Rational Environment
Reference Manual

Data and Device Input/Output (DIO)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-27
Rev. 1.0, October 1985
Rev. 2.0, December 1985

Rev. 3.0, May 1986
Rev. 4.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

DIO-ii e RATIONAL

Contents

How to Use This Book

Key Concepts
Files - .
Devices and Windows
Safe Types
File Handles -
Filenames)
Access Control
Concurrency Coe
Representations of Terminators
Exceptions
Error Reactions

generic package Direct.Io e
procedure Close e e e
type Count00
procedure Create
procedure Delete
generic formal type Element_Type
function End-Of_File Ce e
type File_Mode
type File_Type
function Form
function Index C e e
function Is.Open
function Mode
function Name
procedure Open

RATIONAL 71

O DO DD B RN e e X

-3

bk bt
W N O © o

bt kit et
b = I, B

-
Qo

BN NN e
N = OO

DIO-iii

subtype Positive_Count 23
procedure Read24
procedure Reset25
procedure Set_Index .26
function Size27
procedure Write28

end Direct.Io

package Io.Exceptions29
exception Data_Error30
exception Device_Error31
exception End-Error32
exception Layout_Error33
exception Mode_Error34
exception Name_Error35
exception Status_Error36
exception Use_Error 837

end JIo_Exceptions

package Polymorphic-Sequential.lo39
procedure Append40
procedure Close41
procedure Create4
procedure Delete 4
function End-Of_File45
type File_Mode46
type File_-Type47
function Form48
functionIs_Open49
functionMode580
function Name51
procedureOpen52
procedure Reset 53

generic package Operations55
generic formal type Element_Type56
procedure Read57
procedure Write58

end Operations

DIO-iv 7/1/87 BA\TIONAI_

end Polymorphic-Sequential-Io

generic package Sequential-Io
procedure Close
procedure Create . .
procedure Delete

generic formal type Element_Type

function End_Of_File
type File_Mode

type File_Type
function Form

function Is_Open

function Mode
function Name
procedure Open
procedure Read
procedure Reset
procedure Write

end Sequential-lo

package Window.Io

Two Case Studies
Basic Concepts
Images and Windows

Input to and Output from Images

Definitions and Utilities
Fonts
Keys .
Window Utxhtles
Graphics Utilities

The Form Abstraction

Design Issues .
Implementation Issues

The Menu Abstraction
Design Issues
Implementation Issues
Disconnecting from a Menu

type Attribute

RATIONAL 7y/er

. .76
LT
. 78

. 62
. 63
. 65
. . 66
. . 67

. 68

. 69

70

.M
.72
.73

74

DIO-v

DIO-vi

procedure Bell
type Character_Set
function Char_At
procedure Close

subtype Column_Number

subtype Count
procedure Create
function Default_Font
procedure Delete
procedure Delete
procedure Delete_Lines
type Designation
function End_Of_File
function End_Of_Line
type File_Mode

type File_Type

type Font

function Font_At
function Form
procedure Get
procedure Get
function Get_Line
procedure Get_Line
constant Graphics
procedure Insert
function Is_Open
function Job_Number
function Job_Time
function Last_Line
function Line_Image
function Line_Length
subtype Line_Number
function Mode
procedure Move_Cursor
function Name
procedure New_Line
constant Normal
procedure Open

104
105
106
107
108
109
110
111
113
114
115
116
118
119
120
121
122
123
124
125
127
131
134
137
138
140
141
142
143
144
145
146
147
148
150
151
152
153

s RATIONAL

procedure Overwrite 155
constant Plain 1587
procedure Position_Cursor 158
subtype Positive_Count 160
function Read_Banper 161
procedure Report_Cursor 163
procedure Report_Location 164
procedure Report_Origin 165
procedure Report_Size 166
procedure Set_Banper 168
constant Vanilla 170
package Rawo L0001
procedure Close 172
function Convert 174
function Convert 175
procedure Disconnect 176
procedure Get 1TT
function Image 179
typeKey o000 000181
type Key_String 182
procedureOpen 183
subtype Simple_Key 184
type Stream_Type 185
subtype Termipal 186
exception Unknown_Key 187
function Value 188
procedure Value 190
end Raw

end Window-Io
Index 193

RATIONAL 7/1/er DIO-vii

RATIONAL

How to Use This Book

The Data and Device Input/Output (DIO) book of the Rational Environment Ref-
erence Manual contains reference information describing some of the 1/0 packages
provided by the Rational Environment™ for manipulating binary files, devices,
and editor windows. This includes reference information on the Ada ®-predefined
packages Direct_lo, Sequential_lo, and Io_Exceptions, as well as information on

Rational ®-developed 1/0 packages. Note that packages for performing I/0 on text
files are documented in the Text Input/Output (TIO) of the Rational Environment
Reference Manual. The reference entries for package !lIo.Jo_Exceptions are dupli-
cated in both DIO and TIO, because these exceptions can be raised by any of the

1/0 packages.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary

Keymap

Master Index

Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Input/Output (TIO)

Data and Device Input/Output (DIO)
String Tools (ST)

Programming Tools (PT

10 System Management Utilities (SMU)
11 Project Management (PM)

© 00 ~JO v W N

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL +/1/er DIO-ix

Organization of the
Rational Environment Reference Manual

l 11 volumes containing 14 books .l
[]
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book
g
H
EST i' !
e E
il » » »
g
L AATIONAL 4 AATIONAL ,_1-4

Rational Environment

o) Reference
Manual

/ Key concepts

Book index

Topical section

Unit section

Book

(LS sadA], ogioods Bunipy |

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are

documented.

¢ Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

¢ Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Contents: The table of contents provides a complete list of all the units in the
book and their reference entries.

o Key Concepts section: Most of the books contain a section describing key
concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under
String. Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/87 DIO-xi

* Explanatory /topical secticns: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

o Index: Preceded by a tab, the Index appears as the last section of eazh book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 12 provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Environment User’s Gusde.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

DIO—xii e RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library”);. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the [Helpon Heiv] key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

o Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

s Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL 71/sr DIO-xiii

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition cf the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

DIO—xiv 7/1/87 PATIONAL

Key Concepts

Data and Device Input/Output (DIO) contains reference information describing
some of the 1/0 packages provided by the Rational Environment for manipulating
binary files, devices, and editor windows. This includes reference information on
the Ada-predefined packages Direct_lo, Sequential_Io, and Io_Exceptions, as well
as information on the Rational-developed I/0 packages Polymorphic_Sequential_Io
and Window_Io.

Text Input/Output (TIO) contains reference information describing the 1/0 packages
for manipulating text files. Text files are files that contain ASCII characters, which
are of the Character type intended for viewing, editing, and so on.

Package Window_Io is used to perform 1/0 to editor windows.

Package Polymorphic_Sequential_Io provides facilities similar to those of package
Sequential_lo, except that the 1/O stream can be polymorphic—that is, the same
stream can pass values of one or more different types. This capability is most useful
when writing applications that must write and read values of multiple types to and
from the same file or device—for example, database applications or various kinds of
development tools. This capability is achieved by exporting a nested generic unit
that must be instantiated for each type of data in the stream. As with all the 1/0
facilities, attempting to read data into an object of a type different from the data
that are available for input may result in an exception being raised. Thus, it is
the responsibility of the application to keep track of the order in which data of a
specific type are to be written and read.

Files

The I/O packages manipulate information in objects stored in the library system
of the Rational Environment. This includes files, Ada units, and devices such as
windows and terminals. Since the Rational Environment offers a richer definition
of the file than does the Reference Manual for the Ada Programming Language, in
the description of all the 1/0 facilities in the Rational Environment, the term files
may be used to denote any one of these entities.

Files that are objects of the file class in the library system of the Environment can
be read from or written to. In the Rational Environment, a file is identified in a
library display with an entry of the form:

RATIONAL 717 DIO-1

Key Concepts

name : file;

where name is the identifier of the simple name of the file. Files can exist only
in libraries—that is, directories or worlds. Files can be created, opened, closed,
deleted, and otherwise read from/written to by any of the Environment 1/0 pack-
ages. EST, package Text, provides facilities for text-specific editing of files, and a
file append operation is available in LM, package File_Utilities, and in TIO, package
Io. It is common for a file to be created by the user with the facilities of package
Text (EST) and then later read by the 1/0 packages discussed in this section.

Files thus provide the conventional notion of file storage. When a file is modified
using the Rational Editor, changes to the file are not preserved until the file is
committed. When a file is created or modified from a program, the updated value
of the object is committed only when the file is closed. Thus, if a program does
not explicitly close a file, the permanent contents of the file are unchanged by
the execution of the program. This may be the intended result, but caution is
warranted, especially in error situations in which exception handlers must determine
whether to save the contents of a file by closing it. Not closing the file effectively
abandons the changes made by the program.

Ada units are generally created through normal program development using the
resources of the Rational Editor. Since Ada units can be read as streams of char-
acters, the I/0 facilities discussed in this book can be used to read this image. Ada
units cannot be written directly. However, facilities exist in the Rational Envi-
ronment for transforming a file into an Ada unit (see, for example, LM, procedure
Compilation.Parse).

Files and Ada units are subject to the standard read/write synchronization protocols
used throughout the Rational Environment. This synchronization permits multiple
jobs to have simultaneous access to the same file for reading, but it allows only a
single job to write to a file at any instant in time (with no readers allowed while
a writer has the file open). Attempting to gain access to an object in a manner
that violates this protocol results in the Io_Exceptions.Use_Error exception being
raised. Attempting to open an Ada unit for writing also results in the Use_Error
exception being raised.

Devices and Windows

The Rational Environment supports I/0 to or from several devices, including win-
dows and terminals. In general, all of the I/O packages documented in this book
can use any of these devices. 1/0 to tapes is permitted and is provided by package
Tape (SMU). The exact effect of 1/O with a particular device is, of course, unique to
that device, and is explained in the following paragraphs.

For each user session, one or more windows can be created to provide a medium for
the files Standard_Input and Standard_Output, as defined in TIO, packages Text_Io
and Jo. Multiple windows are created when more than one job is simultaneously
performing output. These windows are given names corresponding to the name
of the job that is currently accessing them, or that accessed them most recently,
and is of Text type. This window can be moved or expanded, and its contents can

DIO-2 e RATIONAL

Key Concepts

be cut, copied, and otherwise manipulated with the Rational Editor commands, as
explained in Editing Images (EI) and Editing Specific Types (EST), package Text, in
the Rational Environment Reference Manual. In general, this window automatically
pops up when I/0 is requested of the standard files. Output to Standard_Output
appears in the window as characters (with control characters highlighted in a special
font). Input requested from Standard_Input is denoted with the typical editor
prompt, with the name [/input]. The usual editing paradigm offered by the Rational
Editor applies, so input can be typed ahead, edited, and even copied from other
windows. Input is not sent to the waiting program until it is committed.

Session 1/0 windows optionally accumulate all I/0 to standard files during one ses-
sion, so the windows can be used to keep scripts of program interaction. Between
jobs, 1/0 to these windows is separated by a job separator. The files Standard_Input
and Standard_Output are automatically created at the start of each job and are au-
tomatically closed at the end of each job. If more than one job is initiated in a single
session, and each job uses the resources of Standard_Input or Standard_Output,
additional windows are created as necessary. If a job is executed and a session
does not exist, Standard_Input and Standard_-Output map to files with the names
Standard_Input and Standard_Output, respectively. These files are created in the
default context of the job that initiated the I/O.

Package Io introduces the notion of a Standard_Error file. This file maps to the
Rational Editor Message window, so it typically is used to provide a common error-
reporting mechanism among tools. If a job is executed and a session does not exist,
Standard_Error maps to a file with the name Standard_Error, created in the default
context of the job that initiated the 1/0.

A programmatic interface for performing 1/0 to windows is provided with package
Window_lo. In this case, the file abstraction is associated with an image. This
image is displayed in a window on the terminal screen. Interfaces are provided to
open images, put characters to any part of the image, get characters from the image,
and close or delete the image when finished.

I/0 also can be initiated directly to terminals using any of the 1/0 packages. Files can
be opened using a name (of String type) in the form !Machine.Devices.Terminal_n,
where n is an integer corresponding to a physical port on the processor. The
exact names available on any particular machine can be found in !Machine.Devices.
Once the file is opened, I/O can proceed as with any other file. Of course, the
effect of the I/O depends on the nature of the physical device attached to the port.
Physical devices other than the Rational Terminal can be attached to any port.
If a program attempts to open a terminal that is already assigned to a job, the
Io_Exceptions.Use_Error exception is raised.

Note that other lower-level operations for performing 1/0 on terminals that are
logged in are available from package 'To.Device_Independent_Io, using the opera-
tions in package !lo.Terminal_Specific. They are not documented in the Rational
Environment Reference Manual.

RATIONAL 71/s7 DIO-3

Key Concepts

Safe Types

Packages Sequential_lo, Direct_Io, and Polymorphic_Sequential_lo can be used to
perform I/0 on any safe type. A safe type is any type that does not contain access
types or task types in any of its components. If a create or an open operation is
attempted with an instantiation of an unsafe type, the lo_Exceptions.Use_Error
exception will be raised. If a read or a write operation is attempted with an instan-
tiation of an unsafe type, the Io_Exceptions.Data_Error exception will be raised.

File Handles

File handles are used for performing operations on files within Ada programs using
the facilities provided by the I/O packages. When a file is opened or created, a file
handle is returned. This handle is then used to refer to the file when calling the
subprograms in the 1/O packages.

The following is an example of a program that reads the lines from a text file named
'Users.Blb.A_Text_File and displays them in the output window. The program first
opens the file which returns a file handle. This file handle is then used for reading
the lines from the file and checking for an end of file condition.

with lo;
procedure Display_File 1is

-- This program reads lines from a text file and displays them
-- in the output window.

File_Handle : lo.File_Type;
-- This is the object that will contain the file handle.

begin

lo.Open (File => File_Handle,

Mode => lo.in_File,

Name => "lusers.blb.a_text_file");
-- Opens the named file for reading and returns a file handle for
-~ performing |/0 operations on that file within this program.

while not lo.End_Of_File ({File_Handle) loop

declare
Line : constant String := lo.Get_Line (File_Handle);
~- Reads a line from the file.

begin

lo.Put_Line (Line};
— UWrites the line to the output window {Standard_Output).

end;
end loop;

end Display_File;

DIO-4 e RATIONAL

Key Concepts

Filenames

Filenames supplied to the Create and Open procedures in the various 1/0 packages
can be any legal Environment object name that uniquely identifies an object. Such
names, for example, can contain wildcards and so on as long as the name can be
resolved to a single object. Note that special names (for example, "<SELECTION>")
can also be used to designate the name of a file. For more information on naming

objects, see SIM, Key Concepts.

Access Control

The Rational Environment provides access-control mechanisms that can be used to
restrict the access that users and programs have to the objects in the library system.
The operations provided in the I/O packages are subject to these access controls.

The access specified in Table 1-1 is required for performing 1/0 operations on files.
If the required access does not exist, the Io_Exceptions.Use_Error exception will be
raised by the attempted operation. See LM, Key Concepts, for more information on
access control.

Table 1-1. Access Required for I/O Operations.

Operation Access Required

All operations Read access for all worlds enclosing the file

Creating a file Create access to the world in which the file is to
be created

Deleting a file Read access to the file

Opening a file for reading (mode In) Read access to the file

Opening a file for writing (mode Out) Write access to the file

Concurrency

The execution of any command or subprogram in the Rational Environment con-
stitutes a job. Within a job, there may be several tasks that use I/0 resources. If
multiple tasks all share that same file handle, I/0 may be arbitrarily interleaved
and the results can be unpredictable. Thus, the 1/0O resources documented in this
book may not offer or imply synchronization of the 1/0 activity. The Rational En-
vironment does provide synchronization of 1/0 among different jobs, as discussed in
“Devices and Windows,” above.

QATIONAL 1/1/87 DIO-5

Key Concepts

Representations of Terminators

Since packages Text_Io and Io (TIO) observe the abstraction required by the Ref-
erence Manual for the Ada Programming Language of files containing line, page,
and file terminators, it is sometimes useful to permit the user to simulate these
terminators when creating or reading text files using the facilities in D10. In the
Environment, the line terminator is denoted by the character Ascii.Lf, the page
terminator is denoted by the character Ascii.Ff, and the end-of-file terminator is
implicit at the end of the file. A line terminator directly followed by a page ter-
minator is compressed to the single character Ascii.Ff. Also, the line and page
terminators preceding the file terminator are implicit and do not appear as char-
acters in the file. For the sake of portability, programs should not depend on this
representation, although it can be necessary to use this representation when im-
porting text files from another system or exporting text files from the Rational
Environment.

Exceptions

Note that although most of the I/O packages contain renaming declarations for the
exceptions defined in package Io_Exceptions, descriptions of these renaming decla-
rations are omitted from the packages. Refer to the descriptions of the exceptions
in the reference entries for package Io_Exceptions.

The Rational Environment provides additional information about exceptions raised
by the I/O packages. This information, which describes why a given exception
occurred, is typically displayed in parentheses after the exception name. See the
reference entries for the exceptions in package Io_Exceptions for descriptions of this
additional information.

Error Reactions

When errors are discovered in a command, the command can respond by:

¢ Ignoring the error and trying to continue
e Issuing a warning message and trying to continue
» Raising an exception and abandoning the operation

For each job, the Environment maintains a default action for commands in package
Profile (SIM) to take if an error occurs. There are commands for specifying and
displaying the default error reaction for a job. Regardless of the default error
reaction, any error reaction can be specified for any command.

The Environment has three default specifications for the profile it should use when
responding to errors in a command. These are "<PROFILE>", "<SESSION>", and "<DE-
FAULT>", which refer, respectively, to the job response profile, the session response
profile, and the default profile returned by the Profile.Default_Profile function.

DIO-6 7/1/87 'QATIONAL

generic package Direct_Io

This package provides the capabilities for Direct_Io as required by the Reference
Manual for the Ada Programming Language, Chapter 14. It provides facilities for
direct 1/O upon files whose components are of the same (nonlimited) type. This
type must be a safe type—that is, any type that does not contain access types or
task types in any of its components. If a create or an open operation is attempted
with an instantiation on an unsafe type, the Io_Exceptions.Use_Error exception
will be raised.

The fundamental abstraction provided by package Direct_Io is the File_Type type.
Objects of this type are file handles that can be mapped to files. A file is viewed
as a set of elements occupying consecutive positions in linear order; a value can be
transferred to or from an element of the file at any selected position. The position
of an element is specified by its index. The first element, if any, has index 1; the
index of the last element, if any, is called the current size (which is 0 if there are no

elements).

RAT'ONAL 7/1/87 DIO-7

procedure Close
package 'Io.Direct_Io

procedure Close

procedure Close (File : in out File_Type});

Description

Severs the association between the file handle and its associated file.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-8 e RATIONAL

type Count
package ![o.DirectIo

type Count

type Count i1s nmew Integer range @ .. Integer’Last / Element_Type’Size;

Description

Defines the valid range of direct file index positions.

RAT'ONAL 7/1/87 DIO-9

procedure Crezte
package !Io.Direct_Io

procedure Create

procedure Create (File : 1in out File_Type;

Mode : File_Mode := !nout_File;
Name : String ="",
Form : String = ""};

Description

Establishes a new file with the given name and associates this file with the specified
file handle.

The specified file is left open.

Parameters

File : in out File_Type;
Specifies the handle for the file.

Mode : File_Mode := Inout_File;
Specifies the access mode for which the file is to be used.

Name : String := "";

Specifies the name of the file to be created. A null string for the Name parameter
specifies a file that is not accessible after the completion of the main program (a
temporary file).

Form : String := "";
Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

DIO-10 e RATIONAL

procedure Create
package Yo.Direct_Io

Errors

If the specified file handle is already open, the Io_Exceptions.Status_Error exception
is raised.

The Io_Exceptions.Name_Error exception is raised under any of the following con-
ditions:
¢ The filename does not conform to the syntax of a name.

e An object of a nonfile class with the same name as the filename already exists in
the context in which the creation is attempted.

o The context in which the creation is attempted cannot contain files. Files are
allowed only in directories or worlds.

The Io_Exceptions.Use_Error exception is raised under any of the following condi-
tions:

¢ The Element_Type type is unsafe (that is, it contains access or task types).
¢ The file cannot be opened with the specified mode.

o Another job has locked the file.

o The executing job does not have create access.

IQAT'ONAL 7/1/87 DIO-11

procedure Delete
package 1o.Direct_Io

procedure Delete

procedure Delete (File : in out File_Type);

Description
Deletes the file associated with the specified file handle.

The specified file is closed, and the file ceases to exist.

Parameters

File : 1n out File_Type;
Specifies the handle for the file.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

The Io_Exceptions.Use_Error exception is raised under any of the following condi-
tions:

¢ The Environment does not support deletion on the file.
o The executing job does not have the access rights required to delete the file.
e Another job has locked the file.

DIO-12 7/1/87 PAT'ONAL

generic formal type Element_Type
package Yo.Direct_lo

generic formal type Element_Type

type Element_Type 1s private;

Description

Defines the type of the items that form the files for each particular instantiation.

Restrictions

The type used to instantiate the generic must be a nonlimited type as well as a safe
type. Specifically, the type cannot be an access or task type and cannot contain
components that are access or task types.

If unsafe types are used for the instantiation, subsequent create or open operations
will raise the Io_Exceptions.Use_Error exception.

RATIONAL 7/1/87 DIO-13

function End_Of_File
package Yo.Direct_Io

function End_Of_File

function End_Of_File (File : File_Type) return Boolean;

Description

Returns true if the current index exceeds the size of the file; otherwise, the function
returns false.

This function operates on a file of the In_File or Inout_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

return Boolean;

Returns true if the current index exceeds the size of the file; otherwise the function
returns false.

Errors

If the file is opened with the Out_File mode, the Io_Exceptions.Mode_Error excep-
tion is raised.

DIO-14 7/1/87 RATIONAL

type File_Mode
package o.Direct_lo

type File_Mode

type File_ Mode is (In_File, I|nout_File, Out_File);

Description
Specifies the mode of access for which a file is open.

In_File denotes a file with read-only access, Out_File denotes a file with write-only
access, and Inout_File denotes a file with read/write access.

QAT'ONAL 7/1/87 DIO-15

type File_Type
package 'To.Direct_lo

type File_Type

tupe File_Type is limited private;

Description
Defines the type of the file handle unique to each instantiation of the package.
Objects of this type are file handles that can be mapped to external files.

DIO-16 7/1/87 BA\TIONAI_

function Form
package !o.Direct_lo

function Form

function Form (File : File_Type) return String;

Description
Returns the null string ("") in all cases.

When the Form parameter to the Create and Open procedures is supported in the
future, the Form value provided to the call to the Open or Create procedure will
be returned.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;
Returns the null string ("") in all cases.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

References
procedure Create

procedure Open

RATIONAL 1/er DIO-17

function Index
package Io.Direct_lo

function Index

function Index (File : File_Type) return Positive_Count;

Description
Returns the current index of the specified file.

This function operates on a file of any mode.

Parameters

File : File_Type;
Specifies the handle for the file.

return Positive_Count;
Returns the current index of the specified file.

DIO-18 7/1/87 IQAT'ONAL

tunction Is_Open
package !o.Direct_Io

function Is_Open

function Is_Open (File : File_Type)} return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

File : File_Type;
Specifies the handle for the file.

return Booclean;

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

RATIONAL 7167 DIO-19

function Mode
package 'To.Direct_Io

function Mode

function Mode (File : File_Type) return File_Mode;

Description

Returns the mode for which the specified file is open.

Parameters

File : File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file is open.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-20

e RATIONAL

function Name
package !Io.Direct_lo

function Name

function Name (File : File_Type) return String;

Description
Returns the name of the file currently associated with the specified file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;

Returns the name of the file currently associated with the specified handle.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL 71/er DIO-21

procedure Open
package !To.Direct_Io

procedure Open

procedure Open (File : in out File_Type;

Mode : File_Mode;
Name : String;
Form : String = "");

Description

Associates the specified file handle with an existing file having the specified name.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the access mode for which the file is to be used.

Name : String;
Specifies the name of the external file to be opened.

Form : String := "";

Currently, the Form parameter, if specified, has no effect.

Errors

If the specified file handle is already open, the Io_Exceptions.Status_Error exception
is raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io_Exceptions.Name_Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Io_Exceptions.Use_Error exception is raised under the following conditions:
o The Element_Type type is unsafe (that is, it contains access or task types).

o The file cannot be opened with the specified mode.

e Another job has locked the file.

DIO-22 7/1/87 PAT'ONAL

subtype Positive_Count
package 'To.DirectIo

subtype Positive_Count

subtype Positive_Count is Count range 1 .. Count’lLast;

Description

Defines the valid range of direct file index positions for a nonempty file.

EATIONAL 7/1/87 DIO-23

procedure Read
package !lo.Direct_lo

procedure Read

procedure Read (File : File_Type;
Item : out Element_Type;
From : Positive_Count);
procedure Read (File : File_Type;

ftem : out Element_Type};

Description

Reads an item from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file of the In_File or Inout_File mode. It sets the
current index of the specified file to the index value specified by the From parameter.
Both forms of the procedure then return, in the Item parameter, the value of the
element that resides at the current index. The current index is then increased by 1.

Parameters

File : File_Type;
Specifies the handle for the file.

Item : out Element_Type;
Specifies the object that receives the value read.

From : Positive_Count;
Specifies the position from which the data element is to be read.

Errors

If the file is opened with the Out_File mode, the Io_Exceptions.Mode_Error excep-
tion is raised.

If the index exceeds the size of the file, the Io_Exceptions.End..Error exception is
raised.

If the element read cannot be interpreted as a value of the Element_Type type, the
Io_Exceptions.Data_Error exception is raised.

DIO-24 7/1/87 IQATIONAI_

procedure Reset
package !o.Direct_Io

procedure Reset

procedure Reset (File : in out File_Type;
Mode : File_Mode);

procedure Reset (File : in out File_Type);

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

The file index is set to 1. If a Mode parameter is supplied, the current mode of the
given file is set to the specified mode.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

¢ The Environment does not support resetting for the file.
¢ The Environment does not support resetting to the specified mode for the file.
e Another job has locked the file.

RATIONAL 71/ DIO-25

procedure Set_Index
package !To.Direct_Io

procedure Set_Index

procedure Set_Index (File : File_Type;
To : Positive_Count);

Description

Sets the current index of the file to the specified index value (which may exceed the
current size of the file).

This procedure operates on a file of any mode.

Parameters

File : File_Type;
Specifies the handle for the file.

To : Positive_Count;
Specifies the object to whose value the index is to be set.

DIO-26 7/1/87 RAT'ONAL

function Size
package !lo.Direct_Io

function Size

function Size (File : File_Type) return Count;

Description
Returns the current size of the file associated with the specified file handle.

This function operates on a file of any mode.

Parameters

File : File_Type;
Specifies the handle for the file.

return Count;

Returns the current size of the file associated with the specified file handle.

BA\TIONAL 7/1/87 DIO-27

procedure Write
package !o.Direct_Io

procedure Write

procedure Write (File : File_Type;
Item : Element_Type;
To : Positive_Count’;

procedure Write (File : File_Type;
[tem : Element_Type};

Description
Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the Inout_File or Out_File mode. It sets the
index of the given file to the index value given by the To parameter. Both forms
of the procedure then overwrite the current index of the file with the value of the
Item parameter. The current index is then increased by 1.

If a value for the index is greater than the current size of the specified file, the file
is automatically extended to include this value.

Parameters

File : File_Type;
Specifies the handle for the file.

Item : Element_Type;
Specifies the object whose value is to be written.

To : Positive_Count;
Specifies the position at which the data element is to be written.

Errors

If the file is opened with the In_File mode, the Io_Exceptions.Mode_Error exception
is raised.

If the capacity of the file is exceeded, the Io_Exceptions.Use_Error exception is
raised.

end Direct_Io;

DIO-28 7/1/87 RA\-”ONAL

package Io_Exceptions

The exceptions in package Io_Exceptions can be raised by 1/O operations. The
general conditions under which these exceptions can be raised are described in this
section. Specific circumstances under which they can be raised are provided for
each operation exported by an I/0 package. If more than one error condition exists,
the corresponding exception that appears earliest in the package is the one that is

raised.

Every other 1/0 package renames one or more of the exceptions exported from this
package. Rather than repeat the following descriptions in each of these packages,
documentation of the renaming declarations is omitted in the subsequent sections.

The Rational Environment provides additional information about exceptions raised
by the I/O packages that describes why a given exception occurred. This informa-
tion, typically displayed in parentheses after the exception name, is documented in
the reference entry for each exception.

[QAT'ONAL 7/1/87 DIO-29

exception Data_Error
package Yo.Io_Exceptions

exception Data_Error

Data_Error : exception;

Description

Defines an exception raised by the Read procedure if the element read cannot be
interpreted as a value of the required type.

This exception is also raised by a Get or Read procedure if an input sequence fails
to satisfy the required syntax or if the value input does not belong to the range of
the required type or subtype.

This exception is also raised by the Read and Write procedures of package Poly-
morphic_Sequential_Io (DIO) if these operations are attempted on files containing
unsafe types (that is, containing access or task types as any of their components).

The additional information supplied by the Environment when this exception is
raised has the following meaning:

Input_Syntax_Error: The input value has incorrect syntax.
Input_Value_Error: The input value is out of range.

Output_Type_Error: The output value is an unsafe type.
Output_Value_Error: An attempt has been made to write a value out of range.

DIO-30 7/1/87 RAT'ONAL

exception Device_Error
package 'o.Io_Exceptions

exception Device_Error

Device_Error : exception;

Description

Defines an exception raised if an I/0 operation cannot be completed because of a
malfunction of the underlying system.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

Device_Data_Error: A hardware error such as a parity error has occurred.
Illegal_Reference_Error: An illegal reference has been attempted.

Illegal_Heap_Access_Error: An Illegal Heap_Access exception was raised when
the operation was attempted.

Page_Nonexistent_Error: A nonexistent page was referenced.
Write_To_Read._Only.Page_Error: A write to a read-only page was attempted.

BAT'ONAL 7/1/87 DIO-31

exception End_Error
package !Io.Jo_Exceptions

exception End_Error

End_Error : exception;

Description

Defines an exception raised by an attempt to skip (read past) the end of a file.

DIO-32 e RATIONAL

exception Layout_Error
package !lo.Jo_Exceptions

exception Layout_Error

Layout_Error : exception;

Description

Defines an exception raised in TIO, packages Text_Io and Io, by a call to operations
that violate the limits of Count and by an attempt to put too many characters to
a string; also raised in package Window_Io (DIO) by an attempt to position the
cursor outside the image boundary.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

* Column-_Error: A column exceeds the line or page length.
e Illegal _Position_Error: A position parameter is illegal.
¢ Item_Length_Error: An item length is too big or small.

RATIONAL 7/, DIO-33

exception Mode_Error
package !To.Jo_Exceptions

exception Mode_Error

Mode_Error : exception;

Description

Defines an exception raised by specifying a file whose mode conflicts with the desired
operation.

For example, this exception is raised by a call to Set_Input or Get when a file of
the Out_File mode is provided.

The additional information supplied by the Environment when this exception is
raised is:

¢ Illegal_Operation_On_Infile
¢ Illegal_Operation_On_Outfile

DIO-34 7/1/87 RAT'ONAL

exception Name_Error
package !Io.Io_Exceptions

exception Name_Error

Name_Error : exception;

Description

Defines an exception raised by a call to the Create or Open procedure if the string
given for the Name parameter does not allow the identification of a legal unique
file.

The Name_Error exception is raised by the Create procedure under any of the
following conditions:

¢ The filename does not conform to the syntax of a name.

¢ An object of the nonfile class with the same name as the filename already exists
in the context in which the creation is attempted.

¢ The context in which the creation is attempted cannot contain files. Files are
allowed only in directories or worlds.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

¢ Ambiguous_Name_Error: A name does not identify a unique object.

o Illformed_Name_Error: A name does not conform to the syntax for a legal En-
vironment filename.

¢ Nonexistent_Directory_Error: A library in the name does not exist.
¢ Nonexistent_Object_Error: The specified object does not exist.
* Nonexistent_Version_Error: The specified version of the object does not exist.

RATIONAL 717 DIO-35

exception Status_Error
package !Io.Io_Exceptions

exception Status_Error

Status_Error : exception;

Description

Defines an exception raised by an attempt to operate upon a file handle that is not
open and by an attempt to open a file handle that is already open.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

¢ Already_Open_Error: The file handle is already open.
¢ Not_Open_Error: The file handle is not open.

DIO-36 7/1/87 RATIO NAL

exception Use_Error
package o.Jo_ Exceptions

exception Use_Error

Use_Error : exception;

Description

Defines an exception raised if an operation is attempted that is not possible for
reasons that depend on the file and the executing job’s access rights.

This exception is raised by an attempt to create when there are objects of nonfile
classes with similar names, by an attempt to open or reset with a mode that is not
supported for the file, and by a call to the Open parameter for a terminal object if
the terminal is already assigned to a job.

This exception is raised by the Delete procedure, among other circumstances, when
the corresponding file is an object that cannot be deleted.

This exception is raised by the Create and Open procedures in packages Direct_Io
and Sequential_Io (DI10) if they are attempted with instantiations on unsafe types
(that is, types containing access or task types as any of their components).

The additional information supplied by the Environment when this exception is
raised has the following meaning:

o Access_Error: There are insufficient access rights to perform the operation.
o Capacity_Error: The output file is full.

¢ Check_Out_Error: The object is not checked out using the configuration man-
agement and version control system.

¢ Class_Error: There is an existing object of a different class.
¢ Frozen_Error: An attempt is made to change a frozen object.

¢ Line_Page_Length_Error: An improper value for line or page length is encoun-
tered.

¢ Lock_Error: Another job has locked the object.
¢ Reset_Error: The file cannot be reset or have its mode changed.
¢ Unsupported_Error: The operation is not supported.

end Io_Exceptions;

RATIONAL 7/1/87 DIO-37

RATIONAL

package Polymorphic_Sequential_Io

This package provides facilities for sequential 1/O upon files whose components are
of one or more (nonlimited) types. These types must be safe types, which is any
type that does not contain access types or task types as any of its components. If a
read or a write operation is attempted with an instantiation on an unsafe type, the
Data_Error exception will be raised. This package provides the capabilities similar
to those required by the Reference Manual for the Ada Programming Language,
Chapter 14, for Sequential_lo, except that polymorphism is supported.

The package provides the nested generic package Operations, containing read and
write operations, which can be instantiated for each of the desired types.

The fundamental abstraction provided by package Polymorphic_Sequential_Io is
the File_Type type. Objects of this type are file handles that can be mapped to
files consisting of a sequence of values that are transferred in the order of their

appearance.

RATIONAL 7/1/87 DIO-39

procedure Append
package !o.Polymorphic_Sequential_Io

procedure Append

procedure Append (File : in out File_Type;
Name : String;
Form : String = "");

Description
Opens the specified file for writing at the end of the file.

This procedure associates the specified file handle with an existing file having the
specified name. The file is left open and the mode is set to Out_File.

Parameters

File : 1n out File_Type;
Specifies the handle for the file.

Name : String;
Specifies the name of the external file to be appended.

Form : String := "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the file handle is already open, the Io..Exceptions.Status_Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io_Exceptions.Name_Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Io_Exceptions.Use_Error exception is raised when an attempt is made to per-
form an Append operation on objects on which the Out_File mode is not supported
or the file is locked by another job.

DIO-40 7/1/87 BAT'ONAL

procedure Close
package !lo.Polymorphic_Sequential_Io

procedure Close

procedure Close (File : in out File_Type);

Description

Severs the association between the specified file handle and its associated file.

Parameters

File : 1n out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

RAT'ONAL 7/1/87 DIO-41

procedure Create
package !To.Polymorphic_Sequential_lo

procedure Create

procedure Create (File : in out File_Type;

Mode : File_Mode := Out_File;
Name : String ="";
Form : String = "");

Description

Establishes a new file with the specified name and associates this file with the
specified file handle.

The specified file is left open.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode := Out_File;
Specifies the access mode for which the file is to be used.

Name : String := "";

Specifies the name of the file to be created. A null string specifies a file that is not
accessible after the completion of the main program (a temporary file).

Form : String := ""
Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

DIO-42 e RATIONAL

procedure Create
package !Io.Polymorphic_Sequential_lo

Errors

If the file handle is already open, the Io_Exceptions.Status_Error exception is
raised.

The Io_Exceptions.Name_Error exception is raised under the following conditions:

¢ The filename does not conform to the syntax of a name.

¢ An object of a nonfile class with the same name as the filename already exists in
the context in which the creation is attempted.

e The context in which the creation is attempted cannot contain files. Files are
allowed only in directories or worlds.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

o The file cannot be opened with the specified mode.
o Another job has locked the file.
o The executing job does not have create access.

RAT'ONAL 7/1/87 DIO-43

procedure Delete
package !To.Polymorphic_Sequential_lo

procedure Delete

procedure Delete (File : in out File_Type);

Description

Deletes the file associated with the specified file handle.

The file is closed, and the file ceases to exist.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

¢ The Environment does not support deletion on the file.

¢ The executing job does not have the access rights required to delete the file.

e Another job has locked the file.

DIO-44

s RATIONAL

function End-Of_File
package !Io.Polymorphic-Sequential_lo

function End_Of_File

function End_Of_File (File : File_Type) return Boolean;

Description

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

This function operates on a file of the In_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

return Boolean;

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

Errors
If the file is not open, the Io_Exceptions.Status_Error exception is raised.

If the file is not opened with the In_File mode, the Io_Exceptions.Mode_Error
exception is raised.

R)ATIONAL 7/1/87 DIO-45

type File_Mode
package !Io.Polymorphic_Sequential_Io

type File_Mode

tuype File_Mode 1s (In_File, Out_File};

Description
Specifies the mode of access for which a file is open.

In_File denotes a file with read-only access; Out_File denotes a file with write-only
access.

DIO-46 e RATIONAL

type File_Type
package 'Io.Polymorphic_Sequential_Io

type File_Type

tupe File_Type is limited private;

Description
Defines a file handle type for files to be processed by operations in this package.

IQAT'ONAL 7/1/87 DIO-47

function Form
package 'Io.Polymorphic_Sequential_Io

function Form

function Form (File : File_Type) return String;

Description
Returns the null string (") in all cases.
When, in the future, the Form parameter to the Create and Open procedures is

supported, this function will return the Form value specified in the call to the Create
or Open procedure.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;
Returns the null string (") in all cases.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

References
procedure Create

procedure Open

DIO-48 e RATIONAL

function Is_Open
package !To.Polymorphic_Sequential_Io

function Is—_Open

function |s_Open (File : File_Type) return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

File : File_Type;
Specifies the handle for the file.

return Boolean;

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

RATIONAL 7/1/87 DIO-49

function Mode
package !Io.Polymorphic_Sequential_Io

function Mode

function Mode (File : File_Type) return File_Mode;

Description
Returns the mode for which the specified file handle is open.

Parameters

File : File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file handle is open.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-50 e RATIONAL

function Name
package !To.Polymorphic_Sequential_Io

function Name

function Name (File : File_Type) return String;

Description
Returns the name of the file currently associated with the file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;
Returns the name of the file currently associated with the file handle.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL 167 DIO-51

procedure Open
package !lo.Polymorphic_Sequential_lo

procedure Open

procedure Open {(File : in out File_Type;

Mode : File_Mode;
Name : String;
Form : String = "M,

Description

Associates the file handle with an existing file having the specified name and sets
the mode of the file to the specified mode.

The specified file is left open.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the access mode for which the file is to be used.

Name : String;

Specifies the name of the file to be opened.

Form : String := "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the file handle is already open, the lo_Exceptions.Status_Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Jo_Exceptions.Name_Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Io_Exceptions.Use_Error exception is raised if the file cannot be opened with
the specified mode or if another job has locked the file.

DIO-52 e RATIONAL

procedure Reset
package !Io.Polymorphic_Sequential_Io

procedure Reset

procedure Reset (File : in out File_Type;
Mode : File_Mode};

procedure Reset (File : in out File_Type};

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

If a Mode parameter is supplied, the current mode of the specified file is set to the
specified mode.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

¢ The Environment does not support resetting for the file.
¢ The file cannot be opened with the specified mode.
e Another job has locked the file.

RATIONAL 7/ DIO-53

RATIONAL

generic package Operations

The following package exports operations for reading and writing to package Poly-
morphic_Sequential_Io files. It can be instantiated as many times as required on
any safe types to enable objects of these types to be read and to be written to files.

RATIONAL 7107 DIO-55

generic formal type Element_Type
package !Io.Polymorphic_Sequential_lo.Operations

generic formal type Element_Type

type Element_Type is private;

Description

Denotes the type for which the read and write operations are defined.

Restrictions

If unsafe types (that is, types containing access or task types as any of their compo-
nents) are used for the instantiation, subsequent read or write operations will raise
the Io_Exceptions.Data_Error exception.

DIO-56 7/1/87 E)ATIONAL

procedure Read
package !Io.Polymorphic_Sequential_lo.Operations

procedure Read

procedure Read (File : File_Type;
Item : out Element_Type};

Description

Reads an element from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file of the In_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

ltem : out Element_Type;
Specifies the object that receives the value read.

Errors
If the file is not open, the Io_Exceptions.Status_Error exception is raised.

If the file is not opened with the In_File mode, the Io_Exceptions.Mode_Error
exception is raised.

If no more elements can be read from the specified file, the Io_Exceptions.End_Error
exception 18 raised.

If the element read cannot be interpreted as a value of the Element_Type type, the
Io_Exceptions.Data_Error exception is raised.

If the Element_Type is an unsafe type (that is, it contains access or task types as
any of its components), the Io_Exceptions.Data_Error exception is raised.

RATIONAL 7/1/87 DIO-57

procedure Write
package 'To.Polymorphic_Sequential _lo.Operations

procedure Write

procedure Write (File : File _Type;
[tem : Element_Type);

Description
Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the Out_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

ftem : Element_Type;
Specifies the object whose value is to be written.

Errors

If the file is not opened with the Out_File mode, the Io_Exceptions.Mode_Error
exception is raised.

If the capacity of the file is exceeded, the Jo_Exceptions.Use_Error exception is
raised.

If the Element_Type is an unsafe type (that is, it contains access or task types as
any of its components), the Jo_Exceptions.Data_Error exception is raised.

end Operations;

DIO-58 ner RATIONAL

package !Io.Polymorphic_Sequential-Io

end Polymorphic_Sequential_Io;

RAT'ONAL 7/1/87 DIO-59

RATIONAL

generic package Sequential_Io

This package provides the capabilities for Sequential_Io as required by the Reference
Manual for the Ada Programming Language, Chapter 14. It provides facilities for
sequential I/O upon files whose components are of the same (nonlimited) type. This
type must be a safe type, which is any type that does not contain access types or
task types in any of its components. If a create or an open operation is attempted
with an instantiation on an unsafe type, the Io_Exceptions.Use_Error exception
will be raised.

The fundamental abstraction provided by package Sequential_lo is the File_Type

type. Objects of this type are file handles that can be mapped to files consisting of
a sequence of values that are transferred in the order of their appearance.

RATIONAL 7/1/er DIO-61

procedure Close
package !lo.Sequential_Io

procedure Close

procedure Close (File : in out File_Type};

Description
Severs the association between the specified file handle and its associated file.

The specified file is left closed.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-62 7/1/87 RATIONAL

procedure Create
package !lo.Sequential_Io

procedure Create

procedure Create (File : in out File_Type;

Mode : File_Mode := Out_File;
Name String ="";
Form : String = "");

Description

Establishes a new external file with the specified name and associates this file with
the specified file handle.

The specified file is left open.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode := Out_File;
Specifies the access mode for which the file is to be used.

Name : String := ""

Specifies the name of the file to be created. A null string for the Name parameter
specifies a file that is not accessible after the completion of the main program (a
temporary file).

Form : String := "";

Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

'QAT'ONAL 7/1/87 DIO-63

procedure Create
package 'Io.Sequential Io

Errors

If the file handle is already open, the Io_Exceptions.Status_Error exception is
raised.

The Io_Exceptions.Name_Error exception is raised under the following conditions:

¢ The filename does not conform to the syntax of a name.

¢ An object of a nonfile class with the same name as the filename already exists in
the context in which the creation is attempted.

e The context in which the creation is attempted cannot contain files. Files are
allowed only in directories or worlds.

The Io_Exceptions.Use_Error exception is raised under the following conditions:
o The Element_Type type is unsafe (that is, it contains access or task types).

e The file cannot be opened with the specified mode.

¢ The executing job does not have create access.

¢ Another job has locked the file.

DIO-64 7/1/87 RATIONAL

procedure Delete
package !Io.Sequential-Io

procedure Delete

procedure Delete (File : 1in out File_Type};

Description
Deletes the file associated with the specified file handle.

The specified file is closed, and the file ceases to exist.

Parameters

File : in out File_Type;
Specifies the handle for the file.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

e The Environment does not support deletion on the file.
o The executing job does not have the access rights required to delete the file.
¢ Another job has locked the file.

RAT'ONAL 7/1/87 DIO-65

generic formal type Element_Type
package 1o.Sequential_Io

generic formal type Element_Type

type Element_Type 1is private;

Description

Defines the type of the items that form the files for each particular instantiation.

Restrictions

The type used to instantiate the generic must be a nonlimited type as well as a safe
type. Specifically, the type cannot be an access or task type and cannot contain
components that are access or task types.

If unsafe types are used for the instantiation, subsequent read or write operations
will raise the Io_Exceptions.Data_Error exception.

DI10-66 7/1/87 RATIONAL

function End_Of_File
package 'o.Sequential_Io

function End_Of_File

function End_Of_File (File : File_Type) return Boolean;

Description

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

This function operates on a file of the In_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

return Boolean;

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

Errors
If the file is not open, the Io_Exceptions.Status_Error exception is raised.

If the file is not opened with the In_File mode, the Io_Exceptions.Mode_Error
exception is raised.

RATIONAL 7/1/er DIO-67

type File_Mode
package !To.Sequential Io

type File_Mode

type File_Mode is (In_File, Out_File);

Description
Specifies the mode of access for which a file is open.

In_File denotes a file with read-only access; Out_File denotes a file with write-only
access.

DIO-68 er RATIONAL

type File_Type
package 'Io.Sequential_Io

type File_Type

tuype File_Type 1s limited private;

Description
Defines the file handle type unique to each instantiation of the package.
Objects of this type denote file handles that can be mapped to files.

I?AT'ONAL 7/1/87 DIO-69

function Form
package !o.Sequential_Io

function Form

function Form (File : File_Type) return String;

Description
Returns the null string (") in all cases.
If, in the future, the Form parameter to the Create and Open procedures is sup-

ported, this function will return the Form value provided in the call to the Create
or Open procedure.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;
Returns the null string ("") in all cases.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

References
procedure Create

procedure Open

DIO-70 e RATIONAL

function Is—_Open
package !lo.Sequential_Io

function Is—_Open

function Is_Open (File : File_Type) return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

File : File_Type;
Specifies the handle for the file.

return Boolean;

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

R’ATIONAL 7/1/87 DIO-71

function Mode
package !Io.Sequential_lIo

function Mode

function Mode (File : File_Type) return File_Mode;

Description

Returns the mode for which the specified file handle is open.

Parameters

File : File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file handle is open.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-72 e RATIONAL

function Name
package !Io.Sequential_Io

function Name

function Name (File : File_Type) return String;

Description
Returns the name of the file currently associated with the specified file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File : File_Type;
Specifies the handle for the file.

return String;
Returns the name of the file currently associated with the specified file handle.

Errors

If the file is not open, the Io_Exceptions.Status_Error exception is raised.

R)ATIONAL 7/1/87 DIO-73

procedure Open
package !Io.Sequential-Io

procedure Open

procedure Open (File : in out File_Type;

Mode : File_Mode;
Name : String;
Form : String = ""y;

Description

Associates the file handle with an existing file having the specified name and sets
the mode of the file to the specified mode.

The file is left open.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the access mode for which the file is to be used.

Name : String;
Specifies the name of the file to be created.

Form : String := ""
Currently, the Form parameter, if specified, has no effect.

DIO-74 e RATIONAL

procedure Open
package 'To.Sequential_Io

Errors

If the file handle is already open, the Io_Exceptions.Status_Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io_Exceptions.Name_Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Io_Exceptions.Use_Error exception is raised under the following conditions:

¢ The Element_Type type is unsafe (that is, it contains access or task types).
¢ The file cannot be opened with the specified mode.
¢ Another job has locked the file.

R)AT'ONAL 7/1/87 DIO-75

procedure Read
package 'Io.Sequential_Io

procedure Read

procedure Read (File : File_Type;
Item : out Element_Type);

Description

Reads an element from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file opened with the In_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

Item : out Element_Type;
Specifies the object that receives the value read.

Errors
If the file is not open, the Io_Exceptions.Status_Error exception is raised.

If the file is not opened with the In_File mode, the Io_Exceptions.Mode_Error
exception is raised.

If no more elements are available in the file, the lo_Exceptions.End_Error exception
is raised.

If the element read cannot be interpreted as a value of the Element_Type type, the
Io_Exceptions.Data_Error exception is raised.

DIO-76 e RATIONAL

procedure Reset
package 'o.Sequential_Io

procedure Reset

procedure Reset (File : in out File_Type;
Mode : File_Mode);

procedure Reset (File : in out File_Type};

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

If a Mode parameter is supplied, the current mode of the specified file is set to the
specified mode.

Parameters

File : 1in out File_Type;
Specifies the handle for the file.

Mode : File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.
The Io_Exceptions.Use_Error exception is raised under any of the following condi-
tions:

¢ The Environment does not support resetting for the file.

¢ The file cannot be opened with the specified mode.
¢ Another job has locked the file.

RATIONAL 7167 DIO-77

procedure Write
package '1o.Sequential_Io

procedure Write

procedure Write (File : File_Type;
Item : Element_Type};

Description
Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the Out_File mode.

Parameters

File : File_Type;
Specifies the handle for the file.

ltem : Element_Type;
Specifies the object whose value is to be written.

Errors

If the file is not opened with the Out_File mode, the Io_Exceptions.Mode_Error
exception is raised.

If the capacity of the file is exceeded, the Io_Exceptions.Use_Error exception is
raised.

end Sequential_Io;

DIO-78 7/1/87 RATIONAL

package Window_Io

This package provides facilities for performing 1/0 to windows on the terminal
screen.

Package Window_Io offers the user direct control over the creation and manipulation
of images contained in windows on the screen. In TIO, packages Text_Io and Io
provide simply sequential output to the screen, but package Window.Io allows
the user to get and put characters and strings to any place in the image, similar to
package Direct_Io. This offers additional flexibility in creating the user interface for
tool applications written for the Rational Environment. Whereas Text_Io primarily
supports an interrogative style of user interface, Window_Io can be used to create a
variety of menu-driven interfaces, form-based input for data, and displays in which
the program controls scrolling.

The fundamental abstraction provided by package Window_Io is the File_Type
type. Objects of this type (called file handles hereafter) essentially denote quarter-
plane images. A portion of this image is made visible through a window on the
terminal screen. File handles can be opened twice—once for input and once for
output. All puts to an image must go through a file handle opened with the Out_File
mode. All gets from an image must go through a file handle opened with the In_File
mode.

Images are segmented into a matrix of lines and columns. Lines are numbered
from 1 starting from the top of the image; columns are numbered from 1 starting
from the left side of the image. Each character resides at a particular line and
column number. Lines also have length; the length is the column number of the
last character on the line, including blank characters. Finally, all images have
associated with them the notion of the last line in that image.

Window_Io introduces the notion of a cursor. All images have associated with them
a current cursor position. A program can request information about the location
of the cursor in an image, and it can also reposition the cursor as required. Input
to, and output from, an image is always performed relative to this current cursor
position. Input and output operations can also implicitly reposition the cursor
during their execution.

RATIONAL 7/1/er DIO-79

package !To.Window_Io

Package Window_Io provides access to the terminal’s ability to display characters
in a variety of fonts and character sets. A program can write read-only text to the
screen that users are unable to modify and can write characters designated as a
prompt that will disappear when users type on the characters.

An application can also take control of the keystroke stream coming from the termi-
nal keyboard. This control of the keystroke stream allows the program to interpret
individual keystrokes and to redefine their resulting effect. Facilities are provided to
define mnemonic names for certain keys for more readable use within the program.

Finally, when a program is executing as the current job, applications can take
advantage of the Rational Editor commands. For example, an application could
use the Commands.Editor.Window.Beginning_Of command (EI) to reposition the
window on an image.

Two Case Studies

Package Window_Io offers a powerful set of facilities for creating user interfaces
to display information to the user and for requesting information from the user.
As in the Rational Editor, information can be displayed in a structured manner
and then edited by the user. The edited information can be checked to verify that
all user modifications are acceptable and that actions are taken based upon the
change. This method offers a much greater degree of flexibility than the sequential
interrogative style interfaces available through package Text_Io (TIO).

The objective of this section is to provide a more concrete understanding of the
facilities provided by package Window_Io and the application domain to which
they apply. The approach will be to discuss in some detail the development of two
user interface abstractions, the form and the menu.

Some basic concepts necessary for all window-based applications using package Win-
dow_Io will be discussed first. How to set up some useful definitions for display fonts
and for names of keyboard keys will be investigated. Then some useful utilities for
moving the cursor and manipulating images will be defined.

The first abstraction case study focuses on the essential requirements and imple-
mentation strategies for a form as a method of information entry for users. Finally,
a variety of menu abstractions for operation selection will be discussed, and one of
them will be developed in detail.

DIO-80 s RATIONAL

package To.Window._lo

Basic Concepts

Images and Windows

All objects in the Environment have an image, part or all of which appears in a
window on the terminal screen. Package Window_Io provides facilities for creating
and manipulating images in windows. There are two useful ways of thinking about
this. In one sense, package Window_Io allows applications to create windows in
which text images can be formed. In a more formal sense, Window_Io is another
way of creating a text object that has an image displayed in a window. There is one
important difference, however. Text objects created by package Window_Io have
no corresponding file in the directory structure.

As with other 1/0 packages, these objects can be opened for input or output, closed
and later reopened, and deleted. Consult the reference entries later in this section
for the effects of the following procedures:

o procedure Create
¢ procedure Open
e procedure Close
o procedure Delete

Input to and Output from Images

All images have the notion of a current position for the cursor in that image. All
input and output procedures work relative to the current cursor position. Normally,
applications will first move the cursor to the appropriate position in an image (unless
it is already there) and then call the desired input or output procedure.

Several forms of input are provided for both Character and String types. Basically,
an application can either extract a character or string from an image or request
that the user provide some input from the keyboard.

Several forms of output are also provided for both Character and String types. An
application can either insert text into an image or replace existing text with an
Overwrite procedure.

Consult the reference entries in this section for the effects of the following proce-
dures:

s procedure Position_Cursor
e procedure Get

¢ procedure Get_Line

e procedure Insert

¢ procedure Overwrite

o procedure New_Line

RATIONAL 7/1/87 DIO-81

package !To.Window_Io

Operations are also available for deleting text from images, including:

e procedure Delete
e procedure Delete_Lines

Other operations provide information about the image in a window, including:

o procedure Report_Cursor
¢ function Line_Length
o function Last_Line

Definitions and Utilities

Fonts

All characters are written to the terminal screen in what is called a font. Fonts de-
scribe exactly how a character will be displayed on the screen. Fonts have two major
components: an indication of the character set and an array of display attributes.
The Rational Terminal supports two character sets: a normal alphanumeric set
and a graphics set. Package Window_Io defines two named constants (Plain and
Graphics) for use in defining fonts indicating use of each character set. Some font
declarations that applications might find useful are:

with Window_lo;
package Fonts 1is

Normal : constant
Window_lo.Font

Graphics : constant
Window_lo.Font

Inverse_Bold : constant
Window_lo.Font

Underscore : constant

Window_l!o.Font

end Fonts;

DIO-82

Window_lo.Font’ {Wlindow_lo.Plain,
(others => False));

Window_lo.Font’ (Window_lo.Graphics,
{others => False});

Window_lo.Font’ (Window_lo.Plain,
(Inverse => True,
Bold => True,
others => False)});

Window_lo.Font’ (Window_lo.Plain,

(Underscore => True,
others => False});

e RATIONAL

package !Io.Window_Io

Notes:

¢ The Window_Io procedures that display either characters or strings (Insert and
Overwrite) include a parameter for indicating the desired font for display.

o These same output procedures also have a parameter for the kind of designa-
tion with which characters are to be written. Three kinds of designations are

supported:

o Text: Output is displayed as plain text, which can then be modified by a user
with the Rational Editor.

o Prompt: Output is displayed as a prompt that will disappear when the user
types on it. The user can turn a prompt into text with:

Commands .Editor.Set .Designation_Off

o Protected: Once displayed on the screen, the output is read-only and cannot be
modified by the user. If a user does attempt to modify protected text with the
Rational Editor, the bell will sound and a message will appear in the Message
window indicating that this part of the image is read only.

e Use of the graphics character set for drawing boxes is discussed in “Graphics
Utilities,” below.

Keys

For applications requiring complete control over keyboard input from the user,
package Window_Io offers mechanisms to catch keystrokes, to determine which key
was pressed, and to decide on some action as a result.

When the user presses a key on the keyboard, that key is interpreted and placed
into the character stream. Normally, keystrokes are passed directly to the Rational
Editor, which decides what effect the keystrokes will have. The user has the abil-
ity, with package Raw nested within package Window_Io, to interrupt the flow of
keystrokes to the editor, to get keys one at a time from the stream, and to initiate
an application-specific effect based on the value of the key. Use of this technique is
fully described in “Menus,” below. The Key type in package Raw is defined as:

type Key 1s new Natural range 0 .. 1023;

It is useful to define mnemonic names for keys to enhance the readability of code
that requires references to particular keys. Package Key_Names, discussed in the
example below, exports some named key objects. In the body of the package, these
objects are initialized to an Environment-defined value for a keyboard key during
elaboration.

RAT‘ONAL 7/1/87 DIO-83

package lo.Window_Io

with Window_lo;
package Key_Names 1s

package Raw renames Window_lo.Raw;

subtype Key_Type

1s Raw.Key;

Up : Key_Type;
Down : Key_Type;
Left : Key_Type;
Right : Key_Type;
Window : Key_Type;
Uindow_Up : Key_Type;
Window_Down : Key_Type;
Definition 1 Key_Type;
Enter : Key_Type;
User_Interrupt : Key_Type;
Next_|tem : Key_Type;
Previous_ltem : Key_Type;

function is_Alphabet_Key (K : Key_Type) return Boolean;

end Key_Names;

with System_Utilities;
package body Key_Names 1is

Is_Found : Boolean;

Terminal : constant
String := System_Utilities.Terminal _Type;

begin

Raw.Value (For_Key_Name => "UP", On_Terminal => Terminal,
Result => Up, Found => Is_Found);

Raw.Value (For_Key Name => "DOUN", On_Terminal => Terminal,
Result => Down, Found => |s_Found);

Raw.Value (For_Key_Name => "LEFT", On_Terminal => Terminal,
Result => Left, Found => Is_Found};

Raw.Value (For_Key_Name => "RIGHT", On_Terminal => Terminal,

Result => Right, Found => Is_Found};

if Terminal = "VTI@B" then
Raw.Value (For_Key_Name => "Numeric_8",
On_Terminal => Terminal,
Result => Definition, Found => Is_Found};
elsif Terminal "Rational”
Raw.Value (For_Key_Name => "F1@", On_Terminal => Terminal,
Result => Definition, Found => |s_Found);

end if;

end Key_Names;

e RATIONAL

DIO-84

package 'fo.Window_Io

Notes:

The names of keys for each supported terminal type are located in Machine.Edi-
tor_Data.Visible_Keynames. This information is captured as an enumeration
type for each terminal. The string representation of these enumeration values
should be passed into the Raw.Value procedure as in the example above.

The System_Utilities.Terminal_Type function (SMU) returns a string value indi-
cating the type of terminal the user specified at login. Since different terminals
may have different mappings from names in Visible_Keynames to actual key val-
ues, this function can be used to ensure that key input from a different terminal

is interpreted in the same way.

Since all keyboards do not provide an identical set of keys, each supported termi-
nal will have a different set of enumerated values in Visible_Keynames. In this
case, the terminal type will need to be tested before the Raw.Value function is
called. Note that, in the body of the package Key_Names example above, the
name for Definition is F10 for the Rational Terminal and Numeric_8 for the VT100.
This mapping is captured in the Vt100_Commands and Rational_Commands
procedures in the !Machine.Editor_Data directory.

Package Raw also exports:

subtype Simple_Key is Key range @ .. 127;

Simple keys correspond to ASCII characters so that we can use the ASCII names
for references instead of defining our own. The following example demonstrates
references to simple keys:

A_Key : Raw.Key;

begiﬁ‘.

if A_Key in Raw.Simple_Key then

case Raw.Convert (A_Key) is

when ‘A’ =>
... =—- perform some operation indicated by ‘A’
when ‘7' =>
... —— perform some other operation
end case;
end 1f;

RATIONAL 7/1/er DIO-85

package !Io.Window.Io

Window Utilities

It is also useful to define and implement utilities for moving the cursor around
images and manipulating images in various ways. The following example defines an
initial set of utilities (there is certainly an opportunity for several more):

with Window_lo;
package Window_Utilities is

procedure Beginning_Of_Line (Window : Window_lo.File_Type);
procedure End_Of_Line (Window : Window_lo.File_Type);

procedure Next_Line (Window : Window_lo.File_Type);
-- retain the current column position

procedure Home (Window : Window_lo.File_Type);
procedure Erase (Window : Window_lo.File_Type);

procedure Continue (!mput_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
Prompt : String;
Line : Window_lo.Line_Number;
Column : Window_lo.Column_Number);

function Query (!nput_Window : Window_lo.File_Type;
Output_UWindow : Window_lo.File_Type;
Prompt : String;
Lirne : Window_lo.Line_Number;
Column : Window_lo.Column_Number) return String;

type lterator is private; -- for all lines in an image
function Initialize (Window : Window_lo.File_Type) return |terator;
function Done (lter : lterator) return Boolean;
function Value (lter : lterator) return String;
procedure Next (lter : in out lterator);
private

type lterator is .

end WUindow_Utilities;

Some selected bodies for these utilities are:
with Window_lo;

with Fonts;

package body Window_Utilities 1is

procedure Next_Line (Window : Window_lo.File_Type) is

Current_Line : Window_lo.Line_Number;
Current_Column : Window_lo.Column_Number;
begin

Window_lo.Report_Cursor (Window, Current_bine, Current_Column);

if Window_lo.Last_Line (Window) /= Current_Line then
Uindow_lo.Position_Cursor
(Uindow, Current_Line + 1, Current_Column};

end if;
end Next_Line;

DIO-86 e RATIONAL

package !lo.Window_Io

procedure Erase (Window : Window_lo.File_Type)} 1s

begin
Window_l!o.Position_Cursor (Window); .
Window_lo.Delete_Lines (Window, Window_lo.last_line (Window)};

end Erase;

procedure Continue (!mput_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
Prompt : String;
Line : Window_lo.Line_Number;
Column : Window_!o.Column_Number)
is separate;

function Query (Input_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
Prompt : String;
Line : Window_lo.Line_Number;
Column : Window_lo.Column_Number) return String 1is

begin
Window_lo.Position_Cursor (Output_Window, Line, Column);

-— write out the prompt
Window_lo.Overwrite (Output_Window, Prompt,
Fonts. Inverse_Bold, Window_lo.Prompt);

-- reposition the cursor on top of the prompt
Window_lo.Position_Cursor (!nput_Window, Line, Column);

—- return the user’'s input
return Window_lo.Cet_Line (!nput_Wlindow, ™""};
end Query;

end Window_Utilities;

The Query procedure may require more explanation. When the cursor is positioned
on text written with a prompt designation, the Get_Line procedure waits for the
user to input a response. When the user commits the response, the entered char-
acters are returned to the program. To ensure that a prompt is available for the
Get_Line procedure, the Query procedure first writes out the prompt and then
repositions the cursor on top of it before calling the Get_Line procedure.

The Continue procedure is similar to the Query procedure in that it waits for the
user to commit a response. It does not return the response but merely indicates
that the user wants to continue. In this case, part of the prompt is written with a
protected designation to prevent it from disappearing if the user accidentally types
on top of it.

RAT'ONAL 7/1/87 DIO-87

package 'To.Window_lo

separate {Window_Utilities)

procedure Continue (lnput_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
Prompt : String;
Lirme : Window_lo.Line_Number;
Column : Window_lo.Column_Number) is

Char : Character;
begin
Window_lo.Position_Cursor {Output_Window, Line, Column);

--insert the prompt to hang on
Window_lo. Insert ({Output_Window, s
Fonts. Inverse_Bold, Window_lo.Prompt);
Window_lo. Insert (Output_Window, Prompt,
Fonts. Inverse_Bold, Window_io.Protected);

Window_lo.Position_Cursor (Input_Window, Line, Column};
Window_io.Get (Input_Window, "", Char);

Window_lo.Position_Cursor (Output_Window, Line, Column);
Window_lo.Delete_Lines {(Output_Window, 2};

end Continue;

Graphics Utilities

The Rational Terminal supports a graphics character set that is useful for drawing
straight-line structures. A full description of the graphics character set appears in
the Rational Terminal User’s Manual. The following example demonstrates how to
draw a box in an image:

with Window_lo;

with Fonts;

procedure Draw_Box (Window : Window_lo.File_Type;
On_Line : Window_lo.Line_Number;
On_Column : Window_lo.Column_Number;
Height : Natural;
Width : Natural} 1is

Upper_Left_Corner : constant Character := '17;

Upper_Right_Corner : constant Character := 'k’;

Lower_Left_Corner : constant Character := 'm’;

Lower _Right_Corner : constant Character := 'j’;

Vertical Line : constant Character := 'x’;

Hori1zontal _Line . constant Character := 'q’;
begin

Window_lo.Position_Cursor (Window, On_Line, On_Column);
Window_{o.Overwrite (WUindow, Upper_Left_Corner, Fonts.Graphics});

for | in 1 .. Width loop
Window_lo.Overwrite
(Window, Horizontal_Line, Fonts.Graphics);

end loop;

DIO-88 7/1/87 QATIONAL

package To.Window_Io

Window_lo.Overwrite (Window, Upper_Right_Corner, Fonts.Graphics});
Window_lo.Position_Cursor (Window, On_Line + 1, On_Column};

for | in 1 .. Height loop
Window_lo.Overwrite (Window, Vertical_Line, Graphics);
Window_lo.Move_Cursor (Window, 1, - 1);

end loop;

Window_lo.Position_Cursor .
{(Vindow, On_Line + 1, On_Column + Width + 1);

for | in 1 .. Height loop
Window_lo.Overwrite (Window, Vertical_Line, Graphics_Set);

Window_l!o.Move_Cursor (Window, !, - 1);
end loop;

Window_lo .Position_Cursor
(Window, On_Line + Height + 1, On_Column};
Window_io.Overwrite (Window, Lower_Left_Corner, Graphics_Set);

for | in 1 .. Width loop
Window_lo.Overwrite (Window, Horizontal_Line, Graphics_Set);

end loop;

Window_lo.Overwrite {Window, Lower_Right_Corner, Graphics_Set});
end Draw_Box;

The Form Abstraction

A form provides a method of getting structured information from a user in a some-
what unstructured way. A form with various entries defined by the application can
be displayed in a window. Control should then be returned to the Rational Editor
to allow completion of the form by the user. With the full power of the editor avail-
able to the user, information can be entered in any order using any of the editor
features. When the user indicates that the form is complete, the image should be
parsed and responses returned to the application for interpretation.

Other considerations might include the ability to indicate errors in user responses, to
redisplay the form for correction with the editor, and then to resubmit the response.

In particular, it might be desirable for the display to look something like this:
NAME : [Input]
ADDRESS : [Input/

TELEPHONE NUMBER : [(Area Code) Number/
AGE : [Posstive Number/

RATIONAL 711 DIO-89

package !To.Window_Io

One possible specification for this abstraction might be the following:

with Fonts;

with Window_lo;

with Unbounded_String;

generic
type Form_ltem 1s (<>); --Defines entries of the form
with function Image (item : Form_ltem) return String;
-- provides a string representing the name of the entry

package Forms is

type Form_Entry 1is private;
-- defines 3 prompt and display attributes for an entry

type Form_Definition is array (Form_ltem)} of Form_Entry;

procedure Initialize (Definition : in out Form_Definition};
-- initialize all entries with default values

procedure Modify (The_Entry : 1in out Form_Entry;

New_Prompt : String;

Font : Window_lo.Font := Fonts.Inverse_Bold;

Kind : Window_lo.Designation := Window_lo.Prompt);
-- allows modification of an entry’s prompt

procedure Display {Output_Window : Window_lo.File_Type;
Form : Form_Defimition);

procedure Get_User_Response
(Form_Output : Window_lo.File_Type;
Form_Ilmnput : Window_lo.File_Type;
Definition : in out Form_Definition};

function Response (An_Entry : Form_Entry) return String;
-~ multiple line input is separated by Ascii.Lf characters

Unable_To_Parse_Response : exception;
private
ltem_Size : constant := 80;

package Unbounded is new Unbounded_String (ltem_Size);

type Form_Entry 1is
record
Prompt : Unbounded.Variable_String;
Prompt_Font : Window_lo.Font;
Prompt_Kind : Window_lo.Designation;
end record;

end Forms;

DIO-90 e RATIONAL

package Io.Window_Io

Design Issues

This particular choice of specification is generic on a discrete type and is intended
to be instantiated with an enumeration type. The image function is used by the
Display procedure to write out entry names. If this spec were instantiated with

the following type:

type Form_Entries is (Name, Address, Telephone Number, Age};
the image of the form presented above could be accomplished.

The Modify procedure is intended to allow an application to redefine its own
prompt strings or to modify the prompt display attributes to indicate errors.

Note that the Get_User_Response procedure contains an tn out Form_Definition
parameter. This allows the image to be parsed and the responses to be returned
in the Form_Definition itself.

It is expected that an application using this abstraction would generally call
the Display procedure before calling Get_User_Response. The display operation
might have been used internally in Get_User_Response and might not have been
exported. If, however, an application desires to display a form with errors and
asks the user whether or not to continue editing, the display must be separate; it
has been made so for this reason.

The Response function can be used to return the user’s response for a particular
entry.

Implementation Issues
See the body of package Forms in the following example for reference.

The most interesting issue is how to return control to the Rational Editor to
allow the user to complete the form. This is accomplished by positioning the
cursor at the end of the image and calling the Window_Io.Get procedure with
the null string for the prompt. Since the cursor is at the end of the file, the
program will wait until the user commits the response. The value returned from
the Get procedure is not important and is not looked at. The Get procedure is
used only to signal that the user has completed editing and that the form can
now be parsed.

If the prompt string passed to the Modify procedure is the null string, the prompt
string is unchanged, but the fonts and designation are changed. This is useful for
retaining the user’s response and modifying the display attributes to indicate an
error.

RATIONAL 7yer DIO-91

package !Io.Window_Io

with Window_Utilities;
with String_Utilities;
package body Forms 1is
procedure Modify (The_Entry : in out Form_Entry;
New_Prompt : String;

Font : Window_io.Font := Fonts.lnverse_Bold;
Kind : Window_lo.Designation := Window_lo.Prompt) 1is
begin
if New_Prompt /= "" then
Unbounded.Copy (The_Entry.Prompt, New_Prompt);
end 1f;
The_Entry.Prompt_Font := Font;
The_Entry.Prompt_Kind := Kind;

end Modify;

procedure Display (Output_Window : Window_lo.File_Type;
Form : Form_Definition) 1is

A_Char : Character;
First_Prompt_Line : Window_to.Line_Number;
First_Prompt_Column : Window_lo.Column_Number;
First_Prompt_Found : Boolean := False;

begin

Window_Utilities.Erase (Output_Window);
Uindow_lo.Position_Cursor (Output_Window);

for |tem in Form_ltem loop
Window_lo. Insert
(Output_Window, Image (ltem) & " : ™,
Kind => Window_lo.Protected);

for 1 in 1 .. Unbounded.Length (Form {ltem).Prompt) loop
A_Char := Unbounded.Char_At (Form {Iltem).Prompt, I|};

if A_Char = Ascii.Lf then
Window_to.New_Line (Output_Window, 1);
else
Window_lo. Insert
(Output_Window, A_Char,
Image => Form (litem).Prompt_Font,
Kind => Form (ltem)}.Prompt_Kind);
end 1f;
end loop;
Wirndow_lo.New_Line {(Output_Window, 1);
end loop;
end Display;

procedure Parse (Imput_Window : Window_lo.File_Type;
Form : in out Form_Definition) 1is separate;
-- 1implementation of a body for parse is left to the user

procedure Get_User_Response (Form_Output : Window_lo.File_Type;
Form_input : Window_io.File_Type;
Definition : 1n out Form_Definition)} is
Out_Char : Character;
begin
Window_lo.Get {Form_lmput, "", Out_Char};
Parse (Form_input, Definition);
end Get_User_Response;
end Forms;

DIO-92 7/1/87 BA\TIONAL

package !lo.Window_Io

The Menu Abstraction

The menu abstraction offers a rich set of user interface options for applications.
Generally, it presents a set of selections to the user that, when activated, produces
some effect. Other kinds of menus are collections of objects whose images are
displayed by the menu. Objects can be selected and operations applied to them.
This may or may not change their image in the menu.

The menu in the example below can be used by an application to offer a set of choices
to a user. Selection of a choice implies that some operation will be performed. The
user should be able to move from choice to choice with the arrow keys and to
indicate selection with the [Ented] key. Selections might also be made by pressing the
first letter of the menu choice’s name.

An application will require a way to build menu definitions, display them, and cause
an operation to be performed when a particular menu choice is selected. Another
issue is the layout of the menu on the screen. The two options that this example
will offer are a vertical layout and a horizontal layout.

The following example is a generic specification for the simple menu described above:

with Window_lo;
with New_Keys;
generic
type Element 1s private;

with function Line_image (E : Element) return String;

with procedure Apply_Operation (To_Element : Element;
Window : Window_lo.File_Type;
Column_Offset : Natural := 9;
Line_Offset : Natural := @);

with function Is_Quit_Key return Boolean;
with function Is_Selection_Key return Boolean;

package Single_Selection_Electric_Menus is
subtype Window_Type is Window_lo.File_Type;

tuype Menu_ Definition is private;

function Make return Menu_Definition;
procedure Add (E : Element; To : in out Menu_Definition);

type lLayout is (Vertical, Horizontal);

procedure Get_User_Selection
(Menu : Window_Type; Definition : Menu_Definition;
Column_Offset : Natural := 0;
Line_Offset : Natural := 9;
Presentation : Layout := Vertical);

EAT'ONAL 7/1/87 DIO-93

package !lo.Window_Io

private

type Node;
tupe Menu_Definition 1is access Node;
type Node 1is

record
Elem : Element;
First_Char : Character;
Line : Window_lo.Line_Number;
Column : Window_lo.Column_Number;
Next : Menu_Definition;
Previous : Menu_Definition;

end record;

end Single_Selection_Electric_Menus;

Design Issues

The following discussion refers to the example in the previous section, “The Menu
Abstraction.”

This example is generic on the Element type for the menu selection. The Element
type must have a line image and an Apply_Operation procedure that will initiate
some operation based on the value of the element. Note that this procedure
has some additional parameters to indicate the current window and some offsets
within that window. These parameters are essential if the operation one wants
to perform is the display of another nested menu.

Generic formals are functions identifying which keys indicate that the user would
like to quit the menu and which keys indicate the selection of a particular op-
eration. The arrow keys for traversal over the elements of the menu have been
hard-wired into the body but could have been made generic as well. The layout
form (either horizontal or vertical) might also affect which arrow keys are oper-
ative. A horizontal layout might use the left and right arrows; a vertical layout
might use the up and down arrow keys.

The package exports a Make operation that builds an empty menu definition.
The user can then add elements to build up the final definition.

No Display procedure is exported. There seems to be no reason to separate the
display from requesting a response from the user. Since the user could manipu-
late the display image, in some situations, before being asked for a response, it
seems unwise to offer the opportunity for no reason. If a compelling reason were
identified, the Display procedure from the body could be exported easily.

Another option for the Get_User_Selection operation is to make it a function
that returns the element selected. The client program will then determine the
operation to be performed. The penalty is that the client program will have to
decide when to quit. In this case it would also be necessary to export the display
operation to avoid having to redisplay the menu each time a user selection is
requested.

DIO-94 7/1/87 BA\—”ONAL

package !lo.Window_lo

Implementation Issues

Global issues will be discussed in this section. Issues pertinent to individual sub-
programs will be addressed with the corresponding code.

e A doubly linked list has been chosen to implement menu definitions. Note that
each node of the list also stores information about the position of the element
in the display and about the first character of the element’s image for electric
completion.

o Several helper functions have been defined in the body:

(-]

Find..Def: Returns the next node of the menu definition whose element begins
with the character First. If an element is not found, the Definition_Not_Found
exception is raised.

Initialize_Placement: Determines the layout of all elements in the menu.

Display: Writes the images for each element of the menu at the appropriate
position.

Erase: Erases the menu image from the image. Note that, when nested menus
are displayed in the same window, only the current menu should be erased.

package body Single_Selection_Electric_Menus 1is

Definition_Not_Found : exception;

function Make return Menu_Definition is

begin
return null;
end Make;
procedure Add (E : Element; To : in out Menu_Definition) is
Temp : Menu_Definition;
Line : constant String := Line_lmage (E);
begin
1f To = null then
To := new Node’(E, Line (Line’First},
1, 1, null, null);
To .Next = To;
To.Previous := To;
else
Temp To.Previous;

Temp .Next new Node’(E, Lime (Lime’First),
1, 1, null, Temp};
Temp .Next .Next := To;
To.Previous = Temp.Next;
end 1f;
end Add;

-- helper functions for Get_User_Response
function Find_Def
(First : Character; Def : Menu_Definition)
return Menu_Definition 1s separate;

RAT'ONAL 7/1/87 DIO-95

package !Io.Window_Io

procedure Initialize_Placement
{Def : 1in Menu_Definition;
Column_Offset : Natural; Line_Offset
Presentation : Layout)} is separate;

procedure Display

: Natural;

(Menu : WUindow_Type; Definition : Menu_Definition;

Column_Offset : Natural; Line_Offset
Presentation : Layout) is separate;

procedure Erase

: Natural;

{(Menu : Window_Type; Definition : Menu_Definition;
Column_Offset : Natural := @) is separate;

procedure Get_User_Selection

{(Menu : Window_Type; Definition : Menu_Definition;

Column_Offset : Natural := 9;
Line_Offset : Natural := 0;
Presentation : Layout :=

end Single_Selection_Electric_Menus;

separate (Single_Selection_Electric_Menus)
function Find_Def (First : Character;

Vértical) is separate;

Def : Menu_Definition} return Menu_Definition is

Temp : Menu_Definition := Def;
begin
if Temp = null then

raise Definition_Not_Found;

elsif Temp.First_Char = First then
return Temp;

else
Temp := Temp.Next;

while Temp /= Def loop
1f Temp.First_Char = First then
return Temp;
else
Temp := Temp.Next;
end 1f;
end loop;
end 1f;
raise Definition_Not_Found;
end Find_Def;

separate (Single_Selection_Electric_Menus)

procedure Initialize Placement
{Def : 1in Menu_Definition;
Column_Offset : Natural; Line_Offset
Presentation : Layout) 1is

Temp : Menu_Definition := Def;

Next_Line : Positive := Line_Offset + 1;

Next_Column : Positive := Column_Offset + 1;
begin

Temp.Line Next_Line;

Temp .Column Next_Column;

DIO-96

: Natural;

e RATIONAL

package Io.Window.lo

case Presentation 1s
when Vertical =>

Next_Line := Next_Line + 1;
when Horizontal =>
Next_Column := Next_Column +

Lire_Image (Temp.Elem)’Length + 4;

1if Next_Column > 80 then
Next_Column := Column_Offset + I;
Next_Line := Next_Line + 1;
end 1if;
end case;

Temp := Temp.Next;

while Temp /= Def loop
Temp.Line = Next_Line;
Temp.Column := Next_Column;

case Presentation is
when Vertical =>

Next_Line := Next_Line + 1;
when Horizontal =>
Next_Column := Next_Column +

Line_lmage (Temp.Elem)'Length + 4;
if Next_Column > 8@ then
Next_Column := Column_Offset + 1;

Next_Line := Next_Line + 1;
end 1f;
end case;
Temp := Temp.Next;
end loop;

end Initialize_Placement;

with Fonts;

separate (Single_Selection_Electric_Menus)

procedure Display
(Menu : Window_Type; Definition : Menu_Definition;
Column_Offset : Natursl; Line_Offset : Natural;
Presentation : Layout)} 1s

Temp_Def : Menu_Definition := Definition;
begin

Window_lo.Position_Cursor
(Menu, Temp_Def.Lirne, Temp_Def.Column);
Window_lo.Overwrite (Menu, Line_Image (Temp_Def.Elem),
Fonts. Inverse_Bold);
Temp_Def := Temp_Def.Next;

while Temp_Def /= Definition loop
Window_lo.Position_Cursor
{(Mernu, Temp_Def.Line, Temp_Def.Column);
Window_io.Overwrite {Menu, Line_lmage (Temp_Def.Elem),
Fonts .Normal };

Temp_Def := Temp_Def .Next;
end loop;

RJA—”ONAL 7/1/87 DIO-97

package 'To.Window_Io

-- recositions the cursor on the first element
Window_lo.Position_Cursor
{Menu, Temp_Def.Line, Temp_Def.Column};

end Display;

Most of the interesting issues are associated with the next example, an implemen-
tation of the Get_User—_Selection procedure. In this procedure, the menu is first
displayed in the window. The raw keystroke stream is then opened and One_Key
is taken from the stream. The value of this key is then interpreted. If the key is
a traversal key (an arrow key), the currently highlighted element is unhighlighted
and the new node is highlighted. If the key is a letter of the alphabet, an attempt
is made to find an element that begins with that character; the Apply_Operation
procedure is called if an element is found. The Apply_Operation procedure is also
called when the key indication user selection is pressed. If the quit key is pressed,
the menu raw stream is closed, the menu is erased, and the Get_User_Selection
procedure is exited. If any other key is pressed, the terminal bell is sounded.

Note that the raw stream is closed before each call to Apply_Operation. It is
then reopened after the call returns. This example establishes this convention for
good reason. Package Raw does not export an operation to indicate whether or
not the stream is open. Thus, a program cannot tell whether it has to perform
an Open procedure. If a program tries to open a stream that is already open,
the Io_Exceptions.Status_Error exception is raised. The convention of a closed
character stream across procedure calls was established for this implementation.

separate (Single_Selection_Electric_Menus)

procedure Get_User_Selection
{(Menu : Window_Type; Definition : Menu_Definition;
Column_Offset : Natural := @;
Line_Offset : Natural := @;
Presentation : Layout := Vertical)} 1is

Current_Node : Menu_Definition := Definition;
Selected_Font : Window_lo.Font := Fonts.!nverse_Bold;

package Raw renames Window_lo.Raw;
Character_Stream : Raw.Stream_Type;

One_Key : Raw.Key;
function “=" (A, B : Raw.Key) return Boolean renames Raw."=";
begin

Initialize_Placement (Definition, Column_Offset, Line_Offset,
Presentation);

Display (Menu, Definition, Column_Offset, Line_Offset,
Presentation);

Raw.Open (Character_Stream);
loop

Window_lo.Position_Cursor
{Mernu, Current_Node.lLine, Current_Node.Column);

Raw.Get (Character_Stream, One_Key);

-- interpretation of the keystroke from the user:

DIO-98 e RATIONAL

package !Io.Window._lo

if (Presentation = Vertical and One_Key = New_Keys.Up) or
{Presentation = Horizontal and One_Key = New_Keys.lLeft)
then
Window_lo.Position_Cursor
(Menu, Current_Node.line, Current_Node.Column};
Window_{o.Overurite -~ turn off selection
{Menu, Line_lImage {Current_Node.Elem), Fonts.Normal);

Current_Node := Current_Node.Previous;

Window_lo.Position_Cursor

(Merw, Current_Node.lLine, Current_Node.Column);
Window_lo.Overwrite -- turn on selection

{Mernu, Line_Image {Current_Node.Elem), Selected_Font);

Vertical and One_Key = New_Xeys.Down) or

elsif (Presentation
Horizontal and One_Key = New_Keys.Right)

(Presentation
then
Window_lo.Position_Cursor
(Mernu, Current_Node.Line, Current_Node.Column};
Window_lo.Overwrite -— turn off selection
(Mernu, Line_Image {Current_Node.Elem)}, Fonts.Normal};

"

Current_Node := Current_Node.Next;

Window_lo.Position_Cursor

(Meru, Current_Node.Line, Current_Node.Column);
Window_lo.Overuwrite -- turn on selection

(Menu, Line_lImage (Current_Node.tElem), Selected_Font};

-- electric selection on first character:
elsif New_Keys.Is_Alphabet_Key (Orne_Key) then
declare
Char : Character :=
String_Utilities.Upper_Case
(Window_lo.Raw.Convert (One_Key)};
New_Node : Menu_Definition;
begin
New_Node := Find_Def (Char, Current_Node.Next);

Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite

{Meru, Line_lmage (Current_Node.Elem), Fonts.Normal};

Current_Node := New_Node;

Window_lo.Position_Cursor
{(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite (Menu,
Line_Image (Current_Node.Elem}, Selected_Font};

Raw.Close (Character_Stream);
Apply_Operation (Current_Node.Elem, Menu,
Column_Offset, Line_Offset);

—-- ensure correct cursor position after apply
Window_lo.Position_Cursor

QATIONAL 7/1/87 DIO-99

package !Io.Window_Io

{Menu, Current_Node.Line, Current_Node.Column);

Raw.Open (Character_Stream);
exception
when Definition_Not_Found =>
Window_lo.Bell (Menu};
end;

elsif Is_Select_Key (One_Key) then

Raw.Close (Character_Stream};
Apply_Operation {Current_Node.Elem, Menu,
Column_Offset, Line_Offset};
Uindow_lo.Position_Cursor
(Menu, Current_Node.Line, Current_Node.Column);
Raw.Open (Character_Stream);

elsif Is_Quit_Key (One_Key) then
Raw.Close (Character_Stream);
Erase (Menu, Definition, Column_Offset);
exit;

else
Uindow_lo.Bell (Menu);
end if;
end loop;
end Get_User_Selection;

Disconnecting from a Menu

One useful operation for applications that capture the key stream is to allow the
user to leave the current window to do something else, possibly returning later
to continue working. An application might decide to recognize window traversal
operations such as Window.Up and Window.Down. The question now becomes
how to disconnect from the current job and wait for the user to indicate a desire
to reconnect. It is desirable to allow this without forcing the user to interrupt the
program and then explicitly reconnect to the numbered job using the Job.Connect
procedure.

The solution to this is fairly straightforward. When the program recognizes that
the user intends to leave (a - [1] key sequence, for example), the program
disconnects itself and then waits on a prompt with a call to Window_Io.Get. This
is exactly the same approach used to return the user to the Rational Editor in
a form. When the user terminates the Get procedure with a Commit procedure,
the job is implicitly reconnected, continuing to process keystrokes from the user.
Since the user is returned to the Rational Editor and has the ability to modify the
image in window, it is a good idea to redraw the image, if possible, to ensure the
integrity of the display. The following program fragment should provide the basic
implementation approach.

DIO-100 7/1/87 I?ATIONAL

package {Io.Window_lo

procedure Hang (Output_Window : Window_lo.File_Type;
Input_Window : Window_lo.File_Type;
Key : Raw.Key) 1is

begin
Window_Utilities.Home (Output_Window);
Window_lo.New_Line (Output_Window, 1};

if Key = New_Keys.Up then
Editor .Window.Previous;

elsif Key = New_Keys.Down then
Editor .Window.Next ;

else
null;

end 1f;

Job .Disconnect;

-~ note that the program moved to the new window with the
-- editor before disconnecting; calls to the editor can
-- come only from connected jobs

Window_Utilities.Continue
(Imput_Window, Output_Window,
Prompt => "Type ENTER on this window to Reconnect”,
Line => 1, Column => 1};
end Hang;

The following example is a fragment of the key processor that recognizes the user’s
intent to leave and call the Hang procedure. It also calls a procedure to reset the
window image when the user reconnects.

elsif One_Key = New_Keys.Window_Up then
Hang (Menu_Output, Menu_lnput, New_Keys.Up);
Reset_Screen;

elsif One_Key = New_Keys.Window_Down then
Hang (Menu_Output, Menu_Input, New_Keys.Down);
Reset_Screen;

elsif One_Key = New_Keys.Window then
Raw.Get (Character_Stream, Second_Key);

1f Second_Key = New_Keys.Up then
Hang (Menu_Output, Menu_!nput, New_Keys.Up);
Reset_Screen;

elsif Second_Key = New_Keys.Down then
Hang (Menu_Output, Menu_lnput, New_Keys.Down);
Reset_Screen;

else
Window_lo.Bell (Menu_Output};

end if;

RATIONAL 7100 DIO-101

type Attribute
package To.Window.Io

type Attribute

type Attribute 1s

record
Bold : Boolean;
Faint : Boolean;
Underscore : Boolean;
Inverse . Boolean;
Slow_Blink : Boolean;
Rapid_Blink : Boolean;
Unused_©@ : Boolean;
Unused_1 : Boolean;

end record;

Description
Defines the attributes that characters can have when displayed on the screen.

A character’s display depends on the user’s terminal setup. The actual effect of the
Inverse attribute depends on the background mode currently in use. The Bold and
Faint attributes indicate display with brighter green if the terminal is set up in dim
mode, and they will display dimmer green if the terminal is set up to display in
bold.

The Rational Terminal and the terminal controller do not support all possible com-
binations of the attribute fields. The available combinations anticipate the most
useful combinations. In general, the attribute fields have the following effects (re-
strictions are described below):

Bold Character appears in brighter green

Faint Character appears in brighter green

Underscore Character is underlined

Inverse Character background appears in the inverse of the terminal’s
current background

Slow_Blink Character blinks

Rapid_Blink Character blinks

Unused_0 Reserved

Unused-1 Reserved

DIO-102 e RATIONAL

type Attribute
package 'To.Window_Io

Restrictions
Not all combinations are supported.

The terminal supports only two brightness levels. In the normal setting (when all
attribute fields are false), characters are written at the normal brightness level.
Setting either the Bold or the Faint attribute to true writes characters in the bold
font for the terminal.

Setting the Underscore, the Inverse, and either the Bold or the Faint attributes to
true at the same time is not supported. In this case, characters are displayed in
bold and inverse but not underscored.

Only one blink speed is currently supported; setting either the Slow_Blink or the
Rapid_Blink attribute field to true makes characters displayed with these attributes
blink.

When either blink attribute field is set, the following combinations are currently
supported:

Otherwise plain Bold, Faint, Inverse, and Underscore set to false.

Inverse only Bold, Faint, and Underscore set to false; Underscore sets to true.

Underline only Bold, Faint, and Inverse set to false; Underscore sets to true.

Inverse bold Underscore sets to false: Inverse and either Bold or Faint set to
true.

Example

Inverse_Bold_Attribute : constant Window_l!o.Attribute :=

(Bold => True, Inverse => True, others => False};

References

Rational Terminal User’s Manual

RATIONAL 7/ DIO-103

procedure Bell
package 'o.Window_Io

procedure Bell

procedure Bell (File : File_Type);

Description
Rings the terminal bell.

Note: There is only one bell. It can be rung with any Window_Io file handle, even
those handles that have not been opened.

Parameters

File : File_Type;
Specifies the handle for an image. Since there is only one bell, any handle can be
used, even those handles that have not been opened.

DIO-104 7/1/87 QATIONAL

type Character_Set
package 'To.Window_Io

type Character—_Set

type Character_Set is new Natural range 0 .. 15;

Description

Defines the possible character sets for the display.

Restrictions

Currently only two character sets are supported. Plain (0) indicates the standard
alphanumeric character set. Graphics (1) indicates the graphics character set sup-
ported by the terminal.

Currently the graphics character set is displayable only with the plain or blinking
attributes.

References

Rational Termsinal User’s Manual

QAT'ONAL 7/1/87 DIO-105

function Char_At
package 'To.Window_Io

function Char_At

function Char_At (File : File_Type)} return Character;

Description

Returns the character at the current cursor position.

Parameters

File : File_Type;
Specifies the handle for the image containing the character in question.

return Character;
Returns the character at the current cursor position.

Errors

If the file handle is not open, the Jo_Exceptions.Status_Error exception is raised.

DIO-106 e RATIONAL

procedure Close
package Jo.Window_Io

procedure Close

procedure Close (File : in out File_Type);

Description
Removes access to the image with this file handle.

The image is not deleted or removed from the terminal screen.

Parameters

File : 1in out File_Type;
Specifies the handle for the image.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL /e DIO-107

subtype Column_Number
package !To.Window..Io

subtype Column_Number

subtype Column_Number is Positive;

Description
Defines the column number of a character in an image.

Columns are numbered starting with 1 from the far left side of the image.

DIO-108 e RATIONAL

subtype Count
package 'To.Window_Io

subtype Count

subtype Count is Natural;

Description

Defines the number of times that an operation should be repeated.

I?ATIONAL 7/1/87 DIO-109

procedure Create
package To.Window_Io

procedure Create

procedure Create (File : in out File_Type;

Mode File_Mode := Out_File;
Name : String;
Form : String = "");

Description
Creates an image for performing 1/0.

Normally, a new empty image is created when this procedure is called, and a window
containing the image appears on the terminal screen. All named images can be
opened twice, once for input and once for output. If an image is already open for
the current job with the specified name and is open with a mode other than the
one currently requested, the existing image will be opened for the new mode.

Parameters

File : 1in out File_Type;
Specifies the file handle for the created image.

Mode : File_Mode := Out_File;
Specifies the access mode for which the image is to be used.

Name : String;

Specifies the name of the image to be created. This name appears on the left side
of the banner of the window containing the image.

"wn

Form : String := ;
Currently, the Form parameter, if specified, has no effect.

Errors

If the named image is already open for the designation mode, the Jo_Exceptions.Sta-
tus_Error exception is raised.

DIO-110 7/1/87 [QAT'ONAI_

function Default_Font
package !Io.Window_lo

function Default_Font

function Default_Font (For_Type : Designation) return Font;

Description
Returns the default font for each kind of designation.
For both the text and protected designations, the attributes are all Vanilla (that is

all set to false). The prompt designation returns a font whose Inverse attribute is
set to true. All designations use the Plain character set in their default font.

Parameters

For_Type : Designation;
Specifies a particular designation.

return Font;
Returns default settings for the character set and attributes.

Example

This function can be used with one of the output procedures to indicate the desired
font:

Window_lmage : Window_lo.File_Type;
Text_Designation : Window_lo.Designation := Window_lo.Text;

begiﬁl'
Window_lo.0Open
{Uindow_Image, Window_lo.0ut_File, "Banner Name");

Window_lo.Insert (File => Window_lmage,
item => "Some String”,
Image => Window_lc.Default_Font
(Text _Designation),
Kind => Text_Designation};

QAT'ONAL 7/1/87 DIO-111

function Default_Font
package !To.Window_Io

References
type Attribute
type Designation
type Font

constant Vanilla

DIO-112

e RATIONAL

procedure Delete
package fo.Window_Io

procedure Delete

procedure Delete (File : in out File_Type};

Description

Deletes the image associated with the file handle and removes the window containing
the image from the terminal screen and the Window Directory.

Any other handles associated with this image are implicitly closed.

Parameters

File : in out File_Type;
Specifies the file handle for the image to be deleted.

Errors

If the image associated with the file handle has already been deleted, the Io_Excep-
tions.Status_Error exception is raised.

R)ATIONAL 7/1/87 DIO-113

procedure Delete
package To.Window_Io

procedure Delete

procedure Delete (File : File_Type;
Characters : Count};

Description

Deletes the specified number of characters from the current line, starting with the
character at the current cursor position.

The position of the cursor is unchanged. If the count specified is greater than the
number of characters remaining on the line, all the subsequent characters on that
line are deleted and no exception is raised.

Parameters

File : File_Type;
Specifies the file handle for the image.

Characters : Count;
Specifies the number of characters to be deleted.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for output (with the Out_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

DIO-114 7/1/87 R)ATIONAL

procedure Delete_Lines
package lo.Window_Io

procedure Delete_Lines

procedure Delete_Lines (File : File_Type;
Lines : Count

"
—
—

Description
Deletes the specified number of lines from the image, starting at the current line.

The column number of the cursor is unchanged, but it will be placed on the line
following the last deleted line. If the count specified is greater than the number of
lines remaining in the image, all the subsequent lines in that image are deleted and
no exception is raised.

Parameters

File : File_Type;
Specifies the file handle for the image.

Lines : Count := 1;
Specifies the number of lines to be deleted.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for output (with the Out_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

RAT'ONAL 7/1/87 DIO-115

type Liesignation
package !Io.Window_Io

type Designation

type Designation is (Text, Prompt, Protected);

Description

Defines the behavior of edited characters and strings written to an image.

Enumerations

Prompt

Displays output as a prompt that disappears when the user types on it. The user
can turn a prompt into text with Commands.Editor.Set.Designation_Off (EI).

Protected

Displays output that is protected (that is, read-only output, which cannot be mod-
ified by the user).

Text

Displays output as plain text that can be modified by a user with the Rational
Editor.

Restrictions

Users can delete protected fields by using the Rational Editor to enclose a field
completely inside a region; the entire region, including the protected field, can then

be deleted.

DIO-116 e RATIONAL

type Designation
package !Io.Window_Io

Example

The designation for an output operation is specified as the Kind parameter to the
Insert procedure:

Yindow_Image : Window_lo.File_Type;

begiﬁ.'
Window_{o.Open
(Window_image, Window_lo.Out_File, "Banner Name");

Uindow_lo.Insert (File => Window_image,
Item => "Test program script”,
Image => Window_lo.Default_Font
(Window_lo.Text);
Kind => Window_!o.Text};

WUindow_lo.lnsert (File => Window_Image,
Item => "Enter a3 file name: ",
Image => Window_lo.Default_Font
{(Uindow_fo.Protected};
Window_lo.Protected);

1
v

Kind

Window_lo.lnsert (File => Window_l!mage,
ltem => "Name of a file",
image => Window_lo.Default_Font
(Window_lo.Prompt};

Kind Window_lo.Prompt);

n
\%

RAT'ONAL 7/1/87 DIO-117

function End_Of_File
package !To.Window_Io

function End_Of_File

function End_Of _File (File : File_Type) return Boolean;

Description

Returns true if the cursor is positioned at the end of the last line in the image;
otherwise, the function returns false.

Parameters

File : File_Type;
Specifies the file handle for the image in question.

return Boolean;

Returns true if the cursor is positioned at the end of the last line in the image;
otherwise, the function returns false.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

References

procedure Position_Cursor

DIO-118 s RATIONAL

function End-Of_Line
package Ho.Window_Io

function End_Of_Line

function End_Of_Line (File : File_Type) return Boolean;

Description

Returns true if the cursor is positioned at the end of the line; otherwise, the function
returns false.

Parameters

File : File_Type;
Specifies the file handle for the image containing the line in question.

return Boolean;

Returns true if the cursor is positioned at the end of the line; otherwise, the function
returns false.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

References

procedure Position_Cursor

RAT‘ONAL 7/1/87 DIO-119

type File_Mode
package To.Window_Io

type File_Mode

type File_Mode 1s (In_File, Out_File);

Description
Defines the access mode for which an image can be opened.

An image can be opened for one or both modes with a separate file handle.

Enumerations

In_File
Denotes an image with read-only access.

Out_File
Denotes an image with write-only access.

Example

Output_Window : Window_to.File_Type;
tnput_Window : Window_lo.File_Type;
begin
Window_lo.Open
(Output_Window, Window_lo.Out_File, "Banner Name");
Window_lo.Open
{(Input_Window, Window_lo.In_File, "Banner Name"};

DIO-120 e RATIONAL

type File_Type
package Io.Window_Io

type File_Type

type File_Type is private;

Description

Defines a handle for an image.

QAT'ONAL 7/1/87 DIO-121

type Font
package To.Window_Io

type Font

type Font 1s
record
Kind : Character_Set;
lLook : Attribute;
end record;

Description

Defines the way in which ASCII characters written to an image are displayed.

Example

Note the named constant declaration for Normal:

Normal : constant Font := Font’(Plain, Vanilla);

References
constant Normal
constant Plain

constant Vanilla

DIO-122 e RATIONAL

function Font_At
package Io.Window_Io

function Font_At

function Font_At (File : File_Type)} return Font;

Description
Returns the font of the character that appears at the current cursor position.
If the cursor is positioned after the last character on a line, the line is padded at the

end with blanks written with the Normal font. Thus, the Font_At function returns
Normal in this case.

Parameters

File : File_Type;
Specifies the handle for the image containing the character in question.

return Font;

Returns the font of the character that appears at the current cursor position.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL +/1/er DIO-123

function Form
package !Io.Window_Io

function Form

function Form (File : File_Type)} return String;

Description

Returns the null string (") regardless of the value provided to a call to the Open
or the Create procedure.

In the future, the Form parameter will be supported, and this function will return
the actual value provided to the Open or the Create procedure.

Parameters

File : File_Type;
Specifies the handle of the file in question.

return String;

Returns the null string (") regardless of the value provided to a call to the Open
or the Create procedure.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-124 s RATIONAL

procedure Get
package o.Window_Io

procedure Get

procedure Get (File : File_Type;
Prompt : String 1= "[input]”;
| tem : out Character};

Description

Returns the character at the current cursor position in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

¢ If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), that character
is immediately returned in the Item parameter. The cursor is repositioned after
the character extracted from the image. The actual image remains unchanged.

o If the character at the current cursor position has been written with a prompt des-
ignation, execution is suspended until the user provides the requested character
reply.

o If the cursor is located at the end of the image, the prompt string is displayed
and execution is suspended until the user provides the requested character reply.

Note that in the second and third cases above, the program does not return until
the user commits the response.

Parameters

File : File_Type;
Specifies the file handle for the image.

Prompt : String := "[input]”;
Specifies the string for use as a prompt when querying the user.

ltem : out Character;

Specifies the object in which to place the requested character.

R)ATIONAL 7/1/87 DIO-125

procedure Get
package fo.Window_Io

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for input (with the In_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

Example 1

In the image:

1234567890
ABCDEFGH I J

in which all characters are written with the text designation, the numerals are
located on line 1 of the image, and the cursor is positioned at line 2, column 7, the
character returned in the Item parameter of the Get procedure is G. The new cursor
position is at line 2, column 8.

Example 2

In the image:

1234567898 PROMPT STRING

if PROMPT STRING is written as a prompt and the cursor is positioned at line 2,
column 7, a call to the Get procedure suspends waiting for user input. When the
user types a character, the whole prompt string disappears and is replaced with
the entered character. If the user then commits the input, the entered character is
returned in the Item parameter.

References
type Designation
procedure Get

function Get_Line

DIO-126 e RATIONAL

procedure Get
package !Io.Window_.Io

procedure Get

procedure Get (File : File_Type;
Prompt : String = "[input]”;
!tem : out String);

Description

Returns string input from the image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the sequence
of characters starting at the current cursor position and continuing for the length
of the Item variable is returned in the Item parameter. The cursor is reposi-
tioned after the last character read from the image. The actual image remains
unchanged.

If the character at the current cursor position has been written with a prompt des-
ignation, execution is suspended until the user provides the number of characters
necessary to fill the Item parameter.

If the cursor is located at the end of the image, the prompt string is displayed and
execution is suspended until the user provides the requested number of characters.

Notes:

In the second and third cases above, the program does not return until the user
commits the response.

If the user intends to use this procedure to extract a string from an image but
specifies an item string that has more characters than remain in the image, the
user will be prompted with the specified prompt string at the end of the image
for the remainder of the characters necessary to fill the Item string completely.

RATIONAL +/1/er DIO-127

procedure Get
package !To.Window_Io

Parameters

File : File_Type;
Specifies the handle for the image. .

Prompt : String := "[input]"”;
Specifies the string for use as a prompt when querying the user.

Item : out String;
Specifies the object receiving the input from the image.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for input (with the In_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

DIO-128 e RATIONAL

procedure Get
package Io.Window_Ic

Example 1

In the image:
1234567830

ABCDEFGHIJ
abedefghi

in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the following program fragment returns the string GHI in the
Extract parameter with no suspension of execution:

An_lmage : Window_lo.File_Type;
Extract : String (1 .. 3);
begiﬁ"
miﬁdow_lo.Get (An_Image, "Prompt string", Extract);

If Extract were instead declared as:

Extract : String (1 .. 18@);

the returned string would be GHiJ*abcde, in which the * character is actually an
Ascii.Lf character.

Finally, if Extract were instead declared as:
Extract : String (1 .. 20);

the first 16 characters of the returned string would be filled with GHI Jxabcdefghi j*.
The Prompt string prompt would then be displayed on the next line, and the first
four characters of the user’s input would fill out the four characters necessary to
complete the string.

QAT‘ONAL 7/1/87 DIO-129

procedure Get
package To.Window_Io

Example 2

The following procedure can be used to query the user for input at any point in an
image. The program first inserts a prompt at the desired position, then repositions
the cursor onto the prompt, and finally calls the Get procedure to retrieve the user’s
response. This corresponds to the second case in the description above.

procedure Query (Input_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
The_Prompt : String;
Line_Position : Positive;

Column_Position : Positive;
Reply : out String) 1s
begin
Window_lo.Position_Cursor {(Output_Window, Line_Position,
Column_Position};

-— write out the prompt
Window_lo.Overwrite {Output_Window, The_Prompt,
Window_lo.Default_Font
{(Window_lo.Prompt},
Window_lo.Prompt};

-~ reposition the cursor on top of the prompt
Window_lo.Position_Cursor (Output_Window, Line_Position,
Column_Position};

-- request user 1input
Window_lo.Get (Input_Window,

nn

, Reply);

end Query;

References

type Designation

DIO-130 e RATIONAL

function Get_Line
package fo.Window_Ilo

function Get_Line

function Get_Line (File : File_Type;
Prompt : String = "[input]”)} return String;

Description
Returns string input from a line in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

o Ifthe character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the string
returned will contain characters starting with the character located at the current
cursor position through the last character on that line. Use of this procedure has
the side effect of repositioning the cursor at the first character of the next line.
The actual image remains unchanged, however.

e If the character at the current cursor position has been written with a prompt
designation, execution will be suspended until the user provides the requested
string.

o If the cursor is located at the end of the image, the prompt string is displayed
and execution will be suspended until the user provides the requested string.

Notes:

¢ Extraction of an entire line is best accomplished with the Line_Image function
also declared within this package.

o The program will not return until the user commits the response.

o A fringe case occurs when the cursor is located on the last line of the image. In
this case, the Get_Line function partially fills the return string with the characters
in the line but also prompts the user at the end of the line for more characters.
Any characters offered by the user are appended to the return string.

Parameters

File : File_Type;
Specifies the handle for the image.

Prompt : String := "[input]”;
Specifies the string for use as a prompt when querying the user.

RATIONAL 717 DIO-131

function Get_Line
package fo.Window_Io

return String;

Returns string input from a line in an image.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for input (with the In_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

Example 1

In the image:
1234567890

ABCDEFGHIJ
abcdefghi §

in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the Get_Line function returns the string GH!J.

DIO-132 s RATIONAL

function Get_Line
package lo.Window_Io

Example 2

This example provides a functional form of querying the user for input. The program
first inserts a prompt at the desired position, then repositions the cursor onto the
prompt, and finally calls the Get_Line procedure to retrieve the user’s response.

function Query {Input_Windou : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
The_Prompt : String;
Line_Position : Positive;
Column_Position : Positive) return String 1is
begin

Window_lo.Position_Cursor (Output_Window, Line_Position,
Column_Position};

-- write out the prompt
Window_lo.Overwrite (Output_Window, The_Prompt,
Uindow_lo.Default_Font
{(Window_lo.Prompt),
Window_lo.Prompt);

-- reposition the cursor on top of the prompt
Window_lo.Position_Cursor (Output_Window, Line_Position,
Column_Position);

-- request user input
return Window_lo.Get_Line (lmput_Window, ""};

end Query;

References
type Designation

function Line_Image

RATIONAL +/y/sr DIO-133

procedure Get_Line
package !To.Window_Io

procedure Get_Line

procedure Get_Line (File : File_Type;
Prompt : String i= "[input]”;
Item : out String;
Last : out Natural);

Description

Returns string input from a line in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the string
returned in the Item parameter will contain characters starting with the character
located at the current cursor position through the last character on that line.
The Last parameter indicates the index of the last valtd character index of the
Item parameter. If the length of the Item string is not large enough to hold all
remaining characters on that line, the returned string will contain only the subset
that will fit. Use of this procedure has the side effect of repositioning the cursor
after the last character of the string extracted from the image. The actual image
remains unchanged, however.

If the character at the current cursor position has been written with a prompt
designation, execution is suspended until the user provides the requested string.
The actual characters returned in the Item parameter are governed by the rules
outlined in the first item above.

If the cursor is located at the end of the image, the prompt string is displayed
and execution will be suspended until the user provides the requested string.

Notes:

The program will not return until the user commits the response.

The user should not depend on the validity of any characters after the index
indicated by the value of the Last parameter.

If the cursor is positioned after the last character on a line, the Last parameter
is set to 0, indicating that no valid output characters were placed in the Item
parameter.

A fringe case occurs when the cursor is located on the last line of the image.
In this case, the Get_Line procedure partially fills the return string with the
characters in the line but also prompts the user at the end of the line for more
characters. Any characters offered by the user are appended to the Item string
until it is full.

DIO-134 s RATIONAL

procedure Get_Line
package 'To.Window_lo

Parameters

File : File_Type;
Specifies the handle for the image.

Prompt : String := "[input]";
Specifies the string for use as a prompt when querying the user.

ltem : out String;
Specifies the container for the input from the image.

Last : out Natural;

Specifies the index of the last character read into the Item string.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for input (with the In_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

Example

In the image:
12345678399

ABCDEFGHIJ
abcdefgnt j

in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the following program fragment returns the string GH! in the
Extract parameter and the Last parameter equals 3 with no suspension of execution.

An_Image : Window_lo.File_Type;

Extract : String (1 .. 3);
Last : Natural;

begiﬁ.‘

Window_lo.Get_Line (An_image, "Prompt string”, Extract, Last);

RATIONAL +/1/er DIO-135

procedure Get_Line
package !To.Window_Io

If Extract were instead declared as:

Extract : String (1 .. 10};

7 character means that its value cannot be depended upon.

References

type Designation

DIO-136 e RATIONAL

constant Graphics
package 'fo.Window_Io

constant Graphics

Graphics : constant Character_Set := 1;

Description
Defines a named constant for the graphics character set.

A complete description of the graphics character set is provided in the Rational
Terminal User’s Manual.

RAT'ONAL 7/1/87 DIO-137

procedure Insert
package !To.Window_lo

procedure Insert

procedure Insert (File : File_Type;
ltem : Character;
Image : Font = Normal;
Kind : Designation := Text);
procedure Insert (File : File_Type;
[tem : String;
Image : Font = Normal;
Kind : Designation := Text};

Description
Inserts a character or string into the current line at the current cursor position.

The character at the current cursor position and all subsequent characters on that
line are shifted to the right. If the cursor is positioned beyond the last character on
a line, the Insert procedure will place the character or string in the image beginning
at the current cursor position and will fill the intervening space with blanks. In
every case, the actual cursor position is positioned after the last character in the
inserted string.

Note: To prevent unnecessary scrolling, the screen cursor (the actual cursor on
the screen) is not placed at the position of the image cursor but remains at the
original position before the insert. Multiple inserts will still work off the image
cursor position, placing the inserted characters in the image. The screen cursor can
be resynchronized with the actual cursor with a call to the Move_Cursor or the
Position_Cursor procedure.

Parameters

File : File_Type;
Specifies the handle for the image.

ltem : Character;
Specifies the character to be inserted.

ftem : String;
Specifies the string to be inserted.

Image : Font := Normal;

Specifies the desired font for display.

DIO-138 e RATIONAL

procedure Insert
package 'To.Window_Io

Kind : Designation := Text;

Specifies the desired designation of the display.

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for output (with the Out_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

References
procedure Move_Cursor

procedure Position_Cursor

RATIONAL 7/1/er DIO-139

function Is_Open
package !Jo.Window_Io

function Is_Open

function Is_Open {File : File_Type) return Boolean;

Description

Returns true if the file handle is open; otherwise, the function returns false.

Parameters

File : File_Type;
Specifies the handle for the image in question.

return Boolean;
Returns true if the file handle is open; otherwise, the function returns false.

DIO-140 e RATIONAL

function Job_Number
package 'lo.Window_Io

function Job_Number

function Job_Number return String;

Description

Returns a string representing the predefined field name Job_Number for the banner
of a window.

This is useful for input to the Set_Banner procedure and the Read_Banner function.

Example

Window_lo.Read_Barner (A_Window, Window_lo.Job_Number};

returns the job number from the banner of A_Window.

References
function Read_Banner

procedure Set_Banner

RATIONAL +/1/er DIO-141

function Job_Time
package !Jo.Window._Io

function Job_Time

function Job_Time return String;

Description

Returns a string representing the predefined field name Job_Time for the banner
of a window.

This is useful for input to the Set_Banner procedure and the Read_Banner function.

Example

Window_lo.Read_Banner (A_Window, Window_lo.Job_Time};

returns the job time from the banner of A_Windouw.

References
function Read_Banner

procedure Set_Banner

DIO-142 7/1/87 RATIONAL

function Last_Line
package Io.Window_Io

function Last_Line

function Last_Line (File : File_Type)} return Line_Number;

Description
Returns the number of the last line in the image.

If the image is empty (that is, contains no characters), the line number returned
from the Last_Line function is 1.

Parameters

File : File_Type;
Specifies the handle for the image in question.

return Line_Number;
Returns the number of the last line in the image.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

Example

One easy way to iterate through all the lines in an image is:

for Line_Number in 1 .. Window_lo.Last_Line (An_Iimage) loop
... -- perform some operation on line Line_Number
end loop;

RATIONAL 7/1/er DIO-143

function Line_Image
package lo.Window_Io

function Line_Image

function Line_Image (File : File_Type)} return String;

Description
Returns the image of the line on which the cursor currently resides.

The string returned includes all characters in the line including trailing blanks but
not including a line terminator character. This function has higher performance
than the Get_Line procedure and is generally preferred for extracting text from an
image.

Parameters

File : File_Type;
Specifies the handle for the image in question.

return String;;
Returns the image of the line on which the cursor currently resides.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

Example

One method of examining all lines in an image is:

for Line_Number in 1 .. Window_lo.Last_Line {An_lmage) loop
Examine (Window_lo.Line_Image (Line_Number)};
end loop;

DIO-144 e RATIONAL

function Line_Length
package 'To.Window _Io

function Line_Length

function Line_Length (File : File_Type) return Count;

Description

Returns the number of characters in the line in which the cursor currently resides.

Parameters

File : File_Type;
Specifies the handle for the image in question.

return Count;
Returns the number of characters in the current line.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL 7/1/er DIO-145

subtype Line_Number
package 'To.Window_Io

subtype Line_Number

subtype Line_Number is Positive;

Description

Defines the legal range for line numbers in an image.

DIO-146 7/1/87 RATIONAL

function Mode
package 'To.Window_Io

function Mode

function Mode (File : File_Type) return File_Mode;

Description

Returns the mode for which the specified file handle has been opened.

Parameters

File : File_Type;
Specifies the handle for the image in question.

return File_Mode;
Returns the mode for which the specified file handle has been opened.

Errors

If the file handle is not open, the Jo_Exceptions.Status_Error exception is raised.

RAT'ONAL 7/1/87 DIO-147

procedure Move_Cursor
package 'To.Window_lo

procedure Move_Cursor

procedure Move_Cursor (File : File_Type;
Delta_Lines 1 Integer;
Delta_Columns : Integer;
Offset : Natural = @),
Description

Repositions the cursor relative to its current position in the image.

Parameters

File : File_Type;
Specifies the handle for the image.

Delta_Lines : Integer;

Specifies the number of lines to move the cursor. The cursor is moved down for
positive numbers and up for negative numbers.

Delta_Columns : Integer;

Specifies the number of columns to move the cursor. The cursor is moved to the
right for positive numbers and to the left for negative numbers.

Offset : Natural := 0;

Specifies the position of the window relative to the cursor position. With a positive
offset, the top of the window is placed that number of lines above the new position
of the cursor. With an offset of 0, the cursor is made visible in the window using
the normal editing defaults.

Restrictions

If the number specified by the offset would place the cursor outside the window, the
window is positioned using normal editing defaults.

DIO-148 e RATIONAL

procedure Move_Cursor
package fo.Window_Io

Errors
If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If either the resulting line number or the column number of the new cursor position
is less than 1, the Jo_Exceptions.Layout_Error exception is raised.

RATIONAL 7/1/er DIO-149

function Name
package !To.Window_Io

function Name

function Name (File : File_Type) return String;

Description

Returns the name of the image that was specified when the file handle was created
or opened.

Parameters

File : File_Type;
Specifies the handle of the image in question.

return String;

Returns the name of the image that was specified when the file handle was created
or opened.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-150 e RATIONAL

procedure New_Line
package Io. Window_.Io

procedure New_Line

procedure New_Line (File : File_Type;
Lines : Count = 1});

Description
Inserts the specified number of lines after the current line.

If the cursor is positioned in the middle of a line of characters, a line terminator is
inserted, effectively breaking the line into two lines.

The cursor is positioned at the beginning of the line following the last inserted line.

Parameters

File : File_Type;
Specifies the handle for the image.

Lines : Count := 1;

Specifies the number of lines to be inserted.

Errors
If the file handle is not open, the Jo_Exceptions.Status_Error exception is raised.

If the file handle is not open for output (with the Out_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

Example

This procedure is most commonly used after a call to the Insert procedure to ter-
minate the line:

Window_lo. Insert (An_Image, "Some text forming 3 line");
Window_lo.New_Line (An_lImage, 1};

RATIONAL 7/1/87 DIO-151

constant Normal
package Io.Window_Io

constant Normal

Normal : constant Font := Font’(Plain, Vanilla);

Description

Defines a named constant for a font, selecting the normal settings for the character
set and attributes.

References
constant Plain

constant Vanilla

DIO-152 e RATIONAL

procedure Open
package 'Io.Window_Io

procedure Open

procedure Open (File : in out File_Type;

Mode : File_Mode := Out_File;
Name : String;
Form : String = ""y;

Description
Opens a file handle for input or output with its corresponding image.
Images can be opened twice, once for input and once for output.

If no image has been created previously with the specified name, a new image is
created and a window containing the image will appear on the terminal screen. If
an image with the specified name has been created previously but has been closed,
the old image can be reopened. If an image is currently open with the specified
name and mode, a new image is created and displayed on the terminal screen.

Parameters

File : 1in out File_Type;
Specifies the handle for the opened image.

Mode : File_Mode := Out_File;
Specifies the access mode for which the image is to be used.

Name : String;
Specifies the name of the image to be created. This name will appear on the left

side of the banner of the window containing the image.

Form : String := "";
Currently, the Form parameter, if specified, has no effect.

RATIONAL +/1/er DIO-153

procedure Open
package !To.Window_Io

Example

Commonly, images are opened both for input and output:

Input_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;

begin

Window_lo.0pen (Input_Window, Window_lo.In_File, "WINDOW 10"};
Window_{o.0pen (Output_Window, Window_lo.Out_File, "WINDOW 10"};

Note the use of two file handle objects, one for each mode.

References

procedure Create

DIO-154 7/1/87 RATIONAL

procedure Overwrite
package To.Window_Io

procedure Overwrite

procedure Overuwrite (File : File_Type;

ltem : Character;

image : Font = Normal;

Kind : Designation := Text});
procedure Overuwrite (File : File_Type;

item : String;

Image : Font = Normal;

Kind : Designation := Text});

Description

Replaces characters or strings in the current line beginning at the current cursor
position.

If the new string contains more characters than exist on the current line, the line
is extended to include all characters in the new string. If the cursor is positioned
beyond the last character on a line, the Overwrite procedure places the character or
string in the image beginning at the current cursor position and fills the intervening
space with blanks. In every case, the actual cursor is positioned in the image after
the last character in the overwritten string.

Note: To prevent unnecessary scrolling, the screen cursor (the actual cursor on
the screen) is not placed at the position of the image cursor but remains at the
original position before the overwrite. Multiple overwrites will still work off the
image cursor, placing the overwritten string in the image. The screen cursor can
be resynchronized with the actual cursor with a call to the Move_Cursor or the
Position_Cursor procedure.

Parameters

File : File_Type;
Specifies the handle for the image.

ltem : Character;

Specifies the character over which to write the existing character.

Item : String;
Specifies the string over which to write the existing string.

RAT'ONAL 7/1/87 DIO-155

procedure Overwrite
package !To.Window_Io

image : Font := Normal;

Specifies the desired font for display.

Kind : Designation := Text;

Specifies the desired designation of the display.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

If the file handle is not open for output (with the Out_File mode), the Io_Exceptions-
.Mode_Error exception is raised.

References
procedure Move_Cursor

procedure Position—Cursor

DIO-156 7/1/87 QATIONAL

constant Plain
package !Jo.Window_Io

constant Plain

Plain : constant Character_Set := 0;

Description

Defines a named constant for the alphanumeric character set.

RAT'ONAL 7/1/87 DIO-157

procedure Position_Cursor
package 'Io.Window_Io

procedure Position_Cursor

procedure Position_Cursor (File : File_Type;
Line . Line_Number
Column : Column_Number
Offset : Natural

Line_Number'First;
Column_Number 'First;
B);

Description
Places the cursor at the specified line and column.

If the new cursor position is beyond the last character on a line, the length of the
line is extended up to the new cursor position and the intervening space is filled
with blanks.

If the new cursor position is beyond the currently defined last line in the image, the
number of the last line in the image is updated to reflect the new cursor position.

If the new cursor position is outside the current window, the window is repositioned
relative to the new cursor position, either through specification of a positive offset
(defined below) or through the use of the default offset, with an orientation selected
by the Rational Editor.

Parameters

File : File_Type;
Specifies the handle for the desired image.

Line : Line_Number := Line_Number’'First;
Specifies the line on which the cursor should be positioned.

Column : Column_Number := Column_Number'First;

Specifies the column on which the cursor should be positioned.

Offset : Natural := 8;

Specifies the position of the window relative to the cursor position. With a positive
offset, the top of the window is placed the specified number of lines above the new
position of the cursor. With an offset of 0, the cursor is made visible in the window
using the normal editing defaults.

DIO-158 e RATIONAL

procedure Position_Cursor
package fo.Window_Io

Restrictions

If the number specified by the offset would place the cursor outside the window, the
window is positioned using normal editing defaults.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL 71/ DIO-159

subtype Positive_Count
package !fo.Window_Io

subtype Positive_Count

subtype Positive_Count 1is Count range 1 .. Count’Last;

Description

Defines the allowable range for cursor positions.

DIO-160 7/1/87 IQATIONAL

function Read_Banner
package 'To.Window_Io

function Read_Banner

function Read_Banner (File : File_Type;
Field_Name : String)} return String;

Description

Returns the text residing in the specified field of the banner of the window.

Parameters

File : File_Type;
Specifies the handle for the image in question.

Field_Name : String;

Specifies the desired field name. Field names are of the form Field_0, Field_1, ...,
Field_9. All other values are ignored.

Field_0 Reserved.

Field_1 Corresponds to the job number.

Field_2 Corresponds to the start time of the job.
Field-3..9 Available to the user.

Currently, the fields for the job number and the job time also can be selected with
the corresponding Job_Number and Job_Time functions.

return String;

Returns the text residing in the specified field of the banner of the window.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL +/y/er DIO-161

function Read_Banner
package ITo.Window_Io

References
function Job_Number
function Job_Time

procedure Set_Banner

DIO-162 e RATIONAL

procedure Report_Cursor
package To.Window_Io

procedure Report_Cursor

procedure Report_Cursor (File : File_Type;
Line : out Line_Number;
Column : out Column_Number);

Description

Identifies the current position of the cursor in the image.

Parameters

File : File_Type;
Specifies the handle of the image in question.

Line : out Line_Number;
Specifies the number of the line on which the cursor resides.

Column : out Column_Number;
Specifies the number of the column on which the cursor resides.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

Example

This procedure is often useful for writing simple positioning utilities:

with Window_lo;
procedure End_Of_Line (Window : Window_io.File_Type) is

Current_Line : Window_!o.Line_Number;
Current_Column : Window_!o.Column_Number :

begin
Window_!o.Report_Cursor (Window, Current_Line,
Current_Column);
Window_lo.Position_Cursor (WUindow, Current_Line,
Window_lo.lLine_Length (Window));
end End_Of_Line;

RATIONAL /e DIO-163

procedure Report_Location
package 'To.Window_Io

procedure Report_Location

procedure Report_lLocation (File : File_Type;
Line : out Line_Number;
Column : out Column_Number});

Description

Reports the location on the terminal screen of the upper-left border of the window
containing the specified image.

The upper-left corner of the terminal screen is line 1, column 1.

Parameters

File : File_Type;
Specifies the handle for the image.

Line : out Line_Number;

Specifies the number of the line on the terminal screen on which the upper-left
corner of the window resides.

Column : out Column_Number;

Specifies the number of the column on the terminal screen on which the upper-left
corner of the window resides.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-164 e RATIONAL

procedure Report_Origin
package To.Window_Io

procedure Report_Origin

procedure Report_Origin (File : File_Type;
Line : out Line_Number;
Column : out Column_Number);

Description

Reports the location of the upper-left corner of the window in the specified image.

Parameters

File : File_Type;
Specifies the handle of the image.

Line : out Line_Number;

Specifies the line number of the upper-left corner of the window in the specified
image.

Column : out Column_Number;

Specifies the column number of the upper-left corner of the window in the specified
image.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

RATIONAL 7/1/er DIO-165

procedure Repori_Size
package !To.Window_Io

procedure Report_Size

procedure Report_Size (File : File_Type;
Lines : out Positive_Count;
Columns : out Positive_Count});

Description
Reports the number of lines and columns in a window.

Essentially, this procedure reports the amount of space available in a window. The
size of the image is unrelated to this data. The number of lines in an image is
reported by the Last_Line function.

Parameters

File : File_Type;
Specifies the handle of the window in question.

Lines : out Positive_Count;
Specifies the number of lines in the window.

Columns : out Positive_Count;

Specifies the number of columns in the window.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

DIO-166 7/1/87 RAT'ONAL

procedure Report_Size
package !fo.Window.Io

Example

This procedure can be useful for ensuring that the window will never scroll, which
may occur if characters are written outside the available size of the window:

with Uindow_lo;
procedure Check_lnsert (Window : Window_lo.File_Type;

item : String;

Image : Window_lo.Font;

Kind : Window_lo.Designation) 1is
Number _Of _Lirnes : Window_lo.Line_Number;
Number _0f _Columns : Windouw_l!o.Column_Number;
Current_Line : Window_lo.Limne_Number;

Current_Column : Window_lo.Column_Number;

begin
Window_!o.Report_Cursor (Window, Current_Lines,
Current_Columns};
Window_!o.Report_Size {Window, Number_Of_Lines,
Number _Of_Columns};

if Current_Column + ltem’Size > Number_Of_Lines then
raise Constraint_Error;
else
Uindow_lo.nsert (Window, !tem, Image, Kind);
end if;

end End_Of_Line;

References

function Last_Line

RATIONAL 7/1/87 DIO-167

procedure Set_Banner
package !lo.Window_Io

procedure Set_Banner

procedure Set_Banner (File : File_Type;
Field_Name : String;
Value : String);
Description

Substitutes a new image for a particular field name in the banner of a window.

Parameters

File : File_Type;
Specifies the handle for the window.

Field_Name : String;

Specifies the desired field name. Field names are of the form Field_0, Field-1, ...,
Field—9. All other values are ignored.

Field-0 Reserved.
Field-1 Corresponds to the job number.
Field-2 Corresponds to the start time of the job.

Field_3..9 Available to the user.

Currently, the fields for the job number and the job time also can be selecfed with
the corresponding Job_Number and Job_Time functions.

Value : String;
Specifies the new field image.

Errors

If the file handle is not open, the Io_Exceptions.Status_Error exception is raised.

Example

Set_Bamner (An_lImage, "Field_3", "Some string"};

DIO-168 e RATIONAL

procedure Set_Banner
package !To.Window_Io

References
function Job_Number

function Job_Time

RATIONAL +/1/er DIO-169

constant Vanilla
package 'Io.Window_Io

constant Vanilla

Vanilla : constant Attribute := (others => False};

Description

Defines a named constant for all attribute fields set to false.

DIO-170 e RATIONAL

package Raw

This package allows programs to capture raw input from the terminal keyboard.

Keystrokes can be considered the basic unit of data from the user. Instead of
sending keystroke input to the Rational Editor, a program can capture keystrokes
directly and interpret them as desired. When keystrokes are taken from the raw
terminal stream, they are not automatically echoed to the terminal. This allows
an application using these facilities to be extremely flexible in its response to input
from the user.

There is only one raw keystroke stream per terminal port. Streams are not available

on a per-window basis. Only connected jobs can take input from the keyboard.
When a job is disconnected, keystroke input is redirected to the Rational Editor.

RATIONAL +/1/er DIO-171

procedure Close
package fo.Window_Io.Raw

procedure Close

procedure Close {Stream : 1n out Stream_Type;
Flush_Pending_lInput Boolean := False);

Description

Disables the program’s access to keystrokes from the keyboard and, if requested,
discards any remaining characters in the buffer.

Subsequent keystrokes are directed to the Rational Editor.

Parameters

Stream : 1in out Stream_Type;
Specifies the handle for the keyboard character stream.

Flush_Pending_Input : Boolean := False;

Specifies whether any remaining characters currently in the stream should be purged
from the stream. If Flush_Pending_Input is false, a subsequent attempt to open
the stream would find any pending input characters still available in the stream.
If Flush..Pending_Input is true, any additional characters originally in the stream
would not be available on a subsequent attempt to open the stream.

Errors

If the specified stream is not currently open, the Io_Exceptions.Status_Error ex-
ception is raised.

DIO-172 e RATIONAL

procedure Close
package !ITo.Window_Io.Raw

Example

Because there is no way to tell whether or not the character stream is open, it is a
good idea to maintain a convention of always keeping the stream either opened or
closed across calls to other subprograms. This will ensure that keystrokes are not
requested from a closed stream or that an attempt is made to reopen an already
opened stream.

Character_Stream : Raw.Stream_Type
One_Key : Raw.Key;

begin
Raw.Open (Character_Stream};

loop
Raw.CGet (Character_Stream, One_Key};

if One_Key = ... then
Raw.Close (Character_Stream);
Process {One_Key};
Raw.0Open (Character_Stream);
else
Raw.Close (Character_Stream);
ex1it;

end 1f;
end loop;

RATIONAL 1/er DIO-173

function Convert
package !To.Window_Io.Raw

function Convert

function Convert (C : Character) return Simple_Key;

Description

Returns the corresponding simple key for all characters.

Parameters

C : Character;

Specifies the character in question.

return Simple_Key;
Returns the simple key for the specified character.

DIO-174

e RATIONAL

function Convert
package o.Window_Io.Raw

function Convert

function Convert (K : Simple_Key) return Character;

Description

Returns the corresponding character for a given simple key.

Parameters

K : Simple_Key;
Specifies the simple key in question.

return Character;

Returns the character corresponding to the specified simple key.

Example

This function is often used to find the corresponding character for a simple key:
A_Key : Raw.Key;
begin
Cif A_Key in Raw.Simple_Key then
case Raw.Convert (A_Key) is

when ‘A’ => ...;

end case;

RATIONAL 7/1/87 DIO-175

procedure Disconnect
package To.Window_lo.Raw

procedure Disconnect

procedure Disconnect (Stream : in out Stream_Type);

Description
Frees the user’s keyboard and returns input to the Rational Editor.

The stream remains open, allowing the job to wait for input if the user decides to
reconnect to the job.

Parameters

Stream : 1in out Stream_Type;
Specifies the handle for the stream.

DIO-176 7/1/87 EATIONAL

procedure Get
package fo.Window_lo.Raw

procedure Get

procedure Get (Stream : Stream_Type;
ltem : out Key);
procedure Get (Stream : Stream_Type;
[tem : out Key_String);
Description

Retrieves a key or series of keys from the stream.

If there are no pending keys in the stream, or not enough keys to fill the desired
string, execution of the program is suspended until the user enters the required
number of keystrokes at the keyboard.

Parameters

Stream : Stream_Type;
Specifies the handle for the stream.

Item : out Key;
Specifies the requested key.

[tem : out Key_String;
Specifies the requested series of keys.

Errors

If the handle for the stream is not open, the Io_Exceptions.Status_Error exception
is raised.

RATIONAL 7/1/sr DIO-177

procedure Get
package To.Window_Io.Raw

Example

One method of using this procedure is:

A_Key : Raw.Key;
Quit_Key : constant Raw.Key := ...;

The_Stream : Raw.Stream_Type;

begin
Raw.Open {The_Stream);
loop
Raw.Get (The_Stream, A_Key);
if A_Key = ... then
elsif A_Key = ... then
e elsif A_Key = Quit_Key then
Raw.Close (The_Stream);
exit;
else
end loop;

DIO-178 7/1/87 BAT'ONAL

function Image
package !To.Window_Io.Raw

function Image

function Image (For_Key 1 Key;
On_Terminal : Terminal) return String;

Description

Returns the corresponding image for a key on a particular terminal type as defined
in the Environment package !Machine.Editor_Data.Visible_Keynames.

Parameters

For_Key : Key;
Specifies the key in question.

On_Terminal : Terminal;

Specifies the particular terminal for which the key should be interpreted.

The following terminal names are currently supported:

e Rational
e VTI100

return String;
Returns the name of the specified key for the specified terminal.

R)ATIONAL 7/1/87 DIO-179

function Image
package o.Window_lo.Raw

Example

This function is especially effective when used in conjunction with the System_Utili-
ties.Terminal Type function (SMU). This function returns a string image for the
currently connected terminal.

A_Key : Raw.Key;
Character_Stream : Raw.Stream_Type;

begin
'..Raw.Get (Stream => Character_Stream, Key => A_Key);

if Raw.|Image (A_key,
System_Utilities.Terminal _Type) = "F1" then

elsif Raw. Image (A_key,

System_Utilities.Terminal _Type) "F2" then

end if;

DIO-180 7/1/87 EATIONAL

type Key
package !Io.Window_Io.Raw

type Key

type Key is new Natural range @ .. 1023;

Description

Defines the possible range of keys.

RATIONAL 7/1/er DIO-181

type Key-_String
package !To.Window_lo.Raw

type Key_String

type Key_String is array {Positive range <>} of Key;

Description

Defines an unconstrained array type for use in holding a series of keys.

DIO-182 7/1/87 BA\TIONAL

procedure Open
package !Io.Window_lo.Raw

procedure Open

procedure Open {Stream : in out Stream_Type};

Description

Disconnects keystroke input from the Rational Editor and opens the keystroke
stream for use by the currently executing job.

Parameters

Stream : 1in out Stream_Type;
Specifies the handle for the stream.

Errors
If the stream is already open, the Status_Error exception is raised.

If the caller is not the current job—that is, the user or program interrupted with a
Job.Disconnect (SIM)—the Io_Exceptions.Status_Error exception is raised.

Example

One method of using this procedure is:

A_Key : Raw.Key;
Quit_Key : constant Raw.Key := .. .;

The_Stream : Raw.Stream_Type;

Bééin
Raw.Open (The_Stream);
loop
Raw.Get ({The_Stream, A_Key);
1f AKey = ... then
elsié.A_Keg = ... then
elsif A_Key = Quit_Key then
Raw.Close {The_Stream);
exit;
else
end loop;'.

RAT'ONAL 7/1/87 DIO-183

subtype Simple_Key
package To.Window_Io.Raw

subtype Simple_Key

subtype Simple_Key is Key range @ .. 127;

Description
Defines the allowable range for simple keys.

Simple keys correspond to the 128 ASCH characters as defined in PT, package Stan-
dard. The value of the simple keys corresponds to the ’Pos attribute of the Character

type.

DIO-184 e RATIONAL

type Stream_Type
package 'To.Window_lo.Raw

type Stream_Type

type Stream_Type 1is private;

Description

Defines a handle for access to the keystroke stream.

RATIONAL /s DIO-185

subtype Terminal
package To.Window_Jlo.Raw

subtype Terminal

subtype Terminal is String;

Description

Defines a subtype string for holding terminal names.

The following terminal names are currently supported:

e Rational
e VTI100

DIO-186

e RATIONAL

exception Unknown_Key
package To.Window..Io.Raw

exception Unknown_Key

Unknown_Key : exception;

Description

Defines an exception raised by the Value function if the specified key name does
not have a corresponding key for the specified terminal.

References

function Value

RATIONAL 7/1/sr DIO-187

function Value
package fo.Window_Io.Raw

function Value

function Value (For_Key_Name : String;
On_Terminal : Terminal} return Key;

Description

Returns the corresponding key for a key name defined in package 'Machine.Editor-
—_Data.Visible_Keynames.

Parameters

For_Key_Name : String;
Specifies the string image of the key.

On_Terminal : Terminal;
Specifies the terminal for which the key mapping is desired.

return Key;
Returns the key corresponding to the key name.

Errors

If the specified key name does not have a corresponding key for the specified ter-
minal, the Unknown_Key exception (in this package) is raised.

DIO-188 e RATIONAL

function Value
package !Jo.Window_Jlo.Raw

Example

The following code could be used to define named constants for the arrow keys:
with System_Utilities,Raw;
package Key_ Definitions is

Up : constant Raw.Key := Raw.Value ("UP",
System_Utilities.Terminal _Type);
Down : constant Raw.Key := Raw.Value ("DOWN",
System_Utilities.Terminal _Type);
Left : constant Raw.Key := Raw.Value ("LEFT",
System_Utilities.Terminal_Type);
Right : constant Raw.Key := Raw.Value ("RIGHT",
System_Utilities.Terminal _Type};

end Define_Keys;

RAT'ONAL 7/1/87 DIO-189

procedure Value
package fo.Window_Io.Raw

procedure Value

procedure Value (For_Key_ Name : String;
On_Terminal Terminal;
Result : out Key;
Found : out Boolean};
Description

Provides the corresponding key for a key name defined in package 'Machine.Editor-
-Data.Visible_Keynames.

Parameters

For_Key_Name : String;
Specifies the string image of the key.

On_Terminal : Terminal;
Specifies the terminal for which the key mapping is desired.

Result : out Key;
Specifies the key corresponding to the key name.

Found : out Boolean;

Specifies whether the value in the Result parameter is valid (that is, whether the
specified key name has a corresponding key for the specified terminal).

DIO-190 e RATIONAL

procedure Value
package 'To.Window _Io.Raw

Example

The following code could be used to define named constants for the arrow keys:

package Define_Keys 1is
Up : Raw.Key;
Down : Raw.Key;
Left : Raw.Key;
Right : Raw.Key;
end Define_Keys;

package body Define_Keys is;
Found : Boolean;
Not_Successful : exception;

procedure Assert_Success (Found : Boolean)
begin
1f not Found then
raise Not_Successful;
end 1f;
end Assert_Success;

begin

Raw.Value ("UP",
System_Utilities.Terminal _Type,
Assert_Success (Found);

Raw.Value {"DOUN",
System_Utilities.Terminal _Type,
Assert_Success (Found);

Raw.Value ("LEFT",
System_Utilities.Terminal _Type,
Assert_Success (Found};

Raw.Value {"RIGHT",
System_Utilities.Terminal_Type,
Assert_Success (Found);

exception
when Not_Successful =>

end Define_Keys;

1s

Up, Found};

Down, Found};

Left, Found);

Right, Found};

end Raw;

RATIONAL 71/sr

DIO-191

package To.Window_Io

end Window_Io;

DIO-192 e RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.

The entries for each unit are arranged alphabetically by simple name.
number indicates the primary reference for an entry.

To.Device_Independent_lo package
tlo.Terminal_Specific package .
{Machine.Devices.Terminal_n .

IMachine.Editor_Data. Visxble-Keynames
Window_Io package .
Window._Io.Image function
Window_Io.Raw.Value function
Window_lo.Raw.Value procedure

access control .

Access_Error
Io_Exceptions.Use_Error exception .

add, see Insert
add to end, see Append
alphanumeric character set .

Already_Open-Error
Io_Exceptions.Status.Error exception

Ambiguous_Name_Error

Jo_Exceptions.Name_Error exception .

Append procedure
Polymorphic_Sequential _Io. Append

ASCII characters

RATIONAL 7y/er

An italic page

DIO-3
DIO-3
DIO-3

DIO-85
DIO-179
DIO-188
DIO-190

DIO-5

D10-37

D10-82, DIO-157

DIO-36

DIO-35

DIO-40
DIO-1, DIO-85

DIO-193

Ascil.Ff
Ascii.Lf

Attribute type
Window.Io.Attribute .

banner
Window_Io.Read _Banner function
Window._Io.Set_Banner procedure

Bell procedure
Window_Io.Bell

Bold character attribute

Capacity-Error

Io_Exceptions.Use_Error exception .

Char_At function
Window_lo.Char_At

character
attributes .
deletion of
Window_lo.Delete procedure .
sets
Window_lo.Graphics constant
Window_Io.Plain constant

Character_Set type
Window_Jo.Character-Set

Check..Out_Error

Io_Exceptions.Use_Error exception .

Class_Error

Io_Exceptions.Use_Error exception .

Close procedure
Direct_Io.Close Ce e
Polymorphic_Sequential_lo.Close
Sequential_Io.Close C
Window_lo.Close .
Window_Io.Raw.Close

Column_Error

Io_Exceptions.Layout_Error exception

Column_Number subtype
Window_lo.Column_Number

DIO-194

DIO-6
DIO-8

DIO-102

DIO-161
DiO-168

DIO-104
DIO-102

D10-37
DIO-106

DIO-102

. . . . DIO-114
. DIO-80, DIO-82
DIO-137
DIO-157

DIO-105
DIO-37
DIO-37

DIO-8
DIO-41
DIO-62

DIO-107
. DIO-178

DIO-33

DIo-108

s RATIONAL

columns

command input
Window.lo.Raw.Key-String type

concurrency

conversion, see also Image functions for types of particular interest,
Value functions for types of particular interest

Convert function
Window_Jlo.Raw.Convert

count
Direct_lo.Positive_Count subtype
Window_lo.Positive_Count subtype

Count subtype
Window_lo.Count

Count type
Direct_Io.Count

Create procedure
Direct_lo.Create .
Form function .
Polymorphic_Sequential _lo. Create
Form function Co.
Sequential_lo.Create
Form function
Window_Io.Create
Form function

current cursor position .

current index
Direct_lo.End_Of_File function

cursor
current position
moving :
Wmdow-lo Move_Cursor procedure .
positioning
Window_Io.Position_Cursor procedure
reporting
Window..Io.Report_Cursor procedure

D

Data_Error exception
Direct_lo generic package
Read procedure . .
Io_Exceptions.Data_Error . .
Polymorphic_Sequential-Io package

RATIONAL 7/1/er

DIO-79

DIO-182
DIO-6

. DIO-174, DIO-175

DIO-23
DIO-160

DIO-109

DIo-9

DIO-10
DIO-17
DIO—42
DIO-48
DIO-68
DIO-70
DIO-110
DIO-124

. DIO-79, DIO-81

DIO-14

. DIO-T79, D10-81
DIO-80

DIO-148

DIO-158

DIO-163

DIO-24
DIo-80
DIO-39

DIO-195

Data_Error exception, continued
Polymorphic—Sequential_Io.Operations package

Element-Type generic formaltype DIO-66
Read procedure DIO-57
Write procedure DIO-58
Sequential_Io package
Element_Type generic formal type e e e DIO-66
Read procedure c. e e e e e e DIO-78
<DEFAULT> « « v v v v v v v o o o DIO-6
default profite DIO-6
Default_Font function
Window_lo.Default_Font Dlo-111
Delete procedure
Direct_Io.Delete . . e e e e e DIO-12
Polymorphxc_Sequentlal Io Delete e e e e e DIO44
Sequential_Io.Delete DIO-65
Window_Io.Delete DIO—11.9 DIO-114
Delete_Lines procedure
Window_lo.Delete_Lines DIO-115
Designation type
Window..lIo.Designation DIO-116
Device_Data_Error
lo_Exceptions.Device_Error exception DIo-31
Device_Error exception
Io_Exceptions.Device_.Error DIo-81
devices DlO-2
Direct_lo generic package DIO-T

directory error, see Nonexistent_Directory_Error

Disconnect procedure
Window_lo.Raw.Disconneet DIO-176

display, see Default_Font

display image, see Designation, Font

E
editor windows
Window_lopackage Dlo-1m
Element_Type generic formal type
Direct_lo.Element.Type . . - -« <. DIO-18
Polymorphic..Sequential._lo. Operatxons Element_Type DIO-56
Sequential_lo.Element_Type DIrO-66

DIO-196 e RATIONAL

elements .

End_Error exception
Direct_Io generic package
Read procedure .
Io_Exceptions.End_Error

Polymorphic_Sequential-Io. Operatlons package

Read procedure .
Sequential_lIo package
Read procedure .

End_Of_File function
Direct_lo.End_Of_File

Polymorphic_Sequential - io .End_Of_Fxle

Sequential _lo.End._Of_File
Window_lo.End_Of_File .

end-of-file terminator

End_Of_Line function
Window_lo.End_Of_Line

enumerations

Window_Io.Designation
Prompt enumeration .
Protected enumeration .
Text enumeration .

Window_lo.File_Mode
In_File enumeration .
Out_File enumeration

EOF, s¢e End_Error, End_Of_File
EOL, see End_Of_Line

error
Io..Exceptions.Data_Error exception
Input_Syntax.Error .
Input_Value_Error .
Output_Type_Error .
Output-Value_Error .
Io_Exceptions.Device_Error exceptlon
Device_Data_Error .
Illegal_Heap_Access_Error .
Illegal_Reference_Error
Page_Nonexistent_Error
Wnte_To_Read_Only_Page_Error
Io_Exceptions.Layout_Error exception
Column. Error
Nllegal _Position_Error
Item_Length_Error .
Io_Exceptions.Mode_Error exceptlon
Illegal _Operation—On_Infile
Illegal_Operation_On_Outfile

RATIONAL 71/er

DIO-7

DIO-24
DIO-82

DIO-57

DIO-76

DIO-14
DIO-45
DIO-67
DIO-118

DIO-6

DIo-119

DIO-116
DIO-116
DIO-116

DIC-120
DI0-120

DIO-30
DIO-30
DIO-30
DIO-30

DIO-31
DIO-31
DI10-31
DI10-31
DIO-31

DIC-33
DIO-33
DIO-33

DIO-34
DIO-34

DIO-197

error, continued
Io_Exceptions.Name_Error exception

Ambiguous_Name_Error DIO-35
Ilformed .Name_Error DIO-3
Nonexistent_Directory.Error DIO-35
Nonexistent—-Object_Error DIO-35
Nonexistent-Version-Error DIO-35
Io_Exceptions.Status_Error exception
Already_Open_Error DIO-36
Not_-Open_Error e D1O-36
Io_Exceptions.Use_Error exceptlon
Access_Error DIO-37
Capacity_Error DlO-37
Check-Out_Error DlO-387
Class_Error DIO-37
Frozen_Error . . e e e e e DIO-37
Lme_Page_Length_Error e e e e e e e DplO-37
Lock_Error . . . e e e e e DIO-37
Reset_Error D10-387
Unsupported-Error D10-37
error, see also Bell, Unknown_Key
errorfile DIO-3
errorreactions DIOS
exception information, input/output DIO-6
exceptions 0) (¢ B
Io_Exceptions package
Data_Error exception DIO-30
Device_Error exception Dlo-31
End-Errorexception DIO-32
Layout_Error exception DIO-33
Mode_Error exception DIl0O-34
Name_Error exception DIO-35
Status_Error exception DIO-36
Use-Errorexception DIO-37
Window_lo.Raw package
Upknown_Key exception DlO-187
F
Faint character attribute DIO-102
file DO
association
Direct_Io.Close procedure . . .+« DIO-8
Polymorphic-Sequential.Io. Close procedure R 0) (0 23 |
Sequential_lo.Close procedure DlO-62
Window_lo.Close procedure DlO-107

DIO-198 7/1/87 RAT'ONAL

file, continued

create
Direct_lo.Create procedure . .
Polymorphic_Sequential_lo.Create procedure .
Sequential_lo.Create procedure .

delete
Direct_Io.Delete procedure .
Polymorphic_Sequential_lo.Delete procedure
Sequential_lo.Delete procedure ..

end of
Direct_Io.End_Of_File function .

Polymorphic_Sequential_Io. End_Of..Flle functxon .

Sequential_lIo.End_Of_File function .
Window_lo.End_Of_File function .
handles .
index
Direct_Io package .
length
Direct_lIo.Size function
name . :
Direct— Io Name functlon .
Polymorphic_Sequential_Io. Name functlon
Sequential_lo.Name function
organization .
overwrite capacity
Direct_Io.Write procedure
pointer
Direct_Io.Set_Index procedure
position
Direct._lo.Set.Index procedure
read, with different types of data
Polymorphic_Sequential_lo package .
read-only access
Direct_lo.File_Mode type . .
Polymorphic_Sequential_Io. Flle_Mode type
Sequential_lo.File_Mode type . .
read/write access
Direct_Io.File_Mode type
safe type . . .
Direct_Io package . . i
Polymorphic_Sequential— Io package .
Sequential_Io package
size
Direct_Io.End_Of_File function .
Direct-Io.Size function
storage
temporary
Direct_lo.Create procedure . . .
Polymorphic_Sequential_lo.Create procedure .
Sequential_lo.Create procedure .

RATIONAL 7/

DIO-10
DIO-42
DIO-63

DIO-12
DIO-44
DIO-65

DIO-14
DIO-45
DIO-67
DIO-118
DIO-4, DIO-79

DIO-7

D10-27
DIO-5
DIO-21
DIO-51
DIO-73
DIO-7

D10-28
DIO-26
DIO-26
DIO-39

DIO-15
DIO-46
DIO-68

D10-15
DIO-4

. D10-7
DIO-39
DIO-61

DIO-14
DIO-27
DI1O-2

DIO-10

DIO—42
DIO-63

DIO-199

file, continued
write, with different types of data

Polymorphic_Sequential_Io package .

write-only access
Direct_lo.File_Mode type

Polymorphic_Sequential_Io. Flle_Mode type

Sequential_Io.File_Mode type
file handle, get, see Open
file, read, see also Get, Get_Line

File_Mode type
Direct-lo.File_Mode . . .
Polymorphic_Sequential-lo. Fxle..Mode
Sequential_lo.File_Mode .
Window_lo.File_Mode

File_Type type
Direct_lo.File_Type . .
Polymorphic_Sequential-Io. Flle_Type
Sequential_Io.File_Type .
Window_Io.File_Type

filename, null
Direct_lo.Create procedure

filenames

font .
declaratlons
default
Window_Jo.Default_Font function .

Font type
Window_Io.Font .

Font_At function
Window_lo.Font- At

form

Form function
Direct_lIo.Form . .
Polymorphlc_Sequentxal Io F orm
Sequential_lo.Form . o
Window_Io.Form

Frozen_Error
Io_Exceptions.Use_Error exception .

DIO-200

7/1/87

DI0-39

DIO-15
DIO-46
DIO-68

DIO-15
DIO-46
DIO-68
DIO-120

DIO-7, DIO-16

. DIO-39, DIO-47
. DIO-61, DIO-69

DIO-79, DIO-121

D10-10
DIO-6

. DIO-80, DIO-82

DIO-82

Dio-111

DIro-122

DIO-128

. DIO-80, DIO-89

DIO-17
DIO-48
DIO-T70
DIO-124

D10-37

RATIONAL

generic formals

Get procedure
Window_Io.Get . .
Window.lo.Raw.Get

Get_Line function
Window_lo.Get_Line .

Get_Line procedure
Window_Io.Get_Line .
Line_Image function

graphics character set

Graphics constant
Window.Io.Graphics

graphics utilities

hardware error, see Device_Data_Error

horizontal layout

Illegal_Heap_Access_Error
Io_Exceptions.Device_Error exception

Tllegal_Operation_On_Infile

Io_Exceptions.Mode_Error exception .

Illegal_Operation_On_Outfile

Io_Exceptions.Mode_Error exception .

Nlegal_Position_Error
Io_Exceptions.Layout_.Error exception

Illegal_Reference_Data_Error
Io_Exceptions.Device_Error exception

lliformed_Name_Error

Io_Exceptions.Name_Error exception .

image
coordinates
create
Window_lo.Create procedure .
delete
Window_lo.Delete procedure .

RATIONAL 7177

DI0-94

. DIO-125, DIO-127
. . . . DIO-177

DIO-181
DIO-134
DIO~144

. D10-82, DIO-88, DIO-137

DIO-187
DIO-88

. DIO-93, DIO-94

D10-31
DI10-34
DIO-34
DIO-33
DI10O-31
DIO-35

. DIO-79, DIO-81
DIO-81

DIO-110

DIO-113

DIO-201

image, continued
line
Window_lo.Line_Image function

name
Window_Io.Name function .

read-only access
Window_lo.File_Mode type

write-only access
Window_lo.File_Mode type

Image function
Window_lo.Raw.Image

image, display, see Designation, Font

In_File enumeration
Window..lo.File_Mode type .

index
Direct_lo.Set_Index procedure .

Index function
Direct..lo.Index

input file .

input/output to windows
Window_Io package

Input_Syntax_Error
Io_Exceptions.Data_Error exception

Input_Value_Error
Io_Exceptions.Data_Error exception

Insert procedure
Window_Io.Insert
Designation type
New_Line procedure

Inverse character attribute
Io_Exceptions package .

Is_Open function
Direct-lo.Is_Open

Polymorphic_Sequential_Io.Is..O.pén '

Sequential_lo.Is_Open
Window_Io.Is_Open

Item-Length_Error

Io_Exceptions.Layout_Error exception

job

DIO-202

DIO-144
DIO-150
DI0-120

DIO-120

DIO-179

DI0O-120
DIO-26

DIo-18
DIO-3

DIO-79
DIO-30
DIO-30

DIO-1388
DIO-117
DI10-151

DIO-102
DIO-6, DIO-29

DIO-19
DIO-49
DIO-T71
DIO-140

DIO-33

DIO-5

s RATIONAL

Job_Number function
Window_lo.Job_Number .
Set_Banner procedure .

job response profile

Job_Time function
Window_lo.Job_Time .
Set_Banner procedure .

key .
names .
redefine .

sequence

Window_Ilo.Raw.Stream.Type type

simple

Window_Io.Raw.Simple.Key subtype

key concepts

Key type
Window_lo.Raw.Key .

Key_String type
Window_lo.Raw.Key_String .

keyboard input

keystrokes
program’s access to
Window_Ilo.Raw.Close procedure
read, typed by users
Window_lo.Raw package .

Last_Line function
Window.lo.Last_Line
Report_Size procedure .

Layout.Error exception
Io_Exceptions.Layout_Error .
Window_lo package

Move_Cursor procedure

length .
file
Direct_lo.Size function
line

Window_Jo.Line_Length function .

length error, see Item_Length_Error

RATIONAL 7/

DIO-141
D10-168

DIO-6

DIO-142
DIO-168

DIO-83
DIO-85
DIO-80
DIO-185
DIO-184
DIO-1

DIO-181

DIO-182
DIO-85

DIO-172

DIO-171

DIO-143
DIO-166

DIO-388

DIO-149
DIO-79

DIO-27

DIO-145

DIO-203

line

delete

Window_Io.Delete_Lines procedure
end of

Window_Io.End_Of_Line function
get

Window_Jo.Get..Line function

Window_Io.Get_Line procedure
last

Window_Jo.Last_Line function
new

Window_Jo.New_Line procedure
terminator (Ascii.Lf) . .

Line_Image function
Window_lo.Line_Image .
Get_Line function .

Line_Length function
Window.Io.Line..Length

Line.Number subtype
Window..Io.Line_Number .

Line_Page_Length_Error
Io_Exceptions.Use_Error exception .

location

Window_lo.Report_Location procedure .

Lock_Error
lo_Exceptions.Use_Error exception .

menu . . .
definition .o
disconnecting from .
selection

merging files, see Append

Mode function
Direct_Io.Mode
Polymorphic.-Sequential_lIo.Mode
Sequential_lo.Mode .
Window_Io.Mode

Mode_Error exception
Direct-lo generic package
End_Of_File function
Read procedure .
Write procedure . . .
Io_Exceptions.Mode._Error

DIO-204

DIO-T79
DIO-115
DI1O-119

D10-131
DIO-134

DIO-143

DIO-151
DIO-6

DIO-144
DIO-131

DIO-145
DIO-146

DIO-37
DIO-164

DIO-37

. DIO-80, DIO-93
DIO-95

DIO-100

DIO-94

DIO-20
DIO-50
DIO-72
DIO-147

DIO-14
DIO-24
DIO-28
DIO-84

e RATIONAL

Mode_Error exception, continued
Polymorphic_Sequential_-lo package
End_Of_File function .
Polymorphic_Sequential-lo. Operatlons package
Read procedure
Write procedure
Sequential_Io package
End_Of._File function
Read procedure .
Write procedure
Window_lo package
Delete procedure
Delete_Lines procedure
Get procedure
Get_Line function .
Get_Line procedure .
Insert procedure
New_Line procedure
Overwrite procedure .

mode, file
Direct_lo.File_Mode type . . .
Polymorphic_Sequential_Io. Flle_Mode type
Sequential_lo.File_Mode type
Window_lo.File_Mode type .

Move_Cursor procedure
Window_Io.Move_Cursor

Insert procedure
Overwrite procedure .

N

name error, see Ambiguous_Name_Error, lliformed_Name_Error

Name function
Direct_lo.Name
Polymorphic_Sequential - Io Name
Sequential_lo.Name .o
Window_Io.Name

Name_Error exception
Direct_Io generic package
Create procedure
Open procedure
Io_Exceptions.Name_Error . . .
Polymorphic.-Sequential_lo package
Append procedure . .
Create procedure
Open procedure

RATIONAL 7/1/er

DiO-45

DIO-57
DIO-58

DIO~67
DIO~-76
DIO-78

DIO-114
DIO-115

. DIO -126, DIO-128

DIO-132
DIO-135
DIO-139
DIO-151
DIO-1566

DIO-15
DIO~-46
DIO-68
DIO-120

DIO-148
DIO-138
DIO-155

DIlo-21
DIo-51
DIO-78
DIO-150

DIO-11
DIO-22
DIO-85

D10-40

DIO-43
DIO~-52

DIO-205

Name-Error exception, continued
Sequential_lo package
Create procedure
Open procedure

naming files

New_Line procedure
Window_lo.New_Line

Nonexistent_Directory_Error
Io_Exceptions.Name_Error exception .

Nonexistent_Object_Error
Io_Exceptions.Name_Error exception .

Nonexistent_Version-Error
Io_Exceptions.Name_Error exception .

Normal constant
Window_Io.Normal

Not_Open_Error
Io_Exceptions.Status_Error exception

number
column

Window_lIo.Column_Number subtype

job

Window._Io.Job_Number function .
line

Window_lo.Line_Number subtype

object error, see Nonexistent_Object_Error

open
Direct_lo.Is_Open function

Polymorphic_Sequential..lo.Is_ Ope;n functlon

Sequential_lo.Is_Open function
Window..Io.Is_Open function

open error, see Already.Open.Error, Not_Open. Error

Open procedure

Direct_lo.Open

Form function . . .
Polymorphlc_Sequentlal_Io Open

Form function)
Sequential-lo.Open

Form function
Window_lo.Open

Form function . .
Window_lo.Raw.Open

DIO-206

7/1/87

DIO—64
DIO-75

DIO-5
DIO-151
DI10-35
DIO-35
DIO-35
DIo-152

DIO-36

DIO-108
DIO-141

DIO-146

DIO-19
DIO-49
DIO-T71
DIO-140

DIO-22
DIO-17
DIO-52
DIO-48
DIO-74
DIO-70
DIO-158
DIO-124
DIO-188

RATIONAL

Operations generic package
Polymorphic_Sequential_Io.Operations

origin

Window_Io.Report_Origin procedure .

Out_File enumeration
Window_lo.File_Mode type .

output file

Output_Type_Error
lo_Exceptions.Data_Error exception

Output-Value-Error
Io_Exceptions.Data_Error exception

Overwrite procedure
Window_lo.Overwrite

page length error, see Line_Page_Length_Error

page terminator (Ascii.Ff) . . .

Page_Nonexistent_Error
Io_Exceptions.Device_Error exception

Plain constant
Window-lo.Plain

polymorphic
polymorphic file
Polymorphic_Sequential_Io package .

position, see Column_Number, Index, Set_Index

Position-Cursor procedure
Window_lo.Position_Cursor .
Insert procedure
Overwrite procedure .

Positive_Count subtype
Direct_lo.Positive_Count
Window_lo.Positive_Count

<PROFILE>
prompt

Prompt enumeration
Window_Io.Designation type

Prompt field
Window_lo package

RATIONAL 7100

. DIO-39, DIO-55

DIO-165

DI10-120
DI1I0-3

DIO-30

DIO-30

DIO-155

DIO-6

D10-31

DIO-157
DI10-1
DI1O-7

DIO-89

DIO-158
DIO-138
DIO-155

DIo-28
DIO-160

DIO-6
DI1O-87

DI10-116

DIO-83

DIO-207

Protected enumeration
Window_JIo.Designation type

Protected field
Window_Io package

put, see Write

Rapid_Blink character attribute

Raw package
Window_lo.Raw .

read
files with different types of data
Polymorphic_Sequential .Io package .
raw keystrokes typed by users
Window_Io.Raw package .

read, see also Get, Get_Line

Read procedure
Direct-Io.Read

Polymorphlc-Sequ.en'tlal Io. Operatlons Read .

Sequential_lo.Read .

read-only access
Direct_lo.File_Mode type .

Polymorphic_Sequential_Io. ine.Mode type

Sequential_Jo.File_Mode type
Window_lo.File_Mode type .

read/write access
Direct_lo.File_Mode type .

read/write to windows
Window_Io package

Read_Banner function
Window_lo.Read_Banner .
Job_Number function
Job_Time function

remove, see Delete

Report_Cursor procedure
Window_Jo.Report.-.Cursor

Report_Location procedure
Window_Jlo.Report_Location

Report_Origin procedure
Window_Io.Report_Origin

DIO-208

DIO-116

DI10-83

DI10-102

. Dlo-171

DI10-39

DIO-171

DIO-24
DIO-57
DIO-76

DIO-15
DIO-46
DIO-68
DI0-120

DIO-15
D10-79

. DIO-161
DIO-141
DIO-142

. DIO-168

. DIO-164

. DIO-165

e RATIONAL

Report_Size procedure
Window_Io.Report_Size

Reset procedure
Direct_Io.Reset .o
Polymorphic_Sequential. Io Reset
Sequential_Io.Reset .

Reset_Error

Jo_Exceptions.Use_Error exception .

safe type . . .
Direct_Io package

Polymorphlc_Sequentxa..l Io package.

Sequential_Io package

screen
control of .
editing
input /output

Sequential_Io generic package
< SESSION>

session response profile

set position, see Set.-Index

Set_Banner procedure
Window_lo.Set_Banner .
Job_Number function
Job_Time function

Set_Index procedure
Direct_lo.Set_Index

Simple_Key subtype
Window_Io.Raw.Simple_Key

size

Window_Io.Report_Size procedure .

Size function
Direct_lo.Size

Slow_Blink character attribute
special names .

standard file

RAT'ONAL 7/1/87

DIo-166

DIO-25
DIO-58
DIO-77

DIO-37

DIO-4
DIO-7
DIO-39
DIO-61

D10-91
DIO-83
DIO-3

DI0-61
DIO-6
D10-6

. DIO-168

DI10O-141
DIO-142

DIO-26

DIO-184

DIO-166

DI10-27
DIO-102
DIO-b
DIO-3

DIO-209

Status_Error exception
Direct_Io generic package
Close procedure .
Create procedure

Delete procedure

Form function

Mode function

Name function

Open procedure

Reset procedure
Io_Exceptions.Status_Error

Polymorphic_Sequential_Io packaée

Append procedure
Close procedure .
Create procedure
Delete procedure . .
End_Of_File function
Form function

Mode function

Name function

Open procedure
Reset procedure

Polymorphic_Sequential_lo. Operatxons package

Read procedure .
Sequential_lo package
Close procedure .
Create procedure
Delete procedure . .
End_Of_File function
Form function
Mode function
Name function
Open procedure
Read procedure .
Reset procedure
Window_lo package
Char_At function .
Close procedure .
Create procedure
Delete procedure
Delete_Lines procedure
End_Of_File function

End_Of_Line function .

Font_At function
Form function

Get procedure
Get-Line function .
Get.Line procedure .
Insert procedure
Last_Line function

DIO-210

DIO-8
DIO-11
DIO-12
DIO-17
DIO-20
D10-21
DIO-22
DIO-25
DIO-86

DIO-40
DIO—41
DIO-43
DIO—44
DIO-45
DIO-48
DIO-50
DIO-51
DIO-52
DIO-53

DIO-567

DIO-62
DIO-64
DIO-65
DIO-67
DIO-70
DIO-72
DIO-73
D1O-75
DIO-76
DIO-77

DIO-106
DIO-107
. DIO-110
. DIO-113, DIO-114
DIO-115
DIO-118
DIO-119
DIO-123
. DIO-124
. DIO-126, DIO-128
DIO-132
DIO-135
DIO-139
DIO-143

e RATIONAL

Status_Error exception, continued
Window_lo package, continued
Line_Image function
Line_Length function
Mode function
Move_Cursor procedure
Name function
New_Line procedure
Overwrite procedure . .
Position_Cursor procedure .
Read_Banner function .
Report_Cursor procedure .
Report_Location procedure
Report.Origin procedure
Report_Size procedure .
Set_Banner procedure .
Window_Ilo.Raw package

Close procedure .
Get procedure
Open procedure

Stream_Type type
Window_Ilo.Raw.Stream_Type . .

string
Window_Jo.Raw.Key_String type

structural editing
synchronization .

syntax error, see Input_Syntax_Error

tapes

temporary file
Direct_lo.Create procedure

Polymorphic_Sequential_lo.Create procedure

Sequential_lo.Create procedure

terminal
access
control of .
input/output
keyboard input
options
Window_lo.Bell procedure

type

Terminal subtype
Window.lo.Raw.Terminal .

RATIONAL »yer

DIO-144
DIO-145
DIO-147
D10-149
DIO-150
DIO-151
DIO-156
DIO-169
DIO-161
DIO-163
DIO-164
DIO-165
DIO-166
D10-168

DIO-172
DIO-177
DIO-183

DIO-185

DIO-182

. DIO-89, DIO-93

DIO-5

DI1O-2

D10-10
DIO-42
DIO-63

DIO~-80
DI0O-91
. DIO-3
DIO-80

DIO-104
DIO-85

DIO-186

DIO-211

terminators DIO-8

Text enumeration

Window_lo.Designation type DIO-116
Text field

Window_Iopackage DIO-83
text files D1

throw away, see Delete

time
job
Window_lo.Job_.Time function DIO-142
type
element
Direct-Io.Element_Type generic formal type DIO-13
Polymorphic—Sequential_Io. Operatxons Element-Type generlc formal type DIO-56
Sequential_lo.Element_Type generic formaltype DIO-66
file
Direct_lo.File_Type type . . . - DIO-16
Polymorphic_Sequential_Jo. Flle_Type type . e DlO-47
Sequential_lo.File.Type type e e e DlIO-69
Window_Io.File.Type type DlO-122
stream
Window_Io.Raw.Stream_Type type DIO-185

type error, see Output.Type_Error

U
Underscore character attribute DlOo-102
Unknown_Key exception
Window_Io.Raw. Unknown_.Key e e e e i i DIO-187
Value function . . . e e e e DO-188
Unsupported_Error
fo_Exceptions.Use_Error exception DIO-37
Use_Error exception
Direct_lo generic package DIO-T
Create procedure Dblo-11
Delete procedure DlO-12
Element_Type type DlO-13
Open procedure DlO-22
Reset procedure DlO-25
Write procedure L. DIO-28
Io_Exceptions.Use_Error DIO—2 DIO—3 DIO 5 DI10-87

DIO-212 7/1/87 QAT'ONAL

Use_Error exception, continued
Polymorphic_Sequential _Io package

Append procedure . . . e e e e DO
Create procedure DIO-43
Delete procedure DIO-44
Openprocedure DlO-52
Reset procedure . . .« < DIO-b3
Polymorphic_Sequential_Jo. Operatlons package
Write procedure DIO-58
Sequential_lIo package DIO-61
Createprocedure DlO-64
Delete procedure DIO-65
Openprocedure DIO-75
Reset procedure DlO-77
Write procedure DIO-78
v

value error, see Input_Value_Error, Output_Value_Error

Value function

Window..Io.Raw.Value DIO-188
Value procedure
Window_Io.Raw.Value DIO-190
Vanilla constant
Window_Io.Vanilla DIO-170
version error, see Nonexistent_VersionError
vertical layout DIO-93, DIO-94
w
wildeards DlO-b
windowDlO-2 DIO-79, DIO-81
attributes
Window_lo.Job_Number function DlO-141
Window_lo.Job_Time function DIO-142
Window_lo.Last_Line function DIO-143
Window_Io.Line_Image fupction DIO-144
Window_lo.Line_Length function DIO-145
Window_lo.Line_Number subtype DIO-146
Window_lo.Read_Banner function DIO-161
Window_Io.Report_Cursor procedure DIO-163
Window_lo.Report_Location procedure DIO-164
Window_lo.Report_Origin procedure DIO-165
Window_Io.Report_Size procedure DIO-168
Window_lo.Set_Banner procedure DIO-168
utilities DIO-88

RATIONAL 7/ DIO-213

Window_lo package .

write
files with different types of data
Polymorphic_Sequential_lo package .

Write procedure
Direct_lo.Write

Polymorphlc_Sequentlal Io Operatlons W rxte

Sequential_Io. Write

write-only access
Direct_lo.File_Mode type .

Polymorphic_-Sequential _lo. ine;Mode type
Sequential_lo.File_Mode type .
Window_Jlo.File_Mode type .

Write_To_Read_Only.Page. Error
Io_Exceptions.Device_Error exception

DIO-214

DIO-79

DIO-39

DIO-28
DIO-58
DIO-78

DIO-15
DIO-46
DIO—68
DIO-120

DI10-31

e RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to: Publications Department
Ratlonal

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Data and Device Input/Output (DIO), 8001A-27

