Rational Environment
Reference Manual

Debugging (DEB)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-23

Rev.
Rev.
Rev.
Rev.
Rev.

This document subject to change without notice.

2.0, January 1985
3.0, October 1985
4.0, December 1985
5.0, July 1986

6.0, July 1987 (Delta)

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-

tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

DEB-ii

e RATIONAL

Contents

How to Use This Book

Key Concepts :
Summary of Debugger Fac1ht1es
Debugging Rational Environment Programs
Debugger Interactions with the Editor
Debugger Window
Automatic Source Display
Selection and Designation
Argument Prefixes
Session Switches Co
Commands from package Common
Debugger Facilities
Command Contexts .
Tasks, Task State, and Task Control
Call Stacks .
Stopping and Holdmg Ta.sks
Other Information on Task State
Breakpoints
Tracing
History S
Exception Trapping
Stepping

Displaying and Modxfymg Program Da.ta

Miscellaneous Facilities i
Debugger_Initialization Procedure
Starting the Debugger Quietly
Numeric Conversion
Options, Numeric Flags, and Fla.gs

R/AT'ONAL 7/1/87

. vil

© 00 0 ~J 3 D v & B WWN NN s e

e e
O MO O AW N NO

DEB-iii

Programmatic Access to Debugger Facilities
Debugger Naming

Pathnames Referencing Ada Progra.ms
Special Characters in Names

The Special Character !

The Special Character -~

The Special Character $.

The Special Character $3

The Special Character %

The Special Character .

The Special Character —

Other Special Characters

Unqualified Names
Referencing Library Units
Referencing Data Structures
Referencing Programs . . .
Referencing Overloaded Subprogra.ms
Referencing Generic Instantiations
Naming Example
Another Naming Example
Example with Tasking Constructs
Example with Generics

package Debug
procedure Activate .
procedure Address_To_Location
procedure Break
procedure Catch
procedure Clear_Stepping
procedure Comment
procedure Context
type Context_Type
procedure Convert
procedure Current_Debugger
procedure Debug.Off
renamed procedure Disable
procedure Display
procedure Enable .

DEB-iv

. 16
.17
.17
. 18
. 18
. 18
. 18
. 19
. 19
. 19
. 19
. 19
. 20
. 20
.21
. 22
. 23
. 24
.24
. 25
.27
. 28

. 29
. 30
. 31
. 32
. 36
. 42
. 43
. 44
. 48
. 49
. 80
. 51
. 52
. . 53
. 56

s RATIONAL

subtype Exception-Name57
procedure Exception.To-Name60
procedure Execute61
procedure Flag63
procedure Forget65
subtype Hex_Number67
procedure History_Display68
procedure Hod71
procedure Information73
type Information_-Type75
procedure Kil76
procedure Locatlon_To_Address T 4
procedure Memory_Display79
procedure Modify81
type Numeric 84
type Option86
subtype Path.-Name90
procedure Propagate96
procedure Put 100
procedure Release 106
procedure Remove 107
procedure Reset_Defaults 108
procedure Run e e e e e o109
procedure Set_Task_ Name S § ¥/
procedure Set_Value 114
procedure Show 115
procedure Source 121
procedure Stack 123
type State_Type 126
procedure Stop 128
type Stop_Event 130
procedure Take_History 132
type Task-Category 135
procedure Task_Display 136
subtype Task_-Name 140
procedure Trace 142
type Trace_Event 146
procedure Trace_To_File 147

RATIONAL /1/er DEB-v

procedure Xecute

end Debug
package Debug-Tools

function Ada_Location
procedure Debug_Off
procedure Debug_On
function Debugging
function Get_Exception_Name
function Get_Raise_Location
function Get_Task_Name
procedure Message
generic procedure Register .
Example 1
Example 2 . .
Exampled
generic formal function Image
procedure Register
generic formal type T
end Register
procedure Set_Task_Name
generic procedure Un_Register
generic formal type T
procedure Un_Register
end Un_Register
procedure User_Break

end Debug-Tools
Index

DEB-vi

148

151
152
154
155
156
157
159
161
163
165
168
169
172
173
175
177

179
181
182
183

185

187

e RATIONAL

How to Use This Book

The Debugging (DEB) book of the Rational Environment Reference Manual contains
reference information describing the Rational Environment™ Debugger. This in-

formation is intended for users who are familiar with the Environment, Ada®
programming, and the basic concepts of debugging programs using the Debugger.
If you are not familiar with the basic concepts of using the Debugger, refer to the
Rational Environment User’s Guide and Rational Enwnironment Bassc Operations
for a more user-oriented introduction to the Debugger.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary

Keymap

Master Index

Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Input/Output (TIO)

Data and Device Input/Output (D10)
String Tools (ST)

Programming Tools (PT)

System Management Utilities (SMU)
Project Management (PM)

= (O QO I D W ~N

-

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 71/er DEB-vii

Organization of the
Rational Environment Reference Manual

Volume 1: 3

11 volumes containing 14 books

books Volume 2: 2 books

RATIONAL

Manual 2 E
El §
EST i T
...........
T 3

‘ RATIONAL

Rational Environment

o Reference
Manual

A sample book

)

i

Volume 11: 1 book

AATIONAL

Key concepts

Book index

Topical section

Unit section

Book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Enwvironment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
Sfor example, Rational Networking—TCP/IP or Rational Target Build Utility) are
ocumented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

* Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

¢ Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

* Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under

String_Utilities.
For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/er DEB-ix

* Explanatory/topical sections: Like the unit sections, explanatory /topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

o Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Envtronment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which

they are documented.

DEB—x 7/1/87 RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library”);. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322{. If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL 7/1/87 DEB-—xi

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.gopy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

DEB—xii 7/1/87 R)ATIONAL

Key Concepts

The Rational Environment Debugger provides a variety of facilities for analyzing
the behavior of Ada programs running in the Rational Environment. The follow-
ing reference information provides a detailed description of the Debugger and its
operation. This information is intended for users who are familiar with the Envi-
ronment, Ada programming, and the basic concepts of debugging programs using
the Debugger If you are not familiar with the basic concepts of using the Debugger,
refer to the Ratsonal Environment User’s Guide and Rational Environment Basic
Operations for a more user-oriented introduction to the Debugger.

Summary of Debugger Facilities
The Debugger provides facilities to:

¢ Display the source for any part of the program.
e Display the contents of the stack of any task in the program.
¢ Display and modify the values of variables in the program.

* Place breakpoints at various points within the program to trap the execution of
portions of the program.

e Trace the execution of statements, subprogram calls, exceptions, and task inter-
actions.

¢ Display tasks and their state (the current execution condition of the task) in the
program.

¢ Execute specific tasks one statement, call, or rendezvous at a time.
e Stop execution when certain exceptions or groups of exceptions are raised.

» Control the execution of tasks in the program, stopping some and allowing others
to continue.

e Record a history of the execution of various program events.

o Set a variety of parameters controlling the format and content of various Debugger
displays.

RAT'ONAL 7/1/87 DEB-1

Key Concepts

Debugging Rational Environment Programs

A program in the Rational Environment is invoked by executing some number of
statements and declarations in a Command window. The Environment creates a
job, which executes the code in the Command window.

Each user of the Rational Environment can debug one job at a time. If debugging is
in progress for one job and is then started for another job, the debugging process is
automatically disabled for the first job and, by default, the first job is terminated.

Thus, the Debugger is always controlling one specific job. This job and the code
that it executes are referred to as the program that is being debugged.

Programs can call facilities located anywhere in the Environment. The Debugger
can operate on any such code that the program can execute. It does not matter
where that code is declared.

To use the Debugger, no special options must be specified in the program. No
special compilation is required. The Debugger is not compiled into your program
but runs as a separate job, interacting with your program.

Tasks created by a job are part of that job. The Debugger is able to control only
tasks that are part of the job it is currently debugging.

Debugging is enabled in a job when that job is executed with the !Commands-
.Command.Debug procedure, which is normally bound to the [Meta[Promoic] key com-
bination; see the Rational Environment Keymap, in Volume 1 of the Rational En-
vironment Reference Manual, for all key bindings. The process of debugging a
program is described in the sections that follow.

Debugger Interactions with the Editor

Interaction with the Debugger is through the Rational Editor mechanisms common
to all operations in the Environment. Two packages in the Environment provide spe-
cific debugging services. Package !Commands.Debug defines interactive commands
that initiate various Debugger actions and that produce output in the Debugger
window. Package !Tools.Debug_Tools provides services that programs can use. It
returns information in parameters or function results and usually does not result in
output to the Debugger window.

Debugger Window

When the Debugger is first activated, the Environment creates a window called
the Debugger window. All output from the Debugger appears in this window. It
contains a complete log of all Debugger interactions for a session. The Debugger
can also automatically display the Ada source for the program being debugged in
an Ada window with the current location selected.

The Debugger window supports type-specific editing operations on it. Thus oper-
ations from package !Commands.Common apply to the Debugger window. Those

DEB-2 s RATIONAL

Key Concepts

commands from package Common that apply to the Debugger window are described
below. The common editing operations are discussed more fully in the documenta-
tion for package Common in EST, “Common Concepts and Operations.” In addition
to the commands in package Common, commands from other commands packages
that take selections and so on can work using designations in the Debugger win-
dow. For example, the !Commands.Ada.Show_Usage procedure can be used when
the item for which to find the usages is selected in the Debugger window, just as
Show_Usage would be used from an Ada window.

Text in the Debugger window is not modifiable. The entire contents of the window
can be written into a file by using the !Commands.Common.Write_File procedure.
The contents of the Debugger window can be selectively copied (using the region
copy operations) to other windows.

Each command executed is echoed in the Debugger window and followed with any
output the command produces. If you want to execute the command again, you can
get it to reappear in the !Commands.Command window from which it was initially
executed by using the !Commands.Common.Undo procedure. For more information
on that command, see EST, procedure Common.Undo. This command is also bound
to a key in the standard Rational Environment Keymap.

If the Debugger window no longer appears on the screen (as a result of some other
Environment operation), it can be redisplayed by pressing (Debugger Window]. The De-
bugger window automatically reappears if any Debugger command results in output
being sent to it.

In the standard keymap, a number of common Debugger commands are bound to
keys. These Debugger commands can be executed by pressing the appropriate key.
See the Rational Environment Keymap for a list of Debugger commands bound to
keys.

If the program you are debugging requests input from the terminal, you must exe-
cute the !Commands.Job.Interrupt procedure (the key combination) after
input has been committed to enter additional Debugger commands.

Automatic Source Display

The Debugger can display the current location in the program in an Ada win-
dow with the location highlighted when a breakpoint or step point is encountered.
This facility is enabled by default. If you want to disable this facility, see the
Debug.Disable command for the Debug.Option.Show_Location option.

Selection and Designation

Most Debugger commands accept the special names "<SELECTION>", "<REGION>",
"<IMAGE>", and "<CURSOR>" to designate locations, objects, and 8o on. These desig-
nations can be performed in any Editor window, including the Debugger window.

The output from certain commands can be designated in the Debugger window.
These commands and the specific output that can be designated are:

I?ATIONAL 7/1/87 DEB-3

Key Concepts

e Display: Any line of source in the Debug.Display command’s output can be
designated. Designating a line of output resolves to the object, statement, or
declaration displayed on that line. Designation of a subprogram or package header
line (for example, procedure .DEBUGGING_EXAMPLE is) resolves to the subprogram
or package.

¢ Modify and Put: The command line echoed in the Debugger window can be
designated. Designating this line resolves to the object that was put or modified.
For example, if the output from the Debug.Put command is:

Put ("¥ROOT_TASK._1.A_VARIABLE");

designating this line of output in the Debugger window resolves to the object
called A_Variable in the first frame of the main program. Note that the designa-
tion resolves to a string name that the Debugger interprets as a pathname, not
to the actual object. So if "%ROOT_TASK" or frame 1 has moved between the time
the Put command echoed its output and the time the line of echoed output was
designated, the new object is used.

o Stack: Any line of the frames displayed by the Debug.Stack command can be
designated. Designating a line of output resolves to the statement or declaration
corresponding to the designated frame. For example, designating the third frame
of the following Stack command output resolves to the statement in procedure C
that called procedure B in frame 2:

Stack ("¥ROOT_TASK", @, 0},
Stack of task ROOT_TASK, #1@74DE:
_1: Alls
: B.ls
C.ls
D.ls
NESTED_CALLS.1s
command_procedure.ls
command_procedure [library elaboration block]

| T
~NOnsM

See LM, Key Concepts, “Special Names,” for more information on the available
special names and how they are resolved.

Argument Prefixes

The argument prefix keys can be used to conveniently supply numeric values to
Debugger commands bound to keys (these values can be stack frames, repeat counts,
numeric flag values, and so on). The Debugger commands with only one integer-
valued argument (there can be others of different types) accept arguments from the
argument prefix keys. This facility, for example, can be used to run for five steps
by pressing the argument prefix (3] and then [ru].

Session Switches

The initial values of various Debugger Boolean options, numeric value flags, and
other flags that influence the behavior of the Debugger are read from the user’s
session switches when the Debugger is started. These session switches all have the
form Debug-zzz, where zzz is the option, numeric value, or flag name.

DEB4 7/1/87 RATIONAL

Key Concepts

See the reference entries for the Debug.Option type, Debug.Numeric type, and
Debug.Flag procedure for more information on how these switch values influence
the behavior of the Debugger. See SJM, Session Switches, for more information on
session switches and the manipulation of them.

Commands from package Common

The following commands from package !Commands.Common are supported for the
Debugger window. If a command is not included in this list, it is not supported.

procedure Common.Abandon

Deletes the Debugger window if the Debugger has been killed. Otherwise, the
command has no effect. This command has the same effect as the Release procedure

below.

procedure Common.Create-Command

Creates a Command window below the Debugger window if one does not exist;
otherwise, the command puts the cursor in the existing Command window below
the Debugger window. This Command window initially has a use clause:

use Editor, Common, Debug;

This use clause provides direct visibility to the declarations in packages Common,
Debug, and Editor without requiring qualification for names resolved in the com-
mand.

procedure Common.Definition

Finds the defining occurrence of the designated element and brings up its image in
a window on the screen, typically with the definition of the element selected.

procedure Common.Enclosing

Displays the library containing the Command window from which the job being
debugged was started.

procedure Common.Release

Deletes the Debugger window if the Debugger has been killed. Otherwise the com-
mand has no effect. This command has the same effect as the Abandon procedure
above.

procedure Common. Write_File

Writes the current contents of the Debugger window into the named file.

EAT'ONAL 1/1/87 DEB-5

Key Concepts

procedure Common.Object.Child

Selects the Repeat child element of the currently selected element. A child element
is one of the elements at the next lower level, in a syntactic sense, from the currently
selected element. If an object at that level has not been selected before, the smallest
element enclosing the cursor is chosen. If an element at that level has been selected
before, it is selected again.

procedure Common.Object.First-Child

Selects the first child of the currently selected element. The first child is the first
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Last_Child

Selects the last child of the currently selected element. The last child is the last
one of the set of elements at the next lower level, in a syntactic sense, from the
currently selected element.

procedure Common.Object.Next

Selects the Repeat next element past the currently selected element. A next element
is the element at the same level, in a syntactic sense, as the current element that
appears immediately after the current element. If no such selection can be made,
the next element at the enclosing level is selected.

procedure Common.Object.Parent

Selects the parent element of the currently selected element. The parent element is
the element that contains the current element at the next higher level, in a syntactic
sense, from the current element.

procedure Common.Object.Previous

Selects the Repeat previous element before the currently selected element. A pre-
vious object is the object at the same level, in a syntactic sense, as the current
element that appears immediately before the current element. If no such selection
can be made, the previous element at the enclosing level is selected.

Debugger Facilities

The Debugger provides a variety of facilities for the control and examination of Ada
programs running in the Rational Environment. These facilities, and the commands
involved for each, are described in the following sections. Full descriptions of all
commands, parameters, and options can be found in the reference entries in packages
Debug and Debug_Tools in this book.

The following reference information, which provides a detailed description of the
Debugger and its operation, is intended for users who are familiar with the Envi-
ronment, Ada programming, and the basic concepts of debugging programs using
the Debugger. If you are not familiar with the basic concepts of using the Debugger,
refer to the Rational Environment User’s Guide and Rational Environment Basic
Operations for a more user-oriented introduction to the Debugger.

DEB-6 7/1/87 RATIONAL

Key Concepts

Command Contexts

Many Debugger commands require a contezt. The context is additional information
that specifies the task in the program to which the command should be applied or
the manner in which names should be interpreted.

The default value for the task context is the last task stopped by the Debugger;
the default for the location for name interpretation is the topmost subprogram
activation (that is, the place where the task stopped). The last task and the topmost
location are usually the task and location in which you are interested, so the defaults
used by the Debugger usually refer to the location you want.

Most Debugger commands allow you to use the default value for the context or to
name specifically a new context in the command. The Debugger also lets you set
the contexts explicitly.

The control context specifies a task that will be the default value for commands
and other operations requiring a task or stack. The evaluation context specifies a
location relative to which unqualified Ada names given as parameters to Debugger
commands will be interpreted.

For example, if the last task to stop, perhaps because of a breakpoint, is task %690E,
the Stack procedure (with default parameters) displays the stack of task %690E.
If you want to see the stack of task %137FB04, the command Stack ("%137FBg4")
displays it. Equivalently, if the control context is set to task %137FB04, the Stack
procedure displays that stack by default.

As another example, the Display procedure, which displays the source code of the
program, defaults to the top frame of the stack (-1) of the current task. The
current task is the task specified by the control context if the control context is set;
otherwise, it is the last task to stop in the Debugger. Thus, the Display procedure,
by default, displays the source surrounding where the task stopped, giving the
user a view of where the task is currently executing. If the evaluation context is
set explicitly, the location it specifies is displayed by the Display procedure. The
Display procedure also takes an argument that specifies what to display.

The current contexts can be displayed by using the command Show (Contexts).

Tasks, Task State, and Task Control

Each program consists of one or more tasks. The task that is the matn program is
called the root task. All other tasks in the program are declared or allocated by the
root task or by tasks declared or allocated by the root task.

To enable debugging for an entire program, the program must be executed with the
!Commands.Command.Debug procedure. This is normally done with the
key combination. If a program is being debugged when the Debug procedure is
issued, that program is killed.

Each task in the program is assigned a number by the Environment. The number
can be used to refer to the task in various debugging operations.

RAT'ONAL 7/1/87 DEB-7

Key Concepts

Individual tasks can also assign themselves string names. They do this by calling the
Debug.Set_Task_Name procedure or the Debug_Tools.Set_Task_Name procedure
with a string name parameter. The root task, by default, is named “Root_Task.”
That string name can always be used for it. It is good programming practice to
set string names for each task, especially if the same task type occurs in many
instances.

The Debugger displays the string name along with the task number whenever it
displays information about the task. The string name can also be used in place of
the task number in parameters of commands that specify a task.

The Debug.Task_Display procedure lists all or a subset of the tasks in the current
program; it lists the number and string name (if any), the Ada name, and the state
of each task. The Task_Display procedure can list subsets of all tasks, such as those
that are actually running, blocked, or stopped by the Debugger.

Call Stacks

Execution of block-structured, procedural languages such as Ada involves the stack-
ing of activations of subprograms and blocks. When a subprogram is called, a stack
frame (or, simply, a frame) is pushed on the stack of the task executing the call. The
frame contains the values of local variables and parameters to that subprogram.

Information available from each frame includes the values of local objects (such
as variables, packages, and tasks) declared in that frame, parameters to that call,
and the name of the subprogram that is executing with that frame as its context.
Because subprogram calls can be recursive and because different tasks can execute
the same subprogram, it is necessary to specify a task and a specific frame in order
to examine a specific local variable or parameter of a subprogram.

Blocks and accept statement bodies are treated as independent subprograms; con-
sequently, they get their own frames.

The Stack procedure displays the stack of a specific task.

Stopping and Holding Tasks

Individual tasks can be stopped or allowed to continue execution by the Debugger.
Note that if many tasks occur in 2 program, those tasks cannot be stopped or
allowed to proceed simultaneously (that is, as an atomic operation). The user can
affect the program’s behavior by using the Debugger to stop and start tasks. The
tasks always behave consistently with Ada semantics, however.

The Debugger can also be set up to stop all tasks when any task stops in the
Debugger, allowing debugging of a tasking program in a more single-thread manner.
Note that, in this mode, other tasks may not actually stop because they may be in
rendezvous with the stopped tasks, waiting for an entry call, and so on. When the
task that stopped is restarted, any tasks stopped because of the Freeze_Tasks option
are restarted. To enable this mode of operation, the Freeze_Tasks option must be
set to true (its default value is false). See the description of the Debug.Enable
procedure for more information on setting this flag.

DEB-8 7/1/87 BA\TIONAL

Key Concepts

Task execution may be interrupted by the Debugger in a number of ways, including
the use of breakpoints, exception handling, stepping, and other Debugger opera-
tions. In this section, only the Debugger’s facility to stop and hold tasks is discussed.
The other facilities are discussed in the following material.

The Debug.Stop, Hold, Release, and Execute procedures provide the ability to
control groups of tasks and keep some of them inactive while allowing others to
execute and interact. They allow individual or all tasks to be stopped and then to

continue.

From the Debugger’s point of view, a task is in one of three states: running, stopped,
or held. In the running state, the task is free to execute normally. The task need
not be executing; it may be blocked (waiting for an entry call to be accepted, for
example). When the Stop procedure is issued, the task moves into the stopped
state when it completes the currently executing statement. In this state, the task
does not execute.

The Execute procedure causes tasks in the stopped state to continue their execution
(changing their state to running). The Execute procedure can be applied to either
an individual task (leaving any others in the stopped state) or to all tasks in the
stopped state, starting them all.

To debug a few interacting tasks and to keep others from executing, the Hold
procedure can be used. The Hold procedure works like the Stop procedure except
that the task goes into the held state. Tasks in the held state are not started by
the command Execute ("all"). The task can be started by an Execute procedure
that names it explicitly. The task can be moved from the held to the stopped state
by the Release procedure. Once the task is in the stopped state, executing either
command Execute (task name) or command Execute ("all") starts the task.

Using the Hold procedure, you can remove a few specific tasks from the set of tasks
that are running and stopping, thereby debugging only the nonheld tasks. You can
also use the command Hold ("all") and the Release procedure to release a few
specific tasks, keeping most tasks held and debugging only a few.

The command Show (Stops_And_Holds) displays the tasks that currently have stops
and holds applied to them.

Other Information on Task State

The Debugger provides a few miscellaneous facilities that can be used to examine
task state.

The command Information (Exceptions) displays the names of any exceptions that
are currently being handled by a specific task and the location in which the exception
was raised.

The command Information (Rendezvous) displays the name of the task with which

a specified task is rendezvoused. This command is useful in tracing task interactions
and parameters back across entry calls.

RAT'ONAL 7/1/87 DEB-9

Key Concepts

The command Information (Space) displays the names of each task in the program
and the amount of control and data space each task is using as well as the maximum
data space it has used.

Breakpoints

A breakpoint is one of the mechanisms that allow the user to control the execution
of a task. While the task is stopped at a breakpoint, objects can be viewed or
modified, source can be displayed, and breakpoints, traces, histories, or exception
handling can be added, changed, or deleted. Other tasks can also be stopped or
held. Execution can then be restarted.

Execution of an Ada program involves the elaboration of declarations followed by
the ezecution of statements. Unlike most other languages, the elaboration of decla-
rations can cause execution of other subprograms (from a call in the initialization
of a variable, for example) and can also cause exceptions to be raised.

The Debugger allows breakpoints to be set at declarations as well as at statements.
Such a setting allows you to debug actions that occur during the elaboration of
declarations.

To reference statements and declarations in the program, declarations and state-
ments in each subprogram are numbered by the Debugger. Declarations and state-
ments are grouped separately and numbered sequentially starting with 1. A number
is assigned at the beginning of each declaration or statement. Blocks and accept
bodies are also numbered starting with 1. The naming of locations is discussed in
detail under the Path_Name subtype in package Debug in this book.

The Display procedure shows the numbers of declarations and stétements as part
of displaying the source of a subprogram.

Assume the following simple subprogram is a library unit:

Display (".swap", 0);
procedure .SWAP (X, Y : in out INTEGER) 1s

1 TEMP : INTEGER;
begin

1 TEMP := X;

2 X :=Y;

3 Y := TEMP;
end;

Breakpoints can be set at declaration 1 and statement 2 by issuing the commands:
Break (".Swap.ld");
Break (".Swap.2");

Note that although the pathnames of the locations to set these breakpoints were
provided explicitly, breakpoint locations typically are specified with selections so
that the names of the locations do not have to be typed in.

DEB-10 7/1/87 RAT'ONAL

Key Concepts

These breakpoints stop any task in the program being debugged that executes the
Swap procedure. The location and task name are reported in the Debugger window.

Breakpoints can be set so that only a specific task will stop when it reaches the
specified location. This setting allows debugging of individual tasks, not just the
code that any or all tasks execute. The In_Task parameter to the Debug.Break
procedure can specify the task to which the breakpoint should apply. The Break
procedure defaults to set the breakpoint in the task specified by the control context.
If the control context is not set to a specific task, the breakpoint applies to all tasks.

The Break procedure has several other parameters. In addition to a restriction to
a specific task, a breakpoint has a trip count associated with it. The trip count
specifies the number of times that the location where the break is set must be
executed before the Debugger stops the task that executes there. The trip count is
useful for breakpoints that are set in loops.

A breakpoint can be active or nactive. When a breakpoint is active, it is installed in
the program being debugged and stops a task that executes the location where it is
placed (when any task and trip count restrictions are satisfied). When a breakpoint
is inactive, it has no effect on the execution of the program. The Debugger simply
remembers all the information about the breakpoint so that the breakpoint can be
reactivated.

Active breakpoints are deactivated when a new job is started with debugging. The
command Activate (@) reactivates all breakpoints. This command can be used
when a program is being rerun and you want to break at the same locations as the
last run.

The Break procedure creates and activates a breakpoint. The Activate procedure
reactivates an inactive breakpoint. The Remove procedure deactivates or deletes a
breakpoint, or both. Each breakpoint is assigned a number by the Break procedure.
This number is used to refer to the breakpoint in subsequent Debugger operations.
The number is also used when the Debugger reports that a task has stopped at a
breakpoint.

Breakpoints can also be designated as either temporary or permanent. When a task
is stopped by a temporary breakpoint, the breakpoint is automatically deactivated
(and optionally deleted). If you are advancing through a program and do not want
to retain breakpoints as they are passed, creating them as temporary is useful. A
temporary breakpoint causes one task, at most, to stop. Permanent breakpoints
remain active until explicitly removed. The Default_Lifetime parameter to the
Break procedure can be used to set either permanent or temporary breakpoints.
See the reference entry for the Break procedure for more information on the use of
this parameter.

RATIONAL 7/1/87 DEB-11

Key Concepts

Tracing

The tracing facslity of the Debugger causes messages to be displayed each time a
certain kind of event occurs in a task for which tracing is enabled.

Traces can include messages about statements, calls, rendezvous, and exception
raising. Traces are displayed in the Debugger window or recorded in a file (see the
Debug.Trace_To_File procedure.

Tracing can be enabled for specific tasks or for all tasks. The Trace procedure is
used to enable and disable tracing. The command Show (Traces) displays what
tracing is enabled for which tasks. If tracing is enabled for one task, other tasks are
not affected (except that the task with tracing is running more slowly than normal).

History

The history facility of the Debugger causes messages to be placed in a buffer each
time a certain kind of event occurs in a task for which history taking is enabled.

As with traces, histories can include messages about statements, calls, rendezvous,
and exception raising. Unlike traces, history messages are saved in a circular buffer
in the Debugger. From the buffer, selected sets of messages can be displayed, such
as messages from only a specific task or for some range of messages.

Like traces, histories can be enabled for specific tasks or for all tasks. The De-
bug.Take_History procedure is used to enable and disable histories. The command
Show (Histories) displays what tracing is enabled for which tasks. If history taking
is enabled for one task, other tasks are not affected (except that the task with his-
tory taking is running more slowly than normal). The History_Display procedure
displays the actual history information.

Exception Trapping

Exceptions raised in a program often signal some event of interest during debugging.
The Debugger provides a facility to stop execution of a task when it raises particular
exceptions. When this happens, the Debugger reports the stopping of the task, the
name of the exception that was raised, and the locatior in the program where it
was raised.

In a given program, some exceptions may or may not be of interest to you during
debugging. You may care about exceptions only when they are raised by specific
tasks or in specific locations.

The Debugger maintains a list of exception information requests. A request may
ask that a task stop for a certain exception (a catch request) or that a task not stop
for a certain exception (a propagate request).

The Debug.Catch, Propagate, and Forget procedures add catch, propagate, and
delete requests, respectively.

For example, if you want the program you are debugging to stop when any exception
other than the Constraint_Error exception is raised, use the following commands:

DEB-12 7/1/87 QAT'ONAL

Key Concepts

Propagate ("Constraint_Error"};
Catch;

After an exception is caught by the Debugger and reported by a message in the
Debugger window, and after the task in which the exception is raised is stopped,
you can inspect the state of the task (or other tasks). You can allow the task to
continue when you wish. Execution continues with the first statement of the handler

for the exception that was raised.

If a task stops at a point inside an active handler for an exception (such as at
a raise statement), the command Information (Exceptions) displays information
about the exception, including where it was initially raised.

The Catch, Propagate, and Forget procedures take additional parameters that re-
strict exception requests to specific tasks or locations. Because overlapping requests
are possible, rules specify which requests apply in a given situation. The additional
parameters and rules are discussed under the Catch and Propagate procedures in
package Debug in this book.

If the Save_Exceptions option is set to true (its default value is false), the exception-
handling information is saved between debugging runs. This mode can be used when
a program is being rerun and you want to handle exceptions in the same way as the
last run. See the description of the Debug.Enable procedure for more information
on setting this option.

The command Show (Exceptions) lists all catch and propagate requests in the order
in which they will be applied to each exception situation.

By default, the Debugger catches all exceptions in all tasks in the program wherever
they are raised. This response to exceptions is the effect of the command Catch (with
default values for all parameters). The command Propagate (again, with default
values for all parameters) changes this default to indicate that tasks are not to stop
when exceptions are raised (if no other catch requests are entered).

Stepping

The Debugger provides operations for executing tasks one statement, call, or task
interaction at a time. The command Run (with default values for all parameters)
causes a task that is stopped in the Debugger to execute one statement.

Execution continues until the specified number of the specified kinds of events occur.
For example, the commands:

Run (Statement, 5);

Run (Local_Statement, 2);
Run (Procedure_Entry};
Run (Returned};

run the current task for the next five statements, for the next two statements of the

current subprogram, until the beginning of the next called subprogram, and until
the first statement that follows the call to the current subprogram, respectively.

RATIONAL 7167 DEB-13

Key Concepts

Note that the Statement parameter specifies stepping after any statement. The
Local_Statement parameter counts only statements in the current subprogram (and
the current subprogram’s caller) and treats called subprograms and all statements
contained therein as one statement.

While it is stepping, a task may stop for some other reason. For example, it may
encounter a breakpoint or may raise an exception that the Debugger is requested
to catch. When the task is resumed, stepping continues and the task stops when
the stepping request has been fulfilled.

The command Show (Steps) displays the names of tasks that are currently stepping.

An in-progress stepping operation can be canceled by executing the Debug.Clear-
—Stepping procedure. This command causes the stepping operation to be canceled,
and the task continues doing whatever it was doing. Other Debugger operations
applied to the task are unaffected.

Displaying and Modifying Program Data

The Debug.Put and Modify procedures provide the capability to display and modify
data in the program being debugged. The Put procedure is given the name of the
object to be displayed. If the object is a scalar, the simple value is displayed. If
the object is a structure, the entire record or (part of) the array is displayed. If the
object is a pointer, then the pointer value is displayed followed by the object that
it designates.

The Debugger provides a facility for allowing users to create special display routines
for displaying data values. If the data being displayed is of a type not defined in
the application (for example, a private type defined in the one of the Ada spec-
ifications for the Rational Environment) and consequently not known directly by
the Debugger, it can also be displayed with this facility. Users must provide dis-
play functions for the type and register them with the Debugger (typically in the
Debugger_Initialization procedure; see below). These functions can be created and
registered using the Debug_Tools.Register generic procedure. See the reference
entry for this procedure in this book for more information.

Normal Ada notation for record fields and asray subscripts is used when specifying
objects to be displayed. Thus, individual fields of structures can be named, as can

the designated objects of pointers.

Scalar-valued variables can be modified by using the Modify procedure. This com-
mand also allows scalar components of records and arrays to be modified. Some
restrictions limit what can be modified. See the Debug.Modify procedure in this
book for a list of restrictions.

If the Display procedure is given a data object or type name, it displays the struc-
ture of the object’s type. This display is very useful in conjunction with the Put
procedure to see the declaration of the type using the Display procedure and the
display of part or all of the object using the Put procedure.

DEB-14 7/1/87 RATIONAL

Key Concepts

The command Set_Value (Display_Level, depth) specifies the number of levels of
nesting that are displayed when a structured value is displayed. Other options
(First_Element and Element.Count) control the display of arrays (see Numeric

type).
If a number of Put, Modify, or Display procedures are to be executed for similar
objects, the evaluation context can be set to simplify the entry of the operations.

The evaluation context is set to the run-time context that contains the objects of
interest. Then, simpler object names (relative to the context) can be used to name

the objects.

For example, suppose task %4112 has stopped at a breakpoint. The subprogram
active in stack frame 2 contains a package, Storage_Map, thit in turn contains a
pointer, Active_Data, to a record. You may want to display the value of a field of
that record, Motor_Status. You can display this value by using the command:

Put ("%4112._2.Storage_Map.Active_Data.Motor_Status”);

If several fields (for example, Engine_Status) or subfields are to be displayed, then
the evaluation context can be set:

Context (Evaluation, "%4112._2.Storage_Map.Active_Data");
Put ("Motor_Status");

Put ("Engine_Status"};

Put ("Engine_Status.Temperatures.Oil .Filter_2");

You must be aware that the evaluation context will have this value until explicitly
changed. All unqualified names will be interpreted relative to it. The command
Context (Evaluation, "") clearsthe context so that it will again default to the top
frame of the last task to stop (or the task specified by the control context, if that
is set to some task). The command Display (Contexts) displays the current value
of the evaluation and command contexts.

If the task had not been stopped, the Debugger could still display the value of the
field. However, the value the Debugger displays could change at any time because
the task is still running. The Debugger displays the message:

Warning: Task #4112 is running

along with the value displayed to remind you that the value may change.

RAT'ONAL 7/1/87 DEB-15

Key Concepts

Miscellaneous Facilities
A few details not covered in the preceding sections are worth noting.

Debugger-Initialisation Procedure

To perform initialization of the Debugger when it is started, put a parameterless
procedure called Debugger_Initialization in a library that is on your searchlist. This
procedure is elaborated and run at the point the Debugger is started. It remains
elaborated until the Debugger is killed. This facility can be useful in setting up
flags and exception handling and in registering special display procedures for specific
types (see the Debug_Tools.Register procedure for more information on such display
procedures).

Starting the Debugger Quietly

To automatically start the Debugger in your login procedure so that you do not
have to wait for it to start when you debug the first program in your session, you
can do a quiet startup. Calling the Debug.Reset_Defaults procedure from your
login causes the Debugger to start without bringing up the Debugger window.

Numeric Conversion

The Debug.Convert procedure converts numbers from one base to another, most
notably hexadecimal and decimal.

Options, Numeric Flags, and Flags

A number of Boolean options, numeric flags, and flags control various aspects of the
Debugger’s operation. These options are set and reset with the Debug.Enable and
Debug.Disable procedures (for Boolean-valued flags), the Debug.Set_Value proce-
dure (for numeric-valued flags), and the Debug.Flag procedure (for any other flags).
See the reference entries for the Debug.Option and Debug.Numeric types and the
description of the Debug.Flag procedure for detailed information on all controllable
aspects of Debugger behavior.

Programmatic Access to Debugger Facilities

The Debugger provides several operations in package !Tools.Debug_Tools that are
callable directly from tasks that are part of an Ada program.

A running task can call the Debugger explicitly to display a message or to “break”
to the Debugger. Displaying a message is useful because the program can inform
you by means of the Debugger that it has reached a certain point or has detected
some abnormal condition.

When desired, a call to the User—Break procedure stops execution of the calling task
as though it had encountered a breakpoint. A message is displayed in the Debugger
window indicating the name of the task. The Execute procedure causes the task to
continue; from the task’s point of view, the User_Break procedure returns.

Calls to the User_Break procedure have no effect from a job that is not currently
being debugged.

DEB-16 e RATIONAL

Key Concepts

Three operations provide a running program with information about itself: the
Ada_Location, Get_Exception_Name, and Get_Raise_Location functions.

The Ada_Location function allows a task to scan its stack and get information
about what is executing in each frame. This scan is useful for displaying error
information in certain cases, because it shows the exact state of the program at the
time the error is detected.

The Get_Exception_Name function, when called directly or indirectly from an ex-
ception handler, returns in string form the name of the exception that was raised.
Its raise location can be displayed with the Get_Raise_Location function.

Debugger Naming

Pathnames Referencing Ada Programs

Many operations require that specific locations in the program be named. These
locations can be any statement, declaration, exception, object, or type. Strings,
called pathnames, are used to specify these locations. These names can specify
locations as simple as an object to as complex as a specific statement in a specific
generic instantiation. These same names are also used by the Debugger when it
displays locations where a program task has stopped. Note that pathnames to
Debugger commands accept special names (such as "<SELECTION>"). See “Selection
and Designation,” above, for more information on the use of special names and
designations in the Debugger window. See LM, Key Concepts, “Special Names,” for
more information on special names and their resolution.

Pathnames generally use existing Ada naming rules for program units. Special cases
in which Ada rules are extended include names for anonymous blocks, package specs
and bodies, accept statement bodies, locations within generic program units, and
statements and declarations. Each instance of a generic, as well as the generic itself,
has a unique pathname.

For the purposes of naming, statements and declarations are numbered. Numbering
within each group of declarations and statements is independent and begins with 1.
Use clauses and representation specifications are not numbered. Blocks and accept
statement bodies are numbered separately. Statements in exception handlers are
numbered continuously with preceding statements.

The pathname of a statement or declaration includes the pathname of the containing
subprogram, package, task, block, or accept, and a statement or declaration number
suffix.

Names of data objects follow Ada rules for the selection of record fields, array
elements, and objects designated by pointers. Even if a type is declared private, the
Debugger allows you to access it as though the structure were known, unless it is a
Rational Environment private type.

Pathnames are always interpreted in a left-to-right sequence. At each point during
name processing, the processed left part of the name has been resolved to some Ada

RATIONAL /7 DEB-17

Key Concepts

unit, and the next name component is interpreted within that context. The same
interpretation method is used for Environment names.

Pathnames are used in most Debugger commands. The Display procedure, for
example, takes a pathname that specifies what source is to be displayed. The
Put procedure takes a pathname that specifies a data object whose value is to be
displayed. The Break procedure takes a pathname that specifies a location in the
program where a breakpoint is to be placed. Other commands also make use of
pathnames to identify program or data locations.

Special Characters in Names

Special characters are used in names to specify either relative or absolute contexts.
These special characters apply to names used throughout the Environment, not just
in the Debugger.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character such as an exclamation mark
1), caret (~), dollar sign ($), double dollar sign ($$), percent symbol (%), period
.}, or underscore (-) causes an explicit interpretation of the remainder of the name
as described below. Some of these characters can be used only at the beginning of
the name. Note that the < character is also special in the sense that it indicates a
special name (for example, "<SELECTION>") is being used.

If the first character of the name is not one of these characters, then the name is
said to be an unqualified name, and the Debugger uses the control and evaluation
contexts as defaults in which to interpret the name (also described below). These
defaults are chosen so that the interpretation will likely be in the context in which
you are interested.

The Special Character !

The exclamation mark (!) specifies that the context for resolvirg the remainder of
the name should be set to the root of the library system, creating a fully qualified
name. This character represents the root of the library system in any context.

The Speclal Character ~

The caret (-) specifies that the context should be set to the immediately enclosing
object from the location in which the Debugger was executed. This climbs the
hierarchy of objects and eventually reaches the root of the library system. The
parent object of the root of the library system is itself.

The Special Character §

The dollar sign ($) specifies that the context should be set to the immediately
enclosing library from the location in which the Debugger was executed. A library
is either a directory or a world. If the current context is a library, this character
has no effect.

DEB-18 7/1/87 BA\TIONAL

Key Concepts

The Special Character $$

The double dollar sign ($$) specifies that the context should be set to the immedi-
ately enclosing world from the location in which the Debugger was executed. If the
current context is a world, this character has no effect.

The Special Character %

The percent symbol (%) can be used only as the first character of a name. It
specifies that the next name component is a task name. Task names are either
string names assigned to tasks by calls to the Debug.Set_Task_Name procedure or
task numbers assigned by the Environment. The Task_Display procedure lists all
tasks and their names and numbers.

The components of a name that follow the task name are interpreted as objects
declared in the named task. If the task name is followed by -n (where n is a
number), the name refers to a stack frame of the named task. Stack frame names

are further discussed below.

The Special Character .

The period (.) is used both as a name component separator and as a name prefix. As
a separator, it is used just as in Ada names to separate components of a name. For
example, in the name Tools.Debug_Tools, the period separates the two components

of the name.

As a prefix character, the period specifies that the first component of the name is
a library unit name. A second component of the name would be an object declared
in the named library unit.

The Speclal Character -

If the value of an object declared in a subprogram is to be displayed, then the
frame on the run-time stack that contains an activation of that subprogram must
be named. Naming is done using the notation _frame number. Stack frames are
numbered for each task starting at the top with 1. Thus, _4 refers to frame number
4 (fourth frame from the top). (Frames are alternately numbered from the bottom
using negative numbers.)

Note: In the Debugger and throughout the Environment, the convention is that
the top of the stack is the most recently used location.

Task and frame names can be combined to specify a frame of a specific task; for
example, %32912._4 gpecifies frame number 4 of task number 32912,

If a name begins with a frame specification (.n), the task referred to is based on
the value of the control context. If the control context is set to some specific task,
the frame reference refers to this task’s stack. If the control context is not set to a
specific task, the frame reference refers to the stack of the last task to stop in the
Debugger. This task is usually the one in which you are interested.

Other Special Characters
Two additional characters that can be used in Debugger names are:

RATIONAL 7177 DEB-19

Key Concepts

\ Indicates that the next name component is resolved in the current context and
the current searchlist.

* Indicates that the next name component is resolved in the current context and
with the current links using Ada naming rules.

Unqualified Names

Finally, if a name does not begin with an exclamation mark, caret, dollar sign,
double dollar sign, percent symbol, period, or underscore, then the name is said
to be an ungqualified name. Unqualified names are interpreted in the Debugger’s
evaluation context as if the evaluation context were prepended to the pathname
with appropriate connecting punctuation). If the evaluation context is not set
that is, if it is set to the null string, its default value), then _1 is prepended to an
unqualified pathname. The name is then interpreted as an object declared in the
top frame of the task specified by the control context or in the last task to stop if
the control context is not set.

Referencing Library Units

All library units referenced in a program are known to the Debugger. Some impor-
tant points about how to name those units follow. Consider the following library

structure and the program in it:

'Users.Airport. Airport_System Library (World);
Main_Program : C Ada {Proc_Spec);
Main_Program : C Ada (Proc_Body);

Source : Library {Directory);
Tests : Library (Directory);
IUsers.Airport.Airport_System.Source Library (Directory);

Some_Other_Unit : C Ada (Proc_Spec};
Some_Other_Unit : C Ada (Proc_Body);

ééﬁe_Unit : C Ada (Proc_Spec};

Some_Unit : C Ada (Proc_Body};
'Users.Airport.Airport_System.Source : Library (Directory);

Some_Unit : C Ada (Proc_Spec);

Some_Un1t : C Ada (Proc_Body};

féét_Data : File;

Test_Driver : C Ada (Proc_Spec};
Test_Driver : C Ada (Proc_Body);

Assume that the program Main_Program imports library units via wisth clauses
from both the directory Source and the directory Tests. The units from within the
world Airport_System can be directly imported into the main program via internal
links in the world.

The Debugger allows references to these library units with pathnames such as
.Some_Unit.2d or .Test_Driver.Some_Subprogram. These pathnames do not need
to be qualified with the library name. Thus the Debugger “flattens” the library
structure from which the program was built.

DEB-20 7/1/87 QAT'ONAL

Key Concepts

The program might also want to use some facility in the Environment such as
Text_Io. In the world Airport_System, there would be an external link to the
library unit Text_Io. The Debugger also allows using pathnames that directly
reference that imported library unit, such as .Text_Io.Put_Line.

Because the Debugger flattens the library structure, it is possible that library unit
names will become overloaded from the point of view of the Debugger. This could
lead the Debugger to not know to which unit, called Some_Unit, reference is being
made. Three resolutions are possible:

e An ambiguous reference to a library unit is handled just as are other overload
resolutions in the Debugger (see “References to Overloaded Subprograms,” be-

low).

e The containing library name can be used to specify to which unit reference is
being made, such as .Tests.Some_Unit or .Source.Some_Unit.

e Fully qualified names can be used.

Referencing Data Structures

Pathnames can refer to Ada variables. A pathname can refer to a specific field of a
record, a component of an array, or an object that is pointed to by an access value.

Pathnames always start in some part of the program, such as a package, task, or
subprogram frame, or they start in a library. From there, the pathname can follow
a path that includes data values.

Consider the following example. Assume that the world Airport_System is in the
library !Users.Airport; package Reservation is a library unit therein.

package RESERVATION 1is
subtype PASSENGER_NAME is STRING (1 .. 28};
type FLIGHT_INFO 1is ...
type PERSON;
type PERSON_PTR is access PERSON;
type PERSON 1s record
NAME : PASSENGER_NAME;
AGE : NATURAL;
FLIGHT : FLIGHT_INFO;
NEXT : PERSON_PTR;
end record;

N HWMN -

: 1n out PERSON_PTR;

6 procedure RESERVE (PASSENGER_LIST
NAME

AGE
FLIGHT

: PASSENGER_NAME ;
: NATURAL ;
: FLIGHT_INFO};

end RESERVATION;

Suppose that the last task to stop in the Debugger is executing in the Reserve
procedure of the above example, and that neither control nor evaluation contexts
are set. Then the name Passenger_List.Next.Next.Name(12) refers to a character
at index 12 of an array (string) two links down a linked list of records. Note that, as
in Ada, the access variable Passenger_List is automatically dereferenced. The name
Passenger_List.All refers to the record designated by the variable Passenger_List.

RATIONAL +1/er

DEB-21

Key Concepts

If the activation of the Reserve procedure were in a task with name Reserva-
tion_Agent at frame 7, then the name:

¥Reservation_Agent._7 .Passenger_List .Next.Next.Name(12)

would reference the same character as the first example.

The name:

IUsers.Airport . Airport_System.Reservation.Reserve.Passenger_List.Flight

follows a pathname from the root of the Environment to a field of a record. Note
that no run-time value is associated with the object to which this name refers; a
subprogram is referenced, but a specific activation (frame) of that subprogram is
not referenced. Such a name could be used to display information about the type
of the object to which it refers but not about a run-time value.

The name:

.Reservation.Reserve.Passenger_List.Flight

has the same meaning as the previous example.

Referencing Programs

Using name constructs discussed so far, it is possible to name individual subpro-
grams, packages, and tasks in an Ada program. To refer to individual statements,
declarations, blocks, and certain task constructs, the naming rules are extended.

Within each subprogram, package, task, block, and accept body, statements and
declarations are numbered beginning with 1. In the display of the source provided
by the Debugger, the numbers are shown.

To name a specific statement or declaration, the name of the containing subprogram
is suffixed with the statement or declaration number. Declaration numbers are
suffixed with d to distinguish them from statement numbers. Statement numbers
can optionally be suffixed with s.

Blocks are treated as independent subprograms and are referenced as a whole by
the statement number of the block in the subprogram that contains it. If the block
is labeled, then the label can be used instead of the statement number. See the
examples in the following sections for more details.

Accept statement bodies are treated similarly to blocks. Statements within an
accept body are numbered independently, and the accept statement body itself is
identified by the number of the accept statement in the statement list that contains
it.

Select alternatives are numbered sequentially with surrounding statements. See the
examples in the following sections.

DEB-22 e RATIONAL

Key Concepts

Referencing Overloaded Subprograms

When a reference is made to a subprogram name and that name is overloaded,
the Debugger requires an overload resolution nickname to make the subprogram
reference unambiguous. An overload resolution nickname is a number or identifier
that is appended to the subprogram name as an attribute. The number is chosen
by the Environment or a name can be set by the user. If a name references an
overloaded subprogram and does not include the overload resolution nickname,
then the Debugger displays each of the alternatives along with its number, as in the

following example:

Display ("%ROOT_TASK._l.put", 0);

The name PUT 1s overloaded.

When you ask for it again, please choose one instance by appending
to PUT a single quote followed by a choice qualifier or nickname,
as follows:

Choice N({1}:
procedure .OVERLOADS.PUT’'N(1) (11, 12 : INTEGER) is

Choice N(2}:
procedure .OVERLOADS.PUT’'N(2) (I : INTEGER) 1s

Choice N{3):
procedure .OVERLOADS.PUT’N{3) (S : STRING)} 1is

Invalid location specified:
Unresolvable overload: PUT

If the Put procedure that takes the single integer parameter is desired, its overload
nickname can be included:

Display ("¥ROOT_TASK._l.put’'n(2)", @);

procedure .OVERLOADS.PUT’N(2) (I : INTEGER) 1is
begin

1 TEXT_10.PUT (I});
end;

This overload resolution process is also used when a specification might be inter-
preted either as the visible part or body of a package. For example, given the
package:

package .OVERLOADS.FOO_BAR 1s
1 A : INTEGER;
end;

package body .OVERLOADS.FOO_BAR is

1 B : INTEGER;
end;

a request to display package Foo_Bar declaration 1 would be ambiguous:

'?ATIONAL 7/1/87 DEB-23

Key Concepts

Display ("foo_bar.1d", 0);
The name 1D 1is overloaded.
When you ask for 1t again, please choose one instance by appending
to 1D a single quote followed by a choice qualifier or nickname,
as follows:

Choice N(1):
A : INTEGER;

Choice N(2}:
B : INTEGER;

Invalid location specified:
Unresolvable overload: 1D

Then, the name foo_bar.1d’n(1) refers to the declaration of A, which is in the visible
part, and foo_bar.1d’n(2) refers to the declaration of B, which is in the body.

It is also possible to refer specifically to the visible part or body of a package by
appending the nickname “’spec” or “’body” to the package name, respectively. For
example, foo_bar’spec.1d always refers to the declaration (A) in the visible part.

Referencing Generic Instantiations
Code within generic program units can be referenced in two ways: by naming the
generic unit itself and by naming an instance of the generic unit.

When breakpoints are set, the two names have different effects. If the generic unit
is named, the breakpoint applies to all instances of the generic. If an instance is
named, the breakpoint applies only to that one instance of the generic.

Several examples involving generics are given in the following material.

Naming Example

Again, assume that the following package is a library unit in the library !Users-
.Airport.Airport_System:

package RESERVATION is

1 subtype PASSENGER_NAME 1is STRING (1 .. 20);
2 type FLIGHT_INFO 1s ...
3 type PERSON;
4 type PERSON_PTR 1s access PERSON;
5 type PERSON is record
NAME : PASSENGER_NAME ;
AGE : NATURAL;
FLIGHT : FLIGHT_INFO;
NEXT : PERSON_PTR;

end record;
6 procedure RESERVE (PASSENGER_LIST : in out PERSON_PTR;

NAME : PASSENGER_NAME;
AGE : NATURAL;
FLIGHT : FLIGHT_INFO);

end RESERVATION;
package body RESERVATION 1s

DEB-24 7/1/87 BAT'ONAL

1 procedure RESERVE (PASSENGER_LIST : in out PERSON_PTR;

NAME : PASSENGER_NAME;
AGE : NATURAL;
FLIGHT : FLIGHT_INFO} 1is

begin

1 CHECK_NAME (NAME);

2 ADD_TO_FLIGHT (PASSENGER LIST, NAME, FLIGHT);

3 ADD_TO_LIST (PASSENGER_LIST, NAME AGE FLIGHT);
4

declare

1 CosT : TICKET_PRICE;
begin
1 COST := COMPUTE_TICKET_PRICE (FLIGHT};
2 SEND_BILL (NAME, COST);
exception
when others =>
3 CANCEL _RESERVATION (NAME, FLIGHT,
PASSENGER_L. ISTY;
end;

S FINALIZE_TRANSACTION;
end RESERVE;
end RESERVATION;

Key Concepts

First, note that each declaration and statement is numbered. These numbers are
used to name specific declarations and statements. Consider the following examples

from the code segment above:

1. !Users.Airport.Airport_System.Reservation’spec.2d

2. !Users.Airport.Airport_System.Reservation’body.ld

3. !Users.Airport.Airport_System.Reservation.Reserve.2

4. !Users.Airport.Airport_System.Reservation.Reserve.4.1d
5. !Users.Airport.Airport_System.Reservation.Reserve.4.3

6. !Users.Airport.Airport_System.Reservation.Reserve.5

Examples 1 and 2 refer to declarations in the visible part and body of package
Reservation, respectively. Examples 3 and 6 refer to numbered statements in the
Reserve procedure. Examples 4 and 5 refer to the declaration for Cost and the

statements in the exception handler of the block within Reserve.

Another Naming Example
An example of statement and declaration numbering follows:

with BOUNDED, TTY_IiO;
procedure TEST8 1is
use BOUNDED, TTY_IO;

1 L : BOUNDED.VARIABLE _STRING(520) ;
2 task type USER ...;
3 type R2 1s record

F1 : INTEGER := 21;

F2 : CHARACTER := '2’;

end record;

4 type R1 is record

F1 : INTEGER := 1;

F2 : INTEGER := 2;

RATIONAL 71/sr

DEB-25

Key Concepts

end record;
5 DONE : exception;
6 procedure FOO_PROP (N : INTEGER) is ...;
7 vl : RIl;
8 v2 : R2;
9 procedure REC_TEST (V : Rl; U : in out R2) is ...;
begin
1 RANDOM. INIT_RANDOM(5) ;
2 PUT ("test8 starting”};
3 NL;
4 REC_TEST (V1, V2);
5 GTEST_MAIN;
6 begin
1 FOO_PROP (5);
exception
when others =>
2 PUT ("Back from Foo_Prop");
end;
7 SESSION. INITIALIZE;
8 loop
9 SESSION.SESSION_LIST (L);
10 PUT (BOUNDED. IMAGE (L));
11 NL;
12 delay DURATION (3};
end loop;
13 PUT ("test8 all done");
14 NL;
exception
: when others =>
15 PUT ("Exception raised in main task! oh no!"};
16 NL;
17 PUT (DEBUGGER.CURRENT_EXCEPTON_NAME) ;
18 NL;
19 SESSION.SHUTDOWN ;

end;
Several numbering rules are illustrated in this example:

o Use clauses are not numbered; they do not have a run-time representation.
¢ Blocks are numbered separately (for example, test8.6s).

¢ Statements in exception handlers are numbered continuously with preceding
statements.

Several sample pathnames using the above source are:

TEST8.1d -- Declaration L
TESTB.6.2 -- Put statement inside anonymous block
TEST8.10s -- Put statement inside loop

DEB-26 e RATIONAL

Key Concepts

Example with Tasking Constructs
Another example of statement and declaration numbering follows:

package SESSION 1is

1 type TERMINAL is {VT108, DASHER, ADM3);
2 type ID is new INTEGER;
3 procedure INITIALIZE;
end;
package body SESSION 1is
use TTY_I10, BOUNDED;
1 package CTIME is ...;
2 task MANAGER 1s ...;
3 task body MANAGER 1s separate;
end;
task body SESSION.MANAGER 1is
begin
1 accept INITIALIZE do
1 INIT;
end;
2 loop
3 select
4 accept INITIALIZE do
1 INIT;
end;
or
5 accept SESSION_LIST (...) do
1 BUILD_LIST (LI1ST);
end;
or
6 accept SET_USER (...) do
1 COPY (STATE (S).NAME, USER);
2 STATE (S).TERM := TERM;
end;
or
when FINI =>
7 terminate;
end select;
end loop;
end;

Additional numbering rules are made clear in this example:

¢ Package specs and bodies are numbered separately.

o Accept arms of select statements are numbered along with statements at the same
level as the enclosing select statement.

¢ Bodies of accept statements are numbered independently.

Several example pathnames using the above source are:

SESSION’body.2d -~ the declaration of task MANAGER
SESSION’spec.2d -- the declaration of type ID
SESSION.MANAGER .6 -- accept SET_USER...

SESSION.MANAGER.6.2 -- STATE assignment in accept body

RAT'ONAL 7/1/87 DEB-27

Key Concepts

Example with Generics

One final example of statement and declaration numbering with generic units fol-

lows:
package GTEST is
generic
1 package Gl is ...;
end;
package body GTEST is
1 procedure GPROC_INSTANCE is mew GPROC(T => integer);
2 package body Gl is separate;
end;
generic
type Tl is private;
package GTEST.G1 1is
1 type TGl is new integer;
2 procedure G1Pl1 (X : T1};
end;
package body GTEST.Gl 1is
1 X : Ti;
2 Y : integer := 1;
3 procedure GIPl (X : Tl) is separate;
end;
procedure GTEST.GL1.GIP1 (X : Tl) 1is
1 procedure GP_INSTANCE 1is new GPROC (T => TG2);
begin
1 D.PUT ("GIP1l says hi"};
2 Y :=Y +1;
3 GPROC_INSTANCE (2, 34);
declare
1 A : TGIL;
4 begin
1 GP_INSTANCE (4, 2);
2 A = A + 12;
end;

end;

Additional numbering rules are made clear in this example:

o Declarations within a package, and declarations and statements within subpro-
grams, are numbered independently.

¢ Generic formal parameters are not numbered.

o Declare blocks are treated as subprograms with respect to numbering. The name
of the declare block in the above source code i8 GTEST.G1.G1P1.4.

Some example pathnames
GTEST 'spec. 1d

GTEST.G1.G1P1
GTEST.G1.G1P1.4.1d

DEB-28

using the above source code are:
-~ package Gl...

-- procedure inside generic Gl
-- declaration of A

e RATIONAL

package Debug

Package !Commands.Debug contains the specific types, procedures, and functions
provided by the Rational Environment Debugger for interactive use.

The following package, !Tools.Debug_Tools, provides a programmatic interface to
the Debugger.

R)ATIONAL 7/1/87 DEB-29

procedure Activate
package !Commands.Debug

procedure Activate

procedure Activate (Breakpoint : Natural);

Description
Activates a previously removed (deactivated) breakpoint(s).
The previously defined and removed breakpoint is reactivated; that is, it is allowed

to interrupt execution. Note that breakpoints set while debugging one job can be
activated again even if the job is aborted and debugging is initiated on a new job.

Parameters

Breakpoint : Natural;

Specifies which breakpoint to reactivate. A parameter value of 0 indicates all inac-
tive breakpoints are to be reactivated.

Errors

A breakpoint may not be able to be activated for various reasons. For example, the
task to which it applies may not exist, or the Ada unit the breakpoint was set in
may have been modified since the program began executing.

If all breakpoints are being activated using the value O for the Breakpoint param-
eter, the numbers of the breakpoints activated successfully and the numbers of the
breakpoints not activated successfully are displayed by the Debugger.

If an Ada unit has been modified, breakpoints cannot be activated in it until the
job being debugged is terminated and redebugged.

References
procedure Break

procedure Remove

DEB-30 1/1/87 EATIONAL

procedure Address_To_Location
package !Commands.Debug

procedure Address_To_Location

procedure Address_To_Location (Address : String := ""};

Description

Displays the source location corresponding to the address of the specified machine
instruction.

This procedure is the inverse operation of the Location-To-Address procedure.

Parameters

Address : String :=
Specifies the address of a machine instruction.

The form of this parameter depends on the target being debugged. For the R1000
target, the address should be of the form “tsegment, #offset®. The segment specifies
(in hexadecimal) the segment name of the space to be accessed. The offset specifies
the location of the instruction in tke segment.

Example

The command Address_To_Location ("19901, 10") displays:

Name: .PRODUCER_CONSUMER.QUELE.1d
PC = #19901, #10

References

procedure Location_To_Address

RAT'ONAL 1/1/87 DEB-31

procedure Break
package !Commands.Debug

procedure Break

procedure Break (Location : Path_Name := "<SELECTION>";
Stack_Frame : Integer = 0;
Count : Positive = 1;
In_Task : Task_Name := ""

Default_Lifetime : Boolean Tr&e);

Description
Creates a breakpoint at the specified location in the specified task.
By default, a breakpoint will be set at the selected location for all tasks.

The Location parameter is the primary means for specifying the location of the
breakpoint. The Stack_Frame parameter provides a convenient means for specify-
ing a frame in which to set a breakpoint. Typically, the value of the Stack_Frame
parameter is provided using argument prefix keys when the Break command is
bound to a key. If the Stack_Frame parameter is nonzero and the Location pa-
rameter specifies a special name (such as “<SELECTION>"), the Location parameter
is ignored and a breakpoint is set in the first location of the frame specified by
Stack_Frame. If the Stack_Frame parameter is nonzero and the Location parame-
ter specifies a relative pathname, the actual pathname used to specify the location
of the breakpoint will be composed by prepending the string “.n” to the value of the
Path_Name parameter, where n is the value of the Stack_Frame parameter. If the
Location parameter specifies an absolute pathname, the Stack_Frame parameter is
ignored.

If the Location parameter is the null string (“”), or if a special name that does not
resolve to a location is used (for example, if the Location parameter is “<SELECT ION>"
and the cursor is not in the selection), the breakpoint is set in the first location in
the current frame.

Execution of that task stops before the execution of the specified statement or
declaration. If the Count parameter is more than 1, the task does not stop the first
Count-1 times that the location is executed.

If the Freeze_Tasks flag is true when a breakpoint is encountered, all other tasks
will attempt to stop. Note that in this mode other tasks may not actually stop
because they may be in rendezvous with the stopped tasks, waiting for an entry
call, and so on.

A breakpoint is a location in the source where execution of the source code is
interrupted if certain conditions are met. The first condition is that the breakpoint
be active. When breakpoints are created, they are active; they can be deactivated
(removed) and later reactivated at any time.

DEB-32 7/1/87 QAT'ONAL

procedure Break
package !Commands.Debug

The second condition is that the location where the breakpoint is set has been
executed a specified number of times (specified by the Count parameter). A break-
point can be created that requires the breakpoint to be executed (passed) a specified
number of times before it interrupts the execution of the task.

Breakpoints can be set to apply to a specific task only or to any task. The Break
procedure creates an active breakpoint at the specified location in the specified task.
If no task name is specified, the breakpoint will be set in the control context task
or, if the control context is not set, all tasks, both current and future. If applied
to a specific task, another task executing in the location specified in the breakpoint
will be unaffected. See notes under the In_Task parameter, below.

A number, which must be used to delete or remove that breakpoint, is assigned to
the new breakpoint. If more than 16 active breakpoints apply to a task at the same
time, there is a heavy execution penalty.

When the conditions of a breakpoint are met, a message is printed that includes
the breakpoint number and location. Execution is stopped before the specified lo-
cation. Execution of that task awaits a command to continue executing. If the
Freeze_Tasks flag is true, the Debugger attempts to stop all tasks when the break-
point is encountered.

Breakpoints can be either temporary or permanent. The difference determines
what happens to the breakpoint when it is triggered. A permanent breakpoint is
left installed and activated, whereas a temporary breakpoint is deactivated and,
optionally, deleted. Thus, a temporary breakpoint happens only once without ad-
ditional user action.

The Permanent_Breakpoints option controls whether, by default, breakpoints are
created as temporary or permanent by the Break procedure. By default, it is
true. The value of the Default_Lifetime parameter determines whether the default
lifetime established by the Permanent_Breakpoints option should be used when
creating the breakpoint. Specifically, if the Default_Lifetime parameter is true,
the breakpoint created will be permanent if the Permanent_Breakpoints option is
true and will be temporary if the Permanent_Breakpoints option is false. If the
Default_Lifetime parameter is false, the breakpoint created will be temporary il
the Permanent_Breakpoints option is true and will be permanent if the Perma-
nent_Breakpoints option is false. See Option type for more information on this
option.

The Delete_Temporary_Breaks option causes temporary breakpoints to be deleted
after they are deactivated as a result of being triggered. The standard value for
this option is false.

The command Show (Breakpoints) displays the currently existing breakpoints and
lists their status.

R)ATIONAL 7/1/87 DEB-33

procedure Break
package !Commands.Debug

When a breakpoint is triggered by a task, the task stops execution and a message
is displayed in the Debugger window. An example of this message is:

Break 2: .RECURSIVE_CALLS.3s [Task : ROOT_TASK, #674D8].
Breakpoint 2 deactivated.

The message specifies the breakpoint number, the location where the task has
stopped, and the task name. It also indicates that breakpoint 2 was temporary
and has been deactivated.

Parameters

Location : Path_Name := "<SELECTION>";
Specifies the location at which the breakpoint is to be set. The interpretation of

this parameter is discussed in more detail in the description above. By default, the
breakpoint will be set at the selected location for all tasks.

The pathname cannot specify entry declarations or delay or terminate statements
in select arms.

If the name specifies a specific instance of a generic, the break occurs only in that
instance. If it specifies a generic definition, the break occurs in any instance.

Stack_Frame : Integer := 0;

Specifies the frame in which to set the breakpoint. The interpretation of this pa-
rameter is discussed in more detail in the description above. By default (when
Stack_Frame = 0), this parameter will be ignored and the breakpoint will be set at
the location specified by the Location parameter.

Count : Positive := 1;

Specifies the number of times the breakpoint must be executed before it interrupts
the execution of the task. The default specifies that the breakpoint interrupts
execution the first time the breakpoint is executed.

In_Task : Task_Name := "";

Specifies the task in which the breakpoint is to be set. By default, the breakpoint
will be created in the control context task or, if the control context is not set, in all
tasks, both current and future.

The reserved string “all® means that the breakpoint should apply to all tasks,
current and future, in the program.

DEB-34 7/1/87 QATIONAL

procedure Break
package !Commands.Debug

Default_Lifetime : Boolean := True;

Specifies whether the breakpoint is to be permanent or temporary. By default, the
breakpoint will be permanent (unless the Permanent_Breakpoints option has been
set to false).

The value of the Default_Lifetime parameter determines whether the default life-
time established by the Permanent_Breakpoints option should be used when cre-
ating the breakpoint. Specifically, if the Default_Lifetime parameter is true, the
breakpoint created will be permanent if the Permanent_Breakpoints option is true
and will be temporary if the Permanent_Breakpoints option is false. If the De-
fault_Lifetime parameter is false, the breakpoint created will be temporary if the
Permanent_Breakpoints option is true and will be permanent if the Permanent-
—~Breakpoints option is false. See Option type for more information on this option.

Restrictions

A maximum of 30 breakpoints for specific tasks can be set. A maximum of 20
breakpoints for “all” tasks can be set. The two sets are independent of each other.
However, 16 active breakpoints of either kind are accelerated; more than 16 active
breakpoints cause program execution to be degraded.

References
procedure Activate
procedure Execute
type Option
procedure Remove

procedure Show

[QATIONAL 7/1/87 DEB-35

procedure Catch
package !Commands.Debug

procedure Catch

procedure Catch (Name : Exception_Name :
In_Task : Task_Name
At_Location : Path_Name

"<SELECTION>" ;

")

Description

Stops execution whenever the named or selected exception is raised in the specified
task(s) at the specified location; reports the task name, the location in which the
exception was raised, and the exception name.

By default, when the selected exception is raised in any task, the task will stop in
the Debugger.

The Name parameter names the specific exception or group of exceptions to be
caught by the Debugger. If the Name parameter is the null string (“), or if a
special name such as "<SELECTION>" is used but the cursor is not in the selec-
tion, the procedure causes execution to stop for all exceptions. The reserved string
“all” means all exceptions. The reserved string “implicit” means exceptions raised
irlxllplicitly—that is, those raised in the course of the execution of a statement other
than raise.

The In_Task parameter specifies the task in which the exception should be caught.
The reserved string “all” means that the catch request should apply to all tasks.
The null string (“”) means that the catch request should apply to the task specified
by the current control context or to all tasks if the control context is not set to a
specific task.

The At_Location parameter restricts the location where the exception, if it is raised,
will be caught by the Debugger. The null string indicates everywhere the exception
is raised. If not null, the string specifies a subprogram or statement where the catch
request applies.

The Debugger maintains a list of catch and propagate requests entered by calls to
the Catch and Propagate procedures. When an exception in the user program is
raised, the Debugger looks at this list to determine whether to stop the program
and inform the user. Catch requests cause the program to stop; propagate requests
cause it not to stop.

If the Freeze_Tasks flag is true when the execution of a task is stopped because an
exception is caught, then the Debugger attempts to stop all other tasks. Note that
in this mode other tasks may not actually stop because they may be in rendezvous
with the stopped tasks, waiting for an entry call, and so on.

The action taken in a specific case is determined by the most specific request that
applies to the exception. If that request is a catch request, the program stops;
otherwise, it does not stop.

DEB-36 e RATIONAL

procedure Catch
package !Commands.Debug

Informally, a catch or propagate request applies to the raising of an exception if the
exception name, task name, and location in the exception match the request. More
precisely, a request applies to an exception if all of the following are true:

¢ The name of the exception is the same as the name in the request, the request is
for all exceptions, or the request is for implicit exceptions and the exception was
raised implicitly.

e The task in which the exception is raised equals the task in the request or the
request is for all tasks.

o The exception is raised in a statement or declaration that the request specified,
the point of raise is in a subprogram that the request specified, or the request is
for all locations.

If more than one catch or propagate request applies to a specific raising of an ex-
ception in a program, the more specific request determines the action the Debugger
will take. Requests are considered more specific if they specify a smaller number
of cases. Thus, the more parameters of the request that are specified, the more
specific the request. More formally:

o A request that specifies a subprogram and statement is more specific than one
that specifies only a subprogram.

o A request that specifies a subprogram is more specific than one that specifies all
locations.

o A request that specifies a task is more specific than one that does not.

o Arequest that names an exception is more specific than one that specifies implicit
or all exceptions. A request that specifies implicit exceptions is more specific than
one that specifies all exceptions.

These rules are applied in combination in the order given. The location is a stronger
specification than the task and the task is a stronger specification than the excep-
tion.

The command Catch ("all","","") is the least specific and requests that excep-
tions not covered by other catch or propagate requests result in the Debugger stop-
ping the task that raises an exception not covered in another request.

When the Debugger is started, it behaves as if the command Catch ("al1","","")
had been issued, meaning that all exceptions are to be caught in all locations for all
tasks. If the Save.Exceptions option (gee Option type) is true, exception-handling
information will be saved from debugging run to debugging run; by default, this
option is false.

To remove a catch or propagate request, use the Forget procedure.

If a catch request has parameters that exactly match a propagate request, then the
propagate request is first removed.

The command Show (Exceptions) displays all catch and propagate requests ordered,
from most specific to least specific. For each request, the exception name, location,
and task restrictions are listed.

RATIONAL 7/1/87 DEB-37

procedure Catch
package !Commands.Debug

When a task stops because of an exception being raised, a message of the following
form is displayed in the Debugger window:

Exception Constraint_Error caught at
.TEST_CASE.4s [Task : #1349704].

This message indicates the exception raised, the point in the program in which it
is raised, and the name of the task that raised it.

In some cases, the name of the exception may not be available. For example, the
exception may have been raised in Environment code, in code-archived code, or in a
unit that has been modified since debugging of the program began. The exception
name is then displayed either as a large hexadecimal number or as a string of the
form <Unit=1234, Ord=2> or as a string of the form <Space=3, Index=234987>.
This information can be of use in submitting problem reports to Rational. Note that
the command Information (Exceptions) may provide additional useful information
in these cases.

Parameters

Name : Exception_Name := "<SELECTION>";

Specifies the exception to be added to the catch list. By default, the selected
exception will be added.

If Name is the null string (*?), or if a special name such as "<SELECTION>" is used but
the cursor is not in the selection, the procedure stops execution for all exceptions
(equivalent to the reserved name “a.ll"{

The reserved name “all® stands for all exceptions.

The reserved name “implicit” stands for all exceptions raised implicitly—that is,
raised by some language construct other than a raise statement. These implicit
exceptions include only predefined language exceptions such as Constraint.Error
and Tasking_Error.

If the exception name is not fully qualified (and nonnull), it is interpreted relative
to the current evaluation context.

DEB-38 7/1/87 I?ATIONAL

procedure Catch
package !Commands.Debug

In_Task : Task_Name := "";

Specifies the task that should be monitored for the exception specified by the Name
parameter. If null, the task specified by the control context is used. If the control
context is not set to a specific task, the Catch procedure applies to all tasks. The
reserved name “all” also implies all tasks. By default, exceptions will be caught
when raised by any task, unless the control context is set.

If In_Task is prefixed with a percent symbol (%) or begins with a digit, then it
names a specific task by means of its task number or its name assigned with a
call to the Debug.Set_Task_Name procedure or the Debug.Tools.Set_Task_Name
procedure. Otherwise, if the task name is nonnull and not fully qualified, the name
is interpreted relative to the current evaluation context.

At_Location : Path_Name := "";

Specifies a location restriction for the exception catch request. The raising of the
specified exception causes the specified task to stop only if the point of raise of the
exception is in the subprogram or at the statement specified by the At_Location
parameter. By default, exceptions will be caught anywhere they are raised.

If the At_Location parameter specifies an Ada unit, the exception is caught only
inside that unit; it is not caught inside any Ada units nested inside it, including
nested blocks and accept statements.

If At_Location specifies a particular statement or declaration, the exception is
caught only when it is raised in the statement or declaration.

If At_Location is null, the catch applies anywhere.
Note: The evaluation context is used in interpreting At_Location only if it is not
null. If At_Location is null, the catch request applies throughout the program,

independent of the evaluation context.

If not fully qualified and not null, the Path_Name parameter is interpreted relative
to the current evaluation context.

Restrictions

A maximum of 40 requests to catch or propagate exceptions can be set.

RATIONAL 7/1/87 DEB-39

procedure Catch
package !Commands.Debug

Example 1

A more restrictive specification always overrides a less restrictive one. A specifica-
tion of a single task, exception, or location takes precedence over a specification of
all tasks, all exceptions, or all locations, respectively. For example, if the commands:

Propagate (Name => "constraint_error”, In_Task => "all",
At_Location => ""};
Propagate (Name => "all", In_Task => "all"”,
At_Location => "!USERS.PHIL.TEST");
Catch (Name => "all", In_Task => "1349704",
At_Location => "");

are issued, any exception raised in !Users.Phil.Test (the most specific request) does
not cause the Debugger to stop program execution. The third request is more
specific than the first, so the raising of the Constraint_Error exception causes the
Debugger to stop program execution only if it is raised in task 1349704; any other
exception raised in task 1349704 results in that task being stopped as well.

Example 2

The name of an individual exception is considered more restrictive than the name
“implicit”. Thus, the commands:

Catch (Name => "implicit”, In_Task => "",
At_Location => "");
Propagate (Name => "numeric_error", In_Task => "",
At_Location => ""};

cause all implicitly raised exceptions except Numeric_Error to be caught.

Note: The above Propagate procedure applies to all Numeric_Errors, whether
implicitly or explicitly raised.

Example 3

A location specifying a statement or declaration within an Ada unit is more specific
than a location specifying the entire Ada unit. Thus, the commands:

Catch (Name => "Status_Error", In_Task => "",
At_Location => "Sandy.l");
Propagate (Name => "Status_Error", [n_Task => "",
At_Location => "Sandy");

result in the Status_Error exception, causing program execution to stop only if the
exception is raised at statement 1 of subprogram Sandy.

DEB-40 e RATIONAL

procedure Catch
package !ICommands.Debug

Example 4

The commands:

Catch {Name => "all", In_Task => "",
At_Location => "Sandy.Test");
Propagate (Name => "all", In_Task => "1349704",
At_Location => ""};

result in program execution stopping when any exception is raised by any task
(including 1349704) inside Sandy.Test, because the catch request is more specific
than the propagate request (the location is more specific than the task name).

Example 5

The commands:

Prop (Name => "all", In_Task => "1345704",
At _Location => ""};
Catch (Name => "Constraint_Error”, In_Task => "",
At _tocation => "");

result in the Constraint_Error exception not stopping program execution in task
1349704 (but in all other tasks), because the propagate request is more specific than
the catch request (a task specification is more specific than an exception specifica-
tion).

References
procedure Forget
type Option
procedure Propagate

procedure Show (Exceptions)

RATIONAL 7/1/er DEB-41

procedure Clear_Stepping
package !Commands.Debug

procedure Clear_Stepping

procedure Clear_Stepping (For_Task : Task_Name := ""};

Description

Removes all pending stepping operations that have been applied to the specified
task or tasks.

By default, stepping operations are cleared for all tasks.

Any stepping (Run) conditions that have not been met are deleted. Typically, this
command is used to remove unneeded step points. Removing step points allows the
program to run faster because step points are no longer being checked for.

If Task_Name specifies all tasks, then stepping operations for all tasks are deleted.

Parameters

For_Task : Task_Name := "";
Specifies the task for which stepping should be canceled. The default is the task

specified by the current control context. If the control context is not set to a specific
task, the default is all tasks. The string “all® also represents all tasks.

Example
The command:
Clear_Stepping ("620E");

cancels any stepping operations that are in progress for task 620E. Note that the
leading percent symbol (%) is optional.

DEB-42 7/1/87 '?AT'ONAL

procedure Comment
package !Commands.Debug

procedure Comment

procedure Comment (Information : String := "");

Description
Displays the comment specified by the String parameter in the Debugger window.

The procedure can be used to place comments in the Debugger window to allow
referring back to certain areas easily or to annotate the debugging session.

Parameters

nn

Information : String := ;

Specifies the string to be displayed in the Debugger window.

RATIONAI_ 7/1/87 DEB-43

procedure Context
package !Commands.Debug

procedure Context

procedure Context (Set : Context_Type := Debug.Control;
To_Be : Path_Name = "<SELECTION>";
Stack_Frame : Integer = 0);
Description

Sets the specified context to be the specified pathname.
By default, the control context will be set to the selected item.

The Debugger evaluates unqualified pathnames, task names, and exception names in
one of two contexts: the control context or the evaluation context. If the pathname,
task name, or exception name is fully qualified, the context is not used.

If selection is used to specify the context, the stack is searched from the frame indi-
cated by the value of the Stack_Start numeric option—by default, the top frame—to
the bottom frame to find the first occurrence of the desired context. Note that if the
Stack_Frame parameter is nonzero, this search will begin in the frame indicated by
that parameter instead. The search is limited to the number of frames of the stack
indicated by the Stack_Count numeric option—by default, 10 frames. If selection
is not used, this searching is not performed.

The control context is used in the following commands:

¢ Break: To specify the default value for the task to which the break will be
restricted. The control context also specifies which task’s stack will be used if
the pathname in the procedure refers to a stack.

e Catch: To specify the task for which exception controls should be set.

o Clear_Stepping: To specify the default task for which stepping operations should
be canceled.

e Display: To specify which task’s stack will be used if the pathname in the Display
procedure refers to a stack.

¢ Execute: To specify the default task to be started.

o Forget: To specify the exception and the task for which exception operations will
be cleared.

o History_Display: To specify the default task for which history information is to
be displayed.

¢ Hold: To specify the default task to be held.
o Propagate: To specify the task for which exception controls should be set.

o Put: To specify which task’s stack will be used if the pathname in the Put
procedure refers to a stack.

e Release: To specify the default task to be released.

DEB—44 7/1/87 PATIONAL

procedure Context
package !Commands.Debug

¢ Run: To specify the default task to be stepped.
e Stack: To specify the default task whose stack will be displayed.
e Stop: To specify the default task to be stopped.

o Take_History: To specify the default task for which history information is to be
gathered.

o Trace: To specify the default task for which a tracing operation will be enabled
or disabled.

The control context can be set to the null string (“”). In this case, the above
commands default to all tasks where a task to apply to an operation is needed; they
default to the last task stopped where a specific task’s stack is needed. Specifically,
the last task stopped is used for interpreting pathnames in any command and as the
Task_Name parameter in the Stack and Run commands. All other uses reference
“all” tasks.

The evaluation context is used in the following commands:

e Break: To specify a context in which to interpret unqualified object names.
e Catch: To specify a context for unqualified location and exception names.

e Context: To specify a context for unqualified names for the control or evaluation
context.

o Display: To specify a context in which to interpret unqualified object names.

¢ Forget: To specify a context for unqualified location and exception names.

¢ Modify: To specify a context in which to interpret unqualified object names.

¢ Propagate: To specify a context for unqualified location and exception names.

o Put: To specify a context in which to interpret unqualified object names.

o Take_History: To specify a context for unqualified location names.

e Trace: To specify a context for unqualified location names.

As noted above, if the pathname given to any of these commands is fully qualified,
the evaluation context is not used. If the name is not qualified—that is, if it does
not begin with a period (.), underscore (-), exclamation mark (!}, dollar sign ($),

double dollar sign ($$), caret (-), or percent symbol (%)—the evaluation context is
prepended to the pathname with appropriate connecting punctuation.

The current control and evaluation contexts are displayed by issuing the command
Show {Contexts).

BATIONAL 1/1/87 DEB-45

procedure Context
package !Commands.Debug

Parameters

Set : Context_Type := Debug.Control;
Specifies which context to set (either Control or Evaluation).

To_Be : Path_Name := "<SELECTION>";

Specifies the value for the context. By default, the context is set to the selected
item.

The context must be valid at the time it is specified and at the time it is used. For
example, an evaluation context of —4.X must be valid when specified (frame 4 must
exist and have an object X in it) and when it is used (command Put ("Y") can be
issued only when .4.X.Y is legal).

The control context can be specified as an Ada pathname (which must reference a
task), a task number, or a task nickname. The nickname is established by a task by
calling the Debug.Set_Task_Name procedure or the Debug_Tools.Set_Task_Name
procedure. If the control context is not a task number, nickname, or fully qualified
name, it is interpreted in the current control and evaluation context as any other

athname. This interpretation is done before the new value for the control context
is established. Thus, the name given to the Context procedure uses the current
context in the calculation of the new one.

The control context can also be set to the null string (**) or the reserved name
“all?, both of which mean all tasks.

Stack_Frame : Integer := 0;

Specifies the stack frame containing the context or that is the context. Note that the
stack frame can also be specified in the To.Be parameter; this parameter typically
is used when its value is provided using argument prefix keys when the Context
command is bound to a key. If the Stack_Frame parameter is nonzero and the
To-Be parameter specifies a relative pathname, the actual pathname used to specify
the context is composed by appending the strin%r‘.n” to the value of the To_Be
parameter, where n is the value of the Stack_krame parameter. If the To_Be
parameter specifies an absolute pathname, the Stack_Frame parameter is ignored.

Restrictions

The pathname must be legal at the time the command is issued and at the time
the context is used by another command.

DEB-46 e RATIONAL

procedure Context
package !Commands.Debug

Example

Consider the following commands:

Context (Control, "XSession_Manager"});

Stop;

Context (Evaluation, "_3.Session_Map");
Show (Contexts});

Context (Control, "X340E"};

In the first command, Session_Manager is presumed to be a task nickname. The
evaluation context is then set to a package Session_Map, for example, declared in
the subprogram running in stack frame 3 of that task. Note that the task is first
stopped in the second command. The Stop procedure stops the task specified by
the control context given in the first command. It is necessary to stop the task in
order to process a pathname such as _3.Session_Map; otherwise, the stack could
change at any time.

Finally, the contexts are displayed, and the control context is changed to a task
with number 340E. Note that this change affects the evaluation context, which is
unlikely to be valid at this point because frame 3 of task 340E probably does not
contain an object named Session_Map.

RATlONAL 7/1/87 DEB-47

type Context_Type
package !Commands.Debug

type Context_Type

type Context_Type is (Control, Evaluation);

Description
Defines which type of context is set by the Context procedure.

Context type is used in the Context procedure only to select which context is to
be set. See the discussion under the Context procedure for the effect of the control
and evaluation context.

Enumerations

Control

Specifies a task for use as the default task in commands for which a task should be
specified.

Evaluation
Specifies a prefix for unqualified pathnames in commands that specify a pathname.

References

procedure Context

DEB-48 7/1/87 R«T'ONAL

procedure Convert
package ICommands.Debug

procedure Convert

procedure Convert (Number : String we
To_Base : Natural := @);

nu
-

Description

Converts the string specified in the Number parameter to the specified base repre-
sentation; 64-bit arithmetic is used.

By default (To-Base not specified), a decimal representation is converted to hex-
adecimal, and a number representation with a specific base is converted to decimal.

Parameters

Number : String := "";

Specifies the string representation of the number to be converted. The number is
assumed to be in decimal if it does not include a base specification. A leading
number symbol (#) indicates a hexadecimal number. The number can also be an
Ada style-based number—for example, 8#177400#. Legal bases are 2 through 16.

To_Base : Natural := 0;

Specifies the base to which the number is to be converted. Legal values are 2
through 16. If unspecified (0), the base is decimal if the Number parameter is not
decimal, and it is hexadecimal if the number is decimal.

RATIONAL 71 DEB—49

procedure Current_Debugger
package !Commands.Debug

procedure Current_Debugger

procedure Current_Debugger (Target : String := "");

Description

Caupes the named debugger to become the current default debugger for the user’s
session.

This command is used when there are debuggers for various targets active in the
session along with the R1000 Native Debugger. See the documentation for Ratio-
nal’s cross-development facilities for more information on using debuggers for these
targets.

Parameters

Target : String := "";

Specifies the name of the image of the debugger desired. If the value is the null
string (“?), the default, the procedure brings the current Debugger window onto the
screen. If it is the null string and in a Debugger window, that debugger becomes
the current default debugger.

DEB-50 7/1/87 PATIONAL

procedure Debug_Off
package !Commands.Debug

procedure Debug_Off

procedure Debug_Off (Kill_Job : Boolean := False);

Description
Terminates debugging of the current job.

The job being debugged is either released to continue normal execution or is aborted
based on the value specified in the Kill_Job parameter.

This Debug_Off procedure differs from the Debug_Off procedure in package De-
bug_Tools. The procedure in package Debug_Tools terminates debugging only if
the task calling Debug_Tools.Debug_Off is part of the job being debugged, and
then it disables debugging only for that task.

Parameters

Kill_Job : Boolean := False;

Specifies, if true, that the job being debugged should be aborted. If false, the
default, the job continues normal execution.

References

procedure Debug_Tools.Debug_Off

RATIONAL 7/ DEB-51

renamed procedure Disable
package !Commands.Debug

renamed procedure Disable

procedure Disable (Variable : Option;
On : Boolean := False) renames Enable;

Description

Enables or disables the option flag controlling the behavior of the Debugger specified
by the Variable parameter.

By default, the specified option is disabled.

See the Option type for more information on the option flags and their meanings.

Parameters

Variable : Option;
Specifies the option to be enabled or disabled.

On : Boolean := False;

Specifies whether to enable (turn on) or disable (turn off) the option. If unspecified,
the default is to turn off the option.

References
procedure Enable

type Option

DEB-52 7/1/87 BA\-”ONAL

procedure Display
package !Commands.Debug

procedure Display

procedure Display (Location : Path_Name := "<SELECTION>";
Stack_Frame : Integer := 0;
Count : Natural := @),
Description

Displays an area of source in the Debugger window with statement numbers in-
cluded, based on the current selection or the pathname provided.

By default, the Display procedure displays the source for the selected item.

The Location parameter references some location in the program or data. If a data
object or variable is referenced, the type declaration of that object is displayed. If
a type is referenced, the type declaration is displayed. If an Ada program unit is
referenced, the source (statements and declarations) of that unit is displayed.

The Location parameter is the primary means for specifying the source to display.
The Stack_Frame parameter provides a convenient means for specifying a frame to
display. Typically, the value of the Stack_Frame parameter is provided using argu-
ment prefix keys when the Display command is bound to a key. If the Stack_Frame
parameter is nonzero and the Location parameter specifies a special name (such
as "<SELECTION>"), the Location parameter is ignored and the source for the frame
specified by Stack—_Frame is displayed. If the Stack_Frame parameter is nonzero and
the Location parameter specifies a relative pathname, the actual pathname used to
specify the object to display is composed by appending the string “-n” to the value
of the Path_Name parameter, where n is the value of the Stack_Frame parame-
ter. If the Location parameter specifies an absolute pathname, the Stack_Frame
parameter is ignored.

If the Location parameter is the null string (“”), or if a special name that does not
resolve to an object is used (for example, if the Location parameter is “<SELECTION>"
and the cursor is not in the selection), the current location in the current frame is

displayed.

When program units are displayed, the code is formatted with declaration and
statement numbers. These statement and declaration numbers are used in various
other operations such as the Break and Trace procedures.

When a type is displayed, the various characteristics of the type are displayed even
if the type is private. The one exception to this is when a private type is defined
in some Environment-supplied code, in which case the Debugger will not display
anything about the type.

RAT'ONAL 1/1/87 DEB-53

procedure Display
package !{Commands.Debug

If the pathname refers to an area of code that is in execution, the asterisk (*)
or the number symbol (#) will appear next to a statement or declaration. The
asterisk identifies the statement that the current task is currently executing (or
about to execute). The number symbol identifies statements or declarations that
are in execution in subprogram frames other than the topmost frame.

Note: The current task is the task specified by the control context or is the last
task to stop if the control context is not set.

If a declaration is named, only declarations are displayed.

Parameters

Location : Path_Name := "<SELECTION>";

Specifies a location in the source to display. The interpretation of this parameter
is discussed in more detail in the descri;:iion above. By default, the source for the
selected item is displayed.

The form of the name determines some aspects of the display.

If a specific statement is named, the display starts with that statement and continues
for the number of statements specified by the Count parameter or until the end of
the subprogram.

If a specific declaration is named, the display starts with that declaration and
continues for the number of declarations specified by the Count parameter or until
the end of the declaration list.

If a package, task, subprogram, or frame is named, the display includes the first
declarations and statements in that unit. The Count parameter limits the number
of declarations and the number of statements.

If a frame is displayed, the calling location is indicated with the * character for the
top frame or the # character for lower frames.

The Declaration_Display (Option type) controls whether declarations are displayed
as part of the display. Its standard value is true, which causes declarations to be
displayed.

Stack_Frame : Integer := 0;

Specifies the frame for which to display the source. The interpretation of this
parameter is discussed in more detail in the description above. By default, this
parameter is ignored, and the item specified by the Location parameter is displayed.

DEB-54 7/1/87 RAT'ONAL

procedure Display
package !Commands.Debug

Count : Natural := 0;

Specifies the number of statements and/or declarations to be displayed. Up to
Count declarations and Count statements are displayed.

If the parameter is 0 (the default), the value used is determined by the value of
Display_Count (Numeric type). The standard value of Display-Count is 10.

Restrictions

If a task is executing code that is part of the Environment or was compiled without
debug tables, the source for that part of the code is not available for display.

Note: Debug tables, produced by the Environment’s compilation system, contain
information needed by the Debugger. It is possible to turn them off, but they are
produced by default.

References

procedure Context

type Numeric, enumeration Display_Count
type Option, enumeration Declaration_Display
procedure Source

procedure Debug_Tools.Register

RATIONAL 7/1/87 DEB-55

procedure Enable
package !Commands.Debug

procedure Enable

procedure Enable (Variable : Option;
Oon : Boolean := True});

Description

Enables or disables the option flag controlling the behavior of the Debugger specified
by the Variable parameter.

By default, the specified option is enabled.

See the Option type for more information on the option flags and their meanings.

Parameters

Variable : Option;
Specifies the option to be enabled or disabled.

On : Boolean := True;

Specifies whether to enable (turn on) or disable (turn off) the option. If unspecified,
the default is to turn on the option.

References
procedure Disable

type Option

DEB-56 7/1/87 RATIONAI_

subtype Exception_Name
package !Commands.Debug

subtype Exception_Name

subtype Exception_Name 1s String;

Description
Defines a string name for exceptions.

Several operations require a specific exception to be named. This type defines the
way in which the exception is named. The name is an Ada identifier evaluated
in the current control/evaluation context, a pathname (see subtype Path_Name
for more information on pathnames), or a spectal name (see below). Two strings
are predefined: the null string (“”) means all exceptions, and the string “implicit”
means all exceptions that are raised implicitly. An implicitly raised exception is
an exception raised during the course of executing a statement or elaborating a
declaration rather than an exception raised explicitly with a raise statement.

Exception names can be specsal names that indicate that the selection, image, cur-
sor, and so on are to be used to specify the exception. These special names have the
form "<SELECTION>" and are described in more detail in LM, Key Concepts. Note
that if a special name does not resolve to an exception (for example, if the special
name is "<SELECTION>" and the cursor is not in the selection), the exception name
used by the Debugger will be the empty string (“?).

A number of predefined exceptions are defined by the Ada language in package
Lrm.Standard or are defined by the R1000 architecture. Exceptions defined by the
R1000 architecture are for Rational internal use only and should not occur in any
user programs. Predefined exception names are used without any qualification; they
are entered exactly as they are listed below.

Exceptions predefined by package Lrm.Standard as they must be entered are:

Constraint_Error Storage_Error
Numeric_Error Tasking_Error
Program_Error

When the Debugger displays a predefined exception name, it may include additional
information in parentheses following the exception name. This information more
precisely indicates the nature of the exception. The information in parentheses
should not be entered when you name an exception.

The following list shows the exception names as displayed by the Debugger and the
states that caused the exception:

* Constraint_Error (Array Index): Attempt is made to access an array element
using a subscript that is out of the range of the array index type.

* Constraint_Error (Case Range): Case expression is out of bounds of the case
statement (this exception can happen only in erroneous Ada programs).

BA\T'ONAL 7/1/87 DEB-57

subtype Exception_Name
package !Commands.Debug

¢ Constraint_Error (Discriminant): Attempt is made to access a field of variant
record that is not present in the specific record being accessed.

¢ Constraint_Error (Entry Family): Use of an entry family index that is out of
range. '

¢ Constraint_Error (Exponent): Integer is raised to a negative exponent.

¢ Constraint_Error (Length Error): Result of a concatenation that has an upper
bound greater than that of the index subtype (see the Reference Manual for the
Ada Programming Language, Section 4.5.3).

¢ Constraint_Error (Null Access): Attempt is made to dereference a pointer that
is null.

o Constraint_Error (Type Range): Conversion of a value to a type that does not
include the value in its range.

o Numeric_Error (Overflow): Evaluating an expression that is not representable;
often uninitialized out parameters.

e Numeric_Error (Zero Divide): Attempt to divide by zero.

e Program_Error (Elaboration Order): Access to a program unit not yet elabo-
rated.

¢ Program_Error (Function Exit): “Falling off” the end of a function without
execution of a return statement.

» Program_Error (Prompt Executed): Execution of an Editor prompt (typically a
[statement] xeprompt).

o Program_Error (Select): Execution of a select statement with no open alterna-
tives.

o Storage_Error (Allocation): Reserved for future use.

o Storage_Error (Control): Too deeply nesting subprogram calls in a task (probably
an infinite, recursive loop).

e Storage_Error (Data): Allocation of too many objects. (When an access type
is declared, a maximum amount of space is allocated for all objects designated
by the access type. Once this space is filled, Storage_Error (data) results on
all further allocations for this type. Other access types may still have available
space. A pragma specifies the amount of space to be reserved for an access type.)

¢ Storage_Error (Import): Too many objects referenced by a package, task, or
subprogram subunit.

o Storage_Error (Name): Too many tasks or packages declared.

e Storage_Error (Oversize Object): An object greater than the maximum size al-
lowed declared.

¢ Storage_Error (Program): Too much code required by a job.

o Storage_Error (Queue): Too many outstanding entry calls queued for a task.

o Storage—Error (Resource): Reserved for future use.

o Storage_Error (Type): Definition of too many types.

e Tasking_Error (Abnormal Task): Raised in a task when it is in rendezvous with

DEB-58 e RATIONAL

subtype Exception_-Name
package !Commands.Debug

another task and that other task is aborted.
o Tasking_Error (Activation): Raised when an exception propagates out of a child
task during its activation.

o Tasking Error (Completed Task): Task that has terminated is accessed; for ex-
ample, an attempt to make an entry call to a completed task.

References
procedure Catch
procedure Forget
subtype Path_Name

procedure Propagate

BA\TIONAI_ 7/1/87 DEB-59

procedure Exception_To_Name
package !Commands.Debug

procedure Exception_To_Name

procedure Exception_To_Name (Implementation_lmage : String := "");

Description

Displays the source name of the exception that corresponds to the specified imple-
mentation-dependent representation.

For the R1000 target, the Debugger occasionally may not implicitly know the name
of an exception when it is raised; when this happens, the Debugger displays a
space and an index pair of numbers. This procedure allows the Debugger to try to
interpret those numbers.

Parameters

Implementation_Image : String := "";

Specifies an implementation-dependent representation of an exception.

The parameter is interpreted based on the target architecture on which the job is
being debugged. For the R1000 target, the image should be of the form “tsegment,
#offset®. The segment specifies (in hexadecimal) the segment name of the space to
be accessed. The offset specifies the starting location in the segment. If the number
is preceded by a # character, or if it contains a character from a through f, it will
be interpreted as a hexadecimal number instead of a decimal number. Note that a
predefined exception can be specified by just one number (the exception’s number)
or by two numbers (0 and the exception’s number). In general, the input can be of
any form that the Environment prints out.

References

procedure Catch

DEB-60 7/1/87 QATIONAL

procedure Execute
package !Commands.Debug

procedure Execute

procedure Execute (Name : Task_Name := ""};

Description
Commences (or resumes) execution of the named task or tasks.
This command is functionally equivalent to the Xecute procedure.

The named task starts executing from its current location—that is, from where it
was stopped because of a breakpoint or a stop or hold request, an exception being
trapped, or the end of a stepping request. If the task is executing, the procedure
has no effect.

If a specific task is named and that task is being held (by means of the Hold
procedure), then the hold condition is removed.

If the Task_Name parameter is “all”, any task that is stopped for any reason in
the Debugger is allowed to continue unless the Debugger has a hold on the task.
Tasks subject to hold conditions must be started individually by name, or the hold
condition must be released with the Release procedure.

If the Freeze_Tasks flag is true and all tasks are stopped implicitly as a result of an
individual task being stopped, the Execute procedure will commence execution of
these implicitly stopped tasks.

Parameters

Name : Task_Name := "";

Specifies the task to commence execution. The default is the task specified by the
control context or all nonheld tasks if the control context is not explicitly set.

The reserved word “all” can be used to specify that all nonheld tasks are to be
executed.

See the Hold procedure for more information on the held state.

Errors

A No tasks are stopped message occurs when no tasks are stopped in the Debugger
or when the only ones stopped are subject to hold conditions.

RATIONAL 71/sr DEB-61

procedure Execute
package !Commands.Debug

References
procedure Break
procedure Hold
procedure Release
procedure Stop

procedure Xecute

DEB-62

e RATIONAL

procedure Flag
package ICommands.Debug

procedure Flag

procedure Flag (Variable : String "
To_Value : String := "TRUE");

wu

Description

Sets a flag controlling the behavior of the Debugger to a specified string value;
the Variable parameter specifies the name of the flag and the To_Value parameter

specifies its new value.

Flags in the Debugger control certain functions and provide special facilities. Flag
names can be uppercase or lowercase; case is ignored.

Some of these flags are for Rational internal use only, not for general use; they are
also unsupported.

The flags that can be set include string names for the enumeration values defined
by the Option and Numeric types, as well as the following string names:

o Cache_Stack_Frames: Maintains a cache of current stack information for the
task. Some Debugger functions are impaired when this flag is disabled. The
standard value is true. Unsupported.

o Flag_Errors: Causes error messages to include »#x,
e Hex_Values: Causes certain values to be displayed in hexadecimal from the Put
procedure.

o Interpret_Import_Words: Causes the Memory_Display procedure to interpret
words in the import space; default is false. Unsupported.

¢ Interpreter_Dump: Dumps the interpreter stack after each instruction executed
by the interpreter; set to true or false. Unsupported.

o Interpreter_Trace: Prints information about execution of interpreted code used
to do object fetch; set to true or false. Unsupported.

e No_Pointers: Causes pointer values to be listed as ppppp. The standard value is
false.

o No_Task_Numbers: Causes task numbers to be listed as xxxxx rather than as
actual numbers. The standard value is false.

Typically, the Boolean option flags (those defined by the Option type) would be
enabled and disabled with the Enable and Disable procedures instead of the Flag
procedure. Also, numeric flags (those defined by the Numeric type) typically would
be set using the Set_Value procedure.

RATIONAL 7 DEB-63

procedure Flag
package !Commands.Debug

Parameters

Variable : String := "";
Specifies the name of the flag to be set.

To_Value : String := "TRUE";
Specifies the value to which the flag should be set.

Errors

No error checking is done on flag names or values. Illegal values can cause unex-
pected behavior of operations that depend on the flag values.

DEB-64 7/1/87 BA\TIONAL

procedure Forget
package {Commands.Debug

procedure Forget

procedure Forget (Name : Exception_Name :
In_Task : Task_Name

At_Location : Path_Name

"<SELECTION>";

")

i un

Description

Removes catch and propagate requests that match the Name, In..Task, and At_Lo-
cation parameters.

By default, catch and propagate requests are removed for the selected exception in
all tasks and locations.

All catch and propagate requests are checked, and any that match the parameters
to the Forget procedure are deleted. All three parameters must match according to
the following rules:

¢ The exception name matches if the names are identical or if the Name parameter
to Forget is the reserved name “all”. If the Name parameter is the null string
(“?), the following error message is issued: Name must be non-null; use "all"
for all exceptions.

¢ The task name matches if the name in the request and the In_Task parameter
specify the same task or if In_Task refers to all tasks. This is the case if In_Task
is the reserved string “all” or is null and the control context refers to all tasks.

e The location matches if the pathnames refer to the same location or if At_Loca-
tion is null.

A Forget request with a name that is the reserved name “all”, together with null
task and location, clears all requests except one: the last command, either Catch
("all") or Propagate ("all"), with null task and location. This last entry still
specifies how the Debugger is to treat exceptions raised in the program.

Parameters

Name : Exception_Name := "<SELECTION>";

Specifies an exception name to be used in matching catch and propagate requests
to be removed. The reserved name “all” matches all exceptions. Any requests that
also match the Task_Name and Path_Name parameters are deleted. By default,
requests are removed for the selected exception.

RATIONAL 7/1/81 DEB-65

procedure Forget
package !Commands.Debug

In_Task : Task_Name := ""

Specifies the task that should match for a request to be removed. If it is the null
string (“”), the task specified by the control context is used. If the control context
is not set to a specific task, the Forget procedure matches all tasks. The reserved
name “all” also matches all tasks. By default, requests are removed for all tasks
unless the control context has been set.

If not fully qualified and not null; the In_Task parameter is interpreted relative
to the current evaluation context. Note that the task number is used to identify
the task, not the pathname. Thus, the same name can refer to different tasks at
different times if, say, the name includes a variable of the access type that references
a task and that variable is changed.

At_Location : Path_Name := "";

Specifies a location restriction for deleting catch and propagate requests. If the
At_Location parameter is null (”), the Forget procedure matches catch and prop-
agate requests independent of location restrictions. By default, catch and propagate
requests at any location will be removed.

If At_Location specifies an Ada unit, catch and propagate requests for the whole
unit only are forgotten, but any requests for statements or declarations within the
unit remain.

At_Location is interpreted relative to the current evaluation context if not null and
not fully qualified.

References
procedure Catch
procedure Propagate

procedure Show (Exceptions)

DEB-66 7/1/87 BA\TIONAL

subtype Hex_Number
package !Commands.Debug

subtype Hex_Number

subtype Hex_Number 1s String;

Description
Defines a string representation of a number in base 16.

Note: The number is assumed to be in hexadecimal; no “16#” need precede it.

R)ATIONAL 7/1/87 DEB-67

procedure History_Display
package !Commands.Debug

procedure History_Display

procedure History_Display (Start : Integer =
Count : Integer = 0;
For_Task : Task_Name := ""

Description
Displays a range of history entries for the specified task.

The Debugger can keep a history of execution for each task. The history is the set
of the most recently executed statements and declarations.

History information, like traces, can include messages about statements, calls, ren-
dezvous, and exception raising. Trace messages are displayed each time an event
occurs. Unlike traces, history messages are saved in a circular buffer in the Debug-
ger. From the buffer, selected sets of messages can be displayed, such as messages
from only a specific task or for some range of messages. See the Trace procedure for
more information on tracing. See the Take_History procedure for more information
on histories.

See the example below for a discussion of the output form.

Parameters

Start : Integer := 9;
Specifies the starting entry in the history to be displayed. If greater than 0, it
specifies the starting location in the history from the newest entry. If less than 0,

it specifies the starting location from the oldest entry in the set. If unspecified or
0, the starting point is based on the value of History_Start (Numeric type), which

is 10 by default.

Count : Integer := 0;

Specifies the number of entries in the history to be displayed. If unspecified, the
number of entries displayed is determined by the value of History-Count (Numeric
type), which is 10 by default.

For_Task : Task_Name := :

Specifies the task for which the history is to be displayed. The default is the task
specified by the control context or, if the control context is not set to a specific task,
all tasks.

DEB-68 7/1/87 PATIONAL

procedure History_Display
package !Commands.Debug

Example 1
The following is an example of a history display:

History of statements executed by all tasks : (oldest .. newest)

Timestamp Depth Location and Task
34656136386 2 .BUFFER.LENGTH.ld [QUEUE, #2F@D4]

+ 284 1 .PRODUCER_CONSUMER.CONSUMER.S5s [CONSUMER, #2F8D4]
+ 5e2 2 .BUFFER.LENGTH.2d [QUEUE, #2F@D4]

+ 1136 2 ... 1s

+ 1435 22s

+ 1705 1 .PRODUCER_CONSUMER .QUEUE .7s

+ 1992 i8s

34657416781 1 .PRODUCER_CONSUMER .PRODUCER.3s [PRODUCER, #2F4D4]
34657816737 1 .PRODUCER_CONSUMER.CONSUMER.3S [CONSUMER, #2F8D4]
34658504120 1 .PRODUCER_CONSUMER.QUEUE.Ss [QUELE, #2F@D4]

The first line describes what part of the history will be displayed and in what order.
In this case, the statements from all tasks will be displayed, from the oldest entry
to the newest entry.

The second line provides column headings. The first column is a measure of time
in units of 3.2 microseconds. The second column is the depth on the stack at which
the task, named in column 3, is currently running. The last column specifies the
statement or declaration that the named task is executing.

Note: 1t takes the Debugger between 280 and 300 units in time to record each
entry in the history. Time is monotonic for all tasks.

The remaining lines provide the data requested. By default, the Debugger displays
10 entries. Note that the statement or declaration name is elided if it is the same
as in the previous line.

Example 2

The same history as in the previous example could be filtered to display only the
history of one task. The following display occurs when only the task named Queue
is requested:

History of statements executed by QUEUE, #2F@D4 : (oldest .. newest)
Timestamp Depth Location
34656135264 2 .PRODUCER_CONSUMER .QUEUE . (accept GET).2s

+ 274 1 .PRODUCER_CONSUMER .QUEUE .4s
+ 714 1 ... 1s

+ 1322 2 .BUFFER.LENGTH.1d

+ 1844 22ed

+ 2458 2 R £

+ 2757 22s

+ 3027 1 .PRODUCER_CONSUMER .QUEUE . 7s
+ 3314 18s

34658504129 19s

R)ATIONAL 7/1/87 DEB-69

procedure History_Display
package !Commands.Debug

Note that the task is identified in the first line, not in each line of data. Also note
that the history is searched further back in time to find the default 10 entries to
display.

References

type Numeric
procedure Take_History
procedure Trace

type Trace_Event

DEB-70 e RATIONAL

procedure Hold
package {Commands.Debug

procedure Hold

procedure Hold (Name : Task_Name := ""};

Description

Stops execution of the specified task (or tasks) and keeps it stopped until the task
is explicitly released by the Release procedure or until an explicit request is given
for execution of the task by an Execute or Run procedure.

The task is held following the currently executing statement in that task, as in the
Stop procedure. The Hold procedure allows for rendezvous and complex statements
to complete before the hold takes effect. A message is displayed for each task when
it stops. Tasks that are executing delays or waiting for rendezvous do not stop until
those operations are complete.

If the Freeze_Tasks flag is true, the Debugger attempts to stop all other tasks.
Note that in this mode other tasks may not actually stop because they may be in
rendezvous with the stopped tasks, waiting for an entry call, and so on.

If the task is already held, the procedure has no effect.

Holding a task means that the user must issue an explicit command to make the
task eligible for execution. The command can be issued in three ways. One way
is to execute a Release procedure for the task (or all tasks). The other ways are
to execute an Execute or a Run procedure for the specific task. Note that the
command Execute ("all") does not make the help task executable.

The Hold procedure is used to take tasks out of the normal set of tasks running in
the program. For example, if one task is misbehaving, from the point of view of the
user debugging the program, it can be held. Debugging can then continue without
interference from that task.

By using the command Hold ("all") followed by the Execute procedure for indi-
vidual tasks, the user can debug the interaction of only the few individual tasks
while the others remain held.

Parameters

Name : Task_Name := ""

Specifies what task is to be held. The default is the task specified by the current
control context. If the control context is not explicitly set, the default is all tasks.

The string “all” can be used to specify that all tasks should be held.

RAT'ONAL 7/1/87 DEB-71

procedure Hold
package !Commands.Debug

References
procedure Execute
procedure Release
procedure Run

procedure Stop

DEB-72 7/1/87 EATIONAL

procedure Information
package !Commands.Debug

procedure Information

Debug.Exceptions;

")

procedure Information (Info_Type : Information_Type
For_Task : Task_Name

Description
Lists information about the specified task.

The Info_Type parameter specifies the type of information to be listed. If Info_Type
specifies Exceptions, information about active exceptions in the specified task is
listed. An exception is active if the task is still executing code in the handler for
that exception. Information listed includes the exception name and the Ada name
of the location where the exception was first raised.

If Addresses (Option type) is enabled, the program counter value, actual exception
name, and control offset of the exception variable are also listed.

Note: The control offset of the exception variable is Environment information that
contains the actual exception information. This information is generally useful only
in diagnosing system problems.

If the Info_Type parameter specifies Rendezvous, information is listed about rendez-
vous that are in progress for the specified task. A rendezvousis in progressif the task
is currently executing an accept statement for an entry. The information consists
of the name of the rendezvous partner, which executed the entry call that resulted
in the rendezvous.

If Addresses is enabled, the control offset of the task linkage is also displayed.

If the Info_Type parameter specifies Space (Information_Type type), information
about the space that the task is consuming is displayed. The information includes
the current and maximum control space and data space.

If Addresses is enabled, the address space sizes are also displayed.

Parameters

Info_Type : Information_Type := Debug.Exceptions;
Specifies the type of information to be listed.

PAT'ONAL 7/1/87 DEB-73

procedure Information
package !Commands.Debug

For_Task : Task_Name := "";

Specifies the task for which information is to be listed. If none is specified, the
default (“?), information about the task specified by the current control context is
listed. If the control context does not specify an individual task, information about
all tasks is listed.

References
type Information-Type

type Option

DEB-74 7/1/87 R)ATIONAL

fype Information_Type
package !Commands.Debug

type Information_Type

type Information_Type is (Exceptions, Rendezvous, Space);

Description

Defines the information that can be displayed by the Information procedure.

Enumerations

Exceptions
Specifies information about exceptions that are active in the specified task.

Rendezvous
Specifies information about rendezvous that are in progress in the specified task.

Space
Specifies information about the amount of memory consumed by the specified task.

RATIONAL 7167 DEB-75

procedure Kill
package !Commands.Debug

procedure Kill

True;
False);

procedure Kill (Job : Boolean :
Debugger : Boolean

Description
Kills the job being debugged and/or the Debugger for the session.

This command can be used to explicitly kill the job currently being debugged. This
is the most typical use of this command.

The command can also be used to kill the Debugger for the session if the Debugger
becomes unresponsive or misbehaves so that it is not possible to continue doing
useful work. Note that the Debugger should not need to be killed in normal use.

The next time a job is created with debugging, a new copy of the Debugger is
created. If the Debugger is killed, the job being debugged should run to completion
(unless it is to be killed also), but the results may be unpredictable. If the Debugger
is misbehaving, it is generally safest to use the command Debug_0ff (False) to run
the job to completion and then use the Kill procedure to kill the Debugger.

Parameters

Job : Boolean := True;

Specifies whether to kill the job currently being debugged. If true, the job is killed.
If false, this command should have no effect on the job being debugged. By default,
the job being debugged is killed.

Debugger : Boolean := False;

Specifies whether to kill the Debugger for the session. If true, the Debugger is killed.
If false, the Debugger is not killed. By default, the Debugger is not killed.

DEB-76 e RATIONAL

procedure Location_To_Address
package !Commands.Debug

procedure Location_To_Address

"<SELECTION>";
2);

procedure Location_To_Address (Location : Path_Name :
Stack_Frame : Integer

Description

Displays the code segment address for the machine instruction associated with the
specified location.

The procedure displays the program counter (which consists, for the R1000 target, of
a segment and an offset) where the machine instruction associated with the specified
location exists in memory.

This procedure is the inverse operation of the Address_To_Location procedure.

The Location parameter is the primary means for specifying the location for which
to determine the address. The Stack_Frame parameter provides a convenient means
for specifying a frame for which to get the address. Typically, the value of the
Stack_Frame parameter is provided using argument prefix keys when the Loca-
tion_To_Address command is bound to a key. If the Stack_Frame parameter is
nonzero and the Location parameter specifies a special name (such as "<SELEC-
TION>"), the Location parameter is ignored and the address is determined for the
first location of the frame specified by Stack_Frame. If the Stack_Frame parameter
is nonzero and the Location parameter specifies a relative pathname, the actual
pathname used to specify the location to get the address of is composed by append-
ing the string “-n” to the value of the Path_Name parameter, where n is the value
of the Stack_Frame parameter. If the Location parameter specifies an absolute
pathname, the Stack_Frame parameter is ignored.

If the Location parameter is the null string (“?), or if a special name that does not
resolve to a location is used (for example, if the Location parameter is "<SELECTION>"
and the cursor is not in the selection), the address is determined for the first location
in the current frame as determined by the control and evaluation contexts).

Parameters

Location : Path_Name := "<SELECTION>";

Specifies the location whose address is desired. The interpretation of this parameter
is discussed in more detail in the description above. By default, the address is
determined for the selected location.

RATIONAL 7/1/87 DEB-77

procedure Location_To_Address
package !Commands.Debug

Stack_Frame : Integer := 0;

Specifies the frame whose address is to be displayed. The interpretation of this
parameter is discussed in more detail in the description above. By default, this
parameter is ignored and the address displayed is at the location specified by the
Location parameter.

Example

The command Location_To_Address with the default parameter displays:

Name: .PRODUCER_CONSUMER.QUEUE.1d
PC = #19901, #10

References

procedure Address_To_Location

DEB-78 e RATIONAL

procedure Memory_Display
package !Commands.Debug

procedure Memory_Display

procedure Memory_Display (Address : String
Count : Natural
Format : String

"DATA"Y;

Description
Displays the contents of absolute memory.

The parameters are interpreted based on the target architecture on which the job
is being debugged.

For the R1000 target, the Address parameter should be of the form %segment,
#offset”. The segment specifies (in hexadecimal) the segment name of the space to
be accessed. The offset specifies the starting location in the segment. The unit of the
offset depends on the Format parameter. The Format values and the corresponding
unit of the offset are:

Control Control word offset (unit is control stack words).
Typ Type word offset (unit is type stack words).
Queue Bit offset (the display always starts on a full word boundary; the

starting offset used will be the nearest full word that contains the
bit specified by the Offset parameter).

Data Bit offset into the segment (the display always starts on a full word
boundary; the starting offset used will be the nearest full word that
contains the bit specified by the Offset parameter).

Import Word offset (unit is import words).
Code Instruction offset (unit is instructions).
System Bit offset (the display always starts on a full word boundary; the

starting oftset used will be the nearest full word that contains the
bit specified by the Offset parameter).

Control words are interpreted based on their tag. Code segment words are disas-
sembled into their symbolic form. All others are displayed in hexadecimal. (The
Interpret_Control_Words flag can be set to false to disable the interpretation of
congrol words. Import words are interpreted if the Interpret_Import_Words flag is
set.

[QAT'ONAL 7/1/87 DEB-79

procedure Memory_Display
package !Commands.Debug

Parameters

Address : String := ""
Specifies the address at which to display memory. The format of this parameter is
interpreted differently for each target. See the description above for the interpreta-
tion for the R1000 target.

Count : Natural := 0;

Specifies the number of items to display. The meaning of this parameter is inter-
preted differently for each target. See the description above for the interpretation
for the R1000 target.

Format : String := "DATA";

Specifies the format of the memory to be displayed. The meaning of this param-
eter is interpreted differently for each target. See the description above for the
interpretation for the R1000 target.

DEB-80 s RATIONAL

procedure Modify
package !Commands.Debug

procedure Modify

procedure Modify (New_Value : String ="";
Variable : Path_Name := "<SELECTION>";
Stack_Frame : Integer = @);
Description

Modifies or changes the value of the specified object.

By default, the Modify procedure modifies the value of the selected object in the
most recent frame of the stack of the last task to stop in the Debugger. If the object
is declared in a library unit package, the object is determined from the package’s
state, not from a stack frame.

The specified object must be a scalar. Structures such as records or arrays must be
modified component by component.

The Variable parameter is the primary means for specifying the object to modify.
The Stack_Frame parameter provides a convenient means for specifying either the
context for interpretation of the Variable parameter or the actual object to be
modified. If the Stack_Frame parameter is nonzero and the Variable parameter
specifies a relative pathname, the actual pathname used to specify the object to
modify is composed by appending the string “.n” to the value of the Variable
parameter, where n is the value of the Stack_Frame parameter. If the Variable
parameter specifies an absolute pathname, the Stack_Frame parameter is ignored.

If selection is used to specify the object, the stack is searched from the frame indi-
cated by the value of the Stack_Start numeric option—by default, the top frame—
to the bottom frame to find the first occurrence of the desired object. Note that
if the Stack_Frame parameter is nonzero, this search will begin in the frame indi-
cated by that parameter instead. This search is limited to the number of frames of
the stack indicated by the Stack—-Count numeric option—by default, 10 frames. If
selection is not used, this searching is not performed.

If the Variable parameter is the null string (“”), the procedure uses the current
evaluation context to determine the object to modify. Note that this case is not
useful unless the evaluation context is set to some variable; if it is not, the pathname
will resolve, by default, to a frame (either the control context or the top frame of
the last task stopped), which is not a variable.

RATIONAL 7y/er DEB-81

procedure Modify
package !Commands.Debug

Parameters

New_Value : String := "";
Specifies the new value of the object.

When modifying objects of numeric types, enter a string containing the simple
numeric representation of the value. Expressions are not allowed.

When modifying objects of an enumeration type, enter a string containing the un-
qualified name of the enumeration constant. The object name is used to determine
the type; therefore, qualification of the enumeration literal is unnecessary. Consis-
tent with Ada, characters are treated as enumeration constants and entered sur-
rounded by single quotes. (The New_Value parameter is a string, so the quoted
character is actually inside the double-quoted string.) Recall that character literals
such as Ascii.Nul are also entered unqualified (in this case, as Nul).

Variable : Path_Name := "<SELECTION>";

Specifies the object to be modified. See the description above and the reference
entry for the Path_Name subtype for more information on how the names supplied
to this parameter are interpreted. By default, the selected object is modified.

A number of restrictions define what can be modified, as listed under the New_Value
parameter above.

Stack_Frame : Integer := O,

Specifies the stack frame containing the variable to modify. Note that the stack
frame can also be specified in the Variable parameter. If the Stack_Frame pa-
rameter is nonzero and the Variable parameter specifies a relative pathname, the
actual pathname used to specify the object to display is composed by appending the
string “-n” to the value of the Path_Name parameter, where n is the value of the
Stack_Frame parameter. If the Variable parameter specifies an absolute pathname,
the Stack_Frame parameter is ignored.

See the description above for more information on how this parameter is interpreted.

DEB-82 7/1/87 BA\TIONAL

procedure Modify
package ‘Commands.Debug

Restrictions

The pathname must specify an object that is a variable.

The specified object must be of a simple data type: discrete, float, or character.
Access types can be modified only to the null value.

The following objects cannot be modified:

o Variables of task types
¢ In parameters, which are actually constants
¢ Discriminants of variant records

For-loop iteration variables
Constants

Errors
The pathname cannot specify an object that is a constant.

The pathname cannot specify an object of a structured type. To modify structures,
modify each of their scalar components one at a time.

References

procedure Put

RAT'ONAL 7/1/87 DEB-83

type Numeric
package !Commands.Debug

type Numeric

type Numeric is (Display_Count, Display_level, Element_Count,
First_Element, History_Count, History_Entries,
History_Start, Memory_Count, Pointer_Level,
Stack_Count, Stack_Start);

Description

Defines the numeric value flags that control the behavior of the Debugger that can
be changed by the Set_Value procedure.

Note that Boolean option flags also control the behavior of the Debugger. See tue
Option type for more information on these flags.

In the following descriptions, the standard value of each numeric flag is listed. The
standard value is the initial value of the numeric flag when the Debugger is started.
The standard values for these numeric flags are read from session switches when
the Debugger is started. The switches have names of the form Debug_zz, where
zzz is the numeric flag name. The standard values indicated below are the default
values of these switches. See SIM, Session Switches, for more information on session
switches.

Enumerations

Display_Count

Specifies the default value of the Count parameter in the Display procedure. The
standard value is 10.

Display_Level

Specifies the number of levels to expand complex data structures in the Put proce-
dure (the remaining levels are elided). The standard value is 3.

Element _Count

Specifies the maximum number of elements in any array that is displayed with the
Put procedure. The standard value is 25.

First_Element

Specifies the first element of an array that is displayed with the Put procedure. The
standard value is 0.

DEB-84 e RATIONAL

pe Numeric
package !Commands.Debug

History_Count

Specifies the default value for the Count parameter to the History_Display proce-
dure. The standard value is 10.

History_Entries

Specifies the maximum number of history entries that the Debugger will keep. The
standard value is 1,000. This is not currently supported, so it has no effect.

History_Start

Specifies the oldest history entry to be displayed by the History_Display procedure.
This enumeration is the default value for the Start parameter. The standard value

is 10.

Memory_Count

Specifies the default value for the Count parameter in the Memory.Display proce-
dure. The standard value is 3.

Pointer_Level

Specifies the level of pointer values to be expanded in the display produced by the
Put procedure. The standard value is 3.

Stack_Count

Specifies the default value of the Count parameter in the Stack procedure. The
standard value is 10.

Stack_Start

Specifies the default starting frame number in the Stack procedure. The standard
value is 1.

References
type Option

procedure Set_Value

RATIONAL 7/1/87 DEB-85

type Option
package !Commands.Debug

type Option

type Option is (Addresses, Break_At_Creation, Declaration_Display,
Delete_Temporary_Breaks, Display_Creation, Echo_Commands,
Freeze_Tasks, Include_Packages, Interpret_Control_Uords,
Ki111_0ld_Jobs, Machine_Level, No_History_Timestamps,
Optimize_Generic_History, Permanent_Breakpoints,
Put_Locals, Qualify_Stack_Names, Require_Debug_ O0Off,
Save_Exceptions, Show_Location, Timestamps);

Description

Defines the option flags controlling the behavior of the Debugger that can be enabled
or disabled by the Enable or the Disable procedures.

Note that numeric flags also control the behavior of the Debugger. See the Numeric
type for more information on these flags.

In the following descriptions, the standard value of each option is listed. The stan-
dard value is the initial value of the option when the Debugger is started. The
standard values for these options are read from session switches when the Debugger
is started. The switches have names of the form Debug_zzz, where zzz is the option
name. The standard values indicated below are the default values of these switches.
See SIM, Session Switches, for more information on session switches.

Enumerations

Addresses

Requests machine information to be put in the displays produced by Stack, Task-
-Display, Information, and Trace procedures, and to be included when tasks stop
in the Debugger. The standard value for this option is false.

Break_At_Creation

Causes the equivalent of a breakpoint to be placed at the point where new tasks
begin elaboration. The standard value for this option is false.

Declaration_Display

Requests all declarations to be displayed when listing source code by means of the
Display procedure. The standard value for this option is true.

DEB-86 7/1/87 R/A\TIONAL

type Optiou
package !Commands.Debug

Delete_Temporary_Brezks

Requests each temporary breakpoint to be deleted once its conditions are met and
execution has stopped. The standard value for this option is false.

Display_Creation
Requests a tracelike display of the creation of each task. The standard value for
this option is false.

Echo_Commands

Requests that all Debugger commands the user executes be echoed in the Debugger
window. The standard value for this option is true.

Freeze_Tasks

Requests that the Debugger attempt to stop all other tasks when a task is stopped
by the Debugger. The standard value for this option is false.

Include_Packages

Requests that the Debugger include packages that have completed elaboration in
the output generated by the Task_Display procedure. The standard value for this
option is false.

Interpret_Control _Words

Causes the Debugger to interpret control stack words when they are displayed using
the Memory-Display procedure. The standard value for this option is false.

Ki111_0ld_Jobs

Causes the last program being debugged to be killed when a new program is started
to be debugged. The standard value for this option is true.

Machine_L evel
Allows certain machine-level operations. The standard value for this option is false.

No_History_Timestamps

Causes time stamps to be included with each history entry in history displays gen-
erated by the History.Display procedure. The standard value of this option is true.

Optimize_Generic_History

Requests that no history be taken in generic instances; in this case, history is taken
only for the generic itself, which causes history taking to run considerably faster for
generics. The standard value is true.

RATIONAL 7/1/er DEB-87

type Option
package !Commands.Debug

Permanent_Breakpoints

Specifies whether breakpoints are permanent (must be explicitly deactivated or
deleted) or temporary (are deactivated or deleted when the breakpoint first causes
execution to stop). The standard value for this option is true.

Put_l.ocals
Causes local variables to be displayed along with formals when procedure Put is

called with locations that are packages or subprograms. The standard value for this
option is false.

Qualify_Stack _Names

Causes, when true, the names displayed by the Stack procedure to be fully qualified.
When false, the names are the simple names of the subprograms executing in each
frame. The standard value for this option is false.

Require_Debug_Off

Requests that the current job being debugged cannot be aborted simply by starting
debugging on a new job; debugging must be stopped on the current job by com-
pleting its execution or by explicitly executing the Debug_Off procedure to release
or abort the job. The standard value for this option is false.

Save_Exceptions

Causes exception-handling information from the Catch and Propagate procedures
to be saved from debugging run to debugging run. The standard value for this
option is false.

Show_Location

Causes the current source location for the task that stops in the Debugger to be
automatically displayed in an Ada window with the location highlighted. The stan-
dard value for this option is true. Note that this display will occur only for the
control context task, the root task, or (in the case of the Run command) all tasks.

Timestamps

Causes, when true, a time stamp to be displayed with each command and task stop.
When false, no time stamp is displayed. The standard value for this option is false.

DEB-88 7/1/87 RAT'ONAL

type Option
package !{Commands.Debug

References
procedure Disable
procedure Enable

type Numeric

RATIONAL 7/1/87 DEB-89

subtype Path_Name
package !Commands.Debug

subtype Path_Name

subtype Path_Name is String;

Description

Defines a string used to reference declarations, objects, statements, or types within
program units.

Used by several operations in this package, this subtype defines the construction of
strings that denote specific locations within some program unit. These string names
use existing Ada naming rules wherever possible and extend those rules to allow
names for anonymous blocks, package and task bodies, accept statement bodies,
locations within generic program units, and overloaded names.

Pathnames can be spectal names that indicate that the selection, region, cursor, and
image are to be used to specify the location or object. These special names have the
form "<SELECTION>" and are described in more detail in LM, Key Concepts. Note
that if a special name does not resolve to a location or object (for example, if the
special name is "<SELECTION>" and the cursor is not in the selection), the pathname
used by the Debugger will be the empty string (“”).

Two forms of names are allowed: full pathnames and relative pathnames. Full
pathnames define an absolute location within the program, beginning with a task
or library name. Relative pathnames are resolved within the current evaluation or
control context, or both, depending on the use of the pathname.

Statements and declarations are numbered. Pathnames to specific statements or
declarations include the number of that statement or declaration. Numbering of
each group of declarations or statements is independent and begins with 1. When
source code is being displayed, these numbers appear at the beginning of statement
or declaration lines. In pathnames, statement numbers are differentiated from dec-
laration numbers by a suffix s (the default) for statements and d for declarations.

Given that the prefix of a pathname refers to a context that contains an object,
the following list defines what the next component of a pathname that refers to the
object itself would be:

¢ Library package: Simple package name.

e Library subprogram: Simple subprogram name.

¢ Library unit generic package: Simple name of the package.

¢ Library unit generic subprogram: Simple name of the subprogram.
¢ Library unit generic instantiation: Simple name of the instantiation.
o Package: Simple name of the package.

o Task type: Simple name of the task type.

DEB-90 e RATIONAL

subtype Path_Name
package !Commands.Debug

Generic instance: Simple name of the instantiation.
Generic package declaration: Simple name of the generic package.
Generic subprogram declaration: Simple name of the generic subprogram.

Subprogram: Simple name of the subprogram.

Block: Label on the block, if present, or the statement number of the block
statement if no label is present (the statement number can be used as a name
even if a label is present).

Accept statement block: Statement number of the accept statement (the accept
statement is numbered as a normal Ada statement if it appears alone or as an
arm of a select).

Field of a record: Simple name of the field (this component applies to discrimi-
nants, fixed fields, and variant fields).

Element of an array: Subscript list enclosed in parentheses (the subscripts them-
selves must be simple constants of the appropriate type).

The object designated by a pointer: Name “all”.

The formal syntax definition of pathnames appears in the following Backus-Naur
Form (BNF) definition:

Pathname ::= [Task_Prefix] [Frame_Prefix]
["." Name_Component_Sequence]
| Library_Prefix
["." Name_Component_Sequence]
| Universe_Prefix
[Name_Component_Sequence]
| Parent_Prefix
[Name_Component_Sequence]
| Parent_Library_Prefix
[Name_Component_Sequence]
| Parent_World_Prefix
[Name_Component_Sequence]
Name _Component _Sequence
Special _Name
"%" Task_Synonym
"." Library_Unit_Name

Task_Prefix
Library_Prefix

nwunun——

Frame_Prefix *_" Frame_Number
Universe_Prefix e
Parent_Prefix At
Parent_Library
_Prefix = "e"
Parent_World
_Prefix = "gs”
Name_Component : 2= Component
_Sequence Package_Name ["." Component]
Task_Name ["." Component]
| Task_Name ["._" Frame_Number]
Record_Name ["." Component]
Array_Name ["(" Index_List "}"]
Subprogram_Name ["." Component]
Block_Name ["." Component]
Generic_Unit ["." Component]
Generic_Instance ["." Component)

RAT'ONAL 7/1/87 DEB-91

subtype Path_Name
package !Commands.Debug

Special _Name = "< SELECTION>" "< REGION>" | "< IMAGE>" | "< CUR-
SOR>"

Index_List ci= Index ["," Index_List]x*

I ndex : Numeric_Literal | Identifier

Package_Name Name_Component _Sequence

Task _Name Name_Component _Seqguence

Name_Component_Sequence
Name_Component _Sequence
Name_Component _Sequence
Name_Component _Sequence

Identifier ["'" Location_Attribute]
Statement _Number

Declaration_Number

Positive ["s"]

Positive "d"

Record_Name
Array_Name
Subprogram_Name
Block _Name
Component

Statement_Number
Declaration_Number

I —— NN

Positive Digit+ (non-zero value)
Location_Attribute "spec” | "body" | “N(" Nickname ")"
Nickname Identifier | Positive

Task _Synonym Identifier

Frame_Number Positive | "-" Positive
Library_Unit_Name Identifier

In addition to the BNF syntax definition, note the following rules about statement
and declaration numbering:

Use clauses and representation specifications are not numbered.
Parameters (including generic formal parameters) are not numbered.

Blocks are numbered separately, as are bodies of accepts, and package specs and
bodies.

Statements in exception handlers are numbered continuously with preceding nor-
mal statements.

Accept arms of selects are numbered along with statements at the same level as
the enclosing select.

Frame_Numbers are numbered with respect to the top of the stack (frame 1 is
the topmost frameg unless preceded by a minus sign, in which case the frames
are relative to the bottom of the stack (frame —1 is the bottommost frame).

All imported library unit names look through links. The local name of an im-
ported library unit is not known; only the actual name of the imported unit is
known. Use the command Show (Libraries) to see the library unit names that
are known.

These and other constructs are demonstrated in the examples in the Key Concepts
for this book and in the following examples.

DEB-92 e RATIONAL

subtype Path_Name
package !Commands.Debug

Example 1

The following are examples of qualified versus unqualified names:

%Session_Manager._5.Main_Process.4

The name begins with a percent symbol (%) and is qualified. Control and evaluation
context are not referenced. A task in the program has called the Set_Task_Name
procedure to give itself the name Session_Manager. This name refers to statement 4
of a subprogram named Main_Process that is declared in the subprogram executing
in frame 5 of the stack of the task.

lUsers.Rab.Tests .Regression_Test_12

The name begins with an exclamation mark (!) and is fully qualified. Neither control
nor evaluation contexts are referenced. The leading exclamation mark implies that
the next name (Users) is a library or library unit name contained in the root of the
directory system.

The name refers to an object (probably a subprogram) called Regression..Test_12
declared within !Users.Rab.Tests.

_2.Condition

The leading underscore (-) specifies a reference to stack frame number 2. The task
referred to is based on the current control context. If the control context is set to
all tasks, then the stack of the last task to stop in the Debugger is referenced. An
object named Condition, declared in the subprogram executing in that frame, is
designated.

User_LList .Next . Name

No leading special character begins the name. The name is relative to the current
evaluation context. Suppose Next and Name are fields of a record and User_List
and Next are accesses to that record type. Then this name would refer to field
Name of the record pointed to by field Next of the record pointed to by User_List.

If the evaluation context is not set, the top frame of the task specified by the control
context (or the last task to stop if the control context is not set) is referenced.

RAT'ONAL 7/1/87 DEB-93

subtype Path_Name
package !Commands.Debug

Example 2

The following are examples of naming tasks:

¥%Session_Manager

In this example, the name refers to a task that has assigned itself the name Ses-
sion_Manager. Control and evaluation contexts are not used.

X¥620E

In this example, a task number is used to name the task. The task number 620E
was obtained from the Task_Display procedure or some other Debugger message
that included the task number.

.Configurator .Worker

The Ada name of a declared (or allocated) task can also be used. Configurator
represents a library unit and Worker a single task declared in that unit.

_4.Task_Pool(12)

An array of tasks, Task_Pool, declared in a subprogram that is executing in frame
4 contains task names. Thus, each element (element 12 in this example) is a task.

Example 3

The following are examples of naming objects relative to a stack:
_3.12

A numeric suffix on an object name refers to a statement or declaration. In this
example, statement 12 of the subprogram executing in frame 3 of the task specified
by the control context (the last task to stop if the control context is not set) is
named.

_1.Foo.l2d

This name references declaration 12 of subprogram Foo that is declared in the
subprogram executing at frame 1 of the task designated by the control context.
Note that unless the evaluation context is nonnull, the _1 prefix is used by default.

Motor_State.Temperatures.Oil

Assume in this example that the evaluation context is null. Motor_State is an object
declared in the top frame of the task designated by the control context. The exact
interpretations of Temperature and Oil depend on what Motor_State actually is.

DEB-94 e RATIONAL

subtype Path_Name
package !Commands.Debug

Example 4
The following examples illustrate naming array elements.

Consider the following package:

package Data_Block 1is
type Color is (Red, Blue, Green);

Info : array (3 .. 35) of integer;

More_Info : array (1 .. 10, Color, Character)
of Natural;

Char_Info : array (Character, Character) of integer;
end Data_Block;

.Data_Block.Info(12)
Info names a single-dimensional array. This name references element 12 of the array.
.Data_Block .More_Info(1l,Blue,’a’)

In this example, More_Info is a three-dimensional array. The first index type is
numeric, the second is an enumeration, and the third is also an enumeration (Char-
acter type).

.Data_Block .Char_Info{Nul , Bel)

Similarly, the two index types of this array are Character type. The indices used
are nongraphic literals.

References
procedure Break
procedure Context
procedure Display
procedure Modify

procedure Put

RATIONAL 717 DEB-95

procedure Propagate
package !Commands.Debug

procedure Propagate

procedure Propagate (Name : Exception_Name
In_Task : Task_Name
At _Location : Path_Name

"<SELECTION>";
)

Description

Enters a request to the Debugger that the program being debugged not be stopped
when the specified exception is raised in the specified task at the specified location.

By default, the Debugger does not stop any task that raises the selected exception.

The Name parameter names the specific exception or group of exceptions to be ig-
nored by the Debugger. If the Name parameter is the null string (“”f, or if a special
name such as "<SELECTION>" is used but the cursor is not in the selection, the proce-
dure causes execution to proceed when any exception is raised. The reserved string
“all®> means all exceptions will be ignored. The reserved string “implicit” means
exceptions raised implicitly—that is, those raised in the course of the execution of
a statement other than raise—will be ignored.

Propagate requests and catch requests combine to determine the action the Debug-
ger takes when an exception is raised.

Note: The Propagate procedure is not the inverse of the Catch procedure. Each
of these procedures requests an explicit action for a named exception. The Forget
procedure removes catch or propagate requests.

When the Debugger is started, it behaves as though the command Catch ("all")
has been issued. To make the Debugger ignore exceptions raised in the program,
enter the command Propagate ("all").

The In_Task parameter specifies the task in which the exception should be ignored.
The reserved string “all” means that the propagate request should apply to all
tasks. The null string (") means that the propagate request should apply to the
task specified by the current control context or to all tasks if the control context is
not set to a specific task.

The At_Location parameter restricts the location in which the exception is ignored
by the Debugger. The null string (“”) indicates everywhere in the Environment.
If not null, the string specifies a subprogram or statement in which the propagate
request applies.

The Debugger maintains a list of catch and propagate requests entered by calls to
the Catch and Propagate procedures. When an exception in the user program is
raised, the Debugger looks at this list to determine whether to stop the program
and inform the user. Catch requests cause the program to stop; propagate requests
cause it not to stop.

DEB-96 7/1/87 BA\TIONAL

procedure Propagate
package !Commands.Debug

The action taken in a specific case is determined by the most specific request that
applies to the exception. If that request is a catch request, the program stops;
otherwise, it does not.

Informally, a catch or propagate request applies to the raising of an exception if the
exception name, task name, and location in the exception match the request. More
precisely, a request applies to an exception if all of the following are true:

¢ The name of the exception is the same as the name in the request, the request is
for all exceptions, or the request is for implicit exceptions and the exception was
raised implicitly.

o The task in which the exception is raised equals the task in the request or the
request is for all tasks.

o The exception is raised in a statement or declaration that the request specified,

the point of raise is in a subprogram that the request specified, or the request is
for all locations.

If more than one catch or propagate request applies to a specific raising of an
exception in a program, the more specific one determines the action the Debugger

will take.

Requests are considered more specific if they specify a smaller number of cases.
Thus, the more parameters of the request that are specified, the more specific the
request. More formally:

o A request that specifies a subprogram and statement is more specific than one
that specifies only a subprogram.

* A request that specifies a subprogram is more specific than one that specifies all
locations.

* A request that specifies a task is more specific than one that does not.

e A request that names an exception is more specific than one that specifies implicit
or all exceptions.

e A request that specifies implicit exceptions is more specific that one that specifies
all exceptions.

These rules are applied in combination in the order given. The location is a stronger
specification than the task, and the task restriction is a stronger specification than
the exception name.

The command Propagate ("all", "", "") is the least specific and causes the De-
bugger not to stop program execution for any exceptions unless a more specific
catch request applies to it.

To remove a catch or propagate request, use the Forget procedure.

If a propagate request has parameters that exactly match a previous catch request,
the catch request is removed first.

RATIONAL 7/1/87 DEB-97

procedure Propagate
package !Commands.Debug

The command Show (Exceptions) displays all catch and propagate requests ordered,
from most specific to least specific. For each request, the exception name, location,
and task restrictions are listed.

Parameters

Name : Exception_Name := "<SELECTION>";

Specifies the exception for the propagate request. By default, the selected exception
will be propagated.

If the Name parameter is the null string (“”), or if a special name such as "<SELEC-
TION>" is used but the cursor is not in the selection, the procedure propagates for
all exceptions.

The reserved name “all” stands for all exceptions.

The reserved name “implicit” stands for all exceptions raised implicitly—that is,
those raised by some language construct other than a raise statement. These implicit
exceptions include only predefined language exceptions such as Constraint_Error
and Tasking_Error.

If the exception name is not fully qualified (and nonnull), it is interpreted relative
to the current evaluation context.

In_Task : Task_Name := "";

Specifies the task that should be monitored for the exception specified by the Name
parameter. If null, the task specified by the control context is used. If the control
context is not set to a specific task, the propagate request applies to all tasks. The
reserved name “all” also implies all tasks. By default, all tasks should be monitored
unless the control context has been set.

If the task name is not fully qualified, not null, and not a simple task name—

beginning with a percent symbol (%) or a digit—the name is interpreted relative
to the current evaluation context.

DEB-98 e RATIONAL

procedure Propagate
package !Commands.Debug

At_Location : Path_Name := "";

Specifies a location restriction for the exception propagate request. The raising
of the specified exception requests the specified task not to stop only if the point
of raise of the exception is in the subprogram or at the statement specified by
the At_Location parameter. By default, there are no location restrictions and the
exception is ignored wherever it is raised.

If the At_Location parameter specifies an Ada unit, the exception is propagated only
inside that unit; it is not propagated inside any Ada units nested inside it, including
nested blocks and accept statements. Separate requests have to be entered if this
effect is desired.

If At_Location specifies a particular statement or declaration, the exception is prop-
agated only when it is raised in the statement or declaration.

If At_Location is null, the propagate request applies anywhere.
Note: The evaluation context is used in interpreting At_Location only if it is not
null. If At_Location is null, the propagate request applies throughout the program,

independent of the evaluation context.

If not fully qualified and not null, the Path_Name parameter is interpreted relative
to the current evaluation context.

Restrictions

A maximum of 40 requests to catch or propagate exceptions can be set.

References
procedure Catch
procedure Forget

procedure Show (Exceptions)

RATIONAL 717 DEB-99

procedure Put
package !Commands.Debug

procedure Put

procedure Put (Variable : Path_Name := "<SELECTION>";
Stack_Frame : Integer = 0);

Description

Displays the value of the specified object in the Debugger window with formatting
based on the type of the object.

By default, the Put procedure displays the value of the selected object in the most
recent frame of the stack of the last task to stop in the Debugger. If the object is
declared in a library unit package, the value is determined from the package’s state,
not from a stack frame.

The Variable parameter is the primary means for specifying the object for which
to display the value. The Stack-Frame parameter provides a convenient means for
specifying either the context for interpretation of the Variable parameter or the
actual values to be displayed. Typically, the value of the Stack_Frame parameter
is provided using argument prefix keys when the Put command is bound to a key.
If the Stack_Frame parameter is nonzero and the Variable parameter specifies a
relative pathname, the actual pathname used to specify the object to display is
composed by appending the string “-n” to the value of the Path_Name parameter,
where n is the value of the Stack_Frame parameter. If the Variable parameter
specifies an absolute pathname, the Stack_Frame parameter is ignored.

If selection is used to specify the object, the stack is searched from the frame indi-
cated by the value of the Stack_Start numeric option—by default, the top frame—to
the bottom frame to find the first occurrence of the object or the subprogram se-
lected. Note that if the Stack_Frame parameter is nonzero, this search will begin
in the frame indicated by that parameter instead. This search is limited to the
number of frames of the stack indicated by the Stack_Count numeric option—by
default, 10 frames. If selection is not used, this searching is not performed.

If the Variable parameter is the null string (“?), or if a special name that does
not resolve to an object is used (for example, if the Variable parameter is "<SELEC-
TION>" and the cursor is not in the selection), the object designated by the current
evaluation context is displayed. If the evaluation context is not set (or refers to a
stack frame), all parameters to the subprogram in execution in that stack frame are
displayed (if the Put_Locals option is true, the values of the local variables for the
subprogram are also displayed). Unless the control context is explicitly set, the top
frame of the last task to stop in the Debugger is displayed. Note that if selection
is used and if the statement executing in the specified stack frame is an assignment
or return statement, the value of the statement’s lefthand side or the return value,

respectively, is displayed.

DEB-100 7/1/87 I?/A\-HONAL

procedure Put
package !Commands.Debug

The pathname given is interpreted according to the naming rules described under
the Path_Name subtype in this section. If the name is unqualified, the current
evaluation context determines the context in which the pathname is interpreted. If
the current evaluation is not explicitly set, the context for interpretation defaults
to the control context. If the control context is not set, it defaults to the top stack
frame of the last task reported stopped by the Debugger.

If a scalar is specified, that scalar is displayed.

If a structure (record or arra.y? is specified, the display is controlled by several option
flags. In particular, the Display_Level (Numeric type) flag determines the number
of nesting levels of the object to be displayed. The Pointer_Level flag determines
the number of levels of pointers in the object to be expanded.

The Element_Count and First_Element flags control the number of array elements
and which element is displayed first, respectively.

If the array displayed is a string, then up to 73 characters are displayed, independent
of the Element_Count flag. Strings are specially formatted and appear in quotes.
Control characters appear in inverse video, except for the linefeed character, which
breaks the line.

These flags can be set using the Set_Value procedure.

The Debugger provides a facility with which users can create spectal display routines
for displaying data values. This facility can be useful if the user does not want the
Debugger to use the structural information to display the value, but instead wants
to supply a more useful or more efficient display procedure.

Users can provide display procedures for the type and register them with the De-
bugger using the !Tools.Debug_Tools.Register generic procedure (typically in the
Debugger_Initialization procedure). See the documentation of the Register proce-
dure in package Debug_Tools for more information on using special displays.

When special displays are registered for a type, the Put command causes that
function to be invoked to form an image for the value of the object of the type.
Such an image is enclosed in braces ({}) to distinguish it from the standard output
of the Put command.

Parameters

Variable : Path_Name := "<SELECTION>";

Specifies the object to be displayed. See the description above for more information
on how this parameter is interpreted. By default, the selected object is displayed.

RATIONAL +/y/er DEB-101

procedure Put
package !Commands.Debug

Stack_Frame : Integer := 8;

Specifies the stack frame containing the value of the object to display, or specifies
the stack frame to display. Note that the stack frame can also be specified in the
Variable parameter; this parameter typically is used when its value is provided using
argument prefix keys when the Put command is bound to a key. If the Stack_Frame
parameter is nonzero and the Variable parameter specifies a relative pathname, the
actual pathname used to specify the object to display is composed by appending the
string “_n” to the value of the Path_Name parameter, where n is the value of the
Stack_Frame parameter. If the Variable parameter specifies an absolute pathname,
the Stack_Frame parameter is ignored.

See the description above for more information on how this parameter is interpreted.

Restrictions
The parameter must specify an object that has a value.

A specific package, task, or subprogram frame must be referenced by the path-
name. If a selection is not being used, a reference to a subprogram name is illegal
because the Debugger does not know in which activation of the subprogram to look.
The same applies to generic packages and task types; a specific instance must be
referenced.

Only single-dimensional arrays can be displayed. Individual elements of higher-
dimensional arrays can be displayed, but not the entire array in a single command.

DEB-102 e RATIONAL

procedure Put
package !Commands.Debug

Errors

The parameter specifies an object that has no value—for example, a field of a variant
record that is not present because of the value of the discriminant.

There may be many problems with the name. Refer to the naming rules discussed
under the Path_Name subtype in this section and to the examples in the Key
Concepts.

A value can be uninitialized.

Note: Uninitialized scalar variables can be detected by the Environment. However,
the Environment does not know whether fields of structures are initialized; there-
fore, the Debugger reports a random value if an uninitialized field of a structure is
displayed.

The name can include a subscript that is out of range for an array being indexed.
The name can dereference a pointer that is null.

Other errors that occur usually result from attempting to access objects that have
not been elaborated.

Example

A sample Debugger session that includes use of the Put and Display procedures is
shown below:

Beginning to debug: DEBUG_DOC.TEST_PROGRAMS .EXAMPLE_FOR_MANUAL’BODY’'V(1l) %
IUSERS .BLB.DEBUG_DOC . TEST_PROGRAMS .EXAMPLE _FOR_MANUAL
Stop at: .command_procedure, Root task: [Task : ROOT_TASK, #1134E1].

Execute ("all"};
User break: .EXAMPLE_FOR_MANUAL.ls [Task : ROOT_TASK, #1134E1].

Display ("¥ROOT_TASK._1", @};
procedure .EXAMPLE_FOR_MANUAL 1s
type TERMINAL 1s (VT10@0, DASHER, CITS@@, ADM3);
type |ID 1s new INTEGER;
type TERM_ARRAY 1s array {1 .. 3} of TERMINAL;
type Rl 1s record
F1 : INTEGER;
F2 : CHARACTER;
F3 : TERM_ARRAY;
end record;
type ARl 1s access RI1;
Bl : TERMINAL := DASHER;
B2 : ID := ID'FIRST;

H QM-

~o0n

RAT'ONAL 7/1/87 DEB-103

procedure Put
package !Commands.Debug

8 B3 : Rl := RI’(F1 => @, F2 => 'b’, F3 => (VT100, DASHER, VT109));
9 B4 : ARl := new R1'(Fl => -2@, F2 => ASCI|.ESC, F3 => (DASHER, ADM3,
ClIT502));
begin
* 1 DEBUG_TOOLS .USER_BREAK ("");
end;

Now, the values of the variables are displayed. Note that the default context is the
top frame of the last task to stop—in this case, the procedure frame containing the
variables of interest.

Before the first Put command is executed, the variable name B1 is selected. The
Debugger echoes the following when is pressed:

Put ("%ROOT_TASK._1.B1");
DASHER

Note that, although the Value parameter to the Put command specified that a
selection be used, the name of the selected object is echoed in the command.

The following Put commands had string parameters of the form “b1” for their Value
parameters. Note that selection could have been used as well:

Put {"%ROOT_TASK._l.bl"};
DASHER

Put ("%ROOT_TASK._1.b2"};
-2147483647

Put ("¥ROOT_TASK._1.b3");

[F1 => 0
F2 => 'b’
F3 =>
[1..3]
[1 => VTl

2 => DASHER

3 => VT80)

]

Put ("¥ROOT_TASK._1.b4");
#1134E1 #80 -->
[F1 => -20
F2 => ASC!! .ESC
F3 =>
E 1 ..3]
1 => DASHER
2 => ADM3
] 3 => CiT500]

Put ("%ROOT_TASK._1.b4.£3(2)");
ADM3

Put ("%ROOT_TASK._1.b4.f3(5)");

DEB-104 e RATIONAL

procedure Put
package !Commands.Debug

Display error:
Array index out of bounds

Display ("%¥ROOT_TASK._l.b4", @)};
access Rl

Display ("%¥ROOT_TASK._1.b2", @);
range -2147483647 .. 2147483647

References

procedure Context

type Numeric

type Option

subtype Path_Name

procedure Set_Value

procedure Debug_Tools.Register
procedure Debug_Tools.Un_Register

RATIONAL 7/1/er DEB-105

procedure Release
package !Commands.Debug

procedure Release

procedure Release (Name : Task_Name := ""};

Description

Releases a task (or tasks) from the held state and moves the task to the stopped
state.

A task that is held either must be explicitly allowed to execute or can be moved to
the stop state by means of this operation. After the Release procedure is executed,
the referenced task will still be stopped as though a Stop procedure had been
executed.

The command Release ("all") clears any hold conditions. The command Execute
("all") then clears any stop conditions.

Parameters

Name : Task_Name := "";

Specifies the task to be released. The default is the task specified by the control
context or all tasks if the control context is not explicitly set.

The string “all” can be used to specify that all tasks are to be released.

References
procedure Execute
procedure Hold
procedure Stop

DEB-106 7/1/87 BA\TIONAL

procedure Remove
package !Commands.Debug

procedure Remove

procedure Remove (Breakpoint : Natural;
Delete : Boolean := False};

Description
Deactivates and possibly deletes the specified breakpoint(s).

The specified breakpoint will no longer interrupt execution. The breakpoint, if
not deleted, remains defined and can be reactivated at some later time by using
the Activate procedure. If deleted, the breakpoint no longer exists and cannot be
reactivated.

Parameters

Breakpoint : Natural;

Specifies which breakpoint to be deactivated. The number is assigned when the
breakpoint is created.

The number 0 is used to represent all breakpoints. Thus, the command Remove (@,
true) deletes all breakpoints.

Delete : Boolean := False;

Specifies whether to delete the breakpoint. The default is not to delete the break-
point.

Errors

The breakpoint does not exist.

References
procedure Activate
procedure Break

procedure Show (Breakpoints)

BA\-”ONAL 7/1/87 DEB-107

procedure Reset_Defaults
package !Commands.Debug

procedure Reset_Defaults

procedure Reset_Defaults;

Description

Resets all flag values, numeric values, and Boolean options to their standard values
and unregisters all special displays.

See procedure Debug_Tools.Register for more information on special displays.

If this procedure is executed from your login procedure, it automatically starts the
Debugger so that you do not have to wait for it to start when you debug the first
program in your session. The call to Reset_Defaults does not bring the Debugger
window onto your screen.

DEB-108 e RATIONAL

procedure Run
package 'Commands.Debug

procedure Run

Debug.Statement;
1,
'III);

procedure Run (Stop_At : Stop_Event :
Count : Positive
In_Task : Task_Name

Description

Executes the specified task(s) until the stop event has occurred the number of times
specified by the Count parameter.

By default, the last task to stop in the Debugger is run.

The Run procedure causes the specified task(s) to begin execution and then stop
after a specific situation described by the Stop_At parameter has occurred Count
times. A message is then displayed in the Debugger window, and the task stops.

If the Freeze_Tasks flag is true and all tasks are stopped implicitly as a result of
an individual task being stopped, the Run procedure commences execution of these
implicitly stopped tasks.

The task(s) may stop before Count events have occurred for some other reason.
For example, the task may raise an exception that causes the Debugger to stop its
execution or reach a breakpoint. If this happens, the stepping operation is still in
progress. When the task’s execution is resumed by the user, the task still stops
when Count events finally occur.

The Clear_Stepping procedure can be used to clear the stepping condition before
it has been triggered.

The most common use of the Run procedure is for the stepping of a task statement
by statement. The Run procedure with no parameters does this. After each exe-
cution, the Debugger reports the location of the next statement to be executed by
the task.

If the analysis of a single subprogram is desired, a breakpoint can be set at the
beginning of the procedure and, once the task reaches the breakpoint, the command
Run (Local_Statement) can be given to execute statements within that procedure.
The task being stepped in this way always stops within this subprogram. Calls
are executed as part of a single step when doing Local_Statement stepping. If the
subprogram returns, the task stops at the beginning of the next statement it is
about to execute.

Stepping substantially slows execution of the program. It may be wise to set break-
points near the region of interest in the program and step through only that part.

RATIONAL +/1/er DEB-109

procedure Run
package !Commands.Debug

Parameters

Stop_At : Stop_Event := Debug.Statement;
Specifies the event that will cause the task to stop. The default is any statement.

Count : Positive := 1;

Specifies the number of times the event must be executed before the task stops.
The default is the first execution of the event, which stops the task.

"

In_Task : Task_Name := "";

Specifies the task to be run. The default is the task specified by the control context.
If the control context is not explicitly set, the default is the last task to stop in the
Debugger. The string “all” can be used to specify that all tasks are to be run.

Restrictions

Only one stepping operation can be in progress for a task at any given time. Starting
a new one cancels an existing operation for a given task.

Errors

The number of debugging operations that can be applied to a specific task is limited.
If too many breakpoints are set in a given task, it may not be possible to execute
the Run procedure for that task.

Example

When the Debugger stops and displays:
Break 1: .STEPPING_TEST.2s [#620E]

the user enters the command:

Run (Statement, 3, "¥B602E");

and the Debugger then displays:
Step: .STEPPING_TEST.Ss [#620E]

DEB-110 e RATIONAL

procedure Run
package !Commands.Debug

References
procedure Clear_Stepping
procedure Show (Steps)

PAT‘ONAL 7/1/87 DEB-111

procedure Set_Task_Name
package !Commands.Debug

procedure Set_Task_Name

procedure Set_Task_Name (For_Task : Task_Name :
To_Name : String

wn
—

Description
Assigns a string nickname for the named task.

The name can be used by the user in various Debugger commands as a synonym
for the task. The nickname can also be set by the Debug_Tools.Set_Task_Name

procedure.

To use such a nickname in a command, the name must be preceded by a percent
symbol (%). The string passed to this procedure, however, should not have a leading
percent symbol.

It is good practice to call the Set_Task_Name procedure in important (if not all)
tasks to identify them easily during debugging. The call is especially important
when multiple instances of the same task are created. It is some extra work to give
each a unique name, but the effort often greatly simplifies the task of understanding
what is going on during debugging.

If the name passed to the Set_Task_Name procedure has already been used by a
different task, then the name is removed from that old task and assigned to the
present caller to the Set_Task_Name procedure. Thus, only one task has a given
name at a given time.

The name Root_Task is automatically assigned to the root task (the command task)
in a job. To avoid confusion, it is best not to reassign this name.

Parameters

For_Task : Task_Name := ;

Specifies the task for which a nickname is desired. By default, when For_Task is
the null string (“”), the task last stopped in the Debugger is used unless the control
context is set. If the control context is set, its value is used when For_Task is the

null string.

DEB-112 s RATIONAL

procedure Set_Task_Name
package !Commands.Debug

To_Name : String := "";

Specifies the name to be assigned to the task. It is best to limit the name to
40 characters, because Debugger displays that include the task name are not as
readable if excessively long names are used.

The string must be a legal Ada identifier. If the string contains illegal characters
an error message appears.

References

type Path_Name

procedure Task_Display

procedure Debug_Tools.Set_Task_Name

RATIONAL 7/1/87 DEB-.i3

procedure Set_Value
package !Commands.Debug

procedure Set_Value

procedure Set_Value (Variable : Numeric;
To_Value : Integer):

Description

Sets the numeric variable flag controlling the behavior of the Debugger to the spec-
ified value.

See the Numeric type for more information on the numeric variable flags and their
meanings. See the Option type for more information on the Boolean option flags
and their meanings.

Parameters

Variable : Numeric;
Specifies the numeric variable to be changed.

To_Value : Integer;
Specifies the value to which the variable is set.

References
type Numeric

type Option

DEB-114 e RATIONAL

procedure Show
package 'Comimands.Debug

procedure Show

procedure Show (Values_For : State_Type := Debug.Breakpoints);

Description

Displays information about various Debugger facilities.

By default, the list of breakpoints is displayed.

If the Values_For parameter has the value of All_State, it causes all the informa-
tion to be displayed. Other values cause only the state for specific facilities to be

displayed. The content of each of those displays is described in examples 1 through
9, below.

Parameters

Values_For : State_Type := Debug.Breakpoints;

Specifies what class of state to be displayed. The default is the class of all break-
points.

Example 1

The command:
Show {Breakpoints);
produces the display:
Active Permanent Break 4 at !'USERS.JACK.TEMP.3d [any task]

Inactive Permanent Break S at IUSERS.JACK.T.ls [any task]
Active Temporary Break 6 at !USERS.JACK.JILL.ls [task : #2D110]

The display of breakpoint information lists all existent breakpoints. Listed for
each breakpoint is information about whether the breakpoint is active or inactive,
permanent or temporary, the break number, the location in which the break is set,
and the task to which the break applies.

Example 2

The command:

Show {Contexts});

displays the current control and evaluation contexts.

RATIONAL +/1/er DEB-115

procedure Show
package !Commands.Debug

The commands:
Context (Control,

Context (Evaluation,
Show (Contexts});

produce the display:

Evaluation context:

"%2D118");

"IUSERS .PHIL .PIE_CHART");

lusers.phil.pie_chart

Control context: #2D110
The commands:
Context (Control, "all"};

Context ({Evaluation,
Show (Contexts);

produce the display:

Evaluation context:
Control context: all

Example 3

The command:

Show (Flags);

displays the name of each known flag and its current value:

DISPLAY_COUNT
DISPLAY_LEVEL
ELEMENT _COUNT
FIRST_ELEMENT
HISTORY_COUNT
HISTORY_ENTRIES
HISTORY_START
MEMORY _COUNT
POINTER_LEVEL
STACK_COUNT
STACK_START
ADDRESSES
BREAK_AT_CREATION
DECLARATION_DISPLAY

DELETE_TEMPORARY _BREAKS

DISPLAY_CREATION
ECHO_COMMANDS
FREEZE _TASKS
INCLUDE _PACKAGES

INTERPRET _CONTROL _WORDS

KILL_OLD_JoBS
MACHINE_LEVEL

NO_HISTORY_TIMESTAMPS
OPTIMIZE_GENERIC_HISTORY
PERMANENT _BREAKPOINTS

PUT_LOCALS
QUAL IFY_STACK_NAMES
REQUIRE_DEBUG_OFF

DEB-116

")

10

3

25

1]

10

1000

10

3

3

10

1
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE

e RATIONAL

procedure Show
package !Commands.Debug

SAVE_EXCEPTIONS FALSE

SHOW_LOCATION TRUE

TIMESTAMPS FALSE

CACHE_STACK_FRAMES TRUE
Example 4

The command:

Show (Exceptions});

displays all active exception requests. At least one request is always active; it
indicates what to do for exceptions not covered by other exception requests.

The exception requests are listed from the most specific to the least specific. The
most specific requests are applied first to determine what action to take when an
exception is raised. The following example shows how, after exception-handling
requests are set up, the display changes to reflect those requests:

Show (EXCEPTIONS);
Debugger stops on: unlisted exceptions

Catch ("constraint_error", "all", "");

The exception constraint error will be caught when raised in any
location in all tasks.

Propagate ("tasking_error", "all", ""

The exception tasking_ error will be propagated when raised in any
location in 3l1 tasks.

Catch ("impliecit", "all™, ""});
Implicit exceptions will be caught when raised in any location in
all tasks.

Show (EXCEPTIONS});
Debugger stops on: Constraint_Error
Debugger doesn’t stop on: Tasking_Error
Debugger stops on: implicit
Debugger stops on: unlisted exceptions
Forget ("constraint_error”, "all", ™"
The exception constraint error has been forgotten for all locations
in all tasks.

Propagate ("", "all", ""};

Unlisted exceptions 1in unlisted locations and tasks will be propagated.

Catch ("!io.io_exceptions.layout_error”, "lcf8el", ""

The exception !io.io_exceptions.layout_ error will be oaught when
raised in any location in task #ICFBEL.

Show (EXCEPTIONS);
Debugger stops on: !lo.lo_Exceptions.lLayout_Error uwhen raised in task
#1CF8E1
Debugger doesn’t stop on: Tasking_Error
Debugger stops on: implicit
Debugger doesn’t stop on: unlisted exceptions

RATIONAL 7/1/er DEB-117

procedure Show
package !Commands.Debug

Example b

The command:
Show (Libraries);

example displays a list of current history being taken. lists the names of the cur-
rently registered libraries and their library units.

If Addresses is enabled, other machine information about the library is also dis-
played.

Show (LIBRARIES);
Libraries in use by this program:
Library: TEST_LIBRARY
Main Unit: Ml
Library Units:
package TEXT_IO
procedure TEST
procedure MAIN

Example 6

The following example lists information about trace conditions that are enabled.
The name of each affected task and the type of tracing enabled for it are displayed:

Trace {TRUE, STATEMENT, "all", "");
Statement tracing has been enabled for all locations in all tasks.

Trace (TRUE, CALL, "%1cf8el”, ""};
Call tracing has been enabled for all locations in
task A, #1CFBEL.

Show (TRACES);

Tasks which are tracing calls:
#1CFBEl: at all locations

Tasks which are tracing statements:
all: at all locations

No tasks are tracing exceptions.

Example 7

This example displays a list of current history being taken:

Take_History (TRUE, CALL, "all", ""};
Call history-taking has been enabled for all locations in all tasks.

Take_History (TRUE, STATEMENT, “all", "™},
Statement history-taking has been enabled for all locations in all tasks.

Take_History (TRUE, EXCEPTION_RAISED, "all", ""});
Exception history-taking has been enabled Por all locations in all tasks.

Show (HISTORIES);

History of Calls is being recorded for:
all tasks at all locations

DEB-118 7/1/87 BA\TIONAL

procedure Show
package !Commands.Debug

History of Statements is being recorded for:
all tasks at all locations

History of Exceptions 1s being recorded for:
all tasks at all locations

Example 8

This example displays a list of currently active stop and hold requests. If stop or
hold requests for all tasks have been entered, and later some tasks are released or
started, then the tasks that are exempt from the stop or hold request are listed.

Hold ("all");
Each task will stop by i1ts next statement.

Release ("¥lcfBel");
Fine.

Stop {"%¥1cfB8el"};
Task #1CFBEl will stop by its next statement.

Show ({STOPS_AND_HOLDS);
Stops and Holds:
All tasks: Hold
#1CFBE]1 Stop; exempt from hold all

Example 9

The following example lists the names of tasks that currently have stepping oper-
ations in progress. A stepping operation is initiated by the Run procedure and is
terminated when the stepping operation completes, a new one is initiated, or the
Clear_Stepping procedure is executed for a task.

Show (Steps);
Task #ICF8E1 stepping statements

Example 10

Other information that can be displayed includes Statistics (State_Type type). Re-
peated use of the command Show (Statistics) can give you an idea whether any
Debugger interactions are occurring within your program. Look for changing num-
bers.

RAT‘ONAL 7/1/87 DEB-119

procedure Show

package {Commands.Debug

References
procedure Break
procedure Catch
procedure Context
procedure Enable
procedure Flag
procedure Forget
procedure Hold
procedure Propagate
procedure Run
procedure Set_Value
type State_Type
procedure Stop

procedure Trace

procedure Debug_Tools.Register

DEB-120

s RATIONAL

procedure Source
package !Commands.Debug

procedure Source

"<SELECTION>"
2);

procedure Source (Location : Path_Name :
Stack_Frame : Integer

Description

Finds the source for the specified location and displays that location highlighted in
an Ada window.

By default, the source location for the next statement to be executed by the last
task stopped in the Debugger is highlighted in an Ada window.

The Location parameter is the primary means for specifying the source to display.
The Stack_Frame parameter provides a convenient means for specifying a frame to
display. Typically, the value of the Stack_Frame parameter is provided using argu-
ment prefix keys when the Source command is bound to a key. If the Stack_Frame
parameter is nonzero and the Location parameter specifies a special name (such
as "<SELECTION>"), the Location parameter is ignored and the source for t.ae frame
specified by Stack_Frame is displayed. If the Stack_Frame parameter is nonzero and
the Location parameter specifies a relative pathname, the actual pathname used to
specify the object to display is composed by appending the string “-n” to the value
of the Path._Name parameter, where n is the value of the Stack_Frame parame-
ter. If the Location parameter specifies an absolute pathname, the Stack_Frame
parameter is ignored.

If the null pathname (“”) is specified, or if a special name (such as "<SELECTION>")
is used but the item is not designated in the Debugger window, then the procedure
finds the location in which the current task last stopped. Otherwise, the procedure
attempts to find the most reasonable definition of the given pathname and the
current debugging context.

If the named location is:

» A task name, the corresponding task declaration is viewed.

* A frame number, the corresponding subprogram executing on that stack frame
is viewed.

A library unit, the library unit is viewed.

A statement or declaration, the containing unit is viewed and the statement or
declaration in the unit is highlighted.

Any other object, the object or its type is viewed.

RATIONAL +/yer DEB-121

procedure Source
package !Commands.Debug

Parameters

Location : Path_Name := "<SELECTION>";

Specifies the location to be viewed. The interpretation of this parameter is discussed
in more detail in the description above. By default, the source for the next statement
to be executed by the last task to stop in the Debugger is highlighted in an Ada
window.

Stack_Frame : Integer := 0;
Specifies the frame for which to display the source. The interpretation of this

parameter is discussed in more detail in the description above. By default, this
parameter is ignored and the item specified by the Location parameter is displayed.

References

procedure Display

DEB-122 e RATIONAL

procedure Stack
package !Commands.Debug

procedure Stack

procedure Stack (For_Task : Task_Name :
Start : Integer
Count : Natural

Description
Displays the specified frames of the stack of the named task.
By default, the stack for the task last stopped in the Debugger is displayed.

The Start parameter specifies the number of the first frame to be displayed, and
the Count parameter specifies the number of frames to be displayed.

The stack of any task in the job being debugged can be displayed. If the task is
running at the time the Stack procedure is called, the task is temporarily stopped
so that the display shows a consistent set of frames. After the display, the execution
of the task continues.

If you plan to take some action based on information in the display of the stack, such
as displaying the source for a frame, be sure that the task is stopped. Otherwise, the
information in the display probably will be obsolete by the time the later command
is issued.

Several options control the information displayed in the stack display. Qualify-
—Stack_Names (Option type), when true, causes the Ada names listed in the frame
to be fully qualified. If false, the standard setting, only the simple name of each
subprogram is listed.

The Addresses option, when true, causes machine information to be included in
the display. The specific information includes the value of the program counter
for that frame (segment and offset), the value of the stack frame pointer for that
frame, the outer frame pointer for that frame (points to the declarative context of
the subprogram, a control stack address), and the lexical level of the subprogram.

Parameters

For_Task : Task_Name := "";

Specifies the name of the task whose stack is to be displayed. The default is the
stack of the task specified by the current control context if the context is set, or it
is the last task stopped if the context is not set.

R)ATIONAL 7/1/87 DEB-123

procedure Stack
package !Commands.Debug

Start : Integer := 9;

Specifies the starting frame to be displayed. Stack frames are numbered from the
top (most recently called subprogram) starting with 1. If the value of Start is
negative, the frame is referenced relative to the bottom of the stack. Thus, —1 is
the bottommost frame, —2 the frame above that, and so on.

The default value for the Start parameter is controlled by Stack_Start (Numeric
type). The standard value is 1.

Count : Natural := 0;

Specifies the maximum number of frames to be displayed. The display always stops
if no more frames remain to be displayed.

The default value for the Count parameter is controlled by the Stack_Count option.
The standard value is 10.

Errors
The task name may be invalid.

The area of the stack to be displayed may be completely outside the current area
of the stack.

Example

Assume that the following program is being debugged and has stopped in the break-
point generated by the call to Debug_Tools.User_Break in procedure A:

with Debug_Tools;
procedure Nested_Calls is
procedure A is
begin
Debug_Tools.User_Break ("stopped in a");
end A;
procedure B is
begin
A;
end B;
procedure C is
begin
end C;
procedure D 1is
begin

C;
end D;
begin

DEB-124 e RATIONAL

procedure Stack
package !Commands.Debug

D;
end Nested_Calls;

If (staa) is pressed, the stack is displayed in the Debugger window:

Stack ("¥ROOT_TASK", @, 0);

Stack of task ROOT TASK #340E0:

1: A.ls

2: B.ls

C.ls

D.ls

NESTED_CALLS .1s

command_procedure.ls

: command_procedure {library elaboration block]

[
~NoOnNs W

The first line tells you the task whose stack is being displayed. Here the root task
of the main program whose string name is Root_Task and whose task number is
#340E0 is having its stack displayed.

The subsequent lines display the frames of the stack for the task. Each frame is
prefixed with its number (for example, _1:) and contains the location in the source
program corresponding to that frame. The top frame, frame 1, is the most recent
frame. Earlier frames have higher numbers. In this case, the bottom frame, number
7, is the code that elaborated the command that called the Nested_Calls program.

If the Qualify_Stack_Names option is set to true (with the Enable command), the
stack frames will be displayed with the full pathnames for their source locations.
For example:

Enable (QUALIFY_STACK_NAMES, TRUE);
The QUALIFY_STACK_NAMES flag has been set to TRUE.

Stack ("¥ROOT_TASK", 0, 0);

Stack of task ROOT TASK #340E0 :

1: .NESTED_CALLS.A.ls

.NESTED_CALLS .B.1s

.NESTED_CALLS.C.1s

.NESTED_CALLS.D.1s

.NESTED_CALLS.1s

.command_procedure. ls

_7: .command_procedure [library elaboration block]

~ounbsow

References
type Numeric
type Option

RATlONAL 7/1/87 DEB-125

type State_Type
package !Commands.Debug

type State_Type

type State_Type is (All_State, Breakpoints, Contexts, Exceptions, Flags,
Histories, Libraries, Special_Types, Steps,
Stops_And_Holds, Traces, Active_ltems,
Exception_Cache, Inner_State, Statistics});

Description

Defines the Debugger state information that can be displayed by the Show proce-
dure.

Enumerations

All_State

Specifies that the Breakpoints through Stops_And_Holds enumerations are dis-
played.

Breakpoints
Specifies that all defined (active and inactive) breakpoints are displayed.

Contexts
Specifies that the control and evaluation contexts are displayed.

Exceptions
Specifies that the catch and propagate exception requests are displayed.

Flags

Specifies that flag values in the Debugger, including those in the Option and Nu-
meric types, and the string-named flags set in the Flag procedure are displayed.

Histories

Specifies that the current requests for history taking are displayed.

Libraries
Specifies that all active libraries are displayed.

Special _Types

Specifies that the current set of registered special displays are to be displayed. See
the Debug_Tools.Register procedure for more information on special displays.

DEB-126 e RATIONAL

type State_Type
package 'Commands. Debug

Steps
Specifies that all tasks that are stepping and their current state are displayed.

Stops_And_Holds
Specifies that the current stop and hold requests are displayed.

Traces

Specifies that information is displayed about which tasks have tracing enabled and
what task types they are.

Active_ltems
For the use of Rational technical representatives only.

Exception_Cache
For the use of Rational technical representatives only.

Inner_State
For the use of Rational technical representatives only.

Statistics
For the use of Rational technical representatives only.

References
procedure Show

procedure Debug_Tools.Register

RATIONAL 7/1/er DEB-127

procedure Stop
package !Commands.Debug

procedure Stop

procedure Stop (Name : Task_Name := ""});

Description
Stops execution of the specified task(s).

The task is stopped at the beginning of the next executing statement in that task.
This procedure allows for rendezvous and complex statements to complete before
the stop takes effect. A message is displayed for each task when it stops. If the task
was previously stopped or held, the procedure has no effect.

If the Freeze_Tasks flag is true, the Debugger attempts to stop all other tasks.
Note that in this mode other tasks may not actually stop because they may be in
rendezvous with the stopped tasks, waiting for an entry call, and so on.

Stopping a task means that the task can be commanded to execute again either
implicitly or explicitly. The task then can be explicitly named in an Execute or
Run procedure or can be implicitly allowed to run as part of a group or set of
tasks allowed to run. This procedure contrasts with the , which requires explicit
commands to commence execution; that is, the task must be explicitly named to
be allowed to run.

The reserved name “all” implies that all tasks are to be stopped. The null string
(“”) implicitly specifies the name “all” unless the control context is set, in which case
it specifies the control context task. This includes tasks that are created after the
command Stop ("all") takes effect. The default for the task name is the current
control context. If that context is null, the default is all tasks.

Individual tasks can be stopped and allowed to continue. For example, all tasks can
be stopped and then some allowed to continue by means of the Execute procedure.
If the continued tasks had created new tasks, the new tasks would stop because the
command Stop ("all") would still be in effect.

The command Execute ("all") clears the command Stop ("all"). Starting indi-
vidual tasks does not clear this stop condition.

Parameters

Name : Task_Name := "";

Specifies the task(s) to be stopped. The default is the current control context task.
If the control context is not set, the default is all tasks.

DEB-128 7/1/87 QATIONAL

procedure Stop
package i{Commands.Debug

Restrictions

The named task must exist.

Example

The following example describes the sequence of events that occurs after a Stop
command is given when debugging a multitasking program:

Each task will stop by its next statement.

Stop: .PRODUCER_CONSUMER.CONSUMER.4S [Task : CONSUMER, #2F8D4].
Stop: .PRODUCER_CONSUMER.PRODUCER.4S [Task : PRODUCER, #2F4D4].
Stop: .PRODUCER_CONSUMER.QUEUE.7S ([Task : QUEUE, #2F@D4].

The first line appears immediately after the Stop command is given. Then each task
stops one by one. There may be some delay because each task must complete its
current statement or declaration before being stopped by the Debugger. If there are
delay statements, rendezvous, or complex statements, the task may require some
time before being stopped.

References
procedure Execute
procedure Hold
procedure Release
procedure Run

procedure Task_Display

RATIONAL 7/1/87 DEB-129

type Stop-Event
package !Commands.Debug

type Stop—Event

type Stop_Event is (About_To_Return, Begin_Rendezvous, End_Rendezvous,
Local_Statement, Machine_lnstruction,
Procedure_Entry, Returned, Statement);

Description
Defines the events used to specify when a task should stop.

Used in the , the Stop_Event type selects what event in the execution of a task will
cause that task to stop.

Enumerations

About_To_Return

Specifies that the task is about to return from a subprogram. This enumeration is
a return statement or the end of a subprogram.

Begin_Rendezvous

Specifies that the task is starting to rendezvous with another task. This enumeration
applies only to the accepting task. Entry calls do not cause tasks that are stepping
to break until a rendezvous is begun.

End_Rendezvous

Specifies that the task is about to complete a rendezvous with another task. This
enumeration applies only to the accepting task and occurs after the last statement
that is part of the rendezvous is executed.

Local _Statement

Specifies that the task completed execution of the current statement. Local_State-
ment treats subprograms called from the current statement as part of it.

Machine_instruction

Specifies that the task has completed execution of the current machine instruction.
This event is not currently implemented for the R1000 target.

DEB-130 e RATIONAL

type Stop_Event
package 'Commands.Debug

Procedure_Entry

Specifies that the task has just entered a subprogram. The task stops before elab-
oration of the first declaration or, if no declarations exist, before execution of the
first statement.

Returned

Specifies that the task has just returned from the current subprogram and is about
to execute the next statement. Note that many levels of returns may occur if a
number of subprograms are at their last statement.

Statement

Specifies that the task has reached the beginning of the next statement. It may not
have completed the current statement if that statement is, or includes, a subprogram
call. In that case, the task stops at the first statement of declaration of the called
subprogram.

RATIONAL 7/1/er DEB-131

procedure Take_History
package !Commands.Debug

procedure Take_History

procedure Take_History (On : Boolean = True;
Event : Trace_Event := Debug.All_Events;
For_Task . Task_Name = """
At_Location : Path_Name := "<SELECTION>";
Stack_Frame : Integer 1= 9);

Description

Enables or disables the recording of information about events executed in the spec-
ified task at a specified part of the program.

By default, this procedure causes history to be accumulated for all tasks for all
events that occur in the selected location.

The Event parameter specifies the type of information to be recorded; the For_Task
parameter specifies the task to be monitored; and the At_Location parameter spec-
ifies the subprogram or statement to be monitored.

The Debugger can keep a history of execution for each task. The history is the
set of most recently executed statements, declarations, calls, rendezvous, and/or
exceptions. The set is limited to approximately 1,000 entries.

Execution is slowed significantly when history taking is enabled.

History information, like traces, can include messages about statements, calls, ren-
dezvous, and exception raising. Trace messages are displayed each time an event
occurs. Unlike traces, history messages are saved in a circular buffer in the Debug-
er. From the buffer, selected sets of messages can be displayed, such as messages
rom only a specific task or for some range of messages. See the Trace procedure
for more information on tracing.

The example, below, shows the output form for histories.

Parameters

On : Boolean := True;

Specifies whether to enable (turn on) or disable (turn off) the taking of the history
for the specified task. The default is to enable taking the history.

Event : Trace_Event := Debug.All_Events;
Specifies the type of information to be recorded. By default, all events are recorded.

DEB-132 e RATIONAL

procedure Take_History
package !Commands.Debug

For_Task : Task_Name := "";

Specifies the task of which to take the history. The default is the task specified by
the control context or, if the control context is not set to a specific task, all tasks.

At _Location : Path_Name := "<SELECTION>";

Specifies that the history that is gathered be restricted to the specified location.
The null string (“”) means all locations in the program. If the null string is not
specified, the At_Location parameter must refer to a subprogram or statement.

The At_Location parameter is the primary means for specifying the location for
which history should be recorded. The Stack_Frame parameter (see below) provides
a convenient means for specifying a frame (subprogram) for which to record history.
Typically, the value of the Stack_Frame parameter 1s provided using argument
prefix keys when the Take_History command is bound to a key. If the Stack_Frame
parameter is nonzero and the At_Location parameter specifies a special name (such
as "<SELECTION>"), the At_Location parameter is ignored and history recording
will be active in the subprogram specified by Stack_Frame. If the Stack_Frame
parameter is nonzero and the At_Location parameter specifies a relative pathname,
the actual pathname used to specify the location of the restriction is composed by
appending the string “_n” to the value of the Path_Name parameter, where n is
the value of the Stack_Frame parameter. If the At_Location parameter specifies an
absolute pathname, the Stack_Frame parameter is ignored.

If the At_Location parameter is a special name that does not resolve to a location
(for example, if the At_Location parameter is "<SELECTION>" and the cursor is not
in the selection), history recording will occur everywhere.

Stack_Frame : Integer := 0;

Specifies the frame (subprogram) for which to collect history. The interpretation
of this parameter is discussed in more detail in the description of the At_Location
parameter above. By default, this parameter is ignored and history recording occurs
at the location specified by the At_Location parameter.

Restrictions

A maximum of 20 requests for history taking can be set.

RATIONAL +/1/sr DEB-133

procedure Take_History
package !Commands.Debug

Example

This example shows that each line is displayed if all events are to be captured:
Call history-taking has been enabled for the specified location and task.

Exception history-taking has been enabled for the specified location
and task.

Statement history-taking has been enabled for the specified location
and task.

References
procedure History_Display
procedure Trace

type Trace_Event

DEB-134 7/1/87 RATIONAL

type Task_Category
package !Commands.Debug

type Task_Category

tupe Task_Category 1is (All_Tasks, Blocked, Held, Not_Running, Running,
Stopped) ;

Description

Defines the category or subset of tasks to be displayed by the Task_Display proce-
dure.

The type allows the Task_Display procedure to display information about only a
subset of all tasks in the current program.

Enumerations

All_Tasks

Specifies all tasks defined in the current program. The current program is defined
as all tasks created within the job being debugged.

Blocked

Specifies all tasks currently some external event, typically a rendezvous or a delay,
but not held or stopped in the Debugger.

Held

Specifies all tasks that are currently held in the Debugger (tasks are held by using
the Hold procedure). These tasks would always be in the set of stopped tasks as
well.

Not_Running

Specifies all tasks currently not executing for any reason. This set of tasks, stopped
within the Debugger, includes those not running for Ada reasons, such as delays.

Running

Specifies all tasks currently ready to run. Tasks that are executing delay statements
or waiting for a rendezvous are excluded, as are tasks stopped in the Debugger
because of breakpoints and the like.

Stopped
Specifies all tasks that are currently stopped in the Debugger.

RATIONAL +/1/er DEB-135

procedure Task_Display
package !Commands.Debug

procedure Task_Display

procedure Task Display (For_Task : Task_Name
Task_Set : Task_Category

DeBug.All_Tasks);

Description
Displays information about the named task(s).

This procedure displays information about a set of tasks or a named task is displayed
in the Debugger window.

If the For.Task parameter specifies a specific task, the Task_Set parameter is ig-
nored. If For_Task specifies all tasks (with the string “all”), Task_Set may select
some subset of all tasks.

The information displayed includes the Environment task number and string nick-
name for the task (if any), the Ada name of the task, the priority of the task,
the current state of the task, and (if applicable) the location in which the task is
stopped. The latter is included only if the task is stopped in the Debugger.

A string name for a task is set by a call to the Debug.Set_Task_Name procedure
or to the Debug_Tools.Set_Task_Name procedure.

The state information listed for the task indicates whether the task is running, is
being stopped, or is stopped. If the task is running, its execution state is listed.
If it is stopped, the reason for the stop is listed. A sample display appears in the
example below.

Terminated tasks are not listed.

The execution state messages displayed for running tasks are (the state name follows
the description and is enclosed in parentheses):

e "": The task is ready to execute or is currently executing. Higher-priority tasks
may prevent the task from running, but there is no condition associated with the
task to keep it from running. (Unblocked)

o aborting task: The module is in the process of aborting a task it has declared.
(Aborting-Module)

e activating child packages: The module is waiting for children packages to be-
come elaborated. (Activating-Module)

e activating child tasks: The module is telling its child tasks to become acti-
vated. (Activating_Tasks)

* attempting enmtry call: Reserved for future use. (Attempting_Entry)

DEB-136 e RATIONAL

procedure Task-Display
package !Commands.Debug

being aborted: The task is in the process of making another task abnormal
see the Reference Manual for the Ada Programming Language, Section 9.10).
Blocking_In_Abort)

delaying in wait service: The task is blocked in an Environment service and
has a maximum wait time. (Delaying_In_Wait_Service)

in wait service: The task is blocked in an Environment service. (In_Wait_Ser-
vice)

package completed: The task has reached its end and will terminate according to
Ada rules when its parent decides it is time to terminate. (Terminable_At_End)

state presently unknown: The task is processing a page fault. This transient
state is unlikely to be seen. (In_Fs_Rendezvous)

terminated: The task is terminated. (Terminated)

waiting at accept for entry call: The task is blocked at an accept statement,
waiting for an entry call. (Blocking_On_Accept)

waiting at entry for accept: The task is blocked waiting for an entry call to
be accepted. (Blocking_On_Entry)

waiting at select for entry call: The task is blocked at a select statement,
waiting for an entry call. (Blocking—On_Select)

waiting at select-delay for entry call: The task is blocked in a select with
a delay alternative waiting for an entry call. (Delaying_On_Select)

waiting at select-terminate for entry call with dependents: The task is ex-
ecuting at a select, with a terminate alternative, and has dependent, nonter-
minable tasks. (Awaiting_Children_In_Select)

waiting at select-terminate for entry call: The task is blocked in a select,
with a terminate alternative, waiting for an entry call and can terminate. (Ter-
minable_In_Select)

waiting at timed entry for accept: The task is blocked at a timed entry call
waiting for the called task to accept the call. (Delaying-On_Entry)

waiting for child elaboration: The module is in the process of declaring a task
or package. (Declaring_Module)

waiting for children: The task is waiting for its children tasks to be terminated.
(Awaiting_Children)

waiting for delay: The task is blocked at a delay statement. (Delaying)

waiting for parent elaboration: The module is waiting for a package or task
it has declared to become activated. (Awaiting_Activation)

waiting for task activation: The module has told its child tasks to become
activated and is waiting for confirmation that each has been activated. (Await-
ing_Task_Activation)

RATIONAL 7/1/er DEB-137

procedure Task_Display
package !Commands.Debug

Parameters

For_Task : Task_Name := "";

Specifies a specific task about which to display information. The default is the
control context task or, if the control context is not set, all tasks (or a possible
subset selected by the Task.Set parameter; see below).

The string “all” can be used to specify all tasks (or a possible subset selected by
the Task_Set parameter; see below).

Task_Set : Task_Category := Debug.All_Tasks;

Specifies a subset of the tasks about which to display information. The default
parameter is all tasks. This parameter is ignored if the For_Task parameter specifies
a specific task.

Errors

The named task does not exist.

DEB-138 e RATIONAL

procedure Task_Display
package !Commands.Debug

Example

The following example illustrates some of the kinds of information that the Task-
—Display command produces:

Job: 212, Root task: #2DCD4

ROOT_TASK, #2DCD4 (Root task): Running, waiting for children. [Pri = 1]

QUEUE, #2F@D4 (.PRODUCER_CONSUMER.QUEUE): Stop at .PRODUCER_CONSUMER.
QUELE.7S. [Pri = 1]

PRODUCER, #2F4D4 (.PRODUCER_CONSUMER.PRODUCER}: Stop at
.PRODUCER_CONSUMER .PRODUCER .4S. [Pri = 1]

CONSUMER, #2F8D4 (.PRODUCER_CONSUMER.CONSUMER): Stop at
.PRODUCER_CONSUMER .PRODUCER .4S. [Pr1 = 1]

The first line of the above display from the Debugger window indicates the job num-
ber of the program being debugged and the root task number of the job. The root
task is the task that was created when the command was executed with debugging
enabled.

Each entry (four are shown in the above display) begins with the task name defined
in the program, if any, then the Environment task number, followed by the Ada
name of the task in parentheses. Here, task #2FoD4 is declared as task Queue within
program unit Producer_Consumer. Task #2DCD4 is the root task and has no Ada
task declaration.

Task Queue is stopped at statement 7. Task #2DCD4 is currently not stopped, but it
is not ready to run because it is waiting for one or more child tasks to be terminated.

RATIONAL 7/y/er DEB-139

subtype Task_Name
package !Commands.Debug

subtype Task_Name

subtype Task_Name is String;

Description

Defines a hexadecimal number or a string representation of the name of a task in
the program that is being debugged.

Many operations require a specific task to be named. This type defines the way in
which those tasks are named. The names can take either of two forms: a hexadeci-

mal number or a user-defined string.

Each task in the program is assigned a number by the Rational Environment. This
number cannot be predicted. When a task stops in the Debugger, its number is
reported (along with other information about the task). The Task_Display proce-
dure lists all tasks in the job being debugged along with the number and Ada name

of the task.

Tasks can also be assigned a string nickname. This assignment is made by the
Set_Task_Name procedure in this package. This assignment is also made by having
the task that is to have the name call the Debug_Tools.Set_Task_Name procedure.
String names assigned to be task names must be legal Ada identifiers. In particular,
these names must not contain periods.

Restrictions

The task name must be prefixed with the percent symbol (%). This character
identifies the name as a task name.

An exception is made if the numeric form of the task name is used and the leading

digit of the task number is a numeral (0 through 9). No other interpretation of the
name is possible in this case, so the leading percent symbol (%) is optional.

DEB-140 e RATIONAL

subtype Task_Name
package !Commands.Debug

References

procedure Break
procedure Execute
procedure Hold

procedure Run

procedure Set_Task_Name
procedure Stack

procedure Stop

procedure Task_Display
procedure Trace

procedure Xecute

procedure Debug_Tools.Set_Task_Name

RATIONAL 71/er

DEB-141

procedure Trace
package !Commands.Debug

procedure Trace

procedure Trace (On : Boolean = True;
Event : Trace_Event := Debug.All_Events;
In_Task : Task_Name ="";
At_Location : Path_Name = "<SELECTION>";
Stack_Frame : Integer = 0);

Description

Enables or disables the tracing of specified events in the named task.

By default, tracing will begin for all events in all tasks when the events occur at
the selected location.

A trace displays information about the execution of the task in the Debugger win-
dow. The procedure defines and enables or disables these traces. Trace output can
also be directed to a file using the Trace_To_File procedure.

Trace information, like histories, can include messages about statements, calls, ren-
dezvous, and exception raising. Trace messages are displayed each time an event
occurs. Unlike traces, history messages are saved in a circular buffer in the Debug-
ger. From the buffer, selected sets of messages can be displayed, such as messages
from only a specific task or for some range of messages. See the Take_History and
History_Display procedures for more information on histories.

See the example below for a discussion of the output form.

Trace messages are displayed as follows:

o Statement trace messages are displayed before the statement is executed.

o Call trace messages are displayed before the first and after the last declaration
or statement of the subprogram is executed.

¢ Rendezvous trace messages are displayed before the first statement of the ren-
dezvous is executed.

¢ Exception trace messages are displayed immediately after the exception is raised
but before any stack frames are popped and before the handler code is executed.

DEB-142 e RATIONAL

procedure Trace
package !Commands.Debug

Parameters

On : Boolean := True;
Specifies whether to enable or disable the trace. The default is to enable the trace.

Event : Trace_Event := Debug.All_Events;
Specifies the class of execution events to be traced. The default is to trace all events.

in_Task : Task_Name := ""

Specifies the task to be traced. The default is the task specified by the current
control context. If the control context is not set to a specific task, the default is all
tasks.

At_Location : Path_Name := "<SELECTION>";

Specifies a restriction on the location in which tracing should be active. This pa-
rameter can specify a subprogram or a statement. Multiple Trace procedures can
be executed to enable tracing in several subprograms. The null string g”) specifies
that tracing should be enabled everywhere in the program being debugged. By
default, tracing is performed only at the selected location.

The At_Location parameter is the primary means for specifying the location at
which tracing should be performed. The Stack_Frame parameter (see below) pro-
vides a convenient means for specifying a frame in which to perform tracing. Typ-
ically, the value of the Stack_Frame parameter is provided using argument prefix
keys when the Trace command is bound to a key. If the Stack_Frame parame-
ter is nonzero and the At_Location parameter specifies a special name E)such as
"<SELECTION>"), the At_Location parameter is ignored and tracing is active in the
subprogram specified by Stack_Frame. If the Stack_Frame parameter is nonzero
and the At_Location parameter specifies a relative pathname, the actual path-
name used to specify the location of the restriction is composed by appending the
string “.n” to the value of the Path_Name parameter, where n is the value of
the Stack_Frame parameter. If the At_Location parameter specifies an absolute
pathname, the Stack_Frame parameter is ignored.

If the At_Location parameter is a special name that does not resolve to a location
(for example, if the At_Location parameter is "<SELECTION>" and the cursor is not
in the selection), tracing will occur everywhere.

Stack_Frame : Integer := B;

Specifies the frame (subprogram) in which to perform tracing. The interpretation
of this parameter is discussed in more detail in the description of the At_Location
parameter above. By default, this parameter is ignored and tracing occurs at the
location specified by the At_Location parameter.

RATIONAL +/1/sr DEB-143

procedure Trace
package !Commands.Debug

Restrictions
A maximum of 20 tracing requests can be set.

Tracing substantially slows execution because messages must be displayed for each
trace event. Thus, it is a good idea to use tracing only in regions of the program
where information is required. Tracing can be done in part by stopping the program
at the beginning of the region to be traced, enabling tracing, and then stepping
some moderate number of statements. When the desired information is obtained,
execution can be stopped and tracing disabled.

Tracing can be disabled only for a location in which it was enabled. The disabling
of tracing at a specific location cannot be used to achieve the effect of tracing
everywhere but in a specific location.

Example

If the commands:

Trace (True, Statement, "%432E");
Trace (True, Call, "%542E"};
Trace (True, Exception_Raised);

are issued, the sample trace messages would be:

Statement trace at IUSERS.DRK.TEST_JOB.4s [Task : #432E].
Statement trace at !'USERS.DRK.TEST_JOB.Ss [Task : #432E].
Call trace at !'USERS.DRK.READY [Task : #542E].

Call trace at !USERS.DRK.READY.SET [Task : #542E].

Call trace at !'USERS.DRK.READY.GO [Task : #542E].

Call trace at 'USERS.DRK.READY.GO.START [Task : #542E].
Call trace at !USERS.DRK.WAIT [Task : #542E].

Call trace at !USERS.DRK.POSTMORTEM [Task : #542E].
Exception trace at !USERS.DRK.INTERCEPT.7s [Task : #542E].
Exception was !'USERS.DRK.OUT_OF _RANGE.

Each trace message identifies the type of trace, the current location of the executing
task, and the task name. Exception messages also name the exception raised.

DEB-144 e RATIONAL

procedure Trace
package !{Commands.Debug

References

procedure History_Display
procedure Take_History
type Trace_Event

procedure Trace_To_File

RATIONAL /e DEB-145

type Trace_Event
package !Commands.Debug

type Trace_Event

type Trace_Event i1s (All_Events, Call, Exception_Raised,
Propagate_Exception, Rendezvous, Statement);

Description

Defines the class of events that are to be traced by the Trace and Take_History
procedures.

Enumerations

All _Events

Specifies all events, including statements, exceptions, rendezvous, and subprogram
calls, to be traced.

Call
Specifies subprogram calls and returns to be traced.

Exception_Raised
Specifies points where exceptions are raised to be traced.

Propagate_Exception
Specifies subprograms where exceptions are propagated to be traced.

Rendezvous
Specifies begin and end rendezvous to be traced.

Statement
Specifies all statements to be traced.

DEB-146 7/1/87 '?ATIONAL

procedure Trace_To_File
package !Commands.Debug

procedure Trace_To_File

procedure Trace_To_File (File_Name : String := ">> FILE NAME <<"};

Description

Sends trace output to the file specified by File_Name parameter.

This procedure causes any existing file being used for tracing output to be closed.
If the File_Name parameter is null, subsequent output goes to the Debugger win-

dow. Thus, the command Trace_To_File ("") restores tracing output to the De-
bugger window and closes the previously selected output file.

Parameters

File_Name : String := ">> FILE NAME <<";

Specifies the file to which to send tracing output. The default parameter placeholder
must be replaced with a legal file name or “” or an error message will be generated.

If File_Name is null, subsequent output goes to the Debugger window. Thus, the
command Trace_To_File ("") restores tracing output to the Debugger window and
closes the previously selected output file.

RATIONAL 71/er DEB-147

procedure Xecute
package !Commands.Debug

procedure Xecute

procedure Xecute (Name : Task_Name := ""};

Description
Commences (or resumes) execution of the named task(s).
This command is functionally equivalent to the Execute procedure.

The named task starts executing from its current location—that is, from where it
was stopped because of a breakpoint or a Stop or Hold procedure, an exception
being trapped, or the end of a stepping request. If the task is already executing,
the procedure has no effect.

If a specific task is named and that task is being held (by means of the Hold
procedure), then the hold condition is removed.

If the Name parameter is “all”, any task that is stopped for any reason in the
Debugger is allowed to continue unless the task has a hold on it. Tasks subject to
hold conditions must be started individually by name, or the hold condition must
be released with the Release procedure.

If the Freeze_Tasks flag is true and all tasks are stopped implicitly as a result of an
individual task being stopped, the Xecute procedure commences execution of these

implicitly stopped tasks.

Parameters

Name : Task_Name := "";

Specifies the task to be executed. The default is the task specified by the control
context or all nonheld tasks if the control context is not explicitly set.

The reserved word “all” can be used to specify that all nonheld tasks are to executed.

See the Hold procedure for more information on the held state.

Errors

A No tasks are stopped message occurs when no tasks are stopped in the Debugger
or when the only tasks stopped are subject to hold conditions.

DEB-148 e RATIONAL

procedure Xecute
package !Commands.Debug

References
procedure Break
procedure Execute
procedure Hold
procedure Release

procedure Stop

end Debug;

R)ATIONAL 7/1/87 DEB-149

package Debug_Tools

Package Debug_Tools provides a programmatic interface to the Debugger. These
subprograms can be used in a program to pass information back to the Debugger.
They can also be used to determine information about the task calling the sub-
programs, including the most recent exception raised, the current program counter
location, the Debugger task name synonym, and so on. The subprograms also
provide a means for creating special display procedures for the Debugger to use
to display the value variables of specific types (for example, when using the De-
bug.Put command), where users do not want the Debugger to use the structural
type information for displaying these values.

The preceding section describes package !Commands.Debug, which contains the
interactive commands for Debugger operations.

RATIONAL 7/y/er DEB-151

function Ada_Location
package !Tools.Debug_Tools

function Ada_Location

function Ada_Location (Frame_Number : Natural := 0;

Fully_Qualify : Boolean := True;

Machine_Info : Boolean := False) return String;
Description

Returns a string representing the Ada name of the source location in the calling
subprogram or a caller of the calling subprogram.

The null string is returned if the frame specified by the Frame_Number parameter
does not exist.

Parameters

Frame_Number : Natural := 0;

Specifies, when Frame_Number = 0, that the source location in the caller of Ada-
—Location be returned. Frame_Number = 1 specifies that the source location in
the caller of the caller of Ada_Location be returned, and so on.

Fully_Qualify : Boolean := True;

Specifies, when true, that the name returned be fully qualified. Otherwise, only the
simple name of the subprogram is returned.

Machine_Info : Boolean := False;

Specifies, when true, that machine information, such as the program counter, be
returned as part of the string.

return String;

Returns the Ada name of the location. The value of the string may be relatively
long, especially if Fully_Qualify and Machine_Info are both true. The string con-
tains blanks but no embedded control characters.

DEB-152 e RATIONAL

function Ada _Location
package !Tools.Debug._Tools

Restrictions

Frames for which no name is available cause the return of a nonnull string that
states that no name is available.

If there is no Debugger for the session (that is, if no jobs have been debugged
since the user logged in), this function returns the string "Unknown - Debugger not
started”.

Example
If a task issues the call:
to.Put_Line (Debug_Tools.Ada_Location};

the output displayed in the output window is:
.DEBUG_TOOLS_EXAMPLES .4s

RATIONAL +/1/er DEB-153

procedure Debug_Off
package !Tuols.Debug_Tools

procedure Debug.Off

procedure Debug_Off;

Description
Disables debugging in the calling task.

This command allows a program to turn off debugging so that the Debugger does
not interfere with program behavior. When a program is being debugged, it can
turn off debugging by calling the Debug_Off procedure; when the program desires
to allow debugging again, it can call the Debug_On procedure. When debugging
is off, you are not able to control execution using the Debugger (including catching
exceptions and so on).

Restrictions

If this command is called from a job not currently being debugged, the call is ignored
and has no effect.

References
procedure Debug_On

function Debugging

DEB-154 e RATIONAL

procedure Debug_On
package !Tools.Debug_Tools

procedure Debug_On

procedure Debug_On;

Description
Enables debugging for the calling task.

Used only after the Debug_Off procedure has been called, the command allows
a program to implement a region in which the Debugger will not interfere with
program execution. Such regions can be created by calling the Debug_Off procedure
at the beginning of the region to tell the Debugger not to interfere until the next call
to Debug_On, and then calling the Debug_On procedure at the end of the region
to resume Debugger control. During execution in this region, you are not able to
control execution using the Debugger (including catching exceptions).

Any tasks created from a region in which debugging is not enabled also do not
have debugging enabled. Once the Debug_On procedure has been called, tasks
subsequently created will have debugging enabled.

Restrictions

If called from a job not currently being debugged, the call is ignored and has no
effect.

References
procedure Debug_Off
function Debugging

QATIONAL 7/1/87 DEB-155

function Debugging
package !Tools.Debug_Tools

function Debugging

function Debugging return Boolean;

Description

Returns true if the currently executing program is under the control of the Debugger;
otherwise, the function returns false.

Parameters

return Boolean;

Returns true if the currently executing program is under the control of the Debugger;
otherwise, the function returns false.

References
procedure Debug_Off
procedure Debug-On

EST, procedure Command.Debug

DEB-156 7/1/87 RATIONAL

function Get_Exception_Name
package !Tools.Debug_Tools

function Get_Exception_Name

function Get_Exception_Name (Fully_Qualify : Boolean := True;
Machine_!nfo : Boolean := False)
return String;

Description

Returns the name of the most recently raised exception for the task that calls this
function and, optionally, returns additional machine-related information about the
exception.

This function must be called directly or indirectly from an exception handler. The
null string is returned if no exception is currently active for the calling task.

If Machine_Info is true, the address in which the exception was raised and the
exception’s machine representation are displayed. These numbers can be given
to the Debug.Address_To_Location and Debug.Exception_To_Name procedures to
get their source representations (assuming that the Ada units still exist and the
exception was not raised or declared in a Command window).

Parameters

Fully_Qualify : Boolean := True;
Specifies, when true, that the exception name returned be fully qualified.

Machine_Info : Boolean := False;

Specifies, when true, that machine information, such as the program counter in
which the exception is raised, be included in the string.

return String;

Returns information about the exception. The string may be relatively long (that
is, greater than 80 characters), especially if Fully_Qualify and Machine_Info are
both true.

RAT'ONAL 7/1/87 DEB-157

function Get_Exception_Name
package !Tools.Debug._Tools

Example

If a task is in an exception handler because of a ProgramError exception and issues
the call:

lo.Put_Line {Debug_Tools.Get_Exception_Name};

the output displayed in the output window is:

Program_Error

References
procedure Debug.Address.To_Location

procedure Debug.Exception_To_Name

DEB-158 7/1/87 EAT'ONAL

function Get_Raise_Location
package !Tools.Debug_Tools

function Get_Raise_Location

True;
False)
return String;

function Get_Raise_lLocation (Fully_Qualify : Boolean :
Machine_Iinfo : Boolean :

Description

Returns a representation of the location in the source from which the most re-
cent exception for the task calling this function was raised and, optionally, returns
additional machine-related information about the raise location.

This function must be called directly or indirectly from an exception handler. The
null string is returned if no exception is currently active for the calling task or if
problems are encountered getting the raise location information.

If Machine_Info is true, the address in which the exception was raised and the
exception’s machine representation are displayed. These numbers can be given
to the Debug.Address_To_Location and Debug.Exception_To_Name procedures to
get their source representations (assuming that the Ada units still exist and the
exception was not raised or declared in a Command window).

Parameters

Fully_Qualify : Boolean := True;
Specifies, when true, that the raise location returned be fully qualified.

Machine_Info : Boolean := False;

Specifies, when true, that machine information, such as the program counter address
in which the exception was raised, be included in the string.

return String;

Returns the location in the source from which the most recent exception for the
calling task was raised. The string may be relatively long (that is, greater than 80
characters), especially if Fully_Qualify and Machine_Info are both true.

Restrictions

If there is no Debugger for the session (that is, if no jobs have been debugged since
the user logged in), this function will return only low-level machine information.

RATIONAL 7/1/er DEB-159

function Get_Raise_Location
package !Tools.Debug_Tools

Example

If a task in a program being debugged with a number 1CCD4 is in an exception
handler because of a Program_Error exception and issues the call:

lo.Put_Line (Debug_Tools.Get_Raise_Location};

the output displayed in the output window is:

Task ROOT_TASK, #1CCD4:
Exception Program_Error raised at: .DEBUG_TOOLS_EXAMPLES.Ss.

References

procedure Debug.Address_To_Location

DEB-160 1ys RATIONAL

function Get_Task_Name
package !Tools.Debug_Tools

function Get_Task_Name

function Get_Task_Name return String;

Description
Returns any task name set by the Set_Task_Name procedure.
This function allows a task to interrogate its name. If the function is called by a

task not in a job presently being debugged, the name passed to Set_Task_Name
may or may not be returned.

Parameters

return String;

Returns whatever is passed to the Set_Task_Name procedure. The null string is
returned if no name has been assigned.

Example

If a main program with no tasks is being debugged and issues the call:
lo.Put_Line (Debug_Tools.Get_Task_Name);

the output displayed in the output window is:
Root_Task

If that program had first set the name of its root task to “Main” by calling the
Set_Task_Name procedure, the following output would have been displayed:

Main

Restrictions

If there is no Debugger for the session, this function always returns the null string

(“”).

RATIONAL 7y/er DEB-161

function Get_Task_Name
package !Tools.Debug_Tools

References
procedure Set_Task_Name

procedure Debug.Set_Task_Name

DEB-162 1yer RATIONAL

procedure Message
package Tools.Debug_Tools

procedure Message

procedure Message {Info : String};

Description
Causes a message to be displayed in the Debugger window.

A call to the Message procedure from any task being debugged causes a message as
specified by the Info parameter to be displayed in the Debugger window.

If there is no Debugger for the session, the operation has no effect.

Parameters

Info : String;

Specifies the string that is displayed in the Debugger window. Multiple lines should
be separated with Ascii.Lf characters.

Example
If a task with number 1CCD4 issues the call:
Debug_Tools .Message ("here is a message");

the message displayed in the Debugger window is:
From task: ROOT_TASK, #1CCD4: here 1s a message

RATIONAL +/1/er DEB-163

RATIONAL

generic procedure Register

This generic procedure provides facilities that enable you to write spectal display
routines for the Debugger. The Debugger uses the routines to display the value of
variables and to perform other actions. These display routines can be created for
any type defined in the Rational Environment or in your applications.

The display routines are created and then registered with the Debugger. Once a
special display is registered for a type, the Debugger uses it (instead of the struc-
tural type information from the type declaration) when the Debug.Put command
is executed on variables of that type. Registering a new special display for a type
overrides any existing special displays for the type and the type’s normal structural
display. Special displays can be unregistered to enable the use of a type’s normal
structural display.

Special displays can be registered when the Debugger is started in the default De-
bugger_Initialization procedure. If they are registered in this procedure, they will
remain in effect until explicitly unregistered, until a new special display is registered
for the type, until the user logs off from the session, or until the Debugger is killed.
Special displays can also be registered by the job being debugged. In this case, the
special display remains in effect during the life of the job, until the special display
is unregistered, or until a new special display is registered for the type.

Note that, by default, the Debugger has preregistered special displays for many
of the important types defined in the specifications of the Rational Environment.
These displays can be redefined if necessary. The types that have displays registered
for them include:

‘Implementation.Activity_Implementation.Activity_Handle
!Implementation.Activity_Implementation.Iterator
Implementation.Dependency_Data_Base.lterator
Implementation.Dependency.-Data_Base.Defid_Iterator
Implementation.Diana.Attr_List
Implementation.Diana.Attr-Name
!Implementation.Diana.Comment
Implementation.Diana.Number_Rep

RATIONAL +1/er DEB-165

package !Tools.Debug_Tools

Implementation.Diana.Sequence
Implementation.Diana.Seq-Type
Implementation.Diana.Symbol_Rep
Implementation.Diana.Temp_Seq
Implementation.Diana.Tree
Implementation.Diana.Value
Implementation.Directory.Ada.Unit
Implementation.Directory.Class
Implementation.Directory.Naming.Iterator
Implementation.Directory.Object
Implementation.Directory.Object_Set.Iterator
Implementation.Directory.Object_Set.Set
Implementation.Directory.Traversal. Associated_Object_Iterator
{Implementation.Directory.Traversal.Object_Iterator
Implementation.Directory.Traversal.Subobject_Iterator
Implementation.Directory.Traversal.Subunit_Iterator
Implementation.Directory.Traversal. Version_Iterator
Implementation.Directory.Version
Implementation.Error_Messages.Annotation
Implementation.Error_Messages.Errors
Implementation.Links_Implementation.Iterator
Implementation.Low_Level_Action.Id
Implementation.Switch_Implementation.Iterator
Implementation.Universal.Float
Implementation.Universal.Int
Implementation.Universal.Integer
Implementation.Universal.Real
!To.Device_Independent_lo.File_Type
To.Io.File_Type

To.Object_Set.Iterator

To.Object_Set.Set

o.Pipe.Handle

o.Polymorphic_Io.File_Position
'To.Polymorphic-Io.Handle
Jo.Polymorphic_Sequential _Io.File_Type

DEB-166 7/1/87 I?ATIONAL

package !Tools.Debug_.Tools

o.Text_lo.File_Type
To.Window_Io.File_Type
'Lrm.Calendar.Time
'Tools.Bounded_String.Variable_String
1Tools.Directory_Tools.Object. Error_Code
1Tools.Directory_Tools.Object.Handle
'Tools.Directory_Tools.Object.Iterator
'Tools.Directory_Tools.Object.Message_List
'Tools.Directory—_Tools.Object.Subclass
'Tools.Link_Tools.Dependent_Iterator
ITools.Link_Tools.Link_Iterator
Tools.Profile.Response_Profile
'Tools.Simple_Status.Condition
1Tools.Simple_Status.Condition_Name
'Tools.String_Table.Item
'Tools.String_Table.Iterator
'Tools.System_Utilities.Job_Iterator
'Tools.System_Utilities.Session_Iterator
'Tools.System_Utilities. Terminal_Iterator
1Tools. Tape_-Tools.Logical_Device
'Tools.Unbounded_String.Variable_String

Several important restrictions that apply to special displays are described under
“Restrictions” in the reference entry for the Image generic formal function.

The formal parameters to the generic are:

generic
tyoe T is limited private;
with function Image (Value 1 T,
Level : Natural ;
Prefix : String;

Expand_Pointers : Boolean)} return String;
procedure Register;

These parameters define the type for which a special display is to be created and
the function that returns the images of values of that type. This function is used
by the Debugger when performing puts on values of that type. Instantiating the

eneric provides the registration procedure that can be called from your application
%or by your Debugger_Initialization procedure) to register the special display.

RATIONAL 7/1/87 DEB-167

package !Tools.Debug_Tools

Example 1

Even though there may be a structural display available for a type, a special display
may be more convenient to use. For example, data structures containing pointers
are often difficult to visualize from the structural display. The following example
shows how a special display can be constructed for lists. This special display outputs
the elements in the list as a text string instead of the pointer chain connecting the
list elements, as would typically be the case if a structural display were used.

with List_Generic;
package Integer_List 1is new List_Generic (Integer);
-- Example uses list gemeric from !Tools.

with !nteger_List;
package List_Display 1is

-- This package implements the special display for values
-- of tuype Integer_List.List.

procedure Register;

—- Causes the special display to be registered with the
—-- Debugger so that it will be used by the Debugger in

-~ subsequent Debug.Put commands instead of the normal

-- structural display.

end List_Display;
with Debug_Tools;

with String Utilities;
package body List Display is

function Element_Images (Value : Integer_List.List} return String is
begin
if Integer_List.|s_Empty (Value} then
return "";
else
return String_Utilities.Number_To_String
{Integer_List .First (Value})} &€ " " §

Element_Images (!nteger_List.Rest (Value));
end if,;
end Element_Images;
-- Recursive function that builds a string containing the
-- the images of the items in a list ordered from left to

-- right.
function Image (Value : Integer_lList.List;

Level : Natural;

Prefix : String;

Expand_Pointers : Boolean)} return String is
begin

if Integer_List.|s_Empty (Value) then
return "“the list is empty";
else
return "{ " Element_Images {Value} & "}"
end 1f;
end I[mage;
-~ The Image function used in this special display displays

DEB-168 e RATIONAL

package {Tools.Debug_Tools

~- lists with their elements ordered from left to right
-- enclosed in parentheses. E.g., "(12 3)".

procedure Register_Special_Display 1is
new Debug_Tools.Register (Integer_List.List, Image);

procedure Register 1is
begin

Register_Special _Display;
end Register;

begin
Register; -- Registers the special display upon elaboration.
ernd List Display;

with Text_lo;

with integer_List;
with List_Display;
procedure List_Test is

—— This is a main program used to test the special display
-- for Integer_List.List.

L : Integer_List.List := Integer_List.Nil;
begin
L := Integer_List.Make (3, L};
L := Integer_List . Make (2, L};
L := Integer_List.Make (1, L);
rull; -- A location on which to stop the Debugger.

end List_Test;

Assume that the List_Test procedure is run with the Debugger and stepped to the
null statement. If the Debug.Put command is executed at this point to display the
value of L, the Debugger responds as follows in the Debugger window:

Put ("%ROOT_TASK._1.L");
{(123)}

Example 2

Sometimes it is helpful in testing an application program to be able to initiate the
execution of subprograms as part of the job being debugged. For example, when
debugging an application using the Debugger, it might be helpful to be able to reset
some of the state of the application, display status information, or dump/restore
state, all by executing Debugger commands at certain times. The special display
facility can be used to do this.

The strategy consists of defining types and objects of these types for each of the
operations that you would like to trigger from the Debugger. Special displays are
then created and registered for each of these types. These special displays can be
designed to perform the actions desired. Finally, to invoke the special display and

RATIONAL 7/y/er DEB-169

package !Tools.Debug_Tools

to perform the action while debugging, simply execute the Debug.Put command on
the object corresponding to the action you want to perform. The Debugger will
execute the associated special display routine that will perform the action.

Here is a simple example of a package that implements such a strategy. Note that
the package would be withed into the library unit closure of the application. In this
example, the only effect of the operations is to write a message into a log file. These
actions typically would manipulate various pieces of the state of the application.

package Debugger_Operations 1is

-- This package implements various testing operations using
-- the Debugger special display mechanism. To perform the
-- desired action, perform a Debug.Put command on the ob ject

-- of the appropriate type.

type Reset_Type is new Boolean;

type Display_Status_Type 1s mew Boolean;
type Dump_State_Type 1s new Boolean;
type Restore_State_Type is new Boolean;

-- Performing a Debug.Put on the following objects causes the
-- associated action to be performed by the special display

-— for their types.
Reset : Reset_Type := True;
Display_Status : Display_Status_Type := True;
Dump_State : Dump_State_Type := True;
Restore_State : Restore_State_Type := True;
end Debugger _Operations;
with Text_lo;
with Debug_Tools;
package body Debugger_Operations 1s
File : Text_lo.File_Type;

Resetting : conmstant String := "... Resetting”;
Displaying_Status : constant String := "... Displaying status"”;
Dumping_State : comstant String := "... Dumping state”;
Restoring_State : constant String := "... Restoring state”;

function Reset_Implementation (Value : Reset_Type;
Level : Natural;
Prefix : String;

Expand_Pointers
return String is

begin
Text_io.Put_Line (File, Resetting);
return Resetting;

end Reset_Implementation;

DEB-170

: Boolean)

e RATIONAL

package {Tools.Debug_Tools

function Display_Status_implementation
{(Value : Display_Status_Type;
Level : Natural;
Prefix : String;
Expand_Pointers : Boolean) return String is
begin
Text_lo.Put_Line (File, Displaying_Status);
return Displaying_Status;
end Display_Status_Implementation;

function Dump_State_lmplementation
(Value : Dump_State_Type;
Level : Natural;
Prefix : String;
Expand_Pointers : Boolean) return String 1is
begin
Text_lo.Put_Lirne (File, Dumping_State};
Text_lo.Close (File);
return Dumping_State;
end Dump_State_Implementation;

function Restore_State_lImplementation
(Value : Restore_State_Type;
Level : Natural;
Prefix : String;
Expand_Pointers : Boolean) return String 1s
begin
Text_lo.Put_Line (File, Restoring_State};
return Restoring_State;
end Restore_State_l!mplementation;

procedure Special_Display_Reset 1is
new Debug_Tools.Register (Reset_Type, Reset_Implementation);

procedure Special _Display Display_Status 1s
new Debug_Tools.Register (Display_Status_Type,
Display_Status_Implementation);

procedure Special _Display Dump_State 1is
new Debug_Tools.Register (Dump_State_Type,
Dump_State_Implementation);
procedure Special_Display Restore_State 1is
new Debug_Tools.Register (Restore_State_Type,
Restore_State_Implementation);
begin
Special _Display_Reset;
Special _Display Display_Status;
Special _Display_Dump_State;
Special _Display_Restore_State;
Text_lo.Create (File, Text_lo.Out_File, “$log_file");

end Debugger_Operations;

RATIONAL 7/1/sr DEB-171

package !Tools.Debug_Tools

Example 3

For debugging applications containing types with complex structures, it is often
desirable to obtain different displays of the images of these types. For example,
you may want to obtain more or less detail, or you may want to look at different
classes of information at different times during the debugging session. There are
two approaches to using special displays to accomplish this.

One approach is to use variables in the special display packages to indicate the level
of detail or kind of information desired. The Image functions implementing the
special display for a type can read these variables and, depending on their values,
perform different actions. The values of these variables can be manipulated by
the Debug.Modify command or by the special displays, as described in Example 2
above.

The other approach is to create multiple special displays and register and unregis-
ter them dynamically at various points in your application. Note that this regis-
tration/unregistration can be accomplished explicitly in the application or by the
special displays, as described in Example 2 above.

DEB-172 7/1/87 PAT'ONAL

generic formal function Image
package '"Tools.Debug_Tools

generic formal function Image

with function Image (Value T,
Level : Natural ;
Prefix : String;

Expand_Pointers : Boolean} return String;

Description

Returns the string that is the image of the value of the Value parameter for the
special display for T.

Parameters

Value : T;
Specifies the value for which the image is to be computed.

Level : Natural;

Specifies the number of levels of detail to be displayed (determined dynamically by
the nesting level of Value in the structure being displayed by the Debugger and the
value of the Display_Level flag). If Level = 0, the entire value should be elided.

Prefix : String;

Specifies the prefix string to be appended to the beginning of any lines displayed
after an Ascii.Lf line terminator character.

Expand_Pointers : Boolean;

Specifies, if true, that internal pointers should be expanded in the image (determined
dynamically by the nesting level of Value in the structure being displayed by the
Debugger and the value of the Display_Numeric flag).

return String;
Returns the image of the value of the Value parameter.

The string may contain Ascii.Lf characters to indicate that the image spans multiple

lines. If Ascii.Lf characters are returned, the following line should be prefixed with
the string “Prefix”.

RATIONAL +/y/sr DEB-173

generic formal function Image
package !Tools.Debug-Tools

Restrictions

The Image function cannot call the Debugger &!speciﬁcally, it cannot call any of
the subprograms in packages Debug or Debug.Tools), and the code in the Image
function cannot be debugged using the Debugger when implicitly called as a result
of performing the Debug.Put command.

The image function currently is executed on the Debugger job thread and not the
job for the application. Consequently, the Image function is treated as part of the
Debugger job from a scheduling perspective. If the Image function is resource-
intensive (or goes into an infinite loop—see “Errors,” below), this may mean that
the system becomes heavily loaded during execution of the Image function.

Another implication of execution on the Debugger job thread is that the Image
function cannot depend on job-dependent state in the Rational Environment. For
example, the Standard_Output and Current_.Output files from package !lo.Text_Io
are job specific. If an Image function tries to perform a call to the Text_Io.Put_Line
procedure using the value of Current_Output for the file, the output will not go
to Current_Output for your application; instead, it will go to Current_Output for
the Debugger. Other examples of job-dependent state are current context, current
profile, and current activity.

Errors

If the Image function goes into an infinite loop, the Debug.Put command that
caused the call to the Image function will never complete. If this situation occurs,
perform the Debug.Kill command to terminate debugging of the job and start over
after removing the infinite loop from the special display.

References
type Debug.Numeric, enumeration Display_Level

type Debug.Numeric, enumeration Pointer_Level

DEB-174 e RATIONAL

procedure Register
package 'Tools. Debug.-Teols

procedure Register

procedure Register;

Description
Registers a special display for a type with the Debugger.

Registering a special display causes the Debugger to use your own display instead
of the default the Debugger uses when values with the Debug.Put command. Your
display is the image function that is supplied as the value for the Image generic for-
mal function in an instantiation of the Register procedure. This function is used by
the Debugger to compute the images of values of the type provided as the T generic
formal type in the instantiation of the Register procedure. See the introduction to
the Register generic procedure for more information on special displays.

If another special display is currently registered for the type, it is unregistered and
the new function is substituted.

Note that, by default, the Debugger has preregistered special displays for many
of the important types defined in the specifications of the Rational Environment.
These displays can be redefined if necessary. For a list of these types, see the
introduction to the reference entry for the Register generic procedure.

The Debugger command Debug.Show (Debug.Special _Types) can be used to get
a list of the special displays that have been registered by the user for the job
currently being debugged. Note that this list will not include the Environment
types automatically registered by the Debugger. See the introduction to the Register
generic procedure for a list of the preregistered Environment types.

Restrictions

Many important restrictions apply to the Image function being registered. See the
“Restrictions” section of the reference entry for the Image generic formal function
for these restrictions.

The source code for instantiations of the Register procedure must be on the system
on which the program being debugged is executing. This is an important restriction
to consider when using software that has been code-archived. The code-archived
software that is distributed can include the image functions needed for registra-
tion. However, the actual source code for the registration must exist on the system
receiving the code-archived software.

RATIONAL /s DEB-175

prccedure Register
package !Tools.Debug._Tools

References

generic formal function Image

procedure Debug.Show

type Debug.State_Type, enumeration Special_-Types

DEB-176

e RATIONAL

generic formai type T
package Tocls.Debug_Tools

generic formal type T

type T 1s limited private;

Description

Specifies the type for which the special display is being defined.

end Register;

RATIONAL 7/y/sr DEB-177

package Tools.Debug-Tools

DEB-178 e RATIONAL

procedure Set..Task_Name
package !Tools.Debug-Tools

procedure Set_Task_Name

procedure Set_Task_Name (Name : String);

Description
Assigns a string nickname for the named task.

The name can be used by the user in various Debugger commands as a synonym for
the task. If the command is called by a task in a job not presently being debugged,
the call has no effect. The nickname can also be set by the Debug.Set_Task_Name
procedure.

To use such a nickname in a command, the name must be preceded by a percent
symbol (%). The string passed to this procedure, however, should not have a leading
percent symbol.

It is good practice to call the Set_Task_Name procedure in important (if not all)
tasks to identify them easily during debugging. The call is especially important
when multiple instances of the same task are created. It is some extra work to give
each a unique name, but the effort often greatly simplifies the task of understanding
what is going on during debugging.

If the name passed to the Set_Task_Name procedure has already been used by a
different task, the name is removed from that old task and assigned to the present
caller to the Set_Task_Name procedure. Thus, only one task has a given name at
a given time.

The name Root_Task is automatically assigned to the root task (the command task)
in a job. To avoid confusion, it is best not to reassign this name.

Parameters

Name : String;

Specifies the name to be assigned to the task. It is best to limit the name to 40
characters, because Debugger displays that include the task name are less readable
if excessively long names are used.

The string must be a legal Ada identifier. If the string contains illegal characters,
it will be truncated to the longest leftmost substring that is a legal identifier.

RATIONAL 7/1/87 DEB-179

procedure Set_Task_Name
package !Tools.Debug_Tools

Restrictions

This procedure has no effect if the job is not being debugged.

References

function Get_Task_Name
subtype Debug.Path_Name
procedure Debug.Set_Task_Name
procedure Debug.Task_Display

DEB-180 e RATIONAL

generic procedure Un_Register

This generic procedure causes a special display registered for a type to no longer
be used by the Debugger for displaying objects of the type. When a special display
is unregistered, the Debugger will use the structural information in the type decla-
ration to display objects of these types. For more information on special displays,
see the Register generic procedure.

The formal parameters to the generic are:
generic
type T is limited private;
procedure Un_Register;

The parameter defines the type for which a special display is no longer to be used.

QAT'ONAL 7/1/87 DEB-181

generic formal type T
package !Tools.Debug_Tools

generic formal type T

type T is limited private;

Description

Specifies the type for which the special display is to be removed.

DEB-182 e RATIONAL

procedure Un_Register
package 'Tools.Debug_Tools

procedure Un_Register

procedure Un_Register;

Description

Causes the Debugger to stop using the Image procedure last registered for com-
puting the images of values of the T generxc formal type in calls to the Debug.Put
command for values of T type.

After the call to Un_Register, the default display will be based on the structural
information defining T.

If no special displays are registered for the type, this procedure has no effect.

References
generic formal function Image

generic procedure Register

end Un_Register;

RATIONAL 71/er DEB-183

package !Tools.Debug_Tools

DEB-184 e RATIONAL

procedure User..Break
package 'Tools.Debug-Tools

procedure User_Break

procedure User_Break (Info : String);

Description
Causes the calling task to stop as though a breakpoint were reached.

The string specified by the Info parameter is displayed in the Debugger window
along with a message that the task has stopped for a user break.

Parameters

Info : String;

Specifies the string that is displayed in the Debugger window. Multiple lines should
be separated by Ascii.Lf characters.

Example

In the following example, the break message appears as:

From task: ROOT_TASK, #1CCD4: Serious error encountered
User break: .DAEMON.CRASH.3s [Task : ROOT_TASK, #1CCD4].

which identifies the location and task name of the call to the User_Break procedure.
The string passed as the Info parameter was “Serious error encountered”.

Restrictions

If called by a task in a job that is not presently being debugged, this procedure has
no effect.

end Debug_Tools;

RATIONAL 7/1/er DEB-185

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

! (exclamation mark) special character DEB-18
$ (dollar sign)

special character DEB-18
$$ (double dollar sign) special character DEB-18, DEB-19
% (percent)

special character DEB-18, DEB-19
. (period) special character DEB-18, DEB-19
\ (backslash)

special character DEB-20
~ (caret)

special character DEB-18
- (underscore)

special character DEB-18, DEB-19
‘ (grave) special character DEB-20
"" execution message (Debug.Task_Display) DEB-136

A

Abandon procedure

Common.Abandon

Debugger DEB-5

abort, see Kili
aborting task execution message (Debug.Task_Display) DEB-136

About_To_Return enumeration
Debug.Stop_Event type DEB-130

R)ATIONAL 7/1/87 DEB-187

key
Debug.Activate procedure .

Activate procedure
Debug.Activate
Remove procedure

activating child packages execution message (Debug.Task_Display)
activating child tasks execution message (Debug.Task_Display)
active breakpoint

Ada_Location function
Debug_Tools.Ada_Location

address
Debug.Location-To..Address procedure .

Address-To_Location procedure
Debug.Address-To_Location .
Debug_Tools.Get_ Exceptlon_Name functlon
Debug_Tools.Get_Raise_Location function .
Location_To_Address procedure .

Addresses enumeration
Debug.Option type .

Ali_Events enumeration
Debug.Trace_Event type

All_State enumeration
Debug.State_Type type .

All_Tasks enumeration
Debug.Task-Category type

argument prefixes .
attempting entry call execution message (Debug.Task-Display)

B

backslash (\)
special character .

Begin_Rendervous enumeration
Debug.Stop_Event type .

being aborted execution message (Debug.Task-Display)
block, see Hold

Blocked enumeration
Debug.Task_Category type

Break "Default] key
Debug.Break(False) procedure .

DEB-30

DEB-11, DEB-30
. DEB-107

. DEB-136
. DEB-136

. DEB-17,

DEB-11

DEB-152

DEB-77

DEB-81

. DEB-157
. DEB-159

DEB-77

DEB-86

. DEB-146

. DEB-126

. DEB-135

. DEB-4

. DEB-136

DEB-20

. DEB-130
. DEB-137

. DEB-135

DEB-32

DEB-188 e RATIONAL

key
Debug.Break procedure .

Break procedure
Debug.Break
Context procedure
Display procedure .

Break_At_Creation enumeration
Debug.Option type .

breakpoint
active/inactive .
cancel
Debug.Forget procedure
Debug.Remove procedure
cancel exception
Debug.Propagate procedure
create
Debug.Break procedure
programmatic

Debug_Tools.User-Break procedure .

reactivate

Debug.Activate procedure
set

Debug.Break procedure
show

Debug.Information procedure .
stop execution

Debug.Catch procedure
temporary/permanent

Breakpoints enumeration
Debug.State_Type type .

Cache_Stack_Frames debugger flag

Call enumeration
Debug.Trace_Event type

call stacks

cancel break, see Remove

cancel exception break, see Forget, Propagate

caret (~)
special character .

key
Debug.Catch procedure .

RATIONAL 7/y/er

DEB-32

DEB-11, DEB-18, DEB-32
DEB-44, DEB-45
DEB-53

DEB-86

DEB-10
DEB-11

DEB-65
. DEB-107

DEB-96
DEB-32
. DEB-185
DEB-30
DEB-32
DEB-73

DEB-36
DEB-11

. DEB-126

DEB-63

. DEB-146
. DEB-8

DEB-18

DEB-36

DEB-189

Catch procedure
Debug.Catch
Context procedure
Option type
Propagate procedure

catch request .

category
Debug.Task_Category type

Child procedure
Common.Object.Child
Debugger

Clear-Stepping procedure
Debug.Clear_Stepping
Context procedure
Run procedure
Show procedure .

Code format (Debug.Memory-Display)
command contexts

Comment procedure
Debug.Comment .

Constraint_Error exception
Debug package

context
control C e e e
Debug.Context procedure
evaluation
Debug.Catch procedure
Debug.Context procedure
context characters, see special characters

Context procedure
Debug.Context
Context_Type procedure .

Context_Type type
Debug.Context_Type .

Contexts enumeration
Debug.State_Type type .

control context

Control enumeration
Debug.Context-Type type

Control format (Debug.Memory.-Display)

DEB-190

DEB-12, DEB-13, DEB-86
DEB-44, DEB-45

. . . DEB-88

DEB-96

DEB-12

. DEB-135

. DEB-6

DEB-14, DEB-42
DEB-44

. DEB-109

. DEB-119

DEB-79
. DEB-7

DEB-48

DEB-57

. DEB-7

. DEB-7

R DEB-44
DEB-7, DEB-15, DEB-99
.o DEB-39
DEB-45

DEB-44
DEB-48
DEB-48

. DEB-126
DEB-7, DEB-11, DEB-44

DEB-48
DEB-79

7/1/87 BA\TIONAL

conversion
numeric
Debug.Convert procedure
Convert procedure
Debug.Convert

Create_Command procedure
* Common.Create—-Command
Debugger

current task
Debug.Display procedure
Current_Debugger procedure
Debug.Current_Debugger

< CURSOR> special name

Data format (Debug.Memory.-Display)

data structures, referencing
Debug package

Debug procedure
Command.Debug

Debug_Off procedure
Debug.Debug-Off
Option type
Debug-Tools.Debug-O

Debug.Debug_Off procedure.

Debug-On procedure

Debug_On procedure
Debug-Tools.Debug_On
Debug-Off procedure

Debug_Tools package

Debugger
current

Debug.Current_Debugger procedure .

Debugger facilities
programmatic
show
Debug.Show procedure

Debugger window .
designation
selection

RATIONAL 7/1/er

DEB-16
DEB-49

DEB-16, DEB-49

. DEB-5

. DEB-7
DEB-54

DEB-50
. DEB-3

DEB-79
DEB-21
. DEB-2, DEB-29

DEB-2, DEB-7

DEB-51
DEB-88
. DEB-154
. DEB-51
. DEB-155

. DEB-155
. DEB-154

DEB-2, DEB-16, DEB-151

DEB-50

. DEB-6
DEB-16

. DEB-115

. DEB-2
. DEB-3
. DEB-3

DEB-191

Debugger window, continued
write message to
Debug.Comment procedure .
Debug_Tools.Message procedure

key

Debug.Current-Debugger procedure

Debugger_Initialization procedure .
Debug.Put procedure .

Debug_Tools.Register genenc' procedure

debugging
allow to run
Debug.Release procedure .
argument prefixes .
assign nickname

Debug.Set_Task_Name procedure . .
Debug_Tools.Set..Task_Name procedure .

automatic source display

breakpoints .

cancel breakpoint
Debug.Forget procedure
Debug.Remove procedure

cancel stopping on exception
Debug.Propagate procedure

change value of object
Debug.Modify procedure .

clear option flag

Debug.Disable renamed procedure

collect history
Debug.Take_History procedure
command contexts .
commands from package Common
create breakpoint
Debug.Break procedure
current debugger

Debug.Current_Debugger procedure .

Debugger facilities
Debugger window .
define Debugger state
Debug.State_Type type
define event class
Debug.Trace_Event type .
define events to stop task
Debug. Stop_Event type
designation
display a variable
Debug.Put procedure
display absolute memory

Debug.Memory_Display procedure

DEB-192

DEB-43
. DEB-163

DEB-3, DEB-50

DEB-14, DEB-16
. DEB-101
DEB 165, DEB-167

. DEB-106
. DEB-4

. DEB-112
. DEB-179
. DEB-3
DEB-10

. DEB-65
. DEB-107

DEB-96
DEB-81
DEB-52
. DEB-132
. DEB-7
. DEB-5
DEB-32
DEB-50
. DEB-6
. DEB-1
. DEB-126
. DEB-146

. DEB-130
. DEB-3

. DEB-100

DEB-79

s RATIONAL

debugging, continued
display code segment address

Debug.Location_To_Address procedure DEB-77
display current location

Debug_Tools.Ada_Location functioo DEB-152
display information about Debugger facilities

Debug.Show procedure DEB-115
display source

Debug.Source procedureDEB-121
display stack

Debug.Stack procedure DEB-123
display task

Debug.Task_Display procedure DEB-136
display task history

Debug.History_Display procedure DEB-68
display task information

Debug.Information procedure DEB-73
display task name

Debug.-Tools.Get_Task_Name function DEB-161
display/modify programdata DEB-14
Editor . . . O 0 03 : 55 |
exception locatlon

Debug_Tools.Get_Raise_Location function DEB-159
exception name

Debug-Tools.Get_Exception.Name function DEB-157
exception trapping DEB-12
exceptions

Debug.Exception_Name subtype DEB-57

Debug.Exception_.To_Name procedure DEB-60
flags . . e e e e DEB-16

Debug. Flag procedure . e e e i - i e DEB-63

Debug.Numeric type DEB-84

Debug.Option type DEB-86

Debug.Set_Value procedure DEB-114
hlstory facility DEB-12
is program being debugged

Debug_Tools. Debuggnng functiom DEB-156
job e e e« DEB-2
kill job bemg debugged

Debug Kill procedure . . -« DEB-T76
numeric conversion . . - e+ < DEB-15

Debug Convert procedure s e e e e DEB49
numeric lags DEB-16
options DEB-l16
pathnames . . - e e« DEB-I7

Debug. Path_Name subtype . e DEB-9
program . . .« .+« DEB-2
programmatic access to Debugger facnlmes .« DEB-l6
programmatic breakpoint

Debug.Tools.User_Break procedure DEB-185

RATIONAL +/1/er DEB-193

debugging, continued
programmatic interface

Debug_ToolspackageTLEB-151
quiet startup . . .« . . .+ DEB-16

Debug.Reset—. Defaults procedure e « « « v+ v+DEB-108
Rational Editor I ») 0} : B |
reactivate breakpoint

Debug.Activate procedure DEB-30
referencing data structures DEB-21
referencing generic instantiations DEB-24
referencing library units . . . - e e e« DEB20
referencing overloaded subprograms . e« +« +« DEB-23
referencing programs DEB-22
remove stepping

Debug.Clear_Stepping procedure DEB-42
resume execution

Debug.Execute procedure DEB-61

Debug.Xecute procedure - e e+« < DEB-148
selection . . . e e e eDEB3
send trace output to ﬁle

Debug.Trace_-To_File procedure DEB-147
session switches DEB-4
set context

Debug.Context procedure DEB-44
set exception breakpoint

Debug.Catch procedure DEB-36
set option flag

Debug.Enable procedure DEB-56
set trace

Debug.Trace procedure DEB-142
show source

Debug.Display procedure DEB-53
show source location

Debug.Address_To_Location procedure .+« DEB-31
special characters« +« < DEB-18
special display

Debug_Tools.Register generic procedure DEB-165

Debug-_Tools.Register procedure DEB-175
start

Debug_Tools Debug..On procedure .« « +« DEB-155
state e v« . .+DEB-1
step

Debug.Run procedure DEB-109
stepping DEB-13
stop

Debug.Debug_Off procedure DEB-51

Debug-Tools.Debug.Off procedure DEB-154
stop special display

Debug-_Tools.Un_Register generic procedure DEB-181

Debug_Tools.Un_Register procedure DEB-183

DEB-194 s RATIONAL

debugging, continued
stop task execution

Debug.Hold procedure . DEB-71
Debug.Stop procedure . . . DEB-128
substituting your own data dlsplay routme
Debug_Tools.Register generic procedure . DEB-165
task category
Debug.Task_Category type . . DEB-13§
task name
Debug.Task_Name subtype . . DEB-140
tasks . . . DEB-7
tracing fa.cxhty DEB-12
unqualified names . DEB-20
write message to Debugger wmdow
Debug.Comment procedure . . DEB-43
Debug_Tools.Message procedure . DEB-163
Debugging function
Debug_Tools.Debugging . DEB-156
Declaration-Display enumeration
Debug.Option type . DEB-86
default
reset
Debug.Reset..Defaults procedure . DEB-108
Definition prccedure
Common.Definition
Debugger . DEB-5
delaying in wait service execution message (Debug.Task_Display}) DEB-137
Delete_Temporary_Breaks enumeration
Debug.Option type . DEB-87
deposit, see Modify
designation in Debugger window . DEB-3

Disable renamed procedure
Debug.Disable .
Flag procedure
Option type

display
history

Debug.History_Display procedure .

memory
Debug.Memory_Display procedure
task
Debug.Task_Display procedure

display, see Show

RATIONAL 7y/sr

. DEB-3, DEB-16, DEB-52

DEB-63
DEB-86

DEB-68
DEB-79

. DEB-136

DEB-195

Display procedure

Debug.Display DEB-4, DEB-7, DEB-10, DEB-14, DEB~15, DEB-18, DEB-58

Context procedure
Numeric type .
Option type

Display_Count enumeration
Debug.Numeric type

Display_Creation enumeration
Debug.Option type .

Display_Level enumeration
Debug.Numeric type

dollar sign ($)
special character .

dollar sign, double ($3), special character
double dollar sign ($3) special character

dump memory
Debug.Memory_Display procedure

Echo.Commands enumeration
Debug.Option type .

Editor

Debugger interactions
elaboration .

Element_Count enumeration
Debug.Numeric type

Enable procedure
Debug.Enable
Flag procedure
Option type

enclosing library
enclosing object .

Enclosing procedure
Common.Enclosing
Debugger

enclosing world .

End.Rendezvous enumeration
Debug.Stop-Event type .

DEB-196

DEB—44 DEB-45
DEB-84
DEB-86

DEB-84
DEB-87
DEB-84

DEB-18
DEB-18, DEB-19
DEB-18, DEB-19

DEB-79

DEB-87

. DEB-2
DEB-10

DEB-84

DEB-16, DEB-56
DEB-63
DEB-86

DEB-18
DEB-18

. DEB-5
DEB-19

. DEB-130

e RATIONAL

enumerations
Debug.Context-Type

Control enumeration DEB-48
Evaluation enumeration DEB-48
Debug.Information—_Type
Exceptions enumeration DEB-75
Rendezvous epumeration DEB-75
Space enumeration DEB-75
Debug.Numeric
Display-Count enumeration DEB-84
Display_Level enumeration DEB-84
Element_Count enumeration DEB-84
First_Element enumeration DEB-84
History.Count enumeration DEB-85
History_Entries enumeration DEB-85
History-Start enumeration DEB-85
Memory_Count enumeration DEB-85
Pointer_Level DEB-8
Stack_Count enumeration DEB-85
Stack_Start enumeration DEB-85
Debug.Option
Addresses enumeration . . .« .« DEB-86
Break_At_Creation enumeratxon . e DEB-8
Declaration-Display enumeration DEB-86
Delete_Temporary_Breaks enumeration DEB-87
Display_Creation enumeration DEB-87
Echo_Commands enumeration DEB-87
Freeze_Tasks enumeration DEB-87
Include_Packages enumeration DEB-87
Interpret_Control-Words enumeration DEB-87
Kill-Old_Jobs enumeration DEB-87
Machine_level enumeration . . . - -« .« DEB-87
No_History-Timestamps enumeratlon -« <« . <« DEB-87
Optimize_Generic_History enumeration DEB-87
Permanent_-Breakpoints enumeration DEB-88
Put_Locals enumeration - e <« DEB-88
Qualify_Stack_Names enumeratlon - e« <. DEB-88
Require_Debug-.Off enumeration DEB-88
Save_Exceptions enumeration DEB-88
Show_Location enumeration DEB-88
Timestamps enumeration DEB-88
Debug.State_Type
All_State enumeration DEB-126
Breakpoints enumeration DEB-126
Contexts enumeration DEB-126
Exceptions enumeration DEB-126
Flags enumeration DEB-126
Histories enumeration DEB-126
Libraries enumeration DEB-126

RAT‘ONAL 7/1/87 DEB-197

enumerations, continued
Debug.State_Type, continued

Special_Types enumeration DEB-126
Steps enumerationDEB-127
Stops—And-Holds enumeratlon . - - . <DEB-127
Traces enumeration DEB-127
Debug.Stop-.Event
About_To_Return enumeration DEB-130
Begin_Rendezvous enumeration DEB-130
End_Rendegzvous enumeration DEB-130
Local_Statement enumeration DEB-130
Machine_Instruction enumeration DEB-130
Procedure_Entry enumeration DEB-131
Returned enumeration DEB-131
Statement enumeration DEB-131
Debug.Task_Category
All_Tasks enumeration DEB-135
Blocked enumeration DEB-135
Held enumeration DEB-135
Not-Running enumeration DEB-135
Running enumeration DEB-135
Stopped enumeration DEB-135
Debug.Trace_Event
All_Events enumeration DEB-146
Call enumeration . . . -« - < . <«DEB-146
Exception_Raised enumeratlonDEB-146
Propagate_Exception enumeration, DEB-146
Rendegvous enumeration DEB-146
Statement enumeration DEB-146
evaluation context . . e <« . . . < <. DEB-7,DEB-15
Debug.Catch procedure . e . e DEB-3
Debug.Context procedure DEB-45
Debug.Propagate procedure DEB-99
Debug.Put procedureDEB-101
Evaluation enumeration
Debug.Context_Type type DEB-48
event
Debug.Stop_Event type DEB-130
Debug.Trace_Event type DEB-146
examine, see Put
exception
location
Debug_Tools.Get_Raise_Location function, . . . DEB-159
name
Debug_Tools. Get..Exceptlon-Name function DEB-157
trapping e - v DEB-12

DEB-198 7/1/87 PAT'ONAL

Exception_Name subtype
Debug.Exception_Name

Exception_Raised enumeration
Debug.Trace_Event type

Exception_To-Name procedure
Debug.Exception_To_Name
Debug_Tools.Get—Exception_Name function
Debug-_Tools.Get_Raise_Location function .

exceptions
Debug package
Constraint_Error exception
Numeric_Error exception
Program_Error exception
Storage-Error exception
Tasking_Error exception .

Exceptions enumeration
Debug.Information_Type type .
Debug.State..Type type . .

exclamation mark (!) special character .

key
Debug.Execute procedure .

Execute procedure
Debug.Execute
Context procedure
Hold procedure .
Stop procedure
Xecute procedure

execution .
state messages .

file
trace
Debug.Trace_To_File procedure

First_Child procedure
Common.Object.First_Child
Debugger C o

First_Element enumeration
Debug.Numeric type

Flag procedure
Debug.Flag

State_Type tyl')e.

RATIONAL 7y/er

DEB-57
. DEB-146

. DEB-60
. DEB-157
. DEB-159

DEB-57
DEB-57
DEB-57
DEB-57
DEB-57

. DEB-T75
. DEB-126
DEB-18

DEB-61

. DEB-9, DEB-16, DEB-61

DEB-44
DEB-T71
. DEB-128
. DEB-148

. DEB-10
. DEB-136

. DEB-147

. DEB-6
DEB-84

DEB-16, DEB-63
. DEB-126

DEB-199

Flag_Errors debugger flag

flags
clear option
Debug.Disable renamed procedure
numeric . . Lo
Debug.Numeric type . .
Debug.Set_Value procedure
options
Debug.Option type
set
Debug.Flag procedure
set option
Debug.Enable procedure .

Flags enumeration
Debug.State_Type type .

key
Debug.Forget procedure

Forget procedure
Debug.Forget
Catch procedure
Context procedure
Propagate procedure

frame

Freeze..Tasks enumeration
Debug.Option type .

full pathname
fully qualified name

generic instantiations, referencing

Get_Exception_Name function
Debug_Tools.Get_Exception_-Name

Get..Raise.Location function
Debug_Tools.Get_Raise_.Location

Get_Task_Name function
Debug_Tools.Get-Task-Name .

go, see Execute
goto, see Source

grave (') special character

DEB-200

DEB-63

DEB-52
DEB-4, DEB-16
DEB-84

. DEB-114
DEB-4, DEB-16
DEB-86
DEB—63

DEB-56
. DEB-126
DEB-65

DEB-12, DEB-13, DEB-65
.. DEB-37
DEB-44, DEB-45
DEB-96, DEB-97

. DEB-8

DEB-87
DEB-90
DEB-18
DEB-24
. DEB-17, DEB-157

. DEB-17, DEB-159

. DEB-161

DEB-20

e RATIONAL

Held enumeration
Debug.Task_Category type

held task state

Hex_Number subtype
Debug.Hex_Number

Hex_Values debugger flag

Histories enumeration
Debug.State_Type type .

history
collect
Debug.Take_History procedure
facility

History_Count enumeration
Debug.Numeric type

History_Display procedure
Debug.History_Display
Context procedure
Numeric type .
Option type

History_Entries enumeration
Debug.Numeric type

History_Start enumeration
Debug.Numeric type

Hold procedure
Debug.Hold
Context procedure
Execute procedure
Stop procedure
Xecute procedure

Image generic formal function
Debug_Tools.Image

<IMAGE> special name

Import format (Debug.Memory_Display) . . .

in wait service execution message (Debug.Task.Display) . .

inactive breakpoint

Include_Packages enumeration
Debug.Option type .

RATIONAL 7/1/sr

. DEB-135
. DEB-9

DEB-67
DEB-63

. DEB-126

. DEB-132
DEB-12

DEB-85

DEB-12, DEB-68
DEB-44
DEB-85
DEB-87

DEB-85

DEB-85

. DEB-9, DEB-T1

DEB-44
DEB-61
. DEB-128
. DEB-148

. DEB-178
. DEB-3
DEB-79

. DEB-137
DEB-11

DEB-87

DEB-201

Information procedure
Debug.Information .
Information_Type type
Option type ..

Information-Type type
Debug.Information_Type

Interpret_Control-Words enumeration
Debug.Option type .

Interpret_Import-Words debugger flag
Interpreter—-Dump debugger flag
Interpreter—Trace debugger flag .

Interrupt procedure
Job.Interrupt
Debugger

interrupt program
Debug.Stop procedure

job

key
argument prefix

key concepts

Kill procedure
Debug.Kill

Kill_Old_Jobs enumeration
Debug.Option type .

Last_Child procedure
Common.Object.Last_Child
Debugger .

Libraries enumeration
Debug.State_Type type .

library
enclosing .
referencing units .
root

Local_Statement enumeration
Debug.Stop-Event type .

DEB-202

DEB-78
DEB-T75
DEB-86

DEB-75

DEB-87
DEB-63
DEB-63
DEB-63

. DEB-3

. DEB-128

. DEB-2

. DEB-4
. DEB-1

DEB-76

DEB-87

. DEB-6
. DEB-126

DEB-18
DEB-20
DEB-18

. DEB-130

e RATIONAL

location
display current
Debug_Tools.Ada_Location function
raise

Debug_Tools.Get-Raise_Location function .

show source
Debug.Address_To-Location procedure

Location_To_Address procedure
Debug.Location_To-Address
Address_To_Location procedure

Machine_Instruction enumeration
Debug.Stop_Event type .

Machine_Level enumeration
Debug.Option type .

main program

Memory—_Count enumeration
Debug.Numeric type

Memory-Display procedure
Debug.Memory_Display
Flag procedure
Numeric type .
Option type

message
Debugger window
Debug.Comment procedure .
Debug_Tools.Message procedure
execution state
Debug.Task_Display procedure
trace
Debug.Trace procedure

Message procedure
Debug_Tools.Message

[Modity] key
Debug.Modify procedure

Modify procedure
Debug.Modify
Context procedure

RATIONAL 7/1/er

. DEB-152
. DEB-159

DEB-31

DEB-77
DEB-31

. DEB~130

DEB-87
. DEB-7

DEB-85

DEB-79
DEB-63
DEB-85
DEB-87

DEB-43
. DEB-163

. DEB-136

. DEB-142
. DEB-163
DEB-81

DEB-4, DEB-14, DEB-15, DEB-81
DEB-45

DEB-203

name
display source of exception
Debug.Exception_To_Name procedure .
exception
Debug.Exception.Name subtype
Debug.Exception_To_Name procedure .

Debug_Tools. Get_Exceptxon_Name function

fully qualified

pathname
Debug.Path_Name subtype

task
Debug.Set_Task-Name procedure .
Debug.Task_Name subtype .)
Debug_Tools.Get_Task_Name functlon
Debug_Tools.Set_Task_Name procedure .

unqualified . Coe e

naming .
data structures
generic instantiations .
overloaded subprograms
pathnames
programs .
referencing llbrary umts .
referencing overloaded subprograms
referencing programs .
special characters
unqualified names

Next procedure
Common.Object.Next
Debugger

nickname
overload resolution .
task
Debug.Context procedure Coe
Debug.Set_Task_Name procedure . .
Debug_Tools.Set-Task-Name procedure .

No_History.Timestamps enumeration
Debug.Option type .

No_Pointers debugger flag
No_Task_Numbers debugger flag

Not-Running enumeration
Debug.Task.Category type

DEB-204

DEB-60

DEB-57
DEB--60
. DEB-157
DEB-18

DEB-90

. DEB-112
. DEB-140
. DEB-161
. DEB-179

DEB-18

DEB-17
DEB-21
DEB-24
DEB-23
DEB-17
DEB-22
DEB-20
DEB-23
DEB-22
DEB-18
DEB-20

. DEB-6

DEB-23
DEB-46, DEB-47

. DEB-112
. DEB-179

DEB-87
DEB-63
DEB-63

. DEB-13b

mm RATIONAL

number

hex
Debug.Hex_Number subtype
statement and declaration rules

numeric conversion
Debug.Convert procedure .

" pumeric flags

set
Debug.Numeric type . . .
Debug.Set_Value procedure

Numeric type
Debug.Numeric
Flag procedure
Set_Value procedure

State_Type type

Numeric_Error exception
Debug package

object
enclosing

off
Debug.Debug-Off procedure . . .
Debug-_Tools.Debug_Off procedur

on
Debug_Tools.Debug_On procedure .

Optimize_Generic_History enumeration
Debug.Option type .

option
clear flag
Debug.Disable renamed procedure
set flag
Debug.Enable procedure .
Debug.Option type

Option type
Debug.Option
Catch procedure
Flag procedure
Stack procedure

State_Type type

overload resolution nickname .

RATIONAL 7/er

DEB-67
DEB-92

DEB-49

DEB-84
. DEB-114

DEB-84
DEB-63
. DEB-114
. DEB-126

DEB-57

DEB-18

DEB-51
. DEB-154

. DEB-155

DEB-87

DEB-52

DEB-56
DEB-86

. DEB-3, DEB-86

DEB-37
DEB-63
. DEB-123
. DEB-126

DEB-23

DEB-205

package completed execution message (Debug.Task_Display) .

Parent procedure
Common.Object.Parent
Debugger

Path_Name subtype
Debug.Path_Name .

pathname
full .
relative .

peek, see Memory_Display

percent (%)
special character .

period (.) special character .
permanent breakpoint

Permanent_Breakpoints enumeration
Debug.Option type .

Pointer..Level enumeration
Debug.Numeric type

poke, see Modify
prevent from running, see Hold

Previous procedure
Common.Object.Previous
Debugger

Procedure_Entry enumeration
Debug.Stop-Event type .

program .

Program_Error exception
Debug package

programmatic breakpoint

Debug_Tools.User_Break procedure

key
Debug.Propagate procedure .

Propagate procedure
Debug.Propagate
Catch procedure
Context procedure
Option type

DEB-206

P

. DEB-137

. DEB-6
DEB-10, DEB-90
DEB-17

DEB-90
DEB-90

DEB-18, DEB-19
DEB-18, DEB-19
DEB-11

DEB-88

DEB-85

. DEB-6

. DEB-131
. DEB-2

DEB-57
. DEB-185
DEB-96

DEB-12, DEB-13, DEB-96
.. DEB-36
DEB-44, DEB-45

DEB-88

s RATIONAL

propagate request DEB-12

Propagate_Exception enumeration

Debug.Trace_Event type DEB-146
[Put] key
Debug.Put procedure DEB-100
Put procedure
DebugPutDEB-4, DEB-14, DEB-15, DEB-18, DEB-100
Context procedure+ DEB-44, DEB-45
Debug_Tools. Reglster genenc procedure . e+« .+«DEB-165
Flag procedure . . . - e e e e . .. < DEB-63
Numerictype DEB-84, DEB-85
Optiontype DEB-88
Put_Locals enumeration
Debug.Option type DEB-88
Q
qualified name, fully DEB-18
Qualify_Stack—_Names enumeration
DebugOption type DEB-8
Queue format (Debug.Memory_Display) DEB-T9
quiet startup - . .« DEB-I16
Debug. Reset_Defaults procedure . e« DEB-108
R
<REGION>specialname DEB-3
register
stop
Debug_Tools.Un_Register generic procedure DEB-181
Debug_Tools.Un_Register procedure DEB-183
Register generic procedure
Debug_Tools.RegisterDEB-165
Debug.Put procedureDEB-101
Register procedure
Debug_Tools.RegisterDEB-175
relative pathpame DEB-9
Release procedure
Common.Release
Debugger o000 Lo DEB-5
Debug.Release DEB—9 DEB-106
Context procedure DEB-44
Execute procedure DEB-61
Holdprocedure DEB-N
Xecute procedure DEB-148

RAT'ONAL 7/1/87 DEB-207

key

Debug.Remove procedure .

Remove procedure
Debug.Remove

Rendezvous enumeration

Debug.Information_Type type . .

Debug.Trace.Event type
key

Debug.Information procedure

Require_Debug.Off enumeration
Debug.Option type .

Reset_Defaults procedure
Debug.Reset_Defaults

Returned enumeration
Debug.Stop_Event type .

root of the library system

root task .

key
Debug.Run procedure

key
Debug.Run(Local) procedure

Run procedure

Debug.Run
Clear_Stepping procedure
Context procedure
Hold procedure .
Show procedure .
Stop procedure .
Stop-Event type

key

Debug.Run(Returned) procedure .

Running enumeration
Debug.Task_Category type

running task state .

Save_Exceptions enumeration
Debug.Option type .

gselection in Debugger window

DEB-208

. DEB-107
. DEB-11, DEB-107

. DEB-75
. DEB-146

DEB-73
DEB-88
. DEB-16, DEB-108

. DEB-131
DEB-18
. DEB-7

. DEB-109
. DEB-109

. DEB-109
DEB-42
DEB-45

. DEB-T71

. DEB-119

. DEB-128

. DEB-130

. DEB-109

. DEB-1356
. DEB-9

DEB-88
. DEB-3

mm RATIONAL

<SELECTION>> special name

session
switches

set break, see Break, User_Break
set break/exception, see Catch

key
Debug.Set_Value procedure

key
Debug.Set_Value procedure

key
Debug.Set_Value procedure . . .

set trace, see Trace

Set_Task.Name procedure
Debug.Set_Task_Name . .
Catch procedure
Context procedure . .

Debug_Tools.Set_Task_Na.m;e ‘prscédt‘u-e' .

Task_Display procedure
Task_Name subtype . . .
Debug-_Tools.Set_Task_Name
Debug.Catch procedure
Debug.Context procedure R
Debug.Set_Task-Name procedure .
Debug.Task_Display procedure
Debug.Task_Name subtype . .
Get-Task_Name function

Set_Value procedure
Debug.Set_Value .
Flag procedure
Numeric type .

show, see Display

show break, see Information

Show Breaks key
Debug.Show procedure

show calls, see Stack

key
Debug.Show(Exceptions) procedure

Show procedure
Debug.Show .

State-Type i:yl')e-

RATIONAL 7er

. DEB-3

. DEB—4

. DEB-114
. DEB-114

. DEB-114

DEB-8, DEB-19, DEB-112
. DEB-39
. DEB-46

. DEB-179

. DEB-136

. . . . DEB-140
DEB-8, DEB-179

. . . DEB-39

. DEB-46

. DEB-112

. . DEB-136

. DEB-140

. DEB-161

. DEB-16, DEB-114
. . .. DEB-63
DEB-84

. DEB-115

. DEB-116

. DEB-115
. DEB-126

DEB-209

key

Debug.Source procedure
show symbol, see Display, Source
show task, see Task_Display

Show_Location enumeration
Debug.Option type .

source display

Source procedure
Debug.Source

Space enumeration

Debug.Information-Type type . .

special characters . .
backslash (\)
caret (-) .
dollar sign (3)
double dollar sign (33)
exclamation mark (!) .
grave (') .
percent (%) .
period (.) . . .
underscore (-) . .

special display
Debug.Put procedure .

Debug-Tools.Register generic procedure
Debug_Tools.Register procedure .

special names . .
<CURSOR>
<IMAGE>
<REGION> . .
<SELECTION>

Special_Types enumeration
Debug.State_Type type .

stack frame

key
Debug.Stack procedure

Stack procedure
Debug.Stack .
Context procedure
Numeric type .
Option type
Stack_Count enumeration
Debug.Numeric type

DEB-210

. DEB-121

DEB-88
. DEB-3

. DEB-121

DEB-75

DEB-18
DEB-20
DEB-18
. . . . DEB-18
DEB-18, DEB-19
DEB-18
. . . . DEB-20
DEB-18, DEB-19
DEB-18, DEB-19
DEB-18, DEB-19

. DEB-101
. DEB-165
. DEB-175

DEB-57, DEB-90
. DEB-3

. DEB-3

. . DEB-3

. DEB-3

. DEB-126
. DEB-8

. DEB-123

DEB—{, DEB-7, DEB-8, DEB-128
. .. DEB-45
DEB-85

DEB—86 DEB-88

DEB-85

e RATIONAL

Stack_Start enumeration
Debug.Numeric type

standard value

state

state presently unknown execution message (Debug.Task_Display)

State_Type type
Debug.State_Type

Statement enumeration
Debug.Stop-Event type .
Debug.Trace_Event type

step, see Run

step into, see Run

stepping
remove
Debug.Clear_Stepping procedure

Steps enumeration
Debug.State_Type type .
stop, see Debug_Off, Kill, Un_Register

key
Debug.Stop procedure

Stop procedure
Debug.Stop
Context procedure
Hold procedure .
Release procedure .
Xecute procedure

Stop-Event type
Debug.Stop_Event

Stopped enumeration
Debug.Task_Category type

stopped task state

Stops—And_Holds enumeration
Debug.State_Type type .

Storage_Error exception
Debug package

strings
name .

switches
session

RATIONAL 7y/er

DEB-85
DEB-84, DEB-86
. DEB-1

. DEB-137

. DEB-126

. DEB-131
. DEB-146

DEB-13

DEB-42

. DEB-127

. DEB-128

DEB-9, DEB-128
DEB-45, DEB-47
DEB-T71

. DEB-106

. DEB-148

. DEB-180

. DEB-135
. DEB-9

. DEB-127

DEB-57

. DEB-8

. DEB-4

DEB-211

symbolize, see Address_To_Location
System format (Debug.Memory-Display)

T generic formal type
Debug_Tools.T

Take_History procedure
Debug.Take_History
Context procedure
Trace_Event type .

task
breakpoints
call stacks .
control
current - .
Debug. Dlsplay procedure
display history
Debug.History-Display procedure .
display name
Debug_Tools.Get_Task_Name function
display stack
Debug.Stack procedure
exception trapping .
history facility . .
hold ..
name
Debug.Set_Task_Name procedure .
Debug.Task_Name subtype .

Debug_Tools.Set_Task_Name 'precedure

nickname
Debug.Context procedure .
Debug.Set.Task_Name procedure .

Debug_Tools.Set_Task_Name procedure

programmatic access to Debugger facilities
release from held state
Debug.Release procedure .
remove stepping
Debug.Clear_Stepping procedure
resume execution
Debug.Execute procedure
Debug.Xecute procedure .
root
show
Debug.Task- Dlsplay procedure
state . .

stepping

DEB-212

DEB-79

DEB-177, DEB-182

. DEB-12, DEB-132
DEB-45
. DEB-146

DEB-10
. DEB-8
. DEB-7
. DEB-7

DEB-54

DEB-68
. DEB-161

. DEB-123
DEB-12
DEB-12

. DEB-8

. DEB-112
. DEB-140
. DEB-179

DEB-46, DEB-47
. DEB-112

. DEB-179
DEB-16

. DEB-106
DEB-42
DEB-61

. DEB-148
. DEB-7

. DEB-136

DEB-7, DEB-9
DEB-13

s RATIONAL

task, continued
stop execution
Debug.Hold procedure .
Debug.Stop procedure .
trace
Debug.Trace procedure

when to stop
Debug.Stop_Event type

[Fors Dirgiay] key
Debug.Task_Display procedure

Task_Category type
Debug.Task_Category

Task-Display procedure
Debug.Task_Display
Option type . . .
Task_Cateory type .
Task_Name subtype .

Task_Name subtype
Debug.Task_Name .

Tasking_Error exception
Debug package

temporary breakpoint

terminated execution message (Debug.Task_Display)

Timestamps enumeration
Debug.Option type .

trace messages
Debug.Trace procedure .

Trace procedure
Debug.Trace .
Context procedure
Display procedure .
Option type . . .
Trace_Event type .

Trace-Event type
Debug.Trace_Event

Trace_To_File procedure
Debug.Trace_To_File .
Trace procedure

Traces enumeration
Debug.State_Type type .

tracing facility

RATIONAL 7/1/sr

. DEB-8
DEB-71

. DEB-128
. DEB-12
. DEB-142

. DEB-130
. DEB-136
. DEB-185

DEB-8, DEB-19, DEB-136
DEB-86, DEB-87

. . . DEB-135

. DEB-140

. DEB-140

DEB-57
DEB-11
. DEB-137

DEB-88
. DEB-142

. DEB-12, DEB-142
. . . . DEB-45
DEB-53

. DEB-86

. DEB-146

. DEB-146

. DEB-147
. DEB-142

. DEB-127
DEB-12

DEB-213

trip count

Typ format (Debug.Memory-Display) . . .

type

context

Debug.Context-Type type

information

Debug.Informaion-Type type .

state
Debug.State-Type type

Un_Register generic procedure
Debug._Tools.Un_Register .

Un_Register procedure
Debug-Tools.Un_-Register .

underscore (-)
special character .

Undo procedure
Common.Undo
Debugger

unqualified name

User_Break procedure
Debug_Tools.User-Break

DEB-11
DEB-79

DEB—-48
DEB-76

. DEB-126

. DEB-181

. DEB-188

DEB-18, DEB-19

. DEB-3
DEB-18, DEB-20

. DEB-16, DEB-185

value

Debug.Set—-Value procedure . DEB-114
waiting at accept for entry call execution message (Debug.Task_Display) . . . DEB-137
waiting at entry for accept execution message (Debug.Task-_Display) . DEB-137
waiting at select for entry call execution message (Debug.Task_Display) . . . DEB-137

waiting at select-delay for entry call execution message (Debug.Task_Display) DEB-137

waiting at select-terminate for entry call execution message (Debug.Task_Display)DEB-137

waiting at select-terminate for entry call with dependents execution
message (Debug.Task_Display) . . .

. DEB-137

waiting at timed entry for accept execution message (Debug.Task_Display) . . DEB-137

waiting for child elaboration execution message (Debug.Task_Display) DEB-137

waiting for children execution message (Debug.Task.Display) . . .

DEB-214

. DEB-137

e RATIONAL

waiting for delay execution message (Debug.Task.Display) DEB-137

waiting for parent elaboration execution message (Debug.Task_Display) . . . DEB-137
waiting for task activaiion execution message (Debug.Task_Display) DEB-137
world

enclosing DEB-19

Write_File procedure
Common. Write_File

Debugger DEB-3, DEB-5
X
Xecute procedure
Debug.XecuteDEB-148
Executeprocedure DEB-61

RAT'ONAL 7/1/87 DEB-215

RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Debugging (DEB), 8001A-23

