Rational Environment
Reference Manual

Debugging (DEB)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-23

Rev.
Rev.
Rev.
Rev.
Rev.

This document subject to change without notice.

2.0, January 1985
3.0, October 1985
4.0, December 1985
5.0, July 1986

6.0, July 1987 (Delta)

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-

tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

DEB-ii

e RATIONAL

Contents

How to Use This Book

Key Concepts :
Summary of Debugger Fac1ht1es
Debugging Rational Environment Programs
Debugger Interactions with the Editor
Debugger Window
Automatic Source Display
Selection and Designation
Argument Prefixes
Session Switches Co
Commands from package Common
Debugger Facilities
Command Contexts .
Tasks, Task State, and Task Control
Call Stacks .
Stopping and Holdmg Ta.sks
Other Information on Task State
Breakpoints
Tracing
History S
Exception Trapping
Stepping

Displaying and Modxfymg Program Da.ta

Miscellaneous Facilities i
Debugger_Initialization Procedure
Starting the Debugger Quietly
Numeric Conversion
Options, Numeric Flags, and Fla.gs

R/AT'ONAL 7/1/87

. vil

© 00 0 ~J 3 D v & B WWN NN s e

e e
O MO O AW N NO

DEB-iii

Programmatic Access to Debugger Facilities
Debugger Naming

Pathnames Referencing Ada Progra.ms
Special Characters in Names

The Special Character !

The Special Character -~

The Special Character $.

The Special Character $3

The Special Character %

The Special Character .

The Special Character —

Other Special Characters

Unqualified Names
Referencing Library Units
Referencing Data Structures
Referencing Programs . . .
Referencing Overloaded Subprogra.ms
Referencing Generic Instantiations
Naming Example
Another Naming Example
Example with Tasking Constructs
Example with Generics

package Debug
procedure Activate .
procedure Address_To_Location
procedure Break
procedure Catch
procedure Clear_Stepping
procedure Comment
procedure Context
type Context_Type
procedure Convert
procedure Current_Debugger
procedure Debug.Off
renamed procedure Disable
procedure Display
procedure Enable .

DEB-iv

. 16
.17
.17
. 18
. 18
. 18
. 18
. 19
. 19
. 19
. 19
. 19
. 20
. 20
.21
. 22
. 23
. 24
.24
. 25
.27
. 28

. 29
. 30
. 31
. 32
. 36
. 42
. 43
. 44
. 48
. 49
. 80
. 51
. 52
. . 53
. 56

s RATIONAL

subtype Exception-Name57
procedure Exception.To-Name60
procedure Execute61
procedure Flag63
procedure Forget65
subtype Hex_Number67
procedure History_Display68
procedure Hod71
procedure Information73
type Information_-Type75
procedure Kil76
procedure Locatlon_To_Address T 4
procedure Memory_Display79
procedure Modify81
type Numeric 84
type Option86
subtype Path.-Name90
procedure Propagate96
procedure Put 100
procedure Release 106
procedure Remove 107
procedure Reset_Defaults 108
procedure Run e e e e e o109
procedure Set_Task_ Name S § ¥/
procedure Set_Value 114
procedure Show 115
procedure Source 121
procedure Stack 123
type State_Type 126
procedure Stop 128
type Stop_Event 130
procedure Take_History 132
type Task-Category 135
procedure Task_Display 136
subtype Task_-Name 140
procedure Trace 142
type Trace_Event 146
procedure Trace_To_File 147

RATIONAL /1/er DEB-v

procedure Xecute

end Debug
package Debug-Tools

function Ada_Location
procedure Debug_Off
procedure Debug_On
function Debugging
function Get_Exception_Name
function Get_Raise_Location
function Get_Task_Name
procedure Message
generic procedure Register .
Example 1
Example 2 . .
Exampled
generic formal function Image
procedure Register
generic formal type T
end Register
procedure Set_Task_Name
generic procedure Un_Register
generic formal type T
procedure Un_Register
end Un_Register
procedure User_Break

end Debug-Tools
Index

DEB-vi

148

151
152
154
155
156
157
159
161
163
165
168
169
172
173
175
177

179
181
182
183

185

187

e RATIONAL

How to Use This Book

The Debugging (DEB) book of the Rational Environment Reference Manual contains
reference information describing the Rational Environment™ Debugger. This in-

formation is intended for users who are familiar with the Environment, Ada®
programming, and the basic concepts of debugging programs using the Debugger.
If you are not familiar with the basic concepts of using the Debugger, refer to the
Rational Environment User’s Guide and Rational Enwnironment Bassc Operations
for a more user-oriented introduction to the Debugger.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary

Keymap

Master Index

Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Input/Output (TIO)

Data and Device Input/Output (D10)
String Tools (ST)

Programming Tools (PT)

System Management Utilities (SMU)
Project Management (PM)

= (O QO I D W ~N

-

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 71/er DEB-vii

Organization of the
Rational Environment Reference Manual

Volume 1: 3

11 volumes containing 14 books

books Volume 2: 2 books

RATIONAL

Manual 2 E
El §
EST i T
...........
T 3

‘ RATIONAL

Rational Environment

o Reference
Manual

A sample book

)

i

Volume 11: 1 book

AATIONAL

Key concepts

Book index

Topical section

Unit section

Book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Enwvironment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
Sfor example, Rational Networking—TCP/IP or Rational Target Build Utility) are
ocumented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

* Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

¢ Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

* Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under

String_Utilities.
For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/er DEB-ix

* Explanatory/topical sections: Like the unit sections, explanatory /topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

o Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Envtronment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which

they are documented.

DEB—x 7/1/87 RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library”);. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322{. If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL 7/1/87 DEB-—xi

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.gopy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

DEB—xii 7/1/87 R)ATIONAL

Key Concepts

The Rational Environment Debugger provides a variety of facilities for analyzing
the behavior of Ada programs running in the Rational Environment. The follow-
ing reference information provides a detailed description of the Debugger and its
operation. This information is intended for users who are familiar with the Envi-
ronment, Ada programming, and the basic concepts of debugging programs using
the Debugger If you are not familiar with the basic concepts of using the Debugger,
refer to the Ratsonal Environment User’s Guide and Rational Environment Basic
Operations for a more user-oriented introduction to the Debugger.

Summary of Debugger Facilities
The Debugger provides facilities to:

¢ Display the source for any part of the program.
e Display the contents of the stack of any task in the program.
¢ Display and modify the values of variables in the program.

* Place breakpoints at various points within the program to trap the execution of
portions of the program.

e Trace the execution of statements, subprogram calls, exceptions, and task inter-
actions.

¢ Display tasks and their state (the current execution condition of the task) in the
program.

¢ Execute specific tasks one statement, call, or rendezvous at a time.
e Stop execution when certain exceptions or groups of exceptions are raised.

» Control the execution of tasks in the program, stopping some and allowing others
to continue.

e Record a history of the execution of various program events.

o Set a variety of parameters controlling the format and content of various Debugger
displays.

RAT'ONAL 7/1/87 DEB-1

Key Concepts

Debugging Rational Environment Programs

A program in the Rational Environment is invoked by executing some number of
statements and declarations in a Command window. The Environment creates a
job, which executes the code in the Command window.

Each user of the Rational Environment can debug one job at a time. If debugging is
in progress for one job and is then started for another job, the debugging process is
automatically disabled for the first job and, by default, the first job is terminated.

Thus, the Debugger is always controlling one specific job. This job and the code
that it executes are referred to as the program that is being debugged.

Programs can call facilities located anywhere in the Environment. The Debugger
can operate on any such code that the program can execute. It does not matter
where that code is declared.

To use the Debugger, no special options must be specified in the program. No
special compilation is required. The Debugger is not compiled into your program
but runs as a separate job, interacting with your program.

Tasks created by a job are part of that job. The Debugger is able to control only
tasks that are part of the job it is currently debugging.

Debugging is enabled in a job when that job is executed with the !Commands-
.Command.Debug procedure, which is normally bound to the [Meta[Promoic] key com-
bination; see the Rational Environment Keymap, in Volume 1 of the Rational En-
vironment Reference Manual, for all key bindings. The process of debugging a
program is described in the sections that follow.

Debugger Interactions with the Editor

Interaction with the Debugger is through the Rational Editor mechanisms common
to all operations in the Environment. Two packages in the Environment provide spe-
cific debugging services. Package !Commands.Debug defines interactive commands
that initiate various Debugger actions and that produce output in the Debugger
window. Package !Tools.Debug_Tools provides services that programs can use. It
returns information in parameters or function results and usually does not result in
output to the Debugger window.

Debugger Window

When the Debugger is first activated, the Environment creates a window called
the Debugger window. All output from the Debugger appears in this window. It
contains a complete log of all Debugger interactions for a session. The Debugger
can also automatically display the Ada source for the program being debugged in
an Ada window with the current location selected.

The Debugger window supports type-specific editing operations on it. Thus oper-
ations from package !Commands.Common apply to the Debugger window. Those

DEB-2 s RATIONAL

Key Concepts

commands from package Common that apply to the Debugger window are described
below. The common editing operations are discussed more fully in the documenta-
tion for package Common in EST, “Common Concepts and Operations.” In addition
to the commands in package Common, commands from other commands packages
that take selections and so on can work using designations in the Debugger win-
dow. For example, the !Commands.Ada.Show_Usage procedure can be used when
the item for which to find the usages is selected in the Debugger window, just as
Show_Usage would be used from an Ada window.

Text in the Debugger window is not modifiable. The entire contents of the window
can be written into a file by using the !Commands.Common.Write_File procedure.
The contents of the Debugger window can be selectively copied (using the region
copy operations) to other windows.

Each command executed is echoed in the Debugger window and followed with any
output the command produces. If you want to execute the command again, you can
get it to reappear in the !Commands.Command window from which it was initially
executed by using the !Commands.Common.Undo procedure. For more information
on that command, see EST, procedure Common.Undo. This command is also bound
to a key in the standard Rational Environment Keymap.

If the Debugger window no longer appears on the screen (as a result of some other
Environment operation), it can be redisplayed by pressing (Debugger Window]. The De-
bugger window automatically reappears if any Debugger command results in output
being sent to it.

In the standard keymap, a number of common Debugger commands are bound to
keys. These Debugger commands can be executed by pressing the appropriate key.
See the Rational Environment Keymap for a list of Debugger commands bound to
keys.

If the program you are debugging requests input from the terminal, you must exe-
cute the !Commands.Job.Interrupt procedure (the key combination) after
input has been committed to enter additional Debugger commands.

Automatic Source Display

The Debugger can display the current location in the program in an Ada win-
dow with the location highlighted when a breakpoint or step point is encountered.
This facility is enabled by default. If you want to disable this facility, see the
Debug.Disable command for the Debug.Option.Show_Location option.

Selection and Designation

Most Debugger commands accept the special names "<SELECTION>", "<REGION>",
"<IMAGE>", and "<CURSOR>" to designate locations, objects, and 8o on. These desig-
nations can be performed in any Editor window, including the Debugger window.

The output from certain commands can be designated in the Debugger window.
These commands and the specific output that can be designated are:

I?ATIONAL 7/1/87 DEB-3

Key Concepts

e Display: Any line of source in the Debug.Display command’s output can be
designated. Designating a line of output resolves to the object, statement, or
declaration displayed on that line. Designation of a subprogram or package header
line (for example, procedure .DEBUGGING_EXAMPLE is) resolves to the subprogram
or package.

¢ Modify and Put: The command line echoed in the Debugger window can be
designated. Designating this line resolves to the object that was put or modified.
For example, if the output from the Debug.Put command is:

Put ("¥ROOT_TASK._1.A_VARIABLE");

designating this line of output in the Debugger window resolves to the object
called A_Variable in the first frame of the main program. Note that the designa-
tion resolves to a string name that the Debugger interprets as a pathname, not
to the actual object. So if "%ROOT_TASK" or frame 1 has moved between the time
the Put command echoed its output and the time the line of echoed output was
designated, the new object is used.

o Stack: Any line of the frames displayed by the Debug.Stack command can be
designated. Designating a line of output resolves to the statement or declaration
corresponding to the designated frame. For example, designating the third frame
of the following Stack command output resolves to the statement in procedure C
that called procedure B in frame 2:

Stack ("¥ROOT_TASK", @, 0},
Stack of task ROOT_TASK, #1@74DE:
_1: Alls
: B.ls
C.ls
D.ls
NESTED_CALLS.1s
command_procedure.ls
command_procedure [library elaboration block]

| T
~NOnsM

See LM, Key Concepts, “Special Names,” for more information on the available
special names and how they are resolved.

Argument Prefixes

The argument prefix keys can be used to conveniently supply numeric values to
Debugger commands bound to keys (these values can be stack frames, repeat counts,
numeric flag values, and so on). The Debugger commands with only one integer-
valued argument (there can be others of different types) accept arguments from the
argument prefix keys. This facility, for example, can be used to run for five steps
by pressing the argument prefix (3] and then [ru].

Session Switches

The initial values of various Debugger Boolean options, numeric value flags, and
other flags that influence the behavior of the Debugger are read from the user’s
session switches when the Debugger is started. These session switches all have the
form Debug-zzz, where zzz is the option, numeric value, or flag name.

DEB4 7/1/87 RATIONAL

Key Concepts

See the reference entries for the Debug.Option type, Debug.Numeric type, and
Debug.Flag procedure for more information on how these switch values influence
the behavior of the Debugger. See SJM, Session Switches, for more information on
session switches and the manipulation of them.

Commands from package Common

The following commands from package !Commands.Common are supported for the
Debugger window. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Deletes the Debugger window if the Debugger has been killed. Otherwise, the
command has no effect. This command has the same effect as the Release procedure

below.

procedure Common.Create-Command

Creates a Command window below the Debugger window if one does not exist;
otherwise, the command puts the cursor in the existing Command window below
the Debugger window. This Command window initially has a use clause:

use Editor, Common, Debug;

This use clause provides direct visibility to the declarations in packages Common,
Debug, and Editor without requiring qualification for names resolved in the com-
mand.

procedure Common.Definition

Finds the defining occurrence of the designated element and brings up its image in
a window on the screen, typically with the definition of the element selected.

procedure Common.Enclosing

Displays the library containing the Command window from which the job being
debugged was started.

procedure Common.Release

Deletes the Debugger window if the Debugger has been killed. Otherwise the com-
mand has no effect. This command has the same effect as the Abandon procedure
above.

procedure Common. Write_File

Writes the current contents of the Debugger window into the named file.

EAT'ONAL 1/1/87 DEB-5

Key Concepts

procedure Common.Object.Child

Selects the Repeat child element of the currently selected element. A child element
is one of the elements at the next lower level, in a syntactic sense, from the currently
selected element. If an object at that level has not been selected before, the smallest
element enclosing the cursor is chosen. If an element at that level has been selected
before, it is selected again.

procedure Common.Object.First-Child

Selects the first child of the currently selected element. The first child is the first
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Last_Child

Selects the last child of the currently selected element. The last child is the last
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Next

Selects the Repeat next element past the currently selected element. A next element
is the element at the same level, in a syntactic sense, as the current element that
appears immediately after the current element. If no such selection can be made,
the next element at the enclosing level is selected.

procedure Common.Object.Parent

Selects the parent element of the currently selected element. The parent element is
the element that contains the current element at the next higher level, in a syntactic
sense, from the current element.

procedure Common.Object.Previous

Selects the Repeat previous element before the currently selected element. A pre-
vious object is the object at the same level, in a syntactic sense, as the current
element that appears immediately before the current element. If no such selection
can be made, the previous element at the enclosing level is selected.

Debugger Facilities

The Debugger provides a variety of facilities for the control and examination of Ada
programs running in the Rational Environment. These facilities, and the commands
involved for each, are described in the following sections. Full descriptions of all
commands, parameters, and options can be found in the reference entries in packages
Debug and Debug_Tools in this book.

The following reference information, which provides a detailed description of the
Debugger and its operation, is intended for users who are familiar with the Envi-
ronment, Ada programming, and the basic concepts of debugging programs using
the Debugger. If you are not familiar with the basic concepts of using the Debugger,
refer to the Rational Environment User’s Guide and Rational Environment Basic
Operations for a more user-oriented introduction to the Debugger.

DEB-6 7/1/87 RATIONAL

Key Concepts

Command Contexts

Many Debugger commands require a contezt. The context is additional information
that specifies the task in the program to which the command should be applied or
the manner in which names should be interpreted.

The default value for the task context is the last task stopped by the Debugger;
the default for the location for name interpretation is the topmost subprogram
activation (that is, the place where the task stopped). The last task and the topmost
location are usually the task and location in which you are interested, so the defaults
used by the Debugger usually refer to the location you want.

Most Debugger commands allow you to use the default value for the context or to
name specifically a new context in the command. The Debugger also lets you set
the contexts explicitly.

The control context specifies a task that will be the default value for commands
and other operations requiring a task or stack. The evaluation context specifies a
location relative to which unqualified Ada names given as parameters to Debugger
commands will be interpreted.

For example, if the last task to stop, perhaps because of a breakpoint, is task %690E,
the Stack procedure (with default parameters) displays the stack of task %690E.
If you want to see the stack of task %137FB04, the command Stack ("%137FBg4")
displays it. Equivalently, if the control context is set to task %137FB04, the Stack
procedure displays that stack by default.

As another example, the Display procedure, which displays the source code of the
program, defaults to the top frame of the stack (-1) of the current task. The
current task is the task specified by the control context if the control context is set;
otherwise, it is the last task to stop in the Debugger. Thus, the Display procedure,
by default, displays the source surrounding where the task stopped, giving the
user a view of where the task is currently executing. If the evaluation context is
set explicitly, the location it specifies is displayed by the Display procedure. The
Display procedure also takes an argument that specifies what to display.

The current contexts can be displayed by using the command Show (Contexts).

Tasks, Task State, and Task Control

Each program consists of one or more tasks. The task that is the matn program is
called the root task. All other tasks in the program are declared or allocated by the
root task or by tasks declared or allocated by the root task.

To enable debugging for an entire program, the program must be executed with the
!Commands.Command.Debug procedure. This is normally done with the
key combination. If a program is being debugged when the Debug procedure is
issued, that program is killed.

Each task in the program is assigned a number by the Environment. The number
can be used to refer to the task in various debugging operations.

RAT'ONAL 7/1/87 DEB-7

Key Concepts

Individual tasks can also assign themselves string names. They do this by calling the
Debug.Set_Task_Name procedure or the Debug_Tools.Set_Task_Name procedure
with a string name parameter. The root task, by default, is named “Root_Task.”
That string name can always be used for it. It is good programming practice to
set string names for each task, especially if the same task type occurs in many
instances.

The Debugger displays the string name along with the task number whenever it
displays information about the task. The string name can also be used in place of
the task number in parameters of commands that specify a task.

The Debug.Task_Display procedure lists all or a subset of the tasks in the current
program; it lists the number and string name (if any), the Ada name, and the state
of each task. The Task_Display procedure can list subsets of all tasks, such as those
that are actually running, blocked, or stopped by the Debugger.

Call Stacks

Execution of block-structured, procedural languages such as Ada involves the stack-
ing of activations of subprograms and blocks. When a subprogram is called, a stack
frame (or, simply, a frame) is pushed on the stack of the task executing the call. The
frame contains the values of local variables and parameters to that subprogram.

Information available from each frame includes the values of local objects (such
as variables, packages, and tasks) declared in that frame, parameters to that call,
and the name of the subprogram that is executing with that frame as its context.
Because subprogram calls can be recursive and because different tasks can execute
the same subprogram, it is necessary to specify a task and a specific frame in order
to examine a specific local variable or parameter of a subprogram.

Blocks and accept statement bodies are treated as independent subprograms; con-
sequently, they get their own frames.

The Stack procedure displays the stack of a specific task.

Stopping and Holding Tasks

Individual tasks can be stopped or allowed to continue execution by the Debugger.
Note that if many tasks occur in 2 program, those tasks cannot be stopped or
allowed to proceed simultaneously (that is, as an atomic operation). The user can
affect the program’s behavior by using the Debugger to stop and start tasks. The
tasks always behave consistently with Ada semantics, however.

The Debugger can also be set up to stop all tasks when any task stops in the
Debugger, allowing debugging of a tasking program in a more single-thread manner.
Note that, in this mode, other tasks may not actually stop because they may be in
rendezvous with the stopped tasks, waiting for an entry call, and so on. When the
task that stopped is restarted, any tasks stopped because of the Freeze_Tasks option
are restarted. To enable this mode of operation, the Freeze_Tasks option must be
set to true (its default value is false). See the description of the Debug.Enable
procedure for more information on setting this flag.

DEB-8 7/1/87 BA\TIONAL

Key Concepts

Task execution may be interrupted by the Debugger in a number of ways, including
the use of breakpoints, exception handling, stepping, and other Debugger opera-
tions. In this section, only the Debugger’s facility to stop and hold tasks is discussed.
The other facilities are discussed in the following material.

The Debug.Stop, Hold, Release, and Execute procedures provide the ability to
control groups of tasks and keep some of them inactive while allowing others to
execute and interact. They allow individual or all tasks to be stopped and then to

continue.

From the Debugger’s point of view, a task is in one of three states: running, stopped,
or held. In the running state, the task is free to execute normally. The task need
not be executing; it may be blocked (waiting for an entry call to be accepted, for
example). When the Stop procedure is issued, the task moves into the stopped
state when it completes the currently executing statement. In this state, the task
does not execute.

The Execute procedure causes tasks in the stopped state to continue their execution
(changing their state to running). The Execute procedure can be applied to either
an individual task (leaving any others in the stopped state) or to all tasks in the
stopped state, starting them all.

To debug a few interacting tasks and to keep others from executing, the Hold
procedure can be used. The Hold procedure works like the Stop procedure except
that the task goes into the held state. Tasks in the held state are not started by
the command Execute ("all"). The task can be started by an Execute procedure
that names it explicitly. The task can be moved from the held to the stopped state
by the Release procedure. Once the task is in the stopped state, executing either
command Execute (task name) or command Execute ("all") starts the task.

Using the Hold procedure, you can remove a few specific tasks from the set of tasks
that are running and stopping, thereby debugging only the nonheld tasks. You can
also use the command Hold ("all") and the Release procedure to release a few
specific tasks, keeping most tasks held and debugging only a few.

The command Show (Stops_And_Holds) displays the tasks that currently have stops
and holds applied to them.

Other Information on Task State

The Debugger provides a few miscellaneous facilities that can be used to examine
task state.

The command Information (Exceptions) displays the names of any exceptions that
are currently being handled by a specific task and the location in which the exception
was raised.

The command Information (Rendezvous) displays the name of the task with which

a specified task is rendezvoused. This command is useful in tracing task interactions
and parameters back across entry calls.

RAT'ONAL 7/1/87 DEB-9

