
Rational Environment
Reference Manual

System Management Utilities (SMU)

Copyright ~ 1985, 1986, 1987 by Rational

Document Control Number: 8001A-30

Rev. 0.0, November 1985
Rev. 1.0, April 1986
Rev. 2.0, July 1986
Rev. 3.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader's Comments form on the last page of this book, which requests
the user's evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

DEC, VAX, VMS, and VT100 are trademarks of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Rational and RlOOO are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive

Mountain View, California 94043

SMU-ii 7/1/87 RATIONAL

Contents

How to Use This Book
Key Coneepts .

Naming Objects
Special Names
Special Values
Error Reactions
Parameter Placeholders
Wildcards

The Wildcard #

The Wildcard @

The Wildcard ?
The Wildcard ??

Substitution Characters
The Substitution Character #

The Substitution Character @

The Substitution Character?
The Substitution Character ??

Special Characters in Names
The Special Character!
The Special Character ~ .
The Special Character $.
The Special Character $$
The Special Character %
The Special Character _
The Special Character .
The Special Character \
The Special Character '
The Special Characters []

xiii

1
1
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7

RATIONAL 7/1/87 SMU-iii

The Special Characters {}
The Options Parameter . .

Syntax Rules
Boolean Options: A Special Case
Literals in Options: A Special Case

package Daemon
The Daemon and Its Clients
When Clients Run

procedure Collect
subtype Collectioa.Priorlty
type Conditiouc.Class . . .
function GeLAccess_LisLCompaction
function GeLConsistency_Checking
function GeLLog_ Threshold
procedure GeLSize
procedure GeLSnapshoLSettings
function GeL Weming.Jnterval
function Inc.Progress
function Interval .
function LasLRun
type Logc'Threshold
constant Major..Clients
function NexLScheduled
procedure Quiesce
procedure Run
procedure Schedule . . .
procedure Set_Access_LisLCompaction
procedure Setc.Coneletency..Checking
procedure SeLLog_ Threshold
procedure SeLPriority
procedure Show..Logc'Thresholda
procedure Show_SnapshoLSettings
procedure Snapshot..Einishc.Message
procedure Snapshot.Btart.cMeseage .
procedure SnapshoL Warning_Message
procedure Status
procedure Threshold_Warnings

SMU-iv

8
8

8
9
9

11
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
31

.33
· 35
.36
· 37
· 38
· 39
.40
· 41
· 42
.43

44
.46

7/1/87 RATIONAL

subtype Volume
procedure Warning_Interval

47
48

end Daemon
package Message

proced ure Send
procedure Send..All

49
50
51

end Message

package Operator
Access Control
Access Control and Groups

Username Groups
Special Groups . . .

Operator Capability
Privileged Mode

Public and Network..Public Groups
User-Defined Groups
ACLs for New Username Home Worlds

Parameter Placeholders
Response Profiles

procedure Add., Toe.Group . . .
procedure Archive.Dn.Bhutdown
procedure CanceLShutdown
procedure Change..Password
procedure Creates.Group
procedure Create..Sesslon
procedure Create..User
procedure Delete..Group
procedure Delete..User
procedure Disablec'Ierminal
procedure Disk.Space
procedure Display..Group
procedure Enable..Prlvlleges
procedure Enablec.Terminal
procedure Explain.Xlrash
procedure Force_Logoff
function GeL Archive.Dn.Bhutdown

53
53
54
54
54
54
54
54
55
55
55
55
56
58
59
60
61
63
64
66
67
68
69
70
72
73
74
75
76

RATIONAL 7/1/87 SMU-v

function Get_Login_Limit
function GeLShutdown_Interval . .
proced ure Intemal.Bystem.Dlagnosls
procedure LimiLLogin
function Prlvileged..Mode . . .
procedure Removec.FromcGroup
procedure Set_SysteIll- Time . .
procedure Showc.Logln..l.imlt
procedure Show _Shu tdown..Settinga
procedure Shutdown
procedure Shutdown., Warning

77
78
79
80
81
82
84
86
87
88

. 90
end Operator

package Queue .
procedure Add .
constant AlLClasses
constant AILS pooler _Devices
procedure Cancel . .
procedure Classes
su btype Clasa..Name
procedure Create .
procedure Default
procedure Destroy
procedure Devices
procedure Disable
procedure Display
procedure Enable .
procedure KiILPrinLSpooler
procedure Print
procedure PrinL Version
procedure Register
procedure Remove
procedure RestarLPrinLSpooler
procedure Unregister

91
93
96
97
98
99

100
101
102
104
106
107
109
111
112
113
118
123
125
127
128

end Queue

SMU-vi 7/1/87 RATIONAL

package Scheduler
Jobs .

Job Numbers
Foreground and Background Jobs
Job Kinds .
Job States

Scheduling Review Interval
CPU Scheduling

Foreground Jobs
Run Load ..
Number of Withheld Jobs
Foreground Budget . .

Background Jobs
Background Job Streams

Job Stream Time Limits
Number of Runnable Jobs on a Stream
Strict Stream Policy

Memory Scheduling
Page Withdrawal . . .

Disk Scheduling
subtype Opu..Priority
procedure Disable
function Disk_Waits
procedure Display
procedure Enable
function Enabled .
function Get . . .
function GeLCpu_Priority
function Get..Cpu., Time_ Used
procedure GeL Disk_Wait_Load
function GeLJob_Attribute
function GeLJob_Descriptor
function GeLJob_Kind . .
function GeLJob_State . .
procedure GeLRun_Queue_Load
procedure GeL Withheld_ Task_Load
procedure GeL WsLLimits
type Joh..Descriptor

131
132
132
132
132
133
134
134
135
135
136
136
136
137
137
138
138
139
140
140
141
142
143
144
147
148
149
150
151
152
153
154
155
156
157
158
159
160

RATIONAL 7/1/87 SMU-vii

subtype Job.Jd
type Job_Kind
type Job.Btate
subtype Load.Factor
subtype Milliseconds
procedure Set

CPU Scheduling
Memory Scheduling .
Memory Scheduling (Continued)
Disk Scheduling .
Background Job Streams

procedure SeLJob_Attribute
procedure SeL WsLLimits .
procedure State

generic procedure 'Iraversec.Iobc.Descrlptora
generic formal procedure Put
procedure Traverse.LIobc.Descriptors
procedure Use_Default_ WsLLimits
function Working_Set_Size

164
165
167
168
169
170
171
171
172
172
172
179
180
182
185
186
187
188
189

end Scheduler

package System_Badup
procedure Backup
procedure History
subtype Id
type Kind .

end System_Batkup

paekage System_Utilities
constant AlL Bad_Blocks
type Bad_Block_Kinds
function Bad_Block_List
type Block..List
subtype Byte..String
subtype Character _Bits_Range
function Character..Slse . . .
function Cpu .
function Detachc.On..Diaconnect

191
192
194
195
196

197
198
199
200
201
202
203
204
205
206

SMU-viii 7/1/87 RATIONAL

function Dlsconnect..Onc.Dlsconnect
function Disconnecf..Onc.FailedcLogin
function Disconnectc.On..l.ogoff
function Done
function Done
function Done
function Elapsed
function Enabled
function Error _N ame
function Flow..Control
function GeL Board.Jnfo
function GeLJob
procedure GeLPage_Counts
function GeLSession
function Home..Library
function Image
procedure Init
procedure Init
procedure Init
function InpuLName
function InpuLCount
function InpuLRate
subtype Job_Id
type Job..Iterator
function Job_Name
function LasLLogin
function LasLLogout
function Log_Failed_Logins
function Loggedcln
function Loglnc.Disabled
function LogoffcOnc.Disconnect
constant Manufacturers..Badc Blocke
procedure Next
procedure Next
procedure Next
subtype Object
function OutpuLCount
function OutpuLName

207
208
209
210
211
212
213
214
215
216
218
219
220
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

RATIONAL 7/1/87 SMU-ix

function Output_Rate
function Parity .
type Parity..Kind
subtype Port
function Priority
function Receive_Flow_Control
function Receive_Xon_XofLBytes
function Receive.Xon.Xoff..Oharactera
constant Retargeted..Blocke
function Session
subtype Sesslon.Jd . .
type Session.Jterator .
function Sesslon..Name
procedure Set_Page_Limit
function Stop..Bits
subtype Stcp..Blta.Range
function System-Boot_Configuration
function System- Up.,Time
subtype Tape
function Tape_Name
function Terminal
type TerminaLIterator
function TerminaLN ame
function TerminaL Type
function User
function User_Name
function Value
function Value .
function Value .
subtype Version
function Xon.XoffcBytes
function Xon_XofLCharacters

end System_Utilities

package Tape .
procedure Display_Tape
exception Error
procedure Examine..Labels

SMU-x

247
248
249
250
251
252
254
255
256
257
258
259
260
261
263
264
265
266
267
268
269
271
272
273
274
275
276
277
278
279
280
281

283
284
286
287

7/1/87 RATIONAL

procedure FormaL Tape
procedure Read
procedure Read_Mt
procedure Rewind
procedure Unload
procedure Write
procedure Write_Mt

288
289
291
292
293
294
298

end Tape

paekage Terminal
VT100 Terminal Support

Creating Your Own Terminal Type
subtype Character _Bits_Range
renamed function Current
subtype Parity_Kind
subtype Port
procedure Set..Oharacterc.Sise
procedure Set.Detach.Du.Disconnect
proced ure Set..Dieconnectc.Onc.Dlsconnect
procedure Setc.Disconnectc'Onc.Failed..Login
proced ure Setc.Disconnectc.OncLogoff
procedure SeLFlow_Control . .
procedure SeLlnpuLRate ...
procedure SeLLog_Failed_Logins
procedure SeLLogin_Disabled .
procedure Set..Logoffc.On..Disconnect
procedure SeLOutpuLRate
procedure SeLParity
procedure Set..Receiva..Flow.Dontrol
procedure Set.cReceivec.Xoru.Xoffc.Bytee
proced ure SeLReceive_Xon_Xoff_Characters
procedure Sef..Stopc.Bits
procedure SeL TerminaL Type . . .
procedure Set..Xon.Xoff.Bytes
procedure SeLXon_Xoff_Characters
procedure Settings
subtype Stop..Bita.Range

299
299
300
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
320
321
322
323
324
325
326
327

RATIONAL 7/1/87 SMU-xi

end Terminal

Index 329

SMU-xii 1/1/81 RATIONAL

How to Use This Book

The System Management Utilities (SMU) book of the Rational Environment Ref-
erence Manual contains reference in/ormation describing commands and tools pro-
vided by the Rational Environment TM that are useful primarily for system man-
agers. This reference information is intended for users who are familiar with the
Environment and Ada@ programming. Note that the user-oriented commands in
packages Operator and Queue are also documented in the Session and Job Manage-
ment (SJM) book of the Rational Environment Reference Manual.

Organization of the Reference Manual
The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):
1 Reference Summary

Keymap
Master Index

2 Editing Images (EI)
Editing Specific Types (EST)

3 Debugging (DEB)
4 Session and Job Management (SJM)
5 Library Management (LM)
6 Text Input/Output (TIO)
7 Data and Device Input/Output (DIO)
8 String Tools (ST)
9 Programming Tools (PT)
10 System Management Utilities (SMU)
11 Project Management (PM)

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 7/1/87 SMU-xiii

Organization of the
Rational Environment Reference Manual

\.. 11volumes containing 14books----------1
Volume 1: 3 books Volume 2: 2 books

--.......--
EI
EST

o

o

o

Rauonal Environment

Rel2reme
Manual

A sample book

Volume 11: 1 book

Key concepts

!.+---- Book index

Topical section

Unit section

ll.J..i.I----- Book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User's Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking-TCP lIP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1
Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:
• Reference Summary: The Reference Summary contains the full Ada specifi-

cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are
documented.

• Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

• Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes Z-ll
Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:
• Contents: The table of contents provides a complete list of all the units in the

book and their reference entries.
• Key Concepts section: Most of the books contain a section describing key

concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

• Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.
The sections for units are alphabetized by the simple names of the units. For
example, the section for package l'Iools.String., Utilities is alphabetized under
String., Utilities.
For many units, introductory material and/or examples specific to the unit appear
after the section tabs.
Within the section for a given unit, the reference entries describing the unit's
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 7/1/87 SMU-xv

• Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

• Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.
Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information
The following suggestions may help you in finding various kinds of information in
the documentation for Rational's products.

Learning about Environment Faeilities
If you are a novice user starting to use the Environment, consult the Rational
Environment User's Guide.

If you are familiar with the Environment but are interested in learning about the
Environment's library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a SpeeifleItem
If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World !section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

SMU-xvi 7/1/87 RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking-TCP lIP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index
The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions
raised.

Viewing SpedJlc:ations On-Line
If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathnarne to the Common-
.Definition procedure-for example, Defini tion (" ICommands. Librar~") ;. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit-for example,
Def iru tion ("\Librar~");.

Using On-Line Help
Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the I Help on Helpl key
or consult the Rational Environment User's Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross- Reference Conventions
The following conventions are used in cross-references to information:

• Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

• Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply "procedure Move." Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames,

• Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation. Delete procedure would be "procedure
Compilation. Delete. "

RATIONAL 7/1/87 SMU-xvii

• Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be "EI, procedure Editor. Region.Copy.-

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames-for example, ·procedure !Commands.Library.Copy.- When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit's specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedbaek to Rational: Reader's Comments Form
Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader's
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

SMU-xviii 7/1/87 RATIONAL

Key Coneepts

System Management Utilities (SMU) documents the following packages, which are
useful to system managers:
• Daemon: Utilities for maintaining system efficiency.
• Message: Utilities for sending messages.
• Operator: Commands for creating and deleting user accounts and groups.
• Queue: Commands for setting up and querying the print spooler.
• Scheduler: Utilities for fine-tuning system response.
• Systemc.Backup: Commands for performing system backups.
• Systemc.Utilities: Commands for ~aining access to system characteristics that are

set by packages !Commands.Job (documented in SJM), Operator, and Terminal.
• Tape: Commands for performing tape operations.
• Terminal: Commands for configuring, enabling, and disOpabling terminal ports.

Naming Objects
Many commands in the Environment require a way of naming objects in the En-
vironment to move those objects or to perform operations on those objects. The
Environment uses two forms of naming: Ada names and string names. Ada names
are used in program units or when executing a command. String names are typically
used in the parameters to Environment commands.

Ada names are used to call an Environment command in a Command window or
to reference an Ada unit in a program. Ada names are the extended Ada names as
defined in the Reference Manual for the Ada Programming Language. Ada names
are used to reference Ada units only. Files, worlds, directories, and other non-Ada
units in the Environment cannot be referenced with an Ada name.

String names are used as arguments to commands. These strings are very similar
to Ada names but can be used to reference any object in the Environment. Also,
string names have five important additions: special names, parameter placeholders,
wildcards, special characters, and attributes. The ability to create a set of names
using simple set notations and to substitute characters also exists.

RATIONAL 7/1/87 SMU-l

Key Concepts

Special Names
Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow you to specify selections and
designations without providing a pathname. Anywhere that a string name can be
used, special names can be used. They take the form «<special name>". Special
name specifies the text, object, region, or activity, as described below:
"<SELECT ION)" References the highlighted object if the cursor is located in a

highlighted area.
References the highlighted object.
References the object on which the cursor is located, whether
or not there is a highlighted area in the window.
H the cursor is in a highlighted area, this special name refer-
ences the highlighted object. H the cursor is not located in
the highlighted area, this special name references the image
on which the cursor is located.
References the highlighted text in the image in the window.
References the default activity. H an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

"<REGION)"

"<CURSOR)"

"<IMAGE>"

"<TEXT>"

"(ACTIVITY)"

Special names are used as default parameter values to many operations. The user
can replace them with another special name or other form of string name, as ac-
cepted by that operation.

Speeial Values
Many operations in the Environment have a Response parameter that specifies how
the command should respond to errors.

Error ReadioDs
When errors are discovered in a command, the system can respond by:
• Ignoring the error and trying to continue.
• Issuing a warning message and trying to continue.
• Raising an exception and abandoning the operation.

For each job, the Rational Environment maintains a default action for commands
in package !Tools.Profile (documented in SJM) to take if an error occurs. There are
commands to specify and display the default error reaction for a job. Regardless of
the default error reaction, any error reaction can be specified for any command.

The Environment has special values used as parameters to commands for which
profile it should use when responding to errors in a command. These are "<PRO-
FILE)", "<SESS I ON)", and "<DEFAULT>", which refer, respectively, to the job response
profile, the session response profile, and the default profile returned by the Pro-
file.DefaulLProfile function. See SJM, package Profile, for further information on
profiles.

SMU-2 7/1/87 RATIONAL

Key Concepts

Parameter Plaeeholders
Many Environment commands use parameter placeholders as default parameter val-
ues. They take the form "> >parameter placeholder«; <". This naming convention
is used, as its name suggests, as a placeholder indicating the type of string name
that must be entered to replace it. Executing a command containing a parameter
placeholder results in an error. Parameter placeholders include:

"»F ILE NAME«"
"»SOURCE NAMES«"
"»SWITCH«"
"»SW ITCH F ILE«"
"»SW ITCHES«"
"»WORLD NAMES«"

For example, an operation that has the "»F ILE NAME«" parameter placeholder
requires a filename, such as "!Users.John.File_l".

Wildc:ardl

Wildcards allow for both the abbreviation of names and the specifying of several
objects with one name. The wildcards are: pound sign (#), at sign (@), question
mark (?), and double question mark (??).

The Wlldeard #

The pound sign (#) represents any single identifier character in a name, including
the underscore (_) and the single quote ('). It can be used several times within a
single name. For example, F### will match the name Food.

Any wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.####y, can be created to refer to the first two of them.

The Wildeard @

The at sign (@) represents zero or more identifier characters in a name, including
the underscore (_) and the single quote (') It does not match any subunits of Ada
units. It can be used several times withm a single name. For example, the name
!Users.Fred.Food can be written !U@.@.Foodif that abbreviation is unambiguous.

This wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as Illaera.Stooges.e, can be created to refer to all three of them.

This wildcard can be combined with the special characters, discussed in the next
section, to create very short names that represent sets of objects in the current
context. As before, if there are three Ada units in the current context called Larry,
Curly, and Moe, the string @ can be used to represent all three Ada units, but it
would not include their subunits.

RATIONAL 7/1/87 SMU-3

Key Concepts

The Wildcard r
The question mark (?) represents zero or more components in a name, which are not
worlds or objects contained by those worlds. For example, the name !Users.Stooges?
represents the Ada units called Larry, Curly, and Moe and any of their subunits.

Also note that the periods before and after the wildcard are optional. For example,
the name A.?B is equivalent to the name A7B.

The Wlldcard rr
The double question mark (7?) represents zero or more components in a name,
including worlds or objects contained by those worlds. For example, the name
!Users?? represents the home worlds of all users and the contents of those worlds;
!Users.Bill represents everything in his home world, including worlds and the objects
within those worlds. As another example, consider that "!??" matches all objects
in the directory system on a given machine.

Note that the periods before and after the wildcard are optional. For example, the
name A.??B is equivalent to the name A??B.

Substitution Charaden
Similar to the way in which wildcard characters can be used to specify a source
group of objects, substitution characters can be used to create target names from
source names.

The substitution characters and their definitions are described below. Note that
if a substitution character is encountered after all segments/wildcards have been
exhausted, the characters are replaced by the null string. If the character # or 7 is
replaced by the null string, an immediately following period (.) is also elided from
the resulting string.

The Sub.mutIon Character #

The pound sign (#) is replaced by the next complete segment in a name. For
example, if there are Ada units in the world !Users.Stooges called Larry, Curly,
and Moe, and the user wants to copy them into [Users.Stooges.New., World, the
user could build the target name parameter (from the !Users.Stooges source name
parameter) using substitution characters as follows: !#.#.New_World.e.

The Substltutlon Character @

The at sign (@) is replaced by the portion of the current segment that is matched by
a wildcard in the source name. If there is more than one wildcard in the segment, a
separate @is needed in the target to match each one. If the current segment has no
wildcards, the next character that is followed by any of the special (not wildcard)
characters covered in this section is not eligible as the source of the substitution.
(For the purpose of this matching, @, #, 7, and ?? are considered to be wildcards.)

For example, there is a world called !Users.Gzc containing files Flle..I through
File_50. The user wants to rename these objects My..Filec l through My_File_50.
The source name parameter would be "!Users.Gzc.File_@". The target name pa-
rameter, using substitution parameters, would be "!#.#.My_File_@".

SMU-4 7/1/87 RATIONAL

Key Concepts

The Substitution Charader T

The question mark (?) is replaced by successive full segments until the segment
for a world is encountered. For example, to copy everything in a world up through
the next-level world !Users.Mary to !Users.John, the source string would be !Users-
.Mary?? and the target string would be !Users.John?

The Substitution Charaeter TT

The double question mark (77) is replaced by full segments, including worlds. In
the example in the previous paragraph, the target string !Users.John?? would copy
everything in all subworlds.

Speeial Charaders in Names
Special characters can be used in names to specify either relative or absolute con-
texts or to specify indirect files of names. These special characters apply to names
used throughout the Environment.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character of exclamation (!), caret (~),
dollar sign ($), double dollar sign ($$), percent (%), underscore (_), period (.),
backslash (\), or grave (') causes an explicit interpretation of the remainder of the
name as described below.

Character pairs are also used to enclose a name and to give that name an additional
meaning. Character pairs are brackets ([]) and braces ({}), which are also described
below.

The Spec1alCharader !

The exclamation mark (!) specifies that the context for resolving the remainder of
the name should be set to the root of the directory system. This creates a fully
qualified name. This character represents the root of the library system in any
context.

The Speelal Charader ~

The caret (A) specifies that the context should be set to the immediately enclosing
object. This climbs the hierarchy of objects and eventually reaches the root of
the directory system. This prefix can be used repeatedly to define the context to
be several units above the current context. The parent object of the root of the
directory system is itself.

A special use of this character occurs in combination with a bracketed name. A
name component of the form -jsomecunlt] resolves to the closest containing object
whose simple name is Somez.Unit. Brackets normally are used for creating sets of
objects.

The caret can also be used as a shorthand method for referring to objects in a
parent unit. For example, if the current context is !Users.Pete, another user named
Joe can be referred to as !Users.Joe or simply -Joe,

RATIONAL 7/1/87 SMU-5

Key Concepts

The Speelal Character •

The dollar sign ($) specifies that the context should be set to the immediately
enclosing library. A library is either a directory or a world. If the current context
is a library, this character has no effect.

A special use of this character occurs in combination with a bracketed name. A name
component of the form $[some.Jibrary] resolves to the closest containing library
whose simple name is Soma..Library,

The Speelal Character ••

The double dollar sign ($$) specifies that the context should be set to the immedi-
ately enclosing world. This is more restrictive than the single dollar sign ($), which
is either a world or a directory. If the current context is a world, this character has
no effect.

A special use of this character occurs in combination with a bracketed name. A
name component of the form $$[some_world] resolves to the closest containing world
whose simple name is Somes.World.

The Speelal Character %
The percent (%), used only in the Rational Debugger, can be used only as the first
character of a name. It specifies that the next name component is a task name. Task
names are either string names assigned to tasks by calls to the !Commands.Debug-
.SeLTask_Name or !Tools.Debug_Tools.SeLTask_Name procedure or task num-
bers assigned by the Environment. The !Commands.Debug.Task_Display procedure
lists all tasks and their names and numbers.

The components of a name that follow the task name are interpreted as objects
declared in the named task. If the task name is followed by _n (where n is a
number), then the name refers to a stack frame of the named task. Names of stack
frames are further discussed in "The Special Character _", below.

The Speelal Character _

The underscore (_) is interpreted as an indirect file prefix when used in some En-
vironment commands. If the first character after the underscore is an alphabetic
character, then it is assumed to be the first character of the name of a file that
contains other names. This provides a way of building lists of objects and referring
to that list in a name. It must also be used when specifying an activity file as an
indirect file.

The underscore character is also interpreted as a stack frame prefix when used in
the Rational Debugger. If the value of an object declared in a subprogram is to
be named, then the frame on the run-time stack that contains an activation of
that subprogram must be named. Renaming is done using the notation "_frame
number". Stack frames are numbered for each task starting at the top with 1. Thus,
_4 refers to frame number 4 (fourth frame from the top). Frames are alternately
numbered from the bottom using negative numbers.

SMU-6 7/1/87 RATIONAL

Key Concepts

The SpeelalCharader •
The period (.) is used both as a name component separator and as a name prefix.
As a separator, it is used just as in Ada names to separate components of a name.
For example, in the name Commands.Ada, the period separates the two components
of the name.

As a prefix character, the period specifies that the first component of the name is a.
library unit name. This is used only in the Rational Debugger. A second component
of the name would be an object declared in the named library unit.

The Spedal Charader \

The backslash (\) specifies that the next name component be evaluated in the
current searchlist, For example, a name such as Larry would be evaluated in the
current context. However, a name such as vl.arry would be evaluated in each of the
contexts of the search list in turn until all occurrences of the name Larry are found
in those contexts. If more than one occurrence is found, a menu is displayed.

More information about searchlists can be found in Session and Job Management
(SJM).

The Spedal Charader •

The grave (') is used to evaluate names using the current context and the set of
links associated with the current context. The grave evaluates the name as if it
were the name of an Ada unit in a with clause of a unit in the library that contains
the current context. For example, the name 'Moe resolves to an Ada unit called
Moe in the containing library. Moe could be a link to some other library.

This kind of naming does not allow for renamed packages or instances of generic
packages or subprograms to be used. It does not "look through" renaming declara-
tions.

More information about links can be found in Library Management (LM).

The SpeelalCharade" []

Brackets ([]) define a set notation. Sets are created by enclosing a series of name
components, separated by commas, in brackets. For example, the name [Larry,
Curly, Moe] represents only those three objects in the current context.

The semicolon character can also be used to separate name components. Commas
and semicolons cannot be mixed. If semicolons are used, each name component
in the set must resolve to at least one object. For example, Foo?['C(Lib), 'Spec)
matches any component of Foo that is either a library or an Ada spec. Foo[AjB
must match A and B in Foo.

Names can also be excluded from a set with the tilde C). For example, the name
[@, - Curly] represents all names in the current context except the name Curly.

The special string II represents the current context, whether that context is a di-
rectory, world, Ada unit, or other object.

RATIONAL 7/1/87 SMU-7

Key Concepts

The Spec1alChar.den {}

Braces ({}) denote objects that have been deleted but not expunged as well as
objects that have not been deleted. For example, if the object Curly is deleted but
not expunged, the name @ refers only to Larry and Moe, but the name {@} refers
to Larry, Curly, and Moe.

The Options Parameter
Many of the commands in the Environment have an optional options specification in
the form of a parameter called Options. This options specification accepts different
strings, depending on the command specified.

SYDtaxRule.

The general form of the Options parameter is option=>value. Option is the name
of an option that modifies the way in which an operation behaves. The => symbol,
called a value delimiter, separates the option from the value value. Other permissible
value delimiters are the colon equals (:=) and equals (=) symbols. For example, in
the !Commands.Archive.Restore procedure, all of the following specifications of the
same option are permissible:

"AFTER=>12/25/86"
"AFTER:=12/25/86"
"AFTER= 12/25/86"

If more than one Options parameter is to be specified, the options specified must
be separated by commas (,) or semicolons (j). For example, in the Archive.Restore
procedure, the following two options might be used:

"AFTER=12/25/86,FORMAT=R1000"
Options taking string values that contain a comma or semicolon character must
have the string enclosed in parentheses. For example:

"LABEL= (MONDAY, JANUARY 26, 1987)"
Two or more options that will be assigned the same value can be combined by sep-
arating them with the vertical bar (I), with the value delimiter and value following
the last option. For example, two access control options from the Archive.Restore
procedure that might take the same value could be specified as:

"OBJECT_ACLIDEFAULT_ACL=>(JOHN=>RCOD)"
Sequentially enumerated options that will be assigned the same value can be spec-
ified by listing only the first and last options, separated by the double dot symbol
(..). For example, in package Profile, all log messages can be turned off by using
the option:

SMU-8 7/1/87 RATIONAL

Key Concepts

"Auxiliary_Mag ..Dollar_Msg=>False"

Boolean Options: A Spedal Cue

For Boolean options, the value delimiter and value are optional. When they are not
specified, the value of the Boolean option is true. To make the value false without
using the value delimiter and value, it can be preceded with the tilde C). For exam-
ple, specification of the REPLACE Boolean option for the !Commands.Archive.Restore
procedure can be done by using one of the following:

"REPLACE"
"REPLACE=>TRUE"
"REPLACE:=TRUE"
"REPLACE=TRL£"

The value can be set to false by using one of the following:

"-REPLACE"
"REPLACE=>FALSE"
"REPLACE:=FALSE"
"REPLACE=FALSE"

When Boolean options are specified without the value delimiter and value, the
options can be separated by spaces only. From the Archive.Restore procedure, for
example:

"REPLACE PROMOTE"
Boolean sequential enumerations can also be specified without the value delimiter
and value. Using the example from package Profile above, the following option
could be specified:

"-Auxi liary_Msg ..Dollar _Msg"

Literals In Options: A Spedal Cue

For literals of the form literal = value, the literal and value delimiter are optional.

RATIONAL 7/1/87 SMU-9

RATIONAL

package Daemon

An integral part of the Rational Environment is a program called the system dae-
mon, which periodically runs a set of special jobs that serve as system custodi-
ans. These special jobs, called clients, maintain system efficiency by managing the
system's internal data structures, disposing of obsolete data, and reclaiming used
storage space.

Using commands from package Daemon, you can schedule how often the system
daemon runs its clients. You can also run clients independently of the schedule,
prevent a scheduled client from running, and display information about each client.
Using operations from package l'Iools.Dlak..Daemon, you can control more specifi-
cally the conditions under which the disk client runs.

Execution of some of the operations in this package requires that the executing job
have operator capability. This is noted in the reference entry if the requirement
applies.

The Daemon and Its Clients
When users create and modify objects such as Ada programs, text files, and direc-
tories, or when objects such as user accounts and sessions are modified, changes
are made to data structures within the Environment. Each such data structure
is managed by an object manager that normalizes it (removes obsolete data) and
compacts it (reclaims the storage space that was used by the obsolete data).

The object managers include:

Actions
Code..Segment
Directory
Link
Session
User

Ada
Configuration
File
Null.Device
Tape

Archived.Dode
DDB
Group
Pipe
Terminal

Each object manager is named for the class of object it manages, so that the Ada
object manager manages objects of class Ada and so on. The DDB object man-
ager manages an object called the dependency databcue. The dependency database

RATIONAL 7/1/57 SMU-ll

package !Commands.Daemon

maintains a record of the dependencies between Ada units (for example, Ada with
clauses). If users make changes to Ada units that affect dependencies, the de-
pendency database is updated to reflect those changes. The DDB object manager
removes obsolete dependencies from the database.

The Actions object manager manages the data structure that controls simultaneous
access to objects. This data structure prevents inconsistencies when several users
or jobs require simultaneous access to an object.

As part of their function, object managers compact the objects they manage. This
part of their functionality is a client of the system daemon.

There are five clients in addition to the object managers:

Daily
Snapshot

Disk
Weekly

Errors.Log

The Daily client is a set of clients that are recommended to be run on a daily basis,
as follows: Ada, DDB, Directory, Disk, Error..Log, and File.

The Disk client removes obsolete data from the disks. Running the Disk client is
also called disk collection. Disk collection occurs both according to schedule and on
an as-needed basis.

The Error..Log client periodically updates the Environment error log, which exists
as a series of files in the world !Machine.Error_Logs. System errors and other
messages can be directed to the operations console, the stable-storage error log on
disk, or both with the Sef..Log., Threshold procedure. Messages in the stable-storage
error log are not accessible from the Environment until the Errors.Log client copies
the log into a permanent dated file in the world !Machine.Error_Logs.

The Snapshot client makes a record, or snapshot, of the current state of the Environ-
ment. Snapshots are important because, when the system boots, the Environment
is restored to the state that was recorded in the most recent snapshot. Only objects
that were committed before the last snapshot are preserved.

The Weekly client is a set of clients that are recommended to be run on a weekly ba-
sis, as follows: ArchivedcCode, Code..Segment, Configuration, Group, Link, Null-
_Device, Pipe, Session, Tape, Terminal, and User.

SMU-12 7/1/87 RATIONAL

package !Commands.Daemon

When Clients Run
Clients normally run automatically according to a default schedule established by
the !Machine.Initialize procedure when the machine is booted. It is recommended
that the schedule not be modified, except for the time at which the Daily and
Weekly clients run, without consultation with a Rational technical representative.

Messages are displayed in the Message window, warning all users when a major
client (Actions, Ada, DDB, Directory, Disk, File, or Snapshot) is about to run.

The system sends a warning message to all users two minutes before Daily and
Weekly clients are run.

Clients can be removed from the schedule using the Quiesce procedure. Clients can
also be run as needed (independently of the schedule) using the Run procedure.

When scheduling a client, keep in mind the effect of the client on the system. For
example, snapshots preserve a consistent state of the Environment at an assigned
moment in time. While a snapshot is running, all object managers suspend opera-
tion. On an active system supporting many users, this may affect the performance
of users' jobs. Package Daemon includes utilities that broadcast information about
upcoming snapshots, allowing users the opportunity to commit any unsaved files.

The Status procedure displays information on a given client (the default is Ma-
jor..Clienta}, including its name, the next scheduled run, the most recent run, and
the interval between runs. It also shows the current size of the client data structure,
along with its size before and after the last run.

RATIONAL 7/1/87 SMU-13

procedure Collect
package !Commands.Daemon

procedure Collect

procedure Collect (Vol Volume;
Priority Collection_Priority'- O);

Description

Begins disk collection on the specified volume at the specified priority.

If scheduled disk collection is already in progress, the procedure returns immediately
with no effect.

Note that the Collect procedure does not affect scheduling intervals.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Vol : Volume;
Specifies the disk drive by disk drive number. The value 0 specifies all volumes.

Priority: Collection_Priority := O;
Specifies the priority for running disk collection. Collection..Priority is an integer
from -1 through 6. The default, 0, ensures that disk collection takes place, poten-
tially affecting system load. The value -1 runs collection as a background activity;
6 allocates all resources for disk collection. The specified priority is temporary-
that is, it affects only the disk collection run at the same time as the one you are
about to start.

Example

The command:

daemon.collect (2,O);
starts disk collection on disk drive 2, affecting system load.

SMU-14 7/1/87 RATIONAL

subtype Collectionc.Priority
package !Commands.Daemon

subtype Collectionc.Priority

subtype Collection_Priority is Integer range -1 .. 6;

Description

Specifies the priority for running disk collection.

Enumerations

-1

Does not guarantee progress in disk collection. This priority runs disk collection
as a very low-level background activity, using just "spare" CPU cycles. If there are
none, disk collection will wait indefinitely (does a backoJ!) until cycles are available
or until its priority is increased.

e
Guarantees progress in disk collection, with a small impact on system performance
(and user response time). This priority is the same as running background jobs.

2

Guarantees progress in disk collection and preempts background jobs that do not
use the best priority.

3

Guarantees progress in disk collection and runs on par with most foreground jobs.
This priority has a big impact on system performance because it is sharing the same
priority as most commands.

4

Guarantees progress in disk collections and preempts most foreground jobs. Editing
is still possible, but commands will run very slowly.

6
Guarantees progress in disk collection and gives disk collection higher priority than
user jobs.

RATIONAL 7/1/87 SMU-15

type Condition..Claes
package !Commands.Daemon

type Conditione.Class

type Condition_Class 1S (Normal, Warning, Problem, Fatal);

Description

Specifies how serious an error should be before it is logged in an Environment log
file in the world !Machine.Error_Logs.

This type is used with the SeLLog_ Threshold procedure.

Enumerations

Fatal
Specifies situations in which the Environment refuses to proceed. The task that
was the source of the problem is suspended. Fatal messages appear in the error log
preceded by the characters ***.

Normal
Specifies messages from the Environment that provide information but do not nec-
essarily indicate problems. Normal messages appear in the error log preceded by
the characters ---.

Problem
Specifies situations that the Environment expects will lead to problems. Problem
messages appear in the error log preceded by the characters ! I I •

Warning
Specifies situations that are unusual but not necessarily dangerous. Warning mes-
sages appear in the error log preceded by the characters +++.

References

procedure SetcLog., Threshold

SMU-16 7/1/87 RATIONAL

function GeLAccess_List_Compaction
package !Commands.Daemon

function Get_Access_List_Compaction

Stl"'ing .- ••••) I"'etuI"'nBoolean;

Description

Returns true if any of the specified clients will be performing access-list compaction.

The clients that can perform access-list compaction are File, Ada, and Directory.
Access-list compaction is the process of removing nonexistent groups from the ac-
cess lists of objects. Nonexistent groups occur when groups are removed from the
machine.

For further information on groups, see package Operator.

Enabling this feature slows a client's operation.

Parameters

Client: Stl"'ing: = ;
Specifies the name of the client that will perform access-list compaction. Clients
are listed in the introduction to this package.

I"'etuI"'nBoolean;
Returns true if any of the specified clients will be performing access-list compaction;
otherwise, the function returns false.

References

procedure SeLAccess_LisLCompaction

package Operator

RATIONAL 7/1/87 SMU-17

function Get-Consistency _Checking
package !Commands.Daemon

function Get_Consistency _Checking

fLl"lCtion GeLConsistency_Checking (Client String.- ••••) return Boolean;

Description

Returns true if any of the specified clients will be performing consistency checking.

Consistency checking performs additional work to ensure that the internal state of
the system is as it seems. This operation normally is run only when problems are
suspected. For the ODD client, this setting may result in compaction.

Enabling this feature slows a client's operation.

Parameters

Client: String:=;

Specifies the name of the client to be queried to determine whether it is performing
consistency checking. Clients are listed in the introduction to this package. The
default specifies all clients.

return Boolean;
Returns true if any of the specified clients will be performing consistency checking.
The default is false. IT true, the default is restored after the next specified daemon
run has completed.

References

procedure Setc.ConeistencycChecking

SMU-18 7/1/87 RATIONAL

function Get-Log_ Threshold
package !Commands.Daemon

function Get_Log_ Threshold

function Get_Log_Threshold (Kind Log_Threshold) return Condition_Class;

Description

Returns the class of message that is handled according to the specified kind.

Parameters

Kind: Log_Threshold;
Specifies the destination for messages. The destination can be Console..Print,
Log., To..Dlsk, or CommiLDisk.

return Condition_Class;
Returns the class of message by Condition..Clase type, including Normal, Warning,
Problem, and Fatal.

RATIONAL 7/1/87 SMU-19

procedure GeLSize
package !Commands.Daemon

procedure Get_Size

procedure Get Size (Client
Size
Size_After_Last_Run
Size_Before_Last_Run

String;
out Long_Integer;
out Long_Integer;
out Long_Integer);

Description

Displays the current number of disk pages of the data structures compacted by the
specified client, both before and after the last time the client was run.

This procedure is useful for monitoring the growth curve of the data structures that
are compacted by the following clients: Ada, DDB, Directory, Disk, and File.

Parameters

Client : String;
Specifies the name of the client to be monitored. Clients are listed in the intro-
duction to this package; however, the following clients are most relevant to this
procedure: Ada, DDB, Directory, Disk, and File.

Size: out Long_Integer;
Specifies the number of pages currently used by the client's data structure.

Size_After_Last_Run : out Long_Integer;
Specifies the number of pages used by the client's data structure after the client
was last run.

Size_Before_Last_Run out Long_Integer;
Specifies the number of pages used by the client's data structure before the client
was last run.

SMU-20 7/1/87 RATIONAL

procedure GeLSnapshoLSettings
package !Commands.Daemon

procedure Get_Snapshot_Settings

procedure Get_Snapshot_Settings (Warning
StarLMessage
Finish_Message

out Duration;
out Boolean;
out Boolean);

Description

Returns the current snapshot options.

Parameters

Warning: out Duration;
Specifies the current warning interval (the amount of time between the warning and
the snapshot).

Start_Message : out Boolean;
Specifies whether a message is displayed when the snapshot begins.

Finish_Message : out Boolean;
Specifies whether a message is displayed when the snapshot is completed.

Referenees

procedure Show_Snapshot-Settings

procedure Snapahot..Plniahc.Meseage

procedure SnapshoLStart-Message

procedure Snapshot- Wamingc.Message

PT, package Time_Utilities

RATIONAL 7/1/87 SMU-21

function GeL Warning_Interval
package !Commands.Daemon

function Get.; Warning..Interval

function Get_Warning_lnterval return Duration;

Description

Returns the amount of warning given before each Daily client runs.

The time between the warning message and the running of the client gives the
operator time to quiesce it, if needed.

Parameter.

return Duration;
Returns the amount of time between the warning and the running of the Daily
client.

The value of Duration is a number of minutes, as defined in PT, package Time-
_Utilities.

Referencea

procedure Quiesce

PT, package Time_Utilities

SMU-22 7/1/87 RATIONAL

function In..Progress
package !Commands.Daemon

function In..Progress

function In_Progress (Client String) return Boolean;

Description

Returns whether the specified client is currently running.

Parameters

Client: String;
Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Boolean;
Returns true when the specified client is running; otherwise, the function returns
false.

RATIONAL 1/1/11 SMU-23

function Interval
package !Commands.Daemon

function Interval

function Interval (Client String) return Duration;

Description

Returns the scheduled interval for the specified client.

Parameters

Client: String;
Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Duration;
Returns the current interval, in number of seconds.

Referenees

PT, package Time_Utilities

SMU-24 1/1/81 RATIONAL

function Last-Run
package !Commands.Daemon

function Last..Run

function Last_Run (Client String) return Calendar.Time;

Description

Returns the last time the specified client was run.

Parameters

Client: String;
Specifies the client. Clients are listed in the introduction to this package.

return Calendar. Time;
Returns the time the client was last run.

RATIONAL 7/1/87 SMU-25

type Log..Thresbold
package !Commands.Daemon

type Loge.Threshold

Description

Determines the actions that can be taken on a system message.

The action selected is controlled by the Setc.Log., Threshold procedure, depending
on the Condition..Class type of the message.

Enumerations

CommiLDisk
Writes messages to the stable-storage error log on disk immediately. These messages
are retained if the system fails.

Console_Print
Directs messages to the operations console.

L09_To_Disk
Directs messages to the stable-storage error log on disk. These message's are not
written permanently on the disk immediately, so they may be lost if the system
fails before they can be written.

References

procedure Sef..Log., Threshold

SMU-26 1/1/87 RATIONAL

constant Major..Clients
package !Commands.Daemon

constant Major..Clients

Major_Clients constant String .- ".";

Description

Defines a constant string representing the list of major clients used as the default
client in the Status procedure.

The list of clients includes: Actions, Ada, DDB, Directory, Disk, File, and Snapshot.

References

procedure Status

RATIONAL 7/1/87 SMU-27

function Next-Scheduled
package !Commands.Daemon

function Next..Scheduled

function Next_Scheduled (Client String) return Calendar.Time;

Description

Returns the time at which the specified client will run.

Clients are listed in the introduction to this package.

Parameter.

Client: String;
Specifies the name of the client in question. Clients are listed in the introduction
to this package.

return Calendar.Time;
Specifies the next time the client will run.

SMU-28 7/1/87 RATIONAL

procedure Quiesce
package !Commands.Daemon

procedure Quiesce

procedure Quiesce (Client
Additional_Delay
Response

String
Duration
String

.- "»CLlENT NAME«";

.- 86_400.0;

.- "<PROFILE>") ;

Description

Revokes the specified client's schedule and prevents it from running for the amount
of time specified in the AdditionaLDelay parameter.

This procedure is equivalent to executing the Schedule procedure with a new value
for the FirsLRun parameter and the same value for the Interval parameter.

Quiescing a daemon only prevents a client from running; it does not stop a client
that is already running.

To prevent a client from running indefinitely, use Duration'Last for the Addi-
tionaLDelay parameter.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client: String:= "»QIENT NAME«";
Specifies the name of the client to be delayed. Clients are listed in the introduction
to this package. The default parameter placeholder "»CLlENT NAME«" must be
replaced or an error will result.

Additional_Delay : Duration:= 86_400.0;
Specifies the amount of delay. The default is one day. See PT, Timec Utilities-
.Seconds type.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 7/1/87 SMU-29

procedure Quiesce
package !Commands.Daemon

Example

The command:

daemon.quiesce ("error _log") ;

removes the Errore.Log client from the schedule for one day.

Referencea

procedure Schedule

PT, package Time-Utilities

SMU-30 1/1/81 RATIONAL

procedure Run
package !Commands.Daemon

procedure Run

procedure Run (Client
Response

String "Snapshot";
String ,- "<PROFILE>");

Description

Runs the specified client immediately.

If the Snapshot client is specified, a snapshot is not taken until after the snap-
shot warning message interval has elapsed. (See the Snapshot- Warningc Message
procedure.)

If the Disk client is specified, disk collection is done in the order of the disk with
the least remaining space to the disk with the most remaining space. If the Status
("Disk") procedure is called while the disk collection is running, a volume whose
space is yet to be collected has an asterisk (*) after its volume number.

Note that the Run procedure does not affect scheduling intervals nor does it schedule
the client for additional runs.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client: String:= "Snapshot";
Specifies the client to be run. Clients are listed in the introduction to this package.
The default is the Snapshot client.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

daemon ,rLrl ;

takes a snapshot after the SnapshoL Warning_Message procedure has elapsed. The
client's scheduling intervals are not affected.

RATIONAL 7/1/87 SMU-31

procedure Run
package !Commands.Daemon

References

procedure Snapshot., Warning_Message

SMU-32 7/1/87 RATIONAL

procedure Schedule
package !Commands.Daemon

procedure Schedule

procedure Schedule {Client
Interval
FirsLRun
Response

String
Duration;
Duration
String

.- "»CL lENT NAME«";

.- 121.121;

.- "(PROFILE>");

Description

Schedules the specified client to run at regular intervals.

A Schedule procedure must be executed for each client. The Environment daemon
cannot run a client unless it has been scheduled. The client schedules are set to
default values, which the user can change.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client: String:= "»CLIENT NAME«";
Specifies the name of the client to be scheduled. Clients are listed in the introduction
to this package. The default parameter placeholder "»CLIENT NAf.E«" must be
replaced or an error will result.

Interval : Duration;
Specifies the period of time between runs. Duratiou'Last means the specified client
will never run. The value of the Interval parameter is a number of seconds or
an expression that evaluates to seconds. You can use the Minute, Hour, and Day
constants from package l'Iools.Timec Utilltles, because they are of the Duration
type.

First_Run : Duration:= 121.121;

Specifies how soon a client runs after the Schedule procedure finishes executing.
The value of the FirsLRun parameter is a number of seconds or an expression
that evaluates to seconds. The default FirsLRun interval is 0.0 seconds; that is,
the client will run immediately after invocation. You can use the Minute, Hour,
and Day constants from package l'Iools.Timec.Utlllties, because they are of the
Duration type. In addition, the Time_Utilities.Duration_UntiLNext function is
useful because it returns the number of seconds between the time of execution and
a specified time of day. This allows the schedule to be independent of the time at
which the Schedule procedure is executed.

RATIONAL 7/1/87 SMU-33

procedure Schedule
package !Comrlands.Daemon

Response: String:= "(PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

daemon. schedule ("ddb" ,86_400.0,36_000.0);

schedules the DDB (dependency database) client to run once a day, beginning 10
hours from the time the command was committed.

Referenees

PT, package Tlme..Utillties

SMU-34 7/1/87 RATIONAL

procedure Setc.Accesa.List..Compaction
package !Commands.Daemon

procedure Setc.Accessc.Listc.Compaction

(Client
On
Response

String .- ,
Boolean .- True;
String .- "<PROFILD");

Description

Specifies that access-list compaction should be performed by the specified clients.

The clients that can perform access-list compaction are File, Ada, and Directory.
Access-list compaction is the process of removing nonexistent groups from the ac-
cess lists of objects. Nonexistent groups occur when groups are removed from the
machine. For further information on groups, see package Operator.

Enabling this feature slows a client's operation.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Client: String:= "":
Specifies the name of the client. The default null string specifies all clients. The only
clients that perform access-list compaction are File, Ada, and Directory. When all
clients are specified, only those that can perform access-list compaction will actually
do it.

On: Boolean:= True;
Specifies whether access-list compaction should be turned on or off.

Response: String: = "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function GeLAccess_LisLCompaction

package Operator

RATIONAL 7/1/87 SMU-35

procedure Setc.Consistency..Checking
package !Commands.Daemon

procedure Set..Consistency _Checking

procedure Set_Consistency_Checking (Client
On
Response

String ._ ,
Boolean .- True;
String .- "<PROF ILE>");

Description

Specifies whether consistency checking should be turned on.

Consistency checking performs additional work to ensure that the internal state of
this system is as it seems. This operation normally is run only when problems are
suspected.

Enabling this feature slows a client's operation.

Execution of this procedure requires that the executing job have operator capability.

Parametera

Client: String: = '''';
Specifies the client that should perform consistency checking. Clients are listed in
introduction to this package. The default null string specifies all clients.

On: Boolean:= True;
Specifies whether consistency checking should be turned on or off.

Response: String := "<PROF ILE>" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function GeL Consistency _Checking

SMU-36 7/1/87 RATIONAL

procedure Sef..Log.; Threshold
package !Commands.Daemon

procedure Set_Lag_Threshold

procedure Set_Lag_Threshold (Kind
Level

Log_Threshold;
Condition_Class);

Description

Specifies a destination for messages with a given level of severity.

By default, Conditione.Class type messages of Warning, Problem, and Fatal are
routed to the operations console. Messages of all kinds are written to the stable-
storage error log on disk, causing the log to be committed to disk.

Parameters

KInd: Log_Threshold;
Specifies a destination for a class of messages. The destination can be Console..Print,
Log., To..Disk, or CommiLDisk.

Level : Condition_Class;
Specifies the severity level of messages by Condition.Dlass type, including Normal,
Warning, Problem, and Fatal.

Example 1

The command:

rou tes all messages of condition class Normal (or greater) to the error log.

Example 2

The command:

daemon.set_log_threshold (console_print,problem);

routes all messages of condition classes Problem and Fatal to the operations console.
Normal or Warning messages do not appear on the operations console.

RATIONAL 7/1/87 SMU-37

procedure Set-Priority
package !Commands.Daemon

procedure Setc.Priority

procedure Set_Priority (Priority Collection_Priority._ -1);

Description

Sets the priority for disk collection on the specified volume.

Executing this procedure while disk collection is in progress changes the priority of
the current collection. If disk collection is not in progress when the command is
executed, the procedure has no effect.

The Disk client runs at different priorities in response to a number of stimuli, as
follows:

• Schedule procedure: Runs at priority 6.
• Run procedure: Runs at priority -1.

• Collect procedure: Runs at specified priority.
• Over threshold for the disk: Starts at priority 0 and escalates based on the number

of disks that have reached the threshold.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Priori ty : Collection_Priori ty := -1;
Specifies the priority for running disk collection. Collection..Priority is an integer
from -1 through 6. The default, -1, runs collection as a background activity. The
value 0 ensures that disk collection takes place, potentially affecting system load; 6
allocates all resources for disk collection.

Example

The command:
daemon.seLpriority (1,0);

sets the priority for disk collection to 0 on disk drive 1.

SMU-38 7/1/87 RATIONAL

procedure Show..Log., Thresholds
package !Commands.Daemon

proced ure Show_Log_Thresholds

procedure Show_Log_Thresholds;

Description

Displays current log thresholds in the current output window.

Example

The command:

daemon.show_log_thresholds;
displays information, such as the following, in the current output window:

Log Thresholds -- Console = WARNING, Logging = NORMAL, Commit = NORMAL
Console Corresponds to log threshold Console..Print; shows that messages

of Warning, Problem, and Fatal class are routed to the operations
console.

Logging Corresponds to log threshold Log., To..Dlsk; shows that messages of
all class are written to the stable-storage error log on disk.

Commit Corresponds to log threshold Commit-Disk; shows that messages
of all class are written to the stable-storage error log, causing the
log to be committed to disk.

RATIONAL 7/1/87 SMU-39

procedure Show..Suapshotc.Settlngs
package !Commands.Daemon

procedure Show..Snapshotc.Settings

procedure Show_Snapshot_Settings;

Description

Lists the current snapshot message options, showing the warning message interval
and whether or not start and finish messages have been requested.

Example

The command:

daemon.show_snapshot_settings;

returns a display as follows:

Snapshot Settings -- Interval = 02:00.00, Start = TRUE, Finish = TRUE

The Environment issues a snapshot warning message two minutes before each snap-
shot and sends warning messages at the start and finish of each snapshot.

To see the interval between runs, use:

daemon.status ("snapshot");

ReCerences

proced ure Snapshotc.Finishc.Measage

procedure Snapshot..Starf..Mesaage

procedure SnapshoL Warning_Message

procedure Status

SMU-40 7/1/87 RATIONAL

procedure SnapshotcFlnish.Message
package !Commands.Daemon

procedure Snapshotc.F'inishc.Message

procedure Snapshot_Finish_Message (On Boolean.- True);

Description

Tells the Environment whether or not to send a message informing users when a
snapshot completes.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On: Boolean:= True;
Sends, when true, a message such as the following to users after every snapshot is
completed:

from SYSTEM: 02:34:34 PM; Snapshot has completed.

This message appears in the Message window.

When false, no finishing message is sent to users. The default is true.

Example

The command:

daemon.snapshot_finish_message (false);

instructs the Environment not to notify users when a snapshot is completed.

RATIONAL 1/1/81 SMU-41

procedure Snapshot..Startc.Message
package !Commands.Daemon

procedure Snapshct..Startc.Message

procedure Snapshot_Start_Message (On Boolean 0- True);

Description

Tells the Environment whether or not to send a message informing users when a
snapshot begins.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On: Boolean:= True;
Sends, when true, a message such as the following to users as each snapshot begins:

from SYSTEM: 02:31:55 PM; Snapshot has started

This message appears in the Message window.

When false, no starling message is sent to users. The default is true.

Example

The command:
daemonosnapshot_start_message (false);

instructs the Environment not to notify users when a snapshot begins.

SMU-42 7/1/87 RATIONAL

procedure Snapshot., Warning_Message
package !Commands.Daemon

procedure Snapshot., Waming..Message

procedure Snapshot_Warning_Message (Interval Duration .- 120.0);

Description

Sends a warning message to users the specified number of seconds before the next
snapshot begins.

When the interval is set to 0.0, no warning message is sent.

Execution of this procedure requires that the executing job have operator capability.

Parametere

Interval : Duration:= 120.0;
Specifies how soon, in seconds, to send a warning message such as the following
before a snapshot begins:

from SYSTEM: 02:29:23 PM; Snapshot will start in 02:00.000
This message appears in the Message window.

The default is a 2-minute interval (120.0 seconds). When the Interval parameter is
set to 0.0, no warning message is sent.

Example

The command:

daemon.snapshot_warning_message (300.0);
instructs the Environment to warn users of a pending snapshot 5 minutes (300.0
seconds) before it is run.

RATIONAL 7/1/a7 SMU-43

procedure Status
package !Commands.Daemon

procedure Status

procedure Status eCl ient String. - "*");

Description

Displays (in the current output window) information on the current status for the
specified client.

Parameters

Cl ient: String: = "*";

Specifies the client for which status is requested. The default ("*") is the Major-
_Clients constant. The null string (",,) displays the status of all clients.

Example 1

The command:

daemon.status;

requests a display showing the status of Majcr..Olients (the default). The display
includes the following categories of information:
CL I ENT The name of the client.
NEXL T I ME The time of the client's next scheduled run.
PREY I OUS_ T I ME The time of the client's most recent run.
I NTERVAL The interval of time between scheduled runs. The format for ex-

pressing intervals is as follows:
• mm:ss.ff indicates the number of minutes, seconds, and decimal

fractions of seconds between runs. For example, the Actions client
runs every 30 minutes, or 30:00.00.

• hh:mm:ss indicates the number of hours, minutes, and seconds
between runs. For example, the Snapshot client runs every hour,
or 01:00:00.

• dd/hh:mm indicates the number of days, hours, and minutes be-
tween runs. For example, the Ada client runs once a day, or
1/00:00.

SMU-44 7/1/87 RATIONAL

procedure Status
package !Commands.Daemon

SIZE
POST
PRE

T~e current size, in pages, of the client's data structure.
The size, in pages, of the client's data structure after the last run.
The size, in pages, of the client's data structure just before the last
run.

The Status display typically looks like this:

Client Next Time Previous Time Interval========== ============== ============== ========Actions 06/08/87 11 :53 06/08/87 11:23 30:00.00
Ada 06/09/87 04:40 06/08/87 05:03 01/00:00
Ddb 06/08/87 04: 15 06/08/87 04: 19 01/00:00
Directory 06/08/87 04:30 06/08/87 04:36 01/00:00
Disk 06/09/87 05:00 06/08/87 06:24 01/00:00
File 06/08/87 04:45 06/08/87 05: 14 01/00:00
Snapshot 06/08/87 12:08 06/08/87 11:10 01 :00:00
Example 2

Size Post Pre
====== ====== ======55 55 55

2073 2010 2425
11213 10899 10899
5775 5698 6423

339000 311000 351000
1103 980 1219

The command:
daemon.status ("disk");

checks the status of the client responsible for maintaining the disk data structure
and returns a display such as the following:

Client Next Time Previous Time Interval Size Post Pre======= ============== ============== ======== ====== ====== ======Disk 06/09/87 05:00 06/08/87 06:24 01/00:00 339000 311000 351000
Vol 1 06/09/87 05:00 06/08/87 06:24 01/00:00 112000 95494 125000
Vol 2 06/09/87 05:00 06/08/87 06:24 01/00:00 79086 77639 81287
Vol 3 06/09/87 05:00 06/08/87 06:24 01/00:00 78126 71102 74536
Vol 4 06/09/87 05:00 05/08/87 06:24 01/00:00 69895 67360 69532

An asterisk before the volume number indicates that disk collection is running and
that volume has not yet had collection run for it.

Example 3

The command:

daemon.status ("");
displays the status for all clients.

RATIONAL 7/1/87 SMU-45

procedure Threshold_Warnings
package !Commands.Daemon

procedure Thresholdc.Warnings

procedure Threshold_Warnings (On Boolean.- True);

Description

Specifies whether messages to all users currently logged into the system should be
sent when collection thresholds have been passed.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On: Boolean:= True;
Specifies whether messages should be sent. The default is true. False specifies that
messages should not be sent.

SMU-46 7/1/87 RATIONAL

subtype Volume
package !Commands.Daemon

subtype Volume

subtype Volume 1S Integer range 0 .. 31;

Description

Specifies a disk drive for procedures and functions.

The value 0 specifies all disk drives. (The value 0 should not be used in functions,
because functions can return only a single value.)

RATIONAL 7/1/17 SMU-47

procedure Warning_Interval
package !Commands.Daemon

procedure Waming..Interval

procedure Warning_Interval (Interval Duration.- 120.0);

Description

Sets the amount of warning time users are given before the Daily client runs.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Interval : Duration := 120.0;
Specifies how soon, in seconds, to send a warning message before the Daily client
runs. The default is 2 minutes (120 seconds).

References

function Get., Warning_Interval

end Daemon;

SMU-48 7/1/87 RATIONAL

package Message

This package contains two utilities for sending messages.

RATIONAL 7/1/17 SMU-49

proced ure Send
package !Commands.Message

procedure Send

procedure Send (Who String;
Message String);

Description

Sends the message to the specified user.

The user must be logged in to receive the message. If the user is not logged in, the
message is lost.

Messages appear in the Message window.

Parameters

Who: String;
Specifies the username of the user to receive the message.

Message: String;
Specifies the text of the message.

Example

The command:
message.send (..wet ..•..Uho writes the daily messages?");

sends the string From user: Whowri tes the dai ly messages? to user WET.

SMU-SO 7/1/87 RATIONAL

procedure Send.i All
package !Commands.Message

procedure Sends.All

procedure Send_All (Message String) ;

Description

Sends the message to all users.

Only users who are logged in receive the message.

Messages appear in the Message window.

Parameters

Message: String;

Specifies the text of the message.

Example

The command:

message. send_all ("tl.t\o remembers how to abort a job?");

broadcasts the message From user: Who remembers how to abort a job? to all
users.

end Message;

RATIONAL 7/1/a7 SMU-Sl

RATIONAL

package Operator

The procedures described in package Operator are intended for system management
tasks, including:

• Creating users
• Overseeing user sessions
• Managing groups for access control
• Enabling and disabling physical lines
• Performing operations without the restrictions of access control, when necessary

Commands such as the Change..Paasword and Create..Sesaion procedures can be
used by all users.

Access Control
Access to worlds, files, and Ada units and execution of certain operations is re-
stricted by access control. Access control applies to all jobs, both those initiated
when users directly execute commands and those explicitly initiated by users. A
job's access to a world, file, or Ada unit is based on the username (also referred to
as identity) of the user initiating the job. A username is granted access to an object
if it is a member of one of the groups listed among the entries in the object's access
list (ACL). Similarly, a job is granted access to an object based on the username of
the user who initiates it. If the access list for a particular object does not contain
an entry for a group to which the identity belongs, the job will not be permitted
access to the object. For more information on access lists, see LM, introduction to
package Accesa.List.

In addition to applying to certain objects, access control applies to certain opera-
tions within various packages of the Environment. Package Operator is one of these
packages. Access control for these packages is documented in their corresponding
sections of the Rational Environment Reference Manual.

RATIONAL 7/1/87 SMU-53

package !Commands.Operator

Ac:c:essControl and Groups
Group operations are performed by operations in package Operator. There are
three types of groups: username groups, Environment-defined special groups, and
user-defined groups. Each of these types of groups is described below.

Username Group8

When a username is created, a group name corresponding to that username is
created by default. The username is, by default, a member of that group. Other
users can also be made members of that group. For example, a username called Bill
is created. A group named Bill is created by the Environment on creation of the
username, and username Bill is a member of it. Another username, Sandy, is on
the system. Sandy can be added to group Bill with the Add., To..Oroup procedure.
This grants both usernames Bill and Sandy the specified access to any object that
allowed access to group Bill.

Speeial Groups

Certain operations within the Environment can be performed only by usernames
that meet one of the following requirements:

• The username is a member of group Operator.
• The username has write access to !Machine.Operator_Capability.
• The username is a member of group Privileged and is running in privileged mode.

These conditions can be broken into two types, as shown below.

Operator Capabtnty

Members of group Operator [username Operator) and users with write access to
file !Machine.Operator _Capability can perform operations within the Environment
that require operator capability. Many of the operations in this package require
operator capability.

PrlvUeled Mode

Another special group, called Privileged, can use the Enable..Prlvileges procedure
to turn on privileged mode. Privileged mode allows users to perform operations
without the restrictions of access control. Privileged mode must be enabled in the
same job as the operation(s) to be performed in privileged mode. Once the job has
finished executing, privileged mode reverts to disabled.

PubUe aDd Neiwork-PubUe Groupe

Two predefined groups, called Public and Network.Public, are provided by the
Environment. When a new username is created, the user automatically becomes a
member of these two groups. Group Public can therefore be used to give everyone
on a system access to a world, a file, or an Ada unit. In open shops, all worlds,
files, and Ada units can include group Public on their access lists, in effect giving
everyone access to everything on a system.

SMU-S4 7/1/87 RATIONAL

package !Commands.Operator

Group Network..Public is used in environments in which machines are using Ra-
tional Networking-TCP lIP. Inclusion of this group on access lists gives usernames
access to objects on other machines on the same network.

Although usernames are added to these groups by default, they can be explicitly
removed from them.

User-Defined Groups

Package Operator allows users with operator capability to create groups for access
control. For example, rather than giving username Sandy access to group Bill as
described in a previous example, a group can be defined for the two of them. This
group is called Engineering. Both usernames Bill and Sandy are added to the
group. Each username has its own group consisting of its username and each is also
a member of group Engineering for access they want to share.

ACLs lor New Username Home Worlds
When a new username is created, the access list (ACL) for the user's world is formed
by concatenating the contents of !Machine.User_AcLSuffix and username=>RCOD
access, where username is the new username.

The default ACL for the world is formed by concatenating the contents of !Ma-
chine.User..Defaultc.Acl.Buffix with username=>RW, where username is the new
username.

Parameter Plaeeholders
Many of the commands in this package have, as a default, a parameter placeholder
of the form "»name«". Name is the type of object that should replace »name«.
Parameter placeholders must be replaced by the name of an object, as specified by
their type. Executing a command containing a parameter placeholder will result in
an error.

Response Profiles
The commands in this package have a Response parameter that specifies how the
command should respond to errors, how to generate logs, and which activities to
use. The response profile special value "<PROF ILE>", which many commands use by
default, specifies the job response profile. If there is no job response profile, the
session response profile special value, ..<SES S ION>" , is used. If there is no session
profile defined, the system's default response profile special value, ..<DEF AULT>" is
used. For furl her information on profiles, see SJM, package Profile.

RATIONAL 7/1/87 SMU-55

procedure Add_ To_Group
package !Commands.Operator

procedure Add_To_Group

procedure Add_To_Group (User
Group
Response

String . - n»USER NAME«n;
String '- n»GROUP NAME«n.
String ._ n<pROFILE>n); ,

Description

Adds the specified username to the specified group.

Execution of this procedure requires that the executing job have operator capability.

To see if the username is already a member of the group, you can use the Dis-
play..Group procedure. The username and group name must exist before this pro-
cedure is executed.

Note that identities are established at login. Adding or removing a user from a
group will not be effective until the user's next login. Since a user's identity is
established at login, the user must log out and then log back in before the new
group membership is added to the user's identity.

Parameters

User: String: = n»USER NAME«n;
Specifies the username that should be added to the specified group. The default
parameter placeholder n»USER NAME«n must be replaced or an error will result.
The username must exist before this command is executed.

Group: String: = n»GROUP NAME«n;

Specifies the group name to which the username should be added. The default
parameter placeholder "»GROUP NAME«" must be replaced or an error will result.
The group name must exist before this command is executed.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job profile.

SMU-56 7/1/87 RATIONAL

procedure Add_ To..Group
package !Commands.Operator

Example

The command:

operator .add_to_group (user=)"bill" ,group=)"engineering");

adds username Bill to a group called Engineering.

Both username Bill and group Engineering must exist before this command is exe-
cuted. Bill must log out and log back in again for his membership in group Engi-
neering to be in effect.

References

procedure Create..Group

procedure Creata..User

procedure RemovecFrom..Group

RATIONAL 7/1/87 SMU-S7

procedure Archive_On_Shutdown
package !Commands.Operator

procedure Archivec.Oru.Shutdown

procedure Archive_On_Shutdown (On Boolean"- True);

Description

Specifies that certain data structures are archived in a representation-independent
form whenever the system is shut down.

More specifically, this procedure stores the internal state of the object managers.
Object managers include Actions, Ada, Archived..Code, Code..Segment, Configura-
tion, ODD, Directory, File, Group, Link, NulLDevice, Pipe, Session, Tape, Terminal,
and User.

When these data structures are archived in representation-independent form, they
can be restored even if the system is booted with a different release of the Environ-
ment.

Archiving causes the system to shut down and boot more slowly, so archiving is
recommended only when required by Rational technical representatives for installing
a new software release.

Execution of this procedure requires that the executing job have operator capability.

Parameters

On: Boolean:= True;
Specifies, when true, that archiving is included in the system shutdown process.
The default is true.

SMU-58 7/1/87 RATIONAL

procedure CanceLShutdown
package !Commands.Operator

procedure Cancels.Shutdown

proc~dure Cancel_Shutdown;

Description

Cancels a system shutdown initiated by the Shutdown procedure.

This procedure can be entered at any time during the interval before the actual
shutdown takes place.

Execution of this procedure requires that the executing job have operator capability.

Referenees

procedure Shutdown

RATIONAL 7/1/87 SMU-59

procedure Change..Password
package !Commands.Operator

procedure Change..Password

procedure Change_Password (User
Old_Password
New_Password
Response

String .-
String .-
String .-
String .-

"»USER NAME«";
"It •..
"<PROFILE>");

Description

Replaces the Oldz.Password parameter with the New..Paeeword parameter for the
specified username.

Parameters

User: String: = "»USER NAME«";
Specifies the name of the username. The default parameter placeholder "»USER
NAt-E«" must be replaced or an error will result.

Old_Password: String:= "":
Specifies the old password. If the old password is not known, the ol'erator's pass-
word can be used (that is, the password for the username Operator). The default
is the null string-m other words, no password.

New_Password : String: = "";
Specifies the new password. The default is the null string-in other words, no
password.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .change_password ("anderson". "hello" •"greetings");

changes the password for user Anderson from hello to greetings.

SMU-60 7/1/87 RATIONAL

procedure Createz.Group
package !Commands. Operator

procedure Creates.Croup

procedure Create_Group (Group
Response

String . - "»GROUP NAME«";
String . - "<PROF ILE)") ;

Description

Creates a new group with the specified name.

The group cannot already exist. When created, the group has no members. Mem-
bers can be added with the Add.,To_Group procedure.

A maximum of 1,000 group names is allowed per machine. Once this maximum has
been reached, no further group names can be added. Groups that are no longer
needed can be removed with the Delete..Group procedure, but deleting groups does
not make it possible to create new groups once the limit has been reached. Access-
list compaction must be run to make it possible to create new groups. See package
Daemon for further information on access-list compaction.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Group: String: = "»GROUP NAME«";

Specifies the name of the group to be created. The default parameter placeholder
"»GROUP NAME«" must be replaced or an error will result.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator . create_group (group=)"ada_Lgroup");

creates a new group called Ada-LGroup. New members can be added to the group
with the Add., Toe.Group procedure.

RATIONAL 7/1/87 SMU-61

procedure Create..Group
package !Commands.Operator

References

procedure Add_ Toe.Group

procedure Delete_Group

procedure Removec.From..Group

SMU-62 7/1/87 RATIONAL

procedure Create.Bession
package !Commands.Operator

procedure Createc.Session

procedure Create_Session (User
Session
Response

String . - "»USER NAME«";
String . - "»SESS! ON NAME«";
String . - "<PROFILE>") ;

Description

Creates another session for the specified user.

Parameters

User: String: = "»USER NAt-E«";
Specifies the name of the user for whom a new session is to be added. The default
parameter placeholder "»USER NAt-E«" must be replaced or an error will result.

Session: String:= "»SESSION NAt-E«";
Specifies that the session name must be a legal Ada identifier, and no other object of
this name should exist in the user's home world (!Users.Users.Name]. The default
parameter placeholder "»SESS ION NAME«" must be replaced or an error will result.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .create_sess ion ("anderson", "maintenance");

creates a new session called Maintenance for user Anderson.

RATIONAL 7/1/87 SMU-63

procedure Create..User
package !Commands.Operator

procedure Create..User

procedure Create_User (User String .- "»USER NAME«" ;
Password String "II •.- .Volume Natural .- 0:
Response String .- ,,·'~~:ROFILE>");

Description

Opens a user account.

This procedure creates a username in !Machine.Users. In addition, the procedure
creates the world !Users.User with the given Password parameter, if such a world
does not already exist. The procedure also creates a default session, S_l, for the
username. By default, the username is made a member of groups Public and Net-
work..Public.

A group with the name specified by the User parameter is created and the new user
is added to this group. Thus, each user has his or her own group with at least that
user as a member.

When a new username is created, the access list for that world is formed by con-
catenating the contents of !Machine.User_AcLSuffix and username=>n.COD, where
username is the newly created username.

The new user is made a member of groups Public and Network.Public.

The default ACL for the world is formed by concatenating the contents of !Ma-
chine.Userc.Defaultc.Acl..Suffix with tUername=>RW, where username is the newly
created username.

Links from !Model.RlOOOare copied into the new user's home world.

Sometimes, new accounts are assigned a temporary password. Use the Change-
_Password procedure to personalize passwords.

Execution of this procedure requires that the executing job have operator capability.

SMU-64 7/1/87 RATIONAL

procedure CreatecUser
package !Commands.Operator

Parameters

User: String: = "»USER NAME«";
Specifies the username. The name must be a legal Ada simple name and must be
unique. The default parameter placeholder "»USER NAME«" must be replaced or
an error will result.

Password: String:= "";
Specifies the initial password. The password can be any arbitrary string. The
default is the null string-in other words, no password.

Volume : Natural := 0;
Specifies the volume in which the user's home world will reside. The default, 0, lets
the Environment choose the volume that has the most available space.

Response: String: = "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:
operator. create_user ("anderson", "andersonnew");

creates an account for user Anderson on a volume selected by the Environment.
It assigns password andersonnew to the account. It also creates a home world for
the user in !Users.Anderson, sets up the links for the world, sets the access list
and default access list for the world, makes Anderson a member of groups Public
and Network..Publlc, creates a group called Anderson, and adds Anderson to group
Anderson.

References

procedure Change..Password

RATIONAL 7/1/87 SMU-65

procedure Delete..Group
package !Commands.Operator

procedure Delete..Oroup

procedure Delete_Group (Group
Response

String .- "»GROUP NAME«";
String .- "<PROFILE>");

Description

Deletes tile group with the specified name.

This operation cannot be used to delete a group that has the same name as an
existing username. When you execute the Delete..User procedure, it removes the
group associated with that user. ACL entries that refer to a deleted group are
reclaimed during the next access-list compaction. See package Daemon for further
information on access-list compaction.

A maximum of 1,000 group names is allowed. Once this maximum has been reached,
no further group names can be added. Groups that are no longer needed can be
removed with the Delete.Xlroup procedure and then reclaimed with the package
Daemon access-list compaction.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Group: String:= "»GROlP NAME«";

Specifies the name of the group. The default parameter placeholder "»GROUP
NAt-E«" must be replaced or an error will result.

Response Str- ing := "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:
operator. delete_gro4=l (group=> "ada_Lgroup ") ;

deletes a group called Ada-I_Group.

SMU-66 7/1/87 RATIONAL

proced ure Delete., User
package !Commands.Operator

procedure Delete..User

procedure Delete_User (User
Response

String . - "»USER NAME«";
String .- "<PROFILE)") ;

Description

Disables login for the specified user but preserves the user's home world.

The procedure also deletes the user's entry from the !Machine.Users world and
deletes the user's default session, S_1.

The user's home world can be deleted using commands in package !Commands.Li-
brary-for example, library. destroy ('" users. user _name??") ;.

Make sure that the user is logged out before disabling the user's account.

Execution of this procedure requires that the executing job have operator capability.

Parameter.

User: String: = "»USER NAME«";
Specifies the username of the account to be disabled. The default parameter place-
holder "»USER NAPE«" must be replaced or an error will result.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator .delete_user ("anderson");

deletes the account for user Anderson and disables logins under Anderson's user-
name. The world !Users.Anderson is preserved.

RATIONAL 7/1/17 SMU--67

procedure Disablec'Terminal
package !Commands.Operator

procedure Disable..Terminal

procedure Disable_Terminal (Physical_Line
Response

Terminal.Port;
String .- "<PROFILD");

Description

Disables the specified line for login.

H the line is in use, the command will not take effect until the user logs out.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Physical_Line Terminal.Port;
Specifies that the terminal port is a number from 0 through 255.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.disable_terminal (18);
disables port 18.

References

procedure Enable.,Terminal

SMU-68 7/1/87 RATIONAL

procedure Disk..Space
package !Commands.Operator

procedure Disk..Space

procedure Disk_Space;

Description

Displays disk data.

Example

The command:

operator.disk_space;

returns a display such as the following:

Volume Capacity Available Used % Free------ -------- --------- ====== ======------ -------- ---------1 369120 284196 84924 76
2 391680 229239 162441 58
3 391680 274570 117110 70
4 391680 282619 118661 70
Total 1553760 1070624 483136 68

Volume indicates the disk drive. Capaci ty and Avai lable describe disk space in
terms of pages of 1 Kb each. Used describes the amount of disk space used in terms
of pages of 1 Kb each. % Free specifies the amount of disk space that is still unused
in terms of percentages.

The bottom row describes totals for all volumes.

RATIONAL 7/1/87 SMU-69

procedure Display..Oroup
package !Commands.Operator

procedure Display..Group

procedure Display_Group (Group String . - "»GROUP NAME«";
Response String.- ·'<PROFILE>");

Description

Displays the usernames that are current members of the specified group on Io.Cur-
rent-Output.

If there is a user with the name, it displays the groups of which the user is a member.

Parametera

Group: String: = "»GROUP NAME«";
Specifies the name of the group. The default parameter placeholder "»GROUP
NAME«" must be replaced or an error will result.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

SMU-70 7/1/87 RATIONAL

procedure Display..Oroup
package !Commands.Operator

Example

The command:
operator .display_group (group=>"pUllic");

results in the following display:

!USERS.GZC " OPERATOR.DISPLAY_GROlP STARTED6:20:29 PM

Contents of group "poo l ic"========;=================
user BILL
user BLB
user GZC
user JIM
user JwtK
user PlBLIC
user StoP

User "pUll ic" is a member of============================
group PlBL IC

RATIONAL 7/1/87 SMU-71

procedure Enablec.Privileges
package !Commands.Operator

procedure Enabla..Privileges

procedure Enable_Privileges (Enable Boolean.- True);

Description

Specifies that privileged mode should be enabled or disabled for the current job.

There is no effect on other jobs for that user or session, current or future.

For this procedure to execute successfully, the username must be a member of group
Privileged. In general, privileged mode should not be enabled unless necessary to
avoid accidentally doing something that normally would be restricted by access
control.

When privileged mode is enabled, all tasks in that job become privileged. Execution
of the procedure does not result in any output indicating that the username is now
executing under privileged mode. Jobs spawned from a job with privileges enabled
do not become privileged.

Privileged mode is enabled only for the duration of the job that called it. Therefore,
it is not possible to enable it permanently for an entire session.

If the job is not a member of group Privileged, this command has no effect.

Parameters

Enable : Boolean := True;
Specifies, when true, that privileged mode should be enabled for the current user-
name and session. When false, it specifies that privileged mode should be disabled.
Thus, privileged mode can be enabled, disabled, and enabled again within the same
job, if desired.

SMU-72 7/1/87 RATIONAL

procedure Enablec'Terminal
package !Commands.Operator

procedure Enable..Terminal

procedure Enable_Terminal (Physical_Line
Response

Terminal.Port;
String '- "<PROFILE)");

Description

Enables the specified line for login.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Physical_Line Terminal.Port;
Specifies that the terminal port is a number from 0 through 255.

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.enable_terminal (18);
enables port 18.

References

procedure Dlsablec'Ierminal

RATIONAL 7/1/87 SMU-73

procedure Explain..Oraah
package ICommands.Operator

procedure Explain..Crash

procedure Explain_Crash;

Description

Reads a shutdown cause and explanation from current input and enters them into
the machine's error log.

The cause and explanation correspond to the information entered in the Shutdown
procedure.

More specifically, this procedure is used to document system crashes or other service
interruptions.

Input to this procedure is terminated with EndcOfc.lnput.

SMU-74 7/1/87 RATIONAL

procedure Force.d-ogoff
package !Commands.Operator

procedure Force..Logoff

procedure Force_Logoff (Physical_Line
Commi t_BuHers
Response

Terminal.Port;
Boo 1ea"l .- True;
String .- "<PROF ILD") ;

Description

Terminates any session active on the specified line.

Uncommitted changes to images are saved if the CommiLBuffers parameter is true.
The user's background jobs (if any) continue to run, and any foreground jobs that
do not require interactive input are put in the background. Foreground jobs that
attempt interactive input are killed.

Execution of this procedure requires that the executing job have operator capability.

Parameters

~sical_Line Terminal.Port;
Specifies that the terminal port is a number from 0 through 255. You can determine
which port by executing the !Commands.What.Users procedure.

Commit_Buffers : Boolea"l:= True;
Specifies whether uncommitted changes the user has made to any images will be
committed. When true (the default), the changes are saved.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:

operator.force_logoff (18);

logs off the user currently on port 18. Any uncommitted changes to images are
saved.

RATIONAL 7/1/87 SMU-75

function GeLArchive.-On_Shutdown
package !Commands.Operator

function Get_Archive_On_Shutdown

function Get_Archive_On_Shutdown return Boolean;

Description

Returns a Boolean indicating whether archiving on shutdown has been enabled by
the Archive_On_Shutdown procedure.

Parameters

return Boolean;
Specifies, when true, that system shutdown archives object managers.

Referenees

procedure Archive_On_Shutdown

SMU-76 7/1/87 RATIONAL

function Get-Login_Limit
package !Commands.Operator

function Get.cLoginc.Limit

function Get_Login_Limit return Positive;

Description

Returns the maximum number of users that can be logged in at one time on a
machine.

The maximum number can be set by the Limit-Login procedure.

Parameters

return Positive;
Returns the number of concurrent logins.

References

procedure Limit-Login

RATIONAL 7/1/17 SMU-77

function GeLShutdown_Interval
package !Commands.Operator

function Get_Shutdown_Interval

function Get_Shutdown_lnterval return Duration;

Description

Returns the current interval that is used by the Shutdown procedure.

The interval is set by the Shutdown..Warning procedure.

Parameters

return Duration;
Returns the number of seconds between entering the Shutdown procedure and the
actual shutting down of the system.

Reference.

procedure Shutdown

procedure Shutdown.Warning

SMU-78 7/1/87 RATIONAL

procedure Intemal.Bystemc Diagnosls
package !Commands.Operator

procedure Internak.Systemc.Diagnosis

procedure Internal_System_Diagnosis;

Description

Runs the Environment Elaborator Database (EEDB) from an Environment window
rather than on the operations console.

Execution of this procedure requires that the executing job have operator capability.

RATIONAL 7/1/87 SMU-79

procedure Limit-Login
package !Commands.Operator

procedure Limit..Login

procedure Limit_Login (Sessions Positive .- Positive'Last);

Description

Sets a limit on the number of concurrent user logins for a machine.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Sess ioris : Positive := Positive'Last;
Specifies the maximum number of logins. The default is Positive'Last.

Example

The command:

operator. 1imi t_login (16);

limits the number of login sessions to 16.

SMU-80 7/1/87 RATIONAL

function PrivllegedzMode
package !Commands.Operator

function Privilegeds.Mode

function Privileged_Mode return Boolean;

Description

Returns true if privileged mode is enabled for the calling job.

Parameter.

return Boolean;
Returns true if privileged mode is enabled, or false if it is disabled, for the calling
job.

RATIONAL 7/1/17 SMU-81

procedure Remove..From.Droup
package !Commands.Operator

procedure Remove..Frorru.Croup

procedure Remove_From_Group (User
Group
Response

String . - "»USER NAME«";
String . - "»GROUP NAME«";
String .- "<PROFILE>");

Description

Removes the specified username from the specified group.

To determine whether the username is a member of the group before removing it,
use the Displayc.Group procedure.

Note that identities are established at login. Removing a user from a group will not
be effective until the user's next login.

Execution of this procedure requires that the executing job have operator capability.

Parameters

User: String:= "»USER NAP£«";
Specifies the username that should be removed from the specified group. The default
parameter placeholder n»USER NAt£«" must be replaced or an error will result.

Gr~: String: = "»GROlP NAt£«";
Specifies the group name from which the username should be removed. The default
parameter placeholder "»GROUP NA~«" must be replaced or an error will result.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The command:
operator .remove_from_gr~ (user=>"bill" ,group=>"engineering");

removes username Bill from the group called Engineering.

SMU-82 1/1/81 RATIONAL

procedure Remove.FromcGroup
package !Commands.Operator

Rererences

procedure Add.,To_Group

procedure Create..Group

procedure Create..User

procedure Dieplay..Group

RATIONAL '/1/1' SMU-83

procedure Set..System., Time
package !CommandsoOperator

procedure Setc.System., Time

procedure SeLSystem_Time (To_Be String "- "»TIME«";
Response String" - "(PROFILE>");

Description

Resets the system clock, for example, for changing to or from daylight savings time.

Because the system clock has an independent power supply (a battery), there is no
need to reset the clock if the system is powered down.

Execution of this procedure requires that the executing job have operator capability.

Parameters

To_Be: String:= "»TIME«";
Specifies a date, time, or combination of date and time expressed in one of the for-
mats listed below. The Toe.Be parameter consists of 2 through 6 two-digit numbers
delimited by nonnumeric characters. The default parameter placeholder "»TI~«"
must be replaced or an error will result.

In general, the numbers can be interpreted, because each component of a date or
time has its own range (for example, 85 is always interpreted as a year, because it
cannot be anything else).

In the following examples of allowable times, YYexpresses a year, MMexpresses a
month, DD expresses a day, HH expresses an hour, mm expresses minutes, and ss
expresses seconds.

YY/MM/DDHH:mm:SS
MM/DD/YY HH:mm:SS
MM/DD/19YYHH:mm:SS
YY/MM/DDHH:mm
MM/DD/YYHH:mm

MM/DDHH:mm:SS
MM/DDHH:mm
YY/MM/DD
MM/DD/YY
HH:mm:SS
HH:mm

Other allowable time and date formats are described in PT, Tlmec.Utllitlee.Time-
_Format and Time., Utilities.Datecfcrmattypes.

SMU-84 7/1/87 RATIONAL

procedure Set..System., Time
package !Commands.Operator

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

The command:
operator.seLsystem_time ("15:1210");

sets the time to 3:00 P.M. today.

Example 2

The command:

operator. set_system_time ("06/12/87");

changes the date to June 12 without changing the time.

RATIONAL 7/1/87 SMU-85

procedure Show_Login_Limit
package !Commands.Operator

procedure ShowcLogin..Limit

Description

Displays the maximum number of concurrent logins on the current output.

The maximum number of logins can be set by the Limit_Login procedure.

Example

The command:

displays the following when the login limit is 16:

It is currently possible for 16 users to be logged In

References

procedure Limit.Login

SMU-86 7/1/87 RATIONAL

procedure Show_Shutdown_Settings
package !Commands.Operator

procedure Showc.Shutdowru.Settings

procedure Show_Shutdown_Settings;

Description

Displays the shutdown settings on the current output.

Shutdown settings are set by the ShutdowncWarning and Archive_On_Shutdown
procedures.

Example

The command:

operator.show_shutdown_settings;
produces a message such as the following on the current output:

Shutdown Interval is 01:00:00; Archive_Enabled = False

References

procedure Archive_On_Shutdown

procedure Shutdown., Warning

RATIONAL 7/1/87 SMU-87

procedure Shutdown
package !Commands.Operator

procedure Shutdown

procedure Shutdown (Reason
Explanation

String .- "COPS";
String . - "Cause not entered");

Description

Shuts down the system after the interval set by the Shutdown..Waming procedure
has passed.

The shutdown cause is specified by the Reason parameter, and the explanation is
specified by the Explanation parameter. These are entered into the machine's error
log.

The Shutdown procedure issues several warnings to users. The first warning occurs
when the procedure is executed, the next occurs after 3/4 of the interval has passed,
the next occurs when 3/4 of the remaining time has passed, and so on, until the
system is shut down. Note that a warning interval of 30 seconds or less results in
immediate shutdown.

When the system is shut down, users are logged off, all terminal lines are disabled,
and a snapshot is taken to preserve the Environment state.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Reason: String:= "COPS";
Specifies a reason for shutting down the machine. The default, "COPS", specifies
a customer shutdown. The shutdown does not happen unless the reason is a valid
one. The value "?" for this parameter gives a list of valid reasons and does not
perform the shutdown. The cause is entered into the machine's error log.

Explanation : String: = "Cause not entered";
Specifies an explanation to be entered into the machine's error log. The default is
"Cause not entered" and should be replaced.

SMU-88 7/1/87 RATIONAL

procedure Shutdown
package !Commands.Operator

Reference.

procedure CanceLShutdown

procedure Explain_Crash

procedure Shutdown- Warning

RATIONAL 7/1/17 SMU-89

procedure Shutdownc.Warning
package !Commands.Operator

procedure Shutdown..Warning

procedure Shutdown_Warning (Interval Duration.- 3600.0);

Description

Sets the interval between the time the Shutdown procedure is executed and the
time the system actually shuts down.

The Interval parameter also determines when the shutdown warning messages are
issued. The first message is sent at the beginning of the interval, the second is sent
after 3/4 of the interval has passed, and so on, until the system shuts down.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Interval : Duration := 3600.0;
Specifies that the default for the interval is 3,600 seconds, or 1 hour. The Interval
parameter is rounded to the nearest minute. Less than 1 minute is rounded to O.

Example

The command:
operator.shutdown_warning (1800.0);

sets the interval to 30 minutes. The next time the Shutdown procedure is executed,
30 minutes will pass before the system actually shuts down.

end Operator;

SMU-90 7/1/87 RATIONAL

package Queue

Package Queue contains procedures for printing files and for creating and managing
print queues, both on the user's current machine and on other machines through
Rational Networking-TCP lIP.

Some of the functionality available in this package can also be accessed through
the username's session switch file. For further information on switch files, see LM,
package Switches.

H your system has Rational Networking-TCP lIP, you can submit print requests
to other machines on the same network and query other machines on the same
network.

Some of the commands in this package take the Options parameter. For further
information on the syntax of Options parameters, see Key Concepts.

The Print procedure can be used to submit one or more objects for printing. This
procedure submits objects to the default print queue class (the class used, by default,
when a class is not specified). The user can request another class by specifying a
nondefault value for the Class parameter. By default, the system notifies the user in
the Message window when the request is complete. The user can select options for
notification through the message utility or select not to be notified (Notify option).

The Print procedure automatically prints the user's name on a separate banner
page, prints the object name and the page number on each page, and wraps lines
longer than 80 characters. The Print procedure also permits the user to specify a
different banner, headers, line length, and other format characteristics.

When a user makes a print request:
1. The object to be printed is submitted to the print apooler, which performs basic

formatting such as inserting page breaks, headers, and footers.
2. The print spooler then queues the object to the class specified by the user in

the print request. (A class is a logical grouping of print requests that allows
these requests to be handled as a set.) H no class is specified, the default class is
used. An object submitted for printing is queued along with any other objects
submitted to the same class.

RATIONAL 7/1/87 SMU-91

package !Commands.Queue

3. Because each class is typically associated (or registered) with at least one deflice,
the class to which an object is submitted determines the device that will handle
the print request. A device can be a physical device (such as a printer) or a
logical device (such as a file).

4. If the designated device is enabled, the submitted object is printed. If the
device has been disabled, the submitted object remains queued until the device
is enabled (or the class is reregistered with some other enabled device).

The print spooler maintains the relationships among classes and devices. The term
print queue refers to any class that is registered with a device. Put another way,
print requests are queued to a class, where they wait to be handled by an associated
device.

Execution of some of the operations in this package requires that the job executing
the commands have operator capability. These operations include Add, Create,
Destroy, Disable, Enable, KilLPrinLSpooler, Register, Remove, Restart..Print-
_Spooler, and Unregister.

Users with operator capability can create any number of classes for queuing print
requests. For example, one class can be designated for long batch jobs and another
class for short urgent jobs, associating each of these classes with its own device.
Similarly, a separate class can be assigned to each user group or department so that
requests from certain groups can be routed to specific devices, suspended, or given
preference as needed.

Note that a single device can have more than one class registered with it-for
example, when several departments use the same printer. FUrthermore, a single
class can be registered with more than one device. A print request submitted to
such a class is routed to the first available device.

Users with operator capability described above can create a print queue by following
the procedure described below:

1. Use the Reetart..Print.Bpooler procedure to ensure that the print spooler is
running.

2. Use the Create procedure to define a class with the specified name.
3. Use the Add procedure to add a device with the specified name.
4. Use the Register procedure to associate the class with a device.
5. Use the Default procedure to define a default class with the specified name.
6. Use the Enable procedure to make the device available for use.

SMU-92 7/1/87 RATIONAL

proced ure Add
package !Commands.Queue

procedure Add

procedure Add (Device
Options

String ._ u";
String . - "XON_XOFF");

DeseriptioD

Specifies a new device to be added to the system with the specified device name.

This procedure allows you to add a new device and to specify the kind of protocol
required between print jobs (if any). Devices must be added before they can be
registered using the Register procedure.

Execution of this procedure requires that the executing job have operator capability.

Parameter.

Device: String:= .11.;

Specifies the device by physical line number. The line number takes the form
termin.aLn, where n is the number of the pori to which the device is attached.

RATIONAL 7/1/87 SMU-93

procedure Add
package !Commands.Queue

Options: String: = "XON_XOFF";
Specifies the type of protocol required by the device to be added. For information
on using Options parameters, see Key Concepts. The default is XON_XOFF. This
parameter also specifies a Telnet host to be used and the socket, if desired.

XON_XOFFBoolean
Specifies standard flow control.

RTS Boolean
Specifies standard flow control (XON-XOFF), with RTS protocol used between
print requests. This option is used when two machines are sharing a common
device to resolve connection problems.
DTR Boolean
Not used currently. Reserved for future development.

Host=>name

Specifies standard flow control (XON-XOFF), with a Telnet connection used be-
tween print requests, where name is the name of the Telnet connection to be
used.

Socket=>sockd number

H a Telnet connection is specified with the Host option, the Socket option can
also be specified-for example, "host=> lab_print ,socket=>(0 ,23)".

Example 1

The command:
queue.add ("terminaL21");

adds a device called TerminaL21.

Example 2

The command:
queue.add (device=>"terminal_255",options=>"host=>lab_print,socket=>(0,23)");

adds a Telnet device called TerminaL255.

SMU-94 7/1/87 RATIONAL

procedure Add
package !Commands.Queue

Reference.

procedure Enable

procedure Register

procedure Remove

RATIONAL '/1/1' SMU-9S

constant AlLClasses
package !Commands.Queue

constant AlL Classes

All_Classes constant Class_Name .- "all";

Description

Defines a constant that represents all defined classes.

SMU-96 7/1/87 RATIONAL

constant AILSpooler _Devices
package !Commands.Queue

constant All_Spooler _Devices

AlLSpooler_Devices constant String "- "all";

Description

Defines a constant that represents all devices registered with at least one class.

RATIONAL 7/1/S7 SMU-97

procedure Cancel
package !Commands.Queue

procedure Cancel

procedure Cancel (Request_ld Positive);

DesulptloD

Cancels the specified print request.

This procedure cancels requests whether or not those requests have started to print.
The value of the RequesLld parameter can be obtained with the Display procedure.

Although the cancel request will complete quickly, the actual canceling can take
several minutes before the print spooler removes/terminates the request.

Parameter.

Request_ld : Positive;
Specifies the number assigned to the print request.

References

procedure Display

SMU-98 1/1/87 RATIONAL

procedure Classes
package !Commands.Queue

procedure Classes

procedure Classes (Which
Show_Devices

Class_N?me := "all";
Boolean .- True);

Description

Displays information about the specified classes.

Parameters

Uhich: Class_Name := "all";
Specifies the class for which information is requested. The default is all classes.
Users on installations that use Rational Networking-TCP lIP to conned multiple
RlOOO systems can query other machines on the network. Thus, the name can specify
a machine name of the form !!machine name, where machine name is the name of
a machine-for example, I!M!.

Show_Devices : Boolean:= True;
Specifies whether to display information on devices as well as on classes. The default
is true.

Example

The command:

queue.classC!s;
produces a display such as the following:

Class Device(s)
------- --------------------------- --------------------LP TERMINAL_34PL TERMINAL_25m

This display shows that class LP is associated with the device TerminaLM. That
is, print requests made to LP are routed to TerminaL34. It also shows that class
PL is associated with device TerminaL250, which is, by convention, a Telnet port.

RATIONAL 7/1/17 SMU-99

subtype Olaea..Name
package !Commands.Queue

subtype Clasa..Name

subtype Class_Name IS String;

Description

Defines the form of a name assigned to a given set of devices.

All class names are mapped to uppercase (that is, case-insensitive). This subtype
can contain the name of a machine, using the format !!machine_name, where ma-
chine_name is the name of another machine on the same network-for example,
!!M1.LP. The remote machine name can be used only to query and print on remote
machines. It cannot be used to change the print spooler configuration on remote
machines.

SMU-lOO 7/1/87 RATIONAL

procedure Create
package !Commands.Queue

procedure Create

procedure Create (Class Class_Name.- .•.•);

Description

Creates a class with the specified name.

Execution of this procedure requires that the executing job have operator capability.

Parametel'8

Class: Class_Name := "";

Specifies the case-insensitive name for the class being created. The default is no
name. You cannot use a remote machine name to create a class on a remote machine.

Example

The command:

queue. create ("lp");

creates a class called LP.

References

procedure Destroy

procedure Register

RATIONAL 7/1/87 SMU-101

procedure Default
package !Commands.Queue

procedure Default

procedure Default (Class Class_Name.- "");

Description

Specifies a new default class for all Environment print requests.

The procedure sets the default class to the specified class and prints a message in
the Message window. If the default parameter value is used, the procedure simply
prints the name of the current default class in the Message window.

The class must exist before it can be made the default class. Use the Create
procedure to create classes.

You can also assign a remote class as the default class, so that the default causes
jobs to be queued on a remote machine.

Execution of this procedure requires that the executing job have operator capability.
Other users can execute this procedure to display the default class in the Message
window.

Parameten

Class: Class_Name := "";

Specifies a new default class name. If the default value of this parameter is used,
the only effect of this command is to display the current default class. Users on
installations that use Rational Networking-TCP lIP to connect multiple RIOOO sys-
tems can query other machines on the network. Thus, a remote machine name can
be specified to query a remote machine for its default class-for example, !!MI is a
machine name. You cannot set the default class on a remote machine.

Example

The command:

queue.default ("newclass");

specifies Newclass as the default class for all print requests.

SMU-102 7/1/87 RATIONAL

procedure Default
package !Commands.Queue

References

procedure Create

RATIONAL 1/1/11 SMU-I03

procedure Destroy
package !Commands.Queue

procedure Destroy

procedure Destroy (Class
Reroute

Class_Name .-
Class_Name .-

" ...,
" ") ;

Description

Removes the specified class and routes existing requests for that class to another
class.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Class: Class_Name := "";

Specifies the name of the class to be removed. The default is no name.

Reroute: Class_Name := "";
Specifies a class for routing. Print requests spooled to the removed class are routed
to this class. The default is to route requests to the default class. A remote machine
name cannot be specified to destroy a class on a remote machine.

Example 1

The command:
queue. destroy ("lp" ,"newclass") ;

removes LP from the list of active classes and routes all requests for LP to Newclass.

Example 2

The command:

queue. destroy ("Ipr3") ;

removes LPR3 from the list of active classes and routes all requests for LPR3 to the
default class.

SMU-I04 7/1/87 RATIONAL

procedure Destroy
package !Commands.Queue

References

procedure Destroy

RATIONAL 7/1/17 SMU-IDS

procedure Devices
package !Commands.Queue

procedure Devices

procedure Devices (Which
Show_State
Show_Classes

String .- "all";
Boolean .- True;
Boolean .- True);

DeseriptioD

Displays information about the specified devices.

Parameter.

Which: String: = "all";
Specifies the device for which information is requested. The default is to show
information about all devices.

Show_State : Boolean:= True;
Requests information on the current state of the devices, whether enabled or dis-
abled. The default is true.

Show_Classes : Boolean:= True;
Specifies whether to display information on classes associated with the displayed
devices. The default is true.

Example

The command:
queue .devices;

produces a listing such as the following:
Device Protocol Characteristics State Classes---------------------- ---------------- =============== ======== =======TERM INAL_40

TERM INAL_32
TERMINAL_255

XON_XOFF Laser_Comm
RTS
TEU£T
(postscript

(0.23))

Disabled
Disabled
Enabled

(none)
(none)
LP

This display shows three devices. Two are disabled and have no associated classes.
TerminaL255, however, is enabled and is associated with class LP.

SMU-I06 7/1/87 RATIONAL

proced ure Disable
package !Commands.Queue

procedure Disable

procedure Disable (Device
Immediate

String
Boolean

._ u"..- .:= False);

Description

Disables the specified device.

Depending on the value of the Immediate parameter, the procedure disables the
specified device either before or after the current print request has finished on that
device. If the Immediate parameter is false (the default), the procedure waits until
the current print request has completed. If Immediate is true, the device is disabled
immediately and the interrupted print request is placed back on the print queue to
be reprinted when possible.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device: String: = "";
Specifies the device by physical line number. The line number takes the form
terminaLn, where n is the number of the port to which the device is attached.

Immediate: Boolean:= False;
Specifies whether to allow the current print request to finish before the device is
disabled. If the Immediate parameter is false [the default), the procedure waits
until the current print request has completed. If Immediate is true, the device is
disabled immediately and the interrupted print request is placed back on the print
queue to be reprinted when possible. The Disable procedure will return quickly;
however, it can take several minutes before the interrupted job is requeued and the
device disabled.

Example 1

The command:

queue.disable ("terminaL4121",true);
disables the device on physical line 40. Because of the parameter true, the device
is disabled immediately. Any print request that is actually printing when this
command is executed is placed on the print queue again.

RATIONAL T/l/aT SMU-I07

procedure Disable
package !Commands.Queue

Example 2

The command:

queue.disable C"terminaL40");

disables the device on physical line 40. Because of the default parameter false, the
print request currently on this device must complete before the device is disabled.

References

procedure Add

procedure Enable

SMU-I08 7/1/87 RATIONAL

procedure Display
package !Commands.Queue

procedure Display

procedure Display (Class Class_Name:= "all");

Description

Displays the print requests currently queued in the specified class.

The display appears in the current output window. If there are no queued requests,
a message to this effect appears in the Message window.

The display shows the identification number for each request. Use the appropriate
number as the RequesLId parameter when using the Cancel procedure.

Parameters

Class : Class_Name := "all";
Specifies the class for which the contents are to be displayed. The default is
to display the contents of all classes. Users on installations that use Rational
Networking-· TCP lIP to connect multiple RIOOO systems can query other machines
on the network. Thus, the name can specify a machine name of the form !!machine
name, where machine name is the name of a machine-for example, !!M!.

Example

The command:

queue.display;

produces a display such as the following in the current output window:

ID Time State Class User Object------------ ======== ===================
17:54 Queued LP OPERATOR !USERS.OPERATOR.LOG

In this example, the state of the print request is queued because the device associ-
ated with the class LP is disabled. When a print request is currently being processed
by an enabled device, the state of the request is active.

RATIONAL 7/1/&7 SMU-109

procedure Display
package !Commands.Queue

References

procedure Cancel

SMU-110 7/1/87 RATIONAL

procedure Enable
package !Commands.Queue

procedure Enable

procedure Er.::Jble (Device String. - "all");

Description

Enables the specified device.

The default is to enable AlLSpooler_Devices (all registered devices).

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device: String: = "all";
Specifies the device by physical line number. The line number takes the form
terminaLn, where n is the number of the port to which the device is attached. The
default is all devices.

Example

The command:
queue. enable (" terminaL 40");

enables the spooler device on physical line 40. Note, however, that line 40 cannot
be simultaneously enabled for login.

Referenees

procedure Add

procedure Disable

RATIONAL 1/1/81 SMU-lll

procedure KilLPrinLSpooler
package !Commands.Queue

procedure Kill_Print_Spooler

Description

Stops the print spooler.

This procedure disables all spooler devices, prevents additional print requests, and
prevents the successful completion of any queue operations requiring this machine.
The print spooler can be restarted with the Restart..Prlnt..Spooler procedure.

Execution of this procedure requires that the executing job have operator capability.

References

procedure RestarLPrint_Spooler

SMU-1l2 7/1/87 RATIONAL

procedure Print
package !Comma.nds.Queue

procedure Print

procedure Print (Name String ,- "<IMAGE)" ;
Options String ,- "<OEFAULT)";
Banner String ,- "<OEF ALlLT>" ;
Header String ,- "<DEFAULT)" ;
Footer String ,- "<OEFALlLT)") ;

Description

Queues the specified objects for printing.

You can specify one or more objects by naming, by selection, or by placing the
cursor in a window containing the object's images.

Besides text files, you can get printouts of Ada units and library listings. To print
images from output windows or images of other kinds of objects (for example, a
switch file), you must first copy the object's image into a text file, commit the file,
and then print that text file.

The default is to queue the print request to the device associated with the default
class and to notify when the jobs are complete. The Message window echoes all
print requests, unless the switches are set differently in the user's switch file.

The Print procedure uses the Options parameter to allow you to change the printout
format or to request multiple copies of your print request.

Parameters

Name: String:= "<IMAGE)";

Specifies the name of the object to be sent to the print queue. This parameter
can use special names and wildcards to specify a set of objects. The default is the
current selection or image.

You can specify a text file, an Ada unit, or a library (which prints a list of the
library's contents). IT you specify a file or an Ada unit using the current image, the
most recently committed version is printed. Therefore, the printout will differ from
the actual image on the screen if that image contains uncommitted changes.

RATIONAL 7/1/17 SMU-1l3

procedure Print
package ~Commands.Queue

Options: String:= "(DEFAULT>";
Specifies the options to be used in formatting output. The following is a list of
the options available for use in the Options parameter to format output. Note
that the Options parameter uses the special name "(DEF AlJl T>". When this special
name is used, the system looks in the session switch file for the options set in
the Queue.Options switch. If the switch file is not accessible, the system uses the
options "FORMAT=> (Wrap. Sys tern_Header) " • These options are no longer true and
must be respecified if any of the options are changed by substituting an option
for the "<DEFAl1..T>" special name. One of the following three options must be
specified: OriginaLRaw, Raw, or Format. Unless otherwise specified in the Options
parameter, the Boolean options OriginaLRaw, Raw, and Spoolc.Each..ltem are
false. The other options take the defaults specified below.

8anner_Page_User_Tex t= string
Specifies a string (with a maximum of 60 characters) that will be printed on the
banner page, beneath the banner and above the system-generated information.
Class=string
Specifies the name of the class, where string is the class to which the print
request is queued. The class determines the device that will handle the print
request. Note that the specified class must exist and must be associated with
an enable device. If this option is not specified, the class is the default class.
Copies=positive integer
Specifiesthe number of copies to be printed, where positive integer is the number
of copies to be printed. Copies are generated one at a time, and other jobs may
intervene between copies. The default is 1 copy.
Format options
The Format option is an options parameter within the Options parameter
that can be used to specify format options Wrap, Truncate, Numbering, Sys-
tem-Header, Width, Length, and Tab_Width. Options must appear in paren-
theses-for example, FORMAT=> {Wrap. Width=77).

Length=positive integer
Specifies the total number of printed lines per page, including headers and
footers.
The default length is 60 lines. Note that, by default, the Rational Printer is
set to eject a page after 66 lines if a formfeed is not encountered earlier. To
print pages longer than 66 lines, you must change the appropriate setting
on the Rational Printer (see "Printer Operations and Maintenance" in the
Rational R1000 Development System: System Manager's Guide) in addition
to increasing the Length value.
The number of lines in the body text for each page is automatically adjusted
to accommodate any combination of a one-line header, a one-line footer, or
a system page header. However, if you specify a multiple-line header or
footer, you must decrease the Length value for every additional line beyond
the expected one.

SMU-114 7/1/87 RATIONAL

procedure Print
package !Commands.Queue

Numbering Boolean
Specifies whether to provide line numbering. The default is false.
Sys tem_Header Boolean
Specifies whether to print the system page header on each page. The system
header is the name of the object and a page number. If there is a user-
specified header, the system page header appears above it. The default is
false.
Tab Width=positive integer
Specifies number of spaces with which to replace a Tab character (AsciLHt).
The default is 8. A value of 0 specifies no replacement.
Truncate Boolean
Specifies whether to truncate lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to be
true.
Width=positive integer
Specifies the maximum number of printable characters per line, where pos-
itive integer is the number of characters.
The default width is 80 columns. Note that the Rational Printer itself can
be set to wrap after 80 columns. To print wider pages, you must change the
appropriate setting on the Rational Printer (see "Printer Operations and
Maintenance" in the Rational Rl000 Development System: System Man-
ager's Guide) in addition to increasing the value of Width.
The Wrap and Truncate options specify what to do with lines that are longer
than Width.
Wrap Boolean
Specifies whether to wrap lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to
be true. The wrapped portions of wrapped lines do not receive a new line
number.

OriginaLRaw Boolean
For use on machines low on space when large files need to be printed. This
option prints without using space to make the print spooler copy. The file
can be spooled only to a local device. Each file is spooled separately (that is,
it ignores the Spool..Each.Jtem option). A message is sent when printing is
complete (that is, it ignores the Notify option). A banner page is printed (that
is, it ignores the Banner..Pagec User option).
Not ify literal
Specifies the manner of notification after a print request is completed. By de-
fault, an informative message is sent to the Message window. The available
types are None, Message (the default), and Mail (reserved for future develop-
ment). Remote requests, under normal conditions, will also notify you.

RATIONAL 7/1/87 SMU-115

procedure Print
package !Commands.Queue

Raw Boolean
Specifies whether the printer should interpret the input. Prints the file without
interpreting characters (that is, without recognizing formfeeds or linefeeds).
This is useful for preformatted text or binary data. Using this option turns off
other options. It does not provide a system or user header.
SpooLEach_' tern Boolean
Specifies whether to spool each file indicated by the Name parameter as a sep-
arate job. When true, each file has its own banner page. When false, a single
banner page is printed. The default is false.

Banner: String: = "(DEFAULT)";

Specifies the string that appears on the single banner page that precedes the print-
out. The string you supply is truncated at 11 characters. If the null string is
specified, a banner page will not be generated.

The special name" (OEF AULT>" refers to the banner that is specified in the username's
session switch file or the username if one is not specified.

Header: String: = "(OEFAULT>";

Specifies a line of text that appears at the top of each page of the printout. Any
nonnull string (including blank characters) constitutes a user-specified header. A
blank line is automatically inserted below the user-specified header to separate the
header text from the printout.

If the Options parameter requests a system page header in addition to the user-
specified header, then the system header appears first, followed by the user-specified
header.

The user-specified header can be longer than the Width option; however, a lengthy
header is not wrapped automatically. You must include linefeeds in a header if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line header, you must decrease the
Length value for every header line beyond the expected one.

The special name" (OEF AULT>" refers to the header that is specified in the username's
session switch file.

SMU-116 7/1/87 RATIONAL

procedure Print
package !Commands.Queue

Footer: String:= "<DEFAULT>";

Specifies a line of text that appears at the bottom of each page of the printout.
Any nonnull string (including blank characters) constitutes a user-specified footer.
A blank line is automatically inserted above the user-specified footer to separate
the footer text from the printout.

The user-specified footer can be longer than the Width option; however, a lengthy
footer is not wrapped automatically. You must include linefeeds in a footer if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line footer, you must decrease the
Length value for every footer line beyond the expected one.

The special name "<DEFAULT>"refers to the footer that is specified in the username's
session switch file.

Example

The command:

queue.print (name=>"output_samples",options=>"copies=2,truncate,
system_header" ,banner=>"dept 04",
header=>"May 9, 1987");

prints two copies of the object OutpuLSamples, with Dept 04 on the banner page
and the date appearing under the system page header. Lines longer than 80 char-
acters are truncated.

The request to print Output-Samples is queued to the default class, and a message
such as the following appears in the Message window:

Request number 58 has been queued

A further message in the Message window notifies the user when the job is complete.
The user would also be notified if the request were made on a remote machine.

Referenees

SJM, Session Switches

RATIONAL 7/1/87 SMU-117

procedure PrinLVersion
package !Commands.Queue

procedure Print..Version

procedure Print_Version (The_Version
Options
Banner
Header
Footer

Directory.Version;
String . - "<DEFAULT>";
String . - "<DEFAULT>";
String .- "<DEFAULT>";
String . - "<DEFAULT>");

Description

Queues the specified object version for printing, allowing customization of the print-
out page format.

The default is to assume the device associated with the default class and to notify
when the jobs are complete. The Message window echoes all print requests.

The Print., Version procedure uses the Options parameter to allow you to change
the printout format or to request multiple copies for your print.

Parameters

The_Version : Directory.Version;

Specifies the version of the object to be sent to the print queue.

Options: String:= "<DEFAULT>";

Specifies the options to be used in formatting output. The following is a list of
the options available for use in the Options parameter to format output. Note
that the Options parameter uses the special name "<DEF AULT>". When this special
name is used, the system looks in the session switch file for the options set in
the Queue.Options switch. If the switch file is not accessible, the system uses the
options "FORMAT=> (Wrap, Sys tem_Header) " . These options are no longer true and
must be respecified if any of the options are changed by substituting an option
for the "<DEF ALLT>" special name. One of the following three options must be
specified: OriginaLRaw, Raw, or Format. Unless otherwise specified in the Options
parameter, the Boolean options OriginaL Raw, Raw, and SpooL Each..Item are
false. The other options take the defaults specified below.

Banner_Page_User_Text=string

Specifies a string (with a maximum of 60 characters) that will be printed on the
banner page, beneath the banner and above the system-generated information.

SMU-118 7/1/87 RATIONAL

procedure Print- Version
package !Commands.Queue

Class=string
Specifies the name of the class, where string is the class to which the print
request is queued. The class determines the device that will handle the print
request. Note that the specified class must exist and must be associated with
an enable device. If this option is not specified, the class is the default class.
Copies=positive integer
Specifies the number of copies to be printed, where positive integer is the number
of copies to be printed. Copies are generated one at a time, and other jobs may
intervene between copies. The default is 1 copy.
Format options
The Format option is an options parameter within the Options parameter
that can be used to specify format options Wrap, Truncate, Numbering, Sys-
temz.Header, Width, Length, and 'Iah..Width. Options must appear in paren-
theses-for example, FORMAT=> (Wrap, Width=77).

Length=positive integer
Specifies the total number of printed lines per page, including headers and
footers.
The default length is 60 lines. Note that, by default, the Rational Printer is
set to eject a page after 66 lines if a formfeed is not encountered earlier. To
print pages longer than 66 lines, you must change the appropriate setting
on the Rational Printer (see "Printer Operations and Maintenance" in the
Rational Rl000 Development System: System Manager's Guide) in addition
to increasing the Length value.
The number of lines in the body text for each page is automatically adjusted
to accommodate any combination of a one-line header, a one-line footer, or
a system page header. However, if you specify a multiple-line header or
footer, you must decrease the Length value for every additional line beyond
the expected one.
Numbering Boolean
Specifies whether to provide line numbering. The default is false.
System_Header Boolean
Specifies whether to print the system page header on each page. The system
header is the name of the object and a page number. If there is a user-
specified header, the system page header appears above it. The default is
false.
Tab Width=positive integer
specifies number of spaces with which to replace a Tab character (AsciLHt).
The default is 8. A value of 0 specifies no replacement.
Truncate Boolean
Specifies whether to truncate lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to be
true.

RATIONAL 7/1/S7 SMU-119

procedure Print..Version
package !Commands.Queue

Width= positive integer
Specifies the maximum number of printable characters per line, where pos-
itive integer is the number of characters.
The default width is 80 columns. Note that the Rational Printer itself can
be set to wrap after 80 columns. To print wider pages, you must change the
appropriate setting on the Rational Printer (see "Printer Operations and
Maintenance" in the Rational R1000 Development System: System Man-
ager's Guide) in addition to increasing the value of Width.
The Wrap and Truncate options specify what to do with lines that are longer
than Width.
Wrap Boolean
Specifies whether to wrap lines that are longer than Width. The default
is false. If both Truncate and Wrap are set to true, Wrap is assumed to
be true. The wrapped portions of wrapped lines do not receive a new line
number.

OriginaLRaw Boolean
For use on machines low on space when large files need to be printed. This
option prints without using space to make the print spooler copy. The file
can be spooled only to a local device. Each file is spooled separately (that is,
it ignores the Spool..Each..Item option). A message is sent when printing is
complete (that is, it ignores the Notify option). A banner page is printed (that
is, it ignores the Banner..Pagec.User option).
Noti fy literal
Specifies the manner of notification after a print request is completed. By de-
fault, an informative message is sent to the Message window. The available
types are None, Message (the default), and Mail (reserved for future develop-
ment). Remote requests, under normal conditions, will also notify you.
Raw Boolean
Specifies whether the printer should interpret the input. Prints the file without
interpreting characters (that is, without recognizing formfeeds or linefeeds).
This is useful for preformatted text or binary data. Using this option turns off
other options. It does not provide a system or user header.
SpooLEach_' tern Boolean
Specifies whether to spool each file indicated by the Name parameter as a sep-
arate job. When true, each file has its own banner page. When false, a single
banner page is printed. The default is false.

SMU-120 7/1/87 RATIONAL

procedure PrinL Version
package !Commands.Queue

Banner: String: = " <DEFAULT>" ;

Specifies the string that appears on the single banner page that precedes the print-
out. The string you supply is truncated at 11 characters. If the null string is
specified, a banner page will not be generated. The special name "<DEFAULT>"
refers to the banner set in the username's session switch file (or the username if one
is not specified).

Header: String:= "<DEFAULT>";

Specifies a line of text that appears at the top of each page of the printout. Any
nonnull string (including blank characters) constitutes a user-specified header. A
blank line is automatically inserted below the user-specified header to separate the
header text from the printout.

If the Options parameter requests a system page header in addition to the user-
specified header, then the system header appears first, followed by the user-specified
header.

The user-specified header can be longer than the Width option; however, a lengthy
header is not wrapped automatically. You must include linefeeds in a header if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line header, you must decrease the
Length value for every header line beyond the expected one. The special name
"<DEFAULT>" refers to the header set in the username's session switch file.

Footer: String:= "<DEFAULT)";

Specifies a line of text that appears at the bottom of each page of the printout.
Any nonnull string (including blank characters) constitutes a user-specified footer.
A blank line is automatically inserted above the user-specified footer to separate
the footer text from the printout.

The user-specified footer can be longer than the Width option; however, a lengthy
footer is not wrapped automatically. You must include linefeeds in a footer if you
want it to wrap onto multiple lines.

The number of lines in the body text for each page is automatically adjusted to
accommodate any combination of a one-line header, a one-line footer, or a system
page header. However, if you specify a multiple-line footer, you must decrease the
Length value for every footer line beyond the expected one. The special name
"<DEF AULT>" refers to the footer set in the username's session switch file.

RATIONAL 7/1/87 SMU-121

procedure PrinL Version
package !Commands.Queue

Reference.

SJM, Session Switches

SMU-122 7/1/87 RATIONAL

procedure Register
package !Commands"Queue

procedure Register

procedure Register (Device
Class

String
Class_Name .-

,
II II) ;

Description

Registers the specified device with the print spooler and associates the specified
device with the specified class.

The specified device and class must already exist (see the Create and Add proce-
dures).

More than one class can be registered to a single device, and a single class can be
registered to more than one device. When one class is registered to multiple devices,
print requests submitted to that class are handled by the first available device.

Execution of this procedure requires that the executing job have operator capability.

Pll?ametera

Device: String.-
Specifies the device by physical line number. The line number takes the format
terminaLn, where n is the number of the port to which the device is attached. The
default is no device.

Class: Class_Name := "";

Specifies the class to be associated with the device. The default is no class. The
class must already exist (see the Create procedure). A remote machine name cannot
be used to register a. class with a. remote machine. Registering must be performed
on the same machine as the class to be registered for that machine.

Example

The command:

queue. register ("terminaL 40" ,"lp") ;

registers class LP with the device on physical line 40. If the device on line 40 is
the only device associated with class LP, then all requests to class LP are routed to
device 40.

RATIONAL 7/1/87 SMU-123

procedure Register
package !Commands.Queue

References

procedure Add

procedure Create

procedure Unregister

SMU-124 7/1/11 RATIONAL

proced ure Remove
package !Commands.Queue

procedure Remove

procedure Remove (Device
Immediate

String
Boolean

1111 •,
.- False);

Description

Removes the device from the print spooler.

The value of the Immediate parameter determines whether the procedure waits until
the current print request has finished before removing the device. If Immediate
is false (the default), the procedure waits for the device to finish processing the
current print request. IT Immediate is true, the device is removed immediately, and
the interrupted print request is requeued.

The Remove procedure effectively reverses all aspects of the Enable and Regis-
ter procedures. The Remove procedure disables this device, dissociates it from its
classes, and then removes the device from the print spooler. (Note that the Unreg-
ister procedure dissociates a device from a class but leaves the device known to the
print spooler.)

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device: String.-
Specifies the device by physical line number. The line number takes the form
terminaLn, where n is the number of the port to which the device is attached. The
default is no physical line number.

Immediate: Boolean:= False;
Specifies whether the procedure waits until the current print request has finished
before removing the device. IT false (the default), the procedure waits for the
device to finish processing the current print request. IT true, the device is removed
immediately and the interrupted print request is requeued.

RATIONAL 7/1/87 SMU-12S

procedure Remove
package !Commands.Queue

Example 1

The command:

queue. remove (" term i na 1_40" , true) ;

removes the device on physical line 40 from the spooler. Because of the parameter
true, the device is removed immediately.

Example 2

The command:

queue. remove ("terminaL40");

removes the device on physical line 40 from the spooler. Because of the default
parameter false, the print request currently printing on device 40 completes before
the device is removed.

References

proced ure Add

procedure Enable

procedure Register

SMU-126 7/1/87 RATIONAL

procedure RestarLPrinLSpooler
package !Commands.Queue

procedure Restartc.Print.rSpooler

Description

Starts or restarts the print spooler.

If the spooler is already running, this procedure has no effect. The spooler must be
running in order to successfully execute any queue operation.

Execution of this procedure requires that the executing job have operator capability.

RATIONAL 1/1/'1 SMU-127

procedure Unregister
package !Commands.Queue

procedure Unregister

procedure Unregister (Device
Class

String
Class_Name '-

,
II ••) ;

Description

Dissociates the device from the specified class.

The Unregister procedure reverses the Register procedure. The Unregister proce-
dure dissociates a device from a class but leaves the device known to the print
spooler. (Note that the Remove procedure disables the device, dissociates it from
its classes, and then removes the device from the print spooler.)

Execution of this procedure requires that the executing job have operator capability.

Parameters

Device: String: = "";
Specifies the device by physical line number. The line number takes the form
terminaLn, where n is the number of the port to which the device is attached. The
default is no physical line number.

Class: Class_Name := "";

Specifies a class that is registered to the device. The default is no class. A remote
machine name may not be specified to unregister a device on a remote machine.

Example

The command:
queue .unregister ("terminaL40" ,"Ip"}:

dissociates class LP from the device on physical line 40.

SMU-128 7/1/81 RATIONAL

procedure Unregister
package !Commands.Queue

References

procedure Add

procedure Create

proced ure Register

end Queue;

RATIONAL 7/1/87 SMU-129

RATIONAL

package Scheduler

The medium-term scheduler tracks jobs and regulates their access to CPU, memory,
and disk resources. The procedures in package Scheduler allow the user to monitor
and fine-tune various aspects of the scheduler's allocation of resources to jobs. By
fine-tuning the scheduler, the user can cause it to devote resources to improving the
performance of interactive jobs or increasing the throughput of batch jobs.

Typically, a procedure to tailor the scheduler parameters for a system is created
and a call to it is inserted in the !Machine.lnitialize procedure so that the scheduler
parameters are set up each time the system is booted. Sometimes specific jobs or
servers will have calls to the scheduler procedure to establish special conditions to
optimize their performance.

The operations that set values in this package require that the job executing the
procedure have operator capability. Operations that display values do not require
any special access.

With the Set procedure, the user can set values for the various scheduler parameters
that enable, disable, and adjust CPU scheduling, memory scheduling, disk schedul-
ing, and background job streams. (Each of these topics is discussed in its own
section below.) With the Display procedure, the user can display the current values
for the scheduler parameters.

The State procedure displays indexes of overall system activity such as run load,
disk wait load, withheld task load, and number of available memory pages. The
following also return specific information about system activity:

GeL Disk_ WaiLLoad
GeL Withheld_ Task_Load
GeLRun_Queue_Load

Package Scheduler also provides procedures and functions that allow the user to
enable, disable, and get information about individual jobs. The Disable and En-
able procedures suspend and resume a given job. The State procedure displays
information about resource allocation to individual jobs, and the Display proce-
dure displays information specifically about background jobs on the background
job streams. Along with the State and Display procedures, the following return
specific information about individual jobs:

RATIONAL 7/1/87 SMU-131

package !Commands.Scheduler

Display
GeLCpu_Time_Used
Get..Job.Btate
State

GeLCpu_Priority
GeLJob_Kind
GeL WsLLimits

Jobs
A job is a set of Ada tasks that act together. A job is initiated each time the user
edits an object or executes a command. For scheduling purposes, some jobs are
associated with (or mapped to) others. For example, the aggregate of jobs initiated
by editing images and objects within a single session are scheduled as a single job.

Job Numbers
Whenever a job starts or is created, it is assigned a unique Job-Id (job identification
number), which is a number from 0 through 255. The procedures in package Sched-
uler manipulateJ·obs by job number, or Job..Id. Therefore, jobs and job numbers
are often referre to as Job..Id in the description of individual commands.

Foreground and Badground Joba

Jobs are divided into two major classes for purposes of allocating resources:
• Foreground jobs are typically highly interactive and require fast response. They

are allocated the majority of system resources, and the scheduler attempts to
guarantee that each foreground job makes satisfactory progress.

• Background jobs are batch jobs and do not require especially fast response.
They are allocated the remaining resources after foreground jobs are handled.
The scheduler does not attempt to guarantee that each background job makes
progress.

The treatment of foreground and background jobs is described more precisely under
"CPU Scheduling," below.

Job Kinda

Within the general division of foreground and background, jobs are allocated re-
sources according to their kind. In some cases, a job's kind is determined internally
by the Environment; in other cases, a job's kind is determined by the user. The
user can use the GeLJob_Kind function to determine a given job's kind.

The kinds of jobs are:
• Gore editor {Oe} jobs include operations for editing images-for example, com-

mands that control the cursor or search for strings. The Environment determines
precisely which operations count as core editor jobs.

• Object editor (Oe) jobs include operations for debugging programs and for editing
structured objects-for example, commands that select objects. The Environ-
ment determines precisely which operations count as object editor jobs.

SMU-132 7/1/87 RATIONAL

package !Commands.Scheduler

• Attached jobs are commands entered by users that are not core editor or object
editor operations. While an attached job executes, the Message window banner
displays Running and the terminal is unavailable for other operations.

• Detached jobs result either from interrupting an attached job using ~[g (the
Job.lnterrupt procedure) or from entering a command using I Control II Promot.1 (the
Command.Spawn procedure). The terminal can be used for other operations
while detached jobs execute.

• Server jobs are background jobs that must always have resources available when
needed-for example, the print spooler. The user can designate a job as a server
using the Set-Job_Attribute procedure.

• Terminated jobs are not allocated any resources. A terminated job remains in
the system until its job number is reused for another job.

(Note that all job kinds are defined as enumerations of the Job..Kind type.)

Job kinds are related to job classes as follows:

• Core editor and object editor jobs are allocated foreground resources.
• Detached jobs and servers are allocated background resources.
• Attached jobs receive foreground resources until a certain amount of time has

elapsed, after which attached jobs receive background resources. (The time limit
on attached jobs is determined by the Foreground., Time..Limit scheduler param-
eter, which the user can set using the Set procedure.) Having a time limit on
foreground jobs induces users to run long jobs in the background, rather than
depleting foreground resources.

Job State.
Jobs typically pass through various states: Run, Idle, Wait, Disable, and Queue.
These states are enumerations of the Joh..State type. The user can use the Get-
_Job_State function to find out a given job's current state.

Foreground and background jobs alternate between the Run and Wait states as
they execute:

• A job in the Run state (also called a running job) is either currently consuming
CPU time or eligible to consume CPU time. That is, at any given time, there may
be several running jobs, of which only one is actually using CPU time while the
rest wait their turn.

• A job in the Idle state is not executing. It uses no CPU time and has no unblocked
tasks. For example, jobs that are waiting for I/O or that have all tasks are in the
Idle state. Also, jobs such as the print spooler are in the Idle state until they are
called.

• A job in the Wait state (also called a withheld job) is temporarily ineligible for
CPU time. The scheduler puts a job in the Wait state if:

RATIONAL 7/1/87 SMU-133

package !Commands.Scheduler

o The job has already used more than its share of CPU time and the system load
is too high.

o The job is waiting for disk resources and the disk wait load is too high.
o The job is using pages of memory that are needed to replenish the reserve

supply of available pages.
• A withheld job returns to the Run state when the scheduler determines that the

job is eligible for resources again.
• A job in the Disabled state is not executing. It has been rendered ineligible for

CPU time by users or programs executing the !Commands.Job.Disable procedure
or the Scheduler.Disable procedure.

• The Queued state is relevant for certain kinds of background jobs-namely, all de-
tached jobs and those attached jobs that have passed the Foreground., 'I'lme..l.imit.
Jobs such as these are queued for resources on one of several background job
streams (see "Background Job Streams," below). However, because only a re-
stricted number of jobs on each stream can be in the Run or Wait state at a
time, the remaining jobs are put in the Queued state. In other words, a job in
the Queued state is a job that is waiting on a background job stream until the
executing jobs ahead of it have completed or have been moved to another stream.

Sehedullng Review Interval
The scheduler makes scheduling decisions every 100milliseconds. (These 100-milli-
second-intervals are called review intervals.) At the end of every review interval,
the scheduler reviews the actual usage of resources during the last 100milliseconds
and then, based on the actual usage, decides whether to withhold jobs during the
next 100 milliseconds to keep resource usage within certain limits. Note that the
scheduler does not actually control the allocation of resources, but rather it monitors
and adjusts resource consumption to maintain a balance among different kinds
of jobs. The scheduler itself is not subject to scheduling; it uses 0.5-1% of CPU
resources.

The following sections give a partial description of the scheduler's effect on CPU
scheduling, memory scheduling, and disk scheduling. These sections contain the
information the user needs about the scheduler in order to set the scheduler param-
eters using the Set procedure.

CPU Sehednling
CPU time is distributed among foreground and background jobs, with preference
given to foreground jobs. Because foreground jobs need to make consistent progress
with the best possible performance, CPU time is made available first to foreground
jobs and then to background jobs. However, to prevent foreground jobs from con-
suming all CPU resources, a minimum percentage of CPU time can be designated
for background jobs. This minimum percentage is determined by the PercenLFor-
_Background scheduler parameter, which the user can set using the Set procedure.
(Note that even though some CPU time is guaranteed, background jobs will not
make progress unless they also have disk and memory resources.)

SMU-134 7/1/87 RATIONAL

package !Commands.Scheduler

If there are no background jobs, foreground jobs can receive the CPU time that was
reserved for background jobs. Similarly, background jobs can receive more than
their reserved CPU time, provided that no foreground jobs need time.

Foreground Jobs
The scheduler follows separate policies for scheduling the CPU time that is allocated
to foreground and background jobs. To ensure consistent progress for all foreground
jobs, the scheduler attempts to give each session that has foreground jobs an equal
share of the foreground CPU time. That is, if two users have foreground jobs,
each user's session is given half of the available foreground CPU time. In contrast,
individual background jobs are given CPU time according to their Ada task priority
and to their placement on a background job stream (see "Background Jobs," below).

Foreground CPU scheduling applies to core editor jobs, object editor jobs, and at-
tached jobs. However, to discourage users from running long jobs in the foreground,
the scheduler can be adjusted to give foreground resources to attached jobs only
for a limited time. (The time limit is set by the Foreground., Time..Limit scheduler
parameter.) After the foreground time limit has expired for an attached job, the
job is subject to background CPU scheduling.

To schedule foreground time equitably, the scheduler does the following at the end
of each review interval:

1. Determines how much foreground CPU time each job has used during the current
review interval.

2. Calculates the ideal CPU usage for each job, giving a fair share to each session
that had foreground jobs during the interval.

3. Compares the actual usage to the ideal usage and determines whether the job
has used more or less time than it should have. The foreground budget for each
job is credited or debited accordingly.

4. Decides whether to withhold a job for the next interval. A job is withheld (put
in the Wait state) if both of the following are true:

a. The job has accumulated an overall debt in its foreground budget (that is,
the value of the job's foreground budget is negative).

b. The run load exceeds a preset level.
5. Decides whether to release jobs that were withheld from previous intervals and

return them to the Run state. A job is released after it has accumulated enough
credit in its foreground budget over one or more review intervals to make up for
whatever debt it has previously incurred.

Run Load

The run load is the average number of tasks that require CPU time during a review
interval. Tasks are counted if they are currently consuming CPU time or are eligible
to consume CPU time. Withheld and idle tasks are not reflected in the run load.
The run load is averaged over a review interval and then multiplied by 100 so that
it appears as an integer. For example, if an average of 1.3 tasks are in the Run
state, the run load is 130.

RATIONAL 7/1/87 SMU-135

package !Commands.Scheduler

The scheduler uses the run load to determine whether or not a job can be withheld
after that job has used more than its share of CPU time. The user can specify
the minimum run load at which the scheduler can withhold jobs by using the Set
procedure to set the WlthholdcRunc.Load parameter.

Number of Withheld Job.

By default, the scheduler can withhold only one additional job at the end of a given
review interval, no matter how many jobs are eligible for withholding after that
interval. (However, there is no restriction on the total number of withheld jobs at
any given time, because multiple withheld jobs can accumulate after a number of
intervals.) The user can permit the scheduler to withhold more than one job per
review interval by changing the value for the Withholdc Multiplec.Jobs scheduler
parameter to true. (See the Set procedure.)

Foreground Budget

As a job uses more or less than its fair share of CPU time, the job's foreground
budget is debited or credited accordingly at the end of each review interval. The
value of a job's budget at the end of a given interval therefore represents the net
debt or credit accumulated over successive intervals. If, on the balance, the job
has used more than its allocated time, its budget value is negative. For a withheld
job, this negative value expresses how much time the job must accumulate over
subsequent intervals in order to be released and returned to the Run state. If, on
the other hand, the job has used less than its overall allocated time, its budget
value is positive. A positive budget value prevents the job from being withheld and
expresses how much extra time the job can use before going into debt. If the job
has used exactly as much time as it was allocated, the budget value breaks even at
O.
The scheduler imposes a limit on the amount of accumulated credit or debt a job
can have. That is, no matter how much extra time a job has used, there is a
maximum overall debt that the job can incur. Consequently, if the job is withheld,
there is a limit to the amount of credit it has to accumulate before it can run again.
Similarly, no matter how little time the job used relative to its allotment, there is
a maximum overall credit that the job can earn. Consequently, there is a limit to
how much extra time the job can use before going into debt.

The user can adjust the credit and debit limits on the foreground budget by us-
ing the Set procedure to set the Maxc.Foreground..Budget and Mine.Foreground-
_Budget scheduler parameters, respectively. The wider the range between the Max-
_Foreground_Budget and Minc.Foreground..Budget values, the more sensitive the
scheduler is to giving jobs equal time. When the range is narrower, the distribution
of CPU time is less equal.

Background Jobs

As a group, background jobs (detached jobs, servers, and aged attached jobs) are
guaranteed a percentage of CPU time, as determined by the Percent..Forc.Background
scheduler parameter. However, the scheduler does not track the amount of time used
by each background job, nor does the scheduler attempt to ensure that each job is

SMU-136 7/1/87 RATIONAL

package !Commands.Scheduler

allotted a fair share of the available CPU time. Instead, the allocation of CPU time
is determined by Ada task priorities.

Background Job Streams

Without a guarantee of equal CPU time, it is possible for a single long-running
background job to block a number of shorter jobs. To avoid this, background
job streams can be set up to queue long-running jobs to expedite shorter jobs.
Only two kinds of background jobs are subject to queuing on the background job
streams-namely, detached jobs and attached jobs that have run longer than the
Foreground., Time..Limit. Servers are not subject to queuing on these streams.

By default, there is one background job stream, although the user can arbitrarily
set up streams by using the Set procedure to set the Backgrounds.Streams scheduler
parameter. The Display procedure displays information about each background job
stream.

Job Stream TIme LImIts

Each background job stream has an associated time limit, which specifies the max-
imum amount of elapsed time a job can run on that stream. If a job that is running
on a stream has not yet finished when the time limit is reached, the job is queued
onto the next stream.

For example, the user could set up three streams with the following time limits:

Stream 1 2 minutes
Stream 2 5 minutes
Stream 3 20 minutes

With these limits, a job queued on stream 1 can run for 2 minutes. If the job has
not finished within that time, it is queued onto stream 2, where it waits its turn to
run. (Meanwhile, another job on stream 1 can now run.) Once the job is eligible
to run on stream 2, it can run for 5 more minutes. If the job requires more than 5
minutes, it is queued onto stream 3, so that subsequent jobs on stream 2 can run.
Once the job is eligible to run on stream 3, it can run for another 20 minutes. If the
job requires even more time, it is moved to the bottom of the queue on stream 3.
After the jobs ahead of it have finished or have been requeued, the job gets another
20 minutes, and so on.

The time limits for each stream are determined by the Streamc'I'ime parameters
(see the Set procedure).

Note that a job on a job stream uses temporary disk space that is not reclaimed
until the job is done. Allowing many jobs to accumulate on multiple job streams
can cause a shortage of disk space. If the Streamc.Time value for a job stream is
low, jobs on that stream are more likely to be requeued before they can finish. A
high Stream., Time value permits jobs to complete without being requeued.

RATIONAL 7/1/87 SMU-137

package !Commands.Scheduler

Number of Runnable Jobs on a Stream

Each stream has an associated prescribed number of jobs that can be running at a
given time. These numbers are specified by the StreamcJobs parameters (see the
Set procedure). If a job stream contains more jobs than are permitted to run at a
given time, the excess jobs are put in the Queued state to wait until the jobs ahead
of them are finished or requeued to the next stream.

For example, if the Stream.LJobs value for a stream is 2, then only two jobs on that
stream can be in the Run or Wait state at a time. Therefore, if ten jobs are on that
stream, eight jobs must be in the Queued state.

Strld Stream Pollc)'

Although the Streamc.lobs parameters specify a prescribed number of runnable jobs
per stream, the actual number of running jobs on each stream is also determined
by the presence or absence of strict stream policy. When strict stream policy is in
effect, the Streamc.Jobs value for a given stream is always the maximum number
of jobs that can run concurrently on that stream. In contrast, when strict stream
policy is not in effect, the number of jobs on a given stream can exceed the relevant
StreamcJobs value, provided that other streams are empty. However, although the
distribution of runnable jobs across streams is affected, the total number of jobs
running on all streams taken together cannot exceed the total of the Stream..Jobs
values for all the streams.

For example, under strict stream policy, a system with three streams might have
the following Streamc.Iobs values:

Stream 1 2 jobs
Stream 2 1 jobs
Stream 3 1 jobs

If jobs are queued in all three streams, a maximum of four jobs can be running-
specifically, only the first two jobs in stream 1, the first job in stream 2, and the first
job in stream 3. If streams 1 and 3 are empty, the maximum number of running
jobs across all streams is only one, because stream 2 has a value of 1. Strict stream
policy prohibits extra jobs from running on stream 2, no matter how many jobs are
queued.

If strict stream policy is not in effect, then the maximum number of running jobs
is always four, even when some streams are empty. That is, if streams 1 and 3 are
empty, up to four jobs can run on stream 2, because the empty streams contribute
their Strealll-Jobs values to the nonempty stream.

The following StreamcJobs values make sense only if strict stream policy is not in
effect:

Stream 1
Stream 2
Stream 3

3 jobs
o jobs
o jobs

SMU-138 7/1/87 RATIONAL

package !Commands.Scheduler

If strict stream policy were in effect, jobs queued on streams 2 and 3 would never
run, because their Stream..Jobs values are O. However, because strict stream policy
is not, by default, in effect, jobs queued on streams 2 or 3 can run whenever stream
1 has fewer than three jobs in its queue.

Strict stream policy is controlled by the value of the Strictc.Streamc.Policy scheduler
parameter.

Memory Scheduling
Each job uses pages of main memory while executing. On most RIOOO systems, the
memory size is 32,768 pages, each of which contains 1,024 bytes. The number of
pages in memory is defined by the ll.rm.System.MemorycBise constant.

The scheduler dynamically adjusts the allocation of memory to give pages to jobs
that need more and to reclaim pages from jobs that need fewer. The number of
pages used by a job is called the job's job working set size. To prevent anyone
job from consuming a disproportionate amount of memory resources, the scheduler
places a limit on each job's working set size. This limit, called the job working set
limit, is the maximum number of pages a job can use without penalty.

Jobs started by the Environment or by the system daemon have fixed working
set limits. The user can specify these working set limits by setting the Environ-
menL Wsl and Daemon., Wsl scheduler parameters, respectively. In contrast, the
working set limit for each user job is determined dynamically. When a job is cre-
ated, it is given an initial working set limit, which is adjusted at regular intervals
to ensure adequate allocation of pages to all jobs.

The value of a job's initial working set limit depends on what kind of job it is (see
"Job Kinds," above). The values of scheduler parameters such as Min..Ce., WsI,
Minc.Oe., WsI, and so on determine the initial working set limit for each kind of job.

At the end of every review interval, the scheduler checks each job's working set size.
If the job's working set size exceeds its working set limit, the scheduler increases
the job's limit by a fixed number of pages. The user can specify this number by
setting the WsLGrowth_Factor scheduler parameter.

The scheduler tries to keep each job's working set limit close to its working set size.
Therefore, in addition to automatically increasing the working set limit ten times
a second, the scheduler automatically decreases each job's working set limit every
5 seconds. The limit is decreased by a fixed number of pages, which the user can
specify by setting the WsLDecay_Factor scheduler parameter.

The growth and decay of the working set limits for each kind of job are kept within a
range of values that are specified by scheduler parameters. For example, the lowest
possible working set limit for core editor jobs is determined by the Min_Ce_ Wsl
parameter (which is also the value of the initial working set limit). The highest
possible working set limit for core editor jobs is determined by Max..Ce., Wsl. Sim-
ilarly, the range for object editor working set limits is determined by Min..Oe., Wsl
and Max..Oe., WsI, and so on for attached jobs, detached jobs, and servers. These

RATIONAL 7/1/87 SMU-139

package !Commands.Scheduler

parameters can be used to give preference to some kinds of jobs over others. For
example, the default values for Max..Detached., Wsl and Max_Attached_ Wsl give
background user jobs more than twice as much memory as foreground user jobs.
The user can temporarily override the maximum and minimum working set limits
for a given job by using the SeL WsLLimits procedure.

The scheduler reserves a number of pages for distribution among jobs that need more
memory. If the number of available pages falls below a given limit, the scheduler
withholds jobs as needed and contributes the freed pages to the reserve. The user
can specify the minimum number of pages kept on reserve by setting the Minimum-
_Available_Memory scheduler parameter.

Page Withdrawal

During every review interval, the scheduler withdraws a fixed number of pages from
memory. Withdrawn pages are earmarked for possible removal from the jobs that
are using them. However, a withdrawn page is not actually taken away from a job
unless that job exceeds its working set limit during the review interval.

Withdrawing pages serves two purposes, namely:

• To help account for pages that are shared by multiple jobs. When a shared page
is withdrawn, its use is charged to the first job to request it again. Accurately
accounting for the use of shared pages is necessary for determining the working
set size of each job.

• To earmark pages from overallocated jobs for potential use by underallocated
jobs. If a job exceeds its working set limit, the excess pages are withdrawn so
that they can be allocated to other jobs.

The user can specify the number of pages withdrawn per review interval by setting
the Page., WithdrawaL Rate scheduler parameter.

Disk Sehednllng
The scheduler measures disk activity through an index called the disk wait load. The
disk wait load is the average number of tasks waiting on disk operations, including
page faults and disk I/O operations. The disk wait load is averaged over an internally
determined interval of time and then multiplied by 100, so that it is expressed as
an integer. For example, if an average of 1.5 tasks are waiting for pages from disk
at a given time, the disk wait load is 150.

The scheduler regulates disk activity by monitoring the disk wait load and with-
holding one or more jobs when the load exceeds a certain limit. The user can set
this limit by setting the Max..Disk.Load scheduler parameter. The user can also
ensure a minimum level of disk activity by setting the Minc.Disk..Load scheduler
parameter. Together, the Max.Dlsk.Load and Min..Disk.Load parameters define
a range of acceptable stress on the disks. The wider the range, the less sensitive
the scheduler is to changes in the disk wait load.

SMU-140 7/1/87 RATIONAL

subtype Cpuc.Priority
package !Commands.Scheduler

subtype Cpu..Priority

subtype Cpu_Priority 1S Natural range 0 .. 6;

Description

Identifies priority of access to CPU resources.

A Cpu..Priority of 0 is the lowest; a CpucPrlority of 6 is the highest. The higher a
job's priority, the more CPU time the job gets. Background jobs have a Cpu..Priority
of OJforeground jobs have a CpucPriority of 6.

RATIONAL 7/1/87 SMU-141

procedure Disable
package !Commands.Scheduler

procedure Disable

procedure Disable (Job Job_ld);

Description

Suspends temporarily the job with the specified Job.ild.

A disabled job can be resumed with the Enable procedure.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job: Job_ld;
Specifies the job number.

References

procedure Enable

SMU-142 7/1/87 RATIONAL

function Disk_Waits
package !Commands.Scheduler

function Disk_Waits

function Disk_Waits (Job Job_ld) return Long_Integer;

Description

Returns the number of disk waits the specified job has had since last initialized.

A disk wait occurs whenever a job has to wait for disk resources". The number of
disk waits is derived from a combination of page faults and disk I/O operations.
A high number of disk waits indicates heavy disk activity; a low number indicates
light disk activity.

Parameters

Job: Job_ld;
Specifies the job number.

return Long_Integer;
Specifies the number of disk waits.

RATIONAL 7/1/87 SMU-143

procedure Display
package !Commands.Scheduler

procedure Display

procedure Display (Show_Parameters
Show_Queues

Boolean ,- True;
Boolean ,- True);

Description

Displays the current values for the scheduler parameters along with information
about background job streams in the current output window.

For each background job stream, this procedure displays the value of the Stream-
_Time parameter, a list of the jobs currently in the stream, and the number of
minutes each job has been in the stream. An asterisk next to a job indicates that
the job is currently running-that is, it has Job..State Run. A job without an
asterisk has Joh..State Queued.

The user can change the values for the scheduler parameters by using the Set pro-
cedure.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Show_Parameters Boolean:= True;
Requests, when true, a display of the current values for the scheduler parameters.

Show_Queues : Boolean := True;
Requests, when true, a display of background job stream information.

SMU-144 7/1/87 RATIONAL

proced ure Display
package !Commands.Scheduler

Example 1

The command:

scheduler.display (true,false);

produces a display such as the following:

Cpu_Scheduling ENABLED
Disk_Scheduling : ENABLED
Memory_Scheduling : ENABLED
Percent_For_Background
Min_ and Max_Foreground_Budget
Withhold_Run_Load
Withhold_Multiple_Jobs
Environment_Wsl
Daemon_Wsl
Min_ and Max_Ce_Wsl
Min_ and Max_Oe_Wsl
Min_ and Max_Attached_WsI
Min_ and Max_Detached_Wsl
Min_ and Max_Server_WsI
Min_Available_Memory
WsI_Decay_Factor
WsI_Growth_Factor
Page_Withdrawal_Rate
Min_ and Max_Disk_Load
Foreground_Time_Limit
Background_Streams
Strict_Stream_Policy
Stream_Time and _Jobs 1
Stream_Time and Jobs 2
Stream_Time and _Jobs 3

RATIONAL 7/1/87

: 20%
:-250 250 milliseconds

130
FALSE

11000 pages
200 pages
400 .. 1000 pages
250 .. 2000 pages
50 .. 4000 pages
50 .. 4000 pages
400 .. 1000 pages
1024 pages
50 pages/5 seconds
50 pages/100 milliseconds
1*640 pages/second

200 .. 250
1800 seconds
3
FALSE
2 minutes, 3 jobs
58 minutes, 0 jobs
o minutes, 0 jobs

SMU-145

procedure Display
package !Commands.Scheel uler

Example 2

The command:

scheduler.display (false,true);

produces a display such as the following in the current output window:

2:00Stream 1
252 9: 14

* 223 8:00
253 3:46

* 219 3:29
238 0:48

Stream 2
* 2213 5:1313

261 2:49
Stream 3
* 222 2:00

254 1:26

58:00

0:00

This display shows five jobs in stream 1, of which two are currently running and
the rest are queued. The job that has been in that stream the longest is listed first
and has been there for 9 minutes and 14 seconds. It also shows jobs in streams 2
and 3, using the same format as used in stream 1.

Referenees

procedure Set

SMU-146 7/1/87 RATIONAL

procedure Enable
package !Commands.Scheduler

procedure Enable

procedure Enable (Job Job_ld);

Description

Resumes the execution of the specified disabled job.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job: Job_ld;
Specifies the job number.

References

procedure Disable

RATIONAL 7/1/87 SMU-147

function Enabled
package !Commands.Scheduler

function Enabled

function Enabled (Job Job_ld) return Boolean;

Description

Returns a Boolean indicating whether the specified job is currently enabled for
execution.

Parameters

Job: Job_ld;
Specifies the job number.

return Boolean;
Specifies, when true, that the job is enabled.

SMU-148 7/1/87 RATIONAL

function Get
package !Commands.Scheduler

function Get

function Get (Parameter String) return Integer;

Description

Returns the current value for the specified scheduler parameter.

The names and possible values of the scheduler parameters are listed under the Set
procedure.

Parameters

Parameter : String;
Specifies any of the strings listed under the Set procedure.

return Integer;
Specifies the current value for the specified scheduler parameter.

References

proced ure Set

RATIONAL 7/1/87 SMU-149

function Get..Cpuc.Priorlry
package !Commands.Scheduler

function Getc.Cpus.Priority

DeseriptioD

Returns the priority at which the specified job is currently running.

Parameters

Job: Job_ld;
Specifies the job number.

return Cpu_Priority;
Specifies the value range, from 0 (lowest) through 6 (highest). The higher the
priority, the more CPU time the job gets.

SMU-150 7/1/87 RATIONAL

function GeLCpu_Time_Used
package !Commands.Scheduler

function Get..Cpuc'I'imec.Used

function Get_Cpu_Time_Used (Job Job_ld) return Milliseconds;

Description

Returns the number of milliseconds of CPU time used by the specified job since that
job began.

Parameters

Job: Job_ld;
Specifies the job number.

return Milliseconds;
Specifies the amount of CPU time in milliseconds.

RATIONAL 7/1/87 SMU-151

procedure GeL Disk_ Wait-Load
package !Commands.Scheduler

procedure Oet..Disk., Waite.Load

procedure Get_Disk_Wait_Load (Last_Sample
LasLMinute
Las LS_Minutes
LasLlS_Minutes

out Load_Factor;
out Load_Factor;
out Load_Factor;
out Load_Factor);

Description

Returns the average number of tasks waiting for pages from disk.

The number is averaged over each of four sampling intervals: 100 milliseconds, 1
minute, 5 minutes, and 15 minutes. Each average is multiplied by 100, so that it
appears as an integer.

Parameters

Last_Sample : out Load_Factor;
Specifies disk wait load averaged over the last 100 milliseconds.

Last_Minute : out Load_Factor;
Specifies disk wait load averaged over the last minute.

Last_S_Minutes : out Load_Factor;
Specifies disk wait load averaged over the last 5 minutes.

Last_IS_Minutes : out Load_Factor;
Specifies disk wait load averaged over the last 15 minutes.

SMU-152 7/1/87 RATIONAL

function Get-Job_Attribute
package !Commands.Sched uler

function Getc.Job..Attribute

function Get_Jab_Attribute (Job Job_ld;
Attribute String '- "Kind") return String;

Description

Returns the attributes for a job as described in the Set-Job_Attribute procedure.

Parameters

Job: Job_ld;
Specifies the job number.

Attribute: String:= "Kind";
Specifies the attribute to be checked. The only attribute currently supported is
"Kind", which returns an image of an enumeration of the Job..Kind type.

return String;
Returns a string representing an enumeration of the Joh..Klnd type.

Example

The following program segment illustrates the use of the Get-Job_Attribute func-
tion to display the job attribute for a user job number 244:

A: Scheduler.Job_ld := 244;
begin

lo.Put(Scheduler.Get_Job_Attribute(Job=>A,Attribute=>"Kind"));
end;

References

procedure Setc.Job.i Attribute

RATIONAL 7/1/87 SMU-153

function Get_Job_Descriptor
package !Commands.Scheduler

function Get_Job_Descriptor

function Get_Job_Descriptor (Job Job_ld) return Job_Descriptor;

Description

Returns the current value of a job's statistics.

Parameters

Job: Job_ld;
Specifies the job number.

return Job_Descriptor;
Returns a record of the Joh..Descriptor type. See the Job..Descriptor type for
further information about the contents of that record.

SMU-154 1/1/81 RATIONAL

function GeLJob_Kind
package !Commands.Scheduler

function Get..JobcKlnd

Description

Returns the current Joh..Kind type of the specified job.

This function specifies one of the six kinds of jobs defined by the Job..Kind type:
Ce (core editor), Oe (object editor), Attached, Detached, Server, or Terminated.
The scheduler follows a different scheduling policy for each of these job kinds.

Parameters

Job: Job_ld;
Specifies the job number.

return Job_Kind;
Returns one of the six kinds of job defined by the Job..Kind type: Ce (core editor),
Oe (object editor), Attached, Detached, Server, or Terminated. The scheduler
follows a different scheduling policy for each of these job kinds.

RATIONAL 7/1/87 SMU-155

function Get-Job_State
package !Commands.Scheduler

function Get_Job_State

Description

Returns the current Job..State type of the specified job.

Parameters

Job: Job_ld;
Specifies the job number.

return Job_State;
Returns one of the five job states defined by the Job..State type: Run, Wait, Idle,
Disabled, or Queued. Job..State reflects how the scheduler has disposed of a job--
that is, whether the job is earmarked for running or is considered unrunnable for
some reason.

SMU-156 7/1/87 RATIONAL

procedure GeLRun_Queue_Load
package !Commands.Scheduler

procedure Get_Run_Queue_Load

procedure Get_Run_Queue_Load (Last_Sample
LasLMinute
LasLs_Minutes
LasLIS_Minutes

out Load_Factor;
out Load_Factor;
out Load_Factor;
out Load_Factor);

Description

Returns the number of runnable, unblocked tasks, averaged over each of four sam-
pling intervals: 100 milliseconds, 1 minute, 5 minutes, and 15 minutes.

Runnable tasks are neither withheld nor idle, but they are either currently consum-
ing CPU time or eligible to consume CPU time.

Each average is multiplied by 100, so that it appears as an integer.

Parameters

Last_Sample : out Load_Factor;
Specifies the run queue load averaged over the last 100 milliseconds.

Last_Minute : out Load_Factor;
Specifies the run queue load averaged over the last minute.

Last_s_Minutes : out Load_Factor;
Specifies the run queue load averaged over the last 5 minutes.

Last_iS_Minutes : out Load_Factor;
Specifies the run queue load averaged over the last 15 minutes.

References

SJM, procedure What.Load

RATIONAL 7/1/87 SMU-157

procedure Get., Withheld_ Task_Load
package !Commands.Scheduler

procedure Get.,Withheldc.Taskc.Load

procedure Get_Withheld_Task_Load (Last_Sample
LasLMinute
LasLs_Minutes
LasLIS_Minutes

out Load_Factor;
out Load_Factor;
out Load_Factor;
out Load_Factor);

Deseription

Returns the number of tasks that are withheld from running, averaged over each of
four sampling intervals: 100 milliseconds, 1 minute, 5 minutes, and 15 minutes.

Each average is multiplied by 100, so that it appears as an integer.

A task Gob) is withheld from running if it is consuming more than its share of
resources or if it has been queued or disabled.

Parameters

Last_Sample : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 100 milliseconds.

Last_Minute : out Load_Factor;
Specifies the number of withheld tasks averaged over the last minute.

Last_s_Minutes : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 5 minutes.

Last_IS_Minutes : out Load_Factor;
Specifies the number of withheld tasks averaged over the last 15 minutes.

SMU-158 7/1/87 RATIONAL

procedure Get., WsLLimits
package !Commands.Scheduler

procedure Get.,Wsl..Limits

procedure Get_Wsl_Limits (Job Job_ld;
Min. Max out Natural);

Description

Returns the minimum and maximum working set limits that are currently in effect
for the specified job.

These limits may be the temporary limits set by the SeLWsLLimits ~rocedure,
or they may be the limits defined by the relevant scheduler parameters Min., and
Max..Ce., WsI, Min., and Max.De., WsI, and the like), which are descri ed under
the Set procedure and in the introduction to this package.

Parameters

Job: Job_ld;
Specifies the number of the job whose minimum and maximum working set limits
the user wants to see.

Min: out Natural;
Returns the current minimum working set limit for the given job.

Max: out Natural;
Returns the current maximum working set limit for the given job.

References

procedure SeL WsLLimits

procedure Use..Default., WsLLimits

RATIONAL 7/1/87 SMU-159

type Joh..Descriptor
package !Commands.Scheduler

type Job..Descriptor

type Job_Descriptor is
record

The_Cpu_Priority
The_State
The_Disk_Waits
The_Time_Consumed
The_Working_Set_Size
The_Working_Set_Limit
The Milliseconds_Per_Second
The_Disk_Waits_Per_Second
The_Maps_To
The_Kind
The_Made_Runnable
The_Total_Runnable
The_Made_ldle
The_Made_Wait
The_Wait_Disk_Total
The_Wait_Memory_Total
The_Wait_Cpu_Total
The_Min_Working_Set_Limit
The_Max_Working_Set_Limit

end record;

Cpu_Priority;
Job_State;
Long_Integer;
Milliseconds;
Natural;
Natural;
Natural;
Natural;
Job_ld;
Job_Kind;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long Integer;
Long Integer;

Description

Specifies a record that contains information returned by many of the functions in
this package.

This is a convenient way of storing all of the available information for a particular
job.

Contains the priority at which the specified job is currently running, as returned by
the GeLCpu_Priority function. Specifies the value range, from 0 (lowest) through
6 (highest). The higher the priority, the more CPU time the job gets.

The_State component

Contains the current Job_State of the specified job, as returned by the Get-Job-
_State function. Specifies one of the five job states defined by the Job_State type:
Run, Wait, Idle, Disabled, or Queued. Joh..State reflects how the scheduler has dis-
posed of the job-that is, whether the job is earmarked for running or is considered
unrunnable for some reason.

SMU-160 7/1/87 RATIONAL

type Jobc.Descriptor
package !Commands.Scheduler

Contains the number of disk waits the specified job has had since last initialized, as
returned by the Disks.Waits function. A disk wait occurs whenever the job has to
wait for disk resources. The number of disk waits is derived from a combination of
page faults and disk I/O operations. A high number of disk waits indicates heavy
disk activity; a low number indicates light disk activity.

The_Time_Consumed component

Returns the number of milliseconds of CPU time used by the specified job since that
job began.

Contains the number of pages of memory used by the specified job, as returned by
the Working_Set-Size function.

Contains the limit that the scheduler places on the job's working set size. This limit
is the maximum number of pages the job can use without penalty. The working
set limit for the user job is determined dynamically. When the job is created, it is
given an initial working set limit, which is adjusted at regular intervals to ensure
adequate allocation of pages to all jobs.

The value of the job's initial working set limit depends on the kind of job it is.
The values of scheduler parameters such as Minc.Ce.; WsI, Min..Oe., WsI, and so on
determine the initial working set limit for the job.

The Milliseconds_Per_Second component

Contains the number of milliseconds of CPU time the job has used in the last 5-
second evaluation interval, as shown in the CPU MS/S field of the display resulting
from execution of the State procedure.

Contains the number of disk waits the job had in the last 5-second evaluation
interval, as shown by the DISK DW/S field of the display resulting from execution of
the State procedure.

Contains the core editor (if any) the job is grouped with for CPU scheduling pur-
poses, as shown by the MAP TO field of the display resulting from execution of the
State procedure.

RATIONAL 7/1/S7 SMU-161

type Joh..Descriptor
package !Commands.Scheduler

The_Kind component

Contains the policy used by the scheduler to allocate resources to the job, as in the
Job_Kind type.

In general, Ce, Oe, and Attached jobs are interactive and require enough resources
for constant forward progress. Detached jobs (and aged Attached jobs) are not
interactive and therefore do not require a constant supply of resources.

Contains the number of times the job entered the run state. For further information,
see "Job Kinds" in the introduction to this package.

Contains the number of times the job was available to enter the run state. For
further information, see "Job Kinds" in the introduction to this package.

Contains the number of times the job entered the idle state. For further information,
see "Job Kinds" in the introduction to this package.

Contains the number of times the job entered the wait state. For further informa-
tion, see "Job Kinds" in the introduction to this package.

The following three components give information about why the job went into the
Wait state.

The_Wait_Disk_Total component

Contains the number of times the job entered the wait state because it was waiting
for disk space.

Contains the number of times the job entered the wait state because it was waiting
for memory.

The_Wait_Cpu_Total component

Contains the number of times the job entered the wait state because it was waiting
for CPU time.

SMU-162 7/1/87 RATIONAL

type Joh..Descriptor
package lCommands.Scheduler

Contains the minimum working set limit that is currently in effect for the specified
job.

This limit may be the temporary limit set by the SeL WsLLimits procedure, or
it may be the limit defined by the relevant scheduler parameters [MincCe., WsI,
Min..Oe., WsI, and the like), which are described under the Set procedure and in
the introduction to this package.

Returns the maximum working set limits that are currently in effect for the specified
job.

This limit may be the temporary limit set by the SeL WsLLimits procedure, or
it may be the limit defined by the relevant scheduler parameters [Max..Ce., Wsl,
Max..Oe., WsI, and the like), which are described under the Set procedure and in
the introduction to this package.

RATIONAL 7/1/87 SMU-163

subtype Job_Id
package !Commands.Scheduler

subtype Job_Id

subt~pe Job_ld is Machine.Job_ld;

Description

Specifies the form of Job..Id.

Joh..lds are assigned uniquely for each instance of system activity. Job..Ids are
often referred to as job numbers.

SMU-164 7/1/87 RATIONAL

type Job_Kind
package !Commands.Scheduler

type Job_Kind

t~pe Job Kind lS (Ce, Oe, Attached, Detached, Server, Terminated);

Desezlptdon

Determines the policy used by the scheduler to allocate resources to a job.

In general, Ce, Oe, and Attached jobs are interactive and require enough resources
for constant forward progress. Detached jobs (and aged Attached jobs; see "At-
tached" below) are not interactive and therefore do not require a constant supply
of resources.

Enumerations

Attached
Specifies that the job is a foreground job; the Message window banner displays
Running while an Attached j ob executes. An Attached job is scheduled to receive
its share of the foreground CPU time until the Foreground., 'I'ime..Limit is reached.
[Foreground., 'I'ime..Llmit is set using the Set procedure.) After the time limit is
reached, the job is aged, which means that, although it is still attached, it receives
a smaller amount of CPU time and is subject to queuing in the background job
streams, as if it were detached.

Ce
Specifies that the job (a core editor) is scheduled to receive its share of foreground
CPU time.

Detached
Specifies that the job is running in the background, either started in the back-
ground by the !Commands.Command.Spawn procedure or put there by the !Com-
mands.Job.Interrupt procedure. A Detached job is eligible to receive CPU time,
although it generally receives less CPU time than an Attached job. A Detached job
is subject to queuing on a background job stream.

Oe
Specifies that the job (an object editor) is scheduled to receive its share of foreground
CPU time.

RATIONAL 7/1/a7 SMU-165

type Job..Kind
package !Commands.Scheduler

Server
Specifies that the job is a Server, which is a background job that must always have
resources available to it when it needs them. An example of a Server is the print
spooler. A Server is allocated the resources of a background job; however, unlike
other background jobs, a Server is not subject to queuing in the background job
streams, so that it is always eligible to run.

Terminated
Specifies that the job has completed. A Terminated job remains until its number
[Joh..Id] is reused for another job.

SMU-l66 7/1/87 RATIONAL

type Job.Btate
package 'Commands.Scheduler

type Joh..State

t~pe Job_State is (Run, Wait, Idle, Disabled, Queued);

Description

Indicates how the scheduler has disposed of a job-that is, whether or not the job
is eligible for CPU time.

This information is displayed in the S column of the !Commands. What. Users dis-
play.

Enumerations

Disabled
Specifies that the job is ineligible for CPU time because an external agent has dis-
abled it, for example, using the !Commands.Job.Disable procedure or the Sched-
uler.Disable procedure.

Idle
Specifies that the job uses no CPU time and has no unblocked tasks. For example,
the print spooler remains Idle until called.

Queued
Specifies that the job is in a background job stream but not currently in the Run
or Wait (withheld) state. A Queued job is a background job that is ineligible for
CPU time until one or more other jobs have completed.

Run
Specifies that the job is eligible for CPU time, providing its priority is high enough.

Wait
Specifies that the job has been withheld from running by the scheduler. (A withheld
job is temporarily ineligible for CPU time.) The scheduler puts a job in the Wait
state if:

• The job has already used more than its share of CPU time and the system load
is too high.

• The job is waiting for pages from disk and the disk wait load is too high.

RATIONAL 1/1/87 SMU-167

subtype Loads.Factor
package !Commands.Scheduler

subtype Load..Factor

subtype Load_Factor is Natural;

Description

Defines a representation for the load on the system.

When multiplied by 100, the load factor is the number of tasks waiting in a queue.
For example, for a given interval, if an average of 1.3 tasks are waiting for a page
from disk, then the disk wait load is 130.

SMU-168 7/1/87 RATIONAL

subtype Milliseconds
package !Commands.Scheduler

subtype Milliseconds

subtype Milliseconds is Long_Integer;

Description

Defines a way of representing an amount of time in milliseconds.

RATIONAL 7/1/87 SMU-169

procedure Set
package !Commands.Scheduler

procedure Set

procedure Set (Parameter
Value

String
Integer) ;

Description

Sets the specified scheduler parameter to the specified value.

The Set procedure allows the user to set one parameter at a time. The executing
job must have operator capability.

The user can change scheduler parameters to adjust aspects of CPU scheduling,
memory scheduling, disk scheduling, and background job streams. The descriptions
of the scheduler parameters below assume that the user has read the introduction
to this package for general information about the scheduler.

The Display procedure displays the current values for scheduler parameters. The
user can also use the Get function to get the current value for a given scheduler
parameter.

Parameters

Parameter: String:= "";
Specifies the scheduler parameter whose value is to be set. The acceptable string
names for these parameters are listed in the followingtable.

Value: Integer;
Specifies integer values for scheduler parameters. The acceptable values are listed
in the followingtable.

There are scheduler parameters for adjusting CPU scheduling, memory scheduling,
disk scheduling, and background job streams. The following table summarizes the
string names of these parameters, their possible values, and their default values.
The parameters are discussed in greater detail following the table.

SMU-170 7/1/87 RATIONAL

procedure Set
package !Commands.Scheduler

Scheduler Parameters
Defa.J1 I

Parflmelu Range of Valsu Valse De.eriplion

CPU Schedullng

Cpu-Scl1edulinc o or 1 (off or on) 1 Specifies whether to disable (0) or en-
able (1)CPU scheduling.

Percent_For ..Background o .. to (percent) 20 Specifies the minimum percentage of
CPU allocated to background jobs .

Mln-ForegrouncL.Budgd .&000 .•0 (milliseconds) ·250 Specifies the maximum debt that ajob's
foreground budget can show.

Mu_ForegrouncL.Budgd 0 ••6000 (milliseconds) 250 Specifies the maximum credit that a
job's foreground budget can show.

Withbold-Run-Load o .. too (Load-Factor) 130 Specifies the minimum run load at whicl1
the scheduler can withhold jobs.

Withhold-Multiple_J obs o or 1 (false or true) 0 Speci6es whether or not multiple addi-
tional jobs can be withheld at a time.

Memol7 Scheduling

Memory _Scl1edulinc o or 1 (off or on) 1 Specifies whether to disable (0) or en-
able (1)memory sehedullng.

Environment_ Wsl 1 .. memory size (pages) 11000 Speci6es the working set limit for the
Environment.

Daemon-Wsl 1 .• memory size (pages) 200 Speci6es the working set limit for jobs

Istarted by the system daemon.
Min-Ce_Wsl 1 .. mu_ce_wsl fOO Specifies the minimum working set limit

for core editor jobs.
Mu_Ce_Wsl min .. memory size 1000 Specifies the maximum working set limit

for core editor jobs.
Min-Oe_Wsl 1 .• mu_oe_wsl 250 Specifies the minimum working set limit

for object editor jobs.
Mu_Oe_Wsl min .. memory size 2000 Speci6esthe maximum working set limit

for object editor jobs.
Min-Attacl1ed- Wsl 1 •• mu_attacl1ed-wsl 50 Specifies the minimum working set limit

for attacl1ed jobs.
Mu-Attached- Wsl min .• memory size fOOO Speci6estbe maximum working set limit

for attacl1ed jobs.
Min-Detached- Wsl 1 .• mu_detached-wsl 50 Speci6esthe minimum working set limit

for detached jobs.
Mu_Ddached- Wsl min .. memory size fOOO Specifiestbe maximum working let limit

for detached jobs.

IMln-Server _Wsl 1 .. mu_.erver_wsl fOO Specifies the minimum working set limit
for servera.

Mu-Server_ Wsl mID .. memory size 1000 Specifies tbe maximum working set limit
for servers.

Min-A vailable-Memory o •• memory size (pqH) 102f Specifiel the minimum IlUJDberof pages
of memory that should alway. be avail·
able for distribution.

RATIONAL .,/1/• ., SMU-l71

procedure Set
package !Commands.Scheduler

Scheduler Parameters ContintWl

Parumeter Range of Valuu
Defa.It Dercriplion
Val"

Memo!')' Scheduling (ContintWl)

Wd..Dec~_Fador o .. 2000 (pages) 60 Speci6es the amount by which a user
job's working .et limit i. decreased ev-
ery 5 seeends.

Wsl-Growth-Factor o .• 2000 (page.) 50 Speci6es the amount by which a user
job'. working .et limit is increased.

Page_ Withdr_aL.Rate 0 .. e4 1 Speci6e. the rate at which page. are
(e40 pages/secoDd) withdrawu from memory.

Disk Scheduling

Disk_Scheduling o or 1 (off or OD) 1 Speci6es whether to disable (0) or en-
able (1) disk scheduling.

Max_Disk_Load positive (Load-Factor) 250 Specifies the maximum acceptable disk
wait load before jobs are withheld.

MiD_Disk_Load positive (Load-Factor) 200 Specifies the minimum acceptable disk
wait load.

Background Job Streams

Foreground- Time_Limit. pollitive [seconds] 1800 Specifies how 10DgaD attached job CaD
run before it gets allocated background
resource•.

Background-Stream. poritive (streams) 3 Specifies the IlWIlberof background job
.tream •.

Stream_Time N 1 .. 43200 (minute.) 2,58,00 Specifies the time limit. as.ociated with
the job stream numbered N. (Each stream
has it. own default.)

Stream_Job. N o .. 6 (jobs) 3,0,0 Specifies the DUmberof jobs that CaDbe
runniDgin the job. stream numbered N.
(Each stream has its own default.)

Strlct_Stream_PoUcy o or 1 (f&be or true) 0 Specifieswhether strict stream policy is
in effect (true) or Dot (false).

SMU-172 7/1/87 RATIONAL

procedure Set
package !Commands.Scheduler

Parameters CorCPU Scheduling

Cpu_Scheduling
Specifies whether to enable or disable CPU scheduling independently of memory or
disk scheduling. When CPU scheduling is disabled, all jobs are run according to
Ada task priorities; no attempt is made to guarantee equal time to each foreground
job. The value of CpucScheduling is either 0 (disabled) or 1 (enabled). The default
value is 1 (enabled).

Specifies the minimum percentage of the CPU that is allocated to background jobs.
The default value, 20, means that at least 20% of the CPU can be used by the
background job stream at any time.

Specifies the limit on how much accumulated debt a job's foreground budget can
show. Excess debt is ignored.

The value of Minc.ForegroundcBudget is a negative number of milliseconds from
-5,000 through O. The default value is -250 milliseconds.

Specifies the limit on how much accumulated credit a job's foreground budget
can show. Excess credit is ignored. The wider the range between Max., and
Minc.Foregroundc.Budget, the more sensitive the scheduler is to giving jobs equal
time.

The value of Max.ForegroundcBudget is a positive number of milliseconds from 0
through 5,000. The default value is 250 milliseconds.

Specifies the minimum run load at which the scheduler is permitted to withhold
jobs. The higher the value, the more heavily loaded the system must be before the
scheduler can withhold a job for exceeding its allocated time.

The value for Withholdc.Runc.Load must be an integer from 0 through 900. The
default value for Withholdc.Run.Load is 130. The run load value is the average
number of tasks that are eligible to run, multiplied by 100.

Specifies whether the scheduler is restricted to withholding only one more job per
review interval (in addition to any jobs that were withheld on previous intervals).
When the value for Withholdc.Multiplec.Iobs is 1 (true), the scheduler can withhold

RATIONAL 7/1/87 SMU-173

procedure Set
package !Commands.Scheduler

multiple jobs in response to oversubscribed CPU resources. When the value is 0
(false), the scheduler can withhold at most one job at the end of a single interval.

The default value for Withhold_Multiple_Jobs is 0 (false).

Parameters CorMemory Scheduling

Memory_Scheduling

Specifies whether to enable or disable memory scheduling independently of CPU
or disk scheduling. The value of Memory_Scheduling is either 0 (disabled) or 1
(enabled). The default value is 1 (enabled).

Environment_Ws1

Specifies the working set limit for the Environment. A higher value gives- the En-
vironment more pages, so that there are fewer pages for daemon and user jobs. A
lower value gives the Environment fewer pages, so that there are more pages for
daemon and user jobs.

The value for EnvironmenLWsl is an integer from 0 to the number of pages in
main memory. However, if the user specifies a value that is too high to leave
adequate resources for other jobs, an error message is displayed. The default value
for EnvironmenLWsl is 11,000.

Specifies the working set limit for jobs started by the system daemon (see package
Daemon). A higher value gives the daemon more pages, so that there are fewer
pages for the Environment and user jobs. A lower value gives the daemon fewer
pages, so that there are more pages for the Environment and user jobs.

The value for Daemon., Wsl is an integer from 0 to the number of pages in main
memory. However, if the user specifies a value that is too high to leave adequate
resources for other jobs, an error message is displayed. The default value for Dae-
mon., Wsl is 200.

Specifies the minimum working set limit for the following kinds of jobs: core editor
(Ce), object editor (Oe), Attached, Detached, and Server, respectively. That is,
when a job's working set limit is decreased by WsLDecay_Factor, that working set
limit cannot fall below the value set by the appropriate parameter. The value for
each parameter also determines the initial working set limit that is given to each
kind of job upon creation.

The value for each parameter is an integer number of pages from 1to the value of the
corresponding Max- parameter (see below). For a given job, the SeL WsLLimits

SMU-174 7/1/87 RATIONAL

procedure Set
package !Commands.Scheduler

procedure temporarily overrides the minimum working set limit set by any of these
parameters.

Specifies the maximum working set limit for the following kinds of jobs: core editor
(Ce), object editor (Oe), Attached, Detached, and Server, respectively. That is,
when a job's working set limit is increased by WsLGrowth_Factor, that working set
limit cannot exceed the value set by the appropriate parameter. These parameters
can be used to give preference to some kinds of jobs over others. For example, the
default values for Max-Debched_ Wsl and Max_Attached_ Wsl give background
user jobs twice as much memory as foreground user jobs.

The value for Max-Ce_ Wsl is an integer number of pages from the value of the
corresponding Min., parameter (see above) to the memory size. For a given job, the
SeL WsLLimits procedure temporarily overrides the maximum working set limit
set by any of these parameters.

Specifies the minimum number of pages that should always be available to the
scheduler for dynamic distribution among jobs. If the number of reserve pages falls
below the minimum, the scheduler withholds jobs from running.

If the value is large, more pages are reserved and fewer pages are actually being
used, possibly resulting in performance decrease. If the value is small, fewer pages
are reserved, so that memory is more fully utilized.

The value of Min_Available_Memory is an integer number of pages from 0 through
2,000. The default value for Min_Available_Memory is 1,024.

Specifies the amount by which a user job's working set limit is automatically de-
creased every 5 seconds.

The value for WsLDecay_Factor is an integer number of pages from 0 through
2,000. The default value for WsLDecay_Factor is 50.

Specifies the amount by which a user job's working set limit is automatically in-
creased if the job's working set size has exceeded the working set limit during a
review interval.

The value for WsLGrowth_Factor is an integer number of pages from 0 through
2,000. The default value for WsLGrowth_Factor is 50.

RATIONAL 7/1/87 SMU-175

procedure Set
package !Commands.Scheduler

Specifies the rate at which pages are withdrawn from memory. A higher Page., With-
drawaLRate means that the scheduler makes more passes through memory during
a given period of time, so that pages are withdrawn more frequently. Therefore,
when the Page., WithdrawaLRate is high, the scheduler can charge pages to jobs
with more accuracy and can check large jobs for reclaimable pages more frequently.
However, the increased scheduler activity may degrade performance.

The value for Page., WithdrawaLRate is an integer from 0 through 64. This value
designates a multiple of the following unit rate: 640 pages per second. When
Page., WithdrawaL Rate is 0, no pages are withdrawn. When Page., Withdrawal-
_Rate is 1 (the default value), then the scheduler passes through memory at a rate
of 1 x 640 pages per second. At this rate, the scheduler makes a complete pass
every 51.2 seconds.

Parameters CorDisk Scheduling

Disk_Scheduling

Specifies whether to enable or disable disk scheduling independently of CPU or mem-
ory scheduling. The value of Dlsk..Scheduling is either 0 (disabled) or 1 (enabled).
The default value is 1.

Specifies the maximum acceptable disk wait load before the scheduler withholds
jobs that are waiting for disk resources. The disk wait load is the number of tasks
waiting to read or write a page from disk, averaged over an interval of time and
multiplied by 100.

A high Maxc.Disk..Load value permits increased disk activity; with more jobs wait-
ing on the disk, performance for individual jobs may decrease. A low Max..Disk-
_Load value restricts disk availability; with fewer jobs waiting on the disk, more jobs
are withheld and performance for individual running jobs may improve. Together,
the Max.Dlek..Load and Minc.Dlsk..l.oad parameters define a range of acceptable
stress on the disks. The wider the range, the less sensitive the scheduler is to
changes in the disk wait load.

The value for Max..Disk.Load is a positive integer that must be greater than the
value for Mia..Disk..Load. The default value for Max..Disk.Load is 250 (that is,
an average of 2.5 tasks waiting for disk resources at any given time). See also the
GeL Disk.,WaiLLoad procedure and the Loads.Factor subtype.

Specifies the minimum acceptable disk wait load before action is taken. If the disk
wait load falls below the limit specified by Minc.Disk..Load, the scheduler releases
withheld jobs that were waiting for disk resources.

SMU-176 7/1/87 RATIONAL

procedure Set
package !Commands.Scheduler

The value for Min..Dlsk.Load is a positive integer that must be greater than the
value for Max.Disk.Load. The default value for Miu..Disk.Load is 200 (that is,
an average of two tasks waiting for disk resources at any given time). See also the
GeL Disk.,WaiLLoad procedure and the Loads.Factor subtype.

Parameters CorBackground Job Streams

Specifies how long, in seconds, an attached job can run before it is allocated back-
ground job resources and is subject to queuing on background job streams. To give
more preference to foreground jobs, use a higher value. To encourage users to run
long jobs in the background, use a lower value.

The default value for Foreground..Tima.Limit is 1,800 seconds (30 minutes).

Background_Streams

Specifies the number of background job streams. When there are multiple job
streams, they are numbered from 1 to the value of Backgroundc.Streams.

The default for Backgrounds.Streams is 3.

Specifies the time limit, in minutes, associated with the job stream numbered N.
Stream., Time limits the time elapsed since a job began running on job stream N.

Note that allowing many jobs to remain queued on job streams may cause a disk
space shortage. Jobs are more likely to be requeued before they finish if the
Stream., Time value for a stream is low, whereas a high Streamc'I'ime value per-
mits jobs to run to completion without being requeued.

The value for each Streamc.Time parameter is a number of minutes from 1 through
43,200. The default values for Stream..Tlmes 1 through 3 are 2, 58, and 0 minutes,
respectively.

Specifies the number of jobs that can be running on the job stream numbered N.

The value for each Stream..Jobe parameter is an integer from 0 through 5. A value
of 0 makes sense only if the value of Strlctc.Stream..Policy is 0 (false). The default
values for Stream-Jobs 1 through 3 are 3, 0, and 0, respectively.

Specifies whether strict stream policy is in effect (true) or not (false).

The value for StricLStream-Policy is either 0 (false) or 1 (true). The default is o.

RATIONAL 7/1/87 SMU-177

procedure Set
package !Commands.Scheduler

References

procedure Display

function Get

procedure Get_Disk_ WaiLLoad

subtype Lcad..Factcr

SMU-178 7/1/11 RATIONAL

procedure Set_Jab_Attribute
package !Commands.Scheduler

procedure Set..Jobc.Attribute

procedure Set_Job_Attribute (Job
Attribute
Value

Job_ld;
String .- "Kind";
String .- "Server");

Description

Permits the user to change a job attribute.

Parameten

Job: Job_ld;
Specifies the number of the job.

Attribute: String: = "Kind";
Specifies the attribute. Currently the only attribute supported is "Kind", which
permits the user to specify which kind of job the current job should be. This is
useful in specifying jobs as servers.

Value: String:= "Server";
Specifies the value for the attribute. The default sets the job kind to a server.

The allowable values are the string representations of the enumerations of the
Job..Kind type: Ce, Oe, Attached, Detached, Server, and Terminated.

RATIONAL 7/1/87 SMU-179

procedure Set_ WsI_Limits
package !Commands.Scheduler

procedure Set., Wsk.Limits

procedure Set_Wsl_Limits (Job Job_ld;
Min, Max Natural);

Description

Sets temporary minimum and maximum working set limits that apply only to the
specified job.

For the duration of that job, these temporary limits override the limits defined by the
relevant scheduler parameters (Min., and Max-Ce_ WsI, Min_ and Max..Oe., WsI,
and the like), which are described under the Set procedure and in the introduc-
tion to this package. Note that, while the job is running, the user can use the
UsecDefault., WsLLimits procedure to revert to the limits that are defined by the
scheduler parameters.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job: Job_ld;
Specifies the number of the job whose minimum and maximum working set limits
the user wants to set.

Min: Natural;
Specifies the temporary minimum working set limit for the given job. This value
must be greater than 0 and less that the value of Max.

Max: Natural;
Specifies the temporary maximum working set limit for the given job. This value
must be greater than the value of Min and less than the memory size.

SMU-180 7/1/87 RATIONAL

procedure SeL WsLLimits
package !Commands.Scheduler

Rererences

procedure GeL WsLLimits

procedure Set

procedure Use..Default., WsLLimits

RATIONAL 1/1/81 SMU-181

procedure State
package !Commands.Scheduler

procedure State

procedure State;

Description

Displays the current scheduler state.

Example

The command:
scheduler.state;

produces a display such as the following:

JOB K/S/P STAT CPU
AGE SECONDS

CPU DISK DISK WSET WSET MAP RUN
MS/S DW/S WAITS SIZE LIMIT TO RATIO

4 A/R/O ++++ 212147121.825 28.2 13.4 ++++++ 1112112112111121121121 1.121121
5 A/R/O ++++ 28668.71213 29121.8 121.121 6395 221 2121121 1.121121

217 C/I/6 ++++ 121121058.912 121.121 121.121 299 151 20121 121.99
222 *A/I/el 2535 00002.872 121.121 121.121 104 15 50 245 0.99
228 *0/1/121 398121 12112112117.132 121.0 121.0 178 62 75 0 121.99
245 C/I/O ++++ 1210354.791 121.121 121.121 11211121121 121 2121121 121.91
253 0/1/6 2829 12112112161.517 121.121 121.121 773 15 75 245 0.91

Run Queue Load => 2.46, 121.73, 121.74, 121.68
Disk Wait Load => 121.26, 121.74, 121.56, 121.55
Withheld Task Load => 121.121121,121.1211,121.1211,121.1211
Avai lable Memory => 14293

The first ten lines of the display list each job by number along with the resources
that have currently been allocated to it.

The values that are displayed for each job include:
JOB Specifies the job number.
K/S/P Shows the job's Kind, State, and Priority. Values for Kind and

State are indicated by their first initial (see JobcKind type and
JobcState type). An asterisk before Kind indicates that the job is
being allocated background job resources.

STAT AGE Shows how long, in tenths of a second, a job has been in its current
state. A series of plus signs indicates that the time has exceeded
the display's range.

SMU-182 7/1/87 RATIONAL

Shows the total amount of CPU time, in seconds, the job has used
since it began.
Shows the number of milliseconds of CPU time a job has used in the
last 5-second evaluation interval.
Shows the number of disk waits a job had in the last 5-second eval-
uation interval.
Shows the total number of disk waits a job has had since it began.
Shows the job's current working set size, which is the number of
pages of memory that the job is using.
Shows the current working set limit on the job's working set size.
Shows what core editor (if any) the job is grouped with for CPU
scheduling purposes.
Shows the percentage of time the job has run, as compared with
the total amount of time the job has either run or been withheld.
A value of 1.00 means that the job has never been withheld.

The next three lines of the display (ignoring the blank line) show the various load
averages computed over four intervals: the last 100 milliseconds, the last minute,
the last 5 minutes, and the last 15 minutes. (These values are also returned by
the GeLRun_Queue_Load, GeL Disk_WaiLLoad, and GeL Withheld_Task_Load
procedures.) The last line displays the number of currently available pages of
reserved memory.

CPU SECQt.()S

CPU MS/S

DI SK DW/S

DISK WAITS

WSET 5 I ZE

WSET LIMIT

MAP TO

Rl.t-J RAT I 0

procedure State
package !Commands.Scheduler

References

procedure GeL Dlsk, WaiLLoad

procedure GeLRun_Queue_Load

procedure Get_ Withheld_Task.Loed

RATIONAL 7/1/87 SMU-183

RATIONAL

generic procedure Traversec.Job..Descriptore

This procedure can be used to get a consistent, efficient snapshot of the statistics
of one or more jobs.

The formal parameter list of this procedure is:

generic
with procedure Put (Descriptor: Job_Descriptor);

procedure Traverse_Job_Descriptors (First, Last: Job_ld);

RATIONAL 7/1/87 SMU-185

generic formal procedure Put
package !Commands.Scheduler

generic formal procedure Put

with procedure Put (Descriptor Job_Descriptor);

DeseriptioD

Displays the descriptors for the 'Iraversec.Jobc.Descriptors procedure.

This procedure is called once by the 'Iraversec.Iob.Descriptors procedure for each
job in the range specified in the call to the Traversec.lobc.Descriptors procedure.

Parameters

Descriptor : Job_Descriptor;
Specifies the information to be put. See the Job..Descriptora type for further infor-
mation.

SMU-186 7/1/87 RATIONAL

procedure 'Iraverse..Jobc.Deecrlptora
package !Commands.Scheduler

procedure Traverse..Jobc.Descriptors

procedure Traverse_Job_Descriptors (First. Last Job_ld);

Description

Calls the Put procedure to display the job descriptors once for each job in the range
First ..Last.

This procedure is used to get a consistent, efficient snapshot of the statistics of
one or more jobs. For further information about the information returned, see the
Job_Id subtype.

Parameters

First : Job_ld;
Specifies the number of the first job.

Last: Job_ld;
Specifies the number of the last job.

RATIONAL 7/1/57 SMU-187

procedure Use..Default.; WsLLimits
package !Commands.Scheduler

procedure UsezDefault.; Wsl..Limits

Description

Cancels the temporary minimum and maximum working set limits that were set by
the SeL WsLLimits procedure for the specified job.

While the job is running, this procedure allows the user to revert to the limits that
are defined by the relevant scheduler parameters [Min., and Max..Ce., WsI, Min.,
and Max.De., WsI, and the like). These limits are described under the Set procedure
and in the introduction to this package.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Job: Job_ld;
Specifies the number of the job for which the default minimum and maximum
working set limits should be in effect.

ReCerences

procedure GeL WsLLimits

procedure Set

procedure SeLWsLLimits

SMU-188 7/1/87 RATIONAL

function Working..Setc.Slse
package !Commands.Scheduler

function Workingc.Setc.Size

function Working_Set_Size (Job Job_ld) return Natural;

Description

Returns the number of pages of memory used by the specified job.

Execution of this function requires that the executing job have operator capability.

Parameters

Job: Job_ld;
Specifies the number of the job.

return Natural;
Returns the number of pages of memory used by the specified job.

end Scheduler;

RATIONAL 7/1/57 SMU-189

RATIONAL

package System..Backup

The procedures in package SystemcBackup provide a means to save the Environ-
ment state on a regular basis. This ensures that the Environment can be restored
with minimal loss after a catastrophic system or Environment failure.

The Backup procedure copies the entire Environment onto tape. The three varieties
of backup history are full, primary, and !econdary:
• Full backups are complete and self-sufficient. They preserve system information

as well as data.
• Primary backups preserve changes made to the Environment since the last full

backup.
• Secondary backups preserve changes made to the Environment since the last

primary backup.

A backup of any kind produces two kinds of tapes: data tapu and blue iape«:
• Data tapes contain all data in the Environment.
• Blue tapes contain the system structure.

During startup, the system determines whether recovery is needed and asks whether
you want to proceed with recovery. If you proceed with recovery, the system requests
the blue (system) tapes so that it can initialize the disks. The system then requests
the appropriate data tapes and loads the data.

After a system is recovered from backup tapes, the next backup must be a full
backup.

See the Rational Rl000 Development Sy!tem: Sy!tem Manager'! Guide for more
information on backup procedures.

Execution of some of the operations in this package requires that the executing job
have operator capability. This is noted in the reference entry if the requirement
applies.

RATIONAL 7/1/87 SMU-191

procedure Backup
package !Commands.SysteID-Backup

procedure Backup

procedure Backup (Variety Kind.- System_Backup.Full);

Description

Makes a backup of the specified kind (full, primary, or secondary).

The default is full. Note that after a system is recovered from backup tapes, the
next backup must be a full backup.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Variety; Kind;= System_Backup.Full;
Specifies full, primary, or secondary backup. The default is full.

Restrictions

Backups and disk collection cannot be run at the same time.

If you have begun a backup and the disk collection needs to begin, the backup will be
terminated by default. This causes the system to wait for the disk collection to begin
Waiting..Forc.Backup., Toe.Finish phase before initiating the backup. The user can
chan~e this default with the procedure !Tools.Disk_Daemon.SeLBackup_Killing
(false), which causes the last data tape to be written before disk collection can
begin.

If the disk daemon is running and a backup is attempted, disk collection must
complete before the backup can begin.

For further information, see the Rational Rl000 Development System: System Man-
ager's Guide.

SMU-192 7/1/87 RATIONAL

proced ure Backup
package !Commands.SysteIll-Backup

Example

The command:
system_backup.backup (full);

begins the process for taking a full backup. This command preserves a state of the
Environment that can be supplemented with subsequent secondary backups.

RATIONAL 7/1/17 SMU-193

procedure History
package !Commands.SysteIll-Backup

procedure History

procedure History (Entry_Count
Full_Backups_Only
Tape_Information

Positive .- 10;
Boolean .- False;
Boolean .- False);

Description

Lists the specified number of previous backups.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Entry_Count : Positive := 10;
Specifies the number of the most recent backups that should be included in the
display.

Full_Backups_Only Boolean:= False;
Specifies, when true, information on full backups only.

Tape_Information : Boolean:= False;
Specifies, when true, that the Environment list (in Current-Output) the first data
tape involved in each backup.

Example

The command:
system_backup.history;

produces a display such as the following for each full, primary, and secondary
backup. By default, the command returns information on each of the ten previous
backups.

Full Backup 6 Taken At 19-JUN-87 11:19:42
Blue Tape Vol Name => BACKUP BLUE TAPE, 19-JUN-87 11:19:42 2
Blue Tape Vol Id => 002000
Data Tape Vol Name => BACKUP, 19-JUN-87 11:19:42
Data Tape Vol Id => 001900

SMU-194 7/1/87 RATIONAL

subtype Id
package !Commands.System_Backup

subtype Id

subtype Id is Natural;

Description

Specifies the identifier assigned to a backup tape during the backup procedures.

Identifiers are listed in the History procedure display.

Referencee

procedure History

RATIONAL 7/1/11 SMU-195

type Kind
package !Commands.SysteIn-Backup

type Kind

type Kind 15 (Full, Primary, Secondary);

Description

Specifies the kind of backup to be taken with the Backup procedure.

Enumerations

Full
Records the complete state of the Environment-a complete backup.

Primary
Records changes in the Environment state since the last full backup-an incremental
backup.

Secondary
Records changes in the Environment since the last primary backup-an incremental
backup.

end System..Backup;

SMU-l96 7/1/87 RATIONAL

package System..Utilities

Package System..Utilitiea offers a set of capabilities that provide access to various
system characteristics. In general, these characteristics cannot be altered with
procedures in this package. To change some of the characteristics not alterable by
subprograms in this package, use packages Operator, Scheduler, and Terminal (in
this book) and package !Commands.Job (documented in SJM). Other characteristics
are controlled by the Environment and cannot be explicitly changed.

Package Syetem..Utllities deals with:

• Sessions
• Users
• Terminals
• Jobs
• System hardware

Sessions are created as necessary when a user logs into the system. The Environment
creates the session and manages it for the user. One terminal is assigned to each
active session. A single user can have more than one active session by logging into
the system from more than one terminal and providing a unique session name for
each login.

For persons to log in and use the facilities of the Rational Environment, they must
have ~er8 created for them. Users are created by the Environment with the Opera-
tor.Create..Ueer procedure. Users have a home library, a usemame/password pair,
and other characteristics that are maintained by the Environment.

Within each session, the user can create multiple jobs to execute programs and com-
mands. Each job is separately scheduled and can have its own scheduler priority and
page limits. Page limits are a resource limit that can be established by the system
manager to limit the number of virtual memory pages that user jobs can consume.
Users can create jobs implicitly when a command window is executed or explic-
itly with the !Commands.Program.Run_Job and !Commands.Program.Create_Job
procedures.

Unless otherwise noted, if illegal values are passed to any of the operations in this
package, the ConstrainLError exception is raised.

RATIONAL 7/1/87 SMU-197

constant AlLBa<LBlocks
package l'Tools.System., Utilities

constant All_Bad_Blocks

Description

Defines a value that indicates all bad disk blocks.

Referenees

function Badc.Block.Llst

constant Manufacturera.Badc.Blocks

constant RetargetedcBlocks

SMU-198 7/1/87 RATIONAL

type Bad_Block_Kinds
package l'Iools.System., Utilities

type Bad_Block_Kinds

type Bad_Black_Kinds is new Long_Integer range 0 .. 7;

Description

Defines the kinds of bad disk blocks.

References

constant AlL Bad_Blocks

function Bad_Block_List

constant Manufacturera.BadcBlocks

constant Retargeted..Blocks

RATIONAL 7/1/17 SMU-199

function Bad_Block_List
package l'Iools.System., Utilities

function Bad_Block_List

function Bad_Block_List (For_Volume Natural;
Kind Bad_Block_Kinds .- Retargeted_Blocks)

return Block_List;

Description

Returns a list of bad disk blocks of the specified kind on the specified disk volume.

Parameters

For_Volume : Natural;
Specifies the volume for which to get the bad block information.

Kind: Bad_Block_Kinds := Retargeted_Blocks;
Specifies the kind of bad blocks to get.

return Block_List;
Returns the desired list of bad disk blocks. If the volume or kind of bad block is
illegal, a null array will be returned.

Errors

If the volume or kind of bad disk block is illegal, a null array will be returned and
no exceptions will be raised.

References

constant AlL Bad_Blocks

constant ManufacturerscBad..Blocks

constant Retargeted..Blocks

SMU-200 7/1/87 RATIONAL

type Block_List
package !Tools.SysteIll- Utilities

type Block..List

type Block_List is array (Natural range <» of Integer;

Description

Defines the type used to represent a list of bad disk blocks.

References

function Badc.Block..List

RATIONAL 7/1/17 SMU-201

subtype Byte..String
package l'Iools.System., Utilities

subtype Byte..String

Description

Defines a string of 8-bit bytes.

SMU-202 7/1/87 RATIONAL

subtype Characterc.Blts..Range
package l'Iools.Systemc.Utilities

suhtype Character _Bits_Range

subtype Character_Sits_Range is Integer range 5 .. 8;

Description

Defines the allowed values for the number of bits in a character.

The number of bits in a character depends on the character set that the terminal
uses. Normally this is eight bits for the Rational Terminal. Other applications of
terminals may require other values.

RATIONAL 7/1/87 SMU-203

function Character..Size
package l'Iools.System., Utilities

function Character..Size

function Character_Size (Line Port .- System_Utilities.Terminal)
return Character_Sits_Range;

Description

Returns the number of bits used for each character on the specified line.

The Characterc.Bita.Range value can be changed using the Terminal.Set..Char-
acterc.Size procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line whose number of bits per character is desired. The default returns
the number of bits per character for the line attached to the current session.

return Character_Sits_Range;
Returns the number of bits per character.

References

procedure Terminal.SeLCharacter _Size

SMU-204 7/1/87 RATIONAL

function Cpu
package l'Tools.System., Utilities

function Cpu

function Cpu (For_Job Job_ld.- System_Utilities.Get_Job)
return Duration;

Description

Returns the CPU time that the specified job has consumed.

This function returns the time that the specified job has used in its execution. By
default, the function returns the CPU time of the current job.

Parameters

For_Job: Job_ld:= System_utilities.Get_Job;
Specifies the job whose CPU time is desired. The default returns the CPU time of
the current job.

return Duration;
Returns the CPU time.

RATIONAL 7/1/87 SMU-205

function Detachc.On..Dlsconnect
package l'Iools.Systemc.Utilities

function Detach..Onc.Disconnect

function Detach_On_Disconnect (Line Port._ S~stem_Utilities.Terminal)
return Boolean;

Description

Determines whether the detach-on-disconnect feature is enabled for the specified
line.

See package Terminal for more information on this feature.

Parameters

Line: Port := S~stem_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

Restrictions

This feature is not yet implemented, so the value returned by this function is un-
defined.

References

procedure Terminal.SeLDetach_On_Disconnect

SMU-206 7/1/87 RATIONAL

function Disconnect..OncDlsconnect
package l'Iocls.System., Utilities

function Disconnect..Onc.Disconnect

function Disconnect_On_Disconnect
(Line: Port := System_Utilities.Terminal) return Boolean;

Description

Determines whether the dlsconnect-on-disconnect feature is enabled for the specified
line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.SeLDisconnecLOn_Disconnect

RATIONAL 7/1/87 SMU-207

function Dlsconnect..OncFailedc.Logln
package l'Iools.System., Utilities

function Disconnectc.Oru.Failedc.Login

function Disconnect_On_Failed_Login
(Line: Port := System_Utilities.Terminal) return Boolean;

Description

Determines whether the disconnect-on-failed-login feature is enabled for the speci-
fied line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.SeLDisconnecLOn_Failed_Login

SMU-208 7/1/87 RATIONAL

function Disconnect.cOnc.Logoff
package !Tools.System-.Utilities

function Disconnect..Onc.Logoff

function Disconnect_On_Logoff (Line Port.- System_Utilities.Terminal)
return Boolean;

Description

Determines whether the disconnect-on-logoff feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.SeLDisconnecLOn_Logoff

RATIONAL 7/1/87 SMU-209

function Done
package l'Iools.System., Utilities

function Done

function Done (Iter Job_lterator) return Boolean;

Description

Checks whether the iterator has stepped through all of the jobs.

Parameters

Iter: Job_lterator;
Specifies the iterator to be checked.

return Boolean;
Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. Specifically, the Done function yields true only
if active jobs remain when it is called, even if jobs active when the Init procedure
is called terminate before the Done function is called.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done (Job_lterator) loop

... Value (Job_lterator)
Next (Job_lterator);

end loop;

SMU-210 7/1/87 RATIONAL

function Done
package l'Iools.System., Utilities

function Done

function Done (Iter Session_lterator) return Boolean;

Description

Checks whether the iterator has stepped through all of the sessions.

Parameters

Iter: Session_lterator;
Specifies the iterator to be checked.

return Boolean;
Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator) loop

... Value (Session_lterator)
Next (Session_lterator);

end loop;

RATIONAL 7/1/87 SMU-211

function Done
package l'Iools.System., Utilities

function Done

function Done (Iter Terminal_lterator) return Boolean;

Description

Checks whether the iterator has stepped through all of the terminals.

Parameters

Iter: Terminal_lterator;
Specifies the iterator to be checked.

return Boolean;
Returns the value true when the iteration is complete; otherwise, the function re-
turns false.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

... Value (Terminal_lterator)
Next (Terminal_lterator);

end loop;

SMU-212 7/1/87 RATIONAL

function Elapsed
package l'Iools.System., Utilities

function Elapsed

function Elapsed (For_Job Job_ld'- System_Utilities.Get_Job)
return Duration;

Description

Returns the elapsed time that the specified job has existed.

This function returns the time that the specified job has been in existence. By
default, the function returns the elapsed time of the current job.

Note: The elapsed time for job 4 (the system) is the elapsed time since the machine
was booted.

Parameters

For_Job: Job_ld:= System_Utilities.Get_Job;
Specifies the job whose elapsed time is desired. The default returns the elapsed
time of the current job.

return Duration;
Returns the elapsed time.

RATIONAL 7/1/81 SMU-213

function Enabled
package l'Tools.Syetemc.Ufilitles

function Enabled

function Enabled {Line Port.- System_Utilities.Terminal} return Boolean;

Description

Checks whether the specified line is enabled for logging into the Environment.

The Boolean value can be changed by using the Operator. Enable., Terminal proce-
dure.

Parameters

Line: Port .- System_Utilities.Terminal;
Specifies the line to be checked. The default returns the check on the line attached
to the current session.

return Boolean;
Returns the value true when the specified line is enabled for login; otherwise, the
function returns false.

Rererence.

procedure Operator. Enable., Terminal

SMU-214 7/1/87 RATIONAL

function Error _Name
package l'Tools.Systern., Utilities

function Error..Name

function Error_Name
(For_Session : Session_ld '- System_Utilities.Get_Session) return String;

Description

Returns the full name of the StandardcError filename for the indicated session.

If this file is opened using the I/O packages in the Environment, the output goes to
the standard error window. This function can be used, for example, in an appli-
cation that attempts to redirect error output to the standard error window for the
job and needs the correct filename to perform the redirection.

Parameters

For_Session: Session_ld:= System_Utilities.Get_Session;
Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;
Returns the filename.

RATIONAL 7/1/87 SMU-215

function Plow..Control
package l'Iools.System., Utilities

function Flowe.Control

function Flow_Control (Line Port.- S~stem_Utilities.Terminal)
return String;

DescriptioD

Determines whether software flow control is used for controlling the flow of data
transmitted to the device on the specified line.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware flow control (CTS receiving, RTS or DTR transmitting)
and some devices support software flow control (via XON and XOFF transmissions).
Note that hardware flow control via RTS or DTR is not supported for transmission
to devices. CTS hardware flow control is available only for transmission.

Legal values returned for methods of transmission flow control are:

NONE XON_XOFF
NONE indicates that there is no software flow control for the line and that there
mayor may not be CTS hardware flow control for the line. Since CTS hardware flow
control is enabled or disabled by changing a hardware switch setting in the RS232
distribution panel, the setting of this hardware switch must be used to determine
whether hardware flow control is enabled for the line if the value NONE is returned.

XON_XOFF indicates that software flow control is enabled for the line. This value
indicates that the Rational system will stop transmitting when it receives an XOFF
from the device and may resume transmission when it receives an XON. Note that
hardware flow control may also be enabled for the line. Since CTS hardware flow
control is enabled or disabled by changing a hardware switch setting in the RS232
distribution panel, the setting of this switch must be used to determine whether
hardware flow control is enabled for the line if the value XON_XOFF is returned.

The type of transmission flow control used for the line can be changed by using the
Terminal.SeLFlow _Control procedure or by changing a hardware switch setting
in the RS232 distribution panel.

Parameters

Line: Port := S~stem_Utilities.Terminal;
Specifies which line is to be checked for flow control. The default returns the flow
control method for the line attached to the current session.

SMU-216 7/1/87 RATIONAL

function Plow..Control
package !Tools.SysteII1-Utilities

return String;
Returns the method used for controlling the flow of data transmitted to the device.
Legal values and their meanings are defined above.

References

procedure 'Ierminal.Setc.Plowc.Oontrol

RATIONAL 7/1/87 SMU-217

function GeLBoard_Info
package l'Iools.Systemc Utllities

function Oet..Boardclnfo

function Get_Board_lnfo (Board Natural) return String;

Description

Returns information about the specified hardware circuit board in the system.

Parameters

Board: Natural;
Specifies the board about which to determine information. The legal values are:

Legal Values

Vallie Boord

0 IOA/lOe

1 SYS

2 SEQ

3 VAL

4 TYP
5 FlU

100 MEMO

101 MEM1

102 MEM2

103 MEM3

return String;
Returns information about the board.

SMU-218 7/1/87 RATIONAL

function GeLJob
package l'Iools.System.; Utilities

function Get_Job

function Get_Job return Job_ld;

Description

Returns the identity of the current job.

Parameters

return Job_ld;
Returns the identity of the current job-that is, the job that called this function.

RATIONAL 7/1/87 SMU-219

procedure Get-Page_Counts
package l'Iools.System., Utilities

procedure Get_Page~Counts

procedure Get_Page_Counts (Cache_Pages
Disk_Pages
Max_Pages
For_Job

out Natural;
out Natural;
out Natural;

.Job.i l d .-
System_Utilities.Get_Job);

Description

Returns the virtual memory page counts for the specified job (each page is 1,024
bytes).

The Environment keeps track of the virtual memory pages currently used by a job
and compares this count with the Max..Pages resource limit established for the job
when new pages are allocated. If the allocation raises the count above the maximum,
the Storagec.Error exception will be raised. Note that under certain conditions a
job may be allowed to allocate more pages than the maximum allowed before the
Storage..Error exception is raised.

When a job begins, it is assigned a default page limit. By default, a job is al-
lowed to create 8,000 pages. This default is determined by the value of the De-
faultc.JobcPaga.Llmit session switch. See SJM, Session Switches, for more informa-
tion on session switches.

When a job elaborates Ada units, this limit may be increased if these units specify
larger page limits through the Pages.Limit pragma or the Page..Limlt library switch.
See LM, package Switches, for more information on library switches. The job can
change the limit at any time by calling the Set..Paga.Limlt procedure.

Parameters

Cache_Pages: out Natural;
Returns the number of pages presently in main memory.

Disk_Pages: out Natural;
Returns the number of pages that have disk space allocated for them.

Max_Pages: out Natural;
Returns the limit on the number of pages the job is allowed to create.

SMU-220 7/1/87 RATIONAL

procedure Get-Page_Counts
package !Tools.SysteII1-Utilities

For_Job: Job_ld:= System_Utilities.Get_Job;
Specifies the job for which to count the pages. By default, pages will be counted
for the job of the caller.

Errors

IT the allocation raises the count above the maximum, the Storages.Error exception
will be raised. Note that under certain conditions a job may be allowed to allocate
more pages than the maximum allowed before the Storages.Error exception is raised.

References

procedure Set..Page.Limit

RATIONAL 7/1/87 SMU-221

function GeLSession
package l'Iools.System; Utilities

function Get_Session

function Get_Session return Session_ld;

Description

Returns the session identifier for the job that executed the call to the {unction or
the indicated job.

Parameters

For_Job: Job_ld;
Specifies the job for which to determine the session identifier.

return Session_ld;
Returns the session identifier for the job that executed the call to the function or
the indicated job.

SMU-222 7/1/87 RATIONAL

function Home..Library
package [Tools.System., Utilities

function Homc..Library

function Home_Library (User String .- User_Name) return String:

Description

Returns the full name of the home library for the specified user.

By default, this function returns the home library for the user of the current session.

Parameters

User: String.- User_Name;
Specifies the simple name of the user for which the home library is to be determined.

return String;
Returns the full pathname of the home library for the indicated user.

RATIONAL 7/1/87 SMU-223

function Image
package l'Iools.System., Utilities

function Image

function Image (Version Directory.Version) return String;

Description

Returns the full pathname for the indicated version.

Parameters

Version: Directory.Version;
Specifies the version for which the name is to be computed.

return String;
Returns the full pathname for the indicated version.

SMU-224 7/1/87 RATIONAL

procedure Init
package l'Iools.System., Utilities

procedure Init

procedure Init (Iter out Session_lterator);

Description

Initializes the session iterator to iterate over all of the sessions that are active-that
is, currently logged in.

If one or more sessions are active, the Value function returns the first session using
this value of the iterator. If no sessions are active, the Done function returns the
value true using this value of the iterator.

Parameters

Iter: out Session_lterator;
Returns the iterator.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator) loop

... Value (Session_lterator)
Next (Session_lterator);

end loop;

RATIONAL 7/1/&7 SMU-225

procedure Init
package l'Iools.System., Utilities

procedure Init

procedure Init (Iter out Job_lterator;
For_Session Session_ld.- Get_Session);

Description

Initializes the job iterator to iterate over all of the jobs that are active for the
specified session.

When one or more jobs exist in the session, the Value function returns the first
job using this value of the iterator. When no jobs exist in the session, the Done
function returns the value true using this value of the iterator.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. For example, the Value function yields only jobs
that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

Iter: out Job_lterator;
Returns the iterator.

For_Session : Session_ld := Get_Session;
Specifies the session for which the iterator is desired. The default returns an iterator
for the set of jobs in the current session.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done (Job_lterator) loop

... Value (Job_lterator)
Next (Job_lterator);

end loop;

SMU-226 7/1/S7 RATIONAL

procedure Init
package l'Iools.System.; Utilities

procedure Init

procedure Init (Iter out Terminal_lterator);

Description

Initializes the terminal iterator to iterate over the terminals known to the Environ-
ment.

The terminals known to the Environment are those terminal devices that exist in
the library !Machine.Devices. When one or more terminals are known, the Value
function returns the first terminal using this value of the iterator. When no ter-
minals are known, the Done function returns the value true using this value of the
iterator.

Parameters

Iter: out Terminal_lterator;
Returns the iterator.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

... Value (Terminal_lterator)
Next (Terminal_lterator);

end loop;

RATIONAL 7/1/87 SMU-227

function Input..N ame
package l'Tools.Syatem., Utilities

function Inputc.Name

function Input_Name
(For_Session : SessIon Id .- S~stem_Utilities.Get_Session) return String;

Description

Returns the full name of the Standard..Input filename for the indicated session.

If this file is opened using the I/O packages in the Environment, the input comes
from the standard input window. This function could be used, for example, in an
application that attempts to redirect input to the standard input window for the
job and needs the correct filename to perform the redirection.

Parameters

For_Session: Session_ld:= S~stem_Utilities.Get_Session;
Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;
Returns the filename.

SMU-228 7/1/87 RATIONAL

function Inputc.Count
package l'Iools.System., Utilities

function Inputc.Count

function Input_Count (Line Port '- System_Utilities.Terminal)
return Long_Integer;

Description

Returns the number of characters input from the specified line since the system was
booted.

Input from the line that has not been read by a session or user program is not
counted as input.

This function can be used, for example, to create an application that automatically
logs out inactive user sessions. Such an application can use the Input-Count and
Output-Count functions to determine whether any characters have recently been
typed or output on the line for each session.

Parameters

Line: Port := System_Utillties.Terminal;
Specifies the line for which the input count is desired. The default returns the input
count of the line attached to the current session.

return Long_Integer;
Returns the input count in characters.

References

function Output-Count

RATIONAL 7/1/87 SMU-229

function InpuLRate
package l'Tools.System.;Utilities

function Inputc.Rate

function Input_Rate (line Port.- S~stem_Utilities.Terminal)
return String;

Description

Returns the input rate of the specified line.

This function returns a string that contains the input rate of the specified line. By
default, the function returns the input rate for the line associated with the current
session. This value can be changed with the Terminal.SeLlnpuLRate procedure.

Legal values for the input rate are:
DISABLE
BAUD_134_S
BAUD_600
BAUD_4800

BAUD_50
BAUD_150
BAUD_1200
BAUD_9600

BAUD_75
BAUD_200
BAUD_1800
BAUD_19200

BAUD_110
BAUD_300
BAUD_2400
EXT_REC_ClK

Parameters

line: Port := S~stem_Utilities.Terminal;
Specifies the line for which the input rate is desired. The default returns the input
rate of the line attached to the current session.

return String;
Returns the input rate. Legal values are defined above.

References

procedure Terminal.SeLlnpuLRate

SMU-230 7/1/87 RATIONAL

subtype Job_Id
package l'Iools.System., Utilities

subtype Job_Id

subtype Job_ld is Machine.Job_ld range 4 .. 255;

Description

Defines a representation for a job.

Objects of the Joh..Id subtype are created to represent jobs in the Environment.
Jobs are manipulated by procedures in SJM, package Job.

References

SJM, package Job

RATIONAL 7/1/87 SMU-231

type Job.Jterator
package !Tools.System- Utilities

type Job..Itorator

t~pe Job_lterator 15 private;

Description

Defines a type that allows iterating over all jobs in a specified session.

Objects of the Job..Iterator type contain all of the information necessary to step
over all of the jobs in a session. The type is used with the Init and Next procedures
and the Value and Done functions.

SMU-232 7/1/87 RATIONAL

function Jobs.Name
package l'Iools.System., Utilities

function Job_Name

function Job_Name (For_Job Job Id .- System_Utilities.Get_Job)
return String;

Description

Returns the symbolic name of the indicated job.

This symbolic name is the name that is put in the job header at the beginning of
job output to an output window. Its form is determined by the values of the session
switches controlling the format of the job name at the time the owner of the job
started it.

If the job is not currently running, the ConstrainLError exception is raised.

Parameters

For_Job: Job_ld:= System_Utilities.Get_Job;
Specifies the job for which to get the name.

return String;
Returns the symbolic name of the indicated job.

Errors

The ConstrainLError exception is raised if the job is not currently running.

RATIONAL 7/1/87 SMU-233

function Last-Login
package l'Iools.Syetem; Utilities

function Last..Login

function Last_Login (User
Session

String;
String := "") return Calendar.Time;

Description

Returns the time at which the specified user logged into the specified session.

By default, this function returns the time at which the user logged into any session.

Parameters

User: String;
Specifies the simple name for the user.

Session: String:= "":
Specifies the simple name for the session. The default value specifies that the last
time the user logged into any session is to be computed.

return Calendar. Time;
Returns the time at which the user logged into the specified session.

SMU-234 7/1/87 RATIONAL

function LasLLogou t
package l'Iools.System., Utilities

function Last..Logout

function Last_Logout (User
Session

String;
String := "") return Calendar.Time;

Description

Returns the time at which the specified user logged out of the specified session.

By default, this function returns the time at which the user last logged out of any
session.

Parameters

User: String;
Specifies the simple name for the user.

Session: String: = "";
Specifies the simple name for the session. The default value specifies that the last
time the user logged out of any session is to be computed.

return Calendar.Time;
Returns the time at which the user logged out of the specified session.

RATIONAL 7/1/17 SMU-235

function Log..Failedc.Logina
package l'Iools.System., Utilities

function Log_Failed_Logins

function Log_Failed_Logins (Line Port:= System_Utilities.Terminal)
return Boolean;

Description

Determines whether the log-failed-logins feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

References

procedure Terminal.Setc.Log.Failed.Loglns

SMU-236 7/1/87 RATIONAL

function Logged..ln
package !Tools.SysteID-Utilities

function Loggedc.In

function Logged_In (User String;Session String:=) return Boolean;

Description

Determines whether the specified user is logged into the specified session.

By default, this function determines whether the specified user is logged into any
session.

Parametera

User: String;
Specifies the simple name for the user.

Session: String: = •.••;
Specifies the simple name for the session. The default value specifies that the check
should be made to determine whether the user is logged into any session.

return Boolean;
Returns true if the user is logged in; otherwise, the function returns false.

RATIONAL 7/1/87 SMU-237

function Login..Disabled
package l'Iools.System., Utilities

function Loginc.Disabled

function Login_Disabled (Line Port.- System_Utilities.Terminal)
return Boolean;

Description

Determines whether login is disabled for the specified line.

When login is disabled-that is, the function returns true-the Operator. Enable-
_Terminal command fails for the specified line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

RefereneeB

procedure Operator. Enable., Terminal

procedure 'Terminal.Setc.l.oginc.Disabled

SMU-238 1/1/81 RATIONAL

function LogoffcOnc.Disconnect
package l'Iools.System., Utilities

function LogoffcOn..Disconnect

function Logoff_On_Disconnect (Line Port.- System_Utilities.Terminal)
return Boolean;

Description

Determines whether the logoff-on-disconnect feature is enabled for the specified line.

See package Terminal for more information on this feature.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the information is desired. The default returns the
information for the line attached to the current session.

return Boolean;
Returns true if the feature is currently enabled for the line; otherwise, the function
returns false.

Restrictions

This feature is not yet implemented.

References

procedure Terminal.SeLLogoff_On_Disconnect

RATIONAL 7/1/87 SMU-239

constant Mauufacturers..Badc.Blocks
package l'Iools.System., Utilities

constant ManufacturerscBad..Blocks

constant Bad_Block_Kinds .- 1;

Description

Defines a value that indicates manufacturer-designated bad disk blocks.

References

function Bade.Block.List

constant Retargeted..Blocks

SMU-240 7/1/87 RATIONAL

procedure Next
package !Tools.System_ Utilities

procedure Next

procedure Next (Iter in out J00_1 terator);

Description

Steps the iterator to point to the next job.

When the iterator steps past the last job, the Done function returns the value true.

The job iter ator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. For example, the Value function yields only jobs
that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

Iter: in out Job_lterator;
Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done (Job_lterator) loop

... Value (Job_lterator)
Next (Job_lterator);

end loop;

RATIONAL 7/1/&7 SMU-241

procedure Next
package !Tools.SysteIll- Utilities

procedure Next

procedure Next (Iter in out Session_lterator);

Description

Steps the iterator to point to the next session.

When the iterator steps past the last session, the Done function returns the value
true.

Parameters

Iter: in out Session_lterator;
Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator) loop

... Value (Session_lterator)
Next (Session_lterator);

end loop;

SMU-242 7/1/87 RATIONAL

procedure Next
package l'Iools.Systemc.Ufilities

procedure Next

procedure Next (Iter In out Terminal_lterator);

Description

Steps the iterator to point to the next terminal.

When the iterator steps past the last terminal, the Done function returns the value
true.

Parameters

Iter: in out Terminal_lterator;
Specifies the iterator to be stepped.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

... Value (Terminal_lterator)
Next (Terminal_lterator);

end loop;

RATIONAL 7/1/87 SMU-243

subtype Object
package l'Iools.System., Utilities

subtype Object

subtype Object 15 Directory.Object;

Description

Defines the representation for an object in the directory system.

SMU-244 7/1/87 RATIONAL

function Output.cCount
package l'Iools.System., Utilities

function Output..Count

function Output_Count (Line Port·- System_Utilities.Terminal)
return Long_Integer;

Description

Returns the number of characters output to the specified line since the system was
booted.

Output from the line that has not been read by a session or user program is not
counted as output.

This function can be used, for example, to create an application that automatically
logs out inactive user sessions. Such an application can use the Output-Count and
Input-Count functions to determine whether any characters have recently been
typed or output on the line for each session.

Parameters

LIne: Port := System_Utillties.Terminal;
Specifies the line for which the output count is desired. The default returns the
output count of the line attached to the current session.

return Long_Integer;
Returns the output count in characters.

References

function Input-Count

RATIONAL 7/1/87 SMU-245

function Output-Name
package l'Tools.System., Utilities

function Outputc.Name

function Output_Name
(For_Session : Session_ld .- System_Utilities.Get_Session) return String;

Description

Returns the full name of the StandardcDutput filename for the indicated session.

If this file is opened using the I/0 packages in the Environment, the output goes
to the standard output window. This function can be used, for example, in an
application that attempts to redirect output to the standard output window for the
job and needs the correct filename to perform the redirection.

Parametera

For_Session: Session_ld:= System_Utilities.Get_Session;
Specifies the session for which the filename is to be computed. The default is to
return the filename for the current session.

return String;
Returns the filename.

SMU-246 7/1/87 RATIONAL

function Output-Rate
package l'Iools.System.,Utilities

function Output..Rate

function Output_Rate (Line Port.- System_Utilities.Terminal)
return String;

Description

Returns the output rate of the specified line.

This function returns a string that contains the output rate of the specified line.
By default, the function returns the output rate for the line associated with the
current session. This value can be changed by using the Tenninal.SeLOutpuLRate
procedure.

Legal values for the output rate are:

o ISABLE
BALD_134_5
BAUD_600
BALD_4800

BALD_50
BALD_150
BAUD_1200
BALD_9600

BAUD_75
BAUD_200
BAUD_1800
BAUD_19200

BAUD_110
BAUD_300
BAUD_2400
EXT_REC_ClK

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the output rate is desired. The default returns the
output rate for the line attached to the current session.

return String;
Returns the output rate. Legal values are defined above.

References

procedure Terminal.SeLOutpuLRate

RATIONAL 7/1/87 SMU-247

function Parity
package !Tools.Systelll- Utilities

function Parity

function Parity (Line Port.- System_Utilities.Terminal)
return Parity_Kind;

Description

Returns the kind of parity checking for the specified line.

The Parity..Kind value can be changed by using the Terminal.SeLParity procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the parity checking is desired. The default returns the
parity checking for the line attached to the current session.

return Parity_Kind;
Returns the parity kind.

References

procedure Terminal.SeLParity

SMU-248 7/1/87 RATIONAL

type Parity _Kind
package !Tools.SysteID-Utilities

type Parityc.Kind

type Parity_Kind IS (None, Even, Odd);

Description

Defines the allowed values for the kind of parity checking performed by the system
and terminal.

The reliability of communications between the system and the terminal can be
determined by parity checking on each character. The parity checking must be
performed in the same way by both the terminal and the system. Terminals often
perform parity checking in only one way or have a switch to select the kind of parity
checking. The Parity..Kind type and the Terminal.SeLParity procedure are used
to make the system perform the same checks as the terminal.

Enumerations

Even
Specifies that even parity checking be performed. This means that all bits trans-
mitted for a single character, including the parity bit, will be an even number of
Is.

None
Specifies that no parity checking be performed.

Odd
Specifies that odd parity checking be performed. This means that all bits transmit-
ted for a single character, including the parity bit, will be an odd number of Is.

References

procedure Terminal.SeLParity

RATIONAL 7/1/87 SMU-249

subtype Port
package l'Tools.System., Utilities

subtype Port

subtype Port is Natural range 0 .. 4 * 16 * 16;

Description

Defines a representation for the terminal ports on the system.

Each terminal is connected to a specific port on the system; the specific port is
assigned a value of this type. For each port there is a Terminal object in the
!Machine.Devices library with the name TerminaLn, where n is the port number of
the device.

Ports in the range 16..80 identify physical RS232 ports. Consecutive numbers identify
adjacent RS232 connectors on the RS232 distribution panel. Port 16 is the upper-
left port. Numbers in the range 240 ..255 identify Telnet connections that do not
correspond to physical ports. Incoming Telnet connections are assigned numbers in
a rotary fashion. Note that the existence of these ports is determined by the number
of RS232 lines installed on the Rational system and by the presence or absence of
the Rational Networking-TCP lIP product.

Port numbers are used in a number of Environment commands-for example,
Flow..Control, Operator. Enable., Terminal, Operator. Force..Logoff, and so on. Port
numbers are shown for logged in users in the table produced by the What. Users
(SJM) command and others. Ports can be opened for 1/0 by opening objects named
!Machine.Devices.TerminaLn, where n is a port number.

SMU-250 7/1/87 RATIONAL

function Priority
package !Tools.SysteID- Utilities

function Priority

function Priority (For_Job Job Id .- System_Utilities.Get_Job)
return Natural;

Description

Returns the priority of the specified job.

This function returns a priority value for the specified job. The priorities are defined
in SJM, package Job, which also has subprograms for changing the priority of a job.
By default, the function returns the priority of the current job.

Parameters

For_Job: Job_ld:= System_Utilities.Get_Job;
Specifies the job for which priority is desired. The default returns the priority of
the current job.

return Natural;
Returns the priority. The allowed range is defined in SJM, package Job.

References

SJM, package Job

RATIONAL 7/1/87 SMU-251

function Recelve..Elow _Control
package !Tools.SysteID- Utilities

function Receive..Flowc.Control

function Receive_Flow_Control (Line Port.- System_Utilities.Terminal)
return String;

Description

Determines what method, if any, is used for controlling the ft.owof data received
from the device on the specified line.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware ft.owcontrol (CTS receiving, RTS or DTR transmitting)
and some devices support software ft.owcontrol (via XON and XOFF transmissions).
Note that hardware ft.owcontrol via RTS or DTR is not supported for transmission
to devices. CTS hardware ft.owcontrol is available only for transmission.

Legal values for methods of ft.owcontrol for received data are:

NONE RTS DTR
NONE indicates that there is no software or hardware ft.owcontrol for the line.

XON_XOFF indicates that software ft.owcontrol is enabled for the line. This value
indicates that the device should stop transmitting when it receives an XOFF from
the Rational system and can resume transmission when it receives an XON.

RTS indicates that hardware ft.owcontrol based on the RTS modem control signal is
enabled for the line. This value indicates that the device should stop transmitting
when the Rational system switches the RTS modem control signal to OFF and can
resume transmission when the signal is switched to ON.

DTR indicates that hardware ft.owcontrol based on the DTR modem control signal is
enabled for the line. This value indicates that the device should stop transmitting
when the Rational system switches the DTR modem control signal to OFF and can
resume transmission when the signal is switched to ON.

The method of ft.owcontrol for the line can be changed by the Terminal.SeLReceive-
_Flow_Control procedure.

SMU-252 7/1/87 RATIONAL

function Receivec.Flow..Control
package "Tools.System.,Utilities

Parameters

Line: Port := System_Utilities. Terminal;
Specifies the line to be checked for flow control. The default returns the method of
flow control for the line attached to the current session.

return String;
Returns the method used for controlling the flow of data received from the device.
Legal values and their meanings are defined above.

References

proced ure 'Terminal.Set..Receivec.Plow _Control

RATIONAL 7/1/87 SMU-253

function Receive.Xon.XoffcBytes
package l'Iools.System., Utilities

function Receive_Xon_Xoff_Bytes

function Receive_Xon_Xoff_Bytes (Line Port.- System_Utilities.Terminal)
return Byte_String;

Description

Returns the two-character byte string that contains the Xon and Xoff characters
for the receive side of the specified line.

This function returns a byte string with two characters in it. The Xon character,
the first byte, enables transmitting. The Xoff character, the second byte, disables
transmitting. These characters are used in the absence of hardware flow control in
the terminals, and they vary with different terminal types. The characters can be
changed by using the Terminal.SeLReceive_Xon_Xoff_Bytes procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return Byte_String;
Returns the two characters.

References

procedure Terminal.SeLReceive_XOll_Xoff_Bytes

SMU-254
7/1/87 RATIONAL

function Receive.Xon.XoffcCharacters
package l'Tools.System.,Utilities

function Receive.Xon.Xoff..Characters

function Receive_Xon_Xoff_Characters
(Line: Port := System_Utilities.Terminal) return String;

Description

Returns the two-character string that contains the Xon and Xoff characters for the
receive side of the specified line.

This function returns a string with two characters in it. Xon, the first character,
enables transmitting. Xoff, the second character, disables transmitting. These
characters are used in the absence of hardware flow control in the terminals, and
they vary with different terminal types. The characters can be changed by using
the Terminal.SeLReceive_Xon_Xoff_Characters procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return String;
Returns the two characters.

References

procedure Terminal.SeLReceive_Xon_Xoff_Characters

RATIONAL 7/1/87 SMU-255

constant Retargeted..Blocke
package l'Iools.System..Utillties

constant RetargetedcBlocks

Retargeted_Blocks constant Bad_Block_Kinds ._ 2;

Description

Defines a value that indicates retargeted disk blocks.

References

constant AIL Bad_Blocks

function Bade.Block.List

constant Manufacturers..Badc.Blocks

SMU-256 7/1/87 RATIONAL

function Session
package l'Ioola.Systerru.Utilities

function Session

functIon Session (For_Session Session_'d .- System_Utilities.Get_Session)
return Version;

function Session (For_Session Session Id .- System_Utilities.Get_Session)
return Object;

Description

Returns the version or object that is the specified session.

By default, the function returns the value for the current session.

Parameters

For_Session: Session_'d := System_Utilities.Get_Session;
Specifies the session for which the version or object is desired. The default returns
the value for the current session.

return Vers ion;
Returns the version.

return Object;
Returns the object.

RATIONAL 7/1/87 SMU-257

subtype Sessionc.Id
package l'Ioola.Systemc.Utilities

subtype Session..Id

subtype Session_ld is Machine.Session_ld;

Description

Defines a representation for a user's session.

Objects of the Sessionc.Id subtype are created to represent sessions in the Environ-
ment. Sessions are created when a user logs into the system, and they are permanent
objects in the user's home library unless they are explicitly deleted or destroyed.

SMU-258 7/t/87 RATIONAL

type Sessiom.Iterator
package "Tools.System., Utilities

type Sessioru.Iterator

t~pe Session_lterator is prIvate;

Description

Defines a type that allows iterating over all sessions currently active in the Envi-
ronment.

Objects of the Sessionc.Iterator type contain all of the information necessary to step
over all of the sessions. The type is used with the Init and Next procedures and the
Value and Done functions.

RATIONAL 7/1/87 SMU-259

function Sessiom.Name
package l'Iools.System., Utilities

function Session..Name

function Session_Name
(For_Session : Session_ld .- System_Utilities.Get_Session) return String;

Description

Returns the name of the specified session.

This function returns a string that contains the simple name of the specified session.
By default, the function returns the name of the current session.

Parameters

For_Session: Session_ld:= System_Utilities.Get_Session;
Specifies the session for which the name is desired. The default is the name of the
current session.

return String;
Returns the name of the session.

SMU-260 7/1/87 RATIONAL

procedure Setc.PagecLimit
package !Tools.SysteIll- Utilities

procedure Set_Page_Limit

procedure Set_Page_Limit (Max_Pages Natural;
For_Job Job_ld.- System_Utilities.Get_Job);

Description

Sets the upper limit for the virtual memory pages created by the specified job (each
page is 1,024 bytes).

If a job attempts to create additional pages beyond the maximum page limit, the
Storage..Error exception will be raised. This exception may not be raised immedi-
ately, but in the worst case the job will not be able to create more than twice the
maximum page limit before getting a storage error.

When a job begins, it is assigned a default page limit. By default, a job is al-
lowed to create 8,000 pages. This default is determined by the value of the De-
faultc.Job..Page.Limit session switch. See SJM, Session Switches, for more informa-
tion on session switches.

When a job elaborates Ada units, this limit may be increased if these units specify
larger page limits through the Page..Limit pragma or the Pages.Limit library switch.
See LM, package Switches, for more information on library switches. The job can
change the limit at any time by calling procedure Set..Pagec.Limit.

The current page counts for a job can be determined by using the GeLPage_Counts
procedure.

Operator capability is required to set the page limit for jobs of users different from
the caller.

Note that the limit does not apply to the pages of files that the job is accessing; it
applies only to data and stack space used by a job.

Parameters

Max_Pages: Natural;
Specifies the maximum number of pages that can be created by the job. In some
cases, the job can create up to twice the maximum page limit before getting a
storage error.

RATIONAL 7/1/87 SMU-261

procedure Setc.Page..Limit
package l'Tools.System.,Utilities

For_Job: Job_ld:= System_Utilities.Get_Job;
Specifies the job for which to set the page limit. By default, the limit will be set
for the job of the caller.

Errors

H a job attempts to create additional pages beyond the maximum page limit, the
Storage..Brror exception will be raised. This exception may not be raised immedi-
ately, but in the worst case the job will not be able to create more than twice the
maximum page limit before getting a storage error.

References

procedure GeL Page_Counts

SMU-262 7/1/87 RATIONAL

function Stop..Bits
package l'Iools.System.,Utilities

function Stop..Bits

function Stop_Sits (Line Port.- System_Utilities.Terminal)
return Stop_Sits_Range;

Description

Returns the number of stop bits being used on the specified line.

The Stopc.Bits..Range value can be changed by using the 'Ierminal.Set..Stopc.Bits
procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the number of stop bits is desired. The default returns
the stop bit range for the line attached to the current session.

return Stop_Sits_Range;
Returns the number of stop bits.

References

procedure Termlnal.Set..Stopc.Bits

RATIONAL 7/1/a7 SMU-263

subtype Stop_Bits_Range
package !Tools.Systelll- Utilities

subtype Stop..Bita.Range

subtype Stop_Sits_Range 1S Integer range 1 .. 2;

Description

Defines the allowed values for the number of stop bits.

The stop bits are part of the electrical protocol for communicating with a terminal.
The required number of stop bits is usually determined by the terminal.

SMU-264 7/1/87 RATIONAL

function System..Boot..Configuration
package l'Iools.Syatemc.Utilities

function System..Bootc.Configuration

function System_Boat_Configuration return String;

Description

Retu:ns the name of the Environment software configuration that the system is
running.

This is the same name that is printed in the Message window when users log into
the Environment.

Parameters

return String;
Returns the name of the software configuration.

RATIONAL 7/1/a7 SMU-265

function System., Up.,Time
package !Tools.SysteID-Utilities

function System., Up.,Time

function System_up_Time return Calendar.Time;

Description

Returns the time when the system was last booted.

Parameters

return Calendar. Time;
Returns the time when the system was last booted.

SMU-266 7/1/87 RATIONAL

subtype Tape
package l'Iools.System., Utilities

subtype Tape

subt~ Tape is Natural range '" .. 4;

DescriptioD

Defines the possible tape drives for the system.

RATIONAL T/l/IT SMU-267

function Tapec.Name
package l'Tools.System.; Utilities

function Tape..Name

function Tape_Name (Drive Tape ,- ~) return String;

DescriptioD

Returns the pathname of the tape object in the library system associated with the
specified drive.

Parameters

Drive: Tape:=~;
Specifies the tape drive for which the pathname is desired.

return String;
Returns the pathname of the tape object associated with the specified tape drive.

SMU-268 7/1/87 RATIONAL

function Terminal
package "Tools.System., Utilities

function Terminal

function Terminal (For_Session Session_ld .- S~stem_Utilities.Get_Session)
return Port;

function Terminal (For_Session Session_ld .- S~stem_Utilities.Get_Session)
return Version;

function Terminal (For_Session S~stem_Utilities.Get_Session)
return Object;

Description

Returns the port number, the version of the port, or the port object to which the
specified session is connected.

By default, the function returns the value for the current session.

Each terminal is connected to a specific port on the system. For each port there is a
Terminal object in the !Machine.Devices library with the name TerminaLn, where
n is the port number of the device.

Ports in the range 16..80 identify physical RS232 ports. Consecutive numbers identify
adjacent RS232 connectors on the RS232 distribution panel. Port 16 is the upper-
left port. Numbers in the range 240 ..255 identify Telnet connections that do not
correspond to physical ports. Incoming Telnet connections are assigned numbers in
a rotary fashion. Note that the existence of these ports is determined by the number
of RS232 lines installed on the Rational system and by the presence or absence of
the Rational Networking-TCP /IP product.

Port numbers are used in a number of Environment commands-for example,
Flow..Control, Operator. Enable., Terminal, Operator. Forces.Logoff, and so on. Port
numbers are shown for logged in users in the table produced by the What. Users
(SJM) command and others. Ports can be opened for I/O by opening objects named
!Machine.Devices.TerminaLn, where n is a port number.

Parameters

For_Session: Session_ld := S~stem_Utilities.Get_Session;
Specifies the session for which the port number, version, or object is desired. The
default returns the value for the current session.

return Port;
Returns the port number.

RATIONAL 7/1/87 SMU-269

function Terminal
package l'Iools.System., Utilities

return Version;
Returns the version of the port.

return Object;
Returns the port object.

SMU-270 7/1/87 RATIONAL

type TerminaLIterator
package !Tools.System_ Utilities

type Terminal..Itcrator

t~pe Terminal_lterator is private;

Description

Defines a type that allows iterating over all terminals currently connected to the
system.

Objects of the TerminaLIterator type contain all of the information necessary to
step over all of the terminals. The type is used with the Init and Next procedures
and the Value and Done functions.

RATIONAL 7/1/87 SMU-271

function TerminaLN ame
package l'Iools.System., Utilities

function Terminak.Name

function Terminal_Name (Line Port.- S~stem_Utilities.Terminal)
return String;

Description

Returns the full directory name of the terminal object for the specified line.

Parameters

Line: Port := S~stem_Utilities.Terminal;
Specifies the line for which the terminal name is desired. The default returns the
terminal name for the current session's terminal.

return String;
Returns the full directory name of the terminal object.

SMU-272 7/1/87 RATIONAL

function TerminaL Type
package l'Iools.System., Utilities

function Terminal..Type

function Terminal_Type (Line Port.- System_Utilities.Terminal)
return String;

Description

Returns the type of terminal attached to the specified line.

This function returns a string that contains the name of the terminal type that is
attached to a specified terminal line. By default, the function returns the type
of the terminal attached to the current session. Supported terminal types in-
clude Rational, VT100, and Facit. This value can be changed by using the Ter-
minal.SeL TerminaL Type procedure.

Parameters

Line: Port := System_Utilities.Terminal;
Specifies the line for which the terminal type is desired. The default returns the
terminal type for the current session's terminal.

return String;
Returns the terminal type. Currently allowed values are Rational, VT100, and Facit.

References

procedure Terminal.SeL TerminaL Type

RATIONAL 7/1/87 SMU-273

function User
'package !Tools.SysteID- Utilities

function User

function User (For_Session Session_ld .- System_Utilities.Get_Session)
return Version;

function User (For_Session Session_ld .- System_Utilities.Get_Session)
return Object;

Description

Returns the version or object that represents the user for the specified session.

By default, the function returns the user for the current session.

Parameters

For_Session: Session_ld:= System_Utilities.Get_Session;
Specifies the session for which the user is desired. The default returns the user for
the current session.

return Version;
Returns the version.

return Object;
Returns the object.

SMU-274 7/1/87 RATIONAL

function User_Name
package l'Iools.System., Utilities

function User..Name

function User_Name
(For_Session : Session_ld .- System_Utilities.Get_Session) return String;

Description

Returns the name of the user who created the specified session.

This function returns a string that contains the simple name of the user who created
the ~pecified session. By default, the function returns the username for the current
seSSIOn.

Parameters

For_Session : Session_ld := System_Utilities.Get_Session;
Specifies the session for which the username is desired. The default returns the
username for the current session.

return String;
Returns the username.

RATIONAL 7/1/a7 SMU-275

function Value
package l'Tools.System.,Utilities

function Value

function Value (Iter Job_lterator) return Job_ld;

Description

Returns the job identifier for the job pointed to by the iterator.

The job iterator filters out inactive jobs when the Value function, the Done function,
and the Next procedure are called. Specifically, the Value function yields only jobs
that are active when it is called, even if jobs active when the Init procedure is called
terminate before the Value function is called.

Parameters

Iter: Job_lterator;
Specifies the iteration for which the job identifier is desired.

return Job_ld;
Returns the job identifier.

Example

This example demonstrates use of the iteration capability:

Init (Job_lterator);
while not Done (Job_lterator) loop

... Value (Job_lterator)
Next (Job_lterator);

end loop;

SMU-276 7/1/87 RATIONAL

function Value
package !Tools.SysteID-Utilities

function Value

function Value (Iter Session_lterator) return Session_ld;

Description

Returns the session identifier for the session pointed to by the iterator.

Parameters

Iter: Session_lterator;
Specifies the iteration for which the session identifier is desired.

return Session_ld;
Returns the session identifier.

Example

This example demonstrates use of the iteration capability:

Init (Session_lterator);
while not Done (Session_lterator) loop

... Value (Session_lterator)
Next (Session_lterator);

end loop;

RATIONAL 1/1/81 SMU-277

function Value
package l'Iools.SystemcUtilities

function Value

function Value (Iter Terminal_lterator) return Natural;

Description

Returns the number of the terminal for the terminal pointed to by the iterator.

Parameters

Iter: Terminal_lterator;
Specifies the iteration for which the terminal number is desired.

return Natural;
Returns the terminal number.

Example

This example demonstrates use of the iteration capability:

Init (Terminal_lterator);
while not Done (Terminal_lterator) loop

... Value (Terminal_lterator)
Next (Terminal_lterator);

end loop;

SMU-278 7/1/87 RATIONAL

subtype Version
package l'Iocls.Syatemc Utilities

subtype Version

subtype Version is Directory.Version;

Description

Defines a representation for a version of an object.

All entities in the Environment are managed by the Environment as a value of this
subtype. Each user, job, session, terminal, Ada unit, file, and the like is maintained
in the Environment in this way.

RATIONAL 7/1/87 SMU-279

function Xon_XofLBytes
package l'Iools.Syetem; Utilities

function Xonc.Xoff..Bytes

function Xon_Xoff_Bytes (Line Port.- System_Utilities.Terminal)
return Byte_String;

Description

Returns the two-character byte string that contains the Xon and Xoff characters
for the transmit side of the specified line.

This function returns a byte string with two characters in it. The Xon character,
the first byte, enables transmitting. The Xoff character, the second byte, disables
transmitting. These characters are used in the absence of hardware flow control in
the terminals, and they vary with different terminal types. The characters can be
changed by using the Terminal.Set.Xon.Xoffc.Bytee procedure.

Parameters

Line: Port := System_utilities.Terminal;
Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return Byte_String;
Returns the two characters.

References

procedure Terminal.SeLXon_Xoff_Bytes

SMU-280 7/1/87 RATIONAL

function Xon.XoffcCharacters
package l'Iools.System., Utilities

function Xonc.XoffcCharacters

function Xon Xoff_Characters (Line Port.- S~stem_Utilities.Termlnal)
return String;

Description

Returns the two-character string that contains the Xon and Xoff characters for the
transmit side of the specified line.

This function returns a string with two characters in it. Xon, the first character,
enables transmitting. Xoff, the second character, disables transmitting. These
characters are used in the absence of hardware flow control in the terminals, and
they vary with different terminal types. The characters can be changed by using
the Terminal.SeLXon_Xoff_Characters procedure.

Parameters

Line: Port := S~stem_Utilities.Terminal;
Specifies the line for which the Xon and Xoff characters are desired. The default
returns the characters for the line attached to the current session.

return String;
Returns the two characters.

References

procedure Terminal.SeLXon_Xoff_Characters

end System..Utilities;

RATIONAL 7/1/87 SMU-281

RATIONAL

package Tape

Package Tape defines procedures for tape input and output.

The Read procedure reads tapes written in standard ANSI format. Command pa-
rameters allow the option of specifying RlOOO® and DEC1'M VAX1'M/VMS1'M format-
ted tapes. The Write procedure writes tapes in standard ANSI format. Currently,
tapes can be formatted for either the RIOOO or VAX/VMS. The Write procedure
uses the Format parameter to specify tape format. The Format parameter requires
the same syntax as the Options parameter. For further information on specifying
options, see the Key Concepts.

Files can be formatted on the RlOOO for transfer to DEC VAX/VMS systems. The
Environment maps RlOOO object names to legal VAX/VMS filenames, and it includes
a file called INDEX that lists the object names with their corresponding VAX/VMS
names.

Files, including Ada program units, that are read into the RIOOO are treated as
text files. Ada source files from foreign hosts can be parsed and restored to the
Environment as Ada units using the !Commands.Compilation.Parse procedure.

RATIONAL 7/1/87 SMU-283

procedure Diaplay..Tape
package !Commands. Tape

procedure Displayc.Tape

procedure Display_Tape (Drive
Marks_To_Skip
Records_To_Skip
Blocks_To_Display

Natural .- 0··Integer .- 0··Integer .- 0··Natural .- 10);

Description

Produces a hexadecimal display of the contents of the specified portion of the tape.

The procedure displays in the current output window the specified portion of the
tape. The procedure can specify what area, relative to the tape's current position,
to display. Marks and records can be specified either forward from the current
position (positive parameter values) or backward from the current position (negative
parameter values).

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational Rl000 Development System: System Man-
ager's Guide.

Parameters

Drive: Natural := 0;
Specifies the tape drive whose tape is to be displayed. The default is drive O.

Marks_To_Skip: Integer:= 0;
Specifies the number of tape marks to skip. Negative values move the tape backward
and positive values move the tape forward. The default is to skip no marks.

Records_To_Skip: Integer: = 0;
Specifies the number of tape records to skip. Negative values move the tape back-
ward and positive values move the tape forward. The default is to skip no records.

Blocks_To_Display : Natural := 10;
Specifies the number of tape blocks to display. The default is 10 blocks.

SMU-284 7/1/87 RATIONAL

procedure Diaplay..Tape
package !Commands. Tape

Restrictions

The Environment supports a maximum tape block size of 4 Kb.

RATIONAL 7/1/87 SMU-285

exception Error
package !Commands. Tape

exception Error

Error exception;

DeseriptioD

Defines an exception that is raised by several procedures in this package when errors
occur.

SMU-286 7/1/87 RATIONAL

procedure Examlne.Labels
package !Commands.Tape

procedure Examinee.Labels

procedure Examine_Labels (Vol_ld String .. " ..- ,
VoLSet_Name String Itft..- ,
To_Operator String .- "Thank You" ;
Volume_labels_Only Boolean .- True);

Description

Displays the labels on the specified tape volume.

The labels on the tape are displayed in the current output window. The tape must
be an ANSI-formatted tape.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational Rl000 Development System: System Man-
ager's Guide.

Parameters

Vol_ld: String:= "";
Specifies the volume identifier of the tape to be examined. The default is no iden-
tifier specified.

Vol_SeLName : String: = "";
Specifies the name of the volume set to be examined. The default is no name
specified.

To_Operator String: = "Thank You";
Specifies a message to be displayed at the operations console along with the mount
request.

Volume_labels_Only Boolean: = True;
Specifies whether to examine only the label of the volume or all labels on the tape.
The default is the volume label only.

RATIONAL 7/1/87 SMU-287

procedure Format-Tape
package !Commands.Tape

procedure Formate.Tape

procedure Format_Tape (Drive Natural;
Vol_ld String ._ UU);

Desezlpflon

Formats the tape on the specified drive with the specified volume identifier.

The procedure builds an empty ANSI tape. The tape is written with the specified
volume identifier.

Parameters

Drive: Natural;
Specifies the drive whose tape should be formatted.

VoLld: String:= "":
Specifies the volume identifier to write on the tape. The identifier must be no more
than a six-character string. The default is no identifier specified.

SMU-288 7/1/87 RATIONAL

procedure Read
package !Commands. Tape

procedure Read

procedure Read (Volume String .- f

Directory String .- f! $11 ;
Format String .- "R1000";
To_Operator String .- "Thank You" ;
Add_New_Line Boolean .- True;
Response String .- "<PROF ILE>");

Description

Reads the tape and copies its contents into the specified library.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational Rl000 Development System: System Man-
ager's Guide.

Parameters

Volume: String.-
Specifies a standard ANSI volume identification: a six-character string. The default
is the null string.

Directory: String:= "$";

Specifies the Environment directory destination for the files being read. The default
is the enclosing library.

Format: String:= "R1000";
Specifies whether the tape was formatted for an RIOOO (the default) or DEe VAX/VMS.
VAX/VMS filenames are converted by changing the dot preceding the extension to
an underscore. To specify files in VAX/VMS format, use the value VAX/VMS for the
Format parameter.

To_Operator : String: = "Thank You";
Specifies a message to be displayed to the operator after the tape has been loaded.

Add_New_Line : Boolean := True;
Specifies whether to add a new line character after each record read from the tape.
The default is to add a new line character.

RATIONAL 7/1/87 SMU-289

procedure Read
package !Commands.Tape

Response: String: = "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restridions

Currently, this procedure reads only text files.

To move binary files between RIOOOsusing tape, use the !Commands.Archive.Save
and Archive.Restore procedures.

Example

The command:

tape.read (Volume => "070501", Directory => "Iusers.thales",
Format => "vax/vms");

reads the tape with the specified ANSI volume label. The files on the tape are read
to the directory !Users.Thales. The VAX/VMSparameter instructs the Environment
that the tape was written as VAX/VMS-compatible ANSI tape.

References

LM, package Archive

SMU-290 7/1/87 RATIONAL

procedure Read_Mt
package !Commands. Tape

procedure ReadcMt

procedure Read_Mt (Drive Natural:= 0);

Description

This procedure is no longer supported by the Environment.

RATIONAL 7/1/87 SMU-291

procedure Rewind
package !Commands.Tape

procedure Rewind

procedure Rewind (Drive Natural.- 0);

Description

Rewinds the tape unit and leaver it loaded at the beginning-of-tape marker and
on-line.

If the tape drive is not allocated to your session, the system will issue a mount
request.

Parameters

Drive: Natural := 0;
Specifies the drive number. The default is drive O.

SMU-292 1/1/81 RATIONAL

proced ure Unload
package !Comma.nds.Tape

procedure Unload

procedure Unload (Drive Natural.- 0);

Description

Rewinds and unloads the tape unit, and then takes it off-line.

If the tape drive is not allocated to your session, the system will issue a mount
request. Unloading a tape rewinds it and removes it from the tape drive. You
would want to do this when you have aborted a job using a tape to unload the tape
so someone else can use the tape drive.

Parameters

Drive: Natural := 0;
Specifies the drive number. The default is drive O.

RATIONAL 7/1/87 SMU-293

procedure Write
package !Commands. Tape

procedure Write

procedure Write (Files String .- U$@";
Volume String H" ..- .Format String .- "RHZl00";
To_Operator String .- "Thank You" ;
TexLFiles Boolean .- True;
Response String .- "<PROFILE>");

Description

Copies the specified objects onto a tape as files.

Unless the tape drive is already allocated to your session, the Environment prompts
at the operations console for mounting the tape when the command is executed.
For further information, see the Rational Rl000 Development System: System Man-
ager'! Guide.

Parameters

Files: String:= "$@";

Specifies the objects to write onto tape. The default, $@, is to write all objects in
the enclosing library. Note that only text files and Ada units will be written.

Volume: String: = "..;
Specifies a standard ANSI volume identification: a six-character string. If the user
does not provide a volume identifier, the Environment generates one.

SMU-294 7/1/87 RATIONAL

procedure Write
package [Commands.Tape

Format: String:= "R1000";

Allows the user to specify tape format information. The Format parameter requires
the same syntax as the Options parameter. See the Key Concepts for further
information. The following is a list of Format options:

Block_Length

Specifies the block length for the tape. The default is 2,048 bytes. See the
Format literal for restrictions.

Format literal
Specifies the record format for the tape. The default is variable-length records.

Fixed_Length Use the "Format=Fixedc.l.ength" option to write tapes with
fixed-length records. The length of the records is specified in
the Record..Length option. The Records.Length value must
be less than or equal to the block length.

Variable_Length Use the "Format=Variable_Length" option to write tapes
with variable-length records. The maximum record length is
specified in the Records.Length option. The Records.Length
value must be less than or equal to the block length.

Spanned Use the "Formate-Spanned" option to write data with inter-
record gaps. This enables the user to write records that are
greater than the block length. The maximum record size is
specified by the Records.Length option.

Label="tring

Allows the user to label the user's own tapes, where string is the tape label.
The default is to write no label.

Record_Length

Specifies the record length for the tape. The default is 512 bytes. See the
Format literal for restrictions.

Target literal
Specifies whether to format the tape for an RIOOO(the default), VAX/VMS, or
MY.

R1000 Use the "Target=RlOOO" option to format the tape for an RIOOO
system.
Use the a:Ta.rget=MY" option to format tapes for an MY.
Use the a:Ta.rget=VAX/vMS" option to format tapes for a VAX/-
VMS system. When tapes are formatted for VAX/VMS, RIOOO
filenames are changed to legal VAX/VMS filenames. The En-
vironment includes a file on the tape called INDEX that maps
RlOOOfilenames to the new, legal VAX/VMS filenames.

MY

VAX/VMS

RATIONAL 7/1/87 SMU-295

procedure Write
package !Commands. Tape

To_Operator : String: = "Thank You";

Specifies a message to be displayed at the operations console when the tape mount
request is made.

Text_Files : Boolean:= True;

Specifies whether the record length is determined by the line length. If true (the
default), the end-of-line mark in the file determines the logical record length.

Response: String: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

This procedure writes only text files and Ada units. Others are skipped, and a
warning is generated in the log file.

To move binary files between RIOOOsusing tape, use the !Commands.Archive.Save
and Archive.Restore procedures.

SMTJ-296 7/1/87 RATIONAL

procedure Write
package !Commands. Tape

Example

Given the following library:

IUsers.Thales.The_Library
Works: Ada (Pack_Spec);
Works: Ada (Pack_Body);

.Get_String : (Func_Body);

.Part_l : (Proc_Body);
the following command:

tape.write ("Iusers.thales.the_library.@");
writes onto tape all the objects contained in Thales.ThecLlbrary, In addition, be-
cause the default true is used for the Recursive parameter, all dependent Ada units
(in this example, everything in package Works) are included. Each unit included
on the tape is written as a separate file. Because all of the default options for the
Format parameter are used, the tape written is an RIOOO tape with no label, using
variable-length records. The maximum record length is 512 bytes and the maximum
block length is 2,048 bytes.

Referenees

LM, package Archive

RATIONAL 7/1/87 SMU-297

procedure Write_Mt
package !Commands.Tape

procedure Write..Mt

procedure Write_Mt (File
Indirect
Drive

String
Boolean
Natural

:= "(SELECTION)";
:= True;
: = 0);

Description

This procedure is no longer supported by the Environment.

end Tape;

SMU-298 7/1/87 RATIONAL

package Terminal

The procedures in package Terminal are used for configuring an asynchronous port
or Telnet port to match the requirements and characteristics of a terminal device
(such as a printer or terminal) or a modem.

The terminal types currently supported include Rational, VT100, and Facit.

Many procedures act on the Line parameter, which defaults to the current line-
that is, the port to which your terminal is connected. In the following material, the
terms port and line are used interchangeably.

Execution of many of the operations in this package requires operator capability.
This is noted in the reference entry if the requirement applies.

VT100 Terminal Support
The Rational Environment supports the use of user-defined terminal names. A
terminal name represents four characteristics of the terminal device, as described
below:
• Input type: Specifies the name that defines the terminal type-for example,

PCAT (that is, mM PC/AT). The input type can have its own terminaLKeys
and/or terminaLCommands procedures, where terminal specifies the terminal
name. If the input type does not have these procedures specified for it, the
procedures corresponding to the output type described below are used. Note
that terminaLMacros and terminaLlnit are not inherited from the output type.

• Output type: Specifies the driver to be used for producing output. Currently,
this can be Rational, VT100 or Facit.

• Lines: Specifies the number of lines that the input type supports.
• Columns: Specifies the number of columns that the input type supports.

These characteristics are defined in file !Machine.Editor _Data. TerminaL Types. Each
line in the file represents a terminal type, as shown below:

RATIONAL 7/1/17 SMU-299

package !Commands.Terminal

input [output} fline~ [columnsJJ

If aoutput" is omitted when a terminal type is defined, «input" must correspond
to Rational, VT100, or Facit. This feature can be used to redefine a terminal type
for your installation or in the terminal login interaction. If "lines" or "columns" is
omitted, the default value for the input type is used. Input type and output type
are limited to 20 characters, and they must be separated by spaces. A sample entry
in the file is:

PCAT VT100 72 120
The !Machine.Editor_Data.TerminaL Types file is read at system boot. Thus, at
login, the user can specify a terminal type as shown below:

enter terminal type (vt100): peat 24 80

Creating Your Own Terminal Type
If you are creating your own terminal type and your own terminal-Keys and ter-
minal-Commands procedures, you must use the same names in terminal-Keys as
those specified in terminaLCommands. Normally, this is done using the conventions
in !Machine.Editor_Data.Visible_Key_Names. The only requirement in any event
is that the terminal: Commands procedure have the proper name and be installed.
Mapping between actual keystrokes and logical keys is done by string match.

When a terminal line is enabled, the Environment attempts to determine which
type of terminal is attached to each port by requesting terminal identification us-
ing the ANSI standard sequence. The Environment currently uses this informa-
tion to distinguish between Rational, VT100, and Facit terminal types. Note that
the VT100 and Facit terminal types respond identically, so special code was imple-
mented to distinguish between the two types. For your own new terminal types,
it is possible to provide recognition sequences by making entries in the file !Ma-
chine.Editor_Data.TerminaLRecognition. An entry in this file consists of:

terminal recognition

The terminal name must be a valid simple Ada name.

For example, for the VT100 terminal, the entry might be:

Vt100 $(11; C

where $ represents AsciLEsc.

The space after the semicolon in the entry above will match any character. The
maximum length of the recognition sequence is 14 characters. Definitions appearing
later in the file override earlier ones, so a user specifying a new terminal with the
same sequence as the one above would cause the new one to be recognized. This
would also mask automatic recognition of Facit terminals.

When you log in, the Rational Environment will interrogate the terminal and will
receive a terminal recognition sequence. It will attempt to match that sequence

SMU-300 7/1/87 RATIONAL

package !Commands. Terminal

with those stored in !Machine.Editor_Data.TerminaLRecognition. The last entry
matched, if any, determines the terminal name, which provides the terminal name
to terminal-Keys and terminal-Commands.

RATIONAL 7/1/87 SMU-301

subtype Character..Bita..Range
package !Commands. Terminal

subtype Character..Bita.Range

Description

Specifies the number of bits per character.

The range is 5 through 8.

SMU-302 7/1/87 RATIONAL

renamed function Current
package !Commands.Terminal

renamed function Current

function Current (S Machine.Session_ld:= Default.Session) return Port
renames System_Utilities.Terminal;

Description

Returns the port number of the specified session.

Parameters

S : Machine.Session_ld := Default.Session;
Specifies the session in question. The S parameter defaults to the current session
(the session in which the function is executed).

RATIONAL 7/1/87 SMU-303

subtype Parity..Kind
package !Commands. Terminal

subtype Parity_Kind

subtype Parity_Kind is System_Utilities.Parity_Kind;

Description

Specifies none, even, or odd parity.

SMU-304 7/1/87 RATIONAL

subtype Port
package !Commands. Terminal

subtype Port

subtype Port is Natural range 0 .. 4 • 16 • 16;

Description

Specifies the range of port numbers.

RATIONAL 7/1/17 SMU-305

procedure Set..Characterc.Sise
package !Commands. Terminal

procedure Set..Characterc.Size

procedure Set_Character_Size
(Line Port .- Terminal.Current;
To_Be: Character_Bits_Range .- System_Utilities.Character_Size);

Description

Specifies the number of data bits per character.

This setting affects both transmitted and received data.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: Character_Bits_Range .- System_Utilities.Character_Size;
Specifies the new character size.

References

procedure Set-Parity

procedure Set-Stop_Bits

function System- Utilities. Character..Sise

SMU-306 7/1/87 RATIONAL

procedure SeLDetach_On_Disconnect
package !Commands, Terminal

procedure Setc.Detachc.OncDisconnect

procedure Set_Detach_On_Disconnect
(Line : Port .- Terminal.Current;
Enabled: Boolean := System_Utilities.Detach_On_Disconnect);

Description

This procedure is not currently supported.

RATIONAL 7/1/17 SMU-307

procedure Setc.Dlaconnectc.Onc.Disconnect
package !Commands. Terminal

procedure Setc.Disconnectc.Onc.Disconnect

procedure Set_Disconnect_On_Disconnect
(Line : Port .- Terminal.Current;
Enabled: Boolean := System_Utilities.Disconnect_On_Disconnect);

Description

Enables or disables the Disconnect.Dnc.Disconnect option for a particular port.

By default, this option is disabled on new systems, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk
is lost.

H this option is enabled for a port, the RlOOO responds to an incoming disconnect
signal received on the port by initiating an outgoing disconnect signal on that port.

For an asynchronous port, an incoming disconnect signal occurs when the RlOOO
senses the Data Carrier Detect (non) turn from ON to OFF. An outgoing disconnect
signal occurs when the RIOOO toggles Data Terminal Ready (DTR) from ON to OFF
for 3 seconds and then back to ON again.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled: Boolean:= System_Utilities.Disconnect_On_Disconnect;
Specifies the new setting of this option. The default is the current setting.

References

function System;Utilities.DisconnecLOn_Disconnect

SMU-308 7/1/87 RATIONAL

procedure SeLDisconnecLOn_Failed_Login
package !Commands. Terminal

procedure Set_Disconnect_On_Failed_Login

procedure Set_Disconnect_On_Failed_Login
(Line : Port .- Terminal.Current;
Enabled: Boolean := System_Utilities.Disconnect_On_Failed_Login);

Description

Enables or disables the Disconnect..OncFailedc.Login option for a particular port.

By default, this option is disabled on a new system, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk
is lost.

H this option is enabled for a port, the RIOOO initiates an outgoing disconnect signal
on the port when a user repeatedly fails to log in on that port-for example, by
entering an incorrect password or unrecognized username.

For an asynchronous port,.an outgoing disconnect signal occurs when the RIOOO
toggles Data Terminal Ready (DTR) from ON to OFF for 3 seconds and then back
to ON again.

Execution of this procedure requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled: Boolean:= S~stem_Utlllties.Dlsconnect_On_Failed_Logln;
Specifies the new setting of this option. The default is the current setting.

References

function System- Utilities.DisconnecLOn_Failed_Login

RATIONAL 7/1/87 SMU-309

procedure Setc.Dlsconnect..Ou.Logoff
package !Commands. Terminal

procedure Set..Disconnectc.Onc.l.ogoff

procedure Set_Disconnect_On_Logoff
(Line : Port .- Terminal.Current;
Enabled: Boolean := S~stem_Utilities.Disconnect_On_Logoff);

Desezlptdon

Enables or disables the Disconnectc.On..Logoff option for a particular port.

By default, this option is disabled on a new system, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk
is lost.

If this option is enabled for a port, the RlOOO initiates an outgoing disconnect on
the port whenever a user logs off a session running on the port.

For an asynchronous port, an outgoing disconnect signal occurs when the RIOOO
toggles Data Terminal Ready (DTR) from ON to OFF for 3 seconds and then back
to ON again .

. Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled: Boolean:= S~stem_Utilities.Disconnect_On_Logoff;
Specifies the new setting of this option. The default is the current setting.

References

function System., Utilities.Disconnectc.Onc.Logoff

SMU-31O 7/1/87 RATIONAL

procedure SeLFlow _Control
package !Commands. Terminal

procedure Setc.Flow..Control

procedure Set_Flow_Control
(Line Port .- Terminal.Current;
To_Be String.- System_Utilities.Flow_Control);

Description

Enables software flow control for data transmitted by the RIOOO on the specified
line.

A device such as a terminal or a printer attached to an RlOOO port can control the
flow of data transmitted to it from the RIOOO in two ways:

• Hardware flow control: The flow of data is stopped when the device turns off the
Clear To Send (CTS) modem control signal. The flow is restarted when the CTS
signal is turned on .

• Software flow control: The flow of data is stopped when the device sends the Xoff
byte or character. The flow is restarted when the Xon byte or character is sent.

This procedure enables or disables only software flow control. Hardware flow con-
trol is enabled or disabled by a hardware configuration switch in the RlOOO port
controller. There is no software interface to enable or disable hardware flow con-
trol.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: String:= System_Utilities.Flow_Control;
Specifies whether to set software flow control on or off.

References

procedure SeLXon_Xoff_Bytes

function System- Utilities.Flow _Control

RATIONAL 7/1/87 SMU-311

procedure Set-Input-Rate
package !Commands. Terminal

procedure Setc.Input..Rate

procedure Set_lnput_Rate (line Port := Terminal.Current;
To_Be String._ System_Utilities. Input_Rate);

Description

Sets the data rate for data received by the RlOOO on the specified line.

Valid incoming data rates include:

DISABLE
BAUD_134_5
BAUD_600
BAUD_4800

BAUD_50
BAUD_150
BAUD_1200
BAUD_9600

BAUD_75
BAUD_200
BAUD_1800
BAUD_19200

BAUD_110
BAUD_300
BAUD_2400
EXT_REC_ClK

Execution of this operation requires that the executing job have operator capability.

Parameters

line: Port .- Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: String:= System_Utilities. Input_Rate;
Specifies the new input rate.

References

procedure Set-Output-Rate

function System., Utilities.Input..Rate

SMU-312 7/1/87 RATIONAL

proced ure Set..Logc.Failedc.l.ogins
package !Commands. Terminal

procedure Set.rLogc.Failedc.Logins

procedure Set_Log_Failed_Logins
(Line : Port '- Terminal.Current;
Enabled: Boolean .- System_Utilities.Log_Failed_Logins);

Description

Enables or disables the Log..Failedc.Logins option for a particular port.

If this option is enabled for a port, the RIOOO writes an entry to the system error
log when a user repeatedly fails to log in on that port.

By default, this option is disabled.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled: Boolean:= System_Utilities.Log_Failed_Logins;
Specifies the new setting of this option. The default is the current setting.

References

function System., Utilities.Log_Failed_Logins

RATIONAL 7/1/87 SMU-313

procedure SeLLogin_Disabled
package !Commands. Terminal

procedure Setc.Logiru.Disabled

procedure Set_login_Disabled
(Line
Disabled

Port := Terminal.Current;
Boolean .- System_Utilities.Login_Disabled);

Description

Enables or disables the Login..Disabled option for a particular port.

By default, this option is disabled-that is, the port can be enabled for login.

H this option is enabled for a port, the port cannot be enabled for login, even if the
Operator. Enable., Terminal procedure is used.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Disabled: Boolean := System_Utilities.Login_Disabled;
Specifies the new setting of this option. The default is the current setting.

References

function System., Utilities.Loginc.Disabled

SMU-314 7/1/87 RATIONAL

procedure Sef..Logoff..Onc.Disconnect
package !Commands. Terminal

procedure Setc.Logoff..Onc.Disconnect

procedure Set_Logoff_On_Disconnect
(Line : Port .- Terminal.Current;
Enabled: Boolean := System_Utilities.Logoff_On_Disconnect);

Description

Enables or disables the Logoffc.On..Dlaconnect option for a particular port.

By default, this option is disabled on new systems, when a disk-incompatible release
of the Environment is installed, or whenever the Environment state stored on disk
is lost.

This option is not currently supported. In the future, if this option is enabled for
a port, the RIOOO will respond to a disconnect received on that port by logging off
the session running on the port.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Enabled: Boolean:= System_Utilities.Logoff_On_Disconnect;
Specifies the new setting of this option. The default is the current setting.

References

function System., Ufilitles.Logoffc.Onc.Disconnect

RATIONAL 1/1/87 SMU-315

procedure Set..Outputc.Rate
package !Commands. Terminal

procedure Set..Outputc.Rate

procedure Set_Output_Rate (Line Port .- Terminal.Current;
To_Be String.- System_Utilities.Output_Rate);

Description

Sets the data rate for data transmitted by the RlOOO on the specified line.

Valid incoming data rates include:

DISABLE
BAUD_134_5
BAUD_600
BAUD_4800

BAUD_50
BAUD_150
BAUD_1200
BAUD_9600

BAUD_75
BAUD_200
BAUD_1800
BAUD_19200

BAUD_110
BAUD_300
BAUD_2400
EXT_REC_CLK

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: String:= System_Utilities.Output_Rate;
Specifies the new output rate.

References

procedure SeLin put-Rate

function System., Utilities. OutpuLRate

SMU-316 7/1/87 RATIONAL

procedure Ser..Parity
package !Commands. Terminal

procedure Set..Parity

procedure Set_Parity (Line Port .- Terminal.Current;
To_Be Parity_Kind.- System_Utilities.Parity);

Description

Sets the parity to none, even, or odd.

This setting affects both transmitted and received data.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: Parity_Kind := System_Utilities.Parity;
Specifies the new parity setting.

References

procedure SeLCharacter _Size

procedure SeLStop_Bits

function System; Utilities.Parity

RATIONAL T/l/IT SMU-317

procedure Setc.Recelvec.Flow..Control
package !Commands. Terminal

procedure Setc.Receive..Plow _Control

procedure Set_Receive_Flow_Control
(Line Port .- Terminal.Current;
To_Be: String := System_Utilities.Receive_Flow_Control);

Description

Enables or disables flow control of data received by the RIOOO.

Flow control is used by some devices to prevent overruns in these devices. Some
devices support hardware flow control (CTS receiving, RTS or DTR transmitting)
and some devices support software flow control (via XON and XOFF transmissions).
Note that hardware flow control via RTS or DTR is not supported for transmission
to devices. CTS hardware flow control is available only for transmission.

Four types of receive flow control are available:
• NONE: Indicates that there is no software or hardware flow control for the line.
• XON-XOFF: Indicates that software flow control is enabled for the line. This value

indicates that the device should stop transmitting when it receives an XOFF from
the Rational system and can resume transmission when it receives an XON.

• RTS: Indicates that hardware flow control based on the RTS modem control signal
is enabled for the line. This value indicates that the device should stop trans-
mitting when the Rational system switches the RTS modem control signal to OFF
and can resume transmission when the signal is switched to ON.

• DTR: Indicates that hardware flow control based on the DTR modem control
signal is enabled for the line. This value indicates that the device should stop
transmitting when the Rational system switches the DTR modem control signal
to OFF and can resume transmission when the signal is switched to ON.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: String:= System_Utilities.Receive_Flow_Control;
Specifies that flow control is set to none, Xon.Xoff', RTS, or DTR on that line.

SMU-318 7/1/87 RATIONAL

procedure Set..Receivec.Elowc.Control
package !Commands. Terminal

References

procedure SeLFlow_Control

procedure Set..Receive.Xon.Xoff..Bytee

procedure SeLReceive_Xon_XofLCharacters

function SysteID- Utllitles.ReceivecFlow _Control

RATIONAL 7/1/17 SMU-319

procedure Set..Recelve.Xon.Xoff.Bytes
package !Commands. Terminal

procedure Setc.Receive.Xon.Xoff..Bytes

procedure Set_Receive_Xon_Xoff_Bytes
(Line : Port .- Terminal.Current;
Xon_Xoff : System.Byte_String := System_Utilities.Receive_Xon_Xoff_Bytes);

Description

Specifies flow control bytes so that the RIOOO can regulate the data it receives on
the specified line.

Using bytes instead of characters for flow control allows the complete character set
to be reserved for other uses.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Xon_Xoff: System.Byte_String := System_Utilities.Receive_Xon_Xoff_Bytes;
Specifies the new flow control bytes. This parameter takes a string consisting of the
Xon byte followed by the Xoff byte.

References

procedure SeLReceive_Flow _Control

function System; Utilitles.Receive.Xon.Xoff.Bytes

SMU-320 7/1/87 RATIONAL

proced ure Setc.Receive.Xcn..Xoff., Characters
package !Commands. Terminal

procedure Set_Receive_Xon_Xoff_Characters

procedure Set_Receive_Xon_Xoff_Characters
(Line : Port .- Terminal.Current;
Xon_Xoff : String := System_Utilities.Receive_Xon_Xoff_Characters);

Description

Specifies the Xon and Xoff characters used to control the flow of data received by
the RIOOO.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Xon_Xoff: String:= System_Utilities.Receive_Xon_Xoff_Characters;
Specifies the new flow control characters. This parameter takes a string consisting
of the Xon character followed by the Xoff character.

References

procedure SeLReceive_Flow_Control

function System., Utilities.Receive_Xon_Xoff_Characters

RATIONAL 7/1/87 SMU-321

procedure SeLStop_Bits
package !Commands. Terminal

procedure Setc.Stcp..Bits

procedure Set_Stop_Bits
(Line Port .- Terminal.Current;
To_Be Stop_Bits_Range.- System_Utilities.Stop_Bits);

Description

Sets the number of stop bits for the Line parameter.

The Stop_Bits_Range is 1 through 2.

This setting affects transmitted data only. The RlOOO can always receive data with
any number of stop bits.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: Stop_Bits_Range := System_Utilities.Stop_Bits;
Specifies the number of stop bits to be transmitted.

References

procedure SeLCharacter _Size

procedure SeLParity

function System- Iltilities.Stopc.Bits

SMU-322 7/1/87 RATIONAL

procedure Ser..Terminal.; Type
package !Commands. Terminal

procedure Set..Terminak.Type

procedure Set_Terminal_Type
(Line Port .- Terminal.Current;
To_Be String.- System_Utilities.Terminal_Type);

Description

Specifies the terminal type.

Supported terminal types include:

• Rational
• VT100
• Facit Twist Model 4440

This information is used by terminal-handling software (for example, the core edi-
tor) in generating terminal output data.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

To_Be: String:= System_Utilities. Terminal_Type;
Specifies the new terminal type. This parameter is case-insensitive. The three
supported terminals are Rational, VT100, and Facit.

References

function SysteID- Utilities. TerminaL Type

RATIONAL 1/1/11 SMU-323

procedure SeLXon_XofLBytes
package !Commands. Terminal

proced ure Set.Xon..Xoffc.Bytes

procedure Set_Xon_Xoff_Bytes
(Line : Port .- Terminal.Current;
Xon_Xoff : System.Byte_String .- System_Utilities.Xon_Xoff_Bytes);

Description

Specifies the flow control bytes that the RIOOO recognizes on the specified line.

This procedure specifies the Xon and Xoff bytes used to control the flow of data
transmitted by the RIOOO.

Using bytes instead of characters for flow control allows the complete character set
to be reserved for other uses.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Xon_Xoff: System.Byte_String := System_Utilities.Xon_Xoff_Bytes;
Specifies the new flow control bytes. This parameter takes a string consisting of the
Xon byte followed by the Xoff byte.

References

function System., Utilities.Xon_Xoff_Bytes

SMU-324 1/1/a1 RATIONAL

procedure Set.Xon.Xoff..Characters
package !Commands. Terminal

procedure Set.Xon.Xoff..Charactcrs

procedure Set_Xon_Xoff_Characters
(Line : Port .- Terminal.Current;
Xon_Xoff : String .- System_Utilities.Xon_Xoff_Characters);

Description

Specifies the flow control characters that the RIOOO recognizes on the specified line.

This procedure specifies the Xon and Xoff characters used to control the flow of
data transmitted by the RIOOO.

Execution of this operation requires that the executing job have operator capability.

Parameters

Line: Port := Terminal.Current;
Specifies the line to be affected. The default is the current line.

Xon_Xoff: String:= System.Utilities.Xon_Xoff_Characters;
Specifies the new flow control characters. This parameter takes a string consisting
of the Xon character followed by the Xoff character. The default character for Xon
is ASCD DCl; the default character for Xoff is ASCD DC3.

References

function System- Utlllties.Xon.Xoff'; Characters

RATIONAL 7/1/87 SMU-325

procedure Settings
package !Commands. Terminal

procedure Settings

procedure Settings (Line Port.- Terminal.Current);

Description

Displays a summary of the current settings for the Line parameter.

By default, this procedure returns the settings for the current terminal.

Parameters

Line: Port := Terminal.Current;
Specifies the terminal number.

Example

The command:

terminal.settings (18);
displays information such as the following:

Terminal Settings for Port 18
Terminal Type =
Input Baud Rate =
Output Baud Rate =
Parity =
Stop_Bi ts =
Char _Size =
Flow Control For Transmit Data =
Flow Control For Receive Data =
Disconnect_On_Disconnect =
Disconnect_On_Logoff =
Disconnect_On_Failed_Login =
Log_Failed_Logins =
Login_Disabled =

RATIONAL
EXT_REC_CLK
EXT_REC_CLK
NONE
1CHAR_8

NONE
NONE
FALSE
FALSE
FALSE
FALSE
FALSE

Note that if the value of Flow Control For Transmit Data were XON_XOFF instead
of None, then two more entries would appear, one for XON and one for XOFF.

SMU-326 7/1/87 RATIONAL

subtype Stop..Bita.Range
package !Commands.Terminal

subtype Stopc.Bita..Range

Description

Specifies the number of stop bits for a terminal line.

The range is 1 through 2.

end Terminal;

RATIONAL 1/1/11 SMU-327

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

IMachine.Devices library

!Machine.Devices. Terminal..n device

lMachine.Editor_Data.TerminaLRecognition file

lMachine.Editor_Data.TerminaLTypes file . . .

!Machine.Editor _Data. Visible_Key _Names package

lMachine.Error_Logs world.

!Machine.Initialize procedure

IMachine.Operator_Capability file

!Machine.User_AcLSuffix file ..

IMachine. User _Default_Ad_Suffix file

IMachine.Users username

IMachine. Users world

!Mode1.Rl000 world .

ITools.Disk_Daemon package

ITools.Disk_Daemon.Set_Baclrnp_Killing

r special character

SMU-227, SMU-250, SMU-269

SMU-250, SMU-269

SMU-300

SMU-299

SMU-300

SMU-12, SMU-16

SMU-13, SMU-131

SMU-54

procedure

SMU-55, SMU-64

SMU-55, SMU-64

SMU-64

SMU-67

SMU-64

SMU-U

SMU-192

SMU-5

#
substitution character
wildcard

• special character

SMU4
SMU-3

SMU-6

RATIONAL 7/1/17 SMU-329

SS special character

% special character

SMU-6

SMU-6

SMU-8

SMU-1

SMU-8

SMU-8

SMU-1, SMU-8

SMU-8

SMU-8

,separator

. special character

.. symbol

:= value delimiter

; separator . . .

= value delimiter

=> value delimiter

?
substitution character
wildcard .

· ... SMU-5
SMU-3, SMU-4

substitution character
wildcard .

· ... SMU-5
SMU-3, SMU-4

substitution character
wildcard

[] special characters

\ special character

~ special character

_ special character

, special character

{} special characters

I symbol.

- symbol.

SMU-4
SMU-3

SMU-5, SMU-1

SMU-7

SMU-5

SMU-6

SMU-7

SMU-5, SMU-8

· ... SMU-8

SMU-7, SMU-9

A

access control .
groups ..

access list
Daemon. Get_Access_List_Compaction function
Daemon.SeLAccess_LisLCompaction procedure

ACL, lee access list

Actions
client
object manager

SMU-53
SMU-54

SMU-53
SMU-17
SMU-35

. . . . SMU-13, SMU-27
SMU-ll, SMU-12, SMU-58

SMU-330 7/1/87 RATIONAL

<ACTMTY> special name

Ada
client

................. SMU-2

name .
name resolution mode
object manager

add, se« Create, Oreate..Group, Oreate..Sesaion, Oreate..User

SMU-13, SMU-17, SMU-20, SMU-27, SMU-35
..... SMU-l
. SMU-7
SMU-ll, SMU-58

Add procedure
Queue.Add

Register procedure

Add., To..Group procedure
Operator. Add- To_Group

Oreate..Group procedure

all, send
Mess age. Send-All procedure.

AlLBacLBlocks constant
System- Utilities.AlLBad-Blocks

All_Classes constant
Queue.AlLClasses

AlLSpooler_Devices constant
Queue.AlI_Spooler _Devices

SMU-99
SMU-123

SMU-56
SMU-61

SMU-51

SMU-198

SMU-96

ANSI format .

archive
Operator.Get_Archive_On-Shutdown function.

archive, see al,O Backup

Archive_On-Shutdown procedure
Operator.Archive_On-Shutdown

Get_Archive_On-Shutdown function
Show_Shutdowu-Settings procedure .

ArchivecLCode object manager

at sign (~)
substitution character
wildcard

Attached enumeration

attached job

attribute. .
job

Scheduler. Get_J ob_Attribute function
Scheduler .Set_J ob_Attribute procedure

SMU-97

SMU-283

SMU-76

SMU-58
SMU-76
SMU-87

SMU-ll,SMU-58

· SMU-4
· SMU-3

SMU-165

SMU-133

· SMU-l

SMU-153
SMU-179

RATIONAL 7/1/17 SMU-331

B
background job .

streams ...
parameters
Scheduler .Display procedure

SMU-132, SMU-136
. SMU-137
SMU-172, SMU-177

SMU-144

SMU-15

. SMU-7

backoff

backslash (\) special character

backup
System-Backup package

BaCkup procedure
System-Backup. Backup

Kind type

bad blocks
System-Utilities.AlLBad_Blocks constant
System-Utilities.Manufacturers_Bad_Blocks constant

BacLBlock_Kinds type
System- Utilities.BadcBlock..Kinda

BadcBlockc.Llat function
System- Utilities.BacLBlock_List

bar (I) symbol

batch job, lee background job

baud rates
System-Utilities. Input-Rate function
System-Utilities. Output_Rate function
Terminal. Set..lnputc.Rate procedure
TerminaI.Set-Output-Rate procedure

SMU-191

SMU-191!
SMU-196

SMU-198
SMU-240

SMU-199

suo-too
. SMU-8

SMU-230
SMU-247
SMU-312
SMU-316

begin, let Run

begin at scheduled time
Daemon.Schedule procedure SMU-33

bits
System- Utilities. Character _Bits_Range subtype
System- Utilities. Stop..Bits function
System- Ufilities.StopcBl ts_Range subtype
Terminal. Character _Bi ts_Range subtype
Termlnal.Setc.Stopc.Bite procedure .
Terminal.Stopc.Bits.cflange subtype

block
System- Urlllties.Allc.Bad..Blocks constant
System- Utillties.Bad.Block..Kinds type
System- Ufilities.Bad..Block.List function .
System-Utilities.Manufacturers_BacLBlocks constant
System-Utilities.RetargetecLBlocks constant

SMU-203
SMU-263
SMU-264
SMU-302
SMU-322
SMU-327

SMU-198
SMU-199
SMU-200
SMU-240
SMU-256

SMU-332 7/1/87 RATIONAL

block, lee al80 Quiesce

Block.List type
System_ Utilitlea.Block..Llet

blue tapes

board information
SysteID- Utilities. Get_BoarcLInfo function

suo-sot
SMU-191

Boolean options

SMU-218

. SMU-9

boot
configuration

SysteIll-Utilities.SysteIll-Boot_Contiguration function
last

System_ Utilities.SysteID- Upc'I'ime function

braces ({}) special characters .

brackets ([J) special characters

broadcast bulletin, lee Send, Send-All

byte
receive Xon/Xoff bytes

SysteID- Utilities.Receive_XoIl-Xoff_Bytes function
set receive Xon/Xoff bytes

Terminal.Set_Receive_XoIl-Xoff_Bytes procedure
set Xon/Xoff bytes

Terminal.Set_XoIl-Xoff_Bytes procedure
Xon/Xoff

System_ Utilities.XoIl-Xoff_Bytes function

Byte_String subtype
System., Utilitles.Byte..String

SMU-265

SMU-266

SMU-5, SMU-8

SMU-5, SMU-7

SMU-254

SMU-320

SMU-324

SMU-280

suu-eoe
c

Cancel procedure
Queue.Cancel

Display procedure . .

CanceLShutdown procedure
Operator. C anceLShutdown

caret (~) special character

Ce enumeration

SMU-98
SMU-I09

SMU-59

. SMU-5

SMU-165

Change_Pass word procedure
Operator. Changec.Peesword

Oreate..User procedure

Character _Bits_Range subtype
SysteIll-Utilities.Character_Bits_Range
'Ierminal.Charecter..Bits..Range . . .

SMU-53, SMU-60
. . . . SMU-64

suu-eos
SMU-SOe

RATIONAL 7/1/'7 SMU-333

character pairs ([] and (})

Oharacterc.Size function
SysteIIl- Utilities. Charactez..Sise

. SMU-5

SMU-20-4

characters
read

Sys tem., Utilities. Input-Count function
receive Xon-Xoff' characters

SysteIIl-Utilities.Receive_Xon-Xoff'_Characters function
set receive Xon/Xoff' characters

Terminal.Set_Receive_Xon-Xoff'_Characters procedure
set Xon/Xoff' characters

Terminal.Set_Xon-Xoff'_Characters procedure
size

Terminal.Setc.Oharacter _Size procedure
special
written

SysteIIl- Utilities. Output..Oount function
Xon/Xoff'

SysteIIl-Utilities.Xon-Xoff'_Characters function

SMU-229

SMU-255

SMU-321

SMU-325

SMU-306
. SMU-l

SMU-245

SMU-281

circuit board
SysteIIl- Utilities. Get..Boardc.Info function

class
all

SMU-218

SMU-91

Queue.AILClasses constant
condition

Daemon.Condition-Class type
create

Queue.Create procedure .
destroy

Queue.Destroy procedure

Clesa..Name subtype
Queue.Class_Name

SMU-96

SMU-16

SMU-IOI

SMU-I04

SMU-l00

Classes procedure
Queue. Classes

clients . .
Actions
Ada
Daily.
DDB.
Directory
Disk ..
Error_Log
File
major

Daemon.MajorcOlienta constant

SMU-99

SMU-ll
SMU-21

SMU-l1, SMU-20, SMU-21, SMU-35
· . . . SMU-12, SMU-22, SMU-48
· . . . SMU-18, SMU-20, SMU-21
SMU-17, SMU-20, SMU-21, SMU-35

SMU-12, SMU-20, SMU-27, SMU-31, SMU-38
· SMU-12
SMU-17, SMU-20, SMU-27, SMU-35

SMU-27

SMU-334 7/t/87 RATIONAL

clients, continued
Snapshot ..
Weekly ...
when last run

Daemcn.Leat..Run function
when next run

Daemcn.Nextc.Scheduled function

Code_Segment object manager

Collect procedure
Daemon.Colled

Collection-Priority subtype
Daemon. Collection-Priority

colon/equals (:=) value delimiter

column
terminal device characteristic

comma (,) separator ...

Commit_Disk enumeration

compaction
Daemon.Get_Access_List_Compaction function
Daemon.Set_Access_List_Compaction procedure

Condition-Class type
Daemon.Condition-Class

Log.,Threshold type
Set_Log_ Threshold procedure

configuration
System-Utilities.System-Boot_Configuration function

Configuration object manager

consistency checking
Deemon.Get..Ccnalssency _Checking function
Daemon.Set.Xlonsistency _Checking procedure

Oonsolec.Print enumeration .

Constraint_Error exception
System-Utilities package

Job_Name function .

control
System-Utilities.Flow_Control function
System- Utilities. Receive..Flow _Control function
Terminal.Set_Flow_Control procedure
Terminal.Set_Receive_Flow_Control procedure

conversion, lee Image functions for types of particular interest

RATIONAL T/l/I"

SMU-12, SMU-27, SMU-31
SMU-12

SMU-25

SMU-28

SMU-ll, SMU-58

SMU-14

SMU-15

. SMU-8

SMU-299

SMU-7, SMU-8

SMU-26

SMU-17
SMU-35

SMU-16
SMU-26
SMU-37

SMU-265

SMU-ll, SMU-58

SMU-18
SMU-36

SMU-26

SMU-197
SMU-233

SMU-216
SMU-252
SMU-311
SMU-318

SMU-33S

core editor (Ce) job . SMU-132

count
input

System., Ufilities.Inputc.Oount function
output

Syatem., Utilities. Output..Count function
page

System., Ufilitiea.Get..Pagec.Counts procedure

Cpu
Scheduler.Getc.Opuc.Priority function. .
Scheduler.Get-Cpu- Time_ Used function

Cpu function
Systemc.Utilirles.Cpu .

Cpu-Priority subtype
Scheduler. Cpu-Priority

CPU scheduling parameters

CPU time
System., Utilities.Elapsed function

SMU-229

SMU-245

SMU-220

SMU-150
SMU-151

SMU-205

..... SMU-141

SMU-lll, SMU-173

crash
Operator .Explaln., Crash procedure

Create procedure
Queue.Create

Default procedure .
Register procedure

CreatecGroup procedure
Operator. Oreate., Group

Create..Sesslon procedure
Operator. Create..Session

Oreete..User procedure
Operator .Oreate., User

Current renamed function
Terminal. Current

<CURSOR> special name

SMU-213

SMU-74

SMU-l01
SMU-I02
SMU-123

SMU-61

SMU-53, SMU-69

o
daemon .

when last run
Daemon.Laatc.Run function

when next run
Deemon.Next..Scheduled function

Daemon package

SMU-64

SMU-909

. SMU-2

SMU-U

SMU-25

SMU-28

SMU-ll

SMU-33G 7/1/87 RATIONAL

dailies, lee System-Backup package

Daily client

data tapes .

date formats
Operator.SetcSystem., Time procedure

DDB
client
object manager

SMU-12, SMU-22, SMU-.48

SMU-191

SMU-84

SMU-13, SMU-18, SMU-20, SMU-27
. SMU-ll, SMU-58

default
response profile
Wsllimits

Scheduler.Use..Default., WsI_Limits procedure

Default procedure
Queue.Default

SMU-2, SMU-55

SMU-188

SMU-l0e

Defaultc.Jobc.PegecLlmlt session switch
System-Utilities.GeLPage_Counts procedure
System- Utlllties.Set..Paga.Limlt procedure

<DEFAULT> special value

Deletec.Group procedure
Operator.Delete..Group

Oreatec.Group procedure

delete print request
Queue.Cancel procedure

SMU-220
SMU-261

SMU-2, SMU-55

SMU-66
SMU-61

SMU-98

Delete_User procedure
Operator .Delete_ User

Delete..Group procedure

deleted objects, referring to

delimiters, value
colon/equals (:=)
equals (=)
equals / greater than (=>)

dependency database

SMU-67
SMU-66

SMU-8

SMU-8
SMU-8
SMU-8

SMU-ll

descriptor, job
Scheduler.Get_Job_Descriptor function
Scheduler.JobcDescriptor type
Scheduler.Traverse_Job_Descriptors generic procedure

destroy, lee Delete..Group, Delete..User

Destroy procedure
Queue.Destroy . SMU-l04

SMU-154
SMU-l60
SMU-185

RATIONAL 7/1/&7 SMU-337

Detach..On..Dleconnect function
System., Utilities.Detach-On_Disconnect

Detached enumeration

SMU-206

SMU-165

SMU-133

SMU-92

detached job

device . . .
add

Queue.Add procedure
associate with class

Queue.Register procedure
class

Queue.AlLClasses constant
class name

Queue. Class_N ame subtype
disable

Queue.Disable procedure . .
dissociate from class

Queue. Unregister procedure
enable

Queue.Enable procedure .
remove from print spooler

Queue.Remove procedure
spooler

Queue.AlI_Spooler _Devices constant

Devices procedure
Queue.Devices

SMU-93

SMU-123

SMU-96

SMU-lOO

SMU-107

SMU-128

SMU-l11

SMU-125

SMU-97

SMU-l06

diagnosis
Operator .IntemaLSystem_Diagnosis procedure

Directory
client .
object manager

directory, lee library

SMu-79

SMU-13, SMU-17, SMU-20, SMU-27, SMU-35
. SMU-ll, SMU-58

directory name . . SMU-l

Disable procedure
Queue.Disable
Scheduler .Dhtable

Disable., Terminal procedure
Operator .Dlsable., Terminal

. SMU-l07
SMU-131, SMU-142

SMU-68

disabled
Systelll- Utilities.LogiIl-.Disabled function
Termlnal.Setc.Login..Dlsabled procedure

Disabled enumeration

SMU-238
SMU-314

SMU-134, SMU-167

SMU-338 7/1/87 RATIONAL

disconnect
System., Utilitles.Detachc.On..Disconnect function
System-Utilities.LogofLOn-Disconnect function .
Terminal.Set_Disconnect_On_Disconnect procedure
Terminal.Setc.Disconnect..Onc.f ailedcLogin procedure
TerminaI.SeLDisconnect_On-Logoff procedure
TerminaI.SeLLogoff_On-Disconnect procedure

DisconnecL On-Disconnect function
System- Utilities.Disconnect_On-Disconnect

Dleconnectc.On..Failedc.Login function
System_ Utilities.Disconnect-On-F ailed-Login

Disconnect., On..Lcgoff function
Sys tem., Utilities.Disconned_On_Logoff

SMU-206
SMU-239
SMU-308
SMU-309
SMU-310
SMU-315

SMU-f07

SMU-f08

SMU-209

disk
bad blocks

System- Utilities.AILBad_Blocks constant
System-Utilities. BadcBlock.Klnds type .
System- Utilities.Bad-Block_List function
System- Utilities.Block_List type
System-Utilities.Manufacturers_Bad-Blocks constant

collection .
priority
start

drive
Daemon. Volume subtype

retargeted blocks
System- Utilities. Retargeted..Blocks constant SMU- 256

scheduling SMU-140
parameters SMU-172, SMU-176

wait load . SMU-140
Scheduler. Get_Disk_ Wait_Load procedure SMU-152

Disk client SMU-12, SMU-13, SMU-20, SMU-27, SMU-31, SMU-38

SMU-198
SMU-199
SMU-200
SMU-201
SMU-240
SMU-12
SMU-15
SMU-14

SMU-47

Disk..Space procedure
Operator .Disk..Space

Disk., Waits function
Scheduler. Disk_ Waits

Job..Descriptor type

Display procedure
Queue.Display . .
Scheduler .Display

Set procedure

Displayc.Group procedure
Operator.Dlsplay..Group

Add., To_Group procedure . . .
Removec.FromcGroup procedure

SMU-69

SAfU-L~9
SMU-161

......... SMU-l09
SMU-131, SMU-137, SMU-l,U
......... SMU-170

SMU-70
SMU-56
SMU-82

RATIONAL 7/1/17 SMU-339

Dieplayc'I'ape procedure
Tape.Display _Tape .

dollar sign (I) special character

dollar sign, double ($I), special character

Done function
SysteIIl- Utilities.Done

Init procedure
Job..Iterator type .
Next procedure ..
Session-Iterator type
Terminal_Iterator type
Value function

double dollar sign (IS) special character

double dot symbol (..)

double question mark (??)
substitution character
wildcard

drives, lee disk, tape

Duration type
Time_Utilities.Duration

Daemon.Schedule procedure

Duration-UntiLNext function
'I'ime., Utilities. Duration- UntiLNext

Daemon.Schedule procedure

SMU-284,

SMU-6

SMU-6

SMU-210, SMU-211, SMU-212
SMU-225, SMU-226, SMU-227
. SMU-232
SMU-241, SMU-242, SMU-243

SMU-259
SMU-271
SMU-276

SMU-6

SMU-8

.... SMU-5
SMU-3, SMU-4

SMU-33

SMU-33

E

EEDB (Environment Elaborator Database) interpreter
Operator. IntemaLSysteIIl-Diagnosis procedure SMu-79

Elapsed function
System., Utilities.Elapsed

Enable procedure
Queue.Enable

Remove procedure
Scheduler. Enable . . .

Disable procedure .

Enable_Privileges procedure
Operator .EnablecPrivileges .

Enable_Terminal procedure
Operator. Enable., Terminal

SysteIIl-Utilities.Enabled function. . . .
SysteIIl-Utilities.LogiD-Disabled function
'Ierminal.Set..Loginc.Dlsebled procedure .

SMU-JU9

· SMU-lll
· SMU-125
SMU-131, SMU-14,7
· SMU-142

SMU-7B

SMU-79
SMU-214
SMU-238
SMU-314

SMU-340 7/1/87 RATIONAL

Enabled function
Scheduler. Enabled
System_Utilities.Enabled

enclosing library

enclosing object

enclosing world

enumerations
Daemon.Condition-Class

Fatal enumeration. .
Normal enumeration
Problem enumeration
Warning enumeration

Daemon. Log., Threshold
Commit-Disk enumeration
Oonsole..Print enumeration
Log., 'I'c..Disk enumeration

Scheduler.J ob_Kind
Attached enumeration
Ce enumeration . . .
Detached enumeration
Oe enumeration. . .
Server enumeration .
Terminated enumeration

Scheduler.J oh..State
Disabled enumeration
Idle enumeration
Queued enumeration
Run enumeration
Wait enumeration

System..Backup.Kind
Full enumeration
Primary enumeration
Secondary enumeration

System_ Utilities. Parity _Kind type
Even enumeration .
None enumeration
Odd enumeration

SMU-148
SMU-214

SMU-6

SMU-5

SMU-6

SMU-16
SMU-16
SMU-16
SMU-16

SMU-26
SMU-26
SMU-26

SMU-165
SMU-165
SMU-165
SMU-165
SMU-166
SMU-166

SMU-134, SMU-167
SMU-133, SMU-167
SMU-134, SMU-167
SMU-133, SMU-167
SMU-133, SMU-167

SMU-196
SMU-196
SMU-196

Environment Elaborator Database (EEDB)

equals (=) value delimiter

equals/greater than (=» value delimiter

Error exception
Tape.Error

error log, stable-storage

Erroz..Log client

SMU-249
SMU-249
SMU-249

SMU-79

SMU-8

SMU-8

SMU-286

SMU-12

SMU-12

RATIONAL 7/1/87 SMU-341

Erroz..Name function
System- Utilities.Error _Name

error reactions

Even enumeration

SMu-e15

· SMU-2

SMU-249

Examine_Labels procedure
Tape. Ex amine..Labels

exceptions
Tape package

Error exception

. SMu-e87

exclamation mark (I) special character .

Explain-Crash procedure
Operator.Explain-Crash

SMU-286

· SMU-5

SMU-74

F

Fatal enumeration SMU-16

File
client
object manager

SMU-13, SMU-17, SMU-20, SMU-27, SMU-35
. SMU-ll, SMU-58

file
name

System_ Utilities.Error _Name function
System- Utilities.InpuLN ame function
System- Utilities.OutpuLN ame function

standard error
System_ Utilities.Error _N ame function

standard input
System_ Utilities.InpuLName function

standard output
System- Utillties.Outputc.N ame function

»FILE NAME« parameter placeholder

flow control
bytes

Terminal.Set_Xon-XofLBytes procedure
characters

Terminal.SeLXon-XofL Characters procedure
receive

System- Utilities. Receive_Flow _Control function
let

Terminal.Set_Flow_Control procedure
set receive

Terminal.Set_Receive_Flow _Control procedure

Flow_Control function
System-Utilities. Flow_Control

SMU-215
SMU-228
SMU-246

SMU-215

SMU-228

SMU-246

· SMU-3

SMU-324

SMU-325

SMU-252

SMU-311

SMU-318

SMu-e16

SMU-342 7/1/87 RATIONAL

Force_Logoff procedure
Operator .Force..Logoff

foreground budget

foreground job . .

Format.i'I'ape procedure
Tape.Format., Tape

full backup . . .

Full enumeration

SMU-75

SMU-135, SMU-136

SMU-132, SMU-134, SMU-135

full saves, lee System.Backup package

fully qualified name

SMU-f88

SMU-191

SMU-196

................ SMU-5

G

garbage collection, lee disk collection

Get function
Scheduler.Get

Set procedure .

Get_Access_Lis t_ Compaction function
Daemon.Get-Access_LisLCompaction

Get_Archive_On_Shutdown function
Operator.GeLArchive_On_Shutdown .

Get..Boardc lafo function
SysteID- Utilities. Get-Board-Info

Get_Consistency_Checking function
Daemon.Get-Consistency_Checking

Get..Cpuc.Priority function
Scheduler.GeLCpu-Priority

JobcDescriptor type . .

Get_Cpu-Time_Used function
Scheduler.Getc.Cpuc'I'imecUsed

GeLDisk_ WaiLLoad procedure
Scheduler.Getc.Dlsk., Wait_Load

Set procedure
State procedure. . .

GetJob function
SysteID- Utilities.GetJ ob

Get_Job_Attribute function
Scheduler. Get_J ob_Attribute

GetJ obc.Deacriptor function
Scheduler. Get_J ob.cDescriptor

RATIONAL 7/1/&7

SMU-14{}
SMU-170

SMU-17

SMU-76

SMU-f18

SMU-18

SMU-150
SMU-160

SMU-151

SMU-15f
SMU-176
SMU-183

SMU-fl{}

SMU-159

SMU-154

SMU-343

Get..J oh..Kind function
Scheduler. Get-J ob_Kind

Get-Job_State function
Scheduler.Get..Jobc.State

Job..Deecriptor type .

Get..Log., Threshold function
Daemon.Gef..Log., Threshold

Get-LogiIl-Limit function
Operator.Get..LogincLimit

SMU-132, SMU-155

SMU-133, SMU-156
. SMU-160

SMU-19

SMU-77

Get-Page_Counts procedure
System., Utilltles.GetcPage..Counts
System., Ufilities.Set..Pagec.Counta

Set-Page_Limit procedure .

Get_RUll-Queue_Load procedure
Scheduler. Get-RUll-Queue_Load

State procedure.

Get-Session function
System_Utilities.Get-Session

Get-Shutdown_Interv al function
Operator.Get..Shutdownc lnterv al

Get-Size procedure
Daemon.Get..Sise

SMU-261

SMU-157
SMU-183

suu-eee

SMU-78

SMU-fO

Get_Snapshot_Settinga procedure
Daemon. Get_Snapshot_Settings

Get., Warning_Interval function
Daemon.Get., Warning_Interval

Get_ Withheld- Task_Load procedure
Scheduler. Get_ Withheld- Task_Load

State procedure

SMU-fl

SMU-ff

SMU-158
SMU-183

Get_ WsI_Limits procedure
Scheduler. Get_ WsLLimits

grave (.) special character

group
add

Operator. Add- To_Group procedure
create

Operetor.OreatecGroup procedure
delete

Operator.Delete.Xlroup procedure
display

Operator.Displayc.Group procedure
Network..Public

SMU-159

. SMU-7

SMU-56

SMU-61

SMU-66

SMu-70
SMU-54

SMU-344 7/1/S7 RATIONAL

group, continued
Operator
Privileged . .
Public
remove

Operator.Remove.Trom..Group procedure
special
user-defined . . .
usemame

SMU-S4
SMU-54
SMU-54

Group object manager

SMU-82
SMU-54
SMU-55
SMU-54

SMU-ll, SMU-58

H

hardware Bow control SMU-311

SMU-284hexadecimal display .

History procedure
SysteIIl-Backup.History

Id subtype

hold, lee Quiesce

Home..Library function
System., Utili ties. Home..Library

SMU-194
SMU-195

............... SMU-ff3

Id
Scheduler.JobcId subtype
SysteIIl- Utilities.Job_Id subtype . .
System., Utilitles.Sessioncld subtype

Id subtype
SysteIIl-Backup.Id

Idle enumeration

Image function
SysteIIl- Utilities.Image

<IMAGE> special name

In-Progress function
Daemon. Ins.Progress

SMU-164
SMU-231
SMU-258

SMU-195

SMU-133, SMU-161

SMU-ff.4

. SMU-2

SMU-f3

incrementals, lee SysteIIl-Backup package

Init procedure
System., Utilities.Init

Done function
JobcIterator type
Next procedure .
Sessionc.Iterator type

SMU-ff5, SMU-ff6, SMU-ff7
SMU-210
SMU-232
SMU-241
SMU-259

RATIONAL 7/1/87 SMU-345

lnit procedure, continued
System., Utilities.lnit, continued

TerminaLlterator type
Value function

SMU-271
SMU-276

initiate, let Run

Input..Oount function
SysteIO.-Utilities.lnput_Count

OutputcOount function

Inputc.Name function
SysteIO.-Utilities.lnput-N ame

SMU-229
SMU-245

SMU-228

input rate
Terminal.Setc.Iaputc.Rate procedure

Inputs.Rate function
SysteIO.-Utilities. Input-Rate .

input type
terminal device characteristic

SMU-312

SMU-290

SMU-299

Internalc.Syatemc.Diegnoais procedure
Operator.lntemal_SysteIO.-Diagnosis

Interrupt procedure
Job. Interrupt

Scheduler.Joh..Kind type

SMU-79

SMU-165

interval
Daemon. Warning_Interval procedure
Operator.Gets.Shutdownc.Interv al function

Interval function
Daemon. Interv al

SMU-48
SMU-78

SMU-2.4

iterator
job

System_ Utilities.lnit procedure
SysteIO.-Utilities.J oh..Iterator type
SysteIO.-Utilities.Next procedure

session
System_Utilities.lnit procedure .
System_ Utilities. Next procedure
System_Utilities.Session-Iterator type

stepping through jobs
System., Utilities.Done function

stepping through sessions
SysteIO.-Utilities.Done function

stepping through terminals
SysteIO.-Utilities.Done function

SMU-226
SMU-232
SMU-241

SMU-225
SMU-242
SMU-259

SMU-210

SMU-211

SMU-212

SMU-346 7/1/87 RATIONAL

iterator, continued
terminal

SysteIIl-Utilities.Init procedure
SysteIIl- Utilities.Next procedure
SysteIIl- Utilities. Terminal_Iterator type

SMU-227
SMU-243
SMU-271

J
job

association
attached
attribute

Scheduler. Get_J ob_Attribute function
Scheduler.Set_Job_Attribute procedure

background
streams .

background streams
Scheduler .Display procedure

classes
core editor (Ce)
CPU time

Scheduler. Get_Cpu- Time..Ueed function
descriptor

Scheduler.GetJob_Descriptor function
Scheduler.Traverse_Job_Descriptors generic procedure
Scheduler. TraverseJ cb..Deeeriptors procedure

detached
enabled or disabled

Scheduler .Enabled function
foreground .
get

Scheduler.Getc.Jobc.Attribute function
Scheduler.Getc.Jobs.Descriptor function
Scheduler.Getc.Jobc.Kind function .
Scheduler.Getc.Job..State function.
System_ Utilities. Get_Job function

SMU-132
SMU-132
SMU-133

SMU-153
SMU-179

SMU-132, SMU-136
SMU-172
SMU-137
SMU-144
SMU-132
SMU-132

SMU-151

SMU-154
SMU-185
SMU-187
SMU-133

SMU-148
SMU-132, SMU-134, SMU-135

SMU-153
SMU-154
SMU-155
SMU-156
SMU-219

Id
Scheduler.J ob..Id subtype
System_ Utilities.J obcId subtype

identification number
identifier

System., Utilities. Value function
kind .

Scheduler.Get_Job_Kind function
Scheduler. Job..Kind type

numbers
object editor (Oe)
priority

SysteIIl- Utilities.Priority function
response profile

SMU-164
SMU-231
SMU-132

SMU-276
SMU-132
SMU-155
SMU-165
SMU-132
SMU-132

SMU-251
SMU-2, SMU-55

RATIONAL 7/1/87 SMU-347

job, continued
resume execution

Scheduler .Enable procedure
running
server .
state

Scheduler.Get..Jobc.State function
Scheduler.Job..State type

stepping
System., Utilities.Done function

stream time limits .
suspend temporarily

Scheduler .Disable
terminated
withheld
working set

limit
size ..

working set limits
Scheduler. Set- WsLLimits procedure

Job..Descriptor type
Scheduler.J ob..Descriptor . . .

Get-Job_Descriptor function

Job..ld subtype
Scheduler.Joh..Id .

Traverse_Job_Descriptors procedure.
System_Utilities.Job_Id

Job..Iterator type
System., Utili ties.J oh..Iterator

Job_Kind type
Scheduler.Joh..Kind

Get_J ob_Attribute function
Get-Job_Kind function
Jobc.Descriptor type
State procedure. . . .

Jobc.Name function
System_Utilities.Job_Name

Job_State type
Scheduler.J ob_State

Get-Job_State function
Job..Descriptor type
State procedure. . . .

SMU-348

SMU-147
SMU-133
SMU-133
SMU-133
SMU-156
SMU-167

SMU-210
SMU-137

SMU-142
SMU-133

SMU-133, SMU-136

SMU-139
SMU-139

SMU-180

SMU-160
SMU-154

SMU-132

SMU-164
SMU-187
SMu-e91

suu-es»

SMU-133, SMU-165
SMU-153
SMU-155
SMU-162
SMU-182

SMu-e99

SMU-133, SMU-167
SMU-156
SMU-160
SMU-182

7/1/87 RATIONAL

key concepts

kill, see Delete..Group, Deletec.User

kill user session, see Force_Logoff

KilLPrint_Spooler procedure
Queue.Killc Print..Spcoler

kind .
job .

Scheduler.Get.Llob..Kind function
Scheduler.Jobs.Kind type

parity
System., Utilities.Parity _Kind type
Terminal. Parity _Kind subtype

Kind type
Systems.Backup.Kind

label
Tape.Exemlne..Labels procedure

Last-Login function
System_Utilities. Last..Login .

Last-Logout function
System; Utilities.Last-Logout

Last-Run function
Daemon.Lesf..Run

library
enclosing
home

System., Utllitiea.Homec.Library function
name ..
root
switches

PagecLimit

limit
Operator.Get..Login..Limit function
Operator. Show_Login-Limit procedure
Scheduler. Get., WsLLimits procedure .
System., Ufillties.Set..Pagec.Limit procedure

Limit-Login procedure
Operator.Limit-Login

GeLLogin...Limit function .
Show..Login..Limlt procedure

RATIONAL 7/1/87

K
................ SMU-l

SMU-112

SMU-132
SMU-132
SMU-155
SMU-165

SMU-249
SMU-304

SMU-196

L

SMU-287

SMU-294

SMU-295

SMU-25

. SMU-6

SMU-223
SMU-l

. SMU-5

SMU-220, SMU-261

SMU-77
SMU-86

SMU-159
SMU-261

SMU-80
SMU-77
SMU-86

SMU-349

limit number usera logging in
Operator. Limir..Login procedure

line
terminal device characteristic

link
name resolution mode
special character grave (')

Link object manager

list
System-Utilities. Block_List type

literals
in options

SMU-80

SMU-299

· SMU-7
· SMU-7

SMU-ll, SMU-58

load
Scheduler.Get..Disk., W aiLLoad procedure
Scheduler.GeLRUIl-.Queue_Load procedure
Scheduler. Get., Withheld- T aak..Load procedure

Load..Factor subtype
Scheduler .LoadcF actor

Set procedure

log failed logins
Terminal.Set_Log_Failed_Logins procedure

Log_Failed-Logins function
System., Utilities.Log_Failed-Logins

log threshold
Daemon.Getc.Log., Threshold function
Daemon.Setc lsog.,Threshold procedure
Daemon.Shcw..Log., Thresholds procedure

Log., Threshold type
Daemcn.Log., Threshold

Log., To_Disk enumeration

Logged-In function
System- Utilities.Logged-In .

login
from non-Rational type
Operator.Getc.Login..Limlt function
Operetor.LlmlscLogln procedure . .
Operator.Showc.Logins.Limlt procedure
System- Utilitiell.Disconnect_On-F ailed-Login function
System-Utilities.Last_Login function
SYlltem-Utilities.Log_Failed-Logins function
Terminal.Set_Disconned_On...F ailed-Login procedure
Terminal.Set_Log_Failed-Logins procedure
Terminal.Set_Login..Disabled procedure .

SMU-201

· SMU-9

SMU-152
SMU-157
SMU-158

SMU-168
SMU-176

SMU-313

SMu-eS6

SMU-19
SMU-37
SMU-39

SMu-e6

SMU-26

SMu-eS7

SMU-300
SMU-77
SMU-80
SMU-86

SMU-208
SMU-234
SMU-236
SMU-309
SMU-313
SMU-314

SMU-350 7/1/87 RATIONAL

Login-Disabled function
System., Utilities.Login-Disabled

logoff
Operator.Force..Logoff procedure .
System., Utilities.Dlsconnectc.On.Logoff function
Terminal.SeLDisconnecLOn_Logoff procedure
Terminal. Setc.Logoffc.On..Disconnect procedure

SMU-f98

SMU-75
SMU-209
SMU-310
SMU-315

Logoff..Onc.Diaconnect function
System- Utillties.Logoffc.OncDlsconnect

logout
System- Utilities.LasLLogout function

SMU-£S9

SMU-235

M

major clients
Actions
Ada
DDB ..
Directory
Disk ..
File
Snapshot

Majorc.Ollents constant
Daemon.Major _Clients

Status procedure .

SMU-13
SMU-13
SMU-13
SMU-13
SMU-13
SMU-13
SMU-13

SMU-13, SMU-f7
. . . . SMU-44

Manufacturers..Bad.Blocks constant
System- Utilities.Manufacturers_Bad_Blocks

medium-term scheduler
Scheduler package

memory scheduling
page withdrawal
parameters

SMU-24 0

SMU-131

SMU-139
SMU-140

SMU-l71, SMU-174

message
Daemon. Snapshot_Finish-Message procedure
Daemon.Snapshotc.Start..Message procedure .
Daemon.Snapehot., W aming-Message procedure

SMU-41
SMU-42
SMU-43

SMU--49

SMU-13
SMU-50
SMU-51

Message package

Message window
Message.Send procedure
Mess age.Send-All procedure .

Milliseconds subtype
Scheduler .Milliseconds SMU-169

RATIONAL 7/1/87 SMU-351

mode
privileged

Operator.PrivilegecLMode function
SMU-54
SMU-81

N

name
character pairs ([] and (l)
class

Queue.Class_Name subtype
comma (,) separator
error

System., Utilities.Errorc.N ame function
fully qualified
input

System., Utilities.Input-N ame function
job

System; Utilities.J obcN ame function
output

System_ Utilities.Output..N ame function
session

System., Utilities.Session-N ame function
special characters
tape

SysteIIl- Utilities. Tapec.Name function
terminal

SysteIIl- Utilities. Terminal..N ame function
user

SysteIIl- Utilities. User _N ame function

naming objects . . .

Network..Publlc group

Next procedure
SysteIIl-Utilities.Next

Done function
Init procedure
Job..Iterator type .
Session-Iterator type
Termlnak.Iterator type
Value function

Next-Scheduled function
Daemon.Nexf..Scheduled

· SMU-5

SMU-IOO
· SMU-7

SMU-215
· SMU-5

SMU-228

SMU-233

SMU-246

SMU-260
· SMU-5

SMU-268

SMU-272

SMU-275

· SMU-l

SMU-54

SMU -1!.41, SMU -1!.4s, SMU -1!.49
SMU-210
SMU-226
SMU-232
SMU-259
SMU-271
SMU-276

None enumeration

Normal enumeration

notify, lee Send, SencLAlI

NulLDevice object manager

SMU-f8

SMU-249

SMU-16

SMU-ll, SMU-58

SMU-3S2 7/1/87 RATIONAL

object
enclosing
name .
object editor (Oe) job
referring to deleted

object managers
Action
Actions .
Ada .
Archived..Oode
Oodec.Segment
Configuration
DDB ..
Directory
File
Group
Link .
Null_Device
Pipe .
Session .
Tape ..
Terminal
User ..

Object subtype
SysteIO.-Utilities. Object

Odd enumeration

Oe enumeration .

operator capability

Operator group .

Operator package

options
Boolean
literals .
specification

Options parameter

Output-Count function
System..Urilirles.Outputc.Oount

Inpur..Oount function . . .

Output-Name function
System., Utilities.Outputc.N ame

output rate
TerminaI.Set-Output-Rate procedure

RATIONAL 7/1/87

o

· SMU-5
· SMU-l
SMU-132
· SMU-8

SMU-ll
SMU-ll
SMU-58

SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58
SMU-ll, SMU-58

SMU-2.U

SMU-249

SMU-165

SMU-54

SMU-54

SMU-59

SMU-9
SMU-9
SMU-8

SMU-8

SMU-£.45
SMU-229

SMU-£.46

SMU-316

SMU-353

Outpur..Rate function
Sys tem., Utilities. Ouepur..Rate

output type
terminal device characteristic

SMU-247

SMU-299

p

page
count

System- Utilities. Get_Page_Counts procedure
default

System- Utilities.Set_Page_Limit procedure
faults

Scheduler.Dlsk., Waits function
limits.

System-Utilities.Set-Page_Limit procedure
withdrawal .

Pagec.Limit
library switch

System- Utilities. Get_Page_Counts procedure
System- Ufilitiea.Set..Pagec.Limit procedure

pragma
System- Utilities. Get_Page_Counts procedure
System- Utilities.Set_Page_Limit procedure

parameter placeholders
»FILE NAME« ..
»SOURCE NAMES«
> >SWITCB FILE< <
> >SWITCB< <
> >SWITCBES< <
»WORLD NAMES«

SMU-220

SMU-261

SMU-143
SMU-197
SMU-261
SMU-140

SMU-220
SMU-261

SMU-220
SMU-261

SMU-l, SMU-3, SMU-55
SMU-3
SMU-3
SMU-3
SMU-3
SMU-3
SMU-3

parameters
CPU scheduling .
disk scheduling
memory scheduling

parity
Terminal.Set_Parity procedure .

Parity function
System-Utilities.Parity .

SMU-l71, SMU-173
SMU-172, SMU-176
SMU-l71, SMU-174

SMU-317

SMU-Ja4,8

Parity _Kind subtype
Terminal. Parity _Kind

Parity_Kind type
System-Utilities.Parity_Kind

SMU-304

SMU-Ja4,9

password
Operator. Change_Password procedure SMU-OO

SMU-3S4 7/1/S7 RATIONAL

pathname .
patterns in

percent (%) special character

period (.) special character

period, double (..), symbol

Pipe object manager

placeholders, parameter

port
characteristics

Terminal package
number

Terminal.Current renamed function
settings

Terminal.Settings procedure

port, lee a/,O terminal

Port subtype
SysteIIl-Utilities.Port
Terminal.Port . . .

pound sign (#)
substitution character
wildcard

SMU-l
SMU-3

SMU--6

SMU-7

SMU-8

SMU-ll, SMU-58

SMU-l, SMU-3, SMU-55

SMU-299

SMU-303

SMU-326

SMU-250
SMU-905

SMU-4
SMU-3

pragmas
Page..Limit

primary backup

SMU-220, SMU-261

SMU-191

SMU-196Primary enumeration

print
default

Queue.Default procedure
operator capability
queue .
register

Queue.Register procedure
remove device from print spooler

Queue.Remove procedure
request .
spooler

Queue.Kill_Print_Spooler procedure .
Queue.Reatart_Print_Spooler procedure

stop
Queue.Cancel procedure

SMU-I02
SMU-92
SMU-92

SMU-123

SMU-125
SMU-91
SMU-91

SMU-1l2
SMU-127

SMU-98

RATIONAL 1/1/81 SMU-355

print, continued
unregister

Queue. Unregister procedure
version

Queue. Print., Version procedure
view entries in queue

Queue.Display procedure

lliJ1I[tJ key
Queue.Print procedure

SMU-128

SMU-1l8

SMU-I09

SMU-1l3

Print procedure
Queue.Print

Print- Version procedure
Queue.Print_ Version

SMU-91, SMU-119

SMU-118

priority
Daemon.Collection-Priority subtype
Daemon.Set-Priority procedure
Scheduler.Cpu-Priority subtype . .
Scheduler.Get-Cpu-Priority function

Priority function
System., Utilities.Priority

Privileged group

privileged mode.
Operator. Enable_Privileges procedure

Privileged-Mode function
Operator.PrivilegecLMode

Problem enumeration

SMU-15
SMU-38

SMU-141
SMU-150

SMU-251

S1-iU-54

SMU-54
SMU-72

processes.

SMU-81

SMU-16

SMU-132

. SMU-2

SMU-2, SMU-55

profile . .

<PROFILE> special value

progress
Daemon.Ins.Progrese function SMU-23

protecting information, lee access control

Public group SMU-54

Put generic formal procedure
Scheduler. Put

Traverse_J ob..Descriptora procedure
SMU-186
SMU-187

SMU-356 7/1/87 RATIONAL

Q

qualified name, fully . . .

question mark ('l)
substitution character
wildcard .

question mark, double ('l'l)
substitution character
wildcard

Queue package . . .

Queued enumeration

Quiesce procedure
Daemon.Quiesce .

SMU-5

.... SMU-5
SMU-3, SMU-4

.... SMU-5
SMU-3, SMU-4

SMU-91

SMU-134, SMU-167

quotation mark, single ('), identifier character

SMU-13, SMU-29

..... SMU-3

R

range
System., Utilities. Character _Bits_Range subtype
System_Utilities.Stop_Bits_Range subtype
TerminaI.Character_Bits_Range subtype
Terminal.Stopc.Bltac.Range subtype

rate
System- Utilities.Input_Rate function
System- Utilities. Outpue..Rate function
'Iermlnal.SetcInput..Rate procedure
Termlnal.Setc.Outputc.Rate procedure

read
from tapes

Tape package

SMU-203
SMU-264
SMU-302
SMU-327

SMU-230
SMU-247
SMU-312
SMU-316

SMU-283

Read procedure
Tape.Read

Rea<LMt procedure
Tape. Read-Mt

receive flow control

SMU-283, SMU-289

SMU-291

SMU-318

Receive.iFlow _Control function
System-Utilities. Receivec.Flow..Oontrol

Receive_Xon-XofLBytes function
System- Utilities.Receive_Xon-XofLBytes

Receive..XoncXoff., Characters function
System- Utilities.Receive_Xon-XofLCharacters

SMU-252

SMU-254

<REGION> special name

SMU-255

. SMU-2

RATIONAL 7/1/87 SMU-357

Register procedure
Queue.Register

Add procedure . .
Remove procedure
Unregister procedure

remaining disk capacity
Operator.Disk.Space procedure

remove, see also Delete..Group, Delete..User

Remove procedure
Queue.Remove.

Unregister procedure

Removec.From..Group procedure
Operator.Hemove..From..Group

SMU-129
SMU-93

SMU-125
SMU-128

SMU-69

SMU-125
SMU-128

SMU-82

reset time
Operatcr.Set..System., Time procedure SMU-84

SMU-197resource limit.

Restart_Print-Spooler procedure
Queue.Restart-Prlnt_Spooler

Kill..Printc.Spooler procedure

Retargeted-Blocks constant
SysteIn- Utilities.RetargetecLBlocks

SMU-127
SMU-112

review intervals .

SMU-256

SMU-134

Rewind procedure
Tape.Rewind

root of library system

SMU-292

. SMU-5

run
at scheduled time

Daemon.Schedule procedure
last

Daemon.Last_Run function
load .
queue load

Scheduler.Get_RUIl-Queue-Load procedure

SMU-33

SMU-25
SMU-135

Run enumeration

Run procedure
Daemon.Run

running, lee In..Progress

SMU-157

SMU-133, SMU-167

SMU-13, SMU-91

s
Schedule procedure

Daemon.Schedule
Quiesce procedure .

SMU-99
SMU-29

SMU-358 7/1/87 RATIONAL

scheduled
Daemon.Nextc.Scheduled function

Scheduler package . .

scheduler parameters

scheduling
CPU ..
disk
memory

searchlist
name resolution mode

SMU-28

SMU-191

SMU-l71

SMU-134, SMU-l71
SMU-140, SMU-112
SMU-139, SMU-l71

secondary backup . . .

Secondary enumeration

security, lee access control

<SELECTION> special name SMU-2

semicolon (i) separator SMU-1, SMU-8

Send procedure
Message.Send . SMU -50

SencLAlI procedure
Message.SencLAlI SMU-51

. SMU-7

SMU-191

SMU-196

Server enumeration SMU-166

SMU-133

SMU-191

server job

session. .
create

Operator.Createc.Session procedure
get

System-Utilities. Get_Session function
identifier

System- Utilities. Value function
response profile
stepping

System- Utilities.Done function
switches

De£aulLJob_Page_Limit ...
terminate

Operator. Force..Logoff procedure

Session function
System- Utilities.Session

SMU-63

SMU-222

SMU-271
SMU-2, SMU-55

... SMU-211

SMU-220, SMU-261

SMU-15

SMU-257

Seseion..Id subtype
System- Utilities.Session-ld SMU-1!58

RATIONAL 7/1/87 SMU-359

Session..Iterator type
Sys tem., Utilities. Session-Iterator

Sessionc.Name function
System., Utilities.Session-N ame

Session object manager

<SESSION> special value

Set procedure
Scheduler.Set

Display procedure
Get function . .
Get- WsI_Limits procedure
Joh..Descriptor type. . .
Job_Kind type
Set., WsLLimits procedure
Uaec.Default., WsLLimits procedure

SMU-£59

SMU-£60

SMU-ll, SMU-58

. SMU-2, SMU-55

SMU-131, SMU-133, SMU-170
SMU-144
SMU-149
SMU-159
SMU-163
SMU-165
SMU-180
SMU-188

Set-Access_List-Compaction procedure
Daemon.Set_Access_List_Compaction SMU-35

Set-Character _Size procedure
Terminal.Set.Xlharacterc.Sise .

System_Utilities. OharactercSise function .

Set_Consistency _Checking procedure
Daemon.Setc.Conslstency _Checking

Set-Detach_On_Disconnect procedure
Terminal.Set-Detach-On-Disconnect

SMU-306
SMU-204

SMU-36

SMU-307

Set_Disconnect- On..Dieconnect procedure
Terminal.Set_Disconnect-On-Disconnect

Set-Disconnect_ On_F ailecLLogin procedure
'Iermlnal.Setc.Dlsconnectc.Onc.f ailecLLogin

SMU-308

SMU-309

Set_Disconnect_On_Logotl' procedure
Terminal.Set_Disconnect_On_Logotl'

Set-Flow_Control procedure
Terminal.Setc.Plow..Oontrol

Systemc.Urilltles.Flowc.Oontrol function

Set..Inputc.Rate procedure
Terminal.Setc.Input..Rate

Sys tem., Utili ties. Input..Rate function

Set..J ob_Attribute procedure
Scheduler.Set..Jobc.Attribute

Get-Job_Attribute function

SMU-310

SMU-311
SMU-216

SMU-31£
SMU-230

SMU-133, SMU-179
..... SMU-153

Set_Log_Failed_Logins procedure
Terminal.SetcLog.Ralled.Logins SMU-313

SMU-360 7/1/87 RATIONAL

Set_Logoff_On_Disconnect procedure
Terminal.Set_Logoff_On-Disconnect

Set..Outputc.Rate procedure
Terminal.Setc.Outputc.Rate

System., Utllitles.Outputc.Rate function

Setc.Pages.Limit procedure
System.; Utili ties .Setc.Page..Limit

GeLPage_Counts procedure

SeLParity procedure
Terminal.Setc.Parity

Syatem., Utilities.Parity function
System., Utilities.Parity _Kind type

Set..Priorlry procedure
Daemon.Set-Priority

SeLLoF:- Th.reshold procedure
Daemon.Set..Log., Threshold

Condition-Class type
Log_ Threshold type . .

SeLLogin_Disabled procedure
Terminal.Set_Login-Disabled

Setc.Receivec.Ftow..Oontrol procedure
Terminal.Set_Receive_Flow_Control

System., Utilities. Receives.Flow _Control function

Set..Recelve.Xon.Xoffc.Bytes procedure
Terminal.SeLReceive_Xon_Xoff_Bytes

System., Utilities.Receive_Xon_Xoff_Bytes function

Set_Receive_Xon_Xoff_Characters procedure
Terminal.SeLReceive_Xon-Xoff_Characters

System_Utilities.Receive_Xon_Xoff_Characters function

SeLStop_Bits procedure
Terminal.Ser..Stopc.Bits

System., Utllitles.Stopc.Bits function

Setc.System., Time procedure
Operator.Set..Syetem., Time

SeL Task..N ame procedure
Debug.Set.c'I'ask..Name ..
Debug., Tools.SeL Task_N ame

SeL TerminaL Type procedure
Terminal.SeL TerminaL Type

System., Utilities. TerminaL Type function

RATIONAL 7/1/87

SMU-12, SMU-97
SMU-16

. . . . SMU-26

SMU-914

SMU-915

SMU-916
SMU-247

SMU-261
SMU-220

SMU-917
SMU-248
SMU-249

SMU-98

SMU-918
SMU-252

SMU-920
SMU-254

SMU-921
SMU-255

SMU-922
SMU-263

SMU-84

SMU-6
SMU-6

SMU-929
SMU-273

SMU-361

Set_ WsLLimits procedure
Scheduler.Set., WsLLimits

Get_ WsLLimits procedure
Job..Descriptor type. . .
Usec.Default., WsLLimits procedure

SeLXon_XofLBytes procedure
Terminal.Set..Xon.Xoffc Bytes

Sys tem., Utilitles.Xoru.Xoffc.Bytee function

SeLXon_XofLCharacters procedure
Terminal.SeLXon_XofLCharacters .

System., Utilities.Xon.Xoffc.Oharacters function

Settings procedure
Terminal.Settings .

show, ue Display, Displayc.Group, Display..Tape

Show.iLog., Thresholds procedure
Daemon.Show _Log_ Thresholds

Showc Login..Limit procedure
Operator.Show..Loginc.Limit

Show _Shutdown_Settings procedure
Operator. Show _Shutdown_S ettings

Show _SnapshoLSettings procedure
Daemon. Show _SnapshoLSettings

shutdown
Operator.Archive_On_Shutdown procedure
Operator.CanceLShutdown procedure
Operator.Explainc.Orash procedure
Operator.Get_Archive_On_Shutdown function
Operatcir.Get_Shutdown_Interv al function
Operator.Show_Shutdown_Settings procedure

Shutdown procedure
Operator.Shutdown

Cancek.Shutdown procedure
Explaln..Orash procedure
Get..Shutdownc.Interv al function
Shutdown., Warning procedure

Shutdown., Warning procedure
Operator. Shutdown- Warning

Get_Shutdown_Interv al function
Show _Shutdown_Settings procedure
Shutdown procedure.

single quotation mark (') identifier character

SMU-180
SMU-159
SMU-163
SMU-188

SMU-924
SMU-280

SMU-925
SMU-281

SMU-926

SMU-99

SMU-86

SMU-87

SMU-40

SMU-58
SMU-59
SMU-74
SMU-76
SMU-78
SMU-87

SMU-88
SMU-59
SMU-74
SMU-78
SMU-90

SMU-90
SMU-78
SMU-87
SMU-88

. SMU-3

SMU-362 7/1/87 RATIONAL

size
character

SysteID-Utilities.Character_Size function.
Terminal.Set-Character _Size procedure

get
Daemon.Get-Size procedure

working set
Scheduler. Working_Set_Size function

SMU-204
SMU-306

SMU-20

SMU-189

snapshot .
settings

Daemon. Get_Snapshot_Settings procedure
Daemcn.Show..Snepshotc.Settlngs procedure

Snapshot client SMU-12, SMU-13, SMU-27, SMU-31

Snapshot_Fiwsh-Message procedure
Daemon.Snapshotc.FinishcMessage,-. ..

Snapshot_Start~essage procedure
Daemon.Snapshot_Start_Message

Snapshot_Warning~essage procedure
Deemon.Snapshos., Warning_Message

software flow control .

SMU-12

SMU-21
SMU-40

SMU-41

................... ''' . SMU-42

SMU-49

SMU-311

> >SOURCE NAMES< < parameter placeholder . SMU-3

space
Operator .Disk..Space procedure

Spawn procedure
Command. Spawn

Scheduler. Job..Kind type

special characters
backslash (\)
braces ({})
brackets ([J) .
caret (~)
dollar sign (I)
double dollar sign (SS)
exclamation mark (I)
grave r) ..
percent (%) .
period (.) . .
underscore (_)

special groups

special names .
<ACTMTY>
<CURSOR>
<IMAGE>

SMU-69

SMU-165

SMU-5
SMU-7
SMU-8
SMU-7
SMU-5
SMU-6
SMU-6
SMU-5
SMU-7
SMU-6
SMU-7
SMU-6

SMU-54

SMU-l, SMU-2
SMU-2
SMU-2
SMU-2

RATIONAL 7/1/87 SMU-363

special names, continued
<REGION> ..
<SELECTION>
<TEXT> ..

special values . .
<DEFAULT>
<PROFILE>
<SESSION>

SMU-2
SMU-2
SMU-2

SMU-2
SMU-55
SMU-55
SMU-55

spooler
devices

Queue.AlLSpooler_Devices constant
print

Queue.KilLPrint_Spooler procedure .
Queue.Restartc.Printc.Spooler procedure

stable-storage error log

stack frame prefix . . .

standard error file
System..Utilitlea.Errorc.Name function

standard input file
System., Utili ties. Input..N ame function

standard output file
System., Utili ties. Output..N ame function

SMU-97

SMU-112
SMU-127

SMU-12

. SMU~

SMU-215

SMU-228

SMU-246

start, see Run

start at scheduled time
Daemon.Schedule procedure SMU-33

state
job .

Scheduler.Getc.Jobc.State function.
Scheduler.Joh..State type

State procedure
Scheduler.State

JobcDescriptor type

Status procedure
Daemon.Status

Major_Clients constant
Run procedure

stepping
jobs

System- Utilities.Done function
sessions

System-Utilities.Done function
terminals

System-Utilities.Done function

SMU-133
SMU-156
SMU-167

SMU-131, SMU-18B
.... SMU-161

SMU-13, SMU-44
SMU-27

. . . . SMU-31

SMU-210

SMU-211

SMU-212

SMU-364 7/1/87 RATIONAL

stepping, see a180 Next

stop, see Cancel-Shutdown, Quiesce

stop bits
'Termlnal.Set.Btopc.Blte procedure

Stop_Bits function
System- Utilities. Stop_Bits

Stopc.Blta..Range subtype
System- Urllltles.StopcBita.Range
Terminal.Stop..Bitec.Range

stop shutdown
Operator. Cancel-Shutdown procedure

Storage..Error exception
System_Utilities package

GeLPage_Counts procedure
Set..Pagec.Limit procedure

strict stream policy

strings
byte

System- Utilities. Byte_String subtype
name .

substitution characters. . . .
at sign (~) .
double question mark (77)
pound sign (#)
question mark (7)

super user, see Enable..Privlleges, privileged mode

> >SWITCH < < parameter placeholder

switches
library

Paga..Limlt
session

Default_J ob_Page_Limit

> >SWITCHES< < parameter placeholder

> >SWITCH FILE< < parameter placeholder

symbolic name
System- Utilities.J obcN ame function

System-Backup package

System-Boot-Configuration function
System- Utilities.System-Boot_Configuration

RATIONAL 7/1/87

SMU-322

SMU-t6S

SMU-t64
SMU-S27

SMU-59

SMU-221
SMU-262

SMU-138

SMU-202
SMU-l

SMU--4
SMU-4
SMU-5
SMU--4
SMU-5

............. SMU-3

SMU-220, SMU-261

SMU-220, SMU-261

SMU-3

SMU-3

SMU-233

SMU-191

SMU-t65

SMU-365

system diagnosis
Operator.IntemaLSysteIIl-Diagnosis procedure

System_Up_Time function
System., Utilitiea.Syatemc.Up., Time

System_Utilities package.

SMU-79

SMU-266

SMU-197

T

tape
blue
data
display

Tape.Display _Tape procedure
format

Tape.Format., Tape procedure
label

Tape.Bxamlnec.Labels procedure
read

Tape.Read procedure
rewind

Tape.Rewind procedure
unload

Tape. Unload procedure
write

Tape. Write procedure

Tape object manager

Tape package. . . .

Tape subtype
System- Utilities. Tape

Tape_N ame function
System-Utilities. Tape_Name

Task_Display procedure
Debug. Task_DiJplay

TERMCAP (Creating Your Own Terminal)

terminal
characteristics

Terminal package
device characteristics
disable

Operator.Disable-Terminal procedure
enable

Operator.Enable., Terminal procedure
line

Terminal.Port subtype . .
login (rom non-Rational type

SMU-191
SMU-191

SMU-284

SMU-288

SMU-287

SMU-289

SMU-292

SMU-293

SMU-294

SMU-ll, SMU-58

.... SMU-289

SMU-267

SMU-268

. SMU-6

SMU-300

SMU-299
SMU-299

SMU-68

SMU-73

SMU-305
SMU-300

SMU-366 7/1/a7 RATIONAL

terminal, continued
number

Systemc.Utilities. Value function
ports

System., Utilities.Port subtype
settings

Terminal.Settings procedure
stepping

System..Ufilities.Done function
type

Terminal.Set., TerminaL Type procedure
types

Terminal function
Systemc.Utilitiee. Terminal

TerminaLlterator type
System., Utilities. Terminak.Iterator

SMU-278

SMU-250

SMU-326

SMU-212

SMU-323
SMU-299

SMU-£69

SMU-£71

TerminaLName function
SysteIIl-Utilities.TerminaLName .

Terminal object manager .

Terminal package

Terminalc.Type function
SysteIIl-Utilities.TerminaL Type

Terminated enumeration

SMU-£72

SMU-ll, SMU-58

SMU-f99

terminated job

<TEXT> special name .

threshold
Daemon.Getc.Log., Threshold function
Daemon.Log., Threshold type
Daemon.Setc.Log., Threshold procedure
Deemcn.Show..Log., Threshold! procedure

ThresholcL Warnings procedure
Daemon. ThresholcL W amings

tilde (-)

SMU-f79

SMU-166

SMU-133

. SMU-2

SMU-19
SMU-26
SMU-37
SMU-39

SMU-.46

SMU-7, SMU-9

time
Operator.Setc.System., Time procedure
Scheduler.Geec.Cpuc'I'ime..Used function
SysteIIl- Utilities.Elapsed function
SysteIIl-Utilities.SysteIIl-Up_ Time function

time formats
Operator.Sef..System., Time procedure

SMU-84
SMU-151
SMU-213
SMU-266

SMU-84

RATIONAL 7/1/87 SMU-367

Traversa..J ob..Descriptors generic procedure
Scheduler. Traverse..J ob..Descriptora

Traverse..J ob..Descriptors procedure
Scheduler. 'I'raverae..J obc.Descriptors

Put generic formal procedure

turn off
Operator. Shutdown procedure .

type
terminal

System; Utilities. TerminaL Type function
Terminal. Set., TerminaL Type procedure

u
underscore (_)

identifier character
special character

Unload procedure
Tape. Unload

Unregister procedure
Queue. Unregister

Remove procedure

up time
SysteID- Utilities.SysteID- Upc'I'lme function

Uee..Defauls., WsI_Limits procedure
Scheduler. Use..Default., W sLLimits

se,WsLLimits procedure

user .
access control
change job attribute

Scheduler .Set_J ob_Attribute procedure
create

Operator. Create., User procedure
delete

Operator.Deletec.User procedure
group membership

Operator. Add., To_Group procedure
Operator.Display _Group procedure
Operator.Remove..From.Xlroup procedure

home library
Sys tem., Utilities. Hcme..Library function

login
Operator.Getc.Login..Limit function
Operator. Limits.Login procedure

logoff
Operator. Force..Logoff procedure

SMU-185

SMU-187
SMU-186

SMU-88

SMU-273
SMU-323

SMU-3
SMU-6

SMU-f{}S

SMU-lf8
SMU-125

SMU-266

SMU-188
SMU-180

SMU-197
SMU-53

SMU-179

SMU-64

SMU-67

SMU-56
SMU-70
SMU-82

SMU-223

SMU-77
SMU-80

SMU-75

SMU-368 7/1/87 RAllONAl

user, continued
name

System., Utilities. Userc.Name function
password

Operator. Change..Rassword procedure

user-defined groups

User function
System., Utili ties. User

SMU-275

SMU-60

SMU-55

SMU-274

Usez..Name function
Systelll-Utilities.User_Name

User object manager

SMU-275

SMU-ll, SMU-58

usemame groups

utilities
Systelll- Utilities package

SMU-54

SMU-197

v
value delimiters

colon/equals t=)
equals (=l
equals / greater than (=>)

Value function
Systelll- Utilities. Value

Done function
Init procedure
JobcIterator type
Next procedure .
Seeslon..Iterator type
TerminaLIterator type

SMU-8
SMU-8
SMU-8
SMU-8

SMU-27~ SMU-27~ SMU-278
......... SMU-210
SMU-225, SMU-226, SMU-227

SMU-232
SMU-241
SMU-259
SMU-271

version
pathname

System..Utilitiee.Image function
print

Queue.Print.; Version procedure

Version subtype
System., Utilities. Version

vertical bar (I) symbol

SMU-224

SMU-1l8

SMU-279

. SMU-8

view
contents of tape

Tape.Display _Tape procedure
port settings

Systelll- Utilities package .
print queue

Queue.Display procedure .

SMU-284

SMU-197

SMU-I09

RATIONAL 7/1/87 SMU-369

view, continued
system information

Systelll-Utilities package
terminal settings

Systelll-Utilities package

Volume subtype
Daemon. Volume

SMU-197

SMU-197

SMU-,P

w
wait

Scheduler. Disk_ Waits function SMU-143

SMU-133, SMU-167Wait enumeration

warning
Daemon. Get.; Warning_Interv al function
Daemon. Threshold- Warnings procedure
Operator.Shutdown., Warning procedure

SMU-22
SMU-46
SMU-90

SMU-16Warning enumeration

Warning_Interval procedure
Daemon. Warning_Interval

Weekly client .

wildcards
at sign (~)
double question mark (77)
pound sign (#)
question mark (7)

withheld job

withheld task
Scheduler. Get_ Withheld_ T ask_Load procedure

working set limits (WSL)
Scheduler. Get_ WaLLimits procedure
Scheduler.SeL WsLLimits procedure
Scheduler.Use..Default.; WsLLimits procedure

SMU-48

SMU-12

SMU-l, SMU-3
.... SMU-3
SMU-3, SMU-4

.... SMU-3
SMU-3, SMU-4

SMU-133, SMU-136

SMU-158

working set management . . .

Working_Set_Size function
Scheduler. Working_Set_Size

Job..Deecriptor type

world, enclosing.

»WORLD NAMES« parameter placeholder

SMU-159
SMU-180
SMU-188

SMU-139

SMU-189
SMU-161

SMU-6

SMU-3

write
to tapes

Tape package SMU-283

SMU-370 7/1/87 RATIONAL

Write procedure
Tape. Write .

Write-Mt procedure
Tape. Write-Mt

SMU-283, SMU-S94

SMU-S9S

Wsl
Scheduler. GeL WsLLimits procedure
Scheduler. Set_ WsLLimits procedure
Scheduler.Usec.Default., WsLLimits procedure

SMU-159
SMU-180
SMU-188

x
Xon/Xoff

System-Utilities.Receive_Xon-Xoff_Bytes function
System_Utilities.Receive_Xon-Xoif-Characters function
Terminal. Set..Receive.Xon.Xoff.Bytes procedure
Terminal.Set_Receive_Xon_Xoif-Characters procedure
TerminaI.SeLXon-Xoif-Bytes procedure . .
Terminal. SeLXon_Xoff- Characters procedure

Xon-Xoff-Bytes function
System., Utilities.Xon-Xoff-Bytes

Xon-Xoff_ Characters function
System- Utilities.Xon-Xoff-Characters

SMU-254
SMU-255
SMU-320
SMU-321
SMU-324
SMU-325

SMU-SSO

SMU-SSl

RATIONAL 7/1/87 SMU-371

RATIONAL

RATIONAL
READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

6 months or less _ 1 year _ 3 years or more _

How much experience have you had with the Ada programming language?

6 months or less --- 1 year _ 3 years or more _

Name (optional) Date _
Company _
Add~~ _
City State ZIP Code _

Please return this form to: Publications Department
Rational
1501 Salado Drive
Mountain View, CA 94043

Rational Environment Reference Manual, System Management Utilities (SMU), 8001A-30

