Rational Environment
Reference Manual

Library Management (LM)

Copyright © 1987 by Rational

Document Control Number: 8001A-25
Rev. 1.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

LM-ii 7/1/87 RATIONAL

Contents

How to Use This Book . . .

Key Concepts
Library System
Worlds
Directories :
Library Editing and Listing
Compilation
Tailoring Your Library
Error Reactions
Switches
Using Environment Resources

Links

Naming Objects
Special Names .
Parameter Placeholders
Wildcards Co
The Wildcard #
The Wildcard e

The Wildcard 7

The Wildcard 77
Substitution Characters

The Substitution Character #

The Substitution Character e

The Substitution Character ?
Special Characters in Names .

The Special Character !

The Special Character ~

The Special Character § .

RATIONAL 7/1/er

© © O O WV 00 ~J =IO UT G bW N N

e et ek ek b et
e OO O O

LM-iii

The Special Character $$ 11

The Special Character % 11
The Special Character—- 12
The Special Character. 12
The Special Character\ 12
The Special Character * 12
The Special Characters [} 13
The Special Characters {} 13
Attributes o o000 13
Visible Parts and Bodies 13
Version Attributeso, 14
Class Attributes00 14
Link Attributeso 15
Nickname Attributes 15
State Attributeso 17
The Options Parameter 17
Syntax Rules 18
Boolean Options: A Special Case 18
Literals in Options: A Special Case 19
Access Controlo 19
Users, Identities,and Jobs 19
An Exampleo 0 oL 20
Groups L e 20
Operator Capabilityo 20
Objects L. oL 21
Access Classesfor Worlds 21
Access Classes for Files and AdaUnits 21
Mixing Access Classes 21
Equivalent Access Classes 21
How ACLs Are Assigned When Objects Are Created 22
Specific Cageso 22
Access Control and Command Execution 22
Access Control and Compilation 22
Access Controland Links 22
Access Control and Networking 22
Access Control and Searchlists 23
Access Control and Subsystems 23
Access Control and Archiving 23
Access Control and !Commands 23

LM-iv 7/1/87 RAT'ONAL

package Access-List25

Users, Identities, and Jobs L. . 25
An Example o 0.0 0oL Lo 26
Groups L e e 26
Operator Capability C e26
Objects C e e e e . 26
Access Classesfor Worlds27
Access Classes for Files and Ada Units L. 27
Mixing Access Classes e 27
Equivalent AccessClasses27
How ACLs Are Assigned When Objects Are Created I
SpecificCases 1.

Access Control and Command Executlon e e e e e oL 28
Access Control and Compilation28

Access Control and Links e . 28
Access Control and Networking Coe28
Access Control and Searchlists R 1 ¢

Access Control and Subsystems29
Access Control and Archiving29
Access Control and !Commands29

Special Names Ce e .29
Error Response30
subtype Acl -} |
procedure Add e)

procedure Add_Default33
constant Create 34
procedure Default_Display35
constant Delete - ¥
procedure Display 38
subtype Name41
constant Owner42

constant Read T X
procedure Set 44
procedure Set_Default 46
constant Write L. . . . 48

end Access.List

RAT'ONAL 7/1/87 LM-v

package Access.List-Tools 49

Users, Identities, and Jobs 49
An Example00 50
Groups L L 50
Operator Capability 50
Objects 50
Access Classes for Worlds 51
Access Classes for Files and AdaUnits 51
Mixing AccessClasses 51
Equivalent Access Clauses 51
How ACLs Are Assigned When Objects Are Created 51
Specific Cases 52
Access Control and Command Execution 52
Access Control and Compilation 52
Access Control and Links 52
Access Control and Networking 52
Access Control and Searchlists 53
Access Control and Subsystems 53
Access Control and Archiving 53
Access Control and !Commands 53
subtype Access_Class 54
exception Access_Tools_Error 55

subtype Acl oL oL 56

function Amend 57

function Checko 59
procedure Check_Validity 62
constant Create 64
constant Delete 65

function Get00 66
procedure Get oL 68

function Get_Default 70
procedure Get_Default 72

function Has_Operator_Capability 74
constant Max_Acl-Length 75

subtype Nameo 76

function Normalize 77
constant Owner 79
constant Reado 80

LM-vi

e RATIONAL

procedure Set81

procedure Set_Default8
constant Write8

end Access-List-Tools
package Archive 8T
Overview O - 1 4
The Procedures a.nd Thexr Parameters P -1
Save, 88
Restore 8
Copy o) OO *
Compatibility Databases, Prlmarxes, and Secondanes I [0
The Options Parameter90
Examples R ¢ ¢
Hints for Using the Procedures in Package Archlve I 1
Error Response . . P ° |
procedure Copy e L0 0
procedure List 109
procedure Restore 112
procedure Saveo 122

end Archive

package Compilation 129
Special Values e e o 129
Compilation and Access Control O V3¢
Using Compilation with Rational Subsystems 130
Special Names 130
Error Response . . T)

constant All_Worlds . & ¥4
procedure Atomic_Destroy 133
subtype Change_Limit 134
procedure Compile 136
constant Current_Directory 138
procedure Delete 139
procedure Demote 141
procedure Dependents 145
procedure Destroy 148
renamed procedure Make 151

RATIONAL 71/ LM-vii

subtype Name 154
procedure Parse 155
procedure Promote 157
type Promote_Scope 160
constant Same_Directories 162
constant Same_World 163
constant Same_-Worlds 164
subtype Unit_-Name 165
type Unit_State 166

end Compilation

packageFile-Utilities......................169
Special Names . . . T (1)
procedure Append S 4 |
procedure Compare 172
constant Current_OQutput 175
procedure Difference 176
procedure Dump 179

function Equal 0. .. 181
procedure Find 184

function Found o000 oL 187
.procedure Merge 190
subtype Name00 192
procedure Strip 193

end File..Utilities

package Library R {1
Access Control and Library Comma.nds P L 1.1
Error Response 19
Image Structure 195
Key Concepts 198

Designation 198
Special Names 198
Special Valueso o000 199
Parameter Placeholders 199
Elision and Expansion 199
Session Switches . . . e e e e 200

Library_Break- Long_Lmes(default true) C e e e e, 200

LM-viii 7/1/87 RATIONAL

Library_Capitalize (default true) 200

Library_Indentation (default 2) 201
Library_Lazy-Realignment (default true) 201
Library_Line_Length (default 80) 201
Library_Misc_Show_Edit_Info (default true) 201
Library_Misc_Show_Frozen (default true) 201
Library_Misc_Show_Retention (default true) 201
Library_Misc_Show_Size (default true) 201
Library_Misc_Show_Subclass (default false) | 201
Library_Misc_Show_Unit_State (default true) | 201
Library_Misc_Show_Volume (default true) 201
Library_Shorten_Names (default true) 201
Library_Shorten_Subclass (default true) 202
Library_Shorten_Unit_State (default true) 202
Library_Show_Deleted_Objects (default false) 202
Library_Show_Deleted_Versions (default false) 202
Library_Show_Miscellaneous (default false) 202
Library_Show_Standard (default false) 202
Library_Show_Subunits (default true) 202
Library_Show_Version_Number (default false) 202
Library_Std_Show_Class (default true) 202
Library_Std_Show_Subclass (default true) Coe .. 202
Library_Std_Show_Unit_State (default false) 202
Library_Uppercase (default false) 203
Commands from package Common 203
constant Ada_Format 208
renamed procedure Ada_List 209
constant All_Fields0 000 211
procedure Compact_Library 212
procedure Context L. 214
subtype Context_Name 215
procedure Copy L. 216
procedure Create 220
renamed procedure Create_Directory 222
renamed procedure Create_Unit 224
renamed procedure Create_World 226
procedure Default 00000 . 228
constant Default_Keep_Versions 229

RAT'ONAL 7/1/87 LM-ix

renamed procedure Delete 230
renamed procedure Destroy 232
procedure Display 234
procedure Enclosing_World 235
renamed exception Error 236
procedure Expunge 237
typeFied 23
type Fields 241
renamed procedure Flle_Llst C e e e e s 242
procedure Freeze 244
typeKind o 246
procedure List . 248
procedure Move 250
subtype Name 253
constant Nil 254
procedure Reformat_Image 255
procedure Rename 256
procedure Resolve 258
procedure Set_ Retentxon-Count e e e e e o259
procedure Set_Subclass 0. . . 261
subtype Simple_-Name 262
procedure Space 263
‘constant Terse_Format 265
procedure Undelete 266
procedure Unfreeze 268
constant Verbose_Format 270
renamed procedure Verbose_List 271
subtype Volume oo 000 274

end Library
packageLinks, .. 27

Commands from Package Common 276
procedure Add o027
constant Any 281
procedure Copy 282
procedure Delete 284
procedure Dependents 286
procedure Display 288

LM-x 7/1/87 RATI ONAL

procedure Edit
procedure Expunge
constant External
procedure Insert
constant Internal
subtype Link_Kind
subtype Link_Name
procedure Replace
subtype Source_Name
subtype Source_Pattern
procedure Update
procedure Visif
subtype World_Name

end Links
package Switches

Error Response

Special Names)
Parameter Placeholders
Overview of Switches

Library Switches Grouped by Function

Switches for Ada Units

Switches for Networking .

Switches for Links

Switches for Listings

Library Switch Descriptions

Account . Co
Alignment_Threshold
Asm_Listing
Auto_Login .
Closed_Private_Part
Comment_Column
Configuration
Consistent_Breaking
Create_Internal_Links
Create_Subprogram_Specs
Enable_Deallocation
Id_Case

RATIONAL 7yer

290
291
292
293
295
296
297
298
300
301
302
304
305

307
307
307
308
308
309
309
309
309
309
309
309
309
309
310
310
310
310
310
310
310
311
311

LM-xi

Ignore_Interface_Pragmas 311
Ignore_Minor_Errors 31
Ignore.Unsupported_Rep_Specs 3811
Keyword_.Case 31
Line.Length 31
Major_Indentation 312
Minor.Indentation 312
Number_Case 312
Page_Limit 312
Password 312
Prompt_For_Account 312
Prompt_For_Password 312
Remote_Directory 312
Remote_Machine 313
Remote_Roof 313
Remote_Type 313
Require_Internal_Links 313
Seg-Listing 313
Send_Port_Enabled 313
Statement_Indentation 313
Statement_Length 313
Subsgystem_Interface 34
Target-Key 314
Terminal_ Echo 314
Transfer_Mode 314
Transfer_Structure 314
Transfer-Type 314
Username 314
Wrap_Indentation 34
Commands from package Common 315
procedure Associate 318
function Associated 320
procedure Change B ¥ |
subtype Composite_Name 322
procedure Create 323
constant Default_File 324
procedure Define - 13
procedure Display 326

LM-—xii 7/1/87 PAT'ONAL

procedure Dissociate 328
procedure Edit 329
procedure Edit_Session_Attributes 330
subtype File_Name 331
procedureIngert 332
constant Of _Library 333
constant Of_Session. 334
procedure Set 33
subtype Specification 336
subtype Value_Image 337
procedure Visit 338
procedure Write 339

end Switches

package Xref 341
procedure Ugsed_-By 342
procedure Uses 347

end Xref
Imdex 353

RATIONAL 7/1/sr LM-xiii

RATIONAL

How to Use This Book

The Library Management (LM) book of the Rational Environment Reference Manual
describes the operations that users can perform on libraries, such as library organi-
zation, compilation of large systems, and control of access to libraries and objects
in those libraries. It also describes operations for copying, saving, and restoring ob-
jects; link operations; library switch operations; operations for comparing, merging,

and searching Ada ® units and files; and cross-reference lists.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary

Keymap

Master Index

Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Input/Output (TI10)

Data and Device Input/Output (DI10)
String Tools (ST)

Programming Tools (PT

System Management Utilities (SMU)
Project Management (PM)

[

= O 00 IO UV W

[l =]

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 7/1/87 LM-xv

Organization of the
Rational Environment Reference Manual

L 11 volumes containing 14 books J
I l
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book

Ratonal Environoent

Reforence
Mannal

El

*
EST !'
8

Ecing lmagee (ED

S : | [
| Kermey i Vrung Syl Types EITS
’ oor o — b | etk e
| I :
‘ ! x|
i 3
|
i | h
I i
1 . ?
! i
| ‘. > > >
) i 3 b
RaTIONAL E RATIONAL N marionar | H
| 3

Rational Environment
° Reference - / Key concepts
Manual :
Book index
o Topical section

Unit section

Book

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
for example, Rational Networking—TCP/IP or Rational Target Build Utility) are
ocumented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

e Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

¢ Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Contents: The table of contents provides a complete list of all the units in the
book and their reference entries.

e Key Concepts section: Most of the books contain a section describing key
concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

e Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under
String_Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/er LM-xvii

¢ Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

¢ Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Pacilities

If you are a novice user starting to use the Environment, consult the Rattonal
Environment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

LM-xviii e RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the ‘ndex to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions
raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library");. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the {Help on el key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM—3222. If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RAT'ONAL 7/1/87 LM-—xix

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

LM—-xx 7/1/87 RATIONAL

Key Concepts

Managing your libraries suggests several things: organizing libraries, compiling large
systems, controlling access to libraries and objects in those libraries, and utilizing
Rational Environment resources. This Library Management book of the Rational
Environment Reference Manual describes several packages that aid in managing
your work. These packages are:

Access_List: Defines a set of operations for interactively displaying, setting, and
changing access lists (ACLs) and default access lists for worlds, Ada units, and

files.

Access_List_Tools: Defines a set of operations for programmatically displaying,
setting, and changing access lists and default access lists. Access lists are the
mechanism by which access to worlds, Ada units, and files is controlled.

Archive: Defines a set of operations for copying, saving, and restoring single
or multiple objects, as well as for transferring objects back and forth between
Rational systems. This package also permits the copying, saving, and restoring
of code only for subsystems and main programs.

Compilation: Defines a set of operations for promoting, demoting, creating, or
deleting large programs in which the structure of those programs is not known.

File_Utilities: Defines a set of operations for comparing, merging, and searching
Ada units and files.

Library: Defines a set of operations for creating, moving, copying, or deleting
the objects in the library system. This package also describes the type-specific
editing operations available on library images.

Links: Defines a set of operations for creating, editing, and using ltnks. This
package also describes the type-specific editing operations available on link im-
ages. Links are the Environment mechanism for utilizing Ada units from one
library in another library.

Switches: Defines a set of operations for creating, editing, and manipulating -
brary switches. This package also describes the type-specific editing operations
available on switch images. Switches provide a means of tailoring specific at-
tributes of the editor, compilation system, pretty-printer, or other Environment
facility.

Xref: Defines a set of operations that generate lists of the Ada units that reference
user-selectable Ada constructs in other Ada units.

RATIONAL 7er LM-1

Key Concepts

These packages and their commands are described in detail later in this book of the
Rational Environment Reference Manual. Some concepts that apply to several of
these facilities are described in the remainder of this section.

Library System

The library system in the Environment is a hierarchy of directories and worlds,
both of which are referred to as isbrarses. Special attributes, which are attached to
worlds to form points for controlling resources, differentiate directories from worlds.

Objects in the hierarchy can have multiple versions. Each version is assigned a
number by the Environment when the version is created. Each object has, at most,
one current version and possibly several deleted versions. Deleted versions are
retained until expunged or until newer versions are created. Objects also can be
deleted, but they are retained until they are expunged.

Worlds are closed scope for Ada naming and require that program units in the
world that need facilities outside the world explicitly import those needed facilities.
These imports are specified in the set of links that are associated with the enclosing
world.

Worlds

Worlds are used primarily where the contents of the structure are other structural
elements or programs.

The root of the library system is the world “!”. The home library of all users is a
world. Another common use of worlds is for project-specific libraries.

Worlds have the special attribute that they and their contents are built on the same
disk volume.

Worlds also contain the set of links that import facilities for program units in the
world or in any directories in the world.

Directories

Directories are used to contain related Ada units, main programs, or other directo-
ries or worlds.

Directories behave just as worlds do except that directories do not contain links
and they always exist on the same disk volume as their parent world.

LM-2 e RATIONAL

Key Concepts

Library Editing and Listing
The Rational Environment provides type-specific editing operations on library im-

ages. These editing operations are described in more detail in package Library in
this book.

The Environment also provides a set of commands for listing the contents of either
a directory or a world. These listing commands can provide a large amount of data
on individual units.

For example, consider a directory called !Users.Lance.Client_Layer that contains
the following units:

tUsers.Lance.Client_Layer
Mail_Man
Mail_Man
Select_Act
Select_Act

From this view of the directory, several pieces of information about the units in the
directory are not available. Editing operations are available to expand the informa-
tion displayed in the image of this directory. For more information, see the intro-
ductory information on the type-specific editing operations available on libraries in
package Library. The listing commands can also provide this information.

The listing commands display information about a named or selected unit or units.
The information is displayed in Current_Output, which is, by default, an output
window. Typically, the command displays information about all of the subunits.

For example, information can be displayed about the units in the above directory
with the Library.Ada_List procedure. The output from that command is:

TUSERS .LANCE .CLIENT_LAYER % LIBRARY.ADA_LIST STARTED ©S:87:53 PM
87/06/03 21:98:01 ::: Listing of IUSERS.LANCE.CLIENT_LAYER.G'C(ADA) sorted
87/06/83 21:08:21 ... by declaration.

STATUS DECLARAT{ON

CODED ~ Mail Man : Ada (Pack_Spec);

SOURCE Mail_Man : Ada (Pack_Body);

INSTALLED Select_Act : Ada (Proc_Spec);

SOURCE Select_Act : Ada (Proc_Body);

This listing provides information about all of the units in the directory, including
the class of the unit (in this case, Ada) and the subclass of the unit (for example,
package spec, package body, and so on). The listing is sorted alphabetically. Other
sorting methods are available.

Another example of information about the same set of objects is displayed with the
Library.Verbose_List procedure:

BAT‘ONAL 7/1/87 LM-3

Key Concepts

IUSERS .L ANCE .CLIENT_LAYER % LIBRARY.VERBOSE_L IST STARTED 09:08:30 PM
87/06/03 21:08:31 ::: Listing of !'USERS.LANCE.CLIENT_LAYER.6'V(ALL) sorted
87/86/03 21:28:31 ... by object.

OBECT VER CLASS SUBCLASS UPDATER UPDATE_TIME SIZE STATUS

MAIL_MAN 2 ADA PACK_SPEC LANCE 86/06/03 21:©6:10 651 SOURCE
*3 ADA PACK_BODY LANCE 86/06/03 21:06:10 2908 CODED
MATL_MAN’BODY 1 ADA PACK_BODY LANCE 86/86/03 21:06:22 617 SOURCE
*2 ADA PACK_BODY LANCE 86/06/03 21:@06:22 1050 SOURCE
SELECT_ACT 2 ADA PACK_SPEC LANCE 86/06/03 21:06:41 651 SOURCE
*3 ADA PACK_SPEC LANCE 86/06/03 21:06:41 2833 INSTALLED
SELECT_ACT’BODY 1 ADA PACK_BODY LANCE 86/06/03 21:06:45 617 SOURCE
*2 ADA PACK_BODY LANCE 86/06/03 21:06:46 1063 SOURCE

This listing includes several version numbers for some objects. Objects can have
several deleted versions that are retained until they are expunged. The default
version is marked with an asterisk (*).

Additional information includes the class of the object. Typically, this is an Ada
class, library class, or file class object.

The listing also includes the size, in bytes, of the object. The unit state (STATUS),
an indication of the frozen status, and the retention count for the object are also
listed. Some or all of these items may appear beyond the right edge of the window.

A number of other fields of information can be displayed with these listing com-
mands, including the username of the person who last updated or read the object
and the date and time when that occurred.

Compilation

Compilation management is the control of the compilation of sets of interdependent
Ada units. These dependencies between units can cause difficulty in managing the
compilation of large systems. The Environment provides several capabilities that
make the management of this compilation process much easier.

The Environment maintains a database of dependencies between units. As a unit
is created and changed, any dependencies the unit has on other units are recorded.
This dependency database allows the Environment to know that, when one unit
is changed, the units that depend on the changed unit must be recompiled. This
knowledge is also applied in operations such as deleting Ada units.

LM—-4 7/1/87 R)ATIONAL

Key Concepts

Tailoring Your Library

You can tailor libraries and Environment behavior in several ways.

Error Reactions
When errors are discovered in a command, the system can respond by:

o Ignoring the error and trying to continue.
¢ Issuing a warning message and trying to continue.
¢ Raising an exception and abandoning the operation.

For each job, the Environment maintains in package Profile (SJM) a default action
for commands to take if an error occurs. There are commands to specify and display
the default error reaction for a job. Regardless of the default error reaction, any
error reaction can be specified for any command.

The Environment has special values (used as parameters to commands) for which
profile it should use when responding to errors in a command. The three most
commonly used are "<PROFILE>", "<SESSION_PROFILE>", and "<DEFAULT>", which
refer, respectively, to the job response profile, the session response profile, and the
system default profile returned by the Profile.Default_Profile function. See siM,
package Profile, for further information on profiles.

Switches

Several commands in package Compilation use library swstches to govern certain
aspects of their execution. These switches govern the use of optimizations or other
operations. In general, the Environment supplies default values for these switches,
which are appropriate most of the time. There may be times, however, when some
of these switches need to be changed.

Switches are maintained in files. There are commands in package Switches for
creating, setting, and displaying switch values in these files. These commands and
the type-specific editing operations available on switch images are documented with
package Switches.

Each user’s session also has a set of switches that control Environment behavior
on the user’s terminal. Called session swstches, they control window size, scrolling
style, and output window formats. There are also commands in package Switches for
setting and displaying the session switches. Session switches are documented in the
Session and Job Management (SIM) book of the Rational Environment Reference
Manual.

Several kinds of messages are produced by these commands. Commentary messages
are general notes. Warning, error, and exception messages describe a problem that
has arisen in the command. Progress messages indicate whether the command is
making positive, errorless progress or negative, erroneous progress.

All of these messages are marked with a character sequence that indicates the kind of
message it is. This allows the user to scan a log file looking for a particular character

R/A\TIONAL 7/1/87 LM-5

Key Concepts

sequence. Several procedures exist in this package to scan for these sequences. Other
tools that automatically scan for these sequences can also be built.

There are also commands for inserting user-defined messages into the log file. The
content of these messages can be specified to be of any kind.

Logs are generated under the control of the current profile. This profile is manipu-
lated with procedures from package Profile; the logs can then be manipulated with
procedures from package Log. Both packages are documented in the Session and
Job Management (SIM) book of the Ratsional Environment Reference Manual.

Using Environment Resources

Environment resources are available for use in programs or for executing directly.
Resources to be used in a program must be imported via a mechanism called links.
Resources to be used from a Command window must be accessible via a mechanism
called searchlists.

Importing Environment resources to be used in a program requires importing a
specific Ada unit. Thus, a link specifies a library unit.

Resolving names in a Command window requires searching in specific directories or
worlds. Thus, searchlists contain a list of directories and worlds.

Links
Links are a way for closed-scope worlds to have access to other resources in other

worlds. Ada units that are named in a with clause of another Ada unit either must
be in the enclosing world or must be visible via a link in the enclosing world.

For example, assume that the following procedure has been built in a world called
'Users.Rjb:

with lo;
procedure Check_Sum is

end CHéck_Sum;

When this unit is promoted or checked for semantic errors, the Environment first
looks for Io in the current world, !Users.Rjb. If it is not there, the links associated
with the world are checked for the unit. In that set of links, a link is found for that
unit, as shown below:

KIND LINK => SOURCE

TS EESCSCoSSDESEZINTSRE=EI=R

EXT: 10 => 110.10

Note that EXT specified under KiND refers to the kind of link. EXT specifies an
external link. The other kinds of links are INT, an internal link, and OBS, an

obsolesced link.

LM-6 7/1/87 PATIONAL

Key Concepts

It is important to note that only worlds have links. Directories do not have links
but use the set of links associated with the enclosing world.

For example, consider the Ada unit described above. In this example, however, the
Ada unit exists not in the world !Users.Rjb but in the directory !Users.Rjb.Test.
In this case, when the unit is checked for semantic errors or is promoted, the En-
vironment looks in the current directory for a world for it and then in the links of
the nearest enclosing world, because there can be no links in a directory. Again,
the Environment would find the same link in the links associated with the world

'Users.Rjb.

Links are required for units imported from outside the world as well as for units
inside the world. If there are several directories inside the world, utilizing a resource
in one directory from another directory requires an internal link. Internal links are
created by default for each unit created in the world or in the enclosing directories.
The automatic creation of these links is controlled by the Create_Internal_Links
library switch. For more information on session switches, see package Switches in
this book.

Links can also be used to provide a locally shortened or different name for a unit.
The local, link name for the unit can be any name. This allows links to be used to
rename units imported into the world.

Naming Objects

Many commands in the Environment require a way of naming objects in the En-
vironment to move those objects or to perform operations on those objects. The
Environment uses two forms of naming: Ada names and string names. Ada names
are used in program units or when executing a command. String names are typically
used in the parameters to Environment commands.

Ada names are used to call an Environment command in a Command window or
to reference an Ada unit in a program. Ada names are the extended Ada names as
defined in the Reference Manual for the Ada Programming Language. Ada names
are used to reference Ada units only. Files, worlds, directories, and other non-Ada
units in the Environment cannot be referenced with an Ada name.

String names are used as arguments to commands. These strings are very similar to
Ada names, but they can be used to reference any object in the Environment. Also,
string names have five important additions: special names, parameter placeholders,
wildcards, specsal characters, and attributes. The ability also exists to create a set
of names using simple set notations and to substitute characters.

Special Names

Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow you to designate without
providing a pathname. They take the form “<spectal name> ®, where spectal name
specifies text, an object, a region, or an activity, as described below. Anywhere that
a string name can be used, a special name can be used.

RATlONAL 7/1/87 LM-7

Key Concepts

Listed below are the special names used in the Environment and their references:

“<SELECTION>" References the object associated with the highlighted area,
when the cursor is located in the highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlighted area in the window.

"< IMAGE>" References the highlighted object, if the cursor is in the high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image in which the cur-
sor is located.

"<TEXT>" References the object named in the highlighted text in the
image in the window.
"<ACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Special names are used as default parameter values to many operations. Users may
replace them with another special name or other form of string name, as accepted
by that parameter.

Parameter Placeholders

Many Environment commands use parameter placeholders as default values for pa-
rameters. They use the form “>>parameter placeholder<<®. This naming conven-
tion is used, as its name suggests, as a placeholder indicating the type of string name
that must be entered to replace it. Executing a command containing a parameter
placeholder will result in an error. Parameter placeholders include:

">>FILE NAME<L"
">>SOURCE NAMES<K"
">>SW 1 TCHLL"
">>SWITCH FILELK"
">>SWITCHES<LK"
">>WORLD NAMES<KL"

For example, an operation that has the ">>FILE NAME<<" parameter placeholder
requires a filename, such as “!Users.John.File_1”.

Wildcards

Wildcards allow for both the abbreviation of names and the specifying of several
objects with one name. The wildcards are: pound sign (#), at sign (@), question
mark (?), and double question mark (77).

The Wildcard #

The pound sign (#) represents any single identifier character in a name, including
the underscore (-). It can be used several times within a single name. For example,
Fu### will match the name Food.

LM-8 7/1/87 BATIONAL

Key Concepts

Any wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.####y, can be created to refer to the first two of them.

The Wlldcard @

The at sign (@) represents zero or more identifier characters in a name, including the
underscore (-). It does not match any subunits of Ada units. The wildcard can be
used several times within a single name. For example, the name !Users.Fred.Food
can be written !Ue.e.Food, if that abbreviation is unambiguous.

This wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.e, can be created to refer to all three of them.

This wildcard can be combined with the special characters (discussed later under
“Special Characters”) to create very short names that represent sets of objects in
the current context. As before, if there are three Ada units in the current context
called Larry, Curly, and Moe, the string @ can be used to represent all three Ada
units, but it will not include their subunits.

The Wildcard ?

The question mark (?) represents zero or more components in a name that are not
worlds or objects contained by those worlds. For example, the name !Users.Stooges?
represents the Ada units called Larry, Curly, Moe, and any of their subunits.

Also note that periods before and after the wildcard are optional. For example, the
name A.7.B is equivalent to the name A7B.

The Wildcard I?

The double question mark (??) represents zero or more components in a name,
including worlds or objects contained by those worlds. For example, the name
!Users?? represents the home worlds of all users and the contents of those worlds—
for example, !Users.Bill?? and everything in his home world, including worlds and
the objects within those worlds. As another example, consider that !7? matches all
objects in the directory system on a given machine.

Also note that periods before and after the wildcard are optional. For example, the
name A.77.B is equivalent to the name A77B.

Substitution Characters

Similar to the way in which wildcard characters can be used to specify a source
group of objects, substitution characters can be used to create target names from
source names.

The substitution characters and their definitions are described below. Note that
if a substitution character is encountered after all segments/wildcards have been
exhausted, the characters are replaced by the null string. the pound sign (#)
or the question mark (?) is replaced by the null string, an immediately following
period (.) is also elided from the result string.

RATIONAL +/1/er LM-9

Key Concepts

The Substitution Character #

The pound sign (#) is replaced by the next complete gright to left) segment in a
name. For example, if there are Ada units in the world !Users.Stooges called Larry,
Curly, and Moe, and the user wants to copy them to a world called !Users.Stooges-
.New_World, the user can build the target name parameter (from the source name
parameter {Users.Stooges) using substitution characters as follows: l#.#.New_World.#.

The Substitution Character @

The at sign () is replaced by the portion of the current segment that is matched by
a wildcard in the source name. If there is more than one wildcard in the segment,
a separate @ character is needed in the target to match each one. Matching is
performed from right to left. (For the purpose of this matching, e, #, ?, and ?7 are
considered wildcards.)

For example, there is a world called !Users.Gzc containing files File_1 through
File_50. The user wants to rename these objects as My_File_1 through My_File_50.
The source name parameter would be “!Users.Gzc.File_e”. The target name pa-
rameter, using substitution parameters, would be “!#.#.My_File_e”.

The Substitution Character ?

The question mark (?) is replaced by successive full segments, working right to left,
until the segment for a world is encountered. For example, to copy everything in
the world up through the next-level world !Users.Mary to !Users.John, the source
string would be !Users.Mary?? and the target string would be !Users.John?.

Special Characters in Names

Special characters can be used in names to specify either relative or absolute con-
texts or to specify indirect files of names. These special characters apply to names
used throughout the Environment.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character of exclamation (!), caret (),
dollar sign ($), double dollar sign (§$), percent (%), underscore (-), period (;,
backslash (\), or grave (*) causes explicit interpretations of the remainder of the
name, as described below.

Character pairs are also used to enclose a name and to give that name an additional

meaning. Character pairs are brackets ([]) and braces ({}), which are also described
below.

LM-10 7/1/87 BA\TIONAL

Key Concepts

The Special Character !

The exclamation mark (!) specifies that the context for resolving the remainder
of the name should be set to the root of the library system. This creates a fully
qualified name. This character represents the root of the library system in any
context.

The Speclal Character ~

The caret (-) specifies that the context should be set to the immediately enclosing
object. The caret permits naming to climb the hierarchy of objects and eventually
reach the root of the library system. The caret prefix can be used repeatedly to
define the context to be several units above the current context. The parent object
of the root of the directory system is itself.

A special use of this character occurs in combination with a bracketed name. A
name component of the form -[some_unit] resolves to the closest containing object
whose simple name is Some_Unit. Brackets are normally used for creating sets of

objects.

The caret can also be used as a shorthand method for referring to objects in a
parent unit. For example, if the current context is !Users.Pete, another user named
Joe can be referred to as !Users.Joe or simply -~Joe.

The Special Character $

The dollar sign ($) specifies that the context should be set to the immediately
enclosing library. A library is either a directory or a world. If the current context
is a library, this character has no effect.

A special use of this character occurs in combination with a bracketed name. A name
component of the form $[some_library| resolves to the closest containing library
whose simple name is Some_Library.

The Speclal Character $$

The double dollar sign (3) specifies that the context should be set to the immedi-
ately enclosing world. This is more restrictive than the single dollar sign ($), which
is either a world or a directory. If the current context is a world, this character has
no effect.

A special use of this character occurs in combination with a bracketed name. A
name component of the form $$(some_world] resolves to the closest containing world
whose simple name is Some_World.

The Special Character %

The percent (%), used only in the Rational Debugger, can be used only as the first
character of a name. It specifies that the next name component is a task name. Task
names are either string names assigned to tasks by calls to the !Commands.Debug-
.Set_Task_Name or the !Tools.Debug_Tools.Set_Task_Name procedure or task num-
bers assigned by the Environment. The !Commands.Debug.Task_Display procedure
lists all tasks and their names and numbers.

R)A—HONAL 7/1/87 LM-11

Key Concepts

The components of a name that follow the task name are interpreted as objects
declared in the named task. If the task name is followed by _n (where n is a
number), the name refers to a stack frame of the named task. Stack frame names
are further discussed in “The Special Character _,” below.

The Speclal Character -

The underscore () is interpreted as an indirect file prefix when used in some En-
vironment commands. If the first character after the underscore is an alphabetic
character, it is assumed to be the first character of the name of a file that contains
other names. This provides a way of building lists of objects and referring to that
list in a name. It must also be used when specifying an activity file as an indirect
file.

The underscore character is also interpreted as a stack frame prefix when used in
the Rational Debugger. If the value of an object declared in a subprogram is to
be named, the frame on the run-time stack that contains an activation of that
subprogram must be named. Renaming is done using the notation _frame number.
Stack frames are numbered for each task starting at the top with 1. For example,
—4 refers to frame number 4 (fourth frame from the top). Frames are alternately
numbered from the bottom using negative numbers.

The Special Character .

The period (.) is used both as a name component separator and as a name prefix.
As a separator, it is used just as in Ada names to separate components of a name.
For example, in the name Commands.Ada, the period separates the two components
of the name.

As a prefix character, the period specifies that the first component of the name is a
library unit name. This is used only in the Rational Debugger. A second component
of the name would be an object declared in the named library unit.

The Special Character \

The backslash (\) specifies that the next name component be evaluated in the
current searchlist. For example, a name such as Larry would be evaluated in the
current context. However, a name such as \Larry would be evaluated in each of
the contexts of the searchlist in turn until all occurrences of the name Larry are
found in those contexts. If more than one occurrence is found, a menu showing all
occurrences is displayed.

More information about searchlists can be found in “Using Environment Resources,”
earlier in this section.

The Special Character *

The grave (") is used to evaluate names using the current context and the set of
links associated with the current context. The grave evaluates the name as if it
were the name of an Ada unit in a with clause of a unit in the library that contains

LM-12 7/1/87 RATIONAL

Key Concepts

the current context. For example, the name *Moe resolves to an Ada unit called
Moe in the containing library. Moe could be a link to some other library.

This kind of naming does not allow for renamed packages or instances of generic
packages or subprograms to be used. This kind of naming does not “look through”
renaming declarations.

More information about links can be found in “Using Environment Resources,”
earlier in this section.

The Speclal Characters ||

Brackets ([|) define a set notation. Sets are created by enclosing a series of name
components, separated by commas, in brackets. For example, the name [Larry,
Curly, Moe] represents only those three objects in the current context. The semi-
colon character can also be used to separate name components. Commas and semi-
colons cannot be mixed. If semicolons are used, each name component in the set
must resolve to at least one object. For example, Foo?|’C(Lib), *Spec| matches any
component of Foo that is either a library or an Ada spec. Foo[A;B] must match A
and B in Foo.

Names can also be excluded from a set with the tilde (7). For example, the name
[e, “Curly| represents all names in the current context except the name Curly.

The special string [] represents the current context, whether that context is a di-
rectory, world, Ada unit, or other object.

The Speclal Characters {)

Braces ({}) denote objects that have been deleted but not expunged as well as
objects that have not been deleted. For example, if the object Curly is deleted but
not expunged, e refers only to Larry and Moe, but {e} refers to Larry, Curly, and
Moe.

Attributes

Attributes are special strings that specify a restriction on the evaluation of the
name. Syntactically like Ada attributes, these strings are a postfix notation that
specifies some restriction on the interpretation of the name. Specific versions of an
object, specific classes of objects, either the visible part or the body of an Ada unit,
or a nickname can be specified with attributes to remove ambiguity or to specify
something other than the default interpretation of the name.

Visible Parts and Bodies

Names normally are searched for in both the visible part or the body of the current
context. These attributes can restrict the resolution to either the visible part or the
body.

Two Ada unit attributes are defined:

RATIONAL 7/yer LM-13

Key Concepts

¢ ’body—Any remaining name components specify an object in the body of the
named unit.

¢ ’spec—Any remaining name components specify an object in the visible part of
the named unit.

If no attributes are used for a particular name component, the entire unit, visible
part and body, is used to resolve any additional name components. This allows
names to be created that specify objects not visible through Ada visibility rules.

Verslon Attributes

Objects in the directory system can have more than one version. It is necessary,
therefore, to distinguish which version of the object is desired. By default, the most
recent version is used; if some other version is desired, an attribute can be appended
to the name to specify a specific version.

Examples of version attributes are Larry’V(2), Curly’V(ALL), or Moe’V(-1). The
value in the parentheses can be any of the following:

ALL Matches all versions of the object.

ANY Matches the default version of the object.

MAX Matches the newest version of the object.

MIN Matches the oldest version of the object.

n Matches the version with that versson number.

—-n Matches the nth version preceding the current version. For exam-

ple, —1 matches the version created just before the current version.

Class Attributes

Objects in the directory system are of different classes and subclasses. A class or
subclass attribute can be used to distinguish which class or subclass of objects is
being named. By default, a name assumes any class of object.

Examples of class attributes are Le’C(LIBRARY) or Moe?’C(FILE). The value in the
parentheses includes the following classes:

ADA Any Ada program unit.

ARCHIVED_-CODE Objects appearing in a subsystem view for a code-only unit.
FILE Any file.

GROUP Any group in the system.

LIBRARY Any directory, world, or subsystem.

NULL-DEVICE A device that accepts output and discards it.

PIPE Any pipe.

SESSION Any user’s session object.

TAPE Any tape drive in the system.

LM-14 7/1/87 BA\TIONAL

Key Concepts

TERMINAL Any terminal in the system.
USER Any user in the system.

There are many subclasses associated with each class. These are described in Tables
1-1, 1-2, and 1-3.

Table 1-1. Library Class

Subclass Name Description

Comb.Ss Subsystem containing combined view that cannot contain spec or load views
(see PM book)

Comb.View Combined view of a subsystem (see PM book)

Directory Directory

Load_View Load view of a subsystem (see PM book)

Mailbox Library containing Mail and Mail_Db files for the Rational Mail Utility

Spec-Load Subsystem that cannot contain combined views (see PM book)

Spec.View Spec view of subsystem (see PM book)

Subsystem Subsystem (see PM book)

World World

Link Attributes

The attribute ’L can be used for matching the link name in the set of links associ-
ated with a world. For example, My_World’L(My_Link) matches the link named
My_Link in the set of links associated with My_World. The link attribute can
take an argument of Any, External, Internal, or any prefix of these. Any speci-
fies either external or internal links, External specifies external links (that is, links
referencing units outside the enclosing world), and Internal specifies internal links
that is, links referencing objects within the same enclosing world). For example,

our_World’L(AnygA@ matches all links beginning with the letter A in the set of
links for Your_World.

Nickname Attributes

Names of subprograms in an Ada unit can be overloaded. A subprogram can be
given a unique nickname with the Nickname pragma, which follows the declaration
of the subprogram.

An example of nickname attributes is Larry’N(first). The value in parentheses can
be any alphanumeric identifier that corresponds to a nickname that has been defined
with the Nickname pragma.

RATIONAL 7/1/87 LM-15

Key Concepts

Table 1-2. Ada Class

Subclass Description

Alt_List Alternative list insertion point
Comp-Unit Compilation unit that has not been semanticized
Context Context clause insertion point
Decl_List Declaration list insertion point
Func-Body Function body

Func_Inst Generic function instantiation
Func-Ren Function rename

Func.Spec Function specification
Gen-Func Generic function

Gen-Pack Generic package

Gen.Param Generic parameter insertion point
Gen-Proc Generic procedure

Insertion Insertion point

Load-Func Code-only function

Load-Proc Code-only procedure
Main_Body Main function body
Main-Body Main procedure body
Main-Func Main function specification
Main.Proc Main procedure specification
Pack-Body Package body

Pack-Inst Generic package instantiation
Pack_Ren Package rename

Pack.Spec Package specification

Pragma Pragma insertion point
Proc.Body Procedure body

Proc-Inst Generic procedure instantiation
Proc-Ren Procedure rename

Proc-Spec Procedure spec

Statement Statement insertion point
Subp_Body Subprogram body

Subp-Inst Generic subprogram instantiation
Subp-Ren Subprogram rename
Subp-Spec Subprogram specification
Task_Body Task body

LM-16

7/1/87

RATIONAL

Key Concepts

Table 1-3. File Class

Subclass Description

Activity Activity file (see PM book)

Binary Binary file

Cmve..Db CMVC database (see PM book)

Code-Db Code saved for a subsystem load view (see package Archive and PM book)
Compat-Db Compatibility database for a subsystem

Config Configuration pointer for CMVC (see PM book)
Dictionary For future development

Documents Document database (part of Rational Design Facility)
File_Map File map

Log Log file

Mail Collections of messages (part of Rational Mail Utility)
Mail-Db User’s mailbox (part of Rational Mail Utility)
Msg-In For future development

Msg-Out For future development

Objects Object set

Ps PostScript file (part of Rational Design Facility)
Search Searchlist file

Switch Switch file

Swtch.Def Switch definition file

Text Text file

Venture A collection of work orders for CMVC (see PM book)
Work Work order for CMVC (see PM book)

Work.-List Work order list for CMVC (see PM book)

State Attributes

The attribute ’S can be used for matching Ada units in a particular state. The
state attribute can take an argument of Archived, Source, Installed, Coded, or the
first letter of any of these. Archived specifies units in the archived state, Source
specifies units in the source state, and so on. For example, !Users.John?’S(Coded)
specifies all units in the coded state in John’s home library.

The Options Parameter

Many of the commands in the Environment have an optional options spectfication
in the form of a parameter called Options. The Options parameter accepts different
strings, depending on the command specified.

QAT'ONAL 7/1/87 LM-17

Key Concepts

Syntax Rules

The general form of the Options parameter is option=>value. Option is the name
of an option that modifies the way in which an operation behaves. The =>symbol
is called a value delimster separating the option from the value. Other permissible
value delimiters are the symbols colon equals (:=) and equals (=). For example, in
the Archive.Restore procedure, all of the following specifications of the same option
are permissible:

"AFTER=>12/25/86"
“"AFTER:=12/25/86"
"AFTER=12/25/86"

If more than one option is to be specified in the Options parameter, the options must
be separated by commas (,) or semicolons (;). For example, in the Archive.Restore
procedure, the following two options might be used:

"AFTER=12/25/86,FORMAT=R1000"

String values specified in options that contain comma or semicolon characters must
have the string enclosed in parentheses. For example:

“LABEL={MONDAY, JANUARY 26, 1987)"

Two or more options that will be assigned the same value can be combined by sep-
arating them with the vertical bar (|), with the value delimiter and value following
the last option. For example, two access control options from the Archive.Restore
procedure that might take the same value could be specified as:

"OBJECT _ACL | DEFAULT_ACL=>{ JOHN=>COD}"

Sequentially enumerated options that will be assigned the same value can be spec-
ified by listing only the first and last options, separated by the double dots (..).
For example, in package !Tools.Profile, all log messages can be turned off with the
option:

"Auxiliary_Msg. .Dollar_Msg=>False"

Boolean Optlons: A Special Case

For Boolean options, the value delimiter and value are optional. When they are
not specified, the value of the Boolean option is true. To make the value false
without using the value delimiter and value, it can be preceded with the tilde (7).
For example, specification of the REPLACE Boolean option for the Archive.Restore
procedure can be done by specifying any of the following:

"REPLACE"

"REPLACE=>TRUE"

"REPLACE : =TRUE"
"REPLACE=TRUE"

The value can be set to false by using any of the following:

LM-18 7/1/87 BA\TIONAL

Key Concepts

“~REPLACE"
"REPLACE=>FALSE"
"REPLACE : =FALSE™
"REPLACE=FALSE"

When Boolean options are specified without the value delimiter and value, the
options can be separated by spaces only—for example, from the Archive.Restore

procedure:
"REPLACE PROMOTE™"

Boolean sequential enumerations can also be specified without the value delimiter
and value. Using the earlier example from package Profile, you could specify the
option:

"~Auxiliary_Msg. .Dollar_Msg”

Literals In Optlons: A Speclal Case

For literals of the form literal=value, the literal and value delimster are optional. In
the Archive.Restore procedure, for example, the option:

"FORMAT=R1008"

can be specified as:

"R1000"

Access Control

Access control allows system managers, project leaders, and individual users to
specify who has the right to see, change, delete, or create objects. It controls
access in operations that can be performed by jobs—both those performed by users
directly executing operations and those performed by jobs explicitly initiated by
users. Package Access_List provides an interactive set of procedures that display,
set, change, and remove access control for worlds, files, and Ada units. Package
Access_List_Tools provides a set of programmatic access control operations.

Users, Identities, and Jobs

When a job is initiated, either when a user directly executes a command or when
a user explicitly initiates a job, the job has an tdentity. The identity is the name
of the user who initiated it. The identity for a job explicitly initiated by the !Com-
mands.Program.Create_Job and !Commands.Program.Run_Job commands can be
set in the Options parameter. The identity of any job can be changed with the
!Commands.Program.Change_Identity command.

Worlds, files, and Ada units have access lists (ACLs) that control who has access to
them. Access to these objects by a job is based on the group membership of the
identity initiating that job. An identity can be a member of one or more groups.
For example, user John is a member of groups John, Public, Network_Public, and
Engineering. For further information on groups, see “Groups,” below, and SMU,
package Operator.

IQATIONAL 7/1/87 LM-19

Key Concepts

ACL entries consist of a group name to be granted access, the => symbol, and the
classes of access granted to members of that group—for example, “John=>R”. En-
tries for multiple groups must be separated by commas—for example, “John=>R,
Public=>RW”. A detailed explanation of access classes appears below.

A job is granted access to an object if the identity that initiated it is a member of
one of the groups listed among the entries in the object’s ACL and the class of access
granted is that which the job requires. If the ACL for a particular object does not
contain a group to which the identity belongs, the job will not be permitted access
to the object. Furthermore, if the group is not granted the class of access that the
job requires, the job will not be permitted to perform the operation. For further
information on specific access control situations, see “Specific Cases,” below.

An Example

An identity John is a member of groups John, Public, and Group-1. John wants to
edit an Ada unit called Unit_1. Groups John and Public do not appear on the ACL
for that unit, so John is not granted access based on membership in those groups.
The third group of which John is a member, called Group_1, has read and write
access to that unit. Therefore, the identity John is granted access to that object
because of his membership in group Group_1, which has the required write access.

Groups

Groups may have zero or more members. At a minimum, each user is a member
of the group defined by his or her username. When a username is created, it is, by
default, a member of groups Public and Network_Public. Note that when either of
these groups appears on an ACL, in effect all users are given the specified access to
that object.

There is also a special group called Privileged whose members can gain access to
any object despite its ACL. To gain access to any object, members of this group can
execute the !Commands.Operator.Enable_Privileges command. For further infor-
mation, see SMU, procedure Operator.Enable_Privileges. Username Operator is a
member of this group.

Since a user’s identity is established at login, a user must log out and log back in
again for a new group membership (added with the !Commands.Operator.Add—To-
-Group command) to be added to the user’s identity.

Operator Capabllity

Members of group Operator and users who have write access to !Machine.Operator-
~Capability have operator capability. Users with operator capability can execute
the Environment commands that require this capability. For further information
on groups, see SMU, package Operator.

LM-20 7/1/87 RATIONAL

Key Concepts

Objects

ACLs apply to three types of objects: worlds, files, and Ada units. More than one
group can be granted each class of access. Access classes for worlds differ from those
for files and Ada units. These differences are described below.

Objects other than worlds, files, and Ada units do not have ACLs. In particular,
directories do not have ACLs. Changes to directories are controlled by the ACL of the
enclosing world. Therefore, if a user wants to create a new object in a directory, the
user must have create access for the directory’s enclosing world. If the user wants
to change the ACL for an object in a directory, the user must have owner access
to the enclosing world. The access granted to new objects created in directories is
the default ACL associated with the directory’s enclosing world. In other words, for
access control purposes, directories are transparent.

Access Classes for Worlds
The four access classes for worlds are:

¢ Create: Required to create new objects in the world (and its contained directo-
ries).
¢ Delete: Required to delete the world.

o Owner: Required to change the ACL of an object in the world, change the
links in that world, change the compiler switch associations in that world, and
freeze/unfreeze objects in that world.

* Read: Required to view the contents of the world or to resolve names within the
world.

Worlds have a default access list associated with them. The default ACL specifies
the access granted to new objects created in that world.

Access Classes for Files and Ada Units
The two access classes for files and Ada units are:

e Read: Required to inspect the current contents of an object.
o Write: Required to change the value of an object or to delete it.

Mixing Access Classes

You can mix access classes in ACLs (for example, “Public=>RWCOD”). The opera-
tion will ignore access classes that are not applicable to the object.

Equlvalent Access Classes

The access classes delete and write are equivalent. Therefore, when specifying an
ACL for a world, specifying write access is the same as specifying delete access. Also,
specifying delete access to an Ada unit or file is the same as specifying write access.

RAT'ONAL 7/1/87 LM-21

Key Concepts

How ACLs Are Assigned When Objects Are Created

When new worlds are created, they are assigned the ACL of the containing world.
Worlds also have a default ACL that is given to new files and Ada units created
within that world. When a new world is created, its default ACL is set to be the
same as that of the containing world. The world’s ACL and default ACL can be
explicitly changed.

A new version of an object inherits the ACL from the previous version of that object.

Specific Cases

This section describes some specific access control situations.

Access Control and Command Execution

For a command to be executed, a user must have read access to all units named in
a Command window. Similarly, a job must have read access to all units named
by the Options parameter passed to the !Commands.Program.Run_Job, !Com-
mands.Program.Run, and !Commands.Program.Create_Job commands.

Access Control and Compllation

To promote a unit, the identity must have write access to that unit and read access
to any unit it withs. To promote a unit and its closure, the identity must have write
access to each unit whose state must be changed.

To demote a unit, the identity must have write access to that unit. However, the
identity need not have write access to any of the units that wsth it.

Access Control and Links

Library objects other than worlds, Ada units, and files do not have ACLs, although
access control may affect them. For example, the addition of links is controlled. To
add links from a world to a unit, the user must have read access to the unit and
owner access to the world. No access is required to units on which that unit might
depend.

Access Control and Networking

Users who have Rational Networking—TCP/IP will find that networking operations
are governed by access control as are other user-initiated jobs. FTP operations
require that the identity specified in the parameter list have the access required to
perform that operation. The identity Network_Public can be used to control the
access to objects from users working on a remote machine.

When an RPC server is established on a machine, it will have an identity established
for it for access control purposes. This identity can be set by the server itself.
Remote requests requiring an identity different from that established by the server
can be handled by the server setting its identity based on a username and a password
included in the request. For the request to complete successfully, this username and
password passed to the server must be legal. The operation used to set a program’s

LM-22 7/1/87 'QATIONAL

Key Concepts

identity can then be called by the server. Thus, a server may be granted the same
access as any other program run on an R1000. A server can also be made to run
in privileged mode. If this is done, the identity change can be made without the

correct password.

A server can have only one identity at a time. When a server must process simul-
taneous requests, the server cannot have multiple identities established for it at the
same time. In such cases, the server must start a separate job for each request, with
each job having the appropriate identity. The RPC tools provide the required hooks
for accomplishing this. See Rational Networking—TCP/IP for further information.

Access Control and Searchlists

To resolve a name on a searchlist, the executing job must have read access to the
containing world and to the name. If the executing job does not have the required
read access to the containing world, the name will not be resolved and will appear
to be undefined.

Access Control and Subsystems

To provide access control in large programming projects, subsystem tools are gov-
erned by access control as are other user-initiated operations. No access to the
activity is required to delete views it contains.

Access Control and Archlving

When an object is archived, the string form of the object’s ACL is saved. When the
object is restored with the Archive.Restore procedure, an option permits restoration
of the original ACL or the substitution of 2 new ACL.

Access Control and {Commands

Access control affects certain other operations in !Commands. These packages in-
clude Archive (documented in this book), Job (SIM), and Daemon, Operator, Queue,
Scheduler, System_Backup, and Terminal (all in SMU).

RA-”ONAL 7/1/87 LM-23

RATIONAL

package Access_List

Access control allows system managers, project leaders, and individual users to
specify who has the right to see, change, delete, or create objects. It controls
access in operations that can be performed by jobs—both those performed by users
directly executing operations and those performed by jobs explicitly initiated by
users. Package Access_List provides an interactive set of procedures that display,
set, change, and remove access control for worlds, files, and Ada units.

For information on programmatic access control operations, see package Access-
-List_Tools, also in this book. For information on group operations, see SMU,
package Operator.

Users, Identities, and Jobs

When a job is initiated, either when a user directly executes a command or when a
user explicitly initiates a job, the job has an sdentity. The identity is the name of the
user who initiated the job. The identity for a job explicitly initiated by the !Com-
mands.Program.Create_Job and !Commands.Program.Run_Job commands can be
set in the Options parameter. The identity of any job can be changed with the
!Commands.Program.Change_Identity command.

Worlds, files, and Ada units have access lists (ACLs) that control who has access to
them. Access to these objects by a job is based on the group membership of the
identity initiating that job. An identity can be a member of one or more groups.
For example, user John is a member of groups John, Public, Network_Public, and
Engineering. For further information on groups, see “Groups,” below, and SMU,
package Operator.

ACL entries consist of a group name to be granted access, the => symbol, and the
classes of access granted to members of that group—for example, “John=>R”. En-
tries for multiple groups must be separated by commas—for example, “John=>R,
Public=>RW”. A detailed explanation of access classes appears below.

A job is granted access to an object if the identity that initiated it is a member of
one of the groups listed among the entries in the object’s ACL and the class of access
granted is that which the job requires. If the ACL for a particular object does not
contain a group to which the identity belongs, the job will not be permitted access

R)ATIONAL 7/1/81 LM-25

package 'Commands.Access_List

to the object. Furthermore, if the group is not granted the class of access that the
job requires, the job will not be permitted to perform the operation. For further
information on specific access control situations, see “Specific Cases,” below.

An Example

An identity John is a member of groups John, Public, and Group-1. John wants to
edit an Ada unit called Unit_1. Groups John and Public do not appear on the ACL
for that unit, so John is not granted access based on membership in those groups.
The third group of which John is a member, called Group-1, has read and write
access to that unit. Therefore, the identity John is granted access to that object
because of his membership in group Group-1, which has the required write access.

Groups

Groups may have zero or more members. At a minimum, each user is a member
of the group defined by his or her username. When a username is created, it is, by
default, a member of groups Public and Network_Public. Note that when either of
these groups appears on an ACL, in effect all users are given the specified access to
that object.

There is also a special group called Privileged whose members can gain access to
any object despite its ACL. To gain access to any object, this group can execute
the !Commands.Operator.Enable_Privileges command. For further information,
see SMU, procedure Operator.Enable_Privileges. Username Operator is a member
of this group.

Since a user’s identity is established at login, a user must log out and log back in
again for a new group membership (added with the !Commands.Operator.Add—-To-
-Group command) to be added to the user’s identity.

Operator Capability

Members of group Operator and users who have write access to !Machine.Operator-
—~Capability have operator capabslity. Users with operator capability can execute
the Environment commands that require this capability. For further information
on groups, see SMU, package Operator.

Objects

ACLs apply to three types of objects: worlds, files, and Ada units. More than one
oup can be granted each class of access. Access classes for worlds differ from those
or files and Ada units. These differences are described below.

Objects other than worlds, files, and Ada units do not have ACLs. In particular,
directories do not have ACLs. Changes to directories are controlled by the ACL of the
enclosing world. Therefore, if a user wants to create a new object in a directory, the
user must have create access for the directory’s enclosing world. If the user wants
to change the ACL for an object in a directory, the user must have owner access
to the enclosing world. The access granted to new objects created in directories is
the default ACL associated with the directory’s enclosing world. In other words, for
access control purposes, directories are transparent.

LM-26 7/1/87 RATIONAL

package 1Commands.Access..List

Access Classes for Worlds
The four access classes for worlds are:

e Create: Required to create new objects in the world (and its contained directo-
ries).
o Delete: Required to delete the world.

e Owner: Required to change the ACL of an object in the world, change the
links in that world, change the compiler switch associations in that world, and

freeze/unfreeze objects in that world.

o Read: Required to view the contents of the world or to resolve names within the
world.

Worlds have a default access list associated with them. The default ACL specifies
the access granted to new objects created in that world.

Access Classes for Files and Ada Units

The two access classes for files and Ada units are:

o Read: Required to inspect the current contents of an object.
o Write: Required to change the value of an object or to delete it.

Mixing Access Classes

You can mix access classes in ACLs (for example, “Public=>RWCOD”). The opera-
tion will ignore access classes that are not applicable to the object.

Equivalent Access Classes

The access classes delete and write are equivalent. Therefore, when specifying an
ACL for a world, specifying write access is the same as specifying delete access. Also,
specifying delete access to an Ada unit or file is the same as specifying write access.

How ACLs Are Assigned When Objects Are Created

When new worlds are created, they are assigned the ACL of the containing world.
Worlds also have a default ACL that is given to new files and Ada units created
within that world. When a new world is created, its default ACL is set to be the
same as that of the containing world. The world’s ACL and default ACL can be
explicitly changed.

A new version of an object inherits the ACL from the previous version of that object.

RATIONAL 7/1/87 LM-27

package !Commands. Access_List

Specific Cases

This section describes some specific access control situations.

Access Control and Command Execution

For a command to be executed, a user must have read access to all units named in
a Command window. Similarly, a job must have read access to all units named
by the Options parameter passed to the !Commands.Program.Run_Job, !Com-
mands.Program.Run, and !Commands.Program.Create_Job commands.

Access Control and Compilation

To promote a unit, the identity must have write access to that unit and read access
to any unit it withs. To promote a unit and its closure, the identity must have write
access to each unit whose state must be changed.

To demote a unit, the identity must have write access to that unit. However, the
identity need not have write access to any of the units that with it.

Access Control and Links

Library objects other than worlds, Ada units, and files do not have ACLs, although
access control may affect them. For example, the additi~n of links is controlled. To
add links from a world to a unit, the user must have read access to the unit and
owner access to the world. No access is required to units on which that unit might
depend.

Access Control and Networking

Users who have Rational Networking—TCP/IP will find that networking operations
are governed by access control as are other user-initiated jobs. FTP operations
require that the identity specified in the parameter list have the access required to
perform that operation. The identity Network_Public can be used to control the
access to objects from users working on a remote machine.

When an RPC server is established on a machine, it will have an identity established
for it for access control purposes. This identity can be set by the server itself.
Remote requests requiring an identity different from that established by the server
can be handled by the server setting its identity based on a username and a password
included in the request. For the request to complete successfully, this username and
password passed to the server must be legal. The operation used to set a program’s
identity can then be called by the server. Thus, a server may be granted the same
access as any other program run on an R1000. A server can also be made to run
in privileged mode. If this is done, the identity change can be made without the
correct password.

A server can have only one identity at a time. When a server must process simul-
taneous requests, the server cannot have multiple identities established for it at the
same time. In such cases, the server must start a separate job for each request, with
each job having the appropriate identity. The RPC tools provide the required hooks
for accomplishing this. See Rational Networking—TCP/IP for further information.

LM-28 7/1/87 RAT'ONAL

package 'Commands.Access. List

Access Control and Searchlists

To resolve a name on a searchlist, the executing job must have read access to the
containing world and to the name. If the executing job does not have the required
read access to the containing world, the name will not be resolved and will appear

to be undefined.

Access Control and Subsystems

To provide access control in large programming projects, subsystem tools are gov-
erned by access control as are other user-initiated operations. No access to the

activity is required to delete views it contains.

Access Control and Archiving

When an object is saved with procedures in package Archive, the string form of
the object’s ACL is saved. When the object is restored with the Archive.Restore
procedure, an option permits restoration of the original ACL or the substitution of

a new ACL.

Access Control and {Commands

Access control affects certain other operations in !Commands. These packages in-
clude Archive (documented in this book), Job (SIM), and Daemon, Operator, Queue,
Scheduler, System_Backup, and Terminal (all in SMU).

Special Names

Many of the commands in this package have spectal names as default values to
parameters requiring names. Anywhere that a string name can be used, a special
name can be used. Special names allow you to designate without supplying a
pathname. They take the form “<spectal name> ®, where spectal name specifies a
text, object, region, or activity, as described below:

"<SELECTION>" References the object associated with the highlighted area,
when the cursor is located in the highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether

or not there is a highlighted area in the window.

"<IMAGE>" References the highlighted object, if the cursor is in the high-
lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"KTEXT>" References the object named in the highlighted text in the
image in the window.
"<ACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, this special name references
that activity rather than the default activity.

You can replace special names with other types of naming expressions, as accepted
by that parameter.

PATIONAL 7/1/87 LM-29

package !Commands.Access_List

Error Response

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and what activities to use.
The response profile "<PROF ILE>", which many commands use by default, specifies
the job response profile. If there is no job response profile, the session response
profile ("<SESSION_PROFILE>") is used. If there is no session response profile, the
system’s default profile (“<DEFAULT>") is used. For further information on profiles,
see SIM, package Profile.

LM-30 7/1/87 RAT'ONAL

subtype Acl
package \Commands. Access_List

subtype Acl

subtype Acl 1s String;

Description
Defines the form of access lists (ACLs).

This subtype is a string that represents the group names and the classes of access
that each group is allowed. If a group is not explicitly listed in the ACL for an object,
that group is granted no access. A maximum of seven entries and 512 characters
are allowed in an ACL.

A job is granted access to an object based on the identity of the user who initiates
it. For the job to obtain access, the user initiating it must be a member of a group
granted the required access listed in the ACL.

The form of an individual entry within the ACL specifies a group name, the =>
symbol, and the access classes granted to that group—for example, “Phil=>RW”.
Multiple entries in ACLs must be separated by commas: “Phil=>RW,Bob=>R,-
Mary=>W?>.

Example 1

The following example of an ACL for a world grants members of two groups (GZC
and Public) different classes of access to that world. Group GZC has create, owner,
and delete access to that world, and group Public has read access only:

"GZC=>RCOD,Public=>R"

Example 2

The following example of an ACL for a file or an Ada unit grants read and write
access to a single group called GZC:

"GZC=>RW*"

QATIONAL 7/1/87 LM-31

procedure Add
package !Commands.Access_List

procedure Add

procedure Add (To_List : Acl = "Network_Public => RWCOD";
For_Ob ject : Name = "<SELECTION>";
Response : String := "<PROFILE>");

Description

Sets the access list (ACL) for the specified object by adding the ACL entry specified
in the To_List parameter to the current ACL for the object.

Messages are displayed on Current_Output indicating the success or failure of each
operation and the number of objects whose ACLs have been successfully or unsuc-
cessfully set.

Owner access to the world containing the object (or the world itself when changing
world ACLs) is required to set ACLs.

Parameters

To_List : Ael := "Network_Public => RUWCOD";

Specifies the groups for whom access is to be added. The default is to give read,
write, create, owner, and delete access to members of group Network.Public.

For_Object : Name := "<SELECTION>";

Specifies the object whose ACL will be set. Wildcards, special names, attributes,
and context prefixes can be used in specifying the object names. The default is the
selected object.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

References
procedure Display

procedure Set

LM-32 7/1/87 RATIONAL

procedure Add_Default
package !Commands. Access_List

procedure Add—_Default

procedure Add_Default (To_List . Acl = "Network_Public => RW";
For_World : Name = "<SELECTION>";
Response : String := "<PROFILE>"};
Description

Sets the default access list (ACL) for the specified world by adding the entry in the
To_List parameter to the current default ACL for that world.

New files and Ada units created within the world are given the default ACL. When
more than one world is specified by the For_World parameter, messages are dis-
played on Current_Output indicating the number of worlds whose default ACLs
have been successfully or unsuccessfully set. The display also indicates the number
of objects that were skipped because they were not worlds.

Parameters

To_List : Acl := "Network_Public => RW";

Specifies the group(s) for whom default access is to be granted. The default ACL
is given to new objects created within this world. The default gives read and write
access to members of group Network_Public.

For_World : Name := "<SELECTION>";

Specifies the world whose default ACL is to be set. Wildcards, special names, at-
tributes, and context prefixes can be used in specifying the world names. The de-
fault is the selected world. Nonworld objects do not have a default ACL; therefore,
when wildcards, special names, attributes, and context prefixes are used to specify
worlds, nonworld objects specified by the For_World parameter will be skipped.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

References

procedure Default_Display

EAT'ONAL 7/1/87 LM-33

constant Create
package !Commands.Access_List

constant Create

Create : constant Character := 'C’;

Description
Defines an access class that applies only to worlds.

This access class permits the user to create new objects in the specified world, with
the exception of worlds contained within that world.

See “References,” below, for other access classes.

References
constant Delete
constant Owner
constant Read

constant Write

LM-34 7/1/87 BA\TIONAL

procedure Default_Display
package !Commands.Access_List

procedure Default_Display

procedure Default_Display (For_World : Name := "<CURSOR>");

Description
Displays the default access list (ACL) for the world specified.

New objects created within a world are given the default ACL. If the selected object
is not a world and "<CURSOR>" or "<SELECTION>" is displayed as a parameter, no
display will result.

Parameters

For_World : Name := "<CURSOR>";

Specifies the worlds whose default ACLs will be displayed. The default is the world
on which the cursor is currently located. Wildcards, special names, and context
prefixes can be used in specifying the world names. When wildcards are used,
nonworld objects will not be displayed, because they do not have default ACLs.

Example
The command:
access_list.default_display (for_world=>"!users.gzc"};

produces a display indicating that users in group GZC have read and write access
to new objects created within that world as shown in the following display:

'TUSERS .GZC : GZC=>RU

RATIONAL 7er LM-35

procedure Default_Display
package !Commands.Access_List

References

procedure Set_Default

LM-36 7/1/87 EATIONAL

constant Delete
package !1Commands.Access_List

constant Delete

Delete : constant Character := 'D’;

Description
Defines an access class that applies only to worlds.

This access class, which permits deletion of the specified world, is synonymous with
write access.

See “References,” below, for other access classes.

References
constant Create
constant Owner
constant Read

constant Write

RAT‘ONAL 7/1/87 LM-37

procedure Display
package !Commands.Access_List

procedure Display

procedure Display (For_Object : Name := "<CURSOR>");

Description
Displays the access list (ACL) for the specified object on Current_Output.

Objects that have ACLs are worlds, files, and Ada units.

Parameters

For_Object : Name := "<CURSOR>";

Specifies the object whose ACL will be displayed. The default is the object on which
the cursor is currently located. Wildcards, special names, attributes, and context
prefixes can be used in specifying the object names.

Names in the same context are factored on the display (see “Example 2,” below).

Example 1

Assuming that the object on which the cursor is located is a file called File_1, the
command:

access_list.display (for_ob ject=>"lusers.czg.file_1"});

produces the following display in Current_Output. Assuming that Current_Output
is a window, this display indicates that users in group CZG have been granted read
and write access to File_1.

JIUSERS .CZG % ACCESS_LIST.DISPLAY STARTED 6:34:17 PM

IUSERS.CZG.FILE_1 : CZG=>RU

LM-38 7/1/87 PATIONAL

procedure Display
package !Commands.Access_List

Example 2
The command:
access_list.display (for_object=>"!users.gzc??"};

creates a list of the ACLs in Current-Output. Because a number of worlds are
involved, the resulting display is factored by worlds, as shown below:

Context: !USERS

GZC : GZC=>0CD,PUBL IC=>C
GZC.DIRECTORY_1 : This object has no ACL
GZC.MY_FILE_1'V(1) : GZC=>RW NETWORK_PUBL IC=>R
GZC.MY_FILE_2°'V(2) : GZC=>RW,NETWORK_PUBL IC=>R
GZC.MY_S_1'V(1) : This object has no ACL
GZC.S_1’V(1) : This object has no ACL
GZC.S_1_SWITCHES'V(1) : GZC=>RW,ZNETWORK_PUBL IC=>R
GZC.S5_2'V(1) : This object has no ACL
GZC.TEXT_1°V{(3) : GZC=>RW,NETWORK_PUBL IC=>R
GZC.UNIT_1'V(4) : GZC=>RW,NETWORK_PUBL IC=>R
GZC.UNIT_1’'BODY'V(7) : GZC=>RW,NETWORK_PUBL IC=>R
GZC.UNIT_12'V(3) 1 GZC=>RW,NETWORK_PUBL IC=>R
GZC.UNIT_12'BODY’V(3) : GZC=>RW,NETWORK_PUBL IC=>R
GZC.WORLD_1 : GZC=>0CD,PUBL IC=>C
GZC.WORLD_1.DIRECTORY_1 : This object has no ACL
GZC.WORLD_1.SUB_WORLD : GZC=>0CD,PUBLIC=>C

GZC.WORLD_1.SUB_WORLD .UNIT_1'V(1)

1 GZC=>RW,NETWORK_PUBL IC=>R
GZC.WORLD_1.SUB_WORLD .UNIT_1'BODY’'V(1)

1 GZC=>RW,NETWORK_PUBL.IC=>R
GZC.WORLD_1.S_1'V(2) : This object has no ACL
GZC.WORLD_1.TEXT_1'V(2) : GZC=>RW,NETWORK_PUBLIC=>R
GZC .WORLD_1.UNIT_1'V(4) : GZC=>RU,NETWORK_PUBLIC=>R
GZC.WORLD_1.UNIT_1'BODY'V{(4)

: GZC=>RW,NETWORK_PUBL IC=>R
GZC.WORLD_1.UNIT_12'V(2} : GZC=>RW,NETUORK_PUBL IC=>R
GZC.WORLD_1.UNIT_12°'BODY’'V(2)

: GZC=>RU NETWORK_PUBL IC=>R
GZC.WORLD_1 .WORLD_1 : GZC=>0CD,PUBL I1C=>C
GZC.WORLD_1.WORLD_1 .DIRECTORY_1

: This object has no ACL
GZC.WORLD_1 .WORLD_1.S_1"V(1)

: This object has no ACL
GZC.WORLD_1 .WORLD_1.TEXT_1’V(1)

1 GZC=>RW,NETWORK_PUBL IC=>R
GZC.WORLD_1 .WORLD_1.UNIT_1'V(1)

1 GZC=>RW,NETWORK_PUBL IC=>R
GZC.WORLD_1 .WORLD_1.UNIT_1'BODY'V(1)

1 GZC=>RW,NETWORK_PUBL IC=>R
GZC .WORLD_! .WORLD_1_UNIT'V(3)

1 GZC=>RW,NETUWORK_PUBL IC=>R

RAT'ONAL 7/1/81 LM-39

procedure Display
package 'Commands.Access. List

References

procedure Set

LM-40 7/1/87 RAT'ONAL

subtype Name
package !Commands.Access_List

subtype Name

subtype Name 1s String;

Description
Defines the subtype for names of objects used by procedures in this package.

This subtype allows all wildcards, special names, context prefixes, attributes, and
substitution characters. See the Key Concepts in this book for more general infor-
mation about naming.

EAT'ONAL 7/1/87 LM-41

constant Owner
package !Commands.Access_List

constant Owner

Owner : constant Character := '0’;

Description
Defines an access class that applies only to worlds.

This access class permits:

¢ Changing the access list (ACL) of objects in the specified world.

¢ Changing the links in the specified world.

¢ Changing the compiler switch file associations in the specified world.

o Freezing and unfreezing objects in the specified world.

When a world is created, the world’s ACL is set to be the same as the ACL of the

containing world. A user with owner access is permitted to change the ACL of
objects within the world. More than one identity can have owner access.

See “References,” below, for other access classes.

References
constant Create
constant Delete
constant Read

constant Write

LM-42 7/1/87 BA\TlONAL

constant Read
package 'Commands. Access_List

constant Read

Read : constant Character := 'R’;

Description
Defines an access class that applies to worlds, Ada units, and files.

This access class is required to inspect the contents of an object, including worlds,
and to perform operations such as executing the !Commands.Common.Definition
command to inspect the contents of an object, opening for In_File mode, and exe-
cuting certain Rational Debugger commands.

For worlds, this access class allows the user to display the world (or directories
therein) and to resolve names in the world (or directories therein).

See “References,” below, for other access classes.

Errors

In 1/0 operations, read access is required for In_File mode. In other words, if a
user wants to open a file to read it, the user must have read access to the file. The
'To.Jo_Exceptions.Use_Error exception is raised for access failures from Io packages.

References

constant Create
constant Delete
constant Owner

constant Write

R)ATIONAL 7/1/87 LM-43

procedure Set
package !Commands.Access_List

procedure Set

procedure Set (To_List 1 Acl = "Network_Public => RUCOD";
For_Object : Name = "<SELECTION>";
Response : String := "<PROFILE>"};

Description

Sets the access list (ACL) for the specified object.

Messages are displayed on Current_Output indicating the success or failure of each
operation and the number of objects whose ACLs have been successfully or unsuc-
cessfully set.

Owner access to the world containing the object (or the world itself when changing
world ACLs) is required to set ACLs.

If a call to the Set procedure attempts to set the ACL of a world, and the user
executing the procedure does not have owner access to the world but does have
owner access to the enclosing world, the ACL is still set. This allows the user to
change the ACL of a world when no one has owner access to it. This exception to
the ownership rule applies only to setting the ACL of a world.

Parameters

To_List : Acl := "Network_Public => RUWCOD";

Specifies the group(s) for whom access is to be set. The default is to give read,
write, create, owner, and delete access to members of group Network_Public.

For_Object : Name := "<SELECTION>";

Specifies the object whose ACL will be set. Wildcards, special names, attributes,
and context prefixes can be used in specifying the object names. The default is the
selected object.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job

response profile.

LM-44 7/1/87 QAT'ONAL

procedure Set
package !Commands.Access_List

Example

The command:

access_list.set
(to_list=>"gze=>ruw",for_ob ject=>"text",
response=>"<profile>"};

changes the ACL for the file named Text, so that the only group to have read or
write access to that file is GZC. The confirming display appears as follows:

IUSERS .GZC % ACCESS_LIST.SET STARTED 6:40:55 PM
86/12/09 18:40:57 --- Access_List.Set (To_List => "GZC=>RW", For_Object =>
86/12/09 18:40:57 ... "<SELECTION>");.

86/12/99 18:48:57 +++ !USERS.GZC.TEXT'V(l): acl set to GZC=>RU.

References
procedure Add
procedure Display

RAT'ONAL 7/1/87 LM-45

procedure Set_Default
package !Commands.Access_List

procedure Set_Default

procedure Set_Default (To_List : Acl = "Network_Public => RU";
For_World : Name = "<SELECTION>";
Response : String := "<PROFILE>");
Description

Sets the default access list (ACL) for the specified world.
New files and Ada units created within the world are given the default ACL.

When more than one world is specified by the For_World parameter, messages are
displayed on Current_Output indicating the number of worlds whose default ACLs
have been successfully or unsuccessfully set. The display also indicates the number
of objects that were skipped because they were not worlds.

Parameters

To_List : Acl := "Network_Public => RU";
Specifies the group(s) for whom default access is to be granted. The default access

list is given to new objects created within this world. The default gives read, write,
create, owner, and delete access to members of group Network_Public.

For_World : Name := "<SELECTION>";

Specifies the world whose default ACL is to be set. Wildcards, special names, at-
tributes, and context prefixes can be used in specifying the world names. The
default is the selected world. Nonworld objects do not have a default ACL; there-
fore, when wildcards, special names, attributes, and context prefixes are used to
specify worlds, nonworld objects specified by the name will be skipped.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

LM-46 7/1/87 RATIONAL

procedure Set_Default
package !Commands.Access_List

Example
Assuming that the selected object is a world, the command:
access_list.set_default

(to_list=>"gzc=>rw",for_world=>"<selection>",
response=>"<PROF |LE>"};

changes the ACL for that world, so that the only group to have read or write access
to new objects created in that world is GZC. The confirming display appears as:

IUSERS.GZC % ACCESS_LIST.SET_DEFAWLT STARTED 6:42:20 PM
86/12/09 18:42:22 --- Access_List.Set_Default (To_List => "GZC=>RU",
86/12/03 18:42:22 ... For_World => "<SELECTION>");.

86/12/@3 18:42:22 +++ 'USERS.GZC: default acl set to GZC=>RUW.

References
procedure Add-Default

procedure Default_Display

EA-”ONAL 7/1/87 LM-47

constant Write
package !Commands.Access_List

constant Write

WUrite : constant Character := 'U’;

Description

Defines an access class applying to files and Ada units.

This class of access is required to execute operations that change the value of an
object, such as editing, promoting, and demoting. Write access is also required to
delete objects. Write access is synonymous with delete access.

See “References,” below, for other access classes.

Errors

In 1/0 operations, write access is required for Inout-File and Out_File modes. In
other words, if a user wants to open a file for Read/Write or Write mode, the user
must have write access to the file. The !Io.Jo_Exceptions.Use_Error exception is
raised for access failures from Io packages.

References

constant Create
constant Delete
constant Owner

constant Read

end Access_List;

LM-48 1/1/87 RATIONAL

package Access_List_Tools

Access control allows system managers, project leaders, and individual users to
specify who has the right to see, change, delete, or create objects. It controls
access in operations that can be performed by jobs—both those performed by users
directly executing operations and those performed by jobs explicitly initiated by
users. Package Access_List_Tools provides a programmatic set of procedures that
display, set, change, and remove access control for worlds, files, and Ada units.

For information on interactive access control operations, see package Access_List,
also in this book. For information on group operations, see SMU, package Operator.

Users, Identities, and Jobs

When a job is initiated, either when a user directly executes a command or when
a user explicitly initiates a job, the job has an sdentsty. The identity is the name
of the user who initiated it. The identity for a job explicitly initiated by the !Com-
mands.Program.Create_Job and !Commands.Program.Run_Job commands can be
set in the Options parameter. The identity of any job can be changed with the
!ICommands.Program.Change_Identity command.

Worlds, files, and Ada units have access lists (ACLs) that control who has access to
them. Access to these objects by a job is based on the group membership of the
identity initiating that job. An identity can be a member of one or more groups.
For example, user John is a member of groups John, Public, Network_Public, and
Engineering. For further information on groups, see “Groups,” below, and sMuU,
package Operator.

ACL entries consist of a group name to be granted access, the => symbol, and the
classes of access granted to members of that group—for example, “John=>R”. En-
tries for multiple groups must be separated by commas—for example, “John=>R,-
Public=>RW”. A detailed explanation of access classes appears below.

A job is granted access to an object if the identity that initiated it is a member of
one of the groups listed among the entries in the object’s ACL and the class of access
granted is that the job requires. If the ACL for a particular object does not contain
a group to which the identity belongs, the job will not be permitted access to the
object. For further information on specific access control situations, see “Specific
Cases,” below.

RATIONAL 7/1/87 LM-49

package !Tools.Access_List_Tools

An Example

An identity John is a member of groups John, Public, and Group_1. John wants to
edit an Ada unit called Unit_1. Groups John and Public do nct appear on the ACL
for that unit, so John is not granted access based on membership in those groups.
The third group of which John is a member, called Group_1, has read and write
access to that unit. Therefore, the identity John is granted access to that object
because of his membership in group Group.1, which has the required write access.

Groups

Groups may have zero or more members. At a minimum, each user is a member
of the group defined by his or her username. When a username is created, it is, by
default, a member of groups Public and Network_Public. Note that when either of
these groups appears on an ACL, in effect all users are given the specified access to
that object.

There is also a special group called Privileged whose members can gain access to
any object despite its ACL. To gain access to any object, this group can execute
the !Commands.Operator.Enable_Privileges command. For further information,
see SMU, procedure Operator.Enable_Privileges. Username Operator is a member
of this group.

Since a user’s identity is established at login, a user must log out and log back in
again for new group membership (added with the !Commands.Operator.Add_To-
—~Group command) to be added to the user’s identity.

Operator Capability

Members of group Operator and users who have write access to !Machine.Operator-
—Capability have operator cepability. Users with operator capability can execute
the Environment commands that require this capability. For further information
on groups, see SMU, package Operator.

Objects

ACLs apply to three types of objects: worlds, files, and Ada units. More than one
group can be granted each class of access. Access classes for worlds differ from those
for files and Ada units. These differences are described below.

Objects other than worlds, files, and Ada units do not have ACLs. In particular,
directories do not have ACLs. Changes to directories are controlled by the ACL of the
enclosing world. Therefore, if a user wants to create a new object in a directory, the
user must have create access for the directory’s enclosing world. If the user wants
to change the ACL for an object in a directory, the user must have owner access
to the enclosing world. The access granted to new objects created in directories is
the default ACL associated with the directory’s enclosing world. In other words, for
access control purposes, directories are transparent.

LM-50 7/1/87 RATIONAL

package 1Tools.Access..List_Tools

Access Classes for Worlds
The four access classes for worlds are:

o Create: Required to create new objects in the world (and its contained directo-
ries).
o Delete: Required to delete the world.

e Owner: Required to change the ACL of an object in the world, change the
links in that world, change the compiler switch associations in that world, and
freeze/unfreeze objects in that world.

o Read: Required to view the contents of the world or to resolve names within the
world.

Worlds have a default access list associated with them. The default ACL specifies
the access granted to new objects created in that world.

Access Classes for Files and Ada Units

The two access classes for files and Ada units are:

o Read: Required to inspect the current contents of an object.
o Write: Required to change the value of an object or to delete it.

Mixing Access Classes

You can mix access classes in ACLs (for example, “Public=>RWCOD”). The system
will ignore access classes that are not applicable to the object.

Equivalent Access Clauses

The access classes delete and write are equivalent. Therefore, when specifying an
ACL for a world, specifying write access is the same as specifying delete access. Also,
specifying delete access to an Ada unit or file is the same as specifying write access.

How ACLs Are Assigned When Objects Are Created

When new worlds are created, they are assigned the ACL of the containing world.
Worlds also have a default ACL that is given to new files and Ada units created
within that world. When a new world is created, its default ACL is set to be the
same as that of the containing world. The world’s ACL and default ACL can be
explicitly changed.

A new version of an object inherits the ACL from the previous version of that object.

QATIONAL 7/1/87 LM-51

package !Tools.Access_List._Tools

Specific Cases

This section describes some specific access control situations.

Access Control and Command Execution

For a command to be executed, a user must have read access to all units named in
a Command window. Similarly, a job must have read access to all units named
by the Options parameter passed to the !Commands.Program.Run_Job, !Com-
mands.Program.Run, and !Commands.Program.Create_Job commands.

Access Control and Compilation

To promote a unit, the identity must have write access to that unit and read access
to any unit it withs. To promote a unit and its closure, the identity must have write
access to each unit whose state must be changed.

To demote a unit, the identity must have write access to that unit. However, the
identity need not have write access to any of the units that wsth it.

Access Control and Links

Library objects other than worlds, Ada units, and files do not have ACLs, although
access control may affect them. For example, the addition of links is controlled. To
add links from a world to a unit, the user must have read access to the unit and
owner access to the world. No access is required to units on which that unit might

depend.

Access Control and Networking

Users who have Rational Networking—TCP/IP will find that networking operations
are governed by access control as are other user-initiated jobs. FTP operations
require that the identity specified in the parameter list have the access required to
perform that operation. The identity Network_Public can be used to control the
access to objects from users working on a remote machine.

When an RPC server is established on a machine, it will have an identity established
for it for access control purposes. This identity can be set by the server itself.
Remote requests requiring an identity different from that established by the server
can be handled by the server setting its identity based on a username and a password
included in the request. For the request to complete successfully, this username and
password passed to the server must be legal. The operation used to set a program’s
identity can then be called by the server. Thus, a server may be granted the same
access as any other program run on an R1000. A server can also be made to run
in privileged mode. If this is done, the identity change can be made without the

correct password.

A server can have only one identity at a time. When a server must process simul-
taneous requests, the server cannot have multiple identities established for it at the
same time. In such cases, the server must start a separate job for each request, with
each job having the appropriate identity. The RPC tools provide the required hooks
for accomplishing this. See Rational Networking—TCP/IP for further information.

LM-52 7/1/87 RAT'ONAL

package !Tools.Access_List_Tools

Access Control and Searchlists

To resolve a name on a searchlist, the executing job must have read access to the
containing world and to the name. If the executing job does not have the required
read access to the containing world, the name will not be resolved and will appear
to be undefined.

Access Control and Subsystems

To provide access control in large programming projects, subsystem tools are gov-
erned by access control as are other user-initiated operations. No access to the
activity is required to delete views it contains.

Access Control and Archiving

When an object is saved with procedures in package Archive, the string form of
the object’s ACL is saved. When the object is restored with the Archive.Restore
procedure, an option permits restoration of the original ACL or the substitution of
a new ACL.

Access Control and !Commands

Access control affects certain other operations in !Commands. These packages in-
clude Archive (documented in this book), Job (SIM), and Daemon, Operator, Queue,
Scheduler, System-Backup, and Terminal (all in SMU).

RATIONAL 7/1/87 LM-53

subtype Access_Class
package !Tools.Access_List_Tools

subtype Access_Class

subtype Access_Class is String;

Description

Defines the form of access classes.

Access classes consist of the following individual characters (either upper- or low-
ercase) or combinations thereof: R, W, D, C, and O. The characters stand, respec-
tively, for the following classes of access: read, write, delete, create, and owner.

References
constant Create
constant Delete
constant Owner
constant Read

constant Write

LM-54

s RATIONAL

exception Access_Tools_Error
package !Tools.Access_List_Tools

exception Access—_Tools_Error

Access_Tools_Error : exception;

Description

Defines the exception raised when an error condition occurs as the result of executing
a function in this package.

When an error occurs as the result of executing a procedure in this package, an error
condition and message describing the error are returned in the Status parameter.

PATIONAL 7/1/87 LM-55

subtype Acl
package !Tools.Access_List_Tools

subtype Acl

subtype Acl i1s String;

Description
Defines the form of access lists (ACLs).

This subtype is a string that represents the group names and the classes of access
that each group is allowed. If a group is not explicitly listed in the ACL for an object,
that group is granted no access. A maximum of seven entries and 512 characters
are allowed in an ACL.

A job is granted access to an object based on the identity of the user who initiates
it. For the job to obtain access, the user initiating it must be a member of a group
listed in the ACL.

The form of an individual entry within the ACL specifies a group name, the =>
symbol, and the access classes granted to that group—for example “Phil=>RW?”.
Multiple entries in ACLs must be separated by commas: “Phil=>RW,Bob=>R,-
Mary=>W?”.

Example 1

The following example of an ACL for a world grants members of two groups (GZC
and Public) different classes of access to that world. Group GZC has read, create,
owner, and delete access to that world, and group Public has create access only:

"GZC=>RCOD,Public=>C"
Example 2

The following example of an ACL for a file or an Ada unit grants read and write
access to a group called GzC:

"GZC=>RUW"

LM-56 7/1/87 RA\TIONAL

function Amend
package !Tools.Access. List_Tools

function Amend

function Amend (initial_Acl : Acl;

New_Group : Name;

Desired . Access_Class) return Acl;
Description

Returns an amended access control list (ACL).

If a username is already granted access because of membership in a group in the
initial ACL, the new group will not be appended to the initial ACL.

If the addition of a new entry to the ACL causes the ACL to exceed the maximum
of seven entries, the rightmost entry will be removed.

Parameters

initial_Acl : Acl;
Specifies the initial ACL, before it is amended.

New_Group : Name;
Specifies the new group to be added to the ACL. Context prefixes and wildcards can
be used to specify a single group.

Desired : Access_Class;

Specifies the desired access classes for the new group. Access classes consist of either
the upper- or lowercase form of one or more of the following: R (read), W (write),
C (create), O (owner), or D (delete).

return Acl;

Returns an amended ACL.

Errors
The Access_Tools_Error exception is raised if an error occurs.

Common errors include an illegal ACL for the Initial-Acl parameter and an illegal
name for the New_Group parameter.

RAT'ONAL 7/1/87 LM-57

function Amend
package !Tools.Access_List_Tools

Example

The following example illustrates how the Amend function can be used in conjunc-
tion with other procedures in this package to update the ACL for an object:

with Log, Simple_Status, Access_List_Tools;
procedure Amend_Example
(Filename : String;
Added_Group : String;
Desired_Group_Access : String) is
Status : Simple_Status.Condition;

begin

~~ Add a group to the access list, supplied by the user.
Access_List_Tools.Set (Filename,
(Access_List_Tools.Amend
(Access_List_Tools.Get (Filename),
Added_Group,
Desired_Group_Access)},
Status);
Log.Put_Condition (Status);
-- Display the results of adding the group.

end Amend_Example;

References
subtype Acl
function Get
procedure Get

procedure Set

LM-58 7/1/87 RATIONAL

function Check
package Tools.Access_List_Tools

function Check

function Check (User_Name : String := "";
Ob ject_Id : Directory.Version;

Desired : Access_Class) return Boolean;
function Check (User_Name : String = "7,

Ob ject _Name : String;

Desired : Access_Class) return Boolean;
function Check (User_Id : Directory.Version;

Ob ject_Id : Directory.Version;

Desired : Access_Class) return Boolean;
function Check (Job : Machine.Job_ld;

Object_Id : Directory.Version;

Desired : Access_Class) return Boolean;

Description
Returns true if the specified user or job has the desired access to the specified object.

The value true is also returned if an object that does not have an access list is
referenced.

This function returns false if an error is detected during the test or if the job does
not have the desired access.

Parameters

User_Name : String := ;

Specifies the username whose access class is to be checked. All of the groups to which
the username is a member are used for the test. Context prefixes and wildcards can
be used to specify a single username. Use of the null string specifies the identity of
the calling job.

User_Id : Directory.Version;

Specifies the directory version of the user identifier.

Job : Machine.Job_ld;
Specifies the directory version of the job identifier.

RATIONAL 7yer LM-59

function Check
package !Tools.Access_List_Tools

Object_Id : Directory.Version;
Specifies the directory version of the object.

Object_Name : String;

Specifies the name of an object. Context prefixes, wildcards, and attributes can be
used to specify a single object.

Desired : Access_Class;

Specifies the desired access classes. Access classes consist of either the upper- or the
lowercase version of one or more of the following: R (read), W (write), C (create),
O (owner), or D (delete).

return Boolean;

Returns true if the specified user or job has the desired access to the specified object
or if an object that does not have an access list is referenced. This function returns
false if an error is detected during the test or if the job does not have the desired
access.

Errors
The Access_Tools_Error exception is raised if an error occurs.

Common errors include illegal values for the Desired parameter and references to
objects that do not exist.

Example

The following example shows a simple procedure that uses the Check function to
determine whether a user has the desired access to a particular object:

with to, Access_List_Tools;

procedure Check_Example
(User : String;
WUhich_Object : String;
What_Access : String) 1s

begin

if Access_List_Tools.Check
(User, Which_Object, What_Access) then
lo.Put ("The user has the requested access.");

else
fo.Put ("The user does not have the requested access.");

end 1if;
end Check_Example;

LM-60 7/1/87 BA\TIONAL

function Check
package !Tools.Access_List_Tools

References

subtype Access_Class

PAT'ONAL 7/1/87 LM-61

procedure Check_Validity
package !Tools.Access_List_Tools

procedure Check_Validity

procedure Check_VYalidity (For_List : Acl;
Status : 1n out Simple_Status.Condition);

Description

Checks the validity of the specified access list (ACL).

Parameters

For_List : Acl;
Specifies the ACL to be checked for validity.

Status : 1in out Simple_Status.Condition;

Returns a condition indicating that the procedure has executed correctly. If there
is an error, this procedure returns a message indicating the type of error.

Errors

If an error occurs, this procedure returns the Status parameter containing a condi-
tion and a message indicating the type of error.

Example
The following example procedure takes as a parameter the name of an object whose

ACL is to be checked for validity. If there is an error in the ACL, a display indicates
the error. If there is no error, a display indicates that the ACL is valid.

LM-62 7/1/87 RAT'ONAL

procedure Check_Validity
package !Tools.Access_List_Tools

with Log, lo, Access_List_Tools, Simple_Status;
procedure Check_Validity (Which_Objects_Access_List : String) 1is
Archived
Status : Simple_Status.Condition;
begin
Access_List_Tools.Check_Validity
(Access_List_Tools.Get (Which_Objects_Access_List), Status});
if Simple_Status.Error (Status) then
-- display the error germerated by the Simple_Status package.
Log.Put_Condition (Status};
else
lo.Put_Line ("The access list is valid.");
end 1if;
end Check_Validity;

References
subtype Acl
PT, type Simple_Status.Condition

RATIONAL 1/1/87 LM-63

constant Create
package !Tools.Access_List_Tools

constant Create

Create : constant Character := 'C’;

Description

Defines an access class that applies only to worlds, which permits the user to create
new objects anywhere in the specified world.

See “References,” below, for other access classes.

References
constant Delete
constant Owner
constant Read

constant Write

LM-64 7/1/87 BA\-HONAL

constant Delete
package !Tools.Access_List_Tools

constant Delete

Delete : constant Character := 'D’;

Description

Defines an access class that applies only to worlds, which permits deletion of the
specified world.

This access class is synonymous with write access.

See “References,” below, for other access classes.

References
constant Create
constant Owner
constant Read

constant Write

EAT'ONAL 7/1/87 LM-65

function Get
package !Tools.Access_List_Tools

function Get

function Get (For_Object : Name) return Acl;

function Get (For_Object : Directory.Version) return Acl;

Description
Returns the access list (ACL) for the specified object.

Objects that have ACLs are worlds, files, and Ada units.

Parameters

For_Object : Name;

Specifies the name of the object whose ACL is to be retrieved. Context prefixes,
wildcards, and attributes can be used to specify a single object.

For_Object : Directory.Version;
Specifies the directory version of the object whose ACL is to be retrieved.

return Acl;
Returns the ACL for the specified object.

Errors

The Access_Tools_Error exception is raised if an error occurs. If the user wants to
determine which error has occurred, the procedural version of the function should
be called. It returns a Status parameter indicating the error.

Example

The following example shows a simple procedure that copies an ACL from one object
to another. It uses the Get function to retrieve the ACL of the object whose ACL is to
be copied (specified in the Object_To_Get_Acl_From parameter) and then uses the
Set procedure to set the ACL (specified in the Object_To_Set_Acl_For parameter).

LM-66 7/1/87 BA\—HONAL

function Get
package !Tools.Access_List_Tools

with Log, Simple_Status, Access_List_Tools;
procedure Copy_Acl (Object_To_Get_Acl_From : String;
Object_To_Set_Acl_For : String) 1is
Status : Simple_Status.Condition;
begin

Access_List_Tools.Set (Object_To_Set_Acl_For,
(Access_List_Tools.Get
{Object_To_Get_Acl_From)), Status};
if Simple_Status.Error éStatus) then
Log.Put_Condition (Status);
end 1f;
end Copy_Acl;

References

exception Access_Tools_Error
subtype Acl

procedure Get

procedure Set

RATIONAL 7/1/87 LM-67

procedure Get
package !Tools.Access_List_Tools

procedure Get

procedure Get {For_Object : Name;
List : out Bounded_String.Variable_String;
Status : 1n out Simple_Status.Condition);
procedure Get (For_Object : Directory.Version;
List : out Bounded_String.Variable_String;
Status : 1n out Simple_Status.Condition);
Description

Gets the access list (ACL) for the specified object and returns it in the List param-
eter.

Parameters

For_Object : Name;

Specifies the name of the object whose access list is to be retrieved. Context prefixes,
wildcards, and attributes can be used to specify a single object.

For_Object : Directory.Version;
Specifies the directory version of the object.

List : out Bounded_String.Variable_String;

Returns the ACL for the specified object. The constraint for this parameter is the
Max_Acl_Length constant. If the ACL returned does not fit in the List parameter,
the resulting ACL is truncated and the Status parameter is set to indicate this error.

Status : in out Simple_Status.Condition;

Returns a condition indicating that the procedure has executed correctly. If there
is an error, this procedure returns a condition and a message indicating the type of
error.

Errors

If an error is encountered, a condition and a message indicating the type of error
are returned in the Status parameter.

LM-68 7/1/87 RATIONAL

procedure Get
package !Tools.Access..List_Tools

Example

The following example shows a simple procedure that uses the procedural form of
the Get procedure to retrieve the ACL of a file. It then sets the ACL of a second file
to the ACL that has been retrieved.

with Log, lo, Simple_Status, Bounded_String, Access_List_Tools;
procedure Copy_Acl
(Object_To_Get_Acl_From : String; Object_To_Set_Acl_For
: String) 1s

Status : Simple_Status.Condition;

List :
Bounded_String.Variable_String (Access_List_Tools.Max_Acl_Length);
begin

Access_List_Tools.Get (Object_To_Get_Acl_From, List, Status);

if Simple_Status .Error (Status) then

Log.Put_Condition (Status};
else

Access_List_Tools.Set
{Ob ject_To_Set_Acl_For, Bounded_String.Image (List), Status);
if Simple_Status.Error ({Status) then
Log.Put_Condition (Status);
else
lo.Put_Line ("The access list has been set for "¢
Ob ject_To_Set_Acl_For);
end 1if;
end 1f;
end Copy_Acl;

References

function Get

constant Max_Acl_Length
procedure Set

PT, package Simple_Status

RATIONAL 7/1/87 LM-69

function Get_Default
package 1Tools.Access_List_Tools

function Get_Default

function Get _Default (For_World : Name) return Acl;

Description

Returns the default access list (ACL) for new objects created in the specified world.

Parameters

For_World : Name;

Specifies the world whose default ACL will be returned. Context prefixes, wildcards,
and attributes can be used to specify a single object.

Errors

The Access_Tools_Error exception is raised if an error occurs. If the user wants to
determine which error occurred, the procedural form of the Get_Default function
returns an error condition and a message in the Status parameter.

Example

The following sample program shows the use of the Get_Default function to retrieve
the default ACL for new objects created in a world. The default is then used to set
the default ACL for new objects created in another world.

with Log, lo, Simple_Status, Access_List_Tools;
procedure Copy_Default_Example
(World_To_Get_Acl_From : String; World_To_Set_Acl_For
: String)} 1is
Status : Simple_Status.Condition;
begin

Access_L.ist_Tools.Set_Default
(World_To_Set_Acl_For,
(Access_List_Tools.Get_Default (World_To_Get_Acl_From}),
Status);
if Simple_Status.Error (Status) then
Log.Put_Condition (Status);

else
lo.Put_Line ("The ACL has been set for world "¢ World_To_Set_Acl_For);

end if;
end Copy_Default_Example;

LM-70 7/1/87 QAT'ONAL

function Get_Default
package !Tools.Access..List_Tools

References

exception Access_Tools_Error
subtype Acl

procedure Get_Default
constant Max_Acl_Length

EATIONAL 7/1/87 LM-71

procedure Get_Defaul:
package !Tools.Access_List_Tools

procedure Get_Default

procedure Get_Default (For_World : Name;
List : out Bounded_String.Variable_String;
Status : 1n out Simple_Status.Condition);
Description

Gets the default access list (ACL) for new objects created in the specified world.

Parameters

For_World : Name;

Specifies the world whose default ACL will be displayed. Context prefixes, wildcards,
and attributes can be used to specify a single object.

List : out Bounded_String.Variable_String;

Returns the default ACL for new objects that are created within the specified world.
The constraint for this parameter is the Max_Acl_Length constant. If the ACL
returned does not fit in the List parameter, the resulting ACL is truncated and the
Status parameter is set to indicate this error.

Status : 1n out Simple_Status.Condition;

Returns a condition indicating that the procedure has executed correctly. If there
is an error, the procedure returns a condition and a message indicating the type of
error.

Errors

If an error is encountered, a condition and a message indicating the type of error
are returned in the Status parameter.

Example

The following example shows how the procedural form of the Get_Default procedure
can be used to retrieve the default ACL of new objects created within a world. The
default ACL is then used to set the default ACL for new objects created in another
world.

LM-72 7/1/87 RAT'ONAL

procedure Get_Default
package !Tools.Access_List_Tools

with Log, lo, Simple_Status, Access_List_Tools, Bounded_String;
procedure Copy_Default_Acl
{World_To_Get_Acl_From : String;
World_To_Set_Acl _For : String) is

Status : Simple_Status.Condition;

List : Bounded_String.Variable_String (Access_List_Tools.Max_Acl_Length);
begin
9 Access_List_Tools.Get_Default (World_To_Get_Acl_From, List, Status};
if Simple_Status.Error (Status) then

Log.Put_Condition (Status});

else
Access_List_Tools.Set_Default (World_To_Set_Acl_For,

Bounded_String.Image (List), Status);
end if;
if Simple_Status.Error (Status) then
Log.Put_Condition (Status);

else
lo.Put_Line ("The default ACL for new objects is set for world"

& World_To_Set_Acl_For};
end 1if;
end Copy_Default_Acl;

References

subtype Acl

function Get.Default

PT, package Simple_Status
ST, package Bounded_String

EAT'ONAL 7/1/87 LM-73

function Has_Operator_Capability
package !Tools.Access_List_Tools

function Has_Operator_Capability

function Has_Operator_Capability return Boolean;

Description

Returns true if the calling job has operator capability; otherwise, the function
returns false.

To have operator capability, the identity initiating the job must meet one of the
following conditions:

¢ Be a member of group operator.
¢ Have write access to !Machine.Operator_Capability.
¢ Be a member of group Privileged and have privileges enabled.

Example

The following example shows a simple procedure that determines whether the iden-
tity initiating the job has operator capability:

with lo, Access_List_Tools;
procedure Has_Operator_Capability Example 1is
begin
if Access_List_Tools.Has_Operator_Capability then
lo.Put ("This job has operator capability.");
else
lo.Put ("This job does not have operator capability."};
end 1if;
end Has_Operator_Capability_Example;

References

SMU, package Operator

LM-74 7/1/87 BAT'ONAL

constant Max_Acl_Length
package !Tools.Access_List_Tools

constant Max_Acl_Length

Max_Acl_Length : constant := 512;

Description
Specifies the maximum length in characters for access lists (ACLs).

This constant is used as a constraint for the List parameter in the Get and Get-
—Default procedures.

IQATIONAL 7/1/87 LM-75

subtype Name
package 'Tools.Access_List_Tools

subtype Name

subtype Name is String;

Description

Defines the name of objects used in procedures in this package.

This subtype allows special names, wildcards, context prefixes, and attributes for
specification of a single object. See the Key Concepts in this book for more general

information about naming.

LM-76

e RATIONAL

function Normalize
package !Tools.Access_List_Tools

function Normalize

function Normalize (lnitial_Acl : Acl) return Acl;

Description
Returns a revised access list (ACL).

This function scans the ACL entries for groups that do not currently exist and
removes them.

Parameters

Initial_Acl : Acl;
Specifies the ACL to be normalized.

return Acl;
Returns a revised ACL.

Errors

The Access_Tools_Error exception is raised if an error occurs.

Example

The following simple procedure illustrates how the Normalize function might be
used in conjunction with other procedures and functions in this package to normalize
an object’s ACL. This procedure could be used by the owner of a world after the
deletion of several groups that had access to Object_To_Normalize_Acl_For. The
owner would use this procedure to remove the deleted groups from the ACL of an
object.

RATIONAL 7/1/87 LM-77

function Normalize
package !Tools.Access_List_Tools

with Log, lo, Access_List_Tools, Simple_Status;

procedure Normalize Example (Object_To_Normalize_Acl_For : String) is
Status : Simple_Status.Condition;
begin

Access_List_Tools.Set (Object_To_Normalize_Acl_For,
Access_List_Tools.Normalize
{Access_List_Tools.Get
{Ob ject_To_Normalize_Acl_For)},
Status);
1f Simple_Status.Error (Status) then
Log.Put_Condition (Status);
else
lo.Put_Line ("The access list for ");
fo.Put_Line (Object_To_Normalize_Acl_For);
lo.Put_Line (" has been normalized.");
end 1if;
end Normalize_Example;

References

subtype Acl

LM-78 7/1/87 QATIONAL

constant Owner
package 1Tools. Access_List_Tools

constant Owner

Owner : constant Character := '0’;

Description
Defines an access class that applies only to worlds.

This access class permits:

¢ Changing the access list (ACL) of objects in the specified world.

¢ Changing the links in the specified world.

Changing the compiler switch file associations in the specified world.
Freezing and unfreezing objects in the specified world.

When a world is created, the world’s access ACL is set to be the same as the ACL
of the containing world. A user with owner access is permitted to change the ACL
of objecis within the world. More than one identity can have owner access.

See “References,” below, for other access classes.

References
constant Create
constant Delete
constant Read

constant Write

RATIONAL 7/1/87 LM-79

constant Read
package !Toois.Access_List_Tools

constant Read

Read : constant Character := 'R’;

Description

Defines an access class that applies to worlds, Ada units, and files.

This access class is required to inspect the current state of an object, including
worlds, and to perform operations such as executing the !Commands.Common-
.Definition command to inspect the contents of an object, opening for In_File mode,
and executing certain Rational Debugger commands.

For worlds, this access class allows the user to display the world (or directories
therein) and to resolve names in the world (or directories therein).

See “References,” below, for other access classes.

Errors

In 1/0 operations, read access is required for In_File mode. In other words, if a
user wants to open a file to read it, the user must have read access to the file. The
'To.Io_Exceptions.Use_Error exception is raised for access failures from Io packages.

References

constant Create
constant Delete
constant Owner

constant Write

LM-80 7/1/87 BA\TIONAL

procedure Set
package !Tools.Access_List_.Tools

procedure Set

procedure Set (For_Object : Name ;
To_List : Acl; o
Status : in out Simple_Status.Condition);
procedure Set (For_Object : Directory.Version;
To_List : Acl;
Status : in out Simple_Status.Condition);
Description

Sets the access list (ACL) for the specified object.
Owner access to the world is required to set ACLs for objects in that world.

If a call to the Set procedure attempts to set the ACL of a world, and the user
executing the procedure does not have owner access to the world but does have
owner access to the enclosing world, the ACL is still set. This allows the user to
change the ACL of a world when no one has owner access to it. This exception to
the ownership rule applies only to setting the ACL of a world.

Parameters

For_Object : Name;

Specifies the object whose ACL will be displayed. Context prefixes, wildcards, and
attributes can be used to specify a single object.

For_Object : Directory.Version;

Specifies the directory version of the object.

To_List : Acl:
Sets the new ACL for the object.

Status : in out Simple_Status.Condition;

Returns a condition indicating that the procedure has executed correctly. If there
is an error, this procedure returns a condition and a message indicating the type of
error.

RATIONAL 7y/er LM-81

procedure Set
package !Tools.Access_List_-Tools

Errors

If an error is encountered, a condition and a message indicating the type of error
are returned in the Status parameter.

Example

The following example shows a simple procedure that uses the Set procedure to
copy the ACL from one object to another. It uses the Get function to retrieve the
ACL of the object whose ACL is to be copied.

with Log, Simple_Status, Access_List_Tools;
procedure Set_Example (Object_To_Get_Acl_From : String;
Object_To_Set_Acl_For : String) is
Status : Simple_Status.Condition;
begin
Access_List_Tools.Set (Object_To_Set_Acl_For,
{Access_List_Tools.Get (Object_To_Get_Acl_From},
Status);
if Simple_Status.Error (Status) then
Log.Put_Condition (Status);
end if;
end Set_Example;

References
procedure Amend
procedure Get

PT, package Simple_Status

LM-82 7/1/87 QAT'ONAL

procedure Set_Default
package !Tools.Access_List_Tools

procedure Set_Default

procedure Set_Default (For_World : Name;
To_List : Acl; A
Status : 1in out Simple_Status.Condition);
Description

Sets the default access list (ACL) for new objects created in the specified world.

This procedure does not modify the ACLs of already existing objects whose ACLs
were set by the previous default ACL.

New files and Ada units created within the world are given the default ACL.

Parameters

For_World : Name;
Specifies the world whose default ACL is to be set. Context prefixes, wildcards, and
attributes can be used to specify a single object.

To_List : Acl;
Sets the new default ACL for new objects created in this world.

Status : 1in out Simple_Status.Condition;

Returns a condition indicating that the procedure has executed correctly. If there
is an error, this procedure returns a condition and a message indicating the type of
€ITOT.

Errors

If an error is encountered, a condition and a message indicating the type of error
are returned in the Status parameter.

Example

The following example shows how the Set_Default procedure can be used in con-
junction with the Get_Default procedure to retrieve the default ACL of new objects
created within a world and to use it to set the default ACL for new objects created
in another world.

RAT!ONAL 7/1/87 LM-83

procedure Set_Default
package !Tools.Access_List_Tools

with Log, lo, Simple_Status, Access_List_Tools, Bounded_String;
procedure Get_Default_Procedure_Example
{World_To_Get_Acl_From : String; World_To_Set_Acl_For
: String)} 1is
Status : Simple_Status.Condition;
List :
Bounded_String.Variable_String (Access_List_Tools.Max_Acl_Length);
begin
Access_List_Tools.Get_Default (World_ To_Get_Acl_From, List, Status);
if Simple_Status.Error (Status) then
Log.Put_Condition (Status);
else
Access_List_Tools.Set_Default (World_To_Get_Acl_From,
World_To_Set_Acl_For,
Status);
if Simple_Status.Error (Status) then
Log.Put_Condition (Status);

else
lo.Put ("The default ACL for new objects is set for world "
& World_To_Set_Acl_For};
end if;
end if;

end Get_Default_Procedure_Example;

References

procedure Get_Default

LM-84 e RATIONAL

constant Write
package 1Tools.Access.-List_Tools

constant Write

Write : constant Character := 'W’;

Description

Defines an access class that applies to files and Ada units.

This class of access is required for operations that change the value of an object,
such as editing, promoting, and demoting. Write access, also required to delete

objects, i8 synonymous with delete access.

See “References,” below, for other access classes.

Errors

In 1/0 operations, write access is required for Inout_File and Out_File modes. In
other words, if a user wants to open a file for Read/Write or Write mode, the user
must have write access to the file. The !o.Io_Exceptions.Use_Error exception is
raised for access failures from Io packages.

References

constant Create
constant Delete
constant Owner

constant Read

end Access—_List_Tools;

RAT'ONAL 1/1/87 LM-85

RATIONAL

package Archive

Overview

The procedures in package Archive are used for archiving and restoring single or
multiple objects and for copying objects on the same or different Rational machines.

The Archive facilities differ from system backups in that they can be used selectively
to save and restore specific objects, as well as to move objects from one machine to

another.

Package Archive contains the following four procedures:

e Copy: Copies one or more objects from one location to another, either on the same
R1000 or between two R1000s that are connected through Rational Networking—
TCP/IP. This procedure also permits changing access lists (ACL3) and many other
options.

e List: Produces a listing of the names of the objects on a tape or library generated
by the Save procedure.

¢ Restore: Reads some or all objects from a tape ﬁor library) generated by the Save
procedure and rebuilds the original hierarchical structure from which they were
saved. For Ada units, the Restore procedure optionally promotes the units to the
states they were in when they were saved. This procedure also permits changing
the ACLs of restored objects.

o Save: Writes one or more objects onto a tape (or library), preserving hierarchical
structure. For Ada units, the unit state of each unit is also recorded, as well as
other information including its ACL, the last updating user, and the last updating
time. This procedure also allows the changing of access lists.

The Archive procedures can handle objects such as worlds, directories, Ada units,
text files, data files, switch files, activities, subsystems, and subsystem views. The
Archive procedures also handle user binary files, transferring the bits unaltered and
uninterpreted.

Objects can be moved between R10008 by saving objects to tape with the Save
procedure on one R1000 and then using the Restore procedure on the other R1000 to
read the tape. This method is recommended for moving a large number of objects.

RAT'ONAL 7/1/87 LM-87

package !Commands.Archive

For moving fewer objects, or for copying objects into a different location on the same
R1000, the Copy procedure is a convenient, one-step alternative that does not require
a tape or an intermediate library, but it does require Rational Networking—TCP/IP.

The Procedures and Their Parameters

The procedures in this package have parameters that allow you to control the way
objects are copied, saved, restored, and listed. All of the procedures in this package
take an Options parameter, which allows you to specify additional information to
control, for example, which objects are saved and restored, their state when they
are restored, and their ACLs. The following sections describe how the parameters
and options specified in the Options parameters operate together.

Save

The Save procedure allows you to save a set of objects so that they can later be
restored using the Restore procedure. The Objects parameter for the Save procedure
allows you to specify which objects are saved. Additionally, the Save procedure takes
Options parameters. The Options parameter, among other things, allows you to
specify certain attributes that can be used in selecting objects to be saved with the
After, CDB, and Nonrecursive options.

The Save procedure allows you to specify where you want to save objects—in a
library or on tape—using the Device parameter. The options in the Options pa-
rameter that control the way the objects are written to tape are Format, Label, and
Version.

Finally, Save takes the Prefix option in the Options parameter, which allows you
to specify a naming pattern to be saved with objects. This allows the restorer to
restore objects without knowing their names.

For Ada units, files, and worlds, the following information is saved along with them:
ACLs, last update time, last updating user, retention count, unit state (Ada units
only), and whether the object is frozen. Switch file associations and links are also
saved along with worlds.

When you save objects, the Save procedure writes all objects into a single file called
Data. A file called Index is also created, which describes the name of each object
in the Data file, the size of the object, and its unit state if it is an Ada unit. The
Data and Index files can be written either into a library or onto a tape. When the
Restore procedure reads these files from the library or tape, they use the Index file
to rebuild objects from the Data file and place them in the appropriate states.

The Index and Data files can also be written onto separate tapes. This should

always be done when saving large amounts of information that will not fit on one
tape.

LM-88 7/1/87 RATIONAI_

package !Commands.Archive

Restore

The Restore procedure, similar to the Save procedure, has an Objects parameter
that is used to specify the objects to be restored. The objects to be restored can
be everything saved or a subset of the objects saved. The Objects parameter in the
Restore procedure can use pattern matching. Also like the Save procedure, it has
a Device parameter that specifies where the objects to be restored are located-—on
tape or in a library.

The Restore procedure has two parameters, Use_Prefix and For_Prefix, that allow
you to control the names under which the objects specified in the Objects parameter
will be restored.

Like the Save procedure, the Restore procedure takes an Options parameter. Two
options specified in the Options parameter, Overwrite and Replace, can be used to
control restoration over existing objects.

The Options parameter for the Restore procedure takes another option, called Pro-
mote, that controls whether Ada units will be restored to the same compilation
state that they were in when they were archived.

Similar to the Save procedure, the Options parameter in the Restore procedure
takes the Format and Label options, which specify the tape format and label. The
Restore procedure also takes the CDB and Nonrecursive options, which specify the
objects that are to be restored.

The Restore procedure takes four more options in the Options parameter that
permit the user to specify the ACLs for the restored objects: Become_Owner, De-
fault—Acl, Object_Acl, and World_Acl.

Finally, the Options parameter for the Restore procedure takes two more options,
Primary and Revert_CDB, which are described in “Compatibility Databases, Pri-
maries, and Secondaries,” below.

The following list describes what is restored with each type of object:

o Text file: The exact contents of the file are restored.
* Binary file: The exact contents of the file are restored.

e Activity file: When an activity file is restored, the load views and spec views
must exist or an error will result.

* Ada unit: When an individual unit is restored, the source is copied and restored
in, at least, the source state. If the Promote option is used, the Environment will
try to promote it.

e World: When a world is restored, the Environment attempts to restore the links,
switch file associations, and ACLs. If the units to which links refer do not exist,
errors will occur and the links will not be created. If the switch file associations
do not exist, they will not be created.

e User world: When a user world is restored, a corresponding user is created if the
restorer has operator capability. The password is the same as the saved user’s
password. In either case, the contents of the world are restored.

RAT'ONAL 7/1/87 LM-89

package !Commands.Archive

Copy

The Cgfy procedure should be viewed as a Save followed by a Restore that uses
Rational Networking as the medium. It takes the parameters and options required
by the Save and Restore procedures, but not those associated with tapes.

Compatibility Databases, Primaries, and Secondaries

Subsystems are built based on the assumption that development of a subsystem is
done in one place, called the primary subsystem. A copy of the primary that is
made with package Archive is called a secondary subsystem. A primary can have
any number of secondaries. Development cannot take place in a secondary.

To allow you to execute code against both primaries and secondaries, subsystems
maintain a compatibility database that contains the information required to maintain
execution compatibility. With package Archive you can move a primary subsystem
to a secondary subsystem and, as part of the move, move the required compatibility
database.

With the Primary option, for the Restore and Copy procedures, you can move a
primary subsystem and allow the moved copy to be a primary. This is done when
the development “home” of a subsystem is to be moved. The original primary
should be frogen or deleted. The Primary option is also used when restoring a
subsystem from an archive used as a backup.

The Revert_Cdb option allows you to coEy an older version of the compatibility
database over a newer version. You might need to do this to revert back to an
earlier version of a subsystem than the one currently on the machine.

The Options Parameter

As described above, the procedures in this package take an Options parameter. For
further information on specifying options, see the Key Concepts in this book. Table
4-1 indicates the options available for each of the procedures in this package. The
meaning of each option is described in the reference entry for each command in the
Options parameter description.

Examples

This section contains examples that illustrate the use of the operations in this
package. It is recommended that you read the reference entries for each of the
commands in this package before reading these examples.

LM-90 7/1/87 RAT'ONAL

package !Commands.Archive

Assume that the following world is used in all of the examples shown below:

IUsers.Phil.Tools : World;
Cg_Switches : C Pack_Spec 87/03/12 12:49:51 Phil 7263
Cg_Switches : C Pack_Body 87/03/12 12:40:11 Phil 7493 ;
.Scanner : C Proc_Body B7/83/12 12:41:08 Phil 7283
Copyright_1986_Rational Text 87/02/26 21:48:13 Phal 273 ;
Find_Null_Acls : C Proc_Spec 87/02/10 16:04:32 Phil 7460
Find_Null_Acls : C Proc_Body 87/83/09 10:27:46 Phil 23826
Fix_Images : C Proc_Spec 87/02/10 16:04:38 Phil 7485
Fix_Images : C Proc_Body 87/83/12 12:38:48 Phil 7512
Restricted_Rights_Legend Text 87/02/26 21:48:14 Phil 517
Setup_Acls : C Load_Proc 87/03/09 17:04:13 Phil 7304
Set_Universe_Acls : C Proc_Spec 87/02/10 16:04:40 Phil 7223
Set_Universe_Acls : C Main_Body 87/03/@9 16:49:06 Phil 32525
Many of the following examples illustrate the use of the Copy procedure. Note that
a Copy is actually a Save followed by a Restore.
Table 4-1. Options Available by Procedure Names
Option Copy List Restore Save
After X X
Become_Owner X X
Cdb X X X
Default-Acl X X
Format X X X
Label X X X
Nonrecursive X X X X
Object-Acl X X
Overwrite X X
Prefix X
Primary X X
Promote X X
Replace X X
Revert_Cdb X X
World-Acl X X
Version X
EAT'ONAL 7/1/87 LM-91

package !Commands.Archive

Example 1

This example uses the Copy procedure to copy a world from one location to another
on the same machine, repromote the Ada units within the world, and replace already
existing objects with the same name as those being copied. The following command
accomplishes this:

Archive.Copy {Objects => "lusers.phil.tools",
Use_Prefix => "lusers.phil.test_area"”,
For_Prefix => "x",
Options => "promote,replace”,
Response => "<PROFILE>");

o The Objects parameter specifies the name of the world to be copied.

¢ The Use_Prefix parameter specifies the location for the copy of that world and
its contents.

¢ The For_Prefix parameter (“*”) causes the Use_Prefix name to replace the entire
name specified in the Objects parameter. The Replace option is included because
we may want to execute this Copy procedure more than once, replacing installed
or coded units that were already in !Users.Phil.Test _Area. Without this option,
the Copy procedure would not overwrite an Ada unit in !Users.Phil.Test_Area
unless it were in the source state. The Promote option causes units to be restored
to their original (in this case, coded) state.

Example 2

This example uses the Copy procedure to move updates made in !Users.Phil.Tools
to !Users.Phil.Test_Area. The current context is !Users.Phil.Tools. Any units in
'Users.Phil.Tools and not in {Users.Phil.Test_Area will be copied. In addition, any
units that appear in both !Users.Phil. Tools and !Users.Phil.Test_Area that have a
more recent update time in !Users.Phil.Tools will be copied. The following command
accomplishes this:

Archive.Copy (Objects => "?",
Use_Prefix => "lusers.phil.test_area”,
For_Prefix => "$",
Options => "overwrite=>updated_ob jects replace”,
Response => "<PROFILE>");

o The Objects parameter specifies all objects enclosed by the current context re-
cursively (including nested directories and subunits of Ada units).

¢ The For_Prefix parameter specifies that the name of the current context should
be replaced by the Use_Prefix string.

Note that For_Prefix => “*” will not work in this case because Objects => “7”
does not specify a unique prefix (it is a naming wildcard and matches objects in the
current world).

LM-92 7/1/87 EATIONAL

package !Commands.Archive

Example 3

This example uses the Copy procedure to move the links and switch file associ-
ations from one world to another. Links and other world-associated information
will be moved from the current context world (!Users.Phil.Tools) to the world
1Users.Phil. Test-Area. The following command accomplishes this:

Archive.Copy (Objects => "$",
Use_Prefix => "lusers.phil.test_area",

For_Prefix => "=*",
Options => "nonrecursive”,
Response => "<PROFILE>"});

o The For_Prefix => “*” parameter is appropriate here because the Objects pa-
rameter specifies a unique object whose name will be changed to the Use_Prefix
string during the copy.

e The Nonrecursive option causes only the objects named exactly by the Objects
parameter to be moved, excluding any enclosed objects. Thus, only the world is
copied. Moving the world causes the links and associations to be copied.

Example 4

This example uses the Copy procedure to copy units from !Users.Phil.Tools to
'Users.Phil.Test_Area_2 and change their names so that each unit and file has
the prefix Sim—. The following command accomplishes this:

Archive.Copy (Objects => "lusers.phil.tools.@",
Use_Prefix => "lusers.phil.test_area_2.sim_6",
For_Prefix => "lusers.phil.tools.@",
Options => "",
Response => "<PROFILE>");

e The Objects parameter specifies just units in the Tools library. Since the world
Tools itself is not to be renamed, it must be excluded from the objects to be
saved. If it is necessary to copy links and switch associations for the world, this
must be done in a separate command.

o The Use_Prefix and For_Prefix parameters specify the prefix string to be replaced
and substituted. Note the use of the at sign (e) wildcard in the For_Prefix
parameter and the at sign (@) substitution character in the Use_Prefix parameter.

Note that the Ada source for the renamed units will be changed to the new unit

names. Other references to the old names within the units will not be changed,
which may cause a unit to fail to promote.

RAT'ONAL 7/1/87 LM-93

package !Commands.Archive

The resulting world is:

1Users.Phil . Test_Area_2 : World;
Sim_Cg_Switches :
Sim_Cg_Switches
Sim_Copyright_1986_Rational
Sim_Find_Null_Acls
Sim_Find_Null_Acls
Sim_Fix_Images
Sim_Fix_Images
Sim_Restricted_Rights_lLegen

Pack_Spec 87/03/12 12:40:51 Phil 7263
Pack_Body 87/03/12 12:4@:11 Phil 7493
Text 87/02/26 21:48:13 Phil 279
Proc_Spec 87/82/10 16:04:38 Phil 7460
Proc_Body 87/03/09 10:27:46 Phil 23826
Proc_Spec 87/02/10 16:04:38 Phil 7485
Proc_Body 87/83/12 12:38:48 Phil 7512

Text 87/02/26 21:48:14 Phil 517
Load_Proc 87/03/@9 17:04:13 Phil 73024
Proc_Spec 87/02/10 16:04:40 Phil 7223
Main_Body 87/03/@9 16:49:06 Phil 32525

(Ve NV RV RV,] [Va RV,

Sim_Setup_Acls
Sim_Set_Universe_Acls
Sim_Set_Universe_Acls

Example &

wuno

This example uses the Copy procedure to copy a set of objects. The following
command accomplishes this:

Archive.Copy (Objects => "[fix_images’'spec,copyé]”,
Use_Prefix => "lusers.phil”,
For_Prefix => "§",
Options => "",
Response => "<PROFILE>");

o The Objects parameter uses naming set notation and a wildcard in the specifica-
tion of the objects to copy.

e Note that the For_Prefix parameter must not be “*”, because that would cause
each object to be renamed “!Users.Phil.”

Example 6

This example uses the Copy procedure to copy objects onto another machine, using
Rational Networking—TCP/IP. On the new machine, the objects will retain the
names they had on the old machine. The following command accomplishes this:

Archive.Copy (Objects => "lusers.phil.test_area",

Use_Prefix => "llzebra",
For_Prefix => "=*",
Options => "",

Response => "“<PROFILE>");

¢ The Objects parameter specifies the objects to be moved.

o The Use_Prefix parameter specifies the new machine name éZebra) but not an-
other directory. The objects will have the same name on Zebra as the source
machine.

Note that links are created to point to same named units on Zebra.

LM-94 7/1/87 QATIONAL

R R

e msme owe

package !Commands.Archive

Example 7

This example uses the Copy procedure to copy objects into another library on
another machine, using Rational Networking—TCP/IP. The objects will be renamed
on the new machine. The following command accomplishes this:

Archive.Copy (Objects => "lusers.phil.test_area",

Use_Prefix => "!lzebral!delta_pro ject.tools",
For_Prefix => "x*",
Options => "",

Response => "<PROFILE>"};

e The Use_Prefix parameter specifies both the machine name and the new library
name.

o If libraries named in the Use_Prefix parameter need to be created, they are
created as worlds. In this case, if Delta_Project did not exist, it would be created.

Example 8

This example uses the Save procedure to save objects as a backup. The example
makes an archive save file of the contents of {Users.Phil.Tools. All contained objects
will be included. The following command accomplishes this:

Archive.Save (Objects => "lusers.phil.tools",
Options => "R1000",
Device => "lusers.phil .backups.tools_87_03_09",
Response => "<PROFI|LE>");

¢ The Objects parameter specifies the objects to be saved.
e The Device specifies the directory to be created to contain the save.

The (;{estore procedure can later be used to restore individual objects or all objects
saved.

Example 9

This example uses the Save procedure to distribute a set of subsystems (and other
units) to other machines.

The file Distribution_Contents contains:

lcommands . internal .maintenance

Icommands . internal .maintenance.[state?, logs, compatibility??]
lcommands . internal .maintenance.[revS_0@_spec?, codeS_0_07]
lcommands . internal .release_tools

lcommands . internal .release_tools.[state?, logs, compatibility??]
lcommands . internal .maintenance.[rev3_0_spec?, rev9_0_7?]

RATIONAL 7/1/87 LM-95

package !Commands.Archive

The following command accomplishes the distribution of the subsystems:

Archive.Save (0Objects => "_distribution_contents”,
Options => "monrecursive",
Device => "lusers.phil.releaseS_0_0",
Response => "<PROFILE>");

e The Objects parameter specifies an indirect file. When a subsystem view is to be
saved and restored, the containing subsystem must be present at the restore site
(or restored as part of the restoration of the view). This is accomplished in this
example by saving the containing subsystem, its state directory, and compati-
bility information. Failure to do this may yield a view that cannot be executed

properly.
¢ The Nonrecursive option will cause only the objects specifically named in the file
to be saved, not the contained objects.

o The Device parameter names the directory that will contain the save set. The
default value for Device (not used in this example) causes saved objects to be
written onto magnetic tape.

The result of the save is:

lUsers.Phil .Release9_08_0 : World;
Data File 87/83/93 18:208:56 Phil 68386 ;
Index : Text 87/03/¢9 18:20:56 Phil 61408 ;

Examples 10 through 12 illustrate different ways of restoring the objects saved in
this example.

Example 10

This example uses the Restore procedure to partially restore the units saved in
Example 9 into a renamed subsystem view. The following command accomplishes

this:

Archive.Restore
(Objects => "!commands.internal.maintenance.rev3_0_spec”,
Use_Prefix => "!lcommands.internal.maintenance.revd_l_spec”
For_Prefix => "lcommands.internal.maintenance.rev3_0@_spec",
Options =>
Device => "lusers.phil.releaseS_0_ 0",
Response => "<PROFILE>"};

o The Objects parameter specifies the name of the objects to restore from the save
set. In this case, it specifies a spec view name, causing the spec view and its
contents to be restored.

o The Use_Prefix and For_Prefix parameters cause the restored view to be given
a new name. Note that For_Prefix => “*” cannot be used in this example be-
cause the default that would be used for the For_Prefix parameter is the Objects
parameter of the Save, not the Restore procedure, and the Save procedure does
not specify a unique prefix to be replaced by the Use_Prefix parameter string.

¢ The Device parameter specifies the source for the restore; in this example, it was
a directory that was the destination for the Archive.Save.

LM-96 7/1/87 QAT'ONAL

package !Commands.Archive

Example 11

This example uses the Restore procedure to restore updated objects saved in Ex-
ample 9. All of the restored units will be promoted. The following command
accomplishes this:

Archive.Restore (Objects => "?",
Use_Prefix => "=x",
For_Prefix => "*",
Options => "promote, overuwrite=updated",
Device => "lusers.phil.releaseS_0_0",
Response => "<PROFILE>"};

¢ The Objects parameter specifies that all objects from the save are to be restored.

o The Use_Prefix and the For_Prefix parameters specify that objects are to be
restored under their original names as saved.

¢ The Promote option causes Ada units to be promoted to the unit state they were
in when they were saved.

e The Overwrite=Updated option causes existing objects with the same names as
those from the save to be left alone if the update time from the restore is earlier
than the last update time of the object.

Example 12

This example uses the Copy procedure to update changed objects saved in Example
9. This will allow changes made in !Commands.Internal.Maintenance.Rev9_0_Spec
to be moved from this machine to another machine named Shelby. The following
command accomplishes this:

Archive.Copy
(Ob jects => "lcommands.internal.maintenance.rev9_@_spec",
Use_Prefix => "!lshelby”,
For_Prefix => "*x",
Options => "after=@03/01/87 replace overuwrite=changed_ob jects promote",
Response => "<PROFILE>");
e The After option specifies that only objects modified after 3/1/87 are to be

considered.

e The Replace option allows Ada units in other than the source state to be over-
written.

e The Overwrite option causes only objects on Shelby that changed to be moved.

o The Promote option causes moved objects to be promoted to their original unit
state.

e Compatibility information needed for any objects is automatically copied as well.

IQAT'ONAL 7/1/87 LM-97

package !Commands.Archive

Example 13

This example uses the Copy procedure to update the compatibility database for a
secondary for incremental insertions.

Suppose a change has been made in !Commands.Internal.Maintenance.Rev9_0_Spec.
This change will be moved to a secondary subsystem on another machine called
Shelby. Rather than copying the entire spec (which requires demoting its closure),
the addition can be made incrementally by inserting the new declarations into the
coded spec on Shelby (the secondary).

To accomplish this, the compatibility information for the subsystem must first be
moved from the primary to the secondary. Then the incremental change can be
made compatibly to the secondary.

The following command moves the compatibility information:

Archive.Copy (Objects => "!commands.internal.maintenance",
Use_Prefix => "!!shelby",
For_Prefix => "=x",
Options => "compatibility_database",
Response => "<PROFILE>");

Now the incremental changes can be made and compatibility maintained.

Hints for Using the Procedures in Package Archive

¢ Do not mix set notation (for example, [a,b,c]) with substitution characters in the
Use_Prefix and For_Prefix parameters.

o Use caution when {rying to move several objects by specifying the Use_Prefix
and For_Prefix parameters. You must ensure that they will match.

o Be careful when archiving units out of a subsystem units directory. You must
reassociate the switch file to remove connections to the subsystem.

¢ If you are restoring a wide range of objects in a number of directories to which
you may not have access, run the Restore procedure in privileged mode.

¢ If you are moving a primary subsystem to a new location, rather than simply
making a release copy of a subsystem, you need to specify the Primary option
on the Copy or Restore procedure. Also remember to change the original sub-
system to a secondary if it is not being deleted. This can be done with the
ICompiler_Interface.Compatibility.Make_Secondary command.

¢ When moving large numbers of objects between machines, rather than using the
Copy procedure, use Save and Restore from tape or the following procedure. Use
Save with the Device parameter specifying a library. Copy that library onto the
other machine. Then use Restore with the Device parameter, specifying the copy
of the library. This eliminates a large amount of network traffic and improves
efficiency. However, more disk space is required to build the library for archives.

LM-98 1/1/87 R)ATIONAL

package !Commands.Archive

Error Response

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and what activities to use.
The response profile "<PROF ILE>", which many commands use by default, specifies
the job response profile. If there is no job response profile, the session response
profile (“<SESSION_PROFILE>") is used. If there is no session response profile, the
system’s default profile ("<DEFAULT>") is used. For further information on profiles,
see SIM, package Profile.

RATIONAL 7/1/87 LM-99

procedure Copy
package !Commands.Archive

procedure Copy

procedure Copy (Objects : String := "<IMAGE>";
Use_Prefix : String := "x";
For_Prefix : String := "s*";
Options : String = "™,
Response : String := "<PROFILE>");

Description

Copies one or more objects from one location to another, either on the same R1000
or between two R1000s that are connected through Rational Networking—TCP/IP.

The Copy procedure leaves the original source objects in place, creating a copy in
the location indicated by the Use_Prefix parameter. The Copy procedure also:

¢ Reconstructs the saved objects in their original hierarchical structure.
¢ Optionally promotes Ada units to the states they were in when they were copied.

o Changes the location of objects as specified in the Use_Prefix and For_Prefix
parameters.

¢ Rebuilds the links for copied worlds.
* Reassociates copied libraries with their switch files.

¢ Permits the user to change the ACLs and default ACLs associated with the copied
worlds and objects.

By default, the Copy procedure copies all of the objects named by the Objects
parameter, including their sublibraries and subunits. Also by default, when copied,
objects will overwrite existing Environment objects of the same name, unless the
existing objects either are frozen (see the Library.Freeze procedure) or are installed
or coded and have dependents. The overwriting of objects can be controlled further
by specifying an Overwrite option as part of the Options parameter.

Note that objects can alternatively be moved between R1000s by saving objects onto
tape with the Save procedure on one R1000 and then using the Restore procedure on
the other R1000 to read the tape. This method is recommended for moving a large
number of objects. For moving fewer objects, or for copying objects to a different
location on the same R1000, the Copy procedure is a convenient, one-step alternative
that does not require a tape or an intermediate library, but it does require Rational
Networking—TCP/IP.

LM-100 7/1/87 BAT'ONAL

procedure Copy
package !Commands.Archive

Parameters

Objects : String := "<IMAGE>";

Specifies the object or objects to be copied. The parameter takes any naming
expression. By default, the current image is copied, unless there is a selection in
that image, in which case the selected object is copied. By using the defaults, the
specified objects and all contained objects are copied.

The Objects parameter may begin with an optional machine name followed directly
by the fully qualified pathnames of one or more objects. For example:

objects=>"!!mllusers.anderson.statistics"

The machine name has the form !'name, where name names the R1000 on which the
source objects reside. (The name of an R1000 is typically displayed in the banner
under the Message window.) You can omit the machine name if you are entering
the command on the R1000 that contains the objects to be copied. See the Rational
Networking—TCP/IP Reference Manual for further information.

Both the Use_Prefix and Objects parameters can specify a machine name, which
allows copying of data between two machines to be initiated from yet a third ma-
chine.

You can copy objects such as worlds, directories, Ada units, text files, data files,
switch files, activities, subsystems, and subsystem views.

You can specify more than one object by using wildcards, context characters, special

names, set notation, or an indirect file. For more information about indirect files
and naming, see the Key Concepts in this book.

RAT'ONAL 7/1/87 LM-101

procedure Copy
package !Commands.Archive

Use_Prefix : String := "*";

Specifies where to rebuild the copied objects by allowing the user to change the
names of copied objects when they are copied. If the Use_Prefix parameter has the
gpecial default value “*”, the objects are copied using the original name. This is
useful only when copying objects from one R1000 into the identical library structure
on a.}x;other R1000. The “*” prefix cannot be used when copying objects on the same
machine.

If the Use_Prefix parameter is not the special default value “*”, it must specify
the name of an object into which the objects can be copied. The Use_Prefix string
consists of an optional machine name followed directly by an optional fully qualified
object name. For example:

use_prefix=>"11m2!project_1"
specifies that objects are to be copied into library !Project—1 on machine M2.

A machine name has the form !'name, where name specifies the R1000 onto which
the source objects are copied. You can omit the machine name if you are entering
the command on the destination R1000. If neither the Objects parameter nor the
Use_Prefix parameter specifies a machine name, the source objects are copied from
the source to the location specified by the Use-_Prefix parameter on the current
machine.

Both the Use_Prefix and Objects parameters can specify a machine name, which
allows copying of data between two machines to be initiated from yet a third ma-

chine.

The name for a copied object is derived from the name of the original object by
replacing the shortest portion matched by the For_Prefix parameter with the value
of the Use_Prefix parameter. For example:

Copy (objects=>"!Im3!users.hjl.cli.cmd",
use_prefix=>"lusers.bar",
for_prefix=>"lusers.hjl.cli"):

copies the file !Users.Hjl.Cli.Cmd on machine M3 to !Users.Bar.Cmd on the machine
where the command is executed. If !Users.Bar does not exist, it is created as a new
world.

If the For_Prefix parameter does not match an object, that object is copied under
its original name.

The For_Prefix parameter can use wildcard characters and the Use_Prefix param-
eter can use substitution characters. If wildcards are present in the For_Prefix
parameter, the Use_Prefix parameter must specify, through the use of substitution
characters, the full name of the target object. For further information, see the Key

Concepts in this book.

LM-102 7/1/87 BATIONAI_

procedure Copy
package {Commands.Archive

Table 4-2. Making Copies with For-Prefix and Use_Prefix

For-Prefiz | Use_Prefiz Resulting Object

1A.B x X.C.D

[1A,A.B] x X.B.C.D

['R.S,!A.B] X X.C.D
For_Prefix : String := "*";

Participates in the specification of the location for rebuilding the copied objects by
allowing the user to change the names of the objects when they are copied.

When the For_Prefix parameter has the default value “*”, the copied objects are
copied using the prefix that is stored with them. The For_Prefix parameter is
ignored when the Use_Prefix has the special value ***.

When the value of the Use_Prefix parameter is not “*”, the shortest portion of each
object that is matched by the For_Prefix parameter is replaced by the Use_Prefix
parameter. If wildcards are present in the For_Prefix parameter, the Use_Prefix
parameter must specify, through the use of substitution characters, the full name of
the target object. In this way, copied objects can be rebuilt under different names.

An object that is not matched by the For_Prefix parameter is not copied and a
warning message is generated.

When the Objec!s parameter names multiple objects, the For_Prefix parameter
should specify a string common to all of their names. For example:

copy (objects=>"!Im3!users.hjl.cli.cmd",
use_prefix=>"lusers.bar",
for_prefix=>"lusers.hjl.cli");

copies the file !Users.Hjl.Cli.Cmd on machine M3 to !Users.Bar.Cmd on the same
machine. If !Users.Bar does not exist, it is created as a new world.

The For_Prefix parameter can use wildcard characters, and the Use_Prefix param-
eter can use substitution characters. For further information, see the Key Concepts
in this book.

Table 4-2 illustrates the result of copies made with representative combinations of
the Use_Prefix and For_Prefix parameters. The object stored is 'A.B.C.D.

Options : String := "";
Specifies options to be used in copying objects. The Options parameter allows
you to specify more specifically which objects to copy, the compilation state of the
copied objects, and the access lists (ACLs) for the copied objects. You can specify
more than one option. For further information on specifying options in Options
parameters, see the Key Concepts in this book.

RATIONAL 7/1/sr LM-103

procedure Copy
package !{Commands.Archive

After=tsme

Copies only objects that have been changed more recently than the specified
time, which can be a date, a time of day, or both, and can be written in any
of the styles defined by the !Tools.Time_Utilities. Date_Format type and the
!Tools.Time_Utilities.Time_Format type. For example, specifying the following
value for the Options parameter copies only those objects named by the Objects
parameter that were updated after June 11, 1987, at noon:

options=>"after=(06/11/87 12:00)"

Become_Ouner

Specifies that the access lists (ACLs) of all copied worlds should be modified to
give the copying username owner access to the copied worlds.

If a group specified in the ACL for an object does not exist on the machine on‘o
which the object is copied, the ACL entry for that group is removed from the
object’s ACL.

Compatibility_Database=subsystems

Specifies that the full compatibility database for each subsystem specified should
be copied. When Ada units in a subsystem are copied, the relevant portions
of the subsystem compatibility database are automatically copied with them.
Therefore, this option is required only in special situations, primarily when a
primary and a secondary subsystem need to be synchronized. This option can
be specified as CDB, if desired. For further information on subsystems and
compatibility databases, see Project Management (PM).

If no subsystems are specified in the subsystems portion of this option, the
Objects parameter specification is used instead. Any subsystem views specified
by the Objects parameter will have the full compatibility information saved for

them.

The Nonrecursive option does not affect the interpretation of the CDB specifi-
cation.

To copy compatibility databases only, use:
archive.copy (objects=>"subsystems",
options=>"cdb");

where subsystems is the name of the subsystems whose CDBs are to be copied.
This will generate an error if the Objects parameter specifies nonsubsystems.

To copy compatibility databases with other objects, use:
archive.copy (objects=>"other",
options=>"cdb=subsystems");
where other specifies objects that are probably disjoint from subsystems.

Default_Acl=new acl

Specifies a new default access list (ACL) for copied worlds. The default ACL is
used for new objects created within a world after the copy is complete. The
default ACL copied with the world will be changed to the one specified, which
can be a new ACL or the special values Inherit or Archived. Inherit means to

LM-104 e RATIONAL

procedure Copy
package !Commands.Archive

use the standard inheritance rules for new versions of objects. Archived means
to use the ACL archived with the object, which is the default for the Default_Acl
option. New ACLs must follow the syntax rules for ACLs (for further information,
see “Access Control” in the Key Concepts in this book).

If a group specified in the ACL for an object does not exist on the machine onto
which the object is copied, the ACL entry for that group is removed from the
object’s ACL.

Nonrecursive Boolean

Specifies that only the objects that are actually named by the Objects parameter
should be copied. Sublibraries and subunits within the named objects are not
copied, unless explicitly specified. This option allows you to copy the links and
switches associated with libraries without copying the objects in those libraries.
For example, it allows you to copy a library plus a subset of its contents without
copying the entire library.

This option prevents the subcomponents of libraries and Ada units from being
implicitly copied. For example:

archive.copy (objects=>"[!users.hjl,!users.hjl.cli,lusers.hjl.cli.@]",
options=>"nonrecursive"});

copies only the named objects and not their substructures.

Ob ject_ACL=new acl

Specifies a new ACL for copied objects. The ACL copied with the objects will
be changed to the one specified, which can be a new ACL, or the special values
Inherit or Archived. Inherit means to use the standard inheritance rules for
new versions of objects. Archived means to use the ACL copied with the object,
which is the default. New ACLs must follow the syntax rules for ACLs (for further
information, see “Access Control” in the Key Concepts in this book).

If a group specified in the ACL for an object does not exist on the machine onto
which the object is copied, the ACL entry for that group is removed from the
object’s ACL.

Overuwrite literal

Allows you to control overwriting further by either allowing or preventing the
transfer of objects that can overwrite existing objects. The Overwrite option
works in conjunction with the Replace option: Overwrite selects objects that
are eligible to be copied, and Replace then determines what happens to the
existing target objects.

Al1_Ob jects Use the Overwrite=All_Objects option (the default) to
cause all objects to be copied, overwriting any existing
objects to the extent permitted by the Replace option.

New_0Ob jects Use the Overwrite=New_Objects option to prevent the
copying of any archived object that will overwrite an ex-
isting object. That is, this option allows objects to be
rebuilt only under new names or in new locations and
prevents existing objects from being overwritten.

RAT'ONAL 7/1/87 LM-105

procedure Copy
package !Commands.Archive

Updated_Ob jects Use the Overwrite=Updated_-Objects option to copy only
those archived objects that were modified more recently
than the corresponding existing objects. The more re-
cent objects overwrite the existing objects. This option
is especially useful when there is parallel development on
multiple R1000s and you need to copy updated objects
from one R1000 to another.

Changed_Ob jects Use the Overwrite=Changed_Objects option to copy new
and updated objects. This is equivalent to using both the
New_Objects and Updated_Objects options, which are
not illegal when used together in an Options list.

Primary Boolean

Specifies, when true, that the compatibility database should be copied as a
primary (the CDB will have read/write access). Wken the value is false (the
default), the compatibility database will be copied as a secondary (read access
only).

For further information on subsystems and compatibility databases, see Project
Management (PM).

Promote Boolean

Causes, when true, the Copy procedure to attempt to promote copied Ada units
to the states (installed or coded) in which they were archived. When this option
is not used, all Ada units are rebuilt in the source state.

Note that, when you copy a world, the links for that world are copied. However,
links can be rebuilt only if the units to which the links refer have the same source
name. If you are copying the world onto a different R1000 that does not contain
those units, then the links cannot be rebuilt. Objects that depend on the missing
units cannot be promoted.

When a link or switch cannot be resolved, the system checks in a file called
!Machine.Archive_Mappings. This file allows you to rename the sources of links
and the names of switches during the restore process. To use this facility, you
must create a text file called 'Machine.Archive_Mappings, which contains the
old name and the new name. When a link fails fo be added or a switch fails to
be set, the IMachine.Archive_Mappings file is searched for an occurrence of the
old name. If it is found, the operation is repeated using the new name.

The Archive_Mappings file has the following format:
old link name
new link name

(repeat in pairs for all links) ...

old swstch name
new swilch name

LM-106 7/1/87 BA\TIONAL

procedure Copy
package !Commands.Archive

(repeat in pairs for all switches)

Replace

Given that an object that is being copied already exists on the target, this option
works in conjunction with the Overwrite option to cause the Copy procedure to
do the following:

o If the target object is frozen, it will be unfrozen.

o If the target object is an installed or coded Ada unit with clients, it is demoted
to source using the Compilation.Demote procedure with "<ALL_WORLDS>" spec-
ified in the Limit parameter.

o If the parent library into which an object is being restored is frozen, the
parent will be unfrozen to restore the object. After the object is restored, it
will be frozen again.

Note that the Replace option does not override access control.

Revert_Cdb Boolean

Specifies, when true, that a less recently updated version of a compatibility
database can be copied over a more recently updated version. When the value
is false (the default), the copy will fail if the compatibility database is less recent
than the one currently on the machine.

For further information on subsystems and compatibility databases, see Project
Management (PM).

World_Acl=new acl

Specifies a new access list (ACL) for restored worlds. The ACL copied with
the world will be changed to the one specified, which can be a new ACL or the
special values Inherit or Archived. Inherit means to use the standard inheritance
rules for new versions of objects. Archived means to use the ACL copied with
the object, which is the default. New ACLs must follow the syntax rules for
ACLs (for further information, see “Access Control” in the Key Concepts in this

book).

If a group specified in the ACL for an object does not exist on the machine onto
which the object is copied, the ACL entry for that group is removed from the
object’s ACL.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RAT'ONAL 7/1/87 LM-107

procedure Copy
package !Commands.Archive

Example 1

The following command copies a world from the current R1000 onto an R1000 named
M2:

archive.copy (objects=>"!users.anderson”,
use_prefix=>"11m2"};

The world keeps its original name. The result is that the world !Users.Anderson
will exist on machine M2. If the copying username has operator capability, a new
user Anderson will be created on M2 with the same password. The contents of the
world are also restored.

Example 2

The following command copies a world from an R1000 named M2 onto an R1000 called
M1:

archive.copy (objects=>"!!m2!users.doyle”,
use_prefix=>"tIml",
for_prefix=>"*"};

The world keeps its original name. If the initiator of the command has operator
capability, the system will attempt to create a user with the same name. In this
example, the contents of !Users.Doyle are copied onto M1. If the copying username
has operator capability, a new user Doyle is created.

Example 3

The following command copies two directories onto an R1000 named M2. Because
the Use_Prefix parameter does not have the default value, these directories are not
rebuilt in !Users.Anderson but are put in a parent library called !Project_1, which
will be created as a world if it does not already exist.

archive.copy (ob jects=>"!users.anderson[tools, utils]”,

use_prefix=>"11m2!project_1",
for_prefix=>"lusers.anderson");

As a result of executing this command, machine M2 contains directories !Project_1-
.Tools and !Project_1.Utils.

See the introduction to this package for more examples.

LM-108 7/1/87 RAT'ONAL

procedure List
package !Commands.Archive

procedure List

procedure List (Objects : String := "?7";

Options : String = "Rlé@ﬂ";
Device : String := "MACHINE.DEVICES.TAPE_O";
Response : String := "<PROFILE>"};

Description
Produces a listing of the objects that were saved on the specified tape or library.

By default, the listing is put in the Current_Output file, which typically appears
as a window on your screen.

Parameters

Objects : String := "?";
Specifies the objects that should appear in the listing. The default value (?) is a
pattern that lists everything.

Patterns include the characters #, e, ?, [], and ~, as described below:

The pound sign is replaced by a single character. It will not match the null
string or a period (.). For example, File_# matches File_1 and File_2. The
pound sign does not match the null string.

@ The at sign matches any string that does not contain a period. For example,
'Users.Mary.e matches everything in Mary’s home world, but nothing below
that level in the library. The at sign matches the null string.

? The question mark matches any sequence of characters at the beginning of the
name (that is, ? or !7) or a sequence of characters beginning with the period
(.). It matches the null string. For example, !Users? matches everything in
YUsers.

[] The brackets indicate sets of objects—for example, [!Users.Mary?, {Users.John?].

The tilde indicates that something should not be restored—for example, “!Users-
.Mary indicates that !Users.Mary should not be restored.

A nondefault value must be a pattern, a fully qualified object name starting with
the ! prefix (or a pattern that matches !), or a set of fully qualified object names
enclosed in brackets.

Options : String := "R1020";

Specifies options to be used in listing objects. You can specify more than one option.
For further information on specifying options, see the Key Concepts in this book.

RATIONAL 7y LM-109

procedure List
package !Commands.Archive

Format literal

Specifies one of three formats for the Index and Data files that were saved.
Format is irrelevant if Device is a library. If Device is a tape, Format must
specify one of the following values and must be the same as the tape that was
saved.

R1000 Use the Format=R1000 option if the save was made with this
option. This format produces a single volume set formatted
in chained ANSI:

— The volume set *DATA_SHORT* consists of a single tape
that contains the Data file followed by the Index file. The
images of the objects being saved are written directly onto
tape.

R1009_Long Use the Format=R1000_Long option if the save operation spec-
ified this option, which would have required more than one
tape. This format produces two volume sets, both formatted
in chained ANSI:

— The volume set *DATA_LONG* consists of multiple tapes
that contain the Data fiie.

— The volume set *INDEX* consists of a single tape that
contains the Index file.

Format=Ansi Use the Format=ANSI option if the list is being performed to
list a tape saved for or from a non-R1000 machine that accepts
ANSI tapes. If you require this capability, see your Rational
technical representative. This option writes the data into a
temporary file and then writes both the Index and the Data
files onto a tape using ANSI tape facilities.

— The volume set has no name and consists of a single tape
that contains the Data file followed by the Index file.

Label=string

Specifies the string, used for identification purposes, that is written onto the
tape at the head of the archived data, where string is any user-specified string.
This label is not the same as the volume identifier or the volume set name.
Typically, it is used to record the tape owner’s name, the date, and so on.
The List procedure can use this option to verify the label on the tape. The
verification is not case-sensitive. If the label doesn’t match, the tape is rejected
as if it were the wrong volume.

The Label can be a single text line of arbitrary length. A string that contains
special characters (commas or semicolons) must use balanced sets of parentheses
to indicate that it is a string and thus should not be interpreted as special
characters. For example, an option containing the comma (,) characters can be
specified as "LABEL=(MONDAY, JUNE 1, 1987)".

For further information on specifying strings in an Options parameter, see the
Key Concepts in this book.

LM-110 7/1/87 R’AT'ONAL

procedure List
package !Commands.Archive

Nonrecursive Boolean

Specifies that only the objects that are actually named by the Objects parameter
should be listed. This option does not recursively list sublibraries and subunits
within the named objects. It also allows you to list a library plus a subset of its
contents without listing the entire library.

Device : String := "MACHINE.DEVICES.TAPE_@";

Specifies the name of the device from which the archived objects are to be accessed.
The default value for Device reads from tape. If the objects are saved in a library
rather than on tape, you can supply a library name.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during execution of this command. The default is the job response profile.

References
procedure Save

SMU, package Tape

I?AT'ONAL 7/1/87 LM-111

procedure Restore
package !Commands.Archive

procedure Restore

procedure Restore (0Objects : String

Use_Prefix : String :
For_Prefix : String

Options : String "Rlé@ﬁ";
Device : String "MACHINE .DEVICES . TAPE_@";
Response : String "<PROFILE>");

Description

Reads a tape or library that was created by the Save procedure and restores the
specified object or objects.

The tape or library is specified by the Device parameter.

The Restore procedure also:

Reconstructs the structure of the saved objects.
Optionally promotes Ada units to the states they were in when they were saved.

Rebuilds objects either to their original location in the Environment or to the
location specified in the command.

Rebuilds the links for restored worlds.
Reassociates restored directories with their switch files.

Permits the restorer to change the default access list (ACL) or ACL associated
with worlds and objects within those worlds.

Note that you can use the Restore procedure to rebuild a subset of the objects saved
on a tape or in a library.

By default, when archived objects are restored, they will overwrite existing Envi-
ronment objects of the same name, unless the existing objects either are frozen (see
the Library.Freeze procedure) or are installed and have dependents.

LM-112 e RATIONAL

procedure Restore
package !Commands.Archive

Parameters

Objects : String := "?";
Specifies the object or objects to be restored from the tape or library. The default
value (?) is a pattern that r~stores everything.

Patterns include the characters #, e, 7, [], and ~, as described below:

#

The pound sign is replaced by a single character. It will not match the null
string or a period (.). For example, File_# matches File_1 and File_2. The
pound sign does not match the null string.

The at sign matches any string that does not contain a period. For example,
'Users.Mary.e¢ matches everything in Mary’s home world, but nothing below
that level in the library structure. The at sign matches the null string.

The question mark matches any sequence of characters at the beginning of the
name (that is, 7 or !7) or a sequence of characters beginning with the period
(.). It matches the null string. For example, !Users? matches everything in
'Users.

The brackets indicate sets of objects—for example, [!Users.Mary?, !Users.John?).

The tilde indicates that something should not be restored—for example, “!Users-
.Mary indicates that !Users.Mary should not be restored.

The value of this parameter must be a pattern, a fully qualified pathname starting
with the ! prefix (or a pattern that matches “!”), or a set of fully qualified pathnames
enclosed in brackets. For example:

Objects => "!Machine.Error_Logs.Log_86_04_@"

Objects => "[!Users.Doyle.Tools, !Project_1.Utils]"

RATIONAL 7/1/er LM-113

procedure Restore
package !Commands.Archive

Use_Prefix : String := "*";

Specifies where to rebuild the restored objects by allowing the user to change the
names of archived objects when they are restored. If the Use_Prefix parameter
has the special default value “*”, the objects are restored using the original name.
This is useful when restoring objects into identical library structures between two
machines.

When the value of the Use_Prefix parameter is not the special default value *”, it
must specify the name of an object into which the archived objects can be restored.
The name for a restored object is derived from the name of the archived object by
replacing the shortest portion matched by the For_Prefix parameter with the value
of the Use_Prefix parameter. For example:

archive.restore {ob jects=>"!users.hjl.cli.cmd",
use_prefix=>"lusers.bar",
for_prefix=>"lusers.hjl.cli");

restores the file !Users.Hjl.Cli.Cmd to !Users.Bar.Cmd on the current machine.

The For_Prefix parameter can use wildcard characters and the Use_Prefix param-
eter can use substitution characters. If wildcards are present in the For_Prefix
parameter, the Use_Prefix parameter must specify, through the use of substitution
characters, the full name of the target object. For further information, see the Key
Concepts in this book.

LM-114 7/1/87 RATIONAL

procedure Restore
package !Commands.Archive

For_Prefix : String := "x";

Participates in the specification of the location for rebuilding the restored objects
by allowing the user to change the names of the archived objects when they are
restored.

When the For_Prefix parameter is the default value “*”, the restored objects are
copied using the prefix stored with the archived data using the Prefix option. The
For_Prefix parameter is ignored when Use_Prefix has the special value “*”.

When the value of Use_Prefix is not the special default “*”, the shortest portion
of the For_Prefix parameter is replaced by the Use_Prefix parameter. If wildcards
are present in the For_Prefix parameter, the Use_Prefix parameter must specify,
through the use of substitution characters, the full name of the target object. In
this way, restored objects can be rebuilt under different names.

An object that is not matched by the For_Prefix parameter is not copied, and a
warning message is generated.

Table 4-3 illustrates the results of restoring with representative combinations of
For_Prefix and Use_Prefix. The object stored on tape is !A.B.C.D.

Table 4-3. Restoring with For_Prefix and Use_Prefix

For_Prefiz Use_Prefiz Resnlting Object

AB X X.C.D

[1A,!A.B] X X.B.C.D

['R.S,!A.B] x X.C.D
Options : String := "R1000";

Specifies options to be used in restoring objects. The Options parameter allows you
to specify more specifically which objects to restore, the state they should be in
when restored, and the access lists (ACLs) for the restored objects. You can specify
more than one option. For further information on specifying Options, see “The
Options Parameter” in the Key Concepts in this book.

Become _Ouner

Specifies that the ACL of all restored worlds should be modified to give the
restorer owner access to the restored worlds.

If a group specified in the ACL for an object when it is saved does not exist on
the machine on which it is restored, the ACL entry for that group is removed
from the object’s ACL.

RATIONAL 7/1/87 LM-115

procedure Restore
package !Commands.Archive

Compatibility_Database=subsystems

Specifies that the full compatibility database for each specified subsystem should
be restored. When Ada units in a subsystem are archived, the relevant portions
of the subsystem compatibility database are automatically archived with them.
Therefore, this option is required only in special situations, primarily when a
primary and a secondary subsystem need to be synchronized. This option name
can be specified as CDB, if desired. For further information on subsystems and
compatibility databases, see Project Management (PM).

If no subsystems are specified in the subsystems portion of this option, the
Objects parameter specification is used instead. Any subsystem views specified
by the Objects parameter will have the full compatibility database information
restored for them.

The Nonrecursive option does not affect the interpretation of the CDB specifi-
cation.

To restore compatibility databases only, use:
archive.restore (ob jects=>"subsystems",
options=>"cdb"};

where subsystems is the name of the subsystems whose CDBs are to be restored.
This will generate an error if the Objects parameter specifies nonsubsystems.

To restore compatibility databases with other objects, use:

archive.restore (objects=>"other",
options=>"cdb=subsystems");

where other is objects that are probably disjoint from subsystems.

Default_ACL=new acl

Specifies a new default ACL for restored worlds after the restore has completed.
The default ACL is used for new objects created within a world after the restore
is complete. The default ACL archived with the world will be changed to the
one specified, which can be a new ACL or the special values Inherit or Archived.
Inherit means to use the standard inheritance rules for new versions of objects.
Archived means to use the ACL archived with the object, which is the default.

New ACLs must follow the syntax rules for ACLs (for further information, see
“Access Control” in the Key Concepts in this book).

If a group specified in the ACL for an object when it is saved does not exist on
the machine on which it is restored, the ACL entry for that group is removed
from the object’s ACL.

LM-116 7/1/87 QA_HONAL

procedure Restore
package !Commands.Archive

Format literal

Specifies one of three formats for the Index and Data files in which the archive
was done. Format is irrelevant if Device is a library. If Device is a tape,
the Format option must specify the same format used in the Save (that is,
Format=R1000, Format=R1000_Long or Format=ANSI). The Format option is
optional.

R1200 Use the Format=R1000 option if the save operation required
only one tape. This format produces a single volume set for-
matted in chained ANSI:

— The volume set *DATA_SHORT* consists of a single tape
that contains the Data file followed by the Index file. The
images of the objects that were saved were written directly
onto tape.

R1000_Long Use the Format=R1000_Long option if the save operation re-
quired more than one tape. This format produces two volume
sets, both formatted in chained ANSI:

— The volume set *DATA_LONG* consists of multiple tapes
that contain the Data file.

— The volume set *INDEX* consists of a single tape that
contains the Index file.

Format=Ansi Use the Format=ANSI option if the restore operation is being
performed to restore a tape from a non-R1000 machine. If you
require this capability, see your Rational technical represen-
tative.

— This option writes the data into a temporary file and then
writes both the Index and the Data files onto a tape using
ANSI tape facilities.

— The volume set has no name and consists of a single tape
that contains the Data file followed by the Index file.

Label=string

Specifies the string, used for identification purposes, that is written onto the
tape at the head of the archived data, where string is any user-specified string.
This label is not the same as the volume identifier or the volume set name.
Typically, it is used to record the tape owner’s name, the date, and so on.
The Restore procedure can be requested to verify the label on the tape. The
verification is not case-sensitive. If the label does not match, the tape is rejected
as if it were the wrong volume.

The label can be a single text line of arbitrary length. A string that contains
special characters (commas or semicolons) must use balanced sets of parentheses
to indicate that it is a string and thus should not be interpreted as special
characters. For example, an option containing the special comma (,) character
could be specified as "LABEL=(MONDAY, JUNE 1, 1987)".

For further information on specifying strings in an Options parameter, see “The
Options Parameter” in the Key Concepts in this book.

RATIONAL 7/1/er LM-117

procedure Restore
package !Commands.Archive

Nonrecursive Boolean

Specifies that only the objects that are actually named by the Objects parameter
should be restored. This option does not restore sublibraries and subunits within
the named objects unless they are explicitly named. The option allows you to
restore the links and switches associated with libraries without restoring the
objects in those libraries. For example, with this option you can restore a
library plus a subset of its contents without restoring the entire library.

This option prevents the subcomponents of libraries and Ada units from being
implicitly restored. For example:

archive.restore (objects=>"[!users.hjl, lusers.hjl.cli,lusers.hjl.cli1.08]",
options=>"R100@ nonrecursive");

will restore only the named objects and not their substructures.

Ob ject_Acl=new acl

Specifies a new ACL for restored objects. The ACL restored with the object will
be changed to the one specified, which can be a new ACL or the special values
Inherit or Archived. Inherit means to use the standard inheritance rules for new
versions of objects. Archived means to use the ACL archived with the object,
which is the default. New ACLs must follow the syntax rules for ACLs (for further
information, see “Access Control” in the Key Concepts in this book).

If a group specified in the ACL for an object when it is saved does not exist on
the machine on which it is restored, the ACL entry for that group is removed

from the object’s ACL.

Overwrite literal

Allows you to control overwriting further by either allowing or preventing the

All_Ob jects Use the Overwrite=All_Objects option to cause all ob-
Jects to be restored, overwriting any existing objects to

th . : 25
de?ai)l(:.ent permitted by the Replace option. This is the

New_Ob jects Use the Overwrite=New_Objects option to prevent the
restoring of any archived object that will overwrite an
existing object. That is, this option allows objects to be
rebuilt only under new names or in new locations and
prevents existing objects from being overwritten.

Updated_0b jects Use the Overwrite:Updated_Objects option to restore
only those archived objects that were modified more re-
cently th:‘m the corresponding existing objects. The more
recent objects overwrite the existing objects. This option
;Isl fﬂ?gﬁ:a}gﬂ) Slosefuldwhen there is parallel development on

s and you j
o oo TLl000s a3 an);thelrlfed to restore updated objects

LM-118 7/1/87 BAT' ONAL

procedure Restore
package !Commands.Archive

Changed_Ob jects Use the Overwrite=Changed_Objects option to restore
new and updated objects. This is equivalent to using
both the New_Objects and the Updated_Objects options,
which are illegal when used together in an Options list.

Primary Boolean

Specifies whether to move the primary subsystem to a new location (see the
introduction to this package for further information on primary and secondary
subsystems). When true, the option specifies that the compatibility database
should be restored as a primary (with read/write access). When false (the
default), it specifies that the compatibility database should be restored as a
secondary (with read access).

For further information on subsystems and compatibility databases, see Project
Management (PM).

Promote

Causes, when used, the Restore procedure to attempt to promote restored Ada
objects to the states (installed or coded) in which they were archived. When
this option is not used, all Ada units are rebuilt in the source state.

Note that, when you restore a world, the links for that world are restored.
However, links can be rebuilt only if the units to which the links refer exist.
If you are restoring the world to a different R1000 that does not contain those
units, then the links cannot be rebuilt. Objects that depend on the missing
units cannot be promoted.

Replace

Given that an object that is being restored already exists on the target, this
option works in conjunction with the Overwrite option to cause the Restore
procedure to do the following:

¢ If the target object is frozen, it will be unfrozen.

o If the target object is an installed or coded Ada unit with clients, it is demoted
to source using the Compilation.Demote procedure with "<ALL _WORLDS>" spec-
ified in the Limit parameter.

o If the parent library into which an object is being restored is frozen, the
parent will be unfrozen to restore the object. After the object is restored, it
will be frozen again.

Note that the Replace option does not override access control.

Revert_Cdb Boolean

Specifies, when true, that a less recently updated version of a compatibility
database can be restored over a more recently updated version. When the value
is false (the default), the restore of the compatibility database will fail if the
compatibility database is less recent than the one currently on the machine.

For further information on subsystems and compatibility databases, see Project
Management (PM) and the introduction to this package.

RATIONAL 7/1/87 LM-119

procedure Restore
package !Commands.Archive

World_Acl=new acl

Specifies a new access list (ACL) for restored worlds. The ACL archived with the
world will be changed to the one specified, which can be a new ACL or the special
values Inherit or Archived. Inherit means to use the standard inheritance rules
for new versions of objects. Archived means to use the ACL archived with the
object, which is the default. New ACLs must follow the syntax rules for ACLs (for
further information, see “Access Control” in the Key Concepts in this bookS.

If a group specified in the ACL for an object when it is saved does not exist on
the machine on which it is restored, the ACL entry for that group is removed
from the object’s ACL.

Device : String := "MACHINE.DEVICES.TAPE_B";

Specifies the name of the device from which the archived objects are to be read. If
you use the default value for Device, the Restore procedure reads from tape. If you
supply a library name, the objects are read from the Data and Index files in that
library.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

The following command restores !Project_1.Utils.Counter to its original location,
because both the For_Prefix and the Use_Prefix parameters have default values:

archive.restore (ob jects=>"!project_l.utils.counter™)};
Example 2

The following command restores two worlds from tape and rebuilds them in the
library !Users.Anderson:

archive.restore ({objects=>"[l!users.doyle.tools, !project_1.utils]",
use_prefix=>"!users.anderson",
for_prefix=>"[lusers.doyle, !project_1]1"};

Because the Use_Prefix of “!Users.Anderson” is used, the restored objects are rebuilt
as !Users.Anderson.Tools and !Users.Anderson.Utils. The For_Prefix is used to
change the restored names.

LM-120 7/1/87 '?ATIONAL

procedure Restore
package !Commands.Archive

Example 3

The following command restores all the archived error log files that were created
in April 1987 and rebuilds them in the library !Users.Operator.Error_Logs. That
is, the For_Prefix “!Machine” is replaced by the Use_Prefix “!Users.Operator.” If
'Users.Operator.Error_Logs doesn’t exist, it will be created.

archive.restore (ob jects=>"!machine.error_logs.log_87_04_0",
use_prefix=>"!users.operator”,
for_prefix=>"!machine"};

Example 4

The following command restores the contents of the world !Users.Doyle.Tools into
the world !Users.Anderson. However, only new objects are restored (objects that
'Users.Anderson does not already contain).

archive.restore (objects=>"lusers.doyle.tools.@",
use_prefix=>"lusers.anderson”,
for_prefix=>"lusers.doyle.tools”,
options=>"rl1000,overurite=new_ob jects");

See the introduction to this package for more examples.

References

procedure Save

RAT'ONAL 7/1/87 LM-121

procedure Save
package !Commands.Archive

procedure Save

procedure Save (Objects : String := "<IMAGED>";
Options : String := "R1000";
Device : String := "MACHINE.DEVICES.TAPE_@";
Response : String := "<PROFILE>");

Description

Writes zero or more objects specified by the Objects and the Options parameters
to the tape or library.

The place in which the objects are written is specified by the Device parameter.

The Save procedure:

o Preserves the library structure among multiple objects and records the unit state
of Ada units.

¢ Saves objects recursively unless otherwise specified (see the Options parameter,
below). In other words, the default is that, when the procedure is used to save a
library, all the objects in that library are saved, including sublibraries and their
contents. Similarly, when an Ada unit is archived, any subunits are also saved.

e Saves the links associated with each archived world and saves the name of the
switch file associated with each archived library. However, the procedure does
not automatically save the switch file.

The Save procedure writes all objects into a single file called Data. A file called
Index is also created, which describes the name of each object in the Data file, the
size of the object, and its unit state if it is an Ada unit. The Restore procedure
uses the Index file to rebuild objects and place them in the appropriate states.

Parameters

Objects : String := "<IMAGE>";

Specifies the object or objects to be saved. The parameter takes any naming ex-
pression. Objects can name objects such as worlds, directories, Ada units, text files,
data files, switch files, activities, subsystems, and subsystem views. The default is
the current image.

More than one object can be specified with the use of wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book).

LM-122 7/1/87 RAT'ONAL

procedure Save
package !Commands.Archive

Options : String := "R10O0";

Specifies the options for the Save command. The Options parameter allows you to
specify more specifically which objects to save and their access lists. For further
information on specifying Options parameters, see “The Options Parameter” in the
Key Concepts in this book).

The following list specifies the options available for this command:

After=time

Saves only objects that have been changed more recently than the specified time,
which can be a date, a time of day, or both, and can be written in any of the
styles defined by the !Tools. Time_Utilities.Date_Format type and the 'Tools-
.Time_Utilities.Time_Format type. For example, specifying the following value
for the Options parameter saves only those objects named by Objects that were
updated after June 11, 1987, at noon:

options=>"after=(06/11/87 12:00)"

Compatibility_Database=subsystems

Specifies that the full compatibility database for each specified subsystem should
be archived. When Ada units in a subsystem are archived, the relevant portions
of the subsystem compatibility database are automatically archived with them.
Therefore, this option is required only in special situations, primarily when a
primary and a secondary subsystem need to be synchronized. This option can
be specified as “CDB”, if desired. For further information on subsystems and
compatibility databases, see Project Management (PM).

If no subsystems are specified in the subsystems portion of this option, the
Options parameter specification is used instead. Any subsystem views specified
by the Objects parameter will have the full compatibility database information
saved for them.

The Nonrecursive option does not affect the interpretation of the CDB specifi-
cation.

To archive compatibility databases only, use:

archive.save (objects=>"subsystems",
options=>"cdb"};

where subsystems is the name of the subsystems whose CDBs are to be saved.
To archive compatibility databases with other objects, use:
archive.save (objects=>"other",
options=>"cdb=subsystems");
where other specifies objects that are probably disjoint from subsystems.

Format literal

Specifies one of three formats for writing the Index and Data files. Format is
irrelevant if Device is a library. If Device is a tape, the Format option must
specify one of the following values:

RATIONAL 717 LM-123

procedure Save
package !Commands.Archive

R1000 Use the Format=R1000 option if the save operation requires
only one tape. This format produces a single volume set for-
matted in chained ANSI:

— The volume set *DATA_SHORT* consists of a single tape
that contains the Data file followed by the Index file. The
images of the objects being saved are written directly onto
tape.

R1000_Long Use the Format=R1000_Long option if the save operation re-
quires more than one tape. This format produces two volume
sets, both formatted in chained ANSI:

— The volume set *DATA_LONG* consists of multiple tapes
that contain the Data file.

— The volume set *INDEX* consists of a single tape that
contains the Index file.

Format=Ansi Use the Format=ANSI option if the save procedure is being
performed to create a tape for a non-R1000 machine that ac-
cepts ANSI tapes. If you require this capability, see your Ra-
tional technical representative.

— This option writes the data into a temporary file and then
writes both the Index and the Data files onto a tape using
ANSI tape facilities.

— The volume set has no name and consists of a single tape
that contains the Data file followed by the Index file.

Label=string

Specifies the string, used for identification purposes, that is written onto the tape
at the head of the archived data, where string is any user-specified string. This
label is not the same as the volume identifier or the volume set name. Typically,
it used to record the tape owner’s name, the date, and so on. The Restore
procedure can be requested to verify the label on the tape. The verification is
not case-sensitive. If the label doesn’t match, the tape is rejected as if it were
the wrong volume.

The label can be a single text line of arbitrary length. A string that contains
special characters (commas or semicolons) must use balanced sets of parentheses
to indicate that it is a string and thus should not be interpreted as special
characters. For example, an option containing comma (,) characters could be
specified as "Label=(MONDAY, JUNE 1, 1987)".

For further information on specifying strings in an Options parameter, see “The
Options Parameter” in the Key Concepts in this book.
Nonrecursive Boolean

Specifies that only the objects that are actually named by the Objects parameter
should be saved. This option does not recursively save sublibraries and subunits
within the named objects. The option allows you to save the links and switch
files associated with libraries without saving the objects in those libraries. It

LM-124 7/1/87 PATIONAL

procedure Save
package !Commands.Archive

also allows you to save a library plus a subset of its contents without saving the
entire library.

This option prevents the subcomponents of libraries and Ada units from being
implicitly saved. For example:

save (objects=>"[lusers.hjl,lusers.hjl.cli,!users.hjl.cl1.8.]",
options=>"rl100@ nonrecursive"};
saves only the named objects and not their substructures.

Prefix=naming pattern

Specifies a naming pattern that is saved with the archived objects. The pattern
can be recalled as the For_Prefix parameter when the Restore procedure is used.
When the option is set to an appropriate value, the restorer does not need to
know the exact names of the archived objects to be able to restore them to a
new place.

If the naming pattern value is not specified, the value is derived from the Objects
parameter and the CDB option (if present). This is done by expanding context-
sensitive characters (such as - and §), expanding indirect file references, and
removing all attributes.

Version=string

The following options are of use to Rational personnel:

Version=Gamma@ Writes a tape that can be read on a Gamma 0 system.
Version=Gammal Writes a tape that can be read on a Gamma 1 system.

Version=nnn Writes a tape that can be read by a previous version of pack-
age Archive (formerly called Source_Archive). The nnn rep-
resents a three-digit version number. For example: "ver-
sion=210".

Device : String := "MACHINE.DEVICES.TAPE_O@";

Specifies the name of the device onto which the Index and Data files are to be
written. The default is to write onto tape.

A library name can also be supplied, in which case the files are written into that
library. If this library does not exist, it is created.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 717 LM-125

procedure Save
package !Commands.Archive

Example 1

The following library structure is referred to in this and the following examples:

IExample : Library;

Source : Library;
Libraries : Library;
Logs : Library;
Tools : Labrary;

Move_List : File;

'Example.Source : Library;
File_One_Ada : File;

lExample.Libraries : Library;
Utils : Library;
Misc : Library;
Example : Library;

IExample.lLogs : Library;

Parse_lLog . File;

Make_Log : File;
IExample.Tools : Library;

Build : Ada;

Build : Ada {Proc_Body);

Parse_All : Ada;
Parse_All : Ada (Proc_Body};

The following pair of commands saves the world !Example and all of its contents
onto tape and then restores it in the library !Users.Anderson under the name
New_Example. If !Users.Anderson does not exist, it is created.

From any context:

archive.save (objects=>"lexample"};

From any context:

archive.restore (objects=>"lexample",
use_prefix=>"!users.anderson.new_example",
for_prefix=>"l!example"};

The Use_Prefix parameter is specified to tell the Archive.Restore command where
to place the objects saved from !Example. It replaces the entire For_Prefix name.
The new world name is !Users.Anderson.New_Example.

LM-126 7/1/87 RAT'ONAL

procedure Save
package !Commands.Archive

Example 2

Using the same library structure as in Example 1, the following pair of commands
can be used to transfer the directories !Example.Libraries and !Example.Logs to
another R1000 via tape. These directories are restored to the world !Users.Anderson.
If !Users.Anderson does not already exist, it is created, and if the initiating user has
operator capability, the user Anderson is created. The Objects parameter value is
optional because there is only one object on the tape.

On the first R1000, from any context:

archive.save (objects=>"!example.1@"};

On the second R1000, from any context:

archive.restore {ob jects=>"!example.16",
use_prefix=>"lusers.anderson”,
for_prefix=>"!example"};

The second R1000 now contains !Users.Anderson.Libraries and !Users.Anderson-
.Logs.

Example 3

This example is the same as the previous one, except that it is assumed that
'Users.Anderson exists and already contains directories called Libraries and Logs.
The contents of !Example.Libraries and !'Example.Logs will be merged with the
contents of the existing !Users.Anderson.Libraries and !Users.Anderson.Logs. To
prevent any objects from being overwritten, the New_Objects option is used in the
Options parameter in the Restore procedure.

Oumn the first R1000, from any context:

archive.save (objects=>"!example.l1@"};

On the second R1000, from any context:

archive.restore (objects=>"!example.18",
use_prefix=>"lusers.anderson",
for_prefix=>"lexample”),
options=>"r1000,overwrite=-new_ob jects");

F?/AT'ONAL 7/1/87 LM-127

procedure Save
package !Commands.Archive

Example 4

Again using the same library structure as in Example 1, the next pair of commands
saves and restores recently updated objects contained in two directories. The direc-
tories are named using an indirect file, !Example.Move_List, which contains these
entries:

lExample.Libraries.Utils
lExample.Libraries.Misc

Only objects that were modified after June 11, 1986, are to be saved, as specified
by the Options parameter of the Save procedure. Furthermore, these objects are
restored only if they will overwrite less recent versions, as specified by the Options
parameter in the Restore procedure.

On the first machine, from any context:

archive.save {(ob jects=>"_move_list",
options=>"r1000,after=06/11/86};

On the second machine, from any context:
archive.restore {objects=>"?",
use_prefix=>"lusers.anderson",

for_prefix=>"*",
options=>"r100@,overurite=updated_ob jects,replace”};

restores to !Users.Anderson.

See the introduction to this package for more examples.

end Archive;

LM-128 e RATIONAL

package Compilation

With the operations in this package you can compile, demote, and destroy Ada
units. You can also parse files containing Ada source code (uploaded from another
machine) and create Ada units from them. The key procedures in this package are
Parse, Promote, Make, Demote, and Destroy. This package also contains several
types and procedures that provide underlying capabilities for these procedures.

The operations provided by this package can be performed on a number of Ada
units or files at once through the use of wildcard characters or indirect files in the

Unit_Name parameter.

Special Values

Some of the procedures in this package use special values in specifying a parameter
of the Change_Limit subtype. Parameters of the Change_Limit subtype control
which units an operation can modify, as follows:

“<SUBUNITS>" Modifies the units named in the operation and their subunits.

"CUNITS>" Modifies only the units named in the operation.

"<DIRECTORIES>" Modifies only the units in the same set of directories as the
units specified to the operation.

"<WORLDS>" Modifies only the units in the same world as the units speci-
fied to the operation.

"<ALL_WORLDS>" Modifies a unit in any world.

Compilation and Access Control

To promote a unit, you must have write access to that unit and write access to
any unit it withs. For example, to promote unit Test, which withs units Driver and

Data, you must have write access to all three units.

To demote a unit, you must have write access to that unit, but you need no access to
units that with it. For example, to demote unit Test, which is withed by Test_Driver,
you must have write access to Test, but you require no access to Test_Driver.

R)/A\-HONAL 7/1/87 LM-129

package !Commands.Compilation

Using Compilation with Rational Subsystems

The operations provided by this package can easily be used with subsystems since
an activity file can be used to indirectly specify worlds to compile. Consider the
following example.

A group of developers is working on an application called Program_Profile_System,
which has been decomposed into three subsystems. This application analyzes Ada
code, collects statistics, and generates reports. The topmost subsystem is called
Report_Layer, the middle subsystem is called System_Layer, and the lowest level is
called Unit_Layer. Both the System_Layer and the Report-Layer import the spec
view of the Unit_Layer subsystem.

If a spec-incompatible change (for example, changing the name of a function) is
made to the Unit_Layer subsystem, the other two subsystems in this application
will require changes to all using occurrences of this function. Once all of these
changes are made, it will be useful to recompile everything in the system using
the Make procedure. Using an activity file as an indirect file for the Unit_Name
parameter can achieve this goal. Activity files can also be used similarly to wildcard
characters or attributes to operate on a large number of objects at one time.

For information on the use of subsystems, see Project Management (PM).

Special Names

Many of the commands in this package have specsal names as default values to
parameters requiring names. Anywhere that a string name can be used, a special
name can be used. Special names allow you to designate without supplying a
pathname. They take the form “<specsal name>”, where special name specifies
text, an object, or a region, as described below:

"<SELECTION>" References the object associated with the highlighted area,
when the cursor is located in a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether

or not there is a highlighted area in the window.

"< IMAGE>" References the highlighted object, if the cursor is in a high-
lighted area. If the cursor is not located in the highlighted
area, this special name references the image in which the cur-
sor is located.

"KTEXT>" References the object named in the highlighted text in the
image in the window.
"CACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, this special name references
that activity rather than the default activity.

You can replace special names with other types of naming expressions, as accepted
by that parameter.

LM-130 7/1/87 BAT'ONAL

package !Commands.Compilation

Error Response

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and what activities to use.
The response profile "<PROF ILE>", which many commands use by default, specifies
the job response profile. If there is no job response profile, the session response
profile (“<SESSION_PROFILE>") is used. If there is no session response profile, the
system’s default profile ("<DEFAULT>") is used. For further information on profiles,
see SIM, package Profile.

QAT'ONAL 7/1/87 LM-131

constant All_Worlds
package !Commands.Compilation

constant All_Worlds

All_Worlds : constant Change Limit := "<ALL_WORLDS>";

Description

Defines a value of the Change_Limit type that indicates that units in any world
may change when the operations in this package are performed.

This constant is retained for compatibility with previous releases. All_Worlds is
equivalent to the special value "<ALL_WORLDS>".

References

subtype Change_Limit
constant Current_Directory
constant Same_Directories
constant Same_World

constant Same.Worlds

LM-132 7/1/87 R)ATIONAL

procedure Atomic_Destroy
package !Commands.Compilation

procedure Atomic_Destroy

procedure Atomic_Destroy (Unit : Unit_Name;
Success : out Boolean;
Action_Id : Action.Id = Action.Null_ld;
Limit : Change_Limit := "<WORLDS>";
Response : String = "<PROFILE>"};
Description

Destroys the named object and any dependent units.

This procedure is a special case of the Destroy procedure. This procedure should
not be used without consultation with your Rational technical representative. Use
the Destroy procedure instead.

QATIONAL 7/1/87 LM-133

subtype Change_Limit
package !Commands.Compilation

subtype Change_Limit

subtype Change_Limit is String;

Description

Defines which units are allowed to change when an operation in this package is
performed.

Many of the operations in this package require a parameter of the Change_Limit
type. Parameters of the Change_Limit type control which units an operation can
modify. This parameter has five predefined special values with the following mean-

ings:

"<SUBUNITS>™ Modifies the units named in the operation and their sub-
units.

"CUNITS>" Modifies only the units named in the operation.

"<DIRECTORIES>" Modifies only the units in the same set of directories as the
units specified to the operation.

"<WORLDS>" Modifies only the units in the same world as the units speci-
fied to the operation.

"<ALL _WORLDS>" Modifies a unit in any world.

Each change limit includes the units implied by the Change_Limit type above it in
this list.

Any unique prefix of the special value enclosed in quotation marks and brackets
("<>") is recognized. Thus "<w>", "<WORLD>", and "<WORLDS>" are all valid, equiva-
lent ways of specifying "<WORLDS>".

A Change_Limit parameter may also be a string name that designates a set of
worlds or directories. When names using strings are specified, only the units in the
specified worlds or directories are allowed to change. Context prefixes, wildcards,
indirect files, special names, and attributes can be used in specifying object names.

An activity file can also be used in a string name as an indirect file. This is useful
when working with subsystems.

LM-134 7/1/87 PAT'ONAL

subtype Change._Limit
package !Commands.Compilation

References

constant All_Worlds
constant Current_Directory
constant Same_Directories
constant Same_World

constant Same_Worlds

RATIONAL 7/1/er LM-135

procedure Compile
package !Commands.Compilation

procedure Compile

procedure Compile (File_Name : Name = "<REGION>";

Library : Name = "§";

Goal : Unit_State = Compilation.Installed;

List : Boolean = False;

Source_Options : String ="";

Limit : Change_Limit := "<WORLDS>";

Response : String = "<PROFILE>");
Description

Compiles the specified text file into the specified library.

This procedure parses and promotes the units in the specified file or files to the
specified goal state. A listing with interleaved error messages is produced in the log
file if the List parameter is true. If there are any errors, the unit is not added to
the library.

This procedure implements LRM semantics for compilation into Ada libraries and
is used primarily for running the Ada language validation tests.

Parameters

File_Name : Name := "<REGION>";

Specifies the file that contains the units to be compiled. Special names, indirect files,
wildcards, context prefixes, and attributes are allowed in this name. The default
special name "<REGION>" specifies the highlighted object.

Library : Name := "$";
Specifies the library into which the units will be compiled. The default is the current
library.

Goal : Unit_State := Compilation.Installed;
Specifies the desired state for the compiled units. The default is the installed state.

List : Boolean := False;

Specifies whether to produce a listing in the log file. The default is not to produce
a listing.

LM-136 7/1/87 BA\TIONAL

procedure Compiie
package !Commands.Compilation

Source_Options : String := ;
Specifies a series of options for the compilation. This parameter currently is not
implemented and is reserved for future development.

Limit : Change_Limit := "<WORLDS>";
Specifies the limit to the scope of changes. The default is to change units only in
the worlds of those units specified.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job

response profile.

Errors

If the names of the source text files are identical to the name of the Ada unit they
contain, an error will occur. Two objects with the same name cannot exist in the
same library. A suggested strategy is to keep text files in one directory and compile
Ada units into another library.

Example
The command:
compilation.compile ("text", "my_library", compilation.coded, true);

creates an Ada unit in the library, My_Library, using the text file called Text as
input.

References

subtype Change_Limit
subtype Name
subtype Unit_State

QAT'ONAL 7/1/87 LM-137

constant Current_Directory
package !Commands.Compilation

constant Current_Directory

Cur‘r‘ent_Dir‘ector:g : constant Change_Limit := Same_Directories;

Description

Defines a constant that can be used as a value for a parameter of the Change_Limit

type.

The Change_Limit parameter controls which units an operation is allowed to mod-
ify.

Use of the Current_Directory constant as a parameter specifies that only the units
in the same directory as the units specified to the operation are allowed to change.

This constant is retained for compatibility with previous releases. Current_Directory
is equivalent to the special value "<DIRECTORIES>".

References

constant All_Worlds
subtype Change_Limit
constant Same._Directories
constant Same.World

constant Same._Worlds

LM-138 7/1/87 RAT'ONAL

procedure Delete
package !Commands.Compilation

procedure Delete

procedure Delete (Unit : Unit_Name = "<SELECTION>";
Limit : Change_Limit := "<WORLDS>";
Response : String = "<PROFILE>");

Description

Demotes and deletes the default version of the specified object and any subunits.

This procedure deletes the named object by first demoting any dependent units.
This is a useful capability when deleting Ada units. The deletions are reversible in
the sense that specified objects can be undeleted with the Library.Undelete proce-
dure. This command is different from the Destroy procedure, which permanently
deletes and expunges objects.

Subordinate units (bodies and subunits) are also deleted. If the deletion of the
object or any subordinate object would obsolesce units outside the specified change
limit, the operation will fail.

Parameters

Unit : Unit_Name := "<SELECTION>";

Specifies the name of the object to be deleted. Special names, wildcards, context
prefixes, indirect files, and attributes are allowed in this name. The default is the

current selection.

Limit : Change_Limit := "<WORLDS>";

Specifies which units can be demoted to allow the deletion. The default is to allow
demotion of units only in the worlds that contain a unit to be deleted.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

RATIONAL 7/1/sr LM-139

procedure Delete
package !Commands.Compilation

Errors

Common errors include specification of a Limit parameter that does not include all
units that must be demoted.

A Lock_Error can be caused by editing a unit that needs to be demoted.

Access errors can be caused by the job not having the proper class of access for an
object.

Example

Consider the following world:

IUsers.Gzc.Test_World. L1Pecgcle Example : Library (World);

Complex Ada (Pack_Spec);
Complex : Ada (Pack Bodg),
Complex_Utilities : Ada (Pack_Spec);
Complex_Utilities : Ada (Pack_Body);

Display_Complex_Sums : Ada (Proc_Spec);
Display_Complex_Sums : Ada (Proc_Body};

List_Generic : Ada (Gen_Pack);
List_Generic : Ada (Pack_Body);
Sample_lnput : File;
Srs : File;

The command:

compilation.delete
(urit=>"complex’spec”, limit=>"<WORLDS>",
response=>"<PROF ILE>") ;

deletes both the spec and the body of package Complex and demotes any dependent
units. The body is deleted because it is a subordinate object that relies on the
existence of the spec. If a Library.Delete procedure were attempted to delete the
spec, it would fail because of this dependency.

References
subtype Change_Limit
procedure Destroy

subtype Unit_Name

LM-140 e RATIONAL

procedure Demote
package !{Commands.Compilation

procedure Demote

procedure Demote (Unit : Uni1t_Name = "<SELECTION>";
Goal : Unit_State = Compilation.Source;
Limt : Change_Limit := "<WORLDS>";
Effort_Only : Boolean = False;
Response ; String = "<PROFILE>");
Description

Demotes the specified units to the specified goal state, demoting any other units,
within the limit necessary to achieve the requested demotion.

The procedure demotes the specified unit and all of its dependents in such a way
that the entire system is always semantically consistent. The procedure finds the
dependents of the specified unit and all of the dependents of those units until the
entire transitive closure of the specified unit is known. Then the procedure demotes
the dependent units followed by the specified unit to the goal state.

The demotion request fails if any units outside the specified limit must be demoted.
Conversely, all units demoted by this procedure are within that limit.

If the current state of the unit or any of its dependents is the same or lower than
the goal state, the procedure has no effect on that unit or dependent units.

The procedure can also estimate the amount of work necessary to accomplish a
specified demotion. The Effort_Only parameter can specify that the procedure
only estimate the amount of work in doing a specified demotion without actually
demoting any units.

This procedure is useful when editing an object that has dependents. The !Com-
mands.Common.Demote procedure does not demote the dependents and fails if
dependents exist. In that case, this procedure can be used to demote the unit and
all of the dependents so that the unit can be edited. Then the program can be
promoted again with the Promote procedure or the Make procedure.

Parameters

Unit : Unit_Name := "<SELECTION>";

Specifies the name of the Ada unit to be demoted. Special names, wildcards, context
prefixes, indirect files, and attributes are allowed in this name. The default is the
current selection.

RATIONAL 7167 LM-141

procedure Demote
package !Commands.Compilation

Goal : Unit_State := Compilation.Source;

Specifies the desired state of the unit. The default demotes the unit to the source
state.

Limit : Change Limit := "<WORLDS>";

Specifies which units can be demoted. The default is to allow demotion of units
only in the worlds that contain the specified unit to be demoted.

Effort_Only : Boolean := False;

Specifies whether to check for the effort required to do the demotion and the sub-
sequent promotion. The effort rating reported is a relative measure of the amount
of work involved. The default is to check and to actually do the demotion.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

Errors

Common errors include specification of a Limit parameter that does not include all
of the units that must be demoted.

A Lock_Error can be caused by editing a unit that needs to be demoted.

Access errors can be caused by the job not having the proper class of access for an
object.

LM-142 e RATIONAL

procedure Demote
package !Commands.Compilation

Example

Consider the following world:

IUsers.Gzc.Lifecycle_Example : Vol 4 1;

Complex : C 86/12/29 15:16:37 Gzc 9643 1 ;
Complex . C 86/12/23 15:16:55 Gzc 10383 1 ;
Complex_Utilities C 86/12/29 15:34:00 Gzc 15319 1 ;
Complex_Utilities C 86/12/29 15:33:47 Gzc 26192 1 ;
Display_Complex_Sums : C 86/12/23 15:34:06 Gzc 7166 1 ;
Display_Complex_Sums : C 86/12/29 15:33:51 Gzc 23587 1 ;
List_Generic : C 86/12/29 15:34:20 Gzc 15423 1 ;
List_Generic : C 86/12/29 15:34:16 Gzc 39980 1 ;

The command:

compilation.demote
(unit=>"complex’'spec”", goal=>compilation.source,
limit=>"<WORLDS>", effort_only=>false,
response=>"<PROF ILE>");

demotes the unit and displays the following in the current output window:

'USERS .GZC.LIFECYCLE_EXAMPLE % COMPILATION.DEMOTE STARTED 12:37:29 PM
87/83/2@ 12:37:33 ::: [Compilation.Demote {"complex'spec", SOURCE, "<WORLDS>",
87/03/2@ 12:37:33 ... FALSE, PERSEVERE);].

87/83/20 12:37:34 --- Attempting to demote !'USERS.GZC.LI|FECYCLE_EXAMPLE.
87/03/2@0 12:37:34 ... COMPLEX.

87/03/20 12:37:34 +++ 'USERS.GZC.LIFECYCLE_EXAMPLE .COMPLEX'BODY’V(1l) demoted
87/03/20 12:37:35 ... to SOURCE.

87/03/20 12:37:35 +++ 'USERS.GZC.LIFECYCLE_EXAMPLE.

87/03/2@ 12:37:35 ... COMPLEX_UTILITIES’BODY'V(1) demoted to SOURCE.
87/03/20 12:37:36 +++ 'USERS.GZC.LIFECYCLE_EXAMPLE.

87/03/20 12:37:36 ... DISPLAY_COMPLEX_SUMS’'BODY'V(1)} demoted to SOURCE.
87/03/20 12:37:36 +++ !'USERS.GZC.LIFECYCLE_EXAMPLE .COMPLEX_UTILITIES'V(1)
87/03/20 12:37:36 ... demoted to SOURCE.

87/03/2@ 12:37:37 +++ IUSERS.GZC.LIFECYCLE_EXAMPLE .COMPLEX'V(1} demoted to
87/03/20 12:37:37 ... SOURCE.

87/@03/20 12:37:38 ::: [End of Compilation.Demote Command].

IQAT'ONAL 7/1/87 LM-143

procedure Demote
package !Commands.Compilation

References '
subtype Change_Limit
constant Source
subtype Unit_Name
type Unit_State

LM-144

e RATIONAL

procedure Dependents
package !Commands.Compilation

procedure Dependents

procedure Dependents (Unit : Unit_Name := "<IMAGE>";
Transitive : Boolean = False;
Response : String = "<PROFILE>");
Description

Displays the set of units that depend on the current or named units.

This procedure produces a log that lists the set of units that depend on this unit.
That list can be used to approximate the significance of changing this unit. The
list can include the direct dependents or the entire set of dependents (the transitive
closure of dependents).

Parameters

Unit : Unit_Name := "<IMAGE>":

Specifies the units whose dependents are desired. Special names, wildcards, context
prefixes, indirect files, and attributes are allowed in this name. The default is the
currently selected object or, if no object is selected, the current image.

Transitive : Boolean := False;

Specifies whether to list the transitive closure of all dependents or just the direct
dependents. The default is the direct dependents.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

Restrictions
The specified unit and its dependents must be at the installed or coded state for

this procedure to produce the expected results. Dependencies do not exist on units
in the source state and will not be listed in the output.

RATIONAL /s LM-145

procedure Dependents
package !Commands.Compilation

Errors

Errors include specification of the incorrect unit name.

Example

Consider the following world:

IUsers .Gzc.Test_World. L1Pecgcle Example : Vol 4 1;

Complex C 86/12/23 17:33:47 Gzc 9643 1 ;
Complex L C 86/12/23 17:34:10 Gzc 18383 1 ;
Complex_Utilities C 86/12/23 17:33:54 Gzc 15918 1 ;
Complex_Utilities C 86/12/23 17:31:58 Gzc 26192 1 ;
Display_Complex_Sums : C 86/12/23 17:32:26 Gzc 7166 1 ;
Display_Complex_Sums : C 86/12/23 17:31:54 Gzc 23587 1 ;
List_Generic : C 86/12/23 17:34:08 Gzc 15423 1 ;
List_Generic : C 86/12/23 17:32:17 Gzc 39080 1 ;
Sample_Input : 86/11/07 17:18:54 *System 39 1 ;
Srs : 86/11/07 17:18:55 =*System 4552 1 R

The command:
compilation.dependents

{unit=>"complex", transitive=>false,
response=>"<PROF ILE>"};

produces the following display in the current output window, indicating that the
spec of package Complex has four dependents and the body has none:

86/12/23 17:36:30 ::: [Compilation.Dependents ("complex", FALSE, PERSEVERE);].
IUSERS .GZC.TEST_WORLD .L.IFECYCLE_EXAMPLE .COMPLEX'V(13) has the following
dependents:

1USERS .GZC.TEST_WORLD .L {FECYCLE_EXAMPLE . COMPLEX'BODY'V{12)

TUSERS .GZC.TEST_WORLD .L IFECYCLE_EXAMPLE . COMPLEX_UTILITIES'V(6)

IUSERS .GZC.TEST_WORLD .L IFECYCLE_EXAMPLE . COMPLEX_UTILITIES’BODY’V(4)
IUSERS .GZC.TEST_WORLD.L IFECYCLE_EXAMPLE .DISPLAY_COMPLEX_SUMS 'BODY'V(4)

86/12/23 17:36:32 --- 'USERS.GZC.TEST_WORLD.L IFECYCLE_EXAMPLE.
86/12/23 17:36:32 ... COMPLEX'BODY’V(12) bhas no dependents.
86/12/23 17:36:32 ::: [End of Compilation.Dependents Command].

LM-146 7/1/87 RAT'ONAL

procedure Dependents
package !Commands.Compilation

References

subtype Unit_Name

PATIONAL 7/1/87 LM-147

procedure Destroy
package !Commands.Compilation

procedure Destroy

procedure Destroy (Unit : Unit_Name 1= "<SELECTION>";
Threshold : Natural = 1;
Limit : Change_Limit := "<WORLDS>";
Response : String = "<PROFILE>");
Description

Destroys the named object and any subordinate units and demotes dependent units.

This procedure deletes and then expunges the named unit. Unlike the Delete pro-
cedure, this procedure is not reversible. Once a unit is destroyed, it cannot be
recovered.

If the deletion of the unit would orphan any subordinate units, those units are also
destroyed. If the deletion of the unit or any subordinate unit would obsolesce units
outside the named limit, the operation fails.

The procedure provides a threshold number of dependent units to destroy. If the
number of the units to destroy is greater than the threshold, the procedure abandons
all destructions. The procedure can be executed again with a new threshold.

Parameters

Unit : Unit_Name := "<SELECTION>";

Specifies the name of the unit to be destroyed. Special names, wildcards, context
prefixes, indirect files, and attributes are allowed in this name. The default is the
current selection.

Threshold : Natural := 1;

Specifies the number of units per specified unit that can be destroyed before the
procedure fails. The default permits just the named unit, but no dependents or
subordinates, to be destroyed.

Limit : Change_bimit := "<WORLDS>";

Specifies which units can be demoted as a side effect of the destroy operation. The
default allows units in the same world as the units being destroyed to be demoted.

LM-148 1/1/87 QAT'ONAL

procedure Destroy
package !Commands.Compilation

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job

response profile.

Errors

Common errors include specification of a Limit parameter that does not include all
units that must be demoted and incorrect specification of the Threshold parameter.

A Lock_Error can be caused by editing a unit that needs to be destroyed.

Access errors can be caused by the job not having the proper class of access for a
unit.

Example

Consider the following world:

IUsers.Gzc.Test_World.Lifecycle Example : Library (World);

Complex Ada (Pack_Spec);
Complex : Ada (Pack_Body};
Complex_Utilities : Ada (Pack_Spec});
Complex_Utilities : Ada (Pack_Body);

Display_Complex_Sums : Ada {Proc_Spec);
Display_Complex_Sums : Ada (Proc_Body);

List_Generic : Ada (Gen_Pack);
List_Generic : Ada (Pack_Body);
Sample_Input : File;
Srs : File;

The command:

compilation.destroy
(unit=>"complex’'spec”, threshold=>1,
1im1t=>"<WORLDS>",
response=>"<PROF ILE>"};

destroys both the spec and the body of package Complex and demotes their depen-
dents. This destruction is irreversible. It also demotes any dependent objects.

RATIONAL 717 LM-149

procedure Destroy
package !Commands.Compilation

References
subtype Change_Limit
subtype Unit_Name

LM-150 e RATIONAL

renamed procedure Make
package !Commands.Compilation

renamed procedure Make

procedure Make (Unit : Unit_Name = "<IMAGE>";

Scope : Promote_Scope := Compilation.All_Parts;

Goal : Unit_State = Compilation.Coded;

Limit : Change_Limit = "<WORLDS>";

Effort_Only : Boolean = False;

Response : String = "<PROFILE>") renames Promote;
Description

Promotes the specified units to the specified goal state.

By default, this procedure promotes the units, their subordinates, and the specs,
bodies, and subunits of all units they depend on to the coded state. This procedure
is typically used when you want to complete the compilation necessary to get the
specified interface ready to execute. If you are just checking a unit for semantic
consistency and do not need to execute, use the Promote procedure to minimize

time and effort.

The procedure is applied recursively to the named unit and any other units in the
compilation closure of the unit as specified by the Scope parameter. The procedure
promotes the units to the goal state if possible. (A unit is not promoted if it is not
a legal Ada unit.) If any unit is already at or above the goal state, the procedure
has no effect on that unit. The correct order of compilation is determined by the
Make procedure.

The promotion request fails if any units outside the specified limit must be pro-
moted. Conversely, all units promoted by this procedure are within the specified
limit.

The procedure can also estimate the amount of work necessary to accomplish a
specified promotion. The Effort_Only parameter can specify that the procedure
only estimate the amount of work in doing a specified promotion without actually
promoting any units.

Parameters

Unit : Unit_Name := "<IMAGE>";

Specifies the name of the unit to be promoted. Special names, wildcards, context
prefixes, indirect files, activities, and attributes are allowed in this name. The
default is the current image.

RATIONAL 7/1/87 LM-151

renamed procedure Make
package !Commands.Compilation

Scope : Promote_Scope := Compilation.All_Parts;

Specifies the scope of the promotion. The default is to promote the visible part and
the body of the named units and their subunits and recursively all units in with
clauses and their transitive closure.

Goal : Unit_State := Compilation.Coded;

Specifies the desired state of the units after the promotion. The default is to promote
to the coded state.

Limit : Change_Limit := "<WORLDS>";

Specifies the units that may be promoted. The default allows units in the same
worlds as the specified units to be promoted.

Effort_Only : Boolean := False;

Specifies whether to check for the effort required to do the promotion. The effort
rating reported is a relative measure of the amount of work involved. The default
is to check and to actually do the promotion.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

Errors

Common errors include specification of a Limit parameter that does not include all
units that must be promoted.

A Lock_Error can be caused by editing a unit that needs to be promoted.

Access errors can be caused by the job not having the proper class of access for an
object.

LM-152 7/1/87 RATIONAL

renamed procedure Make
package !Commands.Compilation

Example

Consider the following world and the state of the objects within that world:

IUsers.Gzc.Test_World.Lifecycle_Example : Vol 4 1;
Complex : C 86/12/23 15:41:23 Gzc 8643 1 ;
Complex : C 86/12/23 15:41:19 Gzc 18383 1 ;
Complex_Utilities S 86/12/23 15:41:22 Gzc 15919 1 ;
Complex_Utilities S 86/12/23 15:41:20 Gzc 26192 1 ;
Display_Complex_Sums : S 86/12/23 15:41:23 Gzc 7166 1 ;
Display_Complex_Sums : S 86/12/23 15:41:21 Gzc 23587 1 ;
List_Generic : S 86/12/23 15:41:25 Gze 15420 1 ;
List_Generic : S 86/12/23 15:41:25 Gzc 39080 1 ;

The command:

compllation.make
(un1t=>"lusers.gzc.test_world.lifecycle_example”,
scope=>compilation.all_parts,
goal=>compilation.coded, limit=>"<WORLDS>",
effort_only=>false, response=>"<PROFILE>"};

causes all of the units in that library to be promoted to the coded state.

References

subtype Change_Limit
procedure Promote
subtype Unit_Name
type Unit_State

RATIONAL 7/1/87 LM-153

subtype Name
package !Commands.Compilation

subtype Name

subtype Name is String;

Description
Defines the form of names used as parameters in procedures in this package.

These names can use the special names, wildcards, context prefixes, indirect files,
and attributes that are discussed in the Key Concepts in this book.

LM-154 e RATIONAL

procedure Parse
package !Commands.Compilation

procedure Parse

procedure Parse (File_Name : Name = "<REGION>";
Directory : Name = "3,
List . Boolean := False;
Source_Options : String := "";
Response : String = "<PROFILE>");
Description

Parses the Ada source in the specified files and creates corresponding Ada units in
the specified directory.

This procedure is most useful when transporting Ada source code from another host
to the Rational Environment. In that case, source code is loaded into text files in
a directory in the Environment. These files are then transformed into parsed Ada
units using this procedure.

The procedure scans the contents of the named file, searching for compilation units.
The procedure determines the correct parsing order of those units, builds the unit
declarations in the context, and then parses the subunits.

Parameters

File_Name : Name := "<REGION>";

Specifies the name of the file that contains the unit or units to be parsed. Special
names, wildcards, context prefixes, indirect files, and attributes are allowed in this
name. The default is the selected region.

Directory : Name := "§";

Specifies the name of the directory or world in which to create the parsed units.
Special names, wildcards, context prefixes, indirect files, and attributes are allowed
in this name. This name must resolve to one library object; it mus. be unique. The
default is the current directory.

List : Boolean := False;

Specifies whether to list each unit, as parsed, in the log file. The default is not to
list each unit.

RAT'ONAL 7/1/87 LM-155

procedure Parse
package !Commands.Compilation

Source_Options : String := ;

Specifies a series of options for the compilation. This is reserved for future enhance-
ments.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

Errors

If the names of the source text files are identical to the name of the Ada unit they
contain, an error will occur. Two objects with the same name cannot exist in the
same library. A suggested strategy is to keep text files in one directory and compile
Ada units into another library.

Example

Consider the following world:

'Users.Gzc.Test_World.Lifecycle_Example : Library (World);
Complex_Utilities : Ada (Pack _Spec);
Complex_Utilities : Ada (Pack_Body);
Display_Complex_Sums : Ada (Proc_Spec);
Display_Complex_Sums : Ada (Proc_Body};

List_Generic : Ada (Gen_Pack);
List_Generic . Ada (Pack_Body);
Sample_Input : File;

Srs : File;

File_l : File (Text);

The command:
compilation.parse ("file_1");

takes a text file called File_1 containing the package spec for an Ada unit called
Complex and creates a package spec called Complex.

References

subtype Name

LM-156 7/1/87 'QATIONAL

procedure Promote
package !Commands.Compilation

procedure Promote

procedure Promote (Unit : Unit_Name = "<IMAGE>";
Scope : Promote_Scope := Compilation.Subunits_Too;
Goal : Unit_State = Compilation.Installed;
Limit : Change_Limit = "<WORLDS>";
Effort_Only : Boolean = False;
Response : String = "<PROFILE>"};
Description

Promotes the specified unit in the specified scope to the specified goal state.

This procedure is applied recursively to the named unit and to any other units in the
specified scope. A unit is not promoted if it is not a legal Ada unit. The procedure
promotes the units to the goal state if possible. If any unit is already at or above
the goal state, the procedure has no effect on that unit. If you are just checking
a unit for semantic consistency and do not need to execute, use this procedure. If
you want to execute, use the Make renamed procedure.

The promotion request fails if any units outside the specified limit must be pro-
moted. Conversely, all units promoted by this procedure are within the specified

limit.

The procedure can also estimate the amount of work necessary to accomplish a
specified promotion. The Effort_Only parameter can specify that the procedure
only estimate the amount of work in doing a specified promotion without actually
promoting any units.

The procedure promotes units individually. Each promotion of a unit is a separate
action. If the unit is to be promoted by more than one state (from source to coded),
the promotion from one state to the next is done as a separate action (source to
installed, then installed to coded). If the promotion of a particular subunit fails
because of semantic errors or other reasons, the promotion of any other units may
not be affected, depending on the error reaction specified.

The procedure does not lock any units before promoting them. Thus, if one job is
promoting some units and another job is demoting some of the same units, one or
the other job will have errors. If two jobs are promoting the same units, the first
job may fail while the second job succeeds.

By default, this procedure will promote the named units and any of their subunits
and units they with to the installed state. If the named unit is a visible part, the
corresponding body and the bodies of any subunits are not promoted. If the named
unit is a body, the corresponding visible part is promoted, and the bodies of any of
its subunits are promoted. If the named unit has other units in its with clause, the
visible parts of those other units are promoted also.

I?AT'ONAL 7/1/87 LM-157

procedure Promote
package !Commands.Compilation

The Make renamed procedure renames this procedure but uses different default
parameter values.

Parameters

Unit : Unit_Name := "<IMAGE>";

Specifies the name of the unit to be promoted. Special names, wildcards, indirect
files, context prefixes, indirect files, and attributes are allowed in this name. The
default is the current image if there is no selection. Indirect filenames must be
prefaced by an underscore character.

Scope : Promote_Scope := Compilation.Subunits_Too;

Specifies the scope of the promotion. See “Description,” above, for further infor-
mation.

Goal : Unit_State := Compilation.lInstalled;

Specifies the desired state of the units after the promotion. The default is to promote
to the installed state.

Limit : Change_Limit := "<UWORLDS>";

Specifies the units that can be promoted. The default allows units in the same
worlds as the specified units to be promoted.

Effort_Only : Boolean := False;

Specifies whether to check for the effort required to do the promotion. The effort
rating reported is a relative measure of the amount of work involved. The default
is to check and to actually do the promotion.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and
switches to use during the execution of this command. The default is the job
response profile.

Errors

Common errors include specification of a Limit parameter that does not include all
units that must be promoted.

A Lock_Error can be caused by editing a unit that needs to be promoted.

Access errors can be caused by the job not having the proper class of access for an
object.

LM-158 7/1/87 RATIONAL

procedure Promote
package !Commands.Compilation

Example

Consider the following world and the state of the Ada units within that world:

IUsers.Gzc.Lifecycle_Example : Vol 4 1;

Complex : S 86/12/23 17:40:25 Gzc 9643 1 ;
Complex : S 86/12/23 17:40:21 Gzc 19383 1 ;
Complex_Utilities S 86/12/23 17:40:24 Gzc 153919 1 ;
Complex_Utilities S 86/12/23 17:40:22 Gzc 26192 1 ;
Display_Complex_Sums : S 86/12/23 17:40:25 Gzc 7166 1 ;
Display_Complex_Sums : S 86/12/23 17:40:23 Gzc 23587 1 ;
List_Generic : S 86/12/23 17:40:27 Gzc 15423 1 ;
List_Generic : S 86/12/23 17:40:27 Gzc 39088 1 ;
Sample_Input : 86/11/07 17:18:54 *System 39 1 ;
Srs : 86/11/@07 17:18:55 *System 4552 1 ;

The command:

compilation.promote
{unit=>"lusers.gzc.lifecycle_example”,
scope=>compilation.subunits_too,
goal=>compilation.installed, limit=>"<worlds>",
effort_only=>false, response=>"<PROFILE>"};

causes all of the units in that world to be promoted to the installed state.

References

subtype Change_Limit
procedure Make
subtype Name

type Unit_State

RATIONAL /e LM-159

type Promote_Scope
package !Commands.Compilation

type Promote_Scope

type Promote_Scope 1s (Single_uUnit, Unit_Only, Subunits_Too,
All_Parts, Load_Views);

Description

Defines the scope of units to be promoted, besides the named units, in a promote
operation.

The units in the Promote_Scope type will be promoted even if they do not need to
be promoted to promote the named units. The exception to this is the Single_Unit
enumeration, which promotes only the named unit.

Enumerations

All_Parts

Specifies that all parts of the named unit and any subunits be promoted. I the
named unit is a visible part, both the visible part and the body are promoted. If
the named unit is a body, it and the corresponding visible part are promoted. In
all cases, all subunits are promoted as well. If the unit has other units in its with
clause, the visible parts, bodies, and subunits of those other units are promoted

Load_Vieuws

Specifies that load views associated with each named spec view be promoted. In ali
cases, all load view units referenced by the activity for the spec view are promoted.
If the load view units have other units in their with clauses, the visible parts, bodies,
and subunits of those other units are promoted also.

Single_Unit

Specifies that the named unit only be promoted. Any subunits in this unit are
not promoted. If the unit has other units in its wsth clause, those units are not
promoted. If the named unit is a visible part, the body is not promoted. If the
named unit is a body, the corresponding visible part is not promoted. Use this if
you know that all of the withed units are installed.

LM-160 7/1/87 RATIONAL

type Promote_Scope
package !Commands.Compilation

Subunits_Too

Specifies that the named unit and any of its subunits and units they with be pro-
moted. If the named unit is a visible part, the corresponding body and the bodies
of any subunits are not promoted. If the named unit is a body, the corresponding
visible part is promoted, and the bodies of any of its subunits are promoted. If the
named unit has other units in its with clause, the visible parts of those other units
are promoted also.

Unit_Only

Specifies that the named unit and any units it withs be promoted. Any subunits
in this unit are not promoted. If the unit has other units in its with clause, the
visible part of those units are promoted. Both visible part and body, if applicable,
are promoted.

References
procedure Make

procedure Promote

IQATIONAL 7/1/87 LM-161

constant Same_Directories
package !Commands.Compilatior

constant Same_Directories

Same_Directories : constant Change_Limit := "<DIRECTORIES>";

Description

Defines a value of the Change_Limit type that indicates that units in the same set
of directories may change when operations in this package are performed.

This constant is retained for compatibility with previous releases. The Same-
—Directories constant is equivalent to the special value "<DIRECTORIES>".

References

constant All_Worlds
subtype Change_Limit
constant Current_Directory
constant Same_World

constant Same_Worlds

LM-162 7/1/87 PATIONAL

constant Same..World
package {Commands.Compilation

constant Same_World

Same_World : constant Change_Limit := Same_lWorlds;

Description

Defines a value of the Change_Limit type that indicates that units in any world
may change when the operations in this package are performed.

This constant is retained for compatibility with previous releases. The Same_World
constant is equivalent to the speciul value "<WORLDS>".

References

constant All_Worlds
subtype Change_Limit
constant Current_Directory
constant Same_Directories

constant Same..Worlds

RATIONAL 71/er LM-163

constant Same_Worlds
package !Commands.Compilation

constant Same_Worlds

Same_Worlds : constant Change_Limit := "<WORLDS>";

Description

Defines a value of the Change_Limit type that indicates that units in any world
may change when the operations in this package are performed.

This constant is retained for compatibility with previous releases. The Same.. Worlds
constant is equivalent to the special value "<WORLDS>".

References

constant All_Worlds
subtype Change_Limit
constant Current_Directory
constant Same_Directories

constant Same_World

LM-164 e RATIONAL

subtype Unit_Name
package !Commands.Compilation

subtype Unit_Name

subtype Unit_Name 1s String;

Description

Defines the name for a unit or set of units to be supplied to a compilation command.

A parameter of the Unit_Name type may designate a set of Ada units, worlds,
directories, or activities. If a world or directory is specified, all Ada units contained
by that world or directory are operated on. Using an activity file as an indirect file
allows easy specification of the views specified by that activity.

A unit can be put in archived state to save space. Space used by an archived unit
.8 about 10% of that required by a coded unit.

RATIONAL 717 LM-165

type Unit_State
package !Commands.Compilation

type Unit_State

type Unit_State i1s (Archived, Source, Installed, Coded);

Description
Defines the compilation states in which an Ada unit can be.

This type defines four states. These states are ordered—that is, a unit must progress
from source through installed to coded before it can execute. The nondefault ver-
sions of an Ada unit are saved in archived state to save space. These files must be
promoted to source before they can be edited.

A unit can be put in archived state to save space. The space used by an archived
unit is about 10% of that required by a coded unit.

Enumerations

Archived

Defines a unit state. Units in the archived state are much more compact in size than
units in other states. A unit in this state cannot be edited. It must be promoted
from archived to source state first. Units in this state also do not have the Definition
capability and object-oriented highlighting available to units in the source, installed,
and coded states.

Coded
Defines a unit state. A unit in this state is completely compiled; it is syntactically

and semantically correct and has machine code generated for it. The unit is known
to the Environment and may have semantic dependencies.

Installed

Defines a unit state. A unit in this state is syntactically and semantically correct.
Such a unit can be referenced by any other unit according to the Ada visibility
rules. The unit is known to the Environment and is controlled by the Environment
to prevent deletions or changes that would alter the semantic content of the unit or
units that reference it.

LM-166 7/1/87 RAT'ONAL

type Unit_State
package !Commands.Compilation

Source

Defines a unit state. This is the state in which all units are created. A unit in this
state may or may not be semantically or syntactically correct. Procedures exist in
the Environment to help make a unit syntactically and semantically correct. The
!Commands.Common.Format procedure provides syntactic analysis and completion.
The !Commands.Common.Semanticize procedure provides semantic analysis.

A unit in source state is not semantically known to other units. This means that
none of the types, procedures, and functions that are exported from this unit can
be used or called by any other installed unit. No other unit can check its semantic
validity against this interface.

end Compilation;

RATIONAL 7/1/87 LM-167

RATIONAL

package File_Utilities

Package File_Utilities provides a set of subprograms that allow any object that can
be opened for text I/O (for example, Ada units and files) fo be compared, merged,

and searched.

This package also provides pattern matching, which is useful in comparing a file
against a template file. For example, a user has written a program that should
produce output of the format: the letter A or B, followed by a two-digit integer.
The user could create a pattern file containing the following pattern:

[AB][©123456789][0123456783]

The user could then use the Compare procedure or the Equal function to compare
the output file to the pattern file.

Patterns can be specified in the Pattern parameter of the Find procedure and the
Found function as well.

The Compare procedure and the Equal function have an Options parameter that
provides additional flexibility in performing file comparisons. This capability is
useful in automating the comparison of software test results against desired results
and in software documentation.

Special Names

Many of the commands in this package have spectal names as default values to
parameters requiring names. Anywhere that a string name can be used, a special
name can be used. Special names allow you to designate without supplying a
pathname. They take the form “<specsal name>”, where special name specifies
text, an object, a region, or an activity, as described below.

"<SELECTION>" References the object associated with the highlighted area, if
the cursor is located in a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether

or not there is a highlighted area in the window.

RATIONAL /17 LM-169

package !Commands.File_Utilities

"<IMAGE>" References the highlighted object, if the cursor is in a high-
lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"CTEXT>" - References the object named in the highlighted text in the
image in the window.
"<ACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, the special name references
that activity rather than the default activity.

You can replace special names with other types of naming expressions, as accepted
by that parameter.

LM-170 7/1/87 RATIONAL

procedure Append
package !Commands.File_Utilities

procedure Append

nan

procedure Append (Source : Name : ;
"<SELECTION>");

Target : Name :

Description
Appends the source file to the target file.

This procedure copies the contents of the source file or files onto the end of the
original target file.

Parameters

Source : Name := "";

Specifies the file or files to append to the target file. The source file is not changed.
This parameter can use wildcards and special names to specify a set of files. The
default null string resolves to the current library image, so it should be replaced.

Target : Name := "<SELECTION>";

Specifies the file to which the source file is to be appended. This parameter can use
substitution characters and special names. If the file does not exist, it is created.
The default is the currently selected object.

Errors
Error messages are sent to the log file.

Common errors include specification of a file that does not exist.

Example
The command:
file_utilities.append ("file_1","file_2");

takes the contents of File_1 and appends them to the end of File_2. The original
contents of File_2 remain at the beginning of the file, with the contents of File_2
appended to the end. The contents of File_1 are not modified.

RATIONAL 7/1/87 LM-171

procedure Compare
package !Commands.File_Utilities

procedure Compare

procedure Compare (File_l : Name = "<REGION>";
File_2 : Name = "<IMAGE>";
Subob jects : Boolean := False);
Ignore_Case : Boolean := False);
Options : String = "");
Description

Finds the first difference between two objects.

This procedure displays a message in the current output window when the first
difference between the two files is discovered. Comparison of the two files then
terminates. If the two files are identical, a message to that effect is displayed in the
current output window.

The Options parameter permits pattern matching in File_2. See the introduction
to this package for information on pattern matching. Certain characters in the file
are interpreted as wildcards if the “File_2_Has_Wildcards” option is used. These
special wildcard characters are defined as follows:

7 Matches any single character.

% Matches any single character that is legal in an Ada identifier.

$ Matches the following characters, frequently used as Ada delimiters: & * () *
+,-./:5<=>|

When not at the end of the pattern, causes the character immediately following
this wildcard to be interpreted as a normal (not a wildcard) character.

{ When at the beginning of the pattern, requires the pattern to match the begin-
ning of the line.

} When at the end of the pattern, requires the pattern to match the end of the
line.

-~ Matches anything except the character following this wildcard. If used inside
brackets ([]), this wildcard must be the first character in the list.

* Matches zero or more occurrences of the previous character or set of characters.

[[Used around a set of characters, matches any one of the enclosed charac-
ters. Each character to be compared must be specified explicitly (for example,
[ABCDE]) or by a range (for example, A-Z).

IM172 e RATIONAL

procedure Compare
package !Commands.File_Utilities

Parameters

File_l : Name := "<REGION>";

Specifies the first file to be compared. This parameter can use special names and
wildcards to specify a set of files. The default is the currently selected region.

File_2 : Name := "<IMAGE>";

Specifies the second file to be compared. In effect, this parameter acts as a template
to compare File_1 against when using the “File_2_Has_Wildcards” option. This
parameter can use special names. The default is the current image. The wildcards
in File_2 will be interpreted as wildcards if the “File_2_Has_Wildcards” option is
used.

Subob jects : Boolean := False;

Specifies whether to include any subobjects of the two named files or objects in the
comparison. The default is not to compare any subobjects.

Ignore_Case : Boolean := False;

Specifies whether to do case comparison in the two files. The default is false, in
which case the words “Package” and “package” would be considered different. By
changing the default to true, they would not be considered different.

Options : String := "";
Specifies the options to be used.

The “File—_2_Has_Wildcards” option allows pattern matching. File_2 may contain
the wildcards described in “Description,” above.

The “Ignore_Blank_Lines” option allows matching even though one file may contain
blank lines and the other does not.

These two options cannot be used together. The default null string specifies that
no options will be used.

Errors
Error messages appear in the log file.

Common errors include specification of a file that does not exist.

QAT'ONAL 7/1/87 LM-173

procedure Compare
package !Commands.File_Utilities

Example

The command:

file_utilities.compare ("file_l1","file_2");

produces the following output:

IUSERS.RUB % FILE_UTILITIES.COMPARE STARTED 99:10:27 PM

IUSERS.RUB.FILE_1 and 'USERS.RUB.FILE_2 differ at line 9, byte 349.

References

procedure Difference

LM-174 e RATIONAL

constant Current_Output
package !Commands.File_Utilities

constant Current_Output

Current_Output : constant Name := "";

Description
Defines a constant to represent the current output file.

Typically, this file is an output window to which all output from a variety of com-
mands in the Environment is appended.

RATIONAL 7/1/87 LM-175

procedure Difference
package !Commands.File_Utilities

procedure Difference

procedure Difference (File_l : Name = "<REGION>";
File_2 : Name = "<IMAGE>";
Result : Name = "";
Compressed_Output : Boolean := False;
Subob jects : Boolean := False);
Description

Reports differences between two versions of an object.

If the Compressed_Output parameter is true, the procedure omits lines that are
the same in both files. Noncompressed output shows every line of the two files. By
default, the output is displayed to Current_Output. The output can be redirected
to any file.

If the Compressed_Output parameter is false (the default), every line from each file
appears in the output. Each line of the output file has a character in column 1 that
indicates the origin of the line. A line that is identical in both files has a space in
column 1. A line that appears only in the first file has a 1 in column 1. Likewise, a
file that appears only in the second file has a 2 in column 1. For legibility, all lines
have a space in column 2 regardless of origin. The line from the input file begins in
column 3 of the output file.

The lines appear in the output file in the same order in which they appear in the
input files. Thus, if every line in the output file that begins with a 1 (or a 2) is
deleted, and then the first two columns of every line are deleted, the result is a copy
of the second (or first) input file. The Strip procedure defined in this package is
useful for these kinds of manipulations.

If the Compressed-Output parameter is true, lines common to both files are omitted
from the output file. In this case, the output file contains a list of instructions for
converting the first file to the second file. Each instruction begins with an asterisk
in column 1. There are three kinds of instructions:

o Insertions specify a line number in the first file and a set of lines from the second
file to be inserted after that line in the first file.

o Deletions specify a series of line numbers in the first file to be deleted.

o Changes specify a series of line numbers and a set of lines from the first file to be
changed to a set of lines from the second file. The two sets of lines are separated
by dashes.

The line numbers used when the Compressed_Output parameter is true refer to
the original files. They do not reflect changes in numbering that may be caused by
preceding instructions.

LM-176 7/1/87 RATIONAL

procedure Difference
package !'Commands.File_Utilities

Parameters

File_l : Name := "<REGION>";

Specifies the name of the first file to be compared. This parameter can use a special
name or it can use wildcards to specify a set of files. The default is the currently
selected region.

File_2 : Name := "<IMAGE>";

Specifies the name of the second file to be compared. This parameter can use a
special name or substitution characters. The default is the current image.

Result : Name := ""

Specifies the file to which to direct the output. The default is to write output to
Current_Output. If the Result parameter does not specify Current_Output, error
messages are not included. If there are errors, the contents of the Result file may
be misleading. To redirect both error messages and normal output, let the Result
parameter default to Current_Output and use the !Commands.Log.Set_Output pro-
cedure to redirect both the log file and Current_Output before calling the Difference
procedure.

Compressed_Output : Boolean := False;

Specifies the use of the compressed form of output. The default is not to use the
compressed form.

Subob jects : Boolean := False;

Specifies whether to include any subobjects of the two named objects in the com-
parison. The default is not to compare any subobjects.

Errors

Error messages appear in the log file.

Common errors include specification of a file that does not exist.

If the Result parameter does not specify Current_-Output, error messages will be

separate from the output. If error messages are produced, the information in the
output file specified by the Result parameter may be misleading.

RATIONAL 71/er LM-177

procedure Difference
package !Commands.File_Utilities

Example 1

The following is an example of uncompressed output:

This line is common to both files.

1 This line appeared only in the first file.

2 This line appeared only in the second file.
This line appears in both.
All lines from both files appear in the output
in one of these three forms.

Example 2

The following is an example of compressed output:

Insert after 12
The lines that are inserted
come after the instruction.

™M *

* Delete 118 .. 118
1 The lines that are deleted
1 come after the instruction.

* Change 250 .. 251
1 Both the original lines and
1 the new lines are shown

2 separated by dashes.

References
procedure Compare
function Equal

SIM, procedure Log.Set_Output

LM-178 e RATIONAL

procedure Dump
package {Commands.File_Utilities

procedure Dump

procedure Dump (File : Name 1= "<SELECTION>";
Page_Number : Natural = 9;
Word_Number : Natural = 0;
Word_Count : Positive := 64};

Description
Displays a hexadecimal dump of the named or selected file.

This procedure displays the specified number of 128-bit words beginning at the
specified word number (0 through 3F hexadecimal per page) in the specified page
of the file. Each word is displayed as eight 16-bit sections. The address of the word
is displayed to the left of the word. The ASCII equivalent of that word is displayed
in the righthand column. Nonprintable characters are displayed as vertical bars ().

Parameters

File : Name := "<SELECTION>";

Specifies the file to be displayed. This parameter can use a special name. The
default is the current selection. If the name specifies an object other than a file, an
€rror OcCurs.

Page_Number : Natural := 9;

Specifies the first page to be displayed. Pages are numbered from 0 and each page
consists of 64 (40 hex) 128-bit words. The default is page O (the beginning of the
file).

Word_Number : Natural := 9;
Specifies the first word to be displayed. The default is word 0 (the first word of the
page).

Word_Count : Positive := 64;
Specifies the number of words to be displayed. The default is 64 words or one page.

RAT'ONAL 7/1/87 LM-179

procedure Dump
package !Commands.File_Utilities

Errors

Errors can occur if the file does not end on a byte boundary. An error occurs only
when an attempt is made to display that last partial byte.

Error messages are sent to the log file.

Example

The command:

file_utilities.dump("$attributes”,1,16#2b#,4);

produces the following display in the current output window:

IUSERS.RJB ¥ FILE_UTILITIES.DUMP STARTED ©1:21:18 PM
Page 1
2B0 2020 2@3A 2054 5255 45QA 5245 434F 5645 : TRUE |RECOVE

2C0 5259 S5F4C 4F43 414C 4954 5920 2020 203A RY_LOCALITY
2D0 2020 3132 ©OA44 4546 4155 4C54 S5F45 4C49 12| DEFAULT_ELI
2E@ 5349 4F4E 2020 2020 2020 3A20 5452 5545 SION | TRUE

LM-180 7/1/87 EAT'ONAL

function Equal
package !Commands.File_Utilities

function Equal

function Equal (File_l : Name = "<REGION>";

File_2 : Name = "<IMAGE>";

Subob jects : Boolean := False;

lgnore_Case : Boolean := False;

Options : String := "") return Boolean;
Description

Indicates whether the two files are identical.

This function compares the two files and determines whether they are textually
equivalent.

The Options parameter permits pattern matching in File_2. (See the introduction

to this package for further information on pattern matching.) Certain characters in

the file are interpreted as wildcards if the “File_2_Has_Wildcards” option is used.

These special characters are defined as follows:

? Matches any single character.

% Matches any single character that is legal in an Ada identifier.

$ Matches the following characters, frequently used as Ada delimiters: & * () *
+,-:5/<=>|

\ When not at the end of the pattern, causes the character immediately following
this wildcard to be interpreted as a normal (not a wildcard) character.

{ When at the beginning of the pattern, requires the pattern to match the begin-
ning of the line.

} When at the end of the pattern, requires the pattern to match the end of the
line.

~ Matches anything except the character following this wildcard. If used inside
brackets (|[]), this wildcard must be the first character in the list.

* Matches zero or more occurrences of the previous character or set of characters.

[Used around a set of characters, matches any one of the enclosed charac-
ters. Each character to be compared must be specified explicitly (for example,
[ABCDE]) or by a range (for example, [A-Z]).

'QAT'ONAL 7/1/87 LM-181

function Equal
package !Commands.File_Utilities

Parameters

File_l : Name := "<REGION>";

Specifies the first file to compare. This parameter can use a special name or it can
use wildcards to specify a set of files. The default is the currently selected region.

File_ 2 : Name := "<IMAGE>";

Specifies the second file to compare. This parameter can use a special name. The
default is the current image.

Subob jects : Boolean := False;

Specifies whether to include any subobjects of the two named files or objects in the
comparison. The default is not to compare any subobjects.

Ignore_Case : Boolean := False;

Specifies whether to do case comparison in the two files. The default is false, in
which case the words “Package” and “package” would be considered different. By
changing the default to true, they would be considered identical.

Options : String := "";
Specifies the options to be used.

The “File_2_Has_Wildcards” option allows pattern matching. File_2 may contain
the wildcards described in “Description,” above.

The “Ignore_Blank_Lines” option allows matching even though one file may contain
blank lines and the other does not.

These two options cannot be used together. The default null string specifies that
no options will be used.

return Boolean;

Returns true if the two files are identical. If sets of files are specified with wildcards,
then each pair of files must be identical to return true. Otherwise, the function
returns false.

LM-182 7/1/87 BAT'ONAL

function Equal
package {Commands.File_Utilities

Errors
Error messages appear in the log file.

Common errors include specification of a file that does not exist or specification of
an invalid option.

Example

Consider the following sample section of a procedure:

declare
{s_Equal : Boolean := False;
begin
Is_Equal := File_Utilities.Equal
(File_1 => "foo", File_2 => "bar",
Subob jects => False, Ignore_Case => True,
Options => "lIgnore_Blank_Lines");

The Is_Equal variable will be set to true if files Foo and Bar are identical, with the
following two qualifications: case will not be considered as a factor in the match,
and blank lines will be ignored in making the match.

References

procedure Compare

RAT'ONAL 7/1/87 LM-183

procedure Find
package !Commands.File_Utilities

procedure Find

procedure Find (Pattern : String = "M,
File : Name = "<IMAGE>";
Wildcards : Boolean := False;
Ignore_Case : Boolean := True;
Result : Name = "");
Description

Displays each line of the file that contains a match of the pattern.

This procedure searches the specified file for the pattern. (See the introduction to
this package for further information on pattern matching.) The pattern can consist
of any string. Certain characters in the string are interpreted as wildcards if the
Wildcards parameter is true. These special characters are defined as follows:

?
%
$

Matches any single character.

Matches any single character that is legal in an Ada identifier.

Matches the following characters, frequently used as Ada delimiters: & * () *
+,-.1;<=>

When not at the end of the pattern, causes the character immediately following
this wildcard to be interpreted as a normal (not a wildcard) character.

When at the beginning of the pattern, requires the pattern to match the begin-
ning of the line.

When at the end of the pattern, requires the pattern to match the end of the
line.

Matches anything except the character following this wildcard. If used inside
brackets ({]), this wildcard must be the first character in the list.

Matches zero or more occurrences of the previous character or set of characters.

Used around a set of characters, matches any one of the enclosed charac-
ters. Each character to be compared must be specified explicitly (for example,
[ABCDE]}) or by a range (for example, [A-Z]).

Parameters

Pattern : String := ""
Specifies the pattern for which to search.

LM-184 7/1/87 RAT'ONAL

procedure Find
package !Commands.File_Utilities

File : Name := "<IMAGE>";

Specifies the file in which to search for the pattern. This parameter can use a special
name or it can use wildcards to specify a set of files. The default is the current
image.

Wildcards : Boolean := False;

Specifies whether to interpret certain characters in the Pattern parameter as wild-
card characters. The default is not to interpret those characters as wildcard char-

acters.

lgnore_Case : Boolean := True;

Specifies whether to do case comparison in the two files. The default is true, in
which case the words “Package” and “package” would be considered identical. By
changing the default to false, they would not be considered identical.

Result : Name := "";

Specifies the file to which to direct the output. The default is to write output to
the Current_Output. If the Result parameter does not specify Current_Output,
error messages are not included. If there are errors, the contents of the Result file
may be misleading. To redirect both error messages and normal output, let the Re-
sult parameter default to Current_Output and use the !Commands.Log.Set_Output
procedure to redirect both the log file and Current_Output before calling the Find
procedure.

Errors
Error messages are sent to the log file.

A common error is incorrect specification of the pattern for which to search.

Example 1

The command:

find ("test”,”"section 3");

finds the string “Section 3” in the specified file, Test.

RATIONAL 717 LM-185

procedure Find
package !Commands.File_Utilities

Example 2

The command:
find ("test","[~abc]",true};

matches anything except the characters A, B, and C in the specified file.

References
function Found

SIM, procedure Log.Set_Output

LM-186 7/1/87 EATIONAL

function Found
package !Commands.File_.Utilities

function Found

function Found (Pattern : String = "™,
File : Name = "<IMAGE>";
Wildcards : Boolean := False;

Ignore_Case : Boolean := True) return Natural;

Description
Finds the number of lines that contain matches of the pattern in the file.

This function searches the specified file for the pattern. The pattern can consist
of any string. (See the introduction to this package for further information on
pattern matching.) Certain characters in the string are interpreted as wildcards if
the Wildcards parameter is true. These special characters are defined as follows:

? Matches any single character.
% Matches any single character that is legal in an Ada identifier.

$ Matches the following characters, frequently used as Ada delimiters: & * () *
+,-.:3/<=>]

\ When not at the end of the pattern, causes the character immediately following
this wildcard to be interpreted as a normal (not a wildcard) character.

{ When at the beginning of the pattern, requires the pattern to match the begin-
ning of the line.

} When at the end of the pattern, requires the pattern to match the end of the
line.

~ Matches anything except the character following this wildcard. If used inside
brackets ([]), this wildcard must be the first character in the list.

* Matches zero or more occurrences of the previous item.

[| Used around a string of characters, matches any one of the enclosed charac-
ters. Each character to be compared must be specified explicitly (for example,
[ABCDE]) or by a range (for example, [A-Z]).

Parameters

"o

Pattern : String := ;
Specifies the pattern for which to search.

R)ATIONAL 1/1/87 LM-187

function Found
package !Commands.File. Utilities

File : Name := "<IMAGE>";

Specifies the file in which to search for the pattern. This parameter can use a special
name or it can use wildcards to specify a set of files. The default is the current
image of the file.

Wildcards : Boolean := False;

Specifies whether to interpret certain characters as wildcard characters. The default
is not to interpret those characters as wildcard characters.

Ignore_Case : Boolean := True;

Specifies whether to do case comparison in the two files. The default is true, in
which case the words “Package” and “package” would be considered identical. By
changing the default to false, they would be considered different.

return Natural;
Returns the number of lines in the file that contain matches of the pattern.

Errors
Error messages are sent to the log file.

A common error is incorrect specification of the pattern.

Example 1

The function:

found ("test","section 3"};
returns the number of lines that contain the string “Section 3” in the specified file.
Example 2

The function:
find ("test","[~abc]", true);

returns the number of lines that contain anything except the characters A, B, and
C.

LM-188 7/1/87 RAT'ONAL

function Found
package !Commands.File_Utilities

References

procedure Find

RATIONAL 7/y/er LM-189

procedure Merge
package !Commands.File_Utilities

procedure Merge

procedure Merge (Original : Name

File_1 : Name ; nes
File_2 : Name := "";
Result : Name = ""};

Description
Merges two variants of the same object into a new object.

Each variant is compared separately with the original file. This procedure then tries
to accommodate all nonconflicting changes in the two variants. If it encounters vari-
ations it cannot reconcile, the procedure indicates this in the Message window and
marks conflicting differences in the same format used by the Difference procedure.

Parameters

Original : Name := "";

Specifies the name of the file against which the two variants are compared. This
parameter can use a special name or it can use wildcards to specify a set of files.

File_l : Name := "";
Specifies the name of the first file to be merged. This parameter can use a special
name or it can use substitution characters or special names to create filenames from
the Original parameter.

File_2 : Name := "";
Specifies the name of the second file fo be merged. This parameter can use a special
name or it can use substitution characters or special names to create filenames from
the Original parameter.
Result : Name := "";

Specifies the file to which to write the result. The default is to write output to the
current output window.

LM-190 e RATIONAL

procedure Merge
package !Commands.File_Utilities

Errors
Error messages are sent to the log file.

The most common error is incorrect specification of a filename.

Example

The command:

file_utilities.merge ("original","foo","bar","result");

merges files Foo and Bar, compares them to file Original, and places the results in
file Result.

References

procedure Strip

EAT‘ONAL 7/1/87 LM-191

subtype Name
package !Commands.File_Utilities

subtype Name

subtuype Name is String;

Description

Defines the names of objects.

This subtype allows the use of special names, wildcards in the Source parameter,
context prefixes, and attributes that are defined for general naming. See the Key
Concepts in this book for more information about wildcards, context prefixes, spe-

cial names, and attributes.

LM-192

e RATIONAL

procedure Strip
package !Commands.File_Utilities

procedure Strip

"<SELECTION>";
"");

procedure Strip (Source : Name :
Target : Name :

Description

Takes the output of the Merge or the Difference procedure and creates a clean file.
This procedure removes the annotations inserted into the source file by the Merge
procedure or the Difference procedure. The Strip procedure is useful for taking
the result of Merge or Difference and removing the variation notations that those
procedures place in column 1 of the result.

The user can edit the output to resolve conflicting changes before stripping.

Parameters

Source : Name := "<SELECTION">;

Specifies the source file to be stripped. This file is not changed. This parameter
can use a special name or it can use wildcards to specify a set of files. The default
is the current selection.

Target : Name := "";

Specifies the file into which the stripped source is to be placed. If this file does
not already exist, it is created. If it does exist, its previous contents are lost. This
parameter can use special names. The default is to display the results in the current
output window.

Errors
Error messages are sent to the log file.

The most common error is incorrect specification of a filename.

Example

The following example illustrates the results of using the Strip procedure on a file
created by the Difference procedure.

RAT'ONAL 7/1/87 LM-193

procedure Strip
package !Commands.File_Utilities

The procedure:

file_utilities.strip (source=>"text3", target=>"text4");

was run on the file Text3 below:

* Object 1: 'USERS.GZC.WM_FILE_UTILITIES.TEXTL
* Object 2: IUSERS.GZC.WM_FILE_UTILITIES.TEXT2
1 This
2 This

This
1 This
2 This

1is
is
18
1s
is

text from file one.

text from file two.

text that 1s in both files.
more text from file one.
more text from file tuwo.

The results placed in file Text4 are:

Object 1:
Object 2:
text from file one.

text from file two.

text that is in both files.
more text from file one.
more text from file two.

This
This
This
This
This

is
is
is
1s
is

IUSERS .GZC .UM_FILE_UTILITIES.TEXT1
TUSERS .GZC . WM_F ILE_UTILITIES .TEXT2

References

procedure Merge

end File_Utilities;

LM-194

e RATIONAL

package Library

Package Library provides commands for manipulating objects in the library system
and providing type-specific editing for library images. As with most commands in
the world !Commands, these commands can be executed from programs but are
tailored for use as interactive commands.

Access Control and Library Commands

Access to worlds, Ada units, and files is controlled by the access lists (ACLs) associ-
ated with each object of these types. Thus, when you perform operations on objects
to which you do not have the required access, error messages will be generated in-
dicating that you do not have the required access class. For further information on
access control, see “Access Control” in the Key Concepts in this book.

Error Response

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and what activities to use.
The response profile "<PROFILE>", which many commands use by default, specifies
the job response profile. If there is no job response profile, the session response
profile ("<SESSION_PROFILE>") is used. If there is no session response profile, the
system’s default profile ("<DEFAULT>") is used. For further information on profiles,
see SJM, package Profile.

Many of the commands in package !Commands.Common also apply to library im-
ages. The applicable procedures from that package are described below.

The common editing operations are discussed more fully in EST, package Common.

Image Structure

Here is an example of the image of a library for the home library for user Lance:

RAT'ONAL 7/1/87 LM-195

package !Commands.Library

IUsers.Lance
A_Generic_instantiation
A_Generic_Package
A_Generic_Package
A_Package
A_Package

.Nested

T
A_Procedure
A_Procedure

._Ada_1_
Control_Link
Current_Release
File_From_Direct_lo
File_From_Text_io
Library_Switches
Nested_Directory
Nested_World

S_1
S_1_Switches
_Ada_7_

By default, this image displays the fully qualified name of the library on the first
line of the image. The rest of the lines of the image are names of the objects in the
library, sorted in alphabetical order.

Note that subunits of Ada units are displayed on the lines following their parents,
prefixed with a period (.). Insertion points or withdrawn items are also listed. Their

names begin with the characters _Ada_.

The banner for library images (it appears under the window displaying the image)
indicates the name of the library, an image type of library, and some additional
information, including:

e Whether the library is frozen.

¢ The name of the target key for the library if it is not R1000.

o Whether it is a world or a directory.

¢ The current elision level (see “Elision and Expansion,” below).

You can change the display to show more detail by using the !Commands.Common-
.Explain command. Displaying this additional detail means that it takes longer to
obtain the images of new libraries or to update changed library images. The default
display for the standard additional information available for the same library is:

IUsers.Lance : Library (Wlorld);

A_Generic_Instantiation : Ada (Pack_Inst);
A_Generic_Package : Ada (Gen_Pack};
A_Generic_Package : Ada (Pack_Body);
A_Package : Ada (Pack_Spec);
A_Package : Ada (Pack_Body);

.Nested : Ada (Pack_Body);

.T : Ada (Task_Body};
A_Procedure : Ada (Proc_Spec});

LM-196 7/1/87 PATIONAL

A_Procedure
._Ada_l1_
Control_Link
Current_Release
File_From_Direct_lo
File_From_Text_lo
Library_Switches
Nested_Directory
Nested_World

package {Commands.Library

: Ada (Proc_Body};

: Ada (Statement);

: Pipe;

: File {Activity);

: File (Binary);

: File (Text);

: File (Switch);

: Library (Directory};
: Library (World);

S_1 : Session;
S_1_Switches : File (Switch);
_Ada_7_ : Ada {Comp_Unit});

The additional information includes the class of the object and the subclass of
the object enclosed in parentheses. The subclass of the object can be helpful in
distinguishing the different kinds of Ada units (specs, bodies, instantiations, and so
on) or different kinds of files (text, binary, activity, and so on). A list of classes and
subclasses is included in the Key Concepts in this book.

Even more miscellaneous information is available by default by using the !Com-
mands.Common.Explain command. This information would be displayed as follows
for the above library:

lUsers.lLance : Vol: 4

(1){

A_Generic_instantiation | 86/06/02 18:57:19 Lance 5251 { 1} Frz
A_Generic_Package | 86/06/02 18:56:24 Lance 2968 | 1}
A_Generic_Package I 86/06/02 18:56:37 Lance 2934 { 1}
A_Package : | 86/06/02 18:51:42 Lance 2885 { 1}
A_Package : } 86/06/@2 18:53:51 Lance 6261 { 1}

.Nested : | 86/06/02 18:52:53 Lance 3@52 { 1}

T : | 86/06/02 18:53:58 Lance 3047 { 1}
A_Procedure : C 86/06/02 18:54:51 Lance 2889 { 1}
A_Procedure : C 86/06/902 19:03:14 Lance 3161 { 1}

._Ada_1_ S 86/06/902 19:@3:15 Lance 665 { 1}
Control_Link : 86/06/02 18:51:93 Lance g {1}
Current_Release 86/06/22 18:58:33 Lance 187 { 1} Frz
File_From_Direct_lo 86/06/02 18:48:28 Lance 17 {1}
File_From_Text_lo 86/06/02 18:48:27 Lance 17 {1}
Library_Switches 86/06/02 19:00:11 Lance 45 {1}
Nested_Directory Vol 4 { 1}
Nested_World Vol 4 { 1}

S_t 86/06/23 18:42:53 =*System g { 1}
S_1_Switches : 86/06/03 18:36:14 Lance 278 { 1}
_Ada_7_ : S 86/06/02 19:901:52 Lance 651 { 1}

This information includes (from left to right):

o The unit state of the object if it is an Ada unit: archived (A), source (S), installed
(I), or coded (C).

¢ The date and time of the last edit of the object.
¢ The user who last edited the object or the volume number if it is a library.

The size of the object in bytes.
The number of versions to be retained for the object (the retention count).

R)ATIONAL 7/1/87

LM-197

N s me W s e me W M ML M e me W W W e s e e

package !Commands.Library

¢ An indication if the object is frozen.

In addition to the detailed information available for each object, information on the
deleted objects and retained versions of objects is available. For example, using the
!Command.Common.Expand command results in the following display:

tUsers.Lance
{A_Deleted_Unit’'V(3}}
A_Generic_Instantiation’V(3)

- A_Generic_Instantiation’V(2)
A_Generic_Package'V(3}

- A_Generic_Package’V(2)

A_Generic_Package'V(3)
- A_Generic_Package’V(2)
A_Package’V(3)
A_Package’'V(2)
A_Package’V(4)

Note that deleted objects are enclosed in braces ({}). Versions of the objects are
names using version qualification. The nondefault versions of objects are prefixed

with the hyphen (-).

All of the above information can be obtained by using the !Commands.Common.Ex-
pand command, the !Commands.Common.Explain command, or session switches.
For more information, see “Elision and Expansion” and “Session Switches,” below.

Key Concepts

Designation

Designation includes both selection and cursor position to indicate an object on
which to operate.

Selections can be made using either the selection commands from package !Com-
mands.Common.Object or the region selection commands from package {Commands-
.Editor.Region, most of which are bound to keys.

Special Names

Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. They take the form “<spectal name>”, where
spectal name specifies the text, object, region, or activity that they represent. A
special name can be used anywhere that a string name can be used.

The following list shows the special names used in the Environment and what they
reference:

LM-198 7/1/87 PATIONAL

package !Commands.Library

"<SELECT ION>" References the object associated with the highlighted area, if
the cursor is located in a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the highlighted object on which the cursor is lo-
cated, whether or not there is a highlighted area in the win-
dow.

"<IMAGE>" References the highlighted object, if the cursor is in a high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"KTEXT>" References the object named in the highlighted text in the
image in the window.
"CACTIVITY>" References the default activity. If an activity is highlighted

and the cursor is in the highlight, this special name references
that activity rather than the default activity.

You can replace special names with other types of naming expressions, as accepted
by that parameter.

Special Values

The operations in this package can use several special values when specifying a
parameter of the Compilation.Change_Limit type. Parameters of the Compilation-
.Change_Limit type control which units an operation can modify, as follows:

"<SUBUNITS>" Modifies only the units named in the operation and their
subunits.

"<UNITS>" Modifies only the units named in the operation.

"<DIRECTORIES>" Modifies only the units in the same set of directories as the
units specified to the operation.

" <WORLDS>" Modifies only the units in the same world as the units speci-
fied to the operation.

"<ALL_WORLDS>" Modifies a unit in any world.

Parameter Placeholders

Many of the commands in this package have, as a default parameter value, a pa-
rameter placeholder of the form “>>name <<”, where name is the type of object
that should replace >>name <<. Parameter placeholders must be replaced by the
name of an object, as specified by their type. Executing a command containing a
parameter placeholder will result in an error.

Elision and Expansion

The two different types of detail that can be expanded and elided are described
below. Displaying additional detail means that it takes longer to obtain the images
of new libraries or to update changed library images.

RATIONAL 7/1/er LM-199

package !Commands.Library

Additional information on the objects, versions, and deleted objects in the library
can be added and removed with the Expand and Elide commands from package
ICommands.Common. Table 7-1 describes the elision levels available. They are
arranged in order with the most expanded level at the top and the most elided level
at the bottom. Note that the default elision level is blank (that is, there is nothing

on the banner).

Table 7-1. Elision Levels

Banner Symbol Descriptions

(versions) All deleted and undeleted versions

versions All undeleted versions

(ib vers) All deleted and undeleted versions; no subunits
lib vers All undeleted versions; no subunits

(units) All deleted and undeleted objects

units All undeleted objects

(blank) Default versions of objects and subunits

(lib units) All deleted and undeleted objects; no subunits
1ib units All undeleted objects; no subunits

Additional information pertaining to specific objects can be obtained by designat-
ing an object or set of objects and executing the !Commands.Common.Explain
command to cycle between the default, standard, and miscellaneous display cate-
gories. The information displayed for each of these categories is determined by the
value of session switches (see “Session Switches,” below, for more information on
gession switches). The first three examples of library images in “Image Structure,”
above, presented the default information made available in the default, standard,
and miscellaneous displays, respectively.

Session Switches

Many session switches determine how library images are displayed. See SIM, Session
Switches, for more information on session switches.

The following session switches pertain to libraries:

Library.Break-Long.Lines(default true)

Controls whether lines that exceed the value of the Library_Line_Length session
switch are broken.

Library-Capitalise (default true)
Determines whether identifiers in library images are capitalized.

LM-200 - RATIONAL

package !Commands.Library

Library-Indentation (default 2)

Determines how much to indent subunit names when displayed in the short form
(that is, without their parent name as prefixes, which is determined by the value of
the Library_Shorten_Names session switch).

Library-Laty-Realignment {default true)

Determines whether the image is realigned when a longer name is added. If true,
the Environment waits for a Redraw request.

Library.Line_Length (default 80)

Determines how long a line can be before it is eligible to be broken.

Library-Mise.Show_Edit_Info (default true)

Shows time and user of last update/edit for the version when displaying miscella-
neous information.

Library -Misc.Show_Frosen (default true)

Shows “Frz” for frozen objects when displaying miscellaneous information.

Library-Misc.Show-Retention (default true)

Shows the retention count (for example, 10) when displaying miscellaneous infor-
mation.

Library -Misc_Show_Size (default true)

Shows the size of the version in bytes when displaying miscellaneous information.

Library-Milse_Show_Subclass (default false)

Shows the object’s subclass when displaying miscellaneous information.

Library-Mise_Show.Unlt_State (default true)

Shows the shortened form of the unit state of Ada objects when displaying miscel-
laneous information.

Library _Mise_Show. Volume (default true)

Shows the volume for libraries when displaying miscellaneous information.

Library-Shorten-Names (default true)

Determines whether the pathname of the parent is displayed for subunits.

R)ATIONAL 7/1/87 LM-201

package !Commands.Library

Library-Shorten-Subclass (default true)
Shows subclasses in shortened form when displaying miscellaneous information.

Library-Shorten-Unit_State (default true)

Shows only the first letter of the unit state when displaying miscellaneous informa-
tion.

Library-Show._Deleted_Objects (default false)

Shows deleted objects (for example, {Foo’Body}) when displaying miscellaneous
information; controlled by elision.

Library.Show._Deleted-Versions (default false)

Shows version numbers and information for all versions of an object when displaying
miscellaneous information; controlled by elision.

Library.Show_Miscellaneous (default false)

Shows miscellaneous information; obtainable by using the !Commands.Common-
.Explain command; controlled by elision.

Library-Show.Standard (default false)

Shows standard information; obtainable by using the !Commands.Common.Explain
command; controlled by elision.

Library-Show.Subunits (default true)

Shows subunits in the initial display when displaying miscellaneous information;
controlled by elision.

Library-Show. Version_-Number (default false)

Shows the version number of the default or maximum version as part of the object
name (for example, Foo’V(4) or Bar’V(2)) when displaying miscellaneous informa-
tion.

Library.Std-Show_Class (default true)

Shows class along with subclass—for example, File (Text) instead of Text when
displaying miscellaneous information.

Library-Std-Show.Subclass (default true)
Shows subclass as part of the standard information.

Library-Std-Show.Unit_State (default false)
Shows unit state for Ada units as part of the standard information display.

LM-202 7/1/87 QAT'ONAL

package {Commands.Library

Library-Uppercase (default false)

Determines whether identifiers in library images are uppercased. Many users prefer
a default library image that appears as follows:

tUsers.Lance : Library (World);
A_Generic_l!nstantiation : | Ada (Pack_Inst);
A_Generic_Package : Ada (Gen_Pack);
A_Generic_Package Ada (Pack_Body);

A_Package Ada (Pack_Spec);
A_Package Ada (Pack_Body);
.Nested Ada (Pack_Body);
T Ada (Task_Body};

!
]
|
|
|
. o
A_Procedure . C Ada (Proc_Spec);
A_Procedure : C Ada (Proc_Body};
S

.Ada_1_ : Ada (Statement);
Control _Link : Pipe;
Current_Release : File (Activity);
File_From_Direct_io : File (Binary);

File_From_Text_lo : File (Text);

To establish this as your default libraries display, modify the following session switch
values:

o Library_Show_Standard := True
o Library_Std_Show_Unit_State := True

This causes the standard additional information to be displayed by default and unit
state information to be added to this standard information.

Commands from package Common

The following commands from package !Commands.Common are supported for edit-
ing libraries:

procedure Common.Abandon

Ends the editing of the specified image. The window is removed from the screen
and from the Window Directory. The Window parameter allows you to specify
which window should be removed. The default is the current image, unless there
is a selection in that image. In that case, the selection is abandoned. Procedure
Common.Complete refreshes the library image in the current window to the current
value of the underlying permanent representation and realigns the columns of the
image.

procedure Common.Complete

Refreshes the library image in the current window to the current value of the un-
derlying permanent representation and realigns the columns of the image.

RATIONAL +/y/er LM-203

package !Commands.Library

procedure Common.Create.Command

Creates a Command window below the current library window if one does not exist;
otherwise, the procedure puts the cursor in the existing Command window below
the current library window. This Command window initially has a use clause:

use Editor, Library, Common;

This use clause provides direct visibility to the declarations in packages Editor,
Library, and Common without requiring qualification for names resolved in the
command.

procedure Common.Definition

Finds the defining occurrence of the named or designated element and brings up
its image in a window on the screen. If a name is provided, it is used. If no name
is provided, a selection with the cursor in it is used if one exists. Otherwise, the
cursor location is used to designate the element. An In_Place parameter specifies
whether the existing window should be used. A Visible parameter specifies whether
to go to the visible part or the body (if possible).

procedure Common.Demote

Demotes the selected Ada unit to the next lower state. The procedure changes
the state of the selected Ada unit, assuming there are no other units dependent
on the unit. If there are dependent units, a list of them is displayed in the menu
window that is brought onto the screen. See EST, Menus, for more information on
the editing operations available on menus.

The specific effect of this procedure depends on the current state of the unit. If the
current state is:

¢ Archived: The procedure has no effect.

¢ Source: The procedure has no effect.

Installed: The unit is demoted to the source state.
Coded: The unit is demoted to the installed state.

procedure Common.Edit

Creates a window in which to edit the named or selected object. An In_Place pa-
rameter specifies whether the existing window should be used. A Visible parameter
specifies whether to bring up the visible part or the body (if possible).

For more information on the actions performed, see EST, procedure Common.Edit,
for the class of object being edited.

procedure Common.Elide

Reduces the level of detail displayed for the designated object(s). See “Elision and
Expansion,” above, for more information.

LM-204 7/1/87 E)ATIONAL

package {Commands.Library

procedure Common.Enclosing

Finds the parent library unit of the current library and displays that parent in a
window. An In_Place parameter specifies whether the existing window should be
used. A Library parameter specifies whether the resulting image should be a library
rather than the parent body when the parent body is not a library.

procedure Common.Expand

Increases the level of detail displayed for the designated object(s). See “Elision and
Expansion,” above, for more information.

procedure Common.Explain

Changes the level of detail displayed for the designated object(s) in the library.
There are three levels:

¢ Default information

e Standard information

¢ Miscellaneous information

This command cycles through the levels, proceeding down the list and cycling back

to the top when at the bottom. See “Elision and Expansion,” above, for more
information.

procedure Common.Format
Refreshes the library image in the current window to the current value of the un-
derlying permanent representation and realigns the columns of the image.

This performs the same operation as the Common.Revert procedure.

procedure Common.Promote

Promotes the selected Ada object to the next higher unit state. The specific effect
of this procedure depends on the current unit state of the unit. If the current state
is:

o Archived: The unit is promoted to the source state.
o Source: The unit is promoted to the installed state.
¢ Installed: The unit is promoted to the coded state.

e Coded: If the unit is selected, execution is attempted. If parameters are required,
the prompt for them appears in a Command window.

procedure Common.Release

Ends the editing of the library image. The library image window is removed from
the screen and from the Window Directory.

RATIONAI_ 7/1/87 LM-205

package !Commands.Library

procedure Common.Revert

Refreshes the library image in the current window to the current value of the un-
derlying permanent representation and realigns the columns of the image.

This performs the same operation as the Common.Format procedure.

procedure Common.Undo

Undeletes the selected object. This procedure is similar to the Library.Undelete
procedure.

procedure Common.Object.Child

Selects the child of the current selection. The procedure selects the line the cursor
is on if there are no selections or if the cursor is not in the selection. If there is a
line selected, the procedure selects the first child of that line. If the selected line
has no child, it selects the next line.

procedure Common.Object.Copy

Copies the selected object into the image where the cursor is located. The procedure
prompts with a Library.Copy command in a Command window below the window
in which the cursor is located. The From parameter has the name of the selected
object as the default value and the To parameter has the current context as the
default value.

procedure Common.Object.Delete

Deletes the selected object. If other elements are dependent on the element because
of semantic references (from installed or coded units), the deletion fails, a menu of
the dependent units is displayed in the menu window, and a Library.Delete com-
mand with the name of the selected unit as the parameter is placed in a Command
window. For more information, see the descripticn of the editing operations on
menus in EST, Menus. Contained units of the selected element are not deleted. The
cursor must be in the selection for the operation to succeed.

procedure Common.Object.First-Child

Selects the first child of the current selection. The procedure selects the line the
cursor is on if there are no selections or if the cursor is not in the selection. If there
is a line selected, the procedure selects the first child of that line. If the selected
line has no child, it selects the next line.

procedure Common.Object.Insert

Creates an insertion point in a library where an Ada compilation unit can be in-
serted.

LM-206 7/1/87 IQAT'ONAL

package !Commands.Library

procedure Common.Object.Last.Child

Selects the last child of the current selection. If there is no selection in the image
or the cursor is not in the selection, this procedure selects the current line. If there
is a selection, the procedure selects the last child of the current selection. If the
selection has no subobjects, it selects the next object.

procedure Common.Object.Move

Moves the selected object into the library in which the cursor is located. The
procedure prompts with a Library.Move command in a Command window below
the library in which the cursor is located. The From parameter specifies, as a
default, the selected object, and the To parameter specifies, as a default, the library
in which the cursor is located.

procedure Common.Object.Next

Selects the next object at the same or greater level past the currently selected object.

procedure Common.Object.Parent

Selects the parent of the current selection. If there is no selection or if the cursor is
not in the selection, the procedure selects the line on which the cursor is located.
procedure Common.Object.Previous

Selects the previous object at the same or greater level before the currently selected
object.

QA-HONAL 7/1/87 LM-207

constant Ada_Format
package !Commands.Library

constant Ada_Format

Ada_Format : constant Fields := Fields’(Status => True,
Declaration => True,
others => False);

Description

Defines a constant that specifies a set of data for Ada objects to be displayed by
the List procedure.

This is the default value of the Displaying parameter in the Ada_List procedure.

LM-208 e RATIONAL

renamed procedure Ada_List
package !Commands.Library

renamed procedure Ada_List

"<IMAGE>@'C(ADA)";
Library.Ada_Format;
Library.Declaration;

procedure Ada_List (Pattern : Name
Displaying : Fields
Sorted By : Field

Descending : Boolean False;
Response : String "<PROF ILE>";
Options : String ""} renames List;

Description

Displays the specified set of data about the specified set of versions of specified
objects.

This procedure performs exactly as the List procedure except that it has different
default parameters. The default parameters provide a display of all Ada units in
the current context.

Further explanation and examples can be found in the Key Concepts in this book.

Parameters

Pattern : Name := "<IMAGE>@’'C(ADA}";

Defines the set of objects to be listed. Wildcards, context prefixes, and attributes
can be used in this name. The default gives the set of objects of the class Ada in
the current image.

Displaying : Fields := Library.Ada_Format;

Specifies the set of data to list about each object. The default is to list the Ada
format set of data.

Sorted_ By : Field := Library.Declaration;

Specifies the field that should be sorted to order the list. The default is to order by
the declaration.

Descending : Boolean := False;

Specifies whether to reverse the ordering. The default is to use the natural ascending
order.

RATIONAL 7//er LM-209

renamed procedure Ada_List
package !Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The defauli is the job response profile.

Options : String := ;

No options currently are implemented for this command. This parameter is reserved
for future development.

Example

Consider the following world:

lUsers.Gzc : Library {World};
File_1 : File {(Text};
Library : Library (Directory);
My _Unit : | Ada (Pack_Spec);
My_Unit : | Ada (Pack_Body);
Sample_Directory : Library (Directory};
Sample_World : Library (World);
S.1 : Session;
S_1_Switches : File (Switch};

The command:

ada_list ("lusers.gzc.@'c{ada)");

displays all of the Ada units within that world, their status, and their subclass, as
follows:

IUSERS.GZC % ADA_LIST STARTED 2:48:93 PM
87/01/06 14:48:11 ::.: Listing of {USERS.GZC.@'C(ADA) sorted by declaration.
STATUS DECLARATION

INSTALLED My_Unit : Ada (Pack_Spec);
INSTALLED My_Unit : Ada (Pack_Body);

87/01/06 14:48:12 ::: [End of Library.List command -- No errors detected].

LM-210 7/1/87 BA\TIONAL

constant All_Fields
package 'Commands.Library

constant All_Fields

All_Fields : constant Fields := Fields’{others => True);

Description

Defines a constant that specifies that all fields of data be displayed for the objects
displayed by the List procedure.

IQAT'ONAL 7/1/87 LM-211

procedure Compact.-Library
package !Commands.Library

procedure Compact_Library

procedure Compact_Library (Existing : Name := "<SELECTION>";
Response : String := "<PROFILE>"};

Description

Reduces the amount of storage consumed by frequently modified libraries (worlds
or directories).

As objects in libraries are created and destroyed, the library accumulates space that
contains unneeded information. This procedure removes this unneeded information,
thus reducing the space required for use by the directory.

While the library is being compacted, no other jobs should be referencing it.

Parameters

Existing : Name := "<SELECTION>";

Specifies the name of the library to be compacted. The default is the current
selection.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

library.compact_library ("'!users.gzc"};

compacts the specified library and results in the following display confirming the
compaction:

LM-212 7/1/87 RATIONAL

procedure Compact._.Library
package !Commands.Library

1USERS .GZC % L IBRARY.COMPACT_L IBRARY STARTED 2:57:44 PM
87/01/06 14:57:45 ::: [Library.Compact_Library {("'!users.gzc", PERSEVERE);].
87/01/06 14:57:47 --- GIZC's size was 9658 bytes, new size is 8237.
87/01/06 14:57:47 +++ 'USERS.GZC has been compacted.

87/01/06 14:57:47 ::: [End of Library.Compact_Library command -- No errors
87/01/06 14:57:47 ... detected].

RATIONAL +1/er LM-213

procedure Context
package !Commands.Library

procedure Context

procedure Context (To_Be : Context_Name :
Response : String

" $ll ;
"<PROF ILE>"};

Description
Sets the current context to the specified context.

This procedure sets the default context to the specified context. The default context
is then displayed in the current log.

The context is set on a per-job basis. The initial context for any job is the library
that enclosed the object displayed in the window from which the job was initiated.
Note that commands executed in a Command window run as a separate job. Using
this procedure in such a job changes the default context only for the duration of

that job.

Parameters

To_Be : Context_Name := "$";

Specifies the new context. The default is the current context, which has the effect
of displaying the context without changing it. Wildcards, attributes, and context
prefixes can be used in this name if the name resolves unambiguously to only one
location.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example
The command:
library.context ("!users.gzc.sample_directory”};

executed in a Command window, changes the context to !Users.Gzc.Sample_Directory
for the duration of that command execution only.

LM-214 7/1/87 R)ATIONAL

subtype Context-Name
package !Commands.Library

subtype Context_Name

subtype Context_Name is Name;

Description

Defines the name of a world or directory that is the context for other commands or
name resolution.

The name can use special names, wildcards, and context prefixes but must resolve to
a unique directory or world. See the Key Concepts in this book for more information
about names in general.

RATIONAL +/1/er LM-215

procedure Copy
package !Commands.Library

procedure Copy

procedure Copy (From : Name = "<REGION>";
To : Name = "<IMAGE>";
Recursive : Boolean := True;
Response : String := "<PROF{LE>";
Copy_Links : Boolean := True;
Options : String = "");
Description

Copies the value of an existing object into another object.

This procedure can copy a single object or a hierarchy of objects. Wildcards can
be used to specify a set of objects to be copied. The Recursive parameter allows
any subobjects of the named object to be copied. If more than one object is copied,
each object is copied independent of any other.

This procedure creates a new version of the existing object if the new object already
exists. This may force old versions of the object to be expunged.

If the new object does not exist, it is created. For all Ada units, the new object
is created in the source state. The new object created is of the same class as the
object from which it was copied.

This procedure is used for the following purposes:

¢ To create a copy of an object with the same or a different simple name in another
directory.

¢ To create a copy of an object with a different name in the same directory.

¢ To copy the links that are associated with each world. The set of links for a
world do not have a name, so they are not copied as an object in a world. The
Copy-Links parameter allows the procedure to copy those links.

Copying an object from one library to another with the same simple name can be
accomplished by using the name of the destination library as the To parameter.

Table 7-2 illustrates the results of executing the Copy procedure with various types
of objects as the To and From parameters. The To parameter objects are shown
horizontally and the From parameter objects are shown vertically in the table.

The word TO indicates that the object specified by the To parameter is a copy of
the object specified by the From parameter. The word INTO indicates that the
object specified by the From parameter is copied into the object specified by the To
parameter.

LM-216 7/1/87 PATIONAL

procedure Copy
package !Commands.Library

Table 7-2. Using the Copy Procedure with To and From Parameters

To Parameter
From Parameter | Non-Ada object | Library unit | Subunit World Directory | No object
Non-Ada object TO (1) Error Error INTO INTO TO
Library unit (2) Error TO TO INTO INTO TO
Subunit (2) Error INTO TO INTO | INTO TO
World (3) Error Error Error TO (4) | TO (4) TO
Directory (3) Error Error Error TO (4) | TO (4) TO

The number in parentheses following the results indicates a restriction on the copy.
These restrictions are:
(1) The objects must be of the same class.

(2) If Recursive is true, the subunits of the unit are involved. The relative nestlng
of subunits is preserved.

(3) If Recursive is true, the subcomponents of the library are involved. The relative
nesting of subcomponents is preserved.

(4) The contents of the From library are merged with the contents of the To library.

Parameters

From : Name := "<REGION>";

Specifies the existing object or objects to be copied. The name can use special
names, wildcards, context prefixes, and attributes. The default is the selection,
whether or not the cursor is in the selection.

TJo : Name := "<IMAGE>";

Specifies the name of the new object. The To parameter is interpreted in the current
context or specified full context and must be unique. The name can use substitution
characters to create the new name from the existing name. If the named object
exists, the old value of the object is deleted. If the named object does not exist, it
is created. The default is the current image.

Recursive : Boolean := True;

Specifies whether to copy any contained objects. The default is to copy all contained
objects.

R)A-”ONAL 7/1/87 LM-217

procedure Copy
package !Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Copy_Links : Boolean := True;

Specifies whether to copy the links that are associated with any world that is copied.
The default is to copy all links. If Copy-Links is false when copying worlds, the
copied worlds will have an empty set of links.

Options : String := ""

No options currently are implemented for this command. This parameter is reserved
for future development.

Restrictions
Objects representing devices cannot be copied.

Any situation that would require demoting unrelated declarations results in an
error, suppressing the copy.

If a library and its switch file are copied, the copied library will point to the copy
of the switch file. If the switch file is not copied, the library and the original from
which it was copied will reference the original switch file.

For Ada units, changing the simple name during a copy may require changing the
name in the Ada unit declaration before installation.

Example 1

Consider the following world:
IUser .R jb
Sam;Ie : File;
Macros : Ada (Pack_Spec);
Macros : Ada (Pack_Body);

The command:
copy ("$sample”,"S$sample2”);

creates a copy of the file. The world now appears as follows:

LM-218 7/1/87 'QATIONAL

procedure Copy
package !Commands.Library

IUser .R jb

" Sample : File;
Macros : Ada (Pack_Spec);
Macros : Ada (Pack_Body};
Sample2 : File;
Example 2

Consider the following world:
IUser .R jb
Sample : File;

Macros : Ada (Pack_Spec);
Macros : Ada (Pack_Body});

User Jpl would like to copy those macros into his home world.
The command:
copy ("$macros”,"l!users. jpl.macros”);

copies the macros into user Jpl’s home world. The world Rjb is not changed, but
package Macros and all subunits are copied into !Users.Jpl. If package Macros
already exists in the world Jpl, a new version of the package is created and older
versions may be lost.

Example 3

Suppose user Jpl wants to copy those macros into his home world but wants to call
them New_Macros.

The command:

copy ("$macros”,"lusers. jpl.new_macros");

accomplishes this.

References

procedure Move

RATIONAL 7/1/87 LM-219

procedure Create
package !Commands.Library

procedure Create

procedure Create (Name : Library.Name := ">>LIBRARY NAME<K";
Kind : Library.Kind := Library.Directory;
Vol : Volume = Library.N1l;
Model : String = "iModel .R1220";

Response : String "<PROF ILE>");

Description

Creates a library or package in the directory system with the specified name and
class on the specified disk volume.

This procedure creates a new object in the library system. The object can be a
directory, a world, or a package. If the object is a world, the disk volume on which
the library is built can be specified. If the object is a package or a directory, the
volume on which it is built is inherited from the enclosing world.

Parameters

Name : Library.Name := ">>LIBRARY NAME<K";

Specifies the name of the new unit. Wildcards, context prefixes, and attributes
can be used except in the last segment (the simple name) of the unit. The name
must specify a single object that does not already exist. If the default parameter
placeholder ">>L IBRARY NAME<<" is not replaced, an error will result.

Kind : Library.Kind := Library.Directory;
Specifies the kind of object to be built. The default is a directory.

Vol : Volume := Library.Nil;

Specifies the disk volume on which the object is built. The default specifies the best
volume as defined by the Environment. This parameter is ignored when packages
are created.

Model : String := "!Model .R1000";

Specifies which links the system will use when it creates a world. The default links
are those in !Model.R1000. The null string (“*) creates a world with no links.

LM-220 e RATIONAL

procedure Create
package 1Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

library.create ("lusers.gzc.my_directory”};

creates a directory called My_Directory in the world !Users.Gzc.

References
procedure Create_Directory
procedure Create_Unit

procedure Create-World

RATIONAL +/1/er LM-221

renamed procedure Create_Directory
package !Commands.Library

renamed procedure Create_Directory

procedure Create_Directory

{Name : Library.Name := ">>DIRECTORY NAME<<";
Kind ¢ Library.Kind := Library.Directory;
Vol : Volume = Library.N1l

Model : String = "

Response : String "<¢ROFILE>") renames Create;

Description
Creates a directory with the specified name in the current library.

Messages and errors are reported in the current log. This procedure renames the
Create procedure and has the same parameter profile, with the exception of the
Model parameter.

Parameters

Name : Library.Name := ">>DIRECTORY NAME<K";

Specifies the name of the directory to create. The parameter placeholder ">>DIREC-
TORY NAME<<" must be replaced or an error will result.

Name : Library.Kind := Library.Directory;
Specifies the type of unit to create, in this case a directory.

Vol : Volume := Library.Nil;

Specifies the disk volume on which the object is built. The default specifies the best
volume as defined by the Environment.

Model : String := "";
Specifies which links the system will use when it creates a world. Since directories
do not contain links, none are specified.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-222 s RATIONAL

renamed procedure Create_Directory
package !Commands.Library

Example
The command:
library.create_directory ("l!users.gzc.my_directory");

creates a directory called My_Directory in the world !Users.Gzc.

RATIONAL 7/1/87 LM-223

renamed procedure Create_Unit
package !Commands.Library

renamed procedure Create_Unit

procedure Create_Unit (Name : Library.Name := ">>ADA NAME<LK";
Kind : Library.Kind := Library.Subpackage;
Vol : Volume = Library.Nil
Model : String = "";

"<PROF ILE>")

Response : String
renames Create;

Description

Creates a package specification and a body with the indicated name in the current
library and installs them.

Messages and errors are reported in the current log. This is a rename of the Create
procedure.

Parameters

Name : Library.Name := ">>ADA NAME<LK";

Specifies the name of the unit to be created. The parameter placeholder ">>ADA
NAME<<" must be replaced or an error will result.

Kind : Library.Kind := Library.Subpackage;
Specifies the kind of object to be built. The default is a subpackage.

Vol : Volume := Library.Nil;
This parameter is ignored when packages are created.

Model : String := "";
Specifies which links the system will use when it creates a world. Since subpackages
do not contain links, none are specified.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-224 7/1/87 RATIONAL

renamed procedure Create_Unit
package !\Commands.Library

Example
The command:
library.create_unit ("!users.gzc.my_unit"});

creates a package specification and a body called My_Unit in the world !Users.Gzc
and promotes them to the installed state.

RATIONAL +/1/er LM-225

renamed procedure Create_World
package !Commands.Library

renamed procedure Create_World

procedure Create_World (Name : Library.Name := ">>WORLD NAME<K";
Kind : Library.Kind := Library.World;
Vol : Volume = Library.N1l
Model : String = "IModel .R1020";

"<PROF ILE>")

Response : String
renames Create;

Description
Creates a world with the specified name on the specified volume.

Errors are reported in the current log. This is a rename of the Create procedure.

Parameters

Name : Library.Name := ">>WORLD NAME<K";

Specifies the name of the world to create. The parameter placeholder ">>WORLD
NAME<<" must be replaced or an error will result.

Kind : Library.Kind := Library.World;
Specifies the kind of unit to be built. The default is a world.

Vol : Volume := Library.Nil;

Specifies the volume on which to create the world. The default value specifies that
the world should be created on the volume with the most free space.

Model : String := "!Model .R1000";

Specifies which links the system will use when it creates the world. The default
links are those in !Model.R1000.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-226 e RATIONAL

renamed procedure Create_World
package 'Commands.Library

Example
The command:
library.create_world ("!users.gzc.my_world"});

creates a world called My_.World in !Users.Gzc. The set of links for this world will
be copied from the ones located in !Model.R1000.

RATIONAL 7/1/87 LM-227

procedure Default
package !Commands.Library

procedure Default

procedure Default (Existing : Name := "<SELECTION>";
Response : String := "<PROFILE>"};

Description
Sets and displays the name of the default version of the specified object.

This procedure can set any existing version of an object to be the default version
of that object. If no new version is specified, or after the new default version is set,
the name of the default version is displayed in the current log.

Note that only the current version of directories and worlds exists. No deleted
versions of directories or worlds are retained.

Parameters

Existing : Name := "<SELECTION>";

Specifies the name of the object for which the default version is to be set or displayed.
The default is the current selection.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

A user named Gzc has an Ada unit called Unit_1, which she copied from another
dlrectory The orxglnal version (V(1)2l contained several errors, which she repaired
in a second version (’V(2)). Since then she has made several modifications that
have rendered the unit useless. In the process, she created a third version of the
file ("V(3)). To return to the version that was working correctly (V(2)), she could
use the command:

library.default ("l!users.gzc.unit_1'v(2)"};

LM-228 s RATIONAL

constant Default_Keep_Versions
package !Commands.Library

constant Default_Keep_Versions

Default_Keep_Versions : constant := -1;

Description

Defines a constant that represents the default number of deleted versions to keep
when expunging versions.

When used for setting the retention count for an object, this constant represents
the default retention count for the parent object.

The.defa.ult number of retained versions is 2—the current version and one deleted
version.

RATIONAL 7/y/er LM-229

renamed procedure Delete
package !Commands.Library

renamed procedure Delete

"<SELECTION>";
"<DIRECTORIES>";
"<PROF ILE>") ;

procedure Delete (Existing : Name =
Penames.aompilation.Delete;

Limit : Compilation.Change_Limit
Response : String

Description
Deletes the default version of the selected or named object.

This procedure deletes the selected or named object. If the deletion of the object
would make any other objects obsolete, the deletion is abandoned.

The procedure allows a set of objects to be specified. The combination of wildcards
and classes allows the specification of any set of objects in a particular context.

Unrecoverable deletions can be made with the Destroy procedure.

Parameters

Existing : Name := "<SELECTION>";

Specifies the name of the object to be deleted. Special names, wildcards, context
prefixes, and attributes can be used in this name. The default is the current se-
lection. If no object is selected and the default special name is used, an error will

result.

Limit : Compilation.Change_Limit := "<DIRECTORIES>";

Specifies which units can be demoted to allow the deletion. The default is to allow
demotion only of the units in the same set of directories as the units specified to the
operation. See the introduction to this package for the definition of special values
such as "<D!RECTORIES>".

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-230 7/1/87 IQATIONAL

renamed procedure Delete
package !Commands.Library

Example

A user named Gzc has in her home directory a file called Test_File that she no
longer needs. To remove the file from the directory, she would enter the command:

library.delete ("!users.gzc.test_file");

This file would be recoverable with the Undelete procedure.

References

renamed procedure Destroy
procedure Undelete

subtype Compilation.Change_Limit
procedure Compilation.Delete

subtype Compilation.Unit_Name

RAT'ONAL 7/1/87 LM-231

renamed procedure Destroy
package !Commands.Library

renamed procedure Destroy

procedure Destroy (Existing : Name := "<SELECTION>",
Threshold : Natural = 1;
Limit : Compilation.Change_Limit := "<DIRECTORIES>";

1= "<PROFILE>")

Response : String :
renames Compilation.Destroy;

Description

Destroys all of the versions of the selected or named object.

This procedure destroys the selected or named object. If the destruction of the
object would make any other objects obsolete, the destruction is abandoned. This
procedure is equivalent to deleting and expunging all versions of an object.

The procedure allows a set of objects to be specified. The combination of wildcards
and classes allows the specification of any set of objects in a particular context.

Recoverable deletions can be made with the Delete procedure.

Parameters

Existing : Name := "<SELECTION>";

Specifies the name of the object to be deleted. Special names, wildcards, context
prefixes, and attributes can be used in this name. The default is the current selec-

tion.

Threshold : Natural := 1;
Specifies the total number of objects per named object that can be destroyed be-
fore the procedure fails. The default permits only the named units—not their
dependents—to be destroyed.

Limit : Compilation.Change_Limit := "<DIRECTORIES>";

Specifies which units can be demoted to allow the deletion. The default is to allow
demotion only of the units in the same set of directories as the units specified to the
operation. See the introduction to this package for the definition of special values
such as "<DIRECTORIES>".

LM-232 7/1/87 QATIONAL

renamed procedure Destroy
package 'Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

A user named Gzc has in her home directory a text file called Test_File that she
no longer needs. To delete and expunge the file from the directory, she would enter
the command:

library.destroy ("!users.gzc.test_file"};
The file would not be recoverable with the Undelete procedure.
Example 2

A user name Gzc has an Ada unit called Macros in her home directory. She wants
to destroy both the spec and body. To do this, she uses the command:

destroy ("macros",2);

References

procedure Delete

RATIONAL 71sr LM-233

procedure Display
package !Commands.Library

procedure Display

procedure Display (Name : Library.Name := "[]");

Description

Displays the library containing the named object, with the object selected.

Parameters

Name : Library.Name := "[]";
Defines a simple name. The default is the current context.

LM-234 e RATIONAL

procedure Enclosing_World
package !Commands.Library

procedure Enclosing_World

1

procedure EncloSing_world (Levels : Positive : ;
"<PROF ILE>");

Response : String

Description

Changes the context to the parent world of the current context.

Parameters

Levels : Positive := 1;
Specifies the number of levels (worlds) to go up in changing the context.

Response : String := "“<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The current context for a user named Gzc is !Users.Gzc.Sample_World. She wants
to change the context to the enclosing world (!Users.Gzc). The command:

library.enclosing_world;

will accomplish this.

References

EST, procedure Common.Enclosing

RATIONAL 7/1/er LM-235

renamed exception Error
package !Commands.Library

renamed exception Error

Error : exception renames Profile.Error;

Description

Defines the exception raised when an error condition occurs in a command and
when the error reaction defined in the profile requests an exception to be raised.

LM-236 e RATIONAL

procedure Expunge
package !Commands.Library

procedure Expunge

procedure Expunge (Existing : Name 1= "<IMAGE>";
Keep_Versions : Integer := 0;
Recursive : Boolean := True;
Response : String := "<PROFILE>"};
Description

Expunges previously deleted versions of objects, keeping the specified number of
versions.

The procedure effectively makes deletions permanent. Deletions can be reversed
(undeleted) until the objects are expunged. Once the object is expunged, deleted
versions are gone. New versions of Ada units are created when the !Commands-
.Common.Edit procedure is executed on the unit.

Some deleted versions of the object can be retained by specifying the value of
the Keep_Versions parameter to be some number. In this case, only the specified
number of deleted versions is retained (the current version is not counted). The
lowest-numbered deleted versions are destroyed and the highest-numbered versions
are retained. If a lower-numbered version is the default version, it is retained, even
if higher-numbered versions will be deleted.

Parameters

Existing : Name := "<IMAGE>";

Specifies the name of the objects to be expunged. If all versions of the object are
expunged, the object is destroyed. Special names, wildcards, context prefixes, and
attributes are allowed in this name. The default is the current image.

Keep_Versions : lInteger := 0;

Specifies the number of versions of the object that are not to be expunged. The
default is to keep zero deleted versions (to expunge all deleted versions).

Recursive : Boolean := True;

Specifies whether to expunge any subobjects of the named object. The default is to
expunge all subobjects, as well as the named object.

'QAT'ONAL 7/1/87 LM-237

procedure Expunge
package 'Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

A user named Gzc deleted a file called File_1 from her home directory. She can
permanently expunge it with the command:

library.expunge (“l!users.gzc.{file_1}");

LM-238 7/1/87 R’ATIONAL

type Field
package !Commands.Library

type Field

type Field is (Object, Version, Class, Subclass, Updater, Update_Time,
Creator, Create_Time, Reader, Read_Time, Size, Status,
Frozen, Retain, Declaration);

Description
Defines the set of data that can be displayed for any object.
This type is used to specify what data are displayed about objects in the List

procedure and several renames of List. The type is also used to specify what data
the listing is sorted by when a display is generated.

Enumerations

Class
Specifies to display the class name of the object.

Create_Time
Specifies to display the time when the object was created.

Creator
Specifies to display the name of the user who created the object.

Declaration
Specifies to display the declaration of the object. Sorting by declaration means

displaying objects in the order in which they occur in their enclosing package.

Frozen

Specifies to display whether the object is frozen.

Ob ject
Specifies to display the unique simple name of the object.

Read_Time
Specifies to display the time when the object was last read.

RATIONAL 7y/er LM-239

type Field
package !Commands.Library

Reader
Specifies to display the name of the user who last read the object.

Retain
Specifies to display the number of retained versions of the object.

Size
Specifies to display the size of the object in bytes of data (which includes some
overhead).

Status

Specifies to display the declaration state of the object (applies only to Ada class
objects).

Subclass

Specifies to display the subclass of the object.

Update_Time

Specifies to display the time that the last update was performed. For Ada objects,
this is the time when editing began after the last time the image was committed
(saved).

Updater
Specifies to display the name of the user who last updated the object.

Version

Specifies to display the version of the object. An asterisk appears in front of the
default version name.

References
procedure Ada_List
procedure File_List
procedure List

procedure Verbose.List

LM-240 7/1/87 BA\TIONAL

type Fields
package {Commands.Library

type Fields

tuype Fields is array (Field) of Boolean;

Description
Defines a type used to specify the set of data to be displayed by the List procedure.

A parameter of this type in the List procedure specifies the fields to display. Several
constants of this type provide common sets of fields.

References

constant Ada_Format
procedure Ada_List
constant All_Fields
procedure File_List
procedure List

constant Terse_Format
constant Verbose_Format

procedure Verbose_List

RAT'ONAL 7/1/87 LM-241

renamed procedure File_List
package !Commands.Library

renamed procedure File_List

"<IMAGE>B'C(FILE)";
Library.Verbose_Format;
Library.0Ob ject;

procedure File_List (Pattern : Name
Displaying : Fields
Sorted_ By : Field

L1 T L T I TR 11

Descending : Boolean := False;
Response : String “<PROF ILE>";
Options : String "") renames List;

Description
Displays the specified set of data for the specified set of file objects.

The procedure performs exactly as the List procedure except that this procedure
has different default parameters. The default parameters in this procedure provide
a detailed display of all versions of all file class objects in the current context.

Parameters

Pattern : Name := "<IMAGE>@'C(FILE)}";

Defines the set of objects to be listed. Special names, wildcards, context prefixes,
and attributes can be used in this name. The default gives the set of all versions of
all file class objects in the default context.

Displaying : Fields := Library.Verbose_Format;

Specifies the set of data to display about each object. The default is to display the
verbose set.

Sorted_ By : Field := Library.Object;

Specifies the field that should be sorted to order the list. The default is to order
alphabetically by the object name.

Descending : Boolean := False;

Specifies whether to reverse the ordering. The default is to use the natural ascending
order.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-242 e RATIONAL

renamed procedure File_List
package !Commands.Library

Options : String := "";

No options currently are implemented for this command. This parameter is reserved
for future development.

Example

Consider the following world:

tUsers .Gzc
File_l1
Library
My_Directory
My_Unit
My_Unit
Sample_Directory
Sample_World
S_1
S_1_Switches

The command:
library.file_list;

produces the following results, showing information for the two files in that world.
Note that the display under “Contsinued . . .» can be obtained by scrolling to the
right.

IUSERS.GZC % L IBRARY.FILE_L!ST STARTED 5:24:12 PM

87/01/06 17:24:17 :.: Listing of !USERS.GZC.<IMAGE>8’'C(FILE) sorted by object.
OBJECT VER CLASS SUBCLASS UPDATER UPDATE_TIME SIZE STATUS FRZ

FILE.1 =2 FILE TEXT G2 87/81/86 16.82:15 37 n/a

S_1_SWITCHES *4 FILE SWITCH GZC 87/01/06 17:23:23 303 n/a

87/01/06 17:24:19 ::: [End of Library.List command -- No errors detected].

Continued . . .

RETAIN

T=====

1

RATIONAL 7/1/87 LM-243

procedure Freeze
package !Commands.Library

procedure Freeze

procedure Freeze (Existing : Name = "<IMAGE>";
Recursive : Boolean := True;
Response : String := "<PROFILE>");

Description
Freezes the specified object to prevent further changes to it.

Freezing prevents changes to an object or set of objects, including changing their
state. The procedure can freeze a single object or an entire directory structure of
objects.

Freezing objects can be used as part of releasing software. Once an object is frozen,
no changes can be made to the object. However, a frozen object can be executed.
The Unfreeze procedure undoes the effect of this procedure.

Many library operations affect more than one object (an object and its containing
directory or world, or a unit and its dependents). If any of these objects are frozen,
the operation fails.

The Freeze and Unfreeze procedures are both subject to access control restrictions.
For a user to freeze or unfreeze objects within a world, the user must have owner
access to that world.

Parameters

Existing : Name := "<IMAGE>";

Specifies the object to be frozen. The default is the current image. Special names,
context prefixes, wildcards, and attributes can be used to specify any series of
objects to be frozen.

Recursive : Boolean := True;

Specifies whether to freeze subobjects. The default is to freeze subobjects. To avoid
freezing subworlds, use Recursive => False and the wildcard 7.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-244 e RATIONAL

procedure Freeze
package !Commands.Library

Example

A user has in his home directory a world called Sample_World that he wants to
freeze. To accomplish this, he can use the following command:

library.freeze ("sample_world"};

References
procedure List

procedure Unfreeze

RATIONAL 7/y/er LM-245

type Kind
package !Commands.Library

type Kind

type Kind 1s (World, Directory, Subpackage);

Description

Defines the major structural elements that can be created to produce the directory
system.

Enumerations

Directory

Defines a directory as a structural element in the directory system. Directories
provide a structural element that is also like an Ada library. Directories and worlds
are collectively called libraries. A directory provides a closed naming scope as does
a library. It also requires explicit imports and exports through a set of links. A
directory, however, uses the set of links provided by the enclosing world; a directory
does not have its own links.

Directories are used for structuring or partitioning the contents of a world. Because
the world contains all of the links for the entire structure, directories are better
suited to breaking down the project or system within the world.

Directories can be nested inside other directories or worlds. Directories can contain
any set of units such as directories, worlds, Ada units, files, sessions, or other
Environment-defined objects.

Subpackage
Defines a standard Ada package as a structural element in the directory system.

A subpackage is an element of its containing library. It resides on the same disk
volume as its enclosing world. Subpackages do not have links.

LM-246 e RATIONAL

type Kind
package !Commands.Library

World

Defines a world as a structural element in the directory system. Worlds provide a
structural element that is like an Ada library. Directories and worlds are collectively
called libraries. A world provides a closed naming scope as does a library. A world
requires explicit imports and exports through a set of links. Each world has its own
links. These links provide imports and exports not only for the world but also for
any contained directory. In addition, these links provide name resolution for units
within the world or within contained directories.

Worlds are used as the resource management element. The effect of links and
the closed scoping makes a world the focal point for name resolution and resource
allocation. The internal links associated with a world allow any unit in any directory
within the world to have visibility to other units. Thus the world and its associated
set of links can capture the entire set of names. For further information, see the
Key Concepts in this book.

Worlds can be nested inside other directories or worlds. Worlds can contain any set
of units such as directories, worlds, Ada units, files, sessions, or other Environment-
defined objects (see the Key Concepts in this book).

References

procedure Create

BAT'ONAL 7/1/87 LM-247

procedure List
package !Commands.Library

procedure List

"<IMAGE>@";
Library.Terse_Format;
Library.0Ob ject;

procedure List (Pattern : Name
Displaying : Fields
Sorted_ By : Field

LTI T T T]|

Descending : Boolean False;
Response : String "<PROF ILE>";
Options : String "),

Description

Displays the specified set of data about the specified set of versions of specified
objects.

This procedure displays a list of objects and data about those objects in the current
log. The list can be of any set of objects, sorted in any specified way.

The default parameters produce an alphabetic list of objects with no additional
information. Renamed versions of this procedure with different default parameters
give other forms of lists.

Parameters

Pattern : Name := "<IMAGE>@";

Defines the set of objects to be listed. Wildcards, context prefixes, and attributes
can be used in this name. The default gives the set of objects in the default context.

Displaying : Fields := Library.Terse_format;
Specifies the set of data to display about each object. The default is to list only the
name of the object.

Sorted_ By : Field := Library.Object;

Specifies the field that should be sorted to order the list. The default is to order
alphabetically by the object name.

Descending : Boolean := False;

Specifies whether to reverse the ordering. The default is to use the natural ascending
order.

LM-248 7/1/87 BA\TIONAL

procedure List
package !Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Options : String := "";

No options currently are implemented for this command. This parameter is reserved
for future development.

Example

A user wants to display an alphabetical listing of all files in his home world that
end with the string “_1”. To accomplish this, he can use the command:

library.list ("6_1");

RAT'ONAL 7/1/87 LM-249

procedure Move
package !Commands.Library

procedure Move

procedure Move (From : Name = "<REGION>";
To : Name = "<IMAGE>";
Recursive : Boolean := True;
Response : String = "<PROFILE>";
Copy_Links : Boolean := True;
Options : String ="");
Description

Moves (copies) the value of an existing object to another object and then deletes
the existing object.

This procedure can move a single object or a hierarchy of objects. Wildcards can
be used to specify a set of objects to be moved. The Recursive parameter allows
any subobjects of the named object to be moved. If more than one object is moved,
each object is moved independently of any other.

This procedure creates a new version of the existing object if the new object already
exists. This may force old versions of the object to be expunged.

If the new object does not exist, it is created. For all Ada units, the new object is
created in the source state.

If any move would result in demotion or obsolescence of an existing object, the
deletion of that object is abandoned but is still copied. Other objects being moved
by this procedure that do not make other units obsolete are not affected. Objects
that cannot be copied will not be deleted.

The semantic consistency of the new object is not assured by this procedure. Se-
mantic references must be checked after the object is moved.

This procedure is used for the following purposes:

e To move an object from one directory to another, giving it the same or a different
simple name in its new location.

¢ To copy the links that are associated with each world. The set of links for a world
does not have a name, so the set of links is not copied as an object in a world.
The Copy—_Links parameter allows the procedure to copy those links.

Table 7-3 illustrates the results of executing the Move procedure with various types
of objects as the To and From parameters. The To parameter objects are shown
horizontally and the From parameter objects are shown vertically in the table.

The word TO indicates that the object specified by the To parameter is moved to
the object specified by the From parameter. The word INTO indicates that the

LM-250 e RATIONAL

procedure Move
package !Commands.Library

object specified by the From parameter is moved into the object specified by the To
parameter.

The number in parentheses following the results indicates a restriction on the move.
These restrictions are listed below the table.

Table 7-3. Using the Move Procedure with To and From Parameters

To Parameter
From Parameter Non-Ada object Library unit Subunit World Directory | No object
Non-Ada object TO (1) Error Error INTO INTO TO
Library unit (2) Error TO TO INTO INTO TO
Subunit (2) Error INTO TO INTO INTO TO
World (3) Error Error Error TO (4) | TO (4) TO
Directory (3) Error Error Error TO (4) | TO (4) TO

(1) Objects must be of the same class.

(2) If the Recursive is true, the subunits of the unit are involved. The relative
nesting of subunits is preserved.

(3) I the Recursive is true, the subcomponents of the unit are involved. The relative
nesting of subunits is preserved.

(4) The contents of the From library are merged with contents of the To library.

Parameters

From : Name := “<REGION>";

Specifies the existing object or objects to be moved. The name can use special
names, wildcards, context prefixes, and attributes. The default is the current selec-
tion, whether or not the cursor is in the selection.

Jo : Name := "<IMAGE>";
Specifies the name of the new object. If the name exists, the old value of the object

is deleted. If the name does not exist, it is created.

Recursive : Boolean := True;
Specifies whether to move subunits. The default is to move all subunits.

R’ATIONAL 7/1/87 LM-251

procedure Move
package 'Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Copy_Links : Boolean := True;
Specifies whether to copy the links that are associated with any world that is moved.
The default is to copy all links.

Options : String := "";
No options currently are implemented for this command. This parameter is reserved
for future development.

Example

Consider the following world:

IUser .R jb

Check _Messages : Ada {Proc_Spec);
Check _Messages : Ada (Proc_Body);
Macros : Library;

It is decided that the procedure belongs in the Macros library instead of the home
world and should be called Check. To move the procedure and rename it, the
command:

move (5check_messages”, "$macros.check"};

is executed. The procedure is copied into the Macros library and then deleted from
the world Rjb. The result is that the world Rjb contains only the Macros library,
and the full name of the procedure is now !Users.Rjb.Macros.Check.

References

procedure Copy

LM-252 7/1/87 RAT'ONAL

subtype Name
package 'Commands.Library

subtype Name

subtype Name is String;

Description
Defines a name for objects used in procedures in this package.
The type allows special names, wildcards, context prefixes, attributes, and substi-

tution characters. In some uses of this type, the name must be unique. See the Key
Concepts in this book for more information about naming in general.

RATIONAL /e LM-253

constant Nil
package !Commands.Library

constant Nil

Nil : constant Volume := Volume’'First;

Description

Defines the constant disk volume that represents the “best” volume.

LM-254 e RATIONAL

procedure Reformat_Ymage
package !Commands.Library

procedure Reformat_Image

“<SELECTION>";

procedure Reformat_Image (Existing : Name
"<PROF ILE>"};

Response : String :

Description
Forces the creation of a new pretty-printed image of an Ada unit.

Ada units have two representations: the DIANA tree representation and the pretty-
printed image. This procedure forces the creation of a new pretty-printed image of
an Ada unit.

Use of this procedure is necessary if pretty-printing switches are changed and the
user wants to force a unit that was pretty-printed using the old switch settings to
be pretty-printed with the new switch settings.

Parameters

Existing : Name := "<SELECTION>";

Specifies the object whose image is to be reformatted. The default is the current
image. Special names, context prefixes, wildcards, and attributes can be used to
specify any series of objects to be reformatted.

Response : String := "<PROFILE>";

Specifies how to resnond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RA—”ONAL 7/1/87 LM-255

procedure Rename
package !Commands.Library

procedure Rename

"<SELECTION>";
“>O>NEW SIMPLE NAME<<™;
“<PROF ILE>"};

procedure Rename (From : Name
To : Simple_Name
Response : String

uiu

Description
Renames the specified existing object to the specified new name.

This procedure creates an object of the new name that contains all of the contents
of the old name. All contained directories, worlds, links, and objects are moved into

the new object.
If the new name already exists, a new version of the object is created.

If the new object does not exist, it is created. For all Ada units, the new object is
created in the source state.

Parameters

From : Name := "<SELECTION>";

Specifies the existing object or objects to be renamed. Special names, wildcards,
context prefixes, and attributes are allowed in this name. The default is the current

selection.

To : Simple_Name := ">>NEW SIMPLE NAME<K";

Specifies the name of the new, renamed object. Substitution characters are allowed
in this name. The default parameter placeholder ">>NEW SIMPLE NAME<<" must be
replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-256 e RATIONAL

procedure Rename
package !Commands.Library

Restrictions

If any renaming would result in demotion or obsolescence of an existing object, the
object is not deleted but is still copied into the new name. Other objects being
renamed by this procedure that do not make other units obsolete are not affected.
Objects that cannot be copied are not deleted.

The semantic consistency of the new object is not assured by this procedure. Se-
mantic references must be checked after the object is renamed.

This procedure will not rename across libraries.

Example

Consider the following world:

Users .Rjb

Ex : Ada (Pack_Spec);
Ex : Ada (Pack_Body);

It was decided that a long name for package Ex would be useful, and the command:

rename ("ex","examples”};

renames the package. The world now looks like this:

IlUsers.Rjb

Examples : Ada (Pack_Spec);
Examples : Ada (Pack_Body);

RATIONAL 7/er LM-257

procedure Resolve
package !Commands.Library

procedure Resolve

procedure Resolve (Name_Of : Name = "<TEXT>";
Target_Name : Name = """,
Ob jects_Only : Boolean := True;
Response : String = "<PROFILE>"};
Description

Resolves the selected or specified name and displays its full pathname in the current
log.

This procedure takes the specified name or the object that is currently selected and
displays the full pathname of that object. By default, the procedure searches for
objects of that name. If the Objects_Only parameter is false, identifiers within Ada

units also can be resolved.

Parameters

Name_Of : Name := "<TEXT>";
Specifies the name to be resolved. The default is the currently highlighted text.

Target_Name : Name := ;

Specifies a name that, if it contains substitution characters, produces a new name
for the resolved name.

Ob jects_Only : Boolean := True;

Specifies whether to restrict the resolution of names to objects or to include Ada
declarations, too. If true, the default, only library units or subunits are resolved.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-258 7/1/87 BA\-HONAL

procedure Set..Retention-Count
package !Commands. Library

procedure Set_Retention_Count

procedure Set_Retention_Count

(Existing : Name = "<IMAGE>"

Keep_Versions : Integer := Library.Default_Keep_Versions;
Recursive : Boolean := True;

Response : String := "<PROFILE>");

Description

Sets the retention count for the current image or specified object(s).

This procedure sets the retention count, which is the number of deleted versions
of an object that are retained when a new version is created. The retention count

does not include the single current (undeleted) version of that object.

The default makes the selected or named object’s retention count the same as its
parent’s retention count.

Parameters

Existing : Name := "<IMAGE>";

Specifies the name of the object for which the new retention count is desired. The
default is the current image.

Keep_Versions : Integer := Library.Default_Keep_Versions;

Specifies the new retention count. The default is to keep the parent’s retention
count.

Recursive : Boolean := True;

Specifies whether to change the retention count of contained units. The default is
to change the retention count of the contained units.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

IQAT|ONAL 7/1/87 LM-259

procedure Set_Retention_Count
package !Commands.Library

Example

A user named Bill wants to keep five versions of objects within his home directory
structure. To accomplish this, in a Command window below his home directory, he
can execute the command:

library.set_retention_count ("l!users.bill",5);

LM-260 7/1/87 RATIONAL

procedure Set..Subclass
package 'Commands.Library

procedure Set_Subclass

procedure Set_Schlass {(Existing : Name = "<SELECTION>";
To_Subclass : String := "";
Response : String := "<PROFILE>");
Description

Sets the subclass of the selected or named object.

If a null string value (“?) is provided for the To_Subclass parameter, the Environ-
ment deduces the subclass.

Note that this procedure is typically used to convert from an older release of the
Environment that did not support subclasses. If subclasses are not set on such
systems, the information on the library object subclass will not be available for
objects created under the old release. For information on subclasses, see the Key
Concepts in this book.

Parameters

Existing : Name := "<SELECTION>";

Specifies the name of the object(s) for which to set the subclass. The default is the
current selection. The name can contain any legal directory name and can match
multiple objects.

To_Subclass : String := ™"

Specifies the name of the subclass to set for the object(s). The null string value
(“”) specifies that the Environment should deduce the subclass for the object.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

QATlONAL 7/1/87 LM-261

subtype Simple_Name
package !Commands.Library

subtype Simple_Name

subtype Simple_Name 1s String;

Description

Defines a simple name for objects.

This subtype can use wildcards, but it must be unqualified. It cannot use attributes.

LM-262

e RATIONAL

procedure Space
package 'Commands.Library

procedure Space

procedure Space (For_Ob ject : Name = "<IMAGE>";
Recursive : Boolean = True;
Each_Object : Boolean = False;
Each_Version : Boolean = False;
Space_Types : Boolean = True;
Response : String = "<PROFILE>"
Options : String ")

Description
Displays the disk space, in pages, consumed by the specified object(s).

This procedure displays disk utilization information for each specified object. The
information is displayed in the current log. Totals are also displayed when appro-
priate. All figures are in pages (8,192 bits or 1,024 bytes per page{.

For worlds, space for the set of links for that world is also included. Nested worlds,
directories, and any other objects to be included must be explicitly specified to be
included.

Parameters

For_Object : Name := "<IMAGE>";

Specifies the name of the object(s) about which to display disk space information.
Special names, wildcards, context prefixes, and attributes are allowed in this name.
The default is the current image.

Recursive : Boolean := True;

Specifies whether to include subobjects. The default is to include subobjects.

Each_Object : Boolean := False;

Specifies whether to display the space for each object of the specified set or the
summary of the space used. The default is to display the summary.

Each_Version : Boolean := False;

Specifies whether to display information about each version of each object. The
default is to display information about the default versions only.

RATIONAL +//er LM-263

procedure Space
package !Commands.Library

Space_Types : Boolean := True;

Specifies whether to break down the information into the different types of space
used. The default is to break down the information.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Options : String := "";
No options currently are implemented for this command. This parameter is reserved
for future development.

LM-264 e RATIONAL

constant Terse_Format
package !Cominands.Library

constant Terse_Format

Terse_Format : constant Fields := Fields’(Object => True, others => False);

Description

Defines a constant that specifies that a terse set of data be displayed by the List
procedure.

RATIONAL 7o LM-265

procedure Undelete
package !Commands.Library

procedure Undelete

procedure Undelete (Existing : Name := "<CURSOR>";
Response : String := "<PROFILE>"};

Description

Undoes the deletion (done with the Delete procedure), if any, of the specified version
of the specified object.

This procedure deletes the current version of the object and undeletes the specified
version of that object. This makes the specified version the current version.

If no version is specified and a current version already exists or if the version specified
is the current version, the procedure has no effect. If no version is specified and no
current version exists (the object is deleted), the procedure undeletes the highest-

numbered (MAX) version.

Parameters

Existing : Name := "<CURSOR>";

Specifies the version of the object to be undeleted. Special names, wildcards, context
prefixes, and attributes are allowed in this name. The default is the object on which
the cursor is located.

The name should include the version attribute to specify which version is to be
undeleted. See the Key Concepts in this book for attributes.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

A user accidentally deletes a file called File_1. To undelete it, the user enters the
command:

library.undelete ("file_1)";
The brackets indicate that the file is deleted but not expunged.

LM-266 7/1/87 RAT'ONAL

procedure Undeiete
package !Commands.Library

References

procedure Delete

RAT'ONAL 7/1/87 LM-267

procedure Unfreeze
package !Commands.Library

procedure Unfreeze

procedure Unfreeze (Existing : Name = "<IMAGE>";
Recursive : Boolean := True;
Response : String := "<PROFILE>");
Description

Unfreezes the named or current object to allow further changes to it.

This procedure undoes the effect of the Freeze procedure. If an object is frozen,
no changes can be made to the object. This procedure unfreezes the object so that

changes can be made to it.

Freezing objects can be used as part of releasing software. Once an object is frozen,
no changes can be made to the object. However, a frozen object can be executed.
The Freeze procedure is the opposite of this procedure.

Many operations may change more than one object (an object and its containing
directory or world, or a unit and its dependents). If any of these objects are frozen,
the operation fails.

The List procedure can be used to determine whether an object is frozen.

The Freeze and Unfreeze procedures are subject to access control restrictions. To
freeze or unfreeze objects within a world, a user must have owner access to that

world.

Parameters

Existing : Name := "<IMAGE>";

Specifies the object to be unfrozen. The default is the current image. Special
names, context prefixes, wildcards, and attributes can be used to specify any series
of objects to be unfrozen.

Recursive : Boolean := True;

Specifies whether to unfreeze subunits. The default is to unfreeze subunits. To
avoid unfreezing nested worlds, use Recursive => false and the wildcard 7.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-268 er RATIONAL

procedure Unfreeze
package 'Commands.Library

Example

A user has frozen world called Sample_World, which she now wants to unfreeze. To
do this, she can execute the command:

library.unfreeze ("sample_world");

References

procedure Freege

BA\TIONAL 7/1/87 LM-269

constant Verbose_Format
package !Commands.Library

constant Verbose_Format

Verbose_Format : constant Fields := Fields’(Object .. Update_Time => True,
Size .. Retain => True,
others => False);

Description

Defines a constant that specifies a verbose set of data to be displayed by the List
procedure.

LM-270 7/1/87 BA\T'ONAL

renamed procedure Verbose..List
package 'Commands.Library

renamed procedure Verbose_List

"<IMAGE>{@'V(ALL)}";
Library.Verbose_Format;
Library.0b ject;

procedure Verbose_List (Pattern : Name
Displaying : Fields
Sorted By : Field

Descending : Boolean False;
Response : String “<PROF ILE>";
Options : String ""} renames List;

Description

Displays the specified set of data about the specified set of versions of specified
objects.

This procedure is similar to the List procedure, but it has different default param-
eters. The default parameters in this procedure provide a detailed display of all
objects in the current context, sorted by object name.

Further explanation and examples can be found in the Key Concepts in this book.

Parameters

Pattern : Name := "<IMAGE>{@'V(ALL)}}";

Defines the set of objects to be listed. Special names, wildcards, context prefixes,
and attributes can be used in this name. The default gives the set of objects, all
versions of both deleted and undeleted objects, in the current image.

Displaying : Fields := Library.Verbose_Format;

Specifies the set of data to display about each object. The default is to display the
verbose set.

Sorted_ By : Field := Library.0b ject;

Specifies the field that should be sorted to order the list. The default is to order
alphabetically by the object name.

Descending : Boolean := False;

Specifies whether to reverse the ordering. The default is to use the natural ascending
order.

RATIONAL 7/1/87 LM-271

renamed procedure Verbose_List
package !Commands.Library

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to
use during the execution of this command. The default is the current job response
profile.

Options : String := "";

No options currently are implemented for this command. This parameter is reserved
for future development.

Example

The command:

library.verbose_list ("lusers.gzc.8");

produces the following results. Note that the display under “Continued . . .” can
be obtained by scrolling to the right.
IUSERS.GZC % L.IBRARY.VERBOSE_LIST STARTED 6:11:38 PM
87/01/06 18:11:48 ::: Listing of !USERS.GZC.@ sorted by object.

OBJECT VER CLASS SUBCLASS UPDATER UPDATE_TIME SIZE
FILELL s2 FILE TEXT GZC 87/81/06 16:02:15 07
L IBRARY *1 LIBRARY DIRECTORY GIC 87/P91/06 14:57:.:46c 8660
MY_DIRECTORY *] LIBRARY DIRECTORY GZC 87/@1/06 15:5@:37 73@2
MY_UNIT *]1 ADA PACK_SPEC GZC 87/01/0S5 14:38:43 7162
MY_UNIT'BODY =] ADA PACK_BODY GZC 87/01/05 14:38:44 7195
SAMPLE_DIRECTORY =1 LIBRARY DIRECTORY GZC 87/01/06 14:57:47 7535
SAMPLE_WORLD *] L IBRARY WORLD GZC 87/01/06 14:57:47 7302
S_1 *1 SESSION NIL 87/01/06 17:23:18 %)
S_1_SWITCHES *4 FILE SWITCH GZC 87/01/96 17:23:23 303
UNIT_] *]1 ADA PACK_SPEC GZC 87/01/06 15:52:40 7162
UNIT_1'BODY *1 ADA PACK_BODY GIC 87/01/96 15:52:40 7195
87/81/06 18:11:43 ::: [End of Library.List command -- No errors detected].

Continued . . .

LM-272 7/1/87 RATIONAL

STATUS FRZ

n/a
INSTALLED
INSTALLED
n/a

n/a

n/a

n/a
SOURCE
SOURCE

NN e—r—0n

renamed procedure Verbose_.List
package !{Commands.Library

RATIONAL 7yer

LM-273

subtype Volume
package !Commands.Library

subtype Volume

subtype Volume 1s Natural range @ .. 31;

Description
Defines the subtype used to represent disk volumes.

This subtype is used to specify the disk units on which libraries are built. The
directory or world and all of its subunits reside on a single disk. Whenever a
directory or world (both are libraries) is built, it is assigned to a disk volume. This
subtype defines the possible disk volumes.

Typical systems contain either two or four disk volumes, numbered consecutively
from 1. Volume 0 is not an actual disk; it is used as a convention to indicate that
the system should select the volume on which to allocate the control point.

end Library;

LM-274 7/1/87 BA\TIONAL

package Links

Links are the mechanism provided by the Environment that permit visibility be-
tween the Ada units within a world and the units outside that world. They also
provide visibility between the units that reside within a world. Links are associated
with worlds only and are accessible from all Ada units in a given world.

A link is a mapping between an Ada simple name and the full pathname of an Ada
unit in the library system. A possibly empty set of links is associated with each
world in the Environment library structure. Each library in the Environment is
associated with the set of links of its closest enclosing world. That is, a world is
associated with its own set of links, and a directory is associated with the set of
links of the closest enclosing world.

A link to a unit outside a world is called an ezternal link, and a link to a unit within
a world is called ap internal link. Internal links are created automatically by the
Environment unless they are explicitly inhibited by the user (see package Switches);
external links are specified by the user.

This package provides operations for creating, changing, deleting, and expunging
the set of links associated with a world. This package contains commands for
changing links both interactively and programmatically. See the Key Concepts in
this book for an introduction to links.

Each link has two parts: a link name and a source name. The link name is a
simple Ada identifier by which the link is known in the world. The source name
is the pathname of the Ada unit that is associated with the link name. When an
Ada unit is with a unit using a link name, the unit actually referenced is the one
designated by the source name associated with the link name. Each link name
defined for a world must be unique in that world.

The parameters for many of the commands in this package utilize three subtypes:
Source_Name, Link_Name, and Source_Pattern. The Source_Name subtype refers
to the fully qualified pathname of an Ada unit. For example, the source name for
a link to the Environment package Access_List is !Commands.Access_List. (See
the Key Concepts in this book for further information on names.) The Link_Name
subtype for that package is the name to be used in the with clause in an Ada unit
within the world containing the link. The default is the Ada simple name of the unit.
The user may change that name if desired—for example, when a name has already

RATIONAL 7/1/87 LM-275

package ICommands.Links

been used. Finally, the Source_Pattern subtype is used when the user wants to
match a pattern that corresponds to a portion of Source_Name. Pattern-matching
characters can be specified for this name. For example, to perform an operation on
all units in package !Commands, the user could specify a Source—-Pattern of “!Com-
mands?”. See the entry for the Source_Pattern subtype for further information on

pattern matching.

Commands from Package Common

Many of the operations in package !Commands.Common apply to the set of links
associated with a world. Links can be brought into a window with the Links.Edit
procedure and then edited with common editing operations that apply to links. The
following procedures from package Common apply to links. Other operations from
package Common that do not apply to links produce a message to that effect in the
Message window when used on links.

These common editing operations are discussed in Editing Specific Types (EST).

procedure Common.Abandon

Ends the editing of the current set of links. The window is removed from the screen.
Since all changes to links are made immediately, this procedure does not abandon
any of those changes.

procedure Common.Commit

Has no effect, because all changes to links are made immediately. All other opera-
tions on links implicitly commit any changes.

procedure Common.Create.Command

Creates a Command window below the current window. If the Command window
is created below a window created by the Links.Edit or the Links.Visit command,
the use clause in the Command window includes package Links. Thus, operations
in this package are visible in the Command window without qualification.

procedure Common.Definltion

Finds the definition of the selected link or the link on which the cursor is located.
This procedure creates or visits a window that contains the specification of the
source unit of the selected link.

procedure Common.Edit

Creates a Command window and places in it the command:

LM-276 7/1/87 BA\TIONAL

package 'Cominands.Links

Update ("selected or current link");

where selected or current link is the link on which the cursor is currently located,
whether or not there is a selection. Providing a new parameter and promoting the
command changes the source name for that link.

procedure Common.Elide

Selects which type of link is displayed in the window. This procedure cycles the
display from all links (the default) to external links and then to internal links.

procedure Common.Enclosing

Finds the world that contains the links that are in the current window. This pro-
cedure creates a window that contains the listing of that world.

procedure Common.Expand

Selects which type of link is displayed in the window. This procedure cycles the
display from internal links to external links and then to all links (the default).

procedure Common.Explain

Inserts an explanation below the current link that explains what units use the linked
unit. This procedure is useful for determining what dependencies on links exist. If
there already is an explanation explaining the link, this procedure removes that
explanation.

procedure Common.Release

Ends the editing of the current set of links. The window is removed from the screen.

procedure Common.Revert

Redraws the set of links in the current window. If the set of links has been changed
by another user or program, the new image reflects those changes.

procedure Common.Sort_Image

Selects the order in which to display the set of links. This procedure cycles the
display from alphabetic by link names (the default), to alphabetic by source names,
to alphabetic internal link names followed by alphabetic external link names, and
to alphabetic internal source names followed by alphabetic external source names.

procedure Common.Object.Child

If no link is selected, the procedure selects the link on which the cursor is located. If
a single link is already selected, the procedure has no effect. If all links are already
selected, the procedure selects the link on which the cursor is located.

'?ATIONAL 7/1/87 LM-277

package !Commands.Links

procedure Common.Object.Copy

Copies a selected link from one set of links to the set of links on which the cursor
is located. H the selected link and the cursor are both in the same set of links, the
procedure has no effect.

procedure Common.Object.Delete

Deletes the selected link.

procedure Common.Object.First.Child
Selects the first link in the set of links.

procedure Common.Object.Insert
Creates a Command window and places in it the command:

Insert ("[link=>] source; etc."};

where the link parameter must be specified to provide a new link. Specifying a
source for a new link and promoting the command inserts a new link with the same
simple name as the source unit. Multiple links can be inserted with one command
by separating them with semicolons.

procedure Common.Object.Last_Child
Selects the last link of the set.

procedure Common.Object.Move

Copies a selected link from one set of links to the set of links on which the cursor
is located. Currently, the procedure copies the link but does not move it. If the
selected link and the cursor are both in the same set of links, the procedure has no

effect.

procedure Common.Object.Next

Selects the next link. If no link is already selected, the procedure selects the link
on which the cursor is located. If all links are selected, this procedure produces an

€error.

procedure Common.Object.Parent

Selects the link on which the cursor is located. If no link is already selected, the
procedure selects the link on which the cursor is located. If a link is selected, the
procedure selects all links in the set. Otherwise, the procedure has no effect.

procedure Common.Object.Previous

Selects the previous link. If no link is already selected, the procedure selects the
link on which the cursor is located. If all links are selected, this procedure produces
an error.

LM-278 7/1/87 EATIONAL

procedure Add
package ICommands.Links

procedure Add

procedure Add (Source : Source_Name := ">>SOURCE NAMES<K";
Link : Link_Name = "#";
World : World_Name = "<IMAGE>™"
Response : String = "<PROFILE>"};

Description
Adds a link or links to the set of links of the specified world.

The procedure adds a link with the specified link name and source to the specified
world. If a link is added and the link name already exists, the source names must
reference the same unit.

The same operation is performed by the Insert procedure, except that it brings up
a window containing the set of links if one does not already appear on the screen.

Parameters

Source : Source_Name := ">>SOURCE NAMES<K";

Specifies the source of the linked unit. Wildcards can be used in this name to specify
multiple source units. The default parameter placeholder ">>SOURCE NAMES<<" must
be replaced or an error will result.

Link : Link_Name := "#";

Specifies the name of the link. Substitution characters can be used in this name to
allow building link names from source names. The default is the simple name of
the source unit.

World : World_Name := "<IMAGE>";
Specifies the world to which to add the link. The default is the current image.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 71/er LM-279

procedure Add
package !{Commands.Links

Errors

If a set of links is being added and any one fails because of name conflicts with
existing units, only that link addition will fail.

Example
The command:
links.add ("'!'commands.e","#",6"lusers.bob"};

adds links in the world !Users.Bob to the packages in !Commands. The name of
each link will be the simple name of the source unit.

References
procedure Insert
procedure Replace
procedure Update
SIM, package Profile

LM-280 7/1/87 PAT|ONAL

constant Any
package !ICommands.Links

constant Any

Any : constant Link_Kind := Links_Iimplementation.Any;

Description

A constant specifying that internal or external links, or both, are allowed.

RAT'ONAL 7/1/87 LM-281

procedure Copy
package !Commands.Links

procedure Copy

procedure Copy (Source_World : World_Name ">>WORLD NAME<K";

Target_World : World_Name = "<IMAGE>",;
Link : Link_Name = "a",;

Source : Source_Pattern := "2";

Kind : Link_Kind = Links.Any;
Response : String = "<PROFILE>"};

Description
Copies the links (or some subset of them) from one world into another world.

This procedure adds links to a target world by copying them from a source world.
By default, all links from the source world are chosen. Any subset of those links
can be specified with wildcards or specific link names. Also, the type of links to be
copied can be specified: internal, external, or both.

The links to be copied must match both the link name and the source pattern
specified in the procedure. Typically, either the set of link names or the set of
source names is restricted to some subset of the links in the set.

Parameters

Source_World : World_Name := ">>WORLD NAME<K";

Specifies the world from which the links are to be copied. The default parameter
placeholder ">>WORLD NAME<<" must be replaced or an error will result.

Target_World : World_Name := "<IMAGE>";

Specifies the world into which the links are to be copied. The default is the current
image.

Link : Link_Name := "@";

Specifies which links are to be copied. Pattern matching is allowed. The default
pattern matches all link names. See the entry for the Source_Pattern subtype for
further information on pattern matching.

Source : Source_Pattern := "?";

Specifies the source pattern for the links to be copied. The default pattern matches
all source names. See the entry for the Source_Pattern subtype for further infor-
mation on pattern matching.

LM-282 7/1/87 EATIONAL

procedure Copy
package !Commands.Links

Kind : Link_Kind := Links.Any;

Specifies the kinds of links to copied. The default is both internal and external
links.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

Context prefixes cannot be used when specifying the source name for the Source
parameter.

Example
The command:
links.copy {"'users.bob”,"!users.sam”,"8", "!tools?");

copies any links in !Users.Bob that have a source name beginning with !Tools to
the set of links in {Users.Sam.

References

SIM, package Profile

RATIONAL /e LM-283

procedure Delete
package !Commands.Links

procedure Delete

procedure Delete (Link : Link_Name = ">>LINK NAMES<K";
Source : Source_Pattern := "?";
Kind : Link_Kind = Links.Any;
World : World_Name = "<IMAGE>";
Response : String = "<PROFILE>"};

Description
Deletes the link(s) from a world.

The procedure deletes links that have the specified link name, source pattern, and
kind from the specified world. Any set of links can be specified with wildcards or
source patterns. Also, the type of links to be deleted can be specified: internal,

external, or both.

The links to be deleted must match both the link name and the source patiern
specified in the procedure. Typically, either the set of link names or the set of
source names is restricted to some subset of the links in the set.

Parameters

Link : Link_Name := ">>LINK NAMES<K";

Specifies the link or links to be deleted. Pattern matching is allowed in this name.
The default parameter placeholder ">>LINK NAMES<<" must be replaced or an error
will result. See the entry for the Source_Pattern subtype for information on pattern

matching.

Source : Source_Pattern := "?";

Specifies the source pattern of those links to be deleted. Pattern matching is allowed
in this name. The default is any source name. See the entry for the Source_Pattern
subtype for further information on pattern matching.

Kind : Link_Kind := Links.Any;
Specifies the kinds of links to be deleted. The default is both internal and external
links.

Uorld : World_Name := "<IMAGE>";
Specifies the world whose links are to be deleted. The default is the current image.

LM-284 7/1/87 IQATIONAL

procedure Delete
package !Commands.Links

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

Context prefixes cannot be used when specifying the source name for the Source
parameter.

Example

The command:

links.delete ("6","lusers.bob?",links.any,”!users.sam");

deletes links in the world !Users.Sam that link to any units in the world !Users.Bob.

References
constant Any

SIM, package Profile

RAT'ONAL 7/1/87 LM-285

procedure Dependents
package !Commands.Links

procedure Dependents

procedure Dependents (Link : Link_Name = "e";
Source : Source_Pattern := "?";
Kind : Link_Kind = Links.Any;
World : World_Name = "§§"

55",
Response : String "<PROFILE>"};

Description
Displays the set of Ada units that depend on a specified link.

The procedure displays in the current output window the set of units in the specified
world that depend on the specified link name and source name. The dependent
units must be in the installed or coded state. Any set of links can be specified using
wildcards in link and source names. Also, the type of links to be checked can be
specified: internal, external, or both.

The links to be checked must match the link name, the source pattern, and the
kind specified in the procedure. Typically, either the set of link names or the set of
source names is restricted to some subset of the links in the set.

Parameters

Link : Link_Name := "@";

Specifies the link or links to be checked. Pattern matching is allowed in this name.
The default pattern matches all link names. See the entry for the Link_Name
subtype for further information on pattern matching.

Source : Source_Pattern := "?";

Specifies the source name of those links to be checked. Pattern matching is allowed
in this name. The default pattern matches all source names. See the entry for the
Source_Pattern subtype for further information on pattern matching.

Kind : Link_Kind := Links.Any;
Specifies the kinds of links for which to check dependents. The default is both
internal and external links.

World : World_Name := "$$";
Specifies the world whose links are to be checked. The default is the enclosing world
of the current context.

LM-286 e RATIONAL

procedure Dependents
package !Commands.Links

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

Context prefixes cannot be used when specifying the source name for the Source
parameter.

References

SIM, package Profile

RAT'ONAL 7/1/87 LM-287

procedure Display
package !Commands.Links

procedure Display

procedure Display (World : World_Name = "<IMAGE>";
Link : Link_Name (= "@";
Source : Source_Pattern := "?2";
Kind : Link_Kind = Links.Any;
Response : String = "<PROFILE>");

Description

Displays the specified set of links for the selected or specified world in the log file.

The procedure displays the links that match the specified link name, the specified
source name, and kind for the selected or specified world. The results are placed in
Current_Output, which is, by default, the current output window. Also, the type
of links to be displayed can be specified: internal, external, or both.

The links to be displayed must match the link name, the source pattern, and link
kind specified in the procedure. Typically, either the set of link names or the set of
source names is restricted to some subset of the links in the set.

Parameters

World : World_Name := "<IMAGE>";

Specifies the world whose links are to be displayed. The default is the current image.
If the current image is not a world, the links for the enclosing world are displayed.

Link : Link_Name := "@";

Specifies the link name of the links to be displayed. The default pattern matches all
links. See the entry for the Link_Name subtype for further information on pattern
matching.

Source : Source_Pattern := "?7";

Specifies the source name of the links to be displayed. The default pattern matches
all source names. See the entry for the Source_Pattern subtype for further infor-
mation on pattern matching.

Kind : Link_Kind := Links.Any;

Specifies the kind of links to be displayed. The default is both internal and external
links.

LM-288 e RATIONAL

procedure Display
package !Commands.Links

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

Context prefixes cannot be used when specifying the source name for the Source
parameter.

Example

The command:

links.display ("!users.bob","8", K "!tools?");
shows all links to !Tools in the set of links for the world !Users.Bob.

References

SIM, package Profile

RATIONAL 7/1/87 LM-289

procedure Edit
package !Commands.Links

procedure Edit

procedure Edit (World : World_Name := "<IMAGE>");

Description
Edits the links from the specified world.

The procedure creates a window and displays the set of links from the specified
world in that window. If a window already exists with those links in it, the window
is reused. From the window, the links can be edited with many operations from
package !Commands.Common that apply to this class of object (see the introduction
to package Links for details).

This procedure creates a new window for each set of links to be edited. To reuse
the same window but to edit a different set of links in that window, see the Visit

procedure.

Parameters

World : World_Name := "<IMAGE>";
Specifies the world whose links are to be edited. The default is the current image.

Example
The command:
links.edit ("l!users.jim"};

displays the set of links for the world !Users.Jim in a window.

References

procedure Visit

LM-290 7/1/87 BAT'ONAL

procedure Expunge
package 'Commands.Links

procedure Expunge

"<IMAGE>";

procedure Expunge (World : World_Name
"<PROF I[LE>");

Response : String

Description
Removes obsolete links from the set of links for the specified world.

When a unit is deleted from a world, the links to that unit are not removed from
all of the sets of links that reference the unit, in case the user later wants to restore
or undelete the unit. The unit thus can be restored or undeleted without again
adding all of the links that reference the unit. When removal of an obsolete link is
desired, references to links to units that no longer exist in the specified world can
be removed with the Expunge procedure.

Parameters

World : UWorld_Name := "<IMAGE>";

Specifies the name of the world whose set of links is to be expunged. The default
is the current image. If the current image is not a world, the links for the enclosing
world are expunged.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

SIM, package Profile

RATIONAL 7/1/87 LM-291

constant External
package !Commands.Links

constant External

External : constant Link_Kind : Links_Implementation.External;

Description
Defines a constant that specifies an external link.

An external link is a link whose source unit is contained outside the current world.

LM-292 e RATIONAL

procedure Insert
package !Commands.Links

procedure Insert

procedure Insert {(Source : Source_Name := ">>SOURCE NAME<<K");

Description
Inserts a link to the units specified by the source name in the set of links.

The procedure creates a link in the current set of links with the specified source
name. By default, the link name is created with the same simple name as the source
unit. The window that contains the affected set of links is updated.

If a set of links is not being edited when this procedure is executed, the procedure
creates a window with the links of the enclosing world (from wherever the current
context is) and inserts the new link in that set of links.

The same operation is performed by the Add procedure, without the use of a win-
dow.

The parameter placeholder ">>SOURCE NAME<<" must be replaced with a link speci-
fication that follows, generally, the format of Options parameters (that is, Source=>
Value, where the value delimiter can be =>, :=, or =). Multiple link specifica-
tions can be given by separating them with a semicolon or a comma. For further
information on the syntax of the Options parameter, see the Key Concepts in this
book.

Parameters

Source : Source_Name := ">>SOURCE NAME<K";

Specifies the source unit of the link. More than one source unit can be speci-
fied within this parameter. Multiple names can be separated by a semicolon, and
wildcards can be used to denote several units. The default parameter placeholder
">>SOURCE NAME<<" must be replaced or an error will result.

Restrictions

Context prefixes cannot be used when specifying the source name for the Source
parameter.

RATIONAL 7/1/er LM-203

procedure Insert
package !Commands.Links

Example

A user named Bill is currently working in his home world. He wants to add a link
to a unit called Unit—-1 in the home world of a user named Sue. To do this, he

executes the command:

links.insert ("l!users.sue.unit_1");

References
procedure Add
procedure Replace

procedure Update

LM-294 7/1/87 RATIONAL

constant Internal
package 'Commands.Links

constant Internal

Internal : constant Link_Kind : Links_Iimplementation. Internal;

Description
Defines a constant that specifies an internal link.

An internal link is a link that designates a unit contained inside the current world
but is not nested inside any contained worlds.

RATIONAL 7/1/er LM-295

subtype Link_Kind
package !Commands.Links

subtype Link_Kind

subtype Link_Kind is Links_Implementation.Link_Kind;

Description
Specifies the kind of link to delete, replace, or display.
The kind of link can be internal, external, or any (which specifies both).

References
constant Any
constant External

constant Internal

LM-296 7/1/87 R)ATIONAL

subtype Link_Name
package 'Commands.Links

subtype Link_Name

subtype Link_Name 1s String;

Description

Defines the form of link names.

The subtype is a string that denotes the local names of units (the link names used
when withing the unit). The link name is a simple name that must be a legal Ada
identifier. Link names are the names of Ada units that are used in context clauses
of other Ada units.

When used as a parameter, the name allows use of pattern matching except when
used in the Add and Replace procedures. In those two procedures, the link name
can contain only substitution characters. In all cases, the link name must resolve to
a legal Ada simple name. For further information on naming, see the Key Concepts
in this book.

Patterns include the following characters:

#

The pound sign is replaced by a single character. It will not match the null
string or a period (.). For example, File_# matches File_1 and File_A.

The at sign matches any string that does not contain a period. For example,
'Users.Mary.e matches everything in Mary’s home world, but nothing below
that level in the library structure. The at sign matches the null string.

The question mark matches any sequence of characters at the beginning of the
name (that is, ? or !?) or a sequence of characters beginning with a period (.).
It matches the null string. For example, !Users? matches everything in !Users.

Brackets indicate a set of objects—for example, [!Users.Mary?,!Users.John?).

The tilde indicates that something should not be matched—for example, “!Users-
.Mary means that !Users.Mary is not matched.

RATIONAL +/1/er LM-297

procedure Replace
package !Commands.Links

procedure Replace

procedure Replace (Source : Source_Name := "D>>SOURCE NAMES<K";
Link : Link_Name = "#";
World : World_Name = "<IMAGED>";
Response : String = "<PROFILE>"});

Description

Replaces links to the units named by the Source name, if they exist; if they do not
exist, they are created.

The same operation is performed by the Update procedure except that the Update
procedure brings up a window displaying the set of links for the world. A similar
operation is performed by the Add and Insert procedures, except that these require
that no link of the same name exist at the time of the operation.

Parameters

Source : Source_Name := ">>SOURCE NAMES<K";

Specifies the source of the linked unit. Wildcards can be used in this name for
specifying multiple links. The default parameter placeholder ">>SOURCE NAMES<<"
must be replaced or an error will result.

Link : Link_Name := "#";

Specifies the new name of the link. Substitution characters can be used in this name
to allow building names from source names. The default causes the simple name of
the source unit to be the link name.

World : World_Name := "<IMAGE>";
Specifies the world in which to replace the link. The default is the current image.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

A user named John has in his home world a link named Message to a package called
'Users.Sue.Message. He wants to use the link name Message for the Environment
package !Commands.Message, whose current link name is Environment_Message.
To update the link name, John uses the command:

LM-298 e RATIONAL

procedure Replace
package !Commands.Links

links.replace ("!commands.message”,"#","lusers. john");

After executing this command, he may want to delete the link to the same package
using the link name Environment_Message. This replace will succeed only if no
installed unit in John’s world has withed Message.

References
procedure Add
procedure Insert
procedure Update

SIM, package Profile

RATIONAL 7/1/er | LM-200

subtype Source_Name
package !Commands.Links

subtype Source_Name

subtype Source_Name 1is String;

Description

Defines the form of the names for units that are to become the sources of links.

This subtype is a string that names one or more library units. The units do not
have to be installed, but their declaration must exist in the library. All forms of
name expressions (context, prefixes, wildcards, attributes, and so on) can be used
in Source_Name strings as long as the only objects named are Ada units. In the
Update procedure, only one Ada unit can be named.

LM-300 7/1/87 E’AT'ONAL

subtype Source_Pattern
package 'Commands.Links

subtype Source_Pattern

subtype Source_Pattern 1is String;

Description

Defines a subtype that contains a complete directory pathname beginning with !.

Wildcards can appear in the pathname. A source pattern string is matched against
the source names of the links of a world to select a set of links on which to operate.

Parameters of this type default to 7, which is a wildcard pattern that matches all
source names.

Patterns include the following characters:

#

The pound sign is replaced by a single character. It will not match the null
string or a period (.). For example, File_# matches File_1 and File_A.

The at sign matches any string that does not contain a period. For example,
'Users.Mary.e¢ matches everything in Mary’s home world, but nothing below
that level in the library structure. The at sign matches the null string.

The question mark matches any sequence of characters at the beginning of the
name (that is, ? of !7) or a sequence of characters beginning with a period (.).
It matches the null string. For example, !Users? matches everything in !Users.

Brackets indicate a set of objects—for example, [!Users.Mary?,!Users.John?].

The tilde indicates that something should not be matched—for example, "!Users-
.Mary means that !Users.Mary is not matched.

RATIONAL 7/1/er LM-301

procedure Update
package !Commands.Links

procedure Update

procedure Update (Source : Source_Name := “>>SOURCE NAME<<K"};

Description
Changes the source name of the selected link to be the one specified.

This command, generated in response to the !Commands.Common.Edit procedure
on a links window, usually is not typed directly by the user.

The procedure updates the source name of the selected link in the associated window
of links. The window that contains the affected set of links is updated. If a set of
links is not being edited when this procedure is executed, an error results.

A similar operation is performed by the Replace procedure, except that it does not
require that a window containing the set of links be displayed on the screen.

Parameters

Source : Source_Name := ">>SOURCE NAME<K";

Specifies the fully qualified source name. Wildcards can be used if they resolve
to a single unit. The default parameter placeholder ">>SOURCE NAME<<" must be
replaced or an error will result.

Errors

An error will result if a window containing a selected link is not displayed (that is,
the command works only in a Command window below the set of links).

LM-302 7/1/87 BA\-”ONAL

procedure Update
package !Commands.Links

Example

A user named John has a link in his home world to the Environment package
!ICommands.Message. A coworker named Sue has a package in her home world
called Message, which John wants to reference by the link name Message. He no
longer wants to have a link to the package provided by the Environment. To update
the source name for the link name Message with that of the package in Sue’s world,
John uses the Edit procedure to open a window containing the links for his home
world. He then selects the Message link in the display and presses [eai], which
produces a prompt for Links.Update (">>SOURCE NAME<<");. He replaces >>SOURCE
NAME<< with !Users.Sue.Message and executes the command.

References
procedure Add
procedure Insert

procedure Replace

RATIONAL 7/1/er LM-303

procedure Visit
package !Commands.Links

procedure Visit

procedure Visit (World : World_Name := "<IMAGE>"};

Description
Visits the links from the specified world.

This procedure replaces an existing window containing the links editor with the set
of links from the specified world. If a window does not already exist for editing
links, one is created. This differs from the Edit procedure, which creates a new
window for the links editor. From the window, the links can be edited with many
operations from package !Commands.Common that apply to the editing links (see
the introduction to package Links for details).

This procedure does not create a new window for each set of links to be edited. To
create a new window to edit a different set of links in that window, use the Edit
procedure.

Parameters

World : World_Name := "<IMAGE>";

Specifies the world whose links are to be edited. If there is no selection and the
default value is used, the current containing world is used.

References

procedure Edit

LM-304 7/1/87 BA\-”ONAL

subtype World_Name
package !Commands.Links

subtype World_Name

subtype World_Name 1is String;

Description
Defines the form of world names.

This subtype is a string that denotes the full name of an existing world. When
used as a parameter, the name allows the use of special names, wildcards, and
context prefixes. The name can resolve to only one world. For further information
on naming, see the Key Concepts in this book.

end Links;

RATIONAL 7y LM-305

RATIONAL

package Switches

Package Switches provides operations for creating, manipulating, changing, and
deleting the sets of switches associated with a library or a session. This package
contains commands for changing switches both interactively and programmatically.

Error Response

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and what activities to use.
The response profile ("<PROF ILE>"), which many commands use by default, specifies
the job response profile. If there is no job response profile, the session response
profile (“<SESSION_PROFILE>") is used. If there is no session response profile, the
system’s default profile ("<DEFAULT>") is used. For further information on profiles,
see SIM, package Profile.

Special Names

Many of the commands in this package have spectal names as default values to
parameters requiring names. Anywhere that a string name can be used, a special
name can be used. Special names allow you to designate without supplying a
pathname. They take the form “<special name>®, where special name specifies the
text, region, or area that they represent, as described below:

"<SELECTION>" References the highlighted object, if the cursor is located in
a highlighted area.

"<REGION>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlighted area in the window.

"<IMAGE>" References the highlighted object, if the cursor is in a high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"KTEXT>" References the object named in the highlighted text in the
image in the window.

RAT'ONAL 7/1/87 LM-307

package !Commands.Switches

"<ACTIVITY>" References the default activity. If an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

You can replace special names with other types of naming expressions, as accepted
by that parameter.

Parameter Placeholders

Some of the commands in this package have a parameter placeholder as a default
value. Parameter placeholders take the form “>>name<<?”, where name is the type
of object that should replace the parameter placeholder. For further information,
see the Key Concepts in this book.

Overview of Switches

There are two kinds of switches: library and session. Ltbrary switches are defined for
a specific library (that is, a directory or world). A set of these switches is associated
with a particular library. These switches affect how compilation is done, how links
are managed, or how pretty-printing is done in that library. Changes to any of
these switches take effect immediately after the change is made. Library switches
are documented in this section of the Rattonal Environment Reference Manual.

Session switches affect the way the system behaves on your terminal. Some of
these switches are read by the Environment only when the user logs in. Others
are effective immediately. Still others are checked when some window is created.
Session switches are documented in SJM, Session Switches.

Switches are stored in File class objects with subclass Switch. Each switch file
contains all the switches for a given session or library. A session switch file is
located in the user’s home directory. You can have several switch files, one for each
session. Each library may have its own library switch file, or several libraries may
share the same switch file.

A session switch file can be edited using the Edit_Session_Attributes procedure. A
library switch file can be edited using the Edit procedure. If there is no library
switch file associated with that library, the editor will create one.

After either the Edit_Session_Attributes or the Edit command is entered, the Envi-
ronment will open a window showing the list of switches. To change a switch, place
the cursor on the line displaying the switch and select it using - [=]. Press
[eaw]. If the switch has a Boolean value, the value will be toggled. If the switch takes
a non-Boolean value, a Command window will be opened with prompts to insert

the new value.

To get help on a switch, enter the switch file as before, place the cursor on the line
of the switch in question, and press [Expiain]. A help file will appear on the line below
the switch.

The following list names all library switches, grouped by functionality. Following
the list are descriptions of the switches, ordered alphabetically.

LM-308 7/1/87 RATIONAL

package !Commands.Switches

Library Switches Grouped by Function
Switches for Ada Units

Alignment_Threshold Comment_Column
Consistent_Breaking Create_Subprogram-Specs
Enable_Deallocation Id_Case
Ignore_Interface_Pragmas Ignore_Minor_Errors
Ignore_Unsupported_Rep_Specs Keyword_Case
Line_Length Major_Indentation
Minor_Indentation Number_Case
Page_Limit Statement_Indentation
Statement_Length Wrap_Indentation
Switches for Networking

Account Auto_Login

Password Prompt_For_Account
Prompt_For_Password Remote_Directory
Remote_Machine Remote_Roof
Remote_Type Send_Port_Enabled
Transfer_Mode Transfer_Structure
Transfer_Type Username

Switches for Links
Create_Internal_Links Require_Internal._Links

Switches for Listings
Asm_Listing Seg-Listing
Terminal_Echo

Library Switch Descriptions

Account

Specifies an account name to set up an FTP connection between a local and a remote
computer. The account is on the remote computer. The default is the null string.
The full switch name is Ftp.Account.

Alignment_ Threshold

Specifies the number of columns that text can be moved to align statements and
punctuation, such as declarations, colons, and arrows in named notation. Once a
Format option has been applied to an Ada unit, changing the option has no effect on
that Ada unit, but it does affect new units created after the option has been changed.
The default is 16 columns. The full switch name is Format.Alignment_Threshold.

Asm.Listing

Specifies whether an assembly list file should be created for the code generated.
This switch should be set only by Rational support personnel. Package Cg-Listing

RATIONAL +/y/er LM-309

package !Commands.Switches

in !Commands.Internal.Maintenance retrieves these files. The Terminal_Echo flag
controls whether these files are also displayed on the screen as they are being gen-
erated. The default is false. The full switch name is R1000_Cg.Asm_Listing.

Auto-Login

Specifies that, when an FTP connection is established, FTP should automatically
log the user into the remote machine. The default is false. The full switch name is
Ftp.Auto_Login.

Closed-Private_Part
Managed by Rational Subsystems™. This switch should not be changed by users.

Comment..Column

Controls in which column the !Commands.Editor.Tab_To_Comment command in-
serts a comment delimiter. Comments placed in this column remain in that column
despite changes to the length of the statement on that same line. Once a Format
option has been applied to an Ada unit, changing the option has no effect on that
Ada unit, but it does affect new units created after the option has been changed.
The default is column 1. The full switch name is Format.Comment_Column.

Configuration

Managed by Rational Subsystems. This switch should not be changed by users.
The full switch name is Parser.Configuration.

Consistent_Breaking

Controls the formatting of aggregates, discriminants, enumeration types, parameter
lists, choice lists, and identifier lists. If this option is true and a list does not fit on
a line, every element of the list begins on a new line. The default is true. The full
switch name is Format.Consistent_Breaking.

Create_Internal_Links

Sets a Boolean value that specifies whether to create internal links in the set of links
for the world for units created in the enclosing world or directories. The default
is true. The full switch name is Directory.Create_Internal_Links. (For further
information on links, see the Key Concepts in this book.)

Create_Subprogram.Specs

Controls whether specs for library unit subprograms are automatically created when
the body is first promoted. The contents of these specs will be created the first time
the body is successfully installed. The wsth clause is derived from the with clauses
in the body. Only those required to promote the spec are included. The default is
true. The full switch name is Directory.Create_Subprogram_Specs.

LM-310 e RATIONAL

package 'Commands.Switches

Enable_Deallocation

Specifies whether to enable Unchecked_Deallocation for all access types in units
in that library. The default is false. The full switch name is R1000_Cg.Enable-
-Deallocation.

Id_Case

Specifies the case of identifiers in Ada units. The options are Lower, Upper, and
Capitalized. The default is Capitalized. Once a Format option has been applied to
an Ada unit, changing the option has no effect on that Ada unit, but it does affect
the new units created after the option has been changed. The full switch name is
Format.Id_Case.

Ignore_Interface_Pragmas

Causes interface pragmas to be ignored by the semanticist. The default is false.
The full switch name is Semantics.Ignore_Interface_Pragmas.

Ignore_Minor.Errors

Sets a Boolean value that specifies whether minor errors should be ignored. Mi-
nor errors are those that the Reference Manual for the Ada Programming Language
defines as illegal but do not affect the semantic validity of the program. An ex-
ample is illegal declaration order. The default is false. The full switch name is
Semantics.Ignore_Minor_Errors.

Ignore_Unsupported-Rep_Specs

Causes errors about unsupported representation specifications to be given as warn-
ings. The default is false. The full switch name is Semantics.Ignore_Unsupported-
—Rep_Specs.

Keyword.Case

Specifies the case of keywords as printed by the pretty-printer in Ada units. Options
are Lower, Upper, and Capitalized. The default is Lower. Once a Format option
has been applied to an Ada unit, changing the option has no effect on that Ada
unit, but it does affect new units created after the option has been changed. The
full switch name is Format.Keyword_Case.

Line_Length

Specifies the number of columns used by the pretty-printer in printing lines in Ada
units before wrapping them. The default is 80. Once a Format option has been
applied to an Ada unit, changing the option has no effect on that Ada unit, but it
does affect new units created after the option has been changed. The full switch
name is Format.Line_Length.

RATIONAL 7/1/87 LM-311

package !Commands.Switches

Major-Indentation

Specifies the number of columns that are to be used for major indentations. The
default is 4. Once a Format option has been applied to an Ada unit, changing the
option has no effect on that Ada unit, but it does affect new units created after the
option has been changed. The full switch name is Format.Major_Indentation.

Minor-Indentation

Specifies the number of columns that are to be used for minor indentations. The
default is 4. Once a Format option has been applied to an Ada unit, changing the
option has no effect on that Ada unit, but it does affect new units created after the
option has been changed. The full switch name is Format.Minor_Indentation.

Number_Case

Specifies the case to be used in displaying exponentials. The default is uppercase.
Once a Format option has been applied to an Ada unit, changing the option has
no effect on that Ada unit, but it does affect new units created after the option has
been changed. The full switch name is Format.Number_Case.

Page_Limit

Controls the page limit for a job executing the unit code that was compiled with
this switch. The default is 0. The full switch name is R1000-Cg.Page_Limit.

Password

Specifies the user’s remote password for logging into a remote computer over an
FTP connection. The default is null. The full switch name is Ftp.Password.

Prompt-For- Account

Causes FTP, when FTP operations are executed, to prompt the user to supply a
user account on the connected remote computer. The user is prompted only if the
Account switch is null. The default is false. The full switch name is Ftp.Prompt-

_For_Account.

Prompt-For_Password

Causes FTP, when FTP operations are executed, to prompt the user to supply a
password for the connected remote computer. The user is prompted only if the
Account switch is null. The default is false. The full switch name is Ftp.Prompt-

_For_Password.

Remote.Directory

Sets a remote directory to which to connect when an FTP connection to a re-
mote computer is being established. The default is null. The full switch name
is Ftp.Remote_Directory.

LM-312 7/1/87 RATIONAL

package !Commands.Switches

Remote_Machine

Specifies the name of the remote computer to which FTP is to connect. The default
is null. The full switch name is Ftp.Remote_Machine.

Remote_Roof

Specifies a directory on a remote computer connected to a local computer through
an FTP connection. This directory is an ancestor directory for a group of files
that FTP is to transfer. The default is the null string. The full switch name is
Ftp.Remote_Roof.

Remote_Type

Specifies the type of the remote computer to which FTP is to connect. The default
is Rational. The full switch name is Ftp.Remote_Type.

Require_Internal.Links

Controls whether failure to create internal links (as controlled by the Directory-
.Create_Internal_Links switch) generates a warning or an error. The default (true)
is to treat failure to generate links as an error and to discontinue the operation.
The full switch name is Directory.Require_Internal_Links.

Seg-Llsting

Specifies whether a listing of object code is produced. Listings are stored as at-
tributes of the units with which they are associated. Package Cg_Listing in !Com-
mands.Internal.Maintenance retrieves them. The default is false. The full switch
name is R1000_Cg.Seg_Listing.

Send-Port_Enabled

Sets a Boolean value that helps diagnose failing FTP transfers by verifying that
local and remote machines are using the same connection. The switch should be
set to true for transfer of multiple files. The default is false. The full switch name
is Ftp.Send_Port_Enabled.

Statement_Indentation

Specifies the number of columns the pretty-printer indents the second and sub-
sequent lines of a statement when the statement has to be broken because it is
longer than Line._Length. Once a Format option has been applied to an Ada unit,
changing the option has no effect on that Ada unit, but it does affect new units
created after the option has been changed. The default is 3. The full switch name
is Format.Statement_Indentation.

Statement.Length

Specifies the smallest number of columns that the pretty-printer will use to print
a statement. Once a Format option has been applied to an Ada unit, changing
the option has no effect on that Ada unit, but it does affect new units created
after the option has been changed. The default is 35. The full switch name is
Format.Statement_Length.

QAT'ONAL 7/1/87 LM-313

package !Commands.Switches

Subsystem-Interface

Managed by Rational Subsystems. This switch should not be changed by users.
The full switch name is Semantics.Subsystem_Interface.

Target_-Key

Managed by Rational Subsystems. This switch should not be changed by users.
The full switch name is Policy.Target_Key.

Terminal_Echo

Specifies whether assembly listings are displayed on the terminal as they are gen-
erated. The default is false. The full switch name is R1000_Cg.Terminal_Echo.

Transfer_Mode

Sets the mode of an FTP file transfer. Currently, only Stream type is supported.
The default is stream. The full switch name is Ftp.Transfer_Mode.

Transfer_Structure

Sets the structure of an FTP file transfer. Currently, only File type is supported.
The default is file. The full switch name is Ftp.Transfer_Structure.

Transfer-Type

Sets the type of an FTP file transfer. It can be set to allow text, image, and binary
transfers. The default is ASCII. The full switch name is Ftp.Transfer_Type.

Username

Sets the remote username for logging into a remote computer over an FTP connec-
tion. The default is the null string. The full switch name is Ftp.Username.

Wrap.Indentation

Specifies the column to which the pretty-printer will extend in wrapping when
the current level of wrapping would require statements to be shorter than State-
ment_Length. Once a Format option has been applied to an Ada unit, changing
the option has no effect on that Ada unit, but it does affect new units created after
the option has been changed. The default is column 16. The full switch name is
Format.Wrap_Indentation.

LM-314 e RATIONAL

package !Commands.Switches

Commands from package Common

Many of the operations in package !Commands.Common apply to switches. Library
switches can be brought into a window with the Switches.Edit procedure. The
following procedures from package Common apply to switches. Other operations
from package Common that do not apply to switches produce a message to that
effect in the Message window when used on switches.

procedure Common.Abandon

Abandons the editing of the switches. The window is removed from the screen. Any
changes made to the switches since the last commit operation are lost.

procedure Common.Commit

Commits changes to the switches. Changes to the switches are made in a temporary
area of the Environment. To make those changes permanent and to have them take
effect, you must commit those changes.

procedure Common.Create.Command

Creates a Command window below the current window. The use clause in the
Command window, use Editor, Ada, Switches, Common;, includes this package, so
operations in this package are visible in the Command window without qualification.

procedure Common.Definitlon

Finds the definition of the selected switch value if that value is a library or library
unit. The procedure produces an error for switches that are Booleans, integers, or
nonswitch name strings. If the switch is a switch name, a window is brought up
with the definition of that object in the window.

procedure Common.Edit

Creates a Command window and places in it the command:
Change ("current switch value");

where the parameter is the switch value of the switch on which the cursor is located,
whether or not there is a selection. Providing a new switch value and promoting
the command changes the value of the switch. If the current switch is of Boolean
type, the command toggles the value of the switch without creating a Command
window.

procedure Common.Ellde

Reduces]Selides) the number of switches displayed in the window. The window can
display all switches in the system (the greatest number displayed) or the nondefault
switches in the file (the least number displayed). This procedure reduces the num-
ber displayed to the next smaller set. Reducing the number below the nondefault
switches has no effect.

RAT'ONAL 7/1/87 LM-315

package ICommands.Switches

procedure Common.Enclosing

Finds the directory or world that contains the switches that are in the current
window. If the window contains session switches, the procedure finds the home
world for that session. The In_Place parameter specifies whether the library window
replaces the switch window.

procedure Common.Expand

Increases (expands) the number of switches displayed in the window. The window
can display all switches in the system (the most number displayed) or all nondefault
switches in the file (the least number displayed). This procedure increases the
number displayed to the next larger set. Increasing the number above all switches
in the system has no effect.

procedure Common.Explain

Inserts, below the current switch, an explanation of that switch. If an explanation
is already there, this procedure will remove it.

procedure Common.Promote

Commits changes to the switches. Changes to switches are made in a temporary
area of the Environment. To make these changes permanent and to have them take
effect, you must commit those changes.

procedure Common.Release

Commits changes and ends the editing of the switches. The window is removed
from the screen after any changes to the switches are saved.

procedure Common.Revert

Redraws the switches in the current window. If the switches have been changed by
another user or program, this procedure redraws the switches to ensure that the

image is up to date.

procedure Common.Object.Child

Selects the switch on which the cursor is located. Specifically, if no switch is selected,
the procedure selects the switch on which the cursor is located. If a single switch
is already selected, the procedure has no effect. If all switches are already selected,
the procedure selects the switch on which the cursor is located.

procedure Common.Object.Copy

Copies a highlighted switch from one set of switches to the set of switches on which
the cursor is located. If the selected switch and the cursor are both in the same set
of switches, the procedure has no effect.

LM-316 7/1/87 R’AT'ONAL

package 'Commands.Switches

procedure Common.Object.Delete

Deletes the selected switch or the switch on which the cursor is located. A deleted
switch assumes a system-defined default value.

procedure Common.Object.First-Chlld
Selects the first switch of the set.

procedure Common.Object.Insert

Creates a Command window and places in it the command:

Insert ("{Processor.] Switch := Value;");

where the parameter must be specified to provide a switch and its value. Spec-
ifying a switch and a value for that switch and promoting the command inserts
or changes a switch value. Multiple switches can be inserted with one command
by separating them with semicolons. This procedure uses the same format as an
Options parameter.

procedure Common.Object.Last.Child
Selects the last switch of the set.

procedure Common.Object.Move

Moves highlighted switches from one set of switches to the set of switches on which
the cursor is located. If the selected switch and the cursor are both in the same set
of switches, the procedure has no effect.

procedure Common.Object.Next

Selects the next switch. If no switch is selected, the procedure selects the switch on
which the cursor is located. If all switches are selected, this procedure produces an
error.

procedure Common.Object.Parent

Selects the switch on which the cursor is located. If no switch is selected, the
procedure selects the switch on which the cursor is located. If a switch is selected,
the procedure selects all switches in the set. Otherwise, the procedure has no effect.

procedure Common.Object.Previous

Selects the previous switch. If no switch is selected, the procedure selects the switch
on which the cursor is located. If all switches are selected, this procedure produces
an error.

QATIONAL 7/1/87 LM-317

procedure Associate
package !Commands.Switches

procedure Associate

procedure Associate (File : File_Name :
Library : String
Response : String

"<SELECTION>";

i n

$"s
"<PROF ILE>") ;

Description
Associates a specified library switch file with a library.

This procedure builds an association between a library switch file and a directory
or world. The switches in the library switch file are used for all operations or units
within that directory or world. A single library switch file can be associated with
several different worlds.

The association is by reference, which means that changes made to the library switch
file have an immediate effect on subsequent operations or units in the associated

directory or world.

Owner access to the world containing the library is required to execute this proce-
dure successfully. A job running an operation must have read access to the associ-
ated switch file.

This procedure is the opposite of the Dissociate procedure.

Parameters

File : File_Name := "<SELECTION>";

Specifies the file to be associated with the directory or world. The default is the
current selection.

Library : String := "$";
Specifies the directory or world to be associated with the switch file. The default
is the enclosing directory or world.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

LM-318 e RATIONAL

procedure Associate
package !Commands.Switches

References

procedure Dissociate

RAT'ONAL 7/1/87 LM-319

function Associated
package !Commands.Switches

function Associated

function Associated (Library : String := "$") return File_Name;

Description
Finds the associated library switch file for the specified directory or world.

This function returns the name of the library switch file that is associated with the
specified directory or world. If no library switch file has been associated with the
directory or world, the function returns the null string.

Parameters

Library : String := "$";
Specifies the directory or world for which the associated library switch file is desired.
The default is the enclosing directory or world.

return File_Name;

Returns the library switch file associated with the directory or world. If no switch
file is associated with the directory or world, the function returns the null string.

Example

A user, Bill, wants to know which library switch file is associated with his home
directory. In a Command window, he executes the command:

io.echo (switches.associated("!users.b1ll")})};

A display results in the Message window, indicating that the library switch file is
Users.Bill. Bills_Switches.

LM-320 e RATIONAL

procedure Change
package 'Commands.Switches

procedure Change

procedure Change (Image : Value_image := ">>SWITCH<L");

Description

Changes the value of the selected switch or of the switch on which the cursor is
located, if there is no selection.

The procedure changes the value of a switch. The new switch value is provided as
a string whose form depends on the type of the switch.

This command is generated in response to using the !Commands.Common.Edit
procedure on a switch window, with the current value of the switch replacing the
parameter placeholder ">>SWiTCH<<".

The Set procedure can be used to change the value of a switch that is not in the
switch window.

Parameters

Image : Value_image := ">>SWITCH<K";

Specifies the new switch value. The default parameter placeholder ">>SWiTCH<<"
must be replaced or an error will result.

RATIONAL 7ysr LM-321

subtype Composite_Name
package !Commands.Switches

subtype Composite_Name

subtype Composite_Name is String;

Description
Defines a name that is the composite name for a switch.

Switches are grouped into processors. Each processor has a series of switches for
that particular area of the Environment. A switch name is composed of a simple
switch name or the processor name and switch name combined. A composite name
is composed of the processor name, a period, and the simple switch name. The
simple name can be used when it is not ambiguous; otherwise, the composite name

must be used.

Example
"Session.Cursor_Bottom_Offset”

is a composite name for a switch, in which Session is the processor name and
Cursor_Bottom_Offset is the simple switch name.

"Cursor_Bottom_Offset”

is the unambiguous simple name for that switch because there is no other switch
named Cursor-Bottom_Offset.

LM-322 7/1/87 RAT'ONAL

procedure Create
package !Commands.Switches

procedure Create

procedure Create (File : File_Name :
Category : Character
Response : String

">>SWITCH FILELL™;

L',
"<PROF ILE>");

Description
Creates an empty switch file specified by category.

The kind of switch file created by this procedure is usually for use with libraries
(directories or worlds), which is the default. Session switch files also can be created,
but they are created automatically when the Edit_Session_Attributes procedure is
executed, so the user seldom creates such files.

If the specified file already exists, a new (empty) version is created.

Parameters

File : File_Name := ">>SWITCH FILE<K";

Specifies the name of the file to be created. The default parameter placeholder
">>SWITCH FILE<<" must be replaced or an error will result.

Category : Character := 'L’;
Specifies the kind of switch file to be created. The default is the most common
kind, the library switch file. The other kind (‘S’) is for session switches.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

A user named Sue wants to create a switch file with values different from the de-
faults. This file will be used to change pretty-printer switches in her home directory.
She executes the command:

switches.create ("sue_switches");

in her home directory. Sue now can change the switches and then use the Associate
command to associate the new switch file with her home world.

RATIONAL 7/1/er LM-323

constant Default_File
package !Commands.Switches

constant Default_File

Default_File : constant File_Name := ;

Description
Defines a constant that represents the selected, or default, switch file.

If there is no selection or if the selection is not a switch file, the constant represents
the switch file associated with the enclosing directory or world. If the enclosing
directory or world does not have an associated switch file, the constant represents
no switch file.

LM-324 e RATIONAL

procedure Define
package !Commands.Switches

procedure Define

">>SWITCH FILE<LL";
"<PROF [LE>");

procedure Define (File : File_Name :
Response : String

"wu

Description
Creates an empty library switch file.

When the user initially displays the library switch file, a flag appears in the banner
(All Switches) indicating that all switches have been set to the system defaults.

If the specified library switch file already exists, a new version is created.

Parameters

File : File_Name := ">>SWITCH FILEKK";

Specifies the name of the switch file to be created. The default parameter place-
holder ">>SWITCH FILE<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

R’AT'ONAL 7/1/87 LM-325

procedure Display
package !Commands.Switches

procedure Display

procedure Display (Names : Composite _Name := "@.@";
File : File_Name = "";
Response : String = "<PROFILE>"};

Description

Displays in the log file the specified set of switches from the selected or specified
switch.,

This procedure displays the switches that match the specified names for the selected
or specified switch file. The display is in the log file that is, by default, the current
output window. If the default is used for the switch file and no switch file is selected
or the enclosing directory or world does not have an associated switch file, an error
occurs.

Parameters

Names : Composite_Name := "@.@8";

Specifies the switches to be displayed from the switch file. The default is all switches.

File : File_Name := "";

Specifies the switch file from which to display the switches. The default is the
currently selected switch file or the switch file associated with the enclosing directory
or world.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

If the default is used for the switch file and no switch file is selected or the enclosing
directory or world does not have an associated switch file, an error occurs.

LM-326 7/1/87 I?ATIONAL

procedure Display
package !Commands.Switches

Example

A user wants to see how her session switches that have “library” as part of their
name are set. She executes the command:

switches.display ("©.library@", "s_l_switches”};

The following display, showing all of the specified switches, is the result:

IUSERS.GZC % SWITCHES .DISPLAY STARTED 4:42:26 PM

Processor Switch Type Value
Session. Library_Breask_Long_Lines Boolean True
Session. Library_Capitalize Boolean True
Session. Library_lndentation Integer 2
Session. Library_Lazy_Realignment Boolean True
Session. Library_Line_Length Integer 80
Session. Library_Misc_Show_Edit_Info Boolean True
Session. Library_Misc_Show_Frozen Boolean True
Session. Library_Misc_Show_Retention Boolean True
Session. Library_Misc_Show_Size Boolean True
Session. Library_Misc_Show_Subclass Boolean False
Session, Library_Misc_Show_Unit_State Boolean True
Session. Library_Misc_Show_Volume Boolean True
Session. Library_Shorten_Names Boolean True
Session. Library_Shorten_Subclass Boolean True
Session. Library_Shorten_Unit_State Boolean True
Session. Library_Show_Deleted_Ob jects Boolean False
Session. Library_Show_Deleted_Versions Boolean False
Session. Library_Show_Miscellaneous Boolean False
Session. Library_Show_Standard Boolean False
Session. Library_Show_Subunits Boolean True
Session. Library_Show_Version_Number Boolean False
Session. Library_Std_Show_Class Boolean True
Session. Library_Std_Show_Subclass Boolean True
Session. Library_Std_Show_Unit_State Boolean True
Session. Library_Uppercase Boolean False

RATIONAL 71/er LM-327

procedure Dissociate
package !Commands.Switches

procedure Dissociate

procedure Dissociate (Library : String := "$";
Response : String := "<PROFILE>"};

Description
Removes the association between a directory or world and a library switch file.

This procedure dissociates a library switch file from its previously associated direc-
tory or world. If the directory or world does not have an associated switch file, the

procedure has no effect.

This procedure is the opposite of the Associate procedure.

Parameters

Library : String := "§";
Specifies the directory or world to dissociate from its switch file. The default is the
enclosing directory or world.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Associate

LM-328 e RATIONAL

procedure Edit
package ICommands.Switches

procedure Edit

procedure Edit (File : File_Name := "");

Description

Creates a window in which the set of switches from the specified library switch file
can be edited.

The procedure creates a window and displays in it the set of switches from the
specified library switch file. If a window already exists with those switches in it,
the window is reused. From the window, the switches can be edited with many
operations from package !Commands.Common that apply to the window (see the
introduction to package Switches for details).

This procedure creates a new window for each set of switches to be edited. To reuse
the same window but edit a different set of switches in that window, see the Visit
procedure.

If the specified file does not exist, a file of that name is created and the default
switches are displayed.

Parameters

File : File_Name := "";

Specifies the switch file in which switches are to be edited. The default is the
currently selected switch file or the switch file associated with the enclosing directory
or world.

References

procedure Visit

RATIONAL 7yer LM-329

procedure Edit_Session—Attributes
package !Commands.Switches

procedure Edit_Session_Attributes

procedure Edit_Session_Attributes;

Description

Creates a window in which the session switches for the current session can be edited.

The procedure creates a window and displays the set of session attributes or session
switches for the current session. From the window, the switches can be edited with
many operations from package !Commands.Common that apply to the window (see
the introduction to package Switches for details).

There is only one set of session switches for a session. This set contains switches that
differ from those used and associated with directories or worlds. See the introduction

to this package for details about these switches.

LM-330 e RATIONAL

subtype File_Name
package !Commands.Switches

subtype File_Name

subtype File_Name is String;

Description
Defines a name of a switch file.

This name can use any of the wildcards, indirect files, context prefixes, or attributes
as long as it is unambiguous. The name can specify a switch file directory or a
directory or world. In the latter case, the switch file associated with the directory
or world is used.

Further information about general naming, special names, wildcards, context pre-
fixes, and attributes can be found in the Key Concepts in this book.

RATIONAL 7/1/87 LM-331

procedure Insert
package !Commands.Switches

procedure Insert

procedure Insert {Spec : Specification := ">>SWITCHES<KK");

Description

Inserts one or more switches and switch values into the current set of switches.

The procedure inserts cne or more switches in the current set of switches. The new
switches and values are displayed in the window. Multiple switches can be added
or changed with this procedure by separating the switches with semicolons.

This procedure appears in a Command window in response to the !Commands-
.Common.Object.Insert procedure.

Parameters

Spec : Specification := ">>SWITCHESKK";

Specifies the switch or switches and their new values to be inserted into the switch
file. The default parameter placeholder ">>SWITCHES<<" must be replaced or an

error will result.

Example

The command:

switches.insert ("cursor_bottom_offset:=50;cursor_top_offset:=50");

inserts new values for the two cursor-scrolling offsets.

LM-332 e RATIONAL

constant Of_Library
package !Commands.Switches

constant Of_Library

Of _Library : constant File_Name := "$";

Description

Defines a local constant for the name of the switch file associated with the enclosing
library.

Example
The command:
switches.set (“"directory.create_internal_links:=false”,switches.of_library);

changes the Create_Internal_Links switch using the constant defining the switches
for the current library, Of_Library.

RATIONAL 7/1/87 LM-333

constant Of_Session
package !Commands.Switches

constant Of_Session

Of_Session : constant File_Name := "<5>";

Description

Defines a constant for the name of the switch file associated with the current session.

Example

The command:

switches.set ("session.beep_on_errors:=false", switches.of_session);

changes the Beep_On_Errors switches for the current session defined by the Of-
—Session constant.

LM-334 7/1/87 RATIONAL

procedure Set
package !Commands.Switches

procedure Set

procedure Set (Spec : Specification
File : File_Name
Response : String

">>SWITCHESLL";

“CPROFILE>") ;

Description
Sets the specified switches and values in the specified switch file.

This procedure changes the value of one or more switches in the specified switch
file. The specification defines both the switches to be changed and the new values
for those switches.

Parameters

Spec : Specification := ">>SWITCHES<K";

Specifies the switches and their new values to be changed in the switch file. The
default parameter placeholder ">>SWITCHES<<" must be replaced or an error will
result.

File : File_Name := "";

Specifies the switch file to be changed. The default is the selected switch file or the
switch file associated with the enclosing directory or world.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example
The command:
switches.set ("session.beep_on_messages=false", "switches_of_session");

changes the value of the Session.Capitalize switch from its default value of true to
false.

RATIONAL 7/1/e LM-335

subtype Specification
package !Commands.Switches

subtype Specification

subtype Specification is String;

Description

Defines a string that specifies both a switch and a new value for the switch.

This subtype is used in several procedures to specify both a switch to be changed
and the new switch value for the switch. The string takes the form of the Options
parameter. The option name is the Composite_Name or simple name of the switch.
The value is the Value_Image of the switch.

Example

"Cursor_Bottom_Offset := 50"

is a specification to change an integer.

“Image_Fill_Mode := True"

is a spec to change a Boolean.

"Cursor_Bottom_Offset := 50; Image_Fill_Mode := True"

changes both.

LM-336 7/1/87 BA\TIONAL

subtype Value_Image
package !Commands.Switches

subtype Value_Image

subtype Value_lmage is String;

Description
Defines a string that specifies a value for a switch.

This subtype is used in several procedures and as part of the Specification subtype
to specify a new value for a switch.

The form of the string depends on the switch being changed.

RATIONAL 7/1/87 LM-337

procedure Visit
package !Commands.Switches

procedure Visit

procedure Visit (File : File_Name := "");

Description

Brings the specified switch file into an existing window where the switches can be
edited.

This procedure uses an existing switch window for editing switches and displays the
set of switches from the specified file in that window. If a window does not already
exist for editing switches, one is created. From the window, the switches can be
edited with many operations from package !Commands.Common that apply to the
window (see the introduction to package Switches for details).

This procedure does not create a new window for each set of switches to be edited.
To create a new window to edit a different set of switches in that window, see the

Edit procedure.

Parameters

File : File_Name := "";

Specifies the switch file to be edited. The default is the currently selected switch
file or the switch file associated with the enclosing directory or world.

References

procedure Edit

LM-338 e RATIONAL

procedure Write
package !Commands.Switches

procedure Write

procedure WUrite (File : File_Name := ">>SWITCH FILE<<K");

Description
Writes the switches in the current window into the specified file.

This procedure saves the switches that are being edited into a specified file.

Parameters

File : File_Name := ">>SWITCH FILE<L";

Specifies the file into which to write the switches. The default parameter placeholder
">>SWITCH FILE<<" must be replaced or an error will result.

end Switches;

RATIONAL 71/er LM-339

RATIONAL

package Xref

This cross-reference package consists of a set of two procedures that generate lists
of the Ada units that reference user-selectable Ada constructs in other Ada units.
These two procedures, named Xref.Used_By and Xref.Uses, provide analogous func-
tions to the interactive facilities, Show_Usage and Definition, respectively. In the
Xref.Used_By procedure, the list of Ada units that reference each occurrence of the
user-specified Ada constructs is generated. The Xref.Uses procedure generates the
list of Ada units in which each occurrence of the user-specified Ada constructs is
defined. For each of these procedures, the line number in which the procedure is
defined or referenced is also shown.

The examples in this package reference the Baseball Program in the “Ada Program
Modification” section of Rational Environment Training: Fundamentals.

RATIONAL 7/er LM-341

procedure Used_By
package !Tools.Xref_Utility. Revn.Units.Commands. Xref

procedure Used_By

procedure Used_By {List_Of_Names : String = "<IMAGE>";
Do_Functions . Boolean := True;
Do_Generics : Boolean := True;
Do_Procedures : Boolean :z= True;
Do_Attributes : Boolean := False;
Do_Record_Components : Boolean := False;
Do_Constants : Boolean := False;
Do_Entries : Boolean := False;
Do_Exceptions : Boolean := False;
Do_Labels . Boolean := False;
Do_Packages : Boolean := False;
Do_Parameters : Boolean := False;
Do_Pragmas : Boolean := False;
Do_Task_Bodies : Boolean := True;
Do_Types : Boolean := False;
Do_Variables : Boolean := False;
Exclude_References_From : String = "";
List_File_Name : String = ""};

Description

Produces a list of all the installed or coded Ada units in the entire directory hier-
archy that reference the Ada constructs selected by the user in the List_of_Names

parameter.

This procedure checks each of the Ada units specified in the List-Of _Names param-
eter. It then extracts each item that matches one of the Ada constructs specified
by the user. The value true is shown in the Do_Xzz parameter list. For each item
extracted, all references to it are saved. Each item that has at least one reference
to it is then output with the name of the item, the name of the Ada unit in which
the item is located, and the list of names of the Ada units that reference the item.
Following the cross-reference list are two tables that contain the fully qualified name

for each of the Ada units.

There are two or three indicators after each of the names of the Ada units. For
the Is Referred To By column only, the first is a one- or two-letter flag enclosed in
parentheses indicating how the item is used, as shown in Table 10-1. The second is
a number enclosed in brackets that refers to one of the two tables of fully qualified
names. The rightmost 71 characters of the fully qualified name are displayed. The
third set of numbers indicates the line number(s) in which that item is defined or
used. This line number is the physical line number within the package in which the

definition or usage is made.

The output is directed to the Text_lo.Current_Output device unless a filename is
specified in the List.File_Name parameter.

LM-342 7/1/87 BA\Tl ONAL

procedure Used—By
package !Tools.Xref_Utility.Revn.Units.Commands.Xref

Table 10-1. Xref Flag Definitions

Flag Stands for Means
Used Object is read from or is an in parameter
S Set Object is written into or is an out parameter
B Both used and set Object is an in/out parameter
uT Used through Object is read through pointer
ST Set through Object is written through pointer
BT Both used and set through Object is an in/out parameter through pointer

An Ada unit can be excluded from the search for references by naming it in the
Exclude_Reference_From parameter.

R’ATIONAL 7/1/87 | LM-343

procedure Used_By
package !Tools.Xref_Utility. Revn.Units.Commands.Xref

Parameters

List_Of_Names : String := "<IMAGE>";

Specifies the list of Ada units for which a cross-reference is to be built. The default
value is to use the currently selected unit in the current image. For subsystems, this
must be the spec view. Refer to Project Management (PM) for more information
on subsystems.

Do_Functions : Boolean := True;
Specifies whether uses of function definitions will be included in the cross-reference.

Do_Generics : Boolean := True;
Specifies whether uses of generic definitions will be included in the cross-reference.

Do_Procedures : Boolean := True;
Specifies whether procedure definitions will be included in the cross-reference.

Do_Attributes : Boolean := False;
This parameter has no effect.

Do_Record_Components : Boolean := False;
Specifies whether all record component definitions will be included in the cross-
reference.

Do_Constants : Boolean := False;
Specifies whether constants will be included in the cross-reference.

Do_Entries : Boolean := False;
Specifies whether entry definitions will be included in the cross-reference.

Do_Exceptions : Boolean := False;
Specifies whether uses of exception names will be included in the cross-reference.

Do_Labels : Boolean := False;
Specifies whether label definitions will be included in the cross-reference.

Do_Packages : Boolean := False;
Specifies whether package definitions will be included in the cross-reference.

LM-344 e RATIONAL

procedure Used.-By
package !Tools. Xref_Utility. Revn.Units.Commands. Xref

Do_Parameters : Boolean := False;
Specifies whether uses of parameters will be included in the cross-reference.

Do_Pragmas : Boolean := False;
This parameter has no effect.

Do_Task_Bodies : Boolean := True;
This parameter has no effect.

Do_Types : Boolean := False;
Specifies whether all type definitions will be included in the cross-reference.

Do_Variables : Boolean := False;
Specifies whether uses of variables will be included in the cross-reference.

Exclude_References _From : String := ""

Specifies that all the Ada units listed in this parameter are to be excluded from the
search for references to selected elements. The default value is to exclude none.

List_File_Name : String := "";

Specifies the filename in which to write the output. The default value is Text_Io-
.Current_Output.

Restrictions

The Ada units specified in the List_Of_Names parameter must be installed or coded.
Only installed or coded Ada units will be checked to see if they reference the specified
items.

Example

The command:

xref .used_by;

produces the following result when run from a window that contains the image
of the FORMATTER'SPEC of the Baseball Program contained in the “Ada Program
Modification” section of Ratsonal Environment Training: Fundamentals:

RATIONAL 7/./sr LM-345

procedure Used_By
package !Tools.Xref_ Utility. Revn.Units.Commands.Xref

MA INTENANCE .BASEBALL _SYSTEM.FORMATTER’BODY’'V(1) % USED_BY STARTED 07:

ITEM DEFINED IN IS REFERRED TO BY

PRINT_HEADER FORMATTER[414 .BASEBALL _STATISTICS(U)[11]28
PRINT_PLAYER_STATS FORMATTER[S]5 .BASEBALL_STATISTICS(U){11]32
PRINT_TEAM_STATS FORMATTER[6]6 .BASEBALL_STATISTICS(U)[11]36

FULL NAMES OF "IS REFERRED T0 BY" UNITS
2 HUSERS .BES .MA INTENANCE .BASEBALL _SYSTEM.BASEBALL _STATISTICS

FULL NAMES OF "DEFINED IN" UNITS

TUSERS .BES .MAINTENANCE .BASEBALL _SYSTEM.FORMATTER .PRINT_HEADER
IUSERS .BES .MA INTENANCE .BASEBALL _SYSTEM .FORMATTER .PRINT _PLAYER_STATS
'USERS .BES .MA INTENANCE .BASEBALL _SYSTEM.FORMATTER.PRINT_TEAM_STATS

b

LM-346 7/1/87 BA\-“ONAL

procedure Uses
package !Tools. Xref_Utility.Revn.Units. Commands.Xref

procedure Uses

procedure Uses {List_Of_Names : String = "<IMAGED>";
Visible_Declarations_Only : Boolean := True
Do_Functions : Boolean := True;
Do_Generics : Boolean := True;
Do_Procedures : Boolean := True;
Do_Attributes : Boolean := False;
Do_Record_Components : Boolean := False;
Do_Constants : Boolean := False;
Do_Entries : Boolean := False;
Do_Exceptions : Boolean := False;
Do_Labels : Boolean := False;
Do_Packages : Boolean := False;
Do_Parameters : Boolean := False;
Do_Pragmas : Boolean := False;
Do_Task_Bodies : Boolean := True;
Do_Types : Boolean := False;
Do_Variables : Boolean := False;
Exclude_References_To : String = ",
Only_References_To : String = ",
List_File_Name : String = "");
Description

Produces a list of the installed or coded Ada units that contain the definition of the
items selected by the user in the List_Of_Names and Do_Xzz parameters.

This procedure checks each of the Ada units specified in the List_Of_Names pa-
rameter. It then extracts each item used that matches one of the Ada constructs
specified by the user. The value true is shown in the Do_Xzz parameter list. For
each item, the Uses procedure lists the Ada unit in which it is defined and all the
procedures in the Ada units specified in the List_Of_Names parameter that refer-
ence the item. The Ada units in this table are referenced by their names. Following
th; cross-reference list are two tables that contain the fully qualified names for the
Ada units.

There are two or three indicators after each of the names of the Ada units. For
the Is Referred To By column only, the first is a one- or two-letter flag enclosed in
parentheses indicating how the item is used, as shown in Table 10-1 in the Used_By
procedure. The second is a number enclosed in brackets that refers to one of the two
tables of fully qualified names. The rightmost 71 characters of the fully qualified
name are displayed. The third set of numbers indicates the line number(s) in which
that item is defined or used. This line number is the physical line number within
the unit in which the definition or usage is made.

The output is be directed to the Text_Io.Current_Output device unless a filename
is specified in the List_File_Name parameter.

RATIONAL 7/1/87 LM-347

procedure Uses
package !Tools.Xref_Utility.Revn.Units.Commands.Xref

An Ada unit can be excluded from the search for definitions by naming it in the
Exclude_Reference_To parameter.

Conversely, the Only_References_To parameter allows the user to specify the Ada
units that the user wants searched for the definitions. These last two parameters

are mutually exclusive.

Parameters

List_Of_Names : String := "<IMAGE>";

Specifies the list of Ada units from which the selected objects are to be extracted.
The default value is to use the currently selected unit in the current image.

Visible_Declarations_Only : Boolean := True;

Specifies that only declarations that are exported will be included in the cross-
reference.

Do_Functions : Boolean := True;
Specifies whether uses of functions will be included in the cross-reference.

Do_Generics : Boolean := True;
Specifies whether generic instantiations will be included in the cross-reference.

Do_Procedures : Boolean := True;
Specifies whether all procedures called will be included in the cross-reference.

Do_Attributes : Boolean := False;

This parameter has no effect.

Do_Record_Components : Boolean := False;
Specifies whether all record components used will be included in the cross-reference.

Do_Constants : Boolean := False;
Specifies whether all constants used will be included in the cross-reference.

Do_Entries : Boolean := False;
Specifies whether all entries used will be included in the cross-reference.

Do_Exceptions : Boolean := False;
Specifies whether uses of exception names will be included in the cross-reference.

LM-348 7/1/87 BAT'ONAL

procedure Uses
package !Tools.Xref_Utility.Revn.Units. Commands.Xref

Do_Labels : Boolean := False;
Specifies whether all labels used will be included in the cross-reference.

Do_Packages : Boolean := False;
Specifies whether all packages used will be included in the cross-reference.

Do_Parameters : Boolean := False;
Specifies whether all parameters used will be included in the cross-reference.

Do_Pragmas : Boolean := False;
This parameter has no effect.

Do_Task_Bodies : Boolean := True;
This parameter has no effect.

Do_Types : Boolean := False;
Specifies whether all fypes used will be included in the cross-reference.

Do_Variables : Boolean := False;
Specifies whether all variables used will be included in the cross-reference.

Exclude_References_To : String := ""

Specifies a list of Ada units that are not to be included in the output. This parameter
cannot be used if the Only_References_To parameter has a nondefault value. The
default value is to include all installed or coded Ada units in the entire directory
hierarchy.

Only_References_To : String := "";

Specifies a list of Ada units that are the only ones to be included in the output.
This parameter cannot be used if the Exclude_References_To parameter has a non-
default value. The default value is to include all installed or coded Ada units in the
entire directory hierarchy.

LiSt_File_Name M Str\lng c= "u;
Specifies the filename in which to write the output.

RATIONAL 1/1/87 LM-349

procedure Uses
package !Tools.Xref_Utility.Revn.Units.Commands. Xref

Restrictions

The Ada units specified in the List_Of_Names parameter must be installed or coded.
Only installed or coded Ada units will be checked to see if they contain the definition

of the specified items.

Example
The command
xref .uses;

produces the following result when run from a window that contains the image of
the FORMATTER'BODY of the Baseball Program contained in the “Ada Program
Modification” section of Rational Environment Training: Fundamentals:

ITEM DEFINED IN IS REFERRED TO BY

FLOAT_IO TEXT_I0[5]173 .FORMATTER.FLT_IO(U)}[S5]7
INTEGER_10 TEXT_10[3]143 .FORMATTER .NAT_lO{U)[4]6

NEW_L INE’2 TEXT_i0[21]77 .FORMATTER.PRINT_HEADER(U}[7]23

_PRINT_PLAYER_STATS(U)[8]37
.PRINT_TEAM_STATS(U)[3]48

PUT' 4 TEXT_10[17]128 .PUT_STATISTIC_VALUES(U)[6]17
.PRINT_PLAYER_STATS(U)[8]32
.PRINT_TEAM_STATS(U)[9]43

PUT_LINE'2 TEXT_10[22]136 .FORMATTER.PR INT_HEADER(U)[7]26
24

FULL NAMES OF "1S REFERRED TO BY" UNITS

tUSERS .PT_S.BASEBALL_SYSTEM.FORMATTER .NAT_10

YUSERS .PT_5 .BASEBALL_SYSTEM.FORMATTER .FLT_10

{USERS .PT_S5.BASEBALL _SYSTEM.FORMATTER .PUT_STATISTIC_VALUES
TUSERS .PT_5.BASEBALL_SYSTEM .FORMATTER .PRINT_HEADER

IUSERS .PT_S5.BASEBALL_SYSTEM.FORMATTER.PRINT_PLAYER_STATS
1USERS .PT_S.BASEBALL_SYSTEM.FORMATTER.PRINT_TEAM_STATS

VONOUNTD

LM-350 7/1/87 BA\-HONAL

procedure Uses

package !Tools.Xref_Utility.Revn.Units.Commands.Xref

FULL NAMES OF "DEFINED IN"™ UNITS

3 L10.TEXT_10.INTEGER_IO
S 110 . TEXT_IQO.FLOAT_IO
17 11O0.TEXT_10.PUT’4

21 VIO TEXT_IO.NEW_LINE'2
22 HIO.TEXT_IO.PUT_LINE’2
end Xref;

RATIONAL 7/1/er

LM-351

RATIONAL

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

IMachine.Archive_Mappings file .
'Machine.Operator—Capability file .

! (exclamation mark) special character .

(pound sign)
library wildcard

substitution character

$ (dollar sign)
file utilities wildcard
special character .

$$ (double dollar sign) special character

% (percent)
file utilities wildcard
special character .

’body attribute

'L, attributes, see link attributes

"N attributes, see nickname attributes
’S attributes, see state attributes
’spec attribute

* (asterisk) file utilities wildcard

, (comma)
in set notation .
separator

RATIONAL 7/1/er

LM-106
LM-20, LM~74
LM-10, LM-11

. LM-8, LM-109, LM-113, LM-297, LM-301

. LM~10

. LM-172, LM-181, LM-184, LM-187
S LM-10, LM-11

LM-10, LM-11

. LM-172, LM-181, LM-184, LM-187
C LM-10, LM-11
. LM-14

. LM-14
. LM-172, LM-181, LM-184, LM-187

. LM-13
. LM-18

LM-353

- (hyphen)

indicating nondefault versions LM-198
-n version attributeLM-14
. special character LM-10,LM-12
ws8ymbol 0 0000LM-18
:= value delimiterLM-18
; (semicolon)

insetnotation1LM13

separatorLM18
= (equal), see also Equal
= value delimiterLM-18
=> value delimiterLM18

? (question mark)

file utilities wildcard . LM-172, LM-181, LM-184, LM-187

library wildeard LM-8, LM-9, LM-109, LM-113, LM-297, LM-301

substitution characterLM10
7?7 (double question mark) library wildecard LM-8, LM-9
@ (at sign)

library wildeard LM-8, LM-9, LM-109, LM-113, LM-297, LM-301

substitution characterLM-10
[] (brackets)

file utilities wildeards LM-172, LM-181, LM-184, LM~-187

special characters LM-13, LM-109, LM-113, LM-297, LM-301
\ (backslash)

file utilities wildcard LM-172, LM-181, LM-184, LM-187

special character . C e e LM-10, LM-12
~ (caret)

file utilities wildcard LM-172, LM—-181, LM-184, LM-187

special character . .« « « LM-10,LM-11
— (underscore)

identifier character LM9

apecial character LM-10,1LM-12
* (grave) special character LM-10, LM-12
| (bar) symbolLM18
{} (braces)

file utilities wildecards LM-172, LM-181, LM-184, LM-187

indicating deleted objects LM-198

special charactersLM-13

LM-354 7/1/87 RATIONAL

" (tilde) symbol LM-13, LM-18, LM-109, LM-113, LM-297, LM-301

Abandon procedure
Common.Abandon
Library package .
Links package
Switches package

access control .

affect on procedures in packages in 'Commands

archiving

classes

command executlon
compilation
default access list
groups

identity .

job . .
library commands
links

networking
objects

searchlists .
subsystems

user

access list
add
Access_List.Add procedure .
add default

A

Access_List.Add_Default procedure .

amended

Access_List_Tools.Amend function

change
Access_List.Add procedure .

Access_List.Add_Default procz;.dl-u'e

Access_List.Set procedure

Access_List.Set_Default procedure

Access_List_Tools.Set procedure

Access_List_Tools.Set.Default proceciure .

check

Access_List_Tools.Check function .

class

Access_List_Tools. Access_Class subtype .

classes
Access_List.Create constant
Access_List.Delete constant
Access_List.Owner constant
Access_List.Read constant
Access_List. Write constant .

RATIONAL 7/1/sr

LM-203
LM-276
LM-315

. LM-19

. LM-23
LM-23

LM 20 LM-21
. . LM-22
LM-22 LM-129
. LM-21

. LM-20

. LM-19

. LM-19
LM-195

. LM-22

. LM-22

. LM-21

. LM-23

. LM-23

. LM-19

LM-1, LM-19, LM-195
. LM-32

LM-33

. LM-57

. LM-32
. LM-33
. LM-44
. LM-46
. IM-81
. LM-83

. LM-59

LM-54
. LM-34
. LM-37
. LM-42

. LM—-43
. LM-48

LM-355

access list, continued
classes, continued
Access_List_Tools.Create constant
Access_List_Tools.Delete constant
Access_List_Tools.Owner constant
Access_List_Tools.Read constant
Access_List-Tools, Write constant .
create
Access_List.Add procedure .
Access_List.Set procedure .
Access_List.Set.Default procedure
Access_List_Tools.Set procedure
Access_List_Tools.SetDefault procedure
default display
Access_List.Default_Display procedure
display
Access_List.Display procedure
edit
Access_List.Add procedure
Access_List.Add.-Default procedure .
error
Access_List_Tools.Access_Tools_Error exception
get
Access_List_Tools.Get function .
Access_List_Tools.Get procedure
get default
Access_List_Tools.Get_Default function
Access_List_Tools.Get_Default procedure
maximum length
Access_List_Tools.Max_Acl_Length constant .
name
Access_List.Name subtype . . .
Access_List_Tools.Name subtype
normalize
Access_List_Tools.Normalize function
operator capability
Access_List_Tools. Has_Operator_Capability function
remove old entries
Access_List_Tools.Normalize function
set
Access_List.Set procedure
Access_List_Tools.Set procedure
set default
Access_List.Set-Default procedure
Access_List_Tools.Set_Default procedure
validity
Access_List_Tools.Check_Validity procedure

LM-356

. LM—64
. LM-65
. LM~-79
. LM-80
. LM-85
. LM-32
. LM-44
. LM-46
. LM-81
. LM-83
. LM-35
. LM-38

. LM-32
. LM-33

. LM-55

. LM-66
. LM-68

. LM-70
. LM-72

. LM-T75

. LM—-41
. LM-76

. LM-77
. LM-74
. LM-77

. LM-44
. LM-81

. LM—46
. LM-83

. LM-62

e RATIONAL

Access_Class subtype
Access_List_Tools.Access_Class

Access_List package .
Access_List_Tools package .

Access_Tools_Error exception

Access_List_Tools.Access_Tools_Error

Amend function
Check function

Get function
Get_Default function

Account library switch .
ACL, see access list

Acl subtype
Access_List.Acl . . .
Access_List_Tools.Acl

Activity subclass
<ACTIVITY> special name .

Ada
class
name . e
name resolution mode
subclass attributes

Ada library, see directory, library, world

Ada unit
access classes e e
Access_List.Read constant

Access.List.Write constant . .
Access-List_Tools.Read constant .
Access_-List..Tools.Write constant .

define coded

Xref.Uses procedure .
define installed

Xref.Uses procedure .
list coded

Xref.Used_By procedure .
list installed

Xref.Used_By procedure .
pretty-printing

Library.Reformat_Image procedure

restore
switches

Ada_Format constant
Library.Ada_Format

RATIONAL 7//er

. LM-54
. LM-25
. LM—49

. LM-55
. LM-57
. LM-60
. LM~-66
. LM-70

LM-309

. LM-81
. LM-56

. IM-17

. LM-8, LM-130, LM-170, LM-199, LM-308

LM-14, LM-16
LM-7

. LM-12

. LM-16

. LM-21
. LM-43
. LM-48
. LM-80
. LM-85
LM-347
LM-347
LM-342
LM-342
LM-255

. LM-89
LM-309

LM-208

LM-357

Ada_List renamed procedure
Library.Ada_List
Ada_Format constant

add
cross-library link
Links.Add procedure

Add procedure
Access_List.Add . . .
Links.Add A

Insert procedure . .
Link_Name subtype .
Replace procedure

add to end, see Append

Add_Default procedure
Access_List.Add_Default

Alignment_Threshold library switch .

All version attribute .

All_Fields constant
Library.All_Fields

All_Parts enumeration .

All_Worlds constant
Compilation.All_Worlds

<ALL_-WORLDS> special value
Alt_List subclass

Amend function
Access._List_Tools.Amend .

Any constant
Links.Any .

Any version attribute

Append procedure
File_Utilities. Append .

archive
access control
€OPY e e .
Archive.Copy procedure
hints e e e
st
Archive.List procedure .
restore e e e e
Archive.Restore procedure
save e e
Archive.Save procedure

LM-358

LM-3, LM-209
. . LM-208

LM-279

. LM-82
LM-279
LM-293
LM-297
LM-298

. LM-83
LM-309
. LM-14

LM-211
LM-160

LM-132
LM-129, LM-134, LM-199
. IM-16

. LM-57

LM-281
. LM-14

LM-171

. . LM-23
LM-87, LM-90
LM-100
. LM-98
. LM-87
. . . LM-109
LM-87, LM—89
. LM-112
LM-87, LM—88
LM-122

e RATIONAL

Archive packageLM-87
Archived enumeration LM-166
Archived_CodeclassLM14
Asm_Listing ibraty switch LM-309

Associate procedure
Switches.Associate LM-818
Dissociate procedure LM-328

Associated function
Switches.Associated LM-82

asterisk (*) file utilities wildcard LM-172, LM-181, LM-184, LM-187

at sign (8)
library wildcard LM-8, LM-9, LM-109, LM—-113, LM-297, LM-301

substitution character1LM-10

Atomic_Destroy procedure
Compilation.Atomic_Destroy LM-188

attributes LM-T7 LM-13
class L L L. L Lo oo oo, ILM-14

nicknameLM15
-3 7 ¥ 7 1% & ¥ 4

version1LM14
visible parts and bodiesLM-13

Auto_Login library switch LM-310

automated compilation
Compilation.Make renamed procedure LM-151
Compilation.Promote procedure LM-157

backslash (\)
file utilities wildeard LM-172, LM-181, LM-184, LM~-187

special character LM-10, LM-12
bar (|) symbolLM18
Binary subclass1LM17
Boolean optionsLM-18

braces ({})
file utilities wildeards LM-172, LM-181, LM-184, LM-187
indicating deleted objects e e e e e LM-198
special charactersLM13

RAT'ONAL 7/1/87 LM-359

brackets ([])

file utilities wildcards LM-172, LM-181, LM-184, LM-187
special characters LM-13, LM-109, LM-113, LIM-297, LM-301
C
caret (*)
file utilities wildcard LM-172, LM-181, LM-184, LM-187
special character LM-10,LM-11
change name
Library.Rename procedure LM-256
Change procedure
Switches.Change LM-821
change session switches
Switches.Edit_Session_Attributes procedure LM-330
Change_Identity procedure
Program.Change_IdentityLM19
Change_Limit subtype
Compilation.Change_Limit LM-129, LM-184
All_Worldsconstant LM-132
Current-Destroy constant LM-138
Same_Directories constant LM-162
Same_Worldconstant LM-163
Same_Worldsconstant LM-164
characters
character pairs ([] and {}) S .Y ¢ {1
special . . . e e e e e e e LM-T,LM-10
Check function
Access_List_Tools.CheckLM-59
Check_Validity procedure
Access_List_Tools.Check_Validity LM-62
Child procedure
Common.Object.Child
Library package LM-2086
Links package LM2T7
Switches package LM-316
chmod, see Set
class
access
Access_List_Tools.Access-Class subtype e e e e eLM-54
attributeso T A Y 2o X |
Ada . . . LM-—14
Archxved.Code O A C5 1
File1LM14

LM-360 7/1/87 QAT'ONAL

class, continued
attributes, continued

Group .
Library .
Null_Device
Pipe .
Session
Tape
Terminal .
User .

Class enumeration

classes of access .
Closed_Private_Part library switch
Cmvc_Db subclass

code
Compilation.Make renamed procedure

key

Compilation.Make renamed procedure

[Gode (7o Worta) key

Compilation.Make renamed procedure
Code_Db subclass
Coded enumeration
colon equals (:=) value delimiter
Comb..Ss subclass .
Comb..View subclass

comma (,)
in zet notation .
separator

command execution, access control
Comment_Column library switch
commentary messages .

Commit procedure
Common.Commit
Links package
Switches package

Common package
Library package
Links package
Switches package .

RATIONAL 71/er

. LM-14
. LM-14
. LM-14
. LM-14
. LM-14
. LM-14
. LM-15
. LM~-15

LM-239
. LM-20
LM-310
. LM-17

LM-151

LM-151

LM-151
. LM-17
LM-166
. LM-18
. LM-15
. LM-15

. LM-13
. LM-18

. LM-22
LM-310
LM-5

LM-276
LM-315

LM-203
LM-276
LM-3156

LM-361

Comp-Unit subclass

Compact.Library procedure
Library.Compact-Library .

compare, see also Difference, Equal, Merge

Compare procedure
File_Utilities.Compare

Compat-Db subclass
compatibility database .

compilation
access control
management
subsystems

Compilation package

compile
Compilation.Make renamed procedure
Compilation.Promote procedure

Compile procedure
Compilation.Compile .

Complete procedure
Common.Complete
Library package .

Composite_Name subtype
Switches.Composite_Name

compressed output

Config subclass .

Configuration library switch
Consistent_Breaking library switch

Context procedure
Library.Context

Context subclass

Context_Name subtype
Library.Context_Name

conversion
from text to Ada object
Compilation.Parse procedure .

copy

Archive package
Library.Move renamed procedure

LM-362

. LM-16

LM-212

LM-169, LM-172
. LM-17

LM-90, LM-104
LM-22, LM-129

LM-4
LM-130

LM-129

LM-151
LM-157

LM-186

LM-203

LM-322
LM-178
. LM-17
LM--310
LM-310

LM-214
. LM-16

LM-215
LM-155

. LM-87
LM-250

e RATIONAL

Copy procedure
Archive.Copy
Common.Object.Cop

Library package .

Links package

Switches package
Library.Copy
Links.Copy

count
set retention
Library.Set_Retention_Count procedure

create access

Create constant
Access_List.Create . .
Access_List..Tools.Create .

key

Library.Create_Directory renamed procedure

Create procedure
Library.Create
Create_Directory renamed procedure
Create_Unit renamed procedure
Create_World renamed procedure .
Switches.Create

key

Library.Create— World renamed procedure .

Create_Command procedure
Common.Create_Command
Library package .
Links package
Switches package

Create_Directory renamed procedure
Library.Create_Directory

Create_Internal_Links library switch

Create-Job procedure
Program.Create_Job

Create_Subprogram_Specs library switch
Create.Time enumeration

Create_Unit renamed procedure
Library.Create_Unit

Create_World renamed procedure
Library.Create_.World

RATIONAL 7/1/er

LM-87, LM-90, LM~100

LM-206
LM-277
LM-316
LM-216
LM-282

LM-259

. LM-21

. LM-84
. LM-64

LM-222

LM-220
LM-222
LM-224
LM-226
LM-3828

LM-226

LM~-204
LM-276
LM-315

LM-222
LM-7, LM-310

. LM-19
LM-310
LM-239

LM-224

LM-226

LM-363

creating directories

Library.Create procedure . . . C LM-22
Library.Create_Directory renamed procedure e e e e ... LM-222
creating libraries
Library.Create procedure . . . s LM-22
Library.Create_Directory renamed procedure T Y 557 ¥]
Library.Create_.World renamed procedure LM-226
creating units
Library.Create..Unit renamed procedure LM-224
creating worlds
Library.Create procedure . . . C e e e LM-22
Library.Create—-World renamed procedure C e e e o 1LM-226
Creator enumeration LM-23
cross-reference information
Xrefpackage LM-341
Current_Directory constant
Compilation.Current_Directory LM-188
Current_Output constant
File_Utilities.Current_OQutput LM-175
<CURSOR> special name LM-8, LM-130, LM-170, LM-199, LM-308
D
Datafile LM-88 LM-122
Decl_List subelassLM16
Declaration enumeration LM-23
default
accesslist LM1,1LM-21
add
Access_List.Add_Default procedure LM-33
get
Access_List_Tools.Get_Default function LM-T0
Access_List_Tools.Get_Default procedure B Ay e
response profile C e e e LM
retention count
Library.Default_Keep_Versions constant LM-229
Library.Set_Retention—-Count procedure LM-259
set
Access_List.Set_Default procedure LM46
Access_List_Tools.Set_Default procedure LM-83
version
Library.Default procedure . . . e e e e e e e LM-228
Library.Default_Keep_Versions constant e e e e e o LM-229

LM-364 e RATIONAL

Default procedure
Library.Default

<DEFAULT> special value

Default_Display procedure
Access_List.Default_Display .

Default_File constant
Switches.Default_File .

Default_Keep-Versions constant
Library.Default_Keep_Versions

Define procedure
Switches.Define

Definition procedure
Common.Definition
Library package .
Links package
Switches package

delete, see also Atomic_Destroy, Destroy

delete access

delete Ada units
Compilation.Delete procedure

Delete constant
Access_List.Delete
Access_List_Tools.Delete

delete old versions
Library.Expunge procedure

Delete procedure

Common.Object.Delete
Library package .
Links package
Switches package

Compilation.Delete .
Destroy procedure

Links.Delete .

Delete renamed procedure
Library.Delete

Destroy renamed procedure

deleted objects
referring to

delimiters, value
colon equals (:=) . .

equals (=)

equals/greatexz than (=>)

RATIONAL 71/er

LM-228
LM-5

. LM-85

LM-324

LM-229

LM-825

LM-204
LM-276
LM-315

. LM-21

LM-139

. LM-87
. LM~-65

LM-237

LM-206
LM-278
LM-317
LM-189
LM-148
LM-284

LM-230
LM-232

LM-198
. LM-13

. LM-18
. LM-18
. LM-18

LM-365

demote objects

Compilation.Delete procedure LM-139
Compilation.Demote procedure LM-141
Demote procedure
Common.Demote
Library package LM-204
Compilation.Demote LM-141
Dependents procedure
Compilation.Dependents LM-145
Links.Dependents LM-28
destroy
Compilation. Atomic_Destroy procedure LM-133
Destroy procedure
Compilation.Destroy . . . Y 7.7 £ 7 L
Atomic_Destroy procedure S 4. € k]
Delete procedure LM-139
Destroy renamed procedure
Library.Destroy . . . e e e e e e oo LM-282
Delete renamed procedure S .Y &8/ (1]
Dictionary subelass LM17
Difference procedure
File_Utilities.Difference ... LM-176
Merge procedure LM-190
Strip procedure LM-193
<DIRECTORIES> special value LM-129, LM-134, LM-138, LM-162, LM-199
directory LM2
create
Library.Create procedure . . . e e e LM-22
Library.Create_Directory renamed procedure e e e e e e LM-222
current
Compilation.Current-Directory constant LM-138
NAMEt e e e e e e e e e e e e e e e ... LMAT
same
Compilation.Same_Directories constant LM-162
Directory enumeration LM-246
Directory subclassLM-16
disk
space
Library.Space procedure LM-263
volume
Library.Nilconstant LM-254
Library.Volume subtype LM-274

LM-366 e RATIONAL

display
Library.Ada_List renamed procedure .
Library.File_List renamed procedure
Library.List procedure

Display procedure’
Access_List.Display
Library.Display
Links.Display
Switches.Display .

display, default
Access_List.Default_Display procedure

Dissociate procedure
Switches.Dissociate .
Associate procedure .

Documents subclass .

dollar sign ($)
file utilities wildcard
special character .

dollar sign, double ($$), special character
double dollar sign ($$) special character
double dot symbol (..) . . .

double question mark (??) library wildcard .

Dump procedure
File_Utilities. Dump

edit, see also Demote

Edit procedure

Common.Edit
Library package .
Links package
Switches package

Links.Edit ..
Visit procedure .

Switches.Edit .
Visit procedure .

Edit_Session_Attributes procedure
Switches.Edit_Session_Attributes
Create procedure

edit session switches

Switches.Edit_Session_Attributes procedure .

RATIONAL 7/1/87

LM-209
LM-242
LM-248

. LM-38
LM-284
LM-288
LM-826

. LM-35

LM-828
LM-318

. LM-17

. LM-172, LM-181, LM-184, LM-187
e LM-10, LM-11

LM-10, LM-11
LM-10, LM-11
. LM-18
LM-8, LM-9

LM-179

LM-204
LM-276
LM-315
LM-290
. . . . LM-304
LM-308, LM-329
.. . . LM-338

LM-308, LM-330
. . . LM-323

LM-330

LM-367

Elide procedure
Common.Elide
Library package .
Links package
Switches package

elision .
levels .

Enable_Deallocation library switch

Enable_Privileges procedure
Operator.Enable_Privileges

enclosing library
enclosing object .

Enclosing procedure
Common.Enclosing
Library package .
Links package
Switches package

enclosing world .

Enclosing-World procedure
Library.Enclosing.- World

enter cross-library link
Links.Add procedure

enumerations
Compilation.Promote_Scope
All_Parts enumeration .
Load._Views enumeration
Single_Unit enumeration .

Subunits_Too enumeration .

Unit_Only enumeration
Compilation.Unit_State
Archived enumeration
Coded enumeration
Installed enumeration
Source enumeration
Library.Field
Class enumeration
Create_Time enumeration
Creator enumeration
Declaration enumeration .
Frozen enumeration
Object enumeration
Read_Time enumeration .
Reader enumeration .
Retain enumeration

LM-368

LM~204
LM-~-277
LM-315

LM~-199
LM-200

LM-311

. LM-20
. LM-11
. LM-11

LM-205
LM-277
LM-316

. IM-11
LM-285

LM-279

LM-160
LM-160
LM-160
LM-161
LM-161

LM-166
LM-166
LM-166
LM-167

LM-239
LM-239
LM-239
LM-239
LM-239
LM-239
LM~239
LM-240
LM-240

e RATIONAL

enumerations, continued
Library.Field, continued
Size enumeration
Status enumeration
Subclass ennumeration
Update_Time enumeration .
Updater enumeration
Version enumeration .
Library.Kind
Directory enumeration .
Subpackage enumeration .
World enumeration

equal (=), see also Equal

Equal function
File_Utilities.Equal

equals (=) value delimiter
equals/greater than (=>) value delimiter

error

Access_List_Tools.Access_Tools_Error exception .

error reactions
Access_List package
Archive package
Compilation package
Library package
Switches package .

Error renamed exception
Library.Error

exceptions
Access_List_Tools package
Access_Tools_Error exception
Library package
Error renamed exception .

exclamation mark (!) special character .

Expand procedure
Common.Expand
Library package .
Links package
Switches package

expansion

RATIONAL 7y/er

LM-240
LM-240
LM-240
LM-240
LM-240
LM-240

LM-246
LM-246
LM-247

LM-169, LM-181
. LM-18
. LM-18

. LM-b5

. LM-5
. LM-30
. LM-99
LM-131
LM~195
LM-307

LM-236

. LM-55

LM-236
LM-10, LM~11

LM-2056
LM-277
LM-316

LM-199

LM-369

Explain procedure
Common.Explain
Library package .
Links package
Switches package

Expunge procedure
Library.Expunge .
Links.Expunge . .

External constant
Links.External . .

external link

Field type
Library.Field

fields

Library.All-Fields constant

Fields type

Library.Fields

file
access classes

Access_List.Read constant
Access_List.Write constant . . .
Access_List_Tools.Read constant
Access_List_Tools. Write constant .

append

File_Utilities. Append procedure

class
comparison

File_Utilities.Compare procedure

compilation

Compilation.Compile constant

current output

File_Utilities.Current_Output constant

default

Switches.Default_File constant

difference

File_Utilities.Difference procedure .

hexadecimal dump

File_Utilities.Dump procedure

identical
File_Utilities.Equ

restore

subclass attributes

File class .

LM-370

al function

LM-205
LM-277
LM-316

LM-287
LM-291

LM-292
LM—-6

LM-289
LM-211
LM-241

. LM-21
. LM—43
. LM-48
. LM-80
. LM-85

LM-171
. LM-17

LM-172
LM-136
LM-175
LM-324
LM-176
LM-179
LM-181

. LM-89
. LM-17

LM-14, LM-308

s RATIONAL

File_List renamed procedure
Library.File_List

File_Map subclass Coe .

File_Name subtype
Switches.File_Name

File_Utilities package

Find procedure
File_Utilities.Find

First_Child procedure
Common.Object.First_Child

. . LM-169, LM-184

Library package LM-206
Links package LM-278
Switches package LM-317
format
Ada
Library.Ada_Format constant LM-208
terse
Library.Terse_Format constant LM-265
verbose
Library.Verbose_Format constant LM-270
Format procedure
Common.Format
Library package LM-205

Found function
File_Utilities. Found

Freeze procedure
Library.Freeze . .
Unfreeze procedure

Frozen enumeration

fully qualified name .

Func_Body subclass
Func_Inst subclass

Func_Ren subclass

Func-Spec subclass

Gen_Func subclass
Gen_Pack subclass

Gen_Param subclass

RATIONAL 7ysr

. . LM-169, LM-187

LM-244
LM-268

.. LM-239
. LM-11

. LM-16

. LM-16

. LM-16

..... LM-16

LM-371

Gen.Procsubclass

Get function
Access_List.Tools.Get

Get procedure
Access_List_Tools.Get

Max_Acl_Length con;ﬁ:tz'mt .

Get_Default function
Access_List_Tools.Get_Default

Get_Default procedure
Access_List_Tools.Get_Default
Max_Acl.Length constant

grave (') special character
GREP, see Find, Found

group
accesscontrol
Network.Public G
Privileged . . e e e e e
Public

Groupclass

Has_Operator-Capability function
Access_List_Tools.Has_Operator_Capability

hexadecimal dump
File_Utilities.Dump procedure . .

hyphen (-)
indicating nondefault versions

Id_Case library switch

identity
accesscontrol

Ignore_Interface_Pragmas library switch . . .
Ignore_Minor.Errors library switch .

Ignore_Unsupported—Rep-Specs library switch .

image
reformat
Library.Reformat_Image procedure
value
Switches.Value_Image subtype

LM-372

e e e e eLM-18
e e LM-66

. LM-68
. LM-75

. LM-70

e e LM-T2
...... I A Y& 3
..... LM-10, LM-12

e e e e LM-20
...... e e o ... L. IM-20
C e e e o oo M-20
...... .« « « LM-20
. LM-14

. LM-74
..... S ... 1M-179

..... . . LM-198

LM-311
S A" & 1
....... LM-19

LM~-311

LM-311

........... . . IM-311

....... . . . LM-25b

LM-337

s RATIONAL

<IMAGE>> special name
Index file

Insert procedure

Common.Object.Insert

Library package .

Links package

Switches package Coe e

Switches.Insert procedure . .
Links.Insert

Add procedure

Replace procedure
Switches.Insert

insertion points .
Insertion subclass . .
key

Compilation.Promote procedure

(Install (This Wortd)] key
Compilation.Promote procedure

install objects
Compilation.Demote procedure
Compilation.Make renamed procedure
Compilation.Promote procedure

Installed enumeration

Internal constant
Links.Internal

internal link

job
access control
response profile

key concepts
Keyword_Case library switch .
kind
link
Links.Link_Kind subtype

Kind type
Library.Kind

RATIONAL 7/1/87

. LM-8, LM-130, LM-170, LM-199, LM-308

LM-88, LM-122

LM-206
LM-278
LM-317
LM-332
LM-298
LM-279
LM~298
LM-832

LM-196
. LM-16

LM~-1567

LM-157

LM-141
LM-151
LM-157
LM-166

LM-295
LM-6

. LM-19
LM-5

LM-1
LM-311

LM-296

LM-246

LM-373

Last_Child procedure
Common.Object.Last_Child

Library package . LM-207
Links package LM-278
Switches package LM-317
left brace ({) file utilities wildeard LM-172, LM-181, LM-184, LM-187
length
maximum ACL
Access_List_Tools.Max. Acl-Length constant . . LM-75
library . . LM-2
class . LM-15
compact
Library.Compact_Library procedure . LM-212
create
Library.Create_Directory renamed procedure . LM-222
Library.Create_World renamed procedure LM-226
create switch file
Switches.Define procedure .. LM-325
designation e LM-198
display
Library.Display procedure .o LM-234
Library. Enclosmg.. World procedure LM-235
editing .. Coe LM-3
elision and expansxon . LM-199
enclosing . LM-11
image structure LM-195
image type LM-195
listing LM-3
name . LM-7
parameter placeholders LM-199
root LM-10, LM-11
session sthches LM-200
special names LM-198
special values LM-199
subclass attributes . LM-15
switch file association
Switches.Associate procedure . LM-318
Switches.Associated function LM-320
Switches.Dissociate procedure LM-328
switch filename
Switches. Of..berary constant . Co LM-333
switches . . LM—l LM—5 LM-308, LM-309
Account . . e e e e e e LM-309
Ahgnment_Threshold e e e e LM-309
Asm_Listing e e e e LM-309

LM-374

e RATIONAL

library, continued

switches, continued
Auto_Login ..
Closed_Private_Part
Comment_Column
Configuration .
Consistent_Breaking .
Create_Internal_Links .
Create_Subprogram-Specs
Enable_Deallocation
Id_Case . . .
Ignore_Interface_Pragma.s
Ignore_Minor_Errors

Ig'nore_Unsupported..Rep_Specs

Keyword_Case
Line_Length
Major_Indentation
Minor_Indentation
Number_Case
Page_Limit
Password ..
Prompt-For_Account
Prompt_For_Password
Remote_Directory
Remote_Machine
Remote_Roof .
Remote_Type . .
Require_Internal- Lmks
Seg. Listing . .
Send_Port_ Enabled
Statement_Indentation
Statement._Length
Subsystem_Interface
Target_Key
Terminal_Echo
Transfer_Mode
Transfer_Structure
Transfer_Type
Username .
Wrap_Indentatxon
system o

Library class
Library package .

Library.Break_Long.Lines session switch

Library_Capitalize session switch

Library_Indentation session switch

RATIONAL 7y/er

LM-7,

LM-310
LM-310
LM-310
LM-310
LM-310
LM-310
LM-310
LM-311
LM-311
LM-311
LM-311
LM-311
LM-311
LM-311
LM-312
LM-312
LM-312
LM-312
LM-312
LM-312
LM-312
LM-312
LM-313
LM-313
LM-313
LM-313
LM-313
LM-313
LM-313
LM-313
LM-314
LM-314
LM-314
LM-314
LM-314
LM-314
LM-314
LM-314

LM-2

. LM-14

LM-185
LM-200
LM-200
LM-201

LM-375

Library_Lazy_Realignment session switch
Library_Line_Length session switch .

Library_Misc_Show_Edit_Info session switch .

Library_Misc_Show_Frozen session switch
Library_Misc_Show_Retention session switch .
Library_Misc_Show_Size session switch
Library_Misc_Show_Subclass session switch
Library-Misc_Show_Unit_State session switch
Library_Misc_Show.Volume session switch .
Library_Shorten_Names session switch
Library_Shorten_Subclass session switch .
Library_Shorten_Unit_State session switch .
Library_Show_Deleted_Objects session switch
Library_Show_Deleted_Versions session switch
Library-Show-Miscellaneous session switch
Library_Show_Standard session switch
Library_Show_Subunits session switch .
Library_Show_Version_Number session switch
Library_Std_Show._Class session switch
Library_Std_-Show.-Subclass session switch .
Library_Std_Show.Unit_State session switch .
Library_Uppercase session switch .
limit

Compilation.Change_Limit subtype
line

number

Xref package

Line.Length library switch .
access control
add

Links.Add procedure
attributes . ..

change
Links.Edit procedure

LM-376

LM-201
LM-201
LM-201
LM-201
LM-201
LM-201
LM-201
LM-201
LM-201
LM-201
LM~-202
LM-202
EM-202
LM-202
LM-202
LM-202
LM~202
LM-202
LM-202
LM-202
LM-202
LM-203

LM-134

LM-341
LM-311
LM-1, LM—-6, LM-275
e LM-22

LM-279
. LM-15

LM-290

e RATIONAL

link, continued
copy
Links.Copy procedure
delete
Links.Delete procedure
dependents
Links.Dependents procedure
display
Links.Display procedure
edit
Links.Edit procedure
enter cross-library link
Links.Add procedure
external
Links.External constant
insert
Links.Insert procedure .
internal
Links.Internal constant
kind
Links.Link_Kind subtype
name
Links.Link.Name subtype
name resolution mode .
remove
Links.Delete procedure
Links.Expunge procedure
replace
Links.Replace procedure .
source name
Links.Source_Name subtype
source pattern
Links.Source_Pattern subtype
special character grave (") .
switches R
update
Links.Update procedure
visit
Links.Visit procedure
world name
Links.World_-Name subtype

Link._Kind subtype
Links.Link._Kind .

Link_Name subtype
Links.Link_Name

Links package

RATIONAL 71/sr

LM-275,

LM-282
LM-284
LM-286
LM-288
LM-290
LM-279
LM-275
LM-292
LM-293
LM-275
LM-295
LM-296
LM-275
LM-297
. LM-12

LM-284
LM-291

LM-298
LM-275
LM-300
LM-301
. LM-12
LM-309
LM-302
LM-304

LM-305

LM-296

LM-297
LM-275

LM-377

list
Ada
Library.Ada_List renamed procedure
file
Library.File_List renamed procedure
verbose

Library.Verbose_List renamed procedure .

List procedure
Archive List
Library.List
Ada_Format constant .
Ada_List renamed procedure .
All_Fields constant
Field type
Fields type
File_List renamed procedure
Terse_Format constant
Unfreeze procedure
Verbose_Format constant
Verbose_List renamed procedure
listings
switches

Load_Func subclass .
Load_Proc subclass .
Load._View subclass .
Load_Views enumeration
locate, see also Find, Found

Lock_Error
JIo_Exceptions.Use. Error exception
Compilation.Delete procedure
Compilation.Demote procedure .
Compilation.Destroy procedure . .
Compilation.Make renamed procedure .
Compilation.Promote procedure

Log subclass

Mail subclass . .
Mail_Db subclass . .
Mailbox subclass
Main-Body subclass
Main_Func subclass .

LM-378

. LM-87,

LM-209
LM-242

LM-271

LM-109
LM-248
LM-208
LM-209
LM-211
LM~-239
LM-241
LM-242
LM-265
LM-268
LM-270
LM-271

LM-309

. LM-16
. LM-16
. LM-15

LM-160

LM-140
LM-142
LM-149
LM-152
LM~-158

. LM-17

. LM-17
. LM-17
. LM-15
. LM-16
. LM-16

s RATIONAL

Main..Proc subclass .
Major_Indentation library switch

make compiled
Compilation.Make renamed procedure
Compilation.Promote procedure

Make renamed procedure
Compilation.Make

Demote procedure

Promote procedure

Max version attribute

Max_Acl_Length constant
Access_List_Tools.Max_Acl_ Length
Get procedure . .
Get_Default procedure

Merge procedure
File_Utilities.Merge
Strip procedure .

messages
commentary .
error .
exception

progress .
user-defined .

warning .
metacharacters, see substitution characters, wildcards
Min version attribute
Minor_Indentation library switch
modify, see Demote

modify session switches
Switches.Edit_Session. Attributes procedure .

move, see also Archive package

Move procedure
Common.Object.Move
Library package .
Links package
Switches package
Library.Move

Msg_In subclass
Msg_Out subclass .

RATIONAL 7/y/sr

LM-157,

. LM-16
LM-312

LM-151
LM-157

LM-151
LM-141
LM-158

. LM-14

. LM-75
. LM-68
. LM-72

LM-190
LM-193

LM-5
LM-5
LM-5
LM-5
LM-6
LM-5

. LM-14
LM-312

LM-330

LM-207
LM-278
LM-317
LM-250

. LM-17
. LM-17

LM-379

n version attribute

name
Ada . . .
character palrs ([] ‘and {})
composite

Switches.Composite_Name subtype

context

Library.Context-Name subtype .

file

Switches.File_Name subtype .
fully qualified . .
link

Links.Link_Name subtype
objects e .
simple

Library.Simple_Name subtype
source

Links.Source_Name subtype .
special .
string
unit

Compilation.Unit—Name subtype

world
Links. World.Name subtype

Name subtype
Access_List.Name
Access_List_Tools.Name
Compilation.Name .
File_Utilities.Name .
Library.Name

naming objects
Network Public group .

networking
access control
switches

Next procedure
Common.Object.Next
Library package .
Links package
Switches package

nickname attributes .
Nickname pragma . .

Nil constant
Library.Nil

LM-380

. LM-14

LM-7
. LM-10

LM-322
LM~-215

LM-331
. LM-11

LM-297
LM-7

LM-262

LM-300
LM-7
LM-7

LM-165

LM-305

. LM-41
. LM-76
LM-154
LM-192
LM-258

LM-7
. LM-20

. LM-22
LM-309

LM-207
LM-278
LM-317

. LM-15
. LM-15

LM-254

s RATIONAL

Normalize function
Access_List_Tools.Normalize

Null_Device class

number
line
Xref package

Number_Case library switch

object
class
copy . -
Archive. Copy procedure
deleted
enclosing
list
Archive.List procedure .
name . . .
referring to deleted
restore

retention count
save
Archive. Save procedure
size
status
subclass
unit state .
version number

Object enumeration
Objects subclass
obsolesced link

Of_Library constant
Switches.Of_Library

Of_Session constant
Switches.Of_Session

operator capability

Access..Lxst_Tools. Iias-Operator-Capabxhty functlon

options
Boolean
literals
specification .

RATIONAL 7/1/er

Archive. Restore procedure

. LM-77
. LM-14

LM-341
LM-312

LM—4, LM-107
. LM-90
LM-100
LM-198

. IM-11

LM-109
LM-7
. IM~-13
LM-89
LM-112
LM-197
. LM-88
LM-122
LM-4
LM-4

LM-4, LM-197

LM~-197
LM-4

LM-239
LM~-17
LM-6

LM-338
LM-33%4
. LM-20

LM~-74

. LM-18
. LM-19
. LM-17

LM-381

Options parameter
restore
save

output
compressed
current
File_Utilities.Current-Output constant
uncompressed

owner access
Library.Freeze procedure
Library.Unfreeze procedure

Owner constant
Access_List.Owner . .
Access._List_Tools.Owner .

Pack.Body subclass .
Pack-Inst subclass
Pack_Ren subclass
Pack_Spec subclass
Page_Limit library switch
parameter placeholders

parent object
Library.Default_Keep.. Versions constant

Parent procedure
Common.Object.Parent
Library package .
Links package
Switches package

parent unit .

Parse procedure
Compilation.Parse

parsing text files
Compilation.Compile constant .
Compilation.Parse procedure

Password library switch

pathname ..
display for an object
lerary Resolve procedure
patterns in coe e

LM-382

LM-17, LM-88, LM-90, LM-169
. LM-89
. LM-88

LM-178

LM-175
LM-178

. LM-21
LM-244
LM-268

. LM~42
. LM-79

. LM-16
. LM-16
. LM-16
. LM-16
LM-312
LM~7, LM-8

LM-229

LM-207
LM-278
LM-317

. LM-11
LM~155

LM-136
LM-1556

LM-312
LM-7

LM-258
LM-8

s RATIONAL

pattern
Links.Source_Pattern subtype

pattern matching . . .
File_Utilities.Equal functxon .
File_Utilities.Find procedure .
File_Utilities.Found procedure .

percent (%)
file utilities wildcard
special character .

period (.) special character .
period, double (..), symbol
Pipe class

placeholders, parameter

pound sign (#)
library wildcard

substitution character

Pragma subclass

pragmas
Nickname .

pretty-print
Library.Reformat_Image procedure .

Previous procedure
Common.Object.Previous
Library package .
Links package
Switches package

primary subsystem
Privileged group
Proc_Body subclass .
Proc_Inst subclass
Proc_Ren subclass
Proc_Spec subclass
processors

<PROFILE> special value

promote effort
Compilation.Make renamed procedure

RATIONAL 7/1/er

LM-301

. LM-8, LM-169, LM-276, LM-297
LM-181
LM-184
LM-187

. LM-172, LM-181, LM-184, LM—187
LM-10, LM-11

LM-10, LM-12
. LM-18

. LM-14
LM-7, LM-8

. LM-8, LM-109, LM~113, LM-297, LM-301

. LM-10
. LM-16

. LM-15

LM-255

LM-207
LM-278
LM-317

. LM-90
. LM~20
. LM-16
. LM-16
. LM~16
. LM-186
LM-322

LM-6

LM-151

LM-383

Promote procedure
Common.Promote
Library package .
Switches package
Compilation.Promote .
Demote procedure
Make renamed procedure

Promote_Scope type
Compilation.Promote_Scope .

Prompt_For_Account library switch .
Prompt_For_Password library switch
propagate changes, see Merge

Ps subclass .

Public group

question mark (?)
file utilities wildcard
library wildcard
substitution character

LM-205
LM-316
LM-157
LM-141
LM-151

LM-160
LM-312
LM-312

. LM-17
. LM-20

. LM-172, LM-181, LM~-184, LM-187

M-—8 LM—9 LM-109, LM-113, LM-297, LM-301

question mark, double (?7), library wildcard

read access
file/Ada unit
world .

Read constant
Access_List.Read . . .
Access. List_Tools.Read

Read_Time enumeration .
Reader enumeration .

recompile
Compilation.Make renamed procedure
Compilation.Promote procedure

reduce library storage space
Library.Compact..Library procedure

Reformat.Image procedure
Library.Reformat_Image

<REGION> special name

LM-384

R

. LM-10
LM-8, LM-9

. LM-21
. LM-21

. LM—4$
. LM-80

LM-239
LM-240

LM-151
LM-157

LM-212

LM-255

. LM-8, LM-130, LM-170, LM-199, LM-308

e RATIONAL

Release procedure
Common.Release
Library package .
Links package
Switches package

Remote_Directory library switch

Remote_Machine library switch .

Remote_Roof library switch
Remote_Type library switch
remove, see Delete

Rename procedure
Library.Rename

Replace procedure
Links.Replace
Link_Name subtype .
Update procedure .

Require_Internal_Links library switch .

Resolve procedure
Library.Resolve

restore, see Archive package

Restore procedure
Archive.Restore

Retain enumeration

retention count
default

Library.Default_Keep_Versions constant .

set

Library.Set_Retention_Count procedure

Revert procedure
Common.Revert
Library package .
Links package
Switches package

right brace (}) file utilities wildcard .

root of the library system

Run_Job procedure
Program.Run_Job

RATIONAL 71/sr

LM-23, LM-87, LM-88, LM-89, LM-90,

LM-205
LM-277
LM-316

LM-312
LM-313
LM-313
LM-313

LM-256

LM-298
LM-297
LM-302

LM-313

LM-258

LM-112
LM-240
LM-197

LM-229

LM-259

LM-206
LM-277
LM-316

. . LM-172, LM-181, LM-184, LM-187
. LM-11

. LM-19

LM-385

same, see Equal

Same.-Directories constant
Compilation.Same_Directories

Same_World constant
Compilation.Same_World .

Same_Worlds constant
Compilation.Same_Worlds

save, see also Archive package

Save procedure
Archive.Save

scope
Compilation.Promote_Scope type

Search subclass .

searchlist
access control
name resolution mode

secondary subsystem
Seg-Listing library switch
<SELECTION>> special name

semicolon (;)

LM-162
LM-168

LM-164

LM-87, LM-88, LM-90, LM-1£2

LM-160
. LM-17

. LM-6
. LM-23
. LM-12

. LM-90
LM-313

. LM-8, LM-130, LM-170, LM-199, LM~308

in set notation . . LM-13
separator . LM-18
Send_Port..Enabled library switch LM-313
session
edit session switches
Switches . Edit-Session_Attributes procedure LM-330
response profile e e e e e . LM-6
switch filename
Switches.Of_Session constant LM-334
switches LM-5, LM-200, LM-308
Library_Break_Long_Lines LM-200
Library_Capitalize .. LM-200
Library_Indentation LM-201
Library-Lazy_Realignment . LM~-201
Library_Line_Length LM-201
Library_Misc_Show_Edit_Info LM-201
Library_Misc_Show_Frozen LM-201
Library_Misc_Show_Retention LM-201
Library_Misc_Show._Size . . LM-201
Library-Misc_Show_Subclass . LM-201

LM-386

e RATIONAL

session, continued
switches, continued

Library_Misc_Show_Unit..State
Library_Misc_Show_Volume
Library_Shorten_Names
Library_Shorten_Subclass
Library_Shorten_Unit_State

Library_Show-Deleted_Objects .

Library_Show_Deleted_Versions

Library_Show_Miscellaneous

Library_Show_Standard
Library_Show_Subunits

Library_Show_Version_Number

Library_Std_Show_Class

Library_Std_Show_Subclass
Library_Std_Show_Unit_State

Library..Uppercase

Session class

< SESSION_PROFILE>> special value

set library context
Library.Context procedure

set notation

Set procedure
Access_List.Set
Access_List_Tools.Set
Switches.Set
Change procedure . . .

Set_Default procedure
Access_List.Set_Default

Access-List..Tools.Set_Defa..ul‘t .

Set_Retention_Count procedure
Library.Set_Retention_Count

Set_Subclass procedure
Library.Set_Subclass

Set_Task_.Name procedure
Debug.Set_Task_Name . . .
Debug_Tools.Set.Task_Name

sets, in names

key

Access_List.Display procedure . .

Simple_Name subtype
Library.Simple_Name .

RAT'ONAL 7/1/87

LM-201
LM-201
LM-201
LM-202
LM-202
LM-202
LM-202
LM-202
LM~202
LM-202
LM-202
LM-202
LM-202
LM-202
LM-203

. LM-14
LM-56

LM-214
. LM-13

. LM-44

. LM-81

LM-835
LM-321

. LM—46

. LM-88

LM-259
LM-261
. LM-11
. LM-11
LM-7

. LM-38

LM-262

LM-387

Single_Unit enumeration .
Size enumeration

Sort_Image procedure
Common.Sort_Image
Links package

key

Compilation.Demote procedure

[Source (This World)] key
Compilation.Demote procedure

Source enumeration

source objects
Compilation.Demote procedure
Compilation.Make renamed procedure
Compilation.Promote procedure

Source_Name subtype
Links.Source_Name

Source_Pattern subtype
Links.Source_Pattern .

Space procedure
Library.Space

Spec_Load subclass
Spec_View subclass

special characters
backslash (\)
braces ({})
brackets ([])
caret (~) .
dollar sign ($) .
double dollar sign (33)
exclamation mark (1) .
grave (')
percent (%)
period (.)
underscore () .

special names .
<ACTIVITY >
<CURSOR>
<IMAGE>
<REGION>
<SELECTION>
<TEXT>

LM-388

LM-160
LM-240

LM-277

LM-141

LM-141
LM-167

LM-141
LM-151
LM-157

LM-275, LM-300

LM-276, LM-801

LM-268
. LM-15
. LM-15

LM-7, LM-10
LM-10, LM-12
. LM-13
'LM-13, LM~109, LM—113, LM-297, LM-301
LM-10, LM-11
LM-10, LM-11
LM-10, LM-11
LM-10, LM-11
LM-10, LM~12
LM-10, LM-11
LM-10, LM-12
LM-10, LM-12

LM-7

. LM-8, LM-130, LM-170, LM~199, LM-308
. LM-8, LM-130, LM-170, LM-199, LM-308
. LM-8, LM-130, LM-170, LM-199, LM-308
. LM-8, LM-130, LM-170, LM~199, LM-308
. LM-8, LM-130, LM-170, LM-199, LM-308
. LM-8, LM-130, LM-170, LM-199, LM-308

e RATIONAL

special values . .
<ALL_.WORLDS>
<DEFAULT>
<DIRECTORIES>
<PROFILE> .o
<SESSION-PROFILE>
<SUBUNITS>
<UNITS>
<WORLDS>

Specification subtype
Switches.Specification
Value_Image subtype

state
attribute
unit

Compilation.Unit_State type .

Statement subclass
Statement_Indentation library switch
Statement_Length library switch
Status enumeration

strings
name .

Strip procedure
File_Utilities.Strip

subclass
attributes .
Ada .
file
library .
set

Library.Set_Subclass procedure .

Subclass enumeration
Subp_Body subclass .
Subp_Inst subclass
Subp_Ren subclass
Subp.-Spec subclass .
Subpackage enumeration .

substitution characters .

at sign (@) .
pound sign (#)
question mark (?)

RATIONAL 7/1/er

LM-5

LM 129 LM—134 LM-199

LM-5

. LM—129 LM 134 LM—138 LM—162 LM-199

LM-5
LM-5

LM-129, LM-134, LM-199

LM-129, LM-134, LM-199

. LM-129 LM 134, LM-163, LM-164, LM-199

LM-836
LM-337

. LM-17

LM-166
. LM-16
LM-313
LM-313
LM-240

IM-7

LM-198

. . LM-15
LM—15 LM-16, LM-17
. LM-16

. LM~17

. LM-156
LM-261
LM-240

. LM-16

. LM-16

. LM-16

. LM-16
LM-246

LM-9
. LM-10
. LM-10
. LM~10

LM-389

substitution, innames LM-T

Subsystem subclassLM-15
Subsystem_Interface library switch LM-314
subgystems
accesscontrolLM23
compatibility database LM-90
compilation LM-130
primaryo o.M
secondary1LM9
<SUBUNITS> special value LM-129, LM-134, LM-199
Subunits_Too enumeration LM-161
switch file
association
Switches.Associate procedure LM-318
Switches.Associated function LM-32
Switches.Dissociate procedure LM-328
constant
Switches.Of _Library constant LM-333
Switches.Of_Session constant LM-334
create
Switches.Create procedure LM-323
Switches.Define procedure LM-325
default
Switches.Default_File constant LM-324
display
Switches.Display LM-32
edit
Switches.Edit procedure LM-329
Switches.Visit procedure LM-338
name
Switches.File_Name subtype LM-331
set switches
Switches.Set procedure LM-335
Switchsubclass LM-17, LM-308
switches
Adawunits LM-309
commentary messages LM-b
Commonpackage LM-315
composite name
Switches.Composite_Name subtype LM-322
edit session switches
Switches.Edit_Session_Attributes procedure LM-330
€ITOT MEeSSAZEeS« .« . e e e LM-5
exception messages LM-5

LM-390 7/1/87 RAT'ONAL

switches, continued

insert
Switches.Insert procedure T .Y Sk

library e e e e LM-5 LM-309
Account . . e e e e e e oo LM-309
Ahgnment_Threshold e e e e e e e e oo . LM-309
Asm-_Listing LM-309
Auto_Login LM-310
Closed_Prlvate_Part S .Y C:3 1]
Comment_-Columin LM-310
Configuration LM310
Consistent_Breaking LM-310
Create_Internal_Links . e e e e e e LM-7,LM-310
Create_Subprogram.Specs e e e e e e o LM-310
Enable_Deallocation LM311
Id-Case . . . S A Y 530
Ignore_lnterface_Pragmas R /¥ S 3 8]
Ignore_Minor_Errors . . S A Y ¢ 3 |
Ignore_Unsupported_Rep_Specs . 5% £ <3 |
Keyword_Case . . . T #.Y S5 8 1
Line_Length LM-311
Major_Indentation LM-312
Minor_Indentation LM-312
Number_-Case LM-312
Page_Limit LM-312
Password LM-312
Prompt_-For_Account LM-312
Prompt_For_Password LM-312
Remote_Directory LM-312
Remote_Machine LM-313
Remote_Roof LM-313
Remote_Type . . e A S5
Reqmre..lnternal-Llnks O A% S &
Seg_Listing . . e e e e e LM-313
Send_Port-Enabled O A% C) &
Statement_Indentatiomn LM-313
Statement_Length LM-313
Subsystem_Interface LM-314
Target-Key LM-314
Terminal_Echo LM-314
Transfer-Mode LM-314
Transfer_Structure LM-314
Transfer_Type LM-314
Username . . O .Y § 3 T
Wrap_lndentatxon O 1Y C 3

links LM-309

listings LM309

metworking LM-309

overview LM-308

RATIONAL 7/1/87 LM-391

switches, continued
parameter placeholders

progress messages

session . . .
lerary_Break Long_Lmes ..
Library_Capitalize
Library_Indentation .

Library_Lazy_Realignm.en; .

Library_Line_Length . . .
lerary_Msc_Show_Edlt_Info
Library_Misc_Show_Frozen
Library_Misc_Show.Retention

Library-Misc_Show_Size . . .

Library-Misc_Show_Subclass .
Library_Misc_Show_Unit_State
Library—_Misc_Show_Volume
Library.Shorten_Names
Library_Shorten_Subclass
Library_Shorten_Unit..State

Library—Show_Deleted_Objects .

Library_Show_Deleted_Versions
Library-Show_Miscellaneous
Library-Show_Standard
Library—-Show_Subunits

Library-Show_Version_Nt;rxz'ber .

Library-Std_-Show_Class

Library_Std_Show_Subclass

Library_Std_Show.Unit_State
Library-Uppercase ..
set
Switches.Set procedure
special names
value
Switches.Value_Image subtype
warning messages .

Switches package
Swtch_Def subclass
synptax rules

Tape class
Target_Key library switch
Task-Body subclass

Task_Display procedure
Debug.Task.Display

LM-392

....... . LM-308
.. LM-5
LM-5, LM-200

.« LM-200
.. ILM-200
LM-201

LM-201

.. LM-201
..... . LM-201
LM-201

LM-201

.+ .« LM-201
.« .+ .« LM-201
LM-201

LM-201

LM-201

LM-202

LM-202

LM-202

LM-202

LM~-202

LM-202

LM-202

LM-202

LM-202

LM~202

LM-202

LM-203

1M-335
LM-307

LM-337
LM-56

LM-807
. LM-17
. LM-18

. LM-14
LM-314
. LM-16

. LM-11

s RATIONAL

Terminal class
Terminal-Echo library switch .

Terse_Format constant
Library.Terse_Format

Text subclass .

<TEXT> special name .

tilde (7) symbol .

Transfer_Mode library switch .
Transfer_Structure library switch .
Transfer_Type library switch .

[Uncode (All Worlds)] key
Compilation.Demote procedure

ﬁ}ncode (This Worﬂ key
Compilation.Demote procedure

uncompressed output

Undelete procedure
Library.Undelete
Compilation.Delete procedure
Delete renamed procedure

underscore (-)
identifier character .
special character .

undo a deletion
Library.Undelete procedure

Undo procedure
Common.Undo
Library package .

Unfreeze procedure
Library.Unfreeze .
Freeze procedure
unit
create

Library.Create_Unit renamed procedure

Unit_Name subtype
Compilation.Unit_Name

Unit_Only enumeration

RATIONAL 71/er

. LM-8, LM-130, LM-170, LM-199,
. LM-13, LM-18, LM-109, LM-113, LM-297,

. LM-15

LM-314

LM-265

. LM-17

LM-308
LM-301
LM-314
LM-314
LM-314

LM-141

LM-141
LM-178

LM-266
LM-139
LM-231

LM-9

LM-10, LM-12

LM-266

LM-206

LM-268
LM-244

LM-224

LM-165
LM-161

LM-393

Unit.State type
Compilation.Unit-State LM-166

<UNITS> special value LM-129, LM-134, LM-199

Update procedure
Links.Update LM-802
Replace procedure LM-208
Source_Name subtype LM-300

Update_Time epumeration, LM-240
Updater enumeration LM-240

Use_Error exception
Access_List package
ReadconstantLM43
WriteconstantLM-48
Access_List_Tools package
ReadconstantLM-80
WriteconstantLM85

Used_By procedure
XrefUsed-By LM-84¢

user
accesscontrol1LM19
worldrestoredLM89

Userclass1LM15
user-defined messages LM#6
Username library switch LM-314

Uses procedure
Xref.Uses oo LM-&47

utilities
File_Utilities package LM-169
v
validity
Access_List_Tools.Check_Validity procedure LM-62

value delimitersLM-18
colonequals (:=)LM-18

equals (=)LM18
equals/greater than (=>)LM-18

Value_Image subtype
Switches.Value_Image LM-887

VenturesubclassLM17

Verbose_Format constant
Library.Verbose-Format LM-270

LM-394 7/1/87 PATIONAL

Verbose_List renamed procedure
Library.Verbose-List

version
Library.Default-Keep_Versions constant

version attributes

Version enumeration .
vertical bar (|) symbol
visible parts and bodies

Visit procedure
Links. Visit .
Edit procedure
Switches. Visit
Edit procedure

Volume subtype
Library. Volume

wildcards

file utilities
asterisk (*)
backslash (\) . . .
brackets ([])
caret () . . .
dollar sign ($) . .
left brace ({) . . .
percent (%) . . .
question mark (?) . .
right brace (})

library
atsign(@)
double question mark (?7)
pound sign (#) . . .
question mark (?) . .

withdrawn items
Work subclass
Work_List subclass

RATIONAL 7/yer

. LM-172,
. LM-172,
. LM-172,
. LM-172,
. LM-172,
. LM-172,
. . LM-172,
. LM-172,
. LM-172,

. LM-8, LM-9, LM-109,
. . . . LM-8, LM-109,
. LM-8, LM-9, LM-109,

LM-3, LM-271

LM-229

. LM-14
. LM-14
. LM~-14
. LM-14
. LM-14
. LM~14
. LM-14

LM-240
. LM-18
. LM-13

LM-304
LM-290
LM-338
LM-329

LM-27%

LM-7

LM-181, LM-184, LM-187
LM-181, LM-184, LM-187
LM-181, LM-184, LM-187
LM-181, LM-184, LM-187
LM-181, LM-184, LM-187
LM-181, LM-184, LM-187
LM-181, LM-184, LM—187
LM-181, LM~184, LM-187
LM-181, LM-184, LM-187
. LM-8
LM-113, LM-297, LM-301
C LM-8, LM-9
LM-113, LM-297, LM-301
LM-113, LM-297, LM-301

LM~-196
. LM-17
. LM~17

LM-395

world LM-2
access classes e . LM-21
Access_List.Create constant . LM-34
Access_List.Delete constant . LM-37
Access_List.Owner constant . LM-42
Access_List.Read constant .o . LM-43
Access_List_Tools.Create constant . LM-64
Access_List_Tools.Delete constant . LM-65
Access_List_Tools.Owner constant . LM-79
Access_List.Tools.Read constant . LM-80
all
Compilation.All-Worlds constant LM-132
create
Library.Create-World renamed procedure LM-226
enclosing LM-11
Library.Enclosing_World procedure LM-235
links e e e LM-275
restore . LM-89
same
Compilation.Same_World constant LM-163
Compilation.Same_Worlds constant LM-164
World enumeration LM-247
World subclass . LM-15
World_Name subtype
Links.World_Name . LM-805
<WORLDS> special value LM-129, LM-134, LM-163, LM-164, LM-199
Wrap_Indentation library switch LM-314
write access . LM-21
Write constant
Access.. List. Write . LM-48
Access._List_Tools. Write . LM-85
Write procedure
Switches. Write . . LM-889
X
Xref flag definitions LM-343
Xref package LM-341

LM-396

e RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Library Management (LM), 8001A-25

