Rational Environment
Reference Manual

System Management Utilities (SMU)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-30
Rev. 0.0, November 1985
Rev. 1.0, April 1986

Rev. 2.0, July 1986
Rev. 3.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation o assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).
DEC, VAX, VMS, and VT100 are trademarks of Digital Equipment Corporation.
IBM is a registered trademark of International Business Machines Corporation.

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

SMU-ii et RATIONAL

Contents

How to Use ThisBook xiii
Key Concepts 1
Naming Objectso 1
Special Nameso 2
Special Valueso 0oL 2
Error Reactionso Lo 2
Parameter Placeholders 3
Wildcardso 3
The Wildcard # 3
The Wildcarde 3
The Wildcard 7o 4
The Wildcard 77 4
Substitution Characters 4
The Substitution Character# 4
The Substitution Charactere 4
The Substitution Character? 5
The Substitution Character?? 5
Special Charactersin Names 5
The Special Character! 5
The Special Character~ 5
The Special Character$ 6
The Special Character 8¢ 6
The Special Character % 6
The Special Character—- 6
The Special Character. .. 7
The Special Character\ 7
The Special Character * 7
The Special Characters || 7

RATIONAL /17 SMU-iii

The Special Characters {}

The Options Parameter
Syntax Rules .
Boolean Options: A Spec:al Case .
Literals in Options: A Special Case

© © 00 00 0

package Daemon1
The Daemon and Its Clients11
When ClientsRan13

procedure Collect14
subtype Collection_Priority15
type Condition_Class16
function Get_Access_List_ Compactlon T W 4
function Get_Consistency_Checking 18
function Get_Log-Threshold19
procedure Get_Size . . . O 0
procedure Get_Snapshot. Settmgs 3 |
function Get_Warning_Interval22
function In_Progress23
function Interval24
function Last_Run25
type Log-Threshold26
constant Major.Clients27
function Next_Scheduled28
procedure Quiesce29
procedure Run 031
procedure Schedule33
procedure Set_Access_List_Compaction35
procedure Set_Consistency_Checking36
procedure Set_Log_Threshod37
procedure Set_Priority38
procedure Show_Log_Thresholds39
procedure Show_Snapshot_Settings40
procedure Snapshot_Finish_Message 41
procedure Snapshot_Start_Message 42
procedure Snapshot_Warning-Message43
procedure Status . . . R
procedure Threshold_.Warnmgs Y

SMU-iv e RATIONAL

subtype Volume

..... ... 47

procedure Warmng_Interval e 48

end Daemon
package Message e . 49
procedure Send Lo oL L 50
procedure Send_All e e e . . 51

end Message
package Operator 53
Access Controlo oL 53
Access Control and Groups 54
Username Groups 54
Special Groups . e e e e 54
Operator Capability S 54
Privileged Mode 54
Public and Network_Public Groups C e e e e 54
User-Defined Groups 55
ACLs for New Username Home Worlds . 55
Parameter Placeholders . 55
Response Profiles . i . 55
procedure Add- To_Group 56
procedure Archive_On_Shutdown 58
procedure Cancel_Shutdown 59
procedure Change_Password . . 60
procedure Create_Group 61
procedure Create_Session 63
procedure Create_User . 64
procedure Delete_Group L. 66
procedure Delete_User 67
procedure Disable_Terminal 68
procedure Disk_Space 69
procedure Display_Group 70
procedure Enable_Privileges 72
procedure Enable_Terminal 73
procedure Explain_Crash 74
procedure Force_Logoff 75
function Get_Archive_On_Shutdown T6
RATIONAL 7/1/er SMU-v

function Get_Login_Limit 77

function Get_Shutdown_Interval 78
procedure Internal System_Diagnosis79
procedure Limit_Login 80
function Privileged-Mode 81
procedure Remove_From_Group 82
procedure Set_System_Time 84
procedure Show_Login.Limit 86
procedure Show_Shutdown_Settings 87
procedure Shutdown, . . 88
procedure Shutdown_Warning90

end Operator

package Queue e e . 91
procedure Addo .. 93
constant All_ Classes 96
constant All_Spooler_Devices N ¥ §
procedure Cancel e e e e . . 98
procedure Classes e e e 99
subtype Class_Name Ce e 100
procedure Create 101
procedure Defanlt S {1)
procedure Destroy 104
procedure Devices 106
procedure Disable 107
procedure Display C e e e oo 109
procedure Enable S 5) |
procedure Kill_Print_Spooler A B V1
procedure Print 000000 113
procedure Print_Version 118
procedure Register Ce e e 123
procedure Remove R ¥1:1
procedure Restart_Print_Spooler 127
procedure Unregister 128

end Queue

SMU-vi | s RATIONAL

package Schedulero 131

Jobs . . L o s e e e e e e 132
Job Numberso 132
Foreground and Background Jobs 132
JobKinds oL 132
JobStates Lo L 133

Scheduling Review Interval0 0oL 134

CPU Schedulingo 134
Foreground Jobso o oL 135

RunLoad00 135
Number of Withheld Jobs 136
Foreground Budget 136
Background Jobs 0oL Lo L. 136
Background Job Streamso 0000 137
Job Stream Time Limits 137
Number of Runnable Jobs on a Stream 138
Strict Stream Policy L. 138

Memory Scheduling00 139
Page Withdrawal 140

Disk Scheduling 140

subtype Cpu_Priority oL 141
procedure Disable 142
function Disk_Waits 143
procedure Display 144
procedure Enable 147
function Enabledo 148
function Geto 149
function Get_Cpu_Priority 150
function Get_Cpu_Time_Used 151
procedure Get_Disk_Wait_Load 152
function Get_Job_Attribute 153
function Get_Job_Descriptor 154
function Get_Job_Kind 155
function Get_Job_State 156
procedure Get_Run_-Queue_Load 157
procedure Get_Withheld_Task_Load 158
procedure Get_Wsl Limits 159
type Job_Descriptor 160

RATIONAL 71/ SMU-vii

subtypeJob_Ido 0L 164

typeJob_Kind o000 165
type Job_Stateo L 167
subtype Load-Factor 168
subtype Milliseconds00 169
procedure Set L. 170
CPU Scheduling 0oL 171
Memory Schedulingo o000 171
Memory Scheduling (Continued) 172
Disk Schedulingo 172
Background Job Streams00 L 172
procedure Set_Job_Attribute 179
procedure Set_Wsl_Limits 180
procedure State 182
generic procedure Traverse_Job_Descriptors 185
generic formal procedure Put oL L 186
procedure Traverse_Job_Descriptors 187
procedure Use_Default_Wsl_Limits 188
function Working_Set_Size 189

end Scheduler
package System_Backup 191
procedure Backup Lo 192
procedure History 194
subtypeldo o000 195
typeKindo 196

end System.Backup

package System.Utilitltes 197
constant All_Bad_Blocks 198
type Bad_Block_Kinds00 199
function Bad_Block_List 200
type Block-List 201
subtype Byte_String oo oL 202
subtype Character_Bits_Range 203
function Character_Size 204
function Cpuo Lo oL 205
function Detach_On_Disconnect 206

SMU-viii e RATIONAL

function Disconnect_On_Disconnect 207
function Disconnect_On_Failed_Login 208
function Disconnect_On_Logoff 209
function Done 210
function Done21
function Doneo Lo 212
function Elapsed 213
function Enabled 214
function Error-Name 215
function Flow_Control 216
function Get_Board_Info 218
function Get_Job 219
procedure Get_Page_Counts 220
function Get_Session 222
function Home_Library 223
function Image 224
procedureInit 225
procedureImit 226
procedureInit 0000 L. 227
function Input_-Name 228
function Input_Count 229
function Input_Rate 23
subtype Job.Id o0 231
type Job_Iterator 232
function Job_Name 233
function Last_Login 234
function Last_Logout 235
function Log_Failed_Logins 236
function Logged-In 237
function Login_Disabled 238
function Logoff_On_Disconnect 239
constant Manufacturers_Bad_Blocks 240
procedure Next 241
procedure Next 242
procedure Next 243
subtype Object 244
function Output_Count 245
function Output_-Name 246

RATIONAL 7/y/er SMU-ix

function Output_Rate 247

function Parity 248
type Parity_Kind00 00000 249
subtype Porto 250
function Priority 251
function Receive_Flow_Control 252
function Receive_Xon_Xoff_ Bytes 254
function Receive_Xon_Xoff_Characters 255
constant Retargeted_Blocks 256
function Session oo . . 257
subtype Session-Id oL . 258
type Session_Iterator 259
function Session_Name 260
procedure Set-Page_Limit Coe ... 261
function Stop_Bits C e e e . . 263
subtype Stop_Bits_Range C e e e 264
function System_Boot_Configuration 265
function System _Up_Time 266
subtype Tapeo L . . 267
function Tape_-Name 268
function Terminal 269
type Terminal_Iterator 271
function Terminal_Name 272
function Terminal Type 273
function User 274
function User_.Name 4 £
function Value 276
function Value Y 4 §
function Value 4 £ -
subtype Version 279
function Xon-Xoff_Bytes T £ 10
function Xon_Xoff_Characters 281
end System-Utilities
package Tape e .. 283
procedure stplay_Tape e e 284
exception Error . . . 1
procedure Examme_Labels 1 ¥ 4

SMU-x 7/1/87 QATIONAL

procedure Format_Tape 288

procedure Read 289
procedure Read-Mt 201
procedure Rewind 0. 202
procedure Unload 293
procedure Write 204
procedure Write .Mt 298

end Tape
package Terminal 209
VT100 Terminal Support . . . e e e e e s 299
Creating Your Own Terminal Type < (1
subtype Character_Bits_Range 302
renamed function Current 303
subtype Parity_Kind 304
subtype Port 305
procedure Set_Character_Slze e e e e oo ... 306
procedure Set_Detach_On.Disconnect 307
procedure Set_Disconnect_On_Disconnect 308
procedure Set_Disconnect_On_Failed_Login 309
procedure Set_Disconnect_On_Logoff 310
procedure Set_Flow_Control 311
procedure Set_Input_Rate 312
procedure Set_Log-Failed_Logins 313
procedure Set_Login_Disabled 314
procedure Set_Logoff_On_Disconnect 315
procedure Set_Output_Rate 316
procedure Set_Parity 317
procedure Set_Receive_Flow_ Control C e e 318
procedure Set_Receive_Xon_Xoff_Bytes 320
procedure Set_Receive_Xon_Xoff_Characters 321
procedure Set_Stop_Bits 322
procedure Set_Terminal Type 323
procedure Set_Xon_Xoff_Bytes 324
procedure Set_Xon_Xoff_Characters 325
procedure Settings 32
subtype Stop_Bits_Range 327

R’AT'ONAL 7/1/87 SMU-xi

SMU—-xii

s RATIONAL

How to Use This Book

The System Management Utilities SSMU) book of the Rational Environment Ref-
erence Manual contains reference information describing commands and tools pro-
vided by the Rational Environment™ that are useful primarily for system man-
agers. This reference information is intended for users who are familiar with the

Environment and Ada® programming. Note that the user-oriented commands in
packages Operator and Queue are also documented in the Session and Job Manage-
ment (SIM) book of the Rational Environment Reference Manual.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary

Keymap

Master Index

Editing Images (EI)

Editing Specific Types (EST)
Debugging (DEB)

Session and Job Management (SIM)
Library Management (LM)

Text Input/Output (TI10)

Data and Device Input/Output (DIO)
String Tools (ST)

Programming Tools (PT)

System Management Utilities (SMU)
Project Management (PM)

(-]

= (O 00 =3 O UV

— O

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 71/er SMU-xiii

Organization of the
Rational Environment Reference Manual

}: 11 volumes containing 14 books
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book
%ﬂ‘

f
E
{

uuuuu

RATIONAL

RATIONAL

Rational Environment

o Reference
Manual

. / Key concepts
El—— Book index

Topical section

/ / Unit section

(IS sedA], ogroedg Bunipy |

A sample book

The Reference Manual provides reference information organiged to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
gfor example, Rational Networking—TCP/IP or Rational Target Build Utility) are
ocumented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are
documented.

¢ Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

s Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Contents: The table of contents provides a complete list of all the units in the
book and their reference entries.

¢ Key Concepts section: Most of the books contain a section describing key
concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under
String_Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/sr SMU-xv

¢ Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

¢ Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Environment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation

and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

SMU-xvi e RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions

raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathnarae to the Common-
.Definition procedure—for example, Definition ("!Commands.Library"};. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library”};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

¢ Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL /17 SMU-xvii

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

SMU-xviii 7/1/87 EATIONAL

Key Concepts

System Management Utilities (SMU) documents the following packages, which are
useful to system managers:

¢ Daemon: Utilities for maintaining system efficiency.

o Message: Utilities for sending messages.

¢ Operator: Commands for creating and deleting user accounts and groups.

¢ Queue: Commands for setting up and querying the print spooler.

o Scheduler: Utilities for fine-tuning system response.

¢ System_Backup: Commands for performing system backups.

¢ System_Utilities: Commands for gaining access to system characteristics that are
set by packages !Commands.Job (documented in SIM), Operator, and Terminal.

e Tape: Commands for performing tape operations.
¢ Terminal: Commands for configuring, enabling, and disOpabling terminal ports.

Naming Objects

Many commands in the Environment require a way of naming objects in the En-
vironment to move those objects or to perform operations on those objects. The
Environment uses two forms of naming: Ada names and string names. Ada names
are used in program units or when executing a command. String names are typically
used in the parameters to Environment commands.

Ada names are used to call an Environment command in a Command window or
to reference an Ada unit in a program. Ada names are the extended Ada names as
defined in the Reference Manual for the Ada Programming Language. Ada names
are used to reference Ada units only. Files, worlds, directories, and other non-Ada
units in the Environment cannot be referenced with an Ada name.

String names are used as arguments to commands. These strings are very similar
to Ada names but can be used to reference any object in the Environment. Also,
string names have five important additions: spectal names, parameter placeholders,
wildcards, specsal characters, and attributes. The ability to create a set of names
using simple set notations and to substitute characters also exists.

'?ATIONAL 7/1/87 SMU-1

Key Concepts

Special Names

Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow you to specify selections and
designations without providing a pathname. Anywhere that a string name can be
used, special names can be used. They take the form “<special name>"®. Special
name specifies the text, object, region, or activity, as described below:

"<SELECTION>" References the highlighted object if the cursor is located in a
highlighted area.

“<REG | ON>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlighted area in the window.

"< IMAGE>" If the cursor is in a highlighted area, this special name refer-

ences the highlighted object. If the cursor is not located in
the highlighted area, this special name references the image
on which the cursor is located.

"KTEXT>" References the highlighted text in the image in the window.

"CACTIVITY>" References the default activity. If an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Special names are used as default parameter values to many operations. The user
can replace them with another special name or other form of string name, as ac-

cepted by that operation.

Special Values

Many operations in the Environment have a Response parameter that specifies how
the command should respond to errors.

Error Reactions
When errors are discovered in a command, the system can respond by:

s Ignoring the error and trying to continue.
¢ Issuing a warning message and trying to continue.
¢ Raising an exception and abandoning the operation.

For each job, the Rational Environment maintains a default action for commands
in package !Tools.Profile (documented in SIM) to take if an error occurs. There are
commands to specify and display the default error reaction for a job. Regardless of
the default error reaction, any error reaction can be specified for any command.

The Environment has special values used as parameters to commands for which
profile it should use when responding to errors in a command. These are "<PRO-
FILE>", "<SESSION>", and "<DEFAULT>", which refer, respectively, to the job response
profile, the session response profile, and the default profile returned by the Pro-
file.Default_Profile function. See SIM, package Profile, for further information on

profiles.

SMU-2 7/1/87 RATIONAL

Key Concepts

Parameter Placeholders

Many Environment commands use parameter placeholders as default parameter val-
ues. They take the form “>>parameter placeholder<<?”. This naming convention
is used, as its name suggests, as a placeholder indicating the type of string name
that must be entered to replace it. Executing a command containing a parameter
placeholder results in an error. Parameter placeholders include:

">>FILE NAME<K"
“>>SOURCE NAMES<LK™
“>>SWITCHLKL"
"“>>SWITCH FILE<LL"
">>SWITCHESLL"
">>WORLD NAMES<K"

For example, an operation that has the ">>FILE NAME<<" parameter placeholder
requires a filename, such as “!Users.John.File_1”.

Wildecards

Wildcards allow for both the abbreviation of names and the specifying of several
objects with one name. The wildcards are: pound sign (#), at sign (e), question
mark (?), and double question mark (?7).

The Wildeard #

The pound sign (#) represents any single identifier character in a name, including
the underscore (=) and the single quote (’). It can be used several times within a
single name. For example, F### will match the name Food.

Any wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory 'Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.####y, can be created to refer to the first two of them.

The Wildcard @

The at sign (@) represents zero or more identifier characters in a name, including
the underscore (—) and the single quote (’) It does not match any subunits of Ada
units. It can be used several times within a single name. For example, the name
'Users.Fred.Food can be written !Ue.e.Food if that abbreviation is unambiguous.

This wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.e, can be created to refer to all three of them.

This wildcard can be combined with the special characters, discussed in the next
section, to create very short names that represent sets of objects ir the current
context. As before, if there are three Ada units in the current context called Larry,
Curly, and Moe, the string @ can be used to represent all three Ada units, but it
would not include their subunits.

RATIONAL /17 SMU-3

Key Concepts

The Wildcard ?

The question mark (?) represents zero or more components in a name, which are not
worlds or objects contained by those worlds. For example, the name !Users.Stooges?
represents the Ada units called Larry, Curly, and Moe and any of their subunits.

Also note that the periods before and after the wildcard are optional. For example,
the name A.7.B is equivalent to the name A7B.

The Wildcard 1?

The double question mark (??) represents zero or more components in a name,
including worlds or objects contained by those worlds. For example, the name
'Users?? represents the home worlds of all users and the contents of those worlds;
1Users.Bill represents everything in his home world, including worlds and the objects
within those worlds. As another example, consider that “!??” matches all objects
in the directory system on a given machine.

Note that the periods before and after the wildcard are optional. For example, the
name A.77.B is equivalent to the name A77B.

Substitution Characters

Similar to the way in which wildcard characters can be used to specify a source
group of objects, substitution characters can be used to create target names from
gource names.

The substitution characters and their definitions are described below. Note that
if a substitution character is encountered after all segments/wildcards have been
exhausted, the characters are replaced by the null string. If the character # or 7 is
replaced by the null string, an immediately following period (.) is also elided from
the resulting string.

The Substitution Character #

The pound sign (#) is replaced by the next complete segment in a name. For
example, if there are Ada units in the world !Users.Stooges called Larry, Curly,
and Moe, and the user wants to copy them into !Users.Stooges.New_World, the
user could build the target name parameter (from the !Users.Stooges source name
parameter) using substitution characters as follows: !#.#.New_World.#.

The Substitutlon Character @

The at sign () is replaced by the portion of the current segment that is matched by
a wildcard in the source name. If there is more than one wildcard in the segment, a
separate e is needed in the target to match each one. If the current segment has no
wildcards, the next character that is followed by any of the special (not wildcard)
characters covered in this section is not eligible as the source of the substitution.
(For the purpose of this matching, e, #, 7, and 77 are considered to be wildcards.)

For example, there is a world called !Users.Gzc containing files File_1 through
File.50. The user wants to rename these objects My_File_1 through My_File_50.
The source name parameter would be “!Users.Gzc.File_e”. The target name pa-
rameter, using substitution parameters, would be “!#.#.My_File_e”.

SMU-4 7/1/87 RATIONAI_

Key Concepts

The Substlitution Character ?

The question mark (?) is replaced by successive full segments until the segment
for a world is encountered. For example, to copy everything in a world up through
the next-level world !Users.Mary to !Users.John, the source string would be {Users-
Mary?? and the target string would be !Users.John?.

The Substitution Character ??

The double question mark (?7) is replaced by full segments, including worlds. In
the example in the previous paragraph, the target string !Users.John?? would copy
everything in all subworlds.

Special Characters in Names

Special characters can be used in names to specify either relative or absolute con-
texts or to specify indirect files of names. These special characters apply to names
used throughout the Environment.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character of exclamation (!), caret (-),
dollar sign (8), double dollar sign ($$), percent (%), underscore (), period (.),
backslash (\S, or grave (') causes an explicit interpretation of the remainder of the
name as described below.

Character pairs are also used to enclose a name and to give that name an additional
meaning. Character pairs are brackets ([]} and braces ({}), which are also described
below.

The Special Character !

The exclamation mark (!) specifies that the context for resolving the remainder of
the name should be set to the root of the directory system. This creates a fully
qualified name. This character represents the root of the library system in any
context.

The Special Character ~

The caret (-) specifies that the context should be set to the immediately enclosing
object. This climbs the hierarchy of objects and eventually reaches the root of
the directory system. This prefix can be used repeatedly to define the context to
be several units above the current context. The parent object of the root of the
directory system is itself.

A special use of this character occurs in combination with a bracketed name. A
name component of the form -[some_unit] resolves to the closest containing object
whose simple name is Some_Unit. Brackets normally are used for creating sets of
objects.

The caret can also be used as a shorthand method for referring to objects in a
parent unit. For example, if the current context is 'Users.Pete, another user named
Joe can be referred to as !Users.Joe or simply ~Joe.

RAT'ONAL 7/1/87 SMU-5

Key Concepts

The Speclal Character §

The dollar sign ($) specifies that the context should be get to the immediately
enclosing library. A library is either a directory or a world. If the current context
is a library, this character has no effect.

A special use of this character occurs in combination with a bracketed name. A name
component of the form $[some_library| resolves to the closest containing library
whose simple name is Some_Library.

The Special Character $$

The double dollar sign ($$) specifies that the context should be set to the immedi-
ately enclosing world. This is more restrictive than the single dollar sign ($), which
is either a world or a directory. If the current context is a world, this character has

no effect.

A special use of this character occurs in combination with a bracketed name. A
name component of the form $$/some_world] resolves to the closest containing world
whose simple name is Some_World.

The Special Character %

The percent (%), used only in the Rational Debugger, can be used only as the first
character of a name. It specifies that the next name component is a task name. Task
names are either string names assigned to tasks by calls to the !Commands.Debug-
.Set_Task_Name or !Tools.Debug_Tools.Set_Task_Name procedure or task num-
bers assigned by the Environment. The {Commands.Debug.Task_Display procedure
lists all tasks and their names and numbers.

The components of a name that follow the task name are interpreted as objects
declared in the named task. If the task name is followed by _n (where n is a
number), then the name refers to a stack frame of the named task. Names of stack
frames are further discussed in “The Special Character _”, below.

The Special Character -

The underscore (-) is interpreted as an indirect file prefix when used in some En-
vironment commands. If the first character after the underscore is an alphabetic
character, then it is assumed to be the first character of the name of a file that
contains other names. This provides a way of building lists of objects and referring
to that list in a name. It must also be used when specifying an activity file as an

indirect file.

The underscore character is also interpreted as a stack frame prefix when used in
the Rational Debugger. If the value of an object declared in a subprogram is to
be named, then the frame on the run-time stack that contains an activation of
that subprogram must be named. Renaming is done using the notation “_frame
number”. Stack frames are numbered for each task starting at the top with 1. Thus,
-4 refers to frame number 4 (fourth frame from the top). Frames are alternately
numbered from the bottom using negative numbers.

SMU-6 7/1/87 RAT'ONAL

Key Concepis

The Speclal Character .

The period (.) is used both as a name component separator and as a name prefix.
As a separator, it is used just as in Ada names to separate components of a name.
For example, in the name Commands.Ada, the period separates the fwo components

of the name.

As a prefix character, the period specifies that the first component of the name is a
library unit name. This is used only in the Rational Debugger. A second component
of the name would be an object declared in the named library unit.

The Special Character \

The backslash (\) specifies that the next name component be evaluated in the
current searchlist. For example, a name such as Larry would be evaluated in the
current context. However, a name such as \Larry would be evaluated in each of the
contexts of the searchlist in turn until all occurrences of the name Larry are found
in those contexts. If more than one occurrence is found, a menu is displayed.

More information about searchlists can be found in Session and Job Management
(sIM).

The Speclal Character *

The grave (*) is used to evaluate names using the current context and the set of
links associated with the current context. The grave evaluates the name as if it
were the name of an Ada unit in a wsth clause of a unit in the library that contains
the current context. For example, the name *Moe resolves to an Ada unit called
Moe in the containing library. Moe could be a link to some other library.

This kind of naming does not allow for renamed packages or instances of generic
packages or subprograms to be used. It does not “look through” renaming declara-
tions.

More information about links can be found in Library Management (LM).

The Special Characters []

Brackets ([}) define a set notation. Sets are created by enclosing a series of name
components, separated by commas, in brackets. For example, the name [Larry,
Curly, Moe]| represents only those three objects in the current context.

The semicolon character can also be used to separate name components. Commas
and semicolons cannot be mixed. If semicolons are used, each name component
in the set must resolve to at least one object. For example, Foo?[’C(Lib), ’Spec
matches any component of Foo that is either a library or an Ada spec. Foo[A;B
must match A and B in Foo.

Names can also be excluded from a set with the tilde (7). For example, the name
[e, "Curly] represents all names in the current context except the name Curly.

The special string [] represents the current context, whether that context is a di-
rectory, world, Ada unit, or other object.

QAT'ONAL 7/1/87 SMU-7

Key Concepts

The Speclal Characters {}

Braces ({}) denote objects that have been deleted but not expunged as well as
objects that have not been deleted. For example, if the object Curly is deleted but
not expunged, the name e refers only to Larry and Moe, but the name {e} refers
to Larry, Curly, and Moe.

The Options Parameter

Many of the commands in the Environment have an optional options spectfication in
the form of a parameter called Options. This options specification accepts different
strings, depending on the command specified.

Syntax Rules

The general form of the Options parameter is optson=>value. Option is the name
of an option that modifies the way in which an operation behaves. The => symbol,
called a value delimiter, separates the option from the value value. Other permissible
value delimiters are the colon equals (:=) and equals (=) symbols. For example, in
the 'Commands.Archive.Restore procedure, all of the following specifications of the
same option are permissible:

"AFTER=>12/25/86"
"AFTER:=12/25/86"
"AFTER=12/25/86"

If more than one Options parameter is to be specified, the options specified must
be separated by commas (,) or semicolons (;). For example, in the Archive.Restore
procedure, the following two options might be used:

"AFTER=12/25/86,FORMAT=R1008"

Options taking string values that contain a comma or semicolon character must
have the string enclosed in parentheses. For example:

"LABEL={MONDAY, JANUARY 26, 1987)"

Two or more options that will be assigned the same value can be combined by sep-
arating them with the vertical bar (|), with the value delimiter and value following
the last option. For example, two access control options from the Archive.Restore
procedure that might take the same value could be specified as:

"OBJECT_ACL | DEFAULT_ACL=>(JOHN=>RCCD}"

Sequentially enumerated options that will be assigned the same value can be spec-
ified by listing only the first and last options, separated by the double dot symbol
(..). For example, in package Profile, all log messages can be turned off by using
the option:

SMU-8 7/1/87 QATIONAL

Key Concepts

"Auxiliary_Msg. .Dollar_Msg=>False”

Boolean Optiors: A Special Case

For Boolean options, the value delimiter and value are optional. When they are not
specified, the value of the Boolean option is true. To make the value false without
using the value delimiter and value, it can be preceded with the tilde (7). For exam-
ple, specification of the REPLACE Boolean option for the !Commands.Archive.Restore
procedure can be done by using one of the following:

"REPLACE"
"REPLACE=>TRUE"
"REPLACE :=TRUE"
"REPLACE=TRUE"

The value can be set to false by using one of the following:
"~REPLACE"
"REPLACE=>FALSE"
"REPLACE : =FALSE"
"REPLACE=FALSE"

When Boolean options are specified without the value delimiter and value, the
options can be separated by spaces only. From the Archive.Restore procedure, for
example:

"REPLACE PROMOTE"

Boolean sequential enumerations can also be specified without the value delimiter
and value. Using the example from package Profile above, the following option
could be specified:

"~Auxiliary_Msg. .Dollar_Msg"

Literals in Optlons: A Speclal Case

For literals of the form literal = value, the literal and value delimiter are optional.

R)ATIONAL 7/1/87 SMU-9

RATIONAL

package Daemon

An integral part of the Rational Environment is a program called the system dae-
mon, which periodically runs a set of special jobs that serve as system custodi-
ans. These special jobs, called cltents, maintain system efficiency by managing the
system’s internal data structures, disposing of obsolete data, and reclaiming used

storage space.

Using commands from package Daemon, you can schedule how often the system
daemon runs its clients. You can also run clients independently of the schedule,
prevent a scheduled client from running, and display information about each client.
Using operations from package !Tools.Disk_Daemon, you can control more specifi-
cally the conditions under which the disk client runs.

Execution of some of the operations in this package requires that the executing job
have operator capability. This is noted in the reference entry if the requirement

applies.

The Daemon and Its Clients

When users create and modify objects such as Ada programs, text files, and direc-
tories, or when objects such as user accounts and sessions are modified, changes
are made to data structures within the Environment. Each such data structure
is managed by an object manager that normalizes it (removes obsolete data) and
compacts it (reclaims the storage space that was used by the obsolete data).

The object managers include:

Actions Ada Archived_Code
Code_Segment Configuration DDB

Directory File Group

Link Null_Device Pipe

Session Tape Terminal

User

Each object manager is named for the class of object it manages, so that the Ada
object manager manages objects of class Ada and so on. The DDB object man-
ager manages an object called the dependency database. The dependency database

RATIONAL 7y/er SMU-11

package !Commands.Daemon

maintains a record of the dependencies between Ada units (for example, Ada with
clauses). If users make changes to Ada units that affect dependencies, the de-
pendency database is updated to reflect those changes. The DDB object manager
removes obsolete dependencies from the database.

The Actions object manager manages the data structure that controls simultaneous
access to objects. This data structure prevents inconsistencies when several users
or jobs require simultaneous access to an object.

As part of their function, object managers compact the objects they manage. This
part of their functionality is a client of the system daemon.

There are five clients in addition to the object managers:

Daily Disk Error_Log
Snapshot Weekly

The Daily client is a set of clients that are recommended to be run on a daily basis,
as follows: Ada, DDB, Directory, Disk, Error_Log, and File.

The Disk client removes obsolete data from the disks. Running the Disk client is
also called disk collection. Disk collection occurs both according to schedule and on
an as-needed basis.

The Error_Log client periodically updates the Environment error log, which exists
as a series of files in the world 'Machine.Error_Logs. System errors and other
messages can be directed to the operations console, the stable-storage error log on
disk, or both with the Set_Log_Threshold procedure. Messages in the stable-storage
error log are not accessible from the Environment until the Error_Log client copies
the log into a permanent dated file in the world !Machine.Error_Logs.

The Snapshot client makes a record, or snapshot, of the current state of the Environ-
ment. Snapshots are important because, when the system boots, the Environment
is restored to the state that was recorded in the most recent snapshot. Only objects
that were committed before the last snapshot are preserved.

The Weekly client is a set of clients that are recommended to be run on a weekly ba-

sis, as follows: Archived_Code, Code_Segment, Configuration, Group, Link, Null-
—Device, Pipe, Session, Tape, Terminal, and User.

SMU-12 7/1/87 R)ATIONAL

package !Commands.Daemon

When Clients Run

Clients normaily run automatically according to a default schedule established by
the !Machine.Initialize procedure when the machine is booted. It is recommended
that the schedule not be modified, except for the time at which the Daily and
Weekly clients run, without consultation with a Rational technical representative.

Messages are displayed in the Message window, warning all users when a major
client (Actions, Ada, DDB, Directory, Disk, File, or Snapshot) is about to run.

The system sends a warning message to all users two minutes before Daily and
Weekly clients are run.

Clients can be removed from the schedule using the Quiesce procedure. Clients can
also be run as needed (independently of the schedule) using the Run procedure.

When scheduling a client, keep in mind the effect of the client on the system. For
example, snapshots preserve a consistent state of the Environment at an assigned
moment in time. While a snapshot is running, all object managers suspend opera-
tion. On an active system supporting many users, this may affect the performance
of users’ jobs. Package Daemon includes utilities that broadcast information about
upcoming snapshots, allowing users the opportunity to commit any unsaved files.

The Status procedure displays information on a given client (the default is Ma-
jor_Clients), including its name, the next scheduled run, the most recent run, and
the interval between runs. It also shows the current size of the client data structure,
along with its size before and after the last run.

RAT!ONAL 7/1/87 SMU-13

procedure Collect
package !Commands.Daemon

procedure Collect

procedure Collect (Vol : Volume;
Priority : Collection_Priority := @);

Description
Begins disk collection on the specified volume at the specified priority.

If scheduled disk collection is already in progress, the procedure returns immediately
with no effect.

Note that the Collect procedure does not affect scheduling intervals.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Vol : Volume;
Specifies the disk drive by disk drive number. The value O specifies all volumes.

Priority : Collection_Priority := 0;

Specifies the priority for running disk collection. Collection_Priority is an integer
from —1 through 6. The default, 0, ensures that disk collection takes place, poten-
tially affecting system load. The value —1 runs collection as a background activity;
6 allocates all resources for disk collection. The specified priority is temporary—
that is, it affects only the disk collection run at the same time as the one you are

about to start.

Example

The command:

daemon.collect (2,0);

starts disk collection on disk drive 2, affecting system load.

SMU-14 e RATIONAL

subtype Collection_Priority
package !Commands.Daemon

subtype Collection_Priority

subtype Collection_Priority 1is Integer range -1 .. b;

Description

Specifies the priority for running disk collection.

Enumerations

-1

Does not guarantee progress in disk collection. This priority runs disk collection
as a very low-level background activity, using just “spare” CPU cycles. If there are
none, digk collection will wait indefinitely (does a backoff) until cycles are available
or until its priority is increased.

%

Guarantees progress in disk collection, with a small impact on system performance
(and user response time). This priority is the same as running background jobs.

2

Guarantees progress in disk collection and preempts background jobs that do not
use the best priority.

3

Guarantees progress in disk collection and runs on par with most foreground jobs.
This priority has a big impact on system performance because it is sharing the same
priority as most commands.

4

Guarantees progress in disk collections and preempts most foreground jobs. Editing
is still possible, but commands will run very slowly.

6

Guarantees progress in disk collection and gives disk collection higher priority than
user jobs.

QAT'ONAL 7/1/87 SMU-15

type Condition_Class
package !Commands.Daemon

type Condition_Class

type Condition_Class is (Normal, Warning, Problem, Fatal);

Description

Specifies how serious an error should be before it is logged in an Environment log
file in the world 'Machine.Error_Logs.

This type is used with the Set_Log_Threshold procedure.

Enumerations

Fatal

Specifies gituations in which the Environment refuses to proceed. The task that
was the source of the problem is suspended. Fatal messages appear in the error log
preceded by the characters »xx.

Normal

Specifies messages from the Environment that provide information but do not nec-
essarily indicate problems. Normal messages appear in the error log preceded by
the characters ——-.

Problem

Specifies situations that the Environment expects will lead to problems. Problem
messages appear in the error log preceded by the characters !!1.

Warning

Specifies situations that are unusual but not necessarily dangerous. Warning mes-
sages appear in the error log preceded by the characters +++.

References

procedure Set_Log_Threshold

SMU-16 7/1/87 QAT'ONAL

function Get_Access_List_Compaction
package !Commands.Daemon

function Get_Access_List_Compaction

function Get_Access_List_Compaction (Client : String := ""} return Boolean;

Description

Returns true if any of the specified clients will be performing access-list compaction.
The clients that can perform access-list compaction are File, Ada, and Directory.
Access-list compaction is the process of removing nonexistent groups from the ac-
cess lists of objects. Nonexistent groups occur when groups are removed from the
machine.

For further information on groups, see package Operator.

Enabling this feature slows a client’s operation.

Parameters

Client : String := "";

Specifies the name of the client that will perform access-list compaction. Clients
are listed in the introduction to this package.

return Boolean;

Returns true if any of the specified clients will be performing access-list compaction;
otherwise, the function returns false.

References
procedure Set_Access_List_Compaction

package Operator

RATIONAL 71/er SMU-17

function Get_Consistency_Checking
package !Commands.Daemon

function Get_Consistency_Checking

e

function Get_Consistency_Checking (Client : String :=)} return Boolean;

Description
Returns true if any of the specified clients will be performing consistency checking.

Consistency checking performs additional work to ensure that the internal state of
the system is as it seems. This operation normally is run only when problems are
suspected. For the DDB client, this setting may result in compaction.

Enabling this feature slows a client’s operation.

Parameters

Client : String := "";

Specifies the name of the client to be queried to determine whether it is performing
consistency checking. Clients are listed in the introduction to this package. The
default specifies all clients.

return Boolean;

Returns true if any of the specified clients will be performing consistency checking.
The default is false. If true, the default is restored after the next specified daemon

run has completed.

References

procedure Set_Consistency-Checking

SMU-18 7/1/87 EAT'ONAL

function Get_Log_Threshold
package {Commands.Daemon

function Get_Log_Threshold

function Get_Log_Threshold (Kind : Log_Threshold) return Condition_Class;

Description

Returns the class of message that is handled according to the specified kind.

Parameters

Kind : Log_Threshold;

Specifies the destination for messages. The destination can be Console_Print,
Log-To_Disk, or Commit_Disk.

return Condition_Class;

Returns the class of message by Condition_Class type, including Normal, Warning,
Problem, and Fatal.

RATIONAL 70 SMU-19

procedure Get_Size
package !Commands.Daemon

procedure Get_Size

procedure Get_Size (Client : String;
Size : out Long_lInteger;
Size_After_Last_Run : out Long_integer;

Size_Before_Last_Run : out Long_l!nteger);

Description

Displays the current number of disk pages of the data structures compacted by the
specified client, both before and after the last time the client was run.

This procedure is useful for monitoring the growth curve of the data structures that
are compacted by the following clients: Ada, DDB, Directory, Disk, and File.

Parameters

Client : String;

Specifies the name of the client to be monitored. Clients are listed in the intro-
duction to this package; however, the following clients are most relevant to this
procedure: Ada, DDB, Directory, Disk, and File.

Size : out Long_integer;
Specifies the number of pages currently used by the client’s data structure.

Size_After_Last_Run : out Long_Integer;

Specifies the number of pages used by the client’s data structure after the client
was last run.

Size_Before_Last_Run : out Long_Integer;
Specifies the number of pages used by the client’s data structure before the client
was last run.

SMU-20 e RATIONAL

procedure Get_Snapshot_Settings
package !Commands.Daemon

procedure Get_Snapshot_Settings

procedure Get_Smapshot_Settings (Warning : out Duration;
Start_Message : out Boolean;
Finish_Message : out Boolean);

Description

Returns the current snapshot options.

Parameters

Warning : out Duration;

Specifies the current warning interval (the amount of time between the warning and
the snapshot).

Start_Message : out Boolean;
Specifies whether a message is displayed when the snapshot begins.

Finish_Message : out Boolean;
Specifies whether a message is displayed when the snapshot is completed.

References

procedure Show_Snapshot_Settings
procedure Snapshot_Finish_Message
procedure Snapshot_Start_Message
procedure Snapshot_Warning-Message

PT, package Time_Utilities

QAT'ONAL 7/1/87 SMU-21

function Get_Warning_Interval
package !Commands.Daemon

function Get_Warning_Interval

function Get_Warning_Interval return Duration;

Description
Returns the amount of warning given before each Daily client runs.

The time between the warning message and the running of the client gives the
operator time to quiesce it, if needed.

Parameters

return Duration;

Returns the amount of time between the warning and the running of the Daily
client.

The value of Duration is a number of minutes, as defined in PT, package Time-
-Utilities.

References
procedure Quiesce

PT, package Time_Utilities

SMU-22 7/1/87 RATIONAL

function In_Progress
package !Commands.Daemon

function In_Progress

function In_Progress {Client : String) return Boolean;

Description

Returns whether the specified client is currently running.

Parameters

Client : String;

Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Boolean;

Returns true when the specified client is running; otherwise, the function returns
false.

RAT'ONAL 7/1/87 SMU-23

function Interval
package !Commands.Daemon

function Interval

function Interval (Client : String} return Duration;

Description

Returns the scheduled interval for the specified client.

Parameters

Client : String;

Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Duration;
Returns the current interval, in number of seconds.

References

PT, package Time_Utilities

SMU-24 7/1/87 BA\TIONAL

function Last_Run
package !Commands.Daemon

function Last_Run

function Last_Run {Client : String)} return Calendar.Time;

Description

Returns the last time the specified client was run.

Parameters

Client : String;
Specifies the client. Clients are listed in the introduction to this package.

return Calendar.Time;
Returns the time the client was last run.

RATIONAL 7/1/87 SMU-25

type Log_Threshold
package !Commands.Daemon

type Log_Threshold

type Log_Threshold 1s {Console_Print, Log_To_Disk, Commit_Disk};

Description
Determines the actions that can be taken on a system message.

The action selected is controlled by the Set_Log_Threshold procedure, depending
on the Condition_Class type of the message.

Enumerations

Commit_Disk

Writes messages to the stable-storage error log on disk immediately. These messages
are retained if the system fails.

Console_Print

Directs messages to the operations console.

Log_To_Disk

Directs messages to the stable-storage error log on disk. These messages are not
written permanently on the disk immediately, so they may be lost if the system
fails before they can be written.

References

procedure Set_Log_Threshold

SMU-26 7/1/87 RATIONAL

constant Major_Clients
package {Commands.Daemon

constant Major_Clients

Major_Clients : constant String := "x";

Description

Defines a constant string representing the list of major clients used as the default
client in the Status procedure.

The list of clients includes: Actions, Ada, DDB, Directory, Disk, File, and Snapshot.

References

procedure Status

BA\-HONAL 7/1/87 SMU-27

function Next-Scheduled
package !Commands.Daemon

function Next_Scheduled

function Next_Scheduled (Client : String) return Calendar.Time;

Description
Returns the time at which the specified client will run.

Clients are listed in the introduction to this package.

Parameters

Client : String;

Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Calendar.Time;
Specifies the next time the client will run.

SMU-28 7/1/81 PATIONAL

procedure Quiesce
package !Commands.Daemon

procedure Quiesce

procedure Quiesce (Client : String = "D>CLIENT NAME<L";
Additional_Delay : Duration := 86_400.0;
Response : String = "<PROFILE>");
Description

Revokes the specified client’s schedule and prevents it from running for the amount
of time specified in the Additional_Delay parameter.

This procedure is equivalent to executing the Schedule procedure with a new value
for the First_Run parameter and the same value for the Interval parameter.

Quiescing a daemon only prevents a client from running; it does not stop a client
that is already running.

To prevent a client from running indefinitely, use Duration’Last for the Addi-
tional_Delay parameter.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client : String := "D>CLIENT NAME<K";

Specifies the name of the client to be delayed. Clients are listed in the introduction
to this package. The default parameter placeholder ">>CLIENT NAME<<" must be
replaced or an error will result.

Additional Delay : Duration := 86_400.0;

Specifies the amount of delay. The default is one day. See PT, Time_Utilities-
.Seconds type.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 7/1/sr SMU-29

procedure Quiesce
package !Commands.Daemon

Example
The command:
daemon.quiesce ("error_log"};

removes the Error_Log client from the schedule for one day.

References
procedure Schedule
PT, package Time_Utilities

SMU-30 7/1/87 RATIONAL

procedure Run
package !Commands.Daemon

procedure Run

procedure Run (Client : String := "Snapshot"”;
Response : String := "<PROFILE>");

Description
Runs the specified client immediately.

If the Snapshot client is specified, a snapshot is not taken until after the snap-
shot warning message interval has elapsed. (See the Snapshot_Warning_Message
procedure.)

If the Disk client is specified, disk collection is done in the order of the disk with
the least remaining space to the disk with the most remaining space. If the Status
(“Disk”) procedure is called while the disk collection is running, a volume whose
space is yet to be collected has an asterisk (*) after its volume number.

Note that the Run procedure does not affect scheduling intervals nor does it schedule
the client for additional runs.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client : String := "Snapshot”;

Specifies the client to be run. Clients are listed in the introduction to this package.
The default is the Snapshot client.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

daemon.run;

takes a snapshot after the Snapshot_Warning_Message procedure has elapsed. The
client’s scheduling intervals are not affected.

RATIONAL 7/1/87 SMU-31

procedure Run
package !{Commands.Daemon

References

procedure Snapshot_Warning_Message

SMU-32 7/1/87 BA\TIONAL

procedure Schedule
package ICommands.Daemon

procedure Schedule

procedure Schedule (Client : String = "D>CLIENT NAME<L";
Interval : Duration;
First_Run : Duration = 0.0;
Response : String := "<PROFILE>"};
Description

Schedules the specified client to run at regular intervals.

A Schedule procedure must be executed for each client. The Environment daemon
cannot run a client unless it has been scheduled. The client schedules are set to
default values, which the user can change.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client : String := ">>CLIENT NAMELK";

Specifies the name of the client to be scheduled. Clients are listed in the introduction
to this package. The default parameter placeholder ">>CL!ENT NAME<<" must be
replaced or an error will result.

Iinterval : Duration;

Specifies the period of time between runs. Duration’Last means the specified client
will never run. The value of the Interval parameter is a number of seconds or
an expression that evaluates to seconds. You can use the Minute, Hour, and Day
constants from package !Tools.Time_Utilities, because they are of the Duration

type.

First_Run : Duration := 0.08;

Specifies how soon a client runs after the Schedule procedure finishes executing.
The value of the First_Run parameter is a number of seconds or an expression
that evaluates to seconds. The default First_Run interval is 0.0 seconds; that is,
the client will run immediately after invocation. You can use the Minute, Hour,
and Day constants from package !Tools.Time_Utilities, because they are of the
Duration type. In addition, the Time_Utilities.Duration_Until_Next function is
useful because it returns the number of seconds between the time of execution and
a specified time of day. This allows the schedule to be independent of the time at
which the Schedule procedure is executed.

RAT'ONAL 7/1/87 SMU-33

procedure Schedule
package !Comrands.Daemon

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, xnd what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:
daemon .schedule ("ddb",86_400.0,36_000.0);

schedules the DDB (dependency database) client to run once a day, beginning 10
hours from the time the command was committed.

References

PT, package Time_Utilities

SMU-34 7/1/87 I?ATIONAL

procedure Set_Access_List_Compaction
package !Commands.Daemon

procedure Set_Access_List_Compaction

procedure Set_Access_list_Compaction (Client : String
On : Boolean
Response : String

Tr&e;
"<PROFILE>");

Woon

Description

Specifies that access-list compaction should be performed by the specified clients.
The clients that can perform access-list compaction are File, Ada, and Directory.
Access-list compaction is the process of removing nonexistent groups from the ac-
cess lists of objects. Nonexistent groups occur when groups are removed from the
machine. For further information on groups, see package Operator.

Enabling this feature slows a client’s operation.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client : String := "";

Specifies the name of the client. The default null string specifies all clients. The only
clients that perform access-list compaction are File, Ada, and Directory. When all
clients are specified, only those that can perform access-list compaction will actually
do it.

On : Boolean := True;

Specifies whether access-list compaction should be turned on or off.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
function Get_Access_List_Compaction

package Operator

RATIONAL 7/1/87 SMU-35

procedure Set_Consistency_Checking
package !Commands.Daemon

procedure Set_Consistency_Checking

procedure Set_Consistency_Checking {Client : String = ;
On : Boolean := True;
Response : String = "<PROFILE>");

Description
Specifies whether consistency checking should be turned on.

Consistency checking performs additional work to ensure that the internal state of
this system is as it seems. This operation normally is run only when problems are
suspected.

Enabling this feature slows a client’s operation.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client : String := "";
Specifies the client that should perform consistency checking. Clients are listed in
introduction to this package. The default null string specifies all clients.

On : Boolean := True;
Specifies whether consistency checking should be turned on or off.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Get_Consistency_Checking

SMU-36 7/1/87 BA\TK)NAL

procedure Set_Log_Threshold
package !Commands.Daemon

procedure Set_Log._Threshold

procedure Set_Log_Threshold (Kind : Log_Threshold;
Level : Condition_Class});

Description
Specifies a destination for messages with a given level of severity.
By default, Condition_Class type messages of Warning, Problem, and Fatal are

routed to the operations console. Messages of all kinds are written to the stable-
storage error log on disk, causing the log to be committed to disk.

Parameters

Kind : Log_Threshold;

Specifies a destination for a class of messages. The destination can be Console_Print,
Log—-To_Disk, or Commit_Disk.

Level : Condition_Class;

Specifies the severity level of messages by Condition_Class type, including Normal,
Warning, Problem, and Fatal.

Example 1

The command:

daemon.set_log_threshold (log_to_disk,normal);
routes all messages of condition class Normal (or greater) to the error log.
Example 2

The command:

daemon.set_log_threshold {console_print,problem);

routes all messages of condition classes Problem and Fatal to the operations console.
Normal or Warning messages do not appear on the operations console.

RATIONAL 717 SMU-37

procedure Set_Priority
package !Commands.Daemon

procedure Set_Priority

procedure Set_Priority (Priority : Collection_Priority := -1);

Description

Sets the priority for disk collection on the specified volume.

Executing this procedure while disk collection is in progress changes the priority of
the current collection. If disk collection is not in progress when the command is

executed, the procedure has no effect.

The Disk client runs at different priorities in response to a number of stimuli, as
follows:

Schedule procedure: Runs at priority 6.

Run procedure: Runs at priority —1.
Collect procedure: Runs at specified priority.

Over threshold for the disk: Starts at priority 0 and escalates based on the number
of disks that have reached the threshold.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Priority : Collection_Priority := -1;

Specifies the priority for running disk collection. Collection_Priority is an integer
from —1 through 6. The default, —1, runs collection as a background activity. The
value 0 ensures that disk collection takes place, potentially affecting system load; 6
allocates all resources for disk collection.

Example

The command:

daemon.set_priority (1,0);

sets the priority for disk collection to 0 on disk drive 1.

SMU-38 7/1/87 I?ATIONAL

procedure Show_Log_Thresholds
package !Commands.Daemon

procedure Show_Log_Thresholds

procedure Show_Log_Thresholds;

Description

Displays current log thresholds in the current output window.

Example
The command:
daemon . show_log_thresholds;

displays information, such as the following, in the current output window:

Log Thresholds -- Console = WARNING, Logging = NORMAL, Commit = NORMAL

Console Corresponds to log threshold Console_Print; shows that messages
of Warning, Problem, and Fatal class are routed to the operations
console.

Logging Corresponds to log threshold Log_To_Disk; shows that messages of

all class are written to the stable-storage error log on disk.

Commit Corresponds to log threshold Commit_Disk; shows that messages
of all class are written to the stable-storage error log, causing the
log to be committed to disk.

R)ATIONAL 7/1/87 SMU-39

procedure Show_Snapshot_Settings
package !Commands.Daemon

procedure Show_Snapshot_Settings

procedure Show_Snapshot_Settings;

Description

Lists the current snapshot message options, showing the warning message interval
and whether or not start and finish messages have been requested.

Example
The command:
daemon . show_snapshot_settings;

returns a display as follows:

Snapshot Settings -- Interval = 02:00.00, Start = TRUE, Finish = TRUE

The Environment issues a snapshot warning message two minutes before each snap-
shot and sends warning messages at the start and finish of each snapshot.

To see the interval between runs, use:

daemon.status ("snapshot”};

References

procedure Snapshot_Finish_Message
procedure Snapshot.Start_Message
procedure Snapshot_Warning_Message

procedure Status

SMU-40 e RATIONAL

procedure Snapshot_Finish_Message
package !Commands.Daemon

procedure Snapshot_Finish_Message

procedure Snapshot_Finish_Message (On : Boolean := True);

Description

Tells the Environment whether or not to send a message informing users when a
snapshot completes.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On : Boolean := True;

Sends, when true, a message such as the following to users after every snapshot is
completed:

from SYSTEM: ©2:34:34 PM; Snapshot has completed.
This message appears in the Message window.

When false, no finishing message is sent to users. The default is true.

Example

The command:

daemon.snapshot_finish_message (false);

instructs the Environment not to notify users when a snapshot is completed.

R)ATIONAL 7/1/87 SMU-41

procedure Snapshot_Start_Message
package !Commands.Daemon

procedure Snapshot_Start_Message

procedure Snapshot_Start_Message {On : Boolean := True);

Description

Tells the Environment whether or not to send a message informing users when a
snapshot begins.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On : Boolean := True;

Sends, when true, a message such as the following to users as each snapshot begins:

from SYSTEM: 02:31:55 PM; Snapshot has started
This message appears in the Message window.

When false, no starting message is sent to users. The default is true.

Example
The command:
daemon.snapshot_start_message (false);

instructs the Environment not to notify users when a snapshot begins.

SMU-42 7/1/87 RATIONAL

procedure Snapshot—Warning_Message
package !Commands.Daemon

procedure Snapshot_Warning_Message

procedure Snapshot_Warning_Message (Interval : Duration := 120.0);

Description

Sends a warning message to users the specified number of seconds before the next
snapshot begins.

When the interval is set to 0.0, no warning message is sent.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Interval : Duration := 1208.9;

Specifies how soon, in seconds, to send a warning message such as the following
before a snapshot begins:

from SYSTEM: 02:29:23 PM; Snapshot will start i1n 02:00.000
This message appears in the Message window.

The default is a 2-minute interval (120.0 seconds). When the Interval parameter is
set to 0.0, no warning message is sent.

Example
The command:
daemon.snapshot_warning_message (30¢.0);

instructs the Environment to warn users of a pending snapshot 5 minutes (300.0
geconds) before it is run.

RATIONAL 7/1/87 SMU-43

procedure Status
package !Commands.Daemon

procedure Status

procedure Status (Client : String := "*");

Description

Displays (in the current output window) information on the current status for the
specified client.

Parameters

Client : String := "*";
Specifies the client for which status is requested. The default ("*") is the Major-
—Clients constant. The null string (*") displays the status of all clients.

Example 1
The command:
daemon.status;

requests a display showing the status of Major_Clients (the default). The display
includes the following categories of information:

CL IENT The name of the client.

NEXT_TIME The time of the client’s next scheduled run.

PREVIOUS_TIME The time of the client’s most recent run.

INTERVAL The interval of time between scheduled runs. The format for ex-

pressing intervals is as follows:

e mm:ss.ff indicates the number of minutes, seconds, and decimal
fractions of seconds between runs. For example, the Actions client
runs every 30 minutes, or 30:00.00.

¢ hh:mm:ss indicates the number of hours, minutes, and seconds
between runs. For example, the Snapshot client runs every hour,
or 01:00:00.

¢ dd/hh:mm indicates the number of days, hours, and minutes be-
tween runs. For example, the Ada client runs once a day, or
1/00:00.

SMU-44 7/1/87 BATIONAL

7 procedure Status
package !Commands.Daemon

SIZE Tue current size, in pages, of the client’s data structure.

POST The size, in pages, of the client’s data structure after the last run.

PRE The size, in pages, of the client’s data structure just before the last
run.

The Status display typically looks like this:

Client Next Time

Actions ©6/08/87 11:
Ada 06/03/87 24
Ddb P6/08/87 04:

Directory ©26/08/87 04
Disk 06/03/87 @5
File 06/08/87 04

Snapshot 26/28/87 12:

Example 2

The command:

daemon.status ("disk’

BE

Previous Time Interval Size Post Pre

:53 @6/08/87 11:23 30:00.00 5s SS SS
;40 @6/08/87 05:03 Q1/00:20 2073 2010 2425
15 ©06/08/87 ©4:19 01/00:00 11213 12839 19839
:30 06/98/87 04:3c 01/00:00 5775 5698 6423
00 ©06/98/87 06:24 01/00:09 339000 311008 351209
:45 (¢6/08/87 095:14 01/00:00 1183 980 12138
28 06/08/87 11:10 01:00:00

checks the status of the client responsible for maintaining the disk data structure
and returns a display such as the following:

Client Next Time

Disk 06/03/87 05:00
Vol 1 06/29/87 05:00
Vol 2 06/09/87 05:00
Vol 3 ©06/09/87 05:00
Vol 4 06/09/87 05:90

Previous

06/28/87
P6/08/87
06/08/87
06/08/87
06/08/87

Time

Interval

01/00:00
21/20:00
01/¢0:00
21/00:99
01/90:00

Size

338000
1120990
79086
78126
698395

Post

311009
85434
77639
71102
673608

351000
126020
81287
74536
63532

An asterisk before the volume number indicates that disk collection is running and
that volume has not yet had collection run for it.

Example 3

The command:

daemon.status (""};

displays the status for all clients.

RATIONAL 7yer

SMU-45

procedure Threshold_Warnings
package !Commands.Daemon

procedure Threshold—Warnings

procedure Threshold_Warnings (On : Boolean := True);

Description

Specifies whether messages to all users currently logged into the system should be
sent when collection thresholds have been passed.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On : Boolean := True;

Specifies whether messages should be sent. The default is true. False specifies that
messages should not be sent.

SMU-46 , 7/1/87 RATIONAL

subtype Volume
package ICommands.Daemon

subtype Volume

subtype Volume is Integer range 0 .. 31;

Description
Specifies a disk drive for procedures and functions.

The value 0 specifies all disk drives. (The value 0 should not be used in functions,
because functions can return only a single value.)

I?AT'ONAL 7/1/87 SMU-47

procedure Warning_Interval
package !Commands.Daemon

procedure Warning_Interval

procedure Warning_Interval ({Interval : Duration := 120.9);

Description
Sets the amount of warning time users are given before the Daily client runs.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Interval : Duration := 120.9;

Specifies how soon, in seconds, to send a warning message before the Daily client
runs. The default is 2 minutes (120 seconds).

References

function Get_Warning_Interval

end Daemon;

SMU-48 7/1/87 RATIONAL

package Message

This package contains two utilities for sending messages.

RAT'ONAL 7/1/87 SMU-49

procedure Send
package 'Commands.Message

procedure Send

procedure Send (Who : String;
Message : String);

Description
Sends the message to the specified user.

The user must be logged in to receive the message. If the user is not logged in, the
message is lost.

Messages appear in the Message window.

Parameters

Uho : String;
Specifies the username of the user to receive the message.

Message : String;
Specifies the text of the message.

Example

The command:

message.send ("wet","Who writes the daily messages?");

sends the string From user: UWho writes the daily messages? to user UET.

SMU-50 7/1/87 RATIONAL

procedure Send_All

procedure Send-All
package !Commands.Message

procedure Send_All (Message : String);

Description

Sends the message to all users.

Only users who are logged in receive the message.

Messages appear in the Message window.

Parameters

Message : String;
Specifies the text of the message.

Example

The command:

message.send_all ("Who remembers how to abort a job?");

broadcasts the message From user: Who remembers how to abort a job? to all

users.

end Message;

RATIONAL 7/1/sr

SMU-51

RATIONAL

package Operator

The procedures described in package Operator are intended for system management
tasks, including:

¢ Creating users

e Overseeing user sessions

» Managing groups for access control

¢ Enabling and disabling physical lines

Performing operations without the restrictions of access control, when necessary

Commands such as the Change_Password and Create_Session procedures can be
used by all users.

Access Control

Access to worlds, files, and Ada units and execution of certain operations is re-
stricted by access control. Access control applies to all jobs, both those initiated
when users directly execute commands and those explicitly initiated by users. A
job’s access to a world, file, or Ada unit is based on the username (also referred to
as identity) of the user initiating the job. A username is granted access to an object
if it is a member of one of the groups listed among the entries in the object’s access
list (ACL). Similarly, a job is granted access to an object based on the username of
the user who initiates it. If the access list for a particular object does not contain
an entry for a group to which the identity belongs, the job will not be permitted
access to the object. For more information on access lists, see LM, introduction to
package Access_List.

In addition to applying to certain objects, access control applies to certain opera-
tions within various packages of the Environment. Package Operator is one of these
packages. Access control for these packages is documented in their corresponding
sections of the Rational Environment Reference Manual.

RATIONAL 7/1/er SMU-53

package !Commands.Operator

Access Control and Groups

Group operations are performed by operations in package Operator. There are
three types of groups: username groups, Environment-defined special groups, and
user-defined groups. Each of these types of groups is described below.

Username Groups

When a username is created, a group name corresponding to that username is
created by default. The username is, by default, a member of that group. Other
users can also be made members of that group. For example, a username called Bill
is created. A group named Bill is created by the Environment on creation of the
username, and username Bill is a member of it. Another username, Sandy, is on
the system. Sandy can be added to group Bill with the Add_To_Group procedure.
This grants both usernames Bill and Sandy the specified access to any object that
allowed access to group Bill.

Special Groups

Certain operations within the Environment can be performed only by usernames
that meet one of the following requirements:

o The username is a member of group Operator.
¢ The username has write access to !Machine.Operator_Capability.
¢ The username is a member of group Privileged and is running in privileged mode.

These conditions can be broken into two types, as shown below.

Operator Capabllity

Members of group Operator (username Operator) and users with write access to
file tMachine.Operator_Capability can perform operations within the Environment
that require operator capabslity. Many of the operations in this package require
operator capability.

Privileged Mode

Another special group, called Privileged, can use the Enable_Privileges procedure
to turn on privileged mode. Privileged mode allows users to perform operations
without the restrictions of access control. Privileged mode must be enabled in the
same job as the operation(s) to be performed in privileged mode. Once the job has
finished executing, privileged mode reverts to disabled.

Public and Network-Public Groups

Two predefined groups, called Public and Network_Public, are provided by the
Environment. When a new username is created, the user automatically becomes a
member of these two groups. Group Public can therefore be used to give everyone
on a system access to a world, a file, or an Ada unit. In open shops, all worlds,
files, and Ada units can include group Public on their access lists, in effect giving
everyone access to everything on a system.

SMU-54 7/1/87 RA\-”ONAL

package {Commands.Operator

Group Network_Public is used in environments in which machines are using Ra-
tional Networking—TCP/IP. Inclusion of this group on access lists gives usernames
access to objects on other machines on the same network.

Although usernames are added to these groups by default, they can be explicitly
removed from them.

User-Defined Groups

Package Operator allows users with operator capability to create groups for access
control. For example, rather than giving username Sandy access to group Bill as
described in a previous example, a group can be defined for the two of them. This
group is called Engineering. Both usernames Bill and Sandy are added to the
group. Each username has its own group consisting of its username and each is also
a member of group Engineering for access they want to share.

ACLs for New Username Home Worlds

When a new username is created, the access list (ACL) for the user’s world is formed
by concatenating the contents of !Machine.User_Acl_Suffix and username=>RCOD
access, where username is the new username.

The default ACL for the world is formed by concatenating the contents of !Ma-
chine.User_Default_Acl_Suffix with username=>RW, where username is the new
username.

Parameter Placeholders

Many of the commands in this package have, as a default, a parameter placeholder
of the form ">>name<<". Name is the type of object that should replace >>name<<.
Parameter placeholders must be replaced by the name of an object, as specified by
their type. Executing a command containing a parameter placeholder will result in
an error.

Response Profiles

The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and which activities to
use. The response profile special value "<PROFILE>", which many commands use by
default, specifies the job response profile. If there is no job response profile, the
session response profile special value, "<SESSION>", is used. If there is no session
profile defined, the system’s default response profile special value, "<DEFAULT>" is
used. For further information on profiles, see SIM, package Profile.

RAT'ONAL 7/1/87 SMU-55

procedure Add_To_Group
package !Commands.Operator

procedure Add_To_Group

">OUSER NAMELL";
">>GROUP NAME<K";
"<PROFILE>");

procedure Add_To_Group (User : String
Group : String
Response : String :

Description
Adds the specified username to the specified group.
Execution of this procedure requires that the executing job have operator capability.

To see if the username is already a member of the group, you can use the Dis-
play_Group procedure. The username and group name must exist before this pro-
cedure is executed.

Note that identities are established at login. Adding or removing a user from a
group will not be effective until the user’s next login. Since a user’s identity is
established at login, the user must log out and then log back in before the new
group membership is added to the user’s identity.

Parameters

User : String := ">>USER NAME<K";

Specifies the username that should be added to the specified group. The default
parameter placeholder ">>USER NAME<<" must be replaced or an error will result.
The username must exist before this command is executed.

Group : String := ">>GROUP NAME<KL";

Specifies the group name to which the username should be added. The default
parameter placeholder ">>GROUP NAME<<" must be replaced or an error will result.
The group name must exist before this command is executed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job profile.

SMU-56 e RATIONAL

procedure Add-To_Group
package !Commands.Operator

Example

The command:
operator.add_to_group (user=>"bill",group=>"engineering");
adds username Bill to a group called Engineering.

Both username Bill and group Engineering must exist before this command is exe-
cuted. Bill must log out and log back in again for his membership in group Engi-
neering to be in effect.

References
procedure Create_Group
procedure Create_User

procedure Remove_From_Group

RATIONAL 7/1/87 SMU-57

procedure Archive_On_Shutdown
package !Commands.Operator

procedure Archive_On_Shutdown

procedure Archive_On_Shutdown (On : Boolean := True);

Description

Specifies that certain data structures are archived in a representation-independent
form whenever the system is shut down.

More specifically, this procedure stores the internal state of the object managers.
Object managers include Actions, Ada, Archived_Code, Code_Segment, Configura-
tion, DDB, Directory, File, Group, Link, Null_Device, Pipe, Session, Tape, Terminal,
and User.

When these data structures are archived in representation-independent form, they
can be restored even if the system is booted with a different release of the Environ-
ment.

Archiving causes the system to shut down and boot more slowly, so archiving is
recommended only when required by Rational technical representatives for installing
a new software release.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On : Boolean := True;

Specifies, when true, that archiving is included in the system shutdown process.
The default is true.

SMU-58 7/1/87 EATIONAL

procedure Cancel _Shutdown
package !Commands.Operator

procedure Cancel_Shutdown

procedure Cancel_Shutdoun;

Description
Cancels a system shutdown initiated by the Shutdown procedure.

This procedure can be entered at any time during the interval before the actual
shutdown takes place.

Execution of this procedure requires that the executing job have operator capability.

References

procedure Shutdown

RATIONAL 7/1/87 SMU-59

procedure Change_Password
package !Commands.Operator

procedure Change_Password

procedure Change_Password (User : String
0l1d_Password : String
New_Password : String
Response : String

">>USER NAME<L";

"<PROF ILE>") ;

Description

Replaces the Old_.Password parameter with the New_Password parameter for the
specified username.

Parameters

User : String := ">>USER NAME<K";

Specifies the name of the username. The default parameter placeholder ">>USER
NAME<<" must be replaced or an error will result.

0ld_Password : String := "";

Specifies the old password. If the old password is not known, the operator’s pass-
word can be used (that is, the password for the username Operator). The default
is the null string—in other words, no password.

New_Password : String := "";

Specifies the new password. The default is the null string—in other words, no
password.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .change_password ("anderson”,"hello","greetings"};

changes the password for user Anderson from hello to greetings.

SMU-60 7/1/87 BA\TIONAL

procedure Create_Group
package !Commands.Operator

procedure Create—_Group

">>GROUP NAME<L<L™;

procedure Create_Group (Group : String
“<PROF ILE>"};

Response : String :

Description
Creates a new group with the specified name.

The group cannot already exist. When created, the group has no members. Mem-
bers can be added with the Add_To_Group procedure.

A maximum of 1,000 group names is allowed per machine. Once this maximum has
been reached, no further group names can be added. Groups that are no longer
needed can be removed with the Delete_Group procedure, but deleting groups does
not make it possible to create new groups once the limit has been reached. Access-
list compaction must be run to make it possible to create new groups. See package
Daemon for further information on access-list compaction.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Group : String := ">>GROUP NAME<L<";

Specifies the name of the group to be created. The default parameter placeholder
">>GROUP NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .create_group (group=>"ada_l_group"};

creates a new group called Ada_1_Group. New members can be added to the group
with the Add_To_Group procedure.

RATIONAL 7y SMU-61

procedure Create_Group
package !Commands.Operator

References
procedure Add_To_Group
procedure Delete_Group

procedure Remove_From_Group

SMU-62 7/1/87 BA\-”ONAL

procedure Create_Session
package !Commands.Operator

procedure Create_Session

">>USER NAME<<";
">>SESS|ON NAMELL" ;
"CPROF ILE>") ;

procedure Create_Session (User : String
Session : String
Response : String

Description

Creates another session for the specified user.

Parameters

User : String := "DDUSER NAME<LLK";

Specifies the name of the user for whom a new session is to be added. The default
parameter placeholder ">>USER NAME<<" must be replaced or an error will result.

Session : String := ">>SESSION NAMELL";

Specifies that the session name must be a legal Ada identifier, and no other object of
this name should exist in the user’s home world (!Users.User_Name). The default
parameter placeholder ">>SESSION NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example
The command:
operator.create_session ("anderson”,"maintenance”};

creates a new session called Maintenance for user Anderson.

RATIONAL 71/er SMU-63

procedure Create_User
package !Commands.Operator

procedure Create_User

procedure Create_User (User : String = ">>USER NAME<K";
Password : String := "";
Yolume : Natural := @;

Response : String "QFROFILE>");

Description
Opens a user account.

This procedure creates a username in !Machine.Users. In addition, the procedure
creates the world !Users.User with the given Password parameter, if such a world
does not already exist. The procedure also creates a default session, S_1, for the
username. By default, the username is made a member of groups Public and Net-

work._ Public.

A group with the name specified by the User parameter is created and the new user
is added to this group. Thus, each user has his or her own group with at least that
user as a member.

When a new username is created, the access list for that world is formed by con-
catenating the contents of !Machine.User_Acl.Suffix and username=>RCOD, where
username i8 the newly created username.

The new user is made a member of groups Public and Network_Public.

The default ACL for the world is formed by concatenating the contents of !Ma-
chine.User_Default_Acl-Suffix with username=>RW, where username is the newly
created username.

Links from 'Model.R1000 are copied into the new user’s home world.

Sometimes, new accounts are assigned a temporary password. Use the Change-
—Password procedure to personalize passwords.

Execution of this procedure requires that the executing job have operator capability.

SMU-64 7/1/87 I?ATIONAL

procedure Create_User
package !Commands.Operator

Parameters

User : String := ">>USER NAME<K";

Specifies the username. The name must be a legal Ada simple name and must be
unique. The default parameter placeholder ">>USER NAME<<" must be replaced or

an error will result.

Password : String := "";

Specifies the initial password. The password can be any arbitrary string. The
default is the null string—in other words, no password.

Volume : Natural := @;

Specifies the volume in which the user’s home world will reside. The default, 0, lets
the Environment choose the volume that has the most available space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.create_user ("anderson”,"andersonnew");

creates an account for user Anderson on a volume selected by the Environment.
It assigns password andersonnew to the account. It also creates a home world for
the user in !Users.Anderson, sets up the links for the world, sets the access list
and default access list for the world, makes Anderson a member of groups Public
and Network_Public, creates a group called Anderson, and adds Anderson to group
Anderson.

References

procedure Change_Password

RATIONAL 710 SMU-65

procedure Delete_Group
package !Commands.Operator

procedure Delete_Group

procedure Delete_Group (Group : String
Response : String :

">>GROUP NAME<LK";
"<PROFILE>"};

nu

Description
Deletes tie group with the specified name.

This operation cannot be used to delete a group that has the same name as an
existing username. When you execute the Delete_User procedure, it removes the
group associated with that user. ACL entries that refer to a deleted group are
reclaimed during the next access-list compaction. See package Daemon for further
information on access-list compaction.

A maximum of 1,000 group names is allowed. Once this maximum has been reached,
no further group names can be added. Groups that are no longer needed can be
removed with the Delete_Group procedure and then reclaimed with the package
Daemon access-list compaction.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Group : String := ">>GROUP NAME<K";

Specifies the name of the group. The default parameter placeholder ">>GRouP
NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .delete_group (group=>"ada_l_group");

deletes a group called Ada_1_Group.

SMU-66 7/1/87 RAT'ONAL

procedure Delete_User
package !Commands.Operator

procedure Delete_User

">OUSER NAMELL";
"<PROFILE>");

procedure Delete_User (User : String
Response : String :

Description
Disables login for the specified user but preserves the user’s home world.

The procedure also deletes the user’s entry from the !Machine.Users world and
deletes the user’s default session, S_1.

The user’s home world can be deleted using commands in package !Commands.Li-
brary—for example, library.destroy ("!users.user_name??");.

Make sure that the user is logged out before disabling the user’s account.

Execution of this procedure requires that the executing job have operator capability.

Parameters

User : String := ">>USER NAMEKLL”;

Specifies the username of the account to be disabled. The default parameter place-
holder ">>USER NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example
The command:
operator .delete_user ("anderson");

deletes the account for user Anderson and disables logins under Anderson’s user-
name. The world !Users.Anderson is preserved.

IQATIONAL 7/1/87 SMU-67

procedure Disable_Terminal
package !'Commands.Operator

procedure Disable_Terminal

procedure Disable_Terminal (Physical_Line : Terminal.Port;
Response : String 1= "<PROFILE>");

Description
Disables the specified line for login.
If the line is in use, the command will not take effect until the user logs out.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Physical_Line : Terminal.Port;
Specifies that the terminal port is a number from O through 255.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.disable_terminal (18);

disables port 18.

References

procedure Enable_Terminal

SMU-68 e RATIONAL

procedure Disk_Space
package !Commands.Operator

procedure Disk_Space

procedure Disk_Space;

Description

Displays disk data.

Example

The command:

operator.disk_space;

returns a display such as the following:

Volume Capacity Available Used % Free

1 369120 284196 84924 76
2 391680 229239 162441 58
3 391680 274579 117110 70
4 391680 282619 118661 10

Total 1553760 1070624 483136 68

Volume indicates the disk drive. Capacity and Available describe disk space in
terms of pages of 1 Kb each. Used describes the amount of disk space used in terms
of pages of 1 Kb each. ¥ Free specifies the amount of disk space that is still unused
in terms of percentages.

The bottom row describes totals for all volumes.

RATIONAL /e SMU-69

procedure Display_Group
package !Commands.Operator

procedure Display_Group

">>GROUP NAMELK";
"<PROFILE>"};

procedure Display_Group (Group : String :
Response : String :

Description

Displays the usernames that are current members of the specified group on Io.Cur-
rent_Output.

If there is a user with the name, it displays the groups of which the user is a member.

Parameters

Group : String := ">>GROUP NAME<LKL";

Specifies the name of the group. The default parameter placeholder ">>GROUP
NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

SMU-70 7/1/87 BA\TIONAL

procedure Display_Group
package !Commands.Operator

Example
The command:
operator.display_group {group=>"public"};

results in the following display:

IUSERS.GZC % OPERATOR.DISPLAY_GROUP STARTED 6:20:23 PM

Contents of group "public”

P T L T v T T v T 1

R)ATIONAL 7/1/87 SMU-71

procedure Enable_Privil:ges
package !Commands.Operator

procedure Enable_Privileges

procedure Enable_Privileges (Enable : Boolean := True);

Description

Specifies that privileged mode should be enabled or disabled for the current job.
There is no effect on other jobs for that user or session, current or future.

For this procedure to execute successfully, the username must be a member of group
Privileged. In general, privileged mode should not be enabled unless necessary to
avoid accidentally doing something that normally would be restricted by access

control.

When privileged mode is enabled, all tasks in that job become privileged. Execution
of the procedure does not result in any output indicating that the username is now
executing under privileged mode. Jobs spawned from a job with privileges enabled
do not become privileged.

Privileged mode is enabled only for the duration of the job that called it. Therefore,
it is not possible to enable it permanently for an entire session.

If the job is not a member of group Privileged, this command has no effect.

Parameters

Enable : Boolean := True;

Specifies, when true, that privileged mode should be enabled for the current user-
name and session. When false, it specifies that privileged mode should be disabled.
Thus, privileged mode can be enabled, disabled, and enabled again within the same
job, if desired.

SMU-72 7/1/87 BA\TIONAL

procedure Enable_Terminal
package ICommands.Operator

procedure Enable_Terminal

procedure Enable_Terminal (Physical_Line : Terminal.Port;
Response : String 1= "<PROFILE>");

Description
Enables the specified line for login.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Physical_Line : Terminal.Port;
Specifies that the terminal port is a number from 0 through 255.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .enable_terminal (18);

enables port 18.

References

procedure Disable_Terminal

RAT'ONAL 17/1/87 SMU-73

procedure Explain_Crash
package !Commands.Operator

procedure Explain_Crash

procedure Explain_Crash;

Description

Reads a shutdown cause and explanation from current input and enters them into
the machine’s error log.

The cause and explanation correspond to the information entered in the Shutdown
procedure.

More specifically, this procedure is used to document system crashes or other service
interruptions.

Input to this procedure is terminated with End_Of_Input.

SMU-74 7/1/87 ,?ATIONAL

procedure Force_Logoff
package !Commands.Operator

procedure Force_Logoff

procedure Force_Logoff (Physical_ Lire : Terminal .Port;
Commit_Buffers : Boolean
Response : String

True;
"<PROF ILE>");

Description

Terminates any session active on the specified line.

Uncommitted changes to images are saved if the Commit_Buffers parameter is true.
The user’s background jobs (if any) continue to run, and any foreground jobs that
do not require interactive input are put in the background. Foreground jobs that
attempt interactive input are killed.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Physical _Line : Terminal.Port;

Specifies that the terminal port is a number from 0 through 255. You can determine
which port by executing the !Commands. What.Users procedure.

Commit_Buffers : Boolean := True;

Specifies whether uncommitted changes the user has made to any images will be
committed. When true (the default), the changes are saved.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example
The command:
operator.force_logoff (18};

logs off the user currently on port 18. Any uncommitted changes to images are
gaved.

RAT'ONAL 7/1/87 SMU-75

function Get_Archive_On_Shutdown
package !Commands.Operator

function Get_Archive_On_Shutdown

function Get_Archive_On_Shutdoun return Boolean;

Description

Returns a Boolean indicating whether archiving on shutdown has been enabled by
the Archive_On_Shutdown procedure.

Parameters

return Boolean;
Specifies, when true, that system shutdown archives object managers.

References

procedure Archive.On_Shutdown

SMU-76 7/1/87 BA\-HONAL

function Get_Login_Limit
package !Commands.Operator

function Get_Login_Limit

function Get_Login_Limit return Positive;

Description

Returns the maximum number of users that can be logged in at one time on a
machine.

The maximum number can be set by the Limit_Login procedure.

Parameters

return Positive;
Returns the number of concurrent logins.

References

procedure Limit_Login

RATIONAL 7/1/87 SMU-77

function Get_Shutdown_Interval
package {Commands.Operator

function Get_Shutdown_Interval

function Get_Shutdown_linterval return Duration;

Description
Returns the current interval that is used by the Shutdown procedure.

The interval is set by the Shutdown_Warning procedure.

Parameters

return Duration;

Returns the number of seconds between entering the Shutdown procedure and the
actual shutting down of the system.

References
procedure Shutdown

procedure Shutdown_Warning

SMU-78 7/1/87 RATIONAL

procedure Internal System Diagnosis
package !Commands.Operator

procedure Internal_System_Diagnosis

procedure |nternal_System_Diagnosis;

Description

Runs the Environment Elaborator Database (EEDB) from an Environment window
rather than on the operations console.

Execution of this procedure requires that the executing job have operator capability.

RATIONAL 71/sr SMU-79

procedure Limit_Login
package !Commands.Operator

procedure Limit_Login

procedure Limit_Login (Sessions : Positive := Positive’'last};

Description

Sets a limit on the number of concurrent user logins for a machine.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Sessions : Positive := Positive'last;
Specifies the maximum number of logins. The default is Positive’Last.

Example

The command:

operator.limit_login (16};

limits the number of login sessions to 16.

SMU-80 7/1/87 BA\TIONAL

function Privileged_Mode
package !ICommands.Operator

function Privileged—Mode

function Privileged_Mode return Boolean;

Description

Returns true if privileged mode is enabled for the calling job.

Parameters

return Boolean;

Returns true if privileged mode is enabled, or false if it is disabled, for the calling
job.

RATIONAL 7s/er SMU-81

procedure Remove_From_Group
package !Commands.Operator

procedure Remove_From_Group

">>USER NAME<<";
“>>GROUP NAME<K™;
"<PROFILE>"};

procedure Remove_From_Group (User : String
Group : String
Response : String

[{ {1

Description
Removes the specified username from the specified group.

To determine whether the username is a member of the group before removing it,
use the Display_Group procedure.

Note that identities are established at login. Removing a user from a group will not
be effective until the user’s next login.

Execution of this procedure requires that the executing job have operator capability.

Parameters

User : String := "DDUSER NAMELK";

Specifies the username that should be removed from the specified group. The default
parameter placeholder ">>USER NAME<<" must be replaced or an error will result.

Group : String := ">>GROUP NAMELKL";

Specifies the group name from which the username should be removed. The default
parameter placeholder ">>GROUP NAME<<" must be replaced or an error will result.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.remove_from_group ({user=>"bill", group=>"engineering”);

removes username Bill from the group called Engineering.

SMU-82 7/1/87 BA\TIONAL

procedure Remove_From_Group
package !Commands.Operator

References

procedure Add_To_Group
procedure Create_Group
procedure Create_User

procedure Display_Group

RATIONAL 1/s/er

SMU-83

procedure Set_System_Time
package !Commands.Operator

procedure Set_System_Time

procedure Set_System_Time (To_Be : String = "DDTIMELL";
Response : String := "<PROFILE>"};

Description
Resets the system clock, for example, for changing to or from daylight savings time.

Because the system clock has an independent power supply (a battery), there is no
need to reset the clock if the system is powered down.

Execution of this procedure requires that the executing job have operator capability.

Parameters

To_Be : String := ">>TIMEKL";

Specifies a date, time, or combination of date and time expressed in one of the for-
mats listed below. The To_Be parameter consists of 2 through 6 two-digit numbers
delimited by nonnumeric characters. The default parameter placeholder ">>TIME<<"
must be replaced or an error will result.

In general, the numbers can be interpreted, because each component of a date or
time has its own range (for example, 85 is always interpreted as a year, because it
cannot be anything else).

In the following examples of allowable times, YY expresses a year, MM expresses a
month, DD expresses a day, HH expresses an hour, mm expresses minutes, and SS
expresses seconds.

YY/MM/DD HH:mm:SS MM/DD HH:mm:SS

MM/DD/YY HH:mm:SS MM/DD HH:mm

MM/DD/19YY HH:mm:SS YY/MM/DD

YY/MM/DD HH:mm MM/DD/YY

MM/DD/YY HH:mm HH:mm:SS
HH:mm

Other allowable time and date formats are described in PT, Time_Utilities.Time-
—Format and Time_Utilities.Date_Formattypes.

SMU-84 7/1/87 RATIONAL

procedure Set_System_Time
package !Commands.Operator

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

The command:

operator.set_system_time ("15:00");
sets the time to 3:00 P.M. today.
Example 2

The command:

operator.set_system_time ("@6/12/87");

changes the date to June 12 without changing the time.

RAT'ONAL 7/1/87 SMU-85

procedure Show_Login_Limit
package !Commands.Operator

procedure Show_Login_Limit

procedure Show_Login_Limit;

Description
Displays the maximum number of concurrent logins on the current output.

The maximum number of logins can be set by the Limit_Login procedure.

Example
The command:
operator.show_login_limit;

displays the following when the login limit is 16:
It is currently possible for 16 users to be logged in

References

procedure Limit_Login

SMU-86 7/1/87 RATIONAL

procedure Show_Shutdown_Settings
package !Commands.Operator

procedure Show_Shutdown_Settings

procedure Show_Shutdown_Settings;

Description
Displays the shutdown settings on the current output.

Shutdown settings are set by the Shutdown._Warning and Archive_On_Shutdown
procedures.

Example

The command:

operator.show_shutdown_settings;

produces a message such as the following on the current output:

Stvutdown Interval 1s 01:00:00; Archive_Enabled = False

References
procedure Archive_On_Shutdown

proecedure Shutdown.Warning

RATIONAL 7/1/87 SMU-87

procedure Shutdown
package !Commands.Operator

procedure Shutdown

“COPS™;

procedure Shutdown {Reason : String
"Cause not entered");

Explanation : String

Description

Shuts down the system after the interval set by the Shutdown_Warning procedure
has passed.

The shutdown cause is specified by the Reason parameter, and the explanation is
specified by the Explanation parameter. These are entered into the machine’s error
log.

The Shutdown procedure issues several warnings to users. The first warning occurs
when the procedure is executed, the next occurs after 3/4 of the interval has passed,
the next occurs when 3/4 of the remaining time has passed, and so on, until the
system is shut down. Note that a warning interval of 30 seconds or less results in

immediate shutdown.

When the system is shut down, users are logged off, all terminal lines are disabled,
and a snapshot is taken to preserve the Environment state.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Reason : String := "COPS";

Specifies a reason for shutting down the machine. The default, “COPS”, specifies
a customer shutdown. The shutdown does not happen unless the reason is a valid
one. The value “?” for this parameter gives a list of valid reasons and does not
perform the shutdown. The cause is entered into the machine’s error log.

Explanation : String := "Cause not entered”;

Specifies an explanation to be entered into the machine’s error log. The default is
“Cause not entered” and should be replaced.

SMU-88 er RATIONAL

procedure Shutdown
package !{Commands.Operator

References
procedure Cancel_Shutdown
procedure Explain_Crash

procedure Shutdown_Warning

RATIONAL 7/1/87 SMU-89

procedure Shutdown_Warning
package !Commands.Operator

procedure Shutdown_Warning

procedure Shutdown_Warning (!nterval : Duration := 3608.0);

Description

Sets the interval between the time the Shutdown procedure is executed and the
time the system actually shuts down.

The Interval parameter also determines when the shutdown warning messages are
issued. The first message is sent at the beginning of the interval, the second is sent
after 3/4 of the interval has passed, and so on, until the system shuts down.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Iinterval : Duration := 3600.9;

Specifies that the default for the interval is 3,600 seconds, or 1 hour. The Interval
parameter is rounded to the nearest minute. Less than 1 minute is rounded to 0.

Example
The command:
operator.shutdown_warning (1880.09);

sets the interval to 30 minutes. The next time the Shutdown procedure is executed,
30 minutes will pass before the system actually shuts down.

end Operator;

SMU-90 7/1/87 EATIONAL

package Queue

Package Queue contains procedures for printing files and for creating and managing
print queues, both on the user’s current machine and on other machines through
Rational Networking—TCP/IP.

Some of the functionality available in this package can also be accessed through
the username’s session switch file. For further information on switch files, see LM,
package Switches.

If your system has Rational Networking—TCP/IP, you can submit print requests
to other machines on the same network and query other machines on the same
network.

Some of the commands in this package take the Options parameter. For further
information on the syntax of Options parameters, see Key Concepts.

The Print procedure can be used to submit one or more objects for printing. This
procedure submits objects to the default print queue class (the class used, by default,
when a class is not specified). The user can request another class by specifying a
nondefault value for the Class parameter. By default, the system notifies the user in
the Message window when the request is complete. The user can select options for
notification through the message utility or select not to be notified (Notify option).

The Print procedure automatically prints the user’s name on a separate banner
page, prints the object name and the page number on each page, and wraps lines
longer than 80 characters. The Print procedure also permits the user to specify a
different banner, headers, line length, and other format characteristics.

When a user makes a print request:

1. The object to be printed is submitted to the print spooler, which performs basic
formatting such as inserting page breaks, headers, and footers.

2. The print spooler then queues the object to the class specified by the user in
the print request. (A class is a logical grouping of print requests that allows
these requests to be handled as a set.) If no class is specified, the default class is
used. An object submitted for printing is queued along with any other objects
submitted to the same class.

RATIONAL 7/1/87 SMU-91

package !Commands.Queue

3. Because each class is typically associated (or registered) with at least one device,
the class to which an object is submitted determines the device that will handle
the print request. A device can be a physical device (such as a printer) or a
logical device (such as a file).

4. If the designated device is enabled, the submitted object is printed. If the
device has been disabled, the submitted object remains queued until the device
is enabled (or the class is reregistered with some other enabled device).

The print spooler maintains the relationships among classes and devices. The term
print queue refers to any class that is registered with a device. Put another way,
print requests are queued to a class, where they wait to be handled by an associated
device.

Execution of some of the operations in this package requires that the job executing
the commands have operator capability. These operations include Add, Create,
Destroy, Disable, Enable, Kill_Print_Spooler, Register, Remove, Restart_Print-
~Spooler, and Unregister.

Users with operator capability can create any number of classes for queuing print
requests. For example, one class can be designated for long batch jobs and another
class for short urgent jobs, associating each of these classes with its own device.
Similarly, a separate class can be assigned to each user group or department so that
requests from certain groups can be routed to specific devices, suspended, or given
preference as needed.

Note that a single device can have more than one class registered with it—for
example, when several departments use the same printer. Furthermore, a single
class can be registered with more than one device. A print request submitted to
such a class is routed to the first available device.

Users with operator capability described above can create a print queue by following
the procedure described below:

1. Use the Restart_Print_Spooler procedure to ensure that the print spooler is
running.

Use the Create procedure to define a class with the specified name.

Use the Add procedure to add a device with the specified name.

Use the Register procedure to associate the class with a device.

Use the Default procedure to define a default class with the specified name.
Use the Enable procedure to make the device available for use.

o oA w

SMU-92 7/1/87 PATIONAL

procedure Add
package !Commands.Queue

procedure Add

procedure Add (Device : String : ;
"XON_XOFF"};

Options : String :

Description

Specifies a new device to be added to the system with the specified device name.
This procedure allows you to add a new device and to specify the kind of protocol
required between print jobs (if any). Devices must be added before they can be
registered using the Register procedure.

Execution of this procedure requires that the executing job have operator capability.

Parameters

"o

Device : String := ;

Specifies the device by physical line number. The line number takes the form
termsinaln, where n is the number of the port to which the device is attached.

RATIONAL +//er SMU-93

procedure Add
package !Commands.Queue

Options : String := "XON_XOFF";

Specifies the type of protocol required by the device to be added. For infermation

on using Options parameters, see Key Concepts. The default is XON_XOFF. This

parameter also specifies a Telnet host to be used and the socket, if desired.
XON_XOFF Boolean

Specifies standard flow control.

RTS Boolean

Specifies standard flow control (XON_XOFF), with RTS protocol used between
print requests. This option is used when two machines are sharing a common
device to resolve connection problems.

DTR Boolean

Not used currently. Reserved for future development.

Host=>name

Specifies standard flow control (XON_XOFF), with a Telnet connection used be-
tween print requests, where name is the name of the Telnet connection to be

used.
Socket=>socket number

If a Telnet connection is specified with the Host option, the Socket option can
also be specified—for example, "host=>1ab_print,socket=>(@,23)".

Example 1

The command:

queue.add ("terminal_21"});
adds a device called Terminal _21.
Example 2

The command:
queue.add (device=>"terminal_255",options=>"host=>lab_print,socket=>(8,23)");

adds a Telnet device called Terminal._255.

SMU-94 7/1/87 RATIONAL

procedure Add
package 'Commands.Queue

References
procedure Enable
procedure Register

procedure Remove

RATIONAL /e SMU-95

constant All Classes
package !Commands.Queue

constant All_Classes

All_Classes : constant Class_Name := "all";

Description

Defines a constant that represents all defined classes.

SMU-96

zer RATIONAL

constant All_Spooler_Devices
package !Commands.Queue

constant All_Spooler_Devices

All_Spooler_Devices : constant String := "all"”;

Description

Defines a constant that represents all devices registered with at least one class.

RATIONAL 7/y/sr SMU-97

procedure Cancel
package {Commands.Queue

procedure Cancel

procedure Cancel (Request_Ild : Positive);

Description
Cancels the specified print request.

This procedure cancels requests whether or not those requests have started to print.
The value of the Request_Id parameter can be obtained with the Display procedure.

Although the cancel request will complete quickly, the actual canceling can take
several minutes before the print spooler removes/terminates the request.

Parameters

Request_Id : Positive;
Specifies the number assigned to the print request.

References

procedure Display

SMU-98 7/1/87 PATIONAL

procedure Classes
package !Commands.Queue

procedure Classes

nallu ;

procedure Classes (Uhich : Class_N-me :
True);

Show_Devices : Boolean

Description

Displays information about the specified classes.

Parameters

Which : Class_Name := "all";

Specifies the class for which information is requested. The default is all classes.
Users on installations that use Rational Networking—TCP/IP to connect multiple
R1000 systems can query other machines on the network. Thus, the name can specify
a machine name of the form !!machine name, where machine name is the name of
a machine—for example, !!M1.

Show_Devices : Boolean := True;

Specifies whether to display information on devices as well as on classes. The default
is true.

Example
The command:

queue.classes;

produces a display such as the following:

Class Device(s)
LP TERMINAL_34
PL TERMINAL _250

This display shows that class LP is associated with the device Terminal _34. That
is, print requests made to LP are routed to Terminal 34. It also shows that class
PL is associated with device Terminal_250, which is, by convention, a Telnet port.

RATIONAL 7/1/87 SMU-99

subtype Class_Name
package !Commands.Queue

subtype Class_Name

subtype Class_Name 1s String;

Description
Defines the form of a name assigned to a given set of devices.

All class names are mapped to uppercase (that is, case-insensitive). This subtype
can contain the name of a machine, using the format !"machine_name, where ma-
chine_name is the name of another machine on the same network—for example,
"M1.LP. The remote machine name can be used only to query and print on remote
machines. It cannot be used to change the print spooler configuration on remote
machines.

SMU-100 e RATIONAL

procedure Create
package !Commands.Queue

procedure Create

")

procedure Create (Class : Class_Name :

Description
Creates a class with the specified name.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Class : Class_Name := "";

Specifies the case-insensitive name for the class being created. The default is no
name. You cannot use a remote machine name to create a class on a remote machine.

Example
The command:
queue .create ("lp");

creates a class called LP.

References
procedure Destroy

procedure Register

RATIONAL /e SMU-101

procedure Default
package !Commands.Queue

procedure Default

procedure Default (Class : Class_Name := ""};

Description
Specifies a new default class for all Environment print requests.

The procedure sets the default class to the specified class and prints a message in
the Message window. If the default parameter value is used, the procedure simply
prints the name of the current default class in the Message window.

The class must exist before it can be made the default class. Use the Create
procedure to create classes.

You can also assign a remote class as the default class, so that the default causes
jobs to be queued on a remote machine.

Execution of this procedure requires that the executing job have operator capability.
Other users can execute this procedure to display the default class in the Message
window.

Parameters

Class : Class_Name := ;

Specifies a new default class name. If the default value of this parameter is used,
the only effect of this command is to display the current default class. Users on
installations that use Rational Networking—TCP/IP to connect multiple R1000 sys-
tems can query other machines on the network. Thus, a remote machine name can
be specified to query a remote machine for its default class—for example, ™M1 is a
machine name. You cannot set the default class on a remote machine.

Example

The command:

queue.default ("newclass”);

specifies Newclass as the default class for all print requests.

SMU-102 7/1/87 QATIONAL

procedure Default
package !Commands.Queue

References

procedure Create

RAT'ONAL 7/1/87 SMU-103

procedure Destroy
package !Commands.Queue

procedure Destroy

procedure Destroy (Class : Class_Name :
Reroute : Class_Name :

"ot
s
-

Description

Removes the specified class and routes existing requests for that class to another
class.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Y

Class : Class_Name := ;
Specifies the name of the class to be removed. The default is no name.
Reroute : Class_Name := "";

Specifies a class for routing. Print requests spooled to the removed class are routed
to this class. The default is to route requests to the default class. A remote machine
name cannot be specified to destroy a class on a remote machine.

Example 1
The command:
queue.destroy ("lp", "newclass”);
removes LP from the list of active classes and routes all requests for LP to Newclass.
Example 2
The command:

queue.destroy ("1pr3");

removes LPR3 from the list of active classes and routes all requests for LPR3 to the
default class.

SMU-104 7/1/87 P/A\-”ONAL

procedure Destroy
package !Commands.Queue

References

procedure Destroy

RATIONAL 7/1/87 SMU-105

procedure Devices
package !Commands.Queue

procedure Devices

procedure Devices (Which : String = "all";
Show_State : Boolean := True;
Show_Classes : Boolean := True);

Description

Displays information about the specified devices.

Parameters

Which : String := "all";
Specifies the device for which information is requested. The default is to show
information about all devices.

Show_State : Boolean := True;

Requests information on the current state of the devices, whether enabled or dis-
abled. The default is true.

Show_Classes : Boolean := True;

Specifies whether to display information on classes associated with the displayed
devices. The default is true.

Example
The command:
queue .devices;

produces a listing such as the following:

Device Protocol Characteristics State Classes
TERMINAL_40 XON_XOFF Laser_Comm Disabled {none)
TERMINAL_32 RTS Disabled (none)
TERMINAL _255 TELNET Enabled LP

(postscript
(8,23))

This display shows three devices. Two are disabled and have no associated classes.
Terminal 255, however, is enabled and is associated with class LP.

SMU-106 7/1/87 RAT'ONAL

procedure Disable
package !Commands.Queue

procedure Disable

procedure Disable (Device : String = ",
Immediate : Boolean := False};

Description
Disables the specified device.

Depending on the value of the Immediate parameter, the procedure disables the
specified device either before or after the current print request has finished on that
device. If the Immediate parameter is false (the default), the procedure waits until
the current print request has completed. If Immediate is true, the device is disabled
immediately and the interrupted print request is placed back on the print queue to
be reprinted when possible.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device : String := "";

Specifies the device by physical line number. The line number takes the form
terminal_n, where n is the number of the port to which the device is attached.

Immediate : Boolean := False;

Specifies whether to allow the current print request to finish before the device is
disabled. If the Immediate parameter is false Céthe default), the procedure waits
until the current print request has completed. If Immediate is true, the device is
disabled immediately and the interrupted print request is placed back on the print
queue to be reprinted when possible. The Disable procedure will return quickly;
however, it can take several minutes before the interrupted job is requeued and the
device disabled.

Example 1
The command:
queue .disable ("terminal_40",true);

disables the device on physical line 40. Because of the parameter true, the device
is disabled immediately. Any print request that is actually printing when this
command is executed is placed on the print queue again.

RATIONAL 7/1/87 SMU-107

procedure Disable
package !Commands.Queue

Example 2
The command:
queue .disable {"terminal_48");

disables the device on physical line 40. Because of the default parameter false, the
print request currently on this device must complete before the device is disabled.

References
procedure Add

procedure Enable

SMU-108 7/1/87 RATIONAL

procedure Display
package !Commands.Queue

procedure Display

procedure Display (Class : Class_Name := "all");

Description

Displays the print requests currently queued in the specified class.

The display appears in the current output window. If there are no queued requests,
a message to this effect appears in the Message window.

The display shows the identification number for each request. Use the appropriate
number as the Request_Id parameter when using the Cancel procedure.

Parameters

Class : Class_Name := "all";

Specifies the class for which the contents are to be displayed. The default is
to display the contents of all classes. Users on installations that use Rational
Networking—TCP/IP to connect multiple R1000 systems can query other machines
on the network. Thus, the name can specify a machine name of the form !!machine
name, where machine name is the name of a machine—for example, !!M1.

Example

The command:
queue .display;

produces a display such as the following in the current output window:
ID Time State Class User Ob ject
20 17:54 Queued LP OPERATOR IUSERS.OPERATOR.LOG

In this example, the state of the print request is queued because the device associ-
ated with the class LP is disabled. When a print request is currently being processed
by an enabled device, the state of the request is active.

R)ATIONAL 7/1/87 SMU-109

procedure Display
package !Commands.Queue

References

procedure Cancel

SMU-110 e RATIONAL

procedure Enable
package !Commands.Queue

procedure Enable

procedure Erable (Device : String := "all");

Description
Enables the specified device.
The default is to enable All_Spooler_Devices (all registered devices).

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device : String := "all";
Specifies the device by physical line number. The line number takes the form

terminal_n, where n is the number of the port to which the device is attached. The
default is all devices.

Example
The command:
queue.enable ("terminal_48");

enables the spooler device on physical line 40. Note, however, that line 40 cannot
be simultaneously enabled for login.

References
procedure Add

procedure Disable

BA\-”ONAL 7/1/87 SMU-111

procedure Kill_Print_Spooler
package !Commands.Queue

procedure Kill_Print_Spooler

procedure Kill_Print_Spooler;

Description

Stops the print spooler.

This procedure disables all spooler devices, prevents additional print requests, and
prevents the successful completion of any queue operations requiring this machine.
The print spooler can be restarted with the Restart_Print_Spooler procedure.

Execution of this procedure requires that the executing job have operator capability.

References

procedure Restart_Print_Spooler

SMU-112 e RATIONAL

procedure Print
package !Commands.Queue

procedure Print

procedure Print (Name : String := "<IMAGE>";
Options : String := "<DEFAULT>";
Barner : String := "<DEFAULT>";
Header : String := "<DEFAULT>";
Footer : String := "<DEFAULT>");
Description

Queues the specified objects for printing.

You can specify one or more objects by naming, by selection, or by placing the
cursor in a window containing the object’s images.

Besides text files, you can get printouts of Ada units and library listings. To print
images from output windows or images of other kinds of objects (for example, a
switch file), you must first copy the object’s image into a text file, commit the file,
and then print that text file.

The default is to queue the print request to the device associated with the default
class and to notify when the jobs are complete. The Message window echoes all
print requests, unless the switches are set differently in the user’s switch file.

The Print procedure uses the Options parameter to allow you to change the printout
format or to request multiple copies of your print request.

Parameters

Name : String := "<IMAGE>";

Specifies the name of the object to be sent to the print queue. This parameter
can use special names and wildcards to specify a set of objects. The default is the
current selection or image.

You can specify a text file, an Ada unit, or a library (which prints a list of the
library’s contents). If you specify a file or an Ada unit using the current image, the
most recently committed version is printed. Therefore, the printout will differ from
the actual image on the screen if that image contains uncommitted changes.

RATIONAL 7/1/87 SMU-113

procedure Print
package {Commands.Queue

Options : String := "<DEFAULT>";
Specifies the options to be used in formatting output. The following is a list of
the options available for use in the Options parameter to format output. Note
that the Options parameter uses the special name "<DEFAULT>". When this special
name is used, the system looks in the session switch file for the options set in
the Queue.Options switch. If the switch file is not accessible, the system uses the
options "FORMAT=>(lirap, System_Header)". These options are no longer true and
must be respecified if any of the options are changed by substituting an option
for the "<DEFAULT>" special name. One of the following three options must be
specified: Original-Raw, Raw, or Format. Unless otherwise specified in the Options
parameter, the Boolean options Original_Raw, Raw, and Spool_Each_Item are
false. The other options take the defaults specified below.

Banner _Page_User _Text=siring

Specifies a string (with a maximum of 60 characters) that will be printed on the
banner page, beneath the banner and above the system-generated information.

Class=string

Specifies the name of the class, where string is the class to which the print
request is queued. The class determines the device that will handle the print
request. Note that the specified class must exist and must be associated with
an enable device. If this option is not specified, the class is the default class.

Copies=positive snteger
Specifies the number of copies to be printed, where posstsve snteger is the number

of copies to be printed. Copies are generated one at a time, and other jobs may
intervene between copies. The default is 1 copy.

Format options

The Format option is an options parameter within the Options parameter
that can be used to specify format options Wrap, Truncate, Numbering, Sys-
tem_Header, Width, Length, and Tab.Width. Options must appear in paren-
theses—for example, FORMAT=>(Wrap, Width=77).

Length=positive snteger

Specifies the total number of printed lines per page, including headers and
footers.

The default length is 60 lines. Note that, by default, the Rational Printer is
set to eject a page after 66 lines if a formfeed is not encountered earlier. To
print pages longer than 66 lines, you must change the appropriate setting
on the Rational Printer (see “Printer Operations and Maintenance” in the
Rational R1000 Development System: System Manager’s Guide) in addition
to increasing the Length value.

The number of lines in the body text for each page is automatically adjusted
to accommodate any combination of a one-line header, a one-line footer, or
a system page header. However, if you specify a multiple-line header or
footer, you must decrease the Length value for every additional line beyond
the expected one.

SMU-114 7/1/87 RATIONAL

procedure Print
package !Commands.Queue

Numbering Boolean
Specifies whether to provide line numbering. The default is false.
System_Header Boolean

Specifies whether to print the system page header on each page. The system
header is the name of the object and a page number. If there is a user-
specified header, the system page header appears above it. The default is
false.

Tab Width=posstive snieger

Specifies number of spaces with which to replace a Tab character (Ascii.Ht).
The default is 8. A value of 0 specifies no replacement.

Truncate Boolean

Specifies whether to truncate lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to be
true.

Width=posstive integer

Specifies the maximum number of printable characters per line, where pos-
ttive tnteger is the number of characters.

The default width is 80 columns. Note that the Rational Printer itself can
be set to wrap after 80 columns. To print wider pages, you must change the
appropriate setting on the Rational Printer (see “Printer Operations and
Maintenance” in the Rattonal R1000 Development System: System Man-
ager’s Guide) in addition to increasing the value of Width.

The Wrap and Truncate options specify what to do with lines that are longer
than Width.

Wrap Boolean

Specifies whether to wrap lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to
be true. The wrapped portions of wrapped lines do not receive a new line
number.

Original _Raw Boolean

For use on machines low on space when large files need to be printed. This
option prints without using space to make the print spooler copy. The file
can be spooled only to a local device. Each file is spooled separately (that is,
it ignores the Spool_Each_Item option). A message is sent when printing is
complete (that is, it ignores the Notify option). A banner page is printed (that
is, it ignores the Banner_Page_User option).

Notify literal

Specifies the manner of notification after a print request is completed. By de-
fault, an informative message is sent to the Message window. The available
types are None, Message (the default), and Mail (reserved for future develop-
ment). Remote requests, under normal conditions, will also notify you.

RATIONAL +/1/er SMU-115

procedure Print
package !Commands.Queue

Raw Boolean

Specifies whether the printer should interpret the input. Prints the file without
interpreting characters (that is, without recognizing formfeeds or linefeeds).
This is useful for preformatted text or binary data. Using this option turns off
other options. It does not provide a system or user header.

Spool_Each_Item Boolean
Specifies whether to spool each file indicated by the Name parameter as a sep-

arate job. When true, each file has its own banner page. When false, a single
banner page is printed. The default is false.

Banner : String := "<DEFAULT>";

Specifies the string that appears on the single banner page that precedes the print-
out. The string you supply is truncated at 11 characters. If the null string is
specified, a banner page will not be generated.

The special name "<DEFAULT>" refers to the banner that is specified in the username’s
session switch file or the username if one is not specified.

Header : String := "<DEFAULT>";

Specifies a line of text that appears at the top of each page of the printout. Any
nonnull string (including blank characters) constitutes a user-specified header. A
blank line is automatically inserted below the user-specified header to separate the
header text from the printout.

If the Options parameter requests a system page header in addition to the user-
specified header, then the system header appears first, followed by the user-specified
header.

The user-specified header can be longer than the Width option; however, a lengthy
header is not wrapped automatically. You must include linefeeds in a header if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line header, you must decrease the
Length value for every header line beyond the expected one.

The special name "<DEFAULT>" refers to the header that is specified in the username’s
session switch file.

SMU-116 7/1/87 PATIONAL

procedure Print
package !Commands.Queue

Footer : String := "<DEFAULT>";

Specifies a line of text that appears at the bottom of each page of the printout.
Any nonnull string (including blank characters;] constitutes a user-specified footer.
A blank line is automatically inserted above the user-specified footer to separate
the footer text from the printout.

The user-specified footer can be longer than the Width option; however, a lengthy
footer is not wrapped automatically. You must include linefeeds in a footer if you

want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line footer, you must decrease the
Length value for every footer line beyond the expected one.

The special name "<DEFAULT>" refers to the footer that is specified in the username’s
session switch file.

Example

The command:

queue .print {name=>"output_samples", options=>"copies=2, truncate,
system_header” ,banner=>"dept 04",
header=>"May 9, 1987");

prints two copies of the object Output_Samples, with Dept 04 on the banner page
and the date appearing under the system page header. Lines longer than 80 char-
acters are truncated.

The request to print Output_Samples is queued to the default class, and a message
such as the following appears in the Message window:

Request number 58 has been queued

A further message in the Message window notifies the user when the job is complete.
The user would also be notified if the request were made on a remote machine.

References

SIM, Session Switches

RAT'ONAL 7/1/87 SMU-117

procedure Print_Version
package !Commands.Queue

procedure Print_Version

procedure Print_Version (The_Version : Directory.Version;

Options ¢ String := "<DEFAULT>";
Banner : String := "<DEFAULT>";
Header : String := "<DEFAULT>";
Footer : String := "<DEFAULT>");

Description

Queues the specified object version for printing, allowing customization of the print-
out page format.

The default is to assume the device associated with the default class and to notify
when the jobs are complete. The Message window echoes all print requests.

The Print_Version procedure uses the Options parameter to allow you to change
the printout format or to request multiple copies for your print.

Parameters

The_Version : Directory.Version;
Specifies the version of the object to be sent to the print queue.

Options : String := "<DEFAULT>";

Specifies the options to be used in formatting output. The following is a list of
the options available for use in the Options parameter to format output. Note
that the Options parameter uses the special name "<DEFAULT>". When this special
name is used, the system looks in the session switch file for the options set in
the Queue.Options switch. If the switch file is not accessible, the system uses the
options "FORMAT=>(Wrap, System_Header)". These options are no longer true and
must be respecified if any of the options are changed by substituting an option
for the "<DEFAULT>" special name. One of the following three options must be
specified: Original_Raw, Raw, or Format. Unless otherwise specified in the Options
parameter, the Boolean options Original_Raw, Raw, and Spool_Each_Item are
false. The other options take the defaults specified below.

Banner _Page_User_Text=string

Specifies a string (with a maximum of 60 characters) that will be printed on the
banner page, beneath the banner and above the system-generated information.

SMU-118 e RATIONAL

procedure Print_Version
package !Commands.Queue

Class=string

Specifies the name of the class, where string is the class to which the print
request is queued. The class determines the device that will handle the print
request. Note that the specified class must exist and must be associated with
an enable device. If this option is not specified, the class is the default class.

Copies=posstive snteger
Specifies the number of copies to be printed, where posstive snteger is the number

of copies to be printed. Copies are generated one at a time, and other jobs may
intervene between copies. The default is 1 copy.

Format options

The Format option is an options parameter within the Options parameter
that can be used to specify format options Wrap, Truncate, Numbering, Sys-
tem_Header, Width, Length, and Tab_Width. Options must appear in paren-
theses—for example, FORMAT=> (WUrap, Width=77).

Length=posstive snteger

Specifies the total number of printed lines per page, including headers and
footers.

The default length is 60 lines. Note that, by default, the Rational Printer is
set to eject a page after 66 lines if a formfeed is not encountered earlier. To
print pages longer than 66 lines, you must change the appropriate setting
on the Rational Printer (see “Printer Operations and Maintenance” in the
Rational R1000 Development System: System Manager’s Guide) in addition
to increasing the Length value.

The number of lines in the body text for each page is automatically adjusted
to accommodate any combination of a one-line header, a one-line footer, or
a system page header. However, if you specify a multiple-line header or
footer, you must decrease the Length value for every additional line beyond
the expected one.

Numbering Boolean
Specifies whether to provide line numbering. The default is false.
System_Header Boolean

Specifies whether to print the system page header on each page. The system
header is the name of the object and a page number. If there is a user-
specified header, the system page header appears above it. The default is
false.

Tab Width=posstive snieger

specifies number of spaces with which to replace a Tab character (Ascii.Ht).
The default is 8. A value of 0 specifies no replacement.

Truncate Boolean

Specifies whether to truncate lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to be
true.

RATIONAL 71/er SMU-119

procedure Print—Version
package !Commands.Queue

Width=posstsve snteger

Specifies the maximum number of printable characters per line, where pos-
sttve tnteger is the number of characters.

The default width is 80 columns. Note that the Rational Printer itself can
be set to wrap after 80 columns. To print wider pages, you must change the
appropriate setting on the Rational Printer (see “Printer Operations and
Maintenance” in the Rational R1000 Development System: System Man-
ager’s Guide) in addition to increasing the value of Width.

The Wrap and Truncate options specify what to do with lines that are longer
than Width.

Wrap Boolean

Specifies whether to wrap lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to
be true. The wrapped portions of wrapped lines do not receive a new line

number.
Original_Raw Boolean

For use on machines low on space when large files need to be printed. This
option prints without using space to make the print spooler copy. The file
can be spooled only to a local device. Each file is spooled separately (that is,
it ignores the Spool_Each_Item option). A message is sent when printing is
complete (that is, it ignores the Notify option). A banner page is printed (that
is, it ignores the Banner_Page_User option).

Notify literal

Specifies the manner of notification after a print request is completed. By de-
fault, an informative message is sent to the Message window. The available
types are None, Message (the default), and Mail (reserved for future develop-
ment). Remote requests, under normal conditions, will also notify you.

Raw Boolean

Specifies whether the printer should interpret the input. Prints the file without
interpreting characters (that is, without recognizing formfeeds or linefeeds).
This is useful for preformatted text or binary data. Using this option turns off
other options. It does not provide a system or user header.

Spool _Each_ltem Boolean

Specifies whether to spool each file indicated by the Name parameter as a sep-
arate job. When true, each file has its own banner page. When false, a single
banner page is printed. The default is false.

SMU-120 7/1/87 RAT'ONAL

procedure Print-Version
package !Commands.Queue

Banner : String := "<DEFAULT>";

Specifies the string that appears on the single banner page that precedes the print-
out. The string you supply is truncated at 11 characters. If the null string is
specified, a banner page will not be generated. The special name "<DEFAULT>"
refers to the banner set in the username’s session switch file (or the username if one

is not specified).

Header : String := "<DEFAULT>";

Specifies a line of text that appears at the top of each page of the printout. Any
nonnull string (including blank characters) constitutes a user-specified header. A
blank line is automatically inserted below the user-specified header to separate the
header text from the printout.

If the Options parameter requests a system page header in addition to the user-
specified header, then the system header appears first, followed by the user-specified

header.

The user-specified header can be longer than the Width option; however, a lengthy
header is not wrapped automatically. You must include linefeeds in a header if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line header, you must decrease the
Length value for every header line beyond the expected one. The special name
"<DEFAULT>" refers to the header set in the username’s session switch file.

Footer : String := "<DEFAULT>";

Specifies a line of text that appears at the bottom of each page of the printout.
Any nonnull string (including blank characters) constitutes a user-specified footer.
A blank line is automatically inserted above the user-specified footer to separate
the footer text from the printout.

The user-specified footer can be longer than the Width option; however, a lengthy
footer is not wrapped automatically. You must include linefeeds in a footer if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line footer, you must decrease the
Length value for every footer line beyond the expected one. The special name
"<DEFAULT>" refers to the footer set in the username’s session switch file.

BA\‘”ONAL 7/1/87 SMU-121

procedure Print_Version
package !Commands.Queue

References

SIM, Session Switches

SMU-122 7/1/87 RA\-HONAL

procedure Register
package !Commands.Queue

procedure Register

procedure Register (Device : String :
Class : Class_Name :

i n
e

Description

Registers the specified device with the print spooler and associates the specified
device with the specified class.

The specified device and class must already exist (see the Create and Add proce-
dures).

More than one class can be registered to a single device, and a single class can be
registered to more than one device. When one class is registered to multiple devices,
print requests submitted to that class are handled by the first available device.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device : String := "";
Specifies the device by physical line number. The line number takes the format

terminal_n, where n is the number of the port to which the device is attached. The
default is no device.

Class : Class_Name := "";

Specifies the class to be associated with the device. The default is no class. The
class must already exist (see the Create procedure). A remote machine name cannot
be used to register a class with a remote machine. Registering must be performed
on the same machine as the class to be registered for that machine.

Example
The command:
queue .register ("terminal_40","1p");

registers class LP with the device on physical line 40. If the device on line 40 is
the only device associated with class LP, then all requests to class LP are routed to
device 40.

RATIONAL 7/1/er SMU-123

procedure Register
package !Commands.Queue

References
procedure Add
procedure Create

procedure Unregister

SMU-124

e RATIONAL

procedure Remove
package !Commands.Queue

procedure Remove

procedure Remove {Device : String
Immediate : Boolean :

Faise};

Description
Removes the device from the print spooler.

The value of the Immediate parameter determines whether the procedure waits until
the current print request has finished before removing the device. If Immediate
is false (the default), the procedure waits for the device to finish processing the
current print request. If Immediate is true, the device is removed immediately, and
the interrupted print request is requeued.

The Remove procedure effectively reverses all aspects of the Enable and Regis-
ter procedures. The Remove procedure disables this device, dissociates it from its
classes, and then removes the device from the print spooler. (Note that the Unreg-
ister procedure dissociates a device from a class but leaves the device known to the

print spooler.)

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device : String := ""

Specifies the device by physical line number. The line number takes the form
termsnal_n, where n is the number of the port to which the device is attached. The
default is no physical line number.

fmmediate : Boolean := False;

Specifies whether the procedure waits until the current print request has finished
before removing the device. If false (the default), the procedure waits for the
device to finish processing the current print request. If true, the device is removed
immediately and the interrupted print request is requeued.

RATIONAL 7/ SMU-125

procedure Remove
package !Commands.Queue

Example 1

The command:

queue.remove ("terminal_40", true);

removes the device on physical line 40 from the spooler. Because of the parameter
true, the device is removed immediately.

Example 2

The command:

queue.remove ("terminal_40");

removes the device on physical line 40 from the spooler. Because of the default
parameter false, the print request currently printing on device 40 completes before
the device is removed.

References
procedure Add
procedure Enable

procedure Register

SMU-126 7/1/87 R)ATIONAL

procedure Restart_Print_Spooler
package !Commands.Queue

procedure Restart_Print_Spooler

procedure Restart_Print_Spooler;

Description
Starts or restarts the print spooler.

If the spooler is already running, this procedure has no effect. The spooler must be
running in order to successfully execute any queue operation.

Execution of this procedure requires that the executing job have operator capability.

RATIONAL 716 SMU-127

procedure Unregister
package !Commands.Queue

procedure Unregister

procedure Unregister {Device : String
Class : Class_Name :

Description

Dissociates the device from the specified class.

The Unregister procedure reverses the Register procedure. The Unregister proce-
dure dissociates a device from a class but leaves the device known to the print

spooler. (Note that the Remove procedure disables the device, dissociates it from
its classes, and then removes the device from the print spooler.)

Execution of this procedure requires that the executing job have operator capability.

Parameters

"o

Device : String := ;

Specifies the device by physical line number. The line number takes the form
terminal_n, where n is the number of the port to which the device is attached. The
default is no physical line number.

Class : Class_Name := "";

Specifies a class that is registered to the device. The default is no class. A remote
machine name may not be specified to unregister a device on a remote machine.

Example

The command:

queue .unregister ("terminal_40","1p"};

dissociates class LP from the device on physical line 40.

SMU-128 7/1/87 PAT'ONAL

procedure Unregister
package !Commands.Queue

References
procedure Add
procedure Create

procedure Register

end Queue;

RAT'ONAL 7/1/87 SMU-129

RATIONAL

package Scheduler

The medium-term scheduler tracks jobs and regulates their access to CPU, memory,
and disk resources. The procedures in package Scheduler allow the user to monitor
and fine-tune various aspects of the scheduler’s allocation of resources to jobs. By
fine-tuning the scheduler, the user can cause it to devote resources to improving the
performance of interactive jobs or increasing the throughput of batch jobs.

Typically, a procedure to tailor the scheduler parameters for a system is created
and a call to it is inserted in the !Machine.Initialize procedure so that the scheduler
parameters are set up each time the system is booted. Sometimes specific jobs or
servers will have calls to the scheduler procedure to establish special conditions to
optimize their performance.

The operations that set values in this package require that the job executing the
procedure have operator capability. Operations that display values do not require
any special access.

With the Set procedure, the user can set values for the various scheduler parameters
that enable, disable, and adjust CPU scheduling, memory scheduling, disk schedul-
ing, and background job streams. (Each of these topics is discussed in its own
section below.) With the Display procedure, the user can display the current values
for the scheduler parameters.

The State procedure displays indexes of overall system activity such as run load,
disk wait load, withheld task load, and number of available memory pages. The
following also return specific information about system activity:

Get_Disk_Wait_Load
Get_Withheld_Task_Load
Get_Run_Queue_Load

Package Scheduler also provides procedures and functions that allow the user to
enable, disable, and get information about individual jobs. The Disable and En-
able procedures suspend and resume a given job. The State procedure displays
information about resource allocation to individual jobs, and the Display proce-
dure displays information specifically about background jobs on the background
job streams. Along with the State and Display procedures, the following return
specific information about individual jobs:

RATIONAL 7/1/87 SMU-131

package !Commands.Scheduler

Display Get_Cpu-_Priority
Get_Cpu_Time_Used Get_Job_Kind
Get_Job_State Get_Wsl_Limits
State

Jobs

A job is a set of Ada tasks that act together. A job is initiated each time the user
edits an object or executes a command. For scheduling purposes, some jobs are
associated with (or mapped to) others. For example, the aggregate of jobs initiated
by editing images and objects within a single session are scheduled as a single job.

Job Numbers

Whenever a job starts or is created, it is assigned a unique Job-Id (job identification
number), which is a number from 0 through 255. The procedures in package Sched-
uler manipulate jobs by job number, or Job_Id. Therefore, jobs and job numbers
are often referred to as Job_Id in the description of individual commands.

Foreground and Background Jobs
Jobs are divided into two major classes for purposes of allocating resources:

o Foreground jobs are typically highly interactive and require fast response. They
are allocated the majority of system resources, and the scheduler attempts to
guarantee that each foreground job makes satisfactory progress.

o Background jobs are batch jobs and do not require especially fast response.

They are allocated the remaining resources after foreground jobs are handled.
The scheduler does not attempt to guarantee that each background job makes

progress.

The treatment of foreground and background jobs is described more precisely under
“CPU Scheduling,” below.

Job Kinds

Within the general division of foreground and background, jobs are allocated re-
sources according to their kind. In some cases, a job’s kind is determined internally
by the Environment; in other cases, a job’s kind is determined by the user. The
user can use the Get_Job_Kind function to determine a given job’s kind.

The kinds of jobs are:

o Core editor (Ce) jobs include operations for editing images—for example, com-
mands that control the cursor or search for strings. The Environment determines
precisely which operations count as core editor jobs.

o Object edstor (Oe) jobs include operations for debugging programs and for editing
structured objects—for example, commands that select objects. The Environ-
ment determines precisely which operations count as object editor jobs.

SMU-132 e RATIONAL

package !Commands.Scheduler

e Attached jobs are commands entered by users that are not core editor or object
editor operations. While an attached job executes, the Message window banner
displays Running and the terminal is unavailable for other operations.

o Detached jobs result either from interrupting an attached job using Ethe
Job.Interrupt procedureg or from entering a command using the
Command.Spawn procedure). The terminal can be used for other operations
while detached jobs execute.

e Server jobs are background jobs that must always have resources available when
needed—for example, the print spooler. The user can designate a job as a server
using the Set_Job_Attribute procedure.

o Terminated jobs are not allocated any resources. A terminated job remains in
the system until its job number is reused for another job.

(Note that all job kinds are defined as enumerations of the Job_Kind type.)

Job kinds are related to job classes as follows:

o Core editor and object editor jobs are allocated foreground resources.
¢ Detached jobs and servers are allocated background resources.

o Attached jobs receive foreground resources until a certain amount of time has
elapsed, after which attached jobs receive background resources. (The time limit
on attached jobs is determined by the Foreground_Time_Limit scheduler param-
eter, which the user can set using the Set procedure.) Having a time limit on
foreground jobs induces users to run long jobs in the background, rather than
depleting foreground resources.

Job States

Jobs typically pass through various states: Run, Idle, Wait, Disable, and Queue.
These states are enumerations of the Job_State type. The user can use the Get-
—Job_State function to find out a given job’s current state.

Foreground and background jobs alternate between the Run and Wait states as
they execute:

e A job in the Run state (also called a running job) is either currently consuming
CPU time or eligible to consume CPU time. That is, at any given time, there may
be several running jobs, of which only one is actually using CPU time while the
rest wait their turn.

* A jobin the Idle state is not executing. It uses no CPU time and has no unblocked
tasks. For example, jobs that are waiting for I/0O or that have all tasks are in the
Idle state. Also, jobs such as the print spooler are in the Idle state until they are
called.

* A job in the Wait state (also called a withheld job) is temporarily ineligible for
CPU time. The scheduler puts a job in the Wait state if:

RATIONAL 7/1/er SMU-133

package !Commands.Scheduler

o The job has already used more than its share of CPU time and the system load
is too high.

o The job is waiting for disk resources and the disk wait load is too high.

o The job is using pages of memory that are needed to replenish the reserve
supply of available pages.

o A withheld job returns to the Run state when the scheduler determines that the
job is eligible for resources again.

¢ A job in the Disabled state is not executing. It has been rendered ineligible for
CPU time by users or programs executing the !Commands.Job.Disable procedure
or the Scheduler.Disable procedure.

¢ The Queued state is relevant for certain kinds of background jobs—namely, all de-
tached jobs and those attached jobs that have passed the Foreground_Time_Limit.
Jobs such as these are queued for resources on one of several background job
streams (see “Background Job Streams,” below). However, because only a re-
stricted number of jobs on each stream can be in the Run or Wait state at a
time, the remaining jobs are put in the Queued state. In other words, a job in
the Queued state is a Job that is waiting on a background job stream until the
executing jobs ahead of it have completed or have been moved to another stream.

Scheduling Review Interval

The scheduler makes scheduling decisions every 100 milliseconds. (These 100-milli-
second-intervals are called revtew sntervals.) At the end of every review interval,
the scheduler reviews the actual usage of resources during the last 100 milliseconds
and then, based on the actual usage, decides whether to withhold jobs during the
next 100 milliseconds to keep resource usage within certain limits. Note that the
scheduler does not actually control the allocation of resources, but rather it monitors
and adjusts resource consumption to maintain a balance among different kinds
of jobs. The scheduler itself is not subject to scheduling; it uses 0.5-1% of CPU
resources.

The following sections give a partial description of the scheduler’s effect on CPU
scheduling, memory scheduling, and disk scheduling. These sections contain the
information the user needs about the scheduler in order to set the scheduler param-
eters using the Set procedure.

CPU Scheduling

CPU time is distributed among foreground and background jobs, with preference
given to foreground jobs. Because foreground jobs need to make consistent progress
with the best possible performance, CPU time is made available first to foreground
jobs and then to background jobs. However, to prevent foreground jobs from con-
suming all CPU resources, a minimum percentage of CPU time can be designated
for background jobs. This minimum percentage is determined by the Percent._For-
—Background scheduler parameter, which the user can set using the Set procedure.
(Note that even though some CPU time is guaranteed, background jobs will not
make progress unless they also have disk and memory resources.)

SMU-134 1/1/87 R’ATIONAL

package {Commands.Scheduler

If there are no background jobs, foreground jobs can receive the CPU time that was
reserved for background jobs. Similarly, background jobs can receive more than
their reserved CPU time, provided that no foreground jobs need time.

Foreground Jobs

The scheduler follows separate policies for scheduling the CPU time that is allocated
to foreground and background jobs. To ensure consistent progress for all foreground
jobs, the scheduler attempts to give each session that has foreground jobs an equal
share of the foreground CPU time. That is, if two users have foreground jobs,
each user’s session is given half of the available foreground CPU time. In contrast,
individual background jobs are given CPU time according to their Ada task priority
and to their placement on a background job stream (see “Background Jobs,” below).

Foreground CPU scheduling applies to core editor jobs, object editor jobs, and at-
tached jobs. However, to discourage users from running long jobs in the foreground,
the scheduler can be adjusted to give foreground resources to attached jobs only
for a limited time. (The time limit is set by the Foreground_Time_Limit scheduler
parameter.) After the foreground time limit has expired for an attached job, the
job is subject to background CPU scheduling.

To schedule foreground time equitably, the scheduler does the following at the end
of each review interval:

1. Determines how much foreground CPU time each job has used during the current
review interval.

2. Calculates the ideal CPU usage for each job, giving a fair share to each session
that had foreground jobs during the interval.

3. Compares the actual usage to the ideal usage and determines whether the job
has used more or less time than it should have. The foreground budget for each
job is credited or debited accordingly.

4. Decides whether to withhold a job for the next interval. A job is withheld (put
in the Wait state) if both of the following are true:

a. The job has accumulated an overall debt in its foreground budget (that is,
the value of the job’s foreground budget is negative).

b. The run load exceeds a preset level.

5. Decides whether to release jobs that were withheld from previous intervals and
return them to the Run state. A job is released after it has accumulated enough
credit in its foreground budget over one or more review intervals to make up for
whatever debt it has previously incurred.

Run Load

The run load is the average number of tasks that require CPU time during a review
interval. Tasks are counted if they are currently consuming CPU time or are eligible
to consume CPU time. Withheld and idle tasks are not reflected in the run load.
The run load is averaged over a review interval and then multiplied by 100 so that
it appears as an integer. For example, if an average of 1.3 tasks are in the Run
state, the run load is 130.

RATIONAL 7/1/er SMU-135

package !Commands.Scheduler

The scheduler uses the run load to determine whether or not a job can be withheld
after that job has used more than its share of CPU time. The user can specify
the minimum run load at which the scheduler can withhold jobs by using the Set
procedure to set the Withhold_Run_Load parameter.

Number of Withheld Jobs

By default, the scheduler can withhold only one additional job at the end of a given
review interval, no matter how many jobs are eligible for withholding after that
interval. (However, there is no restriction on the total number of withheld jobs at
any given time, because multiple withheld jobs can accumulate after 2 number of
intervals.) The user can permit the scheduler to withhold more than one job per
review interval by changing the value for the Withhold _Multiple_Jobs scheduler
parameter to true. (See the Set procedure.)

Foreground Budget

As a job uses more or less than its fair share of CPU time, the job’s foreground
budget is debited or credited accordingly at the end of each review interval. The
value of a job’s budget at the end of a given interval therefore represents the net
debt or credit accumulated over successive intervals. If, on the balance, the job
has used more than its allocated time, its budget value is negative. For a withheld
job, this negative value expresses how much time the job must accumulate over
subsequent intervals in order to be released and returned to the Run state. If, on
the other hand, the job has used less than its overall allocated time, its budget
value is positive. A positive budget value prevents the job from being withheld and
expresses how much extra time the job can use before going into debt. If the job
has used exactly as much time as it was allocated, the budget value breaks even at
0.

The scheduler imposes a limit on the amount of accumulated credit or debt a job
can have. That is, no matter how much extra time a job has used, there is a
maximum overall debt that the job can incur. Consequently, if the job is withheld,
there is a limit to the amount of credit it has to accumulate before it can run again.
Similarly, no matter how little time the job used relative to its allotment, there is
a maximum overall credit that the job can earn. Consequently, there is a limit to
how much extra time the job can use before going into debt.

The user can adjust the credit and debit limits on the foreground budget by us-
ing the Set procedure to set the Max_Foreground_Budget and Min_Foreground-
—Budget scheduler parameters, respectively. The wider the range between the Max-
~Foreground_Budget and Min_Foreground_Budget values, the more sensitive the
scheduler is to giving jobs equal time. When the range is narrower, the distribution
of CPU time is less equal.

Background Jobs

As a group, background jobs {detached jobs, servers, and aged attached jobs) are
guaranteed a percentage of CPU time, as determined by the Percent_For_Background
scheduler parameter. However, the scheduler does not track the amount of time used
by each background job, nor does the scheduler attempt to ensure that each job is

SMU-136 e RATIONAL

package !Commands.Scheduler

allotted a fair share of the available CPU time. Instead, the allocation of CPU time
is determined by Ada task priorities.

Background Job Streams

Without a guarantee of equal CPU time, it is possible for a single long-running
background job to block a number of shorter jobs. To avoid this, background
job streams can be set up to queue long-running jobs to expedite shorter jobs.
Only two kinds of background jobs are subject to queuing on the background job
streams—namely, detached jobs and attached jobs that have run longer than the
Foreground_Time_Limit. Servers are not subject to queuing on these streams.

By default, there is one background job stream, although the user can arbitrarily
set up streams by using the Set procedure to set the Background_Streams scheduler
parameter. The Display procedure displays information about each background job

stream.

Job Stream Time Limits

Each background job stream has an associated time limit, which specifies the max-
imum amount of elapsed time a job can run on that stream. If a job that is running
on a stream has not yet finished when the time limit is reached, the job is queued
onto the next stream.

For example, the user could set up three streams with the following time limits:

Stream 1 2 minutes
Stream 2 5 minutes
Stream 3 20 minutes

With these limits, a job queued on stream 1 can run for 2 minutes. If the job has
not finished within that time, it is queued onto stream 2, where it waits its turn to
run. (Meanwhile, another job on stream 1 can now run.) Once the job is eligible
to run on stream 2, it can run for 5 more minutes. If the job requires more than §
minutes, it is8 queued onto stream 3, so that subsequent jobs on stream 2 can run.
Once the job is eligible to run on stream 3, it can run for another 20 minutes. If the
job requires even more time, it is moved to the bottom of the queue on stream 3.
After the jobs ahead of it have finished or have been requeued, the job gets another
20 minutes, and so on.

The time limits for each stream are determined by the Stream_Time parameters
(see the Set procedure).

Note that a job on a job stream uses temporary disk space that is not reclaimed
until the job is done. Allowing many jobs to accumulate on multiple job streams
can cause a shortage of disk space. If the Stream_Time value for a job stream is
low, jobs on that stream are more likely to be requeued before they can finish. A
high Stream_Time value permits jobs to complete without being requeued.

RATIONAL 71/ SMU-137

package !Commands.Scheduler

Number of Runnable Jobs on a Stream

Each stream has an associated prescribed number of jobs that can be running at a
given time. These numbers are specified by the Stream_Jobs parameters (see the
Set procedure). If a job stream contains more jobs than are permitted to run at a
given time, the excess jobs are put in the Queued state to wait until the jobs ahead
of them are finished or requeued to the next stream.

For example, if the Stream_Jobs value for a stream is 2, then only two jobs on that
stream can be in the Run or Wait state at a time. Therefore, if ten jobs are on that
stream, eight jobs must be in the Queued state.

Strict Stream Policy

Although the Stream_Jobs parameters specify a prescribed number of runnable jobs
per stream, the actual number of running jobs on each stream is also determined
by the presence or absence of strict stream policy. When strict stream policy is in
effect, the Stream_Jobs value for a given stream is always the maximum number
of jobs that can run concurrently on that stream. In contrast, when strict stream
policy is not in effect, the number of jobs on a given stream can exceed the relevant
Stream_Jobs value, provided that other streams are empty. However, although the
distribution of runpable jobs across streams is affected, the total number of jobs
running on all streams taken together cannot exceed the total of the Stream_Jobs
values for all the streams.

For example, under strict stream policy, a system with three streams might have
the following Stream_Jobs values:

Stream 1 2 jobs
Stream 2 1 jobs
Stream 3 1 jobs

If jobs are queued in all three streams, a maximum of four jobs can be running—
specifically, only the first two jobs in stream 1, the first job in stream 2, and the first
job in stream 3. If streams 1 and 3 are empty, the maximum number of running
jobs across all streams is only one, because stream 2 has a value of 1. Strict stream
policy prohibits extra jobs from running on stream 2, no matter how many jobs are
queued.

If strict stream policy is not in effect, then the maximum number of running jobs
is always four, even when some streams are empty. That is, if streams 1 and 3 are
empty, up to four jobs can run on stream 2, because the empty streams contribute
their Stream_Jobs values to the nonempty stream.

The following Stream_Jobs values make sense only if strict stream policy is not in
effect:

Stream 1 3 jobs
Stream 2 0 jobs
Stream 3 0 jobs

SMU-138 7/1/87 RATIONAL

package !Commands.Scheduler

If strict stream policy were in effect, jobs queued on streams 2 and 3 would never
run, because their Stream_Jobs values are 0. However, because strict stream policy
is not, by default, in effect, jobs queusd on streams 2 or 3 can run whenever stream
1 has fewer than three jobs in its queue.

Strict stream policy is controlled by the value of the Strict_Stream_Policy scheduler
parameter.

Memory Scheduling

Each job uses pages of main memory while executing. On most R1000 systems, the
memory size is 32,768 pages, each of which contains 1,024 bytes. The number of
pages in memory is defined by the !Lrm.System.Memory_Size constant.

The scheduler dynamically adjusts the allocation of memory to give pages to jobs
that need more and to reclaim pages from jobs that need fewer. The number of
pages used by a job is called the job’s job working set size. To prevent any one
job from consuming a disproportionate amount of memory resources, the scheduler
places a limit on each job’s working set size. This limit, called the job working set
lymst, is the maximum number of pages a job can use without penalty.

Jobs started by the Environment or by the system daemon have fixed working
set limits. The user can specify these working set limits by setting the Environ-
ment_Wsl and Daemon_Wsl scheduler parameters, respectively. In contrast, the
working set limit for each user job is determined dynamically. When a job is cre-
ated, it is given an initial working set limit, which is adjusted at regular intervals
to ensure adequate allocation of pages to all jobs.

The value of a job’s initial working set limit depends on what kind of job it is (see
“Job Kinds,” above). The values of scheduler parameters such as Min_Ce_Wsl,
Min_Oe_Wsl, and so on determine the initial working set limit for each kind of job.

At the end of every review interval, the scheduler checks each job’s working set size.
If the job’s working set size exceeds its working set limit, the scheduler increases
the job’s limit by a fixed number of pages. The user can specify this number by
setting the Wsl.Growth_Factor scheduler parameter.

The scheduler tries to keep each job’s working set limit close to its working set size.
Therefore, in addition to automatically increasing the working set limit ten times
a second, the scheduler automatically decreases each job’s working set limit every
5 seconds. The limit is decreased by a fixed number of pages, which the user can
specify by setting the Wsl_Decay_Factor scheduler parameter.

The growth and decay of the working set limits for each kind of job are kept within a
range of values that are specified by scheduler parameters. For example, the lowest
possible working set limit for core editor jobs is determined by the Min._.Ce_Wsl
parameter (which is also the value of the initial working set limit). The highest
possible working set limit for core editor jobs is determined by Max_Ce_Wsl. Sim-
ilarly, the range for object editor working set limits is determined by Min_Oe_Wsl
and Max_Oe_Wsl, and so on for attached jobs, detached jobs, and servers. These

E)ATIONAL 7/1/87 SMU-139

package !Commands.Scheduler

parameters can be used to give preference to some kinds of jobs over others. For
example, the default values for Max_Detached_Wsl and Max_Attached_Wsl give
background user jobs more than twice as much memory as foreground user jobs.
The user can temporarily override the maximum and minimum working set limits
for a given job by using the Set_Wsl_Limits procedure.

The scheduler reserves a number of pages for distribution among jobs that need more
memory. If the number of available pages falls below a given limit, the scheduler
withholds jobs as needed and contributes the freed pages to the reserve. The user
can specify the minimum number of pages kept on reserve by setting the Minimum-
—Available_Memory scheduler parameter.

Page Withdrawal

During every review interval, the scheduler withdraws a fixed number of pages from
memory. Withdrawn pages are earmarked for possible removal from the jobs that
are using them. However, a withdrawn page is not actually taken away from a job
unless that job exceeds its working set limit during the review interval.

Withdrawing pages serves two purposes, namely:

¢ To help account for pages that are shared by multiple jobs. When a shared page
is withdrawn, its use i8 charged to the first job to request it again. Accurately
accounting for the use of shared pages is necessary for determining the working
set size of each job.

¢ To earmark pages from overallocated jobs for potential use by underallocated
jobs. If a job exceeds its working set limit, the excess pages are withdrawn so
that they can be allocated to other jobs.

The user can specify the number of pages withdrawn per review interval by setting
the Page_Withdrawal_Rate scheduler parameter.

Disk Scheduling

The scheduler measures disk activity through an index called the disk wast load. The
disk wait load is the average number of tasks waiting on disk operations, including
page faults and disk 1/0 operations. The disk wait load is averaged over an internally
determined interval of time and then multiplied by 100, so that it is expressed as
an integer. For example, if an average of 1.5 tasks are waiting for pages from disk
at a given time, the disk wait load is 150.

The scheduler regulates disk activity by monitoring the disk wait load and with-
holding one or more jobs when the load exceeds a certain limit. The user can set
this limit by setting the Max_Disk_Load scheduler parameter. The user can also
ensure a minimum level of disk activity by setting the Min_Disk_Load scheduler
parameter. Together, the Max_Disk_Load and Min_Disk_Load parameters define
a range of acceptable stress on the disks. The wider the range, the less sensitive
the scheduler is to changes in the disk wait load.

SMU-140 e RATIONAL

subtype Cpu_Priority
package !Commands.Scheduler

subtype Cpu—Priority

subtype Cpu_Priority is Natural range @ .. 6;

Description
Identifies priority of access to CPU resources.

A Cpu_Priority of 0 is the lowest; a Cpu_Priority of 6 is the highest. The higher a
job’s priority, the more CPU time the job gets. Background jobs have a Cpu_Priority
of 0; foreground jobs have a Cpu-Priority of 6.

RATIONAL 7/1/er SMU-141

procedure Disable
package !Commands.Scheduler

procedure Disable

procedure Disable {(Job : Job_ld);

Description
Suspends temporarily the job with the specified Job_Id.
A disabled job can be resumed with the Enable procedure.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job : Job_Iid;
Specifies the job number.

References

procedure Enable

SMU-142 7/1/87 RATIONAL

function Disk_Waits
package !Commands.Scheduler

function Disk_Waits

function Disk_Waits (Job : Job_Iid) return Long_Integer;

Description

Returns the number of disk waits the specified job has had since last initialized.

A disk wait occurs whenever a job has to wait for disk resources. The number of
disk waits is derived from a combination of page faults and disk I/O operations.
A high number of disk waits indicates heavy disk activity; a low number indicates
light disk activity.

Parameters

Job : Job_ld;
Specifies the job number.

return Long_integer;

Specifies the number of disk waits.

RATIONAL 71/ SMU-143

procedure Display
package !Commands.Scheduler

procedure Display

True;

procedure Display (Show_Parameters : Boolean
True);

Shoq_Queues : Boolean

Description

Displays the current values for the scheduler parameters along with information
about background job streams in the current output window.

For each background job stream, this procedure displays the value of the Stream-
—Time parameter, a list of the jobs currently in the stream, and the number of
minutes each job has been in the stream. An asterisk next to a job indicates that
the job is currently running—that is, it has Job_State Run. A job without an
asterisk has Job_State Queued.

The user can change the values for the scheduler parameters by using the Set pro-
cedure.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Show_Parameters : Boolean := True;
Requests, when true, a display of the current values for the scheduler parameters.

Show_Queues : Boolean := True;

Requests, when true, a display of background job stream information.

SMU-144 7/1/87 R)ATIONAL

procedure Display
package !Commands.Scheduler

Example 1

The command:

scheduler .display (true,false};

produces a display such as the following:

Cpu_Scheduling : ENABLED

Disk_Scheduling : ENABLED

Memory_Scheduling : ENABLED

Percent_For _Background : 20%

Min_ and Max_Foreground_Budget :-250 .. 250 milliseconds
Uithhold_Run_Load : 130
Withhold_Multiple_Jobs : FALSE
Environment_lWsl : 11008 pages
Daemon_Wsl : 200 pages

Min_ and Max_Ce_lWsl : 400 .. 1020 pages
Min_ and Max_Oe_lWsl 1 250 .. 2000 pages
Min_ and Max_Attached_Wsl : 5@ .. 4000 pages
Min_ and Max_Detached_Wsl : 58 .. 4000 pages
Min_ and Max_Server_lsl : 400 .. 1000 pages
Min_Available_Memory : 1024 pages

Wsl_Decay_Factor
Wsl_Growth_Factor
Page_W1 thdrawal _Rate
Min_ and Max_Disk_lLoad : 200 ..
Foreground_Time_Limit
Background_Streams
Strict_Stream_Policy
Stream_Time and _Jobs 1
Stream_Time and _Jobs 2
Stream_Time and _Jobs 3

. FALSE

RATIONAL 7y

; 50 pages/5 seconds
: 50 pages/100 milliseconds
: 1*640 pages/second

250
: 1800 seconds
3
: 2 minutes, 3 jobs

: 58 minutes, @ jobs
: @ minutes, @ jobs

SMU-145

procedure Display
package !{Commands.Scheculer

Example 2

The command:

scheduler .display (false,true);

produces a display such as the following in the current output window:

Stream 1 2:00
252 9:14
* 223 8:00
253 3:46
* 219 3:29
238 @:48
Stream 2 5800
* 220 S.008
261 2:49
Stream 3 0:009
* 222 2:00
254 1:26

This display shows five jobs in stream 1, of which two are currently running and
the rest are queued. The job that has been in that stream the longest is listed first
and has been there for 9 minutes and 14 seconds. It also shows jobs in streams 2
and 3, using the same format as used in stream 1.

References

procedure Set

SMU-146 7/1/87 EAT'ONAL

procedure Enable
package !Commands.Scheduler

procedure Enable

procedure Enable (Job : Job_ld);

Description
Resumes the execution of the specified disabled job.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job : Job_ld;
Specifies the job number.

References

procedure Disable

RATIONAL 716 SMU-147

function Enabled
package !Commands.Scheduler

function Enabled

function Enabled (Job : Job_l!d) return Boolean;

Description

Returns a Boolean indicating whether the specified job is currently enabled for
execution.

Parameters

Job : Job_ld;
Specifies the job number.

return Boolean;
Specifies, when true, that the job is enabled.

SMU-148 e RATIONAL

function Get
package !Commands.Scheduler

function Get

function Get (Parameter : String) return Integer;

Description
Returns the current value for the specified scheduler parameter.

The names and possible values of the scheduler parameters are listed under the Set
procedure.

Parameters

Parameter : String;
Specifies any of the strings listed under the Set procedure.

return Integer;
Specifies the current value for the specified scheduler parameter.

References

procedure Set

RAT'ONAL 1/1/87 SMU-149

function Get_Cpu—_Priority
package !Commands.Scheduler

function Get_Cpu_Priority

function Get_Cpu_Priority {(Job : Job_Id} return Cpu_Priority;

Description

Returns the priority at which the specified job is currently running.

Parameters

Job : Job_ld;
Specifies the job number.

return Cpu_Priority;

Specifies the value range, from O (lowest) through 6 (highest). The higher the
priority, the more CPU time the job gets.

SMU-150 e RATIONAL

function Get_Cpu_Time_Used
package !Commands.Scheduler

function Get_Cpu—_Time_Used

function Get_Cpu_Time_Used {Job : Job_ltd) return Milliseconds;

Description

Returns the number of milliseconds of CPU time used by the specified job since that
job began.

Parameters

Job : Job_ld;
Specifies the job number.

return Milliseconds;
Specifies the amount of CPU time in milliseconds.

RATIONAL 716 SMU-151

procedure Get_Disk_Wait._Load
package !Commands.Scheduler

procedure Get_Disk_Wait_Load

procedure Get_Disk_Wait_Load (Last_Sample : out Load_Factor;
Last_Minute : out Load_Factor;
Last_S_Minutes : out Load_Factor;

Last_15_Minutes : out Load_Factor);

Description
Returns the average number of tasks waiting for pages from disk.
The number is averaged over each of four sampling intervals: 100 milliseconds, 1

minute, 5 minutes, and 15 minutes. Each average is multiplied by 100, so that it
appears as an integer.

Parameters

Last_Sample : out Load_Factor;
Specifies disk wait load averaged over the last 100 milliseconds.

Last_Minute : out Load_fFactor;
Specifies disk wait load averaged over the last minute.

Last_S_Minutes : out Load_Factor;
Specifies disk wait load averaged over the last 5 minutes.

Last_15_Minutes : out Load_Factor;
Specifies disk wait load averaged over the last 15 minutes.

SMU-152 e RATIONAL

| function Get_Job_Attribute
package !Commands.Scheduler

function Get_Job_Attribute

function Get_Job_Attribute (Job : Job_1d;
Attribute : String := "Kind") return String;

Description

Returns the attributes for a job as described in the Set_Job_Attribute procedure.

Parameters

Job : Job_ld;
Specifies the job number.

Attribute : String := "Kind";
Specifies the attribute to be checked. The only attribute currently supported i
“Kind”, which returns an image of an enumeration of the Job_Kind type.

return String;
Returns a string representing an enumeration of the Job_Kind type.

Example

The following program segment illustrates the use of the Get_Job_Attribute func-
tion to display the job attribute for a user job number 244:

" A: Scheduler.Job_Id := 244;
begin

lo.Put(Scheduler .Get_Job_Attribute{Job=>A, 6 Attribute=>"Kind"});
end;

. References

procedure Set_Job_Attribute

RATIONAL 7/1/er SMU-153

function Get—Job.-Descriptor
package !Commands.Scheduler

function Get_Job_Descriptor

function Get_Jdob_Descriptor (Job : Job_ld} return Job_Descriptor;

Déscription

Returns the current value of a job’s statistics.

Parameters

Job : Job_ld;
Specifies the job number.

return Job_Descriptor;

Returns a record of the Job_Descriptor type. See the Job_Descriptor type for
further information about the contents of that record.

SMU-154 7/1/87 BA\TIONAI_

function Get_Job_Kind
package !Commands.Scheduler

function Get_Job_Kind

function Get_Job_Kind (Job : Job_ld) return Job_Kind;

Description
Returns the current Job_Kind type of the specified job.

ThlS function specifies one of the six kinds of jobs defined by the Job_Kind type:
(core edltors) Oe (object editor), Attached, Detached, Server, or Terminated.
The scheduler follows a different scheduling polxcy for each of these job kinds.

Parameters

Job : Job_ld;
Specifies the job number.

return Job_Kind;

Returns one of the six kinds of job defined by the Job_Kind type: Ce (core editor),
Oe (object editor), Attached, Detached, Server, or Terminated. The scheduler
follows a different scheduling policy for each of these job kinds.

RATIONAL 7/1/sr SMU-155

function Get_Job_State
package !Commands.Scheduler

function Get_Job_State

function Get_Job_State (Job : Job_id) return Job_State;

Description

Returns the current Job_State type of the specified job.

Parameters

Job : Job_ld;
Specifies the job number.

return Job_State;

Returns one of the five job states defined by the Job_State type: Run, Wait, Idle,
Disabled, or Queued. Job_State reflects how the scheduler has disposed of a job—
that is, whether the job is earmarked for running or is considered unrunnable for
some reason.

SMU-156 7/1/87 RATIONAL

procedure Get_Run-Queue..Load
package !Commands.Scheduler

procedure Get_Run_Queue_Load

procedure Get_Run_Queue_Load (Last_Sample : out Load_Factor;
Last_Minute : out Load_Factor;
Last_S_Minutes : out Load_Factor;

Last_15_Minutes : out Load_fFactor);

Description

Returns the number of runnable, unblocked tasks, averaged over each of four sam-
pling intervals: 100 milliseconds, 1 minute, 5 minutes, and 15 minutes.

Runnable tasks are neither withheld nor idle, but they are either currently consum-
ing CPU time or eligible to consume CPU time.

Each average is multiplied by 100, so that it appears as an integer.

Parameters

Last_Sample : out Load_Factor;
Specifies the run queue load averaged over the last 100 milliseconds.

Last_Minute : out Load_Factor;
Specifies the run queue load averaged over the last minute.

Last_S5_Minutes : out Load_Factor;

Specifies the run queue load averaged over the last 5 minutes.

Last_l5_Minutes : out Load_Factor;
Specifies the run queue load averaged over the last 15 minutes.

References

SIM, procedure What.Load

QAT'ONAL 7/1/87 SMU-157

procedure Get_Withheld_Task_Load
package !Commands.Scheduler

procedure Get_Withheld_Task_Load

procedure Get_Withheld_Task_Load {Last_Sample : out Load_Factor;
Last_Minute : out Load_Factor;
Last_S5_Minutes : out Load_Factor;

Last_15_Minutes : out Load_Factor);

Description

Returns the number of tasks that are withheld from running, averaged over each of
four sampling intervals: 100 milliseconds, 1 minute, 5 minutes, and 15 minutes.

Each average is multiplied by 100, so that it appears as an integer.

A task (job) is withheld from running if it is consuming more than its share of
resources or if it has been queued or disabled.

Parameters

Last_Sample : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 100 milliseconds.

Last_Minute : out Load_Factor;
Specifies the number of withheld tasks averaged over the last minute.

Last_S5_Minutes : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 5 minutes.

Last_15_Minutes : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 15 minutes.

SMU-158 e RATIONAL

procedure Gei_Wsl_Limits
package !Commands.Scheduler

procedure Get_Wsl_Limits

procedure Get_Wsl_Limits (Job : Job_ld;
Min, Max : out Natural);

Description

Returns the minimum and maximum working set limits that are currently in effect
for the specified job.

These limits may be the temporary limits set by the Set_Wsl_Limits procedure,
or they may be the limits defined by the relevant scheduler parameters (Min_ and
Max_Ce_Wsl, Min_ and Max_Oe_Wsl, and the like), which are described under
the Set procedure and in the introduction to this package.

Parameters

Job : Job_ld;

Specifies the number of the job whose minimum and maximum working set limits
the user wants to see.

Min : out Natural;
Returns the current minimum working set limit for the given job.

Max : out Natural;

Returns the current maximum working set limit for the given job.

References
procedure Set_Wsl_Limits
procedure Use_Default_Wsl_Limits

RATIONAL 71/er SMU-159

type Job_Descriptor
package !Commands.Scheduler

type Job_Descriptor

type Job_Descriptor 1s

record
The_Cpu_Priority : Cpu_Priority;
The_State : Job_State;
The_Disk_Uaits : Long_Integer;
The_Time_Consumed : Milliseconds;
The_Working_Set_Size : Natural;
The_Working_Set_Limit : Natural;
The Milliseconds_Per_Second : Natural;
The_Disk_Waits_Per_Secornd : Natural;
The_Maps_To : Job_lid;
The_Kind : Job_Kind;

The_Made_Runnable
The_Total _Runnable
The_Made_ldle
The_Made_Wait
The_Wait_Disk_Total

: Long_integer;
: Long_Integer;
: Long_Integer;
: Long_integer;
: Long_lInteger;

The_Wlai1t_Memory_Total : Long_Integer;
The_Wait_Cpu_Total : Long_Integer;
The_Min_lWlorking_Set_Limit : Long Integer;
The_Max_Working_Set_Limit : Long Integer;

end record;

Description

Specifies a record that contains information returned by many of the functions in
this package.

This is a convenient way of storing all of the available information for a particular
job.

The_Cpu_Priority component

Contains the priority at which the specified job is currently running, as returned by
the Get_Cpu_Priority function. Specifies the value range, from 0 (lowest) through
6 (highest). The higher the priority, the more CPU time the job gets.

The_State component

Contains the current Job_State of the specified job, as returned by the Get_Job-
_State function. Specifies one of the five job states defined by the Job_State type:
Run, Wait, Idle, Disabled, or Queued. Job_State reflects how the scheduler has dis-
posed of the job—that is, whether the job is earmarked for running or is considered
unrunnable for some reason.

e RATIONAL

SMU-160

type Job_Descriptor
package !Commands.Scheduler

The_Disk_WWaits component

Contains the number of disk waits the specified job has had since last initialized, as
returned by the Disk_Waits function. A disk wait occurs whenever the job has to
wait for disk resources. The number of disk waits is derived from a combination of
page faults and disk I/0 operations. A high number of disk waits indicates heavy
disk activity; a low number indicates light disk activity.

The_Time_Consumed component

Returns the number of milliseconds of CPU time used by the specified job since that
job began.

The_Working_Set_Size component

Contains the number of pages of memory used by the specified job, as returned by
the Working_Set_Size function.

The_Working_Set_Limit component

Contains the limit that the scheduler places on the job’s working set size. This limit
is the maximum number of pages the job can use without penalty. The working
set limit for the user job is determined dynamically. When the job is created, it is
given an initial working set limit, which is adjusted at regular intervals to ensure
adequate allocation of pages to all jobs.

The value of the job’s initial working set limit depends on the kind of job it is.
The values of scheduler parameters such as Min_Ce_Wsl, Min_Oe_Wsl, and so on
determine the initial working set limit for the job.

The Milliseconds_Per_Second component

Contains the number of milliseconds of CPU time the job has used in the last 5-
second evaluation interval, as shown in the CPU MS/S field of the display resulting
from execution of the State procedure.

The_Disk_Waits_Per_Second component

Contains the number of disk waits the job had in the last 5-second evaluation
interval, as shown by the DISK DW/S field of the display resulting from execution of
the State procedure.

The_Maps_To component

Contains the core editor (if any) the job is grouped with for CPU scheduling pur-
poses, as shown by the MAP TO field of the display resulting from execution of the
State procedure.

RATIONAL 7/1/87 SMU-161

type Job_Descriptor
package !Commands.Scheduler

The_Kind component

Contains the policy used by the scheduler to allocate resources to the job, as in the
Job_Kind type.

In general, Ce, Oe, and Attached jobs are interactive and require enough resources
for constant forward progress. Detached jobs (and aged Attached jobs) are not
interactive and therefore do not require a constant supply of resources.

The_Made_Runnable component

Contains the number of times the job entered the run state. For further information,
gee “Job Kinds” in the introduction to this package.

The_Total_Runnable component

Contains the number of times the job was available to enter the run state. For
further information, see “Job Kinds” in the introduction to this package.

The_Made_!dle component

Contains the number of times the job entered the idle state. For further information,
see “Job Kinds” in the introduction to this package.

The_Made_Wait component

Contains the number of times the job entered the wait state. For further informa-
tion, see “Job Kinds” in the introduction to this package.

The following three components give information about why the job went into the
Wait state.

The_Wait_Disk_Total component

Contains the number of times the job entered the wait state because it was waiting
for disk space.

The_Wait_Memory_Total component

Contains the number of times the job entered the wait state because it was waiting
for memory.

The_Wait_Cpu_Total component

Contains the number of times the job entered the wait state because it was waiting
for CPU time.

SMU-162 e RATIONAL

type Job.-Descriptor
package !Commands.Scheduler

The_Min_Working_Set_Limit component

Contains the minimum working set limit that is currently in effect for the specified
job.

This limit may be the temporary limit set by the Set_Wsl_Limits procedure, or
it may be the limit defined by the relevant scheduler parameters (Min_Ce_Wsl,
Min_Oe_Wsl, and the like), which are described under the Set procedure and in
the introduction to this package. “

The_Max_Working_Set_Limit component

Returns the maximum working set limits that are currently in effect for the specified
job.

This limit may be the temporary limit set by the Set_Wsl_Limits procedure, or
it may be the limit defined by the relevant scheduler parameters (Max_Ce_Wsl,
Max_Oe_Wsl, and the like), which are described under the Set procedure and in
the introduction to this package.

QATIONAL 7/1/87 SMU-163

subtype Job_Id
package !Commands.Scheduler

subtype Job_Id

subtype Job_ld is Machine.Job_ld;

Description
Specifies the form of Job_Id.

Job_Ids are assigned uniquely for each instance of system activity. Job_Ids are
often referred to as job numbers.

SMU-164 er RATIONAL

type Job_Kind
package !Commands.Scheduler

type Job_Kind

type Job_Kind 1s (Ce, Oe, Attached, Detached, Server, Terminated);

Description

Determines the policy used by the scheduler to allocate resources to a job.

In general, Ce, Oe, and Attached jobs are interactive and require enough resources
for constant forward progress. Detached jobs (and aged Attached jobs; see “At-
tached” below) are not interactive and therefore do not require a constant supply
of resources.

Enumerations

Attached

Specifies that the job is a foreground job; the Message window banner displays
Running while an Attached job executes. An Attached job is scheduled to receive
its share of the foreground CPU time until the Foreground_Time_Limit is reached.
(Foreground_Time_Limit is set using the Set procedure.) After the time limit is
reached, the job is aged, which means that, although it is still attached, it receives
a smaller amount of CPU time and is subject to queuing in the background job
streams, as if it were detached.

Ce

Specifies that the job (a core editor) is scheduled to receive its share of foreground
CPU time.

Detached

Specifies that the job is running in the background, either started in the back-
ground by the !Commands.Command.Spawn procedure or put there by the !Com-
mands.Job.Interrupt procedure. A Detached job is eligible to receive CPU time,
although it generally receives less CPU time than an Attached job. A Detached job
is subject to queuing on a background job stream.

Oe

Specifies that the job (an object editor) is scheduled to receive its share of foreground
CPU time.

RAT'ONAL 7/1/87 SMU-165

type Job_Kind
package !Commands.Scheduler

Server

Specifies that the job is a Server, which is a background job that must always have
resources available to it when it needs them. An example of a Server is the print
spooler. A Server is allocated the resources of a background job; however, unlike
other background jobs, a Server is not subject to queuing in the background job
streams, so that it is always eligible to run.

Terminated

Specifies that the job has completed. A Terminated job remains until its number
(Job_Id) is reused for another job.

SMU-166 7/1/87 RAT'ONAL

type Job_State
package !Commands.Scheduler

type Job_State

type Job_State is (Run, Wait, Idle, Disabled, Queued};

Description

Indicates how the scheduler has disposed of a job—that is, whether or not the job
is eligible for CPU time.

This information is displayed in the S column of the !Commands.What.Users dis-
play.

Enumerations

Disabled

Specifies that the job is ineligible for CPU time because an external agent has dis-
abled it, for example, using the !Commands.Job.Disable procedure or the Sched-
uler.Disable procedure.

Idle

Specifies that the job uses no CPU time and has no unblocked tasks. For example,
the print spooler remains Idle until called.

Queued

Specifies that the job is in a background job stream but not currently in the Run
or Wait (withheld) state. A Queued job is a background job that is ineligible for
CPU time until one or more other jobs have completed.

Run
Specifies that the job is eligible for CPU time, providing its priority is high enough.

Wart

Specifies that the job has been withheld from running by the scheduler. (A withheld
job is temporarily ineligible for CPU time.) The scheduler puts a job in the Wait
state if:

¢ The job has already used more than its share of CPU time and the system load
is too high.

e The job is waiting for pages from disk and the disk wait load is too high.

RATIONAL 711 SMU-167

subtype Load_Factor
package !Commands.Scheduler

subtype Load_Factor

subtype Load_Factor is Natural;

Description
Defines a representation for the load on the system.
When multiplied by 100, the load factor is the number of tasks waiting in a queue.

For example, for a given interval, if an average of 1.3 tasks are waiting for a page
from disk, then the disk wait load is 130.

SMU-168 7/1/87 PATIONAL

subtype Milliseconds
package !Commands.Scheduler

subtype Milliseconds

subtype Milliseconds is Long_lInteger;

Description

Defines a way of representing an amount of time in milliseconds.

RAT'ONAL 7/1/87 SMU-169

procedure Set
package !Commands.Scheduler

procedure Set

procedure Set (Parameter : String =
Value : Integer);

-

Description
Sets the specified scheduler parameter to the specified value.

The Set procedure allows the user to set one parameter at a time. The executing
job must have operator capability.

The user can change scheduler parameters to adjust aspects of CPU scheduling,
memory scheduling, disk scheduling, and background job streams. The descriptions
of the scheduler parameters below assume that the user has read the introduction
to this package for general information about the scheduler.

The Display procedure displays the current values for scheduler parameters. The
user can also use the Get function to get the current value for a given scheduler

parameter.

Parameters

nwe o,

Parameter : String := "%,

Specifies the scheduler parameter whose value is to be set. The acceptable string
names for these parameters are listed in the following table.

Value : Integer;

Specifies integer values for scheduler parameters. The acceptable values are listed
in the following table.

There are scheduler parameters for adjusting CPU scheduling, memory scheduling,
disk scheduling, and background job streams. The following table summarizes the
string names of these parameters, their possible values, and their default values.
The parameters are discussed in greater detail following the table.

SMU-170 7/1/87 RATIONAL

procedure Set
package !Commands.Scheduler

Scheduler Parameters

Defeslt ..
Parameter Range of Values Value Description
CPU Scheduling

Cpu-Scheduling 0 or 1 (off or on) 1 Specifies whether to disable (0) or en-
able (1) CPU scheduling.

Percent..For-Background 0 .. 90 (percent) 20 Specifies the minimum percentage of
CPU allocated to background jobs.

Min-Foreground-Budget | -5000 .. 0 (milliseconds) -250 Specifiesthe maximum debt that a job's
foreground budget can show.

Max_Foreground-Budget | 0 .. 5000 (milliseconds) 250 Specifies the maximum credit that a
job’s foreground budget can show.

Withhold-Run-Load 0 .. 900 (Load-Factor) 130 Specifiesthe minimum run load at which
the scheduler can withhold jobs.

Withhold-Multiple_Jobs | 0 or 1 (false or true) 0 Specifies whether or not multiple addi-
tional jobs can be withheld at a time.

Memory Scheduling

Memory.Scheduling 0 or 1 (off or on) 1 Specifies whether to disable (6) or en-
able (1) memory scheduling.

Environment-Wsl 1 .. memory size (pages) 11000 Specifies the working set limit for the
Environment.

Daemon-Wsl 1 .. memory size (pages) 200 Specifies the working set limit for jobs
started by the system daemon.

Min_Ce_Wsl 1 .. max_ce_wsl 400 Specifiesthe minimum working set limit
for core editor jobs.

Max.Ce.Wsl min .. memory size 1000 Specifiesthe maximum working set limit
for core editor jobs.

Min_Oe. Wil 1 .. max.oe_wsl 250 Specifiesthe minimum working set limit
for object editor jobs.

Max_QOe_Wsl min .. memory size 2000 Specifiesthe maximum working set limit
for object editor jobs.

Min.Attached.Wsl 1 .. max.attached_wsl 80 Specifiesthe minimum working set limit
for attached jobs.

Max.Attached . Wsl min .. memory size 4000 Specifiesthe maximum working set limit
for attached jobs.

Min._Detached-Wsl 1 .. max.detached-wsl 50 Specifiesthe minimum working set limit
for detached jobs.

Max.Detached.Wisl min .. memory size 4000 Specifiesthe maximum working set limit
for detached jobs.

Min..Server-Wsl 1 .. max.server_wsl 400 Specifiesthe minimum working set limit
for servers.

Max_Server.Wsl min .. memory size 1000 Specifiesthe maximum working set limit
for servers.

Min..Available_Memory 0 .. memory size (pages) 1024 Specifiesthe minimum pumber of pages

of memory that should always be avail-
able for distribution.

RATIONAL 7s/er

SMU-171

procedure Set
package !Commands.Scheduler

Scheduler Parameters continsed

Defaxlit ..
Parameter Range of Values Value Description

Memory Schedullng (Contined)

Wsl_Decay.-Factor 0 .. 2000 (pages) 60 Specifies the amount by which a user
job’s working set limit is decreased ev-
ery 5 seconds.

Wsl.Growth._Factor 0 .. 2000 (pages) 50 Specifies the amount by which a user
job’s working set limit is increased.

0. 64 . s

Page-Withdrawal_Rate 1 Specifies the rate at which pages are

(640 pages/second) withdrawn from memory.

Disk Scheduling

Disk-Scheduling 0 or 1 (off or on}) 1 Specifies whether to disable (0) or en-
able (1) disk scheduling.

Max._Disk-Load positive (Load-Factor) 250 Specifies the maximum acceptable disk
wait load before jobs are withheld.

Min-Disk-Load positive (Load-Factor) 200 Specifies the minimum acceptable disk
wait load.

Background Job Streams

Foreground.Time_Limit | positive (seconds) 1800 Specifies how long an attached job can
run before it gets allocated background
resources,

Background_Streams positive (streams) 3 Specifies the number of background job
streams.

Stream-Time N 1 .. 43200 (minutes) 2, 68, 00 Specifies the time limit associated with

the job stream numbered N. (Each stream
has its own default.)

Stream-Jobs N 0..5 (jobs) 3,0,0 Specifies the number of jobs that can be
running in the jobs stream numbered N.
(Each stream has its own default.)

Strict.Stream-Policy 0 or 1 (false or true) 0 Specifies whether strict stream policy is
in effect (true) or not (false).

SMU-172 7/1/87 RATIONAL

procedure Set
package {Commands.Scheduler

Parameters for CPU Scheduling

Cpu_Scheduling

Specifies whether to enable or disable CPU scheduling independently of memory or
disk scheduling. When CPU scheduling is disabled, all jobs are run according to
Ada task priorities; no attempt is made to guarantee equal time to each foreground
job. The value of Cpu—Scheduling is either 0 (disabled) or 1 (enabled). The default
value is 1 (enabled).

Percent _For_Background

Specifies the minimum percentage of the CPU that is allocated to background jobs.
The default value, 20, means that at least 20% of the CPU can be used by the
background job stream at any time.

Min_Foreground_Budget

Specifies the limit on how much accumulated debt a job’s foreground budget can
show. Excess debt is ignored.

The value of Min_Foreground_Budget is a negative number of milliseconds from
—5,000 through 0. The default value is —250 milliseconds.

Max_Foreground_Budget

Specifies the limit on how much accumulated credit a job’s foreground budget
can show. Excess credit is ignored. The wider the range between Max_ and
Min_Foreground_Budget, the more sensitive the scheduler is to giving jobs equal
time.

The value of Max_Foreground_Budget is a positive number of milliseconds from 0
through 5,000. The default value is 250 milliseconds.

Withhold_Run_Load

Specifies the minimum run load at which the scheduler is permitted to withhold
jobs. The higher the value, the more heavily loaded the system must be before the
scheduler can withhold a job for exceeding its allocated time.

The value for Withhold-Run_Load must be an integer from 0 through 900. The
default value for Withhold_Run_Load is 130. The run load value is the average
number of tasks that are eligible to run, multiplied by 100.

U1thhold_Multiple_Jobs
Specifies whether the scheduler is restricted to withholding only one more job per

review interval (in addition to any jobs that were withheld on previous intervals).
When the value for Withhold_Multiple_Jobs is 1 (true), the scheduler can withhold

RATIONAL +/1/sr SMU-173

procedure Set
package !Commands.Scheduler

multiple jobs in response to oversubscribed CPU resources. When the value is 0
(false), the scheduler can withhold at most one job at the end of a single interval.

The default value for Withhold_Multiple_Jobs is 0 (false).

Parameters for Memory Scheduling
Memory_Schedul ing

Specifies whether to enable or disable memory scheduling independently of CPU
or disk scheduling. The value of Memory_Scheduling is either 0 (disabled) or 1
(enabled). The default value is 1 (enableg.

Environment_Wsl

Specifies the working set limit for the Environment. A higher value gives the En-
vironment more pages, so that there are fewer pages for daemon and user jobs. A
lower value gives the Environment fewer pages, so that there are more pages for
daemon and user jobs.

The value for Environment_Wsl is an integer from O to the number of pages in
main memory. However, if the user specifies a value that is too high to leave
adequate resources for other jobs, an error message is displayed. The default value
for Environment_Wsl is 11,000.

Daemon_Wsl

Specifies the working set limit for jobs started by the system daemon (see package
Daemon). A higher value gives the daemon more pages, so that there are fewer
pages for the Environment and user jobs. A lower value gives the daemon fewer
pages, so that there are more pages for the Environment and user jobs.

The value for Daemon_Wsl is an integer from 0 to the number of pages in main
memory. However, if the user specifies a value that is too high to leave adequate
resources for other jobs, an error message is displayed. The default value for Dae-
mon-Wsl is 200.

Min_Ce_Wsl, Min_Oe_Wsl, Min_Attached_Wsl, Min_Detached_Wsl, Min_Server_lisl

Specifies the minimum working set limit for the following kinds of jobs: core editor
(Ce), object editor (Oe), Attached, Detached, and Server, respectively. That is,
when a job’s working set limit is decreased by Wsl_Decay..Factor, that working set
limit cannot fall below the value set by the appropriate parameter. The value for
each parameter also determines the initial working set limit that is given to each
kind of job upon creation.

The value for each parameter is an integer number of pages from 1 to the value of the
corresponding Max_ parameter (see below). For a given job, the Set_Wsl_Limits

SMU-174 e RATIONAL

procedure Set
package !Commands.Scheduler

procedure temporarily overrides the minimum working set limit set by any of these
parameters.

Max_Ce_Wsl, Max_Oe_Wsl, Max_Attached_Wsl, Max_Detached_Wsl, Max_Server_Wsl

Specifies the maximum working set limit for the following kinds of jobs: core editor
(Ce), object editor (Oe), Attached, Detached, and Server, respectively. That is,
when a job’s working set limit is increased by Wsl_Growth_Factor, that working set
limit cannot exceed the value set by the appropriate parameter. These parameters
can be used to give preference to some kinds of jobs over others. For example, the
default values for Max_Detached_Wsl and Max_Attached_Wsl give background
user jobs twice as much memory as foreground user jobs.

The value for Max_Ce_Wsl is an integer number of pages from the value of the
corresponding Min_ parameter (see above) to the memory size. For a given job, the
Set_Wsl_Limits procedure temporarily overrides the maximum working set limit
set by any of these parameters.

Min_Available_Memory

Specifies the minimum number of pages that should always be available to the
scheduler for dynamic distribution among jobs. If the number of reserve pages falls
below the minimum, the scheduler withholds jobs from running.

If the value is large, more pages are reserved and fewer pages are actually being
used, possibly resulting in performance decrease. If the value is small, fewer pages
are reserved, so that memory is more fully utilized.

The value of Min_Available_Memory i8 an integer number of pages from 0 through
2,000. The default value for Min_Available_Memory is 1,024.

Wsl_Decay_Factor

Specifies the amount by which a user job’s working set limit is automatically de-
creased every 5 seconds.

The value for Wsl_Decay_Factor is an integer number of pages from 0 through
2,000. The default value for Wsl_Decay_Factor is 50.

Wsl_Growth_Factor
Specifies the amount by which a user job’s working set limit is automatically in-
creased if the job’s working set size has exceeded the working set limit during a

review interval.

The value for Wsl_Growth_Factor is an integer number of pages from 0 through
2,000. The default value for Wsl_Growth_Factor is 50.

RAT'ONAL 7/1/87 SMU-175

procedure Set
package !Commands.Scheduler

Page_Withdrawal_Rate

Specifies the rate at which pages are withdrawn from memory. A higher Page_With-
drawal_Rate means that the scheduler makes more passes through memory during
a given period of time, so that pages are withdrawn more frequently. Therefore,
when the Page_Withdrawal_Rate is high, the scheduler can charge pages to jobs
with more accuracy and can check large jobs for reclaimable pages more frequently.
However, the increased scheduler activity may degrade performance.

The value for Page_Withdrawal_Rate is an integer from 0 through 64. This value
designates a multiple of the following unit rate: 640 pages per second. When
Page_Withdrawal _Rate is 0, no pages are withdrawn. When Page_Withdrawal-
-Rate is 1 (the default value), then the scheduler passes through memory at a rate
of 1 x 640 pages per second. At this rate, the scheduler makes a complete pass
every 51.2 seconds.

Parameters for Disk Scheduling
Disk_Scheduling

Specifies whether to enable or disable disk scheduling independently of CPU or mem-
ory scheduling. The value of Disk_Scheduling is either 0 (disabled) or 1 (enabled).
The default value is 1.

Max_Disk_lLoad

Specifies the maximum acceptable disk wait load before the scheduler withholds
jobs that are waiting for disk resources. The disk wait load is the number of tasks
waiting to read or write a page from disk, averaged over an interval of time and
multiplied by 100.

A high Max_Disk_Load value permits increased disk activity; with more jobs wait-
ing on the disk, performance for individual jobs may decrease. A low Max_Disk-
—Load value restricts disk availability; with fewer jobs waiting on the disk, more jobs
are withheld and performance for individual running jobs may improve. Together,
the Max_Disk-_Load and Min_Disk_Load parameters define a range of acceptable
stress on the disks. The wider the range, the less sensitive the scheduler is to
changes in the disk wait load.

The value for Max_Disk_Load is a positive integer that must be greater than the
value for Min_Disk_Load. The default value for Max_Disk_Load is 250 (that is,
an average of 2.5 tasks waiting for disk resources at any given time). See also the
Get_Disk_Wait_Load procedure and the Load_Factor subtype.

Min_Disk_Load
Specifies the minimum acceptable disk wait load before action is taken. If the disk

wait load falls below the limit specified by Min_Disk_Load, the scheduler releases
withheld jobs that were waiting for disk resources.

SMU-176 7/1/87 BA\—”ONAL

procedure Set
package {Commands.Scheduler

The value for Min_Disk_Load is a positive integer that must be greater than the
value for Max_Disk_Load. The default value for Min_Disk_Load is 200 (that is,
an average of two tasks waiting for disk resources at any given time). See also the
Get.Disk-Wait_Load procedure and the Load_Factor subtype.

Parameters for Background Job Streams

Foreground_Time_Limit

Specifies how long, in seconds, an attached job can run before it is allocated back-
ground job resources and is subject to queuing on background job streams. To give
more preference to foreground jobs, use a higher value. To encourage users to run
long jobs in the background, use a lower value.

The default value for Foreground_Time_Limit is 1,800 seconds (30 minutes).

Background_Streams

Specifies the number of background job streams. When there are multiple job
streams, they are numbered from 1 to the value of Background_Streams.

The default for Background_Streams is 3.

Stream_Time N

Specifies the time limit, in minutes, associated with the job stream numbered N.
Stream_Time limits the time elapsed since a job began running on job stream N.

Note that allowing many jobs to remain queued on job streams may cause a disk
space shortage. Jobs are more likely to be requeued before they finish if the
Stream_Time value for a stream is low, whereas a high Stream_Time value per-
mits jobs to run to completion without being requeued.

The value for each Stream_Time parameter is a number of minutes from 1 through
43,200. The default values for Stream_Times 1 through 3 are 2, 58, and 0 minutes,
respectively.

Stream_Jobs N

Specifies the number of jobs that can be running on the job stream numbered N.
The value for each Stream_Jobs parameter is an integer from 0 through 5. A value
of 0 makes sense only if the value of Strict_Stream_Policy is 0 (false). The default
values for Stream_Jobs 1 through 3 are 3, 0, and 0, respectively.
Strict_Stream_Policy

Specifies whether strict stream policy is in effect (true) or not (false).

The value for Strict_Stream_Policy is either O (false) or 1 (true). The default is 0.

RATIONAL 7yer SMU-177

procedure Set
package !Commands.Scheduler

References

procedure Display

function Get

procedure Get.Disk_Wait_Load
subtype Load-_Factor

SMU-178 7/1/87 RAT'ONAL

procedure Set_Job_Attribute
package !Commands.Scheduler

procedure Set_Job_Attribute

procedure Set_Job_Attribute {Job : Job_ld;
Attribute : String := "Kind";
Value : String := “Server");
Description

Permits the user to change a job attribute.

Parameters

Job : Job_ld;
Specifies the number of the job.

Attribute : String := "Kind";

Specifies the attribute. Currently the only attribute supported is “Kind”, which
permits the user to specify which kind of job the current job should be. This is
useful in specifying jobs as servers.

Value : String := "Server";
Specifies the value for the attribute. The default sets the job kind to a server.

The allowable values are the string representations of the enumerations of the
Job_Kind type: Ce, Oe, Attached, Detached, Server, and Terminated.

QATIONAL 7/1/87 SMU-179

procedure Set_Wsl_Limits
package !Commands.Scheduler

procedure Set_Wsl_Limits

procedure Set_Wsl_Limits (Job : Job_ld;
Min, Max : Natural);

Description

Sets temporary minimum and maximum working set limits that apply only to the
specified job.

For the duration of that job, these temporary limits override the limits defined by the
relevant scheduler parameters (Min_ and Max_Ce_Wsl, Min. and Max_Oe_Wsl,
and the like), which are described under the Set procedure and in the introduc-
tion to this package. Note that, while the job is running, the user can use the
Use_Default_Wsl_Limits procedure to revert to the limits that are defined by the
scheduler parameters.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job : Job_ld;
Specifies the number of the job whose minimum and maximum working set limits
the user wants to set.

Min : Natural;

Specifies the temporary minimum working set limit for the given job. This value
must be greater than 0 and less that the value of Max.

Max : Natural;

Specifies the temporary maximum working set limit for the given job. This value
must be greater than the value of Min and less than the memory size.

SMU-180 7/1/87 QATIONAL

procedure Set_Wsl_Limits
package !Commands.Scheduler

References
procedure Get_Wsl_Limits
procedure Set

procedure Use_Default_Wsl_Limits

RATIONAL 7/1/sr SMU-181

procedure State

package !Commands.Scheduler

procedure State

procedure State;

Description

Displays the current scheduler state.

Example

The command:

scheduler .state;

produces a display such as the following:

JOB K/S/P STAT
AGE

CPU CPU DISK DISK WSET WSET MAP RUN
SECONDS Ms/S DUW/S WAITS SIZE LIMIT TO RATIO

4 A/R/O ++++

) A/R/O0 ++++
217 C/1/6 ++++
222 =*=A/1/@ 2535
228 =*D/1/8 3980
245 C/1/0 ++++
253 0/1/6 2829

Run Queue Load
Disk Wait Load
Withheld Task Load
Available Memory

(]

[

[

()

(A

o

~

o
(SESESES TSRS Eoo)
[ISESESESEOFo oY)
[SESESRSESES T

=> 2.46, ©.73, 0.74, 0.
=> 0.26, 0.74, 0.56, 0.
=> 0.00, 90.01, ©.01, @.
=> 142383

4 ++++++ 11000 11000 1.00
4} 6395 221 200 1.00
] 2399 151 200 2.99
@ 124 15 53 245 ©.99
) 178 62 75 ¢ ©.93
2 10100 121 200 @.91
] 773 15 75 245 @.91
68

58

21

The first ten lines of the display list each job by number along with the resources
that have currently been allocated to if.

The values that are displayed for each job include:

Jos Specifies the job number.

K/S/P Shows the job’s Kind, State, and Priority. Values for Kind and
State are indicated by their first initial (see Job_Kind type and
Job_State type). An asterisk before Kind indicates that the job is
being allocated background job resources.

STAT AGE Shows how long, in tenths of a second, a job has been in its current
state. A series of plus signs indicates that the time has exceeded
the display’s range.

SMU-182

e RATIONAL

CPU SECONDS

CPU MS/S

DISK DW/s

DISK WAITS
WSET SIZE

WSET LIMIT
MAP TO

RUN RATIO

procedure State
package !Commands.Scheduler

Shows the total amount of CPU time, in seconds, the job has used
since it began.

Shows the number of milliseconds of CPU time a job has used in the
last 5-second evaluation interval.

Shows the number of disk waits a job had in the last 5-second eval-
uation interval.

Shows the total number of disk waits a job has had since it began.

Shows the job’s current working set size, which is the number of
pages of memory that the job is using.

Shows the current working set limit on the job’s working set size.

Shows what core editor (if any) the job is grouped with for CPU
scheduling purposes.

Shows the percentage of time the job has run, as compared with
the total amount of time the job has either run or been withheld.
A value of 1.00 means that the job has never been withheld.

The next three lines of the display (ignoring the blank line) show the various load
averages computed over four intervals: the last 100 milliseconds, the last minute,
the last 5 minutes, and the last 15 minutes. (These values are also returned by
the Get_Run_Queue_Load, Get_Disk_Wait_Load, and Get_Withheld_Task_Load

procedures.)

The last line displays the number of currently available pages of

reserved memory.

References

procedure Get_Disk_Wait_Load

procedure Get_Run_Queue_Load
procedure Get_Withheld_Task_Load

RAT'ONAL 7/1/87 SMU-183

RATIONAL

generic procedure Traverse_Job_Descriptors

This procedure can be used to get a consistent, efficient snapshot of the statistics
of one or more jobs.

The formal parameter list of this procedure is:
generic

with procedure Put (Descriptor : Job_Descriptor);
procedure Traverse_Job_Descriptors (First, Last : Job_1d};

RAT'ONAL 7/1/87 SMU-185

generic formal procedure Put
package !Commands.Scheduler

generic formal procedure Put |

with procedure Put (Descriptor : Job_Descriptor);

Description
Displays the descriptors for the Traverse.Job_Descriptors procedure.

This procedure is called once by the Traverse_Job_Descriptors procedure for each
job in the range specified in the call to the Traverse_Job_Descriptors procedure.

Parameters

Descriptor : Job_Descriptor;

Specifies the information to be put. See the Job_Descriptors type for further infor-
mation.

SMU-186 7/1/87 PATIONAL

procedure Traverse_Job_Descriptors
package ICommands.Scheduler

procedure Traverse_Job_Descriptors

procedure Traverse_Job_Descriptors (First, Last : Job_Ild};

Description

Calls the Put procedure to display the job descriptors once for each job in the range
First. .Last.

This procedure is used to get a consistent, efficient snapshot of the statistics of
one or more jobs. For further information about the information returned, see the
Job_Id subtype.

Parameters

First : Job_ld;
Specifies the number of the first job.

Ltast : Job_ld;
Specifies the number of the last job.

RATIONAL 7/1/87 SMU-187

procedure Use_Default_Wsl_Limits
package !Commands.Scheduler

procedure Use_Default_Wsl_Limits

procedure Use_Default_Wsl _Limits (Job : Job_id};

Description

Cancels the temporary minimum and maximum working set limits that were set by
the Set_Wsl_Limits procedure for the specified job.

While the job is running, this procedure allows the user to revert to the limits that
are defined by the relevant scheduler parameters (Min- and Max_Ce_Wsl, Min_
and Max_Oe_Wsl, and the like). These limits are described under the Set procedure
and in the introduction to this package.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job : Job_lid;

Specifies the number of the job for which the default minimum and maximum
working set limits should be in effect.

References
procedure Get_Wsl_Limits
procedure Set

procedure Set_Wsl_Limits

SMU-188 e RATIONAL

function Working_Set_Size
package 'Coramands.Scheduler

function Working_Set_Size

function Working_Set_Size (Job : Job_l!d} return Natural;

Description
Returns the number of pages of memory used by the specified job.

Execution of this function requires that the executing job have operator capability.

Parameters

Job : Job_ld;
Specifies the number of the job.

return Natural;
Returns the number of pages of memory used by the specified job.

end Scheduler;

RATIONAL 75er SMU-189

RATIONAL

package System_Backup

The procedures in package System_Backup provide a means to save the Environ-
ment state on a regular basis. This ensures that the Environment can be restored
with minimal loss after a catastrophic system or Environment failure.

The Backup procedure copies the entire Environment onto tape. The three varieties
of backup history are full, primary, and secondary:

o Full backups are complete and self-sufficient. They preserve system information
as well as data.

¢ Primary backups preserve changes made to the Environment since the last full
backup.

¢ Secondary backups preserve changes made to the Environment since the last
primary backup.
A backup of any kind produces two kinds of tapes: data tapes and blue tapes:

¢ Data tapes contain all data in the Environment.
¢ Blue tapes contain the system structure.

During startup, the system determines whether recovery is needed and asks whether
you want to proceed with recovery. If you proceed with recovery, the system requests
the blue (system) tapes so that it can initialize the disks. The system then requests
the appropriate data tapes and loads the data.

After a system is recovered from backup tapes, the next backup must be a full
backup.

See the Rational R1000 Development System: System Manager’s Gusde for more
information on backup procedures.

Execution of some of the operations in this package requires that the executing job
have operator capability. This is noted in the reference entry if the requirement
applies.

RATIONAL +/1/er SMU-191

procedure Backup
package !Commands.System._Backup

procedure Backup

procedure Backup (Variety : Kind := System_Backup.Full};

Description
Makes a backup of the specified kind (full, primary, or secondary).

The default is full. Note that after a system is recovered from backup tapes, the
next backup must be a full backup.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Variety : Kind := System_Backup.Full;
Specifies full, primary, or secondary backup. The default is full.

Restrictions
Backups and disk collection cannot be run at the same time.

If you have begun a backup and the disk collection needs to begin, the backup will be
terminated by default. This causes the system to wait for the disk collection to begin
Waiting_For_Backup_To_Finish phase before initiating the backup. The user can
change this default with the procedure !Tools.Disk_Daemon.Set_Backup_Killing
(false), which causes the last data tape to be written before disk collection can

begin.

If the disk daemon is running and a backup is attempted, disk collection must
complete before the backup can begin.

For further information, see the Rational R1000 Development System: System Man-
ager’s Gusde.

SMU-192 e RATIONAL

procedure Backup
package !Commands.System_Backup

Example
The command:
system_backup .backup (full};

begins the process for taking a full backup. This command preserves a state of the
Environment that can be supplemented with subsequent secondary backups.

RAT'ONAL 7/1/87 SMU-193

procedure History
package !Commands.System_Backup

procedure History

procedure History {(Entry_Count : Positive := 10;
Full_Backups_Only : Boolean := False;
Tape_information : Boolean := False);
Description

Lists the specified number of previous backups.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Entry_Count : Positive := 19;

Specifies the number of the most recent backups that should be included in the
display.

Full_Backups_Only : Boolean := False;
Specifies, when true, information on full backups only.

Tape_!nformation : Boolean := False;

Specifies, when true, that the Environment list (in Current_Output) the first data
tape involved in each backup.

Example

The command:

system_backup.history;

produces a display such as the following for each full, primary, and secondary
backup. By default, the command returns information on each of the ten previous
backups.

Full Backup 6 Taken At 19-JUN-87 11:138:42
Blue Tape Vol Name => BACKUP BLUE TAPE, 19-JUN-87 11:19:42 2
Blue Tape Vol Id => 002000
Data Tape Vol Name => BACKUP, 19-JUN-87 11:19:42
Data Tape Vol Id => 001900

SMU-194 7/1/87 QATIONAL

subtype Id
package !Commands.System.-Backup

subtype 1d

subtype |d 1s Natural;

Description
Specifies the identifier assigned to a backup tape during the backup procedures.

Identifiers are listed in the History procedure display.

References

procedure History

RATIONAL 7/1/er SMU-195

type Kind
package !Commands.System_Backup

type Kind

type Kind 1s (Full, Primary, Secondary};

Description

Specifies the kind of backup to be taken with the Backup procedure.

Enumerations

Full
Records the complete state of the Environment—a complete backup.

Primary

Records changes in the Environment state since the last full backup—an incremental
backup.

Secondary

Records changes in the Environment since the last primary backup—an incremental
backup.

end System_Backup;

SMU-196 7/1/87 RA\TIONAL

package System_Utilities

Package System_Utilities offers a set of capabilities that provide access to various
system characteristics. In general, these characteristics cannot be altered with
procedures in this package. To change some of the characteristics not alterable by
subprograms in this package, use packages Operator, Scheduler, and Terminal (in
this book) and package !Commands.Job (documented in SIM). Other characteristics
are controlled by the Environment and cannot be explicitly changed.

Package System_Utilities deals with:

e Sessions

o Users

¢ Terminals

e Jobs

System hardware

Sessions are created as necessary when a user logs into the system. The Environment
creates the session and manages it for the user. One terminal is assigned to each
active session. A single user can have more than one active session by logging into
the system from more than one terminal and providing a unique session name for
each login.

For persons to log in and use the facilities of the Rational Environment, they must
have users created for them. Users are created by the Environment with the Opera-
tor.Create_User procedure. Users have a home library, a username/password pair,
and other characteristics that are maintained by the Environment.

Within each session, the user can create multiple jobs to execute programs and com-
mands. Each job is separately scheduled and can have its own scheduler priority and
page limits. Page limits are a resource limit that can be established by the system
manager to limit the number of virtual memory pages that user jobs can consume.
Users can create jobs implicitly when a command window is executed or explic-
itly with the !Commands.Program.Run_Job and !Commands.Program.Create_Job
procedures.

Unless otherwise noted, if illegal values are passed to any of the operations in this
package, the Constraint_Error exception is raised.

RATIONAL 7/y/er SMU-197

constant All_Bad-Blocks
package !Tools.System_Utilities

constant All_Bad_Blocks

All_Bad_Blocks : constant Bad_Block_Kinds := 3;

Description

Defines a value that indicates all bad disk blocks.

References
function Bad_Block_List
constant Manufacturers_Bad_Blocks

constant Retargeted_Blocks

SMU-198 7/1/87 BATIONAL

type Bad_Block_Kinds
package !Tools.System_Utilities

type Bad—Block_Kinds

tupe Bad_Block_Kinds 1s new Long_Integer range 8 .. 7;

Description
Defines the kinds of bad disk blocks.

References

constant All_Bad_Blocks

function Bad-Block_List

constant Manufacturers_Bad_Blocks

constant Retargeted_Blocks

RATIONAL 7y/er SMU-199

function Bad_Block_List
package !Tools.System._. Utilities

function Bad_Block_List

function Bad_Block_List (For_Volume : Natural;
Kind : Bad_Block_Kinds := Retargeted_Blocks)
return Block_List;

Description

Returns a list of bad disk blocks of the specified kind on the specified disk volume.

Parameters

For_Volume : Natural;
Specifies the volume for which to get the bad block information.

Kind : Bad_Block_Kinds := Retargeted_Blocks;
Specifies the kind of bad blocks to get.

return Block_List;

Returns the desired list of bad disk blocks. If the volume or kind of bad block is
illegal, a null array will be returned.

Errors

If the volume or kind of bad disk block is illegal, a null array will be returned and
no exceptions will be raised.

References
constant All_Bad_Blocks
constant Manufacturers—Bad_Blocks

constant Retargeted_Blocks

SMU-200 e RATIONAL

type Block_List
package !Tools.System_Utilities

type Block_List

type Block_List is array (Natural range O) of Integer;

Description
Defines the type used to represent a list of bad disk blocks.

References

function Bad_Block_List

RAT'ONAL 7/1/87 SMU-201

subtype Byte_String
package !Tools.System. Utilities

subtype Byte_String

subtype Byte_String 1s System.Byte_String;

Description

Defines a string of 8-bit bytes.

SMU-202 e RATIONAL

subtype Character_Bits._Range
package !Tools.System.. Utilities

subtype Character—_Bits_Range

subtype Character_Bits_Range 1is Integer range 5 .. 8;

Description
Defines the allowed values for the number of bits in a character.
The number of bits in a character depends on the character set that the terminal

uses. Normally this is eight bits for the Rational Terminal. Other applications of
terminals may require other values.

RATIONAL 7/y/er SMU-203

function Character—Size
package !Tools.System_ Utilities

function Character_Size

function Character_Size {Line : Port := System_Utilities.Terminal)
return Character_Bits_Range;

Description
Returns the number of bits used for each character on the specified line.

The Character_Bits_Range value can be changed using the Terminal.Set_Char-
acter_Size procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line whose number of bits per character is desired. The default returns
the number of bits per character for the line attached to the current session.

return Character_Bits_Range;
Returns the number of bits per character.

References

procedure Terminal.Set_Character_Size

SMU-204 7/1/87 R)ATIONAL

function Cpu
package !Tools.Systern_Utilities

function Cpu

function Cpu (For_Job : Job_Id := System_Utilities.Get_Job)
return Duration;

Description
Returns the CPU time that the specified job has consumed.

This function returns the time that the specified job has used in its execution. By
default, the function returns the CPU time of the current job.

Parameters

For_Job : Job_Id := System_Utilities.Get_Job;

Specifies the job whose CPU time is desired. The default returns the CPU time of
the current job.

return Duration;
Returns the CPU time.

RAT'ONAL 7/1/87 SMU-205

function Detach_On_Disconnect
package !Tools.System_Utilities

function Detach_On_Disconnect

function Detach_On_Disconnect (Lime : Port := System_Utilities.Terminal)
return Boolean;

Description

Determines whether the detach-on-disconnect feature is enabled for the specified
line.

See package Terminal for more information on this feature.

Parameters

Lire : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

Restrictions

This feature is not yet implemented, so the value returned by this function is un-
defined. :

References

procedure Terminal.Set_Detach_On_Disconnect

SMU-206 e RATIONAL

function Disconnect_On..Disconnect
package !Tools.System_ Utilities

function Disconnect_On_Disconnect

function Disconnect_On_Disconnect
(Line : Port := System_Utilities.Terminal) return Boolean;

Description

Determines whether the disconnect-on-disconnect feature is enabled for the specified
line.

See package Terminal for more information on this feature.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.Set_Disconnect—_On_Disconnect

PATIONAL 7/1/87 SMU-207

function Disconnect_On_Failed_Login
package !Tools.System_Utilities

function Disconnect_On_Failed_Login

function Disconnect_On_Failed_Login
(Line : Port := System_Utilities.Terminal) return Boolean;

Description

Determines whether the disconnect-on-failed-login feature is enabled for the speci-
fied line.

See package Terminal for more information on this feature.

Parameters

Lire : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.Set_Disconnect_On_Failed_Login

SMU-208 e RATIONAL

function Disconnect_-On_Logoff
package !Tools.System . Utilities

function Disconnect—On_Logoff

function Disconnect_On_Logoff {Line : Port := System_Utilities.Terminal)
return Boolean;

Description

Determines whether the disconnect-on-logoff feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.Set_.Disconnect_On_Logoff

RATIONAL 716 SMU-209

function Done
package !Tools.System_Utilities

function Done

function Done (lter : Job_lterator) return Boolean;

Description

Checks whether the iterator has stepped through all of the jobs.

Parameters

lter : Job_lterator;

Specifies the iterator to be checked.

return Boolean;

Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. Specifically, the Done function yields true only
if active jobs remain when it is called, even if jobs active when the Init procedure
is called terminate before the Done function is called.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done {Job_lterator} loop

... Value (Job_lterator)

Next (Job_!terator);
end loop;

SMU-210 7/1/87 RAT'ONAL

function Done
package Tools.System_ Utilities

function Done

function Done (Iter : Session_|terator) return Boolean;

Description

Checks whether the iterator has stepped through all of the sessions.

Parameters

lter : Session_lterator;

Specifies the iterator to be checked.

return Boolean;

Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator) loop

.. Value (Session_lterator)

Né;t (Session_lterator);
end loop;

RATIONAL 7/1/87 SMU-211

function Done
package !Tools.System_Utilities

function Done

function Done {(lter : Terminal_lterator) return Boolean;

Description

Checks whether the iterator has stepped through all of the terminals.

Parameters

lter : Terminal_lterator;

Specifies the iterator to be checked.

return Boolean;
Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator)} loop

... Value (Terminal_!terator)

Next {Terminal_Iterator);
end loop;

SMU-212 e RATIONAL

function Elapsed
package Tools.System_Utilities

function Elapsed

function Elapsed (For_Job : Job_id := System_Utilities.Get_Job)
return Duration;

Description
Returns the elapsed time that the specified job has existed.

This function returns the time that the specified job has been in existence. By
default, the function returns the elapsed time of the current job.

Note: The elapsed time for job 4 (the system) is the elapsed time since the machine
was booted.

Parameters

For_Job : Job_ld := System_Utilities.Get_Job;

Specifies the job whose elapsed time is desired. The default returns the elapsed
time of the current job.

return Duration;
Returns the elapsed time.

RAT'ONAL 7/1/87 SMU-213

function Enabled
package Tools.System_Utilities

function Enabled

function Enabled (Line : Port := System_Utilities.Terminal) return Boolean;

Description
Checks whether the specified line is enabled for logging into the Environment.

The Boolean value can be changed by using the Operator.Enable_Terminal proce-
dure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line to be checked. The default returns the check on the line attached
to the current session.

return Boolean;

Returns the value true when the specified line is enabled for login; otherwise, the
function returns false.

References

procedure Operator.Enable_Terminal

SMU-214 e RATIONAL

function Error_Name
package 1Tools.System.. Utilities

function Error_Name

function Error_Name
(For_Session : Session_ld := System_Utilities.Get_Session} return String;

Description
Returns the full name of the Standard_Error filename for the indicated session.

If this file is opened using the I/0 packages in the Environment, the output goes to
the standard error window. This function can be used, for example, in an appli-
cation that attempts to redirect error output to the standard error window for the
job and needs the correct filename to perform the redirection.

Parameters

For_Session : Session_id := System_Utilities.Get_Session;

Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;

Returns the filename.

PAT'ONAL 7/1/87 SMU-215

function Flow_Control
package !Tools.System. Utilities

function Flow_Control

function Flow_Control (Line : Port := System_Utilities.Terminal)
return String;

Description

Determines whether software flow control is used for controlling the flow of data
transmitted to the device on the specified line.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware flow control (CTS receiving, RTS or DTR transmitting)
and some devices support software flow control (via XON and XOFF transmissions).
Note that hardware flow control via RTS or DTR is not supported for transmission
to devices. CTS hardware flow control is available only for transmission.

Legal values returned for methods of transmission flow control are:

NONE XON_XOFF

NONE indicates that there is no software flow control for the line and that there
may or may not be CTS hardware flow control for the line. Since CTS hardware flow
control is enabled or disabled by changing a hardware switch setting in the RS232
distribution panel, the setting of this hardware switch must be used to determine
whether hardware flow control is enabled for the line if the value NONE is returned.

XON_XOFF indicates that software flow control is enabled for the line. This value
indicates that the Rational system will stop transmitting when it receives an XOFF
from the device and may resume transmission when it receives an XON. Note that
hardware flow control may also be enabled for the line. Since CTS hardware flow
control is enabled or disabled by changing a hardware switch setting in the RS232
distribution panel, the setting of this switch must be used to determine whether
hardware flow control is enabled for the line if the value XON_XOFF is returned.

The type of transmission flow control used for the line can be changed by using the
Terminal.Set_Flow_Control procedure or by changing a hardware switch setting
in the RS232 distribution panel.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies which line is to be checked for flow control. The default returns the flow
control method for the line attached to the current session.

SMU-216 e RATIONAL

function Flow_Control
package !Tools.System_Utilities

return String;

Returns the method used for controlling the flow of data transmitted to the device.
Legal values and their meanings are defined above.

References

procedure Terminal.Set_Flow_Control

EAT'ONAL 7/1/87 SMU-217

function Get_Board_Info
package !Tools.System_Utilities

function Get_Board_Info

function Get_Board_Info (Board :

Natural)} return String;

Description

Returns information about the specified hardware circuit board in the system.

Parameters

Board : Natural;

Specifies the board about which to determine information. The legal values are:

Legal Values

Value

Board

IOA/1OC

SYS

SEQ

VAL

FIU

MEMO

MEM1

MEM2

MEM3

return String;

Returns information about the board.

SMU-218

e RATIONAL

function Get_Job
package !Tools.System_Utilities

function Get_Job

function Get_Job return Job_ld;

Description

Returns the identity of the current job.

Parameters

return Job_Id;

Returns the identity of the current job—that is, the job that called this function.

R/A\TIONAL 7/1/87 SMU-219

procedure Get—Page_Counts
package !Tuols.System_Utilities

procedure Get_Page_Counts

procedure Get_Page_Counts {Cache_Pages : out Natural;
Disk_Pages : out Natural;
Max_Pages : out Natural;
For_Job : Job_id 1=
System_Utilities.Get_Job};

Description

Returns the virtual memory page counts for the specified job (each page is 1,024
bytes).

The Environment keeps track of the virtual memory pages currently used by a job
and compares this count with the Max_Pages resource limit established for the job
when new pages are allocated. If the allocation raises the count above the maximum,
the Storage_Error exception will be raised. Note that under certain conditions a
job may be allowed to allocate more pages than the maximum allowed before the
Storage_Error exception is raised.

When a job begins, it is assigned a default page limit. By default, a job is al-
lowed to create 8,000 pages. This default is determined by the value of the De-
fault_Job_Page_Limit session switch. See SIM, Session Switches, for more informa-

tion on session switches.

When a job elaborates Ada units, this limit may be increased if these units specify
larger page limits through the Page_Limit pragma or the Page_Limit library switch.
See LM, package Switches, for more information on library switches. The job can
change the limit at any time by calling the Set_Page_Limit procedure.

Parameters

Cache_Pages : out Natural;
Returns the number of pages presently in main memory.

Disk_Pages : out Natural;
Returns the number of pages that have disk space allocated for them.

Max_Pages : out Natural;
Returns the limit on the number of pages the job is allowed to create.

SMU-220 e RATIONAL

procedure Get_Page_Counts
package !Tools.System_Utilities

For_Job : Job_!d := System_Utilities.Get_Job;

Specifies the job for which to count the pages. By default, pages will be counted
for the job of the caller.

Errors

If the allocation raises the count above the maximum, the Storage_Error exception
will be raised. Note that under certain conditions a job may be allowed to allocate
more pages than the maximum allowed before the Storage_Error exception is raised.

References

procedure Set_Page_Limit

QAT'ONAL 7/1/87 SMU-221

function Get_Session
package !Tools.System_Utilities

function Get_Session

function Get_Session return Session_ld;

function Get_Session (For_Job : Job_ld} return Session_ld;

Description

Returns the session identifier for the job that executed the call to the function or
the indicated job.

Parameters

For_Job : Job_ld;
Specifies the job for which to determine the session identifier.

return Session_ld;

Returns the session identifier for the job that executed the call to the function or
the indicated job.

SMU-222 7/1/87 RAT'ONAL

function Home_Library
package !Tools.System_Utilities

function Home_Library

function Home_Library (User : String := User_Name} return String:

Description
Returns the full name of the home library for the specified user.

By default, this function returns the home library for the user of the current session.

Parameters

User : String := User_Name;
Specifies the simple name of the user for which the home library is to be determined.

return String;

Returns the full pathname of the home library for the indicated user.

RATIONAL 7/1/er SMU-223

function Image
package !Tools.System_Utilities

function Image

function Image (Version : Directory.Version) return String;

Description

Returns the full pathname for the indicated version.

Parameters

Version : Directory.Version;
Specifies the version for which the name is to be computed.

return String;
Returns the full pathname for the indicated version.

SMU-224 7/1/87 RATIONAL

procedure Init
package !Tools.System_ Utilities

procedure Init

procedure Init (lter : out Session_lterator);

Description

Initializes the session iterator to iterate over all of the sessions that are active—that
is, currently logged in.

If one or more sessions are active, the Value function returns the first session using
this value of the iterator. If no sessions are active, the Done function returns the
value true using this value of the iterator.

Parameters

lter : out Session_lterator;

Returns the iterator.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done ({Session_iterator) loop

.. Value {Session_Iiterator)

Next (Session_lterator);
end loop;

RATIONAL 71 SMU-225

procedure Init
package !Tools.System_Utilities

procedure Init

procedure Init {lter : out Job_lterator;
For_Session : Session_Id := Get_Session);

Description

Initializes the job iterator to iterate over all of the jobs that are active for the
specified session.

When one or more jobs exist in the session, the Value function returns the first
job using this value of the iterator. When no jobs exist in the session, the Done
function returns the value true using this value of the iterator.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. For example, the Value function yields only jobs
that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

fter : out Job_lterator;
Returns the iterator.

For_Session : Session_ld := Get_Session;

Specifies the session for which the iterator is desired. The default returns an iterator
for the set of jobs in the current session.

Example
This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done {Job_lterator) loop

.. Value (Job_lterator)

Next (Job_lterator);
end loop;

SMU-226 e RATIONAL

procedure [nit
package !Tools.System._ Utilities

procedure Init

procedure Init {lter : out Terminal_lterator);

Description

Initializes the terminal iterator to iterate over the terminals known to the Environ-
ment.

The terminals known to the Environment are those terminal devices that exist in
the library !Machine.Devices. When one or more terminals are known, the Value
function returns the first terminal using this value of the iterator. When no ter-
minals are known, the Done function returns the value true using this value of the
iterator. \

Parameters

lter : out Terminal_lterator;

Returns the iterator.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_!terator);
while not Done (Terminal_lterator) loop

.. Value {(Terminal_literator)

Next (Terminal _| terator);
end loop;

RAT'ONAL 1/1/87 SMU-227

function input_Name
package !Tools.System-_Utilities

function Input_Name

function Input_Name
{For_Session : Session_Id := System_Utilities.Get_Session) return String;

Description

Returns the full name of the Standard_Input filename for the indicated session.

If this file is opened using the I/O packages in the Environment, the input comes
from the standard input window. This function could be used, for example, in an
application that attempts to redirect input to the standard input window for the
job and needs the correct filename to perform the redirection.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;

Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;
Returns the filename.

SMU-228 e RATIONAL

function Input_Count
package !Tools.System- Utilities

function Input_Count

function Input_Count {Lime : Port := System_Utilities.Terminal)
return Long_Integer;

Description

Returns the number of characters input from the specified line since the system was
booted.

Input from the line that has not been read by a session or user program is not
counted as input.

This function can be used, for example, to create an application that automatically
logs out inactive user sessions. Such an application can use the Input_Count and
Output_Count functions to determine whether any characters have recently been
typed or output on the line for each session.

Parameters

Line : Port := System_Util.ties.Terminal;

Specifies the line for which the input count is desired. The default returns the input
count of the line attached to the current session.

return Long_!nteger;
Returns the input count in characters.

References

function Output_Count

RATIONAL 7/1/er SMU-229

function Input_Rate
package !Tools.System_Utilities

function Input_Rate

function Input_Rate (Line : Port := System_Utilities.Terminal)
return String;

Description

Returns the input rate of the specified line.

This function returns a string that contains the input rate of the specified line. By
default, the function returns the input rate for the line associated with the current

session. This value can be changed with the Terminal.Set_Input_Rate procedure.

Legal values for the input rate are:

DISABLE BAUD_50 BAUD_75 BAUD_110
BAUD_134_5 BAUD_150 BAUD_20@ BAUD_300
BAUD_600 BAUD_1208 BAUD_18020 BAUD_2400
BAUD_4800 BAUD_S620 BAUD_19200 EXT_REC_CLK
Parameters
Lire : Port := System_Utilities.Terminal;

Specifies the line for which the input rate is desired. The default returns the input
rate of the line attached to the current session.

return String;

Returns the input rate. Legal values are defined above.

References

procedure Terminal.Set_Input_Rate

SMU-230 e RATIONAL

subtype Job_Id
package !Tools.System_Utilities

subtype Job_Id

subtype Job_Ild is Machine.Job_Id range 4 .. 255;

Description
Defines a representation for a job.

Objects of the Job_Id subtype are created to represent jobs in the Environment.
Jobs are manipulated by procedures in SJM, package Job.

References

SIM, package Job

PAT'ONAL 7/1/87 SMU-231

type Job_Iterator
package !Tools.System_Utilities

type Job_Iterator

type Job_lterator is private;

Description
Defines a type that allows iterating over all jobs in a specified session.

Objects of the Job_lterator type contain all of the information necessary to step
over all of the jobs in a session. The type is used with the Init and Next procedures
and the Value and Done functions.

SMU-232 e RATIONAL

function Job_Name
package !Tools.System_Utilities

function Job_Name

function Job_Name (For_Job : Job_ld := System_Utilities.Get_Job)
return String;

Description

Returns the symbolic name of the indicated job.

This symbolic name is the name that is put in the job header at the beginning of
job output to an output window. Its form is determined by the values of the session

switches controlling the format of the job name at the time the owner of the job
started it.

If the job is not currently running, the Constraint_Error exception is raised.

Parameters

For_Job : Job_id := System_Utilities.Get_Job;
Specifies the job for which to get the name.

return String;
Returns the symbolic name of the indicated job.

Errors

The Constraint_Error exception is raised if the job is not currently running.

RATIONAL /17 SMU-233

functior Last_Login
package !Tools.System_Utilities

function Last_Login

function Last_Login (User : String;
Session : String := "") return Calendar.Time;

Description
Returns the time at which the specified user logged into the specified session.

By default, this function returns the time at which the user logged into any session.

Parameters

User : String;
Specifies the simple name for the user.

Session : String := "";

Specifies the simple name for the session. The default value specifies that the last
time the user logged into any session is to be computed.

return Calendar.Time;
Returns the time at which the user logged into the specified session.

SMU-234 e RATIONAL

function Last_Logout
package !Tools.System_Utilities

function Last_Logout

function Last_Logout (User : String;
Session : String := "") return Calendar.Time;

Description
Returns the time at which the specified user logged out of the specified session.

By default, this function returns the time at which the user last logged out of any
gession.

Parameters

User : String;
Specifies the simple name for the user.

Session : String = "";

Specifies the simple name for the session. The default value specifies that the last
time the user logged out of any session is to be computed.

return Calendar.Time;
Returns the time at which the user logged out of the specified session.

RAT'ONAL 7/1/87 SMU-235

function Log-Failed_Logins
package 1Tools.System_Utilities

function Log_Failed_Logins

function Log_Failed lLogins (Line : Port := System_Utilities.Terminal)
return Boolean;

Description

Determines whether the log-failed-logins feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.Set-Log-Failed-Logins

SMU-236 e RATIONAL

function Logged_In
package !Tools.System_Utilities

function Logged—-In

function Logged_In (User : String;
Session : String := "") return Boolean;

Description
Determines whether the specified user is logged into the specified session.

By default, this function determines whether the specified user is logged into any
session.

Parameters

User : String;
Specifies the simple name for the user.

Session : String := "";

Specifies the simple name for the session. The default value specifies that the check
should be made to determine whether the user is logged into any session.

return Boolean;
Returns true if the user is logged in; otherwise, the function returns false.

QAT'ONAL 7/1/87 SMU-237

function Login_Disabled
package !Tools.System. Utilities

function Login_Disabled

function Login_Disabled (Line : Port := System_Utilities.Terminal)
return Boolean;

Description
Determines whether login is disabled for the specified line.

When login is disabled—that is, the function returns true—the Operator.Enable-
-Terminal command fails for the specified line.

See package Terminal for more information on this feature.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References
procedure Operator.Enable_Terminal

procedure Terminal.Set_Login_Disabled

SMU-238 7/1/87 PAT'ONAL

function Logoff-On._Disconnect
package !Tools.System- Utilities

function Logoff_On_Disconnect

function Logoff_On_Disconnect (Line : Port := System_Utilities.Terminal)
return Boolean:

Description
Determines whether the logoff-on-disconnect feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;

Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

Restrictions

This feature is not yet implemented.

References

procedure Terminal.Set_Logoff_On_Disconnect

RATIONAL +/1/er SMU-239

constant Manufacturers_Bacd.-Blocks
package !Tools.System_Utilities

constant Manufacturers_Bad_Blocks

Manufacturers_Bad_Blocks : constant Bad_Block_Kinds := 1;

Description

Defines a value that indicates manufacturer-designated bad disk blocks.

References
function Bad_Block_List
constant Retargeted_Blocks

SMU-240 e RATIONAL

procedure Next
package 'Tools.System_Utilities

procedure Next

procedure Next (lter : in out Jou_lterator);

Description

Steps the iterator to point to the next job.

When the iterator steps past the last job, the Done function returns the value true.
The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. For example, the Value function yields only jobs

that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

lter : 1n out Job_lterator;

Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Job_tterator};
while not Done (Job_lterator) loop

.. Value (Job_lterator)

Next (Job_lterator);
end loop;

RATIONAL /16 SMU-241

procedure Next
package !Tools.System._Utilities

procedure Next

procedure Next (lter : 1n out Session_lterator};

Description
Steps the iterator to point to the next session.

When the iterator steps past the last session, the Done function returns the value
true.

Parameters

fter : 1n out Session_lterator;

Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator)} loop

.. Value (Session_lterator)

Next (Session_lterator);
end loop;

SM‘U—242 7/1/87 BA\TIQNAL

procedure Next
package 1Tools.System_Utilities

procedure Next

procedure Next (lter : in out Terminal_lterator};

Description
Steps the iterator to point to the next terminal.

When the iterator steps past the last terminal, the Done function returns the value
true.

Parameters

lter : 1in out Terminal_lterator;

Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

... Value (Terminal_lterator)

Next (Terminal _lterator);
end loop;

RATIONAL 7/1/er SMU-243

subtype Object
package !Tools.System.. Utilities

subtype Object

subtype Object is Directory.Ob ject;

Description

Defines the representation for an object in the directory system.

SMU-244 7/1/87 RATIONAL

function Outpat-Count
package !Tools.System-Utilities

function Output_Count

function Output_Count (Lime : Port := System_Utilities.Terminal)
return Long_lInteger;

Description

Returns the number of characters output to the specified line gince the system was
booted.

Output from the line that has not been read by a session or user program is not
counted as output.

This function can be used, for example, to create an application that automatically
logs out inactive user sessions. Such an application can use the Output_Count and
Input_Count functions to determine whether any characters have recently been
typed or output on the line for each session.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the output count is desired. The default returns the
output count of the line attached to the current session.

return Long_Integer;

Returns the output count in characters.

References

function Input_Count

RATIONAL 7/1/87 SMU-245

function Output_Name
package !Tools.System_Utilities

function Output_Name

function Output_Name
(For_Session : Session_ld := System_Utilities.Get_Session)} return String;

Description
Returns the full name of the Standard_Output filename for the indicated session.

If this file is opened using the 1/O packages in the Environment, the output goes
to the standard output window. This function can be used, for example, in an
application that attempts to redirect output to the standard output window for the
job and needs the correct filename to perform the redirection.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;

Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;
Returns the filename.

SMU-246 e RATIONAL

function Output_Rate
package !Tools.System _Utilities

function Output_Rate

function Output_Rate (Line : Port := System_Utilities.Terminal)
return String;

Description

Returns the output rate of the specified line.

This function returns a string that contains the output rate of the specified line.
By default, the function returns the output rate for the line associated with the
current session. This value can be changed by using the Terminal.Set_Output_Rate
procedure.

Legal values for the output rate are:

DISABLE BAUD_50 BAUD_7S BAUD_110
BAUD_134_S BAUD_150 BAUD_200 BAUD_30@
BAUD_600 BAUD_1200 BAUD_1800 BAUD_2400
BAUD_4800 BAUD_S600 BAUD_19200 EXT_REC_CLK
Parameters
Linre : Port := System_Utilities.Terminal;

Specifies the line for which the output rate is desired. The default returns the
output rate for the line attached to the current session.

return String;
Returns the output rate. Legal values are defined above.

References

procedure Terminal.Set_Output_Rate

RAT'ONAL 7/1/87 SMU-247

function Parity
package !Tools.System_ Utilities

function Parity

function Parity (Line : Port := System_Utilities.Terminal)
return Parity_Kind;

Description
Returns the kind of parity checking for the specified line.
The Parity_Kind value can be changed by using the Terminal.Set_Parity procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the parity checking is desired. The default returns the
parity checking for the line attached to the current session.

return Parity_Kind;

Returns the parity kind.

References

procedure Terminal.Set_Parity

SMU-248 7/1/87 R)ATIONAL

type Parity_Kind
package !Tools.System_Utilities

type Parity_Kind

type Parity_Kind is (None, Even, 0dd);

Description

Defines the allowed values for the kind of parity checking performed by the system
and terminal.

The reliability of communications between the system and the terminal can be
determined by parity checking on each character. The parity checking must be
performed in the same way by both the terminal and the system. Terminals often
perform parity checking in only one way or have a switch to select the kind of parity
checking. The Parity_Kind type and the Terminal.Set_Parity procedure are used
to make the system perform the same checks as the terminal.

Enumerations

Even

Specifies that even parity checking be performed. This means that all bits trans-
mitted for a single character, including the parity bit, will be an even number of
1s.

None

Specifies that no parity checking be performed.

O0dd

Specifies that odd parity checking be performed. This means that all bits transmit-
ted for a single character, including the parity bit, will be an odd number of 1s.

References

procedure Terminal.Set_Parity

RAT'ONAL 7/1/87 SMU-249

subtype Port
package !Tools.System_Utilities

subtype Port

subtype Port 1s Natural range @ .. 4 * 16 * 16;

Description
Defines a representation for the terminal ports on the system.

Each terminal is connected to a specific port on the system; the specific port is
assigned a value of this type. For each port there is a Terminal object in the
"Machine.Devices library with the name Terminal_n, where n is the port number of
the device.

Ports in the range 16..80 identify physical RS232 ports. Consecutive numbers identify
adjacent RS232 connectors on the RS232 distribution panel. Port 16 is the upper-
left port. Numbers in the range 240..255 identify Telnet connections that do not
correspond to physical ports. Incoming Telnet connections are assigned numbers in
a rotary fashion. Note that the existence of these ports is determined by the number
of RS232 lines installed on the Rational system and by the presence or absence of
the Rational Networking—TCP/IP product.

Port numbers are used in a number of Environment commands—for example,
Flow_Control, Operator.Enable_Terminal, Operator.Force_Logoff, and so on. Port
numbers are shown for logged in users in the table produced by the What.Users
(sIM) command and others. Ports can be opened for I/0 by opening objects named
'Machine.Devices.Terminal_n, where n is a port number.

SMU-250 7/1/87 BATIONAL

function Priority
package !Tools.System._ Utilities

function Priority

function Priority (For_Job : Job_id :

1

System_Utilities.Get_Job)
return Natural;

Description
Returns the priority of the specified job.
This function returns a priority value for the specified job. The priorities are defined

in SIM, package Job, which also has subprograms for changing the priority of a job.
By default, the function returns the priority of the current job.

Parameters

For_Job : Job_ld := System_Utilities.Get_Job;

Specifies the job for which priority is desired. The default returns the priority of
the current job.

return Natural;

Returns the priority. The allowed range is defined in SIM, package Job.

References

SIM, package Job

RATIONAL 7/1/87 SMU-251

function Receive_Flow_Control
package !Tools.System_Utilities

function Receive_Flow_Control

function Receive_Flow_Control {Line : Port := System_Utilities.Terminal)
return String;

Description

Determines what method, if any, is used for controlling the flow of data received
from the device on the specified line.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware flow control (CTS receiving, RTS or DTR transmitting)
and some devices support software flow control (via XON and XOFF transmissions).
Note that hardware flow control via RTS or DTR is not supported for transmission
to devices. CTS hardware flow control is available only for transmission.

Legal values for methods of flow control for received data are:

NONE XON_XOFF RTS DTR
NONE indicates that there is no software or hardware flow control for the line.

XON_XOFF indicates that software flow control is enabled for the line. This value
indicates that the device should stop transmitting when it receives an XOFF from
the Rational system and can resume transmission when it receives an XON.

RTS indicates that hardware flow control based on the RTS modem control signal is
enabled for the line. This value indicates that the device should stop transmitting
when the Rational system switches the RTS modem control signal to OFF and can
resume transmission when the signal is switched to ON.

DTR indicates that hardware flow control based on the DTR modem control signal is
enabled for the line. This value indicates that the device should stop transmitting
when the Rational system switches the DTR modem control signal to OFF and can
resume transmission when the signal is switched to ON.

The method of flow control for the line can be changed by the Terminal.Set_Receive-
~-Flow._Control procedure.

SMU-252 e RATIONAL

function Receive_Flow_Control
package !Tools.System._Utilities

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line to be checked for flow control. The default returns the method of
flow control for the line attached to the current session.

return String;

Returns the method used for controlling the flow of data received from the device.
Legal values and their meanings are defined above.

References

procedure Terminal.Set_Receive_Flow_Control

'QATIONAL 7/1/87 SMU-253

function Receive_Xon_Xoft_Bytes
package !Tools.System_Utilities

function Receive_Xon_Xoff_Bytes

function Receive_Xon_Xoff_Bytes (Line : Port := System_Utilities.Terminal)
return Byte_String;

Description

Returns the two-character byte string that contains the Xon and Xoff characters
for the receive side of the specified line.

This function returns a byte string with two characters in it. The Xon character,
the first byte, enables transmitting. The Xoff character, the second byte, disables
transmitting. These characters are used in the absence of hardware flow control in
the terminals, and they vary with different terminal types. The characters can be
changed by using the Terminal.Set_Receive_Xon_Xoff_Bytes procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return Byte_String;
Returns the two characters.

References

procedure Termina).Set_Recefve.Xon-Xoff.Bytes

SMU-254 7/1/87 BAT'ONAL

function Receive_Xon_Xoff_Characters
package !Tools.System_. Utilities

function Receive_Xon_Xoff _Characters

function Receive_Xon_Xoff_Characters
{Lire : Port := System_Utilities.Terminal) return String;

Description

Returns the two-character string that contains the Xon and Xoff characters for the
receive side of the specified line.

This function returns a string with two characters in it. Xon, the first character,
enables transmitting. Xoff, the second character, disables transmitting. These
characters are used in the absence of hardware flow control in the terminals, and
they vary with different terminal types. The characters can be changed by using
the Terminal.Set_Receive_Xon_Xoff_Characters procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return String;
Returns the two characters.

References

procedure Terminal.Set_Receive_Xon_Xoff_Characters

RATIONAL 7/1/er SMU-255

constant Retargeted_Blocks
package !Tools.System_Utilities

constant Retargeted_Blocks

Retargeted_Blocks : constant Bad_Block_Kinds := 2;

Description

Defines a value that indicates retargeted disk blocks.

References
constant All_Bad_Blocks
function Bad_Block_List

constant Manufacturers.Bad_Blocks

SMU-256

e RATIONAL

function Session
package !Tools.System_ Utilities

function Session

function Session (For_Session : Session_ld := System_Utilities.Get_Session)
return Version;
System_Utilities.Get_Session)
return Object;

function Session {For_Session : Session_ld

Description
Returns the version or object that is the specified session.

By default, the function returns the value for the current session.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;

Specifies the session for which the version or object is desired. The default returns
the value for the current session.

return Version;

Returns the version.

return Ob ject;

Returns the object.

RATIONAL 7/1/er SMU-257

subtype Session_Id
package Tools.System_Utilities

subtype Session_Id

subtype Session_ld is Machine.Session_Id;

Description
Defines a representation for a user’s session.
Objects of the Session.-Id subtype are created to represent sessions in the Environ-

ment. Sessions are created when a user logs into the system, and they are permanent
objects in the user’s home library unless they are explicitly deleted or destroyed.

SMU-258 7/1/87 BA\-”ONAL

type Session_Iterator
package !Tools.System_Utilities

type Session_Iterator

type Session_lterator 1s private;

Description

Defines a type that allows iterating over all sessions currently active in the Envi-
ronment.

Objects of the Session_Iterator type contain all of the information necessary to step
over all of the sessions. The type is used with the Init and Next procedures and the
Value and Done functions.

RA\TIONAL 7/1/87 SMU-259

function Session_Name
package !Tools.System_ Utilities

function Session_Name

function Session_Name
{For_Session : Session_ld := System_Utilities.Get_Session) return String;

Description
Returns the name of the specified session.

This function returns a string that contains the simple name of the specified session.
By default, the function returns the name of the current session.

Parameters

For_Session : Session_Id := System_Utilities.Get_Session;

Specifies the session for which the name is desired. The default is the name of the
current session.

return String;
Returns the name of the session.

SMU-260 7/1/87 RATIONAL

procedure Set_Page_Limit
package !Tools.System. Utilities

procedure Set_Page_Limit

procedure Set_Page_Limit (Max_Pages : Natural; o
For_Job : Job_Id := System_Utilities.Get_Job};

Description

Sets the upper limit for the virtual memory pages created by the specified job (each
page is 1,024 bytes).

If a job attempts to create additional pages beyond the maximum page limit, the
Storage_Error exception will be raised. This exception may not be raised immedi-
ately, but in the worst case the job will not be able to create more than twice the
maximum page limit before getting a storage error.

When a job begins, it is assigned a default page limit. By default, a job is al-
lowed to create 8,000 pages. This default is determined by the value of the De-
fault_Job_Page_Limit session switch. See SIM, Session Switches, for more informa-
tion on session switches.

When a job elaborates Ada units, this limit may be increased if these units specify
larger page limits through the Page_Limit pragma or the Page_Limit library switch.
See LM, package Switches, for more information on library switches. The job can
change the limit at any time by calling procedure Set_Page_Limit.

The current page counts for a job can be determined by using the Get_Page_Counts
procedure.

Operator capability is required to set the page limit for jobs of users different from
the caller.

Note that the limit does not apply to the pages of files that the job is accessing; it
applies only to data and stack space used by a job.

Parameters

Max_Pages : Natural;

Specifies the maximum number of pages that can be created by the job. In some
cases, the job can create up fo twice the maximum page limit before getting a
storage error.

RATIONAL 7/1/81 SMU-261

procedure Set_Page_Limit
package !Tools.System_Utilities

For_Job : Job_Ild := System_Utilities.Get_Job;

Specifies the job for which to set the page limit. By default, the limit will be set
for the job of the caller.

Errors

If a job attempts to create additional pages beyond the maximum page limit, the
Storage_Error exception will be raised. This exception may not be raised immedi-
ately, but in the worst case the job will not be able to create more than twice the
maximum page limit before getting a storage error.

References

procedure Get_Page._Counts

SMU-262 e RATIONAL

function Stop_Bits
package {Tools.System. . Utilities

function Stop_Bits

function Stop_Bits (Line : Port := System_Utilities.Terminal)
return Stop_Bits_Range;

Description
Returns the number of stop bits being used on the specified line.

The Stop_Bits_Range value can be changed by using the Terminal.Set_Stop_Bits
procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the number of stop bits is desired. The default returns
the stop bit range for the line attached to the current session.

return Stop_Bits_Range;
Returns the number of stop bits.

References

procedure Terminal.Set_Stop_Bits

RATIONAL 7/1/87 SMU-263

subtype Stop_Bits_Range
package !Tools.System_Utilities

subtype Stop—_Bits_Range

subtype Stop_Bits_Range is Integer range 1 .. 2;

Description
Defines the allowed values for the number of stop bits.

The stop bits are part of the electrical protocol for communicating with a terminal.
The required number of stop bits is usually determined by the terminal.

SMU-264 e RATIONAL

function System_Boot_Configuration
package !Tools.System_Utilities

function System_Boot_Configuration

function System_Boot_Configuration return String;

Description

Returns the name of the Environment software configuration that the system is
running.

This is the same name that is printed in the Message window when users log into
the Environment.

Parameters

return String;

Returns the name of the software configuration.

RATIONAL 7/1/er SMU-265

function System _Up_Time
package !Tools.System_Utilities

function System_Up_Time

function System_Up_Time return Calendar.Time;

Description

Returns the time when the system was last booted.

Parameters

return Calendar.Time;

Returns the time when the system was last booted.

SMU-266

s RATIONAL

subtype Tape
package !Tools.System_Utilities

subtype Tape

subtype Tape is Natural range 0 .. 4;

Description

Defines the possible tape drives for the system.

RATIONAL 7/1/87 SMU-267

function Tape_Name
package 1Tools.System_Utilities

function Tape_Name

function Tape_Name (Drive : Tape := @) return String;

Description

Returns the pathname of the tape object in the library system associated with the
specified drive.

Parameters

Drive : Tape := D;
Specifies the tape drive for which the pathname is desired.

return String;
Returns the pathname of the tape object associated with the specified tape drive.

SMU-268 7/1/87 RATIONAL

‘tunction Terminal
package !Tools.System.. Utilities

function Terminal

"

System_Utilities.Get_Session)

function Terminal (For_Session : Session_Ild :
return Port;

function Terminal (For_Session : Session_ld := System_Utilities.Get_Session)
return Version;

System_Utilities.Get_Session)

function Terminal (For_Session : Session_ld :
return Ob ject;

Description

Returns the port number, the version of the port, or the port object to which the
specified session is connected.

By default, the function returns the value for the current session.

Each terminal is connected to a specific port on the system. For each port thereis a
Terminal object in the !Machine.Devices library with the name Terminal_n, where
n is the port number of the device.

Ports in the range 16..80 identify physical RS232 ports. Consecutive numbers identify
adjacent RS232 connectors on the RS232 distribution panel. Port 16 is the upper-
left port. Numbers in the range 240..255 identify Telnet connections that do not
correspond to physical ports. Incoming Telnet connections are assigned numbers in
a rotary fashion. Note that the existence of these ports is determined by the number
of RS232 lines installed on the Rational system and by the presence or absence of
the Rational Networking—TCP/IP product.

Port numbers are used in a number of Environment commands—for example,
Flow_Control, Operator.Enable_Terminal, Operator.Force_Logoff, and so on. Port
numbers are shown for logged in users in the table produced by the What.Users
(sIM) command and others. Ports can be opened for I/0 by opening objects named
!Machine.Devices.Terminal_n, where n is a port number.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;

Specifies the session for which the port number, version, or object is desired. The
default returns the value for the current session.

return Port;

Returns the port number.

RAT'ONAL 7/1/87 SMU-269

function Terminal
package !Tools.System_Utilities

return Version;
Returns the version of the port.

return Ob ject;
Returns the port object.

SMU-270 7/1/87 RATIONAL

type Terminal _Iterator
package 1Tools.System_Utilities

type Terminal_Iterator

type Terminal_iterator 1is private;

Description

Defines a type that allows iterating over all terminals currently connected to the
system.

Objects of the Terminal_Iterator type contain all of the information necessary to
step over all of the terminals. The type is used with the Init and Next procedures
and the Value and Done functions.

RATIONAL 7/1/er SMU-271

function Terminal_Name
package !Tools.System_ Utilities

function Terminal_Name

function Terminal_Name (Line : Port := System_Utilities.Terminal)
return String;

Description

Returns the full directory name of the terminal object for the specified line.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the terminal name is desired. The default returns the
terminal name for the current session’s terminal.

return String;
Returns the full directory name of the terminal object.

SMU-272 7/1/87 QATIONAL

function Terminal Type
package !Tools.System_Utilities

function Terminal _Type

function Terminal_Type (Lime : Port := System_Utilities.Terminal)
return String;

Description
Returns the type of terminal attached to the specified line.

This function returns a string that contains the name of the terminal type that is
attached to a specified terminal line. By default, the function returns the type
of the terminal attached to the current session. Supported terminal types in-
clude Rational, VT100, and Facit. This value can be changed by using the Ter-
minal.Set_Terminal_Type procedure.

Parameters

Limne : Port := System_ Utilities.Terminal;

Specifies the line for which the terminal type is desired. The default returns the
terminal type for the current session’s terminal.

return String;
Returns the terminal type. Currently allowed values are Rational, VT100, and Facit.

References

procedure Terminal.Set_Terminal_Type

RATIONAL 7/1/er SMU-273

function User
‘package !Tools.System. Utilities

function User

function User (For_Session : Session_ld := System_Utilities.Get_Session)
return Version;

System_Utilities.Get_Session)

function User (For_Session : Session_ld
return Object;

Description
Returns the version or object that represents the user for the specified session.

By default, the function returns the user for the current session.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;

Specifies the session for which the user is desired. The default returns the user for
the current session.

return Version;

Returns the version.

return Object;
Returns the object.

SMU-274 7/1/87 RAT'ONAL

function User_Name
package !Tools.System_ Utilities

function User_Name

function User_Name
{For_Session : Session_Ild := System_Utilities.Get_Session} return String;

Description
Returns the name of the user who created the specified session.
This function returns a string that contains the simple name of the user who created

the specified session. By default, the function returns the username for the current
gession.

Parameters

For_Session : Session_Ild := System_Utilities.Get_Session;

Specifies the session for which the username is desired. The default returns the
username for the current session.

return String;
Returns the username.

RATIONAL 71/er SMU-275

function Value
package !Tools.System_Utilities

function Value

function Value (lter : Job_lterator) return Job_ld;

Description
Returns the job identifier for the job pointed to by the iterator.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. Specifically, the Value function yields only jobs
that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

Iter : Job_lterator;
Specifies the iteration for which the job identifier is desired.

return Job_ld;
Returns the job identifier.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done (Job_lterator)} loop

. Value (Job_lterator)

Next (Job_lterator);
end loop;

SMU-276 e RATIONAL

function Value
package 1Tools.System. Utilities

function Value

function Value {lter : Session_lterator} return Session_ld;

Description

Returns the session identifier for the session pointed to by the iterator.

Parameters

Iter : Session_lterator;
Specifies the iteration for which the session identifier is desired.

return Session_ld;

Returns the session identifier.

Example

This example demonstrates use of the iteration capability:

Intt (Session_lterator);
while not Done (Session_lterator) loop

.. Value {Session_lterator)

Next (Session_lterator);
end loop;

RATIONAL 7/1/er SMU-277

function Value
package !Tools.System._ Utilities

function Value

function Value (lter : Terminal_lterator) return Natural;

Description

Returns the number of the terminal for the terminal pointed to by the iterator.

Parameters

lter : Terminal_lterator;
Specifies the iteration for which the terminal number is desired.

return Natural;
Returns the terminal number.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

.. Value (Terminal_lterator)

Next {(Terminal _lterator);
end loop;

SMU-278 e RATIONAL

subtype Version
package !Tools.System_Utilities

subtype Version

subtype Version 1s Directory.Version;

Description
Defines a representation for a version of an object.
All entities in the Environment are managed by the Environment as a value of this

subtype. Each user, job, session, terminal, Ada unit, file, and the like is maintained
in the Environment in this way.

QAT'ONAL 7/1/87 SMU-279

function Xon_Xoff_Bytes
package !Tools.System._Utilities

function Xon_Xoff_Bytes

function Xon_Xoff_Bytes (Line : Port := System_Utilities.Terminal)
return Byte_String;

Description

Returns the two-character byte string that contains the Xon and Xoff characters
for the transmit side of the specified line.

This function returns a byte string with two characters in it. The Xon character,
the first byte, enables transmitting. The Xoff character, the second byte, disables
transmitting. These characters are used in the absence of hardware flow control in
the terminals, and they vary with different terminal types. The characters can be
changed by using the Terminal.Set_Xon_Xoff-Bytes procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return Byte_String;
Returns the two characters.

References

procedure Terminal.Set_Xon_Xoff_Bytes

SMU-280 7/1/87 '?AT'ONAL

function Xon_Xoff _Characters
package !Tools.System_. Utilities

function Xon_Xoff_Characters

function Xon_Xoff_Characters (Line : Port := System_Utilities.Terminal)
return String;

Description

Returns the two-character string that contains the Xon and Xoff characters for the
transmit side of the specified line.

This function returns a string with two characters in it. Xon, the first character,
enables transmitting. Xoff, the second character, disables transmitting. These
characters are used in the absence of hardware flow control in the terminals, and
they vary with different terminal types. The characters can be changed by using
the Terminal.Set_Xon_Xoff_Characters procedure.

Parameters

Line : Port := System_Utilities.Terminal;

Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return String;
Returns the two characters.

References

procedure Terminal.Set_Xon_Xoff_.Characters

end System_Utilities;

RATIONAL 7/ SMU-281

RATIONAL

package Tape

Package Tape defines procedures for tape input and output.

The Read procedure reads tapes written in standard ANSI format. Command pa-
rameters allow the option of specifying R1000® and DEC™ vAX™/VMS™ format-
ted tapes. The Write procedure writes tapes in standard ANSI format. Currently,
tapes can be formatted for either the R1000 or VAX/VMS. The Write procedure
uses the Format parameter to specify tape format. The Format parameter requires
the same syntax as the Options parameter. For further information on specifying
options, see the Key Concepts.

Files can be formatted on the R1000 for transfer to DEC VAX/VMS systems. The
Environment maps R1000 object names to legal VAX/VMS filenames, and it includes
a file called INDEX that lists the object names with their corresponding VAX/VMS
names.

Files, including Ada program units, that are read into the R1000 are treated as

text files. Ada source files from foreign hosts can be parsed and restored to the
Environment as Ada units using the !Commands.Compilation.Parse procedure.

RATIONAL 7/1/er SMU-283

procedure Display_Tape
package !Commands.Tape

procedure Display_Tape

procedure Display_Tape (Drive : Natural := @;
Marks_To_Skip : Integer := 9;
Records_To_Skip : Integer := @,
Blocks_To_Display : Natural := 18);

Description
Produces a hexadecimal display of the contents of the specified portion of the tape.

The procedure displays in the current output window the specified portion of the
tape. The procedure can specify what area, relative to the tape’s current position,
to display. Marks and records can be specified either forward from the current
position (positive parameter values) or backward from the current position (negative
parameter values).

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational R1000 Development System: System Man-
ager’s Guide.

Parameters

Drive : Natural := 0;

Specifies the tape drive whose tape is to be displayed. The default is drive 0.

Marks_To_Skip : Integer := @;

Specifies the number of tape marks to skip. Negative values move the tape backward
and positive values move the tape forward. The default is to skip no marks.

Records_To_Skip : Integer := 0;
Specifies the number of tape records to skip. Negative values move the tape back-

ward and positive values move the tape forward. The default is to skip no records.

Blocks_To_Display : Natural := 10;
Specifies the number of tape blocks to display. The default is 10 blocks.

SMU-284 e RATIONAL

procedure Display_Tape
package !Commands.Tape

Restrictions

The Environment supports a maximum tape block size of 4 Kb.

RAT'ONAL 7/1/87 SMU-285

exception Error
package !Commands.Tape

exception Error

Error : exception;

Description

Defines an exception that is raised by several procedures in this package when errors

occur.

SMU-286

s RATIONAL

procedure Examine_Labels
package !Commands.Tape

procedure Examine_Labels

procedure Examine_Labels (Vol_ld : Strang = "7,
Vol_Set_Name : String ="";
To_Operator : String := "Thank You";
Volume_Labels_Only : Boolean := True);

Description
Displays the labels on the specified tape volume.

The labels on the tape are displayed in the current output window. The tape must
be an ANSI-formatted tape.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Ratsonal R1000 Development System: System Man-
ager’s Guide.

Parameters

Vol_Id : String := "";

Specifies the volume identifier of the tape to be examined. The default is no iden-
tifier specified.

Vol _Set_Name : String := ;

Specifies the name of the volume set to be examined. The default is no name
gpecified.

To_Operator : String := "Thank You";

Specifies a message to be displayed at the operations console along with the mount
request.

Volume_Labels_Only : Boolean := True;

Specifies whether to examine only the label of the volume or all labels on the tape.
The default is the volume label only.

RATIONAL /e SMU-287

procedure Format_Tape
package !Commands.Tape

procedure Format_Tape

procedure Format_Tape (Drive : Natural;
Vol_Id : String = "),

Description

Formats the tape on the specified drive with the specified volume identifier.

The procedure builds an empty ANSI tape. The tape is written with the specified
volume identifier.

Parameters

Drive : Natural;
Specifies the drive whose tape should be formatted.

Vol_Id : String := "";
Specifies the volume identifier to write on the tape. The identifier must be no more
than a six-character string. The default is no identifier specified.

SMU-288 7/1/87 BAT'ONAL

procedure Read
package 'Commands.Tape

procedure Read

procedure Read (Volume : String = ;
Directory : String = "&";
Format : String = "R1000";
To_Operator : String = "Thank You";
Add_New_Line : Boolean := True;
Response : String = "<PROFILE>"};

Description
Reads the tape and copies its contents into the specified library.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Ratsonal R1000 Development System: System Man-

ager’s Guide.

Parameters

Volume : String := "";
Specifies a standard ANSI volume identification: a six-character string. The default
is the null string.

Directory : String := "$";
Specifies the Environment directory destination for the files being read. The default
is the enclosing library.

Format : String := "R1000";

Specifies whether the tape was formatted for an R1000 (the default) or DEC VAX/VMS.
VAX/VMS filenames are converted by changing the dot preceding the extension to
an underscore. To specify files in VAX/VMS format, use the value VAX/VMS for the
Format parameter.

To_Operator : String := "Thank You";
Specifies a message to be displayed to the operator after the tape has been loaded.

Add_New_Line : Boolean := True;

Specifies whether to add a new line character after each record read from the tape.
The default is to add a new line character.

RATIONAL 71/sr SMU-289

procedure Read
package !Commands.Tape

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions
Currently, this procedure reads only text files.

To move binary files between R10008 using tape, use the !Commands.Archive.Save
and Archive.Restore procedures.

Example

The command:

tape.read (Volume => "@70581", Directory => "l!users.thales",
Format => "vax/vms"};

reads the tape with the specified ANSI volume label. The files on the tape are read
to the directory !Users.Thales. The VAX/VMS parameter instructs the Environment
that the tape was written as VAX/VMS-compatible ANSI tape.

References

LM, package Archive

SMU-290 7/1/87 BA\TIONAL

procedure Read_Mt
package !Commands.Tape

procedure Read_Mt

procedure Read_Mt (Drive : Natural := 0);

Description

This procedure is no longer supported by the Environment.

RATIONAL 7/1/87 SMU-291

procedure Rewind
package !Commands.Tape

procedure Rewind

procedure Rewind (Drive : Natural := 0);

Description

Rewinds the tape umnit and leave: it loaded at the beginning-of-tape marker and
on-line.

If the tape drive is not allocated to your session, the system will issue a mount
request.

Parameters

Drive : Natural := @;
Specifies the drive number. The default is drive 0.

SMU-292 e RATIONAL

procedure Unload
package !Commands.Tape

procedure Unload

procedure Unload (Drive : Natural := 0);

Description
Rewinds and unloads the tape unit, and then takes it off-line.

If the tape drive is not allocated to your session, the system will issue a mount
request. Unloading a tape rewinds it and removes it from the tape drive. You
would want to do this when you have aborted a job using a tape to unload the tape
8o someone else can use the tape drive.

Parameters

Drive : Natural := 0;
Specifies the drive number. The default is drive 0.

RATIONAL 1/1/er SMU-293

procedure Write
package !Commands.Tape

procedure Write

procedure Write (Files : String = "$@";
Volume : String = "7,
Format : String = "R1202";
To_Operator : String := "Thank You";
Text_Files : Boolean := True;
Response : String := "<PROFILE>");
Description

Copies the specified objects onto a tape as files.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational R1000 Development System: System Man-
ager’s Guide.

Parameters

Files : String := "%@";
Specifies the objects to write onto tape. The default, $e, is to write all objects in
the enclosing library. Note that only text files and Ada units will be written.

Volume : String := "";

Specifies a standard ANSI volume identification: a six-character string. If the user
does not provide a volume identifier, the Environment generates one.

SMU-294 7/1/87 QATIONAL

procedure Write
package !Commands.Tape

Format : String := "R1000";

Allows the user to specify tape format information. The Format parameter requires
the same syntax as the Options parameter. See the Key Concepts for further
information. The following is a list of Format options:

Block_Length

Specifies the block length for the tape. The default is 2,048 bytes. See the
Format literal for restrictions.

Format literal
Specifies the record format for the tape. The default is variable-length records.

Fixed_Length Use the “Format=Fixed_Length” option to write tapes with
fixed-length records. The length of the records is specified in
the Record_Length option. The Record_Length value must
be less than or equal to the block length.

Variable_Length Use the “Format=Variable_Length” option to write tapes
with variable-length records. The maximum record length is
specified in the Record_Length option. The Record_Length
value must be less than or equal to the block length.

Spanned Use the “Format=Spanned” option to write data with inter-
record gaps. This enables the user to write records that are
greater than the block length. The maximum record size is
specified by the Record_Length option.

Label=string

Allows the user to label the user’s own tapes, where string is the tape label.
The default is to write no label.

Record_Length

Specifies the record length for the tape. The default is 512 bytes. See the
Format literal for restrictions.

Target literal

Specifies whether to format the tape for an R1000 (the default), VAX/VMS, or
MV,

R1000 Use the “Target=R1000” option to format the tape for an R1000
system.

MV Use the “Target=MV” option to format tapes for an MV.

VAX/VMS Use the “Target=VAX/VMS” option to format tapes for a VAX/-

VMS system. When tapes are formatted for VAX/VMS, R1000
filenames are changed to legal VAX/VMS filenames. The En-
vironment includes a file on the tape called INDEX that maps
R1000 filenames to the new, legal VAX/VMS filenames.

RATIONAL 7/1/er SMU-295

procedure Write
package !Commands.Tape

To_Operator : String := "Thank You";

Specifies a message to be displayed at the operations console when the tape mount
request is made.

Text _Files : Boolean := True;

Specifies whether the record length is determined by the line length. If true (the
default), the end-of-line mark in the file determines the logical record length.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

This procedure writes only text files and Ada units. Others are skipped, and a
warning is generated in the log file.

To move binary files between R1000s using tape, use the !Commands.Archive.Save
and Archive.Restore procedures.

SMU-296 7/1/87 RAT'ONAL

procedure Write
package !Commands.Tape

Example

Given the following library:

iUsers.Thales.The_Library
Works : Ada (Pack_Spec);
Works : Ada ({Pack_Body};
.Get_String : (Func_Body};
.Part_1 : {Proc_Body);

the following command:

tape.write ("l!users.thales.the_library.e"};

writes onto tape all the objects contained in Thales. The_Library. In addition, be-
cause the default true is used for the Recursive parameter, all dependcnt Ada units
(in this example, everything in package Worksy are included. Each unit included
on the tape is written as a separate file. Because all of the default options for the
Format parameter are used, the tape written is an R1000 tape with no label, using
variable-length records. The maximum record length is 512 bytes and the maximum
block length is 2,048 bytes.

References

LM, package Archive

?AT'ONAL 7/1/87 SMU-297

procedure Write_M#
package !Commands.Tape

procedure Write_Mt

procedure Urite Mt (File : String = "<SELECTION>",
Indirect : Boolean := True;
Drive : Natural := 0);
Description

This procedure is no longer supported by the Environment.

end Tape;

SMU-298

e RATIONAL

package Terminal

The procedures in package Terminal are used for configuring an asynchronous port
or Telnet port to match the requirements and characteristics of a terminal device
(such as a printer or terminal) or a modem.

The terminal types currently supported include Rational, vT100, and Facit.

Many procedures act on the Line parameter, which defaults to the current line—
that is, the port to which your terminal is connected. In the following material, the
terms port and line are used interchangeably.

Execution of many of the operations in this package requires operator capability.
This is noted in the reference entry if the requirement applies.

VT100 Terminal Support

The Rational Environment supports the use of user-defined terminal names. A
terminal name represents four characteristics of the terminal device, as described
below:

e Input type: Specifies the name that defines the terminal type—for example,
PCAT (that is, IBM PC/AT). The input type can have its own terminal_Keys
and/or terminal_ Commands procedures, where terminal specifies the terminal
name. If the input type does not have these procedures specified for it, the
procedures corresponding to the output type described below are used. Note
that terminal Macros and terminal Init are not inherited from the output type.

e Output type: Specifies the driver to be used for producing output. Currently,
this can be Rational, VT100 or Facit.

¢ Lines: Specifies the number of lines that the input type supports.
o Columns: Specifies the number of columns that the input type supports.

These characteristics are defined in file !Machine.Editor_Data.Terminal_Types. Each
line in the file represents a terminal type, as shown below:

RA\-HONAL 7/1/87 SMU-299

package !Commands.Terminal

sinput [output] [lines [columns]]

If “output” is omitted when a terminal type is defined, %nput® must correspond
to Rational, VT100, or Facit. This feature can be used to redefine a terminal type
for your installation or in the terminal login interaction. If “lines” or “olumns” is
omitted, the default value for the input type is used. Input type and output type
are limited to 20 characters, and they must be separated by spaces. A sample entry
in the file is:

PCAT VT100 72 120

The !Machine.Editor—_Data.Terminal_Types file is read at system boot. Thus, at
login, the user can specify a terminal type as shown below:

enter terminal type (vtl@0): pcat 24 80

Creating Your Own Terminal Type

If you are creating your own terminal type and your own termsnal_Keys and ter-
minal_Commands procedures, you must use the same names in termtnal_Keys as
those specified in termsnal_Commands. Normally, this is done using the conventions
in Machine.Editor_Data.Visible_Key_.Names. The only requirement in any event
is that the terminal_Commands procedure have the proper name and be installed.
Mapping between actual keystrokes and logical keys is done by string match.

When a terminal line is enabled, the Environment attempts to determine which
type of terminal is attached to each port by requesting terminal identification us-
ing the ANSI standard sequence. The Environment currently uses this informa-
tion to distinguish between Rational, VT100, and Facit terminal types. Note that
the VT100 and Facit terminal types respond identically, 8o special code was imple-
mented to distinguish between the two types. For your own new terminal types,
it is possible to provide recognition sequences by making entries in the file !Ma-
chine.Editor_Data.Terminal-Recognition. An entry in this file consists of:

terminal recognition
The terminal name must be a valid simple Ada name.
For example, for the VT100 terminal, the entry might be:
vtieg s$[?1; C
where $ represents Ascii.Esc.

The space after the semicolon in the entry above will match any character. The
maximum length of the recognition sequence is 14 characters. Definitions appearing
later in the file override earlier ones, 8o a user specifying a new terminal with the
same sequence as the one above would cause the new one to be recognized. This
would also mask automatic recognition of Facit terminals.

When you log in, the Rational Environment will interrogate the terminal and will
receive a terminal recognition sequence. It will attempt to match that sequence

SMU-300 7/1/87 RATIONAL

package !Commands.Terminal

with those stored in 'Machine.Editor_Data.Terminal_Recognition. The last entry
matched, if any, determines the terminal name, which provides the terminal name
to termsnal_Keys and termsnal_Commands.

RATIONAL 71er SMU-301

subtype Character_Bits_Range
package !Commands.Terminal

subtype Character_Bits—Range

subtype Character_Bits_Range is System_Utilities.Character_Bits_Range;

Description
Specifies the number of bits per character.

The range is 5 through 8.

SMU-302 7/1/87 RATIONAL

renamed function Current
package !Commands.Terminal

renamed function Current

function Current (5 : Machire.Session_ld := Default.Session) return Port
renames System_Utilities.Terminal;

Description

Returns the port number of the specified session.

Parameters

S : Machine.Session_ld := Default.Session;

Specifies the session in question. The S parameter defaults to the current session
(the session in which the function is executed).

RATIONAL 71/er SMU-303

subtype Parity_Kind
package !Commands.Terminal

subtype Parity_Kind

subtype Parity_Kind i1s System_Utilities.Parity_Kind;

Description

Specifies none, even, or odd parity.

SMU-304 7/1/87 IQATIONAL

subtype Port
package !Commands.Terminal

subtype Port

subtype Port is Natural range @ .. 4 * 16 * 16;

Description

Specifies the range of port numbers.

RATIONAL 7y SMU-305

procedure Set_Character_Size
package !Commands.Terminal

procedure Set_Character—_Size

procedure Set_Character_Size
(Line : Port
To_Be : Character_Bits_Range

Terminal .Current;
System_Utilities.Character_Size);

Description
Specifies the number of data bits per character.
This setting affects both transmitted and received data.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Lirnre : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : Character Bits_Range := System_Utilities.Character_Size;
Specifies the new character size.

References
procedure Set_Parity
procedure Set_Stop-Bits

function System_Utilities.Character_Size

SMU-306 17/1/87 RAT'ONAL

procedure Set_Detach_On_Disconnect
package !Commands.Terminal

procedure Set_Detach—_On_Disconnect

procedure Set_Detach_On_Disconnect
(Line : Port := Terminal .Current;
Enabled : Boolean := System_Utilities.Detach_On_Disconnect);

Description

This procedure is not currently supported.

RATIONAL 710 SMU-307

procedure Set_Disconnect_On_Disconnect
package !Commands.Terminal

procedure Set_Disconnect_On_Disconnect

procedure Set_Disconnect_On_Disconnect

{Line : Port := Terminal .Current;
Enabled : Boolean := System_Utilities.Disconnect_On_Disconnect});
Description

Enables or disables the Disconnect_On_Disconnect option for a particular port.

By default, this option is disabled on new systems, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk

is lost.

If this option is enabled for a port, the R1000 responds to an incoming disconnect
signal received on the port by initiating an outgoing disconnect signal on that port.

For an asynchronous port, an incoming disconnect signal occurs when the R1000
senses the Data Carrier Detect (DCD) turn from ON to OFF. An outgoing disconnect
signal occurs when the R1000 toggles Data Terminal Ready (DTR) from ON to OFF
for 3 seconds and then back to ON again.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled : Boolean := System_Utilities.Disconnect_On_Disconnect;
Specifies the new setting of this option. The default is the current setting.

References

function System_Utilities.Disconnect_On_Disconnect

SMU-308 e RATIONAL

procedure Set_Disconnect_On_Failed_Login
package !Commands. Terminal

procedure Set_Disconnect—On-Failed_Login

procedure Set_Disconnect_On_Failed_lLogin

(Line : Port := Terminal .Current;
Enabled : Boolean := System_Utilities.Disconnect_On_Failed_login};
Description

Enables or disables the Disconnect_On_Failed_Login option for a particular port.

By default, this option is disabled on a new system, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk

is lost.

If this option is enabled for a port, the R1000 initiates an outgoing disconnect signal
on the port when a user repeatedly fails to log in on that port—for example, by
entering an incorrect password or unrecognized username.

For an asynchronous port,.an outgoing disconnect signal occurs when the R1000
toggles Data Terminal Ready (DTR) from ON to OFF for 3 seconds and then back
to ON again.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

Enabled : Boolean := System_Utilities.Disconnect_On_Failed_login;

Specifies the new setting of this option. The default is the current setting.

References

function System_Utilities.Disconnect_On_Failed_Login

RATIONAL 7/1/s7 SMU-309

procedure Set_Disconnect_On_Logoff
package !Commands.Terminal

procedure Set_Disconnect_On_Logoff

procedure Set_Disconnect_On_Logoff
{Line : Port
Enabled : Boolean :

Terminal .Current;
System_Utilities.Disconnect_On_Logoff);

Description
Enables or disables the Disconnect_.On_Logoff option for a particular port.

By default, this option is disabled on a new system, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk

is lost.

If this option is enabled for a port, the R1000 initiates an outgoing disconnect on
the port whenever a user logs off a session running on the port.

For an asynchronous port, an outgoing disconnect signal occurs when the R1000
toggles Data Terminal Ready (DTR) from ON to OFF for 3 seconds and then back
to ON again.

“Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal .Current;
Specifies the line to be affected. The default is the current line.

Enabled : Boolean := System_Utilities.Disconnect_On_Logoff;
Specifies the new setting of this option. The default is the current setting.

References

function System._Utilities.Disconnect_On_Logoff

SMU-310 7/1/87 BATIONAL

procedure Set_Flow._Control
package !Commands.Terminal

procedure Set_Flow_Control

procedure Set_Flow_Control
{Line : Port := Terminal .Current;
To_Be : String := System_Utilities.Flow_Control);

Description

Enables software flow control for data transmitted by the R1000 on the specified
line.

A device such as a terminal or a printer attached to an R1000 port can control the
flow of data transmitted to it from the R1000 in two ways:

¢ Hardware flow control: The flow of data is stopped when the device turns off the
Clear To Send (CTS) modem control signal. The flow is restarted when the CTS
signal is turned on.

o Software flow control: The flow of data is stopped when the device sends the Xoff
byte or character. The flow is restarted when the Xon byte or character is sent.

This procedure enables or disables only software flow control. Hardware flow con-
trol is enabled or disabled by a hardware configuration switch in the R1000 port
controller. There is no software interface to enable or disable hardware flow con-
trol.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal .Current;

Specifies the line to be affected. The default is the current line.

To_ Be : String := System_Utilities.Flow_Control;
Specifies whether to set software flow control on or off.

References
procedure Set_Xon_Xoff_Bytes

function System._Utilities.Flow_Control

[QAT‘ONAL 7/1/87 SMU-311

procedure Set_Input_Rate
package !Commands.Terminal

procedure Set_Input_Rate

Terminal .Current;

procedure Set_lnput_Rate (Line : Port
System_Utilities. Input_Rate);

To_Be : String

Description
Sets the data rate for data received by the R1000 on the specified line.

Valid incoming data rates include:

DISABLE BAUD_S@ BAUD_T75S BAUD_110
BAUD_134_5 BAUD_152 BAUD_200 BAUD_300
BAUD_6029@ BAUD_1209 BAUD_1829 BAUD_24290
BAUD_4809 BAUD_S629 BAUD_13200 EXT_REC_CLK

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : String := Sustem_Utilities.!nput_Rate;
Specifies the new input rate.

References
procedure Set_Output_Rate
function System_Utilities.Input_Rate

SMU-312 7/1/87 EATIONAL

procedure Set_Log_Failed_Logins
package !Commands.Terminal

procedure Set_Log_Failed_Logins

procedure Set_Log_Failed_Logins
{(Line : Port
Enabled : Boolean :

Terminal .Current;
System _Utilities.Log_Failed_Logins};

Description
Enables or disables the Log—_Failed_Logins option for a particular port.

If this option is enabled for a port, the R1000 writes an entry to the system error
log when a user repeatedly fails to log in on that port.

By default, this option is disabled.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

Enabled : Boolean := System_Utilities.log_Failed_logins;
Specifies the new setting of this option. The default is the current setting.

References

function System_Utilities.Log_Failed_Logins

RATIONAL 7/1/er SMU-313

procedure Set_Login_Disabled
package !Commands.Terminal

procedure Set_Login_Disabled

procedure Set_Login_Disabled
(Line : Port := Terminal .Current;
Disabled : Boolean := System_Utilities.lLogin_Dissbled);

Description
Enables or disables the Login_Disabled option for a particular port.
By default, this option is disabled—that is, the port can be enabled for login.

If this option is enabled for a port, the port cannot be enabled for login, even if the
Operator.Enable_Terminal procedure is used.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Disabled : Boolean := System_Utilities.Login_Disabled;
Specifies the new setting of this option. The default is the current setting.

References

function System_Utilities.Login_Disabled

SMU-314 7/1/87 E)ATIONAL

procedure Set_Logoff_On_Disconnect
package !Commands.Terminal

procedure Set_Logoff_On_Disconnect

procedure Set_Logoff_On_Disconnect
{Line : Port
Enabled : Boolean :

Terminal .Current;
System_Utilities.Logoff_On_Disconnect);

Description

Enables or disables the Logoff_On_Disconnect option for a particular port.

By default, this option is disabled on new systems, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk
is lost.

This option is not currently supported. In the future, if this option is enabled for
a port, the R1000 will respond to a disconnect received on that port by logging off
the session running on the port.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal .Current;

Specifies the line to be affected. The default is the current line.

Enabled : Boolean := System_Utilities.lLogoff_On_Disconnect;
Specifies the new setting of this option. The default is the current setting.

References

function System_ Utilities.Logoff_On_Disconnect

PAT'ONAL 7/1/87 SMU-315

procedure Sct_Output_Rate
package !Commands.Terminal

procedure Set_Output_Rate

procedure Set_Output_Rate (Line : Port := Terminal .Current;
To_Be : String := System_Utilities.Output_Rate);

Description
Sets the data rate for data transmitted by the R1000 on the specified line.

Valid incoming data rates include:

DISABLE BAUD_50 BAUD_75 BAUD_110
BAUD_134_5 BAUD_152 BAUD_202 BAUD_300
BAUD_6@9 BAUD_1200 BAUD_1820 BAUD_2420

BAUD_4800 BAUD_S6@29 BAUD_19208 EXT_REC_CLK

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : String := System_Utilities.Output_Rate;
Specifies the new output rate.

References
procedure Set_Input_Rate
function System_Utilities.Output._Rate

SMU-316 7/1/87 BA\TIONAL

procedure Set_Parity
package !Commands.Terminal

procedure Set_Parity

Terminal .Current;

procedure Set_Parity (Line : Port
System_Utilities.Parity);

To_Be : Parity_Kind :

Description
Sets the parity to none, even, or odd.
This setting affects both transmitted and received data.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be : Parity_Kind := System_Utilities.Parity;
Specifies the new parity setting.

References

procedure Set_Character_Size
procedure Set_Stop-Bits
function System_Utilities.Parity

EATIONAL 17/1/87 SMU-317

procedure Set_Receive_Flow_Control
package !Commands.Terminal

procedure Set_Receive_Flow_Control

procedure Set_Receive_Flow_Control
(Line : Port
To_Be : String :

Terminal .Current;
System_Utilities.Receive_Flow_Control);

Description
Enables or disables flow control of data received by the R1000.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware flow control (CTS receiving, RTS or DTR transmitting)
and some devices support software flow control (via XON and XOFF transmissions).
Note that hardware flow control via RTS or DTR is not supported for transmission
to devices. CTS hardware flow control is available only for transmission.

Four types of receive flow control are available:

¢ NONE: Indicates that there is no software or hardware flow control for the line.

® XON_XOFF: Indicates that software flow control is enabled for the line. This value
indicates that the device should stop transmitting when it receives an XOFF from
the Rational system and can resume transmission when it receives an XON.

¢ RTS: Indicates that hardware flow control based on the RTS modem control signal
is enabled for the line. This value indicates that the device should stop trans-
mitting when the Rational system switches the RTS modem control signal to OFF
and can resume transmission when the signal is switched to ON.

¢ DTR: Indicates that hardware flow control based on the DTR modem control
gignal is enabled for the line. This value indicates that the device should stop
transmitting when the Rational system switches the DTR modem control signal
to OFF and can resume transmission when the signal is switched to ON.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : String := System_Utilities.Receive_Flow_Control;
Specifies that flow control is set to none, Xon-Xoff, RTS, or DTR on that line.

SMU-318 e RATIONAL

procedure Set_Receive_Flow_Control
package 'Commands.Terminal

References

procedure Set_Flow_Control

procedure Set_Receive_Xon_Xoff_Bytes
procedure Set_Receive_Xon_Xoff_Characters

function System_Utilities.Receive_Flow_Control

RATIONAL 7/sr SMU-319

procedure Set_Receive_Xon_Xoff_Bytes
package !Commands.Terminal

procedure Set_Receive_Xon_Xoff_Bytes

procedure Set_Receive_Xon_Xoff_Bytes
(Line : Port := Terminal .Current;
Xon_Xoff : System.Byte_String := System_Utilities.Receive_Xon_Xoff_Bytes);

Description

Specifies flow control bytes so that the R1000 can regulate the data it receives on
the specified line.

Using bytes instead of characters for flow control allows the complete character set
to be reserved for other uses.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Xon_Xoff : System.Byte_String := System_Utilities.Receive_Xon_Xoff_Bytes;

Specifies the new flow control bytes. This parameter takes a string consisting of the
Xon byte followed by the Xoff byte.

References
procedure Set_Receive_Flow_Control

function System. Utilities.Receive_Xon_Xoff..Bytes

SMU-320 7/1/87 RAT'ONAL

procedure Set_Receive_Xon_Xoff_Characters
package !Commands.Terminal

procedure Set_Receive_Xon_Xoff_Characters

procedure Set_Receive_Xon_Xoff_Characters
(Line : Port Terminal .Current;
Xon_Xoff : String System_Utilities.Receive_Xon_Xoff_Characters);

Description

Specifies the Xon and Xoff characters used to control the flow of data received by
the R1000.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

Xon_Xoff : String := System_Utilities.Receive_Xon_Xoff_Characters;

Specifies the new flow control characters. This parameter takes a string consisting
of the Xon character followed by the Xoff character.

References
procedure Set_Receive_Flow_Control

function System_Utilities.Receive_Xon_Xoff_Characters

RAT'ONAL 7/1/87 SMU-321

procedure Set_Stop-Bits
package !Commands.Terminal

procedure Set_Stop_Bits

procedure Set_Stop_Bits
(Line : Port := Terminal .Current;
To_Be : Stop_Bits_Range := System_Utilities.Stop_Bits);

Description
Sets the number of stop bits for the Line parameter.
The Stop—-Bits_Range is 1 through 2.

This setting affects transmitted data only. The R1000 can always receive data with
any number of stop bits.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : Stop_Bits_Range := System_Utilities.Stop_Bits;
Specifies the number of stop bits to be transmitted.

References

procedure Set_Character_Size
procedure Set_Parity

function System_Utilities.Stop_Bits

SMU-322 7/1/87 BA\TIONAL

procedure Set_Terminal _Type
package !Commands.Terminal

procedure Set_Terminal_Type

procedure Set_Terminal_Type
{Line : Port := Terminal .Current;
To_Be : String := System_Utilities.Terminal_Type};

Description
Specifies the terminal type.

Supported terminal types include:

¢ Rational
e VTI100
¢ Facit Twist Model 4440

This information is used by terminal-handling software (for example, the core edi-
tor) in generating terminal output data.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

To_Be : String := System_Utilities.Terminal_Type;

Specifies the new terminal type. This parameter is case-insensitive. The three
supported terminals are Rational, VT100, and Facit.

References

function System_Utilities.Terminal_Type

RATIONAL 7y/er SMU-323

procedure Set.Xon_Xoff_Bytes
package !Commands.Terminal

procedure Set_Xon_Xoff_Bytes

procedure Set_Xon_Xoff_Bytes
{Line : Port := Terminal .Current;
Xon_Xoff : System.Byte_String := System_Utilities.Xon_Xoff_Bytes);

Description
Specifies the flow control bytes that the R1000 recognizes on the specified line.

This procedure specifies the Xon and Xoff bytes used to control the flow of data
transmitted by the R1000.

Using bytes instead of characters for flow control allows the complete character set
to be reserved for other uses.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

Xon_Xoff : System.Byte_String := System_Utilities.Xon_Xoff_Bytes;

Specifies the new flow control bytes. This parameter takes a string consisting of the
Xon byte followed by the Xoff byte.

References

function System._Utilities.Xon_Xoff_Bytes

SMU-324 7/1/87 BA\T'ONAL

procedure Set_Xon_Xoff_Characters
package !Commands.Terminal

procedure Set_Xon_Xoff _Characters

procedure Set_Xon_Xoff_Characters
(Line : Port
Xon_Xoff : String :

Terminal .Current;
System_Utilities.Xon_Xoff_Characters});

Description

Specifies the flow control characters that the R1000 recognizes on the specified line.

This procedure specifies the Xon and Xoff characters used to control the flow of
data transmitted by the R1000.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line : Port := Terminal.Current;

Specifies the line to be affected. The default is the current line.

Xon_Xoff : String := System.Utilities.Xon_Xoff_Characters;

Specifies the new flow control characters. This parameter takes a string consisting
of the Xon character followed by the Xoff character. The default character for Xon
is ASCII DC1; the default character for Xoff is ASCII DC3.

References

function System-Utilities.Xon_Xoff_Characters

RATIONAL 7/1/sr SMU-325

procedure Settings
package !Commands.Terminal

procedure Settings

procedure Settings (Line : Port := Terminal.Current);

Description
Displays a summary of the current settings for the Line parameter.

By default, this procedure returns the settings for the current terminal.

Parameters

Linre : Port := Terminal.Current;
Specifies the terminal number.

Example
The command:
terminal .settings ({18);

displays information such as the following:

Terminal Settings for Port 18

Terminal Type = RAT IONAL
input Baud Rate = EXT_REC_CLK
Output Baud Rate = EXT_REC_CLK
Parity = NONE
Stop_Bits = 1
Char_Size = CHAR_8
Flow Control For Transmit Data = NONE

Flow Control For Receive Data = NONE
Disconnect _On_Disconnect = FALSE
Disconnect_On_Logoff = FALSE
Disconnect_On_Failed_Login = FALSE
Log_Failed_Logins = FALSE
Login_Disabled = FALSE

Note that if the value of Flow Control For Transmit Data were XON_XOFF instead
of None, then two more entries would appear, one for XON and one for XOFF.

SMU-326 7/1/87 HA\-”ONAL

subtype Stop_Bits_Range
package 'Commands.Terminal

subtype Stop—Bits_Range

subtype Stop_Bits_Range 1is System_Utilities.Stop_Bits_Range;

Description
Specifies the number of stop bits for a terminal line.

The range is 1 through 2.

end Terminal;

RAT'ONAL 7/1/87 SMU-327

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

!Machine.Devices library SMU-227, SMU-250, SMU-269
!Machine.Devices.Terminal n device SMU-250, SMU-269
Machine.Editor_Data.Terminal_Recognition file sMU-300
!Machine.Editor_Data.Terminal _Types file sSMU-209
IMachine.Editor_Data.Visible_Key_Names package SMU-300
!Machine.Error.Logs world SMU-12, SMU-16
{Machine.Initialize procedure SMU-13, SMU-131
IMachine.Operator_Capability file SMU-54
IMachine.User-Acl-Suffix file SMU-565 SMU-64
IMachine.User..Default_Acl_Suffix file SMU-55 SMU-64
IMachine.Users username SMU-64
Machine.Users world SMU-67
IModel,R1000 world SMU-64
Tools.Disk-.Daemon package SMU-11
Tools.Disk—-Daemon.Set.Backup-Killing procedure SMU-192
! special characterSMU-§
#

substitution character SMU4

wildeardsMU-3
$special character sMU-8

'?AT'ONAL 7/1/87 SMU-329

8 special character
% special character
, separator .

. special character
. symbol

:= value delimiter .
; separator .

= value delimiter

=> value delimiter

?
substitution character
wildcard

29
substitution character
wildcard

5]
substitution character
wildecard

[] special characters
\ special character

~ special character
- special character

' special character
{} special characters
| symbol .

~ symbol .

access control .
groups

access list

Daemon.Get_Access_List_Compaction function
Daemon.Set_Access_List_Compaction procedure .

ACL, see access list

Actions
client .
object manager

SMU-330

. SMU-6
. SMU-6
. SMU-8
. SMU-7
. SMU-8
. SMU-8
SMU-7, SMU-8
. SMU-8
. SMU-8

SMU-6

SMU-3, SMU-4

SMU-5

SMU-3, SMU-4

. SMU-4
. SMU-3

SMU-5, SMU-7
. SMU-T
. SMU-§
. SMU-6
. SMU-T
SMU-5, SMU-8
. SMU-8
SMU-7, SMU-9

SMU-563
SMU-54

SMU-53
SMU-17
SMU-35

. SMU-13, SMU-27
SMU-11, SMU-12, SMU-58

s RATIONAL

<ACTIVITY> specialnameSMUJ-2

Ada
cliemt SMU-13, SMU-17, SMU-20, SMU-27, SMU-35
name . . SMU-1
pame resolutionmodeSMU-7
object manager SMU-11, SMU-58
add, see Create, Create_Group, Create-Session, Create_User
Add procedure
Quene.Add L. SMU-98
Register procedure e e e eSMU-123
Add_To_Group procedure
Operator.Add_To_Group e e e SMU-56
Create_Group procedure e e e e . . . SMU-61
all, send
Message.Send_All procedure e e e .« SMU-51
All_Bad_Blocks constant
System_Utilities.All_Bad.Blocks e e e e e SMU-198
All_Classes constant
Queue.All_Classes e e e e e SMU-96
All_Spooler_Devices constant
Queue.All_Spooler.Devices SMU-97
ANSIformat SMU-283
archive ,
Operator.Get_Archive_On_Shutdown function SMU-78
archive, see also Backup
Archive_On_Shutdown procedure
Operator.Archive.On_Shutdown e e e e e e SMU-~58
Get_Archive_On_Shutdown function SMU-T76
Show.-_Shutdown_Settings procedure e e e e e e SMU-87
Archived_Code object manager e e e e e SMU-11, SMU-58
at sign ()
substitution character eSMU-4
wildeardo L. e e e e e e e . SMU-3
Attached enumeration00 L. SMU-165
attached job C e e e e e e e e e e e SMU-133
attribute e e e e e e e e e - v e«SMU-1
job
Scheduler.Get_Job.. Attribute function SMU-153
Scheduler.Set-Job_Attribute procedure SMU-179

RATIONAL 71/sr SMU-331

background job . .
streams L.
parameters
Scheduler. Dlsplay procedure

backoff
backslash (\) special character

backup
System_Backup package

Backup procedure
System. Backup. Backup e e e e e
Kind type e e e e e e e

bad blocks
System_Utilities. All_Bad_Blocks constant

System_Utilities.Manufacturers_Bad_Blocks .coﬁst'ant -

Bad.Block-Kinds type
System-Utilities.Bad_Block_Kinds .

Bad_Block_-List function
System_Utilities.Bad_Block_List

bar (|)symbolo
batch job, see background job

baud rates
System_Utilities.Input_Rate function .
System_Utilities.Output_Rate function .
Terminal.Set_Input_Rate procedure
Terminal.Set_Output_Rate procedure

begin, see Run

begin at scheduled time
Daemon.Schedule procedure

bits
System_Utilities.Character_Bits_Range subtype C
System-Utilities.Stop_Bits function . -
System_Utilities.Stop-Bits_Range subtype
Terminal.Character_Bits_Range subtype
Terminal.Set_Stop-Bits procedure
Terminal.Stop_Bits_Range subtype

block
System_Utilities. All_Bad_-Blocks constant
System.Utilities.Bad-Block_Kinds type
System.Utilities.Bad_Block_List function .

System-Utilities.Manufacturers_Bad_Blocks constant '

System_Utilities.Retargeted_Blocks constant

SMU-332

SMU-132, SMU-136
.SMU-137
SMU-172, SMU-177

. SMU-144

SMU-15
........ . SMU-7

. SMU-191

. . SMU-192
. SMU-196

. . SMU-198
. SMU-240

. SMU-199

. SMU-200
. SMU-8

..... . SMU-230
. SMU-247
. SMU-312
. SMU-316

SMU-33

. SMU-203
. SMU-263
. SMU-264
. . SMU-302
. SMU-322
. SMU-327

. SMU-198

.. S8MU-199
...... . SMU-200
. . SMU-240

. SMU-256

s RATIONAL

block, see also Quiesce

Block_List type
System_Utilities.Block-List

blue tapes

board information
System_Utilities.Get_Board_Info function .

Boolean options

boot
configuration

System. Utilities.System_Boot_Configuration function .

last
System-Utilities.System.Up-Time function

braces ({}) special characters .
brackets ([]) special characters
broadcast bulletin, see Send, Send._All

byte
receive Xon/Xoff bytes
System_Utilities.Receive_Xon_Xoff_Bytes function
set receive Xon/Xoff bytes
Terminal.Set-Receive_Xon_Xoff-Bytes procedure .
set Xon/Xoff bytes
Terminal.Set_Xon_Xoff_Bytes procedure
Xon/Xoff
System_Utilities.Xon_Xoff_Bytes function

Byte_String subtype
System. Utilities.Byte.-String

Cancel procedure
Queue.Cancel ..
Display procedure .

Cancel_Shutdown procedure
Operator.Cancel_Shutdown

caret (~) special character
Ce enumeration .

Change_Password procedure
Operator.Change_Password
Create_User procedure

Character_Bits_Range subtype
System.. Utilities.CharacterBits_Range .
Terminal.Character_Bits_Range

RAT'ONAL 7/1/87

. SMU-201
. SMU-191

. SMU-218
. SMU-9

. SMU-265

. SMU-266
SMU-5, SMU-8
SMU-5, SMU-7

. SMU-254
. SMU-320
. SMU-324

. SMU-280

. SMU-202

SMU-98
. SMU-109

SMU-59
. SMU-5
. SMU-165

SMU-53, SMU-60
SMU-64

. SMU-208
. SMU-802

SMU-333

character pairs ([} and (}) . SMU-§
Character_Size function
System-Utilities.Character_Size . SMU-204
characters
read
System_Utilities.Input_Count function . SMU-229
receive Xon_Xoff characters
System_Utilities. Receive_Xon-Xoff_Characters function SMU-255
set receive Xon/Xoff characters
Terminal.Set_Receive-Xon_Xoff_.Characters procedure SMU-321
set Xon/Xoff characters
Terminal.Set-Xon_Xoff_.Characters procedure . SMU-325
size
Terminal.Set_Character_Size procedure . SMU-306
special . SMU-1
written
System. Utilities.Output_.Count function . . SMU-245
Xon/Xoff
System_Utilities.Xon—_Xoff_Characters function SMU-281
circuit board
System-Utilities.Get_Board_Info function . . SMU-218
class SMU-91
all
Queune.All_Classes constant SMU-96
condition
Daemon.Condition_Class type SMU-16
create
Queue.Create procedure . SMU-101
destroy
Queue.Destroy procedure . SMU-104
Class_Name subtype
Queue.Class.Name . . SMU-100
Classes procedure
Queue.Classes SMU-99
clients . SMU-11
Actions . e SMU-27
Ada SMU-17, SMU-20, SMU-27, SMU-35
Daily . SMU-12, SMU-22, SMU-48
DDB .) SMU-18, SMU-20, SMU-27
Directory SMU-17, sSMU-20, SMU-27, SMU-35
Disk . . . SMU-12, SMU-20, SMU-27, SMU-31, SMU-38
Error_Log e e e e SMU-12
File SMU-17, SMU-20, SMU-27, SMU-35
major

Daemon.Major—Clients constant

SMU-334

SMU-27

wer RATIONAL

clients, continued

Smapshot SMU-12, sMU-27, SMU-31
Weekly SMU-12
when last run
Daemon.Last_Run function SMU-25
when next run
Daemon.Next_Scheduled function SMU-28
Code_Segment object manager SMU-11, SMU-58
Collect procedure
Daemon.Collect SMU-14
Collection_Priority subtype
Daemon.Collection_Priority SMU-1§
colon/equals (:=) value delimiterSMU-8
column
terminal device characteristic SMU-299
comma (,) separator SMU-7 SMU-8
Commit_Disk enumeration SMU-26
compaction
Daemon.Get_Access_List_Compaction function SMU-17
Daemon.Set_Access_List_Compaction procedure SMU-35
Condition-Class type
Daemon.Condition.Class SMU-16
Log_Threshold type . . . e e e e SMU-26
Set_Log_Threshold procedure e e e e e e e e oo SMU-37
configuration
System. Utilities.System_Boot-Configuration function SMU-265
Configuration object manager SMU-11, SMU-58
consistency checking
Daemon.Get-Consistency-Checking function SMU-18
Daemon.Set-Consistency-Checking procedure SMU-36
Console_Print enumeration SMU-26
Constraint_Error exception
System_Utilities package8MU0-197
Job_Name functionSMU-233
control
System_Utilities.Flow_Contro! function SMU-216
System_Utilities. Receive_Flow_Control functlon e e e . . < <SMU-252
Terminal.Set_Flow_Control procedure . . . e e -SsMyU-311
Terminal.Set_Receive_Flow_Control procedure . e«SMU-318

conversion, see Image functions for types of particular interest

RATIONAL 7yer SMU-335

core editor (Ce) job

count
input
System_Utilities.Input_Count function
output
System. Utilities.Output_Count function .
page
System_Utilities.Get_Page_Counts procedure

Cpu
Scheduler.Get_Cpu—_Priority function . .
Scheduler.Get_Cpu_Time_Used function

Cpu function
System._Utilities.Cpu .

Cpu_Priority subtype
Scheduler.Cpu—_Priority .

CPU scheduling parameters

CPU time
System. Utilities.Elapsed function

crash
Operator.Explain_Crash procedure .

Create procedure
Queue.Create -
Default procedure .
Register procedure

Create_Group procedure
Operator.Create_Group

Create.Session procedure
Operator.Create_Session

Create_User procedure
Operator.Create.User

Current renamed function
Terminal.Current

< CURSOR>> special name

daemon ..
when last run
Daemon.Last_.Run function

when next run
Daemon.Next_Scheduled function .

Daemon package

SMU-336

. SMU-132

. SMU-229
. SMU-245

. SMU-220

. SMU-150
. SMU-151

. SMU-~-205

. SMU-141
SMU-171, SMU-173

. SMU-213
SMU-74

. SMU-101
. SMU-102
. SMU-123

SMU-61

SMU-53, SMU-63
SMU-64

. SMU-808

. SMU-2

SMU-11
SMU-25

SMU-28
SMU-11

e RATIONAL

dailies, see System_Backup package
Daily client
data tapes

date formats
Operator.Set_System..Time procedure

DDB
client .
object manager

default
response profile
Wsl limits
Scheduler.Use_Default_ Wsl_Limits procedure

Default procedure
Queue.Default . .

Default_Job_Page-Limit session switch
System_Utilities.Get_Page_Counts procedure
System_Uetilities.Set_Page_Limit procedure

<DEFAULT> special value

Delete_Group procedure

SMU-12, SMU-22, SMU-48
. SMU-191

SMU-84

SMU-13, SMU-18, SMU-20, SMU-27
SMU-11, SMU-58

. SMU-2, SMU-55
. SMU-188
. SMU-102
. SMU-220

. SMU-261
. SMU-2, SMU-§5

Operator.Delete—-Group . SMU-66
Create_Group procedure . SMU-61

delete print request

Queue.Cancel procedure SMU~98
Delete_User procedure

Operator.Delete_User SMU-67

Delete_Group procedure . SMU-66

deleted objects, referring to . SMU-8
delimiters, value

colon/equals (:=) . SMU-8

equals (=) . SMU-8

equals/greater than (>) . SMU-8
dependency database SMU-11
descriptor, job

Scheduler.Get_Job_Descriptor function . . SMU-154

Scheduler.Job_Descriptor type s« <SMU-160

Scheduler.Traverse_Job_Descriptors genenc procedure . -«SMU-185
destroy, see Delete~Group, Delete_User
Destroy procedure

Queue.Destroy . . . SMU-104
RATIONAL 7/1/er SMU-337

Detach_On-Disconnect function
System_Utilities.Detach_On_Disconnect

Detached enumeration .
detached job

device

add

Queue.Add procedure
associate with class

Queue.Register procedure
class

Queue.All_Classes constant
class name

Queue.Class_Name subtype
disable

Queue.Disable procedure .
dissociate from class

Queue.Unregister procedure
enable

Queue.Enable procedure .
remove from print spooler

Queue.Remove procedure
spooler

Queue.All_Spooler_Devices constant

Devices procedure
Queue.Devices .

diagnosis

Operator.Internal_System._Diagnosis procedure

Directory
client .
object manager

directory, see library
directory name

Disable procedure
Queue.Disable .
Scheduler.Disable

Disable_Terminal procedure
Operator.Disable_Terminal

disabled
System_Utilities.Login..Disabled function
Terminal.Set_Login_Disabled procedure

Disabled enumeration

SMU-338

. SMU-206
. SMU-1656
. SMU-133

SMU-92

SMU-93
. SMU-123

SMU-96
. SMU-100
. SMU-107
. SMU-128
. SMU-111
. SMU-125

SMU-97

. SMU-106

SMU-79

SMU-13, SMU-17, SMU-20, SMU-27, SMU-35

SMU-11, SMU-58

. SMU-1

. . SMU-107
SMU-131, SMU-142

SMU-68
. SMU-238

. SMU-314
SMU-134, SMU-167

e RATIONAL

disconnect

System_Utilities.Detach..On_Disconnect function . SMU-206
System_Utilities.Logoff_On_Disconnect function . . SMU-239
Terminal.Set_Disconnect_On_Disconnect procedure . SMU-308
Terminal.Set_Disconnect_On_F ailed—Login procedure . SMU-309
Terminal.Set..Disconnect_On_Logoff procedure . SMU-310
Terminal.Set_Logoff_On_Disconnect procedure . SMU-315
Disconnect_On-Disconnect function
System. Utilities.Disconnect—-On_Disconnect . . SMU-207
Disconnect—On_Failed._Login function
System.. Utilities.Disconnect_On_F ailed.Login . . SMU-208
Disconnect-On_Logoff function
System. Utilities.Disconnect—-On_Logoff . . SMU-209
disk
bad blocks
System_Utilities.All_Bad_Blocks constant . SMU-198
System_Utilities.Bad-Block_Kinds type . SMU-199
System_Utilities.Bad_Block_List function . SMU-200
System-_Utilities.Block_List type SMU-201
System. Utilities. Manufacturers_Bad_Blocks constant . e SMU-240
collection . e e e e e e e e SMU-12
priority SMU-15
start SMU-14
drive
Daemon.Volume subtype . SMU-47
retargeted blocks
System_Utilities.Retargeted. Blocks constant . SMU-256
scheduling e e e e e e e e SMU-140
parameters . SMU-172, SMU-176
wait load . . . SMU-140
Scheduler.Get.Disk_Wait_Load procedure . SMU-152
Diskclient SMU-12, SMU-13, SMU-20, SMU-27, SMU-31, SMU-38
Disk_Space procedure
Operator.Disk_Space . SMU-69
Disk_Waits function
Scheduler.Disk_ Waits . SMU-148
Job_Descriptor type . . SMU-161
Display procedure
Queue.Display SMU-109
Scheduler.Display . SMU—131 SMU—137 SMU-144
Set procedure o . SMU-170
Display_Group procedure
Operator.Display.-Group SMU-70
Add..To_Group procedure SMU-56
Remove_From_Group procedure SMU-82
RAT'ONAL 7/1/87 SMU-339

Display_Tape procedure
Tape.Display_Tape .

dollar sign ($) special character .
dollar sign, double ($8), special character

Done function
System-Utilities.Done

Init procedure
Job._Iterator type .
Next procedure .
Session_lIterator type
Terminal.Iterator type
Value function

double dollar sign ($$) special character
double dot symbol (..) .

double question mark (?7)
substitution character
wildcard

drives, see disk, tape

Duration type
Time_Utilities.Duration
Daemon.Schedule procedure

Duration_Until-Next function
Time.Utilities.Duration_Until-Next
Daemon.Schedule procedure

E

EEDB (Environment Elaborator Database) interpreter
Operator.Internal_System_-Diagnosis procedure

Elapsed function
System_Utilities.Elapsed

Enable procedure
Queue.Enable
Remove procedure
Scheduler.Enable .
Disable procedure .

Enable_Privileges procedure
Operator.Enable_Privileges

Enable_Terminal procedure
Operator.Enable_Terminal
System_Utilities.Enabled functlon .

System_Utilities.Login.-Disabled func.tio'n .

Terminal.Set_Login_Disabled procedure

SMU-340

. SMU-284
. SMU-6
. SMU-6

. SMU-210, SMU-211, SMU-212
. SMU-225, SMU-226, SMU-227

. SMU-232

. SMU—241 SMU—242 SMU-243

. SMU-259
. SMU-271
. SMU-276

. SMU-6
. SMU-8

. . SMU-5
SMU-3, SMU—4

SMU-33

SMU-33

SMU-79
. SMU-218

. SMU-111
. SMU-125
SMU-131, SMU-147
. SMU-142

SMU-72

SMU-78
. SMU-214
. SMU-238
. SMU-314

s RATIONAL

Enabled function
Scheduler.Enabled . .
System_Utilities.Enabled

enclosing library
enclosing object .
enclosing world .

enumerations
Daemon.Condition_Class
Fatal enumeration .
Normal enumeration
Problem enumeration
Warning enumeration
Daemon.Log_Threshold

Commit_Disk enumeration .
Console_Print enumeration .

Log_To_Disk enumeration

Scheduler.Job_Kind
Attached enumeration .
Ce enumeration .
Detached enumeration .
Oe enumeration .
Server enumeration

Terminated enumeration .

Scheduler.Job_State
Disabled enumeration
Idle enumeration
Queued enumeration
Run enumeration
Wait enumeration .

System_Backup.Kind
Full enumeration
Primary enumeration
Secondary enumeration

System_Utilities.Parity_Kind ' type

Even enumeration .
None enumeration
Odd enumeration

Environment Elaborator Database (EEDB)

equals (=) value delimiter

equals/greater than (=>) value delimiter

Error exception
Tape.Error

error log, stable-storage

Error_Log client

RATIONAL 7/1/sr

. SMU-148
. SMU-214

. SMU-6
. SMU-5
. SMU-6

SMU-16
SMU-16
SMU-16
SMU-16

SMU-26
SMU-26
SMU-26

. SMU-165
. SMU-165
. SMU-165
. SMU-165
. SMU-166
. SMU-166

SMU-134,
SMU-133,
SMU-134,
SMU-133,
SMU-133,

SMU-167
SMU-167
SMU-167
SMU-167
SMU-167

. SMU-196
. SMU-196
. SMU-196

. SMU-249
. SMU-249
. SMU-249

SMU-79
. SMU-8
. SMU-8

. SMU-286

SMU-12
SMU-12

SMU-341

Error_Name function

System_Utilities.Error.Name . SMU-215
error reactions . SMU-2
Even enumeration . . SMU-249
Examine_Labels procedure

Tape.Examine_Labels . SMU-287
exceptions

Tape package

Error exception . . SMU-286
exclamation mark (1) special character . . SMU-5
Explain_Crash procedure

Operator.Explain_Crash SMU-74

F
Fatal enumeration . SMU-16
File

cliemt SMU-13, SMU-17, SMU-20, SMU-27, SMU-35

object manager . e e SMU-11, SMU-58
file

name

System_Utilities.Error_-Name function .
System_Utilities.Input_Name function .
System..Utilities.Output_Name function
standard error
System_Utilities.Error_Name function .
standard input
System._Utilities.Input_Name function .
standard output
System._Utilities.Output_Name function

>>FILE NAME< < parameter placeholder

flow control
bytes
Terminal.Set_Xon_Xoff.Bytes procedure
characters
Terminal.Set_Xon_Xoff _Characters procedure
receive
System_ Utilities.Receive_Flow_Control function

set
Terminal.Set_Flow_Control procedure .

set receive
Terminal.Set_Receive_Flow_Control procedure

Flow_Control function
System_Utilities.Flow_Control .

SMU-342

. SMU-215
. SMU-228
. SMU-246
. SMU--215
. SMU-228

. SMU-246
. SMU-3

. SMU-324
. SMU-325
. SMU-252
. SMU-311

. SMU-318

. SMU-216

ze RATIONAL

Force_Logoff procedure
Operator.Force_Logoff

foreground budget
foreground job

Format_Tape procedure
Tape.Format_Tape .

full backup .

Full enumeration
full saves, see System_Backup package
fully qualified name .

garbage collection, see disk collection

Get function
Scheduler.Get
Set procedure

Get_Access_List.Compaction function
Daemon.Get_Access.List_Compaction

Get_Archive_On_Shutdown function
Operator.Get_Archive_On_Shutdown

Get_Board_Info function
System_Utilities.Get_Board_Info

Get_Consistency_Checking function
Daemon.Get_Consistency_Checking

Get_Cpu-Priority function
Scheduler.Get_Cpu-Priority
Job_Descriptor type . .

Get_Cpu-Time_Used function
Scheduler.Get_Cpu_Time_Used

Get_Disk_Wait_Load procedure
Scheduler.Get_Disk_Wait_Load
Set procedure
State procedure .

Get_Job function
System_Utilities.Get-Job

Get.Job_Attribute function
Scheduler.Get_Job. Attribute

Get_Job_Descriptor function
Scheduler.Get_Job_Descriptor . . .

RATIONAL 7/1/er

..............

SMU-T75
SMU-135, SMU-136
. SMU-132, SMU-134, SMU-135

. SMU-288
. SMU-191
. SMU-196

. SMU-5

. SMU-149
. SMU-170

SMU-17

SMU-76

. SMU-218

SMU-18

. SMU-150
. SMU-160

. SMU-151

. SMU-152
. . SMU-176
. SMU-183

.........

. SMU-219
. SMU-158

. SMU-154

SMU-343

Get_Job_Kind function
Scheduler.Get-Job_Kind

Get_Job_State function
Scheduler.Get_Job_State
Job_Descriptor type .

Get_Log_Threshold function
Daemon.Get_Log~Threshold

Get_Login_Limit function
Operator.Get_Login_Limit

Get_Page_Counts procedure
System_Utilities.Get.Page_Counts .
System_Utilities.Set_Page_Counts

Set_Page_Limit procedure

Get_Run_Queue_Load procedure
Scheduler.Get— Run_Queue_Load
State procedure . . .

Get_Session function
System_Utilities.Get-Session

Get_Shutdown_Interval function
Operator.Get_Shutdown_Interv al

Get_Size procedure
Daemon.Get_Size

Get_Snapshot_Settings procedure
Daemon.Get_Snapshot_Settings

Get_Warning_Interval function
Daemon.Get_Warning_Interval

Get_Withheld Task-Load procedure
Scheduler.Get_Withheld..T ask_Load
State procedure . .

Get_Wsl_Limits procedure
Scheduler.Get. Wsl_Limits

grave (') special character

group
add

Operator.Add..To_Group procedure .

create

Operator.Create—Group procedure
delete

Operator.Delete_Group procedure
display

Operator. Dnsplay_Group procedure .

Network..Public

SMU-344

SMU-132, SMU-155

SMU-133, SMU-156
. SMU-160

SMU-19
SMU-77

. SMU-220

. SMU-261

. . SMU-157
. SMU-183

. SMU-222
SMU-78
SMU-20
SMU-21
SMU-22

. SMU-158
SMU-183

. SMU-158
. SMU-7

SMU-56
SMU-61
SMU-66

SMU-70
SMU-54

e RATIONAL

group, continued
Operator
Privileged .
Public
remove
Operator.Remove_From_Group procedure
special ..
user-defined .
username

Group object manager .

hardware flow control
hexadecimal display .

History procedure
System_Backup.History .
Id subtype

hold, see Quiesce

Home_Library function
System_Utilities. Home_Library

Id
Scheduler.Job.Id subtype
System_Utilities.Job_Id subtype .
System_Utilities.Session_Id subtype

Id subtype
System Backup.Id

Idle enumeration

Image function
System.Utilities.Image

<IMAGE> special name

In_Progress function
Daemon.In_Progress

incrementals, see System_Backup package

Init procedure
System_Utilities.Init
Done function
Job_Iterator type .

Next procedure .
Session_Iterator type

RATIONAL 7

SMU-54
SMU-54
SMU-54

SMU-82
SMU-54
SMU-55
SMU-54

SMU-11, SMU-58
. SMU-311
. SMU-284
. SMU-194

. SMU-1956

. SMU-228

. SMU-164
. SMU-231
. SMU-258

. SMU-195
SMU-133, SMU-167

. SMU-224
. SMU-2

SMU-28

. SMU-285, SMU-226, SMU-£227

. SMU-210
. SMU-232
. SMU-241
. SMU-259

SMU-345

Init procedure, continued
System_Utilities.Init, continued
Terminal_Iterator type
Value function

initiate, see Run

Input_Count function
System_Utilities.Input._Count
Output_Count function

Input_Name function
System_Utilities.Input_Name

input rate
Terminal.Set_Input-Rate procedure

Input_Rate function
System_Utilities.Input_Rate .

input type
terminal device characteristic

Internal_System_Diagnosis procedure
Operator.Internal_System_Diagnosis

Interrupt procedure
Job.Interrupt
Scheduler.Job_Kind type

interval
Daemon.Warning-_Interval procedure .

Operator.Get_Shutdown Interval functio.n .

Interval function
Daemon.Interval .

iterator

job
System_Utilities.Init procedure .
System_Utilities.Job_Iterator type
System_Utilities.Next procedure

session
System_Utilities.Init procedure .
System_Utilities.Next procedure

System-_Utilities.Session_Iterator type .

stepping through jobs
System_Utilities.Done function

stepping through sessions
System_Utilities.Done function

stepping through terminals
System_Utilities.Done function

SMU-346

. SMU-271
. SMU-276

. SMU-229
. SMU-245
. SMU-228
. SMU-312
. SMU-280
. SMU-299

SMU-79

. SMU-185

SMU-48
SMU-T78

SMU-24

. SMU-226
. SMU-232
. SMU-241
. SMU-225
. SMU-242
. SMU-259
. SMU-210
. SMU-211

. SMU-212

e RATIONAL

iterator, continued

terminal

System._Utilities.Init procedure SMU-227

System_Utilities.Next procedure SMU-243

System-Utilities. Terminal_Iterator type SMU-271

J
jobsMU-132

association8SMU-132
attachedSMU-133
attribute

Scheduler.Get_Job_Attribute function SMU-153

Scheduler.Set_Job_Attribute procedure e e e e e eS8MU-179
background e SMU-132, SMU-136

streams . . T .Y A LSS
background streams . e e e e e e eSMU-137

Scheduler. stplay procedure e e e e e e eS5MU-14
clagsses e e e e eSMU-132
core editor (Ce) e e e e e e e e e oo oo . sMU-132
CPU time

Scheduler.Get-Cpu-Time-Used function SMU-151
descriptor

Scheduler.Get_Job_Descriptor function+SMU-154

Scheduler.Traverse_.Job_Descriptors generic procednre .+SMU-185

Scheduler. Traverse.Job_Descnptors procedure SMU-187
detached . . e e e e e e e e e e e e . . . S5MU-133
enabled or dlsabled

Scheduler.Enabled function . SMU-148
foreground -+SMU-132, SMU-134, SMU-135
get

Scheduler.Get_Job_Attribute function SMU-153

Scheduler.Get_Job_Descriptor function SMU-154

Scheduler.Get_Job_Kind function SMU-155

Scheduler.Get-Job_State function SMU-156

System-Utilities.Get_Job function SMU-219
Id

Scheduler.Job.Id subtype SMU-164

System_Utilities.Job..1d subtype e e e e e esMU-231
identification number e e e e e e SMU-132
identifier

System_Utilities.Value function SMU-276
kind . . . e e e e e es5MU-132

Scheduler. Get_Job_Klnd functlon s e e e e eSMU-155

Scheduler.Job_Kind type e e e e e e eSMu-165
numbers e e e e e . oo 8MU-132
object editor (Oe) 1Y B .2
priority

System.Utilities.Priority function SMU-251
responseprofile, SMU—2 SMU-55

PAT‘ONAL 7/1/87 SMU-347

job, continued
resume execution
Scheduler.Enable procedure
server
state
Scheduler.Get_Job_State function .
Scheduler.Job-State type
stepping
System_Uetilities.Done function
stream time limits ..
suspend temporarily
Scheduler.Disable
terminated
withheld
working set
limit
size ..
working set limits
Scheduler.Set_Wsl_Limits procedure

Job_Descriptor type
Scheduler.Job_Descriptor .
Get_Job_Descriptor function .

Job_Id

Job_Id subtype
Scheduler.Job_Id

Traverse_Job_Descriptors procedure .

System- Utilities.Job_Id .

Job_Iterator type
System_Utilities.Job_Iterator

Job_Kind type
Scheduler.Job_Kind
Get_Job_Attribute function
Get_Job_Kind function
Job_Descriptor type .
State procedure .

Job_Name function
System_Utilities.Job_Name

Job_State type
Scheduler.Job_State
Get_Job_State function
Job_Descriptor type .
State procedure .

SMU-348

. SMU-147
. SMU-133
. SMU-133
. SMU-133
. SMU-156
. SMU-167

. SMU-210
. SMU-137

. SMU-142
.SMU-133
SMU-133, SMU-136

. SMU-139
. SMU-139

. SMU-180

. SMU-160
. SMU-154

. SMU-132

. SMU-164
. SMU-187
. SMU-281

. SMU-£32

SMU-133, SMU-165
. . . SMU-153

. SMU-165

. SMU-162

. SMU-182

. SMU-238

SMU-133, SMU-167
. . . . SMU-156
. SMU-160
. SMU-182

s RATIONAL

key concepts
kill, see Delete_Group, Delete_User
kill user session, see Force_Logoff

Kill_Print_Spooler procedure
Queue.Kill-Print_Spooler .

kind . .
job
Scheduler.Get-Job_Kind function .
Scheduler.Job_Kind type .
parity
System_Utilities.Parity_Kind type
Terminal.Parity_Kind subtype

Kind type
System_Backup.Kind .

label
Tape.Examine_Labels procedure .

Last_Login function
System_Utilities.Last_Login .

Last_Logout function
System._ Utilities.Last_Logout

Last_Run function
Daemon.Last_Run

library
enclosing
home

System.Utilities.Home_Library function .

name .
root
switches
Page_Limit
limit
Operator.Get_Login_Limit function

Operator.Show_Login_Limit procedure .

Scheduler.Get_Wsl_Limits procedure .

System..Utilities.Set_Page_Limit procedure

Limit_Login procedure
Operator.Limit_Login .
Get..Login. Limit function
Show_Login_Limit procedure .

RAT'ONAL 7/1/87

. SMU-~1

. SMU-112

. SMU-132
. SMU-132
. SMU-155
. SMU-165

. SMU-249
. SMU-304

. SMU-196

. SMU-287

. SMU-284

. SMU-285

SMU-25

. SMU~-6

. SMU-223

. SMU-1
. SMU-5

SMU-220, SMU-261

SMU-77
SMU-86

. SMU-159
. SMU-261

SMU-80
SMU-77
SMU-86

SMU-349

limit number users logging in
Operator.Limit..Login procedure .

line

terminal device characteristic
link

name resolution mode .

special character grave (")
Link object manager

list

SMU-80
. SMU-299
. SMU-7

. SMU-7
SMU-11, SMU-58

System_Uetilities.Block_List type . . SMU-201
literals

in options . . SMU-9
load

Scheduler.Get_Disk_Wait_Load procedure . . SMU-152

Scheduler.Get—_Run_Queue_Load procedure . . SMU-157

Scheduler.Get—Withheld_T ask_Load procedure . SMU-158
Load_Factor subtype

Scheduler.Load_Factor . SMU-168

Set procedure . SMU-176

log failed logins

Terminal.Set_Log_Failed_Logins procedure . SMU-313
Log-Failed_Logins function

System_Utilities. Log-Failed—Logins . SMU-£286
log threshold

Daemon.Get_Log_Threshold function SMU-19

Daemon.Set_lLoog_Threshold procedure SMU-37

Daemon.Show.Log_Thresholds procedure . SMU-39
Log-Threshold type

Daemon.Log-Threshold . SMU-26
Log.To_Disk enumeration SMU-26
Logged-In function

System_Utilities.Logged_-In . SMU-237
login

from non-Rational type SMU-300

Operator.Get-Login_Limit function SMU-77

Operator.Limit_Login procedure« SMU-80

Operator.Show_Login_Limit procedure e e e e SMU-86

System_Utilities.Disconnect-On_F ailed..Login functlon . . SMU-208

System. Utilities.Last_Login function SMU-234

System-Utilities.Log_Failed. Logins functionSMU-236

Terminal.Set_Disconnect_On-F ailed_Login procedure SMU-309

Terminal.Set_Log_Failed_Logins procedure SMU-313

Terminal.Set.Login_Disabled procedure C e e e SMU-314

SMU-350

e RATIONAL

Login_Disabled function
System_Utilities.Login_Disabled

logoff
Operator.Force_Logoff procedure

System_Utilities.Disconnect_On_Logoff functlon .

Terminal.Set_Disconnect_On_Logoff procedure
Terminal.Set_Logoff_On_Disconnect procedure

Logoff-On_Disconnect function
System_Utilities.Logoff .On_Disconnect .

logout
System_Utilities.Last_Logout function

major clients
Actions .
Ada .
DDB .
Directory
Disk
File . .
Snapshot

Major_Clients constant
Daemon.Major_Clients
Status procedure

Manufacturers_Bad_Blocks constant
System_Utilities.Manufacturers_Bad_Blocks

medium-term scheduler
Scheduler package

memory scheduling
page withdrawal
parameters

message
Daemon.Snapshot_Finish_Message procedure
Daemon.Snapshot_Start_Message procedure .
Daemon.Snapshot_Warning._Message procedure

Message package

Message window .
Message.Send procedure ..
Message.Send_All procedure .

Milliseconds subtype
Scheduler.Milliseconds

RATIONAL 7/er

. SMU-238

. SMU-75
. SMU-209
. SMU-310
. SMU-315

. SMU-289

. SMU-235

SMU-13
SMU-13
SMU-13
SMU-13
SMU-13
SMU-13
SMU-13

SMU-13, SMU-27
SMU-44

. SMU-240

. SMU-131

. SMU-139
SMU-140
SMU 171 SMU-174

SMU-41
SMU-42
SMU-43

SMU-49

SMU-13
SMU-50
SMU-51

. SMU-169

SMU-351

mode
privileged
Operator.Privileged_Mode function

name

character pairs ([] and {}) .
class

Queue.Class_Name subtype
comma (,) separator .
error

System._Utilities. Error_Name function .
fully qualified
input

System_Utilities.Input_Name function .
job

System_Utilities.Job_Name function
output

System_Uetilities.Output-Name function
session

System-Utilities.Session_Name function
special characters
tape

System_Utilities. Tape_Name function
terminal

System-Utilities.Terminal_Name function
user

System_Utilities.User-Name function

naming objects
Network_Public group .

Next procedure
System. Utilities.Next

Done function
Init procedure . .
Job_Iterator type .
Session._Iterator type
Terminal_Iterator type
Value function

Next_Scheduled function
Daemon.Next_Scheduled

None enumeration
Normal enumeration
notify, see Send, Send_All

Null_Device object manager

SMU-352

SMU-54
SMU-81

. SMU-5

. SMU-100
. SMU-7

. SMU-216
. SMU-5

. SMU-228
. SMU-233
. SMU-246

. SMU-260
. SMU-5

. SMU-268
. SMU-272

. SMU-275
. SMU-1
SMU-564

. SMU-241, SMU-248, SMU-248

SMU-210
. SMU-226
. SMU-232
. SMU-259
. SMU-271
. SMU-276

SMU-28
. SMU-249
SMU-16

SMU-11, SMU-58

e RATIONAL

object
enclosing
name
object editor (Oe) job
referring to deleted .
object managers
Action
Actions .
Ada
Archived_Code
Code_Segment .
Configuration
DDB .
Directory
File
Group
Link
Null_Device .
Pipe
Session
Tape
Terminal
User

Object subtype
System. Utilities.Object .

Odd enumeration
Oe enumeration .
operator capability
Operator group .
Operator package .

options
Boolean
literals
specification .

Options parameter

Output_Count function
System_Uetilities.Output_—Count
Input_.Count function

Output-Name function
System. Utilities.Output_Name

output rate
Terminal.Set_Output_Rate procedure

RATIONAL 7y

. SMU-5
. SMU-1
. SMU-132
. SMU-8

SMU-11
sMU-11
SMU-58

SMU-11, SMU-58

SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58
SMU-11, SMU-58

. SMU-244
. SMU-249

. SMU-165
SMU-54
SMU-54
SMU-58

. SMU-9
. SMU-9
. SMU-8
. SMU-8

. SMU-245
. SMU-229

. SMU-246

. SMU-316

SMU-353

Output-Rate function
System_Utilities.Output_Rate

output type
terminal device characteristic

page
count
System_Utilities. Get_Page_Counts procedure
default
System_Utilities.Set_Page_Limit procedure
faults
Scheduler.Ll:sk_Waits function
limits .
System._Utilities.Set_Page_Limit procedure
withdrawal
Page_Limit
library switch
System_Utilities.Get_Page_Counts procedure
System.. Utilities.Set_Page_Limit procedure
pragma
System-Utilities.Get_Page.Counts procedure
System_Utilities.Set_Page_Limit procedure

parameter placeholders
>>FILE NAME<L K
>>SOURCE NAMES< <K
>>SWITCH FILE<<L
>>SWITCHL K
>>SWITCHESKS L .
>>WORLD NAMES<K L

parameters
CPU scheduling
disk scheduling
memory scheduling .
parity
Terminal.Set_Parity procedure

Parity function
System.Utilities.Parity

Parity_Kind subtype
Terminal.Parity-Kind

Parity_Kind type
System._Utilities. Parity.Kind

password
Operator.Change_Password procedure

SMU-354

. SMU-247

. SMU-299

. SMU-220
. SMU-261

. SMU-143
. SMU-197
. SMU-261
. SMU-140

. SMU-220
. SMU-261

. SMU-220

. SMU-261

SMU-1, SMU-3, SMU-55
.SMU-3
. SMU-3

. SMU-3

. SMU-3

. SMU-3

. SMU-3

SMU-171, SMU-173
SMU-172, SMU-176
SMU-171, SMU-174

. SMU-317
. SMU-248
. SMU-804
. SMU-249

SMU-60

e RATIONAL

pathname
patterns in

percent (%) special character .
period (.) special character .
period, double (..), symbol
Pipe object manager
placeholders, parameter

port
characteristics
Terminal package
number
Terminal.Current renamed function
settings
Terminal.Settings procedure

port, see also terminal

Port subtype
System_Utilities.Port .
Terminal.Port

pound sign (#)
substitution character

wildcard

pragmas
Page_Limit

primary backup .
Primary enumeration

print
default
Queue.Default procedure .
operator capability .
queue
register
Queue.Register procedure
remove device from print spooler
Queue.Remove procedure
request
spooler

Queue.Kill_Pri.nt...S.po.ol;zr ‘px.'oc.ed.ur-e
Queue.Restart_.Print_Spooler procedure

stop
Queue.Cancel procedure

RATIONAL 7y/er

. SMU-1
. SMU-3

. SMU-6

. SMU-7

. SMU-8

SMU-11, SMU-58
SMU-1, SMU-3, SMU-55

. SMU-299
. SMU-303

. SMU-326

. SMU-250
. SMU-805

. SMU-4
. SMU-3

SMU-220, SMU-261
. SMU-191
. SMU-196

. SMU-102
SMU-92
SMU-92

. SMU-123
. SMU-125

SMU-91
. SMU-91
. SMU-112
. SMU-127

SMU-98

SMU-355

print, continued
unregister
Queue.Unregister procedure
version
Queue.Print_Version procedure .
view entries in queue
Queue.Display procedure .

[PRINT] key

Queue.Print procedure

Print procedure
Queue.Print .

Print_Version procedure
Queue.Print_Version .

priority
Daemon.Collection_Priority subtype

Daemon.Set_Priority procedure
Scheduler.Cpu_Priority subtype

Scheduler.Get_Cpu_Priority function .

Priority function
System_Utilities.Priority

Privileged group

privileged mode
Operator.Enable.Privileges procedure

Privileged..Mode function
Operator.Privileged_Mode

Problem enumeration
processes .

profile .

<PROFILE> special value

progress
Daemon.In_Progress function

protecting information, see access control
Public group

Put generic formal procedure
Scheduler.Put

Traverse.J ob-Desci'ip.to-rs .px:oc'ed.ur.e

SMU-356

. SMU-128
. SMU-118

. SMU-109
. SMU-113
. SMU-91, SMU-118
. SMU-118

SMU-15
SMU-38
. SMU-141
. SMU-150

. SMU-251
SMU-54

SMU-~54
SMU-72

SMU-81

SMU-16

. SMU-132

. SMU-2

. SMU-2, SMU-55

SMU-23

SMU-54

. SMU-186
. SMU-187

e RATIONAL

qualified name, fully .

question mark (?)
substitution character
wildcard

question mark, double (?7)
subsiitution character
wildcard

Queue package
Queued enumeration

Quiesce procedure
Daemon.Quiesce .

quotation mark, single (’), identifier character

R

range
System_Utilities.Character_Bits.Range subtype
System_Utilities.Stop-Bits_Range subtype
Terminal.Character_Bits_Range subtype
Terminal.Stop_Bits.Range subtype

rate
System_Utilities.Input_Rate function .
System_Utilities.Output_Rate function .
Terminal.Set_Input_Rate procedure
Terminal.Set_Output-Rate procedure

read
from tapes
Tape package .

Read procedure
Tape.Read

Read_Mt procedure
Tape.Read _Mt

receive flow control

Receive_Flow_Control function
System_Utilities.Receive_Flow_Control

Receive_Xon_Xoff_Bytes function
System__Utilities.Receive_Xon_Xoff_Bytes

Receive_Xon_Xoff_Characters function
System__Utilities.Receive_Xon_Xoff_Characters

<REGION> special name

RATIONAL 7y

. SMU-5

. . SMU-B
SMU-3, SMU~4

. . SMU-5§
SMU-3, SMU-4

SMU-91
SMU-134, SMU-167

SMU-13, SMU-29
. SMU-3

. SMU-203
. SMU-264
. SMU-302
. SMU-327

. SMU-230
. SMU-247
. SMU-312
. SMU-3168

. SMU-283
SMU-283, SMU-£89

. SMU-291
. SMU-318

. SMU-252
. SMU-254

. SMU-255
. SMU-2

SMU-357

Register procedure
Queue.Register
Add procedure
Remove procedure
Unregister procedure

remaining disk capacity
Operator.Disk_Space procedure

remove, see also Delete_Group, Delete_User

Remove procedure
Queue.Remove . ..
Unregister procedure

Remove_From_Group procedure
Operator.Remove_From_Group

reset time
Operator.Set_System_Time procedure

resource limit .

Restart_Print_Spooler procedure
Queue.Restart_Print.-Spooler
Kill_Print_Spooler procedure .

Retargeted_Blocks constant
System_Utilities. Retargeted..Blocks

review intervals .

Rewind procedure
Tape.Rewind

root of library system

run
at scheduled time
Daemon.Schedule procedure
last
Daemon.Last_Run function
load . . .
queue load
Scheduler.Get_Run_Queue_Load procedure

Run enumeration

Run procedure
Daemon.Run

running, see In_Progress

Schedule procedure
Daemon.Schedule .
Quiesce procedure .

SMU-358

. SMU-128
. SMU-93
. SMU-1256
. SMU-128

SMU-69
. SMU-125
. SMU-128
SMU-82

SMU-84
. SMU-197

. SMU-127
. SMU-112

. SMU-256
. SMU-134

. SMU-292
. SMU-5

SMU-33

. SMU-25
. SMU-135

. SMU-157
SMU-133, SMU-167

SMU-13, SMU-81

SMU~-388
SMU-29

e RATIONAL

scheduled
Daemon.Next_Scheduled function

Scheduler package .
scheduler parameters

scheduling
CPU .
disk
memory

searchlist
name resolution mode

secondary backup .
Secondary enumeration
security, see access control
<SELECTION> special name
semicolon (;) separator

Send procedure
Message.Send

Send_All procedure
Message.Send_All

Server enumeration
server job

session .

create

Operator.Create_Session procedure
get

System_Utilities. Get_Session function
identifier

System..Utilities.Value function .
response profile Coe
stepping

System_Utilities.Done function
switches

Default_Job_Page_Limit .
terminate

Operator.Force_Logoff procedure

Session function
System_Utilities.Session

Session_Id subtype
System..Utilities.Session_Id

RATIONAL 7/1/sr

SMU-28
. SMU-181
. SMU-171

SMU-134, SMU-171
SMU-140, SMU-172
SMU-139, SMU-171

. SMU-7
. SMU-191
. SMU-196

. SMU-2
SMU-7, SMU-8

SMU-50

SMU-51
. SMU-166
. SMU-133
. SMU-197

SMU-63
. SMU-222

. . SMU-277
. SMU-2, SMU-55

. SMU-211
SMU-220, SMU-261

SMU-75
. SMU-257

. SMU-258

SMU-359

Session_Iterator type
System_Utilities.Session_Iterator

Session_Name function
System_Utilities.Session_Name

Session object manager
<SESSION> special value

Set procedure
Scheduler.Set

Display procedure .
Get function ..
Get_Wsl_Limits procedure .
Job_Descriptor type .
Job_Kind type . .
Set_Wsl_Limits procedure
Use_Default— Wsl_Limits procedure

Set_Access_List_Compaction procedure
Daemon.Set_Access..List.Compaction

Set_Character_Size procedure
Terminal.Set_Character—_Size

System_Utilities.Character_Size functlon .

Set_Consistency_Checking procedure
Daemon.Set_Consistency..Checking

Set_Detach_On_Disconnect procedure
Terminal.Set_Detach_On_Disconnect .

Set_Disconnect_On.Disconnect procedure
Terminal.Set_Disconnect_On_Disconnect

Set_Disconnect_On.Failed_Login procedure
Terminal.Set_Disconnect_On_F ailed_Login

Set_Disconnect_On.Logoff procedure
Terminal.Set_Disconnect.On-Logoff

Set_Flow_Control procedure
Terminal.Set_Flow_Control
System_Utilities.Flow_Control funct.lon

Set_Input_Rate procedure
Terminal.Set_Input_Rate . . .
System-_Utilities.Input_Rate functxon

Set_Job_Attribute procedure
Scheduler.Set_Job_Attribute
Get_Job_Attribute function

Set_Log_Failed_Logins procedure
Terminal.Set_Log_Failed_Logins .

SMU-360

. SMU-259

. SMU-260
SMU-11, SMU-58
. SMU-2, SMU-55

. SMU-131, sSMU-133,

SMU-170

. SMU-144
. SMU-149
. SMU-159
. SMU-163
. SMU-165
. SMU-180
. SMU-188

SMU-85

. SMU-806
. SMU-204

SMU~86

. SMU-807

. SMU-808

. SMU-809

. SMU-810

. SMU-311
. SMU-216

. SMU-812
. SMU-230

SMU-133,

SMU-179

. SMU-153

. SMU-818

s RATIONAL

Set_Log-Threshold procedure
Daemon.Set_Log—_Threshold .
Condition_Class type
Log-Threshold type .

Set_Login_Disabled procedure
Terminal.Set_Login..Disabled

Set_Logoff_On_Disconnect procedure
Terminal.Set_Logoff_On_Disconnect

Set_Output_Rate procedure
Terminal.Set_Output-Rate . .
System_Utilities.Output.Rate fu.nctxon

Set_Page_Limit procedure
System_Utilities.Set_Page_Limit .
Get_Page_Counts procedure

Set_Parity procedure
Terminal.Set_Parity
System_Utilities.Parity functlon
System_Utilities.Parity_Kind type

Set_Priority procedure
Daemon.Set_Priority

Set_Receive_Flow_Control procedure
Terminal.Set-Receive_Flow_Control

System_Utilities.Receive_Flow-Control functlon

Set_Receive-Xon_Xoff_Bytes procedure
Terminal.Set_Receive_Xon_Xoff_Bytes

System._Utilities.Receive.Xon_Xoff_Bytes functxon

Set_Receive_Xon_Xoff_Characters procedure

Terminal.Set_Receive_Xon_Xoff_Characters .
System_Utilities.Receive_Xon..Xoff _Characters functlon

Set_Stop_Bits procedure
Terminal.Set_Stop_Bits . .
System._Utilities.Stop_Bits functxon

Set_System_Time procedure
Operator.Set_System_Time

Set_Task_Name procedure
Debug.Set_Task_Name . . .
Debug_Tools.Set_Task_Name

Set_Terminal_Type procedure
Terminal.Set_Terminal_Type . .
System_Utilities. Terminal_Type functlon

RATIONAL 7/yer

SMU-12, SMU-87
SMU-16
SMU-26

. SMU-814

. SMU-815

. SMU-816
. SMU-247

. SMU-261
. SMU-220

. SMU-817
. SMU-248
. SMU-249

SMU-88

. SMU-818
. SMU-252

. SMU-820
. SMU-254

. SMU-821
. SMU-255

. SMU-822
. SMU-263

SMU-84

. SMU-6
. SMU-6

. SMU-828
. SMU-273

SMU-361

Set_Wsl_Limits procedure
Scheduler.Set_Wsl_Limits .
Get_Wsl_Limits procedure .
Job_Descriptor type . . .
Use-Default_ Wsl_Limits procedure

Set_Xon-Xoff_Bytes procedure
Terminal.Set_Xon_Xoff_Bytes . .
System-Utilities.Xon_Xoff-Bytes functlon

Set.-Xon_Xoff_Characters procedure
Terminal.Set_Xon_Xoff_Characters

System_Utilities.Xon_Xoff_Characters funct;xon .

Settings procedure
Terminal.Settings

show, see Display, Display_Group, Display_Tape

Show_Log-Thresholds procedure
Daemon.Show_Log_Thresholds

Show_Login_Limit procedure
Operator.Show_Login_Limit

Show_Shutdown_Settings procedure
Operator.Show_Shutdown._Settings

Show_Snapshot_Settings procedure
Daemon.Show_Snapshot_Settings

shutdown
Operator.Archive_On_Shutdown procedure

Operator.Cancel.Shutdown procedure
Operator.Explain_Crash procedure .

Operator.Get_Archive.On_Shutdown functlon

Operator.Get_Shutdown_Interv al function
Operator.Show_Shutdown_Settings procedure

Shutdown procedure
Operator.Shutdown
Cancel-Shutdown procedure
Explain_Crash procedure
Get_Shutdown_Interval function
Shutdown..Warning procedure

Shutdown_Warning procedure
Operator.Shutdown_Warning
Get-Shutdown_Interval functxon
Show_Shutdown_Settings procedure .
Shutdown procedure .

single quotation mark (’) identifier character

SMU-362

. SMU-180
. SMU-159
. SMU-163
. SMU-188

. SMU-824
. SMU-280

. SMU-825
. SMU-281

. SMU-826

SMU-89
SMU-86
SMU-87
SMU-40

SMU-58
SMU-59
SMU-74
SMU-76
SMU-78
SMU-87

SMU-88
SMU-59
SMU-74
SMU-78
SMU-90

SMU-90
SMU-78
SMU-87
SMU-88

. SMU-3

7/1/87 QAT'ONAL

gsize
character
System_Utilities.Character_Size function .
Terminal.Set_Character_Size procedure
get
Daemon.Get_Size procedure
working set
Scheduler. Working_Set-Size function

snapshot .
settings

Daemon.Get_Snapshot_Settings procedure . .

Daemon.Show_Snapshot_Settings procedure
Snapshot client .

Snapshot_Finish_Message procedure
Daemon.Snapshot_Finish. Message

Snapshot..Start_Message procedure
Daemon.Snapshot_Start_Message

Snapshot_Warning_Message procedure
Daemon.Snapshot_ Warning_Message .

software flow control
>>SOURCE NAMES< < parameter placeholder

space
Operator.Disk_Space procedure

Spawn procedure
Command.Spawn
Scheduler.Job_Kind type

special characters . .
backslash (\)
braces ({}) .
brackets ([])
caret (*) .
dollar sign (3)
double dollar sign (33)
exclamation mark (1) .
grave (') .
percent (%) .
period (.) . .
underscore (-) .

special groups

special names .
<ACTIVITY>
<CURSOR>
<IMAGE>

RATIONAL

7/1/87

. SMU-204
. SMU-306

SMU-20

. SMU-189
SMU-12

SMU-21
SMU-40

SMU-12, SMU-13, SMU-27, SMU-31

SMU~-41

SMU-42

SMU-48
. SMU-311
. SMU-3

SMU-69

. SMU-165

. SMU-5
. SMU-7
. SMU-8
. SMU-7
. SMU-5
. SMU-6
. SMU-6
. SMU-§
. SMU-7
. SMU-6
. SMU-7
. SMU-6

SMU-54

SMU-1, SMU-2
. SMU-2
. SMU-2
. SMU-2

SMU-363

special names, continued
<REGION>
<SELECTION>
<TEXT>

special values .
<DEFAULT>
<PROFILE>
<SESSION>

spooler
devices
Queue.All_Spooler_Devices constant
print
Queue.Kill_Print_Spooler procedure .
Queue.Restart_Print_Spooler procedure

stable-storage error log
stack frame prefix .

standard error file
System_Utilities.Error_Name function

standard input file
System-_ Utilities.Input_Name function

standard output file
System_Utilities.Output_Name function

start, se¢ Run

start at scheduled time
Daemon.Schedule procedure .

state
jobo
Scheduler.Get_Job_State function .
Scheduler.Job_State type
State procedure
Scheduler.State
Job_Descriptor type .

Status procedure
Daemon.Status .
Major_Clients constant
Run procedure

stepping
jobs
System_Utilities.Done function
sessions
System-_Uetilities.Done function
terminals
System_Utilities.Done function

SMU-364

. SMU-2
. SMU-2
. SMU-2

. SMU-2
SMU-55
SMU-556
SMU-55

SMU-97

. SMU-112
. SMU-127

SMU-12
. SMU-6

. SMU-215
. SMU-228

. SMU-~-246

SMU-33

. SMU-133
. SMU-156
. SMU-167

SMU-131, SMU-182
. . . SMU-161

SMU-13, SMU-44
SMU-27
SMU-31

. SMU-210
. SMU-211

. SMU-212

e RATIONAL

stepping, see also Next
stop, see Cancel_Shutdown, Quiesce

stop bits
Terminal.Set_Stop_Bits procedure

Stop-Bits function
System_Uetilities.Stop_Bits

Stop-Bits_Range subtype
System_Utilities.Stop_Bits_Range
Terminal.Stop-Bits_Range

stop shutdown
Operator.Cancel_Shutdown procedure

Storage_Error exception
System_Utilities package
Get_Page_Counts procedure
Set_Page_Limit procedure

strict stream policy

strings
byte
System_Utilities.Byte_String subtype
nameo

substitution characters .
atsign (@)
double question mark (?7)
pound sign (#)
question mark (?)

super user, see Enable_Privileges, privileged mode

>>SWITCHL < parameter placeholder .

switches
library
Page_Limit
gession
Default_Job.Page_Limit .

>>SWITCHES< < parameter placeholder .
>>SWITCH FILE< < parameter placeholder

symbolic name
System_Uctilities.Job._Name function

System_Backup package .

System_Boot_Configuration function
System_Utilities.System_Boot-Configuration

RATIONAL 7

. SMU-322

. SMU-268

. SMU-264
. SMU-827

SMU-59

. SMU-221
. SMU-262

. SMU-138

. SMU-202
. SMU-1

. SMU-4
. SMU—4
. SMU-5
. SMU-4
. SMU-5

. SMU-3

SMU-220, SMU-261

SMU-220, SMU-261
. SMU-3
. SMU-3

. SMU-233
. SMU-191

. SMU-265

SMU-365

system diagnosis
Operator.Internal-System_Diagnosis procedure

System_Up_Time function
System_Utilities.System_Up_Time .

System_Utilities package .

tape

blue
data
display

Tape.Display_Tape procedure
format

Tape.Format_Tape procedure
label

Tape.Examine_Labels procedure
read

Tape.Read procedure
rewind

Tape.Rewind procedure
unload

Tape.Unload procedure
write

Tape.Write procedure

Tape object manager
Tape package .

Tape subtype
System_ Utilities. Tape

Tape_Name function
System.Utilities.Tape_Name

Task_Display procedure
Debug.Task_Display

TERMCAP (Creating Your Own Terminal)

terminal
characteristics
Terminal package .

device characteristics

disable

Operator.Disable_Terminal procedure
enable

Operator.Enable_Terminal procedure
line

Terminal.Port subtype . .
login from non-Rational type

SMU-366

SMU-79

. SMU-266
. SMU-187

. SMU-191
. SMU-191

. SMU-284
. SMU-288
. SMU-287
. SMU-289
. SMU-292
. SMU-293

. SMU-294
SMU-11, SMU-58
. SMU-£88

. SMU-£267
. SMU-268

. SMU-6
. SMU-300

. SMU-299
. SMU-299

SMU-68
SMU-73

. SMU-305
. SMU-300

e RATIONAL

terminal, continued

number

System_Utilities.Value function .
ports

System_Utilities.Port subtype
settings

Terminal.Settings procedure
stepping

System_Utilities.Done function
type

Terminal.Set_Terminal_Type procedure
types .

Terminal function
System_Utilities. Terminal .

Terminal_Iterator type
System_Utilities. Terminal-Iterator .

Terminal_-Name function
System_Utilities. Terminal _Name .

Terminal object manager .
Terminal package

Terminal.-Type function
System_Utilities.Terminal _Type

Terminated enumeration .
terminated job
<TEXT> special name .

threshold
Daemon.Get-Log.-Threshold function
Daemon.Log._Threshold type . . .
Daemon.Set_Log—_Threshold procedure

Daemon.Show_Log_Thresholds procedure

Threshold_Warnings procedure
Daemon.Threshold_Warnings

tilde (")

time
Operator.Set_.System_Time procedure .
Scheduler.Get_Cpu-_Time..Used function
System._Utilities.Elapsed function

System._Utilities.System._Up_Time functl.on

time formats
Operator.Set_System._Time procedure

RATIONAL 73/sr

. SMU-278
. SMU-250
. SMU-326
. SMU-212

. SMU-323
. SMU-299

. SMU-269

. SMU-271

. SMU-272
SMU-11, SMU-58
. SMU-299

. SMU-278
. SMU-166
. SMU-133

. SMU-2

SMU-19
SMU-26
SMU-37
SMU-39

SMU-46
SMU-7, SMU-9

SMU-84
. SMU-151
. SMU-213
. SMU-266

SMU-84

SMU-367

Traverse_Job_Descriptors generic procedure
Scheduler.Traverse_Job_Descriptors

Traverse_Job_Descriptors procedure
Scheduler.Traverse_Job_Descriptors
Put generic formal procedure .

turn off
Operator.Shutdown procedure .

type
terminal
System_Utilities. Terminal_Type function
Terminal.Set_Terminal_Type procedure

U

underscore (-)
identifier character .
special character .

Unload procedure
Tape.Unload

Unregister procedure
Queue.Unregister
Remove procedure

up time

System_Utilities.System_Up_Time function .

Use_Default_Wsl_Limits procedure
Scheduler.Use-Default- Wsl_Limits .
Set_Wsl_Limits procedure

user
access control .
change job attribute
Scheduler.Set._Job._ Attribute procedure
create
Operator.Create_User procedure
delete
Operator.Delete_User procedure
group membership
Operator.Add_To-Group procedure .
Operator.Display_Group procedure
Operator.Remove_From_Group procedure
home library

System_Utilities.Home_Library function .

login
Operator.Get_Login_Limit function .
Operator.Limit.Login procedure
logoff
Operator.Force.Logoff procedure

SMU-368

. SMU-185

. SMU-187
. SMU-186

SMU-~-88

. SMU-273
. SMU-323

. SMU-3
. SMU-6

. SMU-293

. SMU-128
. SMU-125

. SMU-266

. SMU-188
. SMU-180

. SMU-197
SMU-563

. SMU-179
SMU-64
SMU-67
SMU-66
SMU-70
SMU-82

. SMU-223

SMU-77
SMU-80

SMU-T75

s RATIONAL

user, continued
name
System_Utilities.User—-Name function

password

Operator.Change_Password procedure .

user-defined groups

User function
System_Utilities.User .

User—Name function
System-_Uetilities.User.Name

User object manager
username groups
utilities

System_Utilities package

value delimiters .
colon/equals (:=)
equals (=)
equals/greater than (=>) . . .

Value function

System_Ultilities.Value
Done function
Init procedure .
Job_Iterator type .
Next procedure .
Session_Iterator type
Terminal-Iterator type

version
pathname
System_Utilities.Image function
print
Queue.Print_Version procedure .

Version subtype
System_Utilities.Version

vertical bar (|) symbol

view
contents of tape
Tape.Display_Tape procedure
port settings
System_Utilities package .
print queue
Queue.Display procedure .

RATIONAL 71/er

. SMU-275

SMU-60
SMU-565

. SMU-274

. SMU-275
SMU-11, SMU-58
SMU-54

. SMU-197

. SMU-8
. SMU-8
. SMU-8
. SMU-8

. SMU-276, SMU-2T7, SMU-278

SMU-210

. SMU-225, SMU-226, SMU-227

. SMU-232
. SMU-241
. SMU-259
. SMU-271

. SMU-224
. SMU-118
. SMU-279

. SMU-8

. SMU-284
. SMU-197

. SMU-109

SMU-369

view, continued
system information

System._Utilities packageSMU-197
terminal settings
System..Utilities package SMU-197
Volume subtype
Daemon.Volume SMU-47
w
wait
Scheduler.Disk-Waits function . SMU-143
Wait enumeration SMU-133, SMU-167
warning
Daemon.Get_Warning_Interval function SMU-22
Daemon.Threshold Warnings procedure SMU-46
Operator.Shutdown_Warning procedure SMU-90
Warning enumeration SMU-16
Warning_ Interval procedure
Daemon.Warning_Interval SMU-48
Weekly client SMU-12
wildeards SMU-1 sMU-3
at sign (8) . . O ¥ (18]
double question mark ("") e e e e e e e e sMU-3, sMU-4
pound sign (#)S8MU-3
questionmark (?) SMU-3 SMU-4
withheldjob SMU-133, SMU-136
withheld task
Scheduler.Get_Withheld_T ask_load procedure SMU-1568
working set limits (WSL)
Scheduler.Get_Wsl_Limits procedure SMU-169
Scheduler.Set_Wsl_Limits procedure . . . e e e e eSsMU-180
Scheduler.Use_Default_Wsl._Limits procedure e e e esSMU-188
working set managementSMU-139
Working._Set_Size function
Scheduler.Working_Set_SigeSMU-189
Job_Descriptor typeSMU-161
world,enclosingSM0-6
>>WORLD NAMES< < parameter placeholder SMU-3
write
to tapes
TapepackageSMU-283

SMU-370 7/1/87 IQATIONAL

Write procedure

Tape.Write SMU-283, SMU-£294
Write_Mt procedure
Tape.Write Mt e e e e e . . . SMU-298
Wil
Scheduler.Get_Wsl_Limits procedure SMU-159
Scheduler.Set_Wsl_Limits procedure . . . e e e e esMU-180
Scheduler.Use_Default_Wsl_Limits procedure e e e e SMuU-188
X
Xon/Xoff
System_Utilities.Receive_Xon_Xoff_Bytes function SMU-254
System_Utilities.Receive-Xon.Xoff .Characters function SMU-255
Terminal.Set_Receive_Xon_Xoff_Bytes procedure SMU-320
Terminal.Set_Receive_Xon_Xoff_Characters procedure SMU-321
Terminal.Set_Xon-Xoff_-Bytes procedure SMU-324
Terminal.Set_Xon_Xoff.Characters procedure SMU-32§
Xon-Xoff_Bytes function
System_Utilities.Xon-Xoff_Bytes SMU-280
Xon_Xoff_Characters function
System_Utilities.Xon_Xoff_Characters SMU-281

RAT'ONAL 7/1/87 SMU-371

RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 monthsorless _ iyear 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code
Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, System Management Ultilities (SMU), 8001A-30

