
Rational Environment
Reference Manual

Data and Device Input/Output (DIO)

Copyright ~ 1985, 1986, 1987 by Rational

Document Control Number: 8001A-27

Rev. 1.0, October 1985
Rev. 2.0, December 1985
Rev. 3.0, May 1986
Rev. 4.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader's Comments form on the last page of this book, which requests
the user's evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and RIOOO are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive

Mountain View, California 94043

DIO-ii 7/1/87 RATIONAL

Contents

How to Use This Book

Key Concepts . . .
Files .
Devices and Windows
Safe Types
File Handles .
Filenames ..
Access Control
Concurrency .
Representations of Terminators
Exceptions
Error Reactions

IX

generic package Direets.Io
procedure Close
type Count
procedure Create
procedure Delete
generic formal type Element- Type
function End_OI-File
type File_Mode
type File_Type
function Form
function Index
function Is_Open
function Mode .
function Name .
procedure Open

1
1
2
4
4
5
5
5
6
6
6

7
8
9

10
12
13
14
15
16
17
18
19
20
21
22

RATIONAL 7/1/87 DIO-iii

subtype PositivecCount
procedure Read
procedure Reset
procedure SeLlndex
function Size . .
procedure Write

23
24
25
26
27
28

end Direl':t_Io

package Io_Exl':eptions
exception Data-Error .
exception Devlce..Brror
exception End_Error
exception LayouLError
exception Mode..Error
exception Nama.Error
exception Statua.Error
exception Use.Error

29
30
31
32
33
34
35
36
37

end Io_Exl':eptions

package Polymorphies.SeqnentialcJo
procedure Append
procedure Close
procedure Create .
procedure Delete .
function End_OLFile
type File_Mode
type File_Type
function Form
function Ia.Dpen
function Mode .
function Name .
procedure Open
procedure Reset

generic package Operations
generic formal type ElemenL Type
procedure Read
procedure Write

end Operations

39
40
41
42
44
45
46
47
48
49
50
51
52
53
55
56
57
58

DIO-iv 7/1/87 RATIONAL

end Polymorphlecdeqnentialcfe

generic: package Seqnentlak.lo
procedure Close
procedure Create . . .
procedure Delete . . .
generic formal type ElemenL Type
function End_OLFile
type File_Mode
type File.JType
function Form
function Ia.Dpen
function Mode .
function Name .
procedure Open
proced ure Read
procedure Reset
procedure Write

· 61
· 62

63
· 65
· 66

67
68
69
70
71
72
73
74
76
77
78

end Seqnentialc.le

package Window _10
Two Case Studies
Basic Concepts . . .

Images and Windows
Input to and Output from Images

Definitions and Utilities
Fonts .
Keys .
Window Utilities
Graphics Utilities

The Form Abstraction
Design Issues

Implementation Issues
The Menu Abstraction

Design Issues
Implementation Issues
Disconnecting from a Menu

type Attribute . . .

79
80
81
81
81
82
82
83
86
88
89
91

· 91
93

· 94
· 95
100
102

RATIONAL 1/1/81 DIO-v

DIO-vi

proced ure Bell . .
type CharactercSet
function Char_At
proced ure Close
subtype Column..Number
subtype Count . . .
procedure Create . .
function DefaulLFont
procedure Delete . .
procedure Delete . .
procedure DeletecLines
type Designation . .
function End_OLFile
function End_OLLine
type File_Mode
type File_Type
type Font
function FonLAt
function Form
procedure Get
procedure Get
function GeLLine
procedure GeL Line
constant Graphics
procedure Insert
function Is_Open .
function Joh..Number
function Job.rTlme .
function LasLLine
function Linea.Image
function Line.Length
subtype Line..Number
function Mode . . .
procedure Move..Cursor
function Name . . .
procedure New..Line
constant Normal
procedure Open

104
105
106
107
108
109
110
111
113
114
115
116
118
119
120
121
122
123
124
125
127
131
134
137
138
140
141
142
143
144
145
146
147
148
150
151
152
153

7/1/87 RATIONAL

procedure Overwrite
constant Plain
procedure Position.Dursor
subtype Posifive..Count .
function Reads.Banner
procedure Report..Cursor
procedure Report..Location
procedure Reporf..Orlgin
procedure Report-Size
procedure Set-Banner
constant Vanilla

package Raw
procedure Close
function Convert
function Convert
procedure Disconnect
procedure Get
function Image .
type Key
type Key_String
proced ure Open
subtype Simpla..Key
type Streamc.Type
subtype Terminal
exception UnknowncKey
function Value .
procedure Value

end Raw

155
157
158
160
161
163
164
165
166
168
170
171
172
174
175
176
177
179
181
182
183
184
185
186
187
188
190

end Window _10

Index 193

RATIONAL 7/1/87 DIO-vii

RATIONAL

How to Use This Book

The Data and Device Input/Output (DIO) book of the Rational Environment Ref-
erence Manual contains reference information describing some of the I/O packages
provided by the Rational Environment TM for manipulating binary files, devices,
and editor windows. This includes reference information on the Ada @-predefined
packages Direct..Io, SequentiaLIo, and Io..Exceptlons, as well as information on
Rational @-developed I/O packages. Note that packages for performing I/O on text
files are documented in the Text Input/Output (TIO) of the Rational Environment
Reference Manual. The reference entries for package llo.Io..Exceptlons are dupli-
cated in both DIO and TIO, because these exceptions can be raised by any of the
I/O packages.

Organization of the Reference Manual
The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary
Keymap
Master Index

2 Editing Images (EI)
Editing Specific Types (EST)

3 Debugging (DEB)
4 Session and Job Management (SJM)
5 Library Management (LM)
6 Text Input/Output (TIO)
7 Data and Device Input/Output (DIO)
8 String Tools (ST)
9 Programming Tools (PT)
10 System Management Utilities (SMU)
11 Project Management (PM)

Each volume of the Reference Manual contains one or more boob separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 7/1/87 DIO-ix

Organization of the
Rational Environment Reference Manual

\. 11volumes containing 14books----------1
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book

Rational Environment

o Reference
Manual

Key concepts

:+---- Book index
~

o Topical section

Unit section

o
li.J1...i4---- Book

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User's Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking-TCP lIP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1
Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:
• Reference Summary: The Reference Summary contains the full Ada specifi-

cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World! section provides a list of the units in
the library system of the Environment and the manual/book in which they are
documented.

• Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

• Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes %-11
Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:
• Contents: The table of contents provides a complete list of all the units in the

book and their reference entries.
• Key Concepts section: Most of the books contain a section describing key

concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

• Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.
The sections for units are alphabetized by the simple names of the units. For
example, the section for package l'Iools.String., Utilities is alphabetized under
String., Utilities.
For many units, introductory material and/or examples specific to the unit appear
after the section tabs.
Within the section for a given unit, the reference entries describing the unit's
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/17 DIO-xi

• Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

• Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.
Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions Cor Finding Information
The following suggestions may help you in finding various kinds of information in
the documentation for Rational's products.

Leaming about EuvironmeDt Faeilitiel
If you are a novice user starting to use the Environment, consult the Rational
Environment User's Guide.

If you are familiar with the Environment but are interested in learning about the
Environment's library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Speeifle Item
If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

DIO-xii 7/1/81 RATIONAL

If you cannot fit;tdan item in the Master Index, the item either is !lot docu~ented or
is documented In the manuals for a product other than the Rational Environment
(for example, Rational Networking-TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index
The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions
raised.

Viewing Spedfieations On-Line
If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure-for example, Defini tion (" ICommands.Library") ;. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit-for example,
Defini tion ("\Library");.

Using On-LineHelp
Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the L!!ilp on H<i£] key
or consult the Rational Environment User's Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross- Reference Conventions
The following conventions are used in cross-references to information:
• Specific page/book: For references to a specific place in a specific book, the

book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

• Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply "procedure Move." Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames .

• Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation. Delete procedure would be "procedure
Compilation. Delete. "

RATIONAL 7/1/87 DIO-xiii

• Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be "EI, procedure Editor.Region.Copy."

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames-for example, "procedure ICommands.Library.Copy." When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit's specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader's Comments Form
Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader's
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

DIO-xiv 7/1/87 RATIONAL

Key Concepts

Data and Device Input/Output (DIO) contains reference information describing
some of the I/O packages provided by the Rational Environment for manipulating
binary files, devices, and editor windows. This includes reference information on
the Ada-predefined packages DirectcIo, SequentiaLIo, and Io..Exceptione, as well
as information on the Rational-developed I/O packages Polymorphic..Sequentialc.Io
and Window _10.

Text Input/Output (TIo) contains reference information describing the I/O packages
for manipulating text files. Text files are files that contain ASCII characters, which
are of the Character type intended for viewing, editing, and so on.

Package Window..lo is used to perform I/O to editor windows.

Package Polymorphic..Sequentlalclo provides facilities similar to those of package
SequentiaLIo, except that the I/O stream can be polymorphic-that is, the same
stream can pass values of one or more different types. This capability is most useful
when writing applications that must write and read values of multiple types to and
from the same file or device--for example, database applications or various kinds of
development tools. This capability is achieved by exporting a nested generic unit
that must be instantiated for each type of data in the stream. As with all the I/O
facilities, attempting to read data into an object of a type different from the data
that are available for input may result in an exception being raised. Thus, it is
the responsibility of the application to keep track of the order in which data of a
specific type are to be written and read.

Files
The I/O packages manipulate information in objects stored in the library system
of the Rational Environment. This includes files, Ada units, and devices such as
windows and terminals. Since the Rational Environment offers a richer definition
of the file than does the Reference Manual for the Ada Programming Language, in
the description of all the I/O facilities in the Rational Environment, the term files
may be used to denote anyone of these entities.

Files that are objects of the file class in the library system of the Environment can
be read from or written to. In the Rational Environment, a file is identified in a
library display with an entry of the form:

RATIONAL 7/1/87 DIO-l

Key Concepts

name : file;

where name is the identifier of the simple name of the file. Files C3.n exist only
in libraries-that is, directories or worlds. Files can be created, opened, closed,
deleted, and otherwise read from/written to by any of the Environment I/O pack-
ages. EST, package Text, provides facilities for text-specific editing of files, and a
file append operation is available in LM, package File..Utilities, and in TIO, package
10. It is common for a file to be created by the user with the facilities of package
Text (EST) and then later read by the I/O packages discussed in this section.

Files thus provide the conventional notion of file storage. When a file is modified
using the Rational Editor, changes to the file are not preserved until the file is
committed. When a file is created or modified from a program, the updated value
of the object is committed only when the file is closed. Thus, if a program does
not explicitly close a file, the permanent contents of the file are unchanged by
the execution of the program. This may be the intended result, but caution is
warranted, especially in error situations in which exception handlers must determine
whether to save the contents of a file by closing it. Not closing the file effectively
abandons the changes made by the program.

Ada units are generally created through normal program development using the
resources of the Rational Editor. Since Ada units can be read as streams of char-
acters, the I/O facilities discussed in this book can be used to read this image. Ada
units cannot be written directly. However, facilities exist in the Rational Envi-
ronment for transforming a file into an Ada unit (see, for example, LM, procedure
Compilation. Parse).

Files and Ada units are subject to the standard read/write synchronization protocols
used throughout the Rational Environment. This synchronization permits multiple
jobs to have simultaneous access to the same file for reading, but it allows only a
single job to write to a file at any instant in time (with no readers allowed while
a writer has the file open). Attempting to gain access to an object in a manner
that violates this protocol results in the Io..Exceptions. Usa..Error exception being
raised. Attempting to open an Ada unit for writing also results in the Use..Error
exception being raised.

Devices and Windows
The Rational Environment supports I/O to or from several devices, including win-
dows and terminals. In general, all of the I/O packages documented in this book
can use anf of these devices. I/O to tapes is permitted and is provided by package
Tape (SMU). The exact effect of I/O with a particular device is, of course, unique to
that device, and is explained in the following paragraphs.

For each user session, one or more windows can be created to provide a medium for
the files Standardc.Input and Standard..Output, as defined in TIO, packages TexLlo
and 10. Multiple windows are created when more than one job is simultaneously
performing output. These windows are given names corresponding to the name
of the job that is currently accessing them, or that accessed them most recently,
and is of Text type. This window can be moved or expanded, and its contents can

DIO-2 7/1/87 RATIONAL

Key Concepts

be cut, copied, and otherwise manipulated with the Rational Editor commands, as
explained in Editing Images (EI) and Editing Specific Types (EST), package Text, in
the Rational Environment Reference Manual. In general, this window automatically
pops up when I/O is requested of the standard files. Output to Standards.Output
appears in the window as characters (with control characters highlighted in a special
font). Input requested from Standard..Input is denoted with the typical editor
prompt, with the name {input]. The usual editing paradigm offered by the Rational
Editor applies, so input can be typed ahead, edited, and even copied from other
windows. Input is not sent to the waiting program until it is committed.

Session I/O windows optionally accumulate all I/O to standard files during one ses-
sion, so the windows can be used to keep scripts of program interaction. Between
jobs, I/O to these windows is separated by a job separator. The files Standard..Input
and Standards.Output are automatically created at the start of each job and are au-
tomatically closed at the end of each job. If more than one job is initiated in a single
session, and each job uses the resources of Standard..Input or StandardcOutput,
additional windows are created as necessary. If a job is executed and a session
does not exist, Standards.Input and Standard..Output map to files with the names
Sbandard..Input and Standard..Output, respectively. These files are created in the
default context of the job that initiated the I/O.

Package 10 introduces the notion of a Standard..Error file. This file maps to the
Rational Editor Message window, so it typically is used to provide a common error-
reporting mechanism among tools. If a job is executed and a session does not exist,
Standard..Error maps to a file with the name Standards.Error, created in the default
context of the job that initiated the I/O.

A programmatic interface for performing I/O to windows is provided with package
Windowc.Io. In this case, the file abstraction is associated with an image. This
image is displayed in a window on the terminal screen. Interfaces are provided to
open images, put characters to any part of the image, get characters from the image,
and close or delete the image when finished.

I/O also can be initiated directly to terminals using any of the I/O packages. Files can
be opened using a name (of String type) in the form !Machine.Devices.TerminaLn,
where n is an integer corresponding to a physical port on the processor. The
exact names available on any particular machine can be found in !Machine.Devices.
Once the file is opened, I/O can proceed as with any other file. Of course, the
effect of the I/O depends on the nature of the physical device attached to the port.
Physical devices other than the Rational Terminal can be attached to any port.
If a program attempts to open a terminal that is already assigned to a job, the
Ic..Exceptions. Use..Error exception is raised.

Note that other lower-level operations for performing I/O on terminals that are
logged in are available from package llo.DeviceclndependentcIo, using the opera-
tions in package !Io.TerminaLSpecific. They are not documented in the Rational
Environment Reference Manual.

RATIONAL 7/1/87 DIO-3

Key Concepts

Safe Types
Packages SequentiaLIo, Direcf..Io, and Polymorphicc.Sequential..Io can be used to
perform I/O on any safe type. A safe type is any type that does not contain access
types or task types in any of its components. If a create or an open operation is
attempted with an instantiation of an unsafe type, the Ic..Exceptions.Usec.Error
exception will be raised. If a read or a write operation is attempted with an instan-
tiation of an unsafe type, the Io..Exceptions.DatacError exception will be raised.

File Handles
File handles are used for performing operations on files within Ada programs using
the facilities provided by the I/O packages. When a file is opened or created, a file
handle is returned. This handle is then used to refer to the file when calling the
subprograms in the I/O packages.

The following is an example of a program that reads the lines from a text file named
IUsers.Blb.A_ Text-File and displays them in the output window. The program first
opens the file which returns a file handle. This file handle is then used for reading
the lines from the file and checking for an end of file condition.

with 10;
procedure Display_File is

-- This program reads lines from a text file and displays them
-- in the output window.
Fi Ie_Handle : 10.Fi Ie_Type;

This is the object that will contain the file handle.
begin

10.Open (File => File_Handle,
Mode => 10.ln_File,
Name => "!users.blb.a_text3ile");

-- Opens the named file for reading and returns a file handle for
-- performing I/O operations on that file within this program.
while not 10.End_Of_File (File_Handle) loop

declare
Line: constant String := 10.Get_Line (File_Handle);
-- Reads a line from the file.

begin
10.Put_Line (Line);

Writes the line to the output window (Standard_Output).
end;

end loop;
end Display_File;

DIO-4 7/1/87 RATIONAL

Key Concepts

Filenames
Filenames supplied to the Create and Open procedures in the various I/O packages
can be any legal Environment object name that uniquely identifies an object. Such
names, for example, can contain wildcards and so on as long as the name can be
resolved to a single object. Note that special names (for example, "<SELECT ION>")
can also be used to designate the name of a file. For more information on naming
objects, see SJM, Key Concepts.

Access Control
The Rational Environment provides access-control mechanisms that can be used to
restrict the access that users and programs have to the objects in the library system.
The operations provided in the I/O packages are subject to these access controls.

The access specified in Table 1-1 is required for performing I/O operations on files.
If the required access does not exist, the Ic..Exceptions. Usee.Error exception will be
raised by the attempted operation. See LM, Key Concepts, for more information on
access control.

Table 1-1. Access Required for I/O Operations.

Operation Access Required

All operations Read access for all worlds enclosing the file

Creating a &Ie Create access to the world in which the &Ieis to
be created

Deleting a &Ie Read access to the file

OpeDiDca &Iefor readinc (mode In) Read access to the &Ie

Opening a file for writing (mode Out) Write access to the file

Concurrency
The execution of any command or subprogram in the Rational Environment con-
stitutes a [ob. Within a job, there may be several tasks that use I/O resources. If
multiple tasks all share that same file handle, I/O may be arbitrarily interleaved
and the results can be unpredictable. Thus, the I/O resources documented in this
book may not offer or imply synchronization of the I/O activity. The Rational En-
vironment does provide synchronization of I/O among different jobs, as discussed in
"Devices and Windows," above.

RATIONAL 1/1/11 DIO-5

Key Concepts

Representations of Terminators
Since packages TexLlo and 10 (TIO) observe the abstraction required by the Ref-
erence Manual for the Ada Programming Language of files containing line, page,
and file terminators, it is sometimes useful to permit the user to simulate these
terminators when creating or reading text files using the facilities in mo. In the
Environment, the line terminator is denoted by the character Ascii.Lf, the page
terminator is denoted by the character Ascii.Ff, and the end-of-file terminator is
implicit at the end of the file. A line terminator directly followed by a page ter-
minator is compressed to the single character Ascii.Ff. Also, the line and page
terminators preceding the file terminator are implicit and do not appear as char-
acters in the file. For the sake of portability, programs should not depend on this
representation, although it can be necessary to use this representation when im-
porting text files from another system or exporting text files from the Rational
Environment.

Exceptions
Note that although most of the I/O packages contain renaming declarations for the
exceptions defined in package Ic..Exceptions, descriptions of these renaming decla-
rations are omitted from the packages. Refer to the descriptions of the exceptions
in the reference entries for package Io..Exceptlcns.

The Rational Environment provides additional information about exceptions raised
by the I/O packages. This information, which describes why a given exception
occurred, is typically displayed in parentheses after the exception name. See the
reference entries for the exceptions in package Io..Exceptions for descriptions of this
additional information.

Error Reactions
When errors are discovered in a command, the command can respond by:

• Ignoring the error and trying to continue
• Issuing a warning message and trying to continue
• Raising an exception and abandoning the operation

For each job, the Environment maintains a default action for commands in package
Profile (SJM) to take if an error occurs. There are commands for specifying and
displaying the default error reaction for a job. Regardless of the default error
reaction, any error reaction can be specified for any command.

The Environment has three default specifications for the profile it should use when
responding to errors in a command. These are "(PROFILE>", "(SESSION)", and "(DE-
FAULT)", which refer, respectively, to the job response profile, the session response
profile, and the default profile returned by the Profile.DefaulLProfile function.

DIO-6 7/1/87 RATIONAL

generic package Direct..Io

This package provides the capabilities for DirecLlo as required by the Reference
Manual for the Ada Programming Language, Chapter 14. It provides facilities for
direct I/O upon files whose components are of the same (nonlimited) type. This
type must be a safe type-that is, any type that does not contain access types or
task types in any of its components. If a create or an open operation is attempted
with an instantiation on an unsafe type, the Io..Exceptions. Use..Error exception
will be raised.

The fundamental abstraction provided by package DirecLlo is the File..Type type.
Objects of this type are file handles that can be mapped to files. A file is viewed
as a set of elements occupying consecutive positions in linear order; a value can be
transferred to or from an element of the file at any selected position. The position
of an element is specified by its index. The first element if any, has index 1; the
index of the last element, if any, is called the current size (which is 0 if there are no
elements).

RATIONAL 7/1/87 DIO-7

procedure Close
package !Io.DirecLlo

procedure Close

procedure Close (File in out File_Type);

Description

Severs the association between the file handle and its associated file.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Io..Exceptions.Statusc.Error exception is raised.

DIO-8 7/1/87 RATIONAL

type Count
package !Io.DirecLlo

type Count

type Count is new Integer range 0 .. Integer'Last / Element_Type' Size;

Description

Defines the valid range of direct file index positions.

RATIONAL 7/1/87 DIO-9

procedure Create
package !Io.DirecLIo

procedure Create

procedure Create (File
Mode
Name
Form

in out File_Type;
Fi Ie_Mode .-
String
StrIng

,
• - II ") ;

Description

Establishes a new file with the given name and associates this file with the specified
file handle.

The specified file is left open.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode := Inout_File;
Specifies the access mode for which the file is to be used.

Name: String:= "";
Specifies the name of the file to be created. A null string for the Name parameter
specifies a file that is not accessible after the completion of the main program (a
temporary file).

Form: String:= "":
Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

DIO-IO 7/1/87 RATIONAL

procedure Create
package !lo.DirecLlo

Errors

If the specified file handle is already open) the Icc.Exceptlous.Statusc.Error exception
is raised.

The Ic..Exceptlons.NamecError exception is raised under any of the following con-
ditions:

• The filename does not conform to the syntax of a name.
• An object of a non file class with the same name as the filename already exists in

the context in which the creation is attempted.
• The context in which the creation is attempted cannot contain files. Files are

allowed only in directories or worlds.

The Ioc.Exceptions. Usee.Error exception is raised under any of the following condi-
tions:

• The ElemenL Type type is unsafe (that is, it contains access or task types).
• The file cannot be opened with the specified mode.
• Another job has locked the file.
• The executing job does not have create access.

RATIONAL 7/1/87 DIO-ll

proced ure Delete
package !Io.DirecLIo

procedure Delete

procedure Delete (File in out File_Type);

Description

Deletes the file associated with the specified file handle.

The specified file is closed, and the file ceases to exist.

Parameters

Flle: in out File_Type;
Specifies the handle for the file.

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc.Error exception is raised.

The Ic..Exceptions.Usec.Error exception is raised under any of the following condi-
tions:
• The Environment does not support deletion on the file.
• The executing job does not have the access rights required to delete the file.
• Another job has locked the file.

DIO-12 7/1/87 RATIONAL

generic formal type ElemenL Type
package !Io.DirecLlo

generic formal type Element..Typc

type Element_Type is private;

Description

Defines the type of the items that form the files for each particular instantiation.

Restrictions

The type used to instantiate the generic must be a nonlimited type as well as a safe
type. Specifically, the type cannot be an access or task type and cannot contain
components that are access or task types.

If unsafe types are used for the instantiation, subsequent create or open operations
will raise the Io..Excepfions. Usa..Error exception.

RATIONAL 7/1/87 DIO-13

function End_Of-File
package !Io.DirecLIo

function End_Of_File

function End_Of_File (File File_Type) return Boolean;

Description

Returns true if the current index exceeds the size of the file; otherwise, the function
returns false.

This function operates on a file of the In..File or InouLFile mode.

Parameters

File: File_Type;
Specifies the handle for the file.

return Boolean;
Returns true if the current index exceeds the size of the file; otherwise the function
returns false.

Errors

If the file is opened with the OuLFile mode, the Ioc.Exceptlons.Modec.Error excep-
tion is raised.

DIO-14 7/1/87 RATIONAL

type File_Mode
package !Io.Direct-Io

type File_Mode

type File_Mode 15 (InJile, Inout_File, Out_File);

Description

Specifies the mode of access for which a file is open.

In..Eile denotes a file with read-only access, Out-File denotes a file with write-only
access, and Inout-File denotes a file with read/write access.

RATIONAL 7/1/87 DIO-15

type File_Type
package !Io.DirecLlo

type File_Type

type File_Type 15 limited private;

Description

Defines the type of the file handle unique to each instantiation of the package.

Objects of this type are file handles that can be mapped to external files.

DIO-16 7/1/87 RATIONAL

function Form
package !Io.DirecLlo

function Form

function Form (File File_Type) return String;

Description

Returns the null string (",,) in all cases.

When the Form parameter to the Create and Open procedures is supported in the
future, the Form value provided to the call to the Open or Create procedure will
be returned.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the null string I" ,,) in all cases.

Errors

If the file is not open, the Io..Exceptione.Statua.Error exception is raised.

References

procedure Create

proced ure Open

RATIONAL 7/1/87 DIO-17

function Index
package !Io.DirecLIo

function Index

function Index (File File_Type) return Positive_Count;

Description

Returns the current index of the specified file.

This function operates on a file of any mode.

Parameters

File: File_Type;
Specifies the handle for the file.

return Positive_Count;
Returns the current index of the specified file.

DIO-18 7/1/87 RATIONAL

function Is..Dpen
package llo.Direct..Io

function Ia..Open

function Is_Open (File File_Type) return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

File: File_T~pe;
Specifies the handle for the file.

return Boolean;
Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

RATIONAL 7/1/87 DIO-19

function Mode
package !Io.DirecLlo

function Mode

function Mode (File File_Type) return File_Mode;

Description

Returns the mode for which the specified file is open.

Parameters

File: File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file is open.

Errors

If the file is not open, the Io..Exceptlons.Statusc.Error exception is raised.

DIO-20 7/1/87 RATIONAL

function Name
package Ilc.Direct..Io

function Name

function Name (File File_Type) return String;

Description

Returns the name of the file currently associated with the specified file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the name of the file currently associated with the specified handle.

Errors

If the file is not open, the Ioc.Exceptions.Statuac Error exception is raised.

RATIONAL 7/1/87 DIO-21

procedure Open
package !Io.DirecLIo

procedure Open

procedure Open (File
Mode
Name
Form

In out File_Type;
FIle_Mode;
String;
String ._ "");

Description

Associates the specified file handle with an existing file having the specified name.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the access mode for which the file is to be used.

Name: String;
Specifies the name of the external file to be opened.

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the specified file handle is already open, the Ioc.Exceptions.Statusc Error exception
is raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Ioc.Exceptions.Namec.Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Ioc.Exceptlons.Usec.Error exception is raised under the following conditions:

• The ElemenL Type type is unsafe (that is, it contains access or task types).
• The file cannot be opened with the specified mode.
• Another job has locked the file.

DIO-22 7/1/87 RATIONAL

subtype Positive..Count
package !Io.Direct-Io

subtype Positive..Count

subtype Positive_Count is Count range 1 .. Count'Last;

Description

Defines the valid range of direct file index positions for a nonempty file.

RATIONAL 7/1/87 DIO-23

procedure Read
package !lo.DirecLIo

procedure Read

procedure Read (File
Item
From

File_Type;
out Element_Type;

Positive_Count);
procedure Read (File

Item
File_Type;

out Element_Type);

Description

Reads an item from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file of the Inc.File or InouLFile mode. It sets the
current index of the specified file to the index value specified by the From parameter.
Both forms of the procedure then return, in the Item parameter, the value of the
element that resides at the current index. The current index is then increased by 1.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: out Element_Type;
Specifies the object that receives the value read.

From: Positive_Count;
Specifies the position from which the data element is to be read.

Errors

If the file is opened with the Out..File mode, the Io..Exceptions.Modec.Error excep-
tion is raised.

If the index exceeds the size of the file, the Ioc.Exceptions.Endc.Error exception is
raised.

If the element read cannot be interpreted as a value of the Element., Type type, the
IocExceptions.Data..Error exception is raised.

DIO-24 7/1/87 RATIONAL

procedure Reset
package !Io.DirecLlo

procedure Reset

procedure Reset (File ln out File_Type;
Mode File_Mode);

procedure Reset (File ln out File_Type);

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

The file index is set to 1. If a Mode parameter is supplied, the current mode of the
given file is set to the specified mode.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors

If the file handle is not open, the Io..Exceptiona.Statua.Brror exception is raised.

The Ic..Exceptions. Uses.Error exception is raised under the following conditions:

• The Environment does not support resetting for the file.
• The Environment does not support resetting to the specified mode for the file.
• Another job has locked the file.

RATIONAL 7/1/87 DIO-25

procedure SeLIndex
package !Io.DirecLIo

procedure Set..Index

procedure Set Index (File File_Type;
To Positive_Count);

Description

Sets the current index of the file to the specified index value (which may exceed the
current size of the file).

This procedure operates on a file of any mode.

Parameters

File: File_Type;
Specifies the handle for the file.

To: Positive_Count;
Specifies the object to whose value the index is to be set.

DIO-26 7/1/87 RATIONAL

function Size
package !Io.DirecLIo

function Size

function Size (File File_Type) return Count;

Description

Returns the current size of the file associated with the specified file handle.

This function operates on a file of any mode.

Parameters

File: File_Type;
Specifies the handle for the file.

return Count;
Returns the current size of the file associated with the specified file handle.

RATIONAL 7/1/87 DIO-27

procedure Write
package !Io.DirecLlo

procedure Write

procedure Write (File
Item
To

File_T~pe;
Element_T~pe;
Positive_Count);

procedure Write (File
Item

File_T~pe;
Element_T~pe);

Description

Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the InouLFile or OuLFile mode. It sets the
index of the given file to the index value given by the To parameter. Both forms
of the procedure then overwrite the current index of the file with the value of the
Item parameter. The current index is then increased by 1.

H a value for the index is greater than the current size of the specified file, the file
is automatically extended to include this va.lue.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: Element_Type;
Specifies the object whose value is to be written.

To: Positive_Count;
Specifies the position at which the data element is to be written.

Errors

If the file is opened with the In..Eile mode, the Icc.Exceptlons.Modec.Error exception
is raised.

If the capacity of the file is exceeded, the Ic..Exceptions. Use..Error exception is
raised.

end Direct..Io;

DIO-28 7/1/87 RATIONAL

package Ioc.Exceptions

The exceptions in package Io..Exceptions can be raised by I/O operations. The
general conditions under which these exceptions can be raised are described in this
section. Specific circumstances under which they can be raised are provided for
each operation exported by an I/O package. If more than one error condition exists,
the corresponding exception that appears earliest in the package is the one that is
raised.

Every other I/O package renames one or more of the exceptions exported from this
package. Rather than repeat the following descriptions in each of these packages,
documentation of the renaming declarations is omitted in the subsequent sections.

The Rational Environment provides additional information about exceptions raised
by the I/O packages that describes why a given exception occurred. This informa-
tion, typically displayed in parentheses after the exception name, is documented in
the reference entry for each exception.

RATIONAL 7/1/87 DIO-29

exception Data-Error
package llo.Icc.Exceptions

exception Data-Error

exception;

Description

Defines an exception raised by the Read procedure if the element read cannot be
interpreted as a value of the required type.

This exception is also raised by a Get or Read procedure if an input sequence fails
to satisfy the required syntax or if the value input does not belong to the range of
the required type or subtype.

This exception is also raised by the Read and Write procedures of package Poly-
morphic..Sequentiak.Io (DIO) if these operations are attempted on files containing
unsafe types (that is, containing access or task types as any of their components).

The additional information supplied by the Environment when this exception IS
raised has the following meaning:

• Input .Syntax.Error: The input value has incorrect syntax.
• Input- Value..Error: The input value is out of range.
• Output- TypecError: The output value is an unsafe type.
• Output- Value..Error: An attempt has been made to write a value out of range.

DIO-30 7/1/87 RATIONAL

exception Device..Error
package Ilo.Icc.Exceptions

exception Devices.Error

DeVlce Error exception;

Description

Defines an exception raised if an I/O operation cannot be completed because of a
malfunction of the underlying system.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

• Device..Datac.Error: A hardware error such as a parity error has occurred.
• Illegal..ReferencecError: An illegal reference has been attempted.
• Illegal..Heapc.Accessc.Error: An IllegalcHeapc.Access exception was raised when

the operation was attempted.
• Pagec.Nonexistent..Error: A nonexistent page was referenced.
• Write., Toc.Readc.Only..Pagec Error: A write to a read-only page was attempted.

RATIONAL 7/1/87 DIO-31

exception End_Error
package Ilo.Io..Exceptlone

exception End_Error

End_Error : exception;

Description

Defines an exception raised by an attempt to skip (read past) the end of a file.

DIO-32 7/1/87 RATIONAL

exception LayouLError
package Ilo.Ioc.Exceptions

exception Layoutc.Error

Layout_Error exception;

Description

Defines an exception raised in TIO, packages TexLlo and 10, by a call to operations
that violate the limits of Count and by an attempt to put too many characters to
a string; also raised in package Window_Io (DIO) by an attempt to position the
cursor outside the image boundary.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

• Columnc.Error: A column exceeds the line or page length .
• Illegal; Posltion..Error: A position parameter is illegal.
• ItemcLength..Error: An item length is too big or small.

RATIONAL 7/1/87 DIO-33

exception Mode..Error
package Ilo.Ic..Exceptlons

exception Mode_Error

Mode_Error : exception;

Description

Defines an exception raised by specifying a file whose mode conflicts with the desired
operation.

For example, this exception is raised by a call to SeLlnput or Get when a file of
the OuLFile mode is provided.

The additional information supplied by the Environment when this exception is
raised is:
• Illegak.Operation..Onc.Infile
• Illegal..OperationcOnc.Outfile

DIO-34 7/1/87 RATIONAL

exception Name..Error
package Ilo.Ioc.Exceptions

exception Name..Error

Name Error exception;

Description

Defines an exception raised by a call to the Create or Open procedure if the string
given for the Name parameter does not allow the identification of a legal unique
file.

The Name..Error exception is raised by the Create procedure under any of the
following conditions:

• The filename does not conform to the syntax of a name.
• An object of the nonfile class with the same name as the filename already exists

in the context in which the creation is attempted.
• The context in which the creation is attempted cannot contain files. Files are

allowed only in directories or worlds.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

• Ambiguoua..Namec Error: A name does not identify a unique object.
• Illformed..N ame..Error: A name does not conform to the syntax for a legal En-

vironment filename.
• Nonexistent..Directoryc.Error: A library in the name does not exist.
• NonexistenLObjecLError: The specified object does not exist.
• NonexistenL Versionc.Error: The specified version of the object does not exist.

RATIONAL 7/1/87 DIO-35

exception Status..Error
package llo.Io..Exceptiona

exception Status..Error

Status_Error exception;

Description

Defines an exception raised by an attempt to operate upon a file handle that is not
open and by an attempt to open a file handle that is already open.

The additional information supplied by the Environment when this exception is
raised has the following meaning:

• Already _Open_Error: The file handle is already open .
• Notc.Openc.Error: The file handle is not open.

DIO-36 7/1/87 RATIONAL

exception Use..Error
package Ilo.Ioc.Exceptions

exception Use_Error

except'ion;

Description

Defines an exception raised if an operation is attempted that is not possible for
reasons that depend on the file and the executing job's access rights.

This exception is raised by an attempt to create when there are objects of nonfile
classes with similar names, by an attempt to open or reset with a mode that is not
supported for the file, and by a call to the Open parameter for a terminal object if
the terminal is already assigned to a job.

This exception is raised by the Delete procedure, among other circumstances, when
the corresponding file is an object that cannot be deleted.

This exception is raised by the Create and Open procedures in packages DirecLIo
and SequentiaLIo (DIO) if they are attempted with instantiations on unsafe types
(that is, types containing access or task types as any of their components).

The additional information supplied by the Environment when this exception is
raised has the following meaning:

• Access..Error: There are insufficient access rights to perform the operation.
• Capacityc.Error: The output file is full.
• Oheck.rOutc.Error: The object is not checked out using the configuration man-

agement and version control system.
• Clasa..Error: There is an existing object of a different class.
• Frosen..Error: An attempt is made to change a frozen object.
• Line..Pagec.Lengthc.Error: An improper value for line or page length is encoun-

tered.
• Lock..Error: Another job has locked the object.
• ReseLError: The file cannot be reset or have its mode changed.
• Unsupportedc.Error: The operation is not supported.

end Ic..Exceptions;

RATIONAL 7/1/87 DIO-37

RATIONAL

package Polymorphic..Sequen tialz.Io

This package provides facilities for sequential I/O upon files whose components are
of one or more (nonlimited) types. These types must be safe types, which is any
type that does not contain access types or task types as any of its components. If a
read or a write operation is attempted with an instantiation on an unsafe type, the
Data..Error exception will be raised. This package provides the capabilities similar
to those required by the Reference Manual for the Ada Programming Language,
Chapter 14, for SequentiaLIo, except that polymorphism is supported.

The package provides the nested generic package Operations, containing read and
write operations, which can be instantiated for each of the desired types.

The fundamental abstraction provided by package Polymorphic..Sequential.Jo is
the Fila..Type type. Objects of this type are file handles that can be mapped to
files consisting of a sequence of values that are transferred in the order of their
appearance.

RATIONAL 7/1/87 DIO-39

procedure Append
package llo.Polymorphicc.Sequentialc.Io

procedure Append

procedure Append (File
Name
Form

in out File_T~pe;
String;
String .- "");

Description

Opens the specified file for writing at the end of the file.

This procedure associates the specified file handle with an existing file having the
specified name. The file is left open and the mode is set to OuLFile.

Parameters

File: in out File_T~pe;
Specifies the handle for the file.

Name: String;
Specifies the name of the external file to be appended.

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the file handle is already open, the Ioc.Exceptious.Statue..Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io..Excepfiona.Namec.Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Ic..Exceptions.Ueec.Error exception is raised when an attempt is made to per-
form an Append operation on objects on which the OuLFile mode is not supported
or the file is locked by another job.

DIO-40 7/1/87 RATIONAL

proced ure Close
package llo.PolymorphiccSequential.Jo

procedure Close

procedure Close (File in out File_Type);

Description

Severs the association between the specified file handle and its associated file.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Ioc.Exceptlone.Statua..Error exception is raised.

RATIONAL 7/1/87 DIO-41

procedure Create
package Ilo.Polymorphic..Sequentialclo

procedure Create

procedure Create (File In out File_Type;
Mode File_Mode .- Out_File;
Name String .- JForm String .- II fI) ;

Description

Establishes a new file with the specified name and associates this file with the
specified file handle.

The specified file is left open.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode := Out_File;
Specifies the access mode for which the file is to be used.

Name: String:= "";
Specifies the name of the file to be created. A null string specifies a file that is not
accessible after the completion of the main program (a temporary file).

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

DIO-42 7/1/87 RATIONAL

procedure Create
package Ilo.Polymorphlc..Sequentlalclo

Errors

If the file handle is already open, the Ioc.Exceptions.Statua..Error exception is
raised.

The Ioc.Exceptions.Namc..Error exception is raised under the following conditions:
• The filename does not conform to the syntax of a name.
• An object of a nonfile class with the same name as the filename already exists in

the context in which the creation is attempted.
• The context in which the creation is attempted cannot contain files. Files are

allowed only in directories or worlds.

The Ice.Exceptions. Usee.Error exception is raised under the following conditions:
• The file cannot be opened with the specified mode.
• Another job has locked the file.
• The executing job does not have create access.

RATIONAL 7/1/87 DIO-43

proced ure Delete
package Ilo.PolymorphiccSequentialclo

procedure Delete

procedure Delete (File in out File_Type);

Description

Deletes the file associated with the specified file handle.

The file is closed, and the file ceases to exist.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc.Error exception is raised.

The Ioc.Exceptions.Usec.Error exception is raised under the following conditions:
• The Environment does not support deletion on the file.
• The executing job does not have the access rights required to delete the file.
• Another job has locked the file.

DIO-44 7/1/87 RATIONAL

function End_OLFile
package llo.Polymorphic.Bequential.Jo

function End_Of_File

runction End_Or_File (File File_Type) return Boolean;

Description

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

This function operates on a file of the In.rEile mode.

Parameters

File: File_Type;
Specifies the handle for the file.

return Boolean;
Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

Errors

If the file is not open, the Ioc.Exceptions.Statusc Error exception is raised.

If the file is not opened with the Iru.File mode, the Ioc.Exceptions.Modec.Error
exception is raised.

RATIONAL 7/1/57 DIO-45

type File_Mode
package Ilo.Polymorphicc.Sequentiak.Io

type File_Mode

Description

Specifies the mode of access for which a file is open.

Inc.File denotes a file with read-only access; Out-File denotes a file with write-only
access.

DIO-46 7/1/87 RATIONAL

type File_Type
package llo.Polymorphlc.Sequentlal.Jc

type Filec.Type

type File_Type 15 limited private;

Description

Defines a file handle type for files to be processed by operations in this package.

RATIONAL 7/1/87 DI0-47

function Form
package Ilo.Polymorphlc..Sequential.Jo

function Form

function Form (File File_Type) return String;

Description

Returns the null string (....) in all cases.

When, in the future, the Form parameter to the Create and Open procedures is
supported, this function will return the Form value specified in the call to the Create
or Open procedure.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the null string (",,) in all cases.

Errors

If the file is not open, the Icc.Exceptiona.Status..Brror exception is raised.

References

procedure Create

procedure Open

DIO-48 7/1/87 RATIONAL

function Is..Dpen
package llo.Polymorphlcc.Sequenfial..Io

function Is..Dpen

function Is_Open (File File_Type) return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

File: File_Type;
Specifies the handle for the file.

return Boolean;
Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

RATIONAL 7/1/87 DI0-49

function Mode
package !Io.Polymorphie-SequentiaLlo

function Mode

function Mode (File File_Type) return File_Mode;

Description

Returns the mode for which the specified file handle is open.

Parameters

File: File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file handle is open.

Errors

H the file is not open, the Ioc.Exceptlone.Statua..Error exception is raised.

DIO-50 7/1/87 RATIONAL

function Name
package Ilo.Polymorphic..Sequentialclo

function Name

function Name (File File_Type) return String;

Description

Returns the name of the file currently associated with the file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the name of the file currently associated with the file handle.

Errors

If the file is not open, the Io..Exceptione.Statua.Error exception is raised.

RATIONAL 7/1/87 DIO-51

procedure Open
package llo.Polymorphic..Sequentialc.Io

procedure Open

procedure Open (File
Mode
Name
Form

in out File_T~pe;
File_Mode;
String;
String .- "");

Description

Associates the file handle with an existing file having the specified name and sets
the mode of the file to the specified mode.

The specified file is left open.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the access mode for which the file is to be used.

Name: String;
Specifies the name of the file to be opened.

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the file handle is already open, the Io..Exceptions.Statuac Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io..Exceptions.Namec.Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Ic..Exceptions.Usec.Error exception is raised if the file cannot be opened with
the specified mode or if another job has locked the file.

DIO-52 7/1/87 RATIONAL

procedure Reset
package Ilo.Polymorphic..Sequential.Jo

procedure Reset

procedure Reset (File
Mode

In out File_Type;
Flle_Mode) ;

procedure Reset (File

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

If a Mode parameter is supplied, the current mode of the specified file is set to the
specified mode.

Parameters

FIle: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors

If the file handle is not open, the Io..Exceptions.Statua.Error exception is raised.

The Ic..Exceptions.Usec.Error exception is raised under the following conditions:

• The Environment does not support resetting for the file.
• The file cannot be opened with the specified mode.
• Another job has locked the file.

RATIONAL 7/1/87 DIO-53

RATIONAL

generic package Operations

The following package exports operations for reading and writing to package Poly-
morphic..Sequentialclo files. It can be instantiated as many times as required on
any safe types to enable objects of these types to be read and to be written to files.

RATIONAL 7/1/87 DIO-55

generic formal type ElemenL Type
package !Io.Polymorphic_SequentiaLIo.Operations

generic formal type Elementc.Type

type Element_Type lS private;

DescriptioD

Denotes the type for which the read and write operations are defined.

RestrictioDs

If unsafe types (that is, types containing access or task types as any of their compo-
nents) are used for the instantiation, subsequent read or write operations will raise
the Ic..Exceptions.Datac.Error exception.

DIO-56 7/1/87 RATIONAL

procedure Read
package !Io.Polymorphic_SequentiaLIo.Operations

procedure Read

procedure Read (File File_Type;
Item out Element_Type);

Description

Reads an element from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file of the IncFile mode.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: out Element_Type;
Specifies the object that receives the value read.

Errors

If the file is not open, the Icc.Exceptlons.Status..Brror exception is raised.

If the file is not opened with the In..Flle mode, the Ic..Exceptione.Modec.Error
exception is raised.

If no more elements can be read from the specified file, the Io..Exceptions.EndcError
exception is raised.

If the element read cannot be interpreted as a value of the ElemenL Type type, the
Ic..Exceptions.Datac.Error exception is raised.

If the ElemenL Type is an unsafe type (that is, it contains access or task types as
any of its components), the IocExceptlons.Datac.Error exception is raised.

RATIONAL 7/1/87 DIO-S7

procedure Write
package !lo.Polymorphic_SequentiaLlo.Operations

procedure Write

procedure Write (File File_T~pe;
Item Element_T~pe);

Description

Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the OuLFile mode.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: Element_T~pe;
Specifies the object whose value is to be written.

Errors

If the file is not opened with the OuLFile mode, the Ioc.Exceptions.Modec.Error
exception is raised.

If the capacity of the file is exceeded, the Ice.Exceptions.Usee.Error exception is
raised.

If the ElemenLType is an unsafe type (that is, it contains access or task types as
any of its components), the Icc.Exceptions.Datac.Error exception is raised.

end Operations;

DIO-58 7/1/87 RATIONAL

package Ilo.Polymorphiccfiequential.Jo

end Pclymorphic..Sequentiak.Io;

RATIONAL 7/1/87 DIO-59

RATIONAL

generic package Sequential..Io

This package provides the capabilities for SequentiaLIo as required by the Reference
Manual for the Ada Programming Language, Chapter 14. It provides facilities for
sequential I/O upon files whose components are of the same (nonlimited) type. This
type must be a safe type, which is any type that does not contain access types or
task types in any of its components. If a create or an open operation is attempted
with an instantiation on an unsafe type, the Io..Exceptione.Usec.Error exception
will be raised.

The fundamental abstraction provided by package SequentiaLIo is the Filec.Type
type. Objects of this type are file handles that can be mapped to files consisting of
a sequence of values that are transferred in the order of their appearance.

RATIONAL 7/1/87 DI0-61

procedure Close
package !Io.SequentiaLIo

procedure Close

procedure Close (File

Description

Severs the association between the specified file handle and its associated file.

The specified file is left closed.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Errors

If the file is not open, the Io..Exceptlons.Statua.Error exception is raised.

DI0-62 7/1/87 RATIONAL

procedure Create
package !lo.SequentiaLlo

procedure Create

procedure Create (FiIe ln out File_Type;
Mode File_Mode .- Out_File;
Name String .- ,
Form String .- " ") ;

Description

Establishes a new external file with the specified name and associates this file with
the specified file handle.

The specified file is left open.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode := Out_File;
Specifies the access mode for which the file is to be used.

Name: String:= "";
Specifies the name of the file to be created. A null string for the Name parameter
specifies a file that is not accessible after the completion of the main program (a
temporary file).

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Restrictions

Files can be created only in directories or worlds.

RATIONAL 7/1/87 DI0-63

procedure Create
package !Io.SequentiaLlo

Errors

If the file handle is already open, the Ic..Exceptlons.Statua.Error exception is
raised.

The IocExceptions.Namec.Srror exception is raised under the following conditions:

• The filename does not conform to the syntax of a name.
• An object of a nonfile class with the same name as the filename already exists in

the context in which the creation is attempted.
• The context in which the creation is attempted cannot contain files. Files are

allowed only in directories or worlds.

The Io..Exceptions.Usec.Error exception is raised under the following conditions:

• The Element-Type type is unsafe (that is, it contains access or task types).
• The file cannot be opened with the specified mode.
• The executing job does not have create access.
• Another job has locked the file.

DI0-64 7/1/87 RATIONAL

procedure Delete
package !Io.SequentiaLIo

procedure Delete

procedure Delete (File In out File_Type);

Description

Deletes the file associated with the specified file handle.

The specified file is closed, and the file ceases to exist.

Parameters

Fi Ie: in out Fi Ie_Type;
Specifies the handle for the file.

Errors

If the file handle is not open, the Ioc.Exceptione.Statua..Error exception is raised.

The Ic..Exceptions. Usee.Error exception is raised under the following conditions:

• The Environment does not support deletion on the file.
• The executing job does not have the access rights required to delete the file.
• Another job has locked the file.

RATIONAL 7/1/87 DIO-65

generic formal type ElemenL Type
package !lo.SequentiaLIo

generic formal type Elemenu..Type

type Element_Type is private;

Description

Defines the type of the items that form the files for each particular instantiation.

Restrictions

The type used to instantiate the generic must be a nonlimited type as well as a safe
type. Specifically, the type cannot be an access or task type and cannot contain
components that are access or task types.

If unsafe types are used for the instantiation, subsequent read or write operations
will raise the Io..Exceptions.Datac Error exception.

DIO-66 7/1/87 RATIONAL

function End_OLFile
package !lo.SequentiaLIo

function End_Of_File (File File_Type) return Boolean;

Description

Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

This function operates on a file of the In..File mode.

Parameters

File: File_Type;
Specifies the handle for the file.

return Boolean;
Returns true if no more elements can be read from the specified file; otherwise, the
function returns false.

Errors

If the file is not open, the IocExceptions.Statua.Brror exception is raised.

If the file is not opened with the Inc.File mode, the Io..Exceptions.Modec Error
exception is raised.

RATIONAL 7/1/87 DI0-67

type File_Mode
package !Io.SequentiaLlo

type File_Mode

Description

Specifies the mode of access for which a file is open.

In.iFile denotes a file with read-only access; OuLFile denotes a file with write-only
access.

DI0-68 7/1/87 RATIONAL

type File_Type
package !lo.SequentiaLIo

type File_Type

type File_Type is limited private;

Description

Defines the file handle type unique to each instantiation of the package.

Objects of this type denote file handles that can be mapped to files.

RATIONAL 7/1/87 DI0-69

function Form
package !lo.SequentiaLIo

function Form

function Form (File File_Type) return String;

Description

Returns the null string (",,) in all cases.

If, in the future, the Form parameter to the Create and Open procedures is sup-
ported, this function will return the Form value provided in the call to the Create
or Open procedure.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the null string (",,) in all cases.

Errors

If the file is not open, the Ioc.Exceptiona.Status..Brror exception is raised.

References

procedure Create

procedure Open

DIO-70 7/1/87 RATIONAL

function Ia..Open
package !Io.SequentiaLlo

function Ia..Open

function Is_Open (File File_Type) return Boolean;

Description

Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

Parameters

FIle: File_Type;
Specifies the handle for the file.

return Boolean;
Returns true if the file handle is open (that is, if it is associated with a file); other-
wise, the function returns false.

RATIONAL 7/1/87 DIO-71

function Mode
package !Io.SequentiaLlo

function Mode

function Mode (File File_T~pe) return File_Mode;

Description

Returns the mode for which the specified file handle is open.

Parameters

File: File_Type;
Specifies the handle for the file.

return File_Mode;
Returns the mode for which the specified file handle is open.

Errors

If the file is not open, the Ioc.Exceptions.Statue..Error exception is raised.

DIO-72 7/1/87 RATIONAL

function Name
package !Io.SequentiaLIo

function Name

function Name (File File_Type) return String;

Description

Returns the name of the file currently associated with the specified file handle.

For temporary files, this function returns the unique name provided by the Rational
Environment during the creation of the file.

Parameters

File: File_Type;
Specifies the handle for the file.

return String;
Returns the name of the file currently associated with the specified file handle.

Errors

If the file is not open, the Ioc.Exceptions.Status..Brror exception is raised.

RATIONAL 7/1/87 DIO-73

proced ure Open
package !Io.SequentiaLIo

procedure Open

procedure Open (File
Mode
Name
Form

in out File_Type;
File_Mode;
String;
String .- "");

Description

Associates the file handle with an existing file having the specified name and sets
the mode of the file to the specified mode.

The file is left open.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the access mode for which the file is to be used.

Name: String;
Specifies the name of the file to be created.

Form: String:= "":
Currently, the Form parameter, if specified, has no effect.

DIO-74 7/1/87 RATIONAL

procedure Open
package !Io.SequentiaLIo

Errors

If the file handle is already open, the Io..Exceptions.Statua.Error exception is
raised.

If the string specified in the Name parameter does not allow the unique identification
of a file, the Io..Exceptiona.Namec.Error exception is raised. In particular, this
exception is raised if no file with the specified name exists.

The Ic..Exceptions. Uses.Error exception is raised under the following conditions:
• The ElemenL Type type is unsafe (that is, it contains access or task types).
• The file cannot be opened with the specified mode.
• Another job has locked the file.

RATIONAL 7/1/87 DIO-75

procedure Read
package !lo.SequentiaLIo

procedure Read

procedure Read (File File_T~pe;
Item out Element_T~pe);

Description

Reads an element from the specified file and returns the value of this element in the
Item parameter.

This procedure operates on a file opened with the In..File mode.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: out Element_T~pe;
Specifies the object that receives the value read.

Errors

If the file is not open, the Ic..Exceptions.Statusc Error exception is raised.

If the file is not opened with the In..File mode, the Ioc.Exceptions.Modec Error
exception is raised.

If no more elements are available in the file, the Ic..Exceptions.Endc.Error exception
is raised.

If the element read cannot be interpreted as a value of the ElemenL Type type, the
Ic..Exceptions.Datac.Error exception is raised.

DIO-76 7/1/87 RATIONAL

procedure Reset
package !lo.SequentiaLIo

procedure Reset

procedure Reset (File In out File_Type;
Mode File_Mode);

procedure Reset (File In out File_Type);

Description

Resets the specified file so that reading from or writing to its elements can be
restarted from the beginning of the file.

If a Mode parameter is supplied, the current mode of the specified file is set to the
specified mode.

Parameters

File: in out File_Type;
Specifies the handle for the file.

Mode: File_Mode;
Specifies the mode for which the file is to be used when the reset is completed.

Errors

If the file handle is not open, the Ic..Exceptious.Statusc.Error exception is raised.

The Ic..Exceptions. Usa..Error exception is raised under any of the following condi-
tions:

• The Environment does not support resetting for the file.
• The file cannot be opened with the specified mode.
• Another job has locked the file.

RATIONAL 7/1/87 DIO-77

procedure Write
package !Io.SequentiaLIo

procedure Write

procedure Write (File File_Type;
Item Element_Type);

Description

Writes the value of the Item parameter to the specified file.

This procedure operates on a file of the OuLFile mode.

Parameters

File: File_Type;
Specifies the handle for the file.

Item: Element_Type;
Specifies the object whose value is to be written.

Errors

If the file is not opened with the OuLFile mode, the Ic..Exceptions.Modec.Error
exception is raised.

If the capacity of the file is exceeded, the Io..Exceptions. Use..Error exception is
raised.

end Sequential..Io;

DIO-78 7/1/87 RATIONAL

package Window..Ic

This package provides facilities for performing I/O to windows on the terminal
screen.

Package Window _10 offers the user direct control over the creation and manipulation
of images contained in windows on the screen. In TIO, packages TexLlo and 10
provide simply sequential output to the screen, but package Window..Io allows
the user to get and put characters and strings to any place in the image, similar to
package DirecLlo. This offers additional flexibility in creating the user interface for
tool applications written for the Rational Environment. Whereas TexLlo primarily
supports an interrogative style of user interface, Window..lo can be used to create a
variety of menu-driven interfaces, form-based input for data, and displays in which
the program controls scrolling.

The fundamental abstraction provided by package Window.iIo is the Ftle..Type
type. Objects of this type (called file bandte» hereafter) essentially denote quarter-
plane images. A portion of this image is made visible through a window on the
terminal screen. File handles can be opened twice-once for input and once for
output. All puts to an image must go through a file handle opened with the OuLFile
mode. All gets from an image must go through a file handle opened with the In.iFile
mode.

Images are segmented into a matrix of lines and columns. Lines are numbered
from 1 starting from the top of the image; columns are numbered from 1 starting
from the left side of the image. Each character resides at a particular line and
column number. Lines also have length; the length is the column number of the
last character on the line, including blank characters. Finally, all images have
associated with them the notion of the last line in that image.

Window.Jo introduces the notion of a cursor. All images have associated with them
a current cursor position. A program can request information about the location
of the cursor in an image, and it can also reposition the cursor as required. Input
to, and output from, an image is always performed relative to this current cursor
position. Input and output operations can also implicitly reposition the cursor
during their execution.

RATIONAL 7/1/87 DIO-79

package !lo. Window _10

Package WindowcIo provides access to the terminal's ability to display characters
in a variety of fonts and character sets. A program can write read-only text to the
screen that users are unable to modify and can write characters designated as a
prompt that will disappear when users type on the characters.

An application can also take control of the keystroke stream coming from the termi-
nal keyboard. This control of the keystroke stream allows the program to interpret
individual keystrokes and to redefine their resulting effect. Facilities are provided to
define mnemonic names for certain keys for more readable use within the program.

Finally, when a program is executing as the current job, applications can take
advantage of the Rational Editor commands. For example, an application could
use the Commands. Editor. Window .Beginning..Of command (EI) to reposition the
window on an image.

Two Case Studies
Package Wlndow..Io offers a powerful set of facilities for creating user interfaces
to display information to the user and for requesting information from the user.
As in the Rational Editor, information can be displayed in a structured manner
and then edited by the user. The edited information can be checked to verify that
all user modifications are acceptable and that actions are taken based upon the
change. This method offers a much greater degree of flexibility than the sequential
interrogative style interfaces available through package TexLIo (TIO).

The objective of this section is to provide a more concrete understanding of the
facilities provided by package Window_Io and the application domain to which
they apply. The approach will be to discuss in some detail the development of two
user interface abstractions, the form and the menu.

Some basic concepts necessary for all window-based applications using package Win-
dow..Jo will be discussed first. How to set up some useful definitions for display fonts
and for names of keyboard keys will be investigated. Then some useful utilities for
moving the cursor and manipulating images will be defined.

The first abstraction case study focuses on the essential requirements and imple-
mentation strategies for a form as a method of information entry for users. Finally,
a variety of menu abstractions for operation selection will be discussed, and one of
them will be developed in detail.

DIO-80 7/1/87 RATIONAL

package !Io.Window _10

Basic Concepts
Images and Windows
All objects in the Environment have an image, part or all of which appears in a
window on the terminal screen. Package Window..Io provides facilities for creating
and manipulating images in windows. There are two useful ways of thinking about
this. In one sense, package Window..Jo allows applications to create windows in
which text images can be formed. In a more formal sense, Windcw..Jo is another
way of creating a text object that has an image displayed in a window. There is one
important difference, however. Text objects created by package WindowcIo have
no corresponding file in the directory structure.

As with other I/O packages, these objects can be opened for input or output, closed
and later reopened, and deleted. Consult the reference entries later in this section
for the effects of the following procedures:

• procedure Create
• procedure Open
• procedure Close
• procedure Delete

Input to and Output Crom Images

All images have the notion of a current position for the cursor in that image. All
input and output procedures work relative to the current cursor position. Normally,
applications will first move the cursor to the appropriate position in an image (unless
it is already there) and then call the desired input or output procedure.

Several forms of input are provided for both Character and String types. Basically,
an application can either extract a character or string from an image or request
that the user provide some input from the keyboard.

Several forms of output are also provided for both Character and String types. An
application can either insert text into an image or replace existing text with an
Overwrite procedure.

Consult the reference entries in this section for the effects of the following proce-
dures:

• procedure PositioncCursor
• procedure Get
• procedure GeLLine
• procedure Insert
• procedure Overwrite
• procedure New..Line

RATIONAL 7/1/87 DIO-81

package !lo.Window_10

Operations are also available for deleting text from images, including:

• procedure Delete
• procedure Delete.iLlnes

Other operations provide information about the image in a window, including:

• procedure Report..Cureor
• function Line..Length
• function LasLLine

Definitions and Utilities
Fonts

All characters are written to the terminal screen in what is called a font. Fonts de-
scribe exactly how a character will be displayed on the screen. Fonts have two major
components: an indication of the character set and an array of display attributes.
The Rational Terminal supports two character sets: a normal alphanumeric set
and a graphics set. Package Window_10 defines two named constants (Plain and
Graphics) for use in defining fonts indicating use of each character set. Some font
declarations that applications might find useful are:

with Window_lo;
package Fonts is

Normal

Graphics

: constant
Window_lo.Font .- Window_lo.Font'(Window_lo.Plain,

(others => False));
: constant
Window_lo.Font .- Window_lo.Font'(Window_lo.Graphics,

(others => False));
Inverse_Bold : constant

Window_lo.Font .- Window_lo.Font'(Window_lo.Plain,
(Inverse => True,
Bold => True,
others => False));

Underscore : constant
Window_lo.Font .- Window_lo.Font'(Window_lo.Plain,

(Underscore => True,
others => False));

end Fonts;

DIO-82 7/1/87 RATIONAL

package lIo. Window _10

Notes:

• The Window.rIo procedures that display either characters or strings (Insert and
Overwrite) include a parameter for indicating the desired font for display.

• These same output procedures also have a parameter for the kind of designa-
tion with which characters are to be written. Three kinds of designations are
supported:

o Text: Output is displayed as plain text, which can then be modified by a user
with the Rational Editor.

o Prompt: Output is displayed as a prompt that will disappear when the user
types on it. The user can turn a prompt into text with:

Commands.Editor.Set.Designation_Orr
o Protected: Once displayed on the screen, the output is read-only and cannot be

modified by the user. If a user does attempt to modify protected text with the
Rational Editor, the bell will sound and a message will appear in the Message
window indicating that this part of the image is read only.

• Use of the graphics character set for drawing boxes is discussed in "Graphics
Utilities," below.

Keys

For applications requiring complete control over keyboard input from the user,
package Window _10 offers mechanisms to catch keystrokes, to determine which key
was pressed, and to decide on some action as a result.

When the user presses a key on the keyboard, that key is interpreted and placed
into the character stream. Normally, keystrokes are passed directly to the Rational
Editor, which decides what effect the keystrokes will have. The user has the abil-
ity, with package Raw nested within package Window..Io, to interrupt the flow of
keystrokes to the editor, to get keys one at a time from the stream, and to initiate
an application-specific effect based on the value of the key. Use of this technique is
fully described in "Menus," below. The Key type in package Raw is defined as:

t~pe Ke~ is new Natural range 0 .. 1023;

It is useful to define mnemonic names for keys to enhance the readability of code
that requires references to particular keys. Package Keyc.Names, discussed in the
example below, exports some named key objects. In the body of the package, these
objects are initialized to an Environment-defined value for a keyboard key during
elaboration.

RATIONAL 7/1/87 DIO-83

package !lo. Window _10

with Window_lo;
package Key_Names IS

package Raw renames Window_lo.Raw;
subtype Key_Type IS Raw.Key;
Up
Down
Left
Right

Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;
Key_Type;

Window
Window_Up
Window_Down
Defini tion
Enter
User_Interrupt
NexLI tem
Previous_Item
function Is_Alphabet_Key (K

end Key_Names;
with System_Utilities;
package body Key_Names IS

Key_Type) return Boolean;

Is_Found
Terminal

Boolean;
constant
String := System_Utilities.Terminal_Type;

begin
Raw.Value (ForJey_Name => "UP" , On_Terminal => Terminal,

Result => Up, Found => Is_Found);
Raw.Value (For_Key_Name => "DOWN" , On_Terminal => Terminal,

Result => Down, Found => IsJound);
Raw.Value (For_Key_Name => "LEFT" , On_Terminal => Terminal,

Result => Left, Found => Is_Found) ;
Raw.Value (For_Key_Name => "RIGHT", On_Terminal => Terminal,

Result => Right, Found => Is_Found);
if Terminal = "VT100" then

Raw.Value (For_Key_Name => "Numeric_a" I

On_Terminal => Terminal,
Result => Definition, Found => Is_Found);

elsif Terminal = "Rational"
Raw.Value (For_Key_Name => "F10" , On_Terminal => Terminal,

Result => Definition, Found => Is_Found);
end if;

DIO-S4 7/1/87 RATIONAL

package !lo. Window _10

Notes:

• The names of keys for each supported terminal type are located in !Machine.Edi-
tor_Daia.Visible_Keynames. This information is captured as an enumeration
type for each terminal. The string representation of these enumeration values
should be passed into the Raw.Value procedure as in the example above.

• The System-Utilities.TerminaLType function (SMU) returns a string value indi-
cating the type of terminal the user specified at login. Since different terminals
may have different mappings from names in Visible..Keynames to actual key val-
ues, this function can be used to ensure that key input from a different terminal
is interpreted in the same way.

• Since all keyboards do not provide an identical set of keys, each supported termi-
nal will have a different set of enumerated values in Visiblec.Keynames. In this
case, the terminal type will need to be tested before the Raw.Value function is
called. Note that, in the body of the package Key.i.Namea example above, the
name for Definition is FIO for the Rational Terminal and Numeric.B for the VT100.
This mapping is captured in the Vt100_Commands and RationaLCommands
procedures in the !Machine.Editor_Data directory.

Package Raw also exports:

subtype Simple_Key is Key range 0 .. 127;

Simple keys correspond to ASCII characters so that we can use the ASCII names
for references instead of defining our own. The following example demonstrates
references to simple keys:

A_Key: Raw. Key;
begin

case Raw.Convert (A_Key) is
when 'A' =>

-- perform some operation indicated by 'A'
=>
-- perform some other operation

when '?'

end case;
end if;

RATIONAL 7/1/87 DIO-85

package !Io.Window_10

Window Utilities
It is also useful to define and implement utilities for moving the cursor around
images and manipulating images in various ways. The following example defines an
initial set of utilities (there is certainly an opportunity for several more):
with Window_lo;
package Window_Utilities is

procedure Beginning_Of_Line (Window: Window_lo.File_Type);
procedure End_Of_Line (Window: Window_lo.File_Type);
procedure Next_Line (Window: Window_lo.File_Type);
-- retain the current column position
procedure Home (Window: Window_lo.File_Type);
procedure Erase (Window: Window_lo.File_Type);
procedure Continue (Input_Window: Window_lo.File_Type;

Output_Window : Window_lo.File_Type;
Prompt : String;
Line Window_lo.Line_Number;
Column: Window_lo.Column_Number);

function Query (Input_Window: Window_lo.File_Type;
Output_Window : Window_lo.File_Type;
Prompt : String;
Line : Window_lo.Line_Number;
Column : Window_lo.Column_Number) return String;

type Iterator is private; -- for all lines in an Image
function Initialize (Window: Window_lo.File_Type) return Iterator;
function Done (Iter: Iterator) return Boolean;
function Value (Iter: Iterator) return String;
procedure Next (Iter: in out Iterator);

private
type Iterator is

end Window_Utilities;
Some selected bodies for these utilities are:

with Window_lo;
with Fonts;
package body Window_Utilities is

procedure Next_Line (Window : Window_lo.File_Type) IS
Current_Line : Window_lo.Line_Number;
Current_Column : Window_lo.Column_Number;

begin
Window_lo.Report_Cursor (Window, Current_Line, Current_Column);
if Window_lo.Last_Line (Window) /= Current_Line then

Window_lo.Position_Cursor
(Window, Current_Line + 1, Current_Column);

end if;
end NexLLine;

DIO-86 7/1/87 RATIONAL

package !Io.Window_10

procedure Erase (Window : Window_lo.File_Type) is
begin

Window_lo.Position_Cursor (Window);
Window_lo.Delete_Lines (Window, Window_'o.Last_Line (Window));

end Erase;
procedure Continue (Input_Window: Window_lo.File_Type;

output_Window : Window_lo.File_Type;
Prompt String;
Line Window_lo.Line_Number;
Column : Window_lo.Column_Number)

is separate;
function Query (Input_Window: Window_lo.File_Type;

Output_Window : Window_lo.File_Type;
Prompt String;
Line Window_lo.Line_Number;
Column : Window_lo.Column_Number) return String 1S

begin
Window_lo.Position_Cursor (Output_Window, Line, Column);
-- write out the prompt
Window_lo.Overwrite (Output_Window, Prompt,

Fonts. Inverse_Bold, Window_ Io.Prompt) ;
-- reposition the cursor on top of the prompt
Window_lo.Position_Cursor (Input_Window, Line, Column);

return the user's input
return Window_'o.GeLLine (InpuLWindow,);

end Query;
end Window_Utilities;
The Query procedure may require more explanation. When the cursor is positioned
on text written with a prompt designation, the GeLLine procedure waits for the
user to input a response. When the user commits the response, the entered char-
acters are returned to the program. To ensure that a prompt is available for the
GeLLine procedure, the Query procedure first writes out the prompt and then
repositions the cursor on top of it before calling the GeLLine procedure.

The Continue procedure is similar to the Query procedure in that it waits for the
user to commit a response. It does not return the response but merely indicates
that the user wants to continue. In this case, part of the prompt is written with a
protected designation to prevent it from disappearing if the user accidentally types
on top of it.

RATIONAL 7/1/87 DIO-87

package 110.Window _10

separate (Window_Utilities)
procedure Continue (Input_Window: Window_lo.File_Type;

Output_Window : Window_lo.File_Type;
Prompt : String;
Line Window_lo.Line_Number;
Column : Window_lo.Column_Number) IS

Char : Character;
begin

Window_lo.Position_Cursor (Output_Window, Line, Column);
--insert the prompt to hang on
Window_lo.lnsert (Output_Window, •• ,

Fonts. Inverse_Bold, Window_lo.Prompt);
Window_lo.lnsert (Output_Window, Prompt,

Fonts. Inverse_Bold, Window_lo.Protected);
Window_lo.Position_Cursor (Input_Window, Line, Column);
Window_lo.Get (InpuLWindow, •• , Char);
Window_lo.Position_Cursor (Output_Window, Line, Column);
Window_lo.Delete_Lines (Output_Window, 2);

end Continue;

Graphies Utilities

The Rational Terminal supports a graphics character set that is useful for drawing
straight-line structures. A full description of the graphics character set appears in
the Rational Terminal User's Manual. The following example demonstrates how to
draw a box in an image:

with Window_lo;
with Fonts;
procedure Draw_Box (Window: Window_lo.File_Type;

On_Line: Window_lo.Line_Number;
On_Column : Window_lo.Column_Number;
Height Natural;
Width Natural) IS

Upper_left_Corner constant Character .- J 1 J ;

Upper_Right_Corner constant Character .- J k t ;

Lower_Left_Corner constant Character .- 'm' ;
Lower_Right_Corner constant Character .- ' j' ;
VerticaLLine constant Character .- 'x' ;
Horizontal_Line constant Character .- 'q' ;

begin
Window_lo.Position_Cursor (Window, On_Line, On_Column);
Window_lo.Overwrite (Window, Upper_left_Corner, Fonts.Graphics);
for I in 1 .. Width loop

Window_lo.Overwrite
(Window, HorizontaLLine, Fonts. Graphics) ;

end loop;

DIO-88 7/1/87 RATIONAL

package !Io.Window_10

Window_lo.Overwrite (Window, Upper_Right_Corner, Fonts.Graphics);
Window_lo.Position_Cursor (Window, On_Line + 1, On_Column);
for I in 1 .. Height loop

Window_lo.Overwrite (Window, Vertical_Line, Graphics);
Window_lo.Move_Cursor (Window, 1, - 1);

end loop;
Window_lo.Position_Cursor

(Window, On_Line + 1, On_Column + Width + 1);

for I in 1 .. Height loop
Window_lo.Overwrite (Window, Vertical_Line, Graphics_Set);
Window_lo.Move_Cursor (Window, 1, - 1);

end loop;
Window_lo.Position_Cursor

(Window, On_Line + Height + 1, On_Column);
Window_lo.Overwrite (Window, Lower_Left_Corner, Graphics_Set);
for I in 1 .. Width loop

Window_lo.Overwrite (Window, Horizontal_Line, Graphics_Set);
end loop;
Window_lo.Overwrite (Window, Lower_Right_Corner, Graphics_Set);

end Draw_Box;

The Form Abstraction
A form provides a method of getting structured information from a user in a some-
what unstructured way. A form with various entries defined by the application can
be displayed in a window. Control should then be returned to the Rational Editor
to allow completion of the form by the user. With the full power of the editor avail-
able to the user, information can be entered in any order using any of the editor
features. When the user indicates that the form is complete, the image should be
parsed and responses returned to the application for interpretation.

Other considerations might include the ability to indicate errors in user responses, to
redisplay the form for correction with the editor, and then to resubmit the response.

In particular, it might be desirable for the display to look something like this:

NAME : [Input}

ADDRESS [Inpu~
TELEPHONE NUMBER : [(Area Code) Number]

AGE : [PosititJe Number]

RATIONAL 7/1/87 DIO-89

package !Io.Window_10

One possible specification for this abstraction might be the following:
with Fonts;
with Window_lo;
with Unbounded_String;
generIc

type Form_Item is «»; --Defines entries of the form
with function Image (Item: Form_Item) return String;
-- provides a string representing the name of the entry

package Forms is
type Form_Entry is private;
-- defines a prompt and display attributes for an entry
type Form_Definition is array (Form_Item) of Form_Entry;
procedure Initialize (Definition: in out Form_Definition);
-- initialize all entries with default values
procedure Modify (The_Entry : in out Form_Entry;

New_Prompt : String;
Font: Window_lo.Font := Fonts. Inverse_Bold;
Kind: Window_lo.Designation := Window_lo.Prompt);

-- allows modification of an entry's prompt
procedure Display (Output_Window : Window_lo.File_Type;

Form: Form_Definition);
procedure Get_User_Response

(Form_Output : Window_lo.File_Type;
Form_Input : Window_lo.File_Type;
Definition: in out Form_Definition);

function Response (An_Entry : Form_Entry) return String;
-- multiple line input is separated by Ascii.Lf characters

private
Item_Size: constant := 80;
package Unbounded is new Unbounded_String (Item_Size);
type Form_Entry is

record
Prompt
Prompt_Font
PrompLKind

end record;

Unbounded. Variable_String;
Window_lo.Font;
Window_lo.Designation;

end Forms;

DIO-90 7/1/87 RATIONAL

package !Io.Window _10

Design Issues
• This particular choice of specification is generic on a discrete type and is intended

to be instantiated with an enumeration type. The image function is used by the
Display procedure to write out entry names. If this spec were instantiated with
the following type:

type Form_Entries is (Name, Address, Telephone_Number, Age);
the image of the form presented above could be accomplished.

• The Modify procedure is intended to allow an application to redefine its own
prompt strings or to modify the prompt display attributes to indicate errors.

• Note that the GeL Users.Response procedure contains an in out Form..Definition
parameter. This allows the image to be parsed and the responses to be returned
in the Forme.Definition itself.

• It is expected that an application using this abstraction would generally call
the Display procedure before calling GeLUser_Response. The display operation
might have been used internally in GeL User..Response and might not have been
exported. If, however, an application desires to display a form with errors and
asks the user whether or not to continue editing, the display must be separate; it
has been made so for this reason.

• The Response function can be used to return the user's response for a particular
entry.

Implementation Issues

See the body of package Forms in the following example for reference.

• The most interesting issue is how to return control to the Rational Editor to
allow the user to complete the form. This is accomplished by positioning the
cursor at the end of the image and calling the Window.Jo.Get procedure with
the null string for the prompt. Since the cursor is at the end of the file, the
program will wait until the user commits the response. The value returned from
the Get procedure is not important and is not looked at. The Get procedure is
used only to signal that the user has completed editing and that the form can
now be parsed.

• If the prompt string passed to the Modify procedure is the null string, the prompt
string is unchanged, but the fonts and designation are changed. This is useful for
retaining the user's response and modifying the display attributes to indicate an
error.

RATIONAL 7/1/87 DIO-91

package !Io.Window _10

with Window_Utilities;
with String_Utilities;
package body Forms is

procedure Modify (The_Entry : in out Form_Entry;
New_Prompt : String;
Font: Window_lo.Font := Fonts. Inverse_Bold;
Kind : Window_lo.Designation := Window_lo.Prompt) 1S

begin
if New_Prompt /= "" then

Unbounded.Copy (The_Entry. Prompt ,
end if;
The_Entry.Prompt_Font .- Font;
The_Entry.Prompt_Kind := Kind;

end Modify;

A_Char
First_Prompt_Line
First_Prompt_Column
First_Prompt_Found

begin
Window_Utilities.Erase (Output_Window);
Window_lo.Position_Cursor (Output_Window);

procedure Display (Output_Window : Window_lo.File_Type;
Form Form_Definition) is

Character;
Window_lo.Line_Number;
Window_lo.Column_Number;
Boolean := False;

for Item in Form_Item loop
Window_lo. Insert

(Output_Window, Image (Item) ~ " : ",
Kind => Window_lo.Protected);

for I in 1 .. Unbounded.Length (Form (Item).Prompt) loop
A_Char := Unbounded.Char_At (Form (Item).Prompt, I);
if A_Char = Ascii.Lf then

Window_lo.New_Line (Output_Window, 1);
else

Window_lo. Insert
(Output_Window, A_Char,

Image => Form (Item).Prompt_Font,
Kind => Form (Item).Prompt_Kind);

end if;
end loop;
Window_lo.New_Line (Output_Window, 1);

end loop;
end Display;
procedure Parse (Input_Window: Window_lo.File_Type;

Form: in out Form_Definition) is separate;
-- implementation of a body for parse is left to the user
procedure Get_User_Response (Form_Output : Window_lo.File_Type;

Form_Input Window_lo.File_Type;
Definition : in out Form_Definition) 1S

Out_Char : Character;
begin

Window_lo.Get (Form_Input, ,Out_Char);
Parse (Form_Input, Definition);

end Get_User_Response;
end Forms;

DIO-92 7/1/87 RATIONAL

package !lo. Window _10

The Menu Abstrattion
The menu abstraction offers a rich set of user interface options for applications.
Generally, it presents a set of selections to the user that, when activated, produces
some effect. Other kinds of menus are collections of objects whose images are
displayed by the menu. Objects can be selected and operations applied to them.
This mayor may not change their image in the menu.

The menu in the example below can be used by an application to offer a set of choices
to a user. Selection of a choice implies that some operation will be performed. The
user should be able to move from choice to choice with the arrow keys and to
indicate selection with the [Ente~ key. Selections might also be made by pressing the
first letter of the menu choice's name.

An application will require a way to build menu definitions, display them, and cause
an operation to be performed when a particular menu choice is selected. Another
issue is the layout of the menu on the screen. The two options that this example
will offer are a vertical layout and a horizontal layout.

The following example is a generic specification for the simple menu described above:

with Window_lo;
with New_Keys;
generIc

type Element is private;
with function Line_Image (E : Element) return String;
with procedure Apply_Operation (To_Element : Element;

Window : Window_lo.File_Type;
Column_Offset : Natural := 0;
Line_Offset: Natural .- 0);

with function Is_Quit_Key return Boolean;
with function Is_Selection_Key return Boolean;

package Single_Selection_Electric_Menus is
subtype Window_Type is Window_lo.File_Type;
type Menu_Definition is private;
function Make return Menu_Definition;
procedure Add (E : Element; To : in out Menu_Definition);
type Layout is (Vertical, Horizontal);
procedure Get_User_Selection

(Menu : Window_Type; Definition : Menu_Definition;
Column_Offset : Natural := 0;
Line_Offset : Natural .- 0;
Presentation: Layout := Vertical);

RATIONAL 7/1/87 DIO-93

package !Io.Window _10

private
t~pe Node;
t~pe Menu_Definition IS access Node;
t~pe Node is

record
Elem
FlrsLChar
Line
Column
Next
Previous

end record;
end Single_Selection_Electric_Menus;

Element;
Character;
Window_lo.Line_Number;
Window_lo.Column_Number;
Menu_Definition;
Menu_Definition;

Design Issue.

The following discussion refers to the example in the previous section, "The Menu
Abstraction. "

• This example is generic on the Element type for the menu selection. The Element
type must have a line image and an Apply_Operation procedure that will initiate
some operation based on the value of the element. Note that this procedure
has some additional parameters to indicate the current window and some offsets
within that window. These parameters are essential if the operation one wants
to perform is the display of another nested menu.

• Generic formals are functions identifying which keys indicate that the user would
like to quit the menu and which keys indicate the selection of a particular op-
eration. The arrow keys for traversal over the elements of the menu have been
hard-wired into the body but could have been made generic as well. The layout
form (either horizontal or vertical) might also affect which arrow keys are oper-
ative. A horizontal layout might use the left and right arrows; a vertical layout
might use the up and down arrow keys.

• The package exports a Make operation that builds an empty menu definition.
The user can then add elements to build up the final definition.

• No Display procedure is exported. There seems to be no reason to separate the
display from requesting a response from the user. Since the user could manipu-
late the display image, in some situations, before being asked for a response, it
seems unwise to offer the opportunity for no reason. If a compelling reason were
identified, the Display procedure from the body could be exported easily.

• Another option for the GeL User..Selecfion operation is to make it a function
that returns the element selected. The client program will then determine the
operation to be performed. The penalty is that the client program will have to
decide when to quit. In this case it would also be necessary to export the display
operation to avoid having to redisplay the menu each time a user selection is
requested.

DIO-94 7/1/87 RATIONAL

package !Io.Window_10

Implementation Issues
Global issues will be discussed in this section. Issues pertinent to individual sub-
programs will be addressed with the corresponding code .
• A doubly linked list has been chosen to implement menu definitions. Note that

each node of the list also stores information about the position of the element
in the display and about the first character of the element's image for electric
completion.

• Several helper functions have been defined in the body:
o Findc.Def: Returns the next node of the menu definition whose element begins

with the character First. If an element is not found, the Definitionc.Not..Found
exception is raised.

o Initialiae..Placement: Determines the layout of all elements in the menu.
o Display: Writes the images for each element of the menu at the appropriate

position.
o Erase: Erases the menu image from the image. Note that, when nested menus

are displayed in the same window, only the current menu should be erased.

package body Single_Selection_Electric_Menus is
Definition_Not_Found : exception;
function Make return Menu_Definition 1S

begin
return null;

end Make;
procedure Add (E : Element; To : in out Menu_Definition) 1S

Temp : Menu_Definition;
Line: constant String := Line_Image (E);

begin
if To = null then

To .- new Node'{E, Line (Line'First),
1, 1, null, null);

To.Next .- To;
TO.Previous .- To;

else
Temp
Temp.Next

.- To.Previous;

.- new Node'{E, Line (Line'First),
1, 1, null, Temp);

Temp.Next.Next .- To;
TO.Previous '- Temp.Next;

end if;
end Add;
-- helper functions for Get_User_Response
function Find_Def

(First : Character; Def : Menu_Definition)
return Menu_Definition is separate;

RATIONAL 7/1/87 DIO-95

package !lo. Window _10

procedure Initialize_Placement
(Def : in Menu_Definition;
Column_Offset : Natural; Line_Offset
Presentation : La~out) is separate;

procedure Displa~
(Menu : Window_T~pe; Definition : Menu_Definition;
Column_Offset : Natural; Line_Offset: Natural;
Presentation : La~out) is separate;

Natural;

procedure Erase
(Menu : Window_T~pe; Definition : Menu_Definition;
Column_Offset : Natural := 0) is separate;

procedure Get_User_Selection
(Menu : Window_T~pe; Definition : Menu_Definition;
Column_Offset : Natural := 0;
Line_Offset : Natural .- 0;
Presentation : La~out .- Vertical) is separate;

end Single_Selection_Electric_Menus;
separate (Single_Selection_Electric_Menus)
function Find_Def (First : Character;

Def : Menu_Definition) return Menu_Definition 1S
Temp: Menu_Definition := Def;

begin
if Temp = null then

raise Def1nition_Not_Found;
elsif Temp.First_Char = First then

return Temp;
else

Temp := Temp.Next;
while Temp /= Def loop

if Temp.First_Char = First then
return Temp;

else
Temp .- Temp.Next;

end if;
end loop;

end if;
raise Definition_Not_Found;

end Find_Def;
separate (Single_Selection_Electric_Menus)
procedure Inltialize_Placement

(Def : in Menu_Definition;
Column_Offset: Natural; Line_Offset
Presentation : La~out) is

Natural;

Temp
NexLLine
Next_Column

begin
Temp.Line .- Next_Line;
Temp.Column .- Next_Column;

Menu_Definition := Def;
Positive .- Line_Offset + 1;
Positive := Column_Offset + 1;

DIO-96 7/1/87 RATIONAL

package !Io.Window _10

case Presentation is
when Vertical =>

Next_Line := Next_Line + 1;
when Horizontal =>

Next_Column := Next_Column +
Line_Image (Temp.Elem)'Length + 4;

if Next_Column> 80 then
Next_Column := Column_Offset + 1;
Next_Line .- Next_Line + 1;

end if;
end case;
Temp := Temp.Next;
while Temp /= Def loop

Temp.Line := Next_Line;
Temp.Column := Next_Column;
case Presentation is

when Vertical =>
Next_Line := Next_Line + 1;

when Horizontal =>
Next_Column := Next_Column +

Line_Image (Temp. Elem) 'Length + 4;
if Next_Column > 80 then

Next_Column := Column_Offset + 1;
Next_Line .- Next_Line + 1;

end if;
end case;
Temp := Temp.Next;

end loop;
end Initialize_Placement;
with Fonts;
separate (Single_Selection_Electric_Menus)
procedure Display

(Menu: Window_Type; Definition : Menu_Definition;
Column_Offset : Natural; Line_Offset: Natural;
Presentation : Layout) is

Temp_Def : Menu_Definition .- Definition;
begin

Window_lo.Position_Cursor
(Menu, Temp_Def.Line, Temp_Def.Column);

Window_lo.Overwrite (Menu, Line_Image (Temp_Def.Elem),
Fonts. Inverse_Bold);

Temp_Def := Temp_Def.Next;
while Temp_Def /= Definition loop

Window_lo.Position_Cursor
(Menu, Temp_Def.Line, Temp_Def.Column);

Window_lo.Overwrite (Menu, Line_Image (Temp_Def.Elem),
Fonts.Normal);

Temp_Def .- Temp_Def.Next;
end loop;

RATIONAL 7/1/87 DIO-97

package !Io.Window _10

-- repoe itions the cursor on the first element
Window_lo.Position_Cursor

(Menu, Temp_Def.Line, Temp_Def.Column);
end Display;

Most of the interesting issues are associated with the next example, an implemen-
tation of the GeL Uset..Selection procedure. In this procedure, the menu is first
displayed in the window. The raw keystroke stream is then opened and One..Key
is taken from the stream. The value of this key is then interpreted. If the key is
a traversal key (an arrow key), the currently highlighted element is unhighlighted
and the new node is highlighted. If the key is a letter of the alphabet, an attempt
is made to find an element that begins with that character; the Apply_Operation
procedure is called if an element is found. The Apply..Dperatlon procedure is also
called when the key indication user selection is pressed. If the quit key is pressed,
the menu raw stream is closed, the menu is erased, and the Gef..Userc.Selection
procedure is exited. If any other key is pressed, the terminal bell is sounded.

Note that the raw stream is closed before each call to Apply..Operation. It is
then reopened after the call returns. This example establishes this convention for
good reason. Package Raw does not export an operation to indicate whether or
not the stream is open. Thus, a program cannot tell whether it has to perform
an Open procedure. If a program tries to open a stream that is already open,
the Io..Exceptions.Statusc Error exception is raised. The convention of a closed
character stream across procedure calls was established for this implementation.

separate (Single_Selection_Electric_Menus)
procedure Get_User_Selection

(Menu: Window_Type; Definition : Menu_Definition;
Column_Offset : Natural := 0;
Line_Offset : Natural := 0;
Presentation : Layout := Vertical) is

Current_Node : Menu_Definition := Definition;
Selected_Font : Window_'o.Font := Fonts. Inverse_Bold;
package Raw renames Window_lo.Raw;
Character_Stream : Raw. Stream_Type;
One_Key : Raw. Key;
function "=" (A, B : Raw. Key) return Boolean renames Raw. "=";

begin
Initialize_Placement (Definition, Column_Offset, Line_Offset,

Presentation) ;
Display (Menu, Definition, Column_Offset, Line_Offset,

Presentation) ;
Raw.Open (Character_Stream);
loop

Window_lo.Position_Cursor
(Menu, Current_Node.Line, Current_Node.Column);

Raw.Get (Character_Stream, One_Key);
-- interpretation of the keystroke from the user:

DIO-98 7/1/87 RATIONAL

package !Io.Window _10

if (Presentation = Vertical and One_Key = New_Keys.Up) or
(Presentation = Horizontal and One_Key = New_Keys.Left)

then
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite -- turn off selection

(Menu, Line_Image (Current_Node. Elem), Fonts.Normal);
Current_Node := Current_Node.Previous;
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite -- turn on selection

(Menu, Line_Image (Current_Node.Elem), Selected_Font);

elsif (Presentation = Vertical and One_Key = New_Keys.Down) or
(Presentation = Horizontal and One_Key = New_Keys.Right)

then
Window_lo.Posltion_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite -- turn off selection

(Menu, Line_Image (Current_Node.Elem), Fonts.Normal);
Current_Node := Current_Node.Next;
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite -- turn on selection

(Menu, Line_Image (Current_Node.Elem), Selected_Font);
electric selection on first character:

elsif New_Keys. Is_Alphabet_Key (One_Key) then
declare

Char : Character :=
String_Utilities.Upper_Case

(Window_lo.Raw.Convert (One_Key});
New_Node : Menu_Definition;

begin
New_Node := Find_Def (Char, Current_Node.Next);
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite

(Menu, Line_Image (Current_Node.Elem), Fonts.Nvrmal);
Current_Node := New_Node;
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Window_lo.Overwrite (Menu,

Line_Image (Current_Node.Elem), Selected_Font);
Raw.Close (Character_Stream);
Apply_Operation (Current_Node.Elem, Menu,

Column_Offset, Line_Offset);
-- ensure correct cursor position after apply
Window_lo.Position_Cursor

RATIONAL 7/1/87 DIO-99

package !lo.Window_Io

(Menu, Current_Node.Line, Current_Node.Column);
Raw.Open (Character_Stream);

exception
when Defini tion_NoLFound =>

Window_lo.Bell (Menu);
end;

elsif Is_Select_Key (One_Key) then
Raw.Close (Character_Stream);
Apply_Operation (Current_Node.Elem, Menu,

Column_Offset, Line_Offset);
Window_lo.Position_Cursor

(Menu, Current_Node.Line, Current_Node.Column);
Raw.Open (Character_Stream);

elsif Is_Quit_Key (One_Key) then
Raw.Close (Character_Stream);
Erase (Menu, Definition, Column_Offset);
exit;

else
Window_lo.Bell (Menu);

end if;
end loop;

end Get_User_Selection;

Disc:onneding rrom a Menu

One useful operation for applications that capture the key stream is to allow the
user to leave the current window to do something else, possibly returning later
to continue working. An application might decide to recognize window traversal
operations such as Window.Up and Window.Down. The question now becomes
how to disconnect from the current job and wait for the user to indicate a desire
to reconnect. It is desirable to allow this without forcing the user to interrupt the
program and then explicitly reconnect to the numbered job using the Job.Connect
procedure.

The solution to this is fairly straightforward. When the program recognizes that
the user intends to leave (a I Wlndowl - [!] key sequence, for example), the program
disconnects itself and then waits on a prompt with a call to Window_Io.Get. This
is exactly the same approach used to return the user to the Rational Editor in
a form. When the user terminates the Get procedure with a Commit procedure,
the job is implicitly reconnected, continuing to process keystrokes from the user.
Since the user is returned to the Rational Editor and has the ability to modify the
image in window, it is a good idea to redraw the image, if possible, to ensure the
integrity of the display. The following program fragment should provide the basic
implementation approach.

DIO-lOO 7/1/87 RATIONAL

package !Io.Window _10

procedure Hang (Output_Window : Window_lo.File_Type;
Input_Window : Window_lo.File_Type;
Key: Raw.Key) is

begin
Window_Utilities.Home (Output_Window);
Window_lo.New_Line (Output_Window, I);

if Key = New_Keys.Up then
Editor.Window.Previous;

elsif Key = New_Keys.Down then
Editor.Window.Next;

else
null ;

end if;
Job.Disconnect;

note that the program moved to the new window with the
-- editor before disconnecting; calls to the editor can
-- come only from connected jobs

Window_Utilities.Continue
(Input_Window, Output_Window,
Prompt => "Type ENTER on this window to Reconnect",
Line => 1, Column => 1);

end Hang;
The following example is a fragment of the key processor that recognizes the user's
intent to leave and call the Hang procedure. It also calls a procedure to reset the
window image when the user reconnects.

elsif One_Key = New_Keys.Window_Up then
Hang (Menu_Output, Menu_Input, New_Keys.Up);
Reset_Screen;

elsif One_Key = New_Keys.Window_Down then
Hang (Menu_Output, Menu_Input, New_Keys.Down);
Reset_Screen;

elsif One_Key = New_Keys.Window then
Raw.Get (Character_Stream, Second_Key);
if Second_Key = New_Keys.Up then

Hang (Menu_Output, Menu_Input, New_Keys.Up);
Reset_Screen;

elsif Second_Key = New_Keys.Down then
Hang (Menu_Output, Menu_Input, New_Keys.Down);
Reset_Screen;

else
Window_lo.Bell (Menu_Output);

end if;

RATIONAL 7/1/87 DIO-101

type Attribute
package !lo. Window_Io

type Attribute

type Attribute 1S
record

Bold
Faint
Underscore
Inverse
Slow_Blink
Rapid_Blink
Unused_0
Unused_l

end record;

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

Description

Defines the attributes that characters can have when displayed on the screen.

A character's display depends on the user's terminal setup. The actual effect of the
Inverse attribute depends on the background mode currently in use. The Bold and
Faint attributes indicate display with brighter green if the terminal is set up in dim
mode, and they will display dimmer green if the terminal is set up to display in
bold.

The Rational Terminal and the terminal controller do not support all possible com-
binations of the attribute fields. The available combinations anticipate the most
useful combinations. In general, the attribute fields have the following effects (re-
strictions are described below):

Bold Character appears in brighter green
Faint Character appears in brighter green
Underscore Character is underlined
Inverse Character background appears in the inverse of the terminal's

current background
Character blinks
Character blinks
Reserved
Reserved

Slow_Blink
Rapid_Blink
Unused.D
Unused..I

DIO-I02 7/1/87 RATIONAL

type Attribute
package !Io.Window_10

Restrictions

Not all combinations are supported.

The terminal supports only two brightness levels. In the normal setting (when all
attribute fields are false), characters are written at the normal brightness level.
Setting either the Bold or the Faint attribute to true writes characters in the bold
font for the terminal.

Setting the Underscore, the Inverse, and either the Bold or the Faint attributes to
true at the same time is not supported. In this case, characters are displayed in
bold and inverse but not underscored.

Only one blink speed is currently supported; setting either the SlowcBlink or the
Rapid..Blink attribute field to true makes characters displayed with these attributes
blink.

When either blink attribute field is set, the following combinations are currently
supported:
Otherwise plain
Inverse only
Underline only
Inverse bold

Bold, Faint, Inverse, and Underscore set to false.
Bold, Faint, and Underscore set to false; Underscore sets to true.
Bold, Faint, and Inverse set to false; Underscore sets to true.
Underscore sets to false: Inverse and either Bold or Faint set to
true.

Example

Inverse_Bald_Attribute : constant Window_lo.Attribute :=
(Bold => True, Inverse => True, others => False);

References

Rational Terminal User's Manual

RATIONAL 7/1/87 DIO-I03

proced ure Bell
package !Io.Window_10

procedure Bell

procedure Bell (File File_Type);

Description

Rings the terminal bell.

Note: There is only one bell. It can be rung with any Window_Io file handle, even
those handles that have not been opened.

Parameters

File: File_Type;
Specifies the handle for an image. Since there is only one bell, any handle can be
used, even those handles that have not been opened.

DIO-I04 7/1/87 RATIONAL

type Character..Set
package ue. Window _10

type Character..Set

t~pe Character_Set 15 new Natural range 0 .. 15;

Description

Defines the possible character sets for the display.

Restrictions

Currently only two character sets are supported. Plain (0) indicates the standard
alphanumeric character set. Graphics (I) indicates the graphics character set sup-
ported by the terminal.

Currently the graphics character set is displayable only with the plain or blinking
attributes.

References

Rational Terminal User's Manual

RATIONAL 7/1/87 DIO-I05

function Char_At
package !Io.Window_10

function Char..At

function Char At (File File_T~pe) return Character;

Description

Returns the character at the current cursor position.

Parameters

File: File_T~pe;
Specifies the handle for the image containing the character in question.

return Character;
Returns the character at the current cursor position.

Errors

If the file handle is not open, the IocExceptions.Statua.Error exception is raised.

DIO-106 7/1/87 RATIONAL

procedure Close
package !Io.Window_10

procedure Close

procedure Close (File in out File_Type);

Description

Removes access to the image with this file handle.

The image is not deleted or removed from the terminal screen.

Parameters

File: in out File_Type;
Specifies the handle for the image.

Errors

IT the file handle is not open, the Io..Exceptlons.Statua.Error exception is raised.

RATIONAL 1/1/81 DIO-I07

subtype Column..Number
package !lo.Window_10

subtype Column..Number

subtype Column_Number is Positive;

Description

Defines the column number of a character in an image.

Columns are numbered starting with 1 from the far left side of the image.

DIO-108 7/1/87 RATIONAL

subtype Count
package !lo.Window.do

subtype Count

subtype Count is Natural;

Description

Defines the number of times that an operation should be repeated.

RATIONAL 7/1/87 DIO-109

procedure Create
package !Io.Window.Jo

procedure Create

procedure Create (File
Mode
Name
Form

in out File_Type;
File_Mode .- Out_File;
String;
String .- "");

Description

Creates an image for performing I/O.

Normally, a new empty image is created when this procedure is called, and a window
containing the image appears on the terminal screen. All named images can be
opened twice, once for input and once for output. If an image is already open for
the current job with the specified name and is open with a mode other than the
one currently requested, the existing image will be opened for the new mode.

Parameters

File: in out File_Type;
Specifies the file handle for the created image.

Mode: File_Mode := Out_File;
Specifies the access mode for which the image is to be used.

Name: String;
Specifies the name of the image to be created. This name appears on the left side
of the banner of the window containing the image.

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

Errors

If the named image is already open for the designation mode, the Ic..Exceptlcns.Sta-
tus..Error exception is raised.

DIO-110 7/1/87 RATIONAL

function DefaulLFont
package !Io,Window_10

function Defaults.Font

function Default_Font (For_Type Designation) return Font;

Description

Returns the default font for each kind of designation.

For both the text and protected designations, the attributes are all Vanilla (that is
all set to false). The prompt designation returns a font whose Inverse attribute is
set to true. All designations use the Plain character set in their default font.

Parameters

For_Type : Designation;
Specifies a particular designation.

return Font;
Returns default settings for the character set and attributes.

Example

This function can be used with one of the output procedures to indicate the desired
font:

Window_Image : Window_lo.File_Type;
Text_Designation : Window_lo.Designation .- Window_lo.Text;

begin
Window_lo.Open

(Window_I mage, Window_lo. OuLFi Ie, "Sanner Name");
Window_lo. Insert (File => Window_Image,

Item => "Some String",
Image => Window_lo.Default_Font

(Text_Designation),
Kind => Text_Designation);

RATIONAL 7/1/57 DIO-1l1

function DefaulLFont
package !Io.Window_10

References

type Attribute

type Designation

type Font

constant Vanilla

DIO-112 7/1/87 RATIONAL

procedure Delete
package !Io.Window _10

procedure Delete

procedure Delete (File in out File_Type);

Description

Deletes the image associated with the file handle and removes the window containing
the image from the terminal screen and the Window Directory.

Any other handles associated with this image are implicitly closed.

Parameters

File: in out File_Type;
Specifies the file handle for the image to be deleted.

Errors

If the image associated with the file handle has already been deleted, the Ic..Excep-
tions.Status..Error exception is raised.

RATIONAL 7/1/87 DIO-113

procedure Delete
package !Io.Window _10

procedure Delete

procedure Delete (File
Characters

File_ T~pe;
Count) ;

Description

Deletes the specified number of characters from the current line, starting with the
character at the current cursor position.

The position of the cursor is unchanged. If the count specified is greater than the
number of characters remaining on the line, all the subsequent characters on that
line are deleted and no exception is raised.

Parameters

File: File_T~pe;
Specifies the file handle for the image.

Characters : Count;
Specifies the number of characters to be deleted.

Errors

If the file handle is not open, the Io..Exceptione.Statua.Error exception is raised.

If the file handle is not open for output (with the OuLFile mode), the Ioc.Exceptions-
.Mode..Error exception is raised.

DIO-114 7/1/87 RATIONAL

procedure Delete..Lines
package !Io.Window _10

procedure Delete..Lines

procedure Delete_Lines (FIle
Lines

File_T~pe;
Count .- 1);

Description

Deletes the specified number of lines from the image, starting at the current line.

The column number of the cursor is unchanged, but it will be placed on the line
following the last deleted line. If the count specified is greater than the number of
lines remaining in the image, all the subsequent lines in that image are deleted and
no exception is raised.

Parameters

File: File_T~pe;
Specifies the file handle for the image.

Lines: Count:= 1;
Specifies the number of lines to be deleted.

Errors

If the file handle is not open, the Ioc.Exceptlons.Statusc.Error exception is raised.

If the file handle is not open for output (with the OuLFile mode), the Io..Exceptions-
.Mode. Error exception is raised.

RATIONAL 7/1/87 DIO-115

type Designation
package !lo. Window _10

type Designation

type Designation is (Text, Prompt, Protected);

Description

Defines the behavior of edited characters and strings written to an image.

Enumerations

Prompt
Displays output as a prompt that disappears when the user types on it. The user
can turn a prompt into text with Commands.Editor.Set.Designation_Off (EI).

Protected
Displays output that is protected (that is, read-only output, which cannot be mod-
ified by the user).

Text
Displays output as plain text that can be modified by a user with the Rational
Editor.

Restrictions

Users can delete protected fields by using the Rational Editor to enclose a field
completely inside a region; the entire region, including the protected field, can then
be deleted.

DIO-116 7/1/87 RATIONAL

type Designation
package !Io.Window_10

Example

The designation for an output operation is specified as the Kind parameter to the
Insert procedure:

Window_Image : Window_lo.File_Type;
begin

Window_lo.Open
(Window_Image, Window_I o.OuLFi le , "Banner Name");

Window_lo. Insert (File => Window_Image,
Item => "Test program script",
Image => Window_lo.Default_Font

(Window_lo.Text);
Kind => Window_lo.Text);

Window_lo.lnsert (File => Window_Image,
Item => "Enter a file name: " ,
Image => Window_lo.Default_Font

(Window_Io.Protected);
Kind => Window_lo.Protected);

Window_lo.lnsert (File => Window_Image,
Item => "Name of a fi le" ,
Image => Window_'o.Default_Font

(Window_lo.Prompt);
Kind => Window_lo.Prompt);

RATIONAL 7/1/87 DIO-117

function End_OLFile
package !Io.Window _10

function End_Of_File (File File_Type) return Boolean;

Description

Returns true if the cursor is positioned at the end of the last line in the image;
otherwise, the function returns false.

Parameters

File: File_T~pe;
Specifies the file handle for the image in question.

return Boolean;
Returns true if the cursor is positioned at the end of the last line in the image;
otherwise, the function returns false.

Errors

If the file handle is not open, the Ioc.Exceptione.Statua..Error exception is raised.

References

procedure Position..Cursor

DIO-1l8 7/1/87 RATIONAL

function End_Of-Line
package !Io.Window_10

function End_Of_Line (File File_Type) return Boolean;

Description

Returns true if the cursor is positioned at the end of the line; otherwise, the function
returns false.

Parameters

File: File_Type;
Specifies the file handle for the image containing the line in question.

return Boolean;
Returns true if the cursor is positioned at the end of the line; otherwise, the function
returns false.

Errors

If the file handle is not open, the Ioc.Exceptious.Status..Error exception is raised.

References

procedure Position..Cursor

RATIONAL 7/1/87 DIO-119

type File_Mode
package !Io.Window _10

type File_Mode

Description

Defines the access mode for which an image can be opened.

An image can be opened for one or both modes with a separate file handle.

Enumerations

In_File
Denotes an image with read-only access.

OuLFile
Denotes an image with write-only access.

Example
Output_Window : Window_lo.File_Type;
Input_Window : Window_lo.File_Type;

begin
Window_lo.Open

(Output_Window, Window_lo.OuLFile, "Banner Name");
Window_lo.Open

(InpuLWindow, Window_lo.ln_File, "Banner Name");

DIO-120 1/1/81 RATIONAL

type File_Type
package !Io.Window_Io

type File_Type

type File_Type is private;

Description

Defines a handle for an image.

RATIONAL 7/1/87 DIO-121

type Font
package !Io.Window_10

type Font

type Font is
record

Kind: Character_Set;
Look : Attribute;

end record;

Description

Defines the way in which ASCII characters written to an image are displayed.

Example

Note the named constant declaration for Normal:
Normal: constant Font := Font'(Plain, Vanilla);

References

constant Normal

constant Plain

constant Vanilla

DIO-122 7/1/87 RATIONAL

function FonLAt
package !lo.Window_10

function Font_At

function Font_At (File File_Type) return Font;

Description

Returns the font of the character that appears at the current cursor position.

If the cursor is positioned after the last character on a line, the line is padded at the
end with blanks written with the Normal font. Thus, the FonLAt function returns
Normal in this case.

Parameters

File: File_Type;
Specifies the handle for the image containing the character in question.

return Font;
Returns the font of the character that appears at the current cursor position.

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc.Error exception is raised.

RATIONAL 7/1/87 DIO-123

function Form
package !Io.Window _10

function Form

function Form (File File_Type) return String;

Description

Returns the null string (",,) regardless of the value provided to a call to the Open
or the Create procedure.

In the future, the Form parameter will be supported, and this function will return
the actual value provided to the Open or the Create procedure.

Parameters

File: File_Type;
Specifies the handle of the file in question.

return String;
Returns the null string (",,) regardless of the value provided to a call to the Open
or the Create procedure.

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc.Error exception is raised.

DIO-124 7/1/87 RATIONAL

proced ure Get
package llo.Window..Io

procedure Get

procedure Get (File
Prompt
Item

File_T~pe;
String .- "[input]";

out Character);

Description

Returns the character at the current cursor position in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

• If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), that character
is immediately returned in the Item parameter. The cursor is repositioned after
the character extracted from the image. The actual image remains unchanged.

• If the character at the current cursor position has been written with a prompt des-
ignation, execution is suspended until the user provides the requested character
reply.

• If the cursor is located at the end of the image, the prompt string is displayed
and execution is suspended until the user provides the requested character reply.

Note that in the second and third cases above, the program does not return until
the user commits the response.

Parameters

File: File_T~pe;
Specifies the file handle for the image.

Prompt: String:= "[input]";
Specifies the string for use as a prompt when querying the user.

Item: out Character;
Specifies the object in which to place the requested character.

RATIONAL 7/1/87 DIO-125

procedure Get
package !Io.Window _10

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc Error exception is raised.

If the file handle is not open for input (with the Inc.File mode), the Io..Exceptions-
.Mode..Error exception is raised.

Example 1

In the image:

1234567890
ABCDEFGHIJ
in which all characters are written with the text designation, the numerals are
located on line 1 of the image, and the cursor is positioned at line 2, column 7, the
character returned in the Item parameter of the Get procedure is G. The new cursor
position is at line 2, column 8.

Example 2

In the image:

1234567890 PROMPT STRING
if PROMPT STR ING is written as a prompt and the cursor is positioned at line 2,
column 7, a call to the Get procedure suspends waiting for user input. When the
user types a character, the whole prompt string disappears and is replaced with
the entered character. If the user then commits the input, the entered character is
returned in the Item parameter.

References

type Designation

procedure Get

function Get-Line

DIO-126 7/1/87 RATIONAL

procedure Get
package !lo. Window _10

procedure Get

procedure Get (File
Prompt
Item

File_Type;
Str-i oq .- "[input)";

out String);

Description

Returns string input from the image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

• If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the sequence
of characters starting at the current cursor position and continuing for the length
of the Item variable is returned in the Item parameter. The cursor is reposi-
tioned after the last character read from the image. The actual image remains
unchanged.

• If the character at the current cursor position has been written with a.prompt des-
ignation, execution is suspended until the user provides the number of characters
necessary to fill the Item parameter.

• If the cursor is located at the end of the image, the prompt string is displayed and
execution is suspended until the user provides the requested number of characters.

Notes:

• In the second and third cases above, the program does not return until the user
commits the response.

• If the user intends to use this procedure to extract a string from an image but
specifies an item string that has more characters than remain in the image, the
user will be prompted with the specified prompt string at the end of the image
for the remainder of the characters necessary to fill the Item string completely.

RATIONAL 7/1/87 DIO-127

procedure Get
package !lo. Window _10

Parameters

File: File_Type;
Specifies the handle for the image.

Prompt: String:= "[lnput]";
Specifies the string for use as a prompt when querying the user.

Item: out String;
Specifies the object receiving the input from the image.

Errors

If the file handle is not open, the Ic..Exceptions.Statuac Error exception is raised.

If the file handle is not open for input (with the In..Flle mode), the Io..Exceptions-
.Mode..Error exception is raised.

DIO-128 7/1/87 RATIONAL

procedure Get
package !io. Window..lo

Example 1

In the image:

1234567890
ABCDEFGHIJ
abcdefghij
in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the following program fragment returns the string GH I in the
Extract parameter with no suspension of execution:

An_Image : Window_lo.File_Type;
Extract: String (1 .. 3);

begin
Window_lo.Get (An_Image, "Prompt string", Extract);

If Extract were instead declared as:

Extract: String (1 .. 10);
the returned string would be GH IJ*abcde, in which the * character is actually an
Ascii.Lf character.

Finally, if Extract were instead declared as:

Extract: String (1 .. 20);
the first 16 characters of the returned string would be filled with GH IJ*abcdefghi J*.
The Prompt str ing prompt would then be displayed on the next line, and the first
four characters of the user's input would fill out the four characters necessary to
complete the string.

RATIONAL 7/1/87 DIO-129

procedure Get
package !Io.Window _10

Example 2

The following procedure can be used to query the user for input at any point in an
image. The program first inserts a prompt at the desired position, then repositions
the cursor onto the prompt, and finally calls the Get procedure to retrieve the user's
response. This corresponds to the second case in the description above.

procedure Query (Input_Window Window_lo.File_Type;
Output_Window Window_lo.File_Type;
The_Prompt String;
Line_Position Positive;
Column_Position Positive;
Reply : out String) is

begin
Window_lo.Position_Cursor (Output_Window, Line_Position,

Column_Position);
write out the prompt

Window_lo.Overwrite (Output_Window, The_Prompt,
Window_lo.Default_Font

(Window_lo.Prompt),
Window_lo.Prompt);

-- reposition the cursor on top of the prompt
Window_lo.Position_Cursor (Output_Window, Line_Position,

Column_Position);
-- request user input
Window_lo.Get (Input_Window, "", Reply);

end Query;

References

type Designation

DIO-130 7/1/87 RATIONAL

function GeL Line
package !Io.Window _10

function Get_Line

function Get Line (File File_Type;
Prompt String .- "[input]") return String;

Description

Returns string input from a line in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

• If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the string
returned will contain characters starting with the character located at the current
cursor position through the last character on that line. Use of this procedure has
the side effect of repositioning the cursor at the first character of the next line.
The actual image remains unchanged, however.

• If the character at the current cursor position has been written with a prompt
designation, execution will be suspended until the user provides the requested
string.

• If the cursor is located at the end of the image, the prompt string is displayed
and execution will be suspended until the user provides the requested string.

Notes:

• Extraction of an entire line is best accomplished with the Line..Image function
also declared within this package.

• The program will not return until the user commits the response.
• A fringe case occurs when the cursor is located on the last line of the image. In

this case, the GeLLine function partially fills the return string with the characters
in the line but also prompts the user at the end of the line for more characters.
Any characters offered by the user are appended to the return string.

Parameters

File: File_Type;
Specifies the handle for the image.

Prompt: String:= "[input]";
Specifies the string for use as a prompt when querying the user.

RATIONAL 7/1/87 DIO-131

function GeLLine
package !Io.Window _10

return String;
Returns string input from a line in an image.

Errors

If the file handle is not open, the Ic..Exceptions.Statua.Brror exception is raised.

If the file handle is not open for input (with the In..File mode), the Io..Exceptions-
.Moda..Error exception is raised.

Example 1

In the image:

1234557890
ABCDEFGHIJ
abcdefghij

in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the GeLLine function returns the string GH IJ.

DIO-132 7/1/87 RATIONAL

function GeLLine
package !Io.Window _10

Example 2

This example provides a functional form of querying the user for input. The program
first inserts a prompt at the desired position, then repositions the cursor onto the
prompt, and finally calls the GeLLine procedure to retrieve the user's response.

function Query (Input_Window
OutpuLWindow
The_Prompt
Line_Posi tion
Column_Posi tion

Window_lo.File_Type;
Window_lo.File_Type;
String;
Positive;
Positive) return String is

begin
Window_lo.Position_Cursor (Output_Window, Line_Position,

Column_Position);
write out the prompt

Window_lo.Overwrite (Output_Window, The_Prompt,
Window_lo.Default_Font

(Window_lo.Prompt),
Window_lo.Prompt);

-- reposition the cursor on top of the prompt
Window_lo.Position_Cursor (Output_Window, Line_PosItion,

Column_Position);
-- request user input
return Window_I o.Get_Line (Input_Window, "");

end Query;

References

type Designation

function Linea.Image

RATIONAL 7/1/87 DIO-133

procedure GeL Line
package !Io.Window..Io

procedure Get_Line

procedure Get_Line (File
'Prompt

Item
Last

Flle_ Type;
String .- "[input]";

out String;
out Natural);

Description

Returns string input from a line in an image.

This procedure has three slightly different effects depending on the cursor position
and the designation of the character written at that position:

• If the character located at the current cursor position is not written with a prompt
designation (that is, with either a text or a protected designation), the string
returned in the Item parameter will contain characters starting with the character
located at the current cursor position through the last character on that line.
The Last parameter indicates the index of the last valid character index of the
Item parameter. If the length of the Item string is not large enough to hold all
remaining characters on that line, the returned string will contain only the subset
that will fit. Use of this procedure has the side effect of repositioning the cursor
after the last character of the string extracted from the image. The actual image
remains unchanged, however.

• If the character at the current cursor position has been written with a prompt
designation, execution is suspended until the user provides the requested string.
The actual characters returned in the Item parameter are governed by the rules
outlined in the first item above.

• If the cursor is located at the end of the image, the prompt string is displayed
and execution will be suspended until the user provides the requested string.

Notes:

• The program will not return until the user commits the response.
• The user should not depend on the validity of any characters after the index

indicated by the value of the Last parameter.
• If the cursor is positioned after the last character on a line, the Last parameter

is set to 0, indicating that no valid output characters were placed in the Item
parameter.

• A fringe case occurs when the cursor is located on the last line of the image.
In this case, the GeLLine procedure partially fills the return string with the
characters in the line but also prompts the user at the end of the line for more
characters. Any characters offered by the user are appended to the Item string
until it is full.

DIO-134 7/1/87 RATIONAL

procedure Get-Line
package !Io.Window _10

Parameters

File: File_Type;
Specifies the handle for the image.

Prompt: String:= "[input]";
Specifies the string for use as a prompt when querying the user.

Item: out String;
Specifies the container for the input from the image.

Last: out Natural;
Specifies the index of the last character read into the Item string.

E-rrors

If the file handle is not open, the Ioc.Exceptions.Statusc Error exception is raised.

If the file handle is not open for input (with the Iru.File mode), the Io..Exceptions-
.Mode..Error exception is raised.

Example

In the image:

1234557890
ABCDEFGHIJ
abcdefghlj

in which the numerals are located on line 1 of the image and the cursor is positioned
at line 2, column 7, the following program fragment returns the string GH I in the
Extract parameter and the Last parameter equals 3 with no suspension of execution.

An_Image : Window_lo.File_Type;
Extract: String (1 .. 3);
Last : Natural;

begin
Window_lo.Get_Line (An_image, "Prompt string", Extract, Last);

RATIONAL 7/1/87 DIO-135

procedure GeLLine
package !lo.Window..Io

If Extract were instead declared as:

Extract: String (1 .. 10);
the returned string would be GHIJ?????? with the Last parameter equal to 4. The
? character means that its value cannot be depended upon.

References

type Designation

DIO-136 7/1/87 RATIONAL

constant Graphics
package !Io.Window_10

constant Graphics

Graphics: constant Character_Set .- 1;

Description

Defines a named constant for the graphics character set.

A complete description of the graphics character set is provided in the Rational
Terminal User's Manual.

RATIONAL 7/1/87 DIO-137

procedure Insert
package !lo. Window _10

procedure Insert

procedure Insert (File File_T~pe;
Item Character;
Image Font .- Normal;
Kind Designation .- Text) ;

procedure Insert (File File_T~pe;
Item String;
Image Font .- Normal;
Kind Designation .- Text) ;

Description

Inserts a character or string into the current line at the current cursor position.

The character at the current cursor position and all subsequent characters on that
line are shifted to the right. If the cursor is positioned beyond the last character on
a line, the Insert procedure will place the character or string in the image beginning
at the current cursor position and will fill the intervening space with blanks. In
every case, the actual cursor position is positioned after the last character in the
inserted string.

Note: To prevent unnecessary scrolling, the screen cursor (the actual cursor on
the screen) is not placed at the position of the image cursor but remains at the
original position before the insert. Multiple inserts will still work off the image
cursor position, placing the inserted characters in the image. The screen cursor can
be resynchronized with the actual cursor with a call to the Move.rCursor or the
Position..Cursor procedure.

Parameters

File: File_T~pe;
Specifies the handle for the image.

Item: Character;
Specifies the character to be inserted.

Item: String;
Specifies the string to be inserted.

Image: Font := Normal;
Specifies the desired font for display.

DIO-138 7/1/87 RATIONAL

procedure Insert
package !Io.Window _10

Kind: Designation := Text;
Specifies the desired designation of the display.

Errors

If the file handle is not open, the Ioc.Exceptions.Statusc Error exception is raised.

If the file handle is not open for output (with the OuLFile mode), the Ioc.Exceptions-
.Mode..Error exception is raised.

References

procedure Move..Cursor

procedure Positlou..Cursor

RATIONAL 7/1/87 DIO-139

function Is..Dpen
package !Io.Window _10

function Isc.Open

function Is_Open (File File_T~pe) return Boolean;

Description

Returns true if the file handle is open; otherwise, the function returns false.

Parameters

File: Flle_T~pe;
Specifies the handle for the image in question.

return Boolean;
Returns true if the file handle is open; otherwise, the function returns false.

DIO-140 7/1/87 RATIONAL

function JobcNumber
package !lo.Window _10

function Joh..Numbcr

function Job_Number return String;

Description

Returns a string representing the predefined field name Joh..Number for the banner
of a window.

This is useful for input to the SeLBanner procedure and the Reade.Banner function.

Example

returns the job number from the banner of A_Window.

References

function Reade.Banner

procedure SeLBanner

RATIONAL 7/1/87 DIO-141

function Jobc'I'ime
package !Io.Window.Jo

function Job_Time

function Job_Time return String;

Description

Returns a string representing the predefined field name Jobc'I'ime for the banner
of a window.

This is useful for input to the SeLBanner procedure and the Read..Banner function.

Example

returns the job time from the banner of A_Window.

References

function Reade.Banner

procedure SeLBanner

DIO-142 7/1/87 RATIONAL

function LasLLine
package !Io.Window_10

function Lastz.Line

function Last_Line (File File_Type) return Line_Number;

Description

Returns the number of the last line in the image.

If the image is empty (that is, contains no characters), the line number returned
from the LasLLine function is I.

Parameters

File: File_Type;
Specifies the handle for the image in question.

return Line_Number;
Returns the number of the last line in the image.

Errors

If the file handle is not open, the Ioc.Exceptions.Statua..Error exception is raised.

Example

One easy way to iterate through all the lines in an image is:

for Line_Number in 1 .. Window_lo.Last_Line (An_Image) loop
-- perform some operation on line Line_Number

end loop;

RATIONAL 7/1/87 DIO-143

function Llne..lmage
package !Io.Window _10

function Lina..Image

function Line_Image (File File_Type) return String;

Description

Returns the image of the line on which the cursor currently resides.

The string returned includes all characters in the line including trailing blanks but
not including a line terminator character. This function has higher performance
~han the GeLLine procedure and is generally preferred for extracting text from an
Image.

Parameters

File: File_Type;
Specifies the handle for the image in question.

return String;;
Returns the image of the line on which the cursor currently resides.

Errors

If the file handle is not open, the Io..Exceptions.Statua.Error exception is raised.

Example

One method of examining all lines in an image is:

for Line_Number in 1 .. Window_lo.Last_Line (An_Image) loop
Examine (Window_lo.Line_lmage (Line_Number));

end loop;

DIO-144 7/1/87 RATIONAL

function Line.Length
package lIo.Window_Io

function Line..Length

function Line_Length (File File_Type) return Count;

Description

Returns the number of characters in the line in which the cursor currently resides.

Parameters

File: File_Type;
Specifies the handle for the image in question.

return Count;
Returns the number of characters in the current line.

Errors

If the file handle is not open, the Ioc.Exceptions.Status..Error exception is raised.

RATIONAL 7/1/87 DIO-145

subtype Line..Number
package !Io.Window_10

subtype Lines.Number

subtype Line_Number is Positive;

Description

Defines the legal range for line numbers in an image.

DIO-146 7/1/87 RATIONAL

function Mode
package !Io.Window _10

function Mode

function Mode (File File_Type) return File_Mode;

Description

Returns the mode for which the specified file handle has been opened.

Parameters

File: File_Type;
Specifies the handle for the image in question.

return File_Mode;
Returns the mode for which the specified file handle has been opened.

Errors

H the file handle is not open, the Ioc.Exceptione.Statusc.Error exception is raised.

RATIONAL 7/1/87 DIO-147

procedure Moves.Cursor
package !lo. Wlndow..Jo

procedure Move..Cursor

procedure Move_Cursor (File
Delta_Lines
Delta_Columns
Offset

File_T~pe;
Integer;
Integer;

Natural .- 0);

Description

Repositions the cursor relative to its current position in the image.

Parameters

File: File_T~pe;
Specifies the handle for the image.

Delta_Lines: Integer;
Specifies the number of lines to move the cursor. The cursor is moved down for
positive numbers and up for negative numbers.

Delta_Columns: Integer;
Specifies the number of columns to move the cursor. The cursor is moved to the
right for positive numbers and to the left for negative numbers.

Offset : Natural := 0;
Specifies the position of the window relative to the cursor position. With a positive
offset, the top of the window is placed that number of lines above the new position
of the cursor. With an offset of 0, the cursor is made visible in the window using
the normal editing defaults.

Restrictions

If the number specified by the offset would place the cursor outside the window, the
window is positioned using normal editing defaults.

DIO-148 7/1/87 RATIONAL

procedure Mover.Cursor
package !Io.Window _10

Errors

If the file handle is not open, the Io..Exceptiona.Statua.Brror exception is raised.

If either the resulting line number or the column number of the new cursor position
is less than 1, the Io..Exceptions.Layoutc.Brror exception is raised.

RATIONAL 7/1/87 DIO-149

function Name
package !Io.Window_Io

function Name

function Name (File File_Type) return String;

Description

Returns the name of the image that was specified when the file handle was created
or opened.

Parameters

File: File_Type;
Specifies the handle of the image in question.

return String;
Returns the name of the image that was specified when the file handle was created
or opened.

Errors

If the file handle is not open, the Ioc.Exceptions.StatuacError exception is raised.

DIO-150 7/1/87 RATIONAL

procedure New_Line
package tlo. Window _10

procedure New_Line

procedure New_Line (File File_Type;
Lines Count .- 1);

Description

Inserts the specified number of lines after the current line.

If the cursor is positioned in the middle of a line of characters, a line terminator is
inserted, effectively breaking the line into two lines.

The cursor is positioned at the beginning of the line following the last inserted line.

Parameters

File: File_Type;
Specifies the handle for the image.

Lines : Count := 1;
Specifies the number of lines to be inserted.

Errors

If the file handle is not open, the Ioc.Exceptiona.Statusc.Error exception is raised.

If the file handle is not open for output (with the OuLFile mode), the Ic..Exceptions-
.Mode..Error exception is raised.

Example

This procedure is most commonly used after a call to the Insert procedure to ter-
minate the line:

Window_lo.lnsert (An_Image, "Some text forming a line");
Window_lo.New_Line (An_Image, 1);

RATIONAL 7/1/87 DIO-151

constant Normal
package lIo. Wlndow.Jo

constant Normal

Normal: constant Font ,- Font'(Plain, Vanilla};

Description

Defines a named constant for a font, selecting the normal settings for the character
set and attributes.

References

constant Plain

constant Vanilla

DIO-152 7/1/S7 RATIONAL

procedure Open
package !lo.Window _10

procedure Open

procedure Open (File In out Flle_Type;
Mode File_Mode .- Out_File;
Name String;
Form String .- •• II) ;

Descrtpflon

Opens a file handle for input or output with its corresponding image.

Images can be opened twice, once for input and once for output.

If no image has been created previously with the specified name, a new image is
created and a window containing the image will appear on the terminal screen. If
an image with the specified name has been created previously but has been closed,
the old image can be reopened. If an image is currently open with the specified
name and mode, a new image is created and displayed on the terminal screen.

Parameters

File: in out File_Type;
Specifies the handle for the opened image.

Mode: File_Mode := Out_File;
Specifies the access mode for which the image is to be used.

Name: String;
Specifies the name of the image to be created. This name will appear on the left
side of the banner of the window containing the image.

Form: String:= "";
Currently, the Form parameter, if specified, has no effect.

RATIONAL 7/1/87 DIO-153

proced ure Open
package !lo.Window_10

Example

Commonly, images are opened both for input and output:

Input_Window : Window_lo.File_Type;
Output_Window : Window_lo.File_Type;

begin
Window_I o. Open (I nput_Window, Window_I o. In_Fi l e , "WINDOW 10");
Window_lo.Open (OutpuLWindow, Window_lo.OuLFile, "WINDOW 10");

Note the use of two file handle objects, one for each mode.

References

procedure Create

DIO-154 7/1/87 RATIONAL

procedure Overwrite
package !Io.Window _10

procedure Overwrite

procedure Overwrite (File Fi Ie , Type;
Item Character;
Image Font ,- Normal;
Kind Designation ,- Text) ;

procedure Overwrite (File File_Type;
Item String;
Image Font ,- Normal;
Kind Designation , - Text) ;

Description

Replaces characters or strings in the current line beginning at the current cursor
position.

If the new string contains more characters than exist on the current line, the line
is extended to include all characters in the new string. If the cursor is positioned
beyond the last character on a line, the Overwrite procedure places the character or
string in the image beginning at the current cursor position and fills the intervening
space with blanks. In every case, the actual cursor is positioned in the image after
the last character in the overwritten string.

Note: To prevent unnecessary scrolling, the screen cursor (the actual cursor on
the screen) is not placed at the position of the image cursor but remains at the
original position before the overwrite. Multiple overwrites will still work off the
image cursor, placing the overwritten string in the image. The screen cursor can
be resynchronized with the actual cursor with a call to the Move.iCursor or the
Positionc.Oursor procedure.

Parameters

File: File_Type;
Specifies the handle for the image.

Item: Character;
Specifies the character over which to write the existing character.

Item: String;
Specifies the string over which to write the existing string.

RATIONAL 7/1/87 DIO-155

procedure Overwrite
package !lo. Window _10

Image: Font:= Normal;
Specifies the desired font for display.

Kind: Designation := Text;
Specifies the desired designation of the display.

Errors

If the file handle is not open, the Ioc.Exceptions.StatuscError exception is raised.

If the file handle is not open for output (with the OuLFile mode), the Ic..Exceptlons-
.Mode..Error exception is raised.

References

procedure Move.iCursor

procedure Positionc.Cursor

DIO-156 7/1/87 RATIONAL

constant Plain
package !Io.Window_10

constant Plain

Plain : constant Character_Set := 0;

DnerlptloD

Defines a named constant for the alphanumeric character set.

RATIONAL 7/1/87 DIO-157

procedure Poaition.Dursor
package !lo. Window _10

procedure Position..Cursor

procedure Position_Cursor (File
Line
Column
Offset

File_Type;
Line_Number .- Line_Number 'First;
Column_Number '- Column_Number 'First;
Natural .- 0);

Description

Places the cursor at the specified line and column.

If the new cursor position is beyond the last character on a line, the length of the
line is extended up to the new cursor position and the intervening space is filled
with blanks.

If the new cursor position is beyond the currently defined last line in the image, the
number of the last line in the image is updated to reflect the new cursor position.

If the new cursor position is outside the current window, the window is repositioned
relative to the new cursor position, either through specification of a positive offset
(defined below) or through the use of the default offset, with an orientation selected
by the Rational Editor.

Parameters

File: File_T~pe;
Specifies the handle for the desired image.

Line: Line_Number := Line_Number 'First;
Specifies the line on which the cursor should be positioned.

Column: Column_Number := Column_Number 'First;
Specifies the column on which the cursor should be positioned.

Offset : Natural := 0;
Specifies the position of the window relative to the cursor position. With a positive
offset, the top of the window is placed the specified number of lines above the new
position of the cursor. With an offset of 0, the cursor is made visible in the window
using the normal editing defaults.

DIO-158 7/1/87 RATIONAL

procedure PositloncCursor
package !Io.Window_10

Restrictions

If the number specified by the offset would place the cursor outside the window, the
window is positioned using normal editing defaults.

Errors

If the file handle is not open, the Ic..Exceptions.Statuec.Error exception is raised.

RATIONAL 7/1/87 DIO-159

subtype Positlve..Count
package !Io.Window_Io

subtype Positive..Oount

subtype Positive_Count is Count range 1 .. Count'Last;

Description

Defines the allowable range for cursor positions.

DIO-160 7/1/87 RATIONAL

function Read..Banner
package !Io.Window _10

function Read..Banner

function Read_Banner (File
Field_Name

File_Type;
String) return String;

Description

Returns the text residing in the specified field of the banner of the window.

Parameters

File: File_Type;
Specifies the handle for the image in question.

Field_Name: String;
Specifies the desired field name. Field names are of the form Fieldc.O, Fieldc l , ... ,
Field_9. All other values are ignored.

Field_O Reserved.
Fleld..I Corresponds to the job number.
Field_2 Corresponds to the start time of the job.
Field_3 ..9 Available to the user.

Currently, the fields for the job number and the job time also can be selected with
the corresponding Joh..Number and Job.c'I'ime functions.

return String;
Returns the text residing in the specified field of the banner of the window.

Errors

If the file handle is not open, the Ioc.Exceptions.Statua..Error exception is raised.

RATIONAL 7/1/87 DIO-16I

function Reade.Banner
package !Io.Window_10

References

function Job.iNumber

function Job_Time

procedure SeLBanner

DIO-162 7/1/87 RATIONAL

procedure Report-Cursor
package !Io.Window_10

procedure Reports.Cursor

procedure Report_Cursor (File
Line
Column

File_Type;
out Line_Number;
out Column_Number);

Description

Identifies the current position of the cursor in the image.

Parameters

F1le: File_T~pe;
Specifies the handle of the image in question.

Line: out Line_Number;
Specifies the number of the line on which the cursor resides.

Column: out Column_Number;
Specifies the number of the column on which the cursor resides.

Errors

If the file handle is not open, the Ioc.Exceptlone.Status..Brror exception is raised.

Example

This procedure is often useful for writing simple positioning utilities:
with Window_lo;
procedure End_Of_Line (Window: Window_lo.File_Type) lS

Current_Line Window_lo.Line_Number;
Current_Column : Window_lo.Column_Number;

begin
Window_lo.Report_Cursor (Window, Current_Line,

Current_Column) ;
Window_lo.Position_Cursor (Window, Current_Line,

Window_lo.Line_Length (Window));

RATIONAL 7/1/87 DIO-163

procedure Report .Location
package !Io.Window _10

procedure Rcport..Location

procedure Report_Location (File
Line
Column

File_Type;
out Line_Number;
out Column_Number);

Description

Reports the location on the terminal screen of the upper-left border of the window
containing the specified image.

The upper-left corner of the terminal screen is line I, column 1.

Parameters

File: File_Type;
Specifies the handle for the image.

Line: out Line_Number;
Specifies the number of the line on the terminal screen on which the upper-left
corner of the window resides.

Column: out Column_Number;
Specifies the number of the column on the terminal screen on which the upper-left
corner of the window resides.

Errors

If the file handle is not open, the Io..Exceptlons.Statua.Brror exception is raised.

DIO-164 7/1/87 RATIONAL

procedure Report-Origin
package !Io.Window_10

procedure Reports.Origin

procedure Report_Origin (File
Line
Column

File_Type;
out Line_Number;
out Column_Number);

Description

Reports the location of the upper-left corner of the window in the specified image.

Parameters

File: File_Type;
Specifies the handle of the image.

Line: out Line_Number;
~pecifies the line number of the upper-left corner of the window in the specified
Image.

Column out Column_Number;
Specifies the column number of the upper-left corner of the window in the specified
image.

Errors

If the file handle is not open, the Ioc.Exceptlons.Statua.Error exception is raised.

RATIONAL 7/1/87 DIO-165

procedure Report-Size
package !Io.Window _10

procedure Report..Size

procedure Report_Size (File
Lines
Columns

File_T~pe;
out Positive_Count;
out Positive_Count);

Description

Reports the number of lines and columns in a window.

Essentially, this procedure reports the amount of space available in a window. The
size of the image is unrelated to this data. The number of lines in an image is
reported by the LasLLine function.

Parameters

File: File_T~pe;
Specifies the handle of the window in question.

Lines : out Positive_Count;
Specifies the number of lines in the window.

Columns: out Positive_Count;
Specifies the number of columns in the window.

Errors

If the file handle is not open, the Io..Exceptione.Statue..Error exception is raised.

DIO-166 7/1/87 RATIONAL

procedure Reporf..Siae
package !Io. Window _10

Example

This procedure can be useful for ensuring that the window will never scroll, which
may occur if characters are written outside the available size of the window:

with Window_lo;
procedure Check_Insert (Window

Item
Image
Kind

Window_lo.File_Type;
String;
Window_lo. Font;
Window_lo.Designation) 1S

Number_Of_Lines
Number_Of_Columns

: Window_lo.Line_Number;
: Window_lo.Column_Number;

Current_Line : Window_lo.Line_Number;
Current_Column : Window_lo.Column_Number;

begin
Window_lo.Report_Cursor (Window, Current_Lines,

Current_Columns);
Number_Of_Lines,
Number_Of_Columns);

if Current_Column + Item'Size > Number_Of_Lines then
raise Constraint_Error;

else
Window_lo.lnsert (Window, Item, Image, Kind);

end if;

(Window,

References

function LasLLine

RATIONAL 7/1/87 DIO-167

procedure SeLBanner
package !lo.Window _10

procedure Set..Banner

procedure Set_Banner (FileField_Name
Value

File_T!:Pf!;
String;
String) ;

Desc:ription

Substitutes a new image for a particular field name in the banner of a window.

Parameters

File: File_Type;
Specifies the handle for the window.

Field_Name : String;
Specifies the desired field name. Field names are of the form Field_O, Fleld..I, ... ,
Field_9. All other values are ignored.

Field_O Reserved.
Field..I Corresponds to the job number.
Field_2 Corresponds to the start time of the job.
Field_3 ..9 Available to the user.

Currently, the fields for the job number and the job time also can be selected with
the corresponding Joh..Number and Jobc'I'ime functions.

Value: String;
Specifies the new field image.

Error.

U the file handle is not open, the Icc.Exceptlone.Statua..Errcr exception is raised.

Example

SeLBanner (An_Image, "Field_3", "Some string");

DI0-168 7/1/17 RATIONAL

procedure Set-Banner
package !lo. Window _10

ReCerences

function Joh..Number

function Job.rTime

RATIONAL 7/1/87 DIO-169

constant Vanilla
package !Io.Wlndow..Io

constant Vanilla

Vanilla: constant Attribute .- (others => False);

Description

Defines a named constant for all attribute fields set to false.

DIO-170 7/1/87 RATIONAL

package Raw

This package allows programs to capture raw input from the terminal keyboard.

Keystrokes can be considered the basic unit of data from the user. Instead of
sending keystroke input to the Rational Editor, a program can capture keystrokes
directly and interpret them as desired. When keystrokes are taken from the raw
terminal stream, they are not automatically echoed to the terminal. This allows
an application using these facilities to be extremely flexible in its response to input
from the user.

There is only one raw keystroke stream per terminal port. Streams are not available
on a per-window basis. Only connected jobs can take input from the keyboard.
When a job is disconnected, keystroke input is redirected to the Rational Editor.

RATIONAL 7/1/87 DIO-l71

procedure Close
package !Io.Window..Io.Raw

procedure Close

procedure Close (Stream
Flush_Pending_lnput

in out Stream_T~pe;
Boolean .- False);

Description

Disables the program's access to keystrokes from the keyboard and, if requested,
discards any remaining characters in the buffer.

Subsequent keystrokes are directed to the Rational Editor.

Parameters

Stream: In out Stream_T~pe;
Specifies the handle for the keyboard character stream.

Flush_PendIng_Input : Boolean:= False;
Specifies whether any remaining characters currently in the stream should be purged
from the stream. If Flushc.Pendingc.Input is false, a subsequent attempt to open
the stream would find any pending input characters still available in the stream.
If FlushcPending.Jnput is true, any additional characters originally in the stream
would not be available on a subsequent attempt to open the stream.

Errors

If the specified stream is not currently open, the Ioc.Exceptions.Statusc Error ex-
ception is raised.

DIO-172 7/1/87 RATIONAL

procedure Close
package !Io.Window_Io.Raw

Example

Because there is no way to tell whether or not the character stream is open, it is a
good idea to maintain a convention of always keeping the stream either opened or
closed across calls to other subprograms. This will ensure that keystrokes are not
requested from a closed stream or that an attempt is made to reopen an already
opened stream.

Character_Stream : Raw.Stream_Type
One_Key : Raw.Key;

begin
Raw.Open (Character_Stream);
loop

Raw.Get (Character_Stream, One_Key);
if One_Key = ... then

Raw.Close (Character_Stream);
Process (One_Key);
Raw.Open (Character_Stream);

else
Raw.Close (Character_Stream);
exit;

end if;
end loop;

RATIONAL 7/1/87 DIO-173

function Convert
package !Io.Window.ilo.Raw

function Convert

function Convert (C Character) return Simple_Key;

Description

Returns the corresponding simple key for all characters.

Parameters

C : Character;
Specifies the character in question.

return Simple_Key;
Returns the simple key for the specified character.

DIO-174 7/1/87 RATIONAL

function Convert
package !Io.Window..Io.Raw

function Convert

function Convert (K Simple_Key) return Character;

Description

Returns the corresponding character for a given simple key.

Parameters

K : Simple_Key;
Specifies the simple key in question.

return Character;
Returns the character corresponding to the specified simple key.

Example

This function is often used to find the corresponding character for a simple key:
A_Key: Raw.Key;

begin
if A_Key in Raw.Simple_Key then

case Raw.Convert (A_Key) is
when 'A' => ... ;

end case;

RATIONAL 7/1/87 DIO-175

procedure Disconnect
package !Io.Window_Io.Raw

procedure Disconnect

procedure Disconnect (Stream in out Stream_Type);

Description

Frees the user's keyboard and returns input to the Rational Editor.

The stream remains open, allowing the job to wait for input if the user decides to
reconnect to the job.

Parameters

Stream: In out Stream_Type;
Specifies the handle for the stream.

DIO-176 7/1/87 RATIONAL

procedure Get
package !Io.Window.Jo.Raw

procedure Get

procedure Get (Stream Stream_T~pe;
Item out Key);

procedure Get (Stream Stream_Type;
Item out Key_String);

Description

Retrieves a key or series of keys from the stream.

If there are no pending keys in the stream, or not enough keys to fill the desired
string, execution of the program is suspended until the user enters the required
number of keystrokes at the keyboard.

Parameters

Stream: Stream_Type;
Specifies the handle for the stream.

Item: out Key;
Specifies the requested key.

Item: out Key_String;
Specifies the requested series of keys.

Errors

If the handle for the stream is not open, the Io..Exceptions.Statua.Error exception
is raised.

RATIONAL 7/1/87 DIO-177

procedure Get
package !Io.Window_Io.Raw

Example

One method of using this procedure is:

A_Key : Raw.Key;
Quit_Key : constant Raw.Key :=

The_Stream: Raw.Stream_Type;
begin

Raw.Open (The_Stream);
loopRaw.Get (The_Stream, A_Key);

if A_Key = ... then

... ,

elsif A_Key = ... then
elsif A_Key = Quit_Key then

Raw.Close (The_Stream);
exit;

else
end loop;

DIO-178 7/1/87 RATIONAL

function Image
package !lo. Window _Io.Raw

function Image

function Image (For_Key
On_Terminal

Key;
Terminal) return String;

Description

Returns the corresponding image for a key on a particular terminal type as defined
in the Environment package !Machine.Editor _Data. Visiblc..Keynames.

Parameters

For_Key: Key;
Specifies the key in question.

On_Terminal: Terminal;
Specifies the particular terminal for which the key should be interpreted.

The following terminal names are currently supported:

• Rational
• VT100

return String;
Returns the name of the specified key for the specified terminal.

RATIONAL 7/1/87 DIO-179

function Image
package !lo. Window _lo.Raw

Example

This function is especially effective when used in conjunction with the System..Utili-
ties.TerminaL Type function (SMU). This function returns a string image for the
currently connected terminal.

LKey : Raw. Key;
Character_Stream : Raw. Stream_Type;

begin
Raw.Get (Stream => Character_Stream, Key => A_Key);
if Raw. Image (A_key,

System_Utilities.TerminaLType) = "FI" then
elsif Raw. Image (A_key,

System_Utilities.TerminaLType) = "F2" then
end if;

DIO-180 7/1/87 RATIONAL

type Key
package !Io.Window_Io.Raw

type Key

type Key is new Natural range 0 .. 1023;

Description

Defines the possible range of keys.

RATIONAL 7/1/87 DIO-181

type Key _String
package !Io.Window..Io.Raw

type KeycString

t~pe Key_String 1S array (Positive range <» of Key;

Description

Defines an unconstrained array type for use in holding a series of keys.

DIO-182 7/1/87 RATIONAL

procedure Open
package !Io.Window _Io.Raw

procedure Open

procedure Open (Stream In out Stream_Type);

Description

Disconnects keystroke input from the Rational Editor and opens the keystroke
stream for use by the currently executing job.

Parameters

Stream: In out Stream_Type;
Specifies the handle for the stream.

Errors

If the stream is already open, the Statua.Error exception is raised.

If the caller is not the current job-that is, the user or program interrupted with a
Job.Disconnect (SJM)-the Ic..Exceptiona.Statusc Error exception is raised.

Example

One method of using this procedure is:

A_Key: Raw.Key;
Quit_Key : constant Raw.Key :=

The_Stream: Raw. Stream_Type;
begin

Raw.Open (The_Stream);
loop

Raw.Get (The_Stream, A_Key);
if A_Key = ... then
elsif A_Key = ... then
elsif A_Key = Quit_Key then

Raw.Close (The_Stream);
exit;

else
end loop;

RATIONAL 7/1/87 DIO-183

subtype Simple..Key
package !Io.Window..Io.Raw

subtype Simple..Key

subt~pe 5imple_Ke~ is Ke~ range 0 .. 127;

Description

Defines the allowable range for simple keys.

Simple keys correspond to the 128 Ascn characters as defined in PT, package Stan-
dard. The value of the simple keys corresponds to the 'Pos attribute of the Character
type.

DIO-184 7/1/87 RATIONAL

type Stream., Type
package !Io.Window_Io.Raw

type Stream..Type

type Stream_Type is private;

Description

Defines a handle for access to the keystroke stream.

RATIONAL 7/1/87 DIO-185

subtype Terminal
package !lo.Window..lo.Raw

subtype Terminal

subtype Terminal is String;

Description

Defines a subtype string for holding terminal names.

The following terminal names are currently supported:

• Rational
• VT100

DIO-186 7/1/87 RATIONAL

exception Unknown..Key
package !Io.Window.Jo.Raw

exception Unknowru.Key

Unknown_Key : exception;

Description

Defines an exception raised by the Value function if the specified key name does
not have a corresponding key for the specified terminal.

References

function Value

RATIONAL 7/1/87 DIO-187

function Value
package !Io.Window _lo.Raw

function Value

function Value (For_Key_Name
On_Terminal

String;
Terminal) return Key;

Description

Returns the corresponding key for a key name defined in package !Machine.Editor-
_Data. Visible..Keynamee.

Parameters

For_Key_Name String;
Specifies the string image of the key.

On_Terminal: Terminal;
Specifies the terminal for which the key mapping is desired.

return Key;
Returns the key corresponding to the key name.

Errors

If the specified key name does not have a corresponding key for the specified ter-
minal, the Unknown..Key exception (in this package) is raised.

DIO-188 7/1/87 RATIONAL

function Value
package !Io.Wlndow..lo.Raw

Example

The following code could be used to define named constants for the arrow keys:

with S~stem_Utilities,Raw;
package Ke~_Definitions is

Up constant Raw.Ke~ := Raw.Value ("UP",
S~stem_Utilities.Terminal_T~pe);

constant Raw.K~ := Raw.Value ("DOWN",
S~stem_Utilities.Terminal_T~pe);

constant Raw.Ke~ := Raw.Value ("LEFT",
S~stem_Utilities.Terminal_T~pe);

constant Raw.Ke~ := Raw.Value ("RIGHT",
S~stem_Utilities.Terminal_T~pe);

Down
Left
Right

end Define_K~s;

RATIONAL 7/1/87 DIO-189

procedure Value
package !Io.Window _Io.Raw

procedure Value

procedure Value (For_Key_Name
On_Terminal
Result
Found

String;
Terminal;

out Key;
out Boolean);

Description

Provides the corresponding key for a key name defined in package !Machine.Editor-
_Data. Visibla..Keynames.

Parameters

For_Key_Name String;
Specifies the string image of the key.

On_Terminal : Terminal;
Specifies the terminal for which the key mapping is desired.

Result: out Key;
Specifies the key corresponding to the key name.

Found : out Boolean;
Specifies whether the value in the Result parameter is valid (that is, whether the
specified key name has a corresponding key for the specified terminal).

DIO-190 7/1/87 RATIONAL

procedure Value
package !Io.Window .Io.Raw

Example

The following code could be used to define named constants for the arrow keys:

package Define_Keys is
Up Raw.Key;
Down : Raw. Key;
Left : Raw.Key;
Right : Raw.Key;

end Define_Keys;
package body Define_Keys IS;

Found : Boolean;
Not_Successful : exception;
procedure Assert_Success (Found
begin

if not Found then
raise Not_Successful;

end if;
end Assert_Success;

Boolean) is

begin
Raw. Value ("UP",

System_Utilities. Terminal_Type, Up, Found);
Assert_Success (Found);
Raw. Value ("DOWN",

System_Utilities.Terminal_Type, Down, Found);
Assert_Success (Found);
Raw. Value ("LEFT",

System_Utilities.Terminal_Type, Left, Found);
Assert_Success (Found);
Raw. Value ("R IGHT" ,

System_Utilities.Terminal_Type, Right, Found);
Assert_Success (Found);

exception
when Not_Successful =>

end Define_Keys;

end Raw;

RATIONAL 7/1/87 DIO-191

package !Io.Window_Io

end Windowc.Io;

DIO-192 1/1/87 RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

llo.Device..Independentc.Io package

!lo.TerminaL Specific package

!Machine.Devices. TerminaLn

!Machine. Edi tor _Dat a.Vlslblec.Keynamee
Window_lo package
Window_lo.Image function
Window _lo.Raw. Value function
Window _lo.Raw. Value procedure

DIO-3

DIO-3

DIO-3

DIO-B5
DIO-179
DIO-188
DIO-190

A

access control. DIO-5

Access_Error
lo_Exceptions. Uee..Error exception

add, lee Insert

add to end, lee Append

alphanumeric character set

DIO-37

DIO-82, DIO-157

Already _OpeIl-Error
lo_Exceptions.Status_Error exception

Amblguoua..N ame..Error
lo_Exceptions.N ame_Error exception

Append procedure
Polymorphic_Sequential_Io.Append

ASCII characters

DIO-36

DIO-35

DIO-40

DIO-l, DIO-85

RATIONAL 7/1/87 DIO-193

Ascii.Ff

Ascii.Lf

Attribute type
Window _lo.Attribute

banner
Window _lo.Read_Banner function
Window _lo.Set-Banner procedure

Bell procedure
Window_lo.Bell . .

Bold character attribute

Capacity _Error
10_Exceptions. Use..Errcr exception

Char_At function
Window _10.Char_At

character
attributes
deletion of

Window_lo.Delete procedure
sets .

Window_lo.Graphics constant
Window_lo.Plain constant

Cheracter..Set type
Window _10.Oharacterc.Set

Oheckc.Outc.Error
Ioc.Exceptions. Use..Error exception

Class..Error
Ic..Exceptione. Use..Error exception

Close procedure
Directc.Io.Close
Polymorphicc.Sequential..Io. Close
Sequentlalc.Io.Close
Window_lo.Close
Window _lo.Raw .Close

Column..Error
lo_Exceptions.Layout_Error exception

Oolumn..Number subtype
Window _10.Oolumn..Number

DIO-194

DIO-6

DIO-6

DIO-I0~

B

DIO-161
DIO-168

f)IO-I0.

DIO-102

c

DIO-31

DIO-I06

DIO-I02

DIO-1l4
DIO-80, DIO-82

DIO-131
DIO-151

DIO-I0S

DIO-31

DIO-31

. DIO-8
DIO-.l
DIO-6B

DIO-I07
DIO-17B

DIO-33

DIO-I08

7/1/87 RATIONAL

columns .

command input
Window _Io.Raw .Key_String type

concurrency

conversion, see a180 Image functions for types of particular interest,
Value functions for types of particular interest

Convert function
Window_Io.Raw.Convert

count
Dlrectc.lo.Posltlve..Count subtype
Window_Io.Positive_Count subtype

Count subtype
Window_Io.Count

Count type
DirecLIo. Count

Create procedure
Directc.Io.Create

Form function
Polymorphic_SequentiaLIo.Create

Form function
SequentiaLIo.Create

Form function
Window_Io.Create .

Form function

current cursor position .

current index
DirecLIo.End-OLFile function

cursor
current position
moving .

Window _Io.Move_Cursor procedure
positioning

Window_Io.Position_Cursor procedure
reporting

Window_Io.Report_Cursor procedure

D

Data-Error exception
DirecLIo generic package

Read procedure
Io_Exceptions.Data-Error
Polymorphic..Sequentiak.Io package

RATIONAL 7/1/87

010-79

DIO-182

. 010-5

DIO-17-4, DIO-175

010-23
010-160

DIO-l09

. DIO-9

DIO-l0
010-17
DIO--42
010-48
DIO-69
010-70

DIO-ll0
DIO-124

010-79, 010-81

010-14

010--79, 010-81
010-80

010-148

010-158

010-163

010-24
DIO-90
010-39

DIO-195

Data..Error exception, continued
Polymorphic_SequentiaLlo.Operations package

Element., Type generic formal type
Read procedure . .
Write procedure .

SequentiaLlo package
Element., Type generic formal type
Read procedure

<DEFAULT> .

default profile

Default..Fcnt function
Window _lo.DefauILF ont

DIO-56
DIO-57
DIO-58

DI0-66
DIO-76

DIO-6

DIO-6

oto-tti
Delete procedure

Dlrecn..Io.Delete
Polymorphic_SequentiaLlo.Delete
SequentiaLlo.Delete
Window_lo.Delete

D/O-12
DIO-·U
DIO-6S

DIO-119, DIO-114

DeletecLines procedure
Window _lo.Delete_Lines

Designation type
Window..Io.Deslgnatlon .

DIO-llS

DIO-116

Devlce..Datac.Error
Ic..Exceptlons.Devlcec.Error exception

Device..Error exception
Ioc.Exceptions.Devicec.Error

devices

DIO-31

DirecLlo generic package

directory error, see Nonexlstentc.Directory..Brror

Disconnect procedure
Windowc.Io.Raw.Disconnect . DIO-176

DIO-91

DIO-2

DIO-7

display, see Defaulr..Font

display image, se« Designation, Font

E

editor windows
Window_Io package DIO-79

Element., Type generic formal type
Dlrecr..Io.Element., Type
Polymorphic_Sequential_Io.Operations.Element_ Type
Sequentlak.Io.Element.; Type .

DIO-19
DIO-S6
DIO-66

DIO-196 7/1/87 RATIONAL

elements . DIo-7

End..Error exception
Direcu..Io generic package

Read procedure
Ioc.Exceptions.End..Error
Polymorphic_SequentiaLIo.Operations package

Read procedure . .
SequentiaLIo package

Read procedure . .

DIO-24
DIO-9B

DIO-57

DIO-76

End_OLFile function
DirecLlo.End_OLFile
Polymorphic_SequentiaLlo.End_OLFile
Sequentlalc.Io.Endc.Of..File
Window _lo.End_OLFile

end-of-file terminator

End..Ofc Line function
Window _lo.End_OLLine

DIO-14
DIO-45
DIO-67

DIO-118

. DIO-6

enumerations
Window _lo.Designation

Prompt enumeration
Protected enumeration
Text enumeration .

Window _lo.File_Mode
In_File enumeration
Out_File enumeration

EOF, see End_Error, End_OLFile

EOL, se« End_OLLine

DIO-1l6
DIO-1l6
DIO-1l6

DIO-120
DIO-l20

error
Ioc.Exceptions.Datac.Error exception

Inputc.Syntaxc.Error
InpuL Values.Error
OutpuL Type..Error
Output., Value..Error

Ioc.Exceptions.Device..Error exception
DevicecData..Error . . .
Illegalc.Heapc.Accessc.Error
Illegak.Reference..Error
PagecNonexistentc.Error .
Write_ To..Read., Only _Page_Error

Io..Exceptions.Layoutc.Error exception
Oolumn.iError . . .
lllegaLPosition-Error
Item..LengthcError

Icc.Exceptlons.Mode..Brror exception
Illegak.Operation..Onc.lnflle
IllegaL Operation., On., Out file

DIO-30
DIO-30
DIO-30
DIO-30

DIO-31
DIO-31
DIO-31
DIO-31
DIO-31

DIO-33
DIO-33
DIO-33

DIO-34
DIO-34

RATIONAL 7/1/87 DIO-197

error, continued
Ic..Exceptions.N ame..Error exception

Ambiguoua..Namec.Error ..
IllformedcN arne_Error. . .
Nonexistentc.Directory _Error
Nonexistentc.ObjectcError .
Nonexistent., Version_Error.

Ioc.Exceptlons.Statua..Error exception
Already..OpencError
Notc.Open..Error .

Ioc.Exceptions. Uae..Error exception
Accesec.Error . .
Capacity..Error .
Check..Outc.Error
Clasa..Error
FrosencError . .
Line..Pagec.Lengthc.Error
Lock..Brror
Reset-Error
Unsupportedc Error . . .

error, see also Bell, UnknowncKey

error file . . .

010-35
010-35
010-35
010-35
010-35

010-36
010-36

010-37
010-37
010-37
010-37
010-37
010-37
010-37
010-37
010-37

error reactions

010-3

010-6

010-6

010-6

exception information, input/output

exceptions
Ic..Exceptions package

Datac Error exception
Device..Error exception
EndcError exception
Layout-Error exception
Mode..Error exception .
N eme..Error exception .
Statusc Error exception
Uee..Error exception. .

Window..Io.Raw package
Unknown..Key exception

010-30
010-31
010-32
010-33
010-34
010-35
010-36
010-37

010-187

F

Faint character attribute 010-102

010-1file
association

Direct-Io.Close procedure
Polymorphic..Sequential..Io. Close procedure
SequentiaLlo.Close procedure
Window_lo.Close procedure

010-8
010-41
010-62

010-107

DIO-198 7/1/87 RATIONAL

file, continued
create

Direct..Io.Create procedure
Polymorphic_SequentiaLlo.Create procedure
SequentiaLlo. Create procedure

delete
DirecLlo.Delete procedure . .
Polymorphic_SequentiaLlo.Delete procedure
SequentiaLlo.Delete procedure

end of
DirecLlo.End_OLFile function
Polymorphic_SequentiaLlo.End_OLFile function
Sequentialc.Io.Endc.Ofc.File function
Window_lo.End_OLFile function

handles
index

DirecLlo package
length

DirecLlo.Size function
name .

Direct..Io.N ame function
Polymorphicc.Sequential..Io.N ame function
SequentiaLlo.N ame function

organization
overwrite capacity

DirecLlo. Write procedure
pointer

DirecLlo.SeLIndex procedure
position

DirecLlo.SeLIndex procedure
read, with different types of data

Polymorphlc..Sequentiak.Io package
read-only access

DirecLlo.File_Mode type
Polymorphic_SequentiaLlo.File_Mode type
Sequentialc.lo.File.iMode type

read/write access
Direct_Io.File-Mode type

safe type
DirecLlo package
Polymorphlc..Sequential..Io package
SequentiaLlo package . .

size
DirecLlo.End_ OLFile function
Directc.Io.Sise function

storage
temporary

DirecLlo.Create procedure
Polymorphicc.Sequentiak.Io. Create procedure
SequentiaLlo.Create procedure

DIO-I0
nro-sa
DI0-63

010-12
DIO-44
DI0-65

DIO-14
DIO-45
DI0-67

DIO-118
DIO-4, DIO-79

· DIO-7

DIO-27
· DIO-5
DIO-21
010-51
DIo-73

· DIO-7

DIO-28

DIO-26

DIO-26

DIO-39

010-15
010-46
010-68

010-15
· 010-4
· 010-7

010-39
010-61

010-14
010-27

· 010-2

010-10
010-.42
010-63

RATIONAL 7/1/87 DIO-199

file, continued
write, with different types of data

Polymorphic..Sequentlal..Io package
write-only access

DirecLIo.File_Mode type
Polymorphic_SequentiaLIo.File_Mode type
Sequential..Io.Filec.Mode type

file handle, get, see Open

file, read, see also Get, Getc.Line

File_Mode type
Dlrect..Io.Ftlec.Mode
Polymorphic_Sequential_Io.File_Mode
Sequentlak.Io.File..Mode
Window_Io.File_Mode .

DIO-39

DIO-15
DIO-46
DI0-68

D/O-15
D/O--46
D/O-68

D/o-120

File., Type type
Direct_lo.File_ Type
Polymorphic_Sequential_lo.File_ Type
Sequentlak.Io.File., Type
Window_Io.File_ Type

DIO-7, D/O-16
DIO-39, D/O--47
DI0-61, D/O-69

DIO-79, D/O-121

filename, null
Dlrecr..Io.Create procedure

filenames

DIO-I0

. DIO-5

DIO-80, DIO-82
DIO-82

font ...
declarations
default

Window_Io.DefauILFont function. DIO-ll1

Font type
Window_Io.Font . .

FonLAt function
Window_lo.FonLAt

D/O-12S

form

D/O-l23

DIO-80, DIO-89

Form function
Direct..Io.Form
Polymorphlcc.Sequentialc.Io.F orm
SequentiaLlo.Form .
Window_Io.Form

Frozenc.Error
Ioc.Exceptions. Use..Error exception

D/O-17
D/O--48
D/O-70

D/o-l1!.4

DIO-37

DIO-200 7/1/87 RATIONAL

generic formals . .

Get procedure
Windowc.lo.Get
Window_lo.Raw.Get

Get_Line function
Window _10.Get..Llne

Getc.Line procedure
Window _lo.Get-Line

Line..Image function

graphics character set .

Graphics constant
Window _10.Graphics

graphics utilities

hardware error, see Devlce..Data..Error

horizontal layout

Illegek.Heapc.Accessc.Error
10_Exceptions.Device_Error exception

Illegak.Operatlonc.Onc.Infile
Ic..Exceptlons.Modec.Error exception

Illegal., Operation., On., Out tile
10_Exceptions.Mode_Error exception

Illegalc.Poaiticn..Error
Io..Exceptlons.Layoutc Error exception

Illegat..Referencec.Datac Error
Io..Exceptlons .Device..Error exception

Illformedz Name..Error
Ioc.Exceptlons.N ame..Error exception

image
coordinates
create

Window_lo.Create procedure
delete

Window_lo.Delete procedure

RATIONAL 7/1/87

G
010-94

DIO-125, DIO-127
.... DIO-177

DIO-191

DIO-194
010-144

010-82, 010-88, 010-137

DIO-197

010-88

H

. 010-93, 010-94

010-31

010-34

010-34

010-33

010-31

010-35

010-79, 010-81
010-81

010-110

010-113

DIO-201

image, continued
line

Window _Io.Line_Image function
name

Window_Io.Name function .
read-only access

Window_Io.File-Mode type
write-only access

Window _Io.File-Mode type

Image function
Window_lo.Raw.Image

image, display, see Designation, Font

In_File enumeration
Window_Io.File_Mode type .

index
Directc.Io.Sef..Index procedure

Index function
DlrectcIo.Index

input file.

input/output to windows
Window_Io package

Input-Syntax-Error
Io_Exceptions.Data-Error exception

Input., Value..Error
Io_Exceptions.Data-Error exception

Insert procedure
Window _10. Insert

Designation type
Newc.Line procedure

Inverse character attribute

Ioc.Exceptions package

Is_Open function
Directc.Ic.Ia..Open
Polymorphic_SequentiaLIo.Is_Open
Sequentialc.Io.Ia..Open
Window_Io.ls_Open

Item..LengthcError
IocExceptlcns.Leyout.Brror exception

job

DIO-202

010-144

010-150

010-120

010-120

DIO-179

DIO-120

010-26

DIO-18

. DIO-3

DIO-79

DIO-30

DIO-30

DIO-198
DIO-l17
DIO-151

DIO-I02

DIO-6, DIO-1!9

DIO-19
DIO-49
DIO-71

DIO-140

DlO-33

J
................ DIO-5

7/1/87 RATIONAL

Joh..Number function
Window _lo.J obc.Number

Set_Banner procedure

job response profile . . .

Jobc.Time function
Window_lo.Job_ Time

Set-Banner procedure

DIO-141
010-168

. 010-6

DIO-142
010-168

K

key ...
names
redefine
sequence

Window _lo.Raw .Stream., Type type
simple

Window_lo.Raw.Simple_Key subtype

key concepts

010-83
010-85
010-80

010-185

010-184

. DIO-l

Key type
Window _lo.Raw .Key

Key_String type
Window _lo.Raw .Key _String

keyboard input

keystrokes
program's access to

Window..Io.Raw.Olose procedure
read, typed by users

Window_Io.Raw package

DIO-181

DIO-182

010-85

010-172

010-171

l

Last-Line function
Window _Io.Last-Line

Report-Size procedure

Layout-Error exception
Ioc.Exceptions.Layouu..Error
Window_Io package

Move..Oursor procedure

DIO-143
010-166

DIO-33

length
file

Direct-Io.Size function
line

Window _Io.Line_Length function

length error, lee Item..Lengthc.Error

010-149

010-79

010-27

010-145

RATIONAL 7/1/87 DIO-203

line
delete

Window _lo.Delete_Lines procedure
end of

Wlndcw..Ic.End.Dfc.Line function
get

Window_lo.Get_Line function
Window _10.Geu..Line procedure

last
WlndowcIc.Last..Line function .

new
Window _lo.N ew_Line procedure

terminator (Ascii.Lf)

Lines.Image function
Window _lo.Line_lmage

Get_Line function .

Line..Length function
Window _lo.Line_Length

Line..Number subtype
Window _Io.Line_Number

Linec.Page..Lengthc.Error
Ioc.Exceptions.Usec.Error exception

location
Windowc.Io.Report..Location procedure

Lock..Error
Ioc.Exceptiona.Usec.Error exception . .

menu .
definition
disconnecting from
selection

merging files, see Append

Mode function
Direcr..Io.Mode
Polymorphic_Sequential_lo.Mode
SequentiaLIo.Mode
Window _lo.Mode

Mode..Error exception
Dlrect..Io generic package

End_Of-File function
Read procedure . . .
Write procedure

Io_Exceptions.Mode_Error

DIO-204

DIo-19

DIO-115

DIO-119

DIO-131
DIO-134

DIO-143

DIO-151
. DIO-6

DIO-LU
DIO-131

DIO-L46

DIO-31

DIO-164

DIO-31

M

DIO-80, DIO-93
DIO-95

DIO-I00
DIO-94

DIO-20
DIO-50
DIO-72

DIO-147

DIO-14
DIO-24
DIO-28
DIO-94

7/1/87 RATIONAL

Mode..Error exception, continued
Polymcrphic..Sequentialc.Io package

End-Of-File function
PolymorphiccSequentialc.lo. Operations package

Read procedure . .
Write procedure

SequentiaLIo package
End_Of_File function
Read procedure .
Write procedure

Window_Io package
Delete procedure
Deletec.Lines procedure
Get procedure
Get-Line function .
Get-Line procedure
Insert procedure
New_Line procedure
Overwrite procedure .

mode, file
Direct-Io.File_Mode type
Polymorphic_SequentiaLIo.File_Mode type
Sequentialc.Io.EilecMode type
Window_Io.File_Mode type

Mova..Cursor procedure
Window _Io.Move_Cursor

Insert procedure
Overwrite procedure .

N

name error, see Amblguoua..NamecError, Illtormedc.Name..Error

Name function
Direct..Io.Name .
Polymorphic_SequentiaLIo.Name
Sequential..Io.N ame
Window _Io.N ame

Name..Error exception
Direct..Io generic package

Create procedure . .
Open procedure

Ic..Exceptlons.N ame..Error
PolymorphlccSequentiak.Io package

Append procedure
Create procedure
Open procedure

RATIONAL 7/1/87

010-45

DIO-57
DIO-58

010-67
010-76
010-78

010-114
010-115

010-126, 010-128
010-132
010-135
010-139
010-151
010-156

010-15
010-46
010-68

010-120

DIO-148
010-138
010-155

DIO-Sl
DIO-51
DIO-79

DIO-150

010-11
010-22
DIO-95

010-40
010-43
DIO-52

DIO-205

Neme..Error exception, continued
SequentiaLlo package

Create procedure
Open procedure

naming files

New..Line procedure
Window _lo.N ew_Line

Nonexis tent-Directory _Error
Ioc.Exceptions.N ame..Error exception

Nonexistentc.Object.cError
Ioc.Excepfions.N ame..Error exception

Nonexis tent- Verslon..Error
Ic..Exceptions.N amecError exception

Normal constant
Window _lo.N ormal

NotcOpenc.Error
IocExceptione.Statuec.Error exception

number
column

Windowc.Io.Oolumnc Number subtype
job

Window_Io.Job_Number function.
line

Window_Io.Line_Number subtype

o
object error, see Nonexlstenf..ObjectcBrrcr

open
Directc.Io.Isc.Open function
Polymorpbic_SequentiaLlo.Is_Open function
Sequentiak.Io.Ia..Open function
Window_lo.ls_Open function

open error, see Already. Openc.Error, Not_Open_Error

Open procedure
Direct.iIo. Open

Form function
Polymorphic..Sequentiak.Io.Open

Form function
SequentlalcIo.Open

Form function
Window _Io.Open

Form function
Window _lo.Raw .Open

DIO-206

DI0-64
DIO-75

. DIO-5

DIO-151

DIO-35

DIO-35

DIO-35

DIO-152

010-36

DIO-I0B

010-141

010-146

DIO-19
DIO-49
DIO-71

010-140

DIO-f2
DIO-17
DIO-5f
DI0-48
DIO-74
DIO-70

DIO-159
DIO-124
DIO-189

7/1/87 RATIONAL

Operations generic package
Polymorphic_SequentiaLlo.Operations

origin
Window_lo.Report_Origin procedure

Out-File enumeration
Window_lo.File-Mode type

output file

Output., Type_Error
Io..Exceptions.Data.Brror exception

Output., Value_Error
lo_Exceptions.Data-Error exception

Overwrite procedure
Window _10. Overwrite

DIO-39, DID-55

DIO-165

DIO-120

. DIO-3

DIO-30

DIO-30

DID-155

p

page length error, lee Linec.Pagec.LengthcError

page terminator (Ascii.Ff)

Page_N onexistentc.Error
Ioc.Exceptlons.DevicecError exception

. DIO-6

DIO-31

Plain constant
Window _lo.Plain

polymorphic

polymorphic file

PolymcrphiccSequentlalc.Io package

position, lee OolumncNumber, Index, Set_Index

Poaltion..Curaor procedure
Window_Io.PositioO-Cursor

Insert procedure
Overwrite procedure .

PosltlvecCount subtype
Directc.Ic.Poeitive..Oount
Window _Io.Positive_Count

DID-157

DIO-l

DIO-7

DID-a9

DID-158
DIO-138
DIO-155

<PROFILE>

prompt

Prompt enumeration
Window_lo.Designation type

Prompt field
Window_Io package

DID-fa
DID-160

. DIO-6

DIO-87

DIO-1l6

DIO-83

RATIONAL 7/1/87 DIO-207

Protected enumeration
Window _lo.Designation type

Protected field
Window_lo package

DIO-1l6

DIO-83

put, se« Write

R
RapidcBlink character attribute

Raw package
Window_lo.Raw .

DIO-102

DIO-171

read
files with different types of data

Polymorphlcc.Sequentlak.lo package
raw keystrokes typed by users

Window _lo.Raw package

read, see also Get, Get-Line

Read procedure
Directc.Io.Read .
Polymorphic_SequentiaLlo.Operations.Read
SequentiaLlo.Read

read-only access
Direct_Io.File_Mode type
Polymorphic_SequentiaLlo.File-Mode type
Sequential.clo.Filec.Mode type
Window _lo.File_Mode type

read/write access
Directc.Io.File.iMode type

DIO-39

DIO-l71

DIO-1!.4
DIO-57
DIO-76

DIO-15
DI0-46
DI0-68

DIO-120

DIO-15

read/write to windows
Window _10 package

ReadcBanner function
Window _lo.Read_Banner

Joh..Number function
J ob., Time function

DIO-79

DIO-161
DIO-l·41
DIO-142

remove, see Delete

Report-Cursor procedure
Window _lo.Report_Cursor

ReportcLocation procedure
Window _lo.Report_Location

Reports.Origin procedure
Window_lo.Report-Origin

DIO-169

DIO-164

DIO-165

DIO-208 7/1/87 RATIONAL

Report-Size procedure
Window _Io.Report_Size

Reset procedure
Dlrect..Io.Reset
Polymorphic_Sequential_Io.Reset
SequentiaLIo.Reset

Reset-Error
IocExceptlons. Use..Errcr exception

safe type
Direct.rIo package
PolymorphlccSequentiak.Io package
SequentiaLIo package .

screen
control of . .
editing . . .
input/output

SequentiaLIo generic package

<SESSION>

session response profile

set position, let Set_Index

Set-Banner procedure
Window _Io.Set_Banner

Job..Number function
J ob., Time function

Set_Index procedure
Directc.Io.Set..Index

Simple..Key subtype
Window _Io.Raw .Slmple..Key

size
Window _Io.Report-Size procedure

Size function
Direct..Io.Size

Slow..Blink character attribute

special names .

standard file .

RATIONAL 7/1/87

DIO-166

DIO-25
DIO-59
DIO-77

DIO-37

s
· DIO-4
· DIO-7

DIO-39
DI0-61

DIO-91
DIO-83

· DIO-3

DIO-61

DIO-6

DIO-6

DIO-168
DIO-I41
DIO-142

DIO-26

DIO-184

010-166

DIO-27

DIO-I02

DIO-5

DlO-3

DIO-209

Statua..Error exception
DirecLlo generic package

Close procedure .
Create procedure
Delete procedure
Form function
Mode function
Name function
Open procedure
Reset procedure

lo_Exceptions.Status_Error
Polymcrphlc..Sequentlal..Io package

Append procedure
Close procedure .
Create procedure .
Delete procedure
End_OLFile function
Form function
Mode function
Name function
Open procedure
Reset procedure

Polymorphic_SequentiaLIo.Operations package
Read procedure . .

SequentiaLlo package
Close procedure .
Create procedure .
Delete procedure
End.rOfc F'ile function
Form function
Mode function
Name function
Open procedure
Read procedure .
Reset procedure

Window_Io package
Char_At function
Close procedure .
Create procedure
Delete procedure
Delete..Lines procedure
End_OLFile function
End_OLLine function
Font_At function
Form function
Get procedure
Get_Line function
Getc.Line procedure
Insert procedure
LasLLine function

. DIO-8
DIO-ll
DIO-12
DIO-17
DIO-20
DIO-21
DIO-22
DIO-25
DIO-S6

DI0-40
nro-sr
DIO-43
DIO-44
DIO-45
DIO-48
DIO-50
DIO-51
DIO-52
DIO-53

DIO-57

DIO~2
DIO~.
DIO~5
DIO~7
DIO-70
DIO-72
DIO-73
DIO-75
DIO-76
DIO-77

DIO-106
DIO-107
DIO-II0

DIO-113, DIO-114
DIO-llS
DIO-118
DIO-119
DIO-123
DIO-124

DIO-126, DIO-128
DIO-132
DIO-135
DIO-139
DIO-143

DIO-210 7/1/87 RATIONAL

Statua..Error exception, continued
Window _10 package, continued

Line..Image {unction
Llne..Length {unction
Mode {unction
Move..Oursor procedure
Name {unction
New..Line procedure
Overwrite procedure .
Poaltion..Ouraor procedure
Read-Banner {unction . .
Reports.Cursor procedure
Report..Locafion procedure
Report..Origln procedure
Reporr..Sise procedure
Set-Banner procedure

Window_lo.Raw package
Close procedure .
Get procedure
Open procedure

Stream., Type type
Window _lo.Raw .Stream., Type

string
Window _lo.Raw .Key _String type

structural editing

synchronization .

syntax error, lee Inpur..Syntax..Brror

DIO-144
DIO-145
DIO-147
010-149
DIO-150
DIO-151
010-156
010-159
010-161
010-163
DIO-164
010-165
010-166
DIO-168

DIO-172
010-177
DIO-183

D/O-185

010-182

DIO-89, DIO-93

. . . . DIO-5

T

tapes . DIO-2

temporary file
Direct-Io.Create procedure
Polymorphicc.Sequential..Io. Create procedure
SequentiaLlo.Create procedure

terminal
access
control of . .
input/output
keyboard input
options

Window_lo.Bell procedure
type .

Terminal subtype
Window_Io.Raw.Terminal. .

010-10
DI0-42
DI0-63

010-80
DIO-91

. 010-3
010-80

DIO-I04
DIO-86

DIO-186

RATIONAL 7/1/87 DIO-211

terminators . 010-6

Text enumeration
Window_lo.Designation type

Text field
Window_Io package

text files

010-116

010-83

. 010-1

throwaway, see Delete

time
job

Window_Io.Job_Time function 010-142

type
element

Dlrecn..lo.Element., Type generic formal type
Polymorphic_SequentiaLlo.Operations.ElemenL Type
SequentiaLlo.ElemenL Type generic formal type

file
Direct..Io.File.; Type type .
Polymorphic_SequentiaLlo.File_ Type type
Sequentiak.Io.File., Type type
Window _lo.File_ Type type

stream
Window_Io.Raw.Stream_Type type

type error, ,ee Outputc'Type..Error

. DIO-13
generic formal type 010-56

010-66

010-16
010-47
010-69

010-122

010-185

u
Underscore character attribute

Unknown..Key exception
Window _lo.Raw. UnknowncKey

Value function

Unsupported..Error
lo_Exceptions.Use_Error exception

Use..Error exception
DirecLIo generic package

Create procedure .
Delete procedure
ElemenL Type type
Open procedure
Reset procedure
Write procedure

Io..Exceptions. Use_Error

010-102

DIO-187
010-188

010-37

. 010-7
010-11
010-12
010-13
010-22
010-25
010-28

010-2, 010-3, 010-5, DIO-37

DIO-212 7/1/87 RATIONAL

Usee.Error exception, continued
Polymorphic..Sequentiak.Io package

Append procedure
Create procedure
Delete procedure
Open procedure
Reset procedure

Polymorphic_SequentiaLlo.Operations package
Write procedure

SequentiaLlo package
Create procedure
Delete procedure
Open procedure
Reset procedure
Write procedure

DIO-40
DIO-43
DIO-44
DIO-52
DIO-53

DIO-58
DI0-61
DI0-64
DI0-65
DIO-75
DIO-77
DIO-78

v
value error, see Inputc.Value..Error, Outputc.Value..Error

Value function
Window _lo.Raw. Value DIO-188

Value procedure
Window _lo.Raw. Value

Vanilla constant
Window_lo. Vanilla . .

DIO-190

DIO-170

version error, see Nonexistent., Version-Error

vertical layout DIO-93, DIO-94

w
wildcard! DIO-6

DIO-2, DIO-79, DIO-81window
attributes

Window_lo.Job_Number function
Window_lo.Job_Time function .
Window_Io.Last-Line function .
Window_lo.Line_lmage function
Window_lo.Line_Length function
Window_Io.Line_Number subtype
Window_Io.Rea(LBanner function
Window_Io.Report_Cursor procedure
Window_Io.Report_Location procedure
Window_Io.Report_Origin procedure
Window _Io.Report_Size procedure
Window _Io.Set_Banner procedure

utilities

DIO-141
DIO-142
DIO-143
DIO-144
DIO-145
DIO-146
DIO-161
DIO-163
DIO-164
DIO-165
DIO-166
DIO-168

DIO-86

RATIONAL 7/1/87 DIO-213

Window_Io package

write
files with different types of data

Polymorphicc.Sequentialc.Io package

Write procedure
DirecLlo. Write
Polymorphic_SequentiaLIo.Operations. Write
SequentiaLIo. Write

write-only access
Dlrectclo.Pile..Mode type
Polymorphic_SequentiaLlo.File_Mode type
Sequentialc.Ic.FilecMode type .
Window _lo.File_Mode type

Write_ To_Read_Only _Page_Error
Ioc.Exceptione.Devicec.Error exception

D/O-79

DIO-39

D/O-f!8
D/O-58
D/O-78

DIO-15
DI0-46
DI0-68

DIO-120

DIO-31

DIO-214 7/1/87 RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

6 months or less _ 1 year _ 3 years or more _

How much experience have you had with the Ada programming language?

6 months or less _ 1 year _ 3 years or more _

Name (optional), Date, _
Company _
Add~ss _
City State ZIP Code _

Please return this form to: Publications Department
Rational
1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, Data and Device InpuVOutput (010), 8001A-27

