Word_Breaks .

EI-94

EI-567

EI-67

. EI-4, EI-55

EI-46
EI-45
EI-46
EI-48
EI-49
EI-46
EI-48
EI-46
EI-46
EI-47
EI-48
EI-46
EI-47
EI-49
El-49
EI-49

EI-49

C EMT
EI-15, EI-34, EI-68, EI-T1
o EI-47, E1-48
EI-48

E1-48

El-47, E1-48

EI-70

zsr RATIONAL

set a mark
Editor.Mark.Push procedure

Set package
Editor.Set .

space
Editor.Char.Delete_Spaces procedure .

special characters, insert
Editor.Char.Quote procedure

Start procedure
Editor.Macro.Start .
Editor.Region.Start

stream operations .

strings
insert
Editor.Char.Insert_String procedure .

swap, see also Transpose

Swap procedure
Editor.Hold_Stack.Swap
Editor.Mark.Swap
Editor.Screen.Swap .

switches

library
Comment.-Column

session
Cursor_Transpose_Moves
Image_Fill_Column . . .
Image_Fill_Extra_Space .
Image-Fill-Indent
Image_Fill_Prefix .
Word-Breaks .

tab
backward

Editor.Char.Tab-Backward procedure .

column width

Editor.Set.Tab_Width procedure
forward

Editor.Char.Tab_Forward procedure
remove

Editor.Set. Tab_Off procedure
set

Editor.Set.Tab_On procedure .
to comment

Editor.Char.Tab_To_Comment procedure

RATIONAL 7/1er

EI-42
. E1-8, EI-59

EI-13

EI-12, EI-14

. . EI-7, E1-37, EI-89

EI-45, EI-49
. EI-3

EI-13

. EI-21, EI-28
. . El-4, EI-41, EI-48
. EI-7, EI-52, EI-54

EI-15
. EI-7

EI-15, EI-34, EI-68, EI-71

EI-47, EI-48
EI-48
EI-48
EI-47, EI-48
EI-70

EI-14
EI-62
EI-14
EI-62
E1-62

EI-15

EI-95

Tab_Backward procedure
Editor.Char.Tab._.Backward

Tab_Forward procedure
Editor.Char.Tab_Forward .

Tab_Off procedure
Editor.Set.Tab_Off .

Tab_On procedure
Editor.Set. Tab-On
Tab-Width procedure .

Tab_To_Comment procedure
Editor.Char.Tab_To.Comment

Tab_Width procedure
Editor.Set.Tab_Width
Tab_On procedure

terminal
bell
Editor.Alert procedure .

text
edit .
normal
Editor.Set.Designation_Off procedure
retrieve
select .

tilde (")
indicating replace window state
top

hold stack
Editor.Hold_Stack.Copy-Top procedure

Editor.Hold_Stack.Delete_T op procedure .

Editor.Hold_Stack.Top procedure .
image
Editor.Image.Beginning_.Of procedure
mark
Editor.Mark.Copy-Top procedure .
Editor.Mark.Delete_Top procedure
Editor.Mark.Top procedure
screen
Editor.Screen.Copy-Top procedure
Editor.Screen.Delete_Top procedure .
Editor.Screen.Top procedure
selection
Editor.Region.Beginning..Of procedure
window
Editor. Window.Beginning-Of procedure

EI-96

EI-5, EI-6, EI-11, EI-14
EI-5, EI-6, EI-11, EI-14
. E1-6, EI-62

. EI-6, EI-62
. . EI-62

EI-5, EI-6, EI-15

. EI-6, EI-62
. . EI-62

EI-60
. EI-6
. EI-6

EI-63, EI-65, EI-67

E1-21
EI-22
EI-23
EI-25
EI-41
EI-42
EI-43
EI-52
EI-562
EI-54
EI-45

EI-64

wer RATIONAL

Top procedure

Editor.Hold-Stack.Top EI-21, EI-28
EditorMark.TopEl-4,El-4l, EI-4S
Editor.Screen.TopE-1, EI-51, EI-5¢4
trace, see Input_Logging-To
Transpose procedureEFb
Editor.Char.Transpose EI-15
Editor.Line.Transpose EI-3), EI-8
Editor.Window.Transpose EI-64, EI-68
Editor.Word.Transpose EI-U1
u
Uncomment procedure
Editor.Region.Uncomment EI-49
underline
next
Editor.Cursor.Next procedure EI-19
previous
Editor.Cursor.Previous procedure EI-19
Up procedure
EditorCursor.Up E-17,EI-20
Editor.Image.Up EI25 EI-26
Editor.Screen.Up EI-5
Upper—Case procedure
Editor.Char.Upper_Case EI-15
Editor.Line.Upper.Case EI-S
Editor.Region.Upper_.Case EI-49
Editor. Word.Upper-.Case EI'??

uppercase, see also Capitalize

w
window

active

Editor.Window.Directory procedure EI-66
bottom of

Editor.Window.End_Of procedure EI-66
change to next higher state

Editor.Window.Promote procedure EI-67
change to next lower state

Editor.Window.Demote procedure EI-65
expand

Editor.Window.Expand procedure EI-66

Editor.Window.Join procedure EI-66
imagetypeE6
keep on screen

Editor.Window.Promote procedure EI-67

'QAT'ONAL 7/1/87 EI-97

window, continued
management . . .
Editor.Window package
move between windows
Editor.Window.Next procedure .

Editor.Window.Previous procedure

move to next

Editor.Window.Child procedure
move to previous

Editor.Window.Parent procedure
remove

Editor. Window.Delete procedure
restore frame size

Editor. Window.Focus procedure
set number of work windows

Editor. Window.Frames procedure .

states .
swap locations

Editor.Window.Transpose procedure

top of

Editor. Window.Beginning_Of procedure

two views
Editor. Window.Copy procedure .

Window Directory . .
Editor.Image.Find procedure
Editor.Window package . .
Editor.Window.Directory procedure

Window package
Editor.Window

[Window] - [Definition] key
Editor. Window.Directory procedure

Window| = [Demote key
Editor.Window.Demote procedure

fWIndva - [Promote] key
Editor.Window.Promote procedure .

Word package
Editor.Word .

Word.__Breaks session switch
Editor.Word.Breaks procedure .

words
beginning of

Editor.Word.Beginning_Of procedure

case conversion

Editor.Word.Capitalize procedure .
Editor.Word.Lower_Case procedure
Editor.Word.Upper_Case procedure .

EI-98

. E1-6,

. EI-6

EI-63

EI-67
EI-67

El-64

EI-67

EI-65

EI-66

EI-66
EI-63

EI-68

EI-64

EI-65

. EI-6

EI-26
EI-63
EI-66

EI-68

EI-66

EI-65

EI-67

EI-69

EI-70

EI-69

EI-70
EI-71
EI-72

wer RATIONAL

words, continued
deletion
Editor.Word.Delete procedure

Editor.Word.Delete_Backward pl"ocedure
Editor.Word.Delete_Forward procedure Coe

editing operations

Editor.Word package
end of

Editor.Word.End_Of procedure .
next

Editor.Word.Next procedure
previous

Editor.Word.Previous procedure
redefine break characters

Editor.Word.Breaks procedure .
swap locations

Editor.Word.Transpose procedure . . .

RATIONAL 71/er

EI-99

RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 monthsorless _ lyear_ 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Editing Images (E!), 8001A-22

RATIONAL

Rational Environment
Reference Manual

Editing Specific Types (EST)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-22 (803-002307)

Rev.
Rev.
Rev.
Rev.
Rev.

1.0, February 1985
2.0, December 1985
3.0, May 1986

4.0, July 1986

5.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive

Mountain View, California 94043

EST-ii

e RATIONAL

Contents

How toUse This Book L. ix
Key Concepts 1
AdaImages 3
Image Structure e e e e -
Key Concepts C e e e 3
Designation e e e 3
Selection 4
Cursor Designation oo 4
Special Names C e 5
Unit States e e e 5
Insertion Points 7
Incremental Compilation 000 . 7
Incremental Operations on Installed Units 7
Incremental Operations on Coded Units 8
Versions . Coe 8
Committing Images 8
Locks C e e e . 9
Library Switches 9
Commands from Package Common 9
package Ada 19
procedure Code_Unit20

procedure Create.Body 22

procedure Create_Private 24

procedure Delete_Blank_Line C.26

procedure Diana_Edit 27

procedure Get_Errors 28

RATIONAL 7/1/e7 EST-iii

procedure Insert_Blank Line 29
procedure Install.Stub30
procedure Install_Unit 31
procedure Make_Inline 33
procedure Make_Separate 35
procedure Other_Part - . . 36
procedure Replace_.Id Ce .. 37
procedure Show_Usage 39
procedure Show_Unused 41
procedure Source_Unit 42
procedure Withdraw 43
end Ada

CommandImages 45
Image Structure 45
Executing Command Windows 46
Key Concepts P (¢
Designation Lo 46
Unit Stateso 46
Versions e e e e e e e e 46
Histories 46
Library Switches 47
Commands from Package Common 47
package Command 53
procedure Debug 54
procedure Spawn 56

end Command
Common Concepts and Operations87
Image Types e e e e e e e e e e . 57
Designationo 57
Special Names e e e e e 58
Versionso . . .58
Committing Images 59
Historieso 59
Locks e e e e e e e e e s s 59
UpdatingImages 59
Library Switcheso 000 60

EST-iv 7/1/87 BA\TIONAL

package Common

...........

procedure Abandon L . 62
procedure Clear_Underlining 64
procedure Commit L . 65
procedure Complete Lo . 67
procedure Create_Command 68
procedure Definition oo 71
procedure Demote 76
procedure Edit oo . 78
procedure Elide 81
procedure Enclosing 83
procedure Expand 0L 85
procedure Explain 87
procedure Format oL L 88
procedure Insert_File 90
procedure Promote 91
procedure Redoo 93
procedure Release 94
procedure Revert 0L . 96
procedure Semanticize L. . 97
procedure Sort_Image 98
procedure Undo 99
procedure Write_File 100

package Objecto 101
procedure Child 0000 102
procedure Copy 104
procedure Delete e e e e e e e 105
procedure First_Child 106
procedure Inserto oL 108
procedure Last_Child 110
procedure Moveo L. 112
procedure Next 113
procedure Parent oL 115
procedure Previous, 117

end Object
end Common

RATIONAL 7/1/87 EST-v

Help : 121
Organization of the On Llne Help Fac1hty 121
Reviewing Previous Help Messages Ce e e 122
Moving the Cursor in the Help Window e oo o122
Menus in the Help Window Coe e e 122
Designation L. o122
Special Names oo ... 123
Getting Help on the Help Facxhty Ce S V.
Getting Helpon Keys C e e e e 123
Getting Help Using Selection 123
Getting Help on Commands P V2.
Getting Helpon a Topic 124
Getting Help Using a Command Wmdow 125
Determining Key Bindings 125
Commands from Package Common 126
Menus 129
Image Structureo 0oL S 129
Key Concepts C e e oo 130
Designation L. 130
Special Names 131
Expansion and Elision e e e A F:) |
Commands from Package Common 133
Text Images 137
Image Structureo oo 137
Key Concepts e e e e e e e e 138
Designation e e e e e e e e e 138
Versions e e 139
Committing Images e 139
Lockso .. 139

Job Input and Qutput 139
Session Switches 140
Commands from Package Common 140
package Text 145
procedure Block 146

procedure Continue 147

procedure Create 148

EST-vi

e RATIONAL

procedure End_Of_Input 149

type Image_Kind00 150
procedure Redirect oL 151

end Text
Window Directory 153
Image Structure L. 153
Key Conceptso 154
Designationo . 154
Traversing to Images 155
Committing, Promoting, and Demoting 155
ReleasingImages 156
Refreshing the Window Directory 156
Commands from Package Common C e e e e 156
XrefImages, . 159
Image Structure Lo . . 159
Key Concepts 160
Designation 160
Expansion and Elision 160
Unit States and False Usages 161
Commands from Package Common A ()1
Index 165

RATIONAL 7/1/er EST-vii

RATIONAL

How to Use This Book

The Editing Specific Types (EST) book of the Rational Environment Reference Man-
ual contains reference information describing some of the commands for editing
specific image types provided by the Rational Environment™. It is intended for
users who are familiar with the Environment and with Ada® programming. Note
that the reference information describing some of the commands for editing all
image types are documented in Editing Images (EI) of the Rational Environment
Reference Manual.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary
Keymap
Master Index

2 Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Inpu%Output (T1I0

Data and Device Input/Output (DIO)
String Tools (ST)

Programming Tools (PT)

System Management Utilities (SMU)
Project Management (PM)

= 000 SO U W

-

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 71/ EST-ix

Organization of the
Rational Environment Reference Manual

L 11 volumes containing 14 books ol
P i
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book

Rational Environment

o) Reference
Manual

Key concepts

Book index

Topical section

Unit section

Book

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
Sfor example, Rational Networking—TCP/IP or Rational Target Build Utility) are

ocumented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

e Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

¢ Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String..Utilities is alphabetized under
String_Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/87 EST-xi

e Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

o Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 12 provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Environment User’s Gusde.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

EST-xii e RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library"};. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library");.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the key
or consult the Rattonal Environment User’s Guide or the Ratsonal Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322}. If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL /s EST-xiii

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

EST—xiv e RATIONAL

Key Concepts

The title Editing Specific Types refers to using the Rational Editor to edit im-
ages based on knowledge about the underlying form and structure of the object
or representation for the type of image being edited. This differs from the basic
editing operations, available for editing all types of images, that take no advantage
of the underlying form or structure of the type. See Editing Images (EI) for more
information on these operations.

The Rational Editor knows about many types of images and provides special editing
operations for manipulating them. That knowledge is embodied in commands in
package Common, provides type-specific editing operations available on most image
types, and in other command packages specific to various image types. These
commands utilize knowledge about the specific type of image being edited to make
the commands more useful for the particular image.

The Rational Editor supports editing of the following images:

e Activity: Lists of subsystem spec and load views.

e Ada: Ada programs or program fragments.

¢ Command: Commands that are executed in the Rational Environment.
¢ Debugger: Log of Rational Debugger interactions.

e Help: Help windows that provide information on using the Environment.
o Jobs: The active jobs in the Environment.

¢ Library: Displays of the libraries in the library system.

o Links: Lists of mappings between Ada simple names and library units in the
library system.

* Menu: Lists of Ada declarations.

o Searchlist: Lists of libraries to search for resolving Ada names in commands.
o Switch: Sets of switches that control Environment behavior.

o Text: Text images or files.

e Venture: A collection of work orders intended for a single project or endeavor.
¢ Windows: The Window Directory list of active images.

e Work list: Lists of work orders.

RATIONAL 7//er EST-1

Key Concepts

o Work order: Work orders used in CMVC operations.

o Xref: Lists of Ada compilation units using a particular declaration generated by
the !Commands.Ada.Show_Usage procedure.

The common type-specific editing operations provided in package Common are doc-
umented in this book. Additional documentation on operations for each specific
type of image can be found in books (and in many cases packages) specific to these
images. This additional documentation includes a discussion of the type-specific
aspects of the common operations from package Common supported for these im-
ages.

The !Commands.Activity, !Commands.Work_Order, and !'Implementation. Work-
—Order_Implementation packages are documented in Project Management (PM).

Packages Ada, Command, and Text are documented in this book. In addition,
operations on help, menu, window, and xref images are described.

Packages Library and Links, as well as library switches (in package Switches), are
documented in Library Management (LM).

Package Search_List and session switches are documented in Session and Job Man-
agement (SIM). The What.Jobs and Help displays are documented in package What
in SJM and in the Help section in this book.

Package Debug is documented in Debugging (DEB).

For each of these image types, the commands in package Common can have a specific
meaning. Each of the packages and sections listed above includes a description of
the specific meaning of the commands in package Common that apply to that object.
In addition, each command documented in package Common includes a list of the
image types for which the command is supported.

EST-2 e RATIONAL

Ada Images

This section describes type-specific editing operations for Ada images. Ada images
are Ada compilation units or those portions of Ada compilation units that are
manipulated using the Environment’s incremental compilation operations.

All operations in package !Commands.Common apply to Ada images as well. The
procedures from package Common that apply to Ada images are described in this
section. In addition to the commands in package Common, commands in package
!Commands.Ada apply to Ada images. These commands are also described in this

section.

The common editing operations are discussed more fully in the documentation for
package Common in this book.

Image Structure

Ada images are composed of Ada elements—the keywords, identifiers, statements,
and declarations that make up library units. These elements are built in a treelike
hierarchical structure to make up the Ada image. The Rational Editor knows this
structure and uses the knowledge to provide specific operations on these images.
See the Reference Manual for the Ada Programming Language for more information
on the syntax and semantics of Ada units.

Key Concepts

Designation

Ada images or their subelements can be designated with specific operations that
understand the hierarchical structure of Ada images. Selections are made with the
commands in package !Commands.Common.Object or !Commands.Editor.Region.
Designations can be made with selections or the cursor position. Sometimes des-
ignation through selection is sensitive to whether the cursor is positioned in the
selection. See the description of special names to determine which of these options
applies to that command.

A unit can also be selected by selecting its stub declaration in its parent (for exam-
ple, a separate declaration for a subunit in a package body or an entry in a library
mmage for a compilation unit). A unit can also be designated by positioning the
cursor on the stub declaration for the unit in its parent.

RAT'ONAL 7/1/87 EST-3

Ada Images

Selection

Successively larger groups of Ada elements can be selected with the Object.Parent
procedure; conversely, successively smaller groups of Ada elements can be selected
with the Object.Child procedure. Within a level of selection, specific Ada elements
can be selected from the set of elements at that level with the Object.Next and
Object.Previous procedures.

As an example, consider the following set of Ada elements (a case statement):

case Level 1s
when @ =>
Emergency_Stop;
when 1..4 =>
Need_More;
when others =>
null;
end case;

Assume that the cursor is on the w in the second when and that no previous selections
exist. Executing Object.Parent selects the smallest element enclosing the cursor
position; in this case, it is the second arm of the case statement. The section:

when 1..4 =>
Need_More;

is highlighted.

Object.Next selects the third arm of the case statement. The third arm is high-
lighted and the second arm returns to normal video on the screen.

Object.Previous selects the second arm again. It is now highlighted.

Object.Child selects the 1..4 choice of the case statement and moves the cursor
to the 1. Object.Child again selects only the 1. Object.Child again leaves nothing
selected.

Object.Parent selects the 1 again. Object.Parent a second time selects the 1..4
choice. Object.Parent a third time selects the second arm of the case statement.
Executing Object.Parent again highlights all three arms of the example case state-
ment. Executing Object.Parent again selects the entire case statement.

Selections can be used for many operations (for example, to specify the area to be
moved or copied). These selection operations also allow traversing the contents of
an Ada image.

Cursor Designation

The cursor can be used to designate an Ada element in a way similar to the use
of selection. In general, the Rational Editor makes reasonable guesses, based on
the cursor location, about the intention of the user. As an example, consider the
following Ada element (a subprogram body), assuming there are no selections:

EST-4 7/1/87 BA\TIONAL

Ada Images

with Text_lo;

procedure Test 1is

Spacing: Text_lo.Positive Count := 2
in
Text_lo.New_Line (spacing};

end Test;

Assuming that the cursor is anywhere on the line with Text_lo;, executing the
!Commands.Common.Definition command with the default parameter yields the
definition of package Text_lIo as if the Ada element with Text_lo; were selected.

Similarly, if the cursor is anywhere on the line Text_lo.New_Line (spacing); before
the period (.), executing the Definition command with the default parameter yields
the definition of package Text_lo. However, if the cursor is positioned on the period
(.), or anywhere to the right of it on the same line, executing the Definition com-
mand brings up the definition of the Text_Io package with the New.Line procedure
highlighted as if the Ada element Text_lo.New_Line (spacing); were selected.

Special Names

Many of the commands in the Environment use special names. For further infor-
mation on special names, see Key Concepts.

Unit States
Each Ada compilation unit has a state, called a unst state, associated with it.

A unit can have one of four states in the Environment: archived, source, installed,
and coded. These states are ordered; a unit must be promoted from source through
installed to coded before it can execute.

The !Commands.Compilation.Demote procedure can be used to place a unit in the
archived state, which is much more compact than the source state. To be edited, a
unit must be promoted from the archived state to the source state. A unit in the
archived state has the following significant attributes:

¢ The unit is not necessarily syntactically correct.

e The unit is not necessarily semantically correct.

o The unit is not known to other units in the system.
o The unit cannot be edited.

¢ The unit does not have the definition capability and structure-oriented highlight-
ing available to units in the source, installed, and coded states.

When Ada units are created, they are in the source state. When units are demoted

because of some dependent unit that needs to be changed, they are also placed in
the source state. A unit in the source state has the following significant attributes:

RATIONAL 7y/er EST-5

Ada Images

o The unit is not necessarily syntactically correct.
o The unit is not necessarily semantically correct.
o The unit can be known to other units in the system.
o The unit can be copied, deleted, moved, or renamed.

e The unit can be changed in any way without affecting any other unit in the
system. The only exception is that the name and parameter profile (if the unit is
a subprogram) as well as the kind of the unit (for example, subprogram, package,
generic) that has its stub installed in its parent cannot be changed.

When an Ada unit is promoted to the installed state, it becomes registered with
(or known to) the Environment. The Environment then restricts access to the unit
and builds semantic dependencies with other units. A unit in the snstalled state has
the following significant attributes:

e The unit is syntactically and semantically correct.
¢ The unit can be semantically referenced by other units.

o The unit can be copied and it can be deleted, moved, renamed, or demoted if no
semantic dependencies are affected.

¢ The unit can be changed by using incremental addition and change operations
(see additional information below).

When an Ada unit is promoted to the coded state, it retains most of the same
attributes as the installed state. There is one important addition: the semantically
correct unit has machine code generated for it. A unit in the coded state has the
following significant attributes:

¢ The unit is known to the Environment.

o The unit is syntactically and semantically correct.

o The unit can be referenced by other units.

¢ The unit has machine code generated for it by the Environment.

¢ The unit can be copied and it can be deleted, moved, renamed, or demoted if no
semantic dependencies are affected.

e The unit can be changed by using incremental addition and change operations
(see additional information below).

unit. Environment.

Commands exist in packages !Commands.Ada and !Commands.Compilation for
moving a unit in any state to any other state. The commands in package Ada
are for interactive use. They change the state of only one unit at a time. They
respond by marking errors on the image of the unit. A unit can be demoted to
the archived state only with commands from package Compilation. The commands
in package Compilation are for promoting or demoting the state of multiple units,
entire libraries, or entire programs. These commands change the state of a unit and
any dependent units. They produce error logs and are commonly run as background
jobs. Package !Commands.Compilation and further information about unit states
and libraries are discussed in Library Management (LM).

EST-6 7/1/87 I?ATIONAL

Ada Images

Insertion Points

Insertion points are prompts where Ada units can be added to installed or coded Ada
units, or they are indications of where elements have been incrementally withdrawn

(with demote or edit).

An insertion point has an associated source subunit that is edited to insert new or to
contain withdrawn program units, declarations, or statements, or other elements on
which incremental compilation is supported (see below). When Ada text associated
with an insertion point is promoted higher than the source state, the insertion point
is changed into that declaration or statement or other element that corresponds to
the element promoted.

Incremental Compilation

The Environment allows certain “compatible” changes to be made to installed and
coded units. These changes, referred to as stncremental operatsons or sncremental
comptlation, allow users to make additions, deletions, and changes to units that
have been compiled without requiring that the units being changed be completely
recompiled. The incremental compilation facilities supported by the Environment
are based on the ability to recompile fragments of Ada units, including statements,
declarations, context clause items, comments, and so on. Using these facilities, users
can avoid much of the recompilation that would be required if entire compilation
units had to be recompiled when any changes were made to them.

Incremental compilation can be used to insert, delete, or demote/edit/repromote
(referred to as withdrawing and repromoting) fragments of Ada units. Insertions
are made with insertion points as described above. Deletions are made by select-
ing the fragment to be deleted and then executing the !Commands.Common.Delete
command. Fragments can be withdrawn for editing and repromotion by selecting
them and executing the Common.Edit command. This command removes the se-
lected fragment, puts it in a newly created window in the source state for editing
and repromotion, and leaves an insertion point in place of the withdrawn fragment
in the parent. Once editing is finished in the fragment in the window, promoting
the fragment reinserts it in the parent and deletes the window created to hold the
fragment.

Incremental Operations on Installed Units

The Rational Environment currently supports the following incremental changes to
units in the installed state:

¢ New declarations that are upwardly compatible (based on Ada semantics) can
be inserted. Existing declarations with no dependents can be deleted or demoted
from installed to source, edited, and then reinstalled.

* New statements can be inserted in units in the installed state. Existing statements
can be deleted or demoted to source, edited, and then reinstalled.

* New context clause items can be inserted if they are upwardly compatible (based
on Ada semantics). Existing context clause items with no dependents can be
deleted or demoted from installed to source, edited, and then reinstalled or re-
coded.

RATIONAL 7/1/87 EST-7

Ada Images

¢ New comments on lines by themselves can be inserted. Existing standalone com-
ments can be deleted or demoted from installed (or coded) to source, edited, and
then reinstalled.

Incremental operations are not allowed for two-part types or generic formal parts or
generic specifications with installed instantiations. Incremental operations for most
declarations are also supported only for manipulations of the entire declaration, not
for component parts. Incremental insertion will not work for most pragmas.

Incremental Operations on Coded Units

The Rational Environment supports the following incremental changes to units in
the coded state:

o In a library unit specification, new declarations that are upwardly compatible
(based on Ada semantics) can be inserted. Also, in a library unit specification,
existing declarations with no dependents can be deleted, or they can be edited and
reinserted. Because the elaboration code for the declarations in a specification
is associated with the corresponding body, incremental insertions or deletions in
a library unit specification results in the demotion of the corresponding body to
the installed state.

o In alibrary unit specification, pragmas can be incrementally inserted, deleted, or
edited only if all declarations to which the pragma refers are also being simulta-
neously inserted, deleted, or edited within the same insertion point.

o New context clauses can be inserted if upwardly compatible (based on Ada se-
mantics) only if the units named in the context clause are coded. Existing context
clauses with no dependents can be deleted, or they can be edited and then rein-
serted. Incremental insertion or deletion of context clauses results in the demotion
of any dependent main programs.

¢ Insertion, deletion, and editing of comments is allowed in all coded units.

Note that all restrictions on incremental insertions, deletions, and editing of units
in the installed state also apply to units in the coded state.

Versions

Versions of Ada compilation units exist just as versions exist for other objects in the
Environment. A new version is created when is pressed for a unit. Versions are
not created under any other state change. They are not created when incremental
changes are made to a unit.

Committing Images

Not all Ada units need to be committed (saved) explicitly. Ada units that are
installed or coded are always permanent; they need not be committed explicitly.

Ada units that are source must be committed to be permanent. Changes made
to the unit are made permanent either explicitly when the unit is committed or
implicitly when the unit is released or promoted to a higher state.

EST-8 7/1/87 R’AT'ONAL

Ada Images

Locks

The Environment creates locks on Ada units under several circumstances. Whether
a lock is created depends on the state of the unit.

If the unit is installed or coded, the unit is never locked. The unlocked unit allows
multiple jobs to access the unit. It also allows multiple jobs to make incremental
“compatible” changes to the unit.

If the unit is source, the unit can be locked. The two kinds of locks used are read
only and write.

With the !Commands.Common.Definition procedure, a read-only lock is used on
the unit. This allows multiple jobs to access the unit, but no job can edit the unit.

With the !Commands.Common.Edit procedure, a write lock is used on the unit.
This prevents any other job from accessing the unit. Note that a write lock is also
placed on a unit in the installed or coded state when the Edit procedure is used,
because the Edit procedure demotes the unit to source and then places a write lock
on it.

Library Switches

Some of the behavior of the commands for editing Ada images can be tailored with
library switches.

The case of identifiers in formatted Ada images is determined by the Keyword_Case
library switch. The allowable values for this switch are: Capitalize, Lower, and Up-
per. The value determines how identifiers are displayed after the !Commands.Com-
mon.Format operation.

See LM, package Switches, for more information on library switches.

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing Ada images. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Ends the editing of the Ada image. Any changes made to the image since the last
commit or promote are lost. However, incremental changes made to installed or
coded units, which are permanent as soon as they are promoted, are not lost. The
window is removed from the screen and from the Window Directory. The Window
parameter specifies the window to be removed from the screen. The default is the
current image.

QATIONAL 7/1/87 EST-9

Ada Images

procedure Common.Clear_-Underlining

Removes the underlining created by the Common.Semanticize and other procedures.
The Semanticize procedure checks the image for semantic consistency, underlining
semantic errors.

procedure Common.Commit

Makes permanent any changes to the Ada image. When source Ada images are
edited, this procedure saves the changes to the image in the underlying permanent
representation. These changes are built in temporary areas until the changes are
committed. Then the temporary areas are made a permanent part of the storage
hierarchy when a new version of the unit containing the changes is created.

This procedure is used only for Ada images that are in the source state. Direct
editing changes (that is, not incremental) to an Ada image in a state other than the
source state are not allowed. Changes to the unit caused by promoting or demoting
the unit are permanent and need not be committed.

The commit operation is also implicitly performed by the {Commands.Common.Pro-
mote, !Commands.Ada.Install_Unit, Ada.Code_Unit (if the unit is source, the op-
eration is not incremental, and the operation completes successfully), and Common-
.Release procedures.

procedure Common.Complete

Completes the selected Ada identifier or the identifiers in the selected element using
Ada’s semantics for name resolution. If more than one name can complete the
identifier and the Menu parameter is set to true, a list of choices is produced in the
menu window. See the description of menus in this book for more information on
the editing operations available on menus.

The identifier is completed using the Ada context that exists for the compilation
of the selected element, including wisth clauses, use clauses, renaming declarations,
and so on.

procedure Common.Create-Command

Creates a Command window below the current Ada window if one does not exist;
otherwise, it puts the cursor in the existing Command window below the current
Ada window. This Command window initially has a use clause:

use Editor, Ada, Common, Debug;

This use clause provides direct visibility to the declarations in packages Ada, Com-
mon, Debug, and Editor without requiring qualification for names resolved in the
command.

EST-10 7/1/87 RATIONAL

Ada Images

procedure Common.Definition

Finds the defining occurrence of the designated element and brings up its image in
a window on the screen, typically with the definition of the element selected. If a
name is provided to the Name parameter, it is used. If no name is provided, the
cursor location is used to designate the element. A read-only lock is acquired on

the unit.

The In_Place parameter specifies whether the current frame should be used. The
default is false. The Visible parameter specifies whether the specification or body
should be displayed. The default, true, specifies that the specification should be
preferred.

The procedure finds the most reasonable definition of the element, given the current
editing context. If the element is:

e A subunit stub or an insertion point, the corresponding subunit is viewed (if the
Visible parameter is false).

o The visible part of a unit, the corresponding body of the unit is viewed (if the
Visible parameter is false).

o The body of a unit, the corresponding visible part of the unit is viewed (if the
Visible parameter is true).

¢ A usage of an identifier, the identifier’s defining occurrence is viewed (if the
Visible parameter is true or false).

¢ A declaration of an object, the object’s type declaration is viewed (if the Visible
parameter is true or false).

If the selected or designated item is in a subsystem spec view, then the default
session activity is used to find its definition. See Project Management (PM) for
more information on subsystems and activities.

The following tables illustrate some additional examples of the use of the Definition
command with the Visible parameter true or false. The first column specifies the
location of the cursor when the Definition command is executed. The second and
third columns specify the effect of setting the Visible parameter to true or false,
based on the position of the cursor.

RATIONAL 7ye EST-11

Ada Images

Example 1:

package Pl is new P; -- instantiation of generic
P1.B;

Table 2-1. Instantiations

Cwrsor is on: Definition (Visible=>> True} goes to: Definition (Visble=2> False) goes to:
P1.B (cursor on P1) instantiation instantiation
P1.B (cursor on B) generic specification generic body
Example 2:
type T; -- incomplete type declaration
type T is new integer; -- corresponding full type declaration

X:T;

Table 2-2. Incomplete Types

Cursor is on: Definition (Visible=>> Trxe} goes to: Definition (Visible=>> Fulse) goes to:
X:T (cursor on T) full type declaration full type declaration

full type declaration incomplete type declaration incomplete type declaration
incomplete type . .

declaration full type declaration full type declaration

Example 3:
type T is private;

type T is new integer;

X:T;
Table 2-3. Private Types
Cureor is on: Definition (Vinble=>> True} goes to: Definition (Visible=>> Filse) goes to:
X:T (cursor on T) private declaration private part
private part private declaration private declaration
private declaration private part private part

am RATIONAL

EST-12

Ada Images

Example 4:
task type T; -- task incomplete tupe
task ég;;e'T 1s —- specification

task Boag‘T is

X:T;
Table 2-4. Task Types
Cyrsor i3 on: Definstion (Visible=>> True) goes to: Definstion (Visible=2> False) goes to:
T1:T (cursor on T) task specification task body
entry call task specification task body
task specification task body task body
task incomplete type task specification task body

procedure Common.Demote

Demotes an Ada unit or element to a lower unit state. If there is no selection
or if the current selection is for an entire compilation unit, the procedure changes
the state of the Ada unit in the current window, assuming there are no dependent
units. If there are dependent units, a list of them is displayed in the menu window
that is brought onto the screen. See the description of menus in this book for more
information on the editing operations available on menus.

The specific effect of this procedure depends on the current state of the unit. If the
current state is:

o Archived: The procedure has no effect.

o Source: The procedure has no effect.

Installed: The unit is demoted to the source state.
Coded: The unit is demoted to the installed state.

If there is a selection other than the entire unit and if incremental compilation
is allowed on the element selected (see the rules on incremental compilation stated
above), this procedure removes the element from the parent unit, replaces it with an
insertion point, and leaves the element in the source state attached to the insertion
point. The source for the element can be visited later by viewing the insertion
point.

procedure Common.Edit

Creates a window in which to edit the named or selected Ada unit and demotes the
unit to source if necessary.

RATIONAL 7/1/87 EST-13

Ada Images

If there is no selection or if the current selection is for an entire compilation unit
or subunit declaration, the procedure creates a window in which to edit the unit, if
necessary, and demotes the unit to source if no units depend on the unit. If there
are deEendent units, a list of them is displayed in the menu window that is brought
onto the screen, and the operation fails. See the description of menus in this book
for more information on the editing operations available on menus. If the operation
succeeds, a write lock is acquired on the unit.

If there is a selection other than the entire unit and if incremental compilation is
allowed on the element selected (see the rules on incremental compilation stated
above), this procedure removes the element from the parent unit, replaces it with
an insertion point, and brings up a new window with the element in it.

The Name parameter specifies the unit to edit. The default is "<IMAGE>". The
In_Place parameter specifies whether the current window should be used. The
Visible parameter specifies whether the specification or body should be preferred.

procedure Common.Enclosing

Finds the parent or enclosing Ada unit of the current window and displays that
parent unit in a window. This procedure acquires a read lock on the unit. The
In_Place parameter specifies whether the current window should be used. The
Visible parameter specifies whether the specification or body should be preferred.
The Library parameter specifies whether the resulting image should be a library.

procedure Common.Explain

Provides an explanation of the error designated by the cursor position in the Ada
unit in the current window. Used after syntactic or semantic errors have been
discovered, the procedure displays an explanation of those errors in the Message
window.

procedure Common.Format

Formats the text in the current window. The procedure redraws some or all of the
image after checking for syntactic errors and correcting or prompting for some of
the syntactic constructs. If there are syntax errors in the image that cannot be
corrected, they are marked as errors.

This procedure adds ending punctuation, including semicolons, right parenthesis,
closing quotation marks, end loop statements, end if statements, and end statements
for packages and subprograms. Note that end statements are usually placed as close
to the end of the source as is legal.

Some of the behavior of the commands for editing Ada images can be tailored with
session switches.

The case of identifiers in formatted Ada images is determined by the Keyword_Case
library switch. Allowable values for this switch are Upper, Lower, and Capitalize.

See package Switches in Library Management (LM) for more information on library
switches.

EST-14 e RATIONAL

Ada Images

Example 1:

Before the Format procedure:

procedure Push 1s begin

After the Format procedure:

procedure Push 1is
begin

[statement]
end Push;

Example 2:

Before the Format procedure:

1f case when

After the Format procedure:

1f [expression] then
case [expression] is
when [expression] =>
[statement]
end case;

end if;

procedure Common.Insert-File

Copies the contents of the text file specified in the Name parameter into the current
Ada image at the current cursor position.

procedure Common.Promote

Promotes the Ada image in the current window to the next higher state. The
procedure changes the state of the Ada unit. The specific effect of this procedure
depends on the current state of the unit. If the current state is:

Archived: The unit is promoted to the source state.
o Source: The unit is promoted to the installed state.
Installed: The unit is promoted to the coded state.

Coded: Execution is attempted if the unit is selected. If parameters are required,
the prompt for them appears in the Command window.

If the current window is associated with an insertion point created by incremental
compilation and the elements in the window are to be inserted in-line in the parent
unit, this procedure causes the elements in the window to be inserted in the parent
and the window is deleted.

RAT'ONAL 7/1/87 EST-15

Ada Images

procedure Common.Release

Ends the editing of the Ada unit. The unit is unlocked, and any changes to the
image are committed (made permanent). This window specified by the Window
parameter is removed from the screen and from the Window Directory.

procedure Common.Revert

Reverts the Ada image in the current window to the current value of the underlying
permanent representation.

procedure Common.Semanticize

Checks the Ada unit for semantic correctness. The procedure checks for compliance
with the semantic rules of the Ada language. Errors discovered during semantic
checking are underlined.

procedure Common.Object.Child

Selects the Repeat child element of the currently selected element. A child element
is one of the elements at the next lower level, in a syntactic sense, from the currently
selected element. If an object at that level has not been selected before, the smallest
element enclosing the cursor is chosen. If an element at that level has been selected
before, the selection is turned off.

procedure Common.Object.Copy

Copies the selected element to the cursor position. The new copy is in the source
state. No semantic analysis is done on the selection in its new location, although a
check is performed to ensure that a declaration is put in a declarative region and a
statement is put in a statement region. Contained units of the copied element are
not copied.

procedure Common.Object.Delete

Deletes the selected element. If other elements are dependent on the element be-
cause of semantic references (from installed or coded units), the deletion fails and a
menu of the dependent units is displayed in the menu window. See the description
of the editing operations on menus in this book for more information. Contained
units of the selected element are not deleted. The cursor must be in the selection
for the operation to succeed.

procedure Common.Object.First.Child

Selects the first child of the currently selected element. The first child is the first
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Insert

Creates an insertion point in installed and coded units where statements, declara-
tions, other elements on which incremental compilation operations are supported,
or an entire compilation unit can be inserted into the current element.

EST-16 7/1/87 RATIONAL

Ada Images

procedure Common.Object.Last-Child

Selects the last child of the currently selected element. The last child is the last
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Move

Moves the selected element to the cursor position. This movement is done by
copying the element and then deleting the original element. The new copy is placed
in the source state. If other elements are dependent on the element because of
semantic references (from installed or coded units), the deletion fails but the copy
succeeds. Contained units of the selected unit are not moved.

procedure Common.Object.Next

Selects the Repeat next element past the currently selected element. A next element
is the element at the same level, in a syntactic sense, as the current element that
appears immediately after the current element. If no such selection can be made,
the next element at the enclosing level is selected.

procedure Common.Object.Parent

Selects the parent element of the currently selected element. The parent element is
the element that contains the current element at the next higher level, in a syntactic
sense, from the current element.

procedure Common.Object.Previous

Selects the Repeat previous element before the currently selected element. A pre-
vious object is the object at the same level, in a syntactic sense, as the current
element that appears immediately before the current element. If no such selection
can be made, the previous element at the enclosing level is selected.

RAT'ONAL 7/1/87 EST-17

RATIONAL

package Ada

This package contains the set of procedures and types provided for Ada object-
specific editing. The commands in package !Commands.Common can also be used
for Ada object-specific editing.

RATIONAL 7/1/87 EST-19

procedure Code_Unit
package !Commands.Ada

procedure Code..Unit

procedure Code_Unit;

Description

Changes the selected Ada unit or the Ada unit in the current window to the coded
state.

The actual effects of this procedure depend on the current state of the unit. If the
current state of the unit is:

Archived: The unit is promoted to the coded state.

Source: The unit is promoted to the coded state.
Installed: The unit is promoted to the coded state.
Coded: The procedure has no effect.

This procedure may involve coding subunits, the parent unit, or the corresponding
visible part; however, the transitive closure is not coded.

If the operation succeeds, the unit will be read only.
Units can be demoted to the archived state using the !Commands.Compilation.De-

mote procedure, with the Goal parameter assigned the value of Compilation.Ar-
chived.

Errors

If the unit is in the archived or source state and contains syntactic or semantic
errors, the operation will fail.

If another user has a write lock on the unit, the operation will fail.

All referenced specs should be coded to guarantee success.

EST-20 7/1/87 QATIONAL

procedure Code_Unit
package !Commands.Ada

References

procedure Install_Unit

procedure Source_Unit

LM, procedure Compilation.Demote
LM, procedure Compilation.Make

LM, procedure Compilation.Promote

RATIONAL 71/er

EST-21

procedure Create_Body
package !Commands.Ada

procedure Create_Body

procedure Create_Body (Name : String := "<IMAGE>");

Description

Inserts a template for the body of the named visible part, the selected visible part,
or the visible part in the current window.

This procedure builds a template for the body of the currently selected or named
visible part or the visible part in the current window. The template is brought up
in a new window, and prompts are provided for statements that must be completed.
Any wsth clauses that exist in the visible part are copied into the body template.

Where possible, the body is inserted into the enclosing program unit as an in-line
program unit. In-line program units can be changed to separate subunits with the
Make_Separate procedure. If the body is built directly into a library, the unit is a
compilation unit.

This procedure allows accurate construction of corresponding bodies to existing
visible parts. It constructs the skeleton of arbitrary program unit specifications.

Parameters

Name : String := "<IMAGE>";

Specifies the visible part for which a body should be built. If no name is provided,
the current image is used.

Restrictions

The named unit or current image must be a visible part of a program unit.

Example
Before the Create_Body procedure is executed, the current selection is:
function Pop return Boolean;

After the Create_Body procedure is executed, a new window is created that con-
tains:

EST-22 7/1/87 RAT'ONAL

procedure Create_Body
packaze !Commands.Ada

function Pop return Boolean is
begin

[statement]
end Pop;

RAT'ONAL 7/1/87 EST-23

procedure Create_Private
package !Commands.Ada

procedure Create—_Private

procedure Create_Private (Name : String := "<IMAGE>");

Description
Inserts a template for the private part of the current package visible part.

This procedure creates the private region of the package. It has no effect if the
private part already exists and contains all of the declared private types. The pro-
cedure applies recursively to enclosed packages. A prompt is left for the completion
of each private type or deferred constant.

Parameters

Name : String := "<IMAGE>";

Specifies the name of the package whose private part should be created. The default
creates a template for the private part of the current image.

Restrictions

The package must be in the source state.

Example

Before this procedure, a package contained:

package A is
tyoe T is private;
package B 1is
type S 1s private;
X : constant S;
end B;
end A;

If the private part of either type has not been completed, possibly because semantic
analysis found the above package to be incomplete, the Create_Private procedure
is executed. The package now contains:

EST-24 e RATIONAL

package A is
type T is private;
package B is
type S is private;
X : constant S;

private
tyoe S is new [expression];
X : constant S := [expression];
end B;
private

type T is new [expression];
end A;

procedure Create_Private
package !Commands.Ada

RATIONAL 7y/er

EST-25

procedure Delete_Blank_Line
package !Commands.Ada

procedure Delete_Blank_Line

procedure Delete Blank_Line (Repeat : Positive := 1};

Description
Not currently implemented.
Specifies that Repeat blank lines should be deleted after the current line (that is,

the line on which the cursor is currently located). If one of the specified lines is a
nonblank line, the deletion stops, and the nonblank line is not deleted.

EST-26 7/1/87 PAT'ONAL

procedure Diana_Edit
package !ICommands.Ada

procedure Diana_Edit

procedure Diana_Edit (Name : String := "<CURSOR>");

Description
For Rational internal use.
Shows a read-only image of the internal form of the DIANA tree corresponding to

the node given, based, by default, on the cursor position. This can be used only on
Ada units or in Command windows.

Parameters

Name : String := "<CURSOR>";

Specifies the name of the image. The default, "<CURSOR>", specifies the node on
which the cursor is currently located.

R)ATIONAL 7/1/87 EST-27

procedure Get_Errors
package !{Commands.Ada

procedure Get_Errors

procedure Get_Errors;

Description
Causes the error underlines in the image to be redisplayed on the image.

These error underlines result from errors in the image. To remove error underlines,
use the Common.Clear_Underlining procedure.

This procedure is useful to display underlining resulting from errors after the Clear-
—Underlining procedure has been used.

This command is very useful in the following scenario. Assume that you have a
unit that has no syntactic errors and many semantic errors, so you make changes
to the unit to correct semantic errors. Inadvertently, you add a syntactic error,
which is underlined when you press [Format). Because all the semantic errors are still
underlined, you may find it difficult to locate the syntactic error. Thus, you may
want to execute the Common.Clear_Underlining command to remove all underlines.
Then you can press [rormat), which displays the underlining for the syntactic error.
Once you have corrected the syntactic error, you can press again to remove
the underlining for syntactic errors that have been corrected. Then you can use the
Get_Errors procedure to display the semantic errors again 8o that you can continue
correcting them.

Restrictions

This procedure displays only the latest errors found by the Common.Semanticize
procedure.

References

procedure Common.Clear_Underlining

EST-28 7/1/87 QATIONAL

procedure Insert_Blank_Line
package !Commands.Ada

procedure Insert_Blank_Line

procedure Insert_Blank_Line (Repeat : Positive := 1);

Description
Not currently implemented.
Specifies that Repeat blank lines should be inserted before the current line (that is,

the line on which the cursor is currently located). When the insertion has completed,
the cursor will be on the first blank line inserted.

RATIONAL 7/1/87 EST-29

procedure Install_Stub
package !Commands.Ada

procedure Install_Stub

procedure Install_Stub;

Description

Installs the declaration or stub in the parent unit or library for the unit in the
current window.

You might want to install the stub for a unit so that it appears in the library
structure or to create a link for it. For subunits, you might want to install the stub
8o the subunit can be compiled against.

If the unit cannot be installed but the stub can be, this procedure installs the
stub (makes the insertion point into a declaration for the unit) without additional
semantic checking of the unit.

References

procedure Common.Object.Insert

EST-30 7/1/87 QAT'ONAL

procedure Install-Unit
package !Commands.Ada

procedure Install_Unit

procedure Install_Unit;

Description

Changes the selected or designated Ada unit, or the Ada unit in the current window,
to the installed state.

The actual effect of this procedure depends on the current state of the Ada unit. If
the unit is in the following state:

Archived: The unit is promoted to the installed state.
Source: The unit is promoted to the installed state.

Installed: The procedure has no effect.
Coded: The unit is demoted to the installed state.

If other units depend on the unit and the unit is to be demoted, the operation fails
and the dependent units are displayed in the menu window that is brought onto
the screen. See the description of menus in this book for more information on the
editing operations available on menus.

Units can be demoted to the archived state using the !Commands.Compilation.De-
mote procedure, with the Goal parameter assigned the value of Compilation.Ar-
chived.

Errors

If the unit is in the archived or source state and contains syntactic or semantic
errors, the operation will fail.

If all referenced specs are not installed or coded, the operation will fail.

RATIONAL 7/1/er EST-31

procedure Install_Unit
package !Commands.Ada

References

procedure Code_Unit

procedure Install_Stub

procedure Source_Unit

LM, procedure Compilation.Demote
LM, procedure Compilation.Make

LM, procedure Compilation.Promote

EST-32

e RATIONAL

procedure Make_Inline
package !Commands.Ada

procedure Make_Inline

procedure Make_lInline;

Description

Changes the subunit in the image or selected subunit stub from a subunit to an
in-line program unit.

This procedure removes the separate clause and moves the body for the subunit
into the parent unit. The library entry for the subunit is removed from the library
structure.

Program units can be created as either in-line program units or separate subunits.
The Make_Inline procedure allows a program unit that is a separate subunit to be
changed to an in-line program unit.

Restrictions

The unit must be in the source or installed state.

Example

If an Ada unit contains the following subunit stub:
package body Test 1is

ﬁéécedure Input _File is separate;

and that subunit has the following contents:

separate (Test);
procedure Input_File 1is
begin

File_lo. Input;
end Input_File;

then placing the cursor in a window that contains the subunit, or selecting the

subunit stub and then executing the Make_Inline procedure, removes the subunit
stub and replaces it with the contents of the program unit as follows:

R)ATIONAL 7/1/87 ' EST-33

procedure Make_Inline
package !Commands.Ada

package body Test 1is

procedure Input_File is
begin

File_lo. Input;
end Input_File;

EST-34 7/1/87 RATIONAL

procedure Make_Separate
package !Commands.Ada

procedure Make_Separate

procedure Make_Separate;

Description

Changes the selected subprogram from an in-line program unit to a separate sub-
unit.

This procedure replaces the body with a separate clause and creates a separate
library entry containing the body for the unit.

Program units can be created as either in-line program units or separate subunits.
The Make_Separate procedure allows a program unit that is an in-line program
unit to be changed to a separate subunit.

Restrictions

The unit must be in the source or installed state.

Example
If an Ada unit in the source state contains the following in-line program unit:
package body Test is
béécedure Input_File is
begin

File_lo. Input;
end Input_File;

then selecting the entire in-line procedure unit (the entire Input_File procedure)
and executing the Make_Separate procedure creates a subunit stub as follows:
package body Test 1is

ﬁéécedure Input_File is separate;

and creates the subunit associated with the stub as follows:

separate (Test};
procedure |nput_File is
begin

File_lo. !nput;
end input_File;

RAT'ONAL 7/1/87 EST-35

procedure Other_Part
package !Commands.Ada

procedure Other_Part

procedure Other_Part (Name : String
in_Place : Boolean :

"<IMAGE>";
False};

Deseription

Finds and displays the other part of the named program unit or the program unit
in the current window.

This procedure finds the corresponding visible part if the named program unit is a
body, or finds the corresponding body if the named program unit is a visible part,
and displays this other part in a window. If no program unit is named, the program
unit in the current window is used. If no program unit is named and the current
window does not contain a program unit, then the procedure has no effect.

Parameters

Name : String := "<IMAGE>";

Specifies the program unit whose other part is desired. The default is to use the
program unit in the current window.

In_Place : Boolean := False;

Specifies whether the current frame should be used to bring up the image. The
default specifies that the least recently used frame should be used.

EST-36 7/1/87 RA\TIONAL

procedure Replace_Id
package !Commands.Ada

procedure Replace_Id

procedure Replace_Ild (0ld_ld : String := ">>0LD NAME<L";
New_Id : String := "D>>NEW NAME<<");

Description

Replaces all identifiers that match the first string with the second string in the
current selection.

This procedure is similar to, but more selective than, a general replace mechanism.
It changes Ada identifiers (not comments or identifier fragments) in the current
window.

Parameters

01d_!d : String := ">>0LD NAMELKL";

Specifies the identifier to be replaced. It is not case-sensitive. The default parameter
placeholder ">>0LD NAME<<" must be replaced or an error will result.

New_Id : String := ">>NEW NAME<LL™;

Specifies the new identifier. The default parameter placeholder ">>NEW NAME<<”
must be replaced or an error will result.

Restrictions
The replacement is confined to the highlighted area.
This command requires the unit to be in the source state.

The user must be able to acquire a write lock on the unit for the operation to
complete successfully.

Old_Id must be a simple identifier. New_Id can be any name—an identifier, a
qualified name, command reference, and so on.

R’AT'ONAL 7/1/87 EST-37

procedure Replace_Id
package !Commands.Ada

Example

Given the following procedure:

procedure Proc is
begin

Dure;
end Proc;

the Replace_Id procedure can be used to replace both the name of the procedure
and the name of the procedure called by selecting the procedure and executing:

Replace_Ild {"proc", "foo"});
Replace_id ("dure", "bar"};

The procedure is as follows:

procedure Foo is
begin

Bar;
end Foo;

Compare the behavior of this procedure with the action of a typical string replace-
ment capability. After a string replacement of the same strings in the example
procedure, the procedure might look like this:

fooebar foo is
begin

bar;
end foo;

EST-38 7/1/87 BA\-”ONAL

procedure Show._Usage
package !Commands.Ada

procedure Show_Usage

procedure Show_Usage (Name : String = "<CURSOR>";
Global : Boolean := True;
Limit : String := "<ALL_UWORLDS>";
Closure : Boolean := False);

Description

Determines the actual usages, within the scope defined by Limit, of the declaration
specified in the Name parameter and displays a list of these units in an xref window.

The usages can be seen by taking the definition of the entries in the xref, which
brings up images of these units in windows, with each actual usage of the declara-
tion underlined. The !Commands.Editor.Cursor.Next and Editor.Cursor.Previous
procedures can be used to move between these usages. For more information, see
the description of the editing commands available on xrefs in Xref Images in this
book.

Note that if the actual usages are only in the current unit, each usage is underlined
and an xref window is not created.

Parameters

Name : String := "<CURSOR>";

Defines the identifier whose usages are to be displayed. By default, the Show_Usage
procedure determines the usages of the designated identifiers in the current unit
and in all units containing compiled references to the defining occurrence of the

identifier.

Global : Boolean := True;

Specifies, when true, that units other than the unit specified should be marked.
When false, this parameter specifies that only the unit named should be marked.

I?ATIONAL 7/1/87 EST-39

procedure Show_Usage
package !{Commands.Ada

Limit : String := "<ALL_WORLDS>";

Specifies, when the Global parameter is true, the limit for the range of units. The
default, "<ALL_WORLDS>", specifies that references in any world should be included.
Other special names that can be used for this parameter are:

“CUNITS>" Specifies only the units named in the operation.

"<SUBUNITS>" Specifies only the units named in the operation and their
subunits.

"<DIRECTORIES>" Specifies only the units in the same set of directories as the
units specified to the operation.

"<WORLDS>" Specifies only the units in the same world as the units speci-
fied to the operation.

"<ALL_WORLDS>" Specifies a unit in any world.

Closure : Boolean := False;

Specifies whether the command should show indirect references to a unit. For type
declarations, it shows derived types, subtypes, and accesses to type. For packages or
subprograms, it shows renames. The default, false, specifies that indirect references
should not be shown.

Restrictions

This procedure finds usages only in installed or coded units.

EST-40 7/1/87 RAT'ONAL

procedure Show_Unused
package !Commands.Ada

procedure Show_Unused

"<IMAGE>";

procedure Show_Unused (In_Unit : String
True);

Check_Other_Units : Boolean :

Description
Shows the declarations that are not referenced in a unit.

The unused references are underlined.

Parameters

In_Unit : String := "<IMAGE>";
Specifies the unit to check for unused references. The default is the current image.

Check_Other_Units : Boolean := True;

Specifies whether to check other units that directly or indirectly wsth In_Unit for
usage of the declarations. The default, true, specifies that other units should be
checked.

Restrictions
The unit must be in the installed or coded state.

The referencing units must be in the installed or coded state.

RATIONAL 7y/er EST-41

procedure Source_Unit
package !Commands.Ada

procedure Source_Unit

procedure Source_Unit;

Description

Changes the Ada unit in the current window, or the selected or designated unit, to
the source state.

The actual effects of this procedure depend on the current state of the unit. If the
current state of the unit is:

o Archived: The unit is promoted to source.

o Source: The procedure has no effect.

¢ Installed: The unit is demoted to the source state.
o Coded: The unit is demoted to the source state.

If other units depend on the unit and the unit is to be demoted, the operation fails
and the dependent units are displayed in the menu window that is brought onto
the screen. See the description of menus in this book for more information on the
editing operations available on menus.

Units can be demoted to the archived state using the !Commands.Compilation.De-
mote procedure, with the Goal parameter assigned the value of Compilation.Ar-
chived.

This procedure brings a new unit to the source state and places an entry for it in
the library structure under its proper name. The write lock on the unit is released
(the unit is read only).

References

procedure Code_Unit

procedure Install_Unit

LM, procedure Compilation.Demote
LM, procedure Compilation.Make

LM, procedure Compilation.Promote

EST-42 e RATIONAL

procedure Withdraw
package !Commands.Ada

procedure Withdraw

procedure Withdraw (Name : String :

"CIMAGE>") ;

Description

Withdraws the stub (library entry for) of the named Ada unit, the selected Ada
unit from its parent, or the Ada unit in the current window and demotes the unit
to the source state.

The stub is replaced with an insertion point.

The actual effects of this procedure depend on the current state of the unit. If the
current state of the object is:

Archived: The procedure has no effect.
Source: The stub declaration i8 withdrawn from the enclosing unit or library.

Installed: The unit is demoted to the source state and the stub declaration is
withdrawn from the enclosing unit or library.

Coded: The object is demoted to the source state and the stub declaration is
withdrawn from the enclosing unit or library.

If other units depend on the unit and the unit is to be demoted, the operation fails
and the dependent units are displayed in the menu window that is brought onto
the screen. See the description of menus in this book for more information on the
editing operations available on menus.

The user may need to withdraw a unit to change its name or its parameter profile.

Parameters

Name : String := "<IMAGE>";
Specifies the name of the unit to be withdrawn. The default is the current image.

QAT'ONAL 7/1/87 EST-43

procedure Withdraw
package !Commands.Ada

Restrictions

A subunit cannot be withdrawn to be made a child of another unit; however, it can
be withdrawn for a change to be made to its name.

Example 1
The Withdraw procedure can be useful in changing the name of a unit.

To rename a unit:

1. Use the Withdraw procedure to withdraw the unit.
2. Edit the name as appropriate.
3. Repromote the unit to the desired state.

Example 2

The Withdraw procedure can be used to change the name of both the spec and the
body of a unit or their parameter profiles.

To rename both parts:

Use the Withdraw procedure to withdraw the body.
Use the Withdraw procedure to withdraw the spec.
Edit the spec as appropriate.

Promote the spec to the desired state.

Edit the body as appropriate.

Promote the body to the desired state.

AN S o e

end Ada;

EST-44 7/1/87 RATIONAL

Command Images

This section describes type-specific editing operations for command images in Com-
mand windows. Structurally similar to Ada units, commands are used to run Ada
programs (which can be system commands or user programs). Commands do not
have permanent underlying representations in the directory system (although his-
torical records are maintained for perusal and editing/reexecution; see below).

Commands are created in a Command window with the Common.Create-Command
procedure. You can edit them with with common editing operations from package
{Commands.Common. The common commands that apply to commands are doc-
umented in this section. Additional editing operations available for commands in
package !Commands.Command are documented after this section.

Image Structure

Commands consist of Ada block statements with special treatment of the declar-
ative/exception parts and sequence of statements. Here is a fypical example of a
command from a Command window created from an Ada unit:

declare
use Editor, Common, Ada, Debug;
begin
[Ada-statement]
end;

By default, the declarative region contains a use clause for packages !Commands-
.Editor and !Commands.Common. Based on the type of image the Command win-
dow is associated with, more entries can be added automatically to this use clause
to give direct visibility to additional type-specific editing operations. In the above
example, the commands in package !Commands.Ada and !Commands.Debug are
also visible because of the addition of Ada and Debug to the use clause.

The statement prompt indicates where Ada statements can be entered. These
statements are compiled and executed when the command is committed or promoted
by pressing [Commig] OF [Promord] (this is called ezecuting a command).

All statements entered in the statement region of the block become prompts when
the command is executed. This allows new commands to be entered over the old

RATIONAL 7/1/87 EST-45

Command Images

commands in the prompt and facilitates reexecuting the existing command or turn-
ing it into text, editing it, and then executing it.

Changes can also be made to the declarative region of the block. These changes do
n}c:t becgme prompts when the command is executed, and they stay for the life of
the window.

Executing Command Windows

After [Promote] OF [Commit) is pressed, the Command window, actually an Ada declare
block, is semanticized. First, declarations are checked to determine if they are
local declarations. If the declarations are not local, simple names (for example,
Access_List) are resolved using the searchlist. String literals used as a name prefix
(for example, “!Commands.Access_List”.Display) are resolved in the current con-
text. (Note that string literals used as a name prefix must be the name of a library.)
The current context is the closest enclosing library for the image in the major win-
dow to which the Command window is attached. If the image in the major window
is a library, that library is the current context, rather than the enclosing library.

From an 1/O window, the context for the Command window is that of the last job
that read from or wrote to that window.

Key Concepts

Designation

Commands have the same form and structure as Ada images. Designation for
commands is identical with that for Ada (see Ada Images, in this book).

Unit States

Commands do not have unit states as Ada units do. However, the action of com-
mitting or promoting a command implicitly promotes it from source to coded, elab-
orates and executes it, and then demotes it to source when execution terminates.

Versions
Commands do not have versions because there is no underlying permanent object.

Histories

Previous commands are remembered for the life of a Command window. This
history of commands allows them to be reviewed, edited if necessary, and then
reexecuted. Once a command is executed in a Command window, it is remembered
in the history and the statements in the block are displayed as a prompt. The
command can be reexecuted with the prompt value for the statements or the prompt
can be changed to a new value. These changes are recorded in the history when the
command is next executed.

To return to the [statement] prompt, press [Ean]. The command currently displayed
in the Command window will be replaced with the [statement] prompt.

EST-46 7/1/87 RATIONAL

Command Images

The history is maintained as a series of commands. The !Commands.Common.Undo
procedure steps backward in the series; the !{Commands.Common.Redo procedure
steps forward in the series. At each step, the command can be executed or used in
constructing a new command.

Library Switches

Some of the behavior of the commands for editing commands can be tailored with
library switches.

The case of identifiers in formatted commands is determined by the Keyword_Case
library switch. Allowable values for this switch are Upper, Lower, and Capitalize.

See LM, package Switches, for more information on library switches.

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing commands. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Ends the editing of the command and removes the Command window from the
screen. The Window parameter specifies which window should be removed from
the screen. The default is the current image, which is the window above which or
on which the command is executed.

procedure Common.Clear.Underlining

Removes all underlines in the current Command window.

procedure Common.Commit

Executes the command in the Command window by formatting, semanticizing, and
coding it. This procedure is identical to the Promote procedure.

procedure Common.Complete

Completes the Ada fragment designated by the cursor using Ada semantics for
name resolution. If more than one name could complete the identifier, and the
Menu parameter is true, a list of choices is produced in the menu window. See the
description of menus in this book for more information on the editing operations
available on menus.

This procedure completes only names of identifiers that are declared in the frag-
ment in the Command window or that are visible through the searchlist. See pack-
age Search_List in Session and Job Management (SIM) for more information on
searchlists.

Declarations in Command windows must be selected before the Complete command
will actually complete them. Statements need not be selected for the Complete
command to complete them.

RATIONAL 7/1/87 EST-47

Command Images

procedure Common.Create.Command

Creates a Command window below the current Command window if one does not
exist; otherwise, it puts the cursor in the existing Command window below the
current Command window. This Command window initially has a use clause:

use Editor, Command, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, {Commands.Common, and !Commands.Command without requiring
qualification for names resolved in the command.

For certain other window types, other packages are added to the use clause to
provide visibility to operations used to edit those kinds of windows.

procedure Common.Definition

Finds the defining occurrence of the named or designated element and brings up
its image in a window on the screen, typically with the definition of the element
selected. The Semanticize or Promote procedure must have been executed on the
window containing the named or designated element. If a name is provided for the
Name parameter, it is used. If no name is provided, a selection is used if one exists.
Otherwise, the cursor location is used to designate the element.

The procedure finds the most reasonable definition of the element, given the current
editing context and the value of the Visible parameter. The Name parameter spec-
ifies which element’s definition should be given. The In_Place parameter specifies
whether the current window should be used, and the Visible parameter specifies
whether the specification or the body should be preferred.

procedure Common.Demote

Ends the editing of the command. The contents of the Command window are
destroyed and the original contents are restored. All history is lost.

procedure Common.Edit
Replaces the contents of the Command window with a [statement] prompt.

procedure Common.Enclosing

Finds the major window to which the Command window is attached and puts the
cursor in it. The In_Place parameter specifies whether the current window should
be used. The Library parameter specifies whether the enclosing object should be a
library.

procedure Common.Explain

Provides an explanation of errors in the command in the current window. Used
after syntactic or semantic errors have been discovered, the procedure displays an
explanation of those errors in the Message window.

EST-48 7/1/87 BA\-HONAL

Command Images

procedure Common.Format

Formats the text in the current Command window. The procedure redraws some
or all of the image after checking for syntactic errors and correcting or prompting
for some of the syntactic constructs. If there are syntactic errors in the image that
cannot be corrected, they are marked as errors.

Some of the behavior of the commands for editing commands can be tailored with
session switches.

The case of identifiers in formatted Ada images is determined by the Keyword_Case
library switch. Allowable values for this switch are Upper, Lower, and Capitalize.
Only one of these switches should have the value of true. The switch that is true
determines how identifiers are displayed after the Format operation.

See package Switches in Library Management (LM) for more information on session
switches.

Example 1:
Before the Format procedure:
declare
use Editor, Common, Ada;
begin
i
end;

After the Format procedure:

declare
use editor, Common, Ada;
begin
if [expression% then
(statement
end if;
end;

procedure Common.Insert.File

Copies the contents of the named text file into the Command window at the current
cursor position.

procedure Common.Promote

Executes the command by formatting, semanticizing, and coding it. This command
is the same as the Commit procedure.

procedure Common.Redo

Recalls commands entered in a Command window after the Undo procedure is
executed on the Command window. The Rational Editor remembers changes made
to command images since the Command window was created. Each execution of
the Complete, Edit, Demote, and Revert procedures marks another change, as
well as execution of the command. The Repeat parameter specifies the number of
commands to move forward in the history.

RATIONAL 7/1/81 EST-49

Command Images

procedure Common.Release

Ends the editing of the command. The Command window is destroyed and removed
frorgl thele scrt:len. All history is lost. The Window parameter specifies the window
to be released.

procedure Common.Revert

Redraws the command in the current window.

procedure Common.Semanticize

Checks the command for semantic correctness. The procedure checks for com-
pliance with the semantic rules of the Ada language. Errors discovered during
semantic checking are underlined. This procedure must be executed either directly
or indirectly (by using the Promote procedure) before the Definition procedure will
execute successfully.

procedure Common.Undo

Recalls changes previously made to a command. The Rational Editor remembers
changes made to command images since the Command window was created, called a
history. Each execution of the Edit, Demote, and Revert procedures marks another
change, as well as each execution of the command. As commands are undone, the
last undone command in the history becomes the place where new user-entered
commands are saved in the history. These changes can be reinstated with the
Redo procedure. The Repeat parameter specifies the number of commands to move
backward in the history.

procedure Common. Write_File

Copies the contents of the selection in the Command window to the file specified
by the Name parameter.

procedure Common.Object.Child

Selects a child element of the currently selected element. A child element is one of
the images at the next lower level, in a syntactic sense, from the current element.
If an element at that level has not been selected before, the element on which the
cursor is currently located is chosen. If an element at that level has been selected
before, the selection is turned off.

procedure Common.Object.First-Child

Selects the first child of the currently selected element. The first child is the first
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Last_Child

Selects the last child of the currently selected element. The last child is the last
one of the set of elements at the next lower level, in a syntactic sense, from the

currently selected element.

EST-50 7/1/87 RATIONAL

Command Images

procedure Common.Object.Next

Selects the Repeat next element past the currently selected element. A next element
is the element at the same level, in a syntactic sense, as the current element that
appears immediately after the current element. If no such selection can be made,
the next element at the enclosing level is selected.

procedure Common.Object.Parent

Selects the parent element of the currently selected element. The parent element is
the element that contains the current element at the next higher level, in a syntactic
sense, from the current element.

procedure Common.Object.Previous

Selects the Repeat previous element before the currently selected element. A pre-
vious element is the element at the same level, in a syntactic sense, as the current
element that appears immediately before the current element. If no such selection
can be made, the previous element at the enclosing level is selected.

RATIONAL 7/1/er EST-51

RATIONAL

package Command

This package contains the set of procedures and types provided for command object-
specific editing. The commands in package !Commands.Common can also be used
for command object-specific editing.

RATIONAL 7/1/er EST-53

procedure Debug
package !Commands.Command

procedure Debug

procedure Debug;

Description

Executes the program named in the Command window or the selected program in
a library with debugging enabled.

This procedure is normally bound to the key combination on the Ra-
tional Terminal keyboard, which executes the program with the Rational Debugger
enabled (see the Keymap in Volume 1 of the Rational Environment Reference Man-

ual).

If a selection is used to specify the program to execute, the program must not
require the user to enter parameter values. If the program does require entry of
parameters, an error message will result.

If the Rational Debugger is currently connected to a job, that job is killed. This
behavior is controlled by the Debug_Kill_Old_Jobs debugger flag (see Debugging
(DEB) for more information). If the Debug-Kill-Old_Jobs flag is true, the default
value, then the job being debugged is killed when a new Debug call is made. If
false, the current job is released and continues its normal execution.

If the Debug_Require_Debug._Off debugger flag is true and if a job is being de-
bugged, this command fails. With this flag true, the job currently being debugged
must first be eliminated with the !Commands.Debug.Debug_Off procedure. For
further information on this procedure, see DEB, package Debug.

As part of executing the Debug procedure:

¢ The control and evaluation contexts are cleared.
¢ Any stepping operations in progress for the old job are canceled.
e Tracing requests are canceled.

o Exception-handling requests are cleared (controlled by the Save_Exceptions de-
bugger flag).

e The default, catch all exceptions request, is installed.

¢ Any active breakpoints are deactivated.
This procedure differs from the !Tools.Debug-Tools.Debug-On procedure, which
enables debugging only if the task calling Debug-On is part of the job being de-

bugged and never results in a job being killed. For further information on the
Debug-On procedure, see DEB, package Debug-Tools.

EST-54 7/1/87 BATIONAL

procedure Debug
package !Commands.Command

Example

To debug a program started by the Io_Simulator command, enter in a Command
window:

lo_Simulator;

and then either create a new Command window attached to the first and execute
the Debug procedure or press the key to which this procedure is bound (normally

the combination).

You can now debug the program using debugging commands and the Debugger
window.

References
DEB, procedure Debug.Debug_Off

DEB, ty§)e Debug.Option, enumeration Kill_Old_Jobs (see also procedure Debug-
.Enable

DEB, type Debug.Option, enumeration Require_Debug_Off (see also procedure De-
bug.Enable)

DEB, type Debug.Option, enumeration Save_Exceptions (see also procedure De-
bug.Enable)

DEB, procedure Debug_Tools.Debug_On

RATIONAL 7y EST-55

procedure Spawn
package !{Commands.Command

procedure Spawn

procedure Spaun;

Description

Spawns a background job to execute the command in the Command window or a
program selected in a library window.

This procedure is the same as the !Commands.Common.Promote procedure for
Command windows, except that the Spawn procedure executes the Command win-
dow as a background job.

If a selection is used to specify the program to execute, the program must not require
the user to enter parameter values. However, it will accept parameters with default
values, including special names. If the program does require entry of parameters,
an error message will result.

This procedure is similar to executing a Command window normally (with the Com-
mon.Promote procedure) and then interrupting that execution with the {Commands-
Job.Interrupt procedure. The job is run as a background job, and control of the
cursor is returned to the user immediately.

end Command;

EST-56 7/1/87 RAT'ONAL

Common Concepts and Operations

This section describes the commands and key concepts for type-specific editing
commonly available for images.

Several concepts apply to all type-specific editing operations in the Environment.
These concepts pertain to commands executed from the Rational Editor as well as

to the specific objects or items being edited.

For many of these concepts, the exact implementation may differ slightly for each
particular image type. Examples of these concepts, details for each type, and the
editing commands available for each type are contained in the documentation for
the specific image types in this book.

Image Types

The image type is displayed in the banner for the window, just to the right of
the name enclosed in parentheses. This type determines the type-specific editing
operations available on the image in the window. Because Command windows have
no banners, their image type is implicit and is not displayed.

Command windows opened from these images have use clauses that provide di-
rect visibility to the commands supported on a type-specific basis. Use clauses for
packages !Commands.Editor and !Commands.Common are always present. Addi-
tional use clauses will be added based on the specific type of image with which the
Command window is associated.

Designation

Because the Rational Editor knows the form and structure of different types of
images, it provides operations for desi%nating structural components of the image.
The two ways of designating structural components are:

e Selection performed with the commands in package Common.Object or package
Editor.Region (for further information, see EI, package Editor).

o Cursor position.

Designation is used by several commands as an alternative to naming an item.
When an item is being moved or copied, designation can be used instead of naming
the object explicitly.

RAT'ONAL 7/1/87 EST-57

Common Concepts and Operations

Special Names

Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow the user to designate without
providing a pathname. Anywhere that a string name can be used, a special name
can be used. Special names take the form “<special name>”, where special name
specifies the text, object, region, or activity, as described below:

"<SELECT ION>" References the highlighted object, if the cursor is located in
a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlight in the window

"<IMAGE>" References the highlighted object, if the cursor is in a high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"KTEXT>" References the object named in the highlighted text in the
image in the window.
"CACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Special names are used as default parameter values to many operations. The user
can replace them with another special name or other form of string name, as ac-
cepted by that operation.

Versions

The Environment maintains multiple versions for each object in the directory sys-
tem. Typically a new version of an Ada unit is created each time the image is
first edited (see “Committing Images,” below). New versions of text files are cre-
ated when the file is committed or promoted. Version numbers are assigned by the
Environment when each version is created.

One version of each object is called the default version. This is typically the newest
version, but it can be any version. When an object is edited or viewed, the default
version of the object is used. All other versions of the object are considered deleted.
Any particular version of an object can be undeleted, in which case it becomes the
default version and the previous default version is deleted.

The Environment allows a specified number of old, deleted versions of an object to
be retained. This number of deleted versions, called the retentson count, can be
changed for any particular object. When this number is exceeded by the creation
of another new version of an object, the oldest version of the object is destroyed.

More information about versions, including deleting and undeleting versions, speci-
fying versions, and changing the retention count, can be found in Library Manage-

ment (LM).

EST-58 e RATIONAL

Common Concepts and Operations

Committing Images

Objects within the directory system are permanent. For each object being edited,
however, the Rational Editor internally creates temporary copies that are not part
of the directory system. These temporary copies disappear if the session ends or if
the system is shut down.

The temporary, presumably changed, copy remains temporary until the changes in
the edited image are committed, thus making them permanent and a part of the
directory system. Committing an image of an object can be done explicitly using
the Common.Commit procedure, or it can be done implicitly by several operations
such as the Common.Promote and Common.Release procedures.

Note that some image types do not require explicit committing because any changes
made to them are immediately committed. Editing searchlists is one example of
this.

Histories

The Rational Editor maintains histories of Command window image types. These
histories allow changes to be undone, going back in time through each set of changes
to the beginning of time for the image. Change histories can be stepped forward or
backward with the Common.Redo and Common.Undo procedures, respectively.

Locks

Locks are used to prevent simultaneous updates to objects by different agents and
to prevent updates when others are viewing objects. These locks are created by the
Rational Editor and other Environment tools under various conditions. Locks can
be created for all objects that exist in the directory system and for certain other
entities in the Environment.

There are two kinds of locks: read only and write. A read-only lock is created when
an object is viewed. A write lock is created when an object is made modifiable.

Updating Images

The images in windows are derived from underlying representations of the objects
or information being edited. At times these underlying representations may change
(for ex)a.mple, as the result of a job manipulating a file or adding a new unit to a
library).

The Rational Editor attempts to keep the images up to date with respect to these
changes. All images visible on the screen are automatically updated to reflect
changes in the underlying representations whenever a job in the user’s session fin-
ishes. An implication of this redraw algorithm is that, when a new window is
manually brought onto the screen, its image may not be current.

The user can also cause images to be refreshed explicitly by executing the Com-
mon.Revert command. In addition, some type-specific editing commands cause
images to be updated implicitly.

QAT'ONAL 7/1/87 EST-59

Common Concepts and Operations

Library Switches

Some of the characteristics of the type-specific editing operations described in this
section can be tailored using library switches. This tailoring includes:

¢ Specifying the case of identifiers in formatted Ada images.
o Specifying the format of output from jobs in text windows.

See LM, package Switches, for more information on library switches.

EST-60 7/1/87 E)ATIONAL

package Common

This package defines the commands that pertain to all type-specific editing oper-
ations. These commands typically are bound to keys (see the Keymap in Volume
1 of the Rational Environment Reference Manual). These commands perform the
correct operation for the type of image in the current window.

RATIONAL 7y

EST-61

procedure Abandon
package !Commands.Common

procedure Abandon

procedure Abandon (Window : String := "<IMAGE>");

Description
Abandons editing of the current image and does not save changes.

This procedure abandons any changes made to the image in the current window
since the last commit, releases any locks held by the Rational Editor on the entity
corresponding to the image, destroys the window, and removes the image from the
Window Directory.

When some objects are edited, those objects are locked so that no other user can
edit them. This procedure releases the locks and destroys the window but does
not commit the object first. It is similar to the Release procedure except that any
changes since the last commit on the object are not saved.

Specifically, this procedure has the following effects:

o Ada tmages: Ends the editing of the Ada image. Any changes made to the image
since the last commit or promote are lost. However, incremental changes made
to installed or coded units, which are permanent as soon as they are promoted,
are not lost. The window is removed from the screen and from the Window
Directory. The Window parameter specifies the window to be removed from the
screen. The default is the current image.

e Command tmages: Ends the editing of the command and removes the Command
window from the screen. The Window parameter specifies which window should
be removed from the screen. The default is the current image, which is the
window above which or on which the command is executed.

o Debugger: Deletes the Debugger window if the Debugger has been killed. Oth-
erwise, the command has no effect. This command has the same effect as the
Release procedure.

o Help and job windows: Removes the window created by the !Commands.What-
.Does, !\Commands. What.Command, and !Command.What.Jobs procedures from
the screen. This command has the same effect as the Release procedure.

o Library smages: Ends the editing of the specified image. The window is removed
from the screen and from the Window Directory. The Window parameter al-
lows you to specify which window should be removed. The default is the current
image, unless there is a selection in that image. In that case, the selection is
abandoned. Procedure Complete refreshes the library image in the current win-
dow to the current value of the underlying permanent representation and realigns
the columns of the image.

o Links: Ends the editing of the current set of links. The window is removed from
the screen. Since all changes to links are made immediately, this procedure does
not abandon any of those changes.

EST-62 7/1/87 RATIONAL

procedure Abandon
package !Commands.Common

Menu images: Ends the editing of the menu. The window is removed from
the screen and from the Window Directory. This command has the same effect
as the Release procedure. The Window parameter specifies which image to be
abandoned. The default is the current image.

Searchlists: Ends the editing of the searchlist and removes the window from the
screen. Since all changes to searchlists are done immediately, this procedure does

not abandon any of those changes.

Switches: Abandons the editing of the switches. The window is removed from
the screen. Any changes made to the switches since the last commit operation
are lost.

Tezt images: Ends the editing of the image. Any changes made to the image since
the last implicit or explicit commit are lost. The window is removed from the
screen and from the Window Directory. The Window parameter specifies which
window should be removed from the screen. The defaulf, "<!MAGE>", removes the
current image.

If a job is currently performing input or output on an I/0 window, the Abandon
procedure will fail.

Window tmages: Ends the editing of the Window Directory by removing the
Window Directory from the screen. The Window parameter specifies the window
to remove, which is, by default, the current image. This command has the same
effect as the Release procedure.

Xref tmages: Ends the editing of the xref. The window is removed from the
screen and from the Window Directory. This command has the same effect as
the Release procedure.

Parameters

WUindow : String := "<IMAGE>";

Specifies the window that should be abandoned. The default is the current image.

References

procedure Commit

procedure Release

RATIONAL 7/1/87 EST-63

procedure Clear_Underlining
package !Commands.Common

procedure Clear_Underlining

procedure Clear_Underlining;

Description
Removes all underlined error designations in the current image.

These designations typically result from errors in the image, but they can also result
from running other commands that use underlining to indicate specific locations in
the image—for example, the Ada.Show_Usage command.

Specifically, this procedure has the following effects:

¢ Ada tmages: Removes the underlining created by the Semanticize and other pro-
cedures. The Semanticize procedure checks the image for semantic consistency,
underlining semantic errors.

e Command tmages: Removes all underlines in the current Command window.

EST-64 e RATIONAL

procedure Commit
package !Commands.Common

procedure Commit

procedure Commit;

Description

Makes permanent any changes made to the image in the current window.

Specifically, this procedure has the following effects:

Ada images: Makes permanent any changes to the Ada image. When source Ada
images are edited, this procedure saves the changes to the image in the underlying
permanent representation. These changes are built in temporary areas until the
changes are committed. Then the temporary areas are made a permanent part
of the storage hierarchy when a new version of the unit containing the changes is

created.

This procedure is used only for Ada images that are in the source state. Direct
editing changes (that is, not incremental) to an Ada image in a state other than
the source state are not allowed. Changes to the unit caused by promoting or
demoting the unit are permanent and need not be committed.

The commit operation is also implicitly performed by the Promote, Ada.Install-
-Unit, Ada.Code_Unit (if the unit is source, the operation is not incremental,
and the operation completes successfully), and Release procedures.

Command images: Executes the command in the Command window by format-
ting, semanticizing, and coding it. This procedure is identical to the Promote

procedure.

Links: Has no effect, because all changes to links are made immediately. All
other operations on links implicitly commit any changes.

Searchlists: Commits changes to the searchlist. Since all changes to searchlists
are made immediately and permanently, this procedure has no effect. All other
operations on searchlists implicitly commit any changes.

Swstches: Commits changes to the switches. Changes to the switches are made
in a temporary area of the Environment. To make those changes permanent and
to have them take effect, you must commit those changes.

Text smages: Makes permanent any changes to the image. Changes to the image
are made in a temporary area. This procedure saves those changes, making them
permanent, by creating a new version of the text file that contains the changes.

The procedure also commits input in I/O windows. The input, along with a
terminator or delimiter if necessary, is sent to the program that requested it.
The Window parameter specifies which window’s image should be committed.
The default, "<IMAGE>", commits the current image.

RATIONAL 7/1/87 EST-65

procedure Commit
package !Commands.Common

o Window images: Makes permanent any changes to the image corresponding to
the line designated in the Window Directory by executing the Common.Commit
command on that image. If there is no selection, the procedure executes the
Common.Commit command on all uncommitted images that are not 1/0 windows.

References

procedure Promote

EST-66 7/1/87 RATIONAL

procedure Complete
package !Commands.Common

procedure Complete

procedure Complete (Menu : Boolean := True);

Description

Completes the design ated item by inserting new text and prompts into the image
using information about the syntax and semantics of the image type.

Specifically, this procedure has the following effects:

Ada $mages: Completes the selected Ada identifier or the identifiers in the selected
element using Ada’s semantics for name resolution. If more than one name can
complete the identifier and the Menu parameter is set to true, a list of choices
is produced in the menu window. See the description of menus in this book for
more information on the editing operations available on menus.

The identifier is completed using the Ada context that exists for the compilation
of the selected element, including with clauses, use clauses, renaming declarations,
and so on.

Command tmages: Completes the Ada fragment designated by the cursor using
Ada semantics for name resolution. If more than one name could complete the
identifier, and the Menu parameter is true, a list of choices is produced in the
menu window. See the description of menus in this book for more information
on the editing operations available on menus.

This procedure completes only names of identifiers that are declared in the frag-
ment in the Command window or that are visible through the searchlist. See
package Search_List in Session and Job Management (SJM) for more information
on searchlists.

Declarations in Command windows must be selected before the Complete com-
mand will actually complete them. Statements need not be selected for the
Complete command to complete them.

Library tmages: Refreshes the library image in the current window to the current
value of the underlying permanent representation and realigns the columns of the
image.

Parameters

Menu : Boolean := True;

Specifies whether a menu should be displayed for ambiguous references. The default,
true, specifies that a menu will be displayed.

RATIONAL 7y/sr EST-67

procedure Create_Command
package !Commands.Common

procedure Create_Command

procedure Create_Command;

Description

Creates 2 new Command window, if one does not already exist, before the current
image, or it puts the cursor in the existing Command window that is closest to the
current image.

Command windows can be created for Command windows recursively. A Command
window acting on another Command window can be used to create or edit com-
mands or to perform another activity from the same context without disturbing the
contents of the existing Command windows.

Command windows have use clauses that are automatically added by the Cre-
ate_Command procedure to provide direct visibility to the commands that are
supported for the image type for which the Command window has been created.
Use clauses for packages !Commands.Editor and Common are always present. Ad-
ditional use clauses will be added based on the specific type of image for which the
Command window has been created.

Command windows can be created for all image types.

Specifically, this procedure has the following effects:

e Ada tmages: Creates a Command window below the current Ada window if one
does not exist; otherwise, it puts the cursor in the existing Command window
below the current Ada window. This Command window initially has a use clause:

use Editor, Ada, Common, Debug;
This use clause provides direct visibility to the declarations in packages Ada,
Common, Debug, and Editor without requiring qualification for names resolved
in the command.

o Command tmages: Creates a Command window below the current Command

window if one does not exist; otherwise, it puts the cursor in the existing Com-
mand window below the current Command window. This Command window

initially has a use clause:

use Editor, Command, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, Common, and Command without requiring qualification for names
resolved in the command.

For certain other window types, other packages are added to the use clause to
provide visibility to operations used to edit those kinds of windows.

EST-68 e RATIONAL

procedure Create_Command
package !Commands.Common

Debugger: Creates a Command window below the Debugger window if one does
not exist; otherwise, the command puts the cursor in the existing Command
window below the Debugger window. This Command window initially has a use

clause:

use Editor, Common, Debug;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, Common, and Debug without requiring qualification for names
resolved in the command.

Help and job windows: Creates a Command window below the Help window or
set of jobs if one does not exist; otherwise, the procedure puts the cursor in the
existing Command window below the Help window or What.Jobs display. This
Command window initially has a use clause:

use Editor, Common;

This use clause provides direct visibility to the declarations in packages Editor
and Common for names resolved in the command.

Library smages: Creates a Command window below the current library window
if one does not exist; otherwise, the procedure puts the cursor in the existing
Command window below the current library window. This Command window
initially has a use clause:

use Editor, Library, Common;
This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, Library, and Common without requiring qualification for names
resolved in the command.

Links: Creates a Command window below the current window. If the Command
window is created below a window created by the Links.Edit or the Links.Visit
command, the use clause in the Command window includes package Links. Thus,
operations in this package are visible in the Command window without qualifi-
cation.

Menu smages: Creates a Command window below the menu if one does not exist;
otherwise, the procedure puts the cursor in the existing Command window below
the menu. This Command window initially has a use clause:

use Editor, Common;
This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor and Common for names resolved in the command.

Searchlssts: Creates a Command window below the current window. The use
clause in the Command window includes package Search_List, so operations in
package !Commands.Search._List are visible in the Command window without
qualification. The use clause for searchlist windows is:

use Editor, Search_List, Common;

Switches: Creates a Command window below the current window. The use clause
in the Command window:

RATIONAL 7/1/87 EST-69

procedure Create_Command
package !Commands.Common

use Editor, Ada, Switches, Common;

includes this package, so operations in this package are visible in the Command
window without qualification.

o Text smages: Creates a Command window below the text window if one does not
exist; otherwise, the procedure puts the cursor in the existing Command window
below the text window. This Command window initially has a use clause:

use Editor, Text, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, Text, and Common for names resolved in the command.

o Window smages: Creates a Command window below the Window Directory if one
does not exist; otherwise, the procedure puts the cursor in the existing Command
window below the Window Directory. This Comraand window initially has a use
clause:

use Editor, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor and Common for names resolved in the command.

o Xref smages: Creates a Command window below the xref if one does not exist;
otherwise, the procedure puts the cursor in the existing Command window below
the xref. This Command window initially has a use clause:

use Editor, Ada, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, Ada, and Common for names resolved in the command.

EST-70 7/1/87 BA\TIONAL

procedure Definition
package {Commands.Common

procedure Definition

procedure Definition (Name : String = "<CURSOR>";
In_Place : Boolean := False;
Visible : Boolean := True);
Description

Finds the defining occurrence of the named or designated item and displays that
defining occurrence in a new window.

This procedure finds the location where the item is defined. The procedure attempts
to find the most reasonable definition of the object, given the current editing context.

Specifically, this procedure has the following effects:

¢ Ada tmages: Finds the defining occurrence of the designated element and brings
up its image in a window on the screen, typically with the definition of the element
selected. If a name is provided to the Name parameter, it is used. If no name is
provided, the cursor location is used to designate the element. A read-omnly lock
is acquired on the unit.

The In_Place parameter specifies whether the current frame should be used. The
default is false. The Visible parameter specifies whether the specification or body
should be displayed. The default, true, specifies that the specification should be

preferred.

The procedure finds the most reasonable definition of the element, given the
current editing context. If the element is:

— A subunit stub or an insertion point, the corresponding subunit is viewed (if
the Visible parameter is false).

— The visible part of a unit, the corresponding body of the unit is viewed (if
the Visible parameter is false).

— The body of a unit, the corresponding visible part of the unit is viewed (if
the Visible parameter is true).

— A usage of an identifier, the identifier’s defining occurrence is viewed (if the
Visible parameter is true or false).

— A declaration of an object, the object’s type declaration is viewed (if the
Visible parameter is true or false).

If the selected or designated item is in a subsystem spec view, then the default
session activity is used to find its definition. See Project Management (PM) for
more information on subsystems and activities.

The following tables illustrate some additional examples of the use of the Defini-
tion command with the Visible parameter true or false. The first column specifies
the location of the cursor when the Definition command is executed. The second

RATIONAL 71/er EST-71

procedure Definition

package !Commands.Common

and third columns specify the effect of setting the Visible parameter to true or

false, based on the position of the cursor.

Example 1:

package Pl 1s new P; -- instantiation of gerneric

P1.B;

Table 7-1. Instantiations

Definition (Visible=>> True) goes to:

Definition (Vissble=>> False) goes to:

Cersor is on:
P1.B (cursor on P1) instantiation instantiation
P1.B (cursor on B) generic specification generic body
Example 2:
type T; -- incomplete type declaration
type T is new integer; -- corresponding full type declaration

r

Table 7-2. Incomplete Types

Cursor is on:

Definition (Visible=>> True) goes to:

Definition (Visible=>> Fulse) goes to:

X:T (cursor on T)

full type declaration

incomplete type
declaration

full type declaration

incomplete type declaration

full type declaration

full type declaration

incomplete type declaration

full type declaration

Example 3:

tyoe T is private;

tupe T is new integer;

X:T;

Table 7-3. Private Types

Cursor 18 on:

Definition (Visible=>> True) goes to:

Definition (Vissble=>> False) goes to:

X:T (cursor on T)
private part

private declaration

private declaration
private declaration

private part

private part
private declaration

private part

EST-72

wsr RATIONAL

procedure Definition
package {Commands.Common

Example 4:
task type T; -~ task incomplete type
task t‘:g;se.T is -- specification

task ang.T is

X:T;
Table 7-4. Task Types
Cursor 18 on: Definition (Visible="> True) goes to: Definstion (Visible=">False] goes to:
T1:T (cursor on T) task specification task body
entry call task specification task body
task specification task body task body
task incomplete type task specification task body

o Command tmages: Finds the defining occurrence of the named or designated
element and brings up its image in a window on the screen, typically with the
definition of the element selected. The Semanticize or Promote procedure must
have been executed on the window containing the named or designated element.
If a name is provided for the Name parameter, it is used. If no name is provided, a
selection is used if one exists. Otherwise, the cursor location is used to designate
the element.

The procedure finds the most reasonable definition of the element, given the cur-
rent editing context and the value of the Visible parameter. The Name parame-
ter specifies which element’s definition should be given. The In_Place parameter
specifies whether the current window should be used, and the Visible parameter
specifies whether the specification or the body should be preferred.

¢ Debugger: Finds the defining occurrence of the designated element and brings up
its image in a window on the screen, typically with the definition of the element
selected.

o Help and job windows: Brings up on the screen, for help windows, an image of the
Ada specification unit containing the designated declaration in a Help window
declaration. This procedure has no effect on displays created by What.Jobs.

o Library tmages: Finds the defining occurrence of the named or designated element
and brings up its image in a window on the screen. If a name is provided, it is
used. If no name is provided, a selection with the cursor in it is used if one
exists. Otherwise, the cursor location is used to designate the element. An
In_Place parameter specifies whether the existing window should be used. A
Visible parameter specifies whether to go to the visible part or the body (if
possible).

Links: Finds the definition of the selected link or the link on which the cursor is

located. This procedure creates or visits a window that contains the specification
of the source unit of the selected link.

RATIONAL 717 EST-73

procedure Definition
package !Commands.Common

e Menu tmages: Brings up on the screen an image of the Ada compilation unit con-
taining the designated declaration. The Name parameter specifies which image
to display. The In_Place parameter specifies whether the current window should
be used. The Visible parameter specifies whether the specification or body should
be displayed.

o Searchlists: Finds the definition of the component in the searchlist to which
the cursor points. This procedure creates a window containing that component.
The In_Place parameter allows the user to specify whether the new window
will replace the current window. The Visible parameter specifies whether the
specification or the body should be preferred.

o Switches: Finds the definition of the selected switch value if that value is a library
or library unit. The procedure produces an error for switches that are Booleans,
integers, or nonswitch name strings. If the switch is a switch name, a window is
brought up with the definition of that object in the window.

o Window smages: Moves the cursor to the image of the currently designated line,
bringing that image onto the screen if necessary. The Name parameter specifies
which image should be displayed. By default, it is the image corresponding to
the current cursor location on the Window Directory. The In_Place parameter
specifies whether the current window should be used to display the image. By de-
fault, the Window Directory is the next window replaced. The Visible parameter
specifies whether the specification or the body should be displayed. The default,
true, displays the specification.

o Xref images: Displays on the screen an image of the designated compilation unit
with all usages of the declaration indicated with underlines. If the current level
of detail is either views or subsystems, the procedure brings the image for the
designated library onto the screen with no underlining.

The cursor can be moved between underlined usages with the !Commands.Editor-
.Cursor.Next and Editor.Cursor.Previous commands. The usage indications can
be removed with the Clear_Underlining command.

Some of the units in the xref display may implicitly depend on a declaration but
may not have direct usages of the declaration. Also, the Environment is conser-
vative about finding all possible units that depend on the declaration. Sometimes
it accidentally includes a unit in the xref that has no reference. In these cases,
executing the Definition command when designating such a unit deletes the unit
from the xref and gives the message:

<unit name> doesn't have references! Zapping the line.

Executing the Semanticize procedure searches each unit in the xref and deletes
any entries that have no usages.

EST-74 e RATIONAL

procedure Definition
package !Commands.Common

Parameters

Name : String := "<CURSOR>";

Specifies the item for which to get the defining occurrence. The default is the item
on which the cursor is currently located.

In_Place : Boolean := False;

Specifies whether the current frame should be used to bring up the image. The
default specifies that the least recently used frame should be used.

Visible : Boolean := True;

Specifies how names that resolve to both a specification (visible part) and a body
should be resolved. When true, the default, this parameter specifies that the spec-
ification is preferred. When false, it specifies that the body should be brought up,
if possible.

References

procedure Edit

RATIONAL 71/er EST-75

procedure Demote
package !Commands.Common

procedure Demote

procedure Demote;

Description
Demotes the designated item to a lower state.

Specifically, this procedure has the following effects:

o Ada tmages: Demotes an Ada unit or element to a lower unit state. If there is no
selection or if the current selection is for an entire compilation unit, the procedure
changes the state of the Ada unit in the current window, assuming there are no
dependent units. If there are dependent units, a list of them is displayed in the
menu window that is brought onto the screen. See the description of menus in
this book for more information on the editing operations available on menus.

The specific effect of this procedure depends on the current state of the unit. If
the current state is:

— Archived: The procedure has no effect.

— Source: The procedure has no effect.

— Installed: The unit is demoted to the source state.
— Coded: The unit is demoted to the installed state.

If there is a selection other than the entire unit and if incremental compilation is
allowed on the element selected (see the rules on incremental compilation stated
above), this procedure removes the element from the parent unit, replaces it with
an insertion point, and leaves the element in the source state attached to the
insertion point. The source for the element can be visited later by viewing the
insertion point.

e Command smages: Ends the editing of the command. The contents of the Com-
mand window are destroyed and the original contents are restored. All history is
lost.

o Library tmages: Demotes the selected Ada unit to the next lower state. The
procedure changes the state of the selected Ada unit, assuming there are no
other units dependent on the unit. If there are dependent units, a list of them
is displayed in the menu window that is brought onto the screen. See Menus, in
this booi, for more information on the editing operations available on menus.

The specific effect of this procedure depends on the current state of the unit. If
the current state is:

— Archived: The procedure has no effect.
— Source: The procedure has no effect.

EST-76 7/1/87 RATIONAL

procedure Demote
package !\Commands.Common

— Installed: The unit is demoted to the source state.
— Coded: The unit is demoted to the installed state.

o Menu images: Attempts to demote the Ada unit containing the designated dec-
laration to the next lower state. The specific effect of this procedure depends
on the current state of the unit and whether other units depend on the unit on
which the demote is being attempted. If there are no dependents and the current
state is:

— Archived: The procedure has no effect.

— Source: The procedure has no effect.

— Installed: The unit is demoted to the source state.
— Coded: The unit is demoted to the installed state.

If there are dependents, they are indicated by overwriting of the existing menu
with a new menu containing these dependencies.

o Tert tmages: Changes the current text window from read only to editable. If
another user or job has a write lock on the file being viewed, the Demote command
will fail. The procedure has no effect on 1/0 windows.

¢ Window images: Executes the Common.Demote procedure on the designated
image.

¢ Xref tmages: Executes the Common.Demote procedure for Ada images on the
selected unit.

RATIONAL /s EST-77

procedure Edit
package !Commands.Common

procedure Edit

procedure Edit {Name : String = "<IMAGE>";
In_Place : Boolean := False;
Visible : Boolean := False);
Description

Creates a writable image of the named or designated item, creating the window if
necessary.

This procedure creates a new window that contains an image of the item to be
edited. If a window with the image already exists, it is reused. The window is cre-
ated with the default window size and is placed by the Rational Editor. The window
remains in the Window Directory until the object is released or abandoned. The
window disappears if it contains withdrawn or incrementally inserted declarations
when the declarations or statements are promoted successfully.

Specifically, this procedure has the following effects:

¢ Ada smages: Creates a window in which to edit the named or selected Ada unit
and demotes the unit to source if necessary.

If there is no selection or if the current selection is for an entire compilation unit
or subunit declaration, the procedure creates a window in which to edit the unit,
if necessary, and demotes the unit to source if no units depend on the unit. If
there are dependent units, a list of them is displayed in the menu window that is
brought onto the screen, and the operation fails. See the description of menus in
this book for more information on the editing operations available on menus. If
the operation succeeds, a write lock is acquired on the unit.

If there is a selection other than the entire unit and if incremental compilation is
allowed on the element selected (see the rules on incremental compilation stated
above), this procedure removes the element from the parent unit, replaces it with
an insertion point, and brings up a new window with the element in it.

The Name parameter specifies the unit to edit. The default is "<IMAGE>". The
In_Place parameter specifies whether the current window should be used. The
Visible parameter specifies whether the specification or body should be preferred.

e Command smages: Replaces the contents of the Command window with a [state~-
ment] prompt.

o Library tmages: Creates a window in which to edit the named or selected object.
An In_Place parameter specifies whether the existing window should be used. A
Visible parameter specifies whether to bring up the visible part or the body (if
possible).

o Links: Creates a Command window and places in it the command:

EST-78 e RATIONAL

procedure Edit
package !Commands.Common

Update ("selected or current link");

where selected or current link is the link on which the cursor is currently located,
whether or not there is a selection. Providing a new parameter and promoting
the command changes the source name for that link.

o Menu smages: Creates a window in which to edit the Ada unit containing the
gelected declaration. The procedure demotes the unit to the source state, if
necessary. If the demotion of the unit will cause obsolescence, the edit fails and
a new menu of dependent units replaces the existing menu contents. The Name
parameter specifies which unit to edit. The In_Place parameter specifies whether
the current frame should be used. The Visible parameter specifies whether the
specification or body should be displayed.

e Searchlists: Creates a Command window below the searchlist and places in it the
command:

Replace (New_Component => "current value”,

Old_Component => "",

Session => "",

User => "");
The New_Component parameter allows the user to specify the new searchlist
component. The Old_Component parameter specifies the searchlist component
to be replaced. The user and session parameters specify the User and Session
whose searchlist should be modified. The user must have read access to another
user’s home world to modify that user’s searchlist.

o Switches: Creates a Command window and places in it the command:

Change ("current switch value");

where the parameter is the switch value of the switch on which the cursor is
located, whether or not there is a selection. Providing a new switch value and
promoting the command changes the value of the switch. If the current switch is
of Boolean type, the command toggles the value of the switch without creating
a Command window.

o Text tmages: Makes the current text window editable by acquiring a write lock
on the file associated with the window. If other users or jobs have write locks on
the file, the operation will fail. The procedure has no effect on 1/0 windows.

The Name parameter specifies which text window should be made editable. The
default special name, "<IMAGE>", specifies the current image or selection in a
library image (if there is one). The In_Place parameter specifies whether the
current frame should be used. The default, false, specifies that the current frame
should not be used.

e Window tmages: Moves the cursor to the image of the currently designated image,
bringing that window onto the screen if necessary. If the type of the designated
image discriminates between viewing using the Definition command and editing
using the Edit command, the procedure performs the operations associated with
executing the Edit command on the designated image, unless these operations
have already been performed on the image.

PATIONAL 7/1/87 EST-79

procedure Edit
package !Commands.Common

The Name parameter specifies which image should be displayed. The default
is the image on which the cursor is located. The In_Place parameter specifies
whether the current window should be used to display the image. The default
is false. The Visible parameter specifies whether the specification or the body
should be displayed. The default, true, displays the specification.

Parameters

Name : String := "<IMAGE>";
Specifies the item to be edited. The default is the current image.

In_Place : Boolean := False;

Specifies whether the current frame should be used to bring up the image. The
default specifies that the least recently used frame should be used.

Visible : Boolean := False;

Specifies how names that resolve to both a specification (visible part) and a body
should be resolved. When true, the default, this parameter specifies that the spec-
ification is preferred. When false, it specifies that the body should be brought up,
if possible.

EST-80 e RATIONAL

procedure Elide
package {Commands.Common

procedure Elide

procedure Elide (Repeat : Positive := 1);

Description

Reduces the level of detail displayed in the image for the currently designated item.

This procedure accepts argument prefixes when executed from the keyboard to
enable multiple levels of detail to be eliminated in a single operation.

Specifically, this procedure has the following effects:

Help and job windows: Selects which set of jobs is displayed in the window. The
procedure steps the display from all jobs, to all running jobs, to the user’s jobs,
to the user’s running jobs, to all commands, to all running commands, to the
user’s commands, to the user’s running commands. The default is all running
jobs. This procedure has no effect on Help windows.

Library images: Reduces the level of detail displayed for the designated object(s).

Links: Selects which type of link is displayed in the window. This procedure cycles
the display from all links (the default) to external links and then to internal links.

Menu tmages: Decreases the level of detail displayed for the selected declaration
to the next lower level. If no declaration is selected, the procedure decreases the
level of detail for all of the declarations in the menu to the next lower level. The
levels of detail available, ordered from lowest to highest, are:

— Simple names

— Full names

-—— Simple names with parameter profiles (the default)
— Full names with parameter profiles

These levels are not circular; that is, expanding has no effect once the highest
level of detail has been reached, and eliding has no effect once the lowest level of
detail has been reached.

Switches: Reduces (elides) the number of switches displayed in the window. The
window can display all switches in the system (the greatest number displayed) or
the nondefault switches in the file (the least number displayed). This procedure
reduces the number displayed to the next smaller set. Reducing the number
below the nondefault switches has no effect.

Xref tmages: Reduces the level of detail displayed in the current xref. This
command is the opposite of the Expand command.

PATHONAL 7/1/87 EST-81

procedure Elide
package !Commands.Common

Although, by default, an xref displays the full name for each using unit, other
levels of detail can be displayed using the Elide and Expand commands. These
options are:

— Full_)Names: Displays the full names of each unit with attributes (the de-
fault).

— Objects: Displays the unit name with attributes.
— Views: Displays the views using the declaration.
— Subsystems: Displays the subsystems using the declaration.

Executing the Elide command moves the level of detail down the above list;
executing the Expand command moves the level of detail up the above list. The
list is circular, so if you attempt to move down past the bottom, you go to the
top; if you move up past the top, you go to the bottom. The current level of
detail for an xref image is indicated in the banner for the xref.

Parameters

Repeat : Positive := 1;
Specifies the number of levels of detail to be eliminated. The default is 1.

References

procedure Expand

EST-82 7/1/87 R)ATIONAL

procedure Enclosing
package !Commands.Common

procedure Enclosing

procedure Enclosing (In_Place : Boolean :

False;
False};

Library : Boolean :

Description

Finds the parent or enclosing item of the image in the current window and displays
that item in a new window.

Specifically, this procedure has the following effects:

Ada tmages: Finds the parent or enclosing Ada unit of the current window and
displays that parent unit in a window. This procedure acquires a read lock on the
unit. The In_Place parameter specifies whether the current window should be
used. The Visible parameter specifies whether the specification or body should
be preferred. The Library parameter specifies whether the resulting image should

be a library.

Command smages: Finds the major window to which the Command window is
attached and puts the cursor in it. The In_Place parameter specifies whether
the current window should be used. The Library parameter specifies whether the
enclosing object should be a library.

Debugger: Displays the library containing the Command window from which the
job being debugged was started.

Library images: Finds the parent library unit of the current library and displays
that parent in a window. An In_Place parameter specifies whether the existing
window should be used. A Library parameter specifies whether the resulting
image should be a library rather than the parent body when the parent body is

not a library.

Links: Finds the world that contains the links that are in the current window.
This procedure creates a window that contains the listing of that world.

Switches: Finds the directory or world that contains the switches that are in the
current window. If the window contains session switches, the procedure finds
the home world for that session. The In_Place parameter specifies whether the
library window replaces the switch window.

Tezt images: Brings up a window that contains an image of the library containing
the file corresponding to the current text window. For1/0 windows, the Enclosing
procedure finds the home library for the user.

The In_Place parameter specifies whether the current frame should be used.
The default, false, specifies that the current frame should not be used. The
Library parameter specifies whether the enclosing library should be displayed.
The default is false.

Xref images: Displays the library containing the unit for which the xref was
created, with the unit selected.

IQAT'ONAL 7/1/87 EST-83

procedure Enclosing
package !Commands.Common

Parameters

In_Place : Boolean := False;

Specifies whether the current frame should be used to bring up the image. The
default specifies that the least recently used frame should be used.

Library : Boolean := False;

Specifies whether the resulting image should be a library. That is, for Ada subunits,
this specifies that the enclosing library, rather than the parent body, should be
displayed. The default is false.

Restrictions

The parent of the world ! is itself.

EST-84 7/1/87 RAT'ONAL

procedure Expand
package Commands.Common

procedure Expand

procedure Expand {Repeat : Positive := 1});

Description

Increases the level of detail displayed in the image for the currently designated item.

This procedure accepts argument prefixes when executed from the keyboard to
enable multiple levels of detail to be added in a single operation.

Specifically, this procedure has the following effects:

Help and job windows: Selects which set of jobs is displayed in the window. The
procedure steps the display from the user’s running commands, to the user’s
commands, to all running commands, to all commands, to the user’s running
jobs, to the user’s jobs, to all running jobs, to all jobs. The default is all running
jobs. This procedure has no effect on Help windows.

Library images: Increases the level of detail displayed for the designated object(s).

Links: Selects which type of link is displayed in the window. This procedure
cycles the display from internal links to external links and then to all links (the
default).

Menu tmages: Increases the level of detail displayed for the selected declaration
to the next higher level. If no declaration is selected, the procedure expands the
level of detail for all of the declarations in the menu to the next higher level. The
levels of detail available, ordered from lowest to highest, are:

— Simple names

— Full names

— Simple names with parameter profiles (the default)
— Full names with parameter profiles

These levels are not circular; that is, expanding has no effect once the highest
level of detail has been reached, and eliding has no effect once the lowest level of
detail has been reached.

Switches: Increases Sexpands) the number of switches displayed in the window.
The window can display all switches in the system (the most number displayed) or
all nondefault switches in the file (the least number displayed). This procedure
increases the number displayed to the next larger set. Increasing the number
above all switches in the system has no effect.

Xref tmages: Increases the level of detail displayed in the current xref. This
command is the opposite of the Elide command.

RAT'ONAL 7/1/87 EST-85

procedure Expand
package !Commands.Common

Although, by default, an xref displays the full name for each using unit, other
levels of detail can be displayed using the Expand and Elide commands. These
options are:

— Full_Names: Displays the full names of each unit with attributes (the de-
fault).

— Objects: Displays the unit name with attributes.
— Views: Displays the views using the declaration.
— Subsystems: Displays the subsystems using the declaration.

Executing the Elide command moves the level of detail down the above list;
executing the Expand command moves the level of detail up the above list. The
list is circular, so if you attempt to move down past the bottom, you go to the
top; if you move up past the top, you go to the bottom. The current level of
detail for an xref image is indicated in the banner for the xref.

Parameters

Repeat : Positive := 1;
Specifies the number of levels of detail to be added. The default is 1.

References

procedure Elide

EST-86 7/1/87 BATIONAL

procedure Explain
package !Commands.Common

procedure Explain

procedure Explain;

Description

Provides explanatory information regarding the designated item in the current win-
dow.

Specifically, this procedure has the following effects:

Ada tmages: Provides an explanation of the error designated by the cursor po-
sition in the Ada unit in the current window. Used after syntactic or semantic
errors have been discovered, the procedure displays an explanation of those errors
in the Message window.

Command tmages: Provides an explanation of errors in the command in the
current window. Used after syntactic or semantic errors have been discovered,
the procedure displays an explanation of those errors in the Message window.

Help and job windows: Adds an entry to the Help window for the designated
item in a Help window menu. This procedure has no effect on displays created
by What.Jobs.

Library tmages: Changes the level of detail displayed for the designated object(s)
in the library. There are three levels:

— Default information
— Standard information
— Miscellaneous information

This command cycles through the levels, proceeding down the list and cycling
back to the top when at the bottom.

Links: Inserts an explanation below the current link that explains what units use
the linked unit. This procedure is useful for determining what dependencies on
links exist. If there already is an explanation explaining the link, this procedure
removes that explanation.

Switches: Inserts, below the current switch, an explanation of that switch. If an
explanation is already there, this procedure will remove it.

Xref tmages: Displays the full name of the currently designated unit in the Mes-
sage window.

RATIONAL 7/1/87 EST-87

procedure Format
package !Commands.Common

procedure Format

procedure Format;

Description
Formats the current image appropriately for its image type.

For Ada units, this procedure checks the syntax of the image, performs syntactic
completion, and pretty-prints again.

If changes are incomplete fragments, this procedure provides syntactic completion
and prompting based on the syntax rules for the image type, and then it pretty-
prints the image again with these changes and completions aligned and capitalized

properly.
Specifically, this procedure has the following effects:

e Ada stmages: Formats the text in the current window. The procedure redraws
some or all of the image after checking for syntactic errors and correcting or
prompting for some of the syntactic constructs. If there are syntax errors in the
image that cannot be corrected, they are marked as errors.

This procedure adds ending punctuation, including semicolons, right parenthe-
sis, closing quotation marks, end loop statements, end if statements, and end
statements for packages and subprograms. Note that end statements are usually
placed as close to the end of the source as is legal.

Some of the behavior of the commands for editing Ada images can be tailored
with session switches.

The case of identifiers in formatted Ada images is determined by the Key-
word_Case library switch. Allowable values for this switch are Upper, Lower,
and Capitalize.

See package Switches in Library Management (LM) for more information on li-
brary switches.

Example 1:
Before the Format procedure:

procedure Push is begin
After the Format procedure:

procedure Push 1is

begin

[statement]
end Push;

EST-88 7/1/87 '?ATI ONAL

procedure Format
package !Commands.Common

Example 2:
Before the Format procedure:

if case when

After the Format procedure:

if [expression] then
case [expression] is
when [expression] =>
[statement]
end case;
end if;

o Command tmages: Formats the text in the current Command window. The
procedure redraws some or all of the image after checking for syntactic errors
and correcting or prompting for some of the syntactic constructs. If there are
syntactic errors in the image that cannot be corrected, they are marked as errors.

Some of the behavior of the commands for editing commands can be tailored
with session switches.

The case of identifiers in formatted Ada images is determined by the Key-
word_Case library switch. Allowable values for this switch are Upper, Lower,
and Capitalize. Only one of these switches should have the value of true. The
switch that is true determines how identifiers are displayed after the Format
operation.

See package Switches in Library Management (LM) for more information on ses-
sion switches.

Example 1:
Before the Format procedure:

declare

use Editor, Common, Ada;
begin

if
end;

After the Format procedure:

declare
use editor, Common, Ada;
begin
1f [expression] then
[statement]
end if;
end;

o Lsbrary smages: Refreshes the library image in the current window to the current
value of the underlying permanent representation and realigns the columns of the
image.

This performs the same operation as the Revert procedure.

RATIONAL 7/y/sr EST-89

procedure Insert_File
package !Commands.Common

procedure Insert_File

procedure Insert_File (Name : String := "<REGION>");

Description
Inserts the named text file into the current Ada image at the current cursor position.
No semantic analysis of the contents of the file or the resulting object is done.

Specifically, this procedure has the following effects:
¢ Ada tmages: Copies the contents of the text file specified in the Name parameter
into the current Ada image at the current cursor position.

e Command smages: Copies the contents of the named text file into the Command
window at the current cursor position.

o Text images: Inserts the named text file into the current Ada image at the current
cursor position.

Parameters

Name : String := "<REGION>";

Specifies the text to be inserted. The string can be a filename or a special name.
The default is the current region.

EST-90 7/1/87 RAT'ONAL

procedure Promote
package !Commands.Common

procedure Promote

procedure Promote;

Description

Promotes the designated item to the next higher state.

Specifically, this procedure has the following effects:

Ada tmages: Promotes the Ada image in the current window to the next higher
state. The procedure changes the state of the Ada unit. The specific effect of
this procedure depends on the current state of the unit. If the current state is:
— Archived: The unit is promoted to the source state.

— Source: The unit is promoted to the installed state.

— Installed: The unit is promoted to the coded state.

— Coded: Execution is attempted if the unit is selected. If parameters are
required, the prompt for them appears in the Command window.

If the current window is associated with an insertion point created by incremental
compilation and the elements in the window are to be inserted in-line in the
parent unit, this procedure causes the elements in the window to be inserted in
the parent and the window is deleted.

Command images: Executes the command by formatting, semanticizing, and
coding it. This command is the same as the Commit procedure.

Library smages: Promotes the selected Ada object to the next higher unit state.
The specific effect of this procedure depends on the current unit state of the unit.
If the current state is:

— Archived: The unit is promoted to the source state.

— Source: The unit is promoted to the installed state.

— Installed: The unit is promoted to the coded state.

— Coded: If the unit is selected, execution is attempted. If parameters are
required, the prompt for them appears in a Command window.

Menu tmages: Promotes the Ada unit containing the designated declaration to
the next higher state. This procedure has the same effect as executing the Com-
mon.Promote command on the Ada unit containing the designated declaration.
The specific effect of this procedure depends on the current state of the unit. If
the current state is:

— Archived: The unit is promoted to the source state.
— Source: The unit is promoted to the installed state.

RATIONAL 7/y/er EST-91

procedure Promote
package !Commands.Common

— Installed: The unit is promoted to the coded state.
— Coded: The procedure has no effect.

o Switches: Commits changes to the switches. Changes to switches are made in a
temporary area of the Environment. To make these changes permanent and to
have them take effect, you must commit those changes.

o Text smages: Commits changes to the image and releases the write lock on the
underlying file. Changes to the image are made in a temporary area. This pro-
cedure saves those changes, making them permanent, by creating a new version
of the text file that contains the changes.

The procedure also commits input in I/0 windows. The input, along with a
terminator or delimiter if necessary, is sent to the program that requested it.

o Window tmages: Executes, on the image corresponding to the selected line, the
Common.Promote procedure specific to that image type. If the image promoted
is of Ada type and semantic errors are found, the image of the promoted unit is
brought onto the screen with the errors underlined.

* Xref images: Executes the Common.Promote procedure for the selected Ada
images on the xref.

References

procedure Commit

EST-92 7/1/87 PATIONAL

procedure Redo
package Commands.Common

procedure Redo

procedure Redo {Repeat : Positive := 1);

Description
Redoes the Repeat changes previously made to an image.

The Rational Editor maintains histories of the temporary copies of some image
types as images of these types are changed. These histories allow changes to be
undone, going back in time through each set of changes to the beginning of time
for the image. Change histories can be stepped forward or backward with the Redo
and Undo procedures, respectively.

Change histories are retained by the Rational Editor, depending on the type of
image. These histories are destroyed or restarted when the session ends and at
other times, depending on the type of image being edited.

The opposite of this procedure is the Undo procedure.

Specifically, this procedure has the following effects:

o Command images: Recalls commands entered in a Command window after the
Undo procedure is executed on the Command window. The Rational Editor re-
members changes made to command images since the Command window was
created. Each execution of the Complete, Edit, Demote, and Revert procedures
marks another change, as well as execution of the command. The Repeat param-
eter specifies the number of commands to move forward in the history.

Parameters

Repeat : Positive := 1;
Specifies the number of changes to be redone. The default is the last set of changes.

References

procedure Undo

BA_”ONAL 7/1/87 EST-93

procedure Release
package !Commands.Common

procedure Release

procedure Release (Window : String := "<IMAGE>";

Description
Ends editing on the current image and makes changes permanent.

This procedure releases any locks the Rational Editor may have in the entity being
edited, destroys the window, and removes the image from the Window Directory.

This command does an implicit commit of the image.

Specifically, this procedure has the following effects:

o Ada smages: Ends the editing of the Ada unit. The unit is unlocked, and any
changes to the image are committed (made permanent). This window specified
by the Window parameter is removed from the screen and from the Window

Directory.

e Command tmages: Ends the editing of the command. The Command window
is destroyed and removed from the screen. All history is lost. The Window
parameter specifies the window to be released.

e Debugger: Deletes the Debugger window if the Debugger has been killed. Oth-
erwise the command has no effect. This command has the same effect as the
Abandon procedure.

¢ Help and job windows: Removes the window from the screen for the What.Jobs
display. For Help windows, this procedure removes the Help window from the
screen and from the Window Directory. This procedure has the same effect as
the Abandon procedure.

o Library tmages: Ends the editing of the library image. The library image window
is removed from the screen and from the Window Directory.

o Links: Ends the editing of the current set of links. The window is removed from
the screen.

o Menu smages: Ends the editing of the menu. The window is removed from the
screen and from the Window Directory. This command has the same effect as the
Abandon procedure. The Window parameter specifies which window to release.
The default is the current image.

o Searchlists: Ends the editing of the searchlist and removes the window from the
screen.

e Switches: Commits changes and ends the editing of the switches. The window is
removed from the screen after any changes to the switches are saved.

o Text images: Ends the editing of the text and removes the image from the Window
Directory. All changes to the text are made permanent before the window is

EST-94 7/1/87 RA\TIONAL

procedure Release
package !Commands.Common

removed from the screen. A new version of the underlying file is created if changes
are saved.

If a job is currently performing input or output on an I/0 window, the Release
procedure will fail.

The Window parameter specifies which window should be released. The default
is the current image.

o Window smages: Ends the editing of the Window Directory by removing the
Window Directory from the screen. The Window parameter specifies the window
to be removed. The default is the current image. This command has the same
effect as the Abandon procedure.

o Xref images: Ends the editing of the xref image. The window is removed from
the screen and from the Window Directory. This command has the same effect
as the Abandon procedure.

Parameters

Uindow : String := "<IMAGE>";
Specifies the window that should be released. The default is the current image.

References
procedure Abandon

procedure Commit

RATIONAL +/1/er EST-95

procedure Revert
package !Commands.Common

procedure Revert

procedure Revert;

Description

Restores the image in the current window to the current committed (permanent)
value of the entity being edited and discards any changes that may have been made
to the image.

Specifically, this procedure has the following effects:

Ada tmages: Reverts the Ada image in the current window to the current value
of the underlying permanent representation.

Command smages: Redraws the command in the current window.

Help and job windows: Redraws the set of jobs to reflect the current state for the
What.Jobs display. This procedure has no effect on Help windows.

Library images: Refreshes the library image in the current window to the current
value of the underlying permanent representation and realigns the columns of the
image.

This performs the same operation as the Common.Format procedure.

Links: Redraws the set of links in the current window. If the set of links has been
changed by another user or program, the new image reflects those changes.

Searchlists: Redraws the searchlist in the current window. If the searchlist has
been changed by another user or program, this procedure redraws the list to
ensure that the image is up to date.

Switches: Redraws the switches in the current window. If the switches have
been changed by another user or program, this procedure redraws the switches
to ensure that the image is up to date.

Text tmages: Refreshes the image in the current window with the current value
of the underlying file. Note that, if a job is writing into a file and the file is
concurrently being viewed with the Rational Editor, the Revert command can be
used to update the image to show any new output that has occurred since the
last Revert procedure.

Window smages: Refreshes the image of the Window Directory so that the entries
in it are current.

EST-96 7/1/87 RATIONAL

procedure Semanticize
package !Commands.Common

procedure Semanticize

procedure Semanticize;

Description

Checks the image in the current window to ensure that it is correct according to
the syntax and semantic rules for the type of the image and indicates any errors.

Specifically, this procedure has the following effects:

o Ada tmages: Checks the Ada unit for semantic correctness. The procedure checks
for compliance with the semantic rules of the Ada language. Errors discovered
during semantic checking are underlined.

¢ Command smages: Checks the command for semantic correctness. The proce-
dure checks for compliance with the semantic rules of the Ada language. Errors
discovered during semantic checking are underlined. This procedure must be ex-
ecuted either directly or indirectly (by using the Promote procedure) before the
Definition procedure will execute successfully.

¢ Xref tmages: Searches each unit in the xref for actual usages and deletes any
entries for units with no usages.

References
procedure Explain
procedure Format

procedure Promote

RATIONAL 7/1/er EST-97

procedure Sort_Image
package !Commands.Common

procedure Sort_Image

procedure Sort_Iimage (Format : Integer := 1};

Description
Sorts the display according to the given format.

Format numbering is specific to the object type. It is assumed that when the Format
parameter is assigned the default value of 1, the display is sorted by increasing
values. When the Format parameter has a value of -1, the image will be formatted
in decreasing value.

Specifically, this procedure has the following effects:

o Links: Selects the order in which to display the set of links. This procedure cycles
the display from alphabetic by link names (the default), to alphabetic by source
names, to alphabetic internal link names followed by alphabetic external link
names, and to alphabetic internal source names followed by alphabetic external
gource names.

Parameters

Format : integer := 1;

Specifies the order in which the image will be sorted. The default value, 1, specifies
that the display should be sorted in increasing value. A value of -1 specifies that
the image should be sorted in decreasing value.

EST-98 7/1/87 BATIONAL

procedure Undo
package !Commands.Common

procedure Undo

procedure Undo (Repeat : Positive := 1});

Description
Undoes the previous Repeat sets of changes to the current image.

The Rational Editor maintains histories of the temporary copies of some image
types as images of these types are changed. These histories allow changes to be
undone, going back in time through each set of changes to the beginning of time
for the image. Change histories can be stepped forward or backward with the Redo
and Undo procedures, respectively.

Change histories are retained by the Rational Editor, depending on the type of
image. These histories are destroyed or restarted when the session ends and at
other times, depending on the type of image being edited.

The opposite of this procedure is the Redo procedure.
Specifically, this procedure has the following effects:

e Command images: Recalls changes previously made to a command. The Rational
Editor remembers changes made to command images since the Command window
was created, called a history. Each execution of the Edit, Demote, and Revert
procedures marks another change, as well as each execution of the command.
As commands are undone, the last undone command in the history becomes the
place where new user-entered commands are saved in the history. These changes
can be reinstated with the Redo procedure. The Repeat parameter specifies the
number of commands to move backward in the history.

o Library smages: Undeletes the selected object. This procedure is similar to the
!1Commands.Library.Undelete procedure.

Parameters

Repeat : Positive := 1;

Specifies the number of changes to be undone. The default, 1, is the last set of
changes.

References

procedure Redo

RAT'ONAL 7/1/87 EST-99

procedure Write_File
package !Commands.Common

procedure Write_File

procedure WUrite_File (Name : String := ">>FILE NAME<K"};

Description
Writes the contents of the current selection into the named file.

If no there is no selection, this procedure writes the contents of the current image
into the named file.

Specifically, this procedure has the following effects:

e Command smages: Copies the contents of the selection in the Command window
to the file specified by the Name parameter.

o Debugger: Writes the current contents of the Debugger window into the named
file.

o Text tmages: Writes the contents of the current selection in the named file. If
there is no selection, this procedure writes the contents of the current image into
the named file. The previous contents of the file are lost.

Parameters

Name : String;

Specifies the file into which the current selection is to be written. The default
parameter placeholder ">>FILE NAME<<" must be replaced or an error will result.

EST-100 7/1/87 RAT'ONAL

package Object

Package Object contains procedures for making selections based on the underlying
type-specific structures of images and performing basic editing operations (including
moving and copying) on these selections. For information on selecting regions of
text and for procedures for selecting portions of images as text, see EI, package
Editor.Region.

RATIONAL 7/1/er EST-101

procedure Child
package !Commands.Common.Object

procedure Child

procedure Child (Repeat : Positive := 1);

Description

Selects the child of the designated item Repeat number of times, each time selecting
the child of the child just selected.

The child is the item at the next lower level, in a syntactic sense, from the current
item. The child that encloses the cursor is selected unless no such child exists.

Specifically, this procedure has the following effects:

Ada smages: Selects the Repeat child element of the currently selected element.
A child element is one of the elements at the next lower level, in a syntactic
sense, from the currently selected element. If an object at that level has not been
selected before, the smallest element enclosing the cursor is chosen. If an element
at that level has been selected before, the selection is turned off.

Command tmages: Selects a child element of the currently selected element. A
child element is one of the images at the next lower level, in a syntactic sense,
from the current element. If an element at that level has not been selected before,
the element on which the cursor is currently located is chosen. If an element at
that level has been selected before, the selection is turned off.

Debugger: Selects the Repeat child element of the currently selected element.
A child element is one of the elements at the next lower level, in a syntactic
sense, from the currently selected element. If an object at that level has not been
selected before, the smallest element enclosing the cursor is chosen. If an element
at that level has been selected before, it is selected again.

Help and job windows: Selects the job on the line on which the cursor is located
for the What.Jobs display, if one or more jobs are already selected when the
procedure is entered. If there is a selection, the procedure leaves the current line
selected. For Help windows, if the whole Help window is selected, the procedure
selects the declaration on the line on which the cursor is located. If there is a
selection, it leaves the current line selected.

Library smages: Selects the child of the current selection. The procedure selects
the line the cursor is on if there are no selections or if the cursor is not in the
selection. If there is a line selected, the procedure selects the first child of that
line. If the selected line has no child, it selects the next line.

Links: If no link is selected, the procedure selects the link on which the cursor
is located. If a single link is already selected, the procedure has no effect. If all
links are already selected, the procedure selects the link on which the cursor is

located.
Menu tmages: Selects the declaration on the line on which the cursor is located.

EST-102 7/1/87 BA\TIONAL

procedure Child
package !Commands.Common.Object

o Searchlists: Selects the component in the searchlist on which the cursor is located.
If all components are already selected, the procedure selects the component on
which the cursor is located. If a single component is already selected, the pro-
cedure has no effect. If no component is selected, the procedure selects the
component on which the cursor is located.

o Switches: Selects the switch on which the cursor is located. Specifically, if no
switch is selected, the procedure selects the switch on which the cursor is located.
If a single switch is already selected, the procedure has no effect. If all switches are
already selected, the procedure selects the switch on which the cursor is located.

o Text tmages: Selects the next lower-level item in the hierarchical structure of a
text image. The item selected will be the one the cursor is in if such an item
exists. If no items are selected, the word closest to the cursor is selected.

The Repeat parameter specifies the number of levels to move down in selecting
the image. The default, 1, specifies the next lowest level.

o Window tmages: Selects the line on which the cursor is located, when the entire
image is selected. When a single line is selected, the line is still selected. When
nothing is selected, the procedure does nothing.

o Xref tmages: Selects the unit on the line on which the cursor is located.

Parameters

Repeat : Positive := 1;
Specifies the number of times the child selection is repeated.

References
procedure Next
procedure Parent

procedure Previous

QATIONAL 7/1/87 EST-103

procedure Copy
package !Commands.Common.Object

procedure Copy

procedure Copy;

Description

Copies the selected item to the cursor position.

Specifically, this procedure has the following effects:

Ada tmages: Copies the selected element to the cursor position. The new copy
is in the source state. No semantic analysis is done on the selection in its new
location, although a check is performed to ensure that a declaration is put in a
declarative region and a statement is put in a statement region. Contained units
of the copied element are not copied.

Library images: Copies the selected object into the image where the cursor is
located. The procedure prompts with a Library.Copy command in a Command
window below the window in which the cursor is located. The From parameter
has the name of the selected object as the default value and the To parameter
has the current context as the default value.

Links: Copies a selected link from one set of links to the set of links on which the
cursor is located. If the selected link and the cursor are both in the same set of
links, the procedure has no effect.

Switches: Copies a highlighted switch from one set of switches to the set of
switches on which the cursor is located. If the selected switch and the cursor are
both in the same set of switches, the procedure has no effect.

Tezxt tmages: Copies the selected text to the cursor position.

References

procedure Move

EST-104 7/1/87 BAT'ONAL

procedure Delete
package !Commands.Common.Object

procedure Delete

procedure Delete;

Description

Deletes the designated item.

Specifically, this procedure has the following effects:

Ada images: Deletes the selected element. If other elements are dependent on
the element because of semantic references (from installed or coded units), the
deletion fails and a menu of the dependent units is displayed in the menu window.
See the description of the editing operations on menus in this book for more
information. Contained units of the selected element are not deleted. The cursor
must be in the selection for the operation to succeed.

Help and job windows: Kills the selected job or the job on which the cursor
is located for the What.Jobs display. If a job is selected, that job is deleted
(terminated). If no job is selected, the job on which the cursor is located is
deleted. Note that if the job is not for the current session and user, the command
will fail. In the What.Jobs display, Object.Delete is equivalent to Job.Kill. This
procedure has no effect on Help windows.

Library tmages: Deletes the selected object. If other elements are dependent on
the element because of semantic references (from installed or coded units}, the
deletion fails, a menu of the dependent units is displayed in the menu window, and
a Library.Delete command with the name of the selected unit as the parameter
is placed in a Command window. For more information, see the description of
the editing operations on menus in this book. Contained units of the selected
element are not deleted. The cursor must be in the selection for the operation to
succeed.

Links: Deletes the selected link.

Searchlists: Deletes from the searchlist the selected component or the component
on which the cursor is located.

Switches: Deletes the selected switch or the switch on which the cursor is located.
A deleted switch assumes a system-defined default value.

Text tmages: Deletes the selected text.

Window tmages: Performs the Release command on the image described by the
selected line. This causes any changes to the image to be made permanent and
the selected line to be removed from the Window Directory. If no line is selected,
the procedure fails, producing an error message.

RATIONAL 7/1/87 EST-105

procedure First_Child
package !\Commands.Common.Object

procedure First_Child

procedure First_Child {Repeat : Positive := 1};

Description

Selects the first child of the designated item Repeat number of times.

The first child is the first one of the set of items at the next lower level, in a syntactic
sense, from the current item.

Specifically, this procedure has the following effects:

Ada tmages: Selects the first child of the currently selected element. The first
child is the first one of the set of elements at the next lower level, in a syntactic
sense, from the currently selected element.

Command tmages: Selects the first child of the currently selected element. The
first child is the first one of the set of elements at the next lower level, in a
syntactic sense, from the currently selected element.

Debugger: Selects the first child of the currently selected element. The first child
is the first one of the set of elements at the next lower level, in a syntactic sense,
from the currently selected element.

Help and job windows: Selects the first job of the set for the What.Jobs display.
For Help windows, this procedure selects the first line of the Help window.

Library tmages: Selects the first child of the current selection. The procedure
selects the line the cursor is on if there are no selections or if the cursor is not
in the selection. If there is a line selected, the procedure selects the first child of
that line. If the selected line has no child, it selects the next line.

Links: Selects the first link in the set of links.

Menu tmages: Selects the first declaration in the menu.
Searchlists: Selects the first component in the searchlist.
Swstches: Selects the first switch of the set.

Text smages: Selects the first child of the current selection. The first child is the
first one at the next lower level in the hierarchy of the current selection.

The Repeat parameter specifies the number of levels to move down in selecting
the image. The default, 1, specifies the next lowest level.

Window smages: Selects the first line of the Window Directory.
Xref tmages: Selects the first unit in the xref.

EST-106 7/1/81 RATIONAL

procedure First_Child
package !Commands.Common.Object

Parameters

Repeat : Positive := 1;
Specifies the number of times the selection is repeated.

References

procedure Last_Child

IQAT‘ONAL 7/1/87 EST-107

procedure Insert
package !Commands.Common.Object

procedure Insert

procedure Insert;

Description

Enables the user to insert a new item.

Specifically, this procedure has the following effects:

Ada fmages: Creates an insertion point in installed and coded units where state-
ments, declarations, other elements on which incremental compilation operations
are supported, or an entire compilation unit can be inserted into the current
element.

Library stmages: Creates an insertion point in a library where an Ada compilation
unit can be inserted.

Links: Creates a Command window and places in it the command:

Insert ("[link=>] source; etc."};

where the link parameter must be specified o provide a new link. Specifying a
source for a new link and promoting the command inserts a new link with the
same simple name as the source unit. Multiple links can be inserted with one
command by separating them with semicolons.

Searchlists: Creates a Command window and places in it the command:

Add (Component => "[STRING-expression]"”,

Position => 1,

Session => "",

User => ""});
where the first parameter is a string that can specify one or more components
(separated with commas) and the second parameter is the position within the
searchlist. Providing a value for the first parameter and promoting the command
adds the specified component to the searchlist. The Session and User parameters
allow the user to specify another session or username’s searchlist to which to add

an entry.
Switches: Creates a Command window and places in it the command:

Insert {"[Processor.} Switch := Value;");

where the parameter must be specified to provide a switch and its value. Spec-
ifying a switch and a value for that switch and promoting the command inserts
or changes a switch value. Multiple switches can be inserted with one command
by separating them with semicolons. This procedure uses the same format as an
Options parameter.

EST-108 7/1/87 RATIONAL

procedure Insert
package !Commands.Common.Object

¢ Window tmages: Creates 2 new Command window below the Window Directory
and prompts for the Definition command as follows:

Definition ("");

RATIONAL 7/1/er EST-109

procedure Last_Child
package !Commands.Common.Object

procedure Last_Child

procedure Last_Child (Repeat : Positive := 1);

Description

Selects the last child of the designated item Repeat number of times.

The last child is the last one of the set of items at the next lower level, in a syntactic
sense, from the current item.

Specifically, this procedure has the following effects:

Ada tmages: Selects the last child of the currently selected element. The last
child is the last one of the set of elements at the next lower level, in a syntactic
sense, from the currently selected element.

Command smages: Selects the last child of the currently selected element. The
last child is the last one of the set of elements at the next lower level, in a syntactic
sense, from the currently selected element.

Debugger: Selects the last child of the currently selected element. The last child
is the last one of the set of elements at the next lower level, in a syntactic sense,
from the currently selected element.

Help and job windows: Selects the last job of the set for the What.Jobs display.
For Help windows, this procedure selects the last line of the Help window.

Library images: Selects the last child of the current selection. If there is no
selection in the image or the cursor is not in the selection, this procedure selects
the current line. If there is a selection, the procedure selects the last child of the
current selection. If the selection has no subobjects, it selects the next object.

Links: Selects the last link of the set.

Menu smages: Selects the last declaration in the menu.
Searchlists: Selects the last component in the searchlist.
Switches: Selects the last switch of the set.

Text tmages: Selects the last child of the current selection. The last child is the
last one at the next lower level in the hierarchy of the current selection.

The Repeat parameter specifies the number of levels to move down in selecting
the image. The default, 1, specifies the next lowest level.

Window smages: Selects the last line in the Window Directory.
Xref smages: Selects the last unit in the xref.

EST-110 e RATIONAL

procedure Last_Child
package ICommands.Common.Object

Parameters

Repeat : Positive := 1;

Specifies the number of times the selection is repeated.

References

procedure First_Child

RATIONAL 71/er EST-111

procedure Move
package !Commands.Common.Object

procedure Move

procedure Move;

Description

Moves the selected item to the cursor position.

This procedure moves the current selection to the cursor position by copying the
item and then deleting the original item.

Specifically, this procedure has the following effects:

Ada tmages: Moves the selected element to the cursor position. This movement
is done by copying the element and then deleting the original element. The new
copy is placed in the source state. If other elements are dependent on the element
because of semantic references (from installed or coded units), the deletion fails
but the copy succeeds. Contained units of the selected unit are not moved.

Library tmages: Moves the selected object into the library in which the cursor is
located. The procedure prompts with a Library.Move command in a Command
window below the library in which the cursor is located. The From parameter
specifies, as a default, the selected object, and the To parameter specifies, as a
default, the library in which the cursor is located.

Links: Copies a selected link from one set of links to the set of links on which the
cursor is located. Currently, the procedure copies the link but does not move it.
If the selected link and the cursor are both in the same set of links, the procedure
has no effect.

Searchlists: Moves the selected searchlist component to the current cursor posi-
tion in the current searchlist.

Switches: Moves highlighted switches from one set of switches to the set of
switches on which the cursor is located. If the selected switch and the cursor
are both in the same set of switches, the procedure has no effect.

Tezt smages: Moves the selected text to the cursor position.

EST-112 e RATIONAL

procedure Next
package !Commands.Common.Object

procedure Next

procedure Next (Repeat : Positive := 1});

Description

Selects the next item past the designated item Repeat number of times.

The next item is the item at the same level, in a syntactic sense, as the designated
item that appears immediately after the designated item.

Specifically, this procedure has the following effects:

Ada tmages: Selects the Repeat next element past the currently selected element.
A next element is the element at the same level, in a syntactic sense, as the current
element that appears immediately after the current element. If no such selection
can be made, the next element at the enclosing level is selected.

Command tmages: Selects the Repeat next element past the currently selected
element. A next element is the element at the same level, in a syntactic sense,
as the current element that appears immediately after the current element. If no
such selection can be made, the next element at the enclosing level is selected.

Debugger: Selects the Repeat next element past the currently selected element. A
next element is the element at the same level, in a syntactic sense, as the current
element that appears immediately after the current element. If no such selection
can be made, the next element at the enclosing level is selected.

Help and job unndows: Selects the job that is listed after the currently selected
job, provided that the cursor is on currently selected job, for the What.Jobs
display. If the cursor is not on the currently selected job or if no job is already
selected, the procedure selects the job on which the cursor is located. If all jobs
are selected, this procedure produces an error message.

For Help windows, this procedure selects the next item past the current item
declaration if the cursor is in the current selection; otherwise, it selects the item
corresponding to the line on which the cursor is located. If nothing is currently
selected, the procedure selects the item corresponding to the line on which the
cursor i8 located. If the entire Help window is selected, this procedure produces
an error message.

Library smages: Selects the next object at the same or greater level past the
currently selected object.

Links: Selects the next link. If no link is already selected, the procedure selects
the link on which the cursor is located. If all links are selected, this procedure
produces an error.

Menu smages: Selects the next declaration past the currently selected declaration
if the cursor is in the current selection; otherwise, the procedure selects the
declaration corresponding to the line on which the cursor is located. If nothing is

RATIONAL 7/1/er EST-113

procedure Next
package !Commands.Common.Object

currently selected, the procedure selects the declaration corresponding to the line
on which the cursor is located. The Repeat parameter specifies that the Repeat
declaration after the currently selected declaration is to be selected.

o Searchlists: Selects the next component in the searchlist. If no component is
already selected, the procedure selects the component on which the cursor is
located. If all components are selected, this procedure produces an error.

o Switches: Selects the next switch. If no switch is selected, the procedure se-
lects the switch on which the cursor is located. If all switches are selected, this
procedure produces an error.

o Text images: Selects the next item after the current selection at the same level
in the text-image hierarchy. If there is no current selection, the word after the
current cursor position is selected.

The Repeat parameter specifies the number of the selection to be selected after
the current cursor position.

o Window tmages: Selects the next line past the currently selected line if the cursor
is in the current selection; otherwise, the procedure selects the line on which the
cursor is located. If nothing is currently selected, the procedure selects the line on
which the cursor is located. The Repeat parameter specifies to select the Repeat
line after the currently selected line.

o Xref tmages: Selects the next unit past the currently selected unit if the cursor is
in the current selection; otherwise, the procedure selects the unit corresponding
to the line on which the cursor is located. If nothing is currently selected, the
procedure selects the unit corresponding to the line on which the cursor is located.

Parameters

Repeat : Positive := 1;
Specifies the number of times the selection is repeated.

References
procedure Child
procedure Parent

procedure Previous

EST-114 7/1/87 IQATIONAL

procedure Parent
package !Commands.Common.Object

procedure Parent

procedure Parent (Repeat : Positive := 1};

Description

Selects the parent item of the designated item Repeat number of times.

The parent is the item at the next higher level, in a syntactic sense, from the
designated item that contains the designated item.

Specifically, this procedure has the following effects:

Ada tmages: Selects the parent element of the currently selected element. The
parent element is the element that contains the current element at the next higher
level, in a syntactic sense, from the current element.

Command smages: Selects the parent element of the currently selected element.
The parent element is the element that contains the current element at the next
higher level, in a syntactic sense, from the current element.

Debugger: Selects the parent element of the currently selected element. The
parent element is the element that contains the current element at the next
higher level, in a syntactic sense, from the current element.

Help and job windows: Selects the job the cursor is on for the What.Jobs display.
If a job is already selected and the cursor is on the currently selected job, the
procedure selects all jobs in the set. If all jobs are already selected, the procedure
has no effect.

For Help windows, this procedure selects the item corresponding to the line on
which the cursor is located if there are no selections; otherwise, it selects the
entire Help window. If the entire Help window is already selected, the procedure
has no effect.

Lsbrary tmages: Selects the parent of the current selection. If there is no selection
or if the cursor is not in the selection, the procedure selects the line on which the
cursor is located.

Links: Selects the link on which the cursor is located. If no link is already selected,
the procedure selects the link on which the cursor is located. If a link is selected,
the procedure selects all links in the set. Otherwise, the procedure has no effect.

Menu tmages: Selects the declaration corresponding to the line on which the
cursor is located if there are no selections; otherwise, the procedure selects the
entire menu.

Searchlists: Selects the component in the searchlist on which the cursor is located.
If no component is already selected, the procedure selects the component on
which the cursor is located. If a component is selected, the procedure selects all
components in the set. Otherwise, the procedure has no effect.

RATIONAL 7//er EST-115

procedure Parent
package !Commands.Common.Object

o Suwttches: Selects the switch on which the cursor is located. If no switch is
selected, the procedure selects the switch on which the cursor is located. If a
switch is selected, the procedure selects all switches in the set. Otherwise, the
procedure has no effect.

o Text stmages: Selects the next higher-level item in the hierarchical structure of a
text image. The item selected is the one in which the cursor or current selection
is located. If no items are selected, the word closest to the cursor is selected.

The Repeat parameter specifies the number of levels to move up in selecting the
image. The default, 1, specifies the next highest level.

o Window smages: Selects the line on which the cursor is located if there are no
selections; otherwise, the procedure selects the entire Window Directory.

o Xref smages: Selects the unit corresponding to the line on which the cursor is
located if there are no selections; otherwise, the procedure selects the entire list
of units in the xref.

Parameters

Repeat : Positive := 1;
Specifies the number of times the selection is repeated.

References
procedure Child
procedure Next

procedure Previous

EST-116 7/1/87 E)A-”ONAL

procedure Previous
package !Commands.Common.Object

procedure Previous

procedure Previous (Repeat : Positive := 1);

Description

Selects the previous item before the designated item Repeat number of times.

The previous item is the item at the same level, in a syntactic sense, as the desig-
nated item that appears immediately before the designated item.

Specifically, this procedure has the following effects:

Ada $mages: Selects the Repeat previous element before the currently selected
element. A previous object is the object at the same level, in a syntactic sense, as
the current element that appears immediately before the current element. If no
such selection can be made, the previous element at the enclosing level is selected.

Command smages: Selects the Repeat previous element before the currently se-
lected element. A previous element is the element at the same level, in a syntactic
sense, as the current element that appears immediately before the current ele-
ment. If no such selection can be made, the previous element at the enclosing
level is selected.

Debugger: Selects the Repeat previous element before the currently selected ele-
ment. A previous object is the object at the same level, in a syntactic sense, as
the current element that appears immediately before the current element. If no
such selection can be made, the previous element at the enclosing level is selected.

Help and job windows: Selects the job that is listed before the currently selected
job, provided that the cursor is on the currently selected job, for the What.Jobs
display. If the cursor is not on the currently selected job or if no job is already
selected, the procedure selects the job on which the cursor is located. If all jobs
are selected, this procedure produces an error.

For Help windows, the procedure selects the previous item before the currently
selected item, if the cursor is in the current selection; otherwise, it selects the item
corresponding to the line on which the cursor is located. If nothing is currently
selected, the procedure selects the item corresponding to the line on which the
cursor is located.

Library tmages: Selects the previous object at the same or greater level before
the currently selected object.

Links: Selects the previous link. If no link is already selected, the procedure
selects the link on which the cursor is located. If all links are selected, this
procedure produces an error.

Menu tmages: Selects the previous declaration before the currently selected dec-
laration if the cursor is in the current selection; otherwise, the procedure selects
the declaration corresponding to the line on which the cursor is located. If noth-
ing is currently selected, the procedure selects the declaration corresponding to

R)ATIONAL 7/1/87 EST-117

procedure Previous
package !Commands.Common.Object

the line on which the cursor is located. The Repeat parameter specifies that the
Repeat declaration before the currently selected declaration is to be selected.

o Searchlists: Selects the previous component in the searchlist. If no component
is already selected, the procedure selects the component on which the cursor is
located. If all components are selected, this procedure produces an error.

o Swustches: Selects the previous switch. If no switch is selected, the procedure
selects the switch on which the cursor is located. If all switches are selected, this
procedure produces an error.

o Tezxt tmages: Selects the previous item before the current selection at the same
level in the text-image hierarchy. If there is no current selection, the word before
the current cursor position is selected.

The Repeat parameter specifies the number of the selection to be selected before
the current cursor position.

o Window tmages: Selects the previous line before the currently selected line if
the cursor is in the current selection; otherwise, the procedure selects the line on
which the cursor is located. If nothing is currently selected, the procedure selects
the line on which the cursor is located. The Repeat parameter specifies to select
the Repeat line after the currently selected line.

o Xref images: Selects the previous unit before the currently selected unit if the
cursor is in the current selection; otherwise, the procedure selects the unit cor-
responding to the line on which the cursor is located. If nothing is currently
selected, the procedure selects the unit corresponding to the line on which the

cursor is located.

Parameters

Repeat : Positive := 1;
Specifies the number of times the selection is repeated.

References
procedure Child
procedure Next

procedure Parent

end Object;

EST-118 7/1/87 R)ATlONAL

package !Commands.Common.

end Common;

RATIONAL 7/1/87 EST-119

RATIONAL

Help

This section describes the on-line help facility for the Rational Environment. It also
describes type-specific editing operations for Help windows.

The Help commands are part of package !Commands. What (see SIM, package What).

Organization of the On-Line Help Facility

The help facility supports three types of help accessible from keys: help on keys
with (Help on Key]; help on the help facility itself with [Heip on Heip], and help on commands
with [Her). The Help window can be displayed by pressing [#eir Windou],

All help messages are displayed in the Help window. The beginning of each help
message is delineated by a series of dashes. Each time help is requested, the resulting
help message is added to the end of the Help window. Thus, help messages are
separated by dashed lines.

The following display illustrates the contents of a help message:

ICOMMANDS .WHAT.TIME 1is bound to: F20
procedure Time;

Returns the current date and time of day in the Message window.

Help messages contain the following parts:

o The first line of a help message, a dashed line, indicates the beginning of a help
message.

e The name of the procedure and the names of any keys bound to the procedure are
indicated below the dashed line. Note that the same procedure, with a different
parameter profile, may be bound to different keys and thus will have different
results. To determine if this is the case for a key in which you are interested,
displays the parameter profile in the Message window for the key you
press.

o The next part of the message shows the Ada specification for the operation being
explained. In this case, it is the line procedure Time;.

R)ATIONAL 7/1/87 EST-121

Help

e The rest of the help message explains the declaration.

Each time help is requested, the new help message is added to the end of the Help
window. Thus, you can review previous help messages, as described in the following

section.

Reviewing Previous Help Messages

All help messages displayed in the Help window are saved for the current login
session; in other words, all the help messages you request from the time you log in
until you log out are saved in the Help window. When you log out, the contents of
the Help window are no longer saved.

If you want to review a help message from your current login session, you can
return to the Help window to look at the help message again. If the Help window is
currently on the screen, you can move the cursor back into the Help window using

the [Windew]-{1] or [Window]-(1] combinations or by pressing [Help Window],

If the Help window has been removed from the screen, you can redisplay it by
pressing [Hep window]. The Help window will be displayed and the cursor will be
moved to that window. You can also redisplay the Help window by using the

Window Directory.

Moving the Cursor in the Help Window

While the cursor is in the Help window, you can scroll through its contents us-
ing Cursor and Image commands (EI, packages Editor.Cursor and Editor.Images).
Alternatively, you can use the search facilities to look for a particular entry (EI,
package Editor.Search).

Menus in the Help Window

If a name you specify to the () key (the !Commands.What.Does procedure is
bound to this key) resolves to more than one entry in the help system, a menu will
be displayed in the Help window listing all of the declarations for the related help
messages. You can use designation, described below, to specify which declaration’s
help message you want to see. Then you can press to display the help message
for that menu item.

Designation

To specify a declaration displayed in a menu for which you want to see help infor-
mation, you can use the following two forms of designation:

o Selection: You can select the declaration in a menu by using the selection com-
mands in package !Commands.Common.Object or package !Commands.Editor-
.Region. Note that, for the selection to be valid, the cursor must remain in the
selection.

o Cursor position: To designate a declaration in a menu, put the cursor anywhere
on the line corresponding to the declaration.

You can then press to see the help message for the designated menu decla-
ration.

EST-122 e RATIONAL

Help

Special Names

Help commands use special names. For further information on special names, see
Key Concepts.

Getting Help on the Help Facility

The key allows you to get help on a command or on the help facility
itself. To get help on the help facility itself, press [Heip on Heip]. The Help window will
display a help message for the help facility itself.

Getting Help on Keys

The key describes the function of the next key you press. For example,
to find out what does:

1. Press [Heip on k], The system prompts you in the Message window with:

Press key to be described:

2. Press the key for which you want to see a Help message. In this example, you
press [Promote],

Once you press the key, its name and parameter profile appear in the Message
window. Next, the system displays the Help window. A help message for the key
that you pressed is displayed in the Help window.

New help messages are appended to the end of the contents of the Help window. The
last entry in the Help window will be the latest help requested—in this example,

help on [Prometd.

Getting Help Using Selection

The key allows you to use selection to get help on a call to a declaration if
it appears in a window on your screen. For example, if you want help on the
!ICommands.Common.Promote procedure, and a call to it or its declaration appears
in a window on your screen, follow these steps:

1. Select the call to the declaration or the declaration itself (use commands in
package !Commands.Common.Object or !Commands.Editor.Region to make the
selection).

2. Press [Heis]. The system will display help for the selected item.
Note that the window containing a call will produce more satisfactory results if the

window has been semanticized. If the window has not been semanticized, you can
use the procedure outlined below in “Getting Help on Commands.”

RATIONAL 7/y/er EST-123

Help

Getting Help on Commands

The key allows you to get help on a declaration, whether or not you know its
fully qualified name or even its complete simple name. For example, if you want to
find out about the Write procedure and you do not know its fully qualified name,
follow these steps:

1. Press [Promp: For,
2. Press [Hep). In a Command window, the system prompts you with:

What .Does (Name => "");
3. Move the cursor to the first quotation mark, and type write. (The quotation
marks remain.) When you have finished, the command is:

Uhat .Does (Name => "write");

4. Press [Fromote].

If only one entry in the help system has the word “write” in it, the system displays
its help message in the Help window. On the other hand, if more than one entry is
related to “write” (as in this case), the system displays a menu in the Help window
coniilaix:ll)ing the declarations for all the related entries. Thus, the menu for “write”
might be:

ICommands . Access_List . Urite
ICommands . Activity.Urite
ICommands .Common.Urite_File
1Commands . Switches . Urite
ICommands . Tape.Write
ICommands . Tape .Urite Mt
llo.Direct_lo.WUrite
11o.Polymorphic_Sequential_lo.Operations.lWrite
llo.Sequential _lo.Write
o.indow_lo.Overurite
1Tools.Access_List_Tools.lUrite

You can use designation (described above) to designate the menu item whose help
message you want to see, and then you can press to display the help message.
If you display a help message for a menu item in which you are not interested, you
can always scroll back up to the menu to select a different menu item.

If you are interested in seeing the Ada specification for one of the procedures in the
menu, you can designate its declaration in the menu or in its help message, and
then press [pefnnion]. The system will display another window containing the Ada
specification.

Getting Help on a Topic

If you want help on a topic and do not know the complete name of the corresponding
declaration, you can use the procedure described in “Getting Help on Commands,”

EST-124 e RATIONAL

Help

above. For example, if you want to know how to change your password, you can
request help with the command:

What .Does (Name => "password");

Getting Help Using a Command Window

If you know the fully qualified pathname for a command, you can use the following
procedure to display help information for it:

1. Open a Command window by pressing [Greste Commana].

2. In the Command window, on the [statement] prompt, type:

What .Does
3. Press [Compicte]. The system displays the parameter profile for the command:

Uhat .Does (Name => ""};

4. Move the cursor to the first quotation mark. Then type the name of the pro-
cedure. For example, if you want help on the !Commands.Common.Definition
procedure, type:

Common .Definition
When you have finished, the command is:

What .Does (Name => "Common.Definition");

Note that you can simply type the name of the operation—for example, defi-
nition. If this resolves to more than one entry in the help system, a menu is
displayed. You can use designation to select a declaration from the menu, and
then press to see the help message for that declaration.

5. Press to execute the command.

The system displays the command’s help message in the Help window.

Determining Key Bindings

You can determine the key to which a command is bound by using the procedure
described above in “Getting Help on Commands.” When the help system displays
the help message for the command, it also displays the name of any key to which
the procedure is bound.

RAT'ONAL 7/1/87 EST-125

Help

Commands from Package Common

The following commands from package !Commands.Common are supported for the
Help window. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Removes the Help window from the screen and from the Window Directory. This
command has the same effect as the Release procedure.

procedure Common.Create.Command

Creates a Command window below the Help window if one does not exist; otherwise,
the procedure puts the cursor in the existing Command window below the Help
window. This Command window initially has a use clause:

use Editor, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor and !Commands.Common for names resolved in the command.

procedure Common.Definition

Brings up on the screen an image of the Ada unit containing the designated decla-
ration.

procedure Common.Explain

Adds an entry to the Help window for the designated declaration in a Help window
menu.

procedure Common.Release

Removes the Help window from the screen and from the Window Directory. This
command has the same effect as the Abandon procedure.

procedure Common.Objeet.Child

Selects the line the cursor is on if the whole Help window is selected. If there is a
selection, the procedure leaves the current line selected.

procedure Common.Object.First-Child
Selects the first line in the Help window.

procedure Common.Object.Last-Child
Selects the last line in the Help window.

EST-126 e RATIONAL

Help

procedure Common.Object.Next

Selects the next line after the currently selected line if the cursor is in the current
selection; otherwise, the procedure selects the line on which the cursor is located.
If nothing is currently selected, the procedure selects the line on which the cursor
is located.

procedure Common.Object.Parent

Selects the line on which the cursor is located if there are no selections; otherwise,
the procedure selects the entire Help window.

procedure Common.Object.Previous

Selects the previous line before the currently selected line if the cursor is in the
current selection; otherwise, it selects the line on which the cursor is located. If
nothing is currently selected, the procedure selects the line on which the cursor is
located.

RATIONAL 7yer EST-127

RATIONAL

Menus

This section describes type-specific editing operations for lists of Ada declarations
generated by the !Commands.Common.Complete command and !{Commands.Editor
commands that attempt to demote Ada declarations. These lists, of menu image
type (referred to in this section as menus), are created to describe:

¢ The possible declarations to which an incomplete Ada name fragment can re-
solve.

o The compilation units that become obsolete as a result of demoting or withdraw-
ing/deleting (using the incremental compilation operations) an Ada declaration.

There is only one menu for a session. When a new menu is created, the current
one is destroyed. These menus can be viewed at various levels of detail to help in
determining the specific declaration referred to by the item in the menu. Various
other operations are supported for declarations in menus, including viewing, editing,
promoting, and demoting the Ada units in which the declarations appear. All of
these operations come from package Common. This section describes the common
commands as they pertain to editing menus. The common editing operations are
discussed more fully in package Common in this book.

For more information on how menus are generated, see the reference entry for the
Common.Complete command for images of types Ada and Command, as well as
other commands that explicitly or implicitly demote Ada units.

Image Structure

Here are examples of two menus, one generated by attempting to demote the speci-
fication of package Complex in a library containing some other units that depend on
it, and another generated while attempting to complete a statement in a Command
window. They will be used in the discussions that follow.

RATIONAL 7/1/er EST-129

Menus

The menu generated from demoting COMPLEX’Spec is:
Units that are obsolesced by COMPLEX’Spec

Complex’body
Complex_List’spec
Complex_Utilities’spec
Display_Complex_Sums’'body

The menu generated from attempting to complete Text_Io.Put in a Command win-
dow is:

List of possible completions

Put =>
Put’spec
Put’'spec
Put’spec
Put’spec
Put_Line’spec
Put_Line’'spec

The menu is composed of a title and a list of lines. Each line corresponds to an Ada
declaration, which could be an entire compilation unit or an individual declaration
vigible in a compilation unit. By default, only the simple names of these declarations
are displayed. However, this level of detail can be changed (see below).

There is only one menu for each session. If subsequent commands generate new
menus—for example, if a menu is created when an attempt is made to edit a unit—
old menu values are lost. Attempting to demote a declaration in the menu may
cause another menu, listing the units that depend on this declaration, to be created
and to overwrite the previous menu. This menu is referred to as the menu window.

The menu has no name associated with it.

Key Concepts

Designation

Structurally, a menu is a list of declarations, one to a line. Each row of the table
corresponds to a unit. To designate one of the declarations in the menu for an
operation, you have three options:

¢ Puf the cursor anywhere on the line corresponding to the declaration that you
want.

o Select the line corresponding to the declaration that you want using one of the
selection commands from package !Commands.Common.Object.

¢ Select the entire line using the !Commands.Editor.Region.Start and Editor.Re-
gion.Finish commands.

Although it is possible to select an entire menu, menus ignore such multiple-line
selections. If the entire menu is selected, the location of the cursor is used to
designate the declaration.

EST-130 7/1/87 RATIONAL

Menus

Note that, if there is a single-line image selection in the menu, this selection is
used instead of the location of the cursor. You can turn off any existing selections
anywhere in the image with the Editor.Region.Off command. If a multiple-line
selection exists, the cursor position determines which declaration is displayed.

Special Names

Some of the commands in package Common use special names to indicate a desig-
nation, as described below:

"<SELECTION>" References the highlighted object, if the cursor is located
in a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located,

whether or not there is a highlighted area in the window.

"<IMAGE>" References the highlighted object, if the cursor is in a
highlighted area. If the cursor is not located in the
highlighted area, this special name references the image
on which the cursor is located.

"<TEXT"> References the highlighted text in the image window.

"<ACTIVITY>" References the default activity. If an activity is high-
lighted and the cursor is in the highlight, this special
name references that activity rather than the default
activity.

Expansion and Elision

By default, the declarations in a menu are displayed with their simple names and
parameter profiles. However, additional detail is available if desired. The !Com-
mands.Common.Expand and Elide commands can be used to increase or decrease
the level of detail displayed in a menu. These commands can be applied to a selected
declaration, sequence of declarations, or, if none is selected, all of the declarations
in the menu.

The levels of detail available, ordered from lowest to highest, are:

¢ Simple names

o Full names

¢ Simple names with parameter profiles (the default)

¢ Full names with parameter profiles

These levels are not circular; that is, expanding has no effect once the highest level

of detail has been reached, and eliding has no effect once the lowest level of detail
has been reached.

Here are examples of the differing levels of detail for the menu described previously,
which resulted from attempting to complete an incomplete statement:

RATIONAL 7/1/sr EST-131

Menus

Simple names:

List of possible completions

Put =>

Put’spec
Put’spec
Put ’'spec
Put’spec

Put_Line'spec
Put_Line’spec

Full names:

List of

Put =>

PIO.TEXT .
HIO.TEXT_
HIO.TEXT_
'10.TEXT_
110
10

10.PUT*N(
10.PUT ' N{
10.PUT ' N(

1
2
3
10.PUT’N(4

JEXT_10.PUT_LINE'N
CTEXT_IO.PUT_LINE’N

)
)
)
)

possible completions

(1)
(2)

Simple names with parameter profiles:

List of possible completions

Put =>

procedure
procedure
procedure
procedure
procedure
procedure

Put (File
Put (item
Put (File
Put (ltem :
Put_Line
Put_Line

Full names with parameter profiles:

List of possible completions

Put =>

procedure
procedure
procedure
procedure
procedure
procedure

EST-132

IO TEXT
110.TEXT
HO.TEXT_
TIO.TEXT_
HO.TEXT_
HO.TEXT_

: File_Type; item : Character);

: Character);

: File_Type; ltem : String);

String);

(F11e . File _Type; Item : String);
(Item : String);
10.PUT (File : File_Type; Item : Character);
10.PUT (ltem : Character);’spec
10.PUT (File : File T ; !tem : String);
10.PUT (ltem : String);
1I0.PUT_LINE (File : F11e T ltem : String);
I0.PUT_LINE (Iltem : String);

7/1/87 PAT'ONAL

Menus

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing menus. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Ends the editing of the menu. The window is removed from the screen and from the
Window Directory. This command has the same effect as the Release procedure.
The Window parameter specifies which image to be abandoned. The default is the
current image.

procedure Common.Create.Command

Creates a Command window below the menu if one does not exist; otherwise, the
procedure puts the cursor in the existing Command window below the menu. This
Command window initially has a use clause:

use Editor, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor and !Commands.Common for names resolved in the command.

procedure Common.Definition

Brings up on the screen an image of the Ada compilation unit containing the des-
ignated declaration. The Name parameter specifies which image to display. The
In_Place parameter specifies whether the current window should be used. The
Visible parameter specifies whether the specification or body should be displayed.

procedure Common.Demote

Attempts to demote the Ada unit containing the designated declaration to the next
lower state. The specific effect of this procedure depends on the current state of
the unit and whether other units depend on the unit on which the demote is being
attempted. If there are no dependents and the current state is:

o Archived: The procedure has no effect.

Source: The procedure has no effect.
Installed: The unit is demoted to the source state.
Coded: The unit is demoted to the installed state.

If there are dependents, they are indicated by overwriting of the existing menu with
a new menu containing these dependencies.

RATIONAL +/1/er EST-133

Menus

procedure Common.Edit

Creates a window in which to edit the Ada unit containing the selected declaration.
The procedure demotes the unit to the source state, if necessary. If the demotion
of the unit will cause obsolescence, the edit fails and a new menu of dependent
units replaces the existing menu contents. The Name parameter specifies which
unit to edit. The In_Place parameter specifies whether the current frame should
be used. The Visible parameter specifies whether the specification or body should
be displayed.

procedure Common.Elide

Decreases the level of detail displayed for the selected declaration to the next lower
level. If no declaration is selected, the procedure decreases the level of detail for all
of the declarations in the menu to the next lower level. The levels of detail available,
ordered from lowest to highest, are:

¢ Simple names

o Full names

o Simple names with parameter profiles (the default)

¢ Full names with parameter profiles
These levels are not circular; that is, expanding has no effect once the highest level

of detail has been reached, and eliding has no effect once the lowest level of detail
has been reached.

procedure Common.Expand

Increases the level of detail displayed for the selected declaration to the next higher
level. If no declaration is selected, the procedure expands the level of detail for all of
the declarations in the menu to the next higher level. The levels of detail available,
ordered from lowest to highest, are:

¢ Simple names
¢ Full names
¢ Simple names with parameter profiles (the default)

Full names with parameter profiles

These levels are not circular; that is, expanding has no effect once the highest level
of detail has been reached, and eliding has no effect once the lowest level of detail
has been reached.

procedure Common.Promote

Promotes the Ada unit containing the designated declaration to the next higher
state. This procedure has the same effect as executing the Common.Promote com-
mand on the Ada unit containing the designated declaration. The specific effect of
this procedure depends on the current state of the unit. If the current state is:

EST-134 7/1/87 RATIONAL

Menus

Archived: The unit is promoted to the source state.

Source: The unit is promoted to the installed state.

Installed: The unit is promoted to the coded state.

Coded: The procedure has no effect.

procedure Common.Release

Ends the editing of the menu. The window is removed from the screen and from the
Window Directory. This command has the same effect as the Abandon procedure.
The Window parameter specifies which window to release. The default is the current
image.

procedure Common.Object.Child

Selects the declaration on the line on which the cursor is located.

procedure Common.Object.First_Child

Selects the first declaration in the menu.

procedure Common.Object.Last.Child

Selects the last declaration in the menu.

procedure Common.Object.Next

Selects the next declaration past the currently selected declaration if the cursoris in
the current selection; otherwise, the procedure selects the declaration corresponding
to the line on which the cursor is located. If nothing is currently selected, the
procedure selects the declaration corresponding to the line on which the cursor
is located. The Repeat parameter specifies that the Repeat declaration after the
currently selected declaration is to be selected.

procedure Common.Object.Parent

Selects the declaration corresponding to the line on which the cursor is located if
there are no selections; otherwise, the procedure selects the entire menu.

proecedure Common.Object.Previous

Selects the previous declaration before the currently selected declaration if the cur-
sor is in the current selection; otherwise, the procedure selects the declaration corre-
sponding to the line on which the cursor is located. If nothing is currently selected,
the procedure selects the declaration corresponding to the line on which the cursor
is located. The Repeat parameter specifies that the Repeat declaration before the
currently selected declaration is to be selected.

RATIONAL 7/1/er EST-135

RATIONAL

Text Images

This section describes type-specific editing operations for text images. Text is com-
posed of sequences of ASCHI characters organized as lines of words that form sen-
tences and paragraphs.

Text images are created in two different ways:

¢ When ﬁle)s in the directory system are viewed or edited (such images are referred
to as tezt).

¢ When a job performs interactive input and output to a window (such images are
referred to as I/0 windows).

The power of the Rational Editor available for editing job input and output is ba-
sically the same as for editing files, but there is no permanent underlying object
as there is with a file. When editing text images associated with jobs, the editor
provides prompts for input and permits full editing of input and output text. How-
ever, the image in the text window is temporary and is destroyed when the session
is terminated.

Note that the Rational Debugger is a program that performs interactive input and
output to the Debugger window, so it is also an image of text type. See Debugging
(DEB) for more information on the Rational Debugger.

Many operations in package !Commands.Common apply to text. These commands,
as well as those in package !Commands.Text, are described in this section.

Image Structure

The structure of text images is a strict five-level hierarchy, consisting of (from the
lowest level to the highest level):

ASCH characters
Words
Sentences

Paragraphs

RATIONAL 7/1/87 EST-137

Text Images

o The whole text image

Note that the characters and words of a text image can be grouped into one or
more lines, and they can be operated on with commands from package !Com-
mands.Editor.Line.

Words are contiguous sequences of characters delimited by the set of word delim-
iters. By default, these delimiters include spaces, most punctuation characters, and
the Ada delimiters. The delimiters are established on a per-session basis and can be
changed either by executing the !Commands.Editor. Word.Breaks command or by
editing the Word_Breaks session switch. See Editing Images (EI) for more informa-
tion on word breaks and Session and Job Management (SIM) for more information
on session switches.

Sentences consist of one or more words, delimited either by a blank line or by a
sentence delimiter followed by two or more spaces. The sentence delimiters are the
period (.), the question mark (7), and the exclamation (!).

Paragraphs consist of one or more sentences separated by blank lines.

There are always five levels in this hierarchy, even if only a single character. For
example, if there is only a single character with an empty line above and below it,
that character is a word, a sentence, a paragraph (this property can be useful when
using selection, which is described below), and the entire image.

Key Concepts
Designation

Designation can be accomplished in one of two ways:

¢ By indicating the start and end of a selection using the !Commands.Editor.Region-
.Start and Editor.Region.Finish commands.

¢ By using the commands in package !Commands.Common.Object.

Using the selection operations from package Common.Object allows selection of
lower- or higher-level elements in the hierarchical structure of text. The commands
in package Common.Object can be used to select the word the cursor is in, the
sentence the selected word is in, the paragraph the selected sentence is in, or the
entire text image a selected paragraph is in. The commands can also be used to
select a particular paragraph from a fully selected text image, a particular sentence
from a selected paragraph, or a particular word from a selected sentence.

Note that, if there are no selections, selecting the parent of a character three times
(with the Common.Object.Parent command? always selects the paragraph the cur-
sor is in, even if the paragraph consists of only a single character, word, or sentence.
This property can be useful in constructing higher-level commands and/or keyboard
macros that perform operations on sentences and paragraphs without requiring the
user to select the sentence or paragraph beforehand. (For example, a paragraph

EST-138 e RATIONAL

Text Images

fill operation that fills the paragraph the cursor is in can be implemented by per-
forming the Common.Object.Parent operation three times and then executing the
Editor.Region.Fill command on the selected paragraph.)

If there are no selections, selecting the parent of a character four times selects the
entire image.

Versions

Versions of text files exist just as versions of other objects exist in the Environment.
A new version of a text file is created when a file is committed or promoted.

Committing Images

permanent until the changes are committed (saved). Committing can be done ex-

Changes that are made to the text images corresionding to files do not become
Common.Promote procedures

plicitly with the !Commands.Common.Commit an
or implicitly with the Common.Release procedure.

Locks

The Rational Editor creates a write lock on a text file when it is opened for editing.
This lock allows only one user to edit the file, although users can view the file’s
contents even while someone is editing it (or while a job—for example, a compilation
log—is writing to it). In such cases, the viewers of the locked file are warned that
the file is currently open when they attempt to view it. The file remains locked
until it is released or promoted.

If a file is being viewed—that is, the window containing the image was created with
the Common.Definition command and/or the equals sign (=) is in the left end of
the banner—another user or job can obtain a write lock on the file and the original
viewers will not be notified.

Job Input and Output

When a job is inputting or outputting to a window, its job name/context and
number appear in the banner for the window (and also in the Window Directory
entry for the image). When the job terminates, the job number is removed, but the
name/context entries stay until they are replaced with new values the next time a
job uses the window.

When a job is requesting input from the window (for example, with the !To.Text_Io-
.Get command), an [input] prompt appears. Text can be entered at this prompt
and can continue for multiple lines. The full power of the Rational Editor is available
to cut and paste, change, and so on or to continue to add to this text. When the
input has been properly composed, it can be sent to the program by executing
the !Commands.Common.Commit, the Common.Promote, or the Common.Format
command.

Executing the Common.Format command causes the text, exactly as entered, to
be passed as input to the requesting job. Executing the Common.Enter or the

I?AT'ONAL 7/1/87 EST-139

Text Images

Common.Promote command provides a line terminator or delimiter if requested by
the input operation and not supplied in the text entered at the [input] prompt.

When jobs output to windows, the text images they write are protected. This
means that these areas of the text image cannot be modified by editing them. Note
that, for I/O0 windows, the asterisk (* % and pound (#) symbols can appear in the
banner. The # gsymbol means that a job is running t at has requested input, but
no input has been entered. When input is entered, the symbol changes from #
to *. When this input is committed, the symbol changes back to #. When the
job completes, the symbol changes to a blank. Because images with * and # are
considered uncommitted, you cannot log off without terminating jobs requesting
input unless you ignore changed images (the Debugger window is a special case
that the Rational Editor treats as commitied even though it has a # symbol).

The context for I/O windows is that of the last job to send output to or get input
from that window.

Session Switches

Some of the behavior of job output to text windows can be tailored with session
switches. (See LM, Session Switches, for more information on session switches.)
Those switches that specifically pertain to text output displays typically begin with
“Text_".

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing text. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Ends the editing of the image. Any changes made to the image since the last
implicit or explicit commit are lost. The window is removed from the screen and
from the Window Directory. The Window parameter specifies which window should
be removed from the screen. The default, "<IMAGE>", removes the current image.

If a job is currently performing input or output on an I/O window, the Abandon
procedure will fail.

procedure Common.Commit

Makes permanent any changes to the image. Changes to the image are made in a
temporary area. This procedure saves those changes, making them permanent, by
creating a new version of the text file that contains the changes.

The procedure also commits input in I/O0 windows. The input, along with a ter-
minator or delimiter if necessary, is sent to the program that requested it. The
Window parameter specifies which window’s image should be committed. The de-
fault, "<IMAGE>", commits the current image.

EST-140 7/1/87 PATIONAL

Text Images

procedure Common.Create-Command

Creates a Command window below the text window if one does not exist; otherwise,
the procedure puts the cursor in the existing Command window below the text
window. This Command window initially has a use clause:

use Editor, Text, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, !Commands.Text, and !Commands.Common for names resolved in
the command.

procedure Common.Demote

Changes the current text window from read only to editable. If another user or
job has a write lock on the file being viewed, the Demote command will fail. The
procedure has no effect on I/O windows.

procedure Common.Edit

Makes the current text window editable by acquiring a write lock on the file as-
sociated with the window. If other users or jobs have write locks on the file, the
operation will fail. The procedure has no effect on I/O0 windows.

The Name parameter specifies which text window should be made editable. The
default special name, "<IMAGE>", specifies the current image or selection in a library
image (if there is one). The In_Place parameter specifies whether the current frame
should be used. The default, false, specifies that the current frame should not be
used.

procedure Common.Enclosing

Brings up a window that contains an image of the library containing the file cor-
responding to the current text window. For I/0 windows, the Enclosing procedure
finds the home library for the user.

The In_Place parameter specifies whether the current frame should be used. The
default, false, specifies that the current frame should not be used. The Library
parameter specifies whether the enclosing library should be displayed. The default
is false.

procedure Common.Insert-File
Inserts the named text file into the current Ada image at the current cuvrsor position.

procedure Common.Promote

Commits changes to the image and releases the write lock on the underlying file.
Changes to the image are made in a temporary area. This procedure saves those
changes, making them permanent, by creating a new version of the text file that
contains the changes.

The procedure also commits input in I/0 windows. The input, along with a termi-
nator or delimiter if necessary, is sent to the program that requested it.

BA\TIONAL 1/1/87 EST-141

Text Images

procedure Common.Release

Ends the editing of the text and removes the image from the Window Directory.
All changes to the text are made permanent before the window is removed from the
screen. A new version of the underlying file is created if changes are saved.

If a job is currently performing input or output on an 1/O window, the Release
procedure will fail.

The Window parameter specifies which window should be released. The default is
the current image.

procedure Common.Revert

Refreshes the image in the current window with the current value of the underlying
file. Note that, if a job is writing into a file and the file is concurrently being viewed
with the Rational Editor, the Revert command can be used to update the image to
show any new output that has occurred since the last Revert procedure.

procedure Common. Write_Flle

Writes the contents of the current selection in the named file. If there is no selection,
this procedure writes the contents of the current image into the named file. The
previous contents of the file are lost.

procedure Common.Object.Child

Selects the next lower-level item in the hierarchical structure of a text image. The
item selected will be the one the cursor is in if such an item exists. If no items are
selected, the word closest to the cursor is selected.

The Repeat parameter specifies the number of levels to move down in selecting the
image. The default, 1, specifies the next lowest level.

procedure Common.Object.Copy

Copies the selected text to the cursor position.

procedure Common.Object.Delete

Deletes the selected text.

procedure Common.Object.First-Child

Selects the first child of the current selection. The first child is the first one at the
next lower level in the hierarchy of the current selection.

The Repeat parameter specifies the number of levels to move down in selecting the
image. The default, 1, specifies the next lowest level.

EST-142 7/1/87 I?ATIONAL

Text Images

procedure Common.Object.Last-Child
Selects the last child of the current selection. The last child is the last one at the
next lower level in the hierarchy of the current selection.

The Repeat parameter specifies the number of levels to move down in selecting the
image. The default, 1, specifies the next lowest level.

procedure Common.Object.Move

Moves the selected text to the cursor position.

procedure Common.Object.Next

Selects the next item after the current selection at the same level in the text-image
hierarchy. If there is no current selection, the word after the current cursor position
is selected.

The Repeat parameter specifies the number of the selection to be selected after the
current cursor position.

procedure Common.Object.Parent

Selects the next higher-level item in the hierarchical structure of a text image. The
item selected is the one in which the cursor or current selection is located. If no
items are selected, the word closest to the cursor is selected.

The Repeat parameter specifies the number of levels to move up in selecting the
image. The default, 1, specifies the next highest level.

procedure Common.Object.Previous

Selects the previous item before the current selection at the same level in the text-
image hierarchy. If there is no current selection, the word before the current cursor
position is selected.

The Repeat parameter specifies the number of the selection to be selected before
the current cursor position.

RATIONAL 7/1/87 EST-143

RATIONAL

package Text

This package contains the set of procedures and types provided for text object-
specific editing. The commands in package {Commands.Common can also be used
for text object-specific editing.

RAT'ONAL 7/1/87 EST-145

procedure Block
package !Commands.Text

procedure Block

procedure Block (All_Windows : Boolean := False);

Description

Temporarily stops all job output to the current window or to all windows, based on
the value of the All_Windows parameter.

The output can be resumed with the Continue procedure. If the window is already
blocked, this procedure has no effect.

If All_Windows is true, all I/0O windows, not just the current one, are blocked.

The !Commands.Job.Disable or Job.Kill procedure can also be used to stop jobs
(see SIM, package Job).

Parameters

All _Windows : Boolean := False;

Specifies whether the current I/0 window is blocked (the default) or all I/0 windows
are blocked.

References
procedure Continue
SJM, procedure Job.Disable

SIM, procedure Job.Kill

EST-146 e RATIONAL

procedure Continue
package !Commands.Text

procedure Continue

False;

procedure Continue (Page_Mode : Boolean
False);

All _Windows : Boolean

Description

Resumes job output to the current window or to all windows that have been blocked
using the Block procedure, depending on the value of the All_Windows parameter.

If the window is not blocked, this procedure has no effect. If the All_Windows
parameter is true, all I/0 windows, not just the current one, are continued.

If the Page_Mode parameter is true, the I/0 window or windows automatically
block after an additional page of output has been displayed. At that point, this
procedure must be executed again to resume output.

Parameters

Page_Mode : Boolean := False;

Specifies whether the window automatically blocks again after the next page of
output (true) or continues displaying output until explicitly blocked or completed
(the default).

All _Windows : Boolean := False;

Specifies whether the current I/0 window is continued (the default) or all I/0 win-
dows are continued.

References

procedure Block

RATIONAL 7/1/sr EST-147

procedure Create
package !Commands.Text

procedure Create

">> IMAGE NAME<L";

procedure Create (Image_Name : String
Text .File);

Kind : Image_Kind :

Description

Creates a new empty text file in a new window for editing or for use by a job
performing 1/0.

This procedure can be used in two ways:

e It can be used to create a text file. The Image_Name parameter specifies the
name of the file to be created. To create a text file, the Kind parameter must
specify Text.File. A window is created containing the image of the text file when
the procedure is executed.

¢ It can be called from a job to create an I/O window for that job. When used
in a job, the Image_Name parameter specifies the name that will appear in the
window of the job and the 1/0 window created by the job. The Kind parameter
must specify Text.Input_Output so that an I/O window is created. No text file
is created.

If the named file exists, its contents are destroyed. The new file created by this
procedure is always empty.

If the kind of image created is a file, then the image name must be a legal filename.

Parameters

Image_Name : String := ">>IMAGE NAME<<";

Specifies the name of the image or file. If the kind of image is a file, then this string
must be a legal filename. The default parameter placeholder “>>IMAGE NAME<<"
must be replaced or an error will result.

Kind : Image_Kind := Text.File;
Specifies the kind of image to be created. The default is a text file. To create an
1/0 window, specify Text.Input_Output.

References

type Image_Kind

EST-148 e RATIONAL

procedure End_Of_Input
package !Commands.Text

procedure End_Of_Input

procedure End_O0f_Input;

Description

Signals the interacting program that no more input will be provided, when executed
in an I/O window.

The !To.Jo_Exceptions.End_Error exception is raised if the program requests more
input.

RATIONAL 7/1/er EST-149

type Image_Kind
package !Commands.Text

type Image_Kind

type Image_Kind 1is (File, Input_Output);

Description
Defines the two kinds of text images.

This type is used by the Create procedure to specify what kind of text image to
create.

Enumerations

File
Specifies that the procedure using this type will interact with the image of a text
file.

Input_Output
Specifies that the procedure using this type will interact with an I/0 image.

References

procedure Create

EST-150 e RATIONAL

procedure Redirect
package !Commands.Text

procedure Redirect

procedure Redirect (To : String := ">>File Name<<"};

Description

Redirects the output associated with the current output window to the specified
file.

This procedure is useful when you want to log off and save the contents of the
current output window.

Parameters

To : String := ">>File Name<<";

Specifies the name of the file to which output should be directed. If a fully qualified
filename is not supplied, the name of the file is assumed to be in the same context
as the job that initiated the output window.

end Text;

RATIONAL 7/1/87 EST-151

RATIONAL

Window Directory

This section describes type-specific editing operations for the Window Directory,
which is a windows image type. The Window Directory is a list of active images
that can be manipulated with the Rational Editor.

The !Commands.Editor. Window.Directory procedure creates a window, called the
Window Disrectory, that contains a list of all currently active images and indicates
their name, size, type, time of last modification, and whether they have been mod-
ified since last committed. (See EI, package Editor.Window, for more information
on this procedure.)

A common operation in the Window Directory is to bring an image listed in
the Window Directory onto the screen. This is done by moving the cursor to
the line in the Window Directory for the desired image and executing the !Com-
mands.Common.Definition command. Other operations, such as committing, can
also be performed.

This section describes the commands from package !Commands.Common as they
pertain to editing windows. The common editing operations are discussed more
fully in the documentation for package Common in this book.

Image Structure
This typical Window Directory image will be used in the following discussion:

MOD LINES TYPE BUFFER NAME

5222 (text) IUSERS .BLB.MAKE_LOG'V(3)

- 11 (searchlist) <BLB,S_I>
- 2 (switch) 'USERS _BLB.L IBRARY_SWITCHES V(1)
*

9 (ada) 'USERS .BLB.COMPLEX’V(4)
122 {links) IUSERS .BLB
7 {ada) IUSERS .BLB % UNIT_1{JOB 224)
= 92 (library) fUSERS .BLB
1 Help Window
= 8 Message Window
= 13 {(windows) Window Directory

RATIONAL 7/y/er EST-153

Window Directory

Note that this image is a table of four columns with a row for each active image
in a session. As new images are created, they are added to the top of the Window

Directory.

The first column, MOD, is a flag indicating whether the image has been modified
and/or formatted since the last time it was committed. This column also indicates
whether the image is read only (read) or is modifiable gwrite). Note that this is
the same symbol that appears in the lower-left corner of the banner of the image
to which the entry corresponds. In general, the symbol may have slightly different
meanings based on the type of the image. The following table provides the typical
interpretation of these symbols:

Table 12-1. Interpretation of Symbols in the Window Directory

Symbol Lock Commstted? Formatted?

= Read (Not applicable) | True

(Blank) | Write True Can be either
* Write False False

Write False True

! (The editor or a job has temporarily locked the image)

Note that, for I/0 windows, the * and # symbols mean that a job that is requesting
input is running. Because such images are considered uncommitted, you cannot log
off without terminating these jobs or ignoring changed images.

The second column, L INES, indicates the number of text lines in the image.
The third column, TYPE, indicates the type of the image.

The fourth column, BUFFER NAME, indicates the name of the image. If the name is
too long, it will be elided on the left. To determine the full name of an image, go
to the image and press [What object]. The full name of the image will be displayed in
the Message window.

Key Concepts

Designation

The Window Directory structurally is a list of images, one to a line. Each row of
the table corresponds to an image. To designate one of the images in the directory
for an operation such a promote or a commit, you have three options:

EST-154 e RATIONAL

Window Directory

o Put the cursor anywhere on the line corresponding to the image that you want.

o Select the line corresponding to the image that you want using one of the selection
commands from package !Commands.Common.Object.

o Select the entire line (including any trailing blanks and, optionally, the line termi-
nator) using the !Commands.Editor.Region.Start and Editor.Region.Finish com-
mands.

Although it is possible to select the entire Window Directory or several lines of it,
the Window Directory ignores such multiple-image selections. If the entire image
is selected, the location of the cursor is used to designate the image.

Note that, if there is a single-image selection in the Window Directory, this selection
is used instead of the location of the cursor. You can turn off any existing selections
anywhere in the image with the Editor.Region.Off command.

Some of the commands in package !Commands.Common use special names to indi-
cate a designation, as described below:

"<SELECT ION>" References the highlighted object, if the cursor is located in
a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlighted area in the window.

"<IMAGE>" References the highlighted object, if the cursor is in a high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"<TEXT>" References the highlighted text in the image in the window.

"CACTIVITY>" References the default activity. If an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Traversing to Images

The Window Directory allows you to view or edit any of the images it lists. To do so,
first designate the image you want. Then execute the !Commands.Common.Defini-
tion or Common.Edit command to view or edit the unit. The execution of either
of these commands causes the image for the unit to be brought onto the screen.

Committing, Promoting, and Demoting

The Window Directory allows you to commit, promote, or demote images listed in
it. To do so, first select the image you want to operate on, and then execute the
!Commands.Common.Commit, Common.Promote, or Common.Demote command.
The command is performed on the selected image without the image being brought
onto the screen.

RATIONAL 7177 EST-155

Window Directory

Releasing Images

The Window Directory allows you to commit any changes that have been made
to an image and to remove that image from the Window Directory without first
bringing the image onto the screen. To do so, select the line that lists the image
you want to delete with the commands from !Commands.Common.Object or !Com-
mands.Editor.Region as described above, and then execute the !Commands.Com-
mon.Object.Delete command. This operation is equivalent to performing the Com-
mon.Release command on the selected image.

Refreshing the Window Directory

The image of the Window Directory that is displayed is usually current. Some-
times, however, the entries in the directory may not have been updated to reflect
their current values. If you need the most current information, execute the !Com-
mands.Common.Revert command to refresh the Window Directory image.

If an operation is attempted on an image appearing in the Window Directory im-
age but not currently in the Window Directory (because the image has not been
refreshed), the operation will have no effect and the image will be refreshed.

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing the Window Directory. If a command is not included in this list, it is not
supported.

procedure Common.Abandon

Ends the editing of the Window Directory by removing the Window Directory
from the screen. The Window parameter specifies the window to remove, which is,
by default, the current image. This command has the same effect as the Release

procedure.

procedure Common.Commit

Makes permanent any changes to the image corresponding to the line designated in
the Window Directory by executing the Common.Commit command on that image.
If there is no selection, the procedure executes the Common.Commit command on
all uncommitted images that are not 1/0 windows.

procedure Common.Create-Command

Creates a Command window below the Window Directory if one does not exist;
otherwise, the procedure puts the cursor in the existing Command window below
the Window Directory. This Command window initially has a use clause:

EST-156 7/1/87 BA\TIONAL

Window Directory

use Editor, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor and Common for names resolved in the command.

procedure Common.Definition

Moves the cursor to the image of the currently designated line, bringing that image
onto the screen if necessary. The Name parameter specifies which image should be
displayed. By default, it is the image corresponding to the current cursor location
on the Window Directory. The In_Place parameter specifies whether the current
window should be used to display the image. By default, the Window Directory is
the next window replaced. The Visible parameter specifies whether the specification
or the body should be displayed. The default, true, displays the specification.

procedure Common.Demote

Executes the Common.Demote procedure on the designated image.

procedure Common.Edit

Moves the cursor to the image of the currently designated image, bringing that
window onto the screen if necessary. If the type of the designated image discrim-
inates between viewing using the Definition command and editing using the Edit
command, the procedure performs the operations associated with executing the
Edit command on the designated image, unless these operations have already been
performed on the image.

The Name parameter specifies which image should be displayed. The default is the
image on which the cursor is located. The In-Place parameter specifies whether
the current window should be used to display the image. The default is false.
The Visible parameter specifies whether the specification or the body should be
displayed. The default, true, displays the specification.

procedure Common.Promote

Executes, on the image corresponding to the selected line, the Common.Promote
procedure specific to that image type. If the image promoted is of Ada type and
semantic errors are found, the image of the promoted unit is brought onto the screen
with the errors underlined.

procedure Common.Release

Ends the editing of the Window Directory by removing the Window Directory from
the screen. The Window parameter specifies the window to be removed. The default
is the current image. This command has the same effect as the Abandon procedure.

procedure Common.Revert

Refreshes the image of the Window Directory so that the entries in it are current.

RATIONAL 71/er EST-157

Window Directory

procedure Common.Object.Child

Selects the line on which the cursor is located, when the entire image is selected.
When a single line is selected, the line is still selected. When nothing is selected,
the procedure does nothing.

procedure Common.Object.Delete

Performs the Release command on the image described by the selected line. This
causes any changes to the image to be made permanent and the selected line to
be removed from the Window Directory. If no line is selected, the procedure fails,
producing an error message.

procedure Common.Object.First_Child
Selects the first line of the Window Directory.

procedure Common.Object.Insert
Creates a new Command window below the Window Directory and prompts for the
Definition command as follows:

Definition {""};

procedure Common.Object.Last_Child
Selects the last line in the Window Directory.

procedure Common.Object.Next

Selects the next line past the currently selected line if the cursor is in the current
selection; otherwise, the procedure selects the line on which the cursor is located.
If nothing is currently selected, the procedure selects the line on which the cursor is
loYatedci l’I‘he Repeat parameter specifies to select the Repeat line after the currently
selected line.

procedure Common.Object.Parent

Selects the line on which the cursor is located if there are no selections; otherwise,
the procedure selects the entire Window Directory.

procedure Common.Object.Previous

Selects the previous line before the currently selected line if the cursor is in the
current selection; otherwise, the procedure selects the line on which the cursor is
located. If nothing is currently selected, the procedure selects the line on which the
cursor is located. The Repeat parameter specifies to select the Repeat line after the
currently selected line.

EST-158 7/1/87 RATIONAL

Xref Images

This section describes type-specific editing operations for xref images, which are lists
of Ada compilation units using a particular declaration. These lists are created by
the !Commands.Ada.Show_Usage command (see the description of this command
in package Ada in this book).

Xrefs are created by the Ada.Show_Usage command. When the !Commands.Com-
mon.Definition command is executed on a compilation unit name listed in an xref,
the image for the compilation unit is brought onto the screen and all usages of
the declaration are indicated with underlines. The cursor can be moved between
these usages with the !Commands.Editor.Cursor.Next and Editor.Cursor.Previous
commands. The usage indications can be removed with the !Commands.Common-
.Clear_Underlining command.

Xrefs can also be used to examine the subsystems and views that reference a decla-
ration. See Project Management (PM) more information on subsystems and views.

The commands for editing xrefs are in package !Commands.Common. This section
describes these package Common commands as they pertain to editing xrefs. The
common editing operations are discussed more fully in package Common in this
book.

Image Structure

Here is an xref image generated by showing the usage for the specification of package
Complex in a small library containing some utilities and a main program built on
package Complex. This xref image will be used in the following discussions:

TUSERS . DEMO . DEVELOPMENT _EXAMPLE . COMPLEX 'BODY

'USERS .DEMO . DEVELOPMENT _EXAMPLE .COMPLEX_L IST

IUSERS .DEMO . DEVELOPMENT _EXAMPLE .COMPLEX_UTILITIES 'BODY
TUSERS .DEMO . DEVELOPMENT _EXAMPLE . COMPLEX_UTILITIES

1USERS .DEMO .DEVELOPMENT _EXAMPLE .DISPLAY_COMPLEX_SUMS 'BODY

The xref is composed of a list of lines. Each line corresponds to a compilation unit
that has been compiled and contains at least one reference to a declaration on the

RATIONAL 7/1/87 EST-159

Xref Images

specification for package Complex. By default, the names of these compilation units
are fully qualified. This level of detail can be changed (see below).

The name of the xref is the name of the declaration for which the usage is being
shown. In this example, the name is !Users.Demo.Development_Example.Complex.
If this name is elided on the left in the banner, the !Commands. What.Object com-
mand can be used to get its full name.

Key Concepts

Designation

Structurally, an xref is a list of compilation units, one to a line. Each line corre-
sponds to a compilation unit (unless the image has been expanded and/or elided;
see below). To designate one of the units in the xref for operations such as def-
inition, put the cursor anywhere on the line corresponding to the unit you want.
Optionally, you can designate the unit using the selection commands from package
!Commands.Common.Object or package !Commands.Editor.Region.

Expansion and Elision

Although, by default, an xref displays the full name for each using unit, other levels
of detail are available through the !Commands.Common.Expand and Common.Elide
commands. These options are:

¢ Full_Names: Displays the full names of each unit with attributes (the default).
o Objects: Displays the unit name with attributes.

o Views: Displays the views using the declaration.

o Subsystems: Displays the subsystems using the declaration.

Eliding moves the level of detail down the above list. Expanding moves the level of
detail up the above list. The list is circular, so if you attempt to move down past
the bottom, you go to the top; if you move up past the top, you go to the bottom.
The current level of detail for an xref image is indicated in the banner for the xref.

Views and subsystems are two levels of detail that pertain primarily to use with
Rational Subsystems™ (refer to Project Management (PM) for more information).
If views and subsystems are used on nonsubsystem libraries, they have the following
meanings. Views displays the libraries that contain units using the declaration.
Subsystems displays the libraries containing the libraries that contain the units
using the declaration. With either the views or the subsystems level of detail, the
Common.Definition command brings the image for the designated library onto the
screen.

The following images show the other levels of detail for the example xref described
earlier:

EST-160 e RATIONAL

Xref Images

Objects:

COMPLEX'BODY

COMPLEX_LIST
COMPLEX_UTILITIES’BODY
COMPLEX_UTILITIES
DISPLAY_COMPLEX_SUMS 'BODY

Views:
IUSERS .DEMO . DEVELOPMENT _EXAMPLE

Subsystems:
(USERS .DEMO

Unit States and False Usages

The !Commands.Ada.Show_Usage command can be used to find all usages of a
declaration by units that have been promoted to unit states of installed or coded.
It does not find usages in units that are in the source state.

Some of the units in the xref display may implicitly depend on a declaration but
may not have direct usages of the declaration. Also, the Environment is conser-
vative about finding all possible units that depend on the declaration. Sometimes
it accidentally includes a unit in the xref that has no reference, usually because
of overloading. In these cases, executing the !Commands.Common.Definition com-
mand when designating such units deletes the unit from the xref and gives the
message:

<unit name> doesn’t have references! Zapping the lire.

Executing the Common.Semanticize procedure searches each unit in the xref and
deletes any entries that have no usages. (This can take a long time if there are
many units in the xref or if the units in the xref are very large.)

Note that if the declaration is a package specification, its body and subunits will
not be included in the xref unless they contain actual usages of the package name
in the declarations and statements that compose them.

Commands from Package Common

The following commands from package !Commands.Common are supported for edit-
ing xrefs. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Ends the editing of the xref. The window is removed from the screen and from the
Window Directory. This command has the same effect as the Release procedure.

procedure Common.Create_Command

Creates a Command window below the xref if one does not exist; otherwise, the
procedure puts the cursor in the existing Command window below the xref. This
Command window initially has a use clause:

RATIONAL 7/y/er EST-161

Xref Images

use Editor, Ada, Common;

This use clause provides direct visibility to the declarations in packages !Com-
mands.Editor, !Commands.Ada, and !Commands.Common for names resolved in
the command.

procedure Common.Definltion

Displays on the screen an image of the designated compilation unit with all usages
of the declaration indicated with underlines. If the current level of detail is either
views or subsystems, the procedure brings the image for the designated library onto
the screen with no underlining.

The cursor can be moved between underlined usages with the !Commands.Editor-
.Cursor.Next and Editor.Cursor.Previous commands. The usage indications can be
removed with the !Commands.Common.Clear_Underliring command.

Some of the units in the xref display may implicitly depend on a declaration but
may not have direct usages of the declaration. Also, the Environment is conser-
vative about finding all possible units that depend on the declaration. Sometimes
it accidentally includes a unit in the xref that has no reference. In these cases,
executing the Common.Definition command when designating such a unit deletes
the unit from the xref and gives the message:

<unit name> doesn’t have references! Zapping the line.

Executing the Common.Semanticize procedure searches each unit in the xref and
deletes any entries that have no usages.

procedure Common.Demote
Executes the Common.Demote procedure for Ada images on the selected unit.

procedure Common.Elide
Reduces the level of detail displayed in the current xref. This command is the
opposite of the Expand command.

Although, by default, an xref displays the full name for each using unit, other levels
of detail can be displayed using the Elide and Expand commands. These options
are:

¢ Full Names: Displays the full names of each unit with attributes (the default).
* Objects: Displays the unit name with attributes.

o Views: Displays the views using the declaration.

o Subsystems: Displays the subsystems using the declaration.

Executing the Elide command moves the level of detail down the above list; exe-
cuting the Expand command moves the level of detail up the above list. The list is
circular, so if you attempt to move down past the bottom, you go to the top; if you

move up past the top, you go to the bottom. The current level of detail for an xref
image is indicated in the banner for the xref.

EST-162 e RATIONAL

Xref Images

procedure Common.Enclosing

Displays the library containing the unit for which the xref was created, with the
unit selected.

procedure Common.Expand
Increases the level of detail displayed in the current xref. This command is the
opposite of the Elide command.

Although, by default, an xref displays the full name for each using unit, other levels
of detail can be displayed using the Expand and Elide commands. These options
are:

e Full_Names: Displays the full names of each unit with attributes (the default).

Objects: Displays the unit name with attributes.
Views: Displays the views using the declaration.
Subsystems: Displays the subsystems using the declaration.

Executing the Elide command moves the level of detail down the above list; exe-
cuting the Expand command moves the level of detail up the above list. The list is
circular, so if you attempt to move down past the bottom, you go to the top; if you
move up past the top, you go to the bottom. The current level of detail for an xref
image is indicated in the banner for the xref.

procedure Common.Explain
Displays the full name of the currently designated unit in the Message window.

procedure Common.Promote

Executes the Common.Promote procedure for the selected Ada images on the xref.

procedure Common.Release

Ends the editing of the xref image. The window is removed from the screen and
from the Window Directory. This command has the same effect as the Abandon
procedure.

procedure Common.Semantlcize

Searches each unit in the xref for actual usages and deletes any entries for units
with no usages.

procedure Common.Object.Child
Selects the unit on the line on which the cursor is located.

procedure Common.Object.First-Child
Selects the first unit in the xref.

RATIONAL 7/y/er EST-163

Xref Images

procedure Common.Object.Last_Child

Selects the last unit in the xref.

procedure Common.Object.Next

Selects the next unit past the currently selected unit if the cursor is in the current
selection; otherwise, the procedure selects the unit corresponding to the line on
which the cursor is located. If nothing is currently selected, the procedure selects
the unit corresponding to the line on which the cursor is located.

procedure Common.Object.Parent

Selects the unit corresponding to the line on which the cursor is located if there are
no selections; otherwise, the procedure selects the entire list of units in the xref.

procedure Common.Object.Previous

Selects the previous unit before the currently selected unit if the cursor is in the
current selection; otherwise, the procedure selects the unit corresponding to the
line on which the cursor is located. If nothing is currently selected, the procedure
selects the unit corresponding to the line on which the cursor is located.

EST-164 e RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

Abandon procedure
Common.Abandon EST-62
Adaimages EST9
command images EST-47
HelpEsT-126
menuimages BST-133
text images EST-140
windows images EST-1566
xrefimagesEsT-161
activity
imagesEsT1
<ACTIVITY> special pame EST-58, EST-131, EST-155

Ada
images EST-1, EST-3
commands from package Common EST-9
committingimages EST-8
cursordesignation EsT4
desigpation EST-3
image structure EST-3
incremental compilationEST-7, EST-8
insertionpointsEsT7
keyconcepts EsT-3
library switches BST-9
locksEsT9
gselection EsT4
specialpamesEST-5
unit states EsST-5
versionsEsTS8

RATIONAL 7/1/87 EST-165

Ada package

archived unit state

blank line
Ada.Delete_Blank_Line procedure
Ada.Insert_Blank_Line procedure

Block procedure
Text.Block

body
Ada.Create_Body procedure

brother

Common.Object.Next procedure .

buffer

create
Text.Create procedure .

check syntax
Common.Format procedure

Child procedure
Common.Object.Child

Ada images
command images
Help
menu images .
text images
windows images .
xref images . .

Clear_Underlining procedure
Common.Clear_Underlining .
Ada images
Ada.Get_Errors procedure
command images

key
Ada.Code._Unit procedure

Code.Unit procedure
Ada.Code_Unit

coded unit state oo
incremental compilation

EST-166

EST-6, EST-19
EST-5

EST-26
EST-29

EST-146

EST-22

EST-113

EST-148

EST-88

EST-102
EST-4, EST-16
EST-50
EST-126
EST-135
EST-142
EST-158
EST-163

EST-64
EST-10
EST-28
EST-47

EST-20
EST-20

EST-5
EST-8

e RATIONAL

command images
commands from packa.ge Common
designation
executing Comma.nd wmdows
histories
key concepts
library switches
structure
unit states
versions .

Command package
Command window, see also Create_Command

Command windows
executing
getting help on

key

Common.Commit procedure .

Commit procedure
Common.Commit
Ada images
command images

text images
windows images .

committing images
Ada images
text . . .
Window Du'ectory
windows images

Common package

compilation
incremental
coded units
installed units

Compilation package
compilation states, see unit states

compile
Ada.Code.Unit procedure
Ada.Install_Unit procedure
Common.Promote procedure

key

Common.Complete procedure

RATIONAL 7/1/er

EST-1, EST-45
. . EST-47
EST-46
EST-46
EST-46
EST-46
EST-47
EST-45
EST-46
EST-46

EST-58

EST-46
EST-125

EST-65

. EST-59, EST-65

EST-10
EST-47
EST-140
EST-156

EST-59
EST-8
EST-139
EST-155
EST-1565

EST-3, EST-61

EST-7
EST-8
EST-7

EST-6

EST-20
EST-31
EST-91

EST-67

EST-167

Complete procedure
Common.Complete .
Ada images
command images
Redo procedure .

Continue procedure
Text.Continue
Block procedure

Copy procedure
Common.Object.Copy
Ada images
text images

key
Common.Object.Insert procedure

Create Ada key, #ee also insertion points

key
Ada.Create_Body procedure

Create Command key

Common.Create_Command procedure

Create Private Pzrti key

Ada.Create_Private procedure .

Create procedure
Text.Create .
Image_Kind type

key

Text.Create procedure

Create_Body procedure
Ada.Create_Body

Create_Command procedure
Common.Create_Command
Ada images
command images
Help
menu images
text images
windows images .
xref images .

Create_Private procedure
Ada.Create_Private

cursor designation .
Ada images

EST-168

EST-67
EST-10
EST-47
EST-49

EST-147
EST-146

EST-104
EST-16
EST-142

EST-108

EST-22
EST-68
EST-24

EST-148
EST-150

EST-148
EST-22

. EST-45, EST-68
EST-10

EST-48

EST-126

EST-133

EST-141

EST-156

EST-161

EST-24

EST-57
EST-4

e RATIONAL

<CURSOR> special name

Debug procedure
Command.Debug

Debug_Off procedure
Debug.Debug-Off
Command.Debug procedure

Debug_On procedure
Debug_Tools.Debug_-On
Command.Debug

debugger images
default version

Definition In Place key

Common.Definition procedure . .

[Defnition] key

Common.Definition procedure . .

Definition procedure

Common.Definition
Ada images
command images
Help
menu images .
windows images .
xref images . .

Delete procedure
Common.Object.Delete
Ada images
text images
windows images .

Delete_Blank_Line procedure
Ada.Delete-Blank_Line .

demote
Ada.Source-Unit procedure

(Demote] key

Common.Demote procedure .

Demote procedure
Common.Demote
Ada images
command images

menu images
Redo procedure .
text images

RATIONAL 7/1/er

EST-58, EST-131, EST-155

EST-54

EST-54

EST-54
EST-1
EST-58

EST-71

EST-71

EST-9, EST-71
EST-11
EST-48

EST-126
EST-133
EST-157
EST-162

EST-105

EST-16
EST-142
EST-158

EST-26

EST-42

EST-76

EST-176
EST-13
EST-48
EST-133
EST-49
EST-141

EST-169

Demote procedure, continued
Common.Demote, continued
windows images .
xref images .
Compilation.Demote
Ada images . . .

Ada.Source_Unit pro:lze('lm.'e .

designation .
Ada images
command images
menu images
text images .
Window Directory
xref images

designation, see also selection

Diana_Edit procedure
Ada.Diana-Edit

Directory procedure
Editor.Window.Directory
Window Directory

Disable procedure
Job.Disable
Text.Block procedure

display other part of Ada unit
Ada.Other_Part procedure

displaydefining occurrences
Common.Definition procedure

Edit] key
Common.Edit procedure

Edit procedure
Common.Edit

Ada images
command images
menu images .
Redo procedure .
text images
windows images .

Elide procedure
Common.Elide .
menu images
xref images .

EST-170

EST-157
EST~-162

EST-5
EST-42

EST-57

EST-3

EST-46

e EST-130
. EST-137, EST-138
EST-154

EST-160

EST-27
EST-153

EST-146
EST-36

EST-71

EST-78

EST-9, EST-78
EST-13
EST-48
EST-134

EST-49
EST-141
EST-157

EsT-81
EST-134
EST-162

e RATIONAL

elision
menu images
xref images

key

Common.Enclosing procedure

[Encicting) key

Common.Enclosing procedure

Enclosing Library key

Common.Enclosing procedure

Enclosing procedure
Common.Enclosing .
Ada images
command images
text images
xref images .

key

Text.End_Of_Input procedure .

End_Error exception
Io_Exceptions package

Text.End_Of_Input procedure

End_Of_Input procedure
Text.End_Of_Input

enter
Common.Commit procedure .

key

Common.Commit procedure .

enumerations
Text.Image_Kind
File enumeration

Input_Output enumeration .

exceptions
Io_Exceptions package
End_Error exception

Expand procedure
Common.Expand
menu images
xref images .

expansion
menu images
xref images

key

Common.Explain procedure .

R/A\-”ONAL 7/1/87

EST-131
EST-160

EST-83

EST-83

EST-83

EST-88
EST-14
EST-48
EST-141
EST-163

EST-149

EST-149

EST-149

EST-65

EST-65

EST-150
EST-150

EST-149

EST-8%
EST-134
EST-163

EST-131
EST-160

EST-87

EST-171

Explain procedure
Common.Explain
Ada images
command images
Help
xref images .

file
create text
Text.Create procedure .

File enumeration
Text.Image.Kind type

First.Child procedure

Common.Object.First_Child .

Ada images
command images
Help

menu images
text images
windows images .
xref images .

fork, see Spawn

i Format key

Common.Format procedure

Format procedure
Common.Format .
Ada images

command images

Get_Errors procedure
Ada.Get_Errors

go to other part of Ada unit
Ada.Other_Part procedure

help

Common.Explai.ﬁ 'pr;ac.ed{lré

facility, on-line

commands from package Common .

designation

determining key bindings

help on a topic

EST-172

EsT-87
EST-14
EST-48
EST-126
EST-163

EST-148
EST-150

EST-106
EST-16
EST-50

EST-126

EST-135

EST-142

EST-158

EST-163

EST-88

EST-88
EST-14
EST-49

EST-28

EST-36

EsT-121
EST-87

EST-126
EST-122
EST-12b
EST-124

s RATIONAL

help, continued . .
facility, on-line, contmued . e e e e e
helponcommands EST-124
help on keys . . . e e e e e EsT-123
help usxng a Command wmdow e e e e e e e e EST-125
help using selection EST-123
menus . . . e e e e e EST-122
moving thecursor EST-122
orgamzatlon oo e e e e e o EST-121
reviewing previous help messages e e e e EST-122
specialpames EST-123
imagesEST1

help, see also Complete

histories . . . e e e e e e e EsT-5
commandxmages e e e e e EsT-H46

history
Common.Redo procedure EST-93
Common.Undo procedure EST-9

hold output
Text.Block procedure EST-146

I/O windows, definition EST-137

image
activityEsST
AdaEsT1
command EST-1,EST-45
committing EST-59
debuggerEST1
help EST1
jobEsT
library EST-1
links EST
menu « 4 4 e e e e e e e ESTA
searchlist EST-1
structure
Adaimages EST-3
command images EST-45
menu images EST-129
text . . . e e e e e e EsT-137
Window Dlrectory e e e e e e e e e EsT-153
window images EST-153
xrefimages EST-159
switch EsST
textEST, EST-137
types EST
updating EST-59

R)ATIONAL 7/1/87 EST-173

image, continued
venture .
windows
work list
work order
xref

<IMAGE>> special name

image structure
command images
text images

image types

Image-Kind type
Text.Image_Kind

incremental compilation
Ada images
coded units
installed units
inline
Ada.Make_Inline procedure

Input_Output enumeration
Text.Image_Kind type

Insert procedure
Common.Object.Insert
Ada images
windows images .

Insert_Blank_Line procedure
Ada.Insert_Blank.Line

Insert_File procedure
Common.Insert-File
Ada images
command images
text images

insertion points
Ada images

key
Ada.Install_Stub procedure

key
Ada.Install_Unit procedure

Install_Stub procedure
Ada.Install.Stub .

Install.Unit procedure
Ada.Install_Unit .

EST-174

. EST-1

. EST-1, EST-153

EST-1

EST-2

EST-2

EST-58, EST-131, EST-155
EST-45

EST-137

EST-57

EST-150

EST-7
EST-8
EST-7

EST-33
EST-150

EST-108
EST-16
EST-158

EST-29

EST-90
EST-15
EST-49
EST-141

EST-7
EST-30
EST-31
EST-80

EST-81

e RATIONAL

installed unit state
incremental compilation

Interrupt procedure
Job.Interrupt

Command.Spawn procedure

job I/O
text images

job images

key
bindings
determining
getting help on

key concepts
Ada images
command images
menu images
text images .
Window Directory
windows images
xref images

Keyword_Case library switch .

Kill procedure
Job.Kill
Text.Block procedure

Last_Child procedure
Common.Object.Last_Child
Ada images ..
command images
Help
menu images
text images
windows images .
xref images .

library
images
switches
Ada images
command images
Keyword_Case

RATIONAL 7/1/sr

EST-5
EST-7

EST-56

EST-139
EST-1

EST-125
EST-123

EST-1
EST-3
EST-46
EST-130
EST-138
EST-154
EST-154
EST-160

EST-9, EST-14

EST-146

EST-110
EST-17
EST-50

EST-126

EST-135

EST-143

EST-158

EST-164

EST-1
EST-60
EST-9
EST-47
EST-9, EST-14

EST-175

links images
Lock_Error on Ada unit, see locks
locks .

Ada images

read-only

text images
write .

Mate Inline] key
Ada.Make_Inline procedure

1 Make Separate key

Ada.Make_Separate procedure .

Make_Inline procedure
Ada.Make_Inline .

Make_Separate procedure
Ada.Make_Separate
Create_Body procedure

menu . . .
definition
images

commands from package Common .

designation .
elision .
expansion

key concepts
special names .
structure .

Move procedure
Common.Object.Move
Ada images
text images

Next procedure

Common.Object.Next
Ada images
command images
Help
menu images
text images
windows images .
xref images .

EST-176

EST-1

EST-59
EST-9
EST-59
EST-139
EST-59

EST-33
EST-35
EST-88

EST-85
EST-22

EST-129
EST-129

EST-1
EST-133
EST-130
EST-131
EST-131
EST-130
EST-131
EST-129

EST-112
EST-17
EST-143

EST-118
EST-4, EST-17
EST-51
EST-127
EST-136
EST-143
EST-158
EST-164

e RATIONAL

Next procedure, continued
Editor.Cursor.Next
Ada.Show_Usage procedure

Object package
Common.Object

- (1] key combination
Common.Object.Insert procedure

- [1] key combination, see insertion points
on-line help facility, see help

open, see also Edit

open Command window, see Create_Command

Other Part In Place key
Ada.Other_Part procedure

[Other Pare] key
Ada.Other_Part procedure

Other_Part procedure
Ada.Other_Part

parent
Common.Enclosing procedure

Parent procedure
Common.Object.Parent .

Ada images
command images
Help
menu images
text images
windows images .
xref images .

pretty-print
Common.Format procedure

Previous procedure
Common.Object.Previous

Ada images
command images
Help
menu images
text images
windows images .
xref images .

RATIONAL 7/1/er

EST-39

EST-101

EST-108

EST-36

EST-36

EST-36

EST-83

EST-115

EST-4, EST-17

EST-51
EST-127
EST-135
EST-143
EST-158
EST-164

EST-88

EST-117
EST-4, EST-17
EST-51
EST-127
EST-135
EST-143
EST-158
EST-164

EST-177

Previous procedure, continued
Editor.Cursor.Previous
Ada.Show_Usage procedure

private part

Ada.Create_Private procedure .

promote
Ada.Code_Unit procedure
Ada.Install_Unit procedure

key

Common.Promote procedure

Promote procedure
Common.Promote
Ada images ..
command images . . .

Command.Spawn procedu.;'e .

menu images
text images
windows images .
xref images .

read-only lock

Redirect procedure
Text.Redirect

Redo procedure
Common.Redo .
command images
Undo procedure

redraw error underlines, see Get_Errors

refreshing
Window Directory

<REGION>> special name

Release procedure
Common.Release .

Abandon procedure
Ada images
command images
Help
menu images .
text images
windows images .
xref images .

EST-178

EST-39
EST-24

EST-20
EST-31

EST-91

. EST-59, EST-91
EST-15
EST-49
EST-56
EST-134
EST-141
EST-157
EST-163

EST-59
EST-151

EST-47, EST-59, EST-98
. EST-49
EST-99

EST-166

EST-58, EST~131, EST-156

. EST-59, EST-94
EST-62

EST-16

EST-50

EST-126

EST-135

EST-142

EST-157

EST-163

wer RATIONAL

remove
stub
Ada.Withdraw procedure EST-43
underlines
Common.Clear_Underlining procedure EST-64

Replace_Id procedure
Ada.Replace.ld EST-87

resume output
Text.Continue procedure EST-147

retentiopcount EST-58

Revert procedure
Common.Revert EST-59, EST-96
Adaimages EST-16
command images EST-50
Redoprocedure EST-49
textimages EST-142
windowsimages EST-157

save
Common.Commit procedure EST-65

saving images, see committing images
searchlist images EST-1

selection
Adaimages EST4
gettinghelpwith BEST-123

<SELECTION> gpecialname EST-58, EST-131, EST-155
Semanticize] key

Common.Semanticize procedure EST-97

Semanticize procedure
Common.Semanticize ES-97
Adaimages EST-16
commandimages EST-50
xrefimages EST-163

separate
Ada.Make_Separate procedure EST-35

session
switches EST-140
text images EST-140
Word-Breaks EST-138

R’ATIONAL 7/1/87 EST-179

set /use information
Ada.Show_Usage procedure .

Common.Definition procedure . .

xref images

set/use information, see also Definition

show defining occurrences

Common.Definition procedure . .

key

Ada.Get_Errors procedure

{Show Unused (Unit}] key
Ada.Show..Unused procedure

key
Ada.Show_Unused procedure

[Show Usage (Indirect)] key
Ada.Show_Usage procedure

key
Ada.Show_Usage procedure

key
Ada.Show_Usage procedure

Show_Unused procedure
Ada.Show_Unused

Show_Usage procedure
Ada.Show-Usage

sibling

Common.Object.Next procedure .

Sort_Image procedure
Common.Sort_Image .

key

Ada.Source.Unit procedure
source unit state

Source_Unit procedure
Ada.Source. Unit

Spawn procedure
Command.Spawn

special names .
<ACTIVITY>
Ada images
<CURSOR>
<IMAGE>
menu images

EST-180

EST-39
EST-71
EST-159
EST-71
EST-28
EST-41
EST-41
EST-39
EST-39
EST-39
EST-41
EST-39
EST-113
EST-98

EST—42
EST-b

EST—42

EST-56

. EST-58
EST-58, EST-131, EST-156
.+ EST-B
EST-58, EST-131, EST-155
EST-58, EST-131, EST-155
Coe EST-131

e RATIONAL

special names, continued
on-line help facility .
<REGION>
<SELECTION>
<TEXT>

start generator
Ada.Create-Body procedure

stop output
Text.Block procedure .

switch images

switches
library e
Keyword_Case
gsession
Word_Breaks .

text
definition
image type
images

commands from package Common .

committing .
designation .
job I/O

key concepts
locks ..
session switches .
structure .
versions

text files, create

Text package
Text.Create procedure

<TEXT> special name .

topics
getting help on

RATIONAL 71/er

. EST-123
EST-58, EST-131, EST-155
EST-58, EST-131, EST-155
EST-58, EST-131, EST-155

EST-22

EST-146
EST-1

EST-60
EST-9, EST-14
EST-140
EST-138

EST-137
. EST-137
. EST-1, EST-187
EST-140
EST-139
EST-138
EST-139
EST-138
EST-139
EST-140
EST-137
EST-139

EST-145
EST-148
EST-58, EST-131, EST-155

EST-124

EST-181

underline
remove

key

Common.Clear.Underlining procedure

underlining
Common.Clear-Underlining procedure

Undo procedure
Common.Undo
command images
Redo procedure .

unit states
Ada images
archived
coded
command images
false usages
xref images .
installed
source

unreferenced
Ada.Show_Unused procedure

unused
Ada.Show-Unused procedure

updating images

usage
Ada.Show_Usage procedure .

venture images

versions .
Ada images
command images
text images

view defining occurrences
Common.Definition procedure

visit other part of Ada unit
Ada.Other_Part procedure

EST-182

EST-64

EST-64

EST-64

EST-47, EST-59, EST-99

. EST-50
. EST-49, EST-93

EST-5
EST-5
EST-5
EST-46

EST-161
EST-b
BST-6

EST—41

EST—41
EST-59

EST-39

EST-1

EST-58
EST-8
EST-46
EST-139

EST-71

EST-36

e RATIONAL

Window Directory
commands from package Common
committing
demoting
designation
image structure
key concepts
promoting
refreshing .
releasing images
traversing .

windows images .
committing
demoting
image structure
key concepts
promoting
refreshing .
releasing images
traversing .

Withdraw procedure
Ada.Withdraw .

key
Ada.Withdraw procedure

Word_Breaks session switch
text images

work list images
work order images
write lock

Write_File procedure
Common. Write_File
command images
text images

xref images .
commands from package Common
designation
elision
expansion .
key concepts
structure
unit states
false usages

RATIONAL 7y/er

EST-158
EST-156
EST-155
EST-1565
EST-154
EST-153
EST-154
EST-155
EST-156
EST-156
EST-1565

EST-1
EST-155
EST-155
EST-153
EST-154
EST-155
EST-156
EST-156
EST-155

EST—4$

EST-43

EST-138
EST-1
EST-2

EST-59

EST-100
EST-50
EST-142

. EST-2, EST-159

EST-161
EST-160
EST-160
EST-160
EST-160
EST-159

EST-161

EST-183

RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

6 months or less

1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to:

Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Editing Specific Types (EST), 8001A-22

