Rational Environment
Reference Manual

Project Management (PM)

Copyright © 1986, 1987, 1988 by Rational
| 5t S B
Document Control Number: 8001A-31

Rev. 0.0, February 1986
Rev. 1.0, July 1986 . LT o E
Rev 2.0, December 1987

Rev. 3.0, March 1988 T

Rev. 4.0, August 1988 e o

This document subjeét to change without notice.

M
ke

L .. " -
v A

Note the Reader’s Comments form on the last page of this book, which~'requests
the user’s evaluation to assist Rational in preparing future documentation.

Motorola is a registered trademark of Motorola, Inc.

Rational and R1000 are reglstered trademarks and- Ratlonal Envxronment and Ra-
tlona.l Subsystems are trademarks of Ratlonal

-
- Yo~

Rational. = & ¢ n o

3320 Scott Boulevard <i; -~ .
Santa Clara, California 95054—3197

" PM-ii

Contents

v

How to Use This Book

Key Concepts

Introduction .
What to Read in This Book

CMVC Overview
Issues of Project Management
Subsystems
Version Control .
Configurations and Releases
Interfaces among Subsystems
Program Execution -
Parallel Development thhln Subsystems
Single-Library Applications and Documentation
Project Reporting . :
Higher-Level Application Components
Multihost, Multisite Development

Getting Started
The Sample Program
Creating a Subsystem

Internal Structure of a Subsystem e
Workmg Views . ' b
Predefined Library Charactenstlcs

Setting Up the Units Directory

Controlling Objects Using CMVC.. .
Special Note: Controlling Blna,ry) Objects o

Editing Controlled Objects ~. “.. . . .*.°~

RAHONAL | o/1/e

QIO A AW o=

. 10
.12
.13
.15
. 15
. 16
. 16

17
17
.20

.20

L .21

. 22

.23
. 25
. 25
. 26

PM-iii

Y

Generations and Versions
Canceling a Checkout
Reverting to a Previous Generatlon

. Collecting and Displaying Information a.bout Generatlons' .
" Compiling Units in a Subsystem '

i Releasmg Configurations... . . 7. . . .ot sl

Released Views - :+ . . . 000 Lo L

Configuration Releases
Representation of Releases .
Development Paths

Release Names .
Release Level Numbers

Library Management Operations for Controlled Objects

Deleting Objects
Withdrawing Objects
Moving Objects
Repaming Ada Units .

Coordinating Development in a Subsystem .

Accessing Controlled Objects Concurrently

Creating a Subpath
Developing with Joined Objects

Checking Out a Joined Object

Keeping Joined Objects Updated .
Retrieving the Latest Generation at Checkout
Accepting Changes

Permitting Demotion

Preventing Automatic Updatmg L » o

Creating New Joined Objects

'Elements, Join Sets, and Reservatxon Tokens
Merging Changes)
Rejoining Severed ObJects

. Integrating Subpaths into a Single Relea.se

PM-iv

Setting Up Multiple Development Paths S L

CreatingaPath

Managing Views

Deleting Views o - C
Deleting a View and Allowmg Reconstructlon

. 26
.27
. 28
.29
.29
;.. 30
. 30
.31
. 32
. 33
. 34
. 34
. 35
. 35
. 35
. 35
. 36

.37
.37
. 38
. 39
. 40
. 41
. 41
. 42
. 42
. 42
. 43
. 44
.. 45
. 45
. 46
. 47
. 47
. 48
. 48
. 49

h s/f/ea BA\TlOl\lAL

Deleting a View Permanently

Deleting a Configuration Object _
Building a View from a Conﬁguratlon Oquct
Repairing Damaged Views .

Renaming Views {;

Developmg Applications Using Multiple Subsystems

Basic Compilation and Execution Setup

Kindsof Views= .‘“9".'%..:

Defining Exports &4
Overview of Steps :

What to Put in the State.Exports File . R
Using Pragma Private_EyesOnly' .. =/ . .07, v
Editing the State.Exports File '
Creating the Spec View

Spec-View Names and Level Numbers T T A
Controlled Units within Spec Vlews ek e
Compilation within Spec Vlews Care e e

Defining Imports)
Steps for Defining Imports
Displaying a View’s Imports
Imports and Links
Removing Imports

Using Activities for Execution
Overview of Steps .
Creating an Empty. Activity
Adding Activity Entries .
Setting the Default Activity .
The Execution Process .

Completing the Compilation and Executlon Setup T

Imposing Further Import and Export Controls i
Overview of Steps e
Creating Export Restrxctlon Flles o X
Name Resolution in the Export Restnctlon Fxle
Export and Import Restriction Files
Creating Import Restriction Files-
Import Restriction Filenames . . .-

PR IR A

h_BéTI QNAt ‘ 8/1 ! 88

. 49
. 49
. 50

... .50
ROl SR 50

i 51
. 51
. 82
. 54
. 55

Locating the State.Exports Flle R O R ST

. 56
. 87
. 58
. 58
. 59

. 61

. 61
. 62
. 63
. 63
. 64
. 64
. 65
. 65
. 66

.66
.. . 6T
. 68

. 69

. 69

T .70

70

72

.72
.72
.73

PM-v

What to Put in Import-Restriction Files . . . 2.7 Freo. vlT4
Summary of Import and Export Restriction Setup R N (-
When the Cmvc.Import.Comwand Is' Entered Y ()
More on Importing " R (N (

Consistency i3, Mdwil ko . v FerEslo LY. T8
Circularity . . . L aEEL L AL L9

Using.General-Purpose Actxvxtles e O - (0
Modes for Creating Activity Entries . .-=- . .- .-, . . .82
Creating an Activity with Differential Entrles Tirooo oo L L 82
Preserving the Default Activity between Logms Co ... 83

Executing the Entire Application~ o0 ., . . . 84

Testing an Application >,85
Recombinant Testing0 .= . . . : .=z 85

Making Implementation Changes 86

Changing Nonexported Units . . . : . -

Changing Private Parts in Exported Umts [P -1
More on Compatibility .88
More on Closed Private Parts89

Making Design Changes . . . e 89

Making Upward-Compatible Changes o P - ¢
Effects of Demotion in a Spec View with Chents P ¢ 1§
~ Implications for Prior Releases Lo R *) |

Making Non-Upward- Compatlble Changes N
Method I09
Method II, ... 93

Relocation T e L o3
Coordinating Level Numbers in Spec and ReIeased Vlew Naﬁies PR ¢ :
Specifying Compatible Load Viéws in an Act1v1ty : S o4
Adding or Removing Unlts from Spec VLews Lo es
Replacing the Model in a Path S 96

~ Setting Up Subsystems A Second Look L 96
Planning . . R, .. .9
Setting Up Model Worlds PR - (
Creating Subsystems from the Bottom Up Lt o8
After Subsystems Are Created99

PM-vi 7 a/1/88 RATIONAL

- Developing Applications Using Multiple, Hosts

*~ Overview of Multiple-Host Development . [;.. . .-.
Setting Up Primary and Secondary Subsys_tems‘ Lo '
Copying Views among Hosts

Copying Views and Subsystem Identlﬁcatlon Numbers

Copying Releases and Code Views .
The Compatibility Database= .
Propagating Changes across Hosts ; L

Method I: Propagating Incremental Changes

Method II: Propagating Changed Umts or Vxews
Moving a Primary to Another Host
More on the CDB :

More about Copying between Subsystems

Using CDFs with Subsystems . R
Overview of Cross-Development in Subsystems i
Target Keys oo -

Differences and Restrictions
Kinds of Views in Target Paths
Closed Private Parts
Code Views .
Execution and Actlvmes
Setting Up Subsystems for Cross- Development
Using Combined Views .
When to Use Combined Vxews
Defining Exports Using Export Restrlctxons
Importmg -among Target Views
Consequences of Using Comblned Vlews
Consequences for Compllatxon -
Consequences for Execution
Methods for Using Combined Views
Method I: For Smaller Applications
Method II: For Larger Applications

0

Method III: For Development on Multlple Hosts

RATIONAL 43/

a sft P RN &
AP W 5
s

101
101
103
103
104
104
105
105
106
107
108
108
109

111
111
113
113
113
113
114
114
115
116
116
116
117
118
118
118
118
119
121
124

PM-vii

Naming
©-Special Names27
:; Special Values 128
: Error Reactions 128
- Parameter Placeholders 128
“Wildeards L. 129
Wildcard # o ... L. 129
Wildcardeo 0oL 129
Wildcard 7 o o000 0oL oL 129
Wildeard 77 L L L L a0 129
Substitution Characters 130
Substitution Character# 130
Substitution Charactere 130
Substitution Character? . . .- 130
Special Charactersin Names 131
Special Character! 131
Special Character=~ 131
Special Character$... 131
Special Character $¢ . 132
Special Character—- o 132
Special Character. .. 132
Special Character\ 132
Special Character = 132
Special Characters [} .. 133
Special Characters {} 133
Indlrect Files 133

Reference Entries

package Activity 135
Editing Activities . . Coe135
Commands from Package 'Commands Common S 135

subtype Activity_-Name- 139
procedure Add 140
procedure Change ¢ .-, o . . . 0 142
procedure Create 144
type Creation-Mode 146
procedure Current o oL L. 147
procedure Display . . .- -.. 148

PM-viii s PATIONAL

procedure Edit

procedure Enclosmg_Subsystem
procedure Enclosing..View
procedure Insert

procedure Merge

function Nil

procedure Remove

procedure Set

procedure Set_Default

procedure Set_Load_View
procedure Set_Spec_View

subtype Subsystem_Name

function The_Current_Activity .
function The_Enclosing_Subsystem
function The_Enclosing_View
subtype Unit_Name

subtype View_Name : .
subtype View_ Or_Act1v1ty_Name
subtype View_Simple_Name
procedure Visit

procedure Write

end Activity
package Check

procedure Activity

type Status .

procedure Ufnts T
procedure Views ‘

end Check

package Cmve

Commands Grouped by TOplC C e

System Object and View Types
Managing CMVC Information Interactlvely
Configuration Images . o
Levels of Information in Conﬁguratlon Ima.ges
Operations in Configuration Images :
Restricting Operations in Configuration Images

lQATtONAL 8]1]/88

179

177
178

180
182

185
186
187
188
189
189
192
192

PM-ix

Alternative Ways of Displaying a Configuration Image
Generation Images)

Accessing Generation Images . .

Accessing Next and Previous Generation Images

Displaying the Differences between Consecutive Generations

History Images
Accessing History Images
Displaying History from Other Generatlons
Managing Notes through History Images
Traversing between Library and CMVC Images
Session Switches . X C
Commands from Package 'Commands Common .
Commands from Package Common in Configuration Images
Commands from Package Common in Generation Images
Commands from Package Common in History Tmages
procedure Abandor-Reservation
procedure Accept_Changes
procedure Append_Notes
procedure Build
procedure Check_In
procedure Check_Out
procedure Copy . .
procedure Create_Empty_Note_Wmdow
procedure Def o
procedure Destroy_Subsystem
procedure Destroy_System
procedure Destroy_View
procedure Edit
procedure Get_Notes
procedure Import
function Imported_Views
procedure Information
procedure Initial
procedure Join
procedure Make_Code_Vlew
procedure Make_Controlled
procedure Make_Path .
procedure Make_Spec_View

192
193
193
193
193
194
195
195
196
196
196
196
196
200
200
202
205
210
212
216
218
222
232
234
236
237
238
241
244
246
251
253
256
260
262
264
268
275

PM—x é/l/ss RAT'O'\IAL

procedure Make_Subpath 0 .00 .. 280
procedure Make_Uncontrolled I S v . 285
procedure Merge_Changes C TR 28T
procedure Notes ' B R . . 200
procedure Put_Notes ‘ ol 202
procedure Release 7. . Y U1 204
procedure Remove_Import "0 0. . 209
procedure Remove_Unused_Imports™ < | . . 301
procedure Replace_Model . . S 308
procedure Revert70 ek .. 305
procedure Sever° 308
procedure Show . . . 2 (0
procedure Show_ All_Checked_Out o812
procedure Show_ All_Controlled 313
procedure Show_All_Uncontrolled 314
procedure Show_Checked_Out_ By._User T 3 &1
procedure Show.Checked_Out_In_View 316
procedure Show_History . . - 3 ¥
procedure Show_History_By_ Generatlon - 5 [
procedure Show_Image_Of_Generation 321
procedure Show_Out_Of_Date_Objects 323
type System_Object_Enum 324

R .

end Cmve

package Cmvc-Hierarchy 325
Setting Up Systems b ... 326
Setting UpPaths, 32
Releasing System Views O V1 {

procedure Add-Child 328
procedure Build_Activity 329
function Children 332
function Contents . 333
procedure Expand.-Activity 334
function Parents 335
procedure Remove_Chid 336

end Cmvc-Hierarchy

RATIONAL s PMoi

‘package Cmvc-Maintenance 339

Commands Grouped by Topic 339
procedure Check_Consistgncy . . S - 7 14
procedure Convert_Old_Subsystem 342
procedure Delete_Unreferenced_Leading_Generations . = . . . 343
procedure Destroy_.Cdb 344
procedure Display Cdb 346
procedure Display_Code_View 348
procedure Expunge_Database 350
procedure Make_Primary 351
procedure Make_Secondary 354
procedure Repair.Cdb 35
procedure Update_.Cdb 358

end Cmvc-Maintenance

package Work-Order 361
Session Switches 0000 362
Cmvc-Break_Long_Lines (default true) 362
Cmvc_Capitalize (default true) 362
Cmvc_Comment_Extent (default4) 362
Cmvc_Configuration_Extent (defaulto) 362
Cmvc_Field_Extent (default 4) 362
Cmvc_Indentation (default 2) 362
Cmvc_Line_Length (default 80) 362
Cmvc_Shorten_Name (default true) 362
Cmvc_Shorten.Unit_State (default false) 363
Cmvc_Show_Add_Date (default true) 363
Cmvc_Show_Add_Time (default true) 363
Cmvc_Show_All_Default_Lists (default false) 363
Zmvc_Show_All_Default_Orders (default false) = . . . 363
Cmvc_Show_Deleted_Objects (default false) 363
Cmvc_Show_Deleted_Versions (default false) = . 363
Cmvc.Show.Display_Position (default false) 363
Cmvc_Show_Edit_Info (default false) 363
Cmvc_Show_Field_Default (default true) 363
Cmvc_Show_Field_Max_Index (default false) 363
Cmvc_Show_Field_Type (default false) 363
Cmvc_Show_Frozen (default false) 364

PM-—xii o1/ PATiONAL

Cmvc_Show_Hidden_Fields (default false) .

Cmvc_Show_Retention (default false) . .5 ‘.‘,‘:.

Cmvc_Show_Boolean (default false)
Cmvc_Show_Unit_State (default "frt”te)
Cmvc_Show_Users (default false) . ey
Cmvc_Show_Version-Number (default fa.lse),
Cmvc_Uppercase (default false) :
Cmvc_Version_Extent (default 0)
Default_Venture .
procedure Add- To_Llst
procedure Close
procedure Create
procedure Create_Field
procedure Create_List
procedure Create_Venture
function Default
function Default_List
function Default.Venture
procedure Delete_Field
procedure Display
procedure Display_List
procedure Display_Venture
procedure Edit
procedure Edit_List
procedure Edit_Venture
function Notes
function Notes_List .
function Notes_Venture
procedure Remove_From_List L
procedure Set_Default - . .
procedure Set_Default_List .-~ b
procedure Set_Default_Venture
procedure Set_Notes™ " .
procedure Set-Notes_List * °.
procedure Set_Notes_Venture
procedure Set_Venture..Policygl
type Venture-Polxcy-watch
package Editor

RATIONAL w1

.ot 364

364

364
364
364
364
364
364
364
365
366
367
369
371
372
373
375
377
379
380
381
382
383
384
385
386
387
388
389
390
392
394
395
396
397
398
400
403

PM-xiii

procedure Add—_Comment
procedure Add-Configuration
procedure Add_User
procedure Add_Version
procedure Set_Field
procedure Set_Field
procedure Set_Field
procedure Set_Notes

end Editor
package List_Editor

procedure Add
procedure Set_Notes

end List_Editor
package Venture_Editor

procedure Set_Default_Lis
procedure Set_Default_Order
procedure Set_Field_Info
procedure Set_Notes
procedure Set_Policy
procedure Spread_Fields

end Venture_Editor
end Work-Order

Index

PM—xiv

405
406
407
408
409
410
411
412

413
414
415

417
419
421
423
425
426
427

431

s RATIONAL

How to Use This Book

The Project Management (PM) book of the Rational Environment Reference Man-
ual contains reference information describing commands and tools provided by the
Rational Environment™ that are useful primarily for partitioning a project into
components, testing and releasing implemented components, tracking the history
of Ada-unit versions and configurations, and coordinating multiple developers and
multiple development efforts. This reference information is intended for users who
are familiar with the Environment and Ada programming.

Organization of the Reference Manual

The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary
Keymap
Master Index
Editing Images (EI)
Editing Specific Types (EST)
Debugging (DEB)
Session and Job Management (SIM)
Library Management (LM)
Text Input/Output (TIO)
Data and Device Input/Output (DIO)
String Tools (ST)
Programming Tools (PT
0 System Management Utilities (SMU)
1 Project Management (PM)

to

= O 00O U h W

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

IQAT'ONAI_ 8/1/88 PM-xv

Organization of the
Rational Environment Reference Manual

}: 11 volumes containing 14 books =l|
Volume 1: 3 books Volume 2: 2 books Volume 11: 1 book

Rational Environment

P
£ xing Spanite Trpes- ST

v Weragvrert

"

[e
1

RATIONAL i AATIONAL

; iy
i
| AATIONAL qu

ES
Rational Environment %Z—
o Reference ¥ Key concepts
Manual

Book index

o i Topical section
-g Unit section
=
]
:g - Book
) g -

A sample book

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User’s Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1

Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

¢ Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are
documented.

e Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

o Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11

Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

¢ Contents: The table of contents provides a complete list of all the units in the
book and their reference entries.

e Key Concepts section: Most of the books contain a section describing key
concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.String_Utilities is alphabetized under
String_Utilities.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section for a given unit, the reference entries describing the unit’s
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

R)ATIONAL 8/1/88 PM-xvii

» Explanatory/topical sections: Like the unit sections, explanatory/topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

¢ Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented ia all the books within the Reference Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions may help you in finding various kinds of information in
the documentation for Rational’s products.

Learning about Environment Facilities

If you are a novice user starting to use the Environment, consult the Rational
Environment User’s Guide.

If you are familiar with the Environment but are interested in learning about the
Environment’s library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

1f you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World ! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

PM-xviii 8/1/88 BA\—”ONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking—TCP/IP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index

The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions
raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure—for example, Definition ("!Commands.Library"};. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit—for example,
Definition ("\Library");.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the [Heipon Help] key
or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

» Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current bock is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply “procedure Move.” Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames.

¢ Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be “procedure
Compilation.Delete.”

RATIONAL 8/1/88 PM-xix

¢ Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be “El, procedure Editor.Region.Copy.”

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames—for example, “procedure !Commands.Library.Copy.” When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit’s specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

PM-xx 8/1/88 BA\TIONAL

Key Concepts

Introduction

Managing a complex software project involves:

Partitioning the project into components and designing the interfaces among
these components

Implementing these components

Testing and releasing implemented components

Tracking and reporting the history of versions and configurations of Ada units
Coordinating multiple developers and multiple development efforts

The Rational Environment provides support for project management through its
system of configuration management and version control (CMVC). Although project
management on the Environment typically refers to managing software systems and
applications written in Ada, CMVC resources also can support the development and
maintenance of documentation, application test beds, and the like.

This Project Management book of the Rational Environment Reference Manual
describes the Environment’s CMVC resources, which are defined in the following

packages:

Activity: Defines a set of operations for creating, editing, and using activstses.
Activities enable you to combine alternative implementations of project compo-
nents for test or execution.

Check: Defines a set of operations for checking whether a software component’s
implementation is compatible with its exported interface.

Cmvc: Defines a set of operations that support the following activities of project
management:

— Partitioning projects into components using subsystems and managing the
interfaces among these components

— Creating and releasing alternative implementations (views) of individual proj-
ect components

— Placing the objects within project components under source control to record
generations of change history and to coordinate the work of multiple devel-
opers

RAT'ONAL 8/1/88 PM-1

Introduction

¢ Cmvc_Hierarchy: Defines a set of operations for grouping multiple subsystems
into higher-level application components called systems. Inclusion in a system
provides an automated means of tracking the latest release from each subsystem
and performing system builds by creating activities that reference those releases.

¢ Cmvc_Maintenance: Defines a set of operations for checking and restoring the
integrity of the various databases associated with the CMVC system. This package
also provides operations for managing primary and secondary subsystems (copies
of subsystems that support development on multiple R1000s).

¢ Work_Order: Defines a set of operations for creating, editing, and using work
orders, work-order lists, and ventures. These objects enable you to define, assign,
and track the progress of project tasks and the objects they affect.

What to Read in This Book

CMVC resources are flexible and can be used to support many different kinds of
development conventions. Accordingly, what you should read in this book depends
on the development conventions in effect at your installation. At most installations,
the development process involves the following participants (whose roles may be
combined in various ways):

¢ Designers who determine the fundamental components and their interfaces within
the project

o Implementers (or teams of implementers) who write the source code and docu-
mentation for each component

o System integrators who build the finished product from its components

¢ Managers who coordinate parallel development efforts and track the project’s
progress

Within this Key Concepts section of this book, all project participants should read
at least “CMVC Overview” and “Getting Started.” These sections summarize the
features of CMVC and describe in detail how to develop a program within a single
subsystem (including how to put objects under CMVC control, reserve such objects
for modification, and create released configurations of specific object versions).

Teams of implementers assigned to single project components also should read “Co-
ordinating Development in a Subsystem,” which describes how to reserve shared
objects for exclusive use, how to propagate changes, and how to operate concur-
rently with shared objects.

Project managers should read “Coordinating Development in a Subsystem” to man-
age project teams working on shared objects. Resources for gathering project-level
information and for tracking progress are documented in package Work_Order.

Project designers and integrators should read “Developing Applications Using Mul-
tiple Subsystems.” This section summarizes design considerations for partitioning
projects into subsystems and describes how to set up subsystem interfaces and ex-
ecute a program composed of multiple subsystems.

PM-2 8/1/88 R)ATIONAI_

CMVC Overview

Projects such as software applications or documents typically consist of many com-
ponent objects. For example, an Ada application typically consists of a set of
interdependent Ada compilation units such as procedures and packages; similarly, a
document such as this book of the Rational Environment Reference Manual consists
of a set of text files, with one file per chapter or major section. As development
and maintenance proceed, individual objects change, new objects are created, and
existing objects are deleted. Thus, over time, the contents of the individual objects
and the overall configuration of objects changes.

The Rational Environment provides the following kinds of support for managing
such projects:

o Project partitioning: You can break a project into a manageable number of
higher-level components called subsystems, each containing a group of logically
related objects. For Ada programs, subsystems are units of decomposition similar
to, but larger than, the Ada package, which preserve on a larger scale the Ada
notion of separate specification and implementation.

e Version control: You can control and track changes to individual objects within
each subsystem and record what changes were made and why they were made.

¢ Configuration management: You can construct, release, and maintain multiple
consistent sets (or configurations) of versions within each subsystem. (Each al-
ternative configuration constitutes a view of the subsystem.) At a higher level,
configuration management refers to combining views from each subsystem in or-
der to create entire applications.

The Environment’s resources for project management are integrated into a set of
operations known as configuration management and version control (CMVC).

QATIONAL 8/1/88 PM-3

CMVC Overview

Issues of Project Management

Software projects that contain a large number of Ada units pose certain management
problems:

¢ It can be difficult to reason about the application’s overall design and to allocate
well-defined portions of the application to individual developers or teams.

¢ It can be difficult to keep track of dependencies among units and to prevent the
introduction of unwanted dependencies.

e Making changes can be time-consuming because the changes must be verified by
recompiling the changed units and all of their direct and indirect dependents.

¢ Recompilation dependencies make it difficult for individuals and teams to work
and test in parallel, because a change in one team’s portion of the application
may entail recompilation of another team’s portion.

o Preserving a consistent set of previous versions of units and coordinating access
to shared units can be time-consuming and error-prone.

Although using worlds or directories can make it easier to understand the high-level
structure of a large project, such use cannot solve the other problems of project
management listed above. Another more pcwerful kind of Environment library
structure, the subsystem, can be used instead to express and enforce an application’s
design and to make CMVC operations available.

Subsystems

Subsystems encapsulate a program’s compilation units in higher-level components,
just as Ada packages encapsulate related subprograms, type declarations, and the
like. Depending on its size, each subsystem can be assigned to an individual devel-
oper or to a team of developers.

Subsystems are more powerful than other libraries for the following reasons:

e Subsystems, like Ada packages, provide a means for defining and enforcing in-
terfaces among an application’s components. These interfaces provide explicit
control over dependencies among units in different subsystems.

e Subsystem interfaces impose explicit bounds on the recompilation required after
changes are made to the implementation. With reduced recompilation require-
ments, development teams can work and test in parallel.

» Subsystems provide a mechanism for developing alternative implementations of
an application’s components. Execution and testing of the entire application is
a matter of specifying the desired combination of precompiled implementations,
one from each subsystem within an application.

e CMVC operations are available within subsystems for tracking unit changes, co-
ordinating access to shared units, and propagating changes across shared units.

PM-4 8/1/88 E?AT'ONAL

CMVC Overview

Figure 2-1 represents an Ada application that has been encapsulated into subsys-
tems. The application’s compilation units are represented with both a specification
and a body (dark shading), and dependencies among units are represented by ar-
rows. The units are partitioned into three subsystems (lightly shaded areas), whose
interfaces are represented by heavy arrows.

Subsystem_1

Subsystem_2

Subsystem_3

Figure 2-1. An Application Partitioned into Three Subsystems

RAT'ONAL 8/1/88 PM-5

CMVC Overview

Version Control

When a component of an application is encapsulated in a subsystem, individual
objects in the component can be controlled—that is, made subject to version control.
Controlled objects must be checked out to be modified; checking out an object
reserves it for editing by acquiring the object’s reservation token. When desired,
the modified object can then be checked sn and made available for other users to

check out.

Every subsystem contains a CMVC database that records the changes made to each
controlled object. Each time an object is checked out and then checked in, a new
generation of the object is created in the CMVC database. Therefore, the CMVC
database records the contents of successive generations of each controlled object
within a subsystem, as indicated in Figure 2-2.

Objects Generations

[A] 1-2-3

c 1-2-3-4-5

CMVC Database

Figure 2-2. The CMVC Database

PM-6 8/1/88 BA\TIONAL

CMVC QOverview

Configurations and Releases

Ada units in subsystems reside in program libraries and therefore can be compiled
using the normal Environment mechanisms. Each subsystem contains at least one
working library in which units can be checked out, modified, checked in, compiled,
and tested.

At any given time, the working library contains exactly one generation of each
object, usually the latest (although an object can be reverted to any previous gen-
eration stored in the CMVC database). A combination of generations, one per con-
trolled object in the library, is called a configuration; Figure 2-3 represents the
configuration for a sample working library.

Working
library

Objects Generations

CMVC Database

Figure 2-3. A Configuration Contairing the Latest Object Generations

QAT'ONAL 8/1/88 PM-7

CMVC Overview

When a configuration of Ada units compiles satisfactorily in the working library,
a release of that configuration can be made. Each release is a frozen copy of the
working library and therefore is itself a full, compiled program library. Successive
releases can be thought of as “views,” where a view is a “snapshot” of the contents
of a library at successive points in time. Accordingly, the released libraries and
working libraries within a subsystem are called vtews (more specifically, released
views and working views). A series of releases created from a single working view is
called a development path, as shown in Figure 2-4.

Release 1

Release 2

Release 3

Working view

Path

Figure 2-4. A Development Path

PM-8 8/1/88 R)ATIONAL

CMVC Overview

As shown in Figure 2-5, the CMVC database records not only individual object
generations but also the configurations of generations embodied in each view. The
CMVC database therefore makes it possible to revert to previous configurations or
to reconstruct deleted views.

4 ~]

c

3

Release 1

Ca

) Release 2

Release 3

Working view

Objects Generatiofs

A 1 -
B 1 -
c 1 - -5

Configurations
morking ”Release SH&Iease 2J[Release 1] CMVC Database

Figure 2-5. Configurations in a Development Path

It is important to bear in mind that each view is both:
¢ A source configuration, in that it specifies a particular generation for each object
in the subsystem

o A program library, in that it enforces Ada semantic consistency among the spec-
ified generations

Thus, unlike other configuration-management facilities you may have used, CMVC
operations integrate configuration management with library compilation manage-
ment.

IQATIONAL 8/1/88 PM-9

CMVC Overview

Subsystem_2

f

with A
p
Import /
: Client view
j Subsystem_1
i y_

A j Spec view
-

| =

[4] f

;

6] [c] ,/ ;
Load views |

Figure 2-6. A Client View Importing a Spec View

Interfaces among Subsystems

Interfaces can be defined between subsystems using different kinds of views. The
working and released views described above are load views; each load view contains
a full implementation of the application component that is encapsulated in the
subsystem.

A second kind of view, called a spec view, can be created to define the set of
implemented units that are potentially available, or visible, to units in views of
other subsystems. Spec views thus define a subsystem’s ezports; as such, spec views
can be tmported by client views in other subsystems. When a client view from one
subsystem imports a spec view from another, dependencies can be set up among
units from the two subsystems. Subsystem imports and exports thus enforce design
decisions, because Ada context clauses (with and use statements) can reference
nonlocal units only from imported spec views.

For example, Figure 2-6 shows that Subsystem_1 has load views implementing
three units. In addition, a spec view has been created in Subsystem_1 in order to
export one of those units. A client view in Subsystem_2 imports the spec view in
Subsystem_1. As a result, units in the client view can with or use the exported
unit.

PM-10 8/1/88 R)ATIONAL

CMVC Overview

Subsystem interfaces are analogous to Ada package interfaces:

¢ A spec view is analogous to an Ada package specification, which defines the re-
sources that are available to client units.

e A load view is analogous to an Ada package body, which implements the resources
promised by the specification. (However, only one Ada package body implements
a package specification, whereas more than one load view can implement a given
spec view.)

e At the subsystem level, the import relation is analogous to a with clause; import-
ing enables a unit in a client view to actually with or use exported resources.

Because only spec views can be imported, client views compile against spec views,
not load views. Therefore units in a working load view can be changed without
requiring recompilation of any other views, provided that the working view remains
compatible with the spec view that defines its exports. By definition, a load view is
compatible with a spec view if it implements all of the resources made available by
the spec view.

This definition of compatibility is broad enough to allow a load view to differ in
certain specific ways from the spec view that represents it. For example, changes
to the private part of an exported unit are one important kind of change that
preserves compatibility. If a private type is changed in the load view, no change or
recompilation is required of the spec view or any of its client views. In this way,
subsystem interfaces make closed private parts possible.

By buffering recompilation for many kinds of changes, subsystem interfaces enable
subsystems to be developed in parallel—a team of developers can change and test
the implementation in its own subsystem without necessarily causing recompilation
elsewhere. (However, design changes do not preserve compatibility and therefore
require modification of both the spec and the load views; a changed spec view can
affect client views in other subsystems.)

'QATIONAL 8/1/88 PM-11

CMVC Overview

Program Execution

A subsystem typically contains at least one spec view, against which client views
are compiled, and at least one load view, which contains the units that are actually
executed. As releases are made from the working load view, a single subsystem
typically accumulates multiple load views, each implementing the interfaces and
capabilities specified in a given spec view.

To execute an application composed of such subsystems, an execution table called
an activity must be set up to specify which of the alternative load views is to be
used from each subsystem. The activity contains one entry for each subsystem that
is required for execution. Activities thus specify combinations of load views for

execution.

Figure 2-7 represents an activity used for executing a program containing two sub-
systems. In this program, each view in Subsystem_1 imports, and is compiled
against, the spec view in Subsystem_2. The activity specifies that the shaded re-
leases will be used during execution.

, Subsystem_1

|
i Spec
f view

Release 1
Release 2
Reiease 3

Activity
Subsystem Load view

Subsystem_1 Release 3
: Subsystem_2 ///

-

Release 1
Release 2
Release 3
Release 4

|
1
1
Subsystem_2 Release 1 |
|

[

Figure 2-7. An Activity Used for Executing Two Subsystems

PM-12 8/1/88 RATIONAL

CMVC Overview

Activities provide a flexible means of constructing applications from a set of al-
ternative subsystem implementations. A number of activities can be created; for
example, one activity can specify all of the latest releases, and other activities can
specify customer-specific releases and the like. Recombinant testing is a matter of
editing an activity to specify precompiled views rather than recompiling an entire
application from scratch.

By choosing appropriate views from each subsystem, you can construct system
tests that include only one changed view. This will isolate the effects of specific
changes for testing purposes. For example, to test a new implementation of a
particular subsystem, an activity typically specifies the working view from that
subsystem, along with stable, tested released views from the other subsystems in the
application. The availability of both released and working views enables subsystem
development and testing to proceed in parallel, because each team can continue to
work in its own working view while other teams are testing against stable, frozen
releases that have known characteristics.

Parallel Development within Subsystems

Parallel development is possible within subsystems as well as between them. When
a team is assigned to implement a subsystem, a separate subpath can be created for
each individual on the team. Subpaths are working views in which changes can be
made and tested; they are created as full copies from the path’s working view, as
indicated in Figure 2-8.

Spec view
A

Working

Alex_Working

Sue_Working

Figure 2-8. Subpaths Created from a Main Path

R)A_HONAL 8/1/88 PM-13

CMVC Overview

Editing can proceed without conflict because controlled objects are jotned across
subpaths. Each joined object shares a single reservation token with the correspond-
ing object in the other subpaths; a given joined object can be checked out in only one
subpath at a time. In this way, a single set of generations is maintained for multiple
copies of an object. Figure 2-9 shows two subpaths containing joined objects.

| Alex_Working Sue_Working
| 4) 4)
i
1
Reservation
A’ Spec t°r" A' Spec
j T T——" T |
A’ Bod!i" — A Bod
‘ Checked L___Y_
out to
Alex_Working
- J - /

Figure 2-9. Objects Joined across Two Subpaths

A subpath can become out of date when objects are checked out and modified
in other subpaths. Objects in a subpath can be brought up to date by accepting
changes, usually from the latest generation into that subpath.

Implementers working in two subpaths can access an object concurrently if it is
severed. Severing provides each copy of the object with its own reservation token,
so that each copy can be checked out independently. Separate sets of generations
are kept for severed objects. The contents of severed objects can be synchronized
later by merging changes from one object to the other.

In addition to supporting parallel development among multiple developers, subsys-
tems support the parallel development of different product variants (for example,
variants of the same application that are to execute on different target processors).
Separate development efforts within a single subsystem are maintained in multiple
development paths. Thus, two development paths can be used to develop an ap-
plication for execution on an R1000 and on an MC68020 microprocessor. Similarly,

PM-14 8/1/88 BA\TIONAI_

CMVC Overview

maintenance of a previously delivered application can continue in one path while
development of the next customer release proceeds along another path. Note that
units shared by product variants can be joined across paths, whereas units specific
to a particular variant can be severed.

Single-Library Applications and Documentation

Because subsystems are the context in which CMVC operates, they are useful even
for developing documentation and applications that can be contained in a single
library:

e Objects developed in a subsystem can be placed under CMVC control to save
history information for objects that are checked out and checked in.

e Notes and comments about each object can be recorded (see “Project Reporting,”
below).

o Releases can capture configurations at important points during development.

e For single-library Ada applications, spec views and activities can be used to
execute alternative implementations.

Project Reporting

Information about a CMVC-based project can be gathered in several ways. Each
generation of every controlled object has notes associated with it, which can be
used as a scratchpad for arbitrary commentary. In addition, the date, time, and
comments from checkout and checkin commands are automatically logged in an
object’s notes. A scratchpad for notes is also associated with each release.

For more comprehensive project reporting, work orders can be used to define and
assign units of development work, often referred to as development tasks. When
development proceeds in response to a given work order, time-stamped comments
are logged to the work order whenever any command from package Cmvc is exe-
cuted. In addition, information characterizing individual tasks can be entered in
user-defined fields on each work order. Work orders can be queried to find out their
current status, who has done work against them, what units were affected, and the
like.

Work orders can be grouped for easy reference using work-order lists. For example,
a work-order list can reference all work orders assigned to a given developer or all
work orders that have been closed.

All the work orders for a given class of tasks are created from a single template
called a venture. Ventures are the place where user-defined work-order fields are
created; ventures also specify policies that govern the work done in response to their
work orders. For example, a policy can prevent a CMVC command from executing
unless the parameter for comments is filled in.

RATIONAL 8/1/88 PM-15

CMVC Overview

Higher-Level Application Components

When an application consists of multiple subsystems, these subsystems optionally
can be included in an Environment object called a system. Inclusion in a system is a
way of identifying particular subsystems as components of a given application or of
a major portion of an application. Inclusion in a system also provides an automated
means of tracking the latest release from each subsystem and performing system
builds by creating activities that reference those releases.

Subsystems that are included in a system are called children of the system. After
a system’s children are established, a release activity can be built in the system.
A release activity automatically contains an entry for each child subsystem that
specifies the latest release from that subsystem. When new releases are made in
the child subsystems, the release activity can be rebuilt so that it references these
new releases.

Release activities can be used to track current releases; they also can be used during
execution of the application. Frozen versions of release activities can be maintained
as releases within the system.

Multihost, Multisite Development

When an application is partitioned into subsystems, it can be developed on multiple
R1000s, either at the same or at different geographic sites. Development on multiple
hosts accommodates very large applications and is especially useful when program
components are assigned to subcontractors.

When multiple R1000s are used, each one hosts a copy of every subsystem in the ap-
plication. However, only one copy of a given subsystem, called the primary subsys-
tem, supports ongoing development. The other copies, called secondary subsystems,
essentially are local copies for execution and test.

Typically, each R1000 hosts a primary subsystem and some number of secondary
subsystems. When a new release is made in a primary subsystem, that release can
be copied via network or tape into the corresponding secondary subsystems on each
of the other R1000s. On each R1000, the copied release then can be compiled with
releases from the other subsystems and the application can be executed.

Note that instead of copying the source for a load view, a code view can be made
on a primary subsystem and then copied into a secondary subsystem A code view
contains only the executable code from the compiled load view. This no-source
view is especially useful when security requirements restrict visibility to portions of
source code.

PM-16 8/1/88 BA\-”ONAL

Getting Started

This chapter covers the fundamentals of developing a single subsystem, specifically:

¢ Creating and traversing a subsystem
o Using configuration management and version control (CMVC) within a subsystem

These operations apply to any given subsystem, whether or not it is part of a larger,
multisubsystem program. This chapter focuses on creating one of three subsystems
in a sample program.

The Sample Program

Assume that a team of developers is implementing a basic mail program that will
enable users to:

¢ Send and receive messages
o Store messages in a mailbox
o Display and delete messages from the mailbox

Eight unit specifications have been defined, with the dependencies shown in Figure
3-1. At the highest level, the program has a main procedure called Run_Mail, which
makes a series of commands available for manipulating mail messages. Run_Mail
depends on Command-_Utilities, which provides the interface for entering mail com-
mands.

The basic object in the mail system is the message, which is defined in package
Messages. Messages consist of lines (defined in package Lines) and have addresses
to which they are sent (defined in package Destinations). Objects such as lines and
destinations are strings of unknown length; resources for handling such strings are
provided in package Unbounded. Package Symbolic_Display handles the display of
messages. Finally, messages are stored in mailboxes, which are defined in package
Mailbox.

EAT'ONAL 8/1/88 PM-17

Getting Started

Run_Mail

/ Command_Utilities
Mailboxes \r_‘

Symbolic_Display

\

Messages | Lines

L ;

Destinations

Unbounded

Figure 3-1. Units in the Mail Program

The project designer has decided to use three subsystems to partition the program’s
units into logical groupings. These subsystems are:

e Command-Interpreter, which contains units implementing the mail system’s user
interface
e Mailbox, which contains units implementing mailboxes for storing messages

o Mail_Utilities, which contains units implementing the mail system’s basic ele-
ments

PM-18 8/1/88 BA\TIONAL

Getting Started

Figure 3-2 represents the proposed partitioning of the mail program. Dependencies
are indicated at the subsystem level by heavy arrows. Note that the Mail_Utilities
subsystem does not depend on either of the other subsystems in the program (that is,
no units in the Mail_Utilities subsystem depend on units from other subsystems).
In this sense, the Mail_Utilities is the bottom layer of the program and will be
developed first.

Command_Interpreter
' R

Run_Mall

w & Command_Utilities
Mailbox \. [1 NN

¥ / \ \ Mail_utilities

Mailboxes ("~ [' B
Symbolic_Display

Messages P Lines
™~
I

Destinations

Unbounded J

Figure 3-2. The Mail Program Partitioned into Subsystems

R)ATIONAL 8/1/88 PM-19

Getting Started

Creating a Subsystem

The subsystems of a program such as the mail system typically are created within
a single project library. A project library is a world that eventually may contain
not only subsystems, but also libraries for documentation, an optional main driver
for the program, and any activities used for executing the entire program.

In this example, assume that a project library called !Programs.Mail exists and that
you are responsible for creating the Mail_Utilities subsystem in it.
To create a subsystem:

1. In a Command window, enter the Cmvc.Initial command with the name of the
subsystem you want to create. For example:

Cmvc.Initial (System_Object => "Mail_Utilities"};

Assuming that the command was entered in the context !Programs.Mail, the sub-
system !Programs.Mail.Mail_Utilities is created.

For most purposes, it is sufficient to specify only the System.Object parameter and
to use the default values for the remaining parameters.

Internal Structure of a Subsystem

Subsystems are created containing various libraries, which in turn contain directo-
ries, files, and other objects. Although much of this predefined internal structure
is for the Environment’s use, there are several libraries and files that users need to
know about.

Figure 3-3 shows the Mail_Utilities subsystem.

| Pr .
Configurations Library (Directory);

Revl_Working : Library (Load.View},
State : Library (Directory);

(A ED A AL . ¥

Figure 3-3. The Mail_Utilities Subsystem

PM-20 8/1/88 BA\T|ONAL

Getting Started

As shown in Figure 3-3, the newly created subsystem contains three libraries:

e A directory called Configurations, which contains summary information about
each view in the subsystem (see “Representation of Releases,” later in this chap-

ter)

e A program library called Revl_Working, in which your ongoing work takes place
(see “Working Views,” below)

o A directory called State, which contains information about the underlying objects
in the subsystem

Within a subsystem, users can create other directories for tests or documentation,
as desired. (However, worlds must not be created within subsystems.)

Working Views

Every subsystem is automatically created containing a working view. A working
view is the program library in which the subsystem’s Ada units actually are devel-
oped. Although frozen “snapshots” of your work (called releases) can be made from
a working view, the working view itself is never frozen, so it is always available for
further development.

By convention, the working view’s name ends with the string “-Working”. The first
portion of the working view’s name is specified by the Working_View_Base_Name
parameter of the Cmvc.Initial command. Because the example used the default
value (“Rev1”) for this parameter, the name of the subsystem’s working view is
Rev1_Working.

Views such as Mail_Utilities.Revl_Working are created with predefined internal
structure. As shown in Figure 3-4, Mail-Utilities.Revl_Working contains four di-
rectories.

! M
Exports Library (Directory);
Imports Library (Directory);
State Library (Directory);
Units : Library (Directory);
[~merrrrenl i 7 bbbt ‘ot e ey

Figure 3-4. The Working View Mail_Utilities.Revl_Working

As in subsystems, views can contain additional user-created directories (not worlds).

R)ATIONAL 8/1/88 PM-21

Getting Started

A view’s four predefined directories are:

» Exports, in which users can create ezport restriction files (see the chapter entitled
“Developing Applications Using Multiple Subsystems”)

o Imports, in which users can create smport restriction files (see the chapter entitled
“Developing Applications Using Multiple Subsystems™)

¢ State, which contains files and other objects that provide information about this
view to various CMVC commands

¢ Units, in which the subsystem’s Ada units will be created and edited (note that
other user-defined objects, such as text files, also can be kept in the Units direc-

tory)

Of these directories, it is the Units directory in which you will do your day-to-
day work. The other directories are described in the chapter entitled “Developing
Applications Using Multiple Subsystems.”

Note that subsystems and views both contain directories called State. In the course
of developing a program, you may need to edit or view one or more of the files in the
view’s State directory; however, you normally will not need to visit the subsystem’s

State directory.

Predefined Library Characteristics

By default, the working view within a subsystem is created with certain predefined
library characteristics such as library switches, target keys, links to Environment
commands and tools, and additional user-defined subdirectories. These library char-
acteristics are copied from a model world, which is specified by the Model parameter
in the Cmvc.Initial command.

The links provided by a view’s model world determine the Environment resources
that are visible to the units in that view. Note that a model controls visibility only
to units that are not defined in other subsystems. Units defined in other subsystems
are made visible through tmports.

The Environment provides several standard model worlds that provide different sets
of links:

¢ 'Model.R1000 provides links to most common Environment commands and tools—
for example, packages !Tools.String_Utilities, 'Tools. Time_Utilities, and the like.
Model.R1000 is the default model world specified by the Cmvc.Initial command
and was used in creating Mail_Utilities in the sample program.

¢ 'Model.R1000_Portable provides links only for Ada-specified standard facilities—
for example, packages Calendar, Text_lo, Unchecked_Conversion, and the like.
As its name implies, !Model.R1000_Portable ensures a program’s portability.

e 'Model.R1000_Implementation provides links for system programming facilities
and for many programmatic interfaces to the Environment.

PM-22 8/1/88 RAT'ONAL

Getting Started

When creating a subsystem, you can choose among the standard model worlds or
you can specify a user-defined model world, which can be any existing Environment
world with the desired links, switches, and the like. A view’s model world can
be replaced using the Cmvc.Replace_Model command. For more information on
models, see “Setting Up Subsystems: A Second Look,” in the chapter entitled
“Developing Applications Using Multiple Subsystems.”

Setting Up the Units Directory

After a subsystem has been created, you can prepare the Units directory in either
of the following two ways:

e Create Ada units and files directly in the Units directory of the subsystem’s
working view

e Copy Ada units and files from other Environment libraries into the Units directory

In the Mail_Utilities example, assume that the specifications for packages Un-
bounded, Messages, and Lines already exist in another Environment library. In
this case, you can use the Library.Copy command to put these objects into the
Units directory of Revl_Working in the Mail_Utilities subsystem. The bodies for
these packages, as well as the specifications and bodies for Symbolic_Display and
Destinations, can be created in the Units directory. Figure 3-5 shows the Units
directory after units have been created and copied.

Ada (Pack._Spec);

Destinations : S

Destinations . § Ada (Pack_Body);
Lines : S Ada (Pack.Spec),;
Lines . S Ada (Pack_Body).
Messages : 8§ Ada (Pack.Spec);
Messages . § Ada (Pack.Body);
Symbolic_Display : S Ada {Pack_Spec);
Symbolic_Display : S Ada (Pack._Body);
Unbounded . § Ada (Pack._Spec) ;
Unbounded . S Ada (Pack_Body);

£ REV1I_WORKING .UNITS. i-l1ibrary s - DENCELOMYs

Figure 3-5. The Units Directory in Mail_Utilities.Revl_Working

RAT'ONAL 8/1/88 PM-23

Getting Started

Figure 3-6 represents the internal structure of the Mail_Utilities subsystem.

Mail_Utilities

[l

Configurations Revi_Working State

|
Exports Imports State Units

Destinations Lines Messages ...

Figure 3-6. The Structure of the Mail_Utilities Subsystem

If you need to accommodate a large number of units, you can organize these units
in the following ways. You can:

o Subdivide the Units directory by creating other directories within it
¢ Create additional directories in the view, at the same level as the Units directory

Note that directories, not worlds, should be created. Furthermore, such user-defined
directory structure can be created automatically by predefining it in the model
world; see “Setting Up Subsystems: A Second Look,” in the chapter entitled “De-
veloping Applications Using Multiple Subsystems.”

PM-24 8/1/88 RATIONAL

Getting Started

Controlling Objects Using CMVC

Objects in a working view can be put under CMVC to track change history. When an
object is made controlled using CMVC, that object is registered in the CMVC database
for the enclosing subsystem. (Each subsystem has its own CMVC database.) All
changes made to a controlled object are recorded in the CMVC database to permit
the reconstruction of earlier versions of the object, if needed.

Controlled objects must be reserved, or checked out, before they can be modified.
Checking out an object instructs the CMVC database that a new generation of the
object is to be created. The CMVC database associates a reservation token with each
object; these tokens are used by the CMVC database to keep track of checked-out

objects.

Any file, Ada unit, or subunit in a working view can be made controlled, including
objects in user-defined directories. (Note, however, that objects in the view’s State
directory cannot be made controlled, because the Environment must be able to

access these objects freely.)

You can make an object controlled at any time during its development; change
history is recorded from that point on. The earlier in its development that you
make an object controlled, the more change history will be recorded for that object.
Note that you should make an Ada unit controlled only after its Ada name (for
example, Destinations) appears in the Units directory listing. Do not make a new
Ada unit controlled while it has a temporary name (for example, “_Ada_8_").

To make one or more objects controlled:

1. In a Command window, enter the Make_Controlled command with the names
of the objects to be controlled. You can use a naming expression to specify
multiple objects.

For example, assume that you are viewing the Units directory of Mail_Utilities-
.Revl_Working. Entering the following command from this context controls all
the units in the Units directory:

Cmvc.Make_Controlled (What_Object => "@"};

Note that objects cannot be created controlled; they must be made controlled ex-
plicitly. It is not necessary to make every object in a view controlled.

Special Note: Controlling Binary Objects

By default, controlled objects are represented textually in the CMVC database;
changes to such objects are recorded as changed lines of text. This is appropriate for
objects such as Ada units and text files. However, such recording is not appropriate
for binary objects, which may not have an ASCII representation. Therefore, when
making binary objects controlled, you must request that the CMVC database not
“save source” for these objects. To do this, enter the value false for the Save_Source
parameter of the Cmvc.Make_Controlled command.

RATIONAL 4/1/es PM-25

Getting Started

Objects for which source is not saved still must be checked out before they can be
modified; however, earlier generations cannot be reconstructed for them. Through-
out this and subsequent chapters, it is assumed that all objects have source saved

for them.

Editing Controlled Objects

Before you can edit a controlled object, you must check it out using the Cmvec-
.Check_Out command. For example, assume that you want to edit Messages’Body.
To do so:

1. Select the desired unit or put the cursor in its image.

2. Enter the Cmvc.Check_Out command, optionally filling in the Comments pa-
" rameter (see “Collecting and Displaying Information about Generations,” be-
low).

3. Display the unit and open it for editing with the Common.Edit command.

You can check out multiple objects by using a naming expression with the Cmvc-
.Check-Out command.

Note that Cmvc.Check_Out checks out a unit to a view, not to a particular user.
Consequently, if a unit in Mail_Utilities.Revl_Working.Units is checked out, anyone
with access to Mail_Utilities.Revl_Working can modify the object.

When you have finished modifying the object and you want the changes you made
to be recorded in the CMVC database, you must check in the object. For example,
to check in a displayed object:

1. Select the unit you want to check in or put the cursor in its image.

2. Enter the Cmvc.Check_In command, optionally filling in the Comments param-
eter (see “Collecting and Displaying Information about Generations,” below).

If the object was open for editing, the Cmvc.Check_In command closes it.

You can use a naming expression with the Cmvc.Check_In command to check in
multiple objects.

Generations and Versions

Each time you check out an object, a new generation of that object is created in the
CMVC database. Editing changes are collected in the new generation and saved in
the CMVC database only when you check in the object. Thus generations capture
the changes made from checkout to checkout.

Each generation of an object is numbered, starting with generation 1. Generation
1 is created when you make an object controlled; initially generation 1 contains
the text of the object at the time it was made controlled. Over time, the CMVC
database builds up a series of numbered generations for each controlled object.

PM-26 8/1/88 BA\TIONAL

Getting Started

A generation differs from a version, which is created each time you use Common.Edit
to open a unit for editing. Because you can open and close a unit for editing multiple
times while it is checked out, a given generation can include the changes made in
multiple versions. (The same is true for text files, except that new versions of text
files are created whenever you use Common.Commit.) The relationship between
versions and generations is shown in Figure 3-7.

cMve j
' generation 1 2 |
| i

Check out Check in Check out Check in
| Library E""I : | Y | |
| versions 1 2 3 4 > 5 6 7 ‘

Figure 3-7. Generations and Versions

Note that versions are saved in libraries, and the number of saved versions is limited
by the retention count for the library. In contrast, generations are saved in the
CMVC database, which saves every generation back to generation 1. (To save space,
successive generations are saved as changed lines of text from which full textual
images can be reconstructed.)

Canceling a Checkout

Although checking out an object reserves a new generation, the generation is saved
in the CMVC database only when the object is checked in. If you check out an
object and then decide that the new generation should not be saved, you can cancel
the checkout instead of checking the object back in. You can cancel a checkout by
abandoning your reservation on the object. Abandoning a reservation discards a
generation whether or not changes have been made during that generation.

RATIONAL 8/1/88 PM-27

Getting Started

For example, assume that checking out Destinations’Body creates generation 4 and
that you have made changes that you want to discard. As long as you have not
checked in Destinations’Body, you can cancel generation 4 and return the unit to
generation 3. To abandon your reservation on an object:

1. Designate the object whose reservation you want to abandon.
2. Enter the Cmvc.Abandon_Reservation command, using default parameters.

Reverting to a Previous Generation

You can go back to any previous generation of an object using the Cmvc.Revert
command. An object can be reverted on a temporary basis or it can be reverted so
that subsequent development can proceed from the older generation.

Reverting an object on a temporary basis means that you can look at a previous
generation, compile against it, and even make releases including it. However, if
you check out the reverted object, its latest generation is retrieved from the CMVC
database, so that subsequent development proceeds from the latest generation. For
example, to revert Symbolic_Display’Body from generation 5 to generation 4 on a
temporary basis:

1. Designate the object you want to revert. The object must not be checked out

currently.

2. Enter the Cmvc.Revert command, using default parameter values. (By default,
the Cmvc.Revert command goes back one generation.)

If you check out Symbolic_Display’Body at this point, generation 5 is restored and
made available for editing.

Now assume that you want to revert Messages’Body from generation 8 and continue
development from generation 6. To do this:

1. Designate the object you want to revert. The object must not be checked out
currently.

2. Enter the Cmvc.Revert command, using nondefault values for the To_Genera-
tion and Make_Latest_Generation parameters:

Cmvc.Revert {To_Generation => 6,
Make_lLatest_Generation => True);

As a result, a new generation (generation 9) is made, which contains a copy of the
contents of generation 6.

PM-28 8/1/88 QAT'ONAL

Getting Started

Collecting and Displaying Information about Generations

When you use the Cmvc.Check_Out and Cmvc.Check-In commands, you can pro-
vide commentary through the Comments parameter. This commentary is stored
with the notes for the relevant generation. You can view the notes for a genera-
tion using the Cmvc.Notes command. Additional information can be entered into a
generation’s notes using the Common.Edit and Common.Commit commands from
the window displayed by Cmvc.Notes. The Cmvc.Notes command also displays the
date and time at which the generation was checked out and checked in.

You can view change history between specified generations of an object using the
Cmvc.Show_History_By_Generation command. Among other things, this com-

mand displays:

e The notes for each generation
e When each generation was created
¢ The lines that were changed from generation to generation

An alternative method for viewing change history is to display an ezpanded gener-
ation tmage using the Cmvc.Edit command. See the introduction to package Cmvc
for information about generation images.

Compiling Units in a Subsystem

Because a view is a program library, units in a view are compiled using the same
Environment facilities that are used for compiling units in worlds and directories.
Units can be promoted from the source state, through the installed stated to the
coded state, and then executed. As usual, the Environment automatically deter-
mines the compilation order. Units need not be checked in to be compiled.

The units in Mail_Utilities.Revl_Working can be compiled successfully because the
model world for the view provides all of the required links to Environment resources.
If the units in a view depend on units from views in other subsystems, then those
views must be imported to make compilation successful.

Test programs can be developed and executed within Mail_Utilities to unit-test the
resources in each package. However, an activity is required for execution in views
that depend on imports.

Note that you can make a spec view at this point to define the units to be exported
from the Mail_Utilities subsystem. However, you need do this only when another
subsystem is ready to compile against the units in Mail_Utilities. Making a spec
view is not required for development within a single subsystem.

Creating spec views, importing, and using activities are covered in the chapter
entitled “Developing Applications Using Multiple Subsystems.”

RAT'ONAL 8/1/88 PM-29

Getting Started

Releasing Configurations

As you develop units in a working view, you can preserve certain significant combi-
nations (configurations) of generations. You can do this by making a release from
the working view. A release typically represents a baseline configuration that has
been compiled and tested, and thus is considered stable and usable for execution by
other subsystems. Releases also can serve as reference points in the development
history of a single subsystem.

Several kinds of releases can be made, depending on your needs:

¢ Released views, which preserve both the source code and the compilation infor-
mation to permit execution.

o Configuration releases, which preserve enough information about configuration
state to permit the construction of released views.

o Code views {also called code-only releases), which permit execution without mak-
ing program source code available. Code views typically are made from a work-
ing view for use by the developers of other subsystems, particularly when the
subsystems are developed on different R1000s. See the Cmvc.Make_Code_View
command.

Released views and configuration releases are discussed below.

Released Views

A released view (also called a full-view release) is a complete, frozen copy of a
working view. As such, a released view contains program source code, and, if the
released view has been compiled, the units in the released view can be executed.
You should make a released view from a compiled working view whenever you want
to both preserve a configuration in a working view and be able to execute its units.
Note that when a release is made from a working view that contains compiled Ada
units, the release is created by copying the compiled units; no recompilation is
necessary when creating releases.

Released views are created using the Cmvc.Release command with default parame-
ter values. For example, assume that development in Mail_Utilities.Revl_Working
has reached the point at which you want to release this view. To make a release
from a working view:

1. Compile the view’s units, if desired. (Once the released view is created, it is
frozen, so units in it cannot subsequently be compiled or otherwise changed.)

2. Designate the working view to be released. For example, select the view’s entry
in the subsystem image.

3. Enter the Cmvc.Release command, using default parameters.

PM-30 8/1/88 E)ATIONAL

Getting Started

As shown in Figure 3-8, a released view named Rev1_0_1 is created within Mail-
_Utilities. (Naming conventions are covered in “Release Names,” below.)

))
Configurations Library (Directory),;

Revl1_0_1 : Library (Load_View);
Revl_Working : Library (Load_View);
State : Library (Directory);

Figure 3-8. The Mail-Utilities Subsystem with Released and Working Views

A released view has the same predefined libraries and library characteristics as the
working view from which it was created.

Configuration Releases

A configuration release preserves the state of a working view, without creating
a released view. As such, a configuration release is a summary of configuration
information from which a released view subsequently can be constructed, if desired.
You should make a configuration release when you want to keep a record of a
particular configuration, but you do not need to execute the units immediately.
Making a configuration release is faster and uses less storage than making a released
view. However, reconstructing a released view from a configuration release requires
complete recompilation of the Ada units within the view.

To make a configuration release:

1. Compile the view’s units, if desired.

2. Designate the working view to be released. For example, select the view’s entry
in the subsystem image.

3. Enter the Cmvc.Release command, changing the default value of the Create-
~Configuration_Only parameter to true:

Cmvc.Release (Create_Configuration_Only => True);

IQATIONAL 8/1/88 PM-31

Getting Started

Representation of Releases

Making any kind of release creates two objects in the subsystem’s Configurations
directory, namely:

e A configuration object, which essentially contains a list of particular generations
of controlled objects in that view

¢ A state description directory, which contains files that store switch values, the
names of exported and imported views, the name of the model world, and the
like

When you make a released view, both of these objects are created in addition to the
frozen view. In contrast, when you make a configuration release, only the objects
in the Configurations directory are created.

For example, Figure 3-9 shows the Mail_Utilities subsystem and the Mail_Utilities-
.Configurations directory after both a released view (Rev1_0_1) and a configuration
release (Rev1_0-2) have been made. Note that a configuration object has the same
simple name as the corresponding released view.

'Pr T
Configurations Library (Directory);
Revl.0.1 : Library (Load.View),
Revl1._Working : Library (Load_View),
State : Library (Directory).
'Programs M M 4 C
Revi_B_1 : File {Config).
Revl.@.1_State : Library (Directory),
Revl1_@.2 : File (Config),
Revl_@_2_State : Library (Directory);
Revl_Working : File (Config);

e B oGNS AR - DN S L - R R

Figure 3-9. The Mail_Utilities Subsystem and Its Configurations Directory

PM-32 8/1/88 I?ATIONAI_

Getting Started

Together, a configuration object and a state description directory contain all the
information the Environment needs to construct a released view from the history
stored in the CMVC database. (Use the Cmvc.Build command.) However, a view
constructed from a configuration release may differ from a released view as follows:

¢ A released view contains a copy of every object from the working view, controlled
or not.

e A view constructed from a configuration release contains only controlled objects
for which source is saved in the CMVC database.

Because configuration objects are created for each released view, you can destroy
released views to save space and later reconstruct them, if needed. (Use Cmvc-
.Destroy_View and Cmvc.Build, respectively.) Note once again that only controlled
objects can be rebuilt. See “Managing Views” in the chapter entitled “Coordinating
Development in a Subsystem.”

Development Paths

A working view followed by a sequence of releases through time is called a develop-
ment path. In a path, ongoing development continues in a working view and releases
serve as “snapshots” of the working view made over time. As releases are made, a
single subsystem comes to contain many views and configuration objects, each rep-
resenting an alternative implementation of the program component encapsulated
by the subsystem. Figure 3-10 shows the development path in Mail_Utilities with
several releases, including a configuration release (shown with broken lines).

Working View

Figure 3-10. A Development Path in Mail_Utilities

RAT'ONAL 8/1/88 PM-33

Getting Started

Release Names

The Environment automatically constructs the names of released views and con-
figuration objects (code-view names are entirely user-defined). A released view
and its corresponding configuration object share the same simple name, which is
constructed from two components:

* A pathname prefiz (for example, “Rev1”). By convention, the pathname prefix
of a view name is the portion of the name up to the first underscore.

o A set of release level numbers (for example, “_0_1").

By default, the pathname prefix in a release name is the same as the base name of
the working view from which the release was made. In the Mail_Utilities example,
“Rev1” appears in the release name because the working view base name is “Rev1”.

Although the working view and the releases in a path share the same name prefix
by default, it is possible to distinguish a special release by overriding autogenerated
release names. To do this, you can specify a nondefault string for the Release_Name
parameter of the Cmvc.Release command. The specified string is used as the entire
release name, without adding release level numbers. For example, you may want to
specify a release name like “Field_Release” for a release that is shipped to customers,
using “Rev1” in the names of all interim development releases.

Release Level Numbers

The pathname prefix in a release name is followed by a set of release level numbers,
which are separated by underscores. By default, two release level numbers are
provided, which you can use to define a series of major and minor releases. The
path in Figure 3-10 shows two releases at the minor level (Rev1_0-1 and Rev1_-0_2)
followed by one major level release (Revi_1_0).

Release numbers are incremented automatically by the Environment at the mi-
nor level, unless you specify a different level using the Levels parameter in the
Cmvc.Release command. In a released view, release numbers are incremented re-
gardless of the kind of release.

The number of release levels that can be incremented is determined by a user-

created file called Levels in the subsystem’s model world. This file should contain
a single integer. (If the model contains no Levels file, two release levels are used.)

PM-34 8/1/88 RAT'ONAL

Getting Started

Note that the release level numbers replace the “_Working” suffix that appears in
the working view name:

Rev1_Working Revi1_0_1
L Il | | | f
I I | [

Path Suffix Path Release
name name level ‘
prefix prefix numbers j

Figure 3-11. Structure of View Names

Library Management Operations for Controlled Objects

Library management operations, such as deleting, withdrawing, moving, and re-
naming objects, involve extra steps when those objects are controlled. In most
cases, the extra steps are required to remove the objects in question from CMVC
control so that the change can be made.

Deleting Objects
To delete a controlled object:

1. Remove the object from CMVC control with the Cmvc.Make_Uncontrolled com-
mand.

2. Delete the object using, for example, Common.Object.Delete.

Withdrawing Objects
To withdraw a controlled object:

1. Remove the object from CMVC control with the Cmvc.Make_Uncontrolled com-
mand.

2. Withdraw the object using, for example, Ada.Withdraw.

Moving Objects

Objects must be made uncontrolled for other operations that involve implicit dele-
tion. For example, assume that you have several subdirectories within the Units
directory of a view, and you want to move an object from one subdirectory to
another. To do this:

[QAT'ONAL 8/1/88 PM-35

Getting Started

1. Remove the object from CMVC control with the Cmvc.Make_Uncontrolled com-
mand.

2. Move the object to the desired directory using, for example, Common.Object-
Move.

3. Make the object controlled again using Cmvc.Make_Controlled.

Note that objects are known to the CMVC database by their pathname within the
view. Moving an object from one subdirectory to another within a view changes that
pathname and thus involves implicitly deleting one controlled object and creating
a new one. History for the object in its original directory is still maintained by the
CMVC database under the object’s original name; the object in its new location is
made controlled as generation 1.

Renaming Ada Units

Renaming an Ada unit entails withdrawing it from the library, which involves im-

plicit deletion. To rename an Ada unit:

1. Remove the unit from CMVC control with the Cmvc.Make_Uncontrolled com-
mand.

2. Withdraw the unit from the library, using Ada.Withdraw. The unit’s Ada name
is replaced with a temporary name, such as “_Ada_6_-".

Edit the unit to change its Ada name.

4. Install the unit with its new name in the library using, for example, Ada.Install-
~Stub.

5. Make the object controlled again using Cmvc.Make_Controlled.
Note that changing a unit’s kind (for example, from function to procedure) without
changing its name must be done with care. This kind of change requires that the

CMVC database be expunged, which results in loss of history for that object. See
the Cmvc_Maintenance.Expunge_Database command.

PM-36 8/1/88 RATIONAL

Coordinating Development in a Subsystem

When a subsystem encapsulates a program component that is large enough, it
may be necessary to assign that subsystem to a team of developers rather than
to a single developer. When a team of developers needs to work on units in the
same subsystem, multiple development subpaths can be set up within the subsystem
to facilitate parallel development. A separate subpath can be assigned to each
developer on the subsystem team.

In addition to separate subpaths within a single path, multiple paths also can be
set up to accommodate distinct development efforts within the subsystem. Multiple
paths are necessary when different development efforts require variant implemen-
tations of the subsystem—for example, for multiple-target development. Whereas
paths represent distinct variants of an application component, subpaths within a
path are intended for the eventual release of a single variant.

Creating a Subpath

Subpaths are full copies of the working view in a path and, as such, are working
views themselves. Within each subpath, units can be edited, compiled, and tested,
as in any program library. Because each subpath contains a copy of every unit in the
path, compilation and execution in one subpath do not interfere with compilation
and execution in the others. Furthermore, the right to modify units is coordinated
across subpaths so that only one copy of a unit can be edited at a time.

A subpath is created from an existing working view, such as Mail_Utilities.Rev1-
-Working. By convention, the Environment constructs each subpath name from:

o The pathname prefix from the original working view (for example, “Rev1”).

e The subpath name eztension that you specify when you create the subpath. This
extension typically is used to identify the developer to whom the subpath is
assigned.

e A suffix such as “_Working”. If releases are made from a subpath, then release
numbers appear in place of the suffix.

RAT'ONAL 8/1/88 PM-37

Coordinating Development in a Subsystem

For example, assume that two additional developers (Larry and Sue) are to help
maintain the Mail_Utilities subsystem and that you are responsible for setting up
subpaths for them. To create a subpath for Larry:

1. In the working view from which the subpath is to be created (Revl_Working),
make sure that the desired objects have been made controlled. (Objects that
are controlled in Revl_Working will be controlled automatically in the new
subpath; see “Developing with Joined Objects,” below.)

2. Display the subsystem and designate the working view from which the subpath
is to be made (in this example, Revl_Working).

3. Enter the Cmvc.Make_Subpath command, specifying the New_Subpath_Exten-
sion parameter. For example:

Cmvc .Make_Subpath (New_Subpath_Extension => "Larry"};

As aresult, a subpath view named Revl_Larry_Working is created in Mail_Utilities.
At this point, you can create a subpath for Sue and you can either set up a subpath
for yourself or continue working in the main path, Revl_Working. (Typically, the
integrator for the subsystem continues to use the working view from the main path.)
Figure 4-1 shows the Mail_Utilities subsystem with subpaths for Sue and Larry:

Configurations : Library (Directory);
Revl1_0_1 : Library (Load_View}),
Revl_Larry_.¥Working Library (Load.View),
Revl_Sue_¥Working Library ilLoad_View};
Revl_Working : Library fLoad_View);
State Library (Directory),
T T T e A e wy e = |

Figure 4-1. The Mail_Utilities Subsystem with Subpath Views

Developing with Joined Objects

Development is coordinated across subpaths because subpath views are automati-
cally jotned with each other through the working view from which they were created.
When subpaths are joined, each controlled object in a given subpath is joined with
the corresponding objects in the other subpaths. Corresponding objects in different
subpaths originate as copies of the same object and have the same name from the
view name down. For example, the views Revl_Working, Revl_Larry_Working,
and Revl1_Sue_Working each contain an object called Units.Destinations’Spec, and
these three instances of Units.Destinations’Spec are joined. A set of joined objects
is called a jotn set, as shown in Figure 4-2.

PM-38 8/1/88 BA\TIONAL

Coordinating Development in 2 Subsystem

Revi1_Working

1 Units
Destinations'Spec ;

h N
P/ AR\

Rev1_Larry_Working /oine\ Working
)

Units /4 ([{VLSU‘*_ Units
7 ' N

Destinations'Spec Destinations'Spec

Figure 4-2. The Join Set for Destinations'Spec

Although the objects in a join set are separate library objects, they are treated as
a single entity by the CMVC database:

e Objects in a given join set share a single reservation token. Consequently, a joined
object can be checked out in only one view at a time.

e Objects in a given join set are represented as a single series of generations stored
in the CMVC database. Consequently, changes made to one object in a join set
can be propagated automatically to the other objects in the set.

Only controlled objects can be joined across views, so it is important to make the
appropriate objects in a working view controlled before you create subpaths. Un-
controlled objects are copied into subpaths; however, because uncontrolled objects
are not joined, they can be modified independently.

Checking Out a Joined Object

Because a joined object can be checked out in only one view at a time, the Cmvec-
.Check-Out command quits if you try to reserve an object that has been checked
out in another view. For example, assume that Larry has checked out the unit
Destinations’Body in the subpath Revl_Larry_Working. If you now attempt to
check out Destinations’Body in Revl_Working, the Cmvc.Check_Out command
quits with error messages informing you that the unit is already checked out.

QA—HONAL 8/1/88 PM-39

Coordinating Development in a Subsystem

To determine where a unit is checked out:

1. Designate the unit for which you want further information. In this example,
you can select Destinations’Body in Revl_Working.Units.

2. Enter the Cmvc.Show command using default parameter values.

As a result, a display as shown in Figure 4-3 appears in the output window.

88/02/23 14:38.27 .- [Cmvc.Show (Objects => "<CURSOR>"j].

Views sharing tokens with !PROGRAMS MAIL MAIL_UTILITIES REV1I_WORKING UNITS DEST!
IPROGRAMS MAIL MAIL_UTILITIES REV1_SUE_WORKING
'PROGRAMS MAIL MAIL_UTILITIES REV1_LARRY_WORKING

Ob ject Name Generation Yhere Chkd Out By Whom
UNITS . DESTINAT{ONS 'BODY 4 of 5 REV1_LARRY_WORKING Yes LARRY
88/02/23 14 .38 32 [Show has finished]

Figure 4-3. Showing Where a Joined Unit Is Checked Out

The display in Figure 4-3 indicates, among other things, that Destinations’Body
currently is checked out in the view Revl_Larry_Working and that the user who
checked it out was Larry. (Note that any user who has access to a view such as
Revl_Larry_Working can check out an object.) When Destinations’Body is checked
in to Revl_Larry_Working, you will be able to check out the corresponding unit
in Revl_Working. The Cmvc.Edit command also can be used to display checkout
information; see the introduction to package Cmvc.

Keeping Joined Objects Updated

When a developer working in one subpath checks out a joined object, the other
objects in the join set are rendered out of date by at least one generation. For ex-
ample, the display in Figure 4-3 indicates that Destinations’Body in Revl_Working
is out of date, because it contains generation 4, whereas the latest generation for
units in the join set is generation 5. (Generation 5 was created when Destina-
tions’Body was checked out in Revl_Larry_Working; this generation will be saved
when Destinations’Body is checked in.)

The Environment provides several ways to propagate changes among joined objects
to keep these objects up to date in each subpath:

o Changes are automatically propagated when objects are checked out. That is,
the checkout operation ensures that you always have the latest generation for
editing.

o Userscan explicitly request that changes are propagated to objects without check-
ing them out. This is called accepling changes.

PM-40 8/1/88 IQATIONAL

Coordinating Development in a Subsystem

Retrieving the Latest Generation at Checkout

The Cmvc.Check_Out command automatically retrieves the latest generation of an
object from the CMVC database. For example, assume that Destinations’Body has
been checked in, so that Revl_Larry_Working has the latest generation (genera-
tion 5). If you now check out Destinations’Body in Revi_Working, the checkout

operation:

¢ Replaces the contents of Destinations’Body in Revl_Working with the latest
saved generation (generation 5)

¢ Creates the next generation (generation 6), which will store the changes you make
while the unit is checked out

Accepting Changes

You can use the Cmvc.Accept_Changes command to update units in your subpath
without having to check out those units. For example, assume that Revl_Larry-
—Working has created and saved generation 4 of package Lines’Body and that Sue
wants to test the units in Revl_Sue_Working against this generation. Sue does not
want to check out Lines’Body becanse she does not want to edit it, nor does she
want to create a new generation of it.

To update a unit to the latest generation without checking it out, she can:

1. Designate the unit to be updated. For example, she can select Lines’Body in
Rev1_Sue_Working.

2. Enter the Cmvc.Accept_Changes command, using default values for all param-
eters.

As a result, Lines’Body in Revl_Sue_Working is updated to the latest generation,
which is generation 4.

When both a unit specification and body need to be updated, you must accept
changes into the specification before accepting changes into the body.

You can use the Cmvc.Accept_Changes command to update multiple objects by

specifying a naming string for the Destination parameter. If you specify a view name
for the Destination parameter, all controlled objects in the view will be updated.

RATIONAL 8/1/88 PM-41

Coordinating Development in a Subsystem

Permitting Demotion

By default, the Cmvc.Check_Out and Cmvc.Accept_Changes commands quit when
they try to update the contents of a compiled unit, because such an update requires
the demotion of that unit along with any units compiled against it.

To allow Cmvc.Check_Out and Cmvc.Accept-Changes to demote a compiled unit
to update it:

1. Enter the desired command, specifying the value true for the Allow_Demotion
parameter. For example:

Cmve.Check _Out (Allow_Demotion => True);

As a result, one or more units are demoted to the source state, as needed.

Preventing Automatic Updating

Although the Environment provides for automatic propagation of changes, you may
want to keep an older generation of a unit in your subpath—for example, for use
when testing other units in the view.

If you want to keep an object at an older generation, you can avoid checking it out.
A safeguard exists in the Cmvc.Check_Out command to permit an object to be
checked out only if it is already at the latest generation. To use this safeguard:

1. Enter the Cmvc.Check_Out command, specifying the value false for the Allow-
~Implicit_Accept_Changes parameter. For example:

Cmve.Check _Out (Allow_lImplicit_Accept_Changes => False};

As a result, the command can proceed only if the object does not need updating;
otherwise, an error is reported and the command quits.

Creating New Joined Objects

When subpaths are created, the controlled objects within them are automatically
joined. However, any objects that are created subsequently in one of several sub-
paths must be made controlled and propagated to the other subpaths explicitly.
The Cmvc.Accept-Changes command can be used to copy new controlled objects
from a source view into a destination view.

For example, assume that Sue has created a text file called To_Do in Revl_Sue-
-Working. To-Do contains a list of things to do on the project and is to be shared
by all developers working in the Mail_Utilities subsystem. To propagate a new
object across subpaths:

1. Make the object controlled where it was created (in this case, Revl_Sue_Work-
ing).

PM-42 8/1/88 R/A\TIONAL

Coordinating Development in a Subsystem

2. Enter the Accept_-Changes command to copy the object into one of the other
subpaths. Specify the Source and Destination parameters with the object to be
copied and the view into which it is to be copied. For example, from the context
Rev1_Sue._Working.Units, you can enter:

Cmve. Accept_Changes (Destimation => "“"Revl_Larry_Working",
Source => "To_Do",

3. Repeat step 2 for each other subpath (in this case, Revl_Working).

Cmvc.Accept_Changes copies the controlled object into the Units directory of the
destination view, makes the object controlled, and joins it to the source object.
Thus, Cmvc.Accept_Changes automatically performs operations that can be per-
formed individually using the Library.Copy, Cmvc.Make_Controlled, and Cmvc-
.Join commands.

If you use Library.Copy to propagate a controlled object that you intend to join, you
must copy the object so that it has the same name within both views. In particular,
if the two views have been restructured to contain further subdirectories, make sure
that you copy the object into the corresponding subdirectory of the second view.
Objects in different subdirectories cannot be joined, even if the objects themselves
have the same simple name.

Accessing Controlled Objects Concurrently

If you and another user need concurrent access to a controlled object, you can sever
the object in your view. When an object in a view is severed from its join set, that
object acquires its own reservation token. Accordingly, the severed object can be
checked out independent of the other objects in the join set, and a separate series
of generations is stored in the CMVC database for that object. In effect, the severed
object becomes a second join set, one that contains a single object.

For example, assume that you and Larry want to check out and edit package Mes-
sages’Body concurrently, presumably to modify different parts of the package. You
decide to sever the object in your view (Revl_Working), leaving the object in
Revl_Larry_Working in the original join set. To do this:

1. Select the object to be severed. Make sure that the object is checked in from
Rev1_Working.

2. Enter the Cmvc.Sever command, using default parameters.
As indicated in Figure 4-4, a second join set for Messages’Body is created in the

CMVC database. The current contents of the unit in Revl_Working becomes gen-
eration 1 for the new join set.

Note that if an object is not meant to be shared, it can be severed in every sub-

path. Severed objects can be modified independently, while remaining controlled
and tracked by the CMVC database.

QATIONAL 8/1/88 PM-43

Coordinating Development in a Subsystem

Rev1_Working

Messages
'‘Body

Severed Severed

Rev1_Sue_Working f —X Revi_Llarry_Working

Messages Messages
‘Body f ‘Body

U Joined L

CMVC Database

Join sets: Generations ——————p

Messages'Body in [I’ E] E] E] E —

Rev1_Sue_Working
Revi_Larry_Working sever

Messages'Body in 1 [_]2 ["—IS asa

Revi_Working

Figure 4-4. After Messages'Body Has Been Severed in Revl_Working

Elements, Join Sets, and Reservation Tokens

In Figure 4-4, the three objects called Messages’Body are collectively represented
as a single element in the CMVC database. This element is partitioned into two
join sets, each having its own reservation token that connects corresponding objects
from specific views.

By default, reservation tokens are named automatically by the Environment. How-
ever, through parameters to the Cmvc.Make_Controlled and Cmvc.Sever commands,
you can define your own mnemonic reservation tokens to convey more information
about the join sets into which an element has been partitioned. You can add a
controlled object to a particular join set by specifying the appropriate reservation
token as a parameter value of the Cmvc.Join command.

PM-44 8/1/88 EA\TIONAL

Coordinating Development in a Subsystem

Merging Changes

Changes can be propagated between two severed objects with the Cmvc.Merge-
—Changes command. More specifically, the Cmvc.Merge_Changes command up-
dates one of the two objects (the destination object) to include any changes that
were made to the other (the source object). Changes that were previously made
to the destination object are preserved, so this operation does not necessarily re-
sult in identical objects (that is, the source object is not updated with the changes
that were made to the destination object). For example, assume that you want
to merge changes from the unit Messages’Body in Revl_Larry_Working into the
corresponding severed unit in Revl_Working. To merge changes:

1. Make sure both severed objects are checked in.

2. Select the destination object to be updated, Messages’Body in Revl_Working-
.Units.

3. From the context Revl_Working.Units, enter the Cmvc.Merge_Changes com-
mand, specifying the Source_View parameter with the name of the view con-
taining the object to be merged:

Cmve .Merge_Changes {Source_View => """Revl_Larry_Working");

The Cmvc.Merge_Changes command finds the common ancestor of the two severed
objects (the last generation they had in common before severing) and compares the
source and destination objects to the common ancestor to determine which lines
need to be merged. The destination object is updated accordingly. When conflicts
exist, changes from both the source and destination objects are marked with the
string *; (an asterisk followed by a semicolon). You must edit the destination object
to resolve conflicts and remove the *; marks.

Note that the Cmvc.Merge_Changes command applies only to objects that be-
longed to the same join set at some time. You must use operations from package
File_Utilities to synchronize objects that are not controlled.

Rejoining Severed Objects

The Cmvc.Merge_Changes command can be used to prepare two severed objects
that you want to rejoin, since objects must be textually identical before they can
be joined. To prepare two objects for joining:

1. Use Cmvc.Merge_Changes to merge the source object into the destination ob-
ject.

2. Check out and edit the destination object to resolve any conflicts.

3. Check out the source object and copy the contents of the edited destination
object into it.

4. When the two objects are textually identical, use the Cmvc.Join command to
join them.

QAT'ONAL 8/1/88 PM-45

Coordinating Development in a Subsystem

Integrating Subpaths into a Single Release

When a new release must be made, the person in charge of integration within the
subsystem can consolidate the changes made in each subpath into a single working
view. The next release can then be made from that single view.

For example, assume that you are the subsystem-level integrator and that you want
to make a release from Revl_Working that includes work done by Sue and Larry
in their subpaths. To do this, you can:

1. Gather the changes from each subpath into Revl_Working, using Cmvc.Accept-
—Changes to update joined units and Cmvc.Merge_Changes to update severed
units.

2. Compile and test the updated units in Revl_Working.

3. When appropriate, make a release from Revl_Working using the Cmvc.Release
command.

After the release, you can update the subpaths Revl_Sue_Working and Revl-
~Larry_Working so that they match the integration view Revl_Working. For ex-
ample, to update Revl_Sue_Working from Revl_Working:

1. Make sure all objects in both views are checked in.

2. Designate the destination view (the view to be updated). For example, if the
Mail_Utilities subsystem is displayed, you can put the cursor on the entry for
Rev1_Sue_Working.

3. Enter the Cmvc.Accept_Changes command, specifying the Source parameter
with the name of the view to be matched. For example:

Cmvc.Accept_Changes {Source => "Revl_Working"};

As a result, Revl_Sue_Working is made to look like Revl_Working:
e Every controlled object in the source view updates the corresponding object in
the destination view.

¢ New controlled objects in the source view are copied into the destination view,
made controlled, and joined.

Note that uncontrolled objects in Revl_Working are not copied into Revl_Sue-
—Working and no objects are deleted when they exist in Revl_Sue_Working but
not in Revl_Working.

PM-46 8/1/88 QATIONAI_

Coordinating Development in a Subsystem

Setting Up Multiple Development Paths

Development within a single subsystem can involve multiple major development
efforts, each resulting in a variant implementation of the subsystem. For example:

e When an application is intended for multiple targets and the units need to have
variants that contain target-specific code

¢ When a new major release of an application is developed while the existing release
is maintained

¢ When a separate quality-assurance group conducts activities to turn a develop-
ment release into a production release

To accommodate these variant implementations, you can set up multiple develop-
ment paths. Multiple paths provide each development effort with its own working
view from which releases can be made. Furthermore, because objects can be joined
or severed across paths, paths enable some objects to be shared and others to be de-
veloped independently. Finally, multiple subpaths can be created from each path to
provide a separate workspace for each developer involved in the same development
effort.

Creating a Path

A path is created as a full copy of an existing working view and, as such, serves as a
working view from which a series of releases can be made. Within the working view
of a path, units can be edited, compiled, and tested, just as in subpaths. In fact, as
copies of working views, paths and subpaths are fundamentally the same, although
they are intended to support parallel development at different levels. Paths and
subpaths differ with respect to what you can specify about them at creation:

o Paths and subpaths have different naming conventions. Therefore, when creating
a path, you must specify a pathname prefix; creating a subpath involves specifying
a subpath name extension.

e Paths can be created with their own library characteristics. Therefore, when
creating a path, you can specify a different model world than the one used by
other views in the subsystem. In contrast, subpaths use the same model as the
path from which they were created.

¢ Paths can be joined with other views or not. That is, when creating a path, you
must specify whether the controlled objects are to be joined to their counterparts
in the source working view. In contrast, subpaths are always created with all
controlled objects joined.

IQAT'ONAL 8/1/88 PM-47

Coordinating Development in a Subsystem

Assume that you want to set up a path in Mail_Utilities for quality-assurance
activity. To do this:

1. Designate the source view to be copied as the beginning of the new path. For
example, select the entry for Revl_Working.

2. Enter the Cmvc.Make_Path command, specifying values for the following pa-
rameters, as needed:

New_Path_Name Specifies the pathname prefix for the new path. This prefix
will be shared by all subpaths and releases made from the new
path.

Model Specifies the name of a model to be used by views in the new
path. You should specify a new model if the new path needs
different links, compilation switches, and the like. By default,
this parameter specifies the model world inherited from the
source view.

Join_Paths Specifies whether to join the new path to the source view.
You should specify true if you anticipate that most or all
of the objects will be shared between the two views. You
should specify false if you anticipate that most or all of the
objects will need to be modified independently. By default,
this parameter specifies that the views are joined.

For example, to create a path called Qa_Working in which all objects are joined
and which uses the inherited model, you can enter:
Cmvc.Make_Path (New_Path_Name => "QA"};

3. Use the Cmvc.Join or Cmvc.Sever commands to further fine-tune the objects
that are shared between the new path and the source view.

Managing Views

Operations for managing views require the use of commands from package Cmvc.
Such operations include deleting, rebuilding, copying, and renaming views.

Deleting Views

As you accumulate multiple views in a subsystem, you may want to delete some
of them to save space. To do so, you must use the Cmvc.Destroy_View com-
mand; do not use other Environment deletion commands, such as Library.Delete,
Library.Destroy, Compilation.Delete, or Compilation.Destroy. Deletion commands
from packages Library or Compilation can delete only part of a view, leaving it in
a damaged state. (See “Repairing Damaged Views,” below.)

The Cmvc.Destroy_View command allows you to delete views permanently or to
delete views so that they can be reconstructed again.

PM-48 8/1/88 BA\—HONAL

Coordinating Development in a Subsvsiem

Deleting a View and Allowing Reconstruction
To delete a view and allow future reconstruction:

1. Select the view you want to delete.

2. Enter the Cmvc.Destroy_-View command, using all default parameters (by de-
fault, the Destroy_Configuration_Also parameter is false). If the view con-
tains compiled units, you will need to specify the nondefault value for the De-
mote_Clients parameter, as follows:

Cmvc.Destroy_View (Demote_Clients => True};

As a result, the view is deleted, although its configuration object and state descrip-
tion directory are preserved (see “Representation of Releases” in the chapter entitled
“Getting Started”). If you delete a working view, a state description directory is
created for it before the view is deleted.

Deleting a View Permanently
To delete a view permanently:

1. Select the view you want to delete.
2. Enter the Cmvc.Destroy_View command, specifying the nondefault value for
the Destroy_Configuration_Also parameter, as follows:

Cmvc.Destroy_View {Destroy_Configuration_Also => Truej};

As a result, the view is deleted, along with its configuration object and state de-
scription directory (see “Representation of Releases” in the chapter entitled “Get-
ting Started”). The deleted view cannot be reconstructed using the Cmvc.Build
command.

Deleting a Configuration Object

Assume that you deleted a view to allow future reconstruction and then decided
that the view should be deleted permanently. You can do this by deleting the
configuration object that was left after you deleted the view.

To delete a configuration object:

1. Within the subsystem.Configurations directory, locate the appropriate configu-
ration object and state description directory. These objects are named after the
view you deleted.

2. Use Library.Delete to delete these objects.

RAT'ONAL 8/1/88 PM-49

Coordinating Development in a Subsystem

Note that the CMVC database still contains information about the deleted view,
even though the view’s configuration object no longer exists. Because of this, you
cannot create a new view with the same name as the deleted view without taking
an extra step:

1. Enter the Cmvc_Maintenance.Expunge_Database command to remove all in-
formation about the deleted view from the CMVC database. You can now create
the new view with the same name.

Building a View from a Configuration Object

After making a configuration release, or after deleting a view allowing future re-
construction, you can use the configuration object to rebuild a corresponding view.
Configuration objects are located in the Configurations directory of the subsys-
tem. To build the view corresponding to a configuration object named Configura-
tions.Rev1_0_2:

1. From the context of the Configurations directory, enter the Cmvc.Build com-
mand, specifying the desired configuration object, as shown:

Cmve Build {Configuration => "Revl1_8_2");

Repairing Damaged Views

Attempting to delete a view using any command other than Cmvc.Destroy.View
only partially destroys the view. Such damaged views cannot be completely deleted,
even using Cmvc.Destroy_View. To repair a damaged view so that it can be de-
stroyed completely:

1. Designate the view to be repaired. For example, select its entry in the subsys-
tem.

2. Enter the Cmvc_Maintenance.Check_Consistency command with default pa-
rameters.

Renaming Views

To change a view’s name:

1. Use the Cmvc.Make_Path or Cmvc.Make_Subpath command to copy the view,
supplying the new name prefix or extension as appropriate.

2. Delete the original view using either of the methods listed above.

If you want to destroy and recreate the view again with the same name, you must
destroy the view permanently and then expunge the database.

PM-50 8/1/88 BATIONAL

Developing Applications Using Multiple Subsystems

The concepts and operations presented so far (such as release, check in and check
out, subpaths, paths) are relevant for the development of individual subsystems.
This chapter covers what you need to know to compile and execute applications
that consist of multiple subsystems. When dependencies exist across subsystems,
you need to know how to:

e Define interfaces between subsystems to support compilation
¢ Specify combinations of views, one from each subsystem, for use during execution

The first section in this chapter covers the basic setup required for compiling and
executing multiple subsystems. Subsequent sections expand on various aspects of
this basic setup, describing ways of more precisely controlling interface definition
and system execution.

This chapter concludes by taking a second look at setting up the subsystems in an
application, incorporating the concepts covered in this and the preceding chapters.
This second look provides a more sophisticated checklist of issues to be decided
during subsystem creation.

Basic Compilation and Execution Setup

Before a multisubsystem application can be compiled, interfaces must be set up to
support compilation dependencies among units in different subsystems. Subsystem-
level interfaces are expressed as ezports, which make a specific set of implemented
units available for views in other subsystems to tmport. (The importing views are
called clients of the exporting subsystem.)

Importing enables units in a client view to reference exported units in with clauses.
In fact, compilation dependencies can hold between units of different subsystems
only if:

¢ The referenced unit is among the exports of one subsystem

¢ Those exports are imported by the other subsystem (more specifically, by the
view that contains the dependent unit)

Any other dependencies between subsystems are reported as errors. Exports and
imports express and enforce design decisions by permitting or restricting visibility
between subsystems.

R)ATIONAI_ 8/1/88 PM-51

Developing Applications Using Multiple Subsystems

Exports and imports must be set up to enable compilation, but an additional step
is required before the application can be executed. Typically, each subsystem con-
tains multiple releases of its implementations. (Furthermore, subsystems with mul-
tiple paths contain multiple variant implementations, each with multiple releases.)
Therefore, an execution table called an actsvsty must be set up to specify which im-
plementation from each subsystem should be used for execution. Note that different
precompiled implementations can be used during execution simply by changing en-
tries in an activity.

Kinds of Views

Setting up exports, imports, and activities involves the creation and use of another
kind of view along with the kind used for developing implementations:

e Subsystem implementations are developed in load vtews. Load views are program
libraries that contain the specifications and bodies for all units in a given appli-
cation component. The working views and released views described in previous
chapters have all been load views.

o Subsystem exports are expressed in separate views called spec views. Spec views
are special-purpose program libraries that contain a copy of the specification of
each exported unit.

Figure 5-1 illustrates a load view from which one package is exported. Accordingly,
the spec view contains a copy of the exported unit’s specification:

Subsystem

Spec view

|
1 Load view
(" A'spec \

Figure 5-1. A Spec View That Expresses the Exports from a Load View

PM-52 8/1/88 RATIONAL

Developing Applications Using Muitiple Subsystems

Together, the two kinds of views function similarly to Ada package bodies and spec-
ifications, in that spec views, like package specifications, make resources available
to clients, whereas load views, like package bodies, implement those resources.

A spec view typically is created from, and therefore expresses the exports of, a
particular working load view. As subsequent releases are made from that working
view, the same spec view also can serve to express exports for each release that is
compatible for use with that spec view. A load view is compatible if it implements
all the resources promised by the spec view. (If implementation changes result in
releases that are incompatible with an existing spec view, either the existing spec
view must be changed or a new spec view must be made.) Thus, a single spec view
typically is used to express the exports of a family of released load views.

Spec views are what views in other subsystems import to enable compilation. How-
ever, the units in spec views are not actually executed. Instead, the units in load
views are used for execution, one load view for each imported spec view. An activity
specifies which of the compatible load views are to be used for a given execution.
One of the advantages of having separate spec views is that client views can remain
compiled against spec views while changes are made and tested in load views.

A subsystem can contain multiple spec views. Multiple spec views result when new
spec views are created to accommodate changed implementation. Furthermore,
when a subsystem contains multiple development paths for a variant implementa-
tion, each development path typically requires its own exports and consequently
has one or more spec views associated with it. A given spec view thus expresses
the exports of a family of load views within a particular development path.

Note that a third kind of view, called combined views, combines exports and imple-
mentation. However, combined views are required only to accommodate:

¢ Designs that require circular smporting

¢ Specific Ada structures in cross-development (that is, the development of pro-
grams that are to be executed on target processors other than the R1000)

In either case, combined views are used in place of spec and load views. Combined
views are not recommended for more general use because they do not provide the
advantages gained by expressing exports and implementation in separate views.
The remainder of this chapter describes spec and load views; see the chapter en-
titled “Using CDFs with Subsystems” and the introduction to package Cmvc for
information about combined views.

QATlONAL 8/1/88 PM-53

Developing Applications Using Multiple Subsystems

Defining Exports

To illustrate how to define exports, this and the following sections will use the
sample mail program presented in previous chapters. Recall from Figure 3-2 in
“Getting Started” that units in both the Command._Interpreter and the Mailboxes
subsystems need to with various units implemented in the Mail_Utilities subsystem.
These dependencies are indicated by heavy arrows in Figure 5-2.

Command_Interpreter

Run_Mail ot | |

Command_Utilities

~ Mailbox

Mail_Utilities

Mailboxes Y -

Symbolic_Display

'

Lines i

Messages
Destination
2 S Unbounded

% L ! - i

Figure 5-2. Dependencies between Units ip Different Subsystems

From Figure 5-2, it is clear that the Mail_Utilities subsystem must export a total
of four units to support the required compilation dependencies: Messages, Destina-
tions, Lines, and Symbolic_Display.

PM-54 8/1/88 EAT'ONAL

Developing Applications Using Multiple Subsystems

Overview of Steps

To export units from a given load view, such as Revl_Working, you must follow
these general steps, which are clarified in subsequent sections:

1. Specify the desired exports as part of the state of the load view that implements
them—in this case, Revl_Working. This means editing the Exports file in the
State directory of the load view to specify the units to be copied into the spec
view.

2. Enter the Cmvc.Make_Spec_View command to create a spec view from the
appropriate load view. The new spec view is created containing a copy of each
unit listed in the load view’s State.Exports file.

3. Make sure that the units in the newly created spec view are promoted to the
coded state so that clients will be able to compile against them.

Locating the State.Exports File

Every view is created with a file called Exports in its State subdirectory. Do not
confuse this file with the Exports directory in the view, which is covered in “Creating
Export Restriction Files,” below. The relevant portion of the directory structure
within Revl_Working is shown in Figure 5-3.

Rev1_Working

! l I !

Imports Exports State Units

|
Exports (file)

Figure 5-3. The Exports File and the Exports Directory

QATIONAL 8/1/88 PM-55

Developing Applications Using Multiple Subsystems

What to Put in the State.Exports File

The State.Exports file serves as an indirect file for the Cmvc.Make_Spec_View
command by providing a list of the unit specifications that the command will au-
tomatically copy from the load view into the new spec view. Note that these unit
specifications must exist in the load view, although the unit bodies need not. That
is, exports can be created before the implementation is complete.

The first time you display the State.Exports file, it contains the naming string
?'spec, as shown in Figure 5-4. If you leave the file as is, the new spec view will
contain a copy of all unit specifications from the load view. That is, by default, all
units are exported from a given view. However, if you determine that fewer units
need to be put in the spec view, you can replace the default naming string with a
list of names.

? 'spec

Figure 5-4. The Default State.Exports File

When determining the list of units to specify in the State.Exports file, bear in mind
that you eventually will have to compile the units in the spec view. Therefore, the
list in the State.Exports file must include the names of the following:

¢ The specifications of the units that other subsystems require for compilation
¢ Any additional unit specifications that are required to compile the spec view

For example, as indicated by Figure 5-2, the State.Exports file for Revl_Working
must in fact name all of the unit specifications in that view:

¢ The units Messages’Spec, Destinations’Spec, Lines’Spec, and Symbolic_Display-
"Spec are included because these units are required by other subsystems.

¢ The unit Unbounded’Spec is included because three of the four unit specifications
listed above depend on Unbounded’Spec.

Thus, for compilation purposes, a spec view may have to contain more units than
you originally expected to export. In some cases, however, “extra” units can be
omitted from the spec view—specifically, if the units that depend on them refer-
ence them only in private parts (see “Using Pragma Private_Eyes_Only,” below).
Furthermore, ezport restrictions can be used to prevent particular units in a spec
view from being referenced in client views (see “Imposing Further Import and Ex-
port Controls,” below).

PM-56 8/1/88 IQAT'ONAL

Developing Applicatiozs Using Multiple Subsystems

Using Pragma Private_Eyes-.Only

As shown above, the State.Exports file may need to include certain unit specifica-
tions solely to enable compilation within the spec view and not to support depen-
dencies from other subsystems. When this is the case, you can check to see whether
any of these “extra” unit specifications are required only within the private part
of dependent units. If so, you can omit these “extra” unit specifications from the
State.Exports file. You can omit them because, by default, private parts are closed,
which means they are ignored when a spec view is compiled; the load view supplies
the private parts at execution time. (See “More on Closed Private Parts,” later in
this chapter.)

For example, recall that Unbounded’Spec is required for compiling three of the
unit specifications to be exported—namely, Messages’Spec, Destinations’Spec, and
Lines’Spec. However, Unbounded’Spec is not referenced by units in other subsys-
tems; therefore, you can:

1. Check each of the three dependent units to see where they use Unbounded’Spec.
In this example, resources from Unbounded’Spec are used only in the private
parts of these three units, such as that shown in the abbreviated representation
of Destinations’Spec in Figure 5-5.

with Unbounded,
package Destinations 1is

type User 1s private;

private
type User 1s new Unbounded. Variable_String;

end Destimations,;

efe XEL TR

Figure 5-5. Destinations’Spec with Reference to Unbounded in the Private Part

2. Edit each of the unit specifications that reference Unbounded’Spec and insert
the following pragma before the relevant with clause:

pragma Private_Eyes_Only;
with Unbounded;

Pragma Private_Eyes_Only applies to any with clause that follows it, so you
may need to insert the pragma between wsth clauses.

3. Leave Unbounded’Spec out of the State.Exports file.

RAT'ONAL 8/1/88 PM-57

Developing Applications Using Multiple Subsystems

Editing the State.Exports File
When you edit the State.Exports file:

1.

2.

Enter either a list of unit specification names or one or more naming expressions
that matches such a list. (The contents of this file have the same syntax as the
contents of indirect files; see the “Naming” chapter.)

e If you want the spec view to contain all unit specifications in the load view,
use the naming string ?’spec.

e If you want to specify a list of names, place the names on consecutive lines
with no delimiters.

Be sure to commit the file.

Figure 5-6 shows the State.Exports file for Revl_Working.

destinations 'spec
lines 'spec

messages ‘spec
symbolic_display 'spec

Figure 5-6. The State.Exports File for Revl_Working

Creating the Spee View

After you have edited the State.Exports file of the exporting load view, you are
ready to make a spec view from that view. To do this:

1.

Designate the exporting load view. For example, if the Mail_Utilities subsystem
is displayed, you can select the entry for Revl_Working.

Enter the Cmvc.Make_Spec_View command, specifying the Spec_View_Prefix
parameter and using default values for the other parameters.

The Environment uses the value of the Spec_View_Prefix parameter when con-
structing the name for the new spec view. In this example, the specified value
is the pathname prefix from the name of the exporting load view (for example,
“Rev1” from “Revl_Working”):

Cmve .Make_Spec_View (Spec_View_Prefix => "Revl"};

PM-58 8/1/88 E)ATIONAL

Developing Applications Using Multipie Subsysterus

As shown in Figure 5-7, a spec view named Rev1_0_Spec is created within the
Mail_Utilities subsystem. Spec views have the same internal directory structure as
load views; as shown, the Units directory in Revl_0_Spec contains a copy of each
unit specification listed in the Revl..Working.State.Exports file.

Configurations : Library (Dir=2ztory),

Revl1.2_1 : Library (Load_View);
Revl1_0_.Spec : Library (Spec_Vieuw),
Revl_Larry.¥orking Library (Load.View)
Revl1_Sue_VWorking : Library (Load.View),
Revl_Working : Library (Load_View),
State : Library (Directory);

+

Destinations C Ada (Pack_Spec});
Lines - C Ada (Pack_Spec);
Messages . C Ade (Pack.Spec).
Symbolic_Display : C Ada {Gen_Proc);

Figure 5-7. The Spec View Revl_0-Spec

Note that Revl_0_Spec has no underlying connection to the load view from which
it was created. Each view is a separate library structure; modifying or compiling
units in Revl_Working leaves the units in Rev1_0_Spec unaffected, and conversely.

Spec-View Names and Level Numbers

By default, spec-view names such as Revl_0_Spec are constructed automatically
from:

o The spec-view prefix specified by the Spec_View_Prefix parameter of the Cmvc-
.Make_Spec_View command (for example, “Rev1”)

¢ One or more level numbers (for example, “_07)

¢ The suffix “_Spec”

The spec-view prefix can be any string, although a typical convention is to use the
pathname prefix from the name of the exporting load view. By this convention,
the association between a spec view and a particular development path is reflected
in the view names. This convention is especially useful when a subsystem contains
multiple paths.

RATIONAL 8/1/88 PM-59

Developing Applications Using Multiple Subsystems

The level numbers in spec-view names are related to the level numbers in release
names. Recall that, by default, release names have two release level numbers, which
you can use to define a series of major (level 1) and minor (level 0) releases.

A spec view normally expresses the exports for a series of minor releases. Therefore,
in spec-view names, the rightmost (level 0) number is replaced by the “Spec” prefix,
so that numbering within a spec-view name starts with the level 1 number. (If only
two release levels are maintained, then spec-view names contain only the level 1
number.) Level numbers are shown in Figure 5-8.

Rev1 0 1 Rev1i_0_Spec |

I_,_H_I__I llﬂ | |

Level Level Level Replaces J
1 0 1 Level }
0

Figure 5-8. Structure of Spec-View and Release Names

By default, the Cmvc.Release command automatically increments the level 0 num-
ber in release names, creating a series like Revl1_0_1 and Rev1_0_2. Also by default,
the Cmvc.Make_Spec-View command constructs spec-view names using the level 1
(and higher) numbers from the name of the last release. Thus, in the above exam-
ple, the level 1 number in the name Rev1_0_Spec is _0 because that is the level 1
number in the name of the configuration release Revl1_0-2. In this way, level num-
bers can be used to correlate a spec view with a particular family of minor releases
in a development path. In this case, Revl_0_Spec correlates with Revl_0_1 and
Rev1_0-2.

Both the Cmvc.Release and the Cmvc.Make_Spec_View commands have a Level
parameter that you can use to specify a level number other than 0 for incrementing.
If you increment a nondefault level number when making a release, subsequent spec-
view names will by default be constructed with that number; for example, when
Revl_1_1 is released (with an incremented level 1 number), then the next spec
view will by default have the name Revl_1_Spec. Conversely, if you increment a
level number when making a spec view, subsequent release names will by default
be constructed with the incremented number.

PM-60 8/1/88 IQATIONAL

Developing Applications Using Multiple Subsystex:s

You can take advantage of the automatic level numbering to keep track of which spec
and load views are compatible. Major releases (with incremented level numbers)
should be made whenever the implementation has changed enough to require a
new spec view to express its exports. (Note that level numbers are automatically
coordinated only between releases and spec views that are made from the same
working view. See also “Coordinating Level Numbers in Spec and Released View

Names.”)

As a final note, you can suppress level numbers in a spec-view name so that the spec-
view prefix is followed directly by _Spec. To do this, specify the value Natural’Last
for the Level parameter in the Cmvc.Make_Spec_View command.

Controlled Units within Spee Views

When a spec view is made, the units in it are deliberately left uncontrolled. By de-
fault, the Environment considers the working view as the place for ongoing changes;
therefore the working view is where change history should be tracked.

Units in spec views can be changed, so some installations may choose to make
units in spec views controlled in order to track change history. However, these
units should never be joined to their counterparts in the working load view. As
shown in later sections, clients ultimately will compile against units in spec views.
Propagation of changes from load-view units to spec-view units will demote not
only the spec-view units but also all clients compiled against them.

Compilation within Spee Views

By default, the Cmvc.Make_Spec_View command copies units into the spec view
and then promotes them to the coded state. The promotion of the copied units is
controlled by the Remake_Demoted_Units and Goal parameters of the Cmvc.Make-
—Spec_View command.

After they are copied, units in spec views can be demoted or promoted indepen-

dently from their counterparts in working load views. However, units in a spec view
must be in the installed or coded state for clients to compile against them.

R’AT!ONAL 8/1/88 PM-61

Developing Applications Using Multiple Subsystems

Defining Imports

After exports have been defined in a subsystem, they are available for views in
other subsystems to import. For example, assume that development of the Com-
mand_Interpreter subsystem is in progress and that a prototype of package Com-
mand_Utilities needs to be compiled and tested. At this point, the prototype
of Command-_Utilities depends only on units from the Mail_Utilities subsystem.
(When complete, Command_Utilities also will depend on a unit implemented in
the Mailbox subsystem; however, this dependency will be ignored for the present.)

To enable the prototype of Command-_Utilities to compile, the working view con-
taining Command_Utilities must import the spec view from Mail_Utilities. More
specifically, Command_Interpreter.Revl_Working must import (and become a cli-
ent of) Mail_Utilities.Revl_0_Spec, as shown in Figure 5-9.

Command_Iinterpreter

Rev1_Working

Mail_Utilities Import

Cew_o_Spec J
Rev1_0_1
Rev_Working

Figure 5-9. Importing Mail.Utilities.Revl_0_Spec

PM-62 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Steps for Defining Imports

To import a spec view from one subsystem into a client view in another subsystem:

1. Display both subsystems (for example, Command-Interpreter and Mail_Utili-
ties).

2. In the exporting subsystem, select the desired spec view (in this example, Mail-
_Utilities.Rev1_0_Spec).

3. Move the cursor to the importing subsystem and put the cursor on the desired
client view (in this example, Command_Interpreter.Revl_Working).

4. Open a Command window and enter the Cmvc.Import command, using all
default parameter values.

5. In the client view, you can now compile units, such as the prototype package
Command_Utilities.

Note that you can specify a naming expression for the View_To_Import parameter
in order to import spec views from multiple subsystems.

Only spec views from other subsystems can be imported. Accordingly, a view’s
tmports refers to a list of spec views. However, either spec views or load views can
have imports, because either type of view may need to compile against units from
other subsystems. A spec view’s clients (also called referencers) are the spec and
load views that import it.

By default, a view’s imports are inherited by the releases, paths, and subpaths that
are made from it. For example, when a release is made from Command_Interpreter-
.Rev1_Working, that release will automatically import Mail_Utilities.Rev1_0_Spec.
Note that the Cmvc.Import command can be used to change the imports in the
working view of any path or subpath; however, because releases are frozen, their
imports cannot be changed.

Displaying a View’s Imports
You can verify a view’s imports by requesting an information display as follows:

1. Designate the view (for example, Command_Interpreter.Revl_Working) whose
imports are to be displayed.

2. Enter the Cmvc.Information command.

QATIONAL 8/1/88 PM-63

Developing Applications Using Multiple Subsystems

As a result, a list of imports is displayed along with other information about the
view, as shown in Figure 5-10.

Information for view !PROGRAMS MAi{L COMMAND_INTERPRETER.REVI_¥ORK{NG

Model . R1000
Frozen . FALSE
View Kind . LOAD
Creation . March 3@, 1988 at 6:93:28 PM
Imports :

'PROGRAMS MAIL . MAiL UTILITIES REV1_B_SPEC
Referencers

Unit Summary
coded = @, installed = @, source = 4, archived = @, stubs = 0@
88/@3/31 12 2604 . - [Informatlon has flnlshedj
seeeaia i =MV G e =y T —————

Figure 5-10. Information about Command_Interpreter.Revl_Working

Note that you can also use this command to display a spec view’s referencers.

Imports and Links

Imports enable compilation because they create and manage links. When a spec
view is imported, links to its units are automatically created in the client view, thus
enabling units in the client view to compile.

Within subsystems, you should manage links only through imports. This is because
imports alone can manage links across releases, paths, and subpaths. You should
never directly add or remove an individual link from a view using commands from
package Links. Such changes do not get passed on to releases, paths, or subpaths.

The links for a given view should contain only:

o Links resulting from imports; these are links to units in other subsystems

o Links provided by the model world; these are links to units elsewhere in the
Environment

Removing Imports

If you imported the wrong view or you want to make a design change, you can
remove imports with the Cmvc.Remove_Import command. Removing an import
automatically removes all links to the units in the imported spec view. An import
cannot be removed if there are units compiled against any of the links it created.
That is, if units are compiled against even one link in an import, none of the links
from that import are removed. (Thus, removing an import removes either all or
none of the relevant links.) The import can be removed if units in the client view
are demoted to source.

Note that you can change the links provided by the model world by modifying the
model world and using the Cmvc.Replace_Model command. Replacing a working
view’s model does not affect previous releases made from that view.

PM-64 8/1/88 QATIONAL

Developing Applications Using Multiple Subsystems

Using Activities for Execution

After imports have been defined, units in client views can compile against units in
imported spec views. However, spec views do not contain unit bodies and are there-
fore insufficient for execution. To execute units that are compiled against imports,
you must set up an execution table called an activity to specify the implementation
from each subsystem that will actually be used for execution. That is, an activity
must specify one load view for each subsystem from which a spec view is imported.

At this point in the example, recall that the client view Command_Interpreter.Rev1-
—Working has imported the spec view Mail_Utilities.Rev1_0_Spec (see Figure 5-9).
Within the client view, the prototyped unit Command_Utilities has been promoted
to the coded state, and subprograms in it are ready to be tested (assume that
a test driver has been created in Command_Interpreter.Revl_Working to execute
subprograms from Command_Utilities).

Now you must decide which implementation of the Mail_Utilities subsystem to use
for execution. You can choose between any of the working or released views in that
subsystem (note that a configuration release cannot be executed because it is not a
full program library). Assume that you want to test Command-Utilities against the
released implementation Mail_Utilities.Revl_0_1, because it is frozen and stable.

Overview of Steps

Having decided on the implementations to be executed, you must follow these gen-
eral steps, which are clarified in subsequent sections:

1. Create an activity.

2. Add entries to the activity to specify the chosen subsystem implementations;
in this case, you need one entry that specifies Revl_0_-1 for subsystem Mail-
~Utilities.

3. Set the activity as the default actsvity for your session.
4. Execute the desired unit (for example, the test driver for Command_Utilities).

Note that a simple activity will be created for single application use, which is
sufficient for the present example. In practice, however, you will need to build a
more general-purpose activity so that you can run Environment tools and commands
along with your application; this is covered in “Using General-Purpose Activities,”
below.

RATIONAL 8/1/88 PM-65

Develeping Applications Using Muitiple Subsystems

Creating an Empty Activity

When creating a simple activity for a single application, you can begin with an
empty activity. To create an empty activity:

1. Choose a convenient location for the activity. You can create a special subdi-
rectory for activities within a working view, within a subsystem, or within the
application library that contains the subsystem. In this example, the activity
is created in the application library !Programs.Mail.

2. Enter the Activity.Create command, specifying the The_Activity parameter
with the desired name and using default values for the other parameters:

Activity.Create (The_Activity => "Mail_Activity"};

As a result, an empty activity is created, as shown in Figure 5-11.

Figure 5-11. An Empty Activity

Adding Activity Entries

An activity must contain one entry for each subsystem that needs an implementation
specified for it. To add an entry to an activity:

1. Display the activity.
2. Enter the Activity.Insert command, specifying two of the three parameters as

follows:

Subsystem The name of the subsystem for which an entry is to be added
(in this case, Mail_Utilities)

Load_View The name of the load view containing the implementation to

be executed (in this case, Revl_0_1)
The third parameter, Spec_View, can be omitted for present purposes.
3. Use Common.Commit to save the contents of the activity.

PM-66 8/1/88 BA\TIONAL

Deveioping Applicatiogs Using Muitiple Subsystenus

For example, the following command creates the entry shown in Figure 5-12:

Activity.!nsert (Subsystem => "!Program.Mail Mail Utilities”,
Spec_View => "",
Load_View => "Revl1_0_1";

Subsystem 1 Spec View | lLoad View | Context
MAIL_UTILITIES | I REV1_2..1 | 'PROGRAMS MAIL

Figure 5-12. An Activity with One Entry

Setting the Default Activity

After creating an activity that contains the appropriate entries, you must make it
available for the Environment’s use during execution. More specifically, you must
make this activity the default for the session in which application and testing will
take place.

To set the default activity for the current session:

1. Select the activity that is to be the default.
2. Enter the Activity.Set_Default command using default parameter values.

3. You can use the Activity.Current command to display the name of the activity
that is currently the default.

Note that one default activity can be set for a given session. An error results if you
try to execute units without a default activity.

CAUTION The simple activity in the above example references only one sub-
system. As long as an activity such as this is the default, you will
not be able to execute other programs that are partitioned into
subsystems, including many Environment tools and commands. To
regain the use of Environment tools and commands, reset the de-
fault activity to the Environment default by entering:

Activity.Set_Default {"!Machine.Release.Current.Activity");

The section “Using General-Purpose Activities” describes how to create an activity
for your application that also references the Environment default activity.

QAT'ONAL 8/1/88 PM-67

Developing Applications Using Muitiple Subsystems

The Execution Process

After creating an activity and setting it as the default for the current session, you can
execute the test driver in Command_Interpreter.Revl_Working to test subprograms
from package Command-Utilities. It is during execution that the default activity
is consulted.

Execution begins by loading, which is the process of determining the units to be
executed, determining their elaboration order, and setting up the machine for exe-
cution. The loading process first looks for the main program (in this case, the test
driver) and then looks for the units in the main program’s transitive closure. (A
unit’s transitive closure is the set of units that are directly or indirectly withed and
that constitute the program to be executed.)

The loading process follows internal and external links to find the units in the
transitive closure. When internal links lead to units in a load view (in this example,
package Command.Utilities in Command-Interpreter.Revl_Working), those units
are earmarked for execution. In contrast, when external links lead to units in an
imported spec view, the loading process consults the default activity to locate the
load view that contains the actual units to be executed.

That is, when consulting the default activity, the loading process:

1. Determines which subsystem contains the imported spec view—in this case,
Mail.Utilities.Revl_0_Spec

2. Looks up the activity entry for that subsystem

3. Determines from that entry which load view to use—in this case, Mail_.Utilities-
.Rev1_0_1 :

4. Earmarks the appropriate units from that load view for execution

If the default activity contains no entry for the subsystem containing a spec view,
an error such as the following is reported and the program is not executed:

l1: ERROR Default activity does not define load view for subsystem of
spec unit
'PROGRAMS MAIL MAIL_UTILITIES.REV1_@_SPEC.UNITS.MESSAGES’V(1)

In sum, spec views are compiled against statically, but they are never actually

executed. They serve as placeholders used for compilation, representing load views,
which are actually executed.

PM-68 8/1/88 RATIONAI_

Deveioping Applications Using Multiple Subsvstems

Completing the Compilation and Execution Setup

As shown above, the basic compilation and execution setup includes defining ex-
ports, defining imports, and using activities. The following sections describe how
to obtain more control over subsystem interfaces and more utility from activities.

At this point in the development of the mail program, an interface has been created
between two subsystems (Command_Interpreter and Mail_Utilities). Remaining to
be done are the following tasks, which serve as examples in subsequent sections:

e Create interfaces between each of these subsystems and the third subsystem under
development (Mailbox)

¢ Build a general-purpose activity that specifies the subsystem implementations to
be used during execution

¢ Decide how you will test the entire application and create an interface between
test drivers and the application’s main procedure

Imposing Further Import and Export Controls

A spec view such as Mail_Utilities.Revl_0_Spec makes specific units available for
reference within client views. However, a spec view may make too many units
available for particular client views, for several reasons:

* A spec view may contain “extra” unit specifications that are required omnly for
compilation within that view (see “What to Put in the State.Exports File,”
above). Such units include those that cannot be omitted by virtue of pragma
Private_Eyes_Only. These units are present in the spec view even though no
client needs them for compilation.

e A spec view must contain specifications for the entire set of units needed outside
the subsystem. By design, however, a particular client view may require only a
subset of these units for compilation.

Importing a spec view that contains too many units creates more links in the client
view than are needed to support the design of the program. By virtue of these links,
developers potentially can introduce dependencies that violate the program’s design.
To prevent this from happening, you can specify ezport and smport restrictions,
which make specific subsets of spec-view units available to specific client views.
You can use these restrictions to minimize the links created in each of the spec
view’s clients.

For example, the spec view Mail_Utilities.Revl_0_Spec contains four units, all of
which are required for compilation by units in the client view Command_Interpreter-
.Revl_Working. However, only one of these four units (package Messages) is re-
quired for compilation within subsystem Mailbox, which implements a single pack-
age called Mailboxes (see Figure 5-2). Importing Mail_Utilities.Revl_0_Spec as
is creates links to three additional units, making them available for package Mail-
boxes to with. To prevent this, you can specify export and import restrictions so
that when Mail_Utilities.Revl_0_Spec is imported, only the desired link is created
to package Messages in Mailbox.Revl_Working.

RAT'ONAL 8/1/88 PM-69

Devejoping Applications Using Muitiple Subsystems

The Environment offers several levels at which the availability of implemented units
can be restricted:

o At the first level, the spec view defines which load view units are potentially
available to any client view.

o At the second level, a spec view optionally can contain export restrictions that
define subsets of exported units. Particular export restrictions can be requested
by client views through their import restrictions.

e At the third level, import restrictions themselves optionally can be used to further
restrict the subset of units from the requested export subset.

Overview of Steps

Export and import restrictions are created as files in particular subdirectories within
the exporting and importing views. These files are consulted automatically by the
import operation.

To import Mail_Utilities.Rev1_0_Spec into Mailbox.Revl_Working using restric-
tions, you must follow these general steps, which are clarified in subsequent sec-
tions:

1. In the Exports subdirectory of the exporting (supplier) view, create an export
restriction file that specifies the minimum set of spec-view units required by the
client view.

2. In the Imports subdirectory of the client view, create an import restriction file
that specifies, among other things, the export restriction file created in step 1.

3. Enter the Cmvc.Import command as before. The files created in steps 1 and 2
are used automatically to determine which links to create.

In the present example, only one export restriction file is created, because only
one client requires a subset of exported units. However, in applications in which
multiple clients require different subsets from a single supplier view, you must create
multiple export restriction files, one for each subset.

Similarly, only one import restriction file is needed in this example because only one
import needs to be restricted. However, in applications in which a given client view
needs subsets from multiple imports, you must create multiple import restriction
files, one for each import.

Creating Export Restriction Files

Every view is created with a subdirectory called Exports in which export restriction
files can be created. The Exports subdirectory is at the same level of hierarchy as the
view’s Units directory. Do not confuse the Exports directory with the State.Exports
file within the view (see “Locating the State.Exports File,” above).

PM-70 8/1/88 'QAT'ONAL

Developing Applications Using Muitipie duosysterss

Export restriction files ultimately must reside in the Exports directory of the spec
view to be imported (in this case, Mail_Utilities.Revl_0_Spec). However, because
ongoing development and maintenance occur in working views, it is recommended
that you create and edit export restriction files in the working view containing the
subsystem implementation and then copy the files into the appropriate subdirectory
of the spec view. This makes it easier for you to create new spec views from the load
view at any time. Note that export restriction files can be created in a working view
before spec views have been made from it. In this case, the Cmvc.Make_Spec_View
command automatically copies the files into the new spec view.

To create an export restriction file:

1. Use the Text.Create command to create a text file in the Exports directory of
the relevant working view (in this case, Mail_Utilities.Revl_Working).

You can establish your own naming convention for export restriction files. In this
example, a file called Subset_1 is created in the Mail_Utilities.Revl_Working-
.Exports directory.

2. In the empty file, specify the names of the exported units to be included in the
restricted subset. For multiple names, enter one name per line or use a naming
expression. In this example, only one name is entered—namely, Messages.

3. Commit the file.

4. If you want to be able to rebuild the file from a configuration release, you can
make the file controlled using the Cmvc.Make_Controlled command.

5. Copy the export restriction file into the Exports directory of the spec view to
be imported (Mail-Utilities.Revl_0_Spec).

The resultant file and its parent directory are shown in Figure 5-13.

l . P
Subset_1 : File (Text);

Figure 5-13. An Export Restriction File Called Subset_1

RAT'ONAL 8/1/88 PM-71

Developing Applications Using Muliiple Subsystenis

Name Resolution in the Export Restriction File

Names in the export restriction file are resolved against the Units directory within
the view. Therefore, you can use a simple name like Messages for units located in the
Units directory. If the Units directory contains subdirectories, you must use partly
qualified names for units in those subdirectories. For example, for a unit called Mes-
sage_Lists in the directory Units.Utilities, you would enter Utilities.Message_Lists
in the export restriction file.

Note that you need to use the caret special character (~) in naming expressions to
specify units in directories at the same level of hierarchy as the Units directory.

Export and Import Restriction Files

At this point, a subset of exported units has been defined by creating an export
restriction file and copying it into the appropriate spec view. The next step is
to create an import restriction file in the client view to enable that view to take
advantage of the export subset. An import restriction file uses the following two
conventions to request a particular export restriction file:

e The import restriction file must have the same name as the subsystem containing
the supplier view. {See “Import Restriction Filenames,” below.)

o The first line of the import restriction file specifies the simple name of the desired
export restriction file. Omitting this line implicitly specifies an export restriction
file named Default.

For example, because Mailbox.Revl_Working requires the export restriction file
Subset_1 from the supplier view Mail_Utilities.Rev1_0_Spec, you must create a
corresponding import restriction file called Mail_Utilities that specifies Subset_1 in
its first line. Note that when a given supplier view defines multiple export subsets,
it is the correspondence between restriction files that enables a client view to specify
which of many subsets to use during import.

Creating Import Restriction Files

Import restriction files are created in the Imports directory within the client view.
Like the Exports directory, the Imports directory is at the same level of hierarchy
as the view’s Units directory. Note that because both spec and load views can be
client views, you may need to create import restriction files in both kinds of views.
Within a given client view, one import restriction file must be created for each
supplier view from which an export subset is required.

To create an import restriction file:

1. Use the Text.Create command to create a text file in the Imports directory of
the importing view (in this example, Mailbox.Revl_Working).

Because an import restriction file is named for the subsystem containing the
supplier view, the new file in this example is called Mail_Utilities. (See “Import
Restriction Filenames,” below.)

PM-72 8/1/88 QAT'ONAL

Developing Applications Using Multipie Subsysiens

2. On the first line of the empty file, enter the name of the desired export restriction
file as shown (do not put blanks around or between the => characters):

export_restriction=>subset_l

3. Starting on the second line of the file, enter one or more naming expressions
that specify those units in the export restriction file for which links are to be
created. Naming expressions should match simple names. In this example, a
link is needed for the only name in the export subset, so the at sign (a) wildcard
is entered (@ matches all names in the export restriction file). (See “What to
Put in Import Restriction Files,” below.)

4. Commit the file.

5. If you want to be able to rebuild the file from a configuration release, you can
make the file controlled using the Cmvc.Make_Controlled command.

Figure 5-14 shows the resultant file and its parent directory.

| . . -
Mai1l_.Utilities : File (Text};

Figure 5-14. An Import Restriction File That References Subset_1

Import Restriction Filenames
Typically, the simple name of the supplier subsystem (for example, Mail_Utilities)
is used for the name of the import restriction file.

In very large applications where subsystems in different worlds have the same sim-
ple name, you can derive the import restriction filename from the fully qualified
subsystem name by:

¢ Omitting the preceding ! in the fully qualified name
¢ Changing the dot (.) between name components to underscores (-)

For example, Programs_Mail_Mail_Utilities is the import restriction filename de-
rived from the fully qualified subsystem name !Programs.Mail.Mail_Utilities.

RAT'ONAL 8/1/88 PM-73

Developing Applications Using Muitipie Subsystems

What to Put in Import Restriction Files

As shown above, the first line of an import restriction file can be used to identify
which of the supplier view’s export restriction files to use. The first line consists
of the string export_restriction=> followed by the export restriction filename. Do
not enter blank spaces in this line. Omitting this line implicitly specifies an export
restriction file named Default, which is used if such a file exists; otherwise, the entire
supplier view is used.

On subsequent lines in the file, you can enter naming expressions to specify a further
subset of the units listed in the export restriction file. Enter one naming expression
per line. Links are created in the importing view for the units that are matched by
the naming expressions. Note that if no naming expressions are specified, no links
are created.

Because the import restriction file essentially specifies a set of link names, only
simple Ada names should be used in the naming expressions. This is true even for
names that are qualified within the export restriction file. Whereas names in an
export restriction file are resolved as library names, names in an import restriction
file are resolved as link names.

You can use naming expressions to:

¢ Request links for all units in the export restriction file by entering & (as shown
in Figure 5-14)

* Request links for subsets by using wildcard expressions such as a_pkg

o Exclude links to units by using expressions such as ~Unit_Name (such an expression
normally follows an expression such as @)

¢ Rename links to units by specifying the unit name followed by the new link name
(see below)

If a unit in an imported view has the same simple name as a unit in the client view,
the internal link that already exists in the client view prevents the creation of the
external link from the import. In such a case, you can use the import restriction
file to rename the link, thereby allowing the link to be created without renaming
the imported unit.

For example, if a client view contains a unit named Interface and the import contains
a unit named Interface, the following entry in the import restriction file creates an
external link called Other_Interface instead of Interface:

interface other_interface

In units within the client view, you use a statement such as with Other_Interface
to reference the unit Interface from the supplier view.

Note that links should be renamed only if absolutely necessary. Instead, you should

design your application so that the main program does not reference two units with
the same simple name.

PM-74 8/1/88 PATIONAL

Developing Applications Using Muitiple Subsystems

Summary of Import and Export Restriction Setup

At this point in the example, Mail_Utilities.Rev1_0_Spec contains an export re-
striction file called Subset_1, which is referenced by the import restriction file called
Mail_Utilities in Mailbox.Revl_Working. This setup is represented in Figure 5-15.

Mailbox.Revi_Working

(Imports: Directory)
| ' Mail_Utilities: ftile
mpor
...Subset_1
Restriction P e whsel
File maw
Units: Directory
EEE
_ J
Import
Mail_Utilities.Rev1_0_Spec
(Exports: Directory h
£ Subset_1: file
xport
M
Restriction SR
File wew
Units: Directory
Messages Destinations Users Symbolic_
'spec 'spec 'spec Display'spec
| N J
|
Figure 5-15. Import and Export Restriction Setup
QA—HONAL 8/1/88 PM-75

Developing Applications Using Muitiple Subsystems

When the Cmve.Import Command Is Entered

To complete the import operation, enter the Cmvc.Import command as before,
specifying the supplier view for the View_To_Import parameter and the client view
as the Into_View parameter. Do not specify restriction filenames as parameters to
the Cmvc.Import command.

When the Cmvc.Import command is entered, the information from the restriction
files is used as follows:

1.

7.

From the name of the supplier view specified by View_To_Import, the im-
port operation determines the name of the enclosing subsystem (in this case,
Mail_Utilities).

In the Imports directory of the client view, the import operation looks for an
import restriction file with the name that was obtained in step 1.

If no file is found with that name, links are made for units as specified by the
supplier view. Specifically, links are made for the units named in an export
restriction file named Default, if there is one; otherwise, links are made for all
units in the supplier view.

If there is an import restriction file with that subsystem’s name, the import
operation looks inside the file to find the name of the export restriction file. (If
no export restriction file is named, an export restriction file named Default is
used, 1If one exists.)

The import operation gets a set of names from the export restriction file.

To this set of names, the import operation applies the naming expressions from
the import restriction file, eliminating names as specified.

The import operation makes links for the resultant set of names.

More on Importing

Preparing an entire application for compilation typically involves many import op-
erations. So far in the mail program, two clients have imported the spec view from
Mail_Utilities. To set up imports for the entire mail program:

1.

Create a spec view from the working view in subsystem Mailbox. By default, the
Cmvc.Make_Spec_View command causes the new spec view to inherit imports;
therefore, the spec view in Mailbox automatically imports the spec view from
Mail_Utilities, as required.

Import the spec view from subsystem Mailbox into the load view in subsystem
Command_Interpreter.

For completeness, create a spec view from the working view in subsystem Com-
mand-_Interpreter. This spec view should contain only the specification for the
main procedure, Run_Mail.

Because Run_Mail’Spec contains no with clauses, the spec view requires no
imports. To prevent the spec view from inheriting imports from the work-
ing view, enter the null string (“”) for the View_To_Import parameter in the
Cmvc.Make_Spec_View command.

PM-76 8/1/88 Q/A\TIONAL

Deveioping Applications Using Multiple Subsystems

The complete network of import relationships is represented in Figure 5-16.

Command_lInterpreter

Run_

Malil Spec view

Load view

Mail_Utilities

Mailbox /

Spec view Spec view
—

Load view Load view ,
—

Figure 5-16. Import Relationships in the Mail Program

Within a single program, networks of import relationships among spec and load
views must have the following properties, which are explained below:

¢ They must be consistent.

¢ They may not be circular.

Import operations automatically enforce these properties. In fact, import operations
will fail if you attempt to create a network of imports that violate either of these

properties.

R)ATIONAL 8/1/88 PM-77

Developing Applications Using Multiple Subsystems

Conslistency

Within a consistent set of imports, no view can directly or indirectly import more
than one spec view from the same subsystem. Thus, if a subsystem contains more
than one spec view, only one of these spec views can be used throughout a single
chain of imports. (“Making Non-Upward-Compatible Changes” describes condi-
tions under which additional spec views are created.)

For example, assume that a second spec view is created in the Mail_Utilities sub-
system to accommodate implementation changes. The diagram in Figure 5-17 il-
lustrates an inconsistent network of import relationships.

Command_Interpreter
)

Spec view

Load view

Mailbox Mail “Utilities

Rev_1_Sp:” Rev1_0_Spec

[Wessages—lj @essages D

Spec views

Load views

Figure 5-17. An Inconsistent Network of Import Relationships

This network is inconsistent because a view in Command_Interpreter directly im-
ports Revl_0_Spec and indirectly imports Revi_1_Spec from Mail_Utilities. As
a result, ambiguous references are introduced into the mail program; for example,
a reference to package Messages is ambiguous because both spec views contain an

PM-T8 snes RATIONAL

Developing Applications Using Multiple Subsystems

instance of package Messages. To prevent you from creating illegal Ada programs
in this way, the Cmvc.Import command will fail if you try to set up inconsistent
imports.

Circularity

Within a set of imports among spec and load views, no spec view can indirectly
import itself. For example, the diagram in Figure 5-18 illustrates a circular network
of import relationships.

Command_interpreter

. Spec view

)

Load view

Mailbox .~ Mail - Utilities
N | =
Spec view Spec view

—
)

Load view Load view

Figure 5-18. A Circular Network of Import Relationships

The Cmvc.Import command will fail if you try to set up circular imports. Note
that some existing applications require circular imports among program compo-
nents. Such applications should be developed in combined views within combined
subsystems. These are discussed in the introduction to package Cmvc.

RATIONAL 8/1/88 PM-79

Developing Appiications Using Muitiple Subsystems

Using General-Purpose Activities

When you execute an application that is partitioned into subsystems, the Environ-
ment consults the default activity to look up which implementation to execute from
each subsystem. Therefore, when you execute an entire application, the default ac-
tivity must contain one entry for each subsystem in the application. For example,
to execute the entire mail application with Mail_Activity as the default activity,
you must add two more entries to it, such as those shown in Figure 5-19.

COMMAND_ INTERPRETER | | REVI_WORKING | {PROGRAMS MAIL
MA1LBOX | | REV1_@_1 I 'PROGRAMS MAIL
MAIL_UTILITIES | | REV1_@_1 I 'PROGRAMS .MA L

Figure 5-19. An Activity Containing Entries for the Entire Mail Application

While logged into a given session, however, you typically need to execute more than
just one such application; in fact, many Environment and user-defined commands
and tools are partitioned into subsystems. Therefore, the default activity for a
session must accommodate more than just a single application; it must specify
implementations for any subsystem-based application that you execute during that
session.

One obvious way to construct such a default activity is to add all the required
entries to a single-application activity such as Mail_Activity. However, this method
typically is not practical because of the large number of entries required to support
tools and commands. Another option is to reset the default activity each time
you want to execute a different application, tool, or command. This option is
impractical also, for example, when using user-defined tools to debug an application
as it executes.

Instead, it is recommended that you construct a separate general-purpose activity
that references other, more special-purpose activities. Such an activity references
other activities by containing pointers to their entries. In this example, you can
create a general-purpose default activity that references:

¢ The Environment’s standard activity (!Machine.Release.Current.Activity), which
contains the required entries for tools and commands provided by the Environ-

ment
e Mail_Activity, which contains entries for the subsystems in the mail program

PM-80 8/1/88 R/A\-”ONAL

Figure 5-20 illustrates an activity called Test_Activity that accommodates both
the mail program and standard Environment tools and commands. As shown,
Test_Activity contains pointers to entries in Mail-Activity and to entries in the
Environment’s standard default activity, !Machine.Release.Current.Activity. (Thus,

Developing Applications Using Multiple Subsystens

Test_Activity constitutes a superset of the standard default activity.)

IMachine.Release.Current.Activity

€

This activity
_Is set as the —¥|

default

C

|

|

Subsystem Spec_View Load_View
Ftp Rev9_1_Spec Code9_1_0
Test_Activity
Subsystem Spec_View Load_View
Ftp => Rev9_1_Spec => Code9_1_0
Command_ => Revi1_Working
Interpreter
Mailbox => Rev1_0_1
Mait_Utilities => Rev1_0_1
Mail_Activity
Subsystem Spec_View Load_View
Command_ Rev1_Working
Interpreter
Mailbox Rev1_0_1
Mail_Utllitles Rev1_0_1

The user edits this actlvity}

Figure 5-20. A General-Purpose Activity That Points to Two Other Activities

RATIONAL

8/1/88

PM-81

Developing Applications Using Muliipie Subsystems

Modes for Creating Activity Entries

Recall that new entries, such as those in Mail_Activity, are created directly, us-
ing the Activity.Insert command. Alternatively, entries in an activity such as
Test_Activity (shown in Figure 5-20) are derived from entries in other existing
activities. There are three modes for deriving entries from a source activity:

Differential Entries created in differential mode are pointers to a source ac-
tivity’s entries. Test_Activity contains differential entries.

Exact_Copy Entries created in exact-copy mode are copies of the entries in the
source activity.

Value_Copy Entries created in value-copy mode are the dereferenced values of

the entries in the source activity. (This is useful when the source
activity itself contains pointers to entries in other activities.

Several commands allow you to specify a mode for creating activity entries, including
Activity.Add, Activity.Create, and Activity.Merge. Note that you can insert new
entries among derived entries; furthermore, all types of entries can be deleted or
changed (see package Activity).

Differential entries are especially useful because they allow you to manage special-
purpose activities {for example, Mail_Activity) separately, automatically reflecting
any changes made to the referenced activities.

Creating an Activity with Differential Entries

As shown in Figure 5-20, Test_Activity is to contain differential entries from two
other activities, !Machine.Release.Current.Activity and Mail_Activity. Differential
entries from one source activity are created when Test_Activity is created; differ-
ential entries from the other source activity are subsequently merged in a separate
step, as follows:

1. In the appropriate context (in this case, !Programs.Mail), enter the Activity-
.Create command, specifying the name of the new activity, one of the source
activities from which entries are derived, and the mode for deriving these entries:

Activity.Create (The_Activity => "Test_Activity”,
Source => "!Machine.Release.Current.Activity”,
Mode => Activity.Differential);

2. Select the new activity and create a Command window.

Enter the Activity.Merge command, specifying the name of the remaining source
activity and the mode for deriving entries from the source activity (use default
values for the remaining parameters):

Activity.Merge (Source => "Mail_Activity”,
Mode => Activity.Differential};

4. Use Activity.Set_Default to set Test_Activity as the default activity.

PM-82 ‘ 8/1/88 BA\TIONAL

Developing Applications Using Muitiple Subsystewns

Preserving the Default Activity between Logins

When you set a default activity for a session, that activity is recorded automatically
in your session switches. In this way, your default activity is preserved from login

to login.

If, however, you find that your default activity has been reset the next time you
log in, check the login procedure(s) that are executed for your login. These may
include an Environment default login procedure (Machine.Release.Current.Com-
mands.Login) or a customized login procedure of your own. Login procedures typ-
ically call Activity.Set_Default to ensure that a default activity is set when you
log in. In particular, the default Environment login procedure resets the default
activity to be !Machine.Release.Current.Activity.

To prevent your default activity from being reset inadvertently, delete the call to
Activity.Set_Default from your own login procedure, if you have one; otherwise, de-
fine a login procedure of your own (see the Rattonal Environment Basic Operations)
that does not call Activity.Set_Default. (Do not edit the Environment default login
procedure.)

BA\TIONAL 8/1/88 PM-83

Developing Applications Using Multiple Subsystems

Executing the Entire Application

To execute an entire application, you must execute its main program, which is the
procedure that serves as the root of the application’s dependency closure. (For
applications that execute on R1000 targets, main programs can be subprograms in
the library or in packages; for targets other than the R1000, main programs typically
are parameterless procedures.) For example, the procedure Run_Mail is the main
program for the mail application.

Within an application that is partitioned into subsystems, the specification for the
main program typically exists in multiple contexts—specifically, in one or more spec
and load views. Figure 5-21 shows the main program Run_Mail in each of several
views within the subsystem Command_Interpreter.

Command_Interpreter

Run_
Mail |

Rev1_0_Spec

Revi_0_1

Rev1_0_2
Revi_Working |

Figure 5-21. Multiple Instances of an Application’s Main Program

Although the main program can be executed from any of these contexts, it is rec-
ommended that you execute the instance of the main program in the spec view.

PM-84 8/1/88 R)ATIONAL

Developing Applications Using Muitipie Subsystemns

When you do this, the execution process consults the default activity to look up
and use the implementation specified for the top-level subsystem. In contrast, if
you execute the main program from a load view, the implementation in that load
view is executed, regardless of the implementation specified by the default activity.

For example, if you execute Run_Mail from the spec view Revl_0_Spec, the execu-
tion process consults the default activity to find out which implementation to use
from the Command_Interpreter subsystem. Recall that the default activity refer-
ences Mail_Activity, which specifies the implementation Revl_Working, as shown
in Figure 5-20 above. If; on the other hand, you execute Run_Mail from the load
view Rev1_.0_1, then the implementation in Revl_0_1 is executed instead of the
one specified in the default activity. In both cases, the default activity is consulted
for every imported spec view. (The role of activities during execution is covered in
“The Execution Process,” above.)

Testing an Application

Testing typically involves test drivers that call the application’s main program.
There are several strategies for setting up test drivers. One strategy is to create
test drivers in a world external to the application subsystems. For example, you
can create test drivers in the application world !Programs.Mail. In this case, you
must use Links.Add to create a link to the appropriate instance of the main program
Run_Mail-—namely, to the instance in Command_Interpreter.Revl_0_Spec. (If you
link to an instance of Run_Mail in a load view, the execution process will bypass
the default activity when loading the Command_Interpreter subsystem.)

Alternatively, you can create a subsystem in which to maintain test drivers. In this
case, you can put all test drivers in a working load view that imports the spec view
containing the main program. (Note you must use imports instead of creating links
when the test drivers are in a subsystem.)

Recombinant Testing

You can test different combinations of implementations by changing entries in the
default activity (or by changing entries that are referenced by the default activity).
For example, assume that you want to test the entire application using a new,
unreleased implementation of Mail_Utilities—namely, Revl_Working. To do this:

1. Display the activity that contains entries for the application (in this case,
Mail_Activity).

2. Select the entry to be changed (in this case, the Mail_Utilities subsystem).

Enter the Activity.Change command, specifying the Load_View parameter with
the name of the desired implementation (in this case, Revl_Working).

4. Use Common.Commit to save the contents of the activity.
The default activity (Test—Activity) is updated automatically because it con-
tains differential entries that point to Mail_Activity.

Assuming that the units in Mail_Utilities.Revl_Working are compiled, you can
now execute Run_Mail (or a test driver that calls Run_Mail) to run the entire
application.

RAT'ONAL 8/1/88 PM-85

Developing Appiications Using Multiple Subsystems

By changing activity entries, you can test alternative implementations without re-
compiling the entire application. That is, for applications partitioned into subsys-
tems, a “system build” amounts to specifying a particular combination of precom-
piled load views in an activity. Without having to recompile the application, you
can easily isolate the effects of a new release by testing it against proven releases in
other subsystems.

Note that you can specify alternative test combinations in separate activities. Then,
instead of changing entries in an activity, you can reset the default activity to test
the desired combination.

Making Implementation Changes

Implementation changes are those changes that affect only a working view within
a single subsystem. Such changes do not affect the units in spec views or the
client views that are compiled against spec views. Several types of implementation
changes are described in the following sections. Changes that affect spec views and
their clients are covered in “Making Design Changes,” below.

Changing Nonexported Units

The simplest type of implementation change involves nonexported units in a working
view. You can make arbitrary changes to any unit body in the working view as
well as to any unit specs that occur only in the working view. For example, in the
Mail_Utilities subsystem, the nonexported units are: Destinations’Body, Line’Body,
Messages’Body, Symbolic.Display’Body, Unbounded’Body, and Unbounded’Spec.

Assume that you need to fix a problem that affects both Unbounded’Body and
Unbounded’Spec. To make the necessary implementation changes:

1. Within Revl_Working, change the relevant portions of Unbounded’Body and
Unbounded’Spec. You can demote the units to the source state or edit them
incrementally.

2. Recompile the affected units in Revl_Working. This includes all units in the
present example, because all units in this view depend on Unbounded’Spec.

3. If desired, make a new release (Rev1..0-3) from Revl_Working. Because only
nonexported units were changed, Revl_0_3 is compatible with Revl1_0_Spec
and therefore can be executed with views that import Revl_0_Spec.

4. To test the new release, change the appropriate activity entry to reference
Rev1_0_3 and execute the application. (See “Recombinant Testing,” above.)

Note that because clients are compiled against spec views, not load views, the units
in a load view can be recompiled without affecting the clients. In effect, the presence
of a spec view serves to minimize the recompilation required after making changes.

PM-86 8/1/88 RATIONAL

Developing Applications Using Muitipie Subsystems

Changing Private Parts in Exported Units

The Environment provides support for the conceptual separation of private parts
from visible package declarations, in that private parts in spec view units are closed
by default. Closed private parts are ignored when spec views are compiled; the load
view supplies the private parts at execution time. Accordingly, private parts in
exported units can be changed in the load view without affecting the corresponding
spec view and without requiring the recompilation of client views. Thus, changing
the private part in an exported unit is effectively an implementation change.

For example, the Mail_Utilities subsystem exports a package called Destinations,
which contains a private type called User. Assume that you need to optimize the
completion of Destinations.User by implementing it as a linked list instead of a
variable string. To do this:

1. Make the change in the private part of Destinations’Spec in the load view
Revl_Working. (This private part is shaded in Figure 5-22.) You can edit
the unit specification or use incremental operations.

2. Make the necessary adjustments to Destinations’Body.
3. Recompile the units in Revl_Working and test the application.

As the preceding steps indicate, changes to an exported unit’s private part need to
be made only in the load view, which means that the unit in the working view now
differs from the corresponding unit in the spec view. This difference does not affect
the compatibility between the working view and spec view, and the working view
still can be executed as a valid implementation of the spec view.

As a matter of user preference, you can keep units textually identical across spec
and load views by changing the corresponding private part in the spec view. This
extra step is not necessary, however, because closed private parts are ignored when
spec views and their clients are compiled. Note that if you do modify a unit in the
spec view, demoting the unit to source will entail the demotion of dependent units
in client views as well.

QATIONAL 8/1/88 PM-87

Developing Applications Using Multiple Subsystems

Mail___UtiIities

| Private part in
i Destinations'Spec
N

: Revi_0_Spec
| [:] Unchanged T

Changed

Rev1_Working

Figure 5-22. Compatible Spec and Load Views with Different Private Part

More on Compatibility

A load view is compatible with a spec view if it implements the unit specifications
in that spec view. When a spec view is created from a load view, the exported unit
specifications are identical across the two views. The preceding discussion shows
that corresponding units in spec and load views can be different without rendering
the two views incompatible. Following are the specific differences that can exist
between corresponding units in compatible spec and load views:

¢ Declarations in the private part can be completely different. (This is true only
when private parts are closed. See “More on Closed Private Parts,” below.)

o Context clauses (with and use) can be different.

¢ Declarations can appear in different order, although they must have the same
form.

o Unit specifications in a load view can contain additional declarations that are not
present in their spec-view counterparts.

PM-88 8/1/88 BA\TIONAL

Developing Applications Using Multipie Subsystems

More on Closed Private Parts

Private parts are closed only in spec views that have target key R1000. Furthermore,
private parts are closed only in units that are not generics. Accordingly, private
parts are open in generics and in units in spec views that have other target keys.
Open private parts are compiled along with the rest of the spec view. Therefore,
when private parts are open:

e Pragma Private_Eyes_Only has no effect. (See “Using Pragma Private_Eyes-
—Only,” above.)

e Changes to private parts must be made not only in the working view but also in
the corresponding spec view; otherwise, the spec and working view are rendered
incompatible. See “Making Non-Upward-Compatible Changes,” below, for more
information.

Making Design Changes

Design changes are those changes that affect subsystem interfaces, including changes
to exported unit specifications in spec views. Design changes potentially entail the
recompilation of units in client views. Design changes include:

¢ Upward-compatible changes to unit specifications—for example, adding new dec-
larations

¢ Non-upward-compatible changes to unit specifications—for example, changing
the parameter profile in a subprogram declaration

¢ Adding or removing unit specifications from spec views
¢ Changing a view’s imports
¢ Changing a view’s model

Making Upward-Compatible Changes

Upward-compatible design changes include adding new declarations to exported
units as well as deleting unused declarations (declarations that have no depen-
dents). Such changes are upward-compatible in that they introduce no conflicts
with existing declarations and dependencies in the program.

For example, assume that you are required to add a new field to mail messages in
the mail program. You can do this by adding new selectors and constructors; that
is, by adding declarations for new procedures and functions to the unit specification
of package Messages. To do this:

1. Add the new declarations to Messages’Spec in Mail_Utilities.Revl_Working,
using incremental operations.

2. Make the necessary additions to Messages’Body.

3. Recompile units in Revl_Working as necessary and test the changes within the
working view. Note that testing is limited to the working view because the new
declarations are not yet available for units in client views to reference.

'QATIONAL 8/1/88 PM-89

Developing Applications Using Multiple Subsystems

4. If desired, make a new release (Revl_0_4) from Revl_Working. Note that
Rev1_Working and Revl1_0_4 are compatible with Revl_0_Spec, even though
they implement additional declarations.

5. Export the new declarations by using incremental operations to add them to
Messages’Spec in Revl_0_Spec. If, for some reason, the addition cannot be
done incrementally (for example, if the new declaration introduces a naming
conflict), continue with step 3 in either of the methods described in “Making
Non-Upward-Compatible Changes,” below. See also “Effects of Demotion in a
Spec View with Clients,” immediately below.

6. Modify those client view units that need to reference the new declarations. Note
that:

» Clients can take advantage of the new feature without having to reimport the
Rev1_0_Spec.

o Clients that do not need to reference the new declarations do not need to be
changed or recompiled.

Note that these steps call for implementing the new declarations before exporting
them. Depending on the methodology at your installation, you can aiso export the
new declarations first and then implement them. This amounts to doing step 5
before any of the other steps.

Effects of Demotion in a Spec View with Clients

Step 5 above recommends the use of incremental operations to change the unit in
the spec view and advises against demoting the unit to source. This is necessary
because demoting a unit to source entails demoting its transitive closure, which
consists of all units that directly or indirectly depend on the unit to be changed.
Demoting a unit in a spec view poses two problems when that spec view has clients:

o If the spec view’s clients include released views, then the required demotion can-
not take place, because units in releases are frozen. In this case, the unit in
question cannot be demoted and changed.

o If all of the spec view’s clients are working views, then units in the transitive
closure can be demoted as required and the unit in question can be changed.
However, clients cannot execute while a spec view is demoted, and, depending on
the size of the transitive closure, the recompilation cost can be high.

In contrast, incremental operations require neither the demotion of an entire unit
nor the demotion of a unit’s transitive closure. Therefore, changes that can be
made incrementally do not affect units in client views. When changes cannot be
made incrementally (because they introduce a conflict), you can use the method
described in “Making Non-Upward-Compatible Changes,” below.

To prevent inadvertent demotion of units in spec views, make these units either
uncontrolled or controlled but not joined. This is necessary because controlled units
must be checked out to perform incremental operations, as in step 5. However, if
the unit is joined to its counterpart in the load view, the checkout operation will
attempt automatically to demote the unit to source and then update it to the latest
generation.

PM-90 8/1/88 RATIONAL

Developiug Applications Using Mulupie Subsystems

Implications for Prior Releases

When you make an upward-compatible change to a unit in a spec view, client
releases that were made before the change still can be executed against any im-
plementation of the changed spec view. For example, assume that the Com-
mand_Interpreter subsystem contains several releases that import Mail_Utilities-
.Rev1_0_Spec. These releases were compiled against the spec view before the new
declarations were added to Messages’Spec. Upward-compatibility guarantees that
you can specify any of these prior releases in an activity for successful execution
after the spec-view change.

Furthermore, the Mail_Utilities subsystem itself contains several releases that were
compatible with Revl_0_Spec before the new declarations were added. These prior
releases are now technically incompatible with the changed spec view because they
do not implement the new declarations. However, you can specify any of these
prior releases for execution, provided that you specify prior releases from client
subsystems as well.

Making Non-Upward-Compatible Changes

Non-upward-compatible changes are changes to existing declarations in spec-view
units. Such changes include changing the parameter profile of a subprogram or
changing a nonprivate type. Such changes typically require the demotion and re-
compilation of other units.

This section presents several methods for making non-upward-compatible changes.
Each method involves making a new spec view to avoid the demotion problems
imposed by frozen, released clients. The methods differ with respect to the amount
of editing and recompilation required. Therefore, the method you should choose
depends on the size of your program and the nature of the changes to be made.
Note that any upward-compatible change also can be made using any of these
methods.

Method I

Method I involves generating a new spec view from a working view. This method
is easiest for keeping units textually identical across spec and load views, with a
minimum amount of editing effort. However, because this method has the maximum
recompilation cost, as shown below, it is preferable in the following situations:

e When making many changes to one or more exported units

* When relatively few units depend directly or indirectly on the units in the changed
spec view (that is, when the transitive closure for the entire view is small)

I?AT'ONAL 8/1/88 PM-91

Developing Applications Using Multiple Subsystems

For example, assume that you need to completely rewrite package Messages in the
Mail_Utilities subsystem. To do so:

1. Rewrite package Messages in Mail_Utilities.Revl_Working and test the changed
package in that view.

2. If desired, make a release from Revl_Working.

Note that the changes to package Messages make this release incompatible with
the existing spec view (Rev1_0_Spec). Therefore, you can increment the re-
lease’s level 1 number to indicate the start of a new family of compatible releases.
To do this, specify the value 1 for the Level parameter in the Cmvc.Release com-
mand. The resulting release is called Revl_1_1.

3. Make a new spec view from Revl_Working. The new spec view automatically
contains a copy of the changed Messages’Spec.

Note that if you followed step 3 to create a new release with an incremented level
1 number, you do not have to specify the Level parameter in the Cmvc.Make-
—Spec_View command. Instead, the previously incremented number is used
automatically in the new spec view name, Revl_1_Spec.

4. Switch the imports of all unfrozen client views from the old spec view (Revl-
—0_Spec) to the new spec view (Revl_1_Spec). (This means switching imports
for client working and spec views, not released views.)

In this example, the imports of three client views need to be switched. To
do so, select the entry for Revl_1_Spec within the Mail_Utilities subsystem
and enter the Cmvc.Import command, specifying the Into_View parameter and
using default values for the remaining parameters:

Cmve. Import (Into_View =>
"~[Mailbox.[Revl_Working,Revl_@_Spec],Command_Int8 Revl_Working]"};
Imports for all clients must be switched in a single operation; multiple client
views can be specified by using 2 naming expression for the Into_View param-
eter. (The expression in the example is resolved relative to the context !Pro-
grams.Mail.Mail_Utilities.) Import operations fail if you try to switch imports
one client at a time, because doing so results in an inconsistent import closure.

5. To verify that the imports were successfully changed, you can select the new spec
view, Revl_1_Spec, and enter the Cmvc.Information command. The display
should list the three client views specified above as referencers for the new spec
view.

Switching a client’s imports creates links to the units in the newly imported spec
view. Links to units in the previously imported spec view are deleted. To permit
the change of links, all units that depend directly or indirectly on the imported
view’s units are demoted to the source state. (That is, the transitive closure of
the entire spec view is demoted.) The Cmvc.Import command automatically repro-
motes the demoted units to the coded state when default values are used for the
Remake_Demoted_Units and Goal parameters.

PM-92 8/1/88 RATIONAL

Developing Applications Using Multiple Subsvatens

Method II

Method II invelves generating a new spec view from the existing spec view, not
from the working view. This method potentially reduces recompilation cost when
compared to Method 1. However, this method involves editing units in both the
spec and the load view. This method is preferable:

e When changing relatively few exported units

e When the cost of recompiling the changed units is smaller than the cost of re-
compiling the entire spec view

For example, assume that you need to change declarations in package Symbolic-
~Display in the Mail-Utilities subsystem. To do so:

1. Make and test the required changes to package Symbolic_Display in Mail-
~Utilities.Revl_Working.

2. If desired, make a release from Revl_Working.

As before, you can increment the release’s level 1 number to indicate the start of
a new family of compatible releases. In this case, the resulting release is called
Rev1_2_1.

3. Use Cmvc.Make_Spec_View to make a copy of the latest spec view, which is
Rev1_1_Spec in this example.

Because the newly created spec view ultimately will be compatible with the
release made in step 2, you should use the Level parameter to increment the
level 1 number, thus creating Revl_2_Spec. Note that, in Method II, you must
increment the level number explicitly in both this and the preceding step (see
“Coordinating Level Numbers in Spec and Released View Names,” below).

4. In the new spec view (Revi_2_Spec), make the same changes to Symbolic-
~Display’Spec as you made in the working view in step 1. If many changes
must be made, you can use Library.Copy to copy the changed unit specification
from the working view to the new spec view.

5. Compile the units in Revl._2_Spec.

6. Switch the imports of all unfrozen client views from the previous spec view
(Revi_1_Spec) to the new spec view (Revl_2_Spec). Use the Cmvc.Import
command to switch imports for three client views, as shown in step 4 in Method
I, above. By default, the Cmvc.Import command will perform any necessary
recompilation to the coded state.

Relocation

Making a spec view from another spec view (as in step 3 of Method II) takes
advantage of an Environment optimization called relocation. Relocation enables
the Environment to copy compiled units, preserving the internal representation of
at least their installed state. When imports are switched, units in client views that
were compiled against the source spec view can depend on the relocated units of
the new spec view without requiring recompilation. However, when a change of
any kind (even incremental) is made to a relocated unit, the changed unit loses its
preserved internal representation. Consequently, any client-view units that depend
on the changed unit must be recompiled when imports are switched.

R)ATIONAL 8/1/88 PM-93

Developing Applications Using Multipie Subsystens

In the above example, the transitive closure of Symbolic_Display’Spec must be re-
compiled when the imports are switched because that unit was changed in step
4. The transitive closure of Symbolic_Display’Spec consists of two units in Com-
mand_Interpreter.Revl_Working. However, under Method I, which does not use
relocation, all units in the transitive closure of the new spec view would require
recompilation. That is, using Method I for this change causes the additional recom-
pilation of units in Mailbox.Revl_Working and Mailbox.Revl_0_Spec.

Coordinating Level Numbers in Spec and Released View Names

You can indicate which families of releases are compatible with a given spec view
by coordinating the level numbers in the view names. (See “Spec-View Names and
Level Numbers,” earlier in this chapter.) In the above examples, the level 1 number
is incremented for each set of compatible views. However, the two methods differ
with respect to how these level numbers are coordinated.

In Mcthod I, the level number was explicitly incremented once, by specifying the
Level parameter in the Cmvc.Release command. The subsequentiy created spec
view was named automatically using the same incremented level number. Auto-
matic coordination is possible in this case because both views were created from
the same working view. In contrast, Method II required that you specify the Level
parameter both when creating the release and when creating the spec view. This is
necessary because each view is created from a different source view.

Level numbers for newly created releases or spec views are recorded in a predefined
file within the source view. This predefined file is called State.Last_Release_Name.
The next time a release or spec view is created from that source view, the file is
consulted and the level numbers in it are incremented as specified. When spec
views and releases are created from the same working view, both operations consult
the working view’s State.Last_Release_Name file, so level numbers are coordinated
automatically. When spec views and releases are created from different source views,
different State.Last_Release_Name files are consulted.

Note that State.Last_Release_Name files can be edited to resynchronize level num-
bers. The first digit in the file represents the number of levels that can be incre-
mented; subsequent digits represent the current number at each level.

Specifying Compatible Load Views in an Activity

In each of the above examples, a new spec view is created to accommodate non-
upward-compatible changes in the working view. The changed working view and
subsequent releases made from it therefore are compatible with the new spec view,
whereas releases made before the changes are not compatible with the new spec
view. Thus, the subsystem now contains a “compatibility family” of load views for
each spec view.

When imports are switched so that clients import a new spec view, the application
can be executed only if the activity is also changed so that it specifies a load view
that is compatible with the new spec view. For example, after the change made in
Method II above, clients import Revl_2_Spec from Mail_Utilities. Therefore, the
activity entry for Mail_Utilities must be changed to specify either Revl_Working

PM-94 8/1/88 BA\-”ONAL

Developing Applications Using Muitipie Subsysiems

or Revi_2_1, which are compatible with Revl_2_Spec. An error message is dis-
played if execution is attempted while the activity entry for Mail_Utilities specifies
Rev1_0_1.

In general, the activity entry for each subsystem must specify a load view that is
compatible with the spec view imported from that subsystem. If you attempt to
execute an application and the default activiiy specifies an incompatible load view
for some subsystem, an error message is displayed.

Adding or Removing Units from Spec Views

Adding or removing whole units from spec views basically involves the same meth-
ods used for adding or removing individual declarations from exported units.

If the change is upward-compatible (that is, adding or deleting a unit that has no
dependents), you can make the change directly to an existing spec view, as in the
following steps:

1. Add or delete the unit from the load view.

2. Edit the State.Exports file in the load view. If necessary, edit any export re-
striction files. (This step has no direct effect on following steps; however, it is
recommended to avoid confusion in the long run.)

3. Make a new release from the working view, if desired.

4. Add or delete the unit from the current spec view. (If units in the spec view
need to be recompiled at this point, you are not making an upward-compatible
change; see the next set of steps in this section.)

5. Refresh the imports in each client view by entering the Cmvc.Import command
with the View_To_Import parameter set to the null string (“”). This parameter
value causes the same spec view to be reimported, thereby adding a new link
or disallowing the use of an old link, as appropriate.

6. Change units in client views as necessary to take advantage of any newly added
units.

If the change is not upward-compatible (that is, deleting a unit on which client
units depend or adding a unit on which other spec-view units depend), you should
create a new spec view to which to make the change, as in the following steps:

1. Add or delete the unit in question from the working view.

2. Edit the State.Exports file (and any export restriction files) in the load view.
Note that this step may have a direct effect on step 4.

3. Make a new release from the working view, if desired.

4. Use the Cmvc.Make_Spec_View command to create a new spec view from the
working view.

Alternatively, if you want to take advantage of relocation, you can make a
new spec view from the current spec view. In this case, you must edit export
restriction files as necessary in the new spec view, because these files will not
have been copied from the load view.

RAT'ONAL 8/1/88 PM-95

Developing Appiications Using Multiple Subsystems

Add or delete the unit from the new spec view, and compile the new spec view.
Switch the imports of client views to the new spec view.
Change units in client views as necessary and recompile.

e

Replacing the Model in a Path

As you work within a development path, you may find that you need to change
certain of the predefined library characteristics that are determined by the model.
You can change these characteristics by replacing the current model with a different
model that has the desired characteristics. To replace a path’s model, use the
Cmvc.Replace_Model command in the working view of the path; the units in the
working view must be in the source state.

You can replace the model for a path to:

e Add, change, or delete links to units that are not in subsystems (for example, to
Environment tools required for compilation).

e Change the number of release levels that are represented in the names of release
and spec views.

e Change the library switches.
Note that you can replace a model in order to change a target key; however, the

target key can only be changed to a compatible target key, as defined by the Cross-
Development Facility (CDF) for that target.

Setting Up Subsystems: A Second Look

Having familiarized yourself with the concepts in the preceding chapters, you can
use the following checklists to help you to partition an application into subsystems
and then set up those subsystems.

Planning
Before creating subsystems:

¢ Examine the application design and consider the development team to determine
the best partitioning. Ideally:

— Each subsystem is a complete, logical compounent of the application.
— Each subsystem has well-defined, restricted interfaces.
— The application is partitioned into a manageable number of subsystems.

— Each subsystem eventually contains a manageable amount of code (5-25K
lines).
- Each subsystem has one to five developers working in it.

— FEach subsystem interface exports private types and avoids reexporting dec-
larations from other subsystem interfaces.

PM-96 8/1/88 BA\TIONAL

Developing Applications Usiug Multipie Subsysteins

¢ Decide how many development paths each subsystem will contain. Plan on one
path per target.

— If any non-R1000 target exports generics, its path must contain combined
views instead of spec and load views. This is determined when new paths are
created. See the chapter entitled “Using CDFs with Subsystems.”

— Decide whether units will be joined across these paths.

o Determine the internal directory structure for views in each subsystem. This can
be specified as part of the model; see “Setting Up Model Worlds,” below.

o Establish application-wide naming conventions:

— Determine where the application will reside in the Environment. Locate or
create a project library.

— Choose appropriate names for each subsystem.

— Choose the pathname prefix for the views in each path (depending on your
development conventions, you may want to specify more descriptive base
names than “Revl”).

— Set up the release structure for each subsystem. Determine whether to use
release level numbers. If release level numbers are to be used, decide how
many levels to use and when to increment each level. (This is specified as
part of the model; see “Setting Up Model Worlds,” below.)

If desired, establish naming conventions for sets of spec and load views.

¢ Determine the external resources needed by units in the subsystems. Different
paths may require different sets of links to units not in subsystems.

¢ Determine the interfaces between subsystems, mapping out the network of im-
ports among subsystems. Which subsystems will need to import spec views from
which other subsystems?

— H imports are hierarchic, use spec/load subsystems (the default subsystem
type).
— If imports are circular, consider changing the application design so that im-

ports are hierarchic; otherwise, you must use combined subsystems (different
from combined views; see the introduction to package Cmvc).

Setting Up Model Worlds

After planning the basic subsystem elements, you can create or choose a model for
the initial development path in each subsystem. (You may need additional models
when you set up additional paths.) Models are Environment worlds that provide
specific library characteristics for each view in the path. You can create project-
specific model worlds or choose among the predefined Environment models located
in 'Models. Project-specific models can be created anywhere.

R)ATIONAL 8/1/88 PM-97

Developing Applications Using Multiple Subsystems

The model for a given development path must have:

e Links to the external resources needed by units in the path
¢ The library switches needed for compiling units in the path
o The desired target key

Additionally, models determine:

¢ The number of release levels to be used in automatically generated names of spec
and released views. By default, two release levels are used. Alternatively, you can
create in the model world a file called Levels that contains an integer representing
the desired number of levels.

¢ The user-defined directory structure to be created in each view in the path.
Such structure is created in addition to the Environment-defined subdirectories.
If you want directories at the same level as the Units directory in each view,
create appropriately named directories in the model world. If you want the Units
directory in each view to contain two subdirectories, create a directory called
Units in the model world, and then create the two subdirectories within that
Units directory.

Creating Subsystems from the Bottom Up

After model worlds are in place, you can create the subsystems for an application.
The Cmvc.Initial command creates each subsystem containing the working view for
one path; other paths must be created separately. The following parameters specify
some of the information that was determined during the planning phase:

¢ Working.-View_Base_Name: Specifies the base name for the working view in the
initial path.

o System_Object_Type: Determines whether circular imports are permitted within
an application. If your application requires only hierarchic imports, as is recom-
mended, all subsystems in the application should be of type Cmvc.Spec_Load-
~Subsystem. Circular imports are permitted only among subsystems of type
Cmvc.Combined_Subsystem.

¢ View_To_Import: Specifies the views to be imported from other subsystems
(if any) for the initial path. Using this parameter is equivalent to using the
Cmvc.Import command after the subsystem is created. (However, do not use
this parameter if export and import restrictions files will need to be created.)

o Create_Load_View: Specifies the type of working view to be created within a
spec/load subsystem. Use the default value (true) to create load views, as in the
previous chapters. Specify false if you want to create combined views. Paths for
cross-development in spec/load subsystems must contain combined views when
generics are exported.

¢ Model: Specifies the model for the initial path.

PM-98 8/1/88 BATIONAL

Developing Applications Using Multipie Subsystems

The following overview of the steps for creating the subsystems in an application
starts with the lowest-level subsystems. These steps assume you are using spec and
load views within spec/load subsystems:

1.
2.

3.

Create any subsystem(s) that do not require imports.

Copy or create units in the working view of each subsystem, and compile the
units.

Export units from each subsystem:

— Edit and commit the State.Exports file to include names of the units to be
exported.

— If desired, create export restriction files in the Exports subdirectory.

— Enter the Cmvc.Make_Spec_View command to make a spec view from each
working view.

— Compile the units in each spec view.

Create subsystems for the next layer in the application design. These are the
subsystems that import spec views from the first set of subsystems.

Import spec views from the lower layer of subsystems into the working views of
the next layer:

— If no import restrictions are needed, imports can be created by the same
operation that creates the higher-level subsystems (specify the View_To-
~Import parameter in the Cmvc.Initial command).

— If import restrictions are needed, create the subsystems first, then create
the import restriction files, and finally perform the import operation using
the Cmvc.Import command.

Copy or create units in the working view of each subsystem. Note that these
units will not compile unless the imported spec views are compiled.

Repeat steps 3-6 to create subsequent layers of subsystems. Use the Cmvc.Im-
port command to create imports for spec views. At the top layer, put the main
program in a spec view, where test drivers can link to it.

After Subsystems Are Created

After a given subsystem is created containing an initial development path, you can:

1.

2.
3.
4

Control the desired objects in each working view.
Make additional development paths.
Join or sever controlled objects across paths as desired.

Make subpaths within paths to accommodate multiple developers. Decide how
to integrate work from each subpath.

RATIONAL 8/1/88 PM-99

RATIONAL

Developing Applications Using Multiple Hosts

A single application that is partitioned into subsystems can be developed on multiple
host R1000s. This is useful when:

e The application is too large to be developed on a single host.

o Parts of the application are to be developed by subcontractors, typically on hosts
at different sites.

This chapter covers the basic aspects of multiple-host development.

Overview of Multiple-Host Development

Assume that three host R1000s are to be used for developing the mail program
described in previous chapters. This application consists of three subsystems, each
of which is allocated to a specific machine for development. In particular, the
Mail_Utilities subsystem is to be developed on Machine_1, the Mailbox subsystem
on Machine_2, and the Command_Interpreter subsystem on Machine_3.

A copy of each subsystem resides on each host machine. However, only one copy
of a given subsystem can support ongoing development. This copy is called the
primary subsystem. The other copies, called secondary subsystems, are essentially
local copies for execution and test. As shown in Figure 6-1, the primary subsys-
tem for Mail_Utilities resides on Machine_1, whereas Machine_2 and Machine..3
host secondary subsystems for Mail_Utilities. Similarly, the primary subsystem for
Mailbox resides on Machine_2, with secondary subsystems on each of the other
hosts.

Note that a given machine typically hosts multiple primaries; if the mail program
were to be developed using two machines, two primaries could reside on one of those
machines with the third primary on the other machine.

Development proceeds in each primary subsystem as described in the preceding
chapters. When a new release or spec view is made in a given subsystem, that release
or spec view can be copied, via network or tape, to the corresponding secondary
subsystems on each of the other hosts. Views in the primary subsystem on each
host can then import and compile against the copied spec views in the secondary
subsystems; the default activity on each host can specify the copied releases for
execution.

[QAT'ONAL 8/1/88 PM-101

Developing Applications Using Multiple Hosts

. Machine 1 Machine 2 Machine 3

Command_
Interpreter

Primary

Mailbox ‘Maiib

Primary

| [maii_utilities

Primary

Figure 6-1. Primary and Secondary Subsystems

In R1000 development scenarios, code views, rather than released views, can be
copied from primary to secondary subsystems. Code views are copies of views that
store executable code in place of Ada units. Code views thus require the minimum
amount of storage necessary to permit execution of the view. Furthermore, no
recompilation is required when copying code views between machines.

Because code views do not contain Ada units, full source-level debugging is not
available. Furthermore, the program source cannot be browsed directly as in
released views, although source representation from the CMVC database can be
viewed through configuration and generation images (see the introduction to pack-
age Cmvc). Note that a code view can be browsed in a secondary subsystem only
if the following objects have been copied from the primary subsystem: the config-
uration object for the code view and the CMVC database. (See also “More about
Copying between Subsystems,” below.)

PM-102 8/1/88 BA\TIONAL

Developing Applications Using Multiple Hosts

Setting Up Primary and Secondary Subsystems
To set up the mail application as described above:

1. Locate or create the desired application libraries on each host. For example,
you can create a library called !Programs.Mail on each R1000. Be sure that the
access-control list for these application libraries will permit you to create and
copy subsystems, views, links, switches, and the like.

2. Use the Cmvc.Initial command to create the each primary subsystem on the
appropriate machine. That is, create Mail_Utilities on Machine_1, Mailbox on
Machine_2, and Command_Interpreter on Machine_3. Note that all subsystems
created by Cmvc.Initial are primary.

3. Using the Archive.Copy command or the Archive.Save and Archive.Restore
commands, copy the model world for each primary subsystem onto the other
machines. This model is used when the secondary subsystems are created.

4. Using the Archive.Copy command or the Archive.Save and Archive.Restore
commands, create secondary subsystems on the appropriate machines. By de-
fault, the Archive.Copy and Archive.Restore commands create secondary copies
from primary subsystems.

For example, you can use the Archive.Copy command to copy !!Machine_1-
!Programs.Mail.Mail_Utilities onto Machine_2 and Machine_3, thereby creating
secondary subsystems on those machines.

In this example, the secondary subsystems are created from a primary subsystem
that contains only an empty working view. Note that secondary subsystems also
can be created from a primary subsystem that already contains spec views and
releases, and these are copied in the process of creating the secondaries.

Copying Views among Hosts

Development now proceeds within the working view of each of the primary subsys-
tems created above. When appropriate, a spec view is created to express the exports
from the primary subsystem Mail_Utilities on Machine_1. Compiled releases also
can be made in Mail_Utilities because it is the bottommost layer in the application
(it has no imports). However, compiled releases cannot be made in either of the
other primary subsystems until the working views in these subsystems import the
spec view from Mail_Utilities. To be imported into subsystems on other hosts, this
spec view must be copied into the secondary Mail_Utilities subsystems on those
hosts.

To copy a view from a primary subsystem into a secondary subsystem:

1. Within the primary subsystem, make sure that the units in the view have been
promoted to the coded state. This step is necessary because it ensures that
certain compilation information is recorded in the primary subsystem.

2. Use the Archive.Copy command (or Archive.Save and Archive.Restore) to copy
the desired view into each secondary suhsystem.

RATlONAL 8/1/88 PM-103

Developing Applications Using Multiple Hosts

For example, in the context !'Machine_1!Programs.Mail.Mail_Utilities, the fol-
lowing command copies Revl_0_Spec into the corresponding secondary subsys-
tem on Machine_2. Note that specifying Promote for the Options parameter
causes the view to be recompiled in the secondary subsystem:

Archive.Copy (Objects => "Revl_@_Spec”,
Use_Prefix => "!IMachine_2",
Options => "Promote"};

The working views in the primary subsystems on Machine_2 and Machine_3 can
import and compile against the spec view after it has been copied into the secondary
subsystems. After all the necessary spec views have been created, copied into
secondary subsystems, and imported, the entire application can be compiled.

Copying Views and Subsystem Identification Numbers

The first time units are compiled in a primary subsystem, that subsystem is as-
signed a unique subsystem identification number. Furthermore, the first time views
are copied from a primary subsystem into an empty secondary subsystem, that sec-
ondary inherits the primary subsystem’s identification number. A shared subsystem
identification number thus defines a family of associated subsystems within which
views and associated compilation information can be copied.

Because the association between primary and secondary subsystems is not formed
until the first time a compiled view is copied, you must be careful to copy the
first views into the correct secondary subsystems. Failure to do so will associate
the wrong primary and secondary subsystems; to recover, you must destroy each
incorrectly associated secondary subsystem and recreate it.

Note that when a secondary subsystem is created from a primary that already
contains compiled units, the secondary subsystem is created with the primary sub-
system’s identification number. In this case, there is no danger of associating the
wrong subsystems.

Copying Releases and Code Views

As development proceeds in each primary subsystem, releases (or code views) can be
made from the compiled working views in all of the primary subsystems. However,
the application cannot be executed on any machine until releases and code views
are copied from the primary subsystems into the corresponding secondary systems.

You can copy releases and code views using commands from package Archive, as in
the steps above. Code views are copied in the coded state. However, when released
views are copied, all compiled units in the resulting copies require recompilation.
Therefore, releases should be copied using the Promote option, which unfreezes,
recompiles, and refreezes the copied release in the secondary subsystem.

When a given host has a complete set of releases or code views, activities can be
set up on that host to specify these releases for execution.

PM-104 8/1/88 BA\TIONAL

Developing Applications Using Muitiple Hosts

The Compatibility Database

Spec views and releases can be copied into secondary subsystems in any order
relative to each other, as long as they are both compiled in the primary subsys-
tem. This is necessary because each primary subsystem maintains a compatsbility
database (CDB) which collects compilation information about the views compiled in

the subsystem.

The CDB maintains compilation consistency between the load views and spec views,
ensuring that, for each usage of a given declaration in an exported spec view, the
correct declarations are executed in the compiled load view. More specifically, the
CDB assigns a unique label, or declaration number, to every declaration in every
unit in a spec view. These same declaration numbers represent the corresponding
declarations in load-view units. When a unif in a client view compiles against a
spec view, references to exported declarations are represented as calls to unique
declaration numbers, which are matched with load-view declarations for execution.

CDBs are used in single-host development (where every subsystem is a primary
subsystem) to enable compatible load views and code views to execute in place of
imported spec views. In multiple-host development, the CDB additionally serves to
ensure consistent compilation across machines. That is, when views are copied using
commands from package Archive, the CDB from the primary subsystem is copied
automatically into the secondary subsystem. When compilation on the secondary
host involves the copied views, the copied CDB is consulted for the appropriate
declaration numbers. The copied CDB is especially important when code views
are copied into a secondary subsystem. The CDB ensures that spec views on the
secondary host are compiled consistently with the precompiled code views.

A CDB is identified by the subsystem identification number of the primary subsystem
that contains it. A CDB can be copied only into secondary subsystems sharing
that identification number. Whereas Archive.Copy allows you to copy views from
a primary subsystem into a secondary subsystem with a different identification
number, the CDB is not copied along with it. Failure to copy the CDB is reported
as a warning in the Archive.Copy log. The subsystem identification number for a
subsystem can be displayed using the Cmvc_Maintenance.Display_Cdb command.

Propagating Changes across Hosts

Ongoing development is permitted in a primary subsystem because its CDB can be
updated to reflect new or changed declarations. In contrast, secondary subsystems
contain read-only copies of the primary subsystem’s CDB. Therefore, in a secondary
subsystem, declarations cannot be changed or added to unit specifications in any
kind of view. Such changes must be made in the primary subsystem and propagated
to the secondary subsystems.

The following methods are most appropriate for propagating changes among spec
views or combined views (for information on combined views, see the chapter enti-
tled “Using CDFs with Subsystems”). When you change a working load view in a
primary subsystem, you should propagate changes in any of the following ways:

RATIONAL 8/1/88 PM-105

Developing Applications Using Multiple Hosts

Make a new release of the load view on the primary subsystem and copy it into
the secondary subsystem. Note that when releases are copied, all units in the
resulting copies require recompilation; using the Promote option in the Archive
commands automatically unfreezes, recompiles, and refreezes copied releases in
the secondary subsystem.

Make a code view from the load view on the primary subsystem and copy it into
the secondary subsystem. Copying a code view is faster than copying a released
view because the code view does not need to be recompiled on the secondary
subsystem. Note, however, that source-level debugging of the code contained in
the code view is not possible.

Move the new and changed units in the load view on the primary subsystem to a
working view on the secondary subsystem. This provides source-level debugging
for the code in the view and minimizes the recompilation that results from the
copy operation because only the changed units and the units that depend on them
need to be recompiled. Note that this alternative is the recommended approach
for moving changes into target paths in cross-development (see “Method III:
For Development on Multiple Hosts,” in the chapter entitled “Using CDFs with
Subsystems”).

It is important to be aware that units in a secondary subsystem are not necessarily
frozen, even though the CDB is frozen. Leaving units unfrozen in a secondary
subsystem allows you to use incremental operations according to Method I in the
following section. However, it is possible to freeze all units in secondary subsystems
to prevent any kind of change from being made there. In this case, you must use
Method II exclusively to propagate changes.

Method I: Propagating Incremental Changes

Incremental changes can be made to units in the primary subsystem and then
propagated to the secondary subsystem as follows:

1.

Make the incremental change to the appropriate units in the primary subsys-
tem—for example, incrementally adding a declaration in a unit in a spec view.
When you promote the change to the coded state, compilation information is
recorded in the CDB.

From the secondary subsystem, enter the Cmvc_Maintenance.Update_Cdb com-
mand to copy the CDB from the primary subsystem into the secondary subsys-
tem.

Alternatively, if the two machines are not on the same network, you can use the
Archive.Save and Archive.Restore commands with the Cdb option (see “More
about Copying between Subsystems,” below).

Make the same incremental change to the appropriate units in the spec view
in the secondary subsystem. The copied CDB is consulted when the change is
promoted. Note that the insertion window cannot be promoted unless the CDB
has been copied.

PM-106 8/1/88 R/ATIONAL

Developing Applications Using Multiple Hosts

For completeness in this example, note that you also should change the working load
view on the primary subsystem so that it is compatible with the changed spec view.
Then you can make a new release from the working load view and use Archive.Copy
to copy the new release into the secondary subsystem.

Method II: Propagating Changed Units or Views
Changes that are not made incrementally can be propagated as follows:

1. Make the desired changes to the appropriate units in the primary subsystem.

2. Promote the changed units to the coded state. This operation records compi-
lation information in the CDB.

3. Use the Archive.Copy command to copy either the changed units or the view
containing the changed units into the secondary subsystem. The CDB is copied
automatically by this operation.

For example, assume that you changed units in Revl_0_Spec in the primary sub-
system Mail_Utilities. The following command overwrites the corresponding units
in Revl_0_Spec in the secondary subsystem on Machine_2:

Archive.Copy (Objects => "Revl_@_Spec”,
Use_Prefix => "!IMachine_2",
Options => "Changed_Ob jects,Replace,Remake”};

The values for the Options parameter have the following effects:

¢ Changed_Objects: Causes new and modified objects to be copied.

¢ Replace: Permits units with dependents to be demoted and overwritten. Depen-
dent units also are demoted.

e Remake: Repromotes all units that were demoted by the Replace option.

If necessary, delete any units from the spec view in the secondary subsystem that
had been deleted from the spec view in the primary subsystem. Following are
special considerations when units are controlled in the secondary subsystem:

¢ Controlled units in the secondary subsystem must be checked out before the
Archive.Copy command is entered. Otherwise, the changed units cannot be over-
written with the updated units.

e The Archive.Copy command does not automatically make controlled any new
units that it copies. New units will have to be made controlled on the secondary
subsystem as a separate step.

Note that history information maintained by CMVC is valid only in the primary
subsystem.

IQATlONAL 8/1/88 PM-107

Developing Applications Using Multiple Hosts

Moving a Primary to Another Host

Occasionally it is necessary to move the primary development of a subsystem to
a different host R1000. For example, assume that, because of machine loads, the
primary subsystem Mail_Utilities is to be moved to Machine_2 and the primary
subsystem Mailbox is to be moved to Machine_1.

To rehost a primary subsystem:

1. Find or create an associated secondary subsystem on the desired host. In this ex-
ample, a secondary subsystem for Mail_Utilities already exists on Machine_2.

2. Enter the Cmvc_Maintenance.Update_Cdb command to copy the CDB from the
primary subsystem into the secondary subsystem.

3. Convert the secondary subsystem into a primary subsystem using the Cmvc-
—Maintenance.Make_Primary command with the Moving_Primary parameter
set to true. This causes the converted subsystem to retain its original subsystem
identification number and thus its previous association with other subsystems.

4. Convert the original primary subsystem to a secondary subsystem with the
Cmvc_Maintenance.Make_Secondary command. This step must be done to
prevent corruption of the CDB.

CAUTION If the CDB is corrupted, it must be destroyed in all associated
primaries and secondaries, which demotes all views in those
subsystems to the source state and destroys all code views in
those subsystems.

It is crucial that the subsystem identification number be preserved when converting
the secondary subsystem to a primary subsystem. (This is achieved by setting the
Moving_Primary parameter to true when entering the Cmvc_Maintenance.Make-
_Primary command.) If the subsystem identification number is allowed to change
(by leaving the Moving_Primary parameter false), then the new primary subsystem
is effectively severed from its former associates. The changed subsystem identifica-
tion number means that the CDB cannot be copied between the new primary and
what were intended to be its secondary subsystems.

More on the CDB

A CDB exists in a subsystem only after units have been promoted to the installed or
coded state in that subsystem. Accordingly, the CDB contains declaration numbers
only for declarations that have been compiled. The CDB contains a reference to all
delclarg.tions that were ever compiled in the subsystem, even those that have been
deleted.

The CDB for a subsystem consists of objects in the State.Compatibility directory
of that subsystem. The CDB is corrupted if any object in this directory is deleted.
The CDB is also corrupted if compilation takes place in multiple primary subsystems
that share the same subsystem identification number (see “Moving a Primary to
Another Host,” above).

PM-108 8/1/88 RATIONAI_

Developing Applications Using Multiple Hosts

A corrupted CDB may need to be destroyed using the Cmvc_Maintenance.Destroy-
-Cdb command (consult your Rational technical representative). If you destroy a
CDB in a primary subsystem, you must also destroy the CDB in all the associated
secondary subsystems. Destroying a subsystem’s CDB:

e Demotes all views to the source state in that subsystem
e Destroys all code views in that subsystem

In a primary subsystem, the CDB is recreated automatically the next time you
compile units in the subsystem. However, the CDB is recreated with a new subsystem
identification number, which severs the subsystem from any associated subsystems.

More about Copying between Subsystems

To copy a view or an object from a primary subsystem into a secondary subsystem,
you can:

¢ Use the Archive.Save and Archive.Restore commands to copy via tape.
o Use the Archive.Copy command to copy via the network.

For complete information about commands in package Archive, see Library Man-
agement (LM).

With respect to copying among subsystems, the Archive.Save, Archive.Restore, and
Archive.Copy commands have the same default behavior:

e The CDB is copied automatically whenever a subsystem, a view, or individual
units in a view are specified.

¢ The CMVC database is not copied automatically when a view is copied, so objects
that are controlled in the source are not controlled in the copy. To cause copies
to be controlled, you must copy the CMVC database explicitly by naming it in
the command.

¢ When subsystems are copied, secondary subsystems are created unless otherwise
specified.

* The corresponding configuration object is created automatically for each specified
view. However, the configuration object is of no use unless the CMVC database is
copied.

R)ATIONAL 8/1/88 PM-109

Developing Applications Using Multiple Hosts

In the Archive.Restore and Archive.Copy commands, an Options parameter accepts
the following values pertaining to subsystems:

o Cdb: Causes only the CDB for the specified subsystem to be moved. Thus, the
following command is equivalent to using the Cmvc_Maintenance.Update_Cdb
command with the appropriate subsystems specified:

Archive.Copy (Objects => "Mail_Utilities",
Options => "Cdb"J;

o Ignore_Cdb: Causes the specified objects, views, or subsystems to be copied
without copying the CDB. Vhen a subsystem is specified, this option creates a
copy that is not associated with the source subsystem. Note that the CDB is
always ignored when you copy views or objects into unrelated subsystems, in
which case this option merely saves time.

¢ Primary: Causes the specified subsystem to be copied as a primary (with read/
write access to CDB). Otherwise, a secondary is created with a read-only CDB.

Specifying Primary creates a primary copy that has the same subsystem identifi-
cation number and is therefore equivalent to using the Cmvc_Maintenance.Make-
—Primary command with the Moving_Primary parameter set to true. Note that
when you have two primary subsystems with the same subsystem identification
number, you must make one of them a secondary; otherwise, the CDB will be cor-
rupted. If the CDB is corrupted, it must be destroyed in all associated primaries
and secondaries, which demotes all views in those subsystems to the source state
and destroys all code views in those subsystems.

¢ Revert_Cdb: Allows a less recently updated version of a CDB to be restored over
a more recently updated version. This may be useful when restoring a subsystem
from tape over a subsystem that contains a corrupted CDB (for example, if any of
the objects in the subsystem.State.Compatibility directory are deleted). However,
apart from correcting overt corruption of the CDB, there is no reason to use this
option, because all versions of a CDB are consistent.

PM-110 8/1/88 R)IA\TIONAL

Using CDFs with Subsystems

With Rational’s family of Cross-Development Facility (CDF) products, you can
develop applications on an R1000 for execution on specific target processors. As
described in the CDF user’s manual for each target, the basic cross-development

scenario is to:

1. Develop the Ada units in the application on the R1000, where you can take
advantage of the Environment for language-specific editing, compilation man-
agement, and functional execution testing.

2. Use the CDF on the R1000 to cross-compile, cross-assemble, and link the appli-
cation into an executable module for the desired target.

3. Download and execute the executable module on the target.
4, From the R1000, debug the application as it runs on the target.

Applications intended for non-R1000 targets can be developed either in worlds or in
subsystems. This chapter will cover the basic aspects of using subsystems as the
environment in which cross-development takes place.

Overview of Cross-Development in Subsystems

Using subsystems for cross-development allows you take advantage of development
paths, which are working views for developing variant implementations. Paths sup-
port the development of code that is common to each variant as well as code that
is specific to individual variants. More specifically:

e Controlled units in a given path can be joined to their counterparts in other
paths, so that changes made in one path can be propagated to the other paths
through the Cmvc.Check_Out and Cmvc.Accept_Changes commands.

o Controlled units in a given path can be severed (or left unjoined), so that they
can be checked out and modified independently, without propagating changes.

Each path contains a separate series of releases that are made from its working
view. (For more information on paths, see “Setting Up Development Paths” in the
chapter entitled “Coordinating Development in a Subsystem.”

Applications developed for non-R1000 targets typically are partitioned into subsys-

tems that contain one path for R1000 development and another path for target devel-
opment. Ada units containing target-independent code are joined across these paths

R)ATIONAL 8/1/88 PM-111

Using CDFs with Subsystems

so that changes can be propagated automatically. Figure 7-1 shows two subsystems,
each containing paths for two targets—namely, the R1000 and a Motorola ® McC6s020
microprocessor. These paths contain load views whose exports are expressed as spec
views; note that views in each path import views from the corresponding paths in
the other subsystem.

Spec Spec
view view

&Y S
| —

/i

| Spec Spec

] joined

Ju £
A, U)-J >E
g R1000 notjoined Mc68020_Bare
Path Path
i

Figure 7-1. Paths for Two Targets

Typically, the target-independent units in the application are developed and tested
as much as possible in the R1000 path. When appropriate, changes are propagated
to the working view of the target path, where target-specific code is also being
developed. Units in the target-specific path are cross-compiled and cross-linked
using the CDF for that target. The resulting executable module is downloaded to
the target processor for execution. As it executes on the target, the application can
be debugged using the cross-debugger invoked from the target-specific path.

PM-112 8/1/88 QAT'ONAL

Using CDFs with Subsystems

Target Keys

Each path is identified for a particular target by a target key. The target key
defines the compilation mode within that path, enabling Ada units to be compiled
for the target named by the key. That is, the CDF for a target such as the MC68020
microprocessor is invoked only when you compile units in a working view that has
the Mc68020_Bare target key. For targets other than the R1000, the target key for
a path is displayed in the window banner for any view in that path. (The R1000
target key designation is not displayed.)

The target key for a path is supplied by the model world used to create the path.
Thus, a path for R1000 development is created with a model such as 'Model.R1000,
which has an R1000 target key. Predefined model worlds exist for each target; these
are located in !Model. See the appropriate CDF user’s manual for more information
about target-specific model worlds.

Differences and Restrictions

For the most part, subsystem and CMVC usage is the same for cross-development
as it is for R1000 target development, which is presented in the preceding chapters.
However, there are some differences and restrictions in the areas listed below.

Kinds of Views in Target Paths

Typically, the path for each target contains load views whose exports are expressed
as spec views. However, in the following two cases, the target path must be created
using combined views instead of spec and load views:

o If generics are to be exported
¢ If inlined subprograms are to be exported

Combined views are discussed in “Using Combined Views,” below. Note that spec
and load views should be used when possible because combined views entail special
release considerations. Combined views do not have the advantages of spec/load
views with respect to minimized recompilation requirements and flexible testing
combinations.

Closed Private Parts

In spec views that have target key R1000, private parts are closed, which means that
they are not compiled along with the rest of the spec view. Closed private parts are
useful because they can be changed without requiring recompilation of clients. (See
“Changing Private Parts in Exported Units” in the chapter entitled “Developing
Applications Using Multiple Subsystems.”)

In contrast, private parts are open in spec views that have non-R1000 target keys.

This is true because cross-compilers are limited by the target architecture for which
they must generate code. When private parts are open:

RAT'ONAL 8/1/88 PM-113

Using CDF's with Subsystems

o Changes to private parts must be made not only in the working view but also
in the corresponding spec view; otherwise, the spec and load views are rendered
incomputible. Spec and load views must be made compatible before you can link
an executable module.

¢ Pragma Private_Eyes_Only has no effect.

See “More on Closed Private Parts” in the chapter entitled “Developing Applica-
tions Using Multiple Subsystems.”

Code Views

Currently the capability for generating code views is not available in paths for
targets other than R1000.

Note, however, that the executable module for a main program can be copied with-
out copying the program source. Furthermore, host/target machine-level debugging
is available for executable modules through the CDF for each target.

Execution and Activities

When a path contains spec and load views, an activity is required for execution,

regardless of the path’s target key. However, exactly when the activity is consulted

depends on whether pragma Main is used in the application’s main program. Appli-

cations that are to be cross-compiled for execution on a non-R1000 target must have

main programs containing pragma Main; applications that are to be compiled for

1e;/)I(ecution on the R1000 may, but need not, have main programs containing pragma
ain.

The sequence of events for execution on the R1000 (without pragma Main) follows:

1. Units are promoted to the coded state.
2. The application is executed; the activity is consulted during this step.

The sequence of events for a non-R1000 target (with pragma Main) follows:

1. Units are promoted to the coded state and linked using the CDF. Because an
executable module is made as a result of cross-compiling and cross-linking, the
activity is consulted during this step.

2. The application is downloaded to the target processor and executed.

When pragma Main is not used (the first sequence), changing the activity between
steps 1 and 2 affects execution in step 2. When pragma Main is used (the second
sequence), changing the activity between steps 1 and 2 has no effect on execution
in step 2.

Note that pragma Main causes an executable module to be created containing code
for all units in the application. This executable module sets up an implicit depen-
dency between the main program’s code and the code of the other units executed
in the application—if any unit in the application is subsequently demoted below
the coded state, then the main program is demoted automatically to the installed

PM-114 8/1/88 RATIONAL

Using CDF's with Subsysiems

state. Hence the main program should never be released after being executed with
units in working views, because demoting units in the working views would require
demoting the executable module in the frozen release.

Setting Up Subsystems for Cross-Development

If the application to be developed has not yet been partitioned into subsystems,
start with step 1. If the application is already partitioned into subsystems whose
working views have the R1000 target key, you can start with step 2.

1.

Use the Cmvec.Initial command to create the desired subsystems, one for each
logical program component. Specify models as appropriate so that the initial
working view in each subsystem has an R1000 target key. This initial working
view defines an R1000 path.

Develop and test Ada units as much as possible in the R1000 path. Use the
Cmvc.Make_Controlled command to put these units under CMVC.

When desired, create a target path from the R1000 path in each subsystem. To do
this, select the working view of the R1000 path and enter the Cmvc.Make_Path
command, specifying at least the following parameters:

e New_Path_Name: Specify the name prefix for the new path, according to
your project’s naming conventions. For example, the path name can indicate
the path’s target.

¢ Model: Specify a model that has the appropriate target key. Predefined model
worlds exist in 'Model and are described in the CDF user’s manual for each
target. Predefined models can be used to create your own project-specific
inodels.

¢ Create_Load_View: Specify true if a working load view is to be created.

o Create_Combined_View: Specify true if a working combined view is to be
created. You should use load views if possible; however, you must use com-
bined views if generics or inlined subprograms are exported.

o Join_Paths: Specify true if all or most of the controlled units are to be
shared (joined) between paths; specify false if none or few of the units are to
be joined.

Use the Cmvc.Sever or Cmvc.Join commands as necessary so that all target-

independent units are joined between the two paths and target-specific units

are severed.

The resulting target-specific path is a working view that contains a copy of the units
from the R1000 path. Development can now continue in either path, as appropriate.
Changes can be accepted between paths for the joined units only.

RATIONAL &/1/e PM-115

Using CDF's with Subsystems

Using Combined Views

Combined views are a third kind of view that must be created in spec/load subsys-
tems. When a path is created using combined views, that path contains a working
combined view from which releases can be made.

Combined views combine characteristics of spec and load views:

¢ Like load views, combined views are used for execution because each contains a
complete subsystem implementation, including specifications and bodies for all
units.

o Like spec views, combined views can be imported because they contain the spec-
ifications of exported units; in fact, unless export restrictions are imposed, every
unit specification in a combined view is exported.

Combined views are similar in content to load views, yet they can be imported
directly by client views.

When to Use Combined Views

A path for a non-R1000 target must contain combined views when:

e Generics are to be exported from the path.

e Inlined subprograms (units containing pragma Inline) are to be exported from
the path.

This is necessary because target compilation requires the bodies of generics and
inlined subprograms to be in the same view as their specifications.

A target path should contain spec and load views whenever possible because com-
bined views do not have the recompilation and testing advantages that are gained
by separating exports and implementation.

Note that a single subsystem can contain paths containing spec/load views and
paths containing combined views. Furthermore, within a single application, the
path for a given target may contain load views in some subsystems and combined
views in others.

Defining Exports Using Export Restrictions

Because combined views are imported directly, every unit specification in an im-
ported combined view is by default available for client-view units to reference. To
export a smaller subset of unit specifications from a combined view, you can use
export and import restrictions. More specifically, you must create an export re-
striction file in the Exports directory of the combined view, and then create the
corresponding import restriction file in the Imports directory of the client view.
(See “Imposing Further Import and Export Controls” in the chapter entitled “De-
veloping Applications Using Multiple Subsystems.”)

PM-116 8/1/88 RATIONAL

Using CDFs with Subsystems

Importing among Target Views

You can set up imports among target-specific views using the Cmvc.Import com-
mand. Any kind of view (spec, load, or combined) can import combined views;
furthermore, combined views can import either spec views or other combined views.
Note that a client view can import only a view that has the same target key.

Figure 7-2 shows a sample network of imports among working views in Mc68020-
-Bare target paths in three subsystems. Note that the target path in the topmost

subsystem contains load views, whereas the target path in the lower subsystems
contains combined views.

Spec Top_Layer
—
G
| ‘ {mports
| Mid_Layer
|
\

Combined
view
‘ Imports

| Bottom_Layer

* Combined
: view

Figure 7-2. An Import Network That Contains Load and Combined Views

Because these imports are among views in spec/load subsystems, this import net-
work must be hierarchic (that is, no view can directly or indirectly import itself).
However, import relationships can be circular among combined views that are in
combined subsystems (see the introduction to package Cmvc).

'QAT'ONAI_ 8/1/88 PM-117

Using CDF's with Subsystems

Consequences of Using Combined Views

The fact that combined views do not separate exports from implementation has
consequences for compilation and for execution. As a result, using combined views
has implications for making, testing, and releasing changes.

Consequences for Compilation

Because combined views are imported, units in client views depend directly on units
in imported combined views. Therefore, compilation obsolescence in an imported
combined view can propagate to its client views. Consequently, demoting and re-
compiling unit specifications in an imported combined view must be coordinated
with the development of the client views. In contrast, units in load views can be
recompiled with no direct impact on clients (unless client units contain pragma
Main) because the clients are compiled against spec views; new spec views can be
imported at the client’s convenience.

As a further consequence of direct dependencies, no released view should ever import
a working combined view, because frozen client releases cannot be recompiled to
accommodate changes made in working combined views. An imported combined
view can be thought of as an extension of its clients; if a client is a frozen release,
any combined views it imports should also be frozen releases.

Consequences for Execution

Because combined views contain both exports and implementation, imported com-
bined views are used not only for compilation but also for building executable
modules. Consequently, when a combined view is imported from a subsystem, no
activity entry is needed for that subsystem in order to specify an implementation
for execution.

Testing in paths that contain combined views is less flexible than in paths that con-
tain spec/load views. When spec views are imported, alternative implementations
can be tested by changing activity entries; no recompilation is required. In contrast,
when combined views are imported, executing an alternative implementation means
importing a different combined view, and changing imports entails recompilation of
client views.

Note, however, that client views can change imports only if they are working views,
because frozen released views cannot be recompiled. Therefore, to test a new release
of a combined view against existing released client views, you must release not only
the combined view you want to test but also all clients of that view. In effect,
separate sets of releases must be made for each desired combination of combined
views.

Methods for Using Combined Views

Because of the direct dependencies on units in imported combined views, devel-
opment methods for combined view paths differ from development methods for
spec/load view paths. Two general methods are presented below. The first method
is workable for a small number of subsystems (two or three) in which changes to

PM-118 8/1/88 R/A\TIONAL

Using CDFs with Subsystems

exported units are made fairly infrequently (for example, once a week). The second
method is preferred for larger applications or when changes to exported units occur

more frequently.

Method I: For Smaller Applications

Method I is similar to development using spec and load views, in that releases are
used to facilitate parallel development in the target path. However, because Method
I involves the highest recompilation cost when changes are made, this method is
suitable only for smaller applications (two or three subsystems) in which changes
are made fairly infrequently (approximately once a week).

Under Method I, development proceeds in parallel in the working views of the target
paths. To facilitate this, working views from the higher layers import releases made
from the lower layers. In this method, released combined views play a role similar
to that of spec views, providing stable unit specifications against which views in
higher layers can compile.

For example, consider the application shown in Figure 7-2 above. This applica-
tion contains three subsystems: Top_Layer, Mid_Layer, and Bottom_Layer. Each
subsystem contains an R1000 path and a path for an MC68020 target; the target
path in Top_Layer contains load views and the target paths in Mid_Layer and
Bottom_Layer contain combined views. Finally:

¢ Top_Layer imports Mid_Layer.
¢ Mid_Layer imports Bottom_Layer.

Under Method I, development proceeds as in the following steps (these steps are
represented by number in Figure 7-3):

1. Develop the Ada units in the working combined view in Bottom_Layer until
these units are ready for use by the higher-level subsystems. Then make a
release of the working combined view in Bottom_Layer.

2. make the working view in Mid_Layer import the released combined view from
Bottom.Layer. Compilation and testing can now proceed in Mid_Layer.

3. After appropriate development, make a release from the working combined view
in Mid_Layer. Note that, by default, the new release inherits the working view’s
imports, so that the release in Mid_Layer imports the release in Bottom_Layer.

4. Make the working view in Top_Layer import the released combined view in
Mid_Layer. Compilation and testing can now proceed in Top_Layer.

5. If a complete set of releases is desired, you can now make a release from the
working view in Top_Layer. A release in Top_Layer is not required for pur-
poses of parallel development but is useful for complete system testing or for
identifying a major system release. Note that, by default, this release imports
the released view from Mid_Layer.

RATIONAL s/1/e PM-119

Using CDFs with Subsystems

Top_Layer
Released
Working
ead
Mc68020_Baxe path
@\
Mid_Layer

Released
combined
view

Working
combined
view

Mc68020_Baxe path

Bottom_Layer

Released
combined
view

Working

combined
view

Mc68020_Bare path

Figure 7-3. Method I Development Steps

The steps shown above serve as a “bottom-up” method for making releases serially
from combined views. Making releases from the bottom up prevents releases from
depending on working combined views.

When a new release is made from a lower-level combined view, these steps must
be repeated to take advantage of the new release. That is, all clients need to be
re-released to execute a new lower-level release.

For example, as shown in Figure 7-4, a new release is made in Bottom_Layer (1).
This new release must be imported (2) by the working view in Mid_Layer. At this
point, however, Mid_Layer contains the only working view that can test against
the new release, because the working view in Top_Layer still indirectly imports the
original release in Bottom_Layer.

To solve this, a new release (3) must be made in Mid_Layer, which imports the new
release in Bottom_Layer. Finally, the new Mid_Layer release must be imported by
the working view in Top_Layer (4). Only then can the working view in Top_Layer
test against the most current release in Bottom_Layer.

PM-120 8/1/88 R/ATIONAL

Using CDFs with Subsystems

Top_Layer

Rel_1
Rel_2

Working
load view

% e

Mc6802 Bare path

Mid_Layer

Working
combined
view

Mc68020\ Bare

Bottom_Layer

Working

combined
view

Mc68020_Bare path !

Figure 7-4. Taking Advantage of a New Release in Bottom_Layer

Method II: For Larger Applications

Method II is preferred for larger applications or when changes to exported units
occur more frequently. In this method, the bulk of development and functional
testing takes place in an R1000 path, where spec and load views facilitate parallel
development. The target path id reserved for final target integration and minor
changes. In Method II, released combined views do not play a role in facilitating
parallel development; instead, releases are made from the target path only at major
release points.

Consider once again the application containing the subsystems Top_Layer, Mid-
-Layer, and Bottom_Layer. Assume that an initial R1000 version has been imple-
mented and tested in an R1000 path in each subsystem. Each R1000 path contains
spec and load views; views from Top_Layer import the spec view from Mid_Layer
and views from Mid_Layer import the spec view from Bottom_Layer. Assume also
that the target paths in Mid_Layer and Bottom_Layer must contain combined views
because of exported generics or inlining, whereas the target path in Top_Layer can
contain load views.

RAT'ONAL 8/1/88 PM-121

Using CDFs with Subsystems

Under Method II, development proceeds according to the following general guide-
lines (steps 1, 3, and 5 are numbered in Figure 7-5):

1.

After ensuring that units in the R1000 path are controlled, set up the target
paths from the bottom up, joining each with the R1000 path:

a. From the working view in the R1000 path in Bottom-Layer, create a target
path containing a working combined view.

b. From the working view in the R1000 path in Mid_Layer, create a target path
that contains a working combined view. The newly created view should
import the working combined view in Bottom_Layer.

c. From the working view in the R1000 path in Top_Layer, create a target path
that contains a working load view. The newly created view should import
the working combined view in Mid_Layer.

In the R1000 paths, continue development or maintenance as necessary. Perform
functional testing by setting up an activity and executing the application on
the R1000.

When ready for final target integration, propagate changes between R1000 and
target paths in each subsystem, from the bottom up. That is, operations such
as the following should be done first for Bottom_Layer, then for Mid_Layer,
then for Top-Layer:

o Use the Cmvc.Accept-Changes command to update the working view in the
target path from the working view in the R1000 path. (Under this method,
most if not all units should be controlled and joined between the R1000 and
target paths.)

The Allow_Demotion parameter must be set to true so that units with com-
pilation dependencies can be updated. As a result, accepting changes into
combined views demotes the updated units and their dependents in client
views. However, by default, all affected units are recompiled automatically
by the Cmvc.Accept_Changes command; in the target path, they are recom-
piled using the appropriate cross-compiler.

o If necessary, delete any units from the target path that had been deleted
from the R1000 path. {Note that any new controlled units in the R1000 path
are copied automatically into the target path by the Cmvc.Accept_Changes
command; however, no units are deleted by this command.)

¢ If necessary, refresh the imports of client views to take advantage of added
or deleted units.

At major release points, use the Cmvc.Release command to make a set of releases
from the target paths of all subsystems. (Note that the From_Working_View
parameter in the Cmvc.Release command accepts a list of views to release at
the same time.)

When you release a set of combined views among which import relations hold,
the imports are adjusted automatically so that the new releases reference each
other as appropriate, instead of referencing working views.

Note that if source-level debugging is not required for the released application,
you can save time and space by copying the executable module into an appropri-

PM-122 8/1/88 BA\TIONAL

Using CDFs with Subsystems

ate location and then making a set of configuration releases instead of released
views. Retaining the executable module allows you to execute the released ap-
plication; the configuration objects can be used to rebuild the set of released
views from the bottom up, if necessary.

@

l ‘Spec vlew’ Top_Layer
? Workin Rel_1
| Y| ® |

Mid_Layer

Mc68020_Bare
Working

R1000 path
Rel_1
@ ®

Mc68020_Bare
R1000 path

Bottom_Layer |

Mc68020_Bare
R1000 path path

Figure 7-5. Setup for Development under Method II

Because accepting changes may cause the demotion and recompilation of units in
client views, Method II requires more synchronized development efforts. That is,
changes should be accumulated in the R1000 working view and propagated to the
target working view only at synchronization points that are agreed upon by devel-
opers of all affected subsystems.

However, the advantage of Method II is that recompilation requirements are mini-
mized. That is, when changes are accepted, the only units that require recompilation
are the changed units themselves and any units in their transitive closures. In con-
trast, under Method I, changes are propagated by making and then importing new
releases; changing imports potentially causes entire client views to be recompiled.

RATIONAL 8/1/88 PM-123

Using CDFs with Subsystems

For example, assume that a statement in a unit body is changed in Bottom_Layer.
Under Method I, this change is made awailable to clients by making a new release
from the target path in Bottom_Layer, changing the imports of the target working
view in Mid_Layer, and then making a release in Mid_Layer and changing the
imports of Top_Layer. Under this method, two new releases need to be made and
two working views need to be recompiled as a result of changing imports.

Under Method II, the changed unit body is accepted from the R1000 path into the
working view of the target path in Bottom-Layer, where that unit is recompiled.
No further recompilation is necessary because no units depend on unit bodies.

Method I1I: For Development on Multiple Hosts

Method III builds on Method II to accommodate cross-development on multiple
hosts. Assume that primary subsystems for Bottom_Layer and Mid_Layer exist
on separate machines and that secondary subsystems have been created for each
primary subsystem on the appropriate machines. Like the primary subsystems,
each secondary subsystem is set up with two paths (as shown in Figure 7-6):

e An R1000 path containing spec views and releases copied from the R1000 path in
the associated primary subsystem

e A target path containing working combined (or load) views copied from the target
path in the associated primary subsystem

Imports are set up on the secondary subsystem as they are on the primary.

Method II is used for development within each primary subsystem. For example,
assume that changes have been made in the R1000 path in the primary subsystem for
Bottom-_Layer on Machine_1. These changes are propagated from the R1000 path
to the target path within the primary subsystem, using the Cmvc.Accept_Changes
command. Now you must propagate these changes from the target path in the
primary subsystem (on Machine_1) to the target path in a secondary subsystem (on
Machine_2). (Note that this is also covered as “Method II: Propagating Changed
Units or Views” in the chapter entitled “Developing Applications Using Multiple
Hosts.”)

To propagate changes to the secondary subsystem:

1. Use the Archive.Copy command to copy only the changed units from the target
working view on the primary subsystem to the target working view on the
secondary:

Archive.Copy (Objects => "Revl_Working",

Use_Prefix => "!1Machine_2",

Options => "Changed_Ob jects,Replace,Remake"};
In this command, the Changed_Objects option causes new and modified ob-
jects to be copied. The Replace option permits units with dependents to be
demoted and overwritten. Dependent units are also demoted. The Remake
option repromotes all units that were demoted by the Replace option.

Because only changed units are copied, recompilation in the subsystems on
Machine_2 is limited to the transitive closure of the changed units.

PM-124 8/1/88 R)ATIONAL

Using CDFs with Subsystems

Machine 1 Machine 2

Mid_Layer (Primary Subsystem) Mid_Layer (Secondary Subsystem)

Cmvc.Accept_Changes

o

load view

R1000 path Mc68020_Bare
path

Figure 7-6. Setup for Multiple-Host Cross-Development

2. If necessary, delete any units from the target working view in the secondary
subsystem that had been deleted from the target working view in the primary
subsystem.

Following are special considerations when units are controlled in the secondary
subsystem:

e Controlled units in the secondary subsystem must be checked out before the
Archive.Copy command is entered. Otherwise, the changed units cannot be over-
written with the updated units.

o Unlike the Cmvc.Accept_Changes command, the Archive.Copy command does
not automatically make controlled any new units that it copies. New units will
have to be made controlled on the secondary subsystem as a separate step.

Note that history information maintained by CMVC is valid only in the primary
subsystem.

RATIONAL +/1/e PM-125

RATIONAL

Naming

Many commands in the Rational Environment require a way of naming objects in
the Environment to move those objects or to perform operations on those objects.
The Environment uses two forms of naming: Ada names and string names. Ada
names are used in program units or when executing a command. String names
typically are used in the parameters to Environment commands.

Ada names are used to call an Environment command in a Command window or
to reference an Ada unit in a program. Ada names are the extended Ada names as
defined in the Reference Manual for the Ada Programming Language. Ada names
are used to reference Ada units only. Files, worlds, directories, and other non-Ada
objects in the Environment cannot be referenced with an Ada name.

String names are used as arguments to commands. These strings are very similar
to Ada names but can be used to reference any object in the Environment. Also,
string names have five important additions: spectal names, parameter placeholders,
wildcards, spectal characters, and attributes. The ability also exists to create a set
of names using simple set notations and to substitute characters.

Special Names

Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow you to specify selections and
designations without providing a pathname. Anywhere that a string name can be
used, special names can be used. They take the form “<special name>”, where
spectal name specifies the text, object, region, or activity, as described below:

"<SELECTION>" References the highlighted object if the cursor is located in a
highlighted area.

"<REG | ON>" References the highlighted object.

"<CURSOR>" References the object on which the cursor is located, whether
or not there is a highlighted area in the window.

"<IMAGE>" References the highlighted object if the cursor is in a high-

lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

RAT'ONAL 8/1/88 PM-127

Naming

"KTEXT>" References the highlighted text in the image in the window.

"CACTIVITY>" References the default activity. If an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Special names are used as default parameter values to many operations. The user
can replace them with another special name or other form of string name, as ac-
cepted by that operation.

Special Values

Many operations in the Environment have a Response parameter that specifies how
the command should respond to errors.

Error Reactions
When errors are discovered in a command, the system can respond by:

o Ignoring the error and trying to continue.
¢ Issuing a warning message and trying to continue.
» Raising an exception and abandoning the operation.

For each job, the Rational Environment maintains a default action for commands
in package !Tools.Profile (documented in SIM) to take if an error occurs. There are
commands to specify and display the default error reaction for a job. Regardless of
the default error reaction, any error reaction can be specified for any command.

The Environment has spectal values used as parameters to commands for which
profile it should use when responding to errors in a command. These are "<PRO-
FILE>", "<SESSION>", and "<DEFAULT>", which refer, respectively, to the job response
profile, the session response profile, and the default profile returned by the Pro-
file.Default_Profile function. See SJM, package Profile, for further information on
profiles.

Parameter Placeholders

Many Environment commands use parameter placeholders as default parameter val-
ues. They take the form “>>parameter placeholder<<”. This naming convention is
used, as its name suggests, as a placeholder indicating the type of string name that
must be entered to replace it. Executing a command without replacing a parameter
placeholder results in an error. Parameter placeholders include:

">>FILE NAME<K”

">>PATH NAMES<K"
"D>>ACTIVITY NAME<ZL"

For example, an operation that has the ">>FILE NAME<<" parameter placeholder
requires a filename, such as “!Users.John.File_1”.

PM-128 8/1/88 RATIONAL

Naming

Wildcards

Wildcards allow for both the abbreviation of names and the specifying of several
objects with one name. The wildcards are: pound sign (#), af sign (@), question
mark (?), and double question mark (?77).

Wildeard #

The pound sign (#) represents any single identifier character in a name, including
the underscore (-). It can be used several times within a single name. For example,
F##4# will match the name Food.

Any wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.####y, can be created to refer to the first two of
them.

Wildeard o

The at sign (@) represents zero or more identifier characters in a name, including
the underscore (-). It does not match any subunits of Ada units. It can be used
several times within a single name. For example, the name !Users.Fred.Food can
be written 'U6.6.Food if that abbreviation is unambiguous.

This wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.8, can be created to refer to all three of them.

This wildcard can be combined with the special characters, discussed in the next
section, to create very short names that represent sets of objects in the current
context. As before, if there are three Ada units in the current context called Larry,
Curly, and Moe, the string @ can be used to represent all three Ada units, but it
would not include their subunits.

Wildeard ?

The question mark (?) represents zero or more components in a name, which are not
worlds or objects contained by those worlds. For example, the name !Users.Stooges?
represents the Ada units called Larry, Curly, and Moe and any of their subunits.

Also note that periods before and after the wildcard are optional. For example, the
name A.7.B is equivalent to the name A7B.

Wildcard ??

The double question mark (77) represents zero or more components in a name,
including worlds or objects contained by those worlds. For example, the name
'Users?? represents the home worlds of all users and the contents of those worlds;
!Users.Bill represents everything in his home world, including worlds and the objects
within those worlds. As another example, consider that !7? matches all objects in
the directory system on a given machine.

Note that periods before and after the wildcard are optional. For example, the
name A.77.B is equivalent to the name A7?B.

[QAT'ONAL 8/1/88 PM-129

Naming

Substitution Characters

Similar to the way in which wildcard characters can be used to specify a source
group of objects, substitution characters can be used to create target names from

source names.

The substitution characters and their definitions are described below. Note that
if a substitution character is encountered after all segments/wildcards have been
exhausted, the characters are replaced by the null string. If the character # or 7 is
replaced by the null string, an immediately following period (.) is also elided from
the resulting string.

Substitution Character #

The pound sign (#) is replaced by the next complete segment in a name. For
example, if there are Ada units in the world !Users.Stooges called Larry, Curly,
and Moe, and the user wants to copy them into !Users.Stooges.New_World, the
user could build the target name parameter (from the !Users.Stooges source name
parameter) using substitution characters as follows: !#.#.New_World.#.

Substitution Character 6

The at sign (@) is replaced by the portion of the current segment that is matched by
a wildcard in the source name. If there is more than one wildcard in the segment, a
separate @ is needed in the target to match each one. If the current segment has no
wildcards, the next character that is followed by any of the special (not wildcard)
characters covered in this section is not eligible as the source of the substitution.
(For the purpose of this matching, @, #, 7, and ?? are considered to be wildcards.)

For example, there is a world called !Users.Gzc containing files File_1 through
File_50. The user wants to rename these objects My_File_1 through My_File_50.
The source name parameter would be !Users.Gzc.File_a. The target name param-
eter, using substitution parameters, would be !4#.#.My_File_o.

Substitution Character ?

The question mark (?) is replaced by successive full segments until the segment
for a world is encountered. For example, to copy everything in a world up through
the next-level world !Users.Mary to !Users.John, the source string would be !Users-
.Mary 7 and the target string would be !Users.John?.

PM-130 8/1/88 'QAT'ONAI_

Naming

Special Characters in Names

Special characters can be used in names to specify either relative or absolute con-
texts or to specify indirect files of names. These special characters apply to names
used throughout the Environment.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character of exclamation (!), caret (‘;,
dollar sign ($), double dollar sign ($3), percent (%), underscore (-), period (.),
backslash (\8, or grave (") causes an explicit interpretation of the remainder of the
name as described below.

Character pairs are also used tc enclose a name and to give that name an additional
meaning. Character pairs are brackets ([]) and braces ({}), which are also described
below.

Special Character !

The exclamation mark (!) specifies that the context for resolving the remainder of
the name should be set to the root of the directory system. This creates a fully
qualified name. This character represents the root of the library system in any
context.

Special Character -

The caret (~) specifies that the context should be set to the immediately enclosing
object. This climbs the hierarchy of objects and eventunally reaches the root of
the directory system. This prefix can be used repeatedly to define the context to
be several units above the current context. The parent object of the root of the
directory system is itself.

A special use of this character occurs in combination with a bracketed name. A
name component of the form ~[some_unit] resolves to the closest containing object
whose simple name is Some_Unit. Brackets normally are used for creating sets of
objects.

The caret also can be used as a shorthand method for referring to objects in a
parent unit. For example, if the current context is !Users.Pete, another user named
Joe can be referred to as !Users.Joe or simply ~Joe.

Special Character $

The dollar sign ($) specifies that the context should be set to the immediately
enclosing library. A library is either a directory or a world. If the current context
is a library, this character has no effect.

A special use of this character occurs in combination with a bracketed name. A name

component of the form $[some_library| resolves to the closest containing library
whose simple name is Some_Library.

QAT‘ONAL 8/1/88 PM-131

Naming

Special Character $$

The double dollar sign ($8) specifies that the context should be set to the immedi-
ately enclosing world. This is more restrictive than the single dollar sign ($), which
is either a world or a directory. If the current context is a world, this character has
no effect.

A special use of this character occurs in combination with a bracketed name. A
name component of the form $$[some_world] resolves to the closest containing world
whose simple name is Some_World.

Special Character -

The underscore (-) is interpreted as an indirect file prefix when used in some En-
vironment commands. If the first character after the underscore is an alphabetic
character, then it is assumed to be the first character of the name of a file that
contains other names. This provides a way of building lists of objects and referring
to that list in a name. (See “Indirect Files,” below.) The underscore also must be
used when specifying an activity file as an indirect file.

Special Character .

The period (.) is used both as a name component separator and as a name prefix.
As a separator, it is used just as in Ada names to separate components of a name.
For example, in the name Commands.Ada, the period separates the two components
of the name.

Special Character \

The backslash (\) specifies that the next name component be evaluated in the
current searchlist. For example, a name such as Larry would be evaluated in the
current context. However, a name such as \Larry would be evaluated in each of the
contexts of the searchlist in turn until all occurrences of the name Larry are found
in those contexts. If more than one occurrence is found, a menu is displayed.

More information about searchlists can be found in Session and Job Management
(SIM).

Special Character *

The grave (*) is used to evaluate names using the current context and the set of
links associated with the current context. The grave evaluates the name as if it
were the name of an Ada unit in a with clause of a unit in the library that contains
the current context. For example, the name *Moe resolves to an Ada unit called
Moe in the containing library. Moe could be a link to some other library.

This kind of naming does not allow for renamed packages or instances of generic
packages or subprograms to be used. It does not “look through” renaming declara-
tions.

More information about links can be found in Library Management (LM).

PM-132 8/1/88 BATIONAL

Naming

Special Characters |]

Brackets ([]) define a set notation. Sets are created by enclosing a series of name
components, separated by commas, in brackets. For example, the name [Larry,
Curly, Moe] represents only those three objects in the current context.

The semicolon character also can be used to separate name components. Commas
and semicolons cannot be mixed. If semicolons are used, each name component
in the set must resolve to at least one object. For example, Foo?[’C(Lib), *Spec
matches any component of Foo that is either a library or an Ada spec. Foo[A;B
must match A and B in Foo.

Names also can be excluded from a set with the tilde (7). For example, the name
[8, "Curly] represents all names in the current context except the name Curly.

The special string |] represents the current context, whether that context is a
directory, world, Ada unit, or other object.

Special Characters {}

Braces ({)) denote objects that have been deleted but not expunged as well as
objects that have not been deleted. For example, if the object Curly is deleted but
not expunged, the name @ refers only to Larry and Moe, but the name {08} refers
to Larry, Curly, and Moe.

Indirect Files

Indirect files are text files that contain one or more object names or naming expres-
sions. When an indirect file is given as a parameter value, the Environment converts
the file’s contents into set notation (see “Special Characters | |,” above). An indirect
file is thus a way of maintaining a list of objects that can then be referenced using
a single name.

In an indirect file, you can put each name or naming expression on a separate line:

Larry
Curly
Moe

8_pkg

Alternatively, you can separate name components with commas or semicolons (with
semicolons, each name component in the set must resolve to at least one object):

Larry,Curly
Moe ,@_pkg

When resolving the contents of an indirect file, the Environment inserts commas in
place of new lines and preserves any existing commas or semicolons.

To specify an indirect file as a parameter value, it must be prefixed with an under-
score () (see “Special Character _”, above). For example, to specify an indirect
file called Archive_List, enter:

Ob jects => “_Archive_List”

RATIONAL /178 PM-133

RATIONAL

package Activity

An activity maintains a mapping between subsystems and pairs of views. The pair
consists of a spec view and a load view from that subsystem. An activity typically
is used to specify an implementation from each subsystem to be used for execution.

This package provides operations for creating, viewing, and manipulating activities
and for identifying which activity is the current activity for a running job or session.

Editing Activities

In addition to the commands relating to activities, an editor provides editing opera-
tions specific to activities. Many of the operations in package !Commands.Common
apply to activities. An activity can be viewed with the Edit command (or sim-
ply by getting the definition of the activity) and then can be edited with com-
mon editing operations. This section describes the commands from package !Com-
mands.Common that apply to activities. Operations from package Common that
do not apply to activities produce a message to that effect in the Message window.

Changes to activities are not made permanent until committed. When an activity
is changed, but not yet committed, the # symbol appears in the window banner.
Committing the activity makes all changes to the activity permanent, and the =
symbol appears in the window banner.

Commands from Package !Commands.Common

procedure Common.Abandon

Ends editing of the activity and removes the window from the screen. Because all
changes to activities are not made permanent until committed, any uncommitted
changes will be lost.

procedure Common.Commit

Makes permanent any changes made to the activity.

EATIONAL 8/1/88 PM-135

package !Commands.Activity

procedure Common.Create.Command

Creates a Command window below the current window. The use clause in the
Command window includes package Activity, so operations in package Activity are
directly visible without qualification in the Command window.

procedure Common.Definition

Finds the definition of the subsystem corresponding to the selected entry or the entry
on which the cursor resides, in the compressed form of an activity. For expanded
entries (that is, those expanded to three lines: one each for the subsystem, the spec
view, and the load view), this command finds the definition of the corresponding
subsystem, spec view, or load view. This procedure creates a window containing
that subsystem or view.

procedure Common.Edit

Prompts the user for changes to the selected entry, or to the entry on which the
cursor resides when is pressed, by creating a Command window and placing in
it the command:

Change (Spec_View => "", Load_View => "");
The user fills in values for one or both parameters, as desired.

Spec- or load-view entries also can be specified indirectly through another activity.
By specifying the name of an activity rather than the name of an actual view,
the user indicates that the name of the desired view should be derived from the
subsystem’s corresponding entry in the specified activity.

procedure Common.Release

Makes any changes to the activity permanent, releases control of (unlocks) the
activity, and then destroys the window.

procedure Common.Sort-Image

Sorts the activity image according to the specified sort format. These formats are
specified by number:

Sorts by subsystem

Sorts by kind and subsystem
Sorts by kind and value
Sorts by kind and view

Sorts by value and subsystem
Sorts by value and kind

Sorts by view and subsystem
Sorts by view and kind

Q0 =IO U QY k=

PM-136 8/1/88 P/A\TIONAL

package !Commands. Activity

procedure Common.Object.Child

Selects the entry in the activity on which the cursor currently resides. If an entry
is already selected, this command has no effect.

procedure Common.Object.Delete

Deletes the selected entry or the entry on which the cursor resides.

procedure Common.Object.Elide

Controls the level of detail displayed in the image of the current activity. Successive
uses display successively less information about the activity entries, proceeding from
top to bottom in the following list:

¢ All data by subsystem

e Load data by subsystem (indirections are identified)

e Spec data by subsystem (indirections are identified)

¢ Both views by subsystem

e Load views by subsystem (indirections are not identified)
» Spec views by subsystem (indirections are not identified)
¢ Subsystems by subsystem

procedure Common.Object.Expand

Controls the level of detail displayed in the image of the current activity. Successive
uses display successively more information about the activity entries, proceeding
from bottom to top in the list given under Common.Object.Elide.

procedure Common.Object.Explain

Uncompresses a subsystem entry, separating each component (subsystem name,
spec view, and load view) of the entry onto separate lines.

procedure Common.Object.First_Child

Selects the first entry of the activity.

procedure Common.Object.Insert

Inserts a new subsystem entry or modifies an existing entry in the activity by
prompting the user. Creates a Command window and places in it the command:

RAT'ONAL 8/1/88 PM-137

package !Commands.Activity

Insert {Subsystem => "", Spec_View => "", Load_View => "");

The user fills in values for parameters, as desired. If the subsystem name is omitted,
it will be derived from the view names, provided that these are full pathnames.

Spec- or load-view entries also can be specified indirectly through another activity.
By specifying the name of an activity rather than the name of an actual view,
the user indicates that the name of the desired view should be derived from the
subsystem’s corresponding entry in the specified activity.

procedure Common.Object.Last_Child
Selects the last entry of the activity.

procedure Common.Object.Next

Selects the next entry in the activity if an entry is selected. If no entry is selected,
this command selects the entry on which the cursor currently resides. If all entries
are selected, this procedure produces an error.

procedure Common.Object.Parent

Selects the entry in the activity on which the cursor currently resides. If an entry
is already selected, the procedure selects all entries in the activity. Otherwise, the
procedure has no effect.

procedure Common.Object.Previous

Selects the previous entry in the activity if an entry is selected. If no entry is
selected, the procedure selects the entry on which the cursor currently resides. If
all entries are selected, this procedure produces an error.

PM-138 ss RATIONAL

subtype Activity_Name
package !Commands. Activity

subtype Activity_Name

subtype Activity_Name is String;

Description

Defines a string pathname that resolves to an activity in the directory system.

RATIONAL 8/1/88 PM-139

procedure Add
package !Commands.Activity

procedure Add

procedure Add

(Subsystem : Subsystem_Name = "<CURSCOR>";
Load_Value : View_Or_Activity_Name := Activity.Nil;
Spec_Value : View_Or_Activity_Name := Activity.Nil;
The_Activity : Activity_Name = Activity.The_Current_Activity;
Mode : Creation_Mode 1= Activity.Exact_Copy;
Response : String := "<PROFILE>"};
Description

Modifies the activity specified by The_Activity parameter by updating an existing
entry for a subsystem or by adding a new entry if an entry for the specified subsystem
does not already exist.

Parameters

Subsystem : Subsystem_Name := "<CURSOR>";

Specifies the subsystem name for the new entry. This name is resolved in the current
context. The default is the subsystem name on which the cursor is located.

Load_Value : View_Or_Activity_Name := Activity.Nil;

Specifies the name of a load view within the specified subsystem or an activity from
which the load view can be derived (based on the Mode parameter) for the new
entry. The view’s name is resolved within the context of the specified subsystem.
The default is the empty activity, indicating no load-view component.

Spec_Value : View Or_Activity_Name := Activity.Nil;

Specifies the name of a spec view within the specified subsystem or an activity from
which the spec view can be derived (based on the Mode parameter) for the new
entry. The view’s name is resolved within the context of the specified subsystem.
The default is the empty activity, indicating no spec-view component.

The_Activity : Activity_Name := Activity.The_Current_Activity;

Specifies the activity to which the new entry will be added. The default indicates
the current selection or image.

Mode : Creation_Mode := Activity.Exact_Copy;

Specifies the mode by which the new entry shall be derived, if either the Spec_Value
or the Load_Value parameter specifies the name of an activity and not a view.

PM-140 8/1/88 I?ATIONAL

procedure Add
package !Commands. Activity

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

Add (Subsystem_Name => "User_Interface",
Load_Value => "Revl1_0_4",
Spec_Value => "Revl_0_Spec”,
The_Activity => "!Application_Name.Current_Release");

References

type Creation_Mode

RATIONAL 8/1/88 PM-141

procedure Change
package !Commands.Activity

procedure Change

procedure Change (Spec_View : View_Or_Activity_Name
Load_View : View_Or_Activity_Name

Description

Modifies the spec-view and/or load-view components of the currently selected sub-
system entry or the entry on which the cursor currently resides.

The !Commands.Common.Edit command prompts the user with this command.
This command is meaningful only in a Command window associated with an activ-

ity.

Parameters

Spec_View : View Or_Activity_Name := "";

Specifies the name of the new spec view. The null string indicates that the spec
view should not be changed.

Load_View : View_Or_Activity_ Name := "";

Specifies the name of the new load view. The null string indicates that the load
view should not be changed.

Example

The following command changes only the load-view component of the designated
entry to Revl_0_7:

Change (Load_View => "Revl1_@_7");

The following command changes only the spec-view component of the designated
entry to Revl_1_Spec:

Change (Spec_View => "Revl_1_Spec”);
The following command changes both spec- and load-view components of the des-

ignated entry:
Change (Spec_View => "Revl_@_Spec", Load_View => "Revl_9_7");

PM-142 8/1/88 BA\-”ONAI_

procedure Change
package !Commands. Activity

The following command changes the spec-view component in the designated entry
to be the spec view used in the corresponding entry in the named activity:

Change (Spec_View => "Some_Activity_Name");

References

EST, procedure Common.Edit

RATIONAL s/1/e PM-143

procedure Create
package !Commands. Activity

procedure Create

procedure Create (The_Activity : Activity_Name "D>ACTIVITY NAME<KL";

Source : Activity_Name - Activity.Nil;
Mode : Creation_Mode := Activity.Exact_Copy;
Response : String = "<PROFILE>");

Description
Creates a new activity.

The created activity may be derived from the source activity based on the Mode
parameter.

Parameters

The_Activity : Activity_Name := >>ACTIVITY NAME<KL;

Specifies the name of the new activity. The default parameter placeholder ">>AC-
TIVITY NAME<<" must be replaced or an error will result.

Source : Activity_ Name := Activity.Nil;

Specifies the name of the activity from which the new activity is to be created. The
default is an empty activity.

Mode : Creation_Mode := Activity.Exact_Copy;
Specifies the mode by which the entries shall be derived from the source activity.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The following command creates a new activity with indirect entries for all subsys-
tems in the source activity !Release.Current.Activity:

Create (Activity => "My_Private_Activity",

Source => "!Release.Current.Activity”,
Mode => Activity.Differential)};

PM-144 8/1/88 RATIONAL

procedure Create
package !Commands.Activity

References

type Creation_Mode

RAT'ONAL 8/1/88 PM-145

type Creation_Mode
package !Commands.Activity

type Creation_Mode

type Creation_Mode is (Differential, Exact_Copy, Value_Copy);

Description

Defines three modes for the creation of spec-view and load-view references for sub-
system entries.

Enumerations

Differential

Indicates that the new entry should be formed as an indirect reference to the source
activity. The created entry will not be the name of a view but the name of another
activity that specifies an actual view or another activity from which to derive the
view. With this mode, changes made to the source activity will be reflected in the
target activity.

Exact_Copy

Indicates that the new entry should be formed as an exact copy of the entry in the
source activity. Thus, if the source entry contains the name of an actual view, the
new entry also will contain the actual view. If the source entry contains an indirect
reference, the new entry will contain an identical indirect reference.

Value_Copy

Indicates that the new entry should be formed as the dereferenced value of the
corresponding source entry. Indirect (differential) references will be resolved until
an actual view is found.

PM-146 sis RATIONAL

procedure Current
package !Commands.Aciivity

procedure Current

procedure Current (Response : String := "<PROFILE>");

Description
Displays the name of the activity that is associated with the current job.

If no activity has been associated with the job, the procedure returns the activity
currently associated with the running session.

The current activity is set by the Set and Set_Default procedures.

Parameters

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
procedure Set

procedure Set_Default

QATIONAL 8/1/88 PM-147

procedure Display
package !Commands.Activity

procedure Display

procedure Display

{Subsystem : Subsystem_Name := "?";
Spec_View : View_Name = "?";
Load_View : View_Name = "?";
Mode : Creation_Mode = Activity.Value_Copy;
The_Activity : Activity_Name = Activity.The_Current_Activity;
Respense : String = "<PROFILE>"};

Description

Displays an image of the specified activity.

Only the mappings that match the patterns (Environment naming conventions, in-
cluding wildcards) given in the Subsystem, Spec_View, and Load_View parameters
are listed. In Value_Copy mode, all indirect references are resolved; only the reso-
lution is displayed. In Exact_Copy mode, indirect mappings are not resolved; the
name of the source activity is displayed. In Differential mode, the indirect mappings
are resolved; both the resolution and the original indirect activity are displayed.

Parameters

Subsystem : Subsystem_Name := "?7";

Specifies the name of the subsystem entry to be displayed. The default indicates
that all subsystem entries should be displayed.

Spec_View : View Name := "?";

Specifies a pattern for spec-view entries. Only patterns that match are displayed.
The default indicates that all spec views are acceptable.

Load_View : View_Name := "?";

Specifies a pattern for load-view entries. Only patterns that match are displayed.
The default indicates that all load views are acceptable.

Mode : Creation_Mode := Activity.Value_Copy;

Specifies the mode by which the image of each entry shall be derived from the
activity.

PM-148 8/1/88 BA\TIONAL

procedure Display
package !Commands. Activity

The_Activity : Activity_Name := Activity.The_Current_Activity;

Specifies the name of the activity to be displayed. The default indicates the activity
associated with the running job. If no activity has been associated with the job,
the procedure returns the activity associated with the running session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function The_Current_Activity

RAT'ONAL 8/1/88 PM-149

procedure Edit
package !Commands. Activity

procedure Edit

procedure Edit (The_Activity : Activity Name := "<ACTIVITY>"};

Description
Invokes the activity object editor on the specified activity.

The default is to edit the current activity.

Parameters

The_Activity : Activity_Name := "<ACTIVITY>";

Specifies the name of the activity to be edited. The default indicates the activity
for the current job or session.

PM-150 8/1/88 BA\TIONAL

procedure Enclosing_Subsystem
package !Commands.Activity

procedure Enclosing_Subsystem

"<IMAGE>";

procedure Enclosing_Subsystem (View : View_Name
"<PROF ILE>"};

Response : String

Description
Displays the name of the subsystem that contains the specified view.

The default is the currently selected view, the view containing the current selection,
or the view containing the current context.

The view may be either a spec or a load view.

Parameters

View : View_Name := "<IMAGE>";

Specifies the name of the view whose enclosing subsystem is desired. The default is
the currently selected view, the view containing the current selection, or the view
containing the current context.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

'QA‘HONAL 8/1/88 PM-151

procedure Enclosing_View
package !Commands. Activity

procedure Enclosing_View

procedure Enclosing_View (Unit : Unit_Name := "<IMAGE>";
Response : String := "<PROFILE>");

Description
Displays the name of the view that contains the specified unit.

The default is the currently selected unit or unit image.

Parameters

Unit : Unit_Name := "<IMAGE>";

Specifies the name of the unit for which the enclosing view is desired. The default
is the currently selected unit or unit image.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-152 8/1/88 RATIONAL

procedure Insert
package !Commands. Activity

procedure Insert

procedure Insert
(Subsystem : Subsystem_Name
Spec_View : View_Or_Activity_Name
Load_View : View_ Or_Activity_Name

">>SUBSYSTEM NAME<<";

Description

Modifies an activity to update an existing entry for a subsystem or adds a new
entry if one does not already exist for the specified subsystem.

The !Commands.Common.Object.Insert command prompts the user with this com-
mand. This command is meaningful only in a Command window associated with

an activity.

Parameters

Subsystem : Subsystem_Name := ">>SUBSYSTEM NAME<KL";

Specifies the name of the subsystem. The default parameter placeholder ">>SuB-
SYSTEM NAME<<" must be replaced or an error will result.

xD

Spec_View : View Or_Activity_ Name := ;

Specifies the name of the spec-view for the subsystem entry. A null string specifies
no entry if an entry does not already exist for the subsystem or no change if the
subsystem does exist.

Load_View : View_Or_Activity Name := ;

Specifies the name of the load view for the subsystem entry. A null string specifies
no entry if an entry does not already exist for the subsystem or no change if the
subsystem does exist.

Name resolution: The subsystem name is resolved in the current context. Names

within spec- and load-view indications are resolved within the context of the spec-
ified subsystem.

RATIONAL +/1/s PM-153

procedure Insert
package !Commands.Activity

Example 1
procedure Insert (Subsystem
Spec_View
Load_View

Example 2
procedure Insert {Subsystem
Spec_View
Load_View

=>
=>
=>

=>
=>
=>

"User_Interface",
"Revl_@_Spec”,
"Revl1_@8_5");

"User_interface"”,

"C&rrent_Release");

where Current_Release is the name of an activity in 'My_Application.User_Inter-

face.

References

EST, procedure Common.Object.Insert

PM-154

s RATIONAL

procedure Merge
package !Commands. Activity

procedure Merge

"D>ACTIVITY NAME<LK";
non
"é";
non

procedure Merge (Source : Activity_Name
Subsystem : Subsystem_Name
Spec_View : View_Name
Load_View : View_Name

Mode : Creation_Mode Aétivitg.Exact_Copg;
Target : Activity_Name “"<ACTIVITY>";
Response : String "<PROFILE>"};

Description

Copies into the specified target those subsystem entries defined in the source activity
that match the patterns specified in the Subsystem, Spec_View, and Load_View
parameters.

New subsystem entries are added as necessary; existing subsystem entries are re-
placed.

Patterns for the Subsystem, Spec_View, and Load_View parameters are the stan-
dard Environment naming conventions and wildcards.

Parameters

Source : Activity Name := ">>ACTIVITY NAME<K";

Specifies the name of the activity from which entries are to be copied. The default
parameter placeholder ">>ACTIV!TY NAME<<" must be replaced or an error will result.

Subsystem : Subsystem_Name := "?2";

Specifies the subsystem entries to be copied. The default indicates that all subsys-
tem entries should be copied.

Spec_View : View_Name := "?2";

Specifies a pattern for spec-view entries. Only patterns that match are copied. The
default indicates that all spec views are acceptable.

Load_View : View_Name := "?";
Specifies a pattern for load-view entries. Only patterns that match are copied. The

default indicates that all load views are acceptable.

Mode : Creation_Mode := Activity.Exact_Copy;
Specifies the mode by which entries are derived from the source activity.

RATIONAI_ 8/1/88 PM-155

procedure Merge
package !Commands.Activity

Target : Activity Name := "<ACTIVITY>";

Specifies the name of the activity into which the new entries are to be copied. The
default target activity is the current activity for the job or session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-156 8/1/88 BATIONAL

function Nil
package !Commands.Activity

function Nil

function Nil return Activity_Name;

Description

Returns the name of an empty activity.

R)A—HONAI_ 8/1/88 PM-157

procedure Remove
package !Commands.Activity

procedure Remove

procedure Remove

{Subsystem : Subsystem_Name := "<SELECTION>";
The_Activity : Activity Name = Activity.The_Current_Activity;
Response : String = "<PROFILE>"};

Description

Deletes a subsystem entry from an activity.

The default activity is the current activity for the job or session.

Parameters

Subsystem : Subsystem_Name := "<SELECTION>";

Specifies the name of the subsystem entry to be deleted. The default is the current
selection.

The_Activity : Activity_Name := Activity.The_Current_Activity;

Specifies the name of the activity from which the entry is to be deleted. The default
indicates the current activity for the job or session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-158 siss RATIONAL

procedure Set
package !Commands.Activity

procedure Set

"<ACTIVITY>",;

procedure Set (The_Activity : Activity_Name
"<PROFILE>"};

Response : String

Description
Changes the current activity for the running job to the specified activity.

A session may have a current activity associated with it. The Set_Default procedure
is used to form this association. When a job begins execution, its current activity
is that of the current session. The Set procedure changes a job’s current activity
without changing the session’s activity. Thereafter, until the job terminates, the
new activity is consulted when necessary, instead of the current session’s activity.

Note that this procedure cannot be used to affect the loading of a subsequent
command in the same job. Loading is done for the entire job before execution
begins and thus would be unaffected by the execution of the Set command. In the
following example:

Activity.Set ("New_Activity_Name");
Command_Requiring_Loading;

the Command-Requiring_Loading command will be loaded with the current ses-
sion’s activity and not with New_Activity_Name.

By contrast, in the example:

Activity.Set {"New_Activity Name"};
Program.Run ("Command_Requiring_lLoading”);

the loading for the command via Program.Run is performed after the execution of
the Set procedure and thus will use New_Activity_Name.

Parameters

The_Activity : Activity Name := "<ACTIVITY>";

Specifies the name of the activity to make current for this job. The default indicates
the activity for the current session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-159

procedure Set
package !Commands.Activity

References

procedure Set_Default

PM-160 e RATIONAL

procedure Set_Default
package !Commands. Activity

procedure Set_Default

“"<ACTIVITY>";

procedure Set_Default (The_Activity : Activity_Name
"<PROFILE>"};

Response : String

nu

Description
Makes the specified activity the current activity for the current session.

This procedure sets the value of the Profile.Activity_File session switch. If the
current activity of the job that executes Set_Default is nil, the procedure sets this
activity as well.

The default activity for a session is also preserved across logouts.

Parameters

The_Activity : Activity_Name := "<ACTIVITY>";

Specifies the name of the activity to make current. The default indicates the current
activity.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Set

RATIONAL 8/1/88 PM-161

procedure Set_Load_View
package !Commands.Activity

procedure Set_Load_View

procedure Set_lLoad_View

(Load_View : View _Or_Activity_Name := "<CURSOR>";
Subsystem : Subsystem_Name = "",
Mode : Creation_Mode = Activity.Differential;
The_Activity : Activity_Name = Activity.The_Current_Activity;
Response : String = "<PROFILE>");

Description

Modifies the load view for the specified subsystem entry in The_Activity parameter.

If an entry for the specified subsystem does not exist, one is added to the activity.

Parameters

Load_View : View_Or_Activity_Name := "<CURSOR>";

Specifies the name of the new load-view entry. Name resolution is performed within
the context of the specified subsystem. The default is the load-view name or activity
name on which the cursor is located.

If the Load_View parameter designates a view, that view is associated with the
subsystem that contains it. The value of Load_View must be the simple name of a
load view.

If the Load_View parameter designates an activity, that activity must contain an
entry for the subsystem specified by the Subsystem parameter. The load view
associated with Subsystem in this activity becomes the load view associated with
Subsystem in the activity named by The_Activity.

"o

Subsystem : Subsystem_Name := ;

Specifies the name of the subsystem entry. Name resolution is performed relative
to the current context. The default value (“”) resolves to the current context
and therefore can be used only when the current context is the subsystem that
contains the view specified by the Load_View parameter. Otherwise, the Subsystem
parameter must name the subsystem that contains the view designated by the
Load_View parameter.

Mode : Creation_Mode := Activity.Differential;

Specifies the mode by which the entry shall be derived if an activity is designated
by the Load_View parameter.

PM-162 8/1/88 R)/A\-”ONAL

procedure Set_Load_View
package !Commands. Activity

The_Activity : Activity Name := Activity.The_Current_Activity;
Specifies the name of the activity to be modified. The default indicates the current
selection or image.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

Set_Load_View (Load_View => "Revl_2_4",
Subsystem => "User_interface”,
The_Activity => "Current_Release");

is equivalent to:

Set_Load_View (Load_View => "User_interface.Revl1_2_4",
Subsystem => "",
The_Activity => "Current_Release"};

Example 2

Set_lLoad_View (Load_View => "Working_Activity”,
Subsystem => "User_lInterface”,
Mode => Activity.Value_Copy,
The_Activity => "Current_Release");

This command changes the load view for the User_Interface subsystem in the Cur-
rent_Release activity. The command will set the load view to the same value as
that specified for the User_Interface subsystem in Working_Activity.

R)ATIONAL 8/1/88 PM-163

procedure Set_Spec_.View
package !Commands. Activity

procedure Set_Spec_View

procedure Set_Spec_View

(Spec_View : View_Or_Activity_Name := "<CURSOR>";
Subsystem : Subsystem_Name = "";
Mode : Creation_Mode = Activity.Differential;
The_Activity : Activity_Name = Activity.The_Current_Activity;
Response : String = "<PROFILE>");
Description

Modifies the spec view for the specified subsystem entry in The_Activity parameter.

If an entry for the specified subsystem does not exist, one is added to the activity.

Parameters

Spec_View : View_Or_Activity_Name := "<CURSOR>";

Specifies the name of the new spec-view entry. Name resolution is performed within
the context of the specified subsystem. The default is the spec-view name or activity
name on which the cursor is located.

If the Spec_View parameter designates a view, that view is associated with the
subsystem that contains it. The value of Spec-View must be the simple name of a
spec view.

If the Spec_View parameter designates an activity, that activity must contain an
entry for the subsystem specified by the Subsystem parameter. The spec view
associated with Subsystem in this activity becomes the spec view associated with
Subsystem in the activity named by The_Activity.

Subsystem : Subsystem_Name := "";

Specifies the name of the subsystem entry. Name resolution is performed relative
to the current context. The default value (“”) resolves to the current context
and therefore can be used only when the current context is the subsystem that
contains the view specified by the Spec_View parameter. Otherwise, the Subsystem
parameter must name the subsystem that contains the view designated by the
Spec_View parameter.

Mode : Creation_Mode := Activity.Differential;

Specifies the mode by which the entry shall be derived if an activity is designated
by the Spec_View parameter.

PM-164 8/1/88 BATIONAL

procedure Set_Spec_View
package !Commands. Activity

The_Activity : Activity Name := Activity.The_Current_Activity;

Specifies the name of the activity to be modified. The default indicates the current
selection or image.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

Set_Spec_View (Spec_View => "Revl_2_Spec”,
Subsystem => "User_lInterface",
The_Activity => "Current_Release");

is equivalent to:

Set_Spec_View {Spec_View => "User_interface.Revl_2_Spec”,
Subsystem => "",
The_Activity => "Current_Release"};

Example 2

Set_Spec_View (Spec_View => "Working_Activity",
Subsystem => "User_lnterface”,
Mode => Activity.Value_Copy,
The_Activity => "Current_Release"};

This command changes the spec view for the User_Interface subsystem in the Cur-
rent_Release activity. The command will set the spec view to the same value as
that specified for the User_Interface subsystem in Working_Activity.

R)ATIONAL 8/1/88 PM-165

subtype Subsystem_Name
package !Commands.Activity

subtype Subsystem_Name

subtype Subsystem_Name 1is String;

Description

Defines a string pathname that resolves to a subsystem in the directory system.

PM-166 s RATIONAL

function The_Current_Activity
package !Commands. Activity

function The_Current_Activity

function The_Current_Activity return Activity_Name;

Description
Returns the name of the current activity associated with the running job.

If no activity has been associated with the running job, this function returns the
activity associated with the running session.

E)ATIONAL 8/1/88 PM-167

function The_Enclosing_Subsystem
package !Commands.Activity

function The_Enclosing_Subsystem

function The_Enclosing_Subsystem (View : View_Name := "<IMAGE>")
return Subsystem_Name;

Description
Returns the name of the subsystem that contains the specified view.

The default is the currently selected view, the view containing the current selection,
or the view containing the current context.

Parameters

View : View_Name := "<IMAGE>";

Specifies the name of the view whose enclosing subsystem is desired. The default is
the currently selected view, the view containing the current selection, or the view
containing the current context.

return Subsystem_Name;
Returns the name of the subsystem that contains the specified view.

PM-168 8/1/88 R)ATIONAI_

function The._Enclosing_View
package !Commands. Activity

function The_Enclosing_View

function The_Enclosing_View (Unit : Unit_Name := "<IMAGE>")
return View_Name;

Description

Returns the name of the view that contains the specified unit.

Parameters

Unit : Unit_Name := "<IMAGE>";

Specifies the name of the unit whose enclosing view is desired. The default is the
currently selected unit or unit image.

return View_Name;

Returns the name of the view that contains the specified unit.

R)ATIONAL 8/1/88 PM-169

subtype Unit_Name
package !Commands.Activity

subtype Unit_Name

subtype Unit_Name 1s String;

Description

Defines a string pathname that resolves to an Ada compilation unit in the directory
system.

PM-170 8/1/88 I?ATIONAL

subtype View_Name
package !Commands.Activity

subtype View_Name

subtype View_Name is String;

Description

Defines a string pathname that resolves to a view of a subsystem.

RATIONAL 8/1/88 PM-171

subtype View_Or_Activity_Name
package !Commands.Activity

subtype View_Or_Activity_Name

subtype View_Or_Activity_Name is String;

Description

Defines a string pathname that resolves either to a view of a subsystem or to an
activity in the directory system.

PM-172 8/1/88 BA\-”ONAL

subtype View_Simple_Name
package !Commands. Activity

subtype View_Simple_Name

subtype View_Simple_Name 1s String;

Description
Defines a string that is the simple name of a view of a subsystem.

A simple name is an unqualified name not prefixed with the name of the object’s
parent.

Example 1
Revl 8. 5
Rev2_@_Spec

not:

User_Interface.Rev3_4_7

‘?AT'ONAL 8/1/88 PM-173

procedure Visit
package !Commands.Activity

procedure Visit

procedure Visit (The_Activity : Activity Name := "<ACTIVITY>");

Description

Invokes the activity editor on the specified activity and replaces the old activity if
one is currently being edited.

This procedure is identical to the !Commands.Common.Edit command, except that
if the command is given on an activity window, the new activity is displayed in that
window rather than in a new one.

Parameters

The_Activity : Activity_Name := "<ACTIVITY>";

Specifies the name of the activity to be visited. The default is the current activity
for the job or session.

References

EST, procedure Common.Edit

PM-174 8/1/88 PATIONAL

procedure Write
package 'Commands.Activity

procedure Write

procedure Write (File : Activity Name := "<ACTIVITY>");

Description

Copies the contents of an activity window into a new activity in the directory
system.

This command is valid only in an activity window.

Parameters

File : Activity_Name := "<ACTIVITY>";

Specifies the name of the new activity. The name is resolved relative to the current
context. The default is the current activity for the job or session.

end Activity;

PATIONAL 8/1/88 PM-175

RATIONAL

package Check

Package Check provides interfaces for checking the compatibility between spec and
load views in a subsystem. Compatibility is defined in the Key Concepts to this
book. Command-oriented interfaces and programmatic interfaces with status values
are provided. Interfaces are available for comparing units in load views with their
corresponding units in spec views or for comparing a set of spec/load-view pairs.

The compatibility checking done by this package checks that every declaration ex-
ported by a spec-view unit is also exported by the corresponding load-view unit
and that the spec and load views have the same target key. These declarations
do not need to be in the same order or textually identical. Two declarations are
considered equivalent if they match according to the subprogram specification con-
formance rules of the Reference Manual for the Ada Programming Language, section
6.3.1. All units involved in the check must be in the installed or coded state.

It is possible to construct an activity such that the spec/load-view pairs named by
the activity are compatible but the set of load views specified would not execute
correctly together. For example, this could happen if two load views in the activity
import different spec views of the same subsystem. The checks done by this package
will not catch those situations, but the loader will check for this and report these
types of problems at load time.

IQATIONAL 8/1/88 PM-177

procedure Activity
package !Tools.Compatibility.Revn.Units.Check

procedure Activity

procedure Activity (The_Activity : String = "<ACTIVITY>";
Menu : Boolean := False;
Response : String := "<PROFILE>");

function Activity {The_Activity : String := "<ACTIVITY>";

Response : String := "<PROFILE>") return Status;

Description
Checks the compatibility of all spec-view and load-view pairs specified in an activity.

For each subsystem entry in the activity, each unit in the spec view is checked
for compatibility with the corresponding unit in the load view. If an entry for a
subsystem does not specify both a spec and a load view, that subsystem will not
be checked.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

The_Activity : String := "<ACTIVITY>";

Specifies the name of the activity whose spec-view and load-view pairs should be
checked for compatibility.

Menu : Boolean := False;

Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command’s execution.

If false, a log file is produced as specified by the Response parameter.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-178 8/1/88 RAT'ONAL

type Status
package !Tools.Compatibility.Revn.Units.Check

type Status

type Status is (Compatible, Incompatible, Error);

Description

Defines the range of possible outcomes of a compatibility check.

Enumerations

Compatible

Indicates that the unit or units included in the check are all compatible with each
other.

Error

Indicates that the operation failed to complete successfully. For example, the name
of a unit or view may not be resolvable. The log output can be consulted to
determine the reason for the error.

Incompatible

Indicates that at least one unit included in the check is not compatible with another
unit. The log output can be consulted to determine which unit or units are not
compatible.

R)A-”ONAL 8/1/88 PM-179

procedure Units
package !Tools.Compatibility.Revn.Units.Check

procedure Units

procedure Units (Load_View_Units : String = "<CURSOR>";
Spec_Vieuws : String = "<ACTIVITY>";
Menu : Boolean := False;
Response ¢ String := "<PROFILE>"};
function Units (Load_View_Units : String := "<CURSOR>";
Spec_Vieuws : String := "<ACTIVITY>",
Response : String := "<PROFILE>"} return Status;

Description

Checks the compatibility of a set of units in load views with their corresponding
units in the specified spec views.

The Load_View_Units parameter specifies the set of units to be checked, and the
Spec_Views parameter specifies the set of spec views used to perform the check.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

Load_View_Units : String := "<CURSOR>";

Specifies one or more units in load views to be checked. Multiple units can be
specified by using wildcards, context characters, set notation, or an indirect file.
(For further information, see “Naming” in the Key Concepts section of this book.)

Spec_Views : String := "<ACTIVITY>";

Specifies one or more spec views to be used to perform the check. Multiple views
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see “Naming” in the Key Concepts
section of this book.) Furthermore, Spec_Views can name an activity as an indirect
file, which is equivalent to naming the spec view associated with each subsystem
listed in the activity.

PM-180 8/1/88 EATIONAL

procedure Units
package !Tools.Compaiibility.Revo.Units.Check

Menu : Boolean := False;

Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command’s execution.

If false, a log file is produced as specified by the Response parameter.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The naming expressions for the Spec_Views parameter must resolve to subsystem
views or an activity and must not specify multiple spec views from the same sub-
system. The naming expressions for the Load_View_Units parameter must resolve
to compilation units. Spec_Views must specify a spec view for each subsystem that
contains one or more of the units specified by Load_View_Units.

Example

In a Command window off a window displaying a unit in a working view of a
subsystem, the command:

Check .Units (Load_View_Units => "<CURSOR>",
Spec_Views => "<ACTIVITY>");

will check compatibility of the unit in the working view with the unit in the spec
view as specified in the user’s default activity. Using the default values for the Menu
and Response parameters will result in log file output.

R)ATIONAL 8/1/88 PM-181

procedure Views
package !Tools.Compatibility.Revn.Units.Check

procedure Views

procedure Views {Load_Views : String = "<CURSOR>";
Spec_Views : String = "<ACTIVITY>";
Menu : Boolean := False;
Response : String = "<PROFILE>"};

function Views (Load_Views : String := "<CURSOR>";
Spec_Views : String := "<ACTIVITY>";

Response : String "<PROFILE>"} return Status;

Description
Checks the compatibility of all units in one or more spec/load-view pairs.

The Load_View parameter specifies the set of views to be checked, and the Spec-
-Views parameter specifies the set of spec views used to perform the check.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

Load_Views : String := "<CURSOR>";

Specifies one or more load views to be checked. Multiple views can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see “Naming” in the Key Concepts section of this
book.) Furthermore, Load_Views can name an activity as an indirect file, which
is equivalent to naming the load view associated with each subsystem listed in the
activity.

Spec_Views : String := "<ACTIVITY>";

Specifies the spec views used to perform the check. Multiple views can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see “Naming” in the Key Concepts section of this
book.) Furthermore, Spec_Views can name an activity as an indirect file, which
is equivalent to naming the spec view associated with each subsystem listed in the
activity.

PM-182 8/1/88 RATIONAL

procedure Views
package !Tools.Compatibility. Revn.Units.Check

Mernu : Boolean := False;

Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command’s execution.

If false, a log file is produced as specified by the Response parameter.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The naming expressions for the Spec_Views and Load_Views parameters must re-
solve to subsystem views or an activity. The Spec_Views parameter should not
specify multiple spec views of the same subsystem, and it should specify a spec
view for each subsystem that contains one or more of the views specified by the
Load_Views parameter. Combined views named by these parameters are not con-
sidered for checking.

Example

In a Command window off a window displaying the Revl_Working view of My-
—Subsystem, the command:

Check .Views (Load_Views => "<CURSOR>",
Spec_Views => "<ACTIVITY>"};

will check compatibility of units in the spec view for My_Subsystem, as specified
by the user’s default activity, with the units in Revl_Working. Using the default
values for the Menu and Response parameters will result in log file output.

end Check;

IQATIONAI_ 8/1/88 PM-183

RATIONAL

package Cmvc

Package Cmvc defines a set of operations that support the following activities of
project management:

o Partitioning projects into components using subsystems and managing the inter-
faces among these components

e Creating and releasing alternative implementations (views) of individual project
components

¢ Placing the objects within project components under source control to record
generations of change history and to coordinate the work of multiple developers

¢ Coordinating parallel development efforts both within and between subsystems

The Key Concepts section of this book provides a guide to project development
using subsystems, views, and source control.

The following sections in this package introduction provide:

e A list of CMVC commands grouped by topic

e A summary of the types of objects you can create and manage through cMvC
commands

¢ A guide to the images and operations for managing configuration information
interactively

o A list of switches and commands from package Common that pertain to CMVC

RATIONAL &/1/s PM-185

package !Commands.Cmvc

Commands Grouped by Topic

The commands in package Cmvc fall into several functional groups. They are listed
here by group for your convenience. (Note that the reference entries for these
commands are arranged in alphabetical order by command name.)

Commands for creating and destroying subsystems and systems:

Initial Destroy_-Subsystem Destroy_System

Commands for creating, releasing, destroying, and recreating views:

Build Copy Destroy_View
Initial Make_Code_View Make_Path
Make_Spec_View Make_Subpath Release

Commands for managing source control:

Abandon_Reservation Accept_Changes Check_In
Check_Out Join Make_Controlled
Make_Uncontrolled Merge_Changes Revert

Sever

Commands for managing subsystem interfaces:

Import Imported_Views Remove_Imports
Remove_Unused_-Imports Replace_Model

Commands for interactively viewing notes and configuration information:
Def Edit Notes

Commands for displaying reports in 1/0 windows:

Information Show
Show_All_Checked-Out Show_All_Controlled
Show_All_Uncontrolled Show_Checked_Out_By_User
Show_Checked_Out_In_View Show_History
Show_History_By_Generation Show_Image_Of_Generation

Show_Out_Of_Date

File-oriented commands for managing notes:

Append_Notes Create_Empty_Note_Window
Get_Notes Put_Notes

PM-186 8/1/88 EAT'ONAL

package Commands.Cmvc

System Object and View Types

The Cmve.Initial command can create several types of system objects (see also Sys-
tem_Object_Enum type). A system object refers to both systems and subsystems:

o Subsystems provide a means of partitioning applications into components to fa-
cilitate parallel development, minimize recompilation dependencies, and enforce
design decisions. Each subsystem contains the units that implement a component
of an application. As development progresses within a given subsystem, releases
can be made of its implementation.

o Systems provide an optional means of grouping the subsystems that compose
an application; within a system, operations are available for tracking the latest
release from each subsystem and for referencing those releases for execution.
These releases are referenced by release activities that are built and maintained
within the system. Systems can form a hierarchy by including other systems.

There is only one type of system, and systems contain only one type of view—
namely, system views. In contrast, there are two types of subsystem—spec/load
subsystems and combined subsystems. Spec/load subsystems can contain spec and
load views, which function together, as well as combined views. Combined subsys-
tems can contain only combined views.

Within a spec/load subsystem, load views and combined views can be created us-
ing the Inijtial, Copy, or Make_Path command; spec views are created using the
Make_Spec_View or Copy command:

e A [oad view contains an implementation of a subsystem. Load views are specified
in activities and are actually used for execution.

o A spec view expresses a subsystem’s exports. Exports are the specifications of im-
plemented units that are made available for units in other subsystems to reference
in with clauses. When a spec view is imported by a view in another subsystem,
units in the importing view can compile against the units in the imported view.

¢ A combined view combines characteristics of spec and load views. A combined
view both contains a subsystem implementation and expresses the exports from
that implementation. When a combined view is imported, units in the importing
subsystem can compile against the combined view’s units; at execution time, the
units in that combined view are executed.

Spec and load views provide greater flexibility than combined views during devel-
opment and test. Using spec and load views minimizes the recompilation required
after changes are made and eliminates the need for recompilation during recom-
binant testing. Using combined views involves no such reduction of recompilation
requirements; from a recompilation point of view, development in combined views is
equivalent to development in worlds. (Note, however, that development in combined
views makes CMVC operations available, which are not available in worlds.)

In spite of the advantages of spec and load views, combined views must be used

in spec/load subsystems under certain circumstances—namely, when generics or
inlined subprograms are exported from implementations for non-R1000 targets.

RATIONAL +/1/s PM-187

package !Commands.Cmvc

Combined views also must be used in combined subsystems. Combined subsystems
must be used when import relationships in an application need to be circular—that
is, when a given view must be within its own import closure (for example, when
two views must import each other). In contrast, import relationships among views
in spec/load subsystems must be hierarchic.

Within any system object (subsystem or systerm), there are working views within
which ongoing development and maintenance proceeds. A view is recognized as a
working view through a naming convention—namely, the _Working suffix. A load
view, a combined view, or a system view can serve as a working view.

At any time during development and maintenance, a release can be made from a
working view. A release is a frozen copy of the working view; releases typically are
made after the implementation in the working view is compiled and tested.

Managing CMVC Information Interactively

When objects are controlled in one or more views in a subsystem, you typically
need to know the following information, which is managed by the CMVC database:

¢ Which objects are controlled?

e Which objects are checked out and to which views?

e Which objects are joined to objects in other views?

¢ Which views contain the other objects in the join set?

e Which objects in a join set are out of date and which view contains the latest
generation of these objects?

Furthermore, because multiple generations typically exist for a given object in a
view, it is useful to be able to:

¢ View images of past generations for the object.

e View the line-by-line differences between two successive generations.

¢ Find out when a given generation was created.

¢ Keep a scratchpad of notes recording the changes that were made to each gener-
ation.

¢ Review the comments that were supplied each time the object was checked out
and checked in.

The Def, Edit, and Notes procedures bring up three kinds of images in which such
information is displayed. These images are configuration tmages, generation tmages,
and history smages. These images not only provide several levels of information but
also make available commands from package Common, which you can use to traverse
to other images and perform certain CMVC operations.

PM-188 8/1/88 BA\TIONAL

package {Commands.Cmvc

Configuration Images

The Edit procedure displays a configuration image for a specified view or configu-
ration object or for the view enclosing a specified controlled object. A configuration
image for a view is a library-like display of CMVC information pertaining to the
configuration embodied by that view. SA configuration is a set of generations, one
for each controlled object in the view.) Note that Edit can be used to display a
configuration image for a configuration object that has no view associated with it
(for example, a configuration release).

The information displayed in a configuration image represents the contents of the
CMVC database at the time the Edit procedure is entered. Subsequent CMVC oper-
ations can change the CMVC database without automatically updating the configu-
ration image. You can refresh a configuration image using the Common.Format or
Common.Revert command.

Levels of Information in Configuration Images

Several levels of information are available in a configuration image. For example,
Figure 11-1 shows the configuration image displayed for the view !Programs.Mail-
Mail_Utilities.

Exports
Subset_1'G(2)

Units
Destinations 'G{3)
Destinations 'G(4/5)
Lines 'G(2)
Lines 'G(4)
Messages 'G(1/2)
Messages 'G(9)
Symbolic_Display 'G(1)
Symbolic_Display 'G{2)
To_Do'G(8)
Unbounded'G(1)

Figure 11-1. The First Level of Information in a Configuration Image

This image contains the first level of configuration information. This level contains
an entry for -:ach controlled object in the view’s configuration. Each entry indicates
the generation of the object that is present in the view. An entry also indicates
the latest generation that exists for the object in any view, if the object is out of
date. Thus, Revl_Working contains generation 4 out of a possible five generations
for Destinations’Body.

IQAT'ONAL 8/1/88 PM-189

package !Commands.Cmvc

With the cursor on the first line in the configuration image, the Common.Expand
command displays the second level of configuration image, as shown in Figure 11-2.

Exports : Lib
Subset..1'G(2) : In 88/05/11 16:50:@7 ANDERSO

Units : Lib
Destinations 'G(3) : In 88/05/11 16:32:48 ANDERSO
Destinations 'G{4/5) * In 88/05/11 16:33:26 ANDERSO
Lines’'G(2) : In 88/@2/23 11:42:91 AMDERSO
Lines 'G(4) : In 88/02/23 11:41:51 ANDERSO
Messages 'G(1/2) . % In 88/02/25 18:42 15 ANDERSO
Messages 'G{9) : In 88/02/23 11:44:16 ANDERSO
Symbolic.Display 'G(1) : In 88/@02/23 10-57:31 ANDERSO
Symbolic_Display ‘'G(3) : out 88/05/20 19:41:53 ANDERSQO *current_view*
To.Do'G(8) : in 88/03/30 11:57 .08 ANDERSO
Unbounded 'G(1) : In B88/02/23 10:57:32 ANDERSO

Figure 11-2. The Second Level of Information in a Configuration Image

Each entry in this expanded configuration image contains the following additional
information (from left to right):

o An asterisk indicating whether the object is out of date in the view

¢ An indication of whether the unit is currently checked out (Out) or checked in
(In); libraries are indicated as Lib

¢ The date and time at which the object was checked out (if the object is currently
checked out) or checked in (if the object is currently checked in)

¢ The user who performed the last checkout or checkin
¢ The view in which a given object is currently checked out
When objects are checked out or out of date, portions of their entries are underlined,

so you can use the Editor.Cursor.Next and Editor.Cursor.Previous commands to
move the cursor among these objects.

PM-190 8/1/88 IQATIONAL

package ICommards.Cmve

Using Common.Expand again displays a third level of configuration information,
as shown in Figure 11-3. Each entry now displays the reservation token associated
with each controlled object in the view.

) | Meil Utilities Confi , E

Exports :
Subset_1'G(2) . REV1

Units :
Destinations 'G(3) : REV1
Destinations 'Gi(4/5) © REV1
Lines 'G(2) - REV1
Lines 'G(4) . REVIL
Messages 'G(1/2) . REV1
Messages 'G(9) © REV1
Symbolic_Display 'G(1l) : REV1
Symbolic_Display 'G(3) : REV1
To.Do'G(8) © REV1
Unbounded 'G{ 1) . REV1

Figure 11-3. The Third Level of Information in a Configuration Image

Finally, using Common.Expand again displays a fourth level of configuration infor-
mation, as shown in Figure 11-4. At this level, the entry for a given joined object
displays the views containing other objects in the join set.

P : itics Confl : : :

Exports :
Subset_1'G(2) . REV1 => Revl_¥orking

Units :
Destimations 'G{3) © REV1 => Revl_Sue_¥orking Revl_Larry_Working Revl_Wor
Destimations 'G(4/5) : REV1 => Revl_Sue_Working Revl_Larry_Working Revl_Wor
Lines’'G(2) © REV]1 => Revl_Sue_Working Revl_larry_¥Working Revl_Wor
Lines 'G{4) © REV1 => Revl_Sue_Working Revl_larry_Working Revl_Wor
Messages 'G(1/2) © REV1 => Revl_Sue_VWorking Revl_Larry._¥Working Revl_Wor
Messages 'Gi9) . REV1 => Revl_Sue_Working Revl_lLarry.Working Revl_Wor
Symbolic_Display ‘G(1) : REV1 => Revl_Sue_Working Revl_lLarry_¥orking Revl_Wor
Symbolic_Display'G(3) REV1 => Revl_Sue_¥orking Revl_Larry.Working Revl_Wor
ToDo'G(8) © REV1 => Revl_Sue_Working Revl_Larry._Working Revl_¥or
Unbounded 'G{1) © REV1 => Revl_Sue_V¥orking Revl_lLarry_¥orking Revl_Wor

Figure 11-4. The Fourth Level of Information in a Configuration Image

RAT'ONAL 8/1/88 PM-191

package !Commands.Cmvc

Operations in Configuration Images

At any level of expansion, a configuration image provides a convenient way to:

e Check objects in, using the Common.Promote command
e Check objects out, using the Common.Demote command
e Accept changes on objects, using the Common.Complete command

e Access generation and history images, using the Common.Definition and Com-
mon.Explain commands, respectively

e Traverse to the designated object in the associated view, using the Cmvc.Def
command

A complete list of operations is given in “Commands from Package !Commands-
.Common,” below.

Restricting Operations In Configuration Images

Operations in configuration images can be restricted using the Edit command.
When creating a configuration image, you can set the Allow_Check_Out, Allow-
—Check-_In, and Allow_Accept_Changes parameters to false to prevent the corre-
sponding operations from accessing objects through the configuration image.

You can also use the Edit command to reset the restrictions on these operations
in an existing configuration image. For example, if a checkout operation currently
is not permitted in a given configuration image, you can enter the Edit command
with Allow_Check_Out set to true.

Alternative Ways of Displaying a Configuration Image

The basic way to create a configuration image is to enter the Edit command from
a view or object. Following are two alternative ways of creating a configuration
image:

o Within the Configurations directory in a subsystem, put the cursor on the name
of a configuration object and enter the Common.Definition command.

e From a generation image (see “Generation Images,” below), enter the Com-
mon.Enclosing command.

In both of these cases, checkin, checkout, and accept-changes operations are auto-
matically restricted in the configuration image. However, the Edit command can
be entered from the existing configuration image to change these restrictions as
specified by the Allow_Check_Out, Allow_Check._In, and Allow_Accept_Changes

parameters.

PM-192 8/1/88 RAT'ONAL

package !Commands.Cmvc

Generation Images

Generation images are textual representations of particular generations of controlled
objects. Generation images can be displayed even for generations of objects that
do not currently exist outside the CMVC database. For example, using generation
images, you can browse the text of past generations from configuration-only releases
or from code views, which no longer contain source objects. A given generation
image can be expanded to show differences between that generation and the previous
one. Generation images are available only for controlled objects for which source is
saved.

Accessing Generation Images

Generation images can be accessed in several ways. They can be accessed from
configuration images:

1. Display the configuration image for a view, code view, or configuration object.

2. With the cursor on the configuration image entry for the desired object, enter
the Common.Definition command.

Alternatively, you can access a generation image for a given object directly from
view, as follows:

1. Put the cursor on the object’s entry in the view.
2. Enter the Cmvc.Def command.

Generation images contain text reconstructed from the CMVC database and does
not have the underlying structure of an Ada unit. Therefore, commands such as
Common.Object.Parent select text structures such as lines rather than Ada struc-
tures. A generation image is identified in the window banner by the generation
attribute following the object’s name and by the string (cmvc).

Accessing Next and Previous Generation Images

An object’s generations form a sequence from the starting generation to the latest
generation. When the image of a particular generation is displayed, you can access
images for the previous and next generations in the sequence as follows:

e With the cursor in the generation image, enter the Common.Undo command to
access the image for the previous generation in the sequence. Repeated uses of
Common.Undo iterate toward the starting generation.

o With the cursor in the generation image, enter the Common.Redo command
to access the image for the next generation in the sequence. Repeated uses of
Common.Redo iterate toward the latest generation.

Displaying the Differences between Consecutive Generations

A given generation image can be expanded to show the differences between it and
the previous generation. Enter the Common.Expand command to expand a gen-
eration image. (The Common.Elide command removes the differences from the
display.) For example, Figure 11-5 shows the result of using Common.Expand in
the generation image for generation 4 of Destinations’Body.

R)ATIONAL 8/1/88 PM-193

package !Commands.Cmvc

lwith System_Utilities;

lwith String_Utilities;

!

Ipackage body Destinations is

procedure Define (New_User : String) is
begin

[statement]
end Define;

function Image (The.User : User) return String is

begin
return (Unbounded. Image (Unbounded.Variable_String
(The_User .User_Names)));

I
|
!
I
|
|
|
|
=1 return Unbounded. Image (Unbounded.Variable_String (The_User));
+1
+1
| end Image;
|

[% Ceaetan b ast s M R

=UNAES -DES TANAT FONS 'BODY 'D1fTi 3—4). LomvGi:

Figure 11-5. Differences between Generations 3 and 4 of Destinations'Body

Differences are shown on a line-by-line basis:
o A line beginning with the minus sign (—) indicates that the line was deleted from
the previous generation.

¢ A line beginning with the plus sign (+) indicates that the line was added to the
previous generation.

¢ One or more lines beginning with the minus sign immediately followed by one or
more lines beginning with the plus sign indicate changed lines.

Regions of difference begin with an underline so that you can use the Editor.Cursor-
.Next and Editor.Cursor.Previous commands to move the cursor among such re-
gions.

Other operations available in generation images are listed in “Commands from
Package !Commands.Common,” below.

History Images

The cMVC database stores history information pertaining to each generation of a
controlled object. The history image for a given generation displays this stored infor-
mation. Figure 11-6 shows the history image for generation 4 of Destinations’Body.

The history image for a generation of an object contains:

o The history for the generation, which lists the time of checkout and checkin and
the user who performed these operations

o The notes for the generation, which contains comments provided to various CMVC
commands as well as arbitrary commentary associated with that generation

The CMVC database also stores release history for each configuration. Release his-
tory contains comments provided through the Cmvc.Release command and also lists
the date and time at which spec views and releases were created.

PM-194 8/1/88 BATIONAL

package !Commands.Cmvc

: s Destinations B

Checked-out on 88/05/20 19:41:53 by ANDERSON
Checked-in on 88/B5/24 14:58:46 by ANDERSON

CHECK_OUT: Changing return statement in function image.
CHECK.IN: Change has been tested

-- Notes from 88/05/24 15:06:19 by ANDERSON —-

Still need to implement procedure Define.

Figure 11-6. The History Image for Generation 4 of Destinations'Body

Accessing History Images

History images can be accessed in several ways. They can be accessed from config-
uration images:

1. Display the configuration image for a view, code view, or configuration object.

2. With the cursor on the configuration image entry for the desired object, enter
the Common.Explain command.

If the cursor is on the header line of a configuration image, then Common.Explain
displays the release history for the configuration.

If the cursor is on an underline other than the header line, an explanation of the
underline is displayed in the Message window. Move the cursor off the underline
to display a history window.

History images also can be accessed from generation images:

1. With the cursor in the appropriate generation image, enter the Common.Explain
command.

Finally, a history image for a given object can be accessed directly, as follows:

1. Put the cursor on the object or on its directory entry.
2. Enter the Cmvc.Notes command.

Displaying History from Other Generatlons
From a history image, the Common.Undo and Common.Redo commands iterate
through history images of the previous and next generations, respectively.

Furthermore, using the Common.Expand command in a history image displays
the cumulative history and notes for a range of previous generations within the
same image. The number of previous generations for which history is displayed

QAT'ONAL 8/1/88 PM-195

package !Commands.Cmvc

is determined by the Repeat parameter of the Common.Expand command. The
Common.Elide command reduces the amount of cumulative history by the number
of generations specified by its Repeat parameter.

Managing Noies through History Images

History images provide an interactive way to manage notes. From a history image,
new notes can be added and saved. The Common.Edit command displays a prompt
in which additional notes can be entered. The Common.Save or Common.Commit
commands save the new notes in the CMVC database.

The window banner for a history image contains the object name followed by a
generation attribute (for example 'G(3)), followed by the attribute 'History. Fur-
thermore, the window banner contains the string (cmvc).

Traversing between Library and CMVC Images

Subsystems, views, configuration objects, and objects such as files and Ada units are
all part of the Environment library system. Associated with these library objects
are configuration images, generation images, and history images, which display
information managed by the CMVC database.

As shown in Figure 11-7, the Cmvc.Edit, Cmvc.Def, and Cmvc.Notes commands
traverse between objects in the library system and images managed by cMvC. Com-
mands from package Common traverse among images within each group.

Figure 11-8 shows the use of Common.Undo and Common.Redo to access generation
images for different generations of the same object.

Session Switches

A number of session switches have names that begin with the prefix “Cmvc_". All
but one of these pertain to objects that are managed by commands in package Work-
~Order and are documented in that package. The remaining switch, Cmvc_Enable-
—Relocation, is for use by Rational personnel only.

Commands from Package !Commands.Common
Commands from Package Common in Configuration Images

procedure Common.Complete

Equivalent to entering the Accept_Changes command to update the designated
object (or the objects in the designated configuration) to the latest generation. The
Accept_Changes operation is performed with default parameter values, except that
Allow_Demotion has the value true. The configuration image is updated to reflect
the operation. The operation performed by the command is subject to restriction
according to the Allow_Accept_Changes parameter of the Cmvc.Edit command.

PM-196 8/1/88 QAT'ONAL

package 'Commands.Cmvc¢

< >
Information from CMVC Information from
iibrary system . subsystem’'s CMVC database
Subsystem

Common.Enclosing

Configuration

‘ object Cmve.Edit
! Code view : |
| = i
| |
§ Ccmvc.Edit ’
‘ View PR Configuration
| : Cmvc.Def image
| Cmvc.Def
| Commpon- Common-
| .Encjpsing .Definition
‘ | _~Cmve.Edit

(Current) ‘ Cmve.Def (Current) :
| object B / generation |
| image Cmvc.Def image
| Cmve- Common-
! Notes Common-/ -Explain
| Cmvc.Def ; -Explain Common-
i b .Enciosing
i
|
‘ History |

image |

Figure 11-7. Summary of Traversal Commands

procedure Common.Deflnition

Displays the generation image for the current generation of the object whose entry
is designated in a configuration image. An In_Place parameter specifies whether
the current frame should be used.

R)AT'ONAL 8/1/88 PM-197

package !Commands.Cmvc

<>
CMVC Iinformation trom
subsystem’'s CMVC database

<
information from
library system

(Current) Cmve.Def (CU’:""‘) |
th |
object generation
image B Cmvc.Det image

Generation
N+ 1
image

Cmvc.Det Common.Undo

Common.Redo

Generation
N+ 2
image

Figure 11-8. Traversing between Generation Images

procedure Common.Demote

Equivalent to entering the Check_Out command to check out the designated ob-
ject (or the objects in the designated configuration). The Check_Out operation
is performed with default parameter values, except that Allow_Demotion has the
value true. The configuration image is updated to reflect the operation. The op-
eration performed by the command is subject to restriction according to the Al-
low_Check_Out parameter of the Cmvc.Edit command.

procedure Common.Edit

Checks out the object whose entry is designated in the configuration image and
then displays the object. The object is not opened for editing, in case it is an
Ada unit to which you want to make incremental changes. The Check_Out op-
eration is performed with default parameter values, except that Allow_Demotion
has the value true. The configuration image is updated to reflect the operation.
The operation performed by the command is subject to restriction according to the
Allow_Check_Out parameter of the Cmvc.Edit command.

PM-198 8/1/88 Q/A\—HONAL

package !Commands.Cmvce

procedure Common.Elide

Reduces the level of information displayed in the configuration image. As designated
by the cursor, the level can be reduced for an individual entry or for the entire image
(the cursor must be on the top header line of the image). See “Levels of Information
in Configuration Images,” above.

procedure Common.Enclosing

Displays the subsystem that contains the configuration represented in the configu-
ration image. An In_Place parameter specifies whether the current frame should
be used.

procedure Common.Explain

Displays the history image for the generation of the designated object. If the cursor
is on the top header line in the configuration image, release history for the config-
uration is displayed. If the cursor is on an underline (other than the header), an
explanation of the underline is given.

procedure Common.Expand

Increases the level of information displayed in the configuration image. As desig-
nated by the cursor, the level can be increased for an individual entry or for the
entire image (the cursor must be on the top header line of the image). See “Levels
of Information in Configuration Images,” above.

procedure Common.Format

Updates the configuration image with current information from the CMVC database.
Note that the configuration image is updated automatically after Common.Promote,
Common.Demote, or Common.Complete is executed, but it is not updated when
the CMVC database is changed by any other operation.

procedure Common.Promote

Equivalent to entering the Check_In command to check in the designated object
(or the objects in the designated configuration). The configuration image must
have a view associated with it. The Check_In operation is performed with default
parameter values. The configuration image is updated to reflect the operation.

procedure Common.Revert

Updates the configuration image with current information from the CMVC database.
Note that the configuration image is automatically updated after Common.Promote,
Common.Demote, or Common.Complete is executed, but it is not updated when
the CMVC database is changed by any other operation.

R/A\TIONAL 8/1/88 PM-199

package !Commands.Cmvc

Commands from Package Common in Generation Images

procedure Common.Definition

Displays the controlled object associated with the generation in the generation image
containing the cursor. An In_Place parameter specifies whether the current frame
should be used.

procedure Common.Elide

Removes from the generation image the differences that were displayed by the Com-
mon.Expand command.

procedure Common.Enclosing

Displays the configuration image for the last configuration that was visited. An
In_Place parameter specifies whether the current frame should be used.

procedure Common.Explain

Displays the history image for the generation represented in the current generation
image. If the cursor is on an underline, an explanation of the underline is given.

procedure Common.Expand

Displays the differences between the generation in the generation image and the
previous generation. Differences are shown on a line-by-line basis. Lines beginning
with a minus sign (—) indicate lines deleted from the previous generation. Lines
beginning with a plus sign (+) indicate lines added to the previous generation. The
start of each difference region is underlined.

procedure Common.Redo

Displays the generation following the generation represented in the current genera-
tion image. A Repeat parameter specifies which succeeding generation is displayed,
relative to the currently displayed generation.

procedure Common.Undo

Displays the generation previous to the generation represented in the current gener-
ation image. A Repeat parameter specifies which preceding generation is displayed,
relative to the currently displayed generation.

Commands from Package Common in History Images

procedure Common.Commit

Saves the new notes entered through the prompt given by the Common.Edit com-
mand.

PM-200 8/1/88 E)ATIONAL

package !Commarnds.Cmvc

procedure Common.Definition

Displays the controlled object associated with the generation for which history is
displayed. An In_Place parameter specifies whether the current frame should be

used.

procedure Common.Edit

Provides a prompt in the current history image in which new notes can be entered.

procedure Common.Elide

Reduces the cumulative history that is displayed in the current history image. The
Repeat parameter specifies the number of generations by which the cumulative
history should be reduced.

procedure Common.Enclosing

Displays the generation image for the generation associated with the current history
image. An In_Place parameter specifies whether the current frame should be used.

procedure Common.Expand

Expands the cumulative history that is displayed in the current history image. The
Repeat parameter specifies the number of generations by which the cumulative
history should be increased.

procedure Common.Format

Updates the history image with current information from the CMVC database.

procedure Common.Promote

Saves the new notes entered through the prompt given by the Common.Edit com-
mand.

procedure Common.Redo

Displays the history image for the generation following the current generation. A
Repeat parameter specifies which succeeding history image is displayed, relative to
the generation of the current history image.

procedure Common.Revert

Updates the history image with current information from the CMVC database.

procedure Common.Undo

Displays the history image for the generation previous to the current generation. A
Repeat parameter specifies which preceding history image is displayed, relative to
the generation of the current history image.

I_\JATIONAL 8/1/88 PM-201

procedure Abandon_Reservation
package !Commands.Cmvc

procedure Abandon_Reservation

procedure Abandon_Reservation

{What_0b ject : String = "<SELECTION>";
Allow_Demotion : Boolean = False;
Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;
Comments ¢ String = "";

Work_Order : String = "<DEFAULT>";

Response : String = "<PROFILE>"};
Description

Abandons the reservation on one or more checked-out objects, effectively canceling
the checkout of those objects.

Any changes made during the canceled checkout are discarded.

When an object is checked out, a new generation is created. The Abandon_Reser-
vation procedure cancels this newly created generation and causes the object to
revert to the last checked-in generation.

Note that checking out an object automatically updates that object to the latest
checked-in generation, accepting changes as necessary. This procedure does not
undo the implicit accept changes, so the object remains at the latest generation.

Parameters

What_Object : String := "<SELECTION>";

Specifies the object or objects whose reservations are to be abandoned. Objects
that are not checked out are ignored. The default is the currently selected object.
View names cannot be specified.

Multiple objects must be in the same view. Multiple objects can be specified by

using wildcards, context characters, special names, set notation, or an indirect file.
(For further information, see “Naming” in the Key Concepts in this book.)

PM-202 s17s IRATIONAL

procedure Abandon_Reservation
package !Commands.Cmvc

Allow_Demotion : Boolean := False;

Specifies whether the Abandon_Reservation procedure is allowed to demote Ada
units in the process of reverting units to the last checked-in generation.

If the Allow_Demotion parameter is true, the Abandon_Reservation procedure is
permitted to demote Ada units if necessary. If this parameter is false, the command
can proceed only if no demotion is required; otherwise, an error is reported and the
command quits.

Remake_Demoted_Units : Booclean := True;

Specifies whether to recompile any units that were demoted in the process of re-
verting units to the last checked-in generation.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The goal can be any of the enumerations of the Compilation.Unit_State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake_Demoted_Units parameter.

Comments : String := "";
Specifies a comment to be logged in the work order indicated by the Work_Order

parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date on which the reservation was aban-
doned, the objects affected, and the username and session in which the command
was entered. If the Comments parameter is specified, this comment is also entered
in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

RATIONAL ¢/1/e PM-203

procedure Abandon.Reservation
package !Commands.Cmvc

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Check_Out

PM-204 8/1/88 BAT'ONAL

procedure Accept_Changes
nackage !Commands.Cmvc

procedure Accept—Changes

procedure Accept_Changes

{Destination : String = "<CURSCOR>";

Source : String = "<LATEST>";

Allow_Demotion . Boolean = False;

Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;

Comments ¢ String = "

Work _Order : String = "“<DEFAULT>";

Response : String = "<PROFILE>");
Description

Updates the object(s) specified in the Destination parameter to the generation(s)
indicated by the Source parameter; that is, the destination objects are changed to
reflect any modifications that have been made to the corresponding source objects.

When changes to individual Ada units are being accepted, unit specifications should
be updated before their corresponding bodies to ensure that the units compile
correctly.

Typically, the Accept_Changes procedure is used to update each destination ob-
ject to the latest generation. The procedure thus is a means of synchronizing the
development of controlled objects that are joined to objects in other views. When
an object in a join set is checked out and then checked in, a new generation is
created, rendering the other objects in the set at least one generation out of date.
This procedure can be used on the out-of-date objects to update them to the latest
generation. (Checking out an out-of-date object implicitly accepts changes.)

The Accept_Changes procedure also can be used to “go backward in time.” If
the name of a previous configuration is given as the Source parameter, the objects
specified by the Destination parameter are changed to the generations given in that
configuration. Unless such objects are subsequently severed, however, checking them
out automatically updates them to the latest generation.

The Accept_Changes procedure also can be used to copy new controlled objects
from the source view into the destination view. This is more effective than using
Library.Copy to propagate new objects across views.

If Ada units are compiled against a specified unit, accepting changes to that unit
may require the demotion of the other dependent units. The value of the Allow-
—Demotion parameter controls whether the command actually performs the demo-
tion and updates the unit.

The configuration image displayed by the Edit command uses an asterisk to indi-

cate objects that require updating. Alternatively, the Show_Out_Of_Date_Objects
command can be used to determine the objects that may require updating.

IQAT'ONAL 8/1/88 PM-205

procedure Accept_Changes
package !Commands.Cmvc

Parameters

Destimation : String := "<CURSOR>";

Specifies one or more objects to be updated. If multiple objects are named, they
must be in the same view. A view name can be used to specify all the objects in
that view. The default is the object on which the cursor is located.

Destination objects must be controlled. If uncontrolled objects are named, they
are noted in the output log generated by the command. If a destination object is
checked out, it is not updated and a warning message is issued.

If a destination object was made controlled without saving source, the object can
be updated only if the Source parameter names an object that exists in some view.
(For example, when updating such a destination object, the Source parameter may
not name a configuration object that has no view associated with it.)

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” i
the Key Concepts in this book.)

Source : String := "<LATEST>";

Specifies the object(s) to which the corresponding destination object(s) are updated.
The Source parameter can be the special name "<LATEST>", the name of one or
more objects, a view name, or a configuration name. Note that subdirectories (for
example, Units) are not accepted as object names; instead, you must use naming
expressions that resolve to the contents of such subdirectories (for example, Units.a).

Multiple objects can be specified by using wildcards, context characters, spec1al
names, set notation, or an indirect file. (For further 1nformatlon, see “Naming”
the Key Concepts in this book.)

The Source and Destination parameters interact as follows:

o Source =>"<LATEST>"

When the Source parameter is the default special name "<LATEST>", the Desti-
nation parameter can name a set of objects or a view. Each destination object is
updated to the most recently checked-in generation. If the most recent generation
is currently checked out, the previous generation is used and a warning message
appears in the output log.

o Source => object(s) or view

When the Source and Destination parameters name a set of objects or a view,
each source object must have a more recent generation than the corresponding
destination object. (The source object can, but need not, have the latest gener-
ation.) If the destination is more recent than the source, the destination is not
changed and a warning note appears in the output log.

PM-206 8/1/88 E)ATIONAL

procedure Accept-Changes
package 'Commands.Cmvc

As before, if a source object is currently checked out, the most recent checked-in
generation is used, and a warning message appears in the output log.

The following combinations of Source and Destination parameters are permitted.
Note that when the Source parameter names a set of objects, the Destination
parameter must name a view.

— Source => object(s); Destination => view: If the Source parameter names
a set of objects and the Destination parameter names a view, the command
updates the objects in the destination view that correspond to the source
objects. If Source names controlled objects that are new, these objects are
copied into the Destination view, where they are made controlled and joined
to the original source objects.

— Source => view; Destination => object(s): If the Source parameter names
a view and the Destination parameter names a set of objects, the command
updates the destination objects to match the corresponding objects in the
source view.

— Source => vitew; Destination => view: If the Source and Destination param-
eters each name a view, the destination view is made to look like the source
view. Every controlled object in the source view updates the corresponding
object in the destination view. New controlled objects in the source view
are copied into the destination view. The copied objects are automatically
controlled and joined to the corresponding source-view objects.

o Source => configuration

When the Source parameter names a configuration, the Destination parameter
can name a set of objects or a view. The command causes each destination object
to have the generation of the corresponding object in the specified configuration.
Consequently, naming an older configuration causes the destination objects to
“go back in time” to earlier generations.

Naming a source configuration is the same as naming a view, except that naming
a view always updates destination objects to more recent generations, whereas
naming a configuration can change the destination objects to older generations.
(The name of a previously released view cannot be used in place of a configuration
in order to go back in time.)

Note that changing a destination object to an older generation does not cause

that generation to become the latest one (see the Revert command). Checking
out such an object updates it to the latest generation.

Allow_Demotion : Boolean := False;

Specifies whether the Accept_Changes procedure should be allowed to demote Ada
units in order to update the specified destination objects.

If the Allow_Demotion parameter is true, the Accept_Changes procedure is per-
mitted to demote Ada units if necessary. If this parameter is false, the command
proceeds only if no demotion is required; otherwise, an error is reported and the
command quits.

RATIONAL 8/1/88 PM-207

procedure Accept_Changes
package !Commands.Cmvce

Remake_Demoted_Units : Boolean := True;

Specifies whether to recompile any units that were demoted in the process of up-
dating the destination objects.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The goal can be any of the enumerations of the Compilation.Unit_State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake_Demoted-Units parameter.

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date on which changes were accepted, the
objects affected, and the username and sesgion in which the command was entered.
If the Comments parameter is specified, this comment is also entered in the work
order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>",

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error is noted in the output if an attempt is made to accept changes into a
previous generation by naming objects other than a configuration.

PM-208 s168 IRATIONAL

procedure Accept_Changes
package !Commands.Cmvc

References
procedure Revert

procedure Show_Out_Of_Date_Objects

RATIONAL 8/1/88 PM-209

procedure Append_Notes
package !Commands.Cmvc

procedure Append_Notes

procedure Append_Notes (Note : String := "<WINDOW>";
Uhat_Object : String := "<CURSOR>";
Response : String := "<PROFILE>"};
Description

Appends the specified string to the end of the notes for the specified controlled
object.

The notes for a controlled object are stored in the CMVC database. An object’s
notes can be used as a scratchpad for arbitrary commentary to be associated with
particular generations.

The contents of a file can be appended by specifying the filename as an indirect file.

Append_Notes is one of a set of file-oriented commands for managing notes. That
is, these commands, including Get_Notes, Create_Empty_Note_Window, and Put-
-Notes, are most useful for managing notes through files. However, these commands
also manage special-purpose notes windows (identified by the Notes for string in
the banner) in which the Append-Notes command can be used as follows:

¢ Ifthe Create_Empty_Note_Window procedure has been used to display an empty
notes window for an object, text entered in this window can be appended to the
object’s existing notes using the Append_Notes procedure. In this case, Append-
—Notes must be entered (with default parameter values) from a Command window
attached to the window that was created by the Create_Empty-Note_Window
procedure.

Note that modified notes windows retain the * symbol in their window banners, even
after their contents have been entered in the CMVC database using Append_Notes
or Put_Notes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use the Common.Abandon procedure to remove these windows.

The Notes command provides an interactive alternative to Create_Empty_Note-
—Window, Append_Notes, and the like. The Notes command displays a history
image (identified by 'History attribute following the object name and generation in
the window banner), which allows interactive operations for managing an object’s
notes.

PM-210 8/1/88 RATIONAL

procedure Append_Notes
package !Commands.Cmvc

Parameters

Note : String := "<WINDOW>";

Specifies a string to be appended to an object’s existing notes. If the Note parameter
names an indirect file, the contents of that file are appended to the existing notes
for the specified controlled object.

If the default special name "<WINDOW>" is used, it refers to the contents of a notes
window created by either the Get_Notes or the Create_Empty_Note_Window com-
mand. When the default value is used, Append—Notes must be entered from a Com-
mand window attached to the notes window. The first line of the notes window con-
tains the name of the object associated with the notes; therefore, the What_Object
parameter is ignored.

Uhat_Object : String := "<CURSOR>™;

Specifies the object whose notes are to be augmented. The specified object must be
both controlled and checked out; otherwise, the command quits.

The What_Object parameter is ignored if the Note parameter’s default value is
used.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Create_Empty_Note_Window
procedure Get_Notes

procedure Notes

procedure Put_Notes

RAT'ONAL 8/1/88 PM-211

procedure Build
package !Commands.Cmvc

procedure Build

procedure Build

{Configuration : String = ">>CONFIGURATION NAME<K";

View_To_lmport : String = "<INHERIT_IMPORTS>";

Model : String = "<INHER!T_MODEL>";

Goal : Compilation.Unit_State := Compilation.lnstalled;

Limit : String = "<WORLDS>";

Comments : String ="";

Work _Order : String = "<DEFAULT>";

Volume : Natural = @;

Response 1 String = "<PROFILE>");
Description

Builds views from the specified configuration objects.
Views corresponding to the specified configuration objects must not already exist.

Whenever a view is created or released, a configuration object is created for it
automatically. The configuration object for a view lists the specific generations of
the controlled objects in that view and provides an index into the CMVC database
where the source for these generations is stored. Thus, views are realizations of
configuration objects, in that views contain library structure and compilable units,
whereas configuration objects merely summarize the contents of the corresponding
views.

Because configuration objects provide enough information to reconmstruct views,
space can be saved by creating or keeping only the configuration objects for views
whose units do not need to be compiled and executed frequently:

¢ The Release command creates only a configuration object without creating the
corresponding released view if the Create_Configuration_Only parameter is true.

e The Destroy_View command destroys only a view without destroying the cor-
responding configuration object if the Destroy_Configuration_Also parameter is
false.

The Build command is used when it is necessary to build a view for a released
configuration object or rebuild a destroyed view.

Note that when a view is built (or rebuilt) from a configuration object, the only
objects that can be recreated are controlled objects for which source is saved in
the CMVC database. (Controlled objects for which source is not saved cannot be
rebuilt.)

Configuration objects reside in the directory subsystem_name.Configurations. Each
configuration object has the same simple name as the view to which it corresponds.

PM-212 8/1/88 EATIONAL

procedure Build
package !Commands.Cmvc

Parameters

Configuration : String := ">>CONFIGURATION NAME<<";

Specifies one or more configuration objects from which views are to be built. If
the command is executed in the subsystem library, the configuration names can be
specified using relative naming—for example, Configurations.Revl_0_-1 names the
configuration for which the corresponding view Rev1_0_-1 is built.

Multiple configuration objects can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

View_To_lmport : String := "<INHERIT_IMPORTS>";

Specifies one or more views to be imported by each of the newly built views. The
views specified by this parameter must be spec or combined views.

If the View_To_Import parameter is the default special name "<INHERIT_IMPORTS>",
imports are determined by information in the state description directory associated
with each configuration object. (State description directories are created auto-
matical)ly for released views and are named subsystem.Configurations.release—-name-
~State.

If the View_To_Import parameter is the null string (“”), no views are imported.

If the View_To_Import parameter specifies one or more views, only the specified
views are imported, and any imports listed in a corresponding state description
directory are ignored.

The Imported_Views function can be used o return another view’s imports as the
value of the View_To_Import parameter. This is a convenient way of setting the
newly built view’s imports to be the same as another view’s imports.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, the View_To_Import parameter
can name an activity as an indirect file, which is equivalent to naming the spec view
associated with each subsystem listed in the activity.

I?ATIONAL 8/1/88 PM-213

procedure Build
package !Commands.Cmvc

Model : String := "<INHERIT_MODEL>";

Specifies a model world for each newly built view. If the specified name cannot be
resolved in the context !Model, the name is resolved relative to the current context.

If the Model parameter is the default special name "<INHERIT_MODEL>", each newly
built view uses the model that was recorded in the state description directory as-
sociated with the relevant configuration object. (State description directories are
created automatically for released views and are named subsystem.Configurations-
.release-name_State.)

Goal : Compilation.Unit_State := Compilation.lnstalled;

Specifies the state to which units in the view are compiled. The goal can be any of
the enumerations of the Compilation.Unit_State type. By default, the compilation
goal is the installed state. To set the compilation goal to the coded state, specify
Compilation.Coded.

Limit : String := "<WORLDS>";

Specifies the units that can be compiled to the state specified by the Goal parameter.
Because views are worlds, the default special value “<WORLDS>" means that only units
within the newly built views can be compiled. Other values for this parameter are
given as enumerations of the Compilation.Change_Limit subtype. For example, the
string "<ALL_WORLDS>" permits the compilation of units in other subsystems in order
to compile the units in the newly built views.

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date of the build operation as well as
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := 0;

Specifies the volume on which to build the views. The default value specifies that
the views should be built on the volume with the most free space.

PM-214 8/1/88 R/A\TIONAI_

procedure Build
package !Commands.Cmvc

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
procedure Destroy_View

procedure Release

RAT'ONAL 8/1/88 PM-215

procedure Check_In
package !Commands.Cmvc

procedure Check_In

procedure Check_In (What_Object : String := "<CURSOR>";
Comments : String = "",
Work_Order : String := "<DEFAULT>";
Response : String := "<PROFILE>"};

Description

Releases the reserved right to update the specified object or set of objects and stores
the text of the new generation(s) in the CMVC database.

An object that is checked in cannot be modified until it is checked out again. Only
controlled objects can be checked in or out.

Because checked-in objects cannot be modified in any way, it is recommended that
all incremental additions or changes to Ada units be promoted before those units
are checked in. Errors will result from attempting to compile the checked-in units
that contain insertion points, because promoting insertion points would require the
modification of checked-in units.

Note that checking in an object that was made controlled without saving source
simply releases the right to update that object; no text is recorded in the CMVC
database.

Parameters

What_Object : String := "<CURSOR>";

Specifies one or more objects to be checked in. These objects must be controlled. If
uncontrolled objects are named, they are noted in the output log generated by the
command and ignored.

Multiple objects can be specified by using wildcards, context characters, specxal
names, set notation, or an indirect file. (For further lnformatlon see “Naming” i
the Key Concepts in this book.)

Comments : String := "";

Specifies a comment to be stored in the CMVC database with the notes for the spec-
ified object(s). Notes can be displayed using the Get_Notes command. This com-
ment also appears in the display generated by the Show_History_By_Generation
command.

In addition, the specified comment is logged to the work order specified by the
Work_Order parameter.

PM-216 8/1/88 RATIONAL

procedure Check_In
package !Commands.Cmvc

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment is also entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The Check_In procedure takes time proportional to the size of the object(s) being
checked in. Large objects may exhaust the job page limit and fail. In this case, the
job page limit must be increased.

References
procedure Check_Out

procedure Make_Controlled

R)ATIONAL 8/1/88 PM-217

procedure Check_Out
package !Commands.Cmvc

procedure Check_Out

procedure Check_Out

{Uhat_0b ject : String = "<CURSOR>";
Comments : String = "";
Allow_Implicit_Accept_Changes : Boolean = True;
Allow_Demotion : Boolean = False;
Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State :=

Compllatlon Coded;
Expected_Check_In_Time 1 String = "<TOMORROW>";
Work _Order : String = "<DEFAULT>";
Response : String = '<PROFILE>");
Description

Reserves the right to modify the specified controlled object or objects.

Controlled objects can be modified only while they are checked out. However,
objects need not be checked out in order to be compiled.

When objects are joined across multiple views, they share the same reservation
token, so that only one of the joined objects can be checked out at a time. Checking
out a joined object in one view renders the corresponding objects in the other views
unavailable for update. (In contrast, objects that do not share the same reservation
token can be checked out and modified independently.)

A new generation of an object is created when it is checked out. The new gen-
eration can be preserved by the Check_In command or abandoned by the Aban-
don_Reservation command. When one object in a join set is checked out and then
checked in, the other objects in the set are rendered at least one generation out of
date. Checking out one of the out-of-date objects automatically updates it to the
latest generation, unless the Allow_Implicit_Accept_Changes parameter has been
set to false, in which case the checkout operation fails. Setting this parameter to
false allows an object to be checked out only if it is at the latest generation already.
(Note that if an object was made controlled without saving source, Check_Out
can implicitly update it only if an object in some view actually contains the latest
generation; see the Make_Controlled command.)

If Ada units are compiled against a unit that requires updating, checking out that
unit may require the demotion of the other dependent units. In this case, the value
of the Allow_Demotion parameter controls whether the command actually performs
the demotion and checks out the unit.

Various commands can be used to determine whether objects are currently checked
out, including Show, Show_All_Checked_Out, Show_Checked_Out_In_View, and
Show_Checked_Out_By_User. Other related information, such as the checkout
date, time, and user, can be displayed using the Show_History_By_Generation
command.

PM-218 8/1/88 QA—HONAL

procedure Check_Out
package !Commands.Cmvc

The reservation obtained by the Check_Out procedure can be abandoned using the
Abandon_Reservation command.

Parameters

Uhat_Object : String := "<CURSOR>";

Specifies one or more objects to be checked out. If multiple objects are specified, all
must belong to the same view. If a view name is specified, the Check_Out procedure
attempts to check out all the objects in the view.

If the Check_Out procedure encounters an object that is checked out in another
view, an error is reported at that point and the command quits without looking
at any more specified objects. Checkouts made before the command quits are
abandoned.

Objects must be controlled to be checked out. If uncontrolled objects are named,
they are noted in the output log generated by the command.

If multiple objects are specified, they must be in the same view. Multiple objects
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see “Naming” in the Key Concepts in
this book.)

Comments : String := "";

Specifies a comment to be stored in the CMVC database with the notes for the speci-
fied object(s). The notes can be displayed using the Get_Notes command. This com-
ment also appears in the display generated by the Show_History_By_Generation
command.

In addition, the specified comment is logged to the work order specified by the
Work_Order parameter.

Allow_Implicit_Accept_Changes : Boolean := True;

Specifies whether the Check_Out procedure is allowed to update the specified ob-
jects to the latest generation.

If this parameter is true, the Check_Out procedure is permitted to update the
objects. If it is false, the command proceeds only if the specified objects are already
at the latest generation; otherwise, an error is reported and the command quits.

RATIONAL #/1/s PM-219

procedure Check_Out
package !Commands.Cmvce

Allow_Demotion : Boolean := False;

Specifies whether the Check_Out procedure is allowed to demote Ada units in order
to update the specified objects to the latest generation.

If this parameter is true, the Check_Out procedure is permitted to demote Ada
units if necessary. If it is false, the command proceeds only if no demotion is
required; otherwise, an error is reported and the command quits.

Remake_Demoted_Units : Boolean := True;

Specifies whether to recompile any units that were demoted in the process of up-
dating the specified objects to the latest generation.

If true (the default value), demoted units are recompiled to the state spéciﬁed by
the Goal parameter. If false, units remain demoted.

Gozl : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The goal can be any of the enumerations of the Compilation.Unit_State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake_Demoted_Units parameter.

Expected_Check_In_Time : String := "<TOMORROUW>";

Specifies the anticipated date and time at which the objects will be checked in. The
value of this parameter can be any string accepted by the !Tools.Time_Utilities-
.Value function (documented in PT). The default value, "<TOMORROW>", supplies the
date and time for the next day. The expected checkin time can be viewed using
commands such as Show.

Work _Order : String := "“<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date of checkout, the objects affected,
and the username and session in which the command was entered. If the Comments
parameter is specified, this comment is also entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

PM-220 8/1/88 RATIONAL

Response : String := "<PROFILE>";

procedure Check_Out
package !Commands.Cmvce

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
procedure Abandon_Reservation
procedure Check-In

procedure Show

procedure Show_All_Checked_Out
procedure Show_Checked_Out_By_User
procedure Show_Checked_Out_In_View

procedure Show_History_By_Generation

RATIONAL &1/e

PM-221

procedure Copy
package !Commands.Cmvce

procedure Copy

procedure Copy

(From_View : String = "<CURSOR>";

New_Working_View : String = ">>SUB/PATH NAME<KL";

View_To_Modify : String = """

View_To_Import : String = "<INHERIT_IMPCRTS>";

Only_Change_imports : Boolean = True;

Join_Views : Boolean = True;

Reservation_Token_Name : String = "<AUTO_GENERATE>";

Construct_Subpath_Name : Boolean = False;

Create_Spec_Vieuw : Boolean = False;

Create_Load_View : Boolean = False;

Create_Combined_View : Boolean = False;

Level _For_Spec_View . Natural = 0;

Model : String = "<INHERI|T_MODEL>";

Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;

Comments : String = "",

Work _Order : String = "<DEFAULT>";

Volume : Natural = 0;

Response : String = "<PROFILE>"};
Description

Creates one or more new views by copying the specified view or views.

By default, the Copy command makes new spec views, new working load views, or
new working combined views, depending on the kinds of source views named by the
From_View parameter. This procedure also can be used to make views of a specific
type, depending on the values of the Create_-Spec_View, Create_Load_View, and
Create_Combined_View parameters. (At most, only one of these three parameters
can be true.)

The Copy command can be used to make new paths, subpaths, and spec views, al-
though specialized commands (Make..Path, Make_Subpath, and Make_Spec_View)
exist for this purpose. (Note that all of the special-purpose commands call the Copy
command.)

Objects in new working load or combined views are made controlled if the corre-
sponding objects were controlled in the source views. Objects in new spec views are
left uncontrolled.

Controlled objects in a new view can, but need not, be joined to the corresponding
objects in the view from which it is copied. Two views should be joined (using the
Join_Views parameter) if the majority of the controlled objects in them are to be
joined. (Joined objects cannot be checked out and modified independently.) The
controlled objects that need to be modified independently can be severed subse-
quently with the Sever command.

PM-222 8/1/88 PATIONAL

procedure Copy
package !Commands.Cmvc

A new view should not be joined to the view from which it is created if most of
the controlled objects in these two paths are to be modified independently. (Note
that changes can be propagated across unjoined objects with the Merge_Changes
command.) Although the new path is not created joined, individual objects in it
subsequently can be joined to the corresponding objects in other views (see the Join

command).

By default, each new view has the same imports as the view from which it was
copied. It is also possible to specify different imports in the process of creating the
new paths by using the View_To_Import and Only_Change_Imports parameters.
Import adjustments are subject to the same consistency checking that is performed
by the Import command.

Parameters

From_View : String := "<CURSOR>";

Specifies the source view or views from which copies are to be made. The default
is the view on which the cursor is located. This parameter can name:

¢ Combined, load, or spec views
¢ Working or released views

All controlled objects in a view named by the From_View parameter must be
checked in. If the parameter names multiple views, a new view is copied from
each of the named views. Each new view is created in the same subsystem as the
view from which it is copied.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. The named views can be in the same or in
different subsystems. (For further information, see “Naming” in the Key Concepts
in this book.)

R)ATIONAL 8/1/88 PM-223

procedure Copy
package !Commands.Cmvc

New_Working_View : String := ">>SUB/PATH NAME<K";
Specifies the string to be used in constructing the names of the new views.

The string specified by the New_Working_View parameter is used in several ways,
depending on the values of the Construct_Subpath.Name and Create_Spec_View
parameters:

¢ If both Create_Subpath_Name and Create_Spec_View are false, the string speci-
fied by New_Working_View is used as a pathname prefix for a working view—for
example, Rev2 in Rev2_Working.

o If Create_Subpath_Name is true, the string specified by New_Working_View is
used as a subpathname extension for a working view—for example, Anderson
in Revl_Anderson_Working. The new name is constructed using the pathname
(Rev1) from the source view.

e If Create_Subpath_Name is false and the New_Working_View string contains
an underscore, the string specified by New_Working_View is used as both the
pathname prefix and subpath extension—for example, Rev2_Miyata in Rev2-
—Miyata_Working.

e If Create_Spec_View is true, the string specified by New_Working_View is used
as a spec view prefix—for example, Revl in Revl_0_Spec.

Other portions of the constructed names, such as _Working and _0_Spec, are sup-
plied automatically.

If the From_View parameter names multiple views, all of the new views will use
the same name prefix or extension.

New_Working_View can be any string that constitutes a legal Ada identifier. Note
that a string containing an underscore is interpreted as a path prefix followed
by a subpath extension and not merely as a path prefix containing an under-
score. This has consequences for subsequent CMVC operations. For example, if the
New_Working_View parameter specifies the string “Target_2” and the Construct-
—Subpath_Extension parameter is false, the Copy command creates a view named
Target-2_Working. If another subpath view is subsequently created from this view,
the string “2” will be replaced by the new subpath extension.

PM-224 8/1/88 '?ATIONAL

procedure Copy
package !Commands.Cmvc

View_To_Modify : String := "";

Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new views, provided that those new views are combined or
spec views. The imports of the views specified by this parameter also are updated
using the views named by the View_To_Import parameter. The View.To_Modify
views are updated by View_To_Import views as if Only_Change_Imports were true,
regardless of this parameter’s actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

View_To_import : String := "<INHERIT_IMPCRTS>";

Specifies one or more spec or combined views to be imported by the new views. The
views named by this parameter also are used to update the imports of the views
named by the View_To_Modify parameter.

If View_To_Import specifies the default special name "<INHERIT_IMPORTS>", each
new view uses the same imports as the view from which it was copied. (However,
if the From_View parameter names multiple combined views among which import
relations hold, the imports are automatically adjusted so that the working views
in the new paths reference each other as appropriate, instead of referencing the
working views in the original paths.)

If View_To_Import specifies the null string (“”), no views are imported.

If View_To_Import specifies one or more views, the specified views are imported
by the new views in the manner specified by the Only_Change_Imports parameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

BA\TIONAI_ 8/1/88 PM-225

procedure Copy
package !Commands.Cmvc

Only_Change_Imports : Boolean := True;

Specifies the manner in which the views specified by the View_To_Import parameter
are actually used as imports by the new views. Only_Change_Imports has no effect
if View_To_Import specifies "<INHERIT_IMPORTS>" or the null string.

If this parameter is false, the entire list of views given by View_To_Import is im-
ported by each new view created by the Copy command. No imports are inherited.

If the parameter is true (the default value):

o Each new view inherits its imports from the view from which it was copied.

¢ The list of views in View_To_Import is compared to the inherited views. If
a View_To_Import view is from the same subsystem as an inherited view, the
View_To_Import view replaces that inherited view.

Thus, if Only_Change_Imports is true, the list of views in View_To_Import is used
to update the inherited imports of each new view. In this way, the replacement
imports for every new view can be specified in a single list without forcing each new
view to import everything in the list.

Join_Views : Boolean := True;

Specifies whether to join each new view to the view from which it was copied. Only
new working views (either load or combined) are joined. (That is, the value of
Join_Views is ignored if the Create_Spec_View parameter is true.)

If Join_Views is true (the default value), the controlled objects in each copied
working view are joined to the corresponding objects in each source view named
by the From_View parameter. The reservation tokens from the source views are
used. If a source view contains no controlled objects, then no objects can be joined.
Note that Join_Views affects only controlled objects that exist at the time the
Copy command is executed. Objects created after the new views are made must be
controlled explicitly and joined using the Make_Controlled and Join commands.

If Join_Views is false, new reservation tokens are created for all of the controllc!

objects. The value for New_Working_View is used as the reservation token, unless
Reservation_Token_Name specifies a nonnull value.

PM-226 snes RATIONAL

procedure Copy
package !Commands.Cmvc

Reservation_Token_Name : String := "<AUTO_GENERATE>";

Specifies the name of the reservation token to be associated with each specified
object. The value of this parameter is used only if the Join_Views and Create-
—Spec_View parameters are false.

The default value "<AUTO_GENERATE>" means that the reservation token is generated
automatically by the Environment. Names of reservation tokens that are gener-
ated automatically are derived from the first portion of the enclosing view name
(up to the first underscore character). For example, the controlled objects in a
view called Revl_Working would have Revl as their automatically generated token
name. (Where necessary, a number is appended to produce a unique name for the
reservation token—for example, Revl_1.)

A user-defined token name can be supplied instead to provide subsequent join sets
with more meaningful or mnemonic token names.

Note that supplying an existing token name cinnot be used to join the newly
controlled objects to any other objects.

Construct_Subpath_Name : Boolean := False;

Specifies whether each new view should be named as a subpath of the corresponding
source view.

If true, the string specified by the New_Working_View parameter is used as a sub-
pathname extension in each new view’s name. Each new view name is constructed
from the pathname prefix of the source view followed by the string specified by
New_Working_View. The string “_Working” is automatically added to the name’s
end. For example, if From_View names a source view called “Rev1_4_5" and New-
-Working_View specifies the string “Anderson”, then setting Construct_Subpath-
-Name to true causes the new view to be called Revl_Anderson_Working.

If false (the default value), the string specified by the New_Working_View param-
eter is used either as a pathname prefix or (if Create_Spec_View is true) as a
spec-view prefix in the new view names.

The value of Construct_Subpath_.Name is ignored if the Create_Spec_View param-
eter is true.

RATIONAL s/1/e PM-227

procedure Copy
package !Commands.Cmvc

Create_Spec_View : Boolean := False;
Specifies whether to create spec views instead of working load or combined views.

If Create_Spec_View is false (the default value), the type of view created depends
on the values of the Create_Load_View and Create_Combined_View parameters.
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create_Spec_View is true, a new spec view is created from each of the source
views specified by From_View. In this case, the values of Create_Spec_View and
Create_Combined_View must be false. Objects in the new spec views are uncon-
trolled.

Each new spec view is created with only those units named in the Exports file of the
corresponding source view. (This file is located in the view-_name.State directory.)
The new spec view contains a copy of the specifications of those units. If no units
are specified in the Exports file, the new spec view copies the specifications of all
of the units in the source view.

When Create_Spec_View is true, the string specified by New_Working_View is
used as a spec-view prefix. The name of each new view thus is constructed from the
specified string, followed by one or more release level numbers (as determined by the
Level_For_Spec_View parameter), followed by the string “_Spec”. For example,
if From_View names a source view called “Revl_Anderson_Working” and New-
—Working_View specifies the string “Rev2”, then setting Create_Spec_View to true
causes the new view to be called Rev2_n_Spec (where n represents the current
release level number).

When Create_Spec_View is true, the values of the Join_Views, Reservation_Token-
-Name, and Construct_Subpath_Name parameters are ignored.

The value of Create_Spec_View is ignored when the Copy command is entered in

a system or in a combined subsystem. Systems can contain only system views and
combined subsystems can contain only combined views.

PM-228 8/1/88 RATIONAL

procedure Copy
package !Comnands.Cmve

Create_Load_View : Boolean := False;

Specifies whether to create working load views instead of spec views or working
combined views.

If Create_Load_View is false (the default value), the type of view created depends
on the values of the Create_Spec_View and Create_Combined_.View parameters.
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create_Load_View is true, a new load view is created from each of the source
views specified by From_View. In this case, the values of Create_Spec_View and
Create_Combined_View must be false.

The value of Create_Load_View is ignored when the Copy command is entered in
a system or in a combined subsystem. Systems can contain only system views and
combined subsystems can contain only combined views.

Create_Combined_View : Boolean := False;

Specifies whether to create working combined views instead of spec views or working
load views.

If Create_Combined_View is false (the default value), the type of view created de-
pends on the values of the Create__Spec_View and Create_Load_View parameters.
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create_Combined_View is true, a new combined view is created from each of the
source views specified by From_View. In this case, the values of Create_Spec_View
and Create_Load_View must be false.

The value of Create_Combined_View is ignored when the Copy command is entered
in a system. Systems can contain only system views.

IQAT'ONAL 8/1/88 PM-229

procedure Copy
package !Commands.Cmvc

Level _For_Spec_View : Natural := @;

Specifies which level number to increment when creating spec-view names. If the
value of this parameter is Natural’Last, spec-view names are generated without
level numbers.

Level numbers in a spec-view name are generated from the level numbers in the
name of the most recently released view in that subsystem. Note that a released-
view name contains as many numbers as there are release levels; the rightmost
number is the Oth level. In a spec-view name, the string “_Spec” replaces the
rightmost (Oth level) number, so a spec-view name has one number less than a
released-view name.

If Level_For_Spec_View is 0, no release level numbers are incremented, because the
Oth-level number has been replaced. In this case, the spec-view name contains the
same numbers (starting with level 1) as the most recent release. If Level _For_Spec-
-View is 1, the first-level number in the most recent release name is incremented
before the appropriate level numbers are inserted into the spec-view name. The
number of levels that can be incremented is determined by the Levels file within
the model world for the view. The Copy command quits if the value of the Level-
—For_Spec_View parameter is a number other than Natural’Last that exceeds the
total number of levels specified by the Levels file.

For example, assume that there are two release levels and the most recently released
view is called Revl_4_2. If Create_Spec_View is true and Level_For_Spec_View
is 1, the name generated for the new spec view is Revl_5_Spec (assuming that the
New_Working_View parameter specifies the string “Rev1”).

The value of Level_For_Spec_View is ignored if the Create_Spec_View parameter
is false.

Model : String := "<INHERIT_MODEL>";

Specifies a model world for each new working view. If the specified name cannot be
resolved in the context 'Model, the name is resolved relative to the current context.
By default, the new working view uses the same model as the view from which it
was copied.

Remake_Demoted_Umits : Boolean := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

PM-230 8/1/88 QAT]ONAL

procedure Copy
package !Commands. Cmve

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The goal can be any of the enumerations of the Compilation.Unit_State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, all units in the view are put in the source state,
regardless of the value of the Remake_Demoted_Units parameter.

Comments : String = "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order tring := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date when the new working view was
copied and the username and session in which the command was entered. If the
Comments parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := 0;

Specifies the volume on which to make the new working views. The default value
specifies that the new working views should be created on the volume with the most
free space.

Response : String := "<PROFILE>",

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Make_Path
procedure Make_Spec_View
procedure Make_Subpath

procedure Merge_Changes

RATIONAL 8/1/88 PM-231

procedure Create_Empty_Note_Window
package !Commands.Cmvc

procedure Create_Empty_Note_Window

"<CURSOR>";

procedure Create_Empty_Note_Window (What_Object : String
"<PROFILE>") ;

Response : String

Wit

Description

Creates an empty window for the purpose of composing notes for the specified
controlled object. The banner of the created window identifies it as Notes For
followed by the object’s name.

The notes for a controlled object are stored the CMVC database. An object’s notes
can be used as a scratchpad for arbitrary commentary to be associated with par-
ticular generations.

After the notes window has been edited:

» The Append_Notes command can be used to append the window’s contents to
the object’s existing notes.

o The Put_-Notes command can be used to replace the object’s existing notes with
the window’s contents.

Modified notes windows retain the * symbol in their window banners, even after
their contents have been entered in the CMVC database using Append_Notes or
Put_Notes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use Common.Abandon to remove these windows.

The Notes command provides an interactive alternative to Append_Notes, Cre-
ate_Empty-Note_Window, and the like. The Notes command displays a history
image (1dentified by the 'History attribute following the object name and gener-
ation in the window banner), which allows interactive operations for managing an
object’s notes.

Parameters

Uhat_Object : String := "<CURSOR>";

Specifies the object for which an empty notes window is to be created. The specified
object must be controlled.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-232 8/1/88 R)ATIONAL

procedure Create_Empty._Note_-Window
package !Comruands.Cmvce

References

procedure Append_Notes
procedure Get_Notes
procedure Notes

procedure Put_Notes

RAT'ONAL 8/1/88 PM-233

procedure Def
package !Commands.Cmvc

procedure Def

"<CURSOR>";

procedure Def (What_Object : String
False};

In_Place : Boolean :

Description

Traverses between various objects managed by the Environment library system and
images managed by the CMVC editor.

In some contexts, the Def command serves as the inverse of the Edit command:

s Entering Edit from a view or from a controlled object in the view displays the
configuration image for that view.

¢ Entering Def from the configuration image for a view displays the view itself or
a controlled object in the view (depending on the location of the cursor within

the configuration image).

In other contexts, the Def command serves as the inverse of the Notes command:

¢ Entering Notes from a controlled object in a view displays the history image for
the object.

¢ Entering Def from the history image for a controlled object displays the object
itself.

Finally, Def traverses back and forth between a controlled object in a view and its
current generation image. If images of other generations are displayed subsequently,
Def also displays the controlled object from any of these other generation images.

A particularly useful application of Def is to use it to display an object’s current
generation image and then use Common.Expand to see the differences between the
current generation and the previous generation.

Parameters

Uhat_Object : String := "<CURSOR>™;

Specifies the object or image from which to traverse. Objects must be controlled.
Images include configuration, generation, and history images.

The default is the object or image on which the cursor is currently located.

PM-234 8/1/88 IQATIONAL

procedure Def
package !Commands.Cmvc

In_Place : Boolean := False;

Specifies whether the current frame should be used to display the image. The
default specifies that the least recently used frame should be used.

RATIONAL 4/1/es PM-235

procedure Destroy_Subsystem
package !Commands.Cmvc

procedure Destroy_Subsystem

procedure Destroy_Subsystem (What_Subsystem : String "<SELECTION>",

Comments : String - ;
Work _Order : String := "<DEFAULT>";
Response : String = "<PROFILE>");

Description
Destroys the specified subsystem or subsystems.

All views in each subsystem must be destroyed (with the Destroy_View command)
before that subsystem can be destroyed.

Parameters

What_Subsystem : String := "<SELECTION>";

Specifies one or more subsystems to be destroyed. There can be no views in the
specified subsystems. By default, the selected subsystem is destroyed.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Comments : String := "";
Specifies a comment to be logged in the work order indicated by the Work_Order

parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Uork _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date when the subsystem is destroyed
and the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-236 8/1/88 RAT'ONAL

procedure Destroy_System
package 'Commands.Cmvc

procedure Destroy—System

procedure Destroy_System (What_System : String := "<SELECTION>";

Comments : String :; ;
Work _Order : String := "<DEFAULT>";
Response : String := "<PROFILE>");

Description
Destroys the specified system or systems.

All views in each system must be destroyed (with the Destroy_View command)
before the subsystem can be destroyed.

Parameters

What_System : String := "<SELECTION>";

Specifies one or more systems to be destroyed. There can be no views in the specified
systems. By default, the selected system is destroyed.

Multiple systems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Uork _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date the system is destroyed and the
username and session in which the command was entered. If the Comments param-
eter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

R)ATIONAL 8/1/88 PM-237

procedure Destroy_View
package !Commands.Cmvc

procedure Destroy_View

procedure Destroy_View

(What_View : String = "<SELECTION>";
Demote_Clients : Boolean := False;
Destroy_Configuration_Also : Boolean := False;
Comments : String = "t
Work _Order : String = "<DEFAULT>";
Response : String = "<PROFILE>"},

Description

Destroys the named view or views and all of their subdirectory structure, including
the Ada units in the Units directories.

This procedure destroys views in subsystems and in systems.

All objects are first unfrozen if they are currently frozen, and then they are deleted
and expunged from the directory system. A view cannot be destroyed in any of the
following cases:

¢ The view contains controlled objects that currently are checked out.
e The view is currently imported by client views.

¢ The view is included in a system as a result of operations in the Cmvc_Hierarchy
package.

Destroy_View is the only command that should be used to destroy a view. In par-
ticular, neither the Library.Destroy nor the Compilation.Destroy command should
be used, because these commands cannot destroy the entire view structure. If an
attempt was made to destroy a view using any command other than Destroy_View,
you can recover as follows:

1. Enter the Cmvc_Maintenance.Check_Consistency command to repair the par-
tially destroyed view.

2. Enter the Destroy_View command to destroy the view completely.
By default, views are destroyed so that they can be rebuilt using the Build com-

mand. Views can be destroyed permanently by setting the Destroy_Configuration-
—Also parameter to true.

PM-238 8/1/88 RAT'ONAL

procedure Destroy-View
package !Conumands.Cmve

Parameters

What_View : String := "<SELECTION>";

Specifies one or more views to be destroyed. The default, "<SELECTION>", means
that the selected view is destroyed. The specified views cannot contain controlled
objects that currently are checked out.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Demote_Clients : Boolean := False;

Specifies whether a view can be destroyed if other views import it. If false (the
default value), the Destroy_View command quits if the specified view is imported
by other views. If true, the specified view is removed from the imports of any
referencing views and then destroyed. Note that units in the referencing views may
be demoted as a result of removing the import.

Destroy_Configuration_Also : Boolean := False;

Specifies whether to destroy the configuration object associated with each specified
view. If false (the default value), the configuration object is preserved for each
destroyed view. In addition, the state description directory is preserved for each
released view and a state description directory is created for each spec and working
view. (State description directories exist in the subsystem.Configurations directory
along with configuration objects.)

As a result, any view destroyed while this parameter is false can be reconstructed
using the Build command. (Note that only the controlled objects in a view can be
reconstructed by Build.) Destroying a view while this parameter is false is useful
for saving space without losing information. Note that as long as the configura-
tion object exists, a new view with the same name cannot be created in the same
subsystem.

If true, the configuration object is expunged from the CMVC database. The de-
stroyed view cannot be reconstructed, although a new view with the same name
can be created.

W,

Comments : String :=

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL s/1/8s PM-239

procedure Destroy_View
package !Commands.Cmvc

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date the view is destroyed and the user-
name and session in which the command was entered. If the Comments parameter
is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

A view cannot be destroyed if it contains controlled objects that currently are
checked out, if it is imported by other views, or if it is included in a system.

PM-240 o158 RATIONAL

procedure Edit
package 'Commands.Cmve

procedure Edit

procedure Edit {View_Or_Config : String = "<CURSOR>";
In_Place : Boolean := False;
Allow_Check _Out : Boolean := True;
Allow_Check_!n : Boolean := True;
Allow_Accept_Changes : Boolean := True};
Description

Displays a configuration image for the specified view or configuration object or for
the view enclosing the specified object.

A configuration image for a view is a library-like display of CMVC information
pertaining to that view.

Every view embodies a specific configuration, where a configuration is a combination
of generations, one for each controlled object in the view. A configuration image
for a view thus contains an entry for each controlled object in the view, indicating
the generation of the object that is present in the configuration embodied by the
view. Each entry also indicates thc latest generation that exists for that object in
any view.

A configuration image for a view provides a convenient way to:

¢ Check in, check out, and accept changes on controlled objects.

¢ Determine whether an object is checked out, to whom it is checked out, whether
it is out of date in a given view, and which other views contain objects in the
same join set. (The Common.Expand command displays increasing levels of
information from this image.)

* Access generation images (textual representations of previous generations) and
history images (the notes stored in the CMVC database for each controlled object).
Note that a given generation image can be expanded to show differences between
that generation and the previous one. Generation images are available only for
controlled objects for which source is saved.

Note that Edit can be used to display a configuration image for a configuration
object that has no view associated with it (for example, a configuration release). In
this case, the configuration image provides access to generation images and history
images even for objects that may not still exist outside the CMVC database. This is
a useful means for browsing past generations of objects.

Similarly, the Edit command can be used to display configuration images for code
views, which do not contain source objects.

The Def command traverses from a configuration image for a view to the view itself
(or to an object in that view).

RAT'ONAL 8/1/88 PM-241

procedure Edit
package !Commands.Cmnve

By default, commands from package Common can be used to perform checkin,
checkout, and accept-changes operations in a configuration image that was created
by the Edit command. To restrict such operations, set the Allow_Check_Out,
Allow_Check_In, and Allow_Accent_Changes parameters to false when you enter
the Edit command.

As an alternative to using the Edit command, configuration images can be created
using commands from package Common. In this case, checkin, checkout, and accept-
changes operations are restricted automatically. However, the Edit command can
be entered from the configuration image to change these restrictions as specified by
the Allow_Check_Out, Allow_Check_In, and Allow_Accept_Changes parameters.

Parameters

View_Or_Config : String := "<CURSOR>";

Specifies the view or object for which to display a configuration image. A configu-
ration object also can be specified, even if the corresponding view no longer exists.
If an object is specified, it must be controlled.

The default is the object or view on which the cursor is currently located.

In_Place : Boolean := False;

Specifies whether the current frame should be used to display the image. The
default specifies that the least recently used frame should be used.

Allow_Check _Cut : Boolean := True;

Specifies whether to permit checkout operations in configuration images. If true
(the default), commands from package Common can be used to check out objects
from a configuration image. If false, checkout operations are not permitted.

Allow_Check_In : Boolean := True;

Specifies whether to permit checkin operations in configuration images. If true (the
default), commands from package Common can be used to check in objects from a
configuration image. If false, checkin operations are not permitted.

Allow_Accept_Changes : Boolean := True;

Specifies whether to permit changes to be accepted in configuration images. If true
(the default), commands from package Common can be used to accept changes
into objects from a configuration image. If false, accept-changes operations are not
permitted.

PM-242 8/1/88 R)ATIONAL

procedure Edit
package !Comrnands.Cmve

References

procedure Def

R)ATIONAL 8/1/88 PM-243

procedure Get_Notes
package !Commands.Cmvc

procedure Get_Notes

procedure Get_Notes {To_File : String = "<WINDOW>",
Uhat _Ob ject : String := "<CURSOR>";
Response 1 String := "<PROFILE>";;
Description

Retrieves the notes for the current generation of the specified controlled object.

The Get_Notes command retrieves an object’s notes from the CMVC database and
displays them in a special-purpose window or writes them into a file. An object’s
notes can be used as a scratchpad for arbitrary commentary to be associated with
particular generations.

Get_Notes is one of a set of file-oriented commands for managing notes. That
is, these commands, including Put-Notes, Create_Empty_Note_Window, and Ap-
pend_Notes, are most useful for managing notes through files. However, these
commands also manage special-purpose notes windows, which are identified in the
banner by the string Notes For followed by the object’s name. The contents of the
window can be edited; however, the edited text in the window can be saved into
the cMVC database only as follows:

¢ The Append_Notes command can be used to append the window’s contents to
the object’s existing notes.

¢ The Put_Notes command can be used to replace the object’s existing notes with
the window’s contents.

Note that modified notes windows retain the * symbol in their window banners even
after their contents have been entered in the CMVC database using Append_Notes
or Put_Notes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use Common.Abandon to remove these windows.

The Notes command provides an interactive alternative to Get_Notes, Put_Notes,
and the like. The Notes command displays a history image (identified by the 'His-
tory attribute following the object name and generation in the window banner),
which allows interactive operations for managing an object’s notes.

PM-244 8/1/88 BATIONAI_

procedure Get_Noies
packzge !Commands.Cmvce

Parameters

To_File : String := "<WINDOW>";

Specifies where to put the retrieved notes. If a new filename is specified, a file is
created and the notes are written into it. If an existing filename is specified, the
contents of that file are replaced with the notes.

If the default special name "<WINDOUW>" is used, a window is opened in which the
notes are displayed. Note that this window is not a normal text file; changes to this
window can be saved only by using the Put_Notes command.

What _Object : String := "<CURSOR>™;

Specifies the object whose notes are to be retrieved. Only controlled objects have
notes. The default is the object on which the cursor is located.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Append_Notes

procedure Create_Empty_Note_Window
procedure Notes

procedure Put_Notes

IQATIONAL 8/1/88 PM-245

procedure Import
package !Commands.Cmvc

procedure Import

procedure |mport

{(View_To_import ¢ String = "<REGION>";
Into_View : String = "<CURSOR>";
Only_Change_Imports : Boolean = False;
Import_Closure : Boolean = False;
Remake_Demoted_UUnits : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;
Comments : String = "",

Work _Order : String = "<DEFAULT>";
Response : String = "<PROFILE>"};

Description

Imports the specified spec or combined views into the designated view(s).

Some or all of the views specified by the View_To_Import parameter are imported
by a given view, depending on the value of the Only_Change_Imports parameter.

The Import command can be used to:

¢ Add new imports

e Change an existing import by importing a different view from the same subsys-
tem

o Refresh a view’s existing imports after new specifications have been added to the
imported views

Consistency checking is done to ensure that no view directly or indirectly imports
more than one view from the same subsystem. The import operation checks the
closure of the importing view and the closures of all views that import it. An error
results if any new or changed import would cause an inconsistency.

Furthermore, within spec/load subsystems, circularity checking is done to ensure
that no view directly or indirectly imports itself. (Circular importing is permitted
among views in combined subsystems, however.)

An import operation succeeds only if the target key of the importing (client) view
is compatible with the target key of the imported (supplier) view. For example, a
view with target key R1000 cannot import a view with target key Mc68020_Bare.

Importing operations create and manage links among subsystems. When one view
imports another, links are created in the client view to each of the units in the
supplier view. Imports alone enable links to be managed across paths, subpaths,
and releases; links should never be added individually through commands from

package Links.

PM-246 8/1/88 RA\-HONAL

procedure Ircpors
package ‘Commands.Cive
T g

An import operation will create links to a subset of the units in a supplier view if
export and import restrictions exist. Users create export and import restrictions as
text files in the supplier and client views, respectively.

An ezport restriction file is a text file in the Exports subdirectory within the supplier
view. An export restriction file defines a subset of the units in the supplier view
either through a list of unit names {one per line) or through naming expressions.
Names in an export restriction file are resolved against the Units directory within
the view. The Exports subdirectory can contain multiple export restriction files
that define alternative subsets of the view.

An tmport restriction file is a text file in the Imports subdirectory within the client
view. A given import restriction file determines which subset to use from a partic-
ular supplier view. A client view may have multiple import restriction files, one for
each of its supglier views. The following rules pertain to the creation of an import
restriction file that corresponds to a particular supplier view:

e The import restriction file must have the same name as the subsystem contain-
ing the supplier view. Typically the subsystem’s simple name is used; however,
a fully qualified subsystem name can be converted to a filename by omitting
the preceding ! and changing the dots (.) between name components to un-
derscores (-). For example, an import restriction file for a supplier view in the
subsystem !Programs.Mail.Mail_Utilities can be named either Mail_Utilities or
Programs_Mail _Mail_Utilities.

e The first line of the file must consist of the string export_restriction=> followed
by the simple name of the desired export restriction file from the supplier view.
No blanks should appear in this line. Omitting this line implicitly specifies an
export restriction file named Default, if such a file exists; otherwise, the entire
supplier view is used.

o Subsequent lines in the import restriction file can contain names or naming ex-
pressions to specify a further subset of the units listed in the export restriction
file. Links are created in the client view for the units that are matched by the
naming expressions. If no naming expressions are specified, no links are created.

Because an import restriction file essentially specifies a set of link names, only
simple Ada names should be used in the naming expressions. This is true even
for names that are qualified within the export restriction file. Whereas names
in an export restriction file are resolved as library names, names in an import
restriction file are resolved as link names.

Naming expressions can be used to:

— Request links for all units in the export restriction file by entering o
— Request links for subsets by using wildcard expressions such as o_pkg

— Exclude links to units by using expressions such as ~Unit_Name (which should
follow an expression such as a)

— Rename links to units by specifying the unit name followed by the new link
name

RATIONAL 8/1/88 PM-247

procedure Import
package !Commands.Cmvc

Parameters

View_To_Ilmport : String := "<REGION>";

Specifies one or more views to be imported by the views named in the Into_View
parameter. The views specified by View_To_Import must be spec or combined
views. If View_To_Import specifies a set of views, these views are imported in the
manner specified by the Only_Change_Imports parameter.

If View_To_Import is the null string (“”), the existing imports of Into_View are
refreshed to include any new unit specifications that have been added.

If both View_To_Import and Into_View name the same set of combined views, the
named views import each other.

The Imported_Views function can be used to return another view’s imports as
the value of View_To_Import. This is a convenient way of setting the imports of
Into_View to be the same as another view’s imports.

Note that this parameter accepts only view names; export and import restriction
files never need to be specified explicitly.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Into_View : String := "<CURSOR>",

Specifies the view or views to which imports are to be added. The default is the
view on which the cursor is located. Into_View can specify spec, load, or combined
views.

If both the View_To_Import and Into-View parameters name the same set of com-
bined views, the named views import each other.

Multiple views can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

PM-248 8/1/88 BA\-HONAL

precedure Import
package !Comraands.Cmve

Only_Change_lmports : Boolean := False;

Specifies the manner in which the views specified by the View_To_Import parameter
are actually used as imports.

If false (the default value), the entire list of views given by View_To_Import is
imported into each view specified by Into_View. Existing imports are not affected
unless a View_To_Import view is from the same subsystem as an existing import.
In this case, the View_To_Import view replaces the corresponding existing import.

If true, a View_To_Import view is imported only if it is from the same subsystem as
an existing import. The View_To_Import view then replaces the existing import.
Thus, if Only_Change_Imports is true, the list of views in View_To_Import is
used ‘o update existing imports rather than add new imports. In this way, all
replacement imports can be specified in a single list without forcing every view to
import everything in the list.

import_Closure : Boolean := False;

Specifies whether to import not only the views named by View_To_Import but also
the views in their closures.

If false (the default value), imports are limited to the views named by View_To-
~Import.

If true, imports include the views in the closures of the View_To_Import views,
subject to Only_Change_Imports.

Remake_Demoted_Units : Boolean := True;

Specifies whether to recompile any units that were demoted by the import operation.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by the import operation are left in the demoted state.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation.Unit-
-State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To compile units to the installed state, specify Compilation.Installed.
If Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake_Demoted_Units parameter.

RATIONAL 8/1/88 PM-249

procedure Import
package !Commands.Cmvc

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. The command’s
action is recorded only if the Comments parameter is specified. In addition to the
comment, the work order records the time and date as well as the username and
session in which the command was entered.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Imported_Views

PM-250 8/1/88 RATIONAL

function Imported_Views
package !Commanpds.Crve

function Imported—_Views

function Imported_Views (Of_View : String = "<CURSOR>";
Include_Import_Closure : Boolean := False;
Include_Importer : Boolean := False;
Response : String = "<WARN>")
return String;
Description

Returns a string that names all the views that are imported by the specified view.

Parameters

0f_View : String := "<CURSOR>";

Specifies one or more views whose imports are to be returned in a naming string.
If multiple views are specified, the Imported_Views function returns the union of
all the imports of the specified views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”

in the Key Concepts in this book.)

Include_Import_Closure : Boolean := False;

Specifies whether to return the names of the indirectly imported views in addition
to directly imported views.

If false (the default value), only the views directly imported by the Of_View param-
eter are listed. If true, the returned naming string lists all of the views in Of_View’s
import closure.

Include_Importer : Boolean := False;

Specifies whether to return the names of the views specified by the Of_View pa-
rameter. If false (the default value), only the names of imported views are listed. If
true, the returned naming string includes the names specified by Of_View as well.

Response : String := "<WARN>",

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is a response profile that puts
negative messages, warning messages, error messages, and exception messages in
the log.

RATIONAL 8/1/88 PM-251

function Imported_Views
package !Commands.Cmvc

return String;

Returns a string that names all the views that are imported by the specified view.

PM-252 8/1/88 Q/\TIONAL

procedure Informaticn
package !Commands.Cmve

procedure Information

procedure I'nformation {For_View : String = "<CURSOR>";
Show_Model : Boolean = True;
Show_Whether _Frozen : Boolean := True;
Show_View_Kind : Boolean := True;
Show_Creation_Time : Boolean := True;
Show_Impor 3 . Boolean := True;
Show_Referencers : Boolean := True;
Show_Un1t_Summary : Boolean := True;
Show_Controlled_Ob jects : Boolean := False;
Show_Last_Release_Numbers : Boolean := False;
Show_Path_Name . Boclean := False;
Show_Subpath_Name . Boolean := False;
Show_Swzi tches . Boolean := False;
Show_Exported_Units : Boolean := False;
Response : String = "<PROFILE>"};

Description

Displays various kinds of information about the specified view in the output window.

Each parameter specifies whether to display a particular kind of information.

Parameters

For_View : String := "<CURSOR>";

Specifies the view for which information is to be displayed. The default is the view
on which the cursor is located. The specified view can be in a subsystem or in a
system.

Show_Model : Boolean := True;

Specifies whether to display the name of the view’s model. If true (the default
value), the name is displayed.

Show_hether _Frozen : Boolean := True;

Specifies whether to display the view’s status with respect to freezing. If true (the
default value), this information is displayed.

Show_View_Kind : Boolean := True;

Specifies whether to display the view’s kind—for example, spec, load, or combined.
If true (the default value), the kind is displayed.

R/A\TlONAL 8/1/88 PM-253

procedure Information
package !Commands.Cmvc

Show_Creation_Time : Boolean .= True;

Specifies whether to display when the view was created. If true (the default value),
the creation time is displayed.

Show_Iimports : Boolean := True;

Specifies whether to display a list of all imported views. If true (the default value),
the imports are displayed.

Show_Referencers : Boolean := True;

Specifies whether to display a list of all subsystems that import this view. If true
(the default value), this information is displayed.

Show_Unit_Summary : Boolean := True;

Specifies whether to display a summary of the compilation states of all units in
the view. If true (the default value), the number of coded units, installed units,
source units, and empty stubs is displayed. If For_View specifies a system view,
this parameter causes the view’s release activity to be displayed.

Show_Controlled_0b jects : Boolean := False;

Specifies whether to display a list of all controlled objects in the view. If false (the
default value), this information is not displayed. If true, the display includes the
same information as the Show_All_Controlled command-—namely, the number of
generations that exist for each controlled object, whether the object is checked out,
and by whom.

Show_lLast_Release _Numbers : Boolean := False;

Specifies whether to display the level numbers that appear in the name of the most
recently released view. These numbers will be incremented if another released view
or spec view is created. If false (the default value), this information is not displayed.

Show_Path_Name : Boolean := False;

Specifies whether to display the string within the view’s name that serves as the
pathname. If false (the default value), this information is not displayed.

Show_Subpath_Name : Boolean := False;

Specifies whether to display the string within the view’s name that serves as the
subpathname. If false (the default value), this information is not displayed.

PM-254 8/1/88 I?AT'ONAL

procedure iuformation
package !Commands.Cruve

Show_Switches : Boolean .= False;

Specifies whether to display the settings for all switches associated with the view.
If true, switch settings are displayed, along with the view’s target key. If false (the
default value), this information is not displayed.

Show_Exported_Units : Boolean := False;

Specifies whether to display a list of all exported units. If false (the default value),
this information is not displayed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

R)ATIONAL 8/1/88 PM-255

procedure Initial
package !Commands.Cmve

procedure Initial

procedure Initial

{System_Ob ject : String = ">>SYSTEM OBJECT NAMELKL™;

Working_View_Base_Name : String = "Revl";

System_Ob ject_Type . System_Object_Enum := Cmvc.Spec_Load_Subsystem;

View_To_lmport : String = "";

Create_lLoad_View : Booclean = True;

Model : String = "R1000",

Comments ' : String = "";

Work _Order : String = "<DEFAULT>",

Volume : Natural = 0,

Response : String = "<PROFILE>"1;
Description

Builds a new system or a new subsystem of the specified type—namely, spec/load
or combined.

Subsystems partition a project or application into high-level components by group-
ing Ada units or other objects. A system pulls an application’s components together
by logically grouping particular releases from the component subsystems. Opera-
tions for systems are in package Cmvc_Hierarchy.

The new subsystem or system contains an empty working view that has the specified
imports. The Initial command also can be used to create an empty view in an
existing subsystem or system.

The initial view is set up according to the specified model. This includes the setting
of the switches and initial links for the view. The model also may contain a file
named Levels whose integer contents specify the number of levels for automatic
name generation for released and spec views. Furthermore, the model may con-
tain user-defined directory structure to be created in the view in addition to the
predefined directories.

The name of the initial view of the subsystem or system is:

[System_Ob ject].[Working_View_Base_Name]_Working

Parameters

System_Object : String := ">>SYSTEM OBJECT NAME<K";

Specifies the name of the subsystem or system to be created. The default parameter
placeholder ">>SYSTEM OBJECT NAME<<" must be replaced or an error wiil result.

PM-256 8/1/88 RATIONAL

procedure Ininal
package Comiiands.Cnive

Working_View_Base_Name : String := "Revl”;

Specifies the base name of the initial view in the subsystem or system. If the default
value is used, the initial view is named Revl_Working.

The string given for Working_View_Base_Name can be any legal Ada identifier. By
convention, if this string contains no underscores, it serves as a pathname prefix;
if the string contains an underscore, it serves as a pathname prefix followed by a
subpathname extension.

System_Ob ject_Type : System_Object_Enum := Cmvc.Spec_Load_Subsystem;

Specifies whether to create a system or one of two types of subsystem—namely,
spec/load or combined.

Systems are an optional device for creating logical groupings of releases from com-
ponent subsystems in an application. Operations for systems are in package Cmvec-
—Hierarchy.

Subsystems partition applications into high-level components. The two types of
subsystem determine the kinds of views that can be created as well as whether
hierarchic importing is enforced. The default value, Cmvc.Spec_Load_Subsystem,
causes the Initial procedure to build a subsystem that can contain either spec/load
or combined views. Within such a subsystem, all imports must be hierarchic, in that
no view is permitted to be in its own import closure. If Cmvc.Combined _Subsystem
is specified, the Initial procedure builds a subsystem that can contain only combined
views, among which circular import relations may hold.

RATIONAL 8/1/88 PM-257

procedure Initial
package 'Commands.Cmvc

View_To_import . String := '

Specifies one or more views to be imported by the new working view. The views
specified by View_To_Import must be spec or combined views.

If View_To_Import is the null string (“”), the default value, no views are imported.

The Imported_Views function can be used to return another view’s imports as the
value of View_To_Import. This is a convenient way of setting the new working
view’s imports to be the same as another view’s imports.

Note that if export and import restrictions will be needed, it is recommended that
you do not use this parameter to create imports. Instead, after the subsystem is
created, you can create the export/import restriction files and use the Cmvc.Import
command to perform the import operation.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Create_lLoad_View : Boolean := True;

Specifies whether to create a load view for the initial working view. If true, the
initial working view is a load view. If false, the initial working view is a combined
view.

The value of this parameter is used only when the System_Object_Type parameter
has the value Cmvc.Spec_Load_Subsystem; otherwise, this parameter is ignored.
(When a combined subsystem is created, the initial view is a combined view; when
a system is created, the initial view is a system view.)

Model : String := "R1Q00";

Specifies a model world for the initial view in the subsystem. If the specified name
cannot be resolved in the context !Model, the name is resolved relative to the current
context. By default, the view uses the model !Model.R1000.

Comments : String = "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

PM-258 8/1/88 RAHONAL

procedure Initial
package !Cormmands.Cmve

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, if the Comments parameter is specified, the work order records the time and
date when the subsystem was created, the username and session in which the com-
mand was entered, the specified comment, and the creation of the release history
file.

If the Comments parameter is not specified, only the creation of the release history
file is logged.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Yolume : Natural := @;

Specifies the volume on which to make the new subsystem. The default value
specifies that the new subsystem should be created on the volume with the most
free space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

type System_Object_Enum

R)ATIONAL 8/1/88 PM-259

procedure Join
package !Commands.Cmvc

procedure Join

procedure Join (What_0b ject 1 String = "<SELECTION>";
To_Which_View : String = "DDVIEW NAME<K",
Reservation_Token_Name : String := "";
Comments : String = "7
Work _Order : String := "<DEFAULT>";
Response : String := "<PROFILE>"};
Description

Joins the specified controlled objects to the corresponding objects in the designated
View.

When objects are joined across views, they form a join set. Objects in a join set
have the same pathname within their respective views and share a single reservation
token, so that only one object in the set can be checked out at a time. Thus, joining
allows synchronized changes to an object when there are instances of the same object
in multiple working views.

The objects to be joined must be textually identical. The Merge_Changes command
can be used to prepare objects for joining.

There are two alternative ways to specify the join set to which objects are to be
joined. One is to specify a view that contains an object in the desired join set. The
other is to specify the reservation token associated with the desired join set. (See
the To_Which_View and Reservation_Token_Name parameters, below.)

Parameters

What_Object : String := "<SELECTION>";

Specifies one or more objects to be joined to the corresponding objects in the des-
ignated view. This parameter must specify controlled objects. The text of the
specified objects must be identical to the text of the objects to which they are to be
joined. The Merge_Changes command can be used to prepare objects for joining.

If What_Object names an object that already belongs to a join set, the Join com-
mand implicitly severs that object from its original join set before joining the object
to the new join set.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

PM-260 8/1/88 IQATIONAL

procedure Join
package !Coimnmands.Cmvc

To_Which_View : String := ">>VIEW NAME<LKL";

Specifies the view containing the objects to which the specified objects are to be
joined. Objects in the specified view must be checked in.

The default parameter placeholder ">>VIEW NAME<<" must be replaced unless a value
is given for the Reservation_Token_Name parameter.

Reservation_Token_Name : String := "";

Specifies the reservation token of the join set to which the specified objects are to be
joined. This parameter is used only if no value is specified for the To_Which_View
parameter.

Reservation tokens are displayed in expanded configuration images (see the Cmvec-
.Edit command).

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

BA\TIONAL 8/1/88 PM-261

procedure Make_Code_View
package !Commands.Cmvc

procedure Make_Code_View

procedure Make_Code_View {From_View ¢ String = "<CURSOR>";
Code_View_Name : String = "
Comments : String = """,
Work _Order 1 String = "<DEFAULT>";
Volume : Natural := O;
Response . String = "<PROFILE>":,
Description

Makes a code view from the specified load view.

Code views are copies of views that store executable code in place of Ada units.
Code views thus require the minimum amount of space necessary to permit execu-
tion of the view. The executable code is stored in an object called Code_Database
within the view.

The Units directory of a code view contains a copy of any non-Ada objects from
the original view.

Because Ada units in code views are stored as executable code, these units cannot
be modified or browsed except through configuration and generatlon images (see
the Cmvc.Edit command).

Parameters

From_View : tring := "<CURSOR>";

Specifies one or more views from which code views are to be made. The named
views must be load views. The default is the view on which the cursor is located.

All units in the named views must be coded and must contain bodies for all specifi-
cations that require them. All controlled units in the named views must be checked
in.

[f multiple views are named, they must be in different subsystems. Multiple views
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see “Naming” in the Key Concepts in
this book.)

PM-262 8/1/88 BA\TIONAL

procedure Make_Code_View
package {Comimands. Cuive

Code_View_Name : String = "";

Specifies the simple name of the new code view. No part of a code-view name is
automatically generated, so the string specified by Code_View_Name constitutes
the entire name.

If multiple views in different subsystems are named, each will have the name spec-
ified by Code_View_Name. The name can be any legal Ada identifier.

Comments : String = "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date when the code view is created and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := @;

Specifies the volume on which to make the new code views. The default value
specifies that the new views should be created on the volume with the most free
space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL s/1/ss PM-263

procedure Make_Controlied
package !Commands.Cmvc

procedure Make_Controlled

procedure Make_Controlled

{hat_Ob ject 1 String = "<CURSOR>";
Reservation_Token_Name : String = "<AUTO_GENERATE>";
Join_With_View » Strang = "<NONE>";
Save_Source . Boolean := True;

Comments : String = """

Work _Order : String = "<DEFAULT>";

Response : String = "<PROFILE>"};

Description

Makes the specified object or objects controlled by the CMVC system and therefore
subject to reservation.

Once controlled, an object must be checked out before it can be modified and it
must be checked in before various commands can access it.

When an object is controlled with the Save_Source parameter set to true, the tex-
tual changes from one generation to the next are stored in the CMVC database.
This permits the reconstruction of previous generations through, for example, the
Revert command or by rebuilding a view from a configuration object. (Note that
because changed lines are determined textually, changing an Ada unit’s pretty-
printing causes all lines to be stored as changed lines.)

When an object is controlled with the Save_Source parameter set to false, no textual
representation is stored in the CMVC database. This is useful for binary objects
that have no ASCII representation or for very large files (when storage space is an
issue). Even though previous generations cannot be reconstructed when objects are
controlled without saving source, such objects still need to be checked out before
they can be modified. (Generation numbers thus record the number of times objects
were checked out and checked in.)

Controlling an object associates a reservation token with it. The Check_In and

Check_Out procedures operate by manipulating reservation tokens, and joined ob-
jects share not only the same name but also a single reservation token.

PM-264 sss RATIONAL

procedure Make_Controlled
package ICommapds.Cmve

Parameters

What_Object : String := "<CURSOR>";
Specifies one or more objects to be controlled. A view name can be specified,
although specifying a view causes the unnecessary controlling of objects outside

the Units directory. If a named object is already controlled, a note appears in the
output log. Before a subunit can be controlled, its parent must be controlled.

If multiple objects are specified, all must be in the same subsystem. Naming multiple
views not only controls those views but also effectively joins them under a single
reservation token.

Objects in the State subdirectory of a view cannot be controlled; attempting to do
so produces an error message. Similarly, derived objects resulting from cross-target
development cannot be controlled (the names of such objects are enclosed in angle
brackets in directory displays).

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Reservation_Token_Name : String := "<AUTO_GENERATE>",

Specifies the name of the reservation token to be associated with each specified
object. This is useful for associating mnemonic names of reservation tokens with
particular join sets. Note that an existing name of a reservation token can be used
to implicitly join the newly controlled objects to other objects.

The value of Reservation_Token_Name is used only if the Join_With_View param-
eter has its default value "<NONE>".

The default special name "<AUTO_GENERATE>" means that the reservation token is
generated by the Environment.

IQAT'ONAL 8/1/88 PM-265

procedure Make._Countrolied
package !Commands.Cmvc

Join_With_View : String := "<NONE>";

Specifies a view to which the specified objects are joined. That is, if Join_With-
—View names a view, the objects named by What_Object are joined to the corre-
sponding objects in the named view, and the reservation token name for the objects
is taken from that view. (In this case, the Reservation_Token_Name parameter is
ignored.)

To be joined, the objects named by What_Object must be identical in content to
the corresponding objects in the view named by Join_-With_View. Furthermore,
the corresponding objects in the view named by Join_With_View must already be
controlled.

The default special name "<NONE>" means that the newly controlled objects are not
joined to any cbjects in any other views. (In this case, the Reservation_Token_Name
parameter determines the reservation token name.)

Save_Source : Boolean := True;

Specifies whether source is saved in the CMVC database for a controlled object.

If true (the default value), the textual changes from one generation to the next are
stored in the CMVC database. Consequently, previous generations can be recon-
structed by the Revert command or by the Build command. Furthermore, when
source is saved for joined objects, out-of-date objects can be updated explicitly with
the Accept_Changes command or implicitly with the Check—-Out command.

If false, no textual representation is stored in the CMVC database, although objects
must still be checked out before they can be modified. This parameter is typically
set to false when controlling binary objects that have no ASCII representation or
when controlling very large objects (when storage space is an issue).

When source is not saved for a controlled object, previous generations cannot be
reconstructed—for example, when rebuilding a view from a configuration object.
Furthermore, the Accept_Changes and Check_Out commands will update such a
controlled object to the latest generation only if an object in some view actually
contains that generation.

If instances of an object exist in multiple views, all of the controlled instances of
the object must save source or else none of them can save source.

Comments : String := "";
Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the

comment is discarded.

PM-266 8/1/88 RAT'ONAL

procedure Make_Controlled
package !Commands.Cuive

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date when the objects were controlled,
the object affected, and the username and session in which the command was en-
tered. If the Comments parameter is specified, this comment also is entered in the
work order.

The special name “<DEFAULT>" refers to the default work order for the current
session.

Response . String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The Make_Controlled procedure cannot join the specified objects with the view
named by the Join_With_View parameter unless the specified objects are identical
in content to the corresponding objects in the view.

QATIONAL 8/1/88 PM-267

procedure Make_Path
package !Commands.Cmvce

procedure Make_Path

procedure Make _Path

{From_Path : String = "<CURSOR>";

New_Path_Name : String = “DOPATH NAME<K";

View_To_Modify . String = "

View_To_!mport : String = "<INHERIT_IMPORTS>";

Only_Change_Imports : Boolean = True;

Create_lLoad_Vieuw : Boolean = False;

Create_Combined_View : Boolean = False;

Model : String = "<INHERIT_MODEL>";

Join_Paths . Boolean = True;

Remake_Demoted_inits : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;

Comments : String = "

Work _Order : String = "<DEFAULT>";

Volume : Natural = 0;

Response : String = "<PROFILE>"};
Description

Creates a copy of each of the specified views, starting new development paths.

A path is a logically connected series of views within a subsystem or a system.
For each view specified, the Make_Path command creates a new working view that
serves as the start of such a series of views.

A subsystem or a system can contain multiple paths. For example, if an application
has muitiple targets, a path can be made for each target. Similarly, if a new major
release of an application must be developed while the existing release is maintained,
a separate path can be made for the new major release.

A new path can, but need not, be joined to the view (and hence to the path) from
which it is created. Two paths should be joined (using the Join_Paths parameter)
if the majority of the controlled objects in them are to be joined. (Joined objects
cannot be checked out and modified independently.) The controlled objects that
need to be modified independently can be severed subsequently with the Sever
command. For example, if an application has two targets, the target-independent
code is shared and the target-dependent code is not. Assuming that a path already
exists for one of the targets, a joined path can be created for the second target and
then the target-dependent units can be severed.

A new path should not be joined to the path from which it is created if most of the
controlled objects in these two paths are to be modified independently. For example,
if a new major release of an application is developed while the previous major
release is maintained, the objects in the two paths typically need to be modified
independently, so the paths are not joined. (Note that changes can be propagated
across unjoined objects with the Merge_Changes command.) Although the new
path is not joined when created, individual objects in it subsequently can be joined
to the corresponding objects in other views (see the Join command).

PM-268 517 IRATIONAL

procedure Make_Patin
package !Commands.Cmvc

By default, the working view for each new path has the same imports as the view
from which it was copied. It is also possible to specify different imports in the
process of creating the new paths by using the View_To_Import and Only_Change-
_Imports parameters. Import adjustments are subject to the same consistency
checking that is performed by the Import command.

Parameters

From_Path : String := "<CURSOR>";

Specifies the view or views that are to be copied as the beginning(s) of new path(s).
The default is the view on which the cursor is located. The From_Path parameter

can name:

¢ Combined, load, or spec views
¢ Either working or released views

All controlled objects in a From_Path view must be checked in. If From.Path
names multiple views, a new path is made from each of the named views. Multiple
views can be in the same or in different (sub)systems, creating a family of new paths
across multiple (sub)systems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

New_Path_Name : String := ">>PATH NAME<K";

Specifies the pathname prefix to be used in constructing the names of the views in
the new paths. Because the Make_Path procedure creates new working views, the
names of these views are constructed from New_Path_Name and the “_Working”
suffix. For example, if New_Path_Name has the value “Rev2”, the working view
created for the new path is “Rev2_Working” (the underscore is supplied automati-
cally). If the From_Path parameter names multiple views, all of the new paths will
have the same pathname prefix.

The New_Path_Name parameter can be any string that constitutes a legal Ada
identifier and therefore can contain one or more underscore characters. However,
other CMVC operations (such as generating reservation tokens or creating subpaths)
conventionally consider a view’s pathname prefix to be the portion of a view name
up to (but not including) the first underscore in the name. Therefore, if the New-
-Path_Name string contains an underscore (for example “Target_2"), only the first
portion of that string (“Target”) is actually considered to be the pathname. If a
subpath is created from this path, the “2” will be replaced with the subpathname.

IQAT'ONAL 8/1/88 PM-269

procedure Make_Path
package !Commands.Cmve

View_To_Modify : String := "";
Specifies one or more spec, load, or combined views whose imports should be

changed to refer to the new working views, provided that the new working views
are combined views.

The imports of the views specified by View_To_Modify are also updated using the
views named by the View_To_Import parameter. The View_To_Modify views are
updated by View_To_Import views as if the Only_Change_Imports parameter were
true, regardless of this parameter’s actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

View_To_lmport : String := "<INHERIT_IMPORTS>";

Specifies one or more spec or combined views to be imported by the new working
views. The views named by View_To_Import are also used to update the imports
of the views named by the View_To_Modify parameter.

If View_To._Import specifies the default special name "<INHERIT_IMPORTS>", each
new working view uses the same imports as the view from which it was copied.
(However, if the From.Path parameter names multiple combined views among
which import relations hold, the imports are automatically adjusted so that the
views in the new paths reference each other as appropriate, instead of referencing
the views in the original paths.)

If View_To_Import specifies the null string (“”), no views are imported.

If the View_To_Import parameter specifies one or more views, the specified views
are imported by the new working views in the manner specified by Only_Change-
~Imports.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

PM-270 8/1/88 RAT'ONAL

procedure Make_Pa:h
package !Cermmands.Cmvc

Create_lLoad_View : Boolean := False;
Specifies whether to create working load views instead of working combined views.

If Create_Load_View is false (the default value), the type of view created depends on
the value of the Create_Combined_View parameter. However, if both parameters
are false, a new combined view is created from each combined view specified by
From_Path, and a new load view is created from each load or spec view specified
by From_Path.

If Create_Load_View is true, a new load view is created from each of the source
views specified by From_View. In this case, the value of Create_Combined_View

must be false.

The value of Create_Load-View is ignored when the Make_Path command is en-
tered in a system or in a combined subsystem. Systems can contain only system
views and combined subsystems can contain only combined views.

Create_Combined_View : Boolean := False;

Specifies whether to create working combined views instead of working load views.

If Create_Combined_View is false (the default value), the type of view created de-
pends on the value of the Create_Load_View parameter. However, if both parame-
ters are false, a new combined view is created from each combined view specified by
From_Path, and a new load view is created from each load or spec view specified
by From_Path.

If Create_Combined_View is true, a new combined view is created from each of the
source views specified by From_View. In this case, the value of Create_Load_View
must be false.

The value of Create_Combined_View is ignored when the Make_Path command is
entered in a system. Systems can contain only system views.

RATIONAL 8/1/88 PM-271

procedure Make_Path
package !Commands.Cmvce

Only_Change_!mports : Boolean := True;
Specifies the manner in which the views specified by the View_To_Import parameter

are actually used as imports by the new working views. Only_Change_Imports has
no effect if View_To_Import specifies "<INHERIT_IMPORTS>" or the null string.

If this parameter is false, the entire list of views given by View_To_Import is im-
ported by each new working view created by the Make_Path procedure. No imports
are inherited.

If the parameter is true (the default value):

¢ Each new working view inherits its imports from the view from which it was
copied.

o The list of views in View_To_Import is compared to the inherited views. If
a View_To_Import view is from the same subsystem as an inherited view, the
View_To_Import view replaces that inherited view.

Thus, if Only_Change_Imports is true, the list of views in View_To_Import is
used to update the inherited imports of each new working view. In this way, the
replacement imports for every new working view can be specified in a single list
without forcing each new view to import everything in the list.

Model : String := "<INHERIT_MODEL>";

Specifies a model world for the views in the new path. If the specified name cannot
be resolved in the context !Model, the name is resolved relative to the current
context. By default, the new working view uses the same model as the view from
which it was copied.

Join_Paths : Boolean = True;

Specifies whether to join each new working view to the view from which it was
copied.

If true (the default value}, the controlled objects in each From_Path view are joined
to the corresponding objects in the copied working view. The reservation token from
the From_Path view is used. If a From_Path view contains no controlled objects,
then no objects can be joined. Note that Join_Paths affects only controlled objects
that exist at the time the Make_Path command is executed. Objects created after
the path is made must be controlled explicitly and joined using the Make_Controlled
and Join commands.

If false, new reservation tokens are created for all of the controlled objects. The
value for New_Path_Name is used as the reservation token.

PM-272 8/1/88 E)ATIONAI_

procedure Make_Path
package !Commands.Cmve

Remake_Demoted_Units : Boolean := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation.Unit-
_State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compilation-
JInstalled. If Compilation.Source is specified, all units in the view are put in the
source state, regardless of the value of the Remake_Demoted_Units parameter.

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date the path was made and the username
and session in which the command was entered. If the Comments parameter is spec-
ified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := @;

Specifies the volume on which to make the new paths. The default value specifies
that the new paths should be created on the volume with the most free space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

IQAT'ONAI_ 8/1/88 PM-273

procedure Make_Path
package !Commands.Cmvc

References
procedure Join
procedure Merge_Changes

procedure Sever

PM-274

siss RATIONAL

procedure Make _Spec_View
package 'Commands.Cmve

procedure Make_Spec_View

procedure Make_Spec_View

{From_Path : String = "<CURSOR>";
Spec_View_Prefix : String = "DDPREF IX<K";
Level : Natural = 0;

View_To_Modify : String = "";

View_To_lmport : String = "<INHERIT_IMPORTS>";
Only_Charge_lmports : Boolean = True;
Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;
Comments : String ="y
Work _Order : String = "<DEFAULT>";
Volume : Natural = 0;

Response . String = "<PROFILE>"};

Description

Creates a new spec view from each of the specified views in a spec/load subsystem.

Each new spec view is created with only those units named in the Exports file of the
corresponding source view. (This file is located in the view-name.State directory.)
The new spec view contains a copy of the specifications of those units. If no units
are specified in the Exports file, the new spec view copies the specifications of all of
the units in the source view. Units in each new spec view are compiled according
to the Remake_Demoted_Units and Goal parameters.

By default, units in spec views are not made controlled. If these units are subse-
quently made controlled for purposes of history tracking, they should not be joined
to their counterparts in working views.

Portions of each new spec view’s name are automatically generated unless the Spec-
-View_Prefix and Level parameters specify otherwise. An automatically generated
spec-view name consists of a spec-view prefix, one or more level numbers that
correlate with a particular numbered release, and the _Spec suffix—for example,
Rev1_1_Spec.

By default, each spec view has the same imports as the view from which it was
copied. It is also possible to specify different imports in the process of creating the
spec views by using the View_To_Import and Only_Change_Imports parameters.
Import adjustments are subject to the same consistency checking that is performed
by the Import command.

IQAT'ONAL 8/1/88 PM-275

procedure Make_Spec_View
package !Commands.Cmvc

Parameters

From_Path : String := "<CURSOR>";

Specifies the view or views from which spec views are to be made. The default is
the view on which the cursor is located. The From_Path parameter can name any
view in a spec/load subsystem:

o Either load, spec, or combined views
e Either working or released views
¢ Views belonging to paths or views belonging to subpaths

All controlled objects in a From_Path view must be checked in. If From_Path names
multiple views, a new spec view is made from each of the named views. Multiple
views can be in the same or in different subsystems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Spec_View _Prefix : String := ">>PREF{XKK";

Specifies the string that replaces both the path and subpath portion of the names
listed in the From_Path parameter. For example, if From_Path specifies the string
“Revl_Anderson_Working”, the value of Spec_View_Prefix replaces “Revl_Ander-
son” in the name of the new spec view.

The default parameter placeholder ">>PREF IX<<" must be replaced or an error will
result.

PM-276 8/1/88 R)ATIONAL

procedure Make_Spec_View
package !{Commands.Cmvc

Level : Natural := 0,

Specifies which level number to increment within each spec view’s name. The auto-
matic insertion of level numbers can be suppressed by setting Level to Natural’Last.

Level numbers in a spec-view name are generated from the level numbers in the
name of the most recently released view. Note that a released-view name contains
as many numbers as there are release levels; the rightmost number is the Oth level.
In a spec-view name, the string “_Spec” replaces the rightmost (Oth level) number,
so a spec-view name has one number less than a released-view name.

If Level is O, no release level numbers are incremented, because the Oth-level number
has been replaced. In this case, the spec-view name contains the same numbers
(starting with level 1) as the most recent release. If Level is 1, the first-level number
in the most recent release name is incremented before the appropriate level numbers
are inserted into the spec-view name. The number of levels that can be incremented
is determined by the Levels file within the model world for the view. The Make-
-Spec_View command quits if the value of the Level parameter exceeds the total
number of levels specified by the Levels file.

For example, assume that there are two release levels and the most recently released
view is called Revl_4_2. If a new spec view is created and Level is 1, the name
generated for the spec view is Revl_5_Spec (assuming that the Spec_View_Prefix
parameter specifies the string “Rev1”).

View_To_Modify : String := ""

Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new spec views. The imports of the views specified by
View_To_Modify are also updated using the views named by the View_To_Import
parameter. The View_To_Modify views are updated by View_To_Import views as
if the Only_Change_Imports parameter were true, regardless of this parameter’s
actual value.

Multiple views can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

R)ATIONAL 8/1/88 PM-277

procedure Make_Spec_View
package !Commands.Cmvc

View_To_lmport : String := "<INHERIT_IMPORTS>";
Specifies one or more spec or combined views to be imported by the new spec views.

The views named by View_To_Import are also used to update the imports of the
views named by the View_To_Modify parameter.

If View_To_Import specifies the default special name "<INHERIT_IMPORTS>", each
new spec view uses the same imports as the view from which it was copied.

If View_To_Import specifies the null string (“”), no views are imported.

If View_To_Import specifies one or more views, the specified views are imported
by the new spec views in the manner specified by the Only_Change_Imports pa-
rameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Only_Change_Imports : Boolean := True;
Specifies the manner in which the views specified by the View_To_Import parameter

are actually used as imports by the new spec views. Only_Change_Imports has no
effect if View_To_Import specifies "<INHER{T_IMPORTS>" or the null string.

If this parameter is false, the entire list of views given by View_To_Import is im-
ported by each new view created by the Make_Spec_View command. No imports
are inherited.

If the parameter is true (the default value):

e Each new spec view inherits its imports from the view from which it was copied.

e The list of views in View_To_Import is compared to the inherited views. If
a View_To_Import view is from the same subsystem as an inherited view, the
View_To_Import view replaces that inherited view.

Thus, if Only_Change_Imports is true, the list of views in View_To_Import is used
to update the inherited imports of each new spec view. In this way, the replacement
imports for every new spec view can be specified in a single list without forcing each
new view to import everything in the list.

PM-278 8/1/88 [?ATIONAL

procedure Make _Spec_View
package 'Commands.Crve

Remake_Demoted_lnits : Boolear := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation.Unit-
_State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compila-
tion.Installed. If Compilation.Source is specified, all units in the view are put in
the source state, regardless of the value of the Remake_Demoted_Units parameter.

Comments : String = "7,

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

ork _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date when the spec view was made and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural = @;

Specifies the volume on which to make the new spec views. The default value
specifies that the new views should be created on the volume with the most free
space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-279

procedure Make_Subpath
package !Commands.Cmvc

procedure Make_Subpath

procedure Make_Subpath

{(From_Path : String = "<CURSOR>";

New_Subpath_Extension : String = ">>SUBPATHLL";

View_To_Modify : String = """

View_To_lImport : String = "<INHERIT_IMPORTS>";

Only_Change_|mports : Boolean = True;

Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;

Comments : String = """

Work _Order : String = "<DEFAULT>",

Volume : Natural = @;

Response : String = "<PROFILE>"};
Description

Creates a copy of each of the specified views in order to start new development
subpaths.

A subpath is a series of working views that constitutes an extension of a path.
Multiple subpaths in a single path support parallel development within that path,
allowing multiple developers to make and test changes without conflict. Parallel
development can proceed because the controlled objects in each subpath are au-
tomatically joined to the corresponding objects in the other subpaths and in the
parent path. A controlled object therefore can be checked out and modified in only
one subpath view at a time.

Subpaths share the same model as their parent path, which means that they share
the same target key and initial links.

By default, the working view for each new subpath has the same imports as the
view from which it was copied. It is also possible to specify different imports
in the process of creating the new subpaths by using the View_To_Import and
Only_-Change_Imports parameters. Import adjustments are subject to the same
consistency checking that is performed by the Import command.

Subpaths can be created in systems as well as subsystems.

siss RATIONAL

PM-280

procedure Make_Subpath
package 'Commands.Cmve

Parameters

From_Path : String := "<CURSOR>";

Specifies the view or views that are to be copied as the beginning(s) of new sub-
path(s). The default is the view on which the cursor is located. The From_Path

parameter can name:

¢ Combined or load views only (not spec views).
o Either working or released views.

e Views belonging to paths or views belonging to subpaths. However, if From-
_Path names a subpath, the new subpaths are created at the same level, not as
“subsubpaths.”

All controlled objects in a From_Path view must be checked in. If From_Path
names multiple views, a new subpath (with the same subpathname extension) is
made from each of the named views. Multiple views can be in the same or in
different (sub)systems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

New_Subpath_Extension : String := ">>SUBPATHLK";

Specifies the subpathname extension to be used in constructing the names of the
views in the new subpaths. Because the Make_Subpath procedure creates new
working views, the names of these views are constructed by inserting New_Subpath-
~Extension between the pathname prefix and the “_Working” suffix. For example,
if the From_Path parameter specifies a view called “Rev2_Working” and New_Sub-
path_Extension has the value “Anderson”, the working view created for the new
subpath is “Rev2_Anderson_Working”. If From_Path names multiple views, all of
the new paths will have the same subpathname extension.

The New_Subpath_Extension parameter can be any string that constitutes a le-
gal Ada identifier and therefore can contain one or more underscore characters.
However, the underscores preceding and following the subpathname extension are
inserted automatically.

The New_Subpath_Extension is inserted after a pathname prefix, which, by con-
vention, is the portion of a view name up to the first underscore in the name. The
New_Subpath_Extension thus replaces any characters between the first underscore
and the “_Working” suffix. For example, if From_Path is “Target_2_Working” and
New_Subpath_Extension is “Anderson”, the subpathname is “Target_.Anderson-
—Working”.

R)A_HONAL 8/1/88 PM-281

procedure Make_Subpath
package !Commands.Cmvc

View_To_Mod:fy : String := "";

Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new working views, if those new views are combined views.
The imports of the views specified by View_To_Modify are also updated using the
views named by the View_To_Import parameter. The View_To_Modify views are
updated by View_To_Import views as if the Only_Change_Imports parameter were
true, regardless of this parameter’s actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

View_To_Import : String := "<INHERIT_IMPORTS>";

Specifies one or more spec or combined views to be imported by the new working
views. The views named by View_To_Import are also used to update the imports
of the views named by the View_To_Modify parameter.

If View_To_Import specifies the default special name "<INHERIT_IMPORTS>", each
new working view uses the same imports as the view from which it was copied.
(However, if the From_Path parameter names multiple combined views among
which import relations hold, the imports are automatically adjusted so that the
working views in the new subpaths reference each other as appropriate, instead of
referencing the working views in the original paths.)

If View_To_Import specifies the null string (“”), no views are imported.

If View_To_Import specifies one or more views, the specified views are imported
by the new working views in the manner specified by the Only.Change_Imports
parameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.) Furthermore, View_To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

PM-282 o8 RATIONAL

procedure Make_Subpath
package “ommands.Cmvc

Only_Change_imports : Boolean := True;

Specifies the manner in which the views specified by the View_To_Import parameter
are actually used as imports by the new working views. Only_Change_Imports has
no effect if View_To_Import specifies "<INHERIT_IMPORTS>".

If this parameter is false, the entire list of views given by View_To_Import is im-
ported by each new working view created by the Make_Subpath command. No
imports are inherited.

If the parameter is true (the default value):

¢ Each new working view inherits its imports from the working view from which it
was copied.

¢ The list of views in View_To_Import is compared to the inherited views. If

a View_To_Import view is from the same subsystem as an inherited view, the
View_To_Import view replaces that inherited view.

Thus, if Only_Change_Imports is true, the list of views in View_To_Import is
used to update the inherited imports of each new working view. In this way, the
replacement imports for every new working view can be specified in a single list
without forcing each new view to import everything in the list.

Remake_Demoted_Uni1ts : Boolean := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation.Unit-
-State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compila-
tion.Installed. If Compilation.Source is specified, all units in the view are put in
the source state, regardless of the value of the Remake_Demoted_Units parameter.

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL s/1/ss PM-283

procedure Make_Subpatn
package !Cocmmands.Cmvc

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records the time and date when the subpath was made and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := @;

Specifies the volume on which to make the new subpaths. The default value specifies
that the new subpaths should be created on the volume with the most free space.

Response : String := "<PROFiLE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-284 8/1/88 RA\TlONAL

procedure Make_Uncontrelled
package 'Commands.Cmvc

procedure Make_Uncontrolled

procedure Make_Uncontrolled {Uhat_Object : String := "<CURSOR>";
Comments : Strirg = "7,
Work_Order : String := "<DEFAULT>",
Response : String := "<PROFILE>"};

Description

Makes the specified objects uncontrolled, so that change information about them is
no longer collected in the CMVC database.

Existing history for these objects remains in the CMVC database until the database
is expunged using the Cmvc_Maintenance.Expunge_Database command. Objects
can be made controlled again using the Make_Controlled command; if the CMVC
database has not been expunged, the history for the recontrolled objects continues
where it stopped.

Because controlled objects cannot be deleted or withdrawn, the Make_Uncontrolled
procedure is used to prepare a controlled object for deletion. Similarly, an Ada unit’s
kind cannot be changed (for example, from procedure to function) while the unit is
controlled. Therefore, the unit must be made uncontrolled and then the database
must be expunged (using Cmvc_Maintenance.Expunge_Database) before the unit’s
kind can be changed.

Parameters

What_Object : String = "<CURSOR>";

Specifies the object(s) to be made uncontrolled. Multiple objects can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see “Naming” in the Key Concepts in this book.)

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 418 PM-285

procedure Make_Uncontrolied
package 'Commands.Cmvce

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
procedure Make_Controlled

procedure Cmvc_Maintenance. Expunge_Database

PM-286 8/1/88 RATIONAL

procedure Merge_Changes
package !Commands . Cmve

procedure Merge_Changes

procedure Merge_Changes

(Destination_Ob ject : String = "<SELECTION>";
Source_View : String = "D>>VIEW_NAME<KLK";
Report_File : String = """,
Fail_If_Conflicts_Found : Boolean := False;

Comments : String = "%,

Work _Order : String = "<DEFAULT>";
Response : String = "<PROFILE>"};

Description
Merges two objects that previously were joined and then severed from each other.

The object named by the Destination-Object parameter is updated to include any
changes that have been made to the corresponding object located in the view named
by the Source_View parameter. The updated destination object is left in the source
state; the source object is left unchanged.

The Merge_Changes procedure can succeed only if the views named by the Source-
-View and Destination_Object parameters were created from a common view (for
example, by commands such as Make_Path). The configuration object for the
common view must still exist. Merge_Changes uses the common ancestor of the
two objects to determine the changes from the source object that need to be merged
into the destination object.

Merge_Changes compares both the destination object and the source object with the
common ancestor to determine the lines that need to be merged. Lines that have
been added, deleted, or changed in the source object are correspondingly added,
deleted, or changed in the destination object. Lines that have been added, deleted,
or changed in the destination object are left as is.

Conflicts exist when the same lines have been changed in both the source and des-
tination objects. When conflicts exist, the destination object is updated to contain
the changed lines from both the destination and the source objects. These changed
lines are marked with the string “+;”. When a unit contains lines marked with
“x;”, the unit must be edited to remove these marks before it can be compiled.

Besides updating the destination object, the Merge_Changes procedure writes a
report containing the text of the Destination_Object in which the following conven-
tions indicate the lines that were affected by the merge:

* Added lines are marked by the + character.
¢ Deleted lines are redisplayed, marked with the - character.
¢ Each changed line is indicated as a deleted line followed by an added line.

QAT'ONAL 8/1/88 PM-287

procedure Merge_.Changes
package 'Commands.Cmvc

o Conflicting lines are bracketed by *** START CONFLICT and *** END CONFLICT.

Following the + or - symbol is a number or letter indicating the origin of the modified
line:

¢ The number 1 indicates changes that were merged from the source object.

o The number 2 indicates changes that existed in the destination object.

o The letter B indicates changes that were made in both the source and the desti-
nation objects.

The Fail_If_Conflicts_Found parameter can be set to true to cause the command
to produce the merge report without actually updating the destination object.

The Merge_Changes procedure is used for updating objects that are not joined—for
example, objects in unjoined paths or severed objects in joined paths. In contrast,
the Accept_Changes command is used for updating objects that are joined.

Merge_Changes can be used to prepare two objects for joining since objects must be
textually identical before they can be joined. To prepare two objects for joining:

1. Merge the source object into the destination object.
2. Check out and edit the destination object to resolve any conflicts.

3. Check out the source object and copy the contents of the destination object into
it.

Parameters

Destination_Object : String := "<SELECTION>";

Specifies the object into which changes are to be merged. If a member of a join set,
the specified object must be at the most recent generation (that is, all changes must
already be accepted from the other objects in the join set). If the object named
by the Destination_Object parameter currently is checked out, the Merge_Changes
command automatically checks it in.

The default is the currently selected object.

Source_View : String := ">>VIEW_NAME<LK";

Specifies the view containing the object whose changes are to be merged into the
destination object. The object in the designated view must be checked in.

Report_Fi1le : String := "7,

Specifies the name for the report file generated by the merge operation. The default
value (") allows the command to generate the filename by appending the string
_Merging_Report to the simple name of the destination object. The file is created
in the same library as the destination object.

PM-288 8/1/88 RAT'ONAL

procedire Merge_Changes
package !Commands.Cuve

Fail_If_Conflicts_Found : Boolean := False;

Specifies whether the command should fail to update the destination object if con-
flicting changes are found.

If true, the command produces the report file without actually updating the destina-
tion object. If false (the default value), the command both updates the destination
object and produces the report file even if conflicts are found.

Comments : String := ™"

Specifies a comment to be stored in the CMVC database with the notes for the
specified object(s). This comment appears in the display generated by the Show-
—History_By_Generation command.

In addition, the specified comment is logged in the work order indicated by the
Work_Order parameter.

Work _Order : String := "<DEFAULT>",

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : tring := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Accept-Changes

BA\TIONAL 8/1/88 PM-289

procedure Notes
package !Commands.Cmvc

procedure Notes

procedure Notes {Wlhat_Object : String := "<CURSOR>";
In_Place : Boolean := False};

Description

Displays the history image for the current generation of the specified controlled
object.

A history image for a generation contains:

o The history for the generation, which lists the time of checkout and checkin, the
user who performed these operations, and comments provided to various CMVC
commands

¢ The notes for the generation, which can be used as a scratchpad for arbitrary
commentary to be associated with that generation

History images provide an interactive way to manage notes. From a history image,
new notes can be added and saved using the Common.Edit and Common.Commit
or Common.Promote commands. Furthermore, operations are available in a history
image for displaying notes from other generations.

The Notes procedure thus provides an interactive alternativc to the set of file-
oriented commands (Get_Notes, Create_Empty_Note_Window, Append_Notes, and
Put_Notes). These file-oriented commands are most useful for retrieving notes di-
rectly into files, although these commands can put notes into special-purpose notes
windows.

The window banner for a history image contains the object name followed by a
generation attribute (for example 'G(3}), followed by the attribute 'History. Fur-
thermore, the window banner contains the string {cmve ;. In contrast, the banner of
a notes window brought up by the Get_Notes or Create_Empty_Note_Window pro-
cedures contains the string Notes for followed by the object name. No interactive
operations are available from a Notes for window.

Parameters

Uhat_Object : String := "<CURSOR>";

Specifies the view or object for which to display the history image. A configuration
object also can be specified, even if the corresponding view no longer exists. If an
object is specified, it must be controlled and it can be checked out.

The default is the object or view on which the cursor is currently located.

PM-290 s1s RATIONAL

procedire Notes
package 1Commands.Cmvc

In_Place : Boolean := Faise;

Specifies whether the current frame should be used to display the image. The
default specifies that the least recently used frame should be used.

RAT'ONAL 8/1/88 PM-291

procedure Put_Notes
package !Commands.Cmvc

procedure Put_Notes

procedure Put_Notes (From_File : String = "<WINDOW>";
Uhat_Object : String := "<CURSOR>";
Response : String := "<PROFILE>"};
Description

Replaces the notes for the specified controlled object with the contents of the spec-
ified file.

The notes for a controlled object are stored the CMVC database. An object’s notes
can be used as a scratchpad for arbitrary commentary to be associated with par-
ticular generations.

Put_Notes is one of a set of file-oriented commands for managing notes. That
is, these commands, including Get_Notes, Create_Empty_Note_Window, and Ap-
pend_Notes, are most useful for managing notes through files. However, these
commands also manage special-purpose notes windows (identified by the Notes for
string in the banner) in which the Put_Notes command can be used as follows:

o If the Get_Notes procedure has been used to display an object’s notes in a notes
window, this window can be modified and its contents saved using the Put_Notes
procedure. In this case, Put_Notes must be entered (with default parameter
values) from a Command window attached to the window that was created by
Get_Notes.

» Ifthe Create_Empty_Note_Window procedure has been used to display an empty
notes window for an object, Put_Notes can be used to replace the object’s existing
notes with any text entered in this window. In this case, Put_Notes must be
entered (with default parameter values) from a Command window attached to
the window that was created by the Create_Empty_Note_Window command.

Note that modified notes windows retain the * symbol in their window banners, even
after their contents have been entered in the CMVC database using Append_Notes
or Put_Notes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use the Common.Abandon procedure to remove these windows.

The Notes command provides an interactive alternative to Get_Notes, Put_Notes,
and the like. The Notes command displays a history image (identified by "History
attribute following the object name and generation in the window banner), which
allows interactive operations for managing an object’s notes.

PM-292 o178 RATIONAL

procedure Put_Notes
package Commands. Ciove

Parameters

From_File : String := "<UINDOW>";

Specifies where to find the new notes for the specified object. If this parameter
names a file, the contents of that file replace the existing notes for the specified
controlled object.

If the default special name "<WINDOUW>" is used, it refers to the contents of a notes
window created by either the Get_Notes or the Create_Empty_Note_Window com-
mand. When the default value is used, Put_Notes must be entered from a Command
window attached to the notes window. The first line of the notes window contains
the name of the object associated with the notes; therefore, the What_Object pa-
rameter is ignored.

What _Object : String := "<CURSOR>";

Specifies the object whose notes are to be replaced. The specified object must be
both controlled and checked out; otherwise, the command quits.

The What_Object parameter is ignored if the From_File parameter’s default value
is used.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Append—Notes

procedure Create_Empty_Note_Window
procedure Get_Notes

procedure Notes

RATIONAL 8/1/88 PM-293

procedure Release
package !Commands.Cmve

procedure Release

procedure Release

{From_Working_View : String = "<CURSOR>";
Release_Name : String = "<AUTO_GENERATE>";
Level : Natural = @;

Views_To_lmport : String = "<INHERIT_IMPORTS>";
Create_Configuration_Only : Boolean = False;
Compile_The_View : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;
Comments : String = """

Work _Order : String = "<DEFAULT>",
Volume - Natural = @;

Response : String = "<PROFILE>"};
Description

Creates a new released view from each of the specified working views. Releases can
be made in subsystems and in systems.

A released view is a frozen copy of the working view and can serve as a baseline {or
testing and execution.

In addition to creating a new released view, the Release command creates two
objects in the directory (sub)system_name.Configurations. These objects are:

e A configuration object named release_name.

¢ A state description directory named release_name_State. This directory contains
several files that store switch values, the names of exported and imported views,
the model name, and the like.

If the newly created view is subsequently destroyed to save space, it can be recon-
structed from these objects.

If saving space is important, the Release command can be used to create only the
configuration object and the state description directory for each specified working
view. Full released views can be created subsequently from the configuration object
using the Build command. (Note, however, that a configuration object references
only the controlled objects in a view; therefore, only the controlled objects can be
created by the Build command.) Creating only a configuration is much faster than
making a view.

When a released view is created, the controlled objects in it are automatically joined
to the corresponding objects in the working view and in the previously released views
in the same development path.

PM-294 8/1/88 R)ATIONAL

procedure Release
pnackage 1Commands.Cmvc

Parameters

From_Working_View : String := "<CURSOR>";

Specifies one or more working views from which released views are to be cre-
ated. Multiple working views can be in the same or in different (sub)systems.
From_Working_View can specify either combined or load views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Release _Name : String := "<AUTO_GENERATE>";
Specifies the simple name of the new released view(s).

The default special name "<AUTO_GENERATE>" allows new release names to be gener-
ated automatically. An automatically generated name consists of the path or sub-
pathname (the portion of the view name up to “_Working”) followed by “_n_m”,
where n and m represent automatically incremented level numbers. (The Level pa-
rameter controls how these numbers are incremented. The number of levels that
can b)e incremented is determined by the Levels file within the model world for the
view.

If the From_-Working_View parameter names multiple views an:i Release_Name has
a nondefault value, all of the new released views will have the same simple name.
In contrast, if Release_Name has the default value, the name of each new released
view is generated individually.

RATIONAL s/1/ss PM-295

procedure Release
package !Commands.Cmvc

Level : Natursl := 0;

Specifies which level number to increment within each released view’s name. The
Level parameter is ignored if a nondefault value of the Release_Name parameter is
specified.

The default Level value (0) means that the rightmost number is incremented. If
Level is 1, the next-to-rightmost number is incremented and so on. Level numbers
to the right of the incremented number are reset to 0.

For example, assume that the previously released view was called Revl_4_2. If a
new release is created from Revl_Working and Level is 0, the name generated for
the next release is Revl_4_3. If a subsequent release is created from Revl_Working
and Level is 1, the name generated for this next release is Revl_5_0. (Note that
the portion of the name up to “_Working” is fixed, so the “1” in “Revl” is not
subject to being incremented.)

The number of levels that can be incremented is determined by the Levels file within
the model world for the view. The Release command quits if the value of the Level
parameter exceeds the total number of levels specified by the Levels file.

Views_To_Import : String := "<INRERIT_IMPORTS>",

Specifies one or more spec or combined views for the new releases to import. The
default special name "<INHERIT_IMPORTS>" means that each new released view will
have the same imports as the working view from which it was released.

Note that if the From_Working_View parameter names multiple combined views
among which import relations hold, the imports are automatically adjusted so that
the new releases reference each other as appropriate, instead of referencing the
working views.

Imports can be changed during the release operation by specifying a nondefault
value for Views_To_Import. However, care must be taken to import views that
allow the released views to compile.

Views_To_Import can name an activity as an indirect file; if so, the new releases
will import the spec view associated with each subsystem, as listed in the activity.

Multiple views can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

PM-296 8/1/88 QAT'ONAL

procedure Release
package !Cormmands Crve

Create_Configuration_Only : Boolean := False;

Specifies whether to save space by creating only the configuration object and the
associated state description directory for each specified working view.

If true, only the configuration object and directory are created. A full released view
is not created at this time; if desired, the view must be built by a subsequent Build
operation. (Note, however, that a configuration object references only the controlled
objects in a view; therefore, Build can recreate only the controlled objects for which
source has been saved.) Creating only a configuration is much faster than making
a view.

If false (the default value), a full released view is created in addition to the config-
uration object and directory.

Whether or not a view is created in addition to the configuration object, the con-
tents of a configuration can be viewed through a configuration image (see the Edit
command).

Compile_The_View : Boolearn := True;

Specifies whether to compile all the units in the specified released views before
freezing these views.

If true (the default value), an attempt is made to compile the units to the state
specified by the Goal parameter. For example, setting Compile_The_View to true
recompiles any units that were demoted by changing imports (that is, by specifying a
nondefault value for the Views_To_Import parameter). The views are subsequently
frozen even if compilation fails.

If false, units remain demoted.

Unless you are making a configuration-only release, it is recommended that this
parameter be left as true to guarantee that released views can be executed.

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which units are compiled when the Compile_The_View pa-
rameter is true. The compilation goal can be any of the enumerations of the
Compilation.Unit_State type. By default, the compilation goal is the coded state.
To compile units to the installed state, specify Compilation.Installed. If Compila-
tion.Source or Compilation.Archived is specified, all units in the view are put into
this state, regardless of the value of the Compile_The_View parameter.

RATIONAL s/1/s PM-207

procedure Release
package !Commands.Cmvc

Comments : String := "";

Specifies a comment to be stored in the CMVC database. In particular, the comment
is stored with the notes for the history files that are associated with the specified
working views. The history file for each view is called view.name.State.Release-
—History. The notes can be viewed with the Get_Notes command.

The comment is also logged in the work order indicated by the Work_Order param-
eter. The comment appears with the checkin of the history file.

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specif-
ically, the work order records when the history files were checked out and in, the
name of the new release, and the username and session in which the command was
entered. If the Comments parameter is specified, this comment also is entered in
the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Volume : Natural := 9;

Specifies the volume on which to create the new releases. The default value specifies
that the releases should be created on the volume with the most free space.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-298 8/1/88 QAT'ONAL

procedure Remove_lmport
package {Commands.Cmve

procedure Remove_Import

procedure Remove_lmport (View : String = "DOVIEW NAMEK<L";
From_View : String := "<CURSOR>";
Comments : String = "7
Work_Order : String := "<DEFAULT>";
Response © String := "<PROFILE>"};
Description

Removes the links that were created when the view specified by the View parameter
was imported.

This command does not remove an import if there are units compiled against any
of the links it created. However, such an import can be removed if the units are
demoted to the source state.

Parameters

View : String := ">>VIEW NAMELKL";

Specifies one or more views to be removed from the imports of the view specified
by the From_View parameter. The default parameter placeholder must be replaced
or an error will result.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

From_View : String := "<CURSOR>";
Specifies one or more views from which the specified imports are to be removed.

Imports cannot be removed from code views. The default is the view designated by
the cursor.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RAT'ONAI_ 8/1/88 PM-299

procedure Remove_Import
package !Commands.Cmvce

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Remove_Unused_Imports

PM-300 o1s RATIONAL

procedure Remove._Unused_Imporis
package !Commands.Cmive

procedure Remove_Unused_Imports

procedure Remove_Unused_lmports {(From_View : String := "<CURSOR>";
Comments : String = "7
Work_Order : String := "<DEFAULT>";
Response : String := "<PROFILE>"};
Description

Removes imports from the specified view or views if none of the links created by
those imports are needed for compilation.

Links are removed only on an import-by-import basis. Thus, if any of the links
from a given import are needed for compilation, then none of the links created by
that import are removed.

A link is needed for compilation if it is referenced in a wsth clause in at least one
unit that is in the source, installed, or coded state (archived units are ignored).
Compare this with the Remove_Import command, which is sensitive only to units
that actually are compiled against the link.

Parameters

From_View : String := "<CURSOR>";
Specifies one or more views from which unused imports are to be removed. Imports

cannot be removed from code views. The default is the view designated by the
Cursor.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-301

procedure Remove_Unused_Imports
package !Commands.Cmvce

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Remove_Import

PM-302 8/1/88 RATIONAL

procedire Replace_Mode)
package !Commands Crnve

procedure Replace_Model

procedure Replace_Model {New_Model : String := ">>NEW MODEL NAMEL<Z";
[n_View : String = "<CURSOR>";
Comments : String = ",
Work _Order : String := "<DEFAULT>";
Response : String := "<PROFILE>"};
Description

Replaces the model world for the specified view.

A view’s model can be changed to:

¢ Invoke a new switches file for the view.
o Rebuild the view’s links.

e Reset the number of levels for automatic name generation for released and spec
views. (This affects only future releases.)

o Change the view’s target key. However, the change must be to a target key that
is compatible with the current target key. For example, a view with target key
R1000 cannot change to a model with target key Mc68020_Bare.

Parameters

New_Model : String := ">>NEW MODEL NAME<LK";

Specifies the name of the world to be used as the model for the view. The context
for the resolution of this name is the world 'Model, although a model in another
world can be specified by using a fully qualified name.

The default parameter placeholder ">>NEW MODEL NAME<<" must be replaced or an
error will result.

In_Yiew : String := "<CURSOR>";

Specifies the view whose model is to be replaced. The default is the view designated
by the cursor.

All units in the view must be in the source state.

Comments : String := "

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

R)ATIONAL 8/1/88 PM-303

procedure Replace_Model
package !Commands.Cmvc

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-304 8/1/88 E)ATIONAL

procedure Rever:
package !Commands.Cmvc

procedure Revert

procedure Revert

{What _Ob ject : String = "<SELECTION>";

To_Generation . Integer = -1;

Make_Latest_Gereration : Boolean = False;

Allow_Demotion . Boolean = False;

Remake_Demoted_Units : Boolean = True;

Goal : Compilation.Unit_State := Compilation.Coded;

Comments : String = "

Work _Order : String = "<DEFAULT>";

Response : String = "<PROFILE>"};
Description

Reverts the specified object or objects to the specified generation.

This procedure replaces the contents of each object with the contents of the indicated
generation of that object.

The generation to which an object is reverted can be retained as the latest generation
if the Make_Latest_Generation parameter is true. Otherwise, the reverted object
is updated to the latest generation the next time the object is checked out.

Parameters

Uhat_Object : String := "<SELECTION>";

Specifies the object or objects to be reverted. Only controlled and sourced objects
can be reverted. (An error is reported if you try to revert an object that was made
controlled without saving source.) An object that is currently checked out cannot
be reverted, and this is reported in the output log. By default, the selected object
is reverted.

Multiple objects can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

QAT'ONAL 8/1/88 PM-305

procedure Revert
package !Commands.Cmvc

To_Generatior : Integer := -1,

Specifies the generation to which the specified object is reverted. A positive integer
expresses a particular generation number (each generation is numbered, starting
from 0). A negative integer expresses a previous generation, counting back from
the object’s current generation; for example, the default value of —1 indicates the
object’s previous generation.

If multiple objects are specified and the To_Generation parameter has a positive
value, the Revert procedure attempts to change all objects to the same genera-
tion. If multiple objects are specified and To_Generation has a negative value, the
generation of each object is calculated individually.

Make_L stest_Generation : Boolean := Fzalse,

Specifies whether to retain To_Generation as the latest generation. If true, To-
—Generation becomes the latest generation, from which subsequent development
can proceed. (In this case, the Revert procedure is equivalent to checking out an
object, copying the specified generation into the object, and checking it in.%

If false, To-Generation does not become the latest generation. Consequently, a
reverted object can be inspected or compiled against other units; however, the next
time the object is checked out, it is updated to the latest generation. (In this
case, the Revert procedure is equivalent to using the Accept_Changes command to
update an object from a configuration containing the specified generation.)

Allow_Demotion : Boolean := False;

Specifies whether the Revert procedure is allowed to demote Ada units in order to
revert the specified objects to the specified generation.

If this parameter is true, the Revert procedure is permitted to demote Ada units
if necessary. If it is false, the command proceeds only if no demotion is required;
otherwise, an error is reported and the command quits.

Remake_Cemoted_Units : Boolean := True;

Specifies whether to recompile any units that were demoted in the process of re-
verting the specified objects.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

PM-306 8/1/88 RATIONAI_

precedure Revert
package '"Cominands.Cmve

Goal : Compilation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake_De-
moted_Units parameter is true.

The goal can be any of the enumerations of the Compilation.Unit_State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake_Demoted_Units parameter.

Comments : String = "";
Specifies a comment to be logged in the work order indicated by the Work_Order

parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date, the unit reverted, and the username
and session in which the command was entered. If the Comments parameter is spec-
ified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 51/ PM-307

procedure Sever
package 'Commands.Cmvc

procedure Sever

procedure Sever {lWhat_Objects : String := "<SELECTION>™;
New_Reservation_Token_Name : String := “"<AUTO_GENERATE>":
Comments : String =z "7,
Work _Order : String = "<DEFAULT>";
Response : String = "<PROFILE>"};
Description

Severs the specified objects from their rzspective join sets.

When an object is severed, it is given a different reservation token, so that it can
be checked out and modified independent of the objects to which it had previously
been joined.

Parameters

What_Cbjects : String := "<SELECTION>";

Specifies one or more objects to be severed. By default, the selected object is
severed. If a view is specified, all the objects in the view are severed.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

New_Reservztion_Token_Name : String := "<AUTO_GENERATE>";

Specifies the name of the reservation token to be associated with each newly severed
object.

The default special name "<AUTO_GENERATE>" means that the reservation token is
generated automatically by the Environment. Automatically generated names of
reservation tokens are derived from the first portion of the enclosing view name
(up to the first underscore character). For example, the severed objects in a view
called Revl_Working would have “Rev1” as the automatically generated name of
the reservation token. However, if “Revl” is currently in use, then “Revl1_1" is
generated.

A user-defined token name can be supplied instead to provide subsequent join sets
with more meaningful or mnemonic token names.

Note that supplying an existing reservation token name cannot be used to implicitly
join the newly controlled objects to any other objects.

PM-308 8/1/88 BA\T‘ONAL

procedure Sever
package !Commands.Cravc

Comments : String = "7;

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL +/1/es PM-309

procedure Show
package !Commands.Cmvc

procedure Show

“<CURSOR>™;

procedure Show {Objects : String :
"<PROF{LE>");

Response : String

Description
Displays checkout and generation information for the specified controlled objects.

In addition, this procedure lists the views containing objects that are joined to each
specified object.

The display produced by the Show procedure includes the following fields:

Object Name Generation Uhere Chkd Out By Whom Expected Check In

UNITS .CMVC_TEX 3 of 3 REVI_WORKING Yes SdL Jure 15, 1988

For each object listed, the fields display the following information:

Ob ject Name Displays the portion of the object’s name that follows the
view name.
Generation Lists a pair of numbers. The first number is the generation

of the object in the current view. The second number is the
number of generations that exist for that object.

Where Displays a view name. If the object is currently checked out,
this field names the view in which it is checked out. If the
object is currently checked in, it names the view that contains
the most recent generation.

Chkd Out Indicates whether the object is currently checked out. If
“Yes,” the following two fields provide more information.

By Whom Displays the username of the user who checked out the ob-
ject.

Expected Check In Displays the value that was supplied for the Expected_Check-
_In_Time parameter of the Check_Out command.

The Show command also displays the names of the views to which the specified
objects are joined.

PM-310 8/1/88 RAT'ONAL

procedure Show
package !Commands.Crave

Parameters

Objects : String := "<CURSOR>";

Specifies the objects for which information is displayed. If a view is specified,
information is displayed for the objects in the Units directory as well as for the
Release_History file in the State directory.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Response : String = "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

IQAT'ONAL 8/1/88 PM-311

procedure Show_All_Checked_Out
package !Commands.Cmvc

procedure Show_All_Checked_Out

"<CURSOR>";

procedure Show_All_Checked_Out (In_View : String
"<PROF ILE>"};

Response : String

Description
Displays a list of the objects in the specified view that are checked out.

The objects are listed in the same format used by the Show command.

Parameters

In_View : String := "<CURSOR>";
Specifies one or more views whese checked-out objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

PM-312 8/1/88 RATIONAL

procedure Snow_Ali_Controlled
package 'Commands.Cmve

procedure Show_All_Controlled

"<CURSOR>";

procedure Show_Ail_Controlled {In_View : String :
"<PROFILE>"};

Response : String :

TR

Description
Lists the controlled objects in the specified view or views.

The objects are listed in the same format used by the Show command.

Parameters

In_View : String := "<CURSOR>";
Specifies one or more views whose controlled objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Response : String := “<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

RATIONAL s/1/es PM-313

procedure Show_All_ Uncontroiled
package !Commands.Cmvc

procedure Show_All_Uncontrolled

procedure Show_All_Uncontrolled (In_View : String := "<CURSOR>";
Response : String := "<PROFILE>"};

Description

Lists all uncontrolled objects in the specified views.

Parameters

In_View : String := "<CURSOR>",
Specifies one or more views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-314 8/1/88 RATIONAL

procedure Show_Checked_Cut. By_User
package 'Commands. Crave

procedure Show_Checked_Out_By_User

procedure Show_Checked_Out_By_User

{In_View : String := "<CURSOR>";
WUho : String := System_Utilities.User_Name;
Response : String := "<PROFILE>"};

Description
Lists the objects in the specified view(s) that are checked out by the specified user.
The objects are listed in the same format used by the Show command.

Objects are listed even if they are controlled in the specified view but checked out
in another view.

Parameters

In_View : String := "<CURSOR>";

Specifies one or more views to be searched for objects checked out by the specified
user.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Who @ String := "System_Utilities.User _Name”;
Specifies the username whose checked-out objects are to be listed.

Response : String := "<PROF!ILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

RATIONAL s/1/ss PM-315

procedure Show_Checked-Out_In._View
package !Commands.Cmvc

procedure Show_Checked_Out_In_View

procedure Show_Checked_Out_Iin_View {In_View : String := "<CURSOR>";
Response : String := "<PROFILE>");

Description

Lists the objects that are checked out in the specified view or views, regardless of
who checked them out.

The objects are listed in the same format used by the Show command.

Parameters

In_View : String := "<CURSOR>";
Specifies one or more views whose checked-out objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

PM-316 8/1/88 RATIONAL

procedure Show_History
package !Commands.Cmvc

procedure Show_History

procedure Show_History {For_Ob jects : String = "<CURSOR>";
Display_Change_Regions : Boolean := True;
Starting_Generation 1 String = "<CURSOR>";
Ending_Generation : String = "t
Response : String = "<PROFILE>"};
Description

Displays the history for the specified view or object within a view.

This procedure shows what has changed between two configurations (or two views)
on the same path. For example, the Show_History command can be used to display
the differences between two released views, between a working view and a previously
released view, and the like. It also can be used to display how a particular object
has changed from one view or configuration to another.

The Show_History procedure provides the following information for each specified
object (if a view is specified, this information is shown for each controlled object in
the view):

e The join set name (the name of the reservation token for the joined objects)

¢ The object’s history for the generations that were created between the configura-
tions specified by the Starting_Generation and Ending_Generation parameters

For each of the requested generations of an object, the history includes:

¢ The time and date of the checkout and checkin that created the generation

¢ The notes for the object

e The changes that occurred since the previous generation (if requested by the
Display_Change_Regions parameter)

Parameters

For_Obiects : String := "<CURSOR>";

Specifies the object or objects whose history is to be displayed. This parameter can
specify one or more views or one or more controlled objects within a view. The
default is the object on which the cursor is located.

Multiple objects can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

QAT'ONAL 8/1/88 PM-317

procedure Show_History
package {Commands.Cmvc

Display_Change_Regions : Boolean := True;

Specifies whether to display the differences between a given generation and the one
before it.

If true (the default value), the text of the changes is displayed in the same format as
that produced by the !Commands.File_Utilities.Difference(Compressed_Output=>
True) procedure (see the LM book of the Rational Environment Reference Manual).
If false, no changes are displayed.

Starting_Generation : String := "<CURSOR>";

Specifies the view or configuration that serves as the starting point for the displayed
history. The specified view or configuration must contain some generation of each
of the objects designated by the For_Objects parameter. The Show_History proce-
dure displays the history for each object, starting with changes to the generation
contained in the specified view or configuration.

The default is the view or configuration on which the cursor is located. If the null
string ("") is used, the display starts at generation 1.

Ending_Gereratiorn : String = "";

Specifies the view or configuration that serves as the ending point for the displayed
history. The specified view or configuration must contain some generation of each
of the objects designated by the For_Objects parameter. The history displayed for
each object ends with the generation contained in the specified view or configuration.

The default value ("") specifies that history is displayed up to the latest generation.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-318 g/1/88 BA\TIONAL

procedure Show_History..By_Generatiou
package !Commands. Cmve

procedure Show_History_By_Generation

procedure Show_History_By_Generation

{For_Ob jects : String = "<CURSOR>";
Display_Change_Regions : Boolean := True;
Starting_Generation : Natural := 1
Ending_Generation : Natural := Natural’'Last;
Response : String = "<PROFILE>"};

Description

Displays the history for one or more controlled objects across the specified range of
generations.

This procedure uses generation numbers to delimit the extent of the displayed his-
tory, whereas the Show_History procedure uses views or configurations to delimit
the display.

The Show_History_By_Generation procedure provides the following information
for each specified object (if a view is specified, this information is shown for each
controlled object in the view):

» The join set name (the name of the reservation token for the joined objects)
o The object’s history for the generations that were created between the configura-
tions specified by the Starting_Generation and Ending_Generation parameters

For each of the requested generations of an object, the history includes:

¢ The time and date of the checkout and checkin that created the generation
¢ The notes for the object

o The changes that occurred since the previous generation (if requested by the
Display_Change_Regions parameter)

Parameters

For_Objects : String := "<CURSOR>";

Specifies the object or objects whose history is to be displayed. This parameter can
specify one or more views or one or more controlled objects within a view. The
default is the object on which the cursor is located.

Multiple objects can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

[QAT'ONAL 8/1/88 PM-319

procedure Show_History_By_Generation
package !Commands.Cmvc

Display_Change_Regions : Boolean := True;

Specifies whether to display the differences between a given generation and the one
before it.

If true (the default value), the text of the changes is displayed in the same format as
that produced by the !Commands.File_Utilities.Difference(Compressed_Output=>
True) procedure (see the LM book of the Rational Environment Reference Manual).
If false, no changes are displayed.

Starting_Gereration : Natural := 1;
Specifies the number of the generation to serve as the starting point for the displayed

history. The default value (1) causes history to be displayed from generation 1 of
the specified objects.

If the For_Objects parameter specifies multiple objects, the displayed history of
each object begins with the same generation number, as specified by Starting-
—Generation.

Ending_Generation : Natural := Natural’last;

Specifies the number of the generation to serve as the ending point for the displayed
history. The default value (Natural’Last) causes history to be displayed up to the
most recent generation of the specified objects.

If the For_Objects parameter specifies multiple objects, the displayed history of each
object ends with the same generation number, as specified by Ending_Generation.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-320 8/1/88 IQATIONAL

procedure Show_Image _Of_Generation
package 'Commands.Cinve

procedure Show_Image_Of_Generation

procedure Show_lmage_0Of _Generation

{Ob ject : String = "<CURSOR>";
Generation : Integer = -1;
Output_Goes_To : String := "<WINDOUW>";
Response : String = "<PROFILE>"};

Description

Reconstructs an image of the specified generation of the designated controlled ob-
ject.

Successive generations of a controlled object are stored in the CMVC database as a
series of changed increments. This command reconstructs a textual image of the
specified generation. The reconstructed image is displayed in the output log, unless
the Output_Goes_To parameter specifies a file.

Show_Image_Of_Generation is a report-oriented command that is most useful for
putting the image of a single generation into a file. As an alternative, the Edit and
Def procedures can be used to bring up generation images from which interactive
operations can be used to display images of other generations and of the differences
between successive generations.

Parameters

Object : String := "<CURSOR>";

Specifies the object for which a previous generation is displayed. The default is the
object on which the cursor is located.

Germeration @ Integer = -1;

Specifies the generation of the specified object that is to be rzconstructed. The
default value specifies the generation before the current generation of Object.

A negative number specifies a previous generation relative to the object’s current
generation. For example, a value of —3 displays the third generation back from the
current one.

A positive number specifies an actual generation number.

R’AT'ONAI_ 8/1/88 PM-321

procedure Show_Image_Of_Generation
package !Commands.Cmvc

Output_Goes_To : String := "<WINDOW>";

Specifies where to put the text of the reconstructed generation. If a new filename
is specified, a file is created and the text is written into it. If an existing filename
is specified, the contents of that file are replaced.

If the default special name "“<WINDOW>" is used, the reconstructed generation is
displayed in the window containing the output log.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-322 s RATIONAL

procedure Show_Out{_Of_Date_Objects
package 'Commands.Cmvc

procedure Show_Out-Of_Date_Objects

"<CURS0R>";

procedure Show_Out_Of_Date_Objects (In_View : String :
"<PROF ILE>"};

Response : String

Description

Lists the objects in the specified view or views that are not at the most recent
generation.

The objects are listed in the same format used by the Show command.

Parameters

In_View : String := "<CURSOR>";
Specifies one or more views whose out-of-date objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming”
in the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

EAT'ONAL 8/1/88 PM-323

type System_Object_Enum
package !Commands.Cmvc

type System_Object_Enum

type System_Object_Enum 1s (Spec_lLoad_Subsystem, Combimed_Subsystem,
System:;

Description

Defines the types of system objects that can be created, where a system object is
either a system or a subsystem.

There are two types of subsystems. A subsystem’s type determines what kind of
views the subsystem can contain—-for example, spec/load views or combined views.

A subsystem’s type also determines whether hierarchic importing is enforced.
y yp g

Enumerations

Combined_Subsystem

Defines a type of subsystem that can contain only combined views. Within a Com-
bined subsystem, circular import relations may hold—that is, a view is permitted
to be in its own import closure.

Spec_Load_Subsystem
Defines a type of subsystem that can contain spec, load, or combined views. Within

a Spec_Load subsystem, all imports must be hierarchic—that is, no view is permit-
ted to be in its own import closure.

System)
Defines a system, which is an optional device for creating logical groupings of re-
leases from component subsystems in an application. Operations for systems are in
package Cmvc_Hierarchy.

References

procedure Initial

end Cmvc;

PM-324 8/1/88 BA\TIONAL

package Cmvc_Hierarchy

When an application consists of multiple subsystems, these subsystems optionally
can be included in an Environment object called a system. Inclusion in a system
is a way of identifying particular subsystems as components of a given application
or of a major portion of an application. Inclusion in a system also provides an
automated means of tracking the latest release from each subsystem and building
activities that reference those releases.

A subsystem is included in a system by establishing a parent-child relationship
between the system and the subsystem. Therefore, a system does not actually
contain its component subsystems in the same way that a subsystem view contains
component objects.

Systems have the same internal directory structure as subsystems. Systems contain
views called system views (not spec/load or combined). As in subsystems, views
in systems contain the same subdirectories found in subsystem views (for example,
Units) plus an additional subdirectory called Paths.

The initial system view is a working view. Within the State directory of the working
system view, you can build a release activity. A release activity automatically
contains entries that reference the latest release from each child subsystem. After
creating a release activity, you can make a release from the working system view to
preserve that activity as a frozen object. Every time new releases are made in child
subsystems, you can rebuild the release activity and then make a new release of the
working system view. You can use the Cmvc.Information command to display the
release activity for a given system view.

A system can contain multiple paths that correspond to the paths in the child
subsystems. The release activity in each system path references releases from the
corresponding paths in the child subsystems.

IQAT'ONAL 8/1/88 PM-325

package !Commands.Cmvc_Hierarchy

Setting Up Systems

1. Use the Cmvc.Initial command to create a system. It contains a working system
view.

2. Use the Add—Child command to establish the parent-child relationship between
the desired subsystems and the system.

3. At each major release point, you can run the Build_Activity command in the
working system view to build (or update) a release activity called Release_Ac-
tivity that references the latest releases from child subsystems. Release_Activity
is located in the State directory.

4. Make the release activity the default and execute the application.

5. If desired, you can edit the release activity using Build_Activity to change one
of the activity entries (do not use commands from package Activity to modify
a release activity).

After a release activity is created, the releases it references cannot be deleted.

Setting Up Paths

You can use the Cmvc.Make_Path command in a system to create multiple paths,
one for each path in the component subsystems. Before building a release activity
in a given system path, you must explicitly set up the correspondences between
that system path and the desired paths from the child subsystems. To do this:

1. Locate the Paths directory in the working view of the system path.

2. In the Paths directory, create a file corresponding to each child subsystem. The
name of each file must be the same as the name of the subsystem to which it
corresponds.

3. In the file for each subsystem, enter a naming expression that matches the
release names in the desired path from that subsystem.

4. When you build a release activity in a given system path, the entry for each
subsystem will reference the latest release that matches the naming expression
in the Paths file for that subsystem.

For example, assume that a system called Mail_System has a child subsystem called
Mail_Utilities and that the child contains two paths whose prefixes are Revl and
Rev2. Assume further that Mail_System contains a Revl path and that this system
path is to reference releases from the Revl path in Mail_Utilities. To establish the
correspondence between the Revl system path and the Revl subsystem path:

1. Within the Mail_System.Revl_Working.Paths directory, create a file called
Mail_Utilities.

2. Edit the file, entering a naming expression that matches the release names in
the Revl path of the Mail_Utilities subsystem—for example: Revl1@

3. Commit the file.

PM-326 8/1/88 BA\—”ONAI_

package !Commands.Cmvc..Hierarchy

4. If a Rev2 path is desired in Mail_System, repeat these steps starting in Mail-
—System.Rev2_Working.Paths and entering a naming expression such as Rev2a.

The naming expression in a Paths file can match releases from more than one path
in a given subsystem. In this case, the latest of the releases from among these paths
is entered in the release activity.

Releasing System Views

You can use the Cmvc.Release command to make releases of working system views
to preserve release activities as frozen objects. When a system view is released, a
subdirectory called Release_Information is created within the released system view.
The Release_Information directory contains four controlled text files that can be
used to rebuild the release activity and the views it references from configuration

objects.

The Release_Information directory for a released system view is shown in Figure
12-1.

Load_Configurations - File,
Load.Vieuws : File,
Spec.Configurations File,
Spec.Views : File.

QTEM BN @3 REL E AS

Figure 12-1. The Release.Information Directory

Assume that you have built a release activity in a working system view and made
a release of that view. Furthermore, assume that you have destroyed the released
system view without deleting its configuration object and then you have destroyed
each of the releases that were referenced in the release activity, without deleting
their configuration objects. To rebuild the deleted views and release activity:

1. Use the Cmvc.Build command to rebuild the deleted system-view release from
its configuration object. The system view will be rebuilt except for the release
activity.

2. Locate the Release_Information directory in the rebuilt system view. Using
the Load_Configurations and Spec_Configurations files as indirect files, use the
Cmvc.Build command to rebuild the views that were referenced in the release
activity. (This step assumes that the child subsystems still exist and contain
configuration objects for those views.)

3. From the Units directory of the rebuilt system view, enter the Build_Activity
command with default parameters to rebuild and then freeze the release ac-
tivity. The Build_Activity command automatically consults the files in the
Release_Information directory.

RATIONAL 8/1/88 PM-327

procedure Add_Child
package !Commands.Cmvc_Hierarchy

procedure Add—_Child

procedure Add_Child (Child : String = ">>SYSTEM/SUBSYSTEM NAME<LK";
To_System : String := "<CURSOR>";
Comments : String = ",
Work_Order : String := "<DEFAULT>";
Response : String := "<PROFILE>"};
Description

Adds a new child (a subsystem or another system) to the designated system.

A system provides an automated means of tracking the latest release from each
child and building activities that reference those releases.

A system cannot directly or indirectly be a child of itself.

Parameters

Child : String := ">>SYSTEM/SUBSYSTEM NAME<K";
Specifies one or more systems or subsystems to be added as children of a system.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

To_System : String := "<CURSOR>";
Specifies the system to which children are to be added.

Comments : String = "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order : String := "“<DEFAULT>";

Specifies the work order in which the command’s action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

Response : String := "<PRCFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command.

PM-328 8/1/88 E)ATIONAL

procedure Build—Activity
package 'Commands.Cmve_. Hierarchy

procedure Build_Activity

procedure Euild_Activity {Working_System_View : String = "<CURSOR>";
Views_To_Include : String 1= "<LATEST>";
Update_Imports : Boolean := True;
Allow_Code_Views : Boeclean := False;
Comments : String = "7,
Work_Order : String = "<DEFAULT>";
Response : String = "<PROFILE>"};

Description

Builds or updates the release activity in the working system view to include the
specified views.

By default, the latest releases of all the children of the system are included in the
release activity. Views are included in the release activity only if they have been
created after the Build—Activity command was last run on the specified working
system view.

Path restrictions can be used to control which releases are included.

By default, the working system view imports spec views from all of the subsystems
referenced by the release activity. Updating the system view’s imports allows you
to execute test programs from the system view, if desired. Note that this importing
is subject to the normal compatibility requirements.

By default, code views are overlooked in favor of including the latest load view in
the release activity. However, changing the Allow_Code_Views parameter to true
allows code views to be included in the release activity.

Parameters

Working_System_View : String := "<CURSOR>";

Specifies one or more working system views in which release activities are to be
built or updated. By default, the working system view designated by the cursor is
used.

Multiple systems and subsystems can be specified by using wildcards, context char-

acters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

RATIONAL 8/1/88 PM-329

procedure Build.Activity
package !Commands.Cmvc_Hierarchy

Views_To_lnclude : String := "<LATEST>";

Specifies one or more views to be included in the release activity. These views must
be in subsystems that are children of the system containing the designated system
view.

If the default value, "<LATEST>", is specified, then the latest releases of all the
children of the system are included in the release activity. Nondefault values for
this parameter are especially useful when using the Build_Activity procedure to
change entries in an existing release activity.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

Update_lmports : Boolean := True;

Specifies whether or not the working system view imports spec views from the
subsystems referenced by the release activity.

If true, the default, the working system view imports spec views from all of the
subsystems referenced by the release activity. Views are imported as specified by
the Views_To_Include parameter. Updating the system view’s imports allows you
to execute test programs from the system view, if desired. Note that this importing
is subject to the normal compatibility requirements.

If false, no spec views are imported.

Allow_Code_Views : Boolean := False;

Specifies whether to include code views in a release activity.

If false, the default, code views are overlooked in favor of including the latest load
view in the release activity.

If true, code views are included in the release activity.

Comments : String := "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order : String := "<DEFAULT>";

Specifies the work order in which the command’s action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

PM-330 oss RATIONAL

procedure Buiid. Activity
package !Commands.Cinve_ Hierarchy

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

R)ATIONAL 8/1/88 PM-331

function Children
package !Commands.Cmvc_Hierarchy

function Children

" <CURSOR>";
True;
“<WARN>")} return String;

function Children {Of_System : String
Recursive : Boolean
Response : String

Description

Returns a list of designated subsystem’s children.

Parameters

Of_System : String := "<CURSOR>";
Specifies the system whose children are to be listed.

Recursive : Boolean := True;

Specifies whether to list children recursively when the designated system includes
other systems as children. If true, the default, child systems are expanded so that
their children are listed.

If false, child systems are listed simply as systems.

Response : String := "<WARN>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return String;

Returns a list of system children.

PM-332 ss RATIONAL

function Contents
package 'Commands.Cmvc._Hierarchy

function Contents

function Contents (Of_System_View : String = "<CURSOR>";
Recursive : Boolean := True;
Response : String = "<WARN>") return String;

Description
Returns the contents of the release activity of the designated system view.

The function returns a string formatted as a naming expression. This naming
expression contains the fully qualified name of each view referenced in the release
activity. The names are separated by commas and the entire list is enclosed in
brackets.

Parameters

Of _System_View : String := "<CURSOR>";

Specifies the system view that contains the release activity whose contents are to
be displayed. By default, the system view designated by the cursor is used.

Recursive : Boolean := True;

Specifies whether to display release activity contents recursively when a release
activity includes references to system views. If true, the default value, references
to system views are expanded so that the contents of their release activities are
returned.

If false, the contents of re.ease activities are not expanded.

Response : String := "<WARN>",

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return String;

Returns the contents of the release activity of the designated system view.

RATIONAL s/1/ss PM-333

procedure Expand_Activity
package !Commands.Cmvc_Hierarchy

procedure Expand_Activity

procedure Expand_Activity
{New_Activity : String :
System_View : String :
Response : String

">O>NEW ACTIVITY NAME<K";
"<CURSOR>" ;
"<PROFILE>");

Description
Makes a dereferenced copy of the release activity in the designated system view.

That is, in the new release activity, the procedure replaces the entries for system
views with the entries from the release activities in those system views.

Parameters

New_Activity : String := ">>NEU ACTIVITY NAME<K";
Specifies the name for the new release activity.

System_View : String := "<CURSOR>";
Specifies the system view whose release activity is to be copied.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-334 8/1/88 PATIONAL

fuscrion Parents
package {Commands.Cmve. Hierarchy

function Parents

function Parents (Of_Subsystem : String = "<CURSOR>";
Recursive : Boolean := False;
Response : String = "<WARN>")} return String;

Description

Returns a list of systems that are parents to the designated subsystem.

Parameters

Of _Subsystem : String := "<CURSOR>";
Specifies the subsystem whose parents are to be listed.

Recursive : Boolean := False;

Specifies whether to list parent systems recursively. If true, the default, all parents,
grandparents, and so on, are listed.

If false, only direct parent systems are listed.

Response : String := "<UARN>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return String;

Returns a list of systems that are parents to the designated subsystem.

RATIONAL 8/1/88 PM-335

procedure Remove_Child 7
package !Commands.Cmvc_Hierarchy

procedure Remove_Child

procedure Remove_Child

{Ch1ld 1 String = ">>SYSTEM/SUBSYSTEM NAME<K";
From_System : String := "<CURSOR>";

Comments : String = "7,

Work_Order : String := "<DEFAULT>";

Response : String := "<PROFILE>";;

Description
Severs the relationship between a child system or subsystem and its parent.

This procedure is the opposite of the Add-Child procedure.

Parameters

Child : String := ">>SYSTEM/SUBSYSTEM NAME<K";
Specifies one or more child systems or subsystems to be removed.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

From_System : String := "<CURSOR>";

Specifies the system from which the specified children are to be removed. By default,
the system designated by the cursor is used.

Comments : String = "";

Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order tring .= "<DEFAULT>",

Specifies the work order in which the command’s action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-336 ses RATIONAL

procedure Remove_Chiad
package !Commands.Cmve_Hierarchy

end Cmvc_Hierarchy;

IQATIONAL 8/1/88 PM-337

RATIONAL

package Cmvc_Maintenance

Packages Cmvc_Maintenance defines a set of operations for checking and restor-
ing the integrity of the various databases associated with the CMVC system. This
package also provides operations for managing primary and secondary subsystems
(copies of subsystems that support development on multiple R1000s).

Commands Grouped by Topic

The commands in package Cmvc_Maintenance fall into several functional groups.
They are listed here by group for your convenience. (Note that the reference entries
for these commands are arranged in alphabetical order by command name.)

Commands for managing the CMVC database:

Check_Consistency Expunge_Database

Commands for managing the compatibility database (CDB) and multiple-host
development:

Destroy_Cdb Display_Cdb
Make_Primary Make_Secondary
Repair_Cdb Update_Cdb

Commands for managing code views:

Display_Code_View

QATIONAL 8/1/88 PM-339

procedure Check_Consistency
package !Commands.Cmvc_Maintenance

procedure Check_Consistency

"<CURSOR>";

procedure Check_Consistency (Views : String
"<PROFILE>"};

Response : String

Description

Checks the consistency of the specified views with respect to the CMVC database
and the Environment library system.

In some cases, corrective action is taken. The specified views can be in subsystems
or in systems.

The CMVG database and the Environment library system both record various types
of information about controlled objects. The Check_Consistency command makes
sure that information in the database agrees with the information in the library
system. Specifically, Check_Consistency ensures that:

o There is a configuration object in the Configurations directory for every config-
uration represented in the database. Missing configuration objects are recreated
from the database.

¢ Both the library system and the CMVC database are synchronized with respect to
which objects are controlled. If the library system and the CMVC database do not
agree, the information in the library system is changed to match the information
in the database.

o The text of each object in the view directories matches the text stored in the CMVC
database for the appropriate generation. Note that this is a textual comparison,
so that differences due to changed pretty-printer switches will be reported. No
action is taken by Check_Consistency to reconcile the differences; the Cmvc-
.Check-Out or Cmvc.Accept—-Changes command can be used to get the latest
generation from the database.

The Check_Consistency command also checks the library structure independently
of the CMVC database. The Check_Consistency command ensures that:

e The directory structure within the specified views or subsystems is complete.
Check_Consistency reconstructs deleted directories and/or missing objects such
as the Subpath_Name and Last_Release_Name files in the view.State directory.
(Note that the Last_Release_Name file contains the level numbers of the most
recently released view; when Check_Consistency reconstructs this file, all the
level numbers are set to 0 and the file must be edited by hand to restore the
correct level numbers.)

¢ The specified views have a model associated with them. Views that reference
deleted models lose that reference; the Cmvc.Replace_Model command can be
used to provide new models for those views.

The Check_Consistency command verifies that all imported views still exist and
ensures that, whenever a view is imported by another view, both views maintain

PM-340 8/1/88 RA\TIONAL

procedure Chieck_Consistency
package !Commands.Cmve . Maintenance

a record of this relationship. Discrepancies are resolved in favor of the importing
view. That is, if View—1 imports View_2, but View_2 does not list View_1 as a
referencer, then View_2’s list of referencers is updated to include View_1. On the
other hand, if View_2 lists View_1 as a referencer, but View_1 does not list View_2
as an import, View_1 is removed from View_2’s list of referencers.

Finally, the Check_Consistency command makes sure that the proper links exist
for each specified view. Specifically, Check-Consistency examines the with clauses
within the specified views’ Ada units and reports references for which links do not
exist. Furthermore, Check_Consistency reports unacceptable links—namely, links
that resolve to load views and links that resolve to unimported spec views. (Typ-
ically, such reported links result from improperly using the Links.Add command
instead of the CMVC importing operations.)

The Check_Consistency command can be used to:

o Reconstruct a configuration object that was deleted by mistake.

* Recover from an attempt to delete a view with commands in package Library or
Compilation. Check_Consistency reconstructs enough of the view so that it can
be deleted successfully with the Cmvc.Destroy_View command.

o Reconstruct the directory structure within a view after deleting directories or
objects on which other CMVC commands may depend (for example, the State,
Exports, or Imports directories.)

¢ Reconcile conflicting reports and error messages—for example, if error messages
indicate that an object is already checked out, whereas commands such as Cmvc-
.Show_All_Checked_Out have indicated that the object is checked in.

Parameters

Views : String := "<CURSOR>";

Specifies the views whose consistency is to be checked. The default is the view
designated by the cursor. If a subsystem or system is specified, all of the views in
that (sub)system are checked, along with the directory structure at the (sub)system
level.

Multiple views, subsystems, or systems can be specified by using wildcards, context
characters, special names, set notation, or an indirect file. (For further information,
see “Naming” in the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL s/1/ss PM-341

procedure Convert_Old_-Subsystem
package !Commands.Cmvc_Maintenance

procedure Convert_Old_Subsystem

"<SELECTION>";

procedure Convert_0ld_Subsystem (Uhich : String
"<PROFILE>"};

Response : String :

Description

Converts the views in one or more subsystems from the Gamma format to the Delta
format so that CMVC operations can be used.

This is not applicable to subsystems created on an R1000 that already has been
converted from the Gamma release of the Environment to a Delta release.

Parameters

Uhich : String := "<SELECTION>";

Specifies the subsystem whose views are to be converted. The default is the current
selection.

Multiple subsystems can be specified by using wildcards, context characters, spec1al
names, set notation, or an indirect file. (For further lnformatlon see “Na.mmg
the Key Concepts in this book.)

Resporse : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-342 8/1/88 BA\TIONAL

procedure Delete_Unreferenced_Leading_Generations
package !Commands.Cmvc_Maintenance

procedure Delete_Unreferenced_Leading_Generations

procedure Delete_Unreferenced_Leading_Generations
{In_Subsystem : String
Response : String

“<CURSOR>";
"<PROF ILE>"};

Description

Not yet implemented.

Parameters

In_Subsystem : String := "<CURSOR>";
Not yet implemented.

Response : String := "<PROFILE>";
Not yet implemented.

R’AT'ONAL 8/1/88 PM-343

procedure Destroy_Cdb
package !Commands.Cmvc-_Maintenance

procedure Destroy_Cdb

procedure Destroy_Cdb (Subsystem : String = "<SELECTION>";
Limit : String := “<WORLDS>";
Effort_Only : Boolean := True;
Response : String = "<PROFILE>"};
Description

Destroys the compatibility database for the specified subsystem.

When units are compiled in a subsystem, information from the compatibility data-
base is incorporated into the DIANA representation for those units. Therefore, when
a compatibility database is destroyed, all compiled units in the subsystem are de-
moted to the source state and all code views are deleted.

When the Effort_Only parameter is true, the compatibility database is not actually
destroyed; instead, a report is generated listing the units that would be demoted as
a result of destroying the database.

The compatibility database for a subsystem is recreated automatically the next time
units are compiled in that subsystem. When recreated, however, the compatibility
database provides a new subsystem identification number, effectively severing the
subsystem from any secondary or primary subsystems with which it was associated.
A subsystem is automatically made primary whenever its compatibility database is
destroyed and then recreated.

Destroying a compatibility database may be useful in the following cases:

* A compatibility database may need to be destroyed if it is corrupted—for ex-
ample, if any of the objects in the subsystem.State.Compatibility directory are
deleted.

¢ A compatibility database can be destroyed to remove references to any units that
were once compiled in the subsystem but are now deleted.

Parameters

Subsystem : String := "<SELECTION>";

Specifies one or more subsystems whose compatibility databases are to be destroyed.
The default is the selected subsystem.

Multiple subsystems can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

PM-344 8/1/88 RATIONAL

procedure Desiroy..Cdk
package !Commands.Cmv<._Maintenance

Limit : String := "<WORLDS>";
Specifies which units can be demoted as a side effect of destroying the compatibility
database of each specified subsystem.

The default special value "<WORLDS>" means that demotion is limited to the units in
the views of the specified subsystems. Other values for this parameter are given as
enumerations of the Compilation.Change_Limit subtype. For example, the string
"<ALL_WORLDS>" permits the demotion of units in other subsystems in order to de-
mote the units in the specified subsystems.

Effort_Only : Boolean := True;

Specifies whether to report the effort required without actually destroying any com-
patibility databases.

When true (the default value), a report is generated listing the units that would be
demoted as a result of destroying the compatibility database. The database is not
actually destroyed. The effort rating reported is a relative measure of the amount
of work involved.

When false, the compatibility database is destroyed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL &1/ PM-345

procedure Display_Cdb
package !Commands.Cmvc_Maintenance

procedure Display—Cdb

procedure Dispiay_Cdb (Subsystem : String = "<CURSOR>";
Show_Units : Boolean := False;
Response : String = "<PROFILE>"};

Description

Displays information from the compatibility database for each of the specified sub-
systems.

A subsystem contains a compatibility database only after units have been promoted
to the installed or coded state in that subsystem.

The following information is displayed in the output window:

¢ Whether the subsystem is primary or secondary
o The subsystem identification number
¢ How many Ada units are represented in the compatibility database

If the Show_Units parameter is true, each unit is listed along with the number of
declarations it contains. Note that every unit that was ever compiled in a given
subsystem is represented in that subsystem’s compatibility database. Therefore,
even deleted units appear in the listing.

Parameters

Subsystem : String := "<CURSOR>";

Specifies one or more subsystems whose compatibility database information is to
be displayed. The default is the subsystem designated by the cursor.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Show_Units : Boolean := False;

Specifies whether to list the units represented in the compatibility database for
the specified subsystems. If true, each unit is listed, followed by the number of
declarations it contains. If false (the default), only the total number of units is

displayed.

PM-346 8/1/88 RA\TIONAI_

procedure Display_Cdt
package !Commands.Cinve..Maintenance

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activiiies to use
during the execution of this command. The default is the job response profile.

RATIONAL +/1/es PM-347

procedure Display_Code_View
package !Commands.Cmvc_Maintenance

procedure Display_Code_View

procedure Display_Code_View ({View : String = "<CURSOR>";
Verbose_Unit_Info : Boolean := False;
Show_Map_Info : Boolean := False;
Response 1 String = "<PROFILE>");
Description

Displays information about the specified code view.

By default, the command displays a list of units in the code view. (Recall that code
views are created by the Cmvc.Make_Code_View command.)

If the Verbose_Unit_Info parameter is true, the command displays the withed units
and other compiler information for each unit in the code view.

If the Show_Map_Info parameter is true, the command displays a mapping of the
code segments and exceptions from the code view to the original view. Since code
views do not support source-level debugging, setting Show_Map_Info to true can
be used as a debugging aid.

Parameters

View : String := "<CURSOR>";

Specifies one or more code views about which to display information. The default
is the code view designated by the cursor.

Multiple code views can be specified by using wildcards, context characters, spec1al
names, set notation, or an indirect file. (For further mformatxon see “Nammg
the Key Concepts in this book.)

Verbose_Unit_info : Boolean := False:;

Specifies whether to display a full report for each unit in the specified code views.
If true, the command displays the withed units and other compiler information for
each unit in the code view. By default, a full report is not displayed.

Show_Map_Info : Boolean := False;

Specifies whether to display the code segment mapping between each specified code
view and the load view from which it was generated. By default, the mapping is
not displayed.

PM-348 8/1/88 BAT'ONAL

procedure Display_(Code_View
package !Commands.Cmve..Majutenance

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RAT'ONAL 8/1/88 PM-349

piocedure Expunge_Database
package !Commands.Cmvc_Maintenance

procedure Expunge_Database

procedure Expunge_Database (In_Subsystem : String := "<CURSOR>";
Response : String := "<PROFILE>"};

Description

Expunges the CMVC database, removing stored information and history about un-
used configurations or objects.

Expunging the database deletes any configuration represented in the database for
which there is no corresponding configuration object in the subsystem.Configura-
tions directory.

Expunging the database also deletes any join set represented in the CMVC database
if no configuration references any object in the set. All generations associated with
the join set are deleted, effectively deleting the history for the unused objects from
the database.

The Expunge_-Database command is useful when attempting to delete a view and
then recreate it with the same name. To do this:

1. Enter the Cmvc.Destroy_View command with the Destroy_Configuration_Also
parameter set to true. (This destroys the configuration object and the state
description directory along with the view.)

2. Enter the Expunge_Database command to remove references to the configura-
tion from the CMVC database.

3. Recreate the view.

Parameters

In_Subsystem : String := "<CURSOR>";

Specifies the subsystem whose CMVC database is to be expunged. The default is
the subsystem designated by the cursor. A system name can be specified for this
parameter as well.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-350 8/1/88 RATIONAL

procedure Make _Primary
package !Commands.Cmve - Maintenance

procedure Make_Primary

procedure Make_Primary {Subsystem : String = "<SELECTION>";
Moving_Primary : Boolean := False;
Response : String := "<PROFILE>");
Description

Converts the specified secondary subsystem into a primary subsystem with its own
updatable compatibility database.

When development occurs on multiple R1000s, a copy of each subsystem needs to
reside on each machine so that the entire application can be executed. One copy
of a given subsystem, called the primary subsystem, contains an updatable compat-
ibility database and thus supports ongoing development. The other copies, called
secondary subsystems, have frozen compatibility databases and essentially are local
copies for execution and test. Every secondary subsystem is associated with exactly
one primary subsystem and shares its subsystem identification number.

Subsystems created by the Cmvc.Initial command are always created as primary
subsystems. A subsystem also is made primary whenever its compatibility database
is destroyed and then recreated (see the Destroy_Cdb command). By default, sub-
systems created by the Archive.Copy or Archive.Restore commands are secondary
subsystems, even if they were copied from primary subsystems. (Note, however,
that the Options parameter in each of these Archive commands can be set to Pri-
mary to create primary subsystems.)

The Make_Primary command converts secondary subsystems to primary subsys-
tems and can be used as one step in the process of:

¢ Creating a a separate, updatable subsystem from an existing subsystem. To
create a new primary subsystem that is not associated with any other existing
subsystems:

1. Make a copy of the existing subsystem using the Archive.Copy command. If
the default value for the Options parameter is used, a secondary subsystem
is created.

2. Convert the secondary subsystem to a primary subsystem using the Make-
~Primary command with the Moving_Primary parameter set to false. The
converted subsystem is given a unique subsystem identification number and
so is no longer associated with any other primary subsystem.

¢ Relocating a primary subsystem to a different host. To move a primary subsystem
to a location currently occupied by an associated secondary subsystem:

1. Find or create an associated secondary subsystem on the desired host.

2. Update the compatibility database in the secondary subsystem using the
Update—_Cdb command.

IQAT'ONAL 8/1/88 PM-351

procedure Make_Primary
package !Commands.Cmvc_Maintenance

3. Convert the secondary subsystem to a primary subsystem using the Make-
—Primary command with the Moving_Primary parameter set to true. This
causes the converted subsystem to retain its original subsystem identification
number and thus its previous association with other subsystems.

4. Either destroy the original primary subsystem or convert it to a secondary
subsystem with the Make_Secondary command. This step must be done to
prevent corruption of the compatibility database.

Care must be taken to ensure that the Moving_Primary parameter has the correct
value for the desired operation. In particular, the value false assigns the subsystem a
new identification number, severing its association from other subsystems, including
its original primary subsystem. The new identification number is retained, even if
the subsystem is made secondary again.

Parameters

Subsystem : String := "<SELECTION>";

Specifies one or more secondary subsystems to be converted to primary subsystems.
The default is the selected subsystem.

If the specified subsystem is already a primary subsystem, this command has no
effect.

If the specified subsystem contains views with target keys other than R1000, the
units in these views cannot be in the coded state.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Moving_Primary : Boolean := False;

Specifies whether the converted subsystem is to retain its original subsystem iden-
tification number.

When false (the default), the converted subsystem is given a new subsystem identi-
fication number and so is no longer associated with its original primary subsystem.

When true, the converted subsystem retains its original subsystem identification
number and preserves its previous association with other subsystems. This is in-
tended for moving a primary subsystem to a new location.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-352 s RATIONAL

procedurs Make_Primary
package !Commands.Cmvc..Maintenance

Restrictions

If the specified subsystem contains views with target keys other than R1000, the
units in these views cannot be in the coded state.

References

procedure Destroy_Cdb
procedure Make_Secondary
procedure Update_Cdb

LM, procedure Archive.Copy

RATIONAL &/1/ss PM-353

procedure Make_Secondary
package !Commands.Cmvc_Maintenance

procedure Make_Secondary

“<SELECTION>";

procedure Make_Secondary (Subsystem : String :
"<PROFILE>");

Response : String :

Description

Converts the specified primary subsystem into a secondary subsystem with a read-
only compatibility database.

When development occurs on multiple R1000s, a copy of each subsystem needs to
reside on each machine so that the entire application can be executed. One copy
of a given subsystem, called the prtmary subsystem, contains an updatable compat-
ibility database and thus supports ongoing development. The other copies, called
secondary subsystems, have frozen compatibility databases and essentially are local
copies for execution and test. Every secondary subsystem is associated with exactly
one primary subsystem and shares its subsystem identification number.

By default, secondary subsystems are created by the Archive.Copy or Archive-
.Restore commands, even if they were copied from primary subsystems. (Note,
however, that the Options parameter in each of these Archive commands can be set

to create primary subsystems.)

The Make_Secondary command is used in the last step in the process of moving a
primary subsystem:

1. Update the compatibility database in the secondary subsystem using the Update-
—Cdb command.

2. Convert the secondary subsystem to a primary subsystem using the Make-
—Primary command with the Moving_Primary parameter set to true. This
causes the converted subsystem to retain its original subsystem identification
number and thus its previous association with other subsystems.

3. Either destroy the original primary subsystem or convert it to a secondary
subsystem with the Make_Secondary command. This step must be done to
prevent corruption of the compatibility database.

PM-354 8/1/88 R)A-“ONAL

procedure Make_Secondary
package !Commarnds.Cmvc_Maintenance

Parameters

Subsystem : String := "<SELECTION>";

Specifies one or more primary subsystems to be converted to secondary subsystems.
The default is the selected subsystem.

If the specified subsystem is already a secondary subsystem, this command has no
effect.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Make_Primary
procedure Update_Cdb

LM, procedure Archive.Copy

LM, procedure Archive.Restore

RATIONAL 418 PM-355

procedure Repair_Cdb
package !Commands.Cmvc._Maintenance

procedure Repair—Cdb

procedure Repair_Cdb (Subsystem : String = "<SELECTION>";
Verify_Only : Boolean := True;
Delete_Current : Boolean := False;
Response : String = "<PROFILE>");
Description

Verifies that the information in the specified subsystem’s compatibility database is
consistent with the DIANA representation of the subsystem’s compiled units.

When the Verify_Only parameter is false, some or all of the inconsistencies are
repaired, depending on the value of the Delete_Current parameter.

When units are compiled in a subsystem, information from the compatibility data-
base is incorporated into the DIANA representation for those units. If the compat-
ibility database is corrupted after units have been compiled, it can be repaired or
rebuilt using information from the DIANA representation of the compiled units. For
example, if an object in the subsystem.State.Compatibility directory is deleted, the
Repair_.Cdb command can rebuild the object.

Note that Repair-Cdb can rebuild a compatibility database only from the DIANA
representation of installed or coded units. Therefore, Repair_Cdb cannot be used to
restore a database destroyed by the Destroy_.Cdb command, because Destroy_Cdb
also deletes the DIANA representation.

Aslong as there is at least one installed or coded unit in the subsystem, the database
can be rebuilt with the same subsystem identification number.

Parameters

Subsystem : String := "<SELECTION>";

Specifies one or more subsystems whose compatibility databases are to be repaired.
The default is the selected subsystem.

Multiple subsystems can be specified by using wildcards, context characters, special

names, set notation, or an indirect file. (For further information, see “Naming” in
the Key Concepts in this book.)

PM-356 8/1/88 RAT'ONAL

procedure Repair—(db
package !Comumands Cmve_Maintenance

Verify_Only : Booclean := True;

Specifies whether to verify the consistency of the compatibility database without
actually trying to repair it.

When true (the default value), only a report is generated, and no repair is under-
taken.

When false, an attempt is made to repair inconsistencies between the compatibility
database and the DIANA representation of compiled units. The extent of the repair
depends on the value of the Delete_Current parameter.

Delete_Current : Boolean := False;
Specifies whether to delete and rebuild the entire existing compatibility database.

If false (the default value), the existing compatibility database is preserved. Existing
entries in the compatibility database are verified and missing entries are added.

If true, the entire database is deleted and rebuilt.

Regardless of the value of this parameter, the database can be rebuilt with the same
subsystem identification number, provided that at least one installed or coded unit
is in the subsystem.

The value of the Delete_Current parameter is ignored if the Verify_Only parameter
is true.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

IQATIONAI_ 8/1/88 PM-357

procedure Update_Cdb
package !Commands.Cmvc_Maintenance

procedure Update_Cdb

"<ASSOCIATED_FPRIMARY>";
"<SELECTION>";
"<PROFILE>"};

procedure Update_Cdb (From_Subsystem : String :
To_Subsystem : String
Response : String

Description

Updates a secondary subsystem’s compatibility database by copying the compati-
bility database from another subsystem.

The two subsystems must have the same subsystem identification number, although
they can be on different R1000s.

Typically, a compatibility database is copied from a primary subsystem into an
associated secondary subsystem to:

¢ Compile incremental changes in the secondary subsystem

¢ Prepare a secondary subsystem to be converted to a primary subsystem (see the
Make_Primary command)

Note that the compatibility database is automatically moved whenever Archive.Copy
is used to copy views or individual units from one subsystem into another. In con-
trast, the Update_Cdb command copies only the compatibility database. Thus,
using the Update_Cdb command is equivalent to entering the Archive.Copy com-
mand with Options => "cdb”.

The Update—-Cdb command cannot be used to revert a compatibility database to
a previous version. See the Revert_Cdb value of the Option parameter of the
Archive.Copy command.

PM-358 8/1/88 I?ATIONAL

procedure Update_.Cdb
package 'Commands.Crove. Maintenance

Parameters

From_Subsystem : String := "<ASSOCIATED_PRIMARY>";

Specifies the subsystem whose compatibility database is to be copied. The compat-
ibility database in From_Subsystem must be more recent than the compatibility
database in To_Subsystem.

The default special name "<ASSOCIATED_PRIMARY>" designates the primary subsys-
tem associated with the secondary subsystem specified by the To_Subsystem pa-
rameter. The default value gets the name of the associated primary subsystem from
the subsystem.State.Compatibility.State file within the secondary subsystem. Note
that if the primary subsystem has been moved, this file may be out of date. If so,
the file must be edited to supply the correct pathname for the associated primary
subsystem; otherwise, the name of the associated primary must be specified as the
value for the From_Subsystem parameter.

To_Subsystem : String := "<SELECTION>";

Specifies the secondary subsystem whose compatibility database is to be updated.
The default is the selected subsystem.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References
procedure Make_Primary

LM, procedure Archive.Copy

end Cmvc_Maintenance;

R’AT'ONAL 8/1/88 PM-359

RATIONAL

package Work_Order

This package provides operations for creating, viewing, and manipulating work
orders, work-order lists, and ventures. These objects can be associated with user
sessions (that is, with user IDs and session names) to collect and convey data about
project management among team members involved in large-system development
using subsystems.

Many characteristics of work orders, work-order lists, and ventures are controllable
with session switches, which are described in a following section.

Work orders are designed to communicate d=tails about specific tasks to be accom-
plished. They may present instructions to a developer and collect project work
data to mark ongoing progress. A particular work order may address one or more
developers, but typically it is limited in scope; a work order may describe one bug
to be fixed, for example.

Groups of related work orders constitute a work-order list. For example, a work-
order list may relate to a particular module of code or it may be the set of work
orders assigned to an individual developer.

A larger component of project management is the venture. A venture is a manage-
ment tool that contains information about groups of work orders and work-order
lists and controls their use via venture policy switches. Each work order must have
a venture that is its “parent.”

Ventures, work-order lists, and work orders are library objects. For each project-
management object, package Work_Order provides subprograms to:

o Create, display, and edit the object

o View and set the default object for a user or session

¢ View and set the textual notes within the object

Although there are editing commands in packages within package Work_Order for
each object, viewing and editing of work orders, work-order lists, and ventures is
perhaps most easily done with commands from package Common. See the following

introductions to subpackages Editor, List_Editor, and Venture_Editor for sample
displays and specific information about using Common commands for editing.

RAT'ONAL 8/1/88 PM-361

package !Commands. Work_Order

Session Switches

Many session switches determine how information in work orders, work-order lists,
and ventures are formatted. See SIM, Session Switches, for more information on

session switches.

The following session switches pertain to project-reporting objects. Unless otherwise
specified, the full name for each switch begins with Session. For example, the full
name for Cmvc_Break_Long_Lines is Session.Cmvc_Break._Long_Lines.

Cmve-Break-Long-Lines (default true)

Controls whether lines in work orders, work-order lists, and ventures that exceed
the value of the Cmvc_Line_Length switch are broken. User-entered strings are
never broken.

Cmve.-Capitalize (default true)

Determines whether words, other than those in user-entered strings, in work orders,
work-order lists, and ventures are capitalized.

Cmve-Comment-Extent (default 4)

Specifies, as an integer value, the number of comments displayed in a work order.

Cmve-Configuration.Extent (default 0)

Specifies, as an integer value, the number of configurations displayed in a work
order.

Cmvec-Field-Extent (default 4)

Specifies, as an integer value, the number of elements of vector fields that are
displayed in a work order.

Cmve-Indentation (default 2)

Specifies, as an integer value, the number of spaces used for indentation in work
orders, work-order lists, and ventures.

Cmve-Line_Length (default 80)

Specifies, as an integer value, how long a line in a work order, work-order list, or
venture can be before it is eligible to be broken.

Cmve-Shorten.Name (default true)

Shows object names in work orders, work-order lists, and ventures in a shortened
form.

PM-362 8/1/88 PAT'ONAL

package !Commands. Work_Order

Cmve-Shorten_Unit-State (default false)

Shows the state of work orders in a shortened form.

Cmve-Show_Add-Date (default true)
Displays the date an entry is added to a work order.

Cmve-Show-Add-Time (default true)

Displays the time an entry is added to a work order.

Cmve-Show_All_Default_Lists {default false)

Displays only the user’s default work-order list in a venture.

Cmve-Show-All.Default_Orders (default false)

Displays only the user’s default work order in a venture.

Cmve_Show_Deleted-Objects (default false)

Shows deleted work orders or work-order lists in a work-order list. Display of deleted
objects is controlled by elision.

Cmve-Show_Deleted- Versions (default false)

Shows version numbers and information for all versions of a work order or work-
order list. Display of deleted versions is controlled by elision.
Cmve-Show . Display.. Position (default false)

Shows display position of user-defined work-order fields.

Cmvc.Show.Edit-Info (default false)

Shows edit information for objects displayed in work orders, work-order lists, or
ventures.

Cmve-Show .Field_Default (default true)

Shows the default value for vector fields. If this switch is true, vector fields will
show the default value of all elements that have not been assigned.
Cmve-Show_Field-Max.Index (default false)

Shows the number of entries in a vector field that have been written.

Cmve-Show.Field-Type (default false)

?ihlilws the type of field (that is, Boolean, integer, or string) for all scalar and vector
elds.

RATIONAL s/u/e PM-363

package !Commands. Work_Order

Cmve-Show_Frozen (default false)

Shows “Frz” for frozen objects displayed in work orders, work-order lists, or ven-
tures.

Cmve-Show.Hidden-Fields (default false)

Displays hidden fields in a venture.

Cmve.Show_Retention (default false)

Shows the retention count when displaying objects in work orders, work-order lists,
or ventures.

Cmve-Show.-Boolean (default false)

Shows the size of the version, in bytes, when displaying objects in a work order,
work-order list, or venture.

Cmve-Show-Unit.State (default true)

Shows the state of work orders listed in ventures and work-order lists (that is,
pending, in progress, closed).

Cmve-Show.-Users (default false)

Shows the list of users in the users field of work orders. Display of users is controlled
by elision.

Cmvec.Show- Version-Number (default false)

Shows the version number of objects displayed in work orders, work-order lists, or
ventures.

Cmve-Uppercase (default false)

Determines whether words, other than those in user-entered strings, in work orders,
work-order lists, and ventures are displayed in uppercase.

Cmve- Version-Extent (default 0)

Specifies, as an integer value, the number of versions displayed in a work order.

Default. Venture

Specifies a filename for the default venture for the session. The full switch name is
Cmvc.Default_Venture.

PM-364 8/1/88 EATIONAL

procedure Add_To. List
package !Commands Work.Order

procedure Add_To_List

procedure Add_To_List (Order_Names : String := "<IMAGE>";
List_Name : String = "<WORK_LIST>";
Response : String = "<PROFILE>"};

Description

Adds one or more work orders to a work-order list.

Parameters

Order_Names : String := "<IMAGE>";

Specifies one or more work orders to be added to the list. The default special
name "<IMAGE>" designates the currently selected work order if the cursor is in the
selection; otherwise, it designates the work order in the current irnage.

Multiple work-order names can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

List_Name : String := "<UORK_LIST>";

Specifies the work-order list to which work orders will be appended. The default
special name "<WORK_LIST>" specifies the default work-order list for the current

session.

Respornse : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error will result if the work order(s) specified by the Order_Names parame-
ter were not created on the same venture as the work-order list specified by the
List_Name parameter.

References

procedure Remove_From_List

E)ATIONAL 8/1/88 PM-365

procedure Close
package !Commands. Work_Order

procedure Close

procedure Close {Order_Name : String := "<ORDER>";
Resporse : String := "<PROFILE>");

Description
Sets the status of the specified work order to closed.

Once a work order has been closed, i. no longer can be modified.

Parameters

Order_Name : String := "<ORDER>";

Specifies the work order to be closed. The default special name "<ORDER>" specifies
the default work order for the current session. The null string ("") is interpreted to
mean "<CURSOR>",

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-366 8/1/88 'QAT'ONAL

procedure Create
package !Commands. Work-Order

procedure Create

procedure Create {Order_Name . String = ">>OBJECT NAME<K";
Notes : String = "
On_List : String = "<WORK_L1tST>";
On_Venture : String = "<VENTURE>";
Make_Default_Work_Order : Boolean := True;
Response : String = "<PROFILE>");
Description

Creates a work order on the specified venture and adds it to a work-order list.

The new work order is created on the default venture for the current session
unless the On_Venture parameter names a venture. The string specified in the
Notes parameter is entered into the notes field of the new work order. If the
Make_Default_Work_Order parameter is true, the new work order becomes the
default work order on the parent venture.

Parameters

Order_Name : String := ">>0BJECT NAME<KK";

Specifies the name for the new work order. The default parameter placeholder
">>0BJECT NAME<<" must be replaced or an error will result.

Notes : String := "";

Specifies a string to be saved in the notes field of the work order. Notes typically
are used to provide a brief description of the work order.

On_List : String := "<WORK_LIST>";

Specifies a work-order list to which the new work order is appended. The default
special name "<WORK_LIST>" specifies the default work-order list for the current
session. If the current session has no default work-order list, a warning message
appears in the output log. If the value of this parameter is the null string ("), the
work order is not added to any work-order list.

On_Venture : String := "<VENTURE>";

Specifies the venture for which the work order is created. The default special name
"<VENTURE>" specifies the default venture for the current session.

RATIONAL s/1/e PM-367

procedure Create
package !Commands. Work_Order

Make_Default_Work_Order : Boolean := True;

Specifies whether to set the new work order as the session default. If true (the
default value), the new work order becomes the default work order on the specified
venture.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error will result if the work-order list specified by the On_List parameter was
not created on the venture specified by the On_Venture parameter.

References
function Default

procedure Set_Default

PM-368 8/1/88 BA\TIONAL

procedure Create_Field
package !Coramands. Work. Order

procedure Create_Field

procedure Create_Field

(Fi1eld_Name : String = ">>FIELD NAME<K";

Field_Type : String = ">>BOOLEAN|STRING| INTEGERK";
|s_Vector : Boolean := False;

|s_Controlled . Boclean .= False;

Default : String = "",

Display_Position : Natural := Natural'lLast;

On_Venture : String = "<VENTURE>";

Propagate : Boolean = True;

Renumber_Fields : Boolean := True;

Response : String = "<PROFILE>"};

Description

Creates a new user-defined field with the designated data type in the specified
venture.

This field appears in all work orders subsequently created on this venture. If the
Propagate parameter is true, all work orders already created on this venture are
updated to contain this field. The new field appears with the initial value specified
by the Default parameter.

Parameters

Field_Name : String := ">>FIELD NAME<LL";

Specifies the name for the user-defined field. The default parameter placeholder
">>FIELD NAME<<" must be replaced or an error will result.

Field_Type : String := ">>BOOLEAN|STRING|INTEGER<K";

Specifies the data type for the new field. Fields can be created that contain Boolean,
string, or integer data. The default parameter placeholder ">>BOOLEAN|STRING| IN=
TEGER<<" must be replaced or an error will result.

Is_Vector : Boolean := False;

Specifies whether the field accepts an array of values or a single value. If false (the
default value), the field accepts a single scalar value.

If true, the field accepts an array of values. The range of array indexes is 1..Posi-
tive’Last. Because each value of a user-defined field can be modified only once, the
field should be created as a vector if its value will need to be updated. Successive
elements in the array then can be modified. In this way, a history of changes to this
field is provided.

R)ATIONAL 8/1/88 PM-369

procedure Create_Field
package !Commands. Work_Order

Is_Controlled : Boolean := False;

Specifies whether the new field is controlled by the Allow_Edit_Of_Work_Orders
policy switch.

If true, the field can be edited interactively only if the Allow_Edit_Of_Work_Orders
policy switch is true in the venture. If false (the default value), the field can be
edited interactively regardless of the value of the Allow_Edit_Of_Work_Orders pol-
icy switch.

Default : String := "";
Specifies an initial value for the field. The initial value will appear on new work
orders and in existing work orders if the field is propagated.

Display_Positior : Natural := Natural’'Last;

Specifies the display position of the field in the work order. If this is set to 0, the
field will not be visible when the work order is displayed with the editor.

On_Venture : String := "<VENTURE>",

Specifies the name of the venture to which the new field is added. The default
special name "<VENTURE>" specifies the default venture for the current session.

Propagate : Boolean := True;

Specifies, if true, that the field will be added to all existing work orders on the
venture.

Renumber_Fields : Boolean := True;

Specifies, if true, that the fields will be reordered if this is necessary to make the
new field have the Display_Position ordinal.

Respornse : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-370 8/1/88 BA\-HONAL

procedure Create_List
package !Commands Work_Order

procedure Create_List

procedure Create_List (List_Name : String = "D>0BJECT NAME<K";
Notes : String = "";
On_Venture : String = "<VENTURE>";
Make_Default_List : Booclean := True;
Response : String = "<PROFILE>"};
Description

Creates a work-order list on the specified venture.

Parameters

List_Name : String := ">>0BJECT NAME<K";

Specifies the name of the new work-order list. The default parameter placeholder
">>0BJECT NAME<<" must be replaced or an error will result.

Notes : String := ;
Specifies a string to be saved in the notes field of the work-order list. Notes typically
are used to provide a brief description of the work-order list.

On_Venture : String := "<VENTURE>";

Specifies the name of the venture to which the new work-order list is added. The
default special name "<VENTURE>" specifies the default venture for the current ses-
sion.

Make_Default_List : Boolean := True;

Specifies whether to set the new work-order list as the session default. If true (the
default value), the new list becomes the new default work-order list in the specified
venture.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Set_Default_List

RATIONAL 8/1/88 PM-371

procedure Create_Venture
package !Commands.Work_Order

procedure Create_Venture

procedure Create_Venture

{Venture_Name : Strinmg = ">>0BJECT NAME<K";
Notes : String = "7,
Make_Defauit_Venture : Boolean := True;

Resporse : String = "<PROFILE>")

Description

Creates a new venture.

Parameters

Venture_Name : String := ">>0BJECT NAME<K";

Specifies the name of the new venture. The default parameter placeholder ">>0BJECT
NAME<<” must be replaced or an error will result.

Notes : String := ;

Specifies a string to be saved in the notes field of the venture. Notes typically are
used to provide a brief description of the venture.

Make_Default_Venture : Boolean := True;

Specifies whether to set the new venture as the default. If true (the default value),
the new venture becomes the default venture for the current session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Set_Default_Venture

PM-372 8/1/88 BA\T|ONAL

function Default
package !Commands. Work_Order

function Default

"<VENTURE>";
"<CURRENT _USER>";
True} return String;

function Default {For_Venture : String
For_User : String
Ignore_Garbage : Boolean :

Description

Returns the name of the user’s default work order in the specified venture.

Parameters

For_Venture : String := "<VENTURE>";

Specifies the name of the venture to reference. The default special name "<VENTURE>"
specifies the default venture for the current session.

For_User : String := "<CURRENT_USER>";

Specifies the username for which the default work order is requested. If only a
usernanie is supplied, session S_1 is assumed. If the user has multiple sessions with
default work orders in the venture, both the username and the session name must
be specified when the default work order for a session other than S_1 is desired.
The default special name "<CURRENT_USER>" specifies the current session.

Ignore_Garbage : Boolean := True;

Specifies how to present results in case the once-valid default work order is missing.
If true (the default), the function result is “<>”. If false, the contents of the function
result are unpredictable. When function results are to be used directly in cMVC
commands, it is recommended that Ignore_Garbage is true.

return String;
Returns the pathname of the default work order.

Example

The command:;

Text_lo.Put_Line(Work_Order .Default)

displays the name of the default work order for the current user’s current session in
the default venture.

IQATIONAL 8/1/88 PM-373

function Default
package !Commands. Work_Order

The command:

Text_lo.Put_Line(liork_Order .Default (For_Venture => "My_Venture",
For_User => "Userl”});

displays the name of the default work order for user Userl, session S_1, in My_Ven-
ture.

The command:

Text_lo.Put_Line(Work_Order .Default {For_Venture => "My_Venture",
For _User => "User! .Working”)};

displays the name of the default work order for user Userl, session Working, in
My_Venture.

References

procedure Set_Default

PM-374 8/1/88 PAT'ONAL

function Defauit_List
package !Commands. Work_Order

function Default_List

"<VENTURE>";
" <CURRENT _USER>";

True} return String;

function Default_List (For_Venture : String
For_User : String
Ignore_Garbage : Boolean :

Description

Returns the name of the user’s default work-order list in the specified venture.

Parameters

For_Venture . String := "<VENTURE>";

Specifies the name of the venture to reference. The default special name "<VENTURE>"
specifies the default venture for the current session.

For_User : String := ""<CURRENT_USER>";

Specifies the username for which the default work-order list is requested. If only a
username is supplied, session S_1 is assumed. If the user has multiple sessions with
default work-order lists in the venture, the username and the session name must be
specified when the default work-order list for a session other than S_1 is desired.
The defaunlt parameter "<CURRENT_USER>" specifies the current session.

fgnore_Garbage : Boolean := True;

Specifies how to present results in case the once-valid default work- order list is
missing. If true (the default), the function result is “<>”. If false, the contents of
the function result are unpredictable. When function results are to be used directly
in CMVC commands, it is recommended that Ignore_Garbage is true.

return String;
Returns the pathname of the default work-order list.

Example

The command:

Text_lo.Put_tire({Work_Order .Default_List)

displays the name of the default work-order list for the current user’s current session
in the default venture.

[QATIONAL 8/1/88 PM-375

function Default_List
package !Commands. Work_Order

The command:

Text_lo.Put_Line{Work_Order .Default_List {For_Venture => "My_Venture",
For_User => "Userl"});

displays the name of the default work-order list for user Userl, session S-1, in
My_Venture.

The command:

Text_lo.Put_Line{Work_Order .Default_List (For_Venture => "My_Venture",
For_User =>
"Userl . Working™});

displays the name of the default work-order list for user Userl, session Working, in
My_Venture.

References

procedure Set_Default_List

PM-376 8/1/88 BA\TIONAL

function Default_Venture
package !Commands.Work_.Order

function Default_Venture

"<CURRENT _USER>";

function Default_Venture {For_User . String
True) return String;

Ignore_Garbage : Boolean

Hu

Description

Returns the pathname of the default venture for a user.

Parameters

For_User : String := "<CURRENT_USER>";

Specifies the username for which the default venture is requested. If only a username
is used, session S_1 is assumed. If the user has multiple sessions and wants the
default venture for a session other than S_1, the session name must be specified.
The default special name "<CURRENT_USER>" specifies the current session.

Ignore_Garbage : Boolean := True;

Specifies how to present results in case the once-valid default venture is missing. If
true (the default), the function result is “<>”. If false, the contents of the function
result are unpredictable. When function results are to be used directly in CMVC
commands, it is recommended that Ignore_Garbage is true.

return String;
Returns the pathname of the default venture.

Example

The command:

Text_lo.Put_Line(Work_Order .Default_Venture (For_User => "Userl"™)})};

displays the name of the default venture for user Userl, session S_1.

The command:

Text_lo.Put_Line(Work_Order .Default_Venture (For_User =>
"Userl.Working"));

displays the name of the default venture for user Userl, session Working.

RATIONAL o/ | -

function Default_Venture
package !Commands.Work_Order

References

procedure Set_Default_Venture

PM-378 | s RATIONAL

procedure Delete_Field
package !Commands. Work_Order

procedure Delete_Field

procedure Delete_Field (Field_Name : String = ">>FIELD NAMELKL";
Venture_Name 1 String = "<VENTURE>";
Even_!f_Data_Present : Boolean := False;
Response : String = "<PROFILE>"};
Description

Deletes the named field from the venture.

Parameters

Field_Name : String := ">>FIELD NAMELK";
Specifies the name of the field to be deleted.

Venture_Name : String := "<VENTURE>";

Specifies the name of the venture from which the field is deleted. The default
parameter “<VENTURE>" specifies the default venture for the current session.

Even_Iif_Data_Present : Boolean := False;

Specifies whether to delete the field despite the presence of data in this field for
existing work orders. If false (the default value), the field is not deleted when data
would be lost.

If true, the field is deleted from the specified venture and any data in that field of
work orders is lost.

Response : String := "<PROFILE>™;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Create_Field

BATIONAL 8/1/88 PM-379

procedure Display
package !Commands.Work_Order

procedure Display

procedure Display (Order_Name : String := "<ORDER>";
Options ¢ String = "M
Response : String = "<PROFILE>")Y;

Description
Formats and displays the contents of the specified work order in the output window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a work order, see the Edit command.

Parameters

Order _Name : String-:= “<ORDER>";

Specifies the name of the work order to be displayed. The default special name
"<ORDER>" specifies the default work order for the current session. The null string
(") is interpreted to mean "<CURSOR>".

Options : String = "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work_Order. When
using these switch names as options, omit “Cmvc_" in the switch name.

The following special options exist:

<TERSE> the default, specifies an abbreviated display
<DEFAULT> specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Edit

PM-380 8/1/88 BA\—HONAL

procedure Display._List
packzge !Commands, Work.. Order

procedure Display_List

procedure Display_bList (List_Name : String := "<UORK_LIST>";
Options : String = "7,
Response : String := "<PROFILE>");

Description

Formats and displays the contents of the specified work-order list in the output
window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a work-order list, see the Edit_List command.

Parameters

List_Name : String := "<UORK_LIST>";

Specifies the name of the work-order list to be displayed. The default special name
"<WORK_L1ST>" specifies the default work-order list for the session. The null string
(*") is interpreted to mean "<CURSOR>".

Options : String = "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work_Order. When
using these switch names as options, omit “Cmvc_" in the switch name.

The following special options exist:

<TERSE> the default, specifies an abbreviated display
<DEFAULT> specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Edit_List

RAT'ONAL 8/1/88 PM-381

procedure Display_Venture
package !Commands. Work_Order

procedure Display_Venture

procedure Display_Venture {Venture_Name : String := "<VENTURE>";
Options . String = "%
Response : String := "<PROFILE>");
Description

Formats and displays the contents of the specified venture in the output window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a venture, see the Edit—Venture command.

Parameters

Venture_Name : String := "<VENTURE>";

Specifies the name of the venture to be displayed. The default special name- "<VEN-
TURE>" specifies the default venture for the current session. The null string ("") is
interpreted to mean "<CURSOR>".

Options : String := "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work_Order. When
using these switch names as options, omit “Cmvc_” in the switch name.

The following special options exist:

<TERSE> the default, specifies an abbreviated display
<DEFAULT> specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Edit_Venture

PM-382 8/1/88 BA\TIONAL

procedure Edit
package !Commands. Work_Order

procedure Edit

procedure Edit (Order_Name : String := "<ORDER>");

Description
Edits the designated work order.

The procedure creates a window in which the designated work order is displayed. If a
window already exists for that work order, the window is reused. From the window,
the work order can be edited with the operations from package !Commands.Common
that apply to this class of object.

Parameters

Order _Name : String := "<ORDER>";

Specifies the name of the work order to be edited. The default special name "<OR-
DER>" specifies the default work order for the current session. The null string (")
is interpreted to mean "<CURSOR>".

BA\TIONAL 8/1/88 PM-383

procedure Edit_List
package !Commands.Work_Order

procedure Edit_List

procedure Edit_List (List_Name : String := "<WORK_LIST>"};

Description
Edits the designated work-order list.

The procedure creates a window in which the designated work-order list is displayed.
If a window already exists for that work-order list, the window is reused. From
the window, the work-order list can be edited with the operations from package
!Commands.Common that apply to this class of object.

Parameters

List_Name : String := "<WORK_LIST>";

Specifies the name of the work-order list to be edited. The default special name
"<WORK_L!1ST>" specifies the default work-order list for the current session. The null
string ("") is interpreted to mean "<CURSOR>".

References

package Editor

PM-384 ' 8/1/88 IQAT'ONAL

procedure Edit_Venture
package !Commands. Work_Order

procedure Edit_Venture

procedure Edit_Venture (Venture_Name : String := "<VENTURE>"};

Description
Edits the designated venture.

The procedure creates a window in which the designated venture is displayed. If a
window already exists for that venture, the window is reused. From the window,
the venture can be edited with the operations from package !Commands.Common
that apply to this class of object.

Parameters

Venture_Name : String := "<VENTURE>",

Specifies the name of the venture to be edited. The default special name "<VEN-
TURE>" specifies the default venture for the current session. The null string (*") is
interpreted to mean "<CURSOR>".

References

package List_Editor

RAT'ONAL 8/1/88 PM-385

function Notes
package !Commands. Work-Order

function Notes

function Notes [Order_Name : String := "<ORDER>"} return String;

Description
Returns the notes field of the specified work order.

The notes field typically contains descriptive information about a work order.

Parameters

Order _Name : String := "<ORDER>";

Specifies the work order whose notes field is to be displayed. The default special
name "<ORDER>" specifies the default work order for the current session. The null
string ("") is interpreted to mean "<CURSOR>".

return String;

Returns the notes field of the specified work order.

References

package Venture_Editor

PM-386 snes RATIONAL

-

funciion Notes_List
package !Commands. Work..Order

function Notes_List

function Notes_List (List_Name : String := "<WORK_LIST>") return String;

Description
Returns the notes field of the specified work-order list.

The notes field typically contains descriptive information about a work-order list.

Parameters

List_Name : String := "<WORK_LIST>";

Specifies the work-order list whose notes field is to be displayed. The default special
name "<WORK_L1ST>" specifies the default work-order list for the current session. The
null string (“") is interpreted to mean "<CURSOR>".

return String;

Returns the notes field of the specified work-order list.

RATIONAL e/1/es | PM-387

function Notes_Venture
package !Commands.Work_Order

function Notes—_Venture

function Notes_Venture (Venture_Name : String := "<VENTURE>")
return String;

Description
Returns the notes field for the specified venture.

The notes field typically contains descriptive information about a venture.

Parameters

Venture_Name : String := "<VENTURE>";

Specifies the venture whose notes field is to be dispiayed. The default special name
"CVENTURE>" specifies the default venture for the current session. The null string
(") is interpreted to mean "<CURSOR>".

return String;
Returns the notes field for the specified venture.

PM-358 | s RATIONAL

procedure Remove_From_List
package 'Commands. Work_Order

procedure Remove_From_List

procedure Remove_From_List {Order_Names : String := "<IMAGE>";
List_Name : String := "<WORK_LIST>";
Response : String = "<PROFILE>");
Description

Removes the entry for the specified work order from a work-order list.

Parameters

Order_Names : String := "<IMAGE>";

Specifies one or more work orders to be deleted from the specified work-order list.
The default special name "<IMAGE>" designates the currently selected work order if
the cursor is in the selection; otherwise, it designates the work order in the current
image.

Multiple work-order names can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
“Naming” in the Key Concepts in this book.)

List_Name : String := "<WORK_LIST>";

Specifies the work-order list from which the work orders are deleted. The default
special name "<WORK_LIST>" specifies the default work-order list for the current
session.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAI_ 8/1/88 PM-389

procedure Set_Default
package !Commands. Work_QCrder

procedure Set_Default

procedure Set_Default (To_Work_Order : String := "<CURSOR>";
For_Venture : String = "<KVENTURED>"
For_User 1 String = "<CURRENT_USER>";
Response : String := "<PROFILE>");

Description

Sets the specified work order to be the default for a given user and session whenever
the work order’s parent venture is the default.

Each venture contains a list of mappings between user sessions and work orders.
When a user sets a venture as the default in a given session, the work order mapped
to that session in the venture automatically becomes the user’s default work order.
This command modifies the venture by adding or changing the mapping from session
to work order in the specified venture.

Parameters

To_Work_Order : String := "<CURSOR>";

Specifies the new default work order for the specified venture. The default value for
this parameter is the work order on which the cursor is located.

Setting the To—Work_Order parameter to either "<>" or "" causes there to be no
default work order on the specified venture for the specified user and session.

For_Venture : String := "<VENTURE>";

Specifies the venture for which the default work order is to be set. The default
special name "<VENTURE>" specifies the default venture for the current session.

For_User : String := "<CURRENT_USER>";

Specifies the user and session for which the default work order is to be set. This
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.S_2). If only a username is supplied, session S_1 is
assumed. The default special name "<CURRENT_USER>" specifies the current session
for the current user.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-390 8/1/88 R)ATIONAL

procedure Set_Defauit
package !Commands. Work_Order

Errors

An error occurs if the To_Work_Order parameter names a work order that was not
created from the venture named by the For_Venture parameter.

References

function Default

RATIONAL s/1/es PM-301

procedure Set_Default_List
package !Commands. Work_Order

procedure Set_Default_List

procedure Set _Cefault_List (To_List : String = "<CURSOR>";
For_Venture : String := "<VENTURE>",
For_User : String := "<CURRENT_USER>";
Response : String = "<PROFILE>"};
Description

Sets the specified work-order list to be the default for a given user and session
whenever the work-order list’s parent venture is the default.

Each venture contains a list of mappings between user sessions and work-order lists.
When a user sets a venture as the default in a given session, the work-order list
mapped to that session in the venture automatically becomes the user’s default
work-order list. This command modifies the venture by adding or changing the
mapping from session to work-order list in the specified venture.

Parameters

To_List : String := "<CURSOR>";

Specifies the new default work-order list for the specified venture. The default for
this parameter is the work-order list on which the cursor is located.

Setting the To_List parameter to either "<>" or "" causes there to be no default
work-order list on the specified venture for the specified user and session.

For_Venture : String := "<VENTURE>";

Specifies the venture for which the default work-order list is to be set. The default
special name "<VENTURE>" specifies the default venture for the current session.

For_User : String := "<CURRENT_USER>";

Specifies the user and session for which the default work-order list is to be set. Thie
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.S_2). If only a username is supplied, session S_1 is
assumed. The default special name "<CURRENT_USER>" specifies the current session
for the current user.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-392 8/1/88 BA\TIONAL

procedure Set..Default_List
package !Commands. Work..Order

References

function Default_List

'QATIONAL 8/1/88 . PM-393

procedure Set_Default_Venture
package !Commands. Work_Order

procedure Set_Default_Venture

procedure Set _Default_Venture (To_Venture : String := "<CURSOR>";
For_User : String = "<CURRENT_USER>",
Response : String := "<PROFILE>"};

Description
Sets the default venture for the specified session.

Setting a venture to be the default automatically sets the default work order and the
default work-order list for the current session, if such defaults have been specified
for that venture.

Setting a default venture with this command automatically sets the value of the
Cmvc.Default_Venture session switch to the specified venture name.

Parameters

To_Venture : String := "<CURSOR>";

Specifies the name of the new default venture. The default for this parameter is the
venture on which the cursor is located.

Setting the To_Venture parameter to either "<>" or "" causes there to be no default
venture for the specified user and session.

For_User : String := "<CURRENT_USER>";

Specifies the user and session for which the default venture is to be set. This
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.S_2). If only a username is supplied, session S-1 is
assumed. The default special name "<CURRENT_USER>" specifies the current session
for the current user.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-394 snes RATIONAL

procedure Sei_Notes
package !Commands. Work_Qrder

procedure Set_Notes

procedure Set_Notes {To_Value : String = ">>New Notes<<";
Order_Name : String := "<ORDER>";
Response : String := "<PROFILE>"};
Description

Modifies the notes field for the specified work order.

Any existing notes in the specified work order are replaced by the new notes. Unlike
user-defined fields, the notes field can be updated multiple times.

The notes field typically is used to provide a brief description of the work order.

Parameters

To_Value : String := ">>New Notes<<";

Specifies the new notes. The default parameter placeholder ">>New Notes<<" must
be repiaced or an error will result.

Order_Name : String := "<ORDER>";

Specifies the work order whose notes field is to be updated. The default special
name "<ORDER>" specifies the default work order for the current session. The null
string (") is interpreted to mean "<CURSOR>".

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes

RAT'ONAL 8/1/88 PM-395

procedure Set_Notes_List
package !Commands. Work_Order

procedure Set_Notes_List

">>New Notes<<";
"<WORK_LIST>™;
"<PROF ILE>"};

procedure Set_Notes_List (To_Value : String :
List_Name : String
Response : String

i u

Description
Modifies the notes field for the specified work-order list.
Any existing notes in the specified work-order list are replaced by the new notes.

The notes field typically is used to provide a brief description of the work-order list.

Parameters

To_Value : String := ">>New Notes<<";

Specifies the new notes. The default parameter placeholder ">>New Notes<<" must
be replaced or an error will result.

List_Name : String := "<WORK_LIST>";

Specifies the work-order list whose notes field is to be updated. The default special
name "<WORK_LiST>" specifies the default work-order list for the current session.
The null string (*") is interpreted to mean "<CURSOR>".

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes_List

PM-396 8/1/88 RA\TIONAL

procedure Sei_Notes_Venture
package !Commands. Work_.Order

procedure Set_Notes_Venture

procedure Set_Notes_Venture (To_Value : String := ">>New Notes<<";
Venture_Name : String := "<VENTURE>";
Response : String := "<PROFILE>");
Description

Modifies the notes field for the specified venture.
Any existing notes in the specified venture are replaced by the new notes.

The notes field typically is used to provide a brief description of the venture.

Parameters

To_Value : String := ">>New Notes<<";

Specifies the new notes. The default parameter placeholder ">>New Notes<<" must
be replaced or an error will result.

Venture_Name : String := "<VENTURE>";

Specifies the venture whose notes field is to be updated. The default special name
"<VENTURE>" specifies the default venture for the current session. The null string
(") is interpreted to mean "<CURSOR>".

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes_Venture

PAT'ONAL 8/1/88 | PM-397

procedure Set_Venture_Policy
package !Commands.Work_Order

procedure Set_Venture_Policy

procedure Set_Venture_Policy

{The_Switch : Venture_Policy_Switch;

To_Value : Boolean;

Venture_Name : String = "<VENTURE>";
Effort_Only : Boolean = False;
Response : String = "<PROFILE>");

Description
Sets the specified venture policy switch to the specified value.

This command also can be used to determine the value of a particular switch for a
venture that currently is not displayed.

Parameters

The_Switch : Venture_Policy_Switch;

Specifies the venture policy switch to be modified or queried. This must be the fully
qualified name of the object—for example, Work_Order.Require_Comment_Lines.

To_Value : Boolean;
Specifies the new value for the venture policy switch—either true or false.

Venture_Name : String := "<VENTURE>";

Specifies the venture whose policy switch is to be modified or queried. The default
special name "<VENTURE>" specifies the default venture for the current session. The
null string (") is interpreted to mean "<CURSOR>".

Effort_Only : Boolean := False;

Specifies whether to simply determine the value of the specified policy switch, with-
out actually changing that value. If true, the current value of the policy switch is
displayed in the output window and the switch is not modified.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-398 s RATIONAL

procedure Set..Venture_Policy
package 'Commands. Work..Order

References

type Venture_Policy_Switch

RATIONAL 8/1/88 PM-399

type Venture_Policy_Switch
package !Commands.Work_Crder

type Venture_Policy_Switch

type Venture_Policy_Switch 1s (Reguire_Current_Work_Order,
Require_Comments_At_Check_In,
Require_Comment_Lines,
Journal _Comment _L1nes,
Allow_Edit_Gf _Work _Orders);

Description
Defines the policies that can be enforced for a venture.

When a user has a default venture, the policies on that venture are followed by
CMVC commands; errors result if any policies are violated. For example, if the
policy Require_Current_Work_Order is enforced for the user’s default venture, the
user must have a default work order to execute any CMVC commands that would
update a work order, such as Cmvc.Check_In and Cmvc.Check_Out.

Using package Implementation. Work_Order_Implementation, these policies can be
interrogated and enforced by other user-defined commands.

Enumerations

Allow_Edit_Of_Work_Orders

Defines a policy in which controlled user-defined fields can be modified interactively.
User-defined fields that are not controlled can be modified, independent of this
policy. Note that all user-defined fields can be modified only once.

Journal _Comment_Lines

Defines a policy in which comment strings provided to CMVC commands are recorded
in the work-order comments field. It makes no sense to enforce Require.Comments-
—At_Check_In or Require_Comment_Lines without enforcing Journal_Comment-
—Lines.

Require_Comment_Lines

Defines a policy that requires users to provide a string comment to all CMVC com-
mands that have a Comments parameter. The null string will not be accepted.

Require_Comments_At_Check_In

Defines a policy that requires users to provide a string to the Comments parameter
of the Cmvc.Check_In command. The null string will not be accepted.

PM-400 8/1/88 R’ATIONAL

type Venture_Policy_Switch
package !Commands. Work..Order

Require_Current_Work_Order

Defines a policy that requires users to have a default work order in order to execute
any CMVC commands that have a Work_Order parameter.

References

procedure Set_Venture_Policy

RATIONAL o/1/es PM-401

RATIONAL

package Editor

The commands in package Work_Order.Editor are used for interactively editing
work orders. Generally, users will not enter these commands directly but will invoke
them through commands in package !Commands.Common.

The formatted display of a sample work order is shown below. Following this is a
field-oriented list of applicable commands from package Common.

'Users.Drk .W_1.0rder_4 : In_Progress;

Notes:
+ "New notes for this work order"

Parent Venture: (!Users.Drk.W_1...)
... A_Venture

Status: In_Progress

Created at 87/04/13 10:40:12 by Drk.S_1

Fields:
"A Vector String Field" 5 Strings =>

2 => "number 2"
3 => "number 3"
4 => "some more values"
5 => "another value”

+ @ => "a value which hasn't been saved yet"

others => "uninitialized"
= "A Controlled Boolean" => False

Comments: 1 + 1

87/04/27 11:40:03 Drk.S_1 for ">>Element Name<<" => ">>Comment<<"
+ 87/04/28 14:30:23 Drk.S_1 for ">>Element Name<<" =>
+ ">>A New and much longer Comment<<"

Users: 1
Drk.S_1

Versions: 1 (!Users.Drk...)
87/04/28 11:38:48 "A_Venture".l ...W_1

Configurations: 1
87/24/23 15:18:48 !Machine.Error_Logs

I?AT'ONAL 8/1/88 PM-403

package 'Commands. Work_Order.Editor

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing work-order display. Commands
not listed have no effect or produce results consistent with the descriptions in the

EST book.

Field
Notes

Fields

Comments

Users

Versions

Configurations

Command/Program Action

Delete reverts to old notes, if any; Edit/Insert prompt in a Com-
mand window for new notes.

Definition creates minor window to show detailed information
about all fields; Delete removes a newly inserted field for which
no values have been saved; Edit/Insert prompt in a Command
window for data about a new field; Ezpand/Elide show more/less
of field extent; Fzplain shows maximum index, defaults, and type
for each field.

Definstion creates minor window to show all comments; Delete re-
moves newly inserted comment, if it has not been saved; Edit/In-
sert prompt in a Command window for a new comment; Ezpand/
Elide show more/less of comment extent; Ezplain shows the date
and time comment was added.

Definition traverses to session object in user’s home directory;
Ezpand/Elide show /hide list of users.

Definition creates minor window to show all versions; Delete re-
moves newly inserted version data, if it has not been saved; Edit/
Insert prompt in a Command window for information about a new
version; Ezpand/Elide show more/less of version extent; Ezplain
shows the date and time version was added.

Definstion creates minor window to show all configurations; Delete
removes newly inserted configuration, if it has not been saved;
Edit/Insert prompt in a Command window for information about
a new configuration; Ezpand/Elide show more/less about a con-
figuration; Ezplatn shows the date and time configuration was
added.

When a work order is edited interactively, the object is locked and the # symbol
appears in the window banner. Individual changes are marked by a + symbol until
they are saved using Common.Commit. Changes can be undone until they are

saved.

PM-404

s RATIONAL

procedure Add_Comment
package ICommands. Work_Order.Editor

procedure Add—_Comment

">>Comment<<";
">>Element Name<<";
"<CURRENT _USER>" };

procedure Add_Comment {The_Comment : String :
The_Element : String
The_User : String

Description
Adds » comment to those recorded in the work order.

Once a comment has been added, it cannot be removed.

Parameters

The_Comment : String := ">>Comment<<";

Specifies the text of the comment to be added. The default parameter placeholder
">>Comment<<" must be replaced or an error will result. This is an Ada string, which

cannot span multiple lines.

The_Element : String := ">>Element Name<<";

Specifies the name of the object to which the comment applies. The default param-
eter placeholder ">>Element Name<<" must be replaced or an error will result.

The_User : String := "<CURRENT_USER>";

Specifies the name of a user session. If only a username is given, session S_1 is
assumed.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Editor.Add_Comment {The_Comment => "This is a comment"”,
The_Element => "An_Element_Name",
The_User => "Sue");

BA\—“ONAL 8/1/88 PM-405

procedure Add_Configuration
package !Commands. Work_Order.Editor

procedure Add—Configuration

procedure Add_Configuration {The_Configuration : String :=
">>Configuration Name<<");

Description
Adds a configuration to those recorded in the work order.

Once a configuration has been added, it cannot be removed.

Parameters

The_Configuration : String := ">>Configuration Name<<";

Specifies the pathname of the configuration. The default parameter placeholder
">>Configuration Name<<" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Editor.Add_Configuration {The_Configuration =>
“IProject .User_Interface.Revl_2_1"};

PM-406 8/1/88 RA\TIONAL

procedure Add-User
package !Commands. Work..Order.Editor

procedure Add_User

procedure Add_User (The_User : String := "<CURRENT_USER>");

Description
Adds a user session to those recorded in the work order.

Once a user has been added, it cannot be removed.

Parameters

The_User : String := "<CURRENT_USER>";

Specifies the name of a user session. If only a username is given, session S_1 is
assumed.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Example command:

Editor.Add_User (The_User => "Bill"};

Example user field in a work order:

Users: 2
Sue .Devel
Bi1l1.S_1

IQAT'ONAL 8/1/88 PM-407

procedure Add—_Version
package !Commands.Work_Order.Editor

procedure Add_Version

procedure Add_Version
(The_Configuration : String
The_Element : String
The_Generation : Natural

">>Configuration Name<<";
">>Element Name<<";
2);

Description
Adds a version to those recorded in the work order.

Once a version has been added, it cannot be removed.

Parameters

The_Configuration : String := ">>Configuration Name<<";

Specifies the name of the configuration containing the version. The default pa-
rameter placeholder ">>Configuration Name<<" must be replaced or an error will
result.

The_Element : String := ">>Element Name<<";

Specifies the name of the object for which a version entry is to be added. The
default parameter placeholder ">>Element Name<<" must be replaced or an error
will result.

The_Generation : Natural := 0;
Specifies which generation of the object to add.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Editor.Add_Version
{(The_Configuration => "!Project.User_Interface.Revl_2_1",
The_Element => "An_Element_Name",
The_Generation => 0);

PM-408 o RATIONAL

procedure Set_Field
package !Commands. Work. Order.Ediior

procedure Set_Field

False;
2,
">>Fi1eld Name<<"};

procedure Set_Field (To_Value : Boolean :
The_Index : Natural
The_Field : String

Description

Sets the Boolean value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value : Boolean := False;

Specifies the Boolean value for the field.

The_lndex : Natural := 0;

Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

The_Field : String := ">>Field Name<<";

Specifies the name of the field to modify. The default parameter placeholder
">>Field Name<<" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

RAT'ONAL 8/1/88 PM-409

procedure Set_Field
package 'Commands.Work_Order.Editor

procedure Set_Field

2;
Q;
">>F1eld Name<<"};

procedure Set_Field (To_Value : Integer :
The_index : Natural
The_Field : String

Description

Sets the integer value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value : Integer := @;

Specifies the integer value for the field.

The_lndex : Natural := 0;

Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

The_Field : String := ">>Field Name<<";

Specifies the name of the field to modify. The default parameter placeholder
">>Field Name<<" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

PM-410 8/1/88 QAT'ONAL

procedure Set . Fieid
package !Commands. Work._.Cirder. Editor

procedure Set_Field

procedure Set_Field (To_Value : String
The_Index : Natural
The_Field : String

">>Field Value<<";

® 1
">>Field Name<<"};

Description
Sets the string value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value : String := ">>Fi1eld Value<<";

Specifies the string value for the field. The default parameter placeholder ">>Field
Value<<” must be replaced or an error will result.

The_lndex : Natural := 0,

Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

The_Field : String := ">>Field Name<<K";

Specifies the name of the field to modify. The default parameter placeholder
">>Field Name<<" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

RATIONAL /18 PM-411

procedure Set_Notes
package !Commands.Work_Order.Editor

procedure Set_Notes

procedure Set_Notes (Notes : String := ">>New Notes<<"};

Description

Sets the notes field of the work order to the specified string.

The specified text will replace the existing text.

Parameters

Notes : String := ">>New Notes<<";

Specifies the text that will be placed in the notes field of the work order. The
default parameter placeholder ">>New Notes<<" must be replaced or an error will
result.

Restrictions

This command must be executed in a Command window attached to a work order.

end Editor;

PM-412 8/1/88 BAT'ONAL

package List_Editor

This package provides operations for adding work orders to work-order lists and
setting the notes for a work-order list.

The formatted display of a sample work-order list is shown below. Following this is
a field-oriented list of applicable commands from package !Commands.Common.

lUsers .Drk . W_l.A_List

Notes: "Outstanding work orders”

Parent Venture: (!USERS.DRK.W_I1...)
...A_Venture

Work Orders: (!'USERS.DRK.W_1...)

...0Order_1 : In_Progress;
...Order_2 : Pending ;
...0Order_3 :

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing display. Commands not listed
have no effect or produce results consistent with the descriptions in the EST book.

Field Command/Program Action

Notes Delete reverts to old notes, if any; Edit/Insert prompt in a Com-
mand window for new notes.

Orders Delete removes unsaved insertions; marks an existing order to be

removed from the list.

RATIONAL &/1/se PM-413

procedure Add
package !Commands. Work_Order.List_Editor

procedure Add

procedure Add {Work_Orders : String := ">>Work Order Names<<");

Description

Adds the specified work orders to the local work-order list.

Parameters

Work _Orders : 5String := ">>Work Order Names<<";

Specifies which work orders to add to the local work-order list. The default param-
eter placeholder ">>lWork Order Names<<" must be replaced or an error will result.

Wildcards can be used to add multiple work orders with a single command.

Restrictions

This command must be executed in a Command window attached to a work-order

list.

PM-414 8/1/88 BA\TIONAL

procedure Set_Notes
package 1Commands. Work_Order.List_Editor

procedure Set_Notes

procedure Set_Notes (Notes : String := ">>New Notes<<"};

Description
Sets the notes field of the work-order list to the specified string.

The specified text will replace the existing text.

Parameters

Notes : String := ">>New Notes<K";

Specifies the text that will be placed in the notes field of the work-order list. The
default parameter placeholder ">>New Notes<<" must be replaced or an error will
result.

Restrictions

This command must be executed in a Command window attached to a work-order
list.

end List_Editor;

R’AT'ONAL 8/1/88 PM-415

RATIONAL

package Venture_Editor

These commands are intended for use when editing ventures. They will execute
only in a Command window attached to a venture; all operations modify that
venture. Many commands are bound to keys that, when pressed, prompt the user
for parameter completion through a Command window.

The formatted display of a sample venture is shown below. Following this is a
field-oriented list of applicable commands from package !Commands.Common.

lUsers.Drk . W_1.A_Venture

Notes: "Notes for this venture"

Policy_Switches:

Require_Current_Work_Order => False
Require_Comment_At_Check_In => True
Require_Comment_Lines => True
Journal _Comment_Lines => True

Allow_Edit_Of_Work_Orders => False

Fields:

"A Hidden Field" Integer @8 0 => 0@

“A Controlled Hidden Field" Integers 6 @ => -1

“A Controlled Boolean" Boolean @ 1 => False

“A Vector String Field” Strings @ 2 => "uninitialized"

Work_Orders: (!Users.Drk.W_1...)

...0Order_1 : In_Progress;
...Order_2 : Pending ;
...0rder_3 : ;

...Order_4 : Im_Progress;

Default_Work_Orders: (!Users.Drk.W_1...)
Drk.S_1 => .. .0Order_2
Drk.S_2 => ...Order_3

Work_Order_Lists: (!Users.Drk.W_1...)
...A_List

Default_Work _Order_Lists: (!Users.Drk.W_1...)
Drk.S5_2 => ...A_List

QAT'ONAL 8/1/88 PM-417

package !Commands.Work_Order.Venture..Eaitor

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing display. Commands not listed
have no effect or produce results consistent with the descriptions in the EST book.

Field
Notes

Policy

Fields

Orders

Default_Orders

Lists

Default_Lists

PM-418

Command/Program Action

Delete reverts to old notes, if any; Edit/Insert prompt in a Com-
mand window for new notes.

Delete sets the policy to false; Edit toggles current policy switch;
Insert prompts in a Command window for new policy value.

Delete sets display to begin with field 0; Edit prompts for new
type and position on a field display line; Ezpand/Elide show /hide
hidden fields; Ezplain shows defaults and type for each field; Insert
prompts in a Command window for data about a new field.

Insert prompts in a Command window to create a new work or-
der.

Delete sets the default work order to nil; Edst/Insert prompt in
a Command window for a new default work order; Ezpand/Elide
show /hide list of users.

Insert prompts in a Command window to create a new work-order
list.

Delete sets the default work-order list to nil; Edst/Insert prompt
in a Command window for a new default work-order list; Ez-
pand/Elide show /hide list of users.

siss RATIONAL

procedure Sei_Default. List
package !Commands. WorkOrder. Venture.. Editor

procedure Set_Default_List

"<SELECTION>";

procedure Set_Default_List (New_Default : String :
"<CURRENT_USER>"};

For_User : String

Description
Sets the default work-order list for a specific user session on the local venture.

Each user session can have a different default work-order list. Several commands
reference the default work-order list of the default venture when determining which
work-order list to use.

Parameters

New_Default : String := "<SELECTION>";

Specifies which work-order list shall be made the default for the local venture. The
default special name "<SELECTION>" specifies the currently selected work-order list.

For_User : String := "<CURRENT_USER>";

Specifies the user session for which the default is set. If only a username is provided,
session S_1 is assumed.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Assume that a venture has two work-order lists associated with it, as follows:
Work_Order_Lists: (iUsers.Sue.Development...)

...Task_List
.. .New_Tasks

The user enters the following command, selecting the work-order list Task_List and
specifying the session Sue.S_1:

Venture_Editor.Set_Default_List
{New_Default => "<SELECTION>", For_User => "Sue.S_1");

RATIONAL 8/1/88 PM-419

procedure Set_Default_List
package !Commands. Work_Order.Venture_Editor

As a result, the following entry appears in the venture’s list of default work-order
lists:

Default_Work_Order_Lists: {!Users.Sue.Development...)
Sue.S_1 => ...Task_List

PM-420 8/1/88 QA—HONAL

procedure Set_Default.Order
package !Commands.Work_Order.Venture_Editor

procedure Set_Default_Order

procedure Set_Default_Order (New_Default : String := "<SELECTION>";
For_User : String := "<CURRENT_USER>"};

Description
Set the default work order for a specific user session on the local venture.

Each user session may have a different default work order. Several commands
reference the default work order of the default venture when determining which
work order to use.

Parameters

New_Default : String := "<SELECTION>";

Specifies which work order shall be made the default-for the local venture. The
default special name "<SELECTION>" specifies the currently selected work order.

For_User : String := "<CURRENT_USER>";

Specifies the user session for which the default is set. If only a username is provided,
session S_1 is assumed.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Assume that a venture has two work orders associated with it, as follows:
Work _Orders: (!Users.Sue.Development...)

...Update_L1 : Pending ;
...Update_R1 : Pending ;

The user enters the following command, selecting the work-order name Update_L1
and specifying the session Sue.S_1:

Venture_Editor.Set_Default_Order
(New_Default => "<SELECTION>", For_User => "Sue.S_l1");

R)ATIONAL 8/1/88 PM-421

procecure Set_Default_Order
package {Commands. Work_Order.Venture_.Editor

As a result, the following entry appears in the venture’s list of default work orders:

Default_Work_Orders: ('Users.Sue.Development. . .)
Sue.S_1 => ...Update_L1

PM-422 8/1/88 I?ATIONAL

procedure Set_Field.-Info
package !Commands. Work..Order. Venture_Editor

procedure Set_Field_Info

procedure Set_Field_Info (!s_Controlled : Boolean := False;
Display_Position : Natural := 1;
The_Field : String = ">>Field Name<<");
Description

Sets the numeric tag of a user-defined field and specifies whether that field is mod-
ifiable.

Numeric tags control the relative display position of the field within the venture.

Parameters

Is_Controlled : Boolean := False;

Specifies whether the field should be made controlled. Controlled fields are subject
to interactive modification only if the Allow_Edit_Of_Work_Orders venture policy
switch is true.

Display_Position : Natural := 1;
Specifies the numeric tag of the field.

The_Field : String := ">>Field Name<<";

Specifies the name of the field whose numeric tag and controlled flag shall be mod-
ified. The default parameter placeholder ">>Field Name<<" must be replaced or an
error will result.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Given the following user’s fields in the venture:

Fields:
"Completion_Date" String @ 5 => ™"
"Problem_Description” String @ 10 => ""
"Project"” String @ 20 => ""

RAT!ONAL 8/1/88 | PM-423

procedure Set_Field_Info
package !Commands. Work.Order. Venture_Editor

the following command will move the “Completion_Date” field between the “Prob-
lem_Description” and “Project” fields:

Venture_Editor.Set_Field_info (Is_Controlled => False,
Display Position => 15,
The_Field => "Completion_Date");

PM-424 8/1/88 RAT'ONAL

procedure Set_Notes
package 'Commands. Work..Order.Venture_ Editor

procedure Set_Notes

procedure Set_Notes (Notes : String := ">>New Notes<<"};

Description
Sets the notes field of the venture to the specified string.

The specified text will replace the existing text.

Parameters

Notes : String := ">>New Notes<<";

Specifies the text that will be placed in the notes field of the venture. The default
parameter placeholder ">>New Notes<<" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a venture.

IQATIONAL 8/1/88 PM-425

procedure Set_Policy
package !Commands. Work_.Order.Venture_.Editor

procedure Set_Policy

procedure Set_Policy (To_Value : Boolean := False;
The_Switch : Venture_Policy_Switch};

Description

Sets the value of the specified venture policy switch to the specified value.

Parameters

To_Value : Boolean := False;

Specifies, if true, that the policy shall be enforced by the CMVC system.

The_Switch : Venture_Policy_Switch;
Specifies wiich policy switch to modify.

Restrictions

This command must be executed in a Command window attached to a venture.

References

type Venture_Policy_Switch

PM-426 e RATIONAL

procedure Spread_Fields
package {Commands. Work..Order Venture_Editor

procedure Spread_Fields

procedure Spread_Fields (Interval : Natural := 10);

Description

Renumbers all user-defined fields, assigning new numeric tags using the specified
interval.

This command is useful for creating a place to insert a new field between twc existing
fields that are consecutively numbered.

Parameters

interval : Natural := 18;
Specifies the interval between numeric tags for all fields.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Given the following fields:

Fields:
“"Problem_Description” String @ 1 => ""
“Completion_Date" String @ 2 => ""
“Project"” String @ 3 => ""

the command:

Venture_Editor.Spread_fFields ({Interval => 5);

will result in:

Fields:
"Problem_Description” String @ 5 => ""
“Completion_Date" String @ 18 => ""
"Project"” String @ 15 => ""

QATIONAL 8/1/88 PM-427

procedure Spread_Fields
package !Commands.Work.Order.Venture_Editor

end Venture_Editor;

PM-428 Juw RATIONAL

package ICommands. Work..Order.

end Work_Order;

RATIONAL &/1/s PM-429

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

! (exclamation mark})

special character PM-131
{Commands.Common package Q. . . PM-135
!{Commands.Common.Abandon PM-135
!{Commands.Common.Commit PM-135
!Commands.Common.Create_Command PM-136
!{Commands.Common.Definition PM-136
{Commands.Common.Edit PM-136, PM-142, PM-174
!Commands.Common.Object.Child PM-137
!Commands.Common.Object.Delete PM-137
!Commands.Common.Object.Elide PM-137
!Commands.Common.Object.Expand PM-137
!Commands.Common.Object.Explain PM-137
{Commands.Common.Object.First_Child PM-137
!Commands.Common.Object.Insert PM-137, PM-153
!Commands.Common.Object.Last_Child PM-138
!Commands.Common.Object.Next PM-138
!{Commands.Common.Object.Parent PM-138
!Commands.Common.Object.Previous PM-138
!Commands.Common.Release PM-136

EAT'ONAL 8/1/88 PM-431

!Commands.Common.Sort_Image

!Implementation. Work_Order-Implementation package
'Machine.Release.Current. Activity
!Machine.Release.Current.Commands.Login
!Model.R1000

Model.R1000_Implementation

'Model. R1000_Portable

(pound sign)
library wildcard

substitution character .
symbol in window banner .

$ (dollar sign)

PM-136
PM-400
PM-80, PM-83
. PM-83
. PM-22
. PM-22
. PM-22

PM-129
. . . . PM-130
PM-135, PM-404

special character . PM-131
$$ (double dollar sign)

special character . PM-132
* (asterisk) .

symbol in window banner PM-210, PM-232, PM-244, PM-292
+ (plus) symbol PM-404
, (comma)

in set notation . PM-133
. (period)

special character . PM-132
; (semicolon)

in set notation . PM-133

separator PM-133
= (equals)

symbol in window banner . PM-135
? (question mark)

library wildecard PM-129

substitution character PM-130
7?7 (double question mark)

library wildcard PM-129
@ (at sign)

library wildcard PM-129

substitution character PM-130

[] (brackets)
special characters

\ (backslash)
special character .

PM-432

PM-131, PM-133

PM-132

oiee RATIONAL

~ (caret)
gpecial character .

— (underscore)
special character .

' (grave)
special character .

{} (braces)
special characters

" (tilde)
symbol

abandon .

Abandon procedure
Common.Abandon

Cmve.Append-Notes procedure .

Cmvc.Get_Notes procedure
Cmvec.Put_Notes procedure

Abandon_Reservation procedure
Cmvc.Abandon.Reservation .
Cmvec.Check_Out procedure

accept
changes .

Accept_Changes procedure
Cmvc.Accept_Changes

PM-131

PM-132

PM-132

PM-131, PM-133

PM-133

. PM-27

PM-135
PM-210
PM-244
PM-292

. PM-28, PM-202
PM-218

PM-14, PM—40, PM—41, PM—202, PM—205

PM-41, PM—-42, PM-46, PM-205

Cmvec.Merge_Changes procedure PM-288
Cmvc.Revert procedure PM-306

access
controlled objects, concurrently . PM-43
activity PM-12, PM-29, PM-52, PM-65, PM-136, PM-137, PM-139
adding entries e e e ePM-66
creating an empty acthty . PM-66
defined . PM-1
differential entries PM-82
editing . PM-135, PM-150
modes for creatlng entrxes . . PM-82
release . . . PM-16
setting the default . . PM-67
speclfymg compatible load views in . . PM-94
using for execution . . PM-65

Activity package

Activity procedure
Check.Activity .

RATIONAL &1/

PM-1, PM-135

PM-178

PM-433

<ACTIVITY> special name .
activity window .

Activity_File session switch
Activity.Set_Default procedure

Activity_Name subtype
Activity.Activity_Name .

Ada
name . e
name resclution mode

Add procedure
Activity.Add
Links.Add

Cmvc_Maintenance.Check_Consistency procedure .

Work.Order.List_Editor.Add

Add_Child procedure
Cmvc_Hierarchy.Add_Child .

Add_Comment procedure
Work_Order.Editor.Add-Comment

Add_Configuration procedure
Work_Order.Editor.Add-Configuration

Add_To_List procedure
Work_Order.Add_To_List

Add-User procedure
Work_Order.Editor.Add-User .

Add_Version procedure
Work_Order.Editor.Add-Version .

Allow_Edit_Of_Work_Orders enumeration
Work_Order.Venture_Policy_Switch . .
Work_Order.Create_Field procedure

Append_Notes procedure
Cmvc.Append.Notes
Cmve.Create_ Empty_Note_Window procedure
Cmve.Get_Notes procedure
Cmvc.Put_Notes procedure

application
execution .
single library
testing

PM-434

PM-128
PM-175

PM-161
PM-189

PM-127
PM-132

. PM-82, PM-140

PM-341
PM-414

PM-326, PM-328
PM-405
PM-406
PM-365
PM-407
PM-408

PM-400
PM-370

PM-210
PM-232
PM-244
PM-292

. PM-84
. PM-15
. PM-85

i RATIONAL

at sign (9)
library wildcard
substitution character

attributes

backslash (\)
special character .

binary objects, controlling

braces ({})
special characters

brackets ([])
special characters

Build procedure
Cmve.Build

Cmve.Destroy_View procedure

Cmvec.Release procedure

Build_.Activity procedure
Cmvc_Hierarchy.Build_Activity

caret (*)
special character .

CDB

CDFs
using with subsystems

Change procedure
Activity.Change

characters
character pairs (|] and {})
special e

Check package

Check_Consistency procedure

Cmvc_Maintenance.Check_Consistency

Check.In procedure
Cmvc.Check-In Ce e e
Cmve.Check_Out procedure

Cmvc.Make..Controlled procedur;e

Check_Out procedure
Cmvc.Check..Out

RATIONAL * &1/s

PM-131,
PM-131,

P PSS
PM-326,

PM-105,

. PM-85,

PM-1,

. PM-50,

PM-26, PM-29,

e PM-26, PM-29, PM-39, PM-41, PM—42,
Cmvc.Make_Controlled procedure . . e

PM-129
PM-130

PM-127

PM-132

. PM-25

PM-133

PM-133

PM-212
PM-239
PM-294

PM-829

PM-131
PM-108

PM-111
PM~142
PM-131
PM-127
PM-177

PM-340

PM-216
PM-218
PM-264

PM-218
PM-264

PM-435

checkin PM-6, PM-26, PM-202, PM-216, PM-317
checkout PM-6, PM-25, PM-26, PM-202, PM-218, PM-310,
PM-312, PM-315, PM-316, PM~ 317
cancehng PM-27
retrieving latest generatlon . PM—-41
Child procedure
Common.Object.Child PM-137
child subsystem . . PM-16
children . PM-16
Children function
Cmvc_Hierarchy.Children . PA-832
circular importing . PM-53, PM-79
client . PM-51
client view . PM-10
Close procedure
Work_Order.Close PM-866

closed private part

PM-11, PM-57, PM—-87, PM-89, PM-113

CMVC : . PM-3
controlling bmary objects . PM-25
controlling objects . PM-25
defined . PM-1
edmng controlled objects . . PM-26
managmg CMVC information mteractlvely PM-188
overview PM-3

CMVC database PM—6, PM-9, PM-25, PM~188, PM-212, PM-216,

. PM-232, PM-244, PM-285, PM-321, PM-340, PM-350

Cmvc package
Cmvc_Break_Long_Lines session switch
Cmve_Capitalize session switch .

Cmvc-Comment_Extent session switch

Cmvce_Configuration_Extent session switch .

Cmvc_Enable_Relocation session switch
Cmvc_Field.Extent session switch
Cmvc_Hierarchy package .
Cmvc_Indentation session switch

Cmvc_Line_Length session switch .

PM-436

PM-1, PM-185
PM-362
PM-362
PM-362
PM-362
PM-196
PM-362

PM-2, PM-325
PM-362
PM-362

sss RATIONAL

Cmvc_Maintenance package
Cmvc_Shorten_Name session switch .
Cmvc_Shorten_Unit_State session switch
Cmvc_Show_Add_Date session switch .
Cmvc_Show_Add_Time session switch .

Cmvc_Show_All_Default_Lists session switch

PM-2,

Cmvc_Show_All_Default_Orders session switch .

Cmvc-Show_Boolean session switch .
Cmvc_Show_Deleted_Objects session switch
Cmvc_Show_Deleted_Versions session switch .
Cmve_Show_Display_Position session switch
Cmvc_Show_Edit-Info session switch
Cmvc_Show_Field_Default session switch
Cmvc_Show_Field_Max_Index session switch .
Cmvc_Show_Field_Type session switch
Cmvc_Show_Frozen session switch
Cmvc_Show_Hidden_Fields session switch
Cmvc_Show.Retention session switch
Cmvc.Show.Unit_State session switch
Cmve_Show_Users session switch
Cmvc_Show_Version_Number session switch
Cmvce_Uppercase session switch .
Cmvc.-Version-Extent session switch

code view .
copying in multxhost development

combined
subsystems
views .

Combined_Subsystem enumeration
Cmvec.System_Object_Enum type

comma (,)
in set notation .

commands
from package !Commands.Common .
from package Cmve, grouped by topic

RATIONAL s/1/ss

PM-16, PM-30, PM-102, PM-262,

PM-T79, PM-97, PM-117,
PM—53 PM-79, PM-113, PM-116,

PM-889
PM-362
PM-363
PM-363
PM-363
PM-363
PM-363
PM-364
PM-363
PM-363
PM-363
PM-363
PM-363
PM-363
PM-363
PM-364
PM-364
PM-364
PM-364
PM-364
PM-364
PM-364
PM-364

PM-348
PM-104

PM-187
PM-187

PM-324

PM-133

PM-135
PM-186

PM-437

comment .
commit

Commit procedure
Common.Commit

compatibility
compatibility database .

compatible .

Compatible enumeration
Check.Status

compilation
multiple subsystems

Complete procedure
Common.Complete .

configuration
defined S
releasing configurations

configuration images

. PM-15, PM—405
PM-135

PM-27, PM-66, PM-135
. PM-88

PM-105, PM-108, PM-344, PM-346, PM-351,
o PM-354, PM-356, PM-358

. PM-1, PM-11
PM-179
. PM-51

PM-192

PM-3, PM-9, PM-30, PM-406
o PM-7
. PM-30

PM-188, PM-189

configuration management PM-3, PM-9

defined PM-1
configuration object . PM-32, PM-212

building a view from . PM-50

deleting . . PM—-49
consistency

in imports . PM-78
Contents function

Cmvc_Hierarchy.Contents . PM-338
controlled PM-6
controlled objects

accessing concurrently . PM-43

deleting . . . PM-35

editing PM-26

library-management operations . PM-35

moving . . PM-35

withdrawing . . PM-35
Convert_Old_Subsystem procedure

Cmvc_Maintenance.Convert_Old—_Subsystem PM-842
coordinating development in a subsystem PM-87

PM_438 | e RATIONAL

Copy procedure
Archive.Copy .. .
Cmvc..Mamtenance Make_.anary procedure

Cmvc_Maintenance.Make._Secondary procedure .

Cmvc_Maintenance. Update-Cdb procedure
Cmve.Copy . e
Library.Copy

create
new joined objects
path
spec view
subpath

Create procedure
Activity.Create
Text.Create . . .
Work_Order. Create

Create_Command procedure
Common.Create.Command

Create_Empty_Note. Window procedure

Cmve.Create_Empty_Note_Window

Cmve.Append_Notes procedure .
Cmvc.Put_Notes procedure

Create_Field procedure
Work_Order.Create_Field .

Create_List procedure
Work_Order.Create_List

Create.Venture procedure
Work_Order.Create_Venture

Creation—_Mode type
Activity.Creation_Mode

cross-development
using CDF's with subsystems

Current procedure
Activity.Current

<CURSOR>> special name

declaration number

Def procedure
Cmve.Def .

default
activity .
response proﬁle

RATIONAL /17

PM-103, PM-109
PM-351
PM-354
PM-358
PM-222

. P\(—23 P\{ 43 PM-93

. PM-42
. PM-47
. PM-58
. PM-37

PM-66, PM-82, PM-144
PM-71, PM-T2
PM-367

PM-136

PM-210
PM-292

PM-869

PM-371

PM-3872

PM-146

PM-111

. PM—67, PM-147

PM-128

PM-105

PM-192, PM-234

. PM—65
PM-128

PM-439

Default function
Work.Order.Default

<DEFAULT> special value

Default_List function
Work_Order.Default_List

Default..Venture function
Work_Order.Default.Venture

Default_Venture session switch
Work_Order.Set_Default_Venture procedure

Definition procedure
Common.Definition

delete
configuration object
objects
view

Delete procedure
Common.Object.Delete
Compilation.Delete .
Library.Delete .

Delete_Field procedure
Work_Order.Delete_Field .

Delete_Unreferenced_Leading_Generations procedure
Cmvc_Maintenance.Delete_Unreferenced_Leading_Generations

deleted objects, referring to

Demote procedure
Common.Demote

demotion
effects of
permitting

design changes

Destroy procedure
Compilation.Destroy
Library.Destroy

Destroy_Cdb procedure
Cmvc_Maintenance.Destroy.Cdb

Destroy_Subsystem procedure
Cmvc.Destroy_Subsystem .

Destroy_System procédure
Cmvc.Destroy_System

PM-878
PM-128

PAM-875
PA-877
PM-364
PM-394

PM-136, PM-192

. PM-49
. PM-35
. PM-48

. PM-35, PM~137

. . PM-48
PM-48, PM-49

PM-3879

PM-343
PM-133

PM-192
. PM-90
. PM-42

. PM-89

. PM-48
. PM—48

PM-109, PM-344
PM-236

PM-237

PM-440 8/1/88 R)ATIONAL

Destroy—~View procedure
Cmvec.Destroy_View .
Cmvc.Build procedure .

development
applications using multiple hosts .
applications using multiple subsystems
copying views among hosts
making design changes .
making implementation changes
managmg CMVC information mteractlvely
ma.nagmg views

moving a primary subsystem to another host

propagating changes across hosts .

setting up multlple paths

setting up primary and secondary subsystems
setting up subsystems

testlng an application .

using CDFs with subsystems

with joined objects .)

gee also subsystem

development path .

Differential enumeration
Activity.Creation_Mode
Activity.Display procedure

directory name

Display procedure
Activity.Display
Work_Order.Display

Display_Cdb procedure
Cmvc_Maintenance.Display-Cdb

Display_Code_View procedure
Cmvc_Maintenance.Display_Code_View

Display-List procedure
Work_Order.Display_List

Display_Venture procedure
Work_Order.Display-Venture

dollar sign ($)
special character .

dollar sign, double ($$)
special character .

RATIONAL /108

PM-33, PM-48, PM-50,

PM-103,

PM-8, PM-33, PM-111,

PM-105,

PM-238
PM-212

PM-101
. PM-51
PM-109
. PM-89
. PM-86
PM-188
. PM-48
PM-108
PM-105
. PM—47
PM-103
. PM-96
. PM-85
PM-111
. PM-38

PM-268
PM-146
PM-148

PM-127

PM-148
PM-380

PM-346
PM-348
PM-381
PM-382
PM-131

PM-132

PM-441

double dollar sign ($3)
special character .

double question mark (??)
library wildcard

edit
activities .
controlled objects
State.Exports file
ventures
work orders
work-order list .

[eaie] key

Edit procedure
Activity.Edit
Cmve.Edit
Common.Edito
Activity.Change procedure
Activity.Visit procedure
Work_Order.Edit

Edit_List procedure
Work_Order.Edit_List

Edit_Venture procedure
Work..Order.Edit_Venture

Editor package
Work_Order.Editor

element

Elide procedure
Common.Elide
Common.Object.Elide

enclosing
library
object
world .

Enclosing_Subsystem procedure
Activity.Enclosing.Subsystem

Enclosing_View procedure
Activity.Enclosing_ View

PM-442

PM-132

PM-129

PM-135, PM-150
. . . PM-26

. PM-58
PM-385, PM-417
. . . . PM-403
PM-384

PM-136

PM-135, PM-150

. . PM-40, PM-241
PM-26, PM-27, PM-136
.. .+ . . PM-142
PM-174

PM-383

PM-384
PM-885

PM-408
. PM-44

PM-193
PM-137

PM-131
PM-131
PM-132

PM-151

PM-152

siss RATIONAL

enumerations

Activity.Creation_Mode
Differential .

Exact_Copy
Value.Copy

Check.Status
Compatible
Error
Incompatlble . .

Cmve. System_ObJect_Enum
Combined_Subsystem
Spec_Load_Subsystem .
System . .

Work_Order. Venture_Pollcy..athch
Allow_Edit_Of_Work_Orders
Journal-Comment_Lines .
Require_Comment_Lines .
Require_Comments_. At_Check- In
Require_Current_Work.Order

Error enumeration
Check.Status

error reactions

Exact_Copy enumeration
Activity.Creation_Mode . .
Activity.Display procedure

exclamation mark (!)
special character .

execution
setup for compiling multiple subsystems

Expand procedure
Common.Expand
Common.Object. Expa.nd

Expand_Activity procedure
Cmvce_Hierarchy.Expand_Activity

expanded generation image .

Explain procedure
Common.Explain .
Common.Object.Explain

export restriction files
creating
name resolutlon

export restrictions

RATIONAL &/1/s

PM-146, PM~148
PM-146, PM~148
PM-146, PM-148

PM-179
PM~179
PM~-179

PM~324
PM-~324
PM~-324

PM-370, PM~400
PM~400
PM~-400
PM~-400
PM~401

PM~-179
PM~-128

PM-146
PM-148

PM-131

. PM-51

PM-190, PM-193
PM-137

PAM-834
. PM-29

PM-192
PM-137

. PM-22, PM-247

. PM-70
. PM-T72

PM-56, PM—69

PM-443

exports e
changing private parts
defining .

Expunge_Database procedure
Cmvc_Maintenance.Expunge_Database

. PM-87
. PM-54

PM-10, PM-51, PM-275

. PM-50, PM-850

Cmvc.Make_Uncontrolled procedure . PM-285
F
File_Utilities package . PM-45
files, indirect PM-132, PM-133
First_Child procedure
Common.First_Child . PM-137
Format procedure
Common.Format . PM-189
frozen PM-8
full-view release . . PM-30
fully qualified name PM-131
G
generation PM-6, PM-9, PM-25, PM-26, PM-305, PM-310,
e e e PM-317, PM-319, PM-321, PM-323, PM-340
collecting and displaying information . . e e e . PM-29
images e e PM-188, PM-193
retrieving latest at checkout . . PM-41
reverting to previous . PM-28
Get..Notes procedure
Cmve.Get_Notes . Ce e PM-244
Cmvc.Append..Notes procedure . PM-210
Cmve.Check..In procedure PM-216
Cmve.Check-Out procedure PM-219
Cmvc.Put_Notes procedure PM-292
grave ()
special character . PM-132

history images

<IMAGE> special name

images
configuration
generation
history

PM-444

PM-188, PM-194

PM-128

PM-189
PM-193
PM-194

e RATIONAL

implementation changes

Import procedure
Cmve.Import
Cmvec.Copy procedure

import restriction files .
creating
filenames

import restrictions

Imported_Views function
Cmve.Imported-Views

Cmvc.Build procedure

Cmvec.Initial procedure
imports
circular .
consistency
defining .
links

removing

Incompatible enumeration
Check.Status

index
indirect files

Information procedure
Cmve.Information

Initial procedure
Cmve.Initial .

Cmvc_Maintenance.Make_Primary procedure

Inline pragma

Insert procedure
Activity.Insert . .
Common.Object.Insert

Activity.Insert procedure .

Install_Stub procedure
Ada.Install_Stub .

interfaces, among subsystems .

RATIONAL &5

. PM-86

PM-63, PM-70, PM-76, PM~02, PM-246
PM-223
. PM-22, PM-247

. PM-72
. PM-73

. PM-69

PM-251
PM-213
PM-258

PM-10, PM-11, PM-22, PM-51, PM—63, PM-T76,

. PM~-246, PM-251, PM-270, PM—283, PM-299, PM-301

PM-53, PM-79
. . . PM-T8
. PM-62
. PM-64
. PM—64

PM-179
PM-431
PM-132, PM-133

PM-63, PM-92, PM-253
PM-20, PM-21, PM-22, PM-103, PM-256, PM-326
. PM-351

PM-116

. PM—66, PM-153
PM-137
PM-153

. PM-36
PM-10, PM-11

PM-445

job
response profile

PM-128

joim PM-14, PM-226, PM-260, PM-266, PM-268, PM-288, PM-310

Join procedure
Cmve.Join .
Cmvc.Copy procedure

PM-43, PM-44, PM—45, PM-48, PM-260

PM-223, PM-226

Cmvc.Make_Path procedure PM-272
joinset PM-38 PM-43, PM-44, PM-205, PM-308, PM~317, PM-350
joined . PM-38
joined object

accepting changes . PM-41
checking out . . PM-39
creating new . PM-42
developing with . PM-38
keeping updated . PM—40
permitting demotion . PM-42
preventing automatic updatmg . PM-42
retrieving latest at checkout . PM—41
Journal_Comment_Lines enumeration
Work-Order. Venture_Policy_Switch PM-400
L
Last_Child procedure
Common.Object.Last_Child PM-138
level numbers . . PM-34, PM-230, PM-275, PM-303
coordmatlng in spec a.nd released view names . PM-94
spec-view names . PM-59
library
enclosing PM-131
name . PM-127
root PM-131
library management . PM-9
operations for controlled objects . PM-35
link PM-64, PM-301, PM-303
name resolution mode PM-132
special character grave (') PM-132
List-Editor package
Work_Order.List_Editor PM-418

PM-446

s RATIONAL

load view PM-10, PM-11, PM-52, PM-136, PM-137, PM-187

specifying compatible . . PM~04
loading . PM-68
M
Main pragma . PM-114
main program
execution . PM-84
Make_Code_View procedure
Cmve.Make_Code_View PM-262
Make_Controlled procedure
Cmvc.Make_Controlled PM-~25, PM-36, PM-43, PM~-44, PM-T1, PM—-264
Cmvec.Copy procedure e e e e e o e PM-226
Cmvc.Make_Path procedure PM-272

Make_Path procedure

Cmvc.Make_Path
Cmvec.Copy procedure .
Cmvc.Merge_Changes procedure

Make_Primary procedure
Cmvc_Maintenance.Make_Primary .

Make_Secondary procedure
Cmvc_Maintenance.Make_Secondary

Make_Spec-View procedure
Cmvc.Make_Spec_View .
Cmve.Copy procedure

Make_Subpath procedure
Cmvc.Make_Subpath .
Cmve.Copy procedure

Make_Uncontrolled procedure
Cmvc.Make_Uncontrolled

merge
changes .

Merge procedure
Activity.Merge .

Merge_Changes procedure
Cmvc.Merge_Changes
Cmvec.Copy procedure
Cmvc.Join procedure . . .
Cmvc.Make_Path procedure

mode

RATIONAL 4175

PM-48, PM-50, PM-268, PM-326

PM-222
PM-287

PM-108, PM-851
PM-108, PM-354
PM-55, PM-58, PM-92, PM-275
... PM-222

PM-38, PM-50, PM-280
.. PM-222

. PM-35, PM-285
PM-14, PM—45

. PM-82, PM-155
PM-45, PM—46, PM-287
.. PM-223

PM-260"
PM-268

PM-146, PM-148

PM-447

model
replacing in a path .

model world
setting up .
move
objects

Move procedure
Common.Object.Move

multihost development .
copyxng views among hosts

. PM-96

. PM--22
. PM-97

. PM-35
. PM-36

. PM-16, PM-101
PM-103, PM-109

moving a primary subsystem to another host PM-108

propagating cha.nges across hosts . PM-105

settmg up primary and secondary subsystems PM-103

using CDFs with subsystems PM-111
multiple paths . PM-37
multisite development . PM-16

N

name

Ada PM-127

character palrs [] and {}) PM-131

fully qualified PM-131

special . PM-127

special characters PM-131

string PM-127
naming PM-127

objects PM-127
Next procedure

Common.Object.Next PM-138

Editor.Cursor.Next . PM-190
Nil function

Activity.Nil PM-157
note . . . PM-15, PM-29, PM-232, PM-244, PM-317, PM-386, PM-387, PM-388, PM-412
Notes function

Work_Order.Notes . PM-386

Notes procedure
Cmvc.Notes

Notes_List function
Work_Order.Notes_List .

Noﬁes_Venture function
Work_Order.Notes_Venture

nulaeric tag

PM-448

PM-29, PM-195, PM-290
PM-3887

PM-388
PM-423, PM—-427

8/1/88 R)ATIONAL

object
binary, controlling
configuration
deleting
controlled
accessing concurrently
deleting
moving
withdrawing
enclosing
joined
accepting changes .
checking out
creating new
developing with .
keeping updated
permitting demotion .
preventing automatic updatlng
retrieving latest generatlon at checkout
name .
referring to deleted
severed
merging changes
rejoining .

open private part

parallel development
within subsystems

parameter placeholders

Parent procedure
Common.Object.Parent .

parent unit .

Parents function
Cmvc_Hierarchy.Parents

partitioning of projects

path .
creating .
differences between paths and subpaths .
multiple
replacing model
setting up .
setting up multlple development paths

RATIONAL 41/

. PM~25
. PM-49

. PM-43
. PM-35
. PM-35
PM-35
P\I—131

. PM—41
. PM-39
. PM-42
. PM-38
. PM-40
. PM-42
. PM-42
PM-41
PM—127
PM-133

. PM—45
. PM-45

PM-89, PM-113

PM-280
. PM-13

PM-127, PM-128

PM-138
PM-131

PM-885
PM-3

PM-8, PM-268
PM-47 "

. PM-47

. PM-37 .
PM-96
PM-326

. PM-47T -

PM-449".

PM-129

pathname . . . PM-127, PM-139, PM-166, PM-170, PM-171, PM-172, PM-224, PM-227

patterns in
prefix .

period (.)
special character .

placeholders, parameter
policy

pound sign (#)
library wildcard

substitution character
symbol in window banner .

pragmas
Inline .
Main
Private_Eyes_Only .
Previous procedure
Common.Object.Previous
Fditor.Cursor.Previous

primary subsystem
copying view into seconda
setting up .

private part
closed
open

Privats. ¥yes.Only pragma
profile .
<PROFILE> special value

program

execution e

multiple subsystems .
“library
testing

project
management
defined
igsues
partitioning
reporting

Promote procedure
Common.Promote

PM-450

PM-34, PM—-47

PM-132
PM-127, PM-128
. PM-15

PM-129
PM-130
PM-135

PM-116
. PM-114
PM-57, PM~-89, PM-114

PM-138
PM-190
PM-2, PM-16, PM-101, PM-339, PM-351, PM-354
.. PM-103
PM-103

PM-87, PM~89
. PM-87, PM-113
. PM-89

PM-57, PM-89, PM-114
PM-128
PM-128

PM-12, PM-84
. PM-51
PM-9

. PM-85

PM-1
PM-4
PM-3
. PM-15

PM-192

s RATIONAL

Put_Notes procedure

Cmvc.Put_Notes . . . PM-292
Cmvc.Append_Notes procedure . . PM-210
Cmvc.Create_Empty _Note_Window procedure PM-232
Cmve.Get_Notes procedure Coe e e PM—-244

Q
qualified name, fully . PM-131
question mark (?)

library wildcard PM-129

substitution character PM-130

question mark, double (77))
library wildcard PM-129

R

recombinant testing . PM-85

Redo procedure
Common.Redo . PM-193

referencers PM-63

<REGION> special name e PM-128

releasePM-7, PM-21, PM-30, PM 187, PM-188, PM-268, PM—294
activity . PM-16, PM-187, PM-325
conﬁgura.tlon . PM-31
copying in multlhost development PM-104
defined PM-8
full view) . PM-30
implications of upward compatlble changes . PM-01
integrating subpaths . PM—-46_

level number

names . . PM-34

of conﬁguratlons . PM-30

representation of . . PM-32
Release procedure -

Cmvc.Release PM-30, PM-46, PM-92, PM-194, PM-294, PM-327

Cmve.Build procedure : e e PM-212 -

Common.Release . PM-136
released view . . PM-8, PM-30
relocation . PM-93
Remove procedure

Activity.Remove PM-158
Remove_Child procedure

Cmvc_Hierarchy. Remove_Child PM-3386

RATIONAL &1/ss

. PM-34, PM-230

PM-451

Remove_From-List procedure
Work_Order.Remove_From.List .

Remove_.Import procedure
 Omvec.Remove_Import

PM-889

. PM-64, PM-299

Cmve. Remove_Unused_Imports procedure PM-301

Remove_Unused_Imports procedure

Cmvec.Remove_Unused_Imports PAM-301
rename

Ada units . . PM-36

view . PM-50
Repair_Cdb procedure

Cmvc_Maintenance.Repair.Cdb PM-3856

Replare_Model prccedure
Cmvc.Replace_Model .

Reauire-Commnient_Lines enumeration
Work_Order. Venture..Policy _Switch

Require.Comments—At_Check_In enum
Work_Order.Venture_Policy_Switch

PM-23, PM-64, PM-96, PA—308

PM-400

eration
PM-400

Require_Current..Work_Order enumeration

Work_Order. Venture_Policy_Switch

reservation token

Restore procedure
Archive.Restore

PM-401

PM-6, PM-14, PM~25, PM-44, PM-226, PM-227,
PM-264, PM-308, PM-317

PM-103, PM-109

Cmvc_Maintenance. Make_Prxma.ry procedure PM-351
Cmvc_Maintenance.Make_Secondary procedure PM-354
revert PM-7

Revert procedure
Cmve.Revert

. PM-28, PM-3805

Cmvec.Accept— Changes procedure e e e p™M-207
Common.Revert e PM-189
root of library system PM-131
S
Save procedure
Archive.Save PM-103, PM-109
searchlist
name resolution mode PM-132
secondary subsystem PM-2, PM-16, PM-101, PM-339, PM-351, PM-354
setiing up . C e e e PM-103
PM-452 8/1/88 BA\-“ONAL

<SELECTION> special mame PM-128

semantic consistency L. S 0oL . PM-9

semicolon (;) . ,
inset motation PM-133
separator T. PM-133

session . - :.
response profile L .. PNM-128
switches, see switches

<SESSION>> special value PM-128
setnotation.A....................‘.......PM;—133‘

Set procedure - . o
Activity.Set e e e oo oo ... PM-159
Activity.Current procedure e e e o oSTIToo . PM-147

Set.Default procedure »
Activity.Set_Default 7.0 PM-67, PM-82, PM-161
Activity.Current procedure= PM-147
Activity.Set procedure PM-159

Work_Order.Set_Default PM-890

Set_Default_List procedure o . B ;
Work_Order.Set_Default_List . . . : e oo .. PM-892
Work_Order.Venture_Editor. Set_Default_Llst LT PM-419

Set_Default_Order procedure
Work_Order.Venture_Editor.Set_Default_Order PM-421

Set_Default_Venture procedure e
Work_Order.Set-Default_Venture , PM-89

Set_Field procedure R UL R S
Work_Order.Editor.Set_Field PM-409, PM-410, PM-411

Set_Field_Info procedure . Lo
Work_Order. Venture_Editor.Set_Field-Info PM-428

Set_Load_View procedure IR P " SR
Activity.Set_Load_View ¥ PM-162

Set_Notes procedure R
Work_Order.Editor.Set_Notes PM-412
Work_Order.List _Editor.Set_Notes e e e e e oo PM-415

Work_Order.Set_Notes e e e e e e PM-895.
Work_Order.Venture_Editor. Set_Notes Y i

Set_Notes_List procedure e
Work_Order.Set.Notes_List PM-39

Set_Notes.Venture procedure L St T
Work_Order.Set_Notes.Venture PM-897

RATIONAL 8/1/88 ' PM1453.;

Set_Policy procedure

" Work..Order. Venture_Editor.Set_Policy .

Set.Spec..View procedure
Activity.Set_Spec_View .

Set..Venture_Policy procedure
- Work_Order.Set_Venture_Policy .

sever

Sever procedure
Cmvc.Sever .
Cmve.Copy proceduxe .)
Cmvc Make_Path procedure i

severed Obj ects
merglng changes
reloining

bhow procedure
‘Cmve.Show
Cmvc.Check_ Out procedure

Show_All_Checked—Out procedure
- Cmvc.Show.All.Checked-Out .
Cmvc.Check-Out procedure

Show;All_Controlled procedure
- Cmve.Show-All..Controlled

Show_All_Uucontrolled procedure
Cruvc.Show-All.Uncontrolled -

Shew..Checked .Out_By_User
- Cmve.Show_Checked..Out_By_User .
Omve.Check..Out procedure

Sihowiv‘;.Checked_.Out_By_User procedure
" Cmve.Show_Checked_Out_By..User

Show_Checked_Out_In_View
" Cmve.Show_Checked_Out_In.View
Cmve.Check_Out procedure

Show_Checked_Out_In._View procedure
. Cinve.Show_Checked_OQut_In_View

Show_History procedure
Omwve.Show_History

Show..History_By-Generation procedure
Cmve.Show_History_By_Generation
Cmvc.Check.In procedure
Cmvc.Merge_Changes procedure

FPM-454

PM-426
PM-164

PA-398
PM-14, PM-43, PM-308

PM-43, PM-44, PM-48, PA{-308
PM-222
PM-268

. PM-45
. PM-45

PM-40, PAf-310
PM-218

PM-812
PM-218

PM-313

PM-314

PM-218

PM-815

PM-218
PM-816
PM-817

. PM-29, PM-319
PM-216
PM-289

sns RATIONAL

Show_Image_Of_Generation procedure T T
Cmyvc.Show_Image_Of_Generationo - . :_ PM-821

Show_Out_Of_Date_Objects procedure L eI emE e
Cmvc.Show-Out.Of_Date_Objects o6 o - PM~323
Cmvc.Accept—-Changes procedure PM—205

single-library application oL L oL o PAM-15
sort format PM-136

Sort_Image procedure e
Common.Sort_Image PM-136

source configuration ™ "i-; Co .. PM-9

spec viewPM-10, PM-11, PM- 29 PM- 52 PM 136, P’VI—137 PM—187
adding or removmg units from PM-05
compilation 50 PM-6l
controlled units PM-61
creating . . T Y £33
names and level numbers T 3.8 £ 1

spec/load subsystems L L0 00 T PM-187

Spec_Load_Subsystem enumeration : o ‘ -
Cmvc.System-Object_Enum type = . .. < . . . PM-324

special characters PM-131
backslash (\) tLTL e L DL -PMEI32
braces ({}) oL oL e e BRI e "PM-133
brackets ([]) e o el .o PM-133
caret (%)o piie e emie o ... PM-131
dollar sign ($) . . T Y SS 3 |
double dollar sign (33) C e e e e o T T . L PM-T32
exclamation mark (!) 0 R Dasoo oL LD UPM-131
grave () L noosomo0 A Lo PM-132
period (.) o PM-132
underscore (=) LT 00T D PM—132

specialnames..~....................-,.......PM7-12‘7:
SACTIVITY> o o v o v e T T PM128
<GURSORD> o ..o R T e T PM-128
<IMAGE>l L PM-128
SREGIOND o v e pmhe e ey s s e nPM=128
<SELEGTIOND« guii. g sl 0. . . PME128
STEXT> ..o PME128

special values L L e e ;PM—128
<DEFAULT> PM-128
<PROFILE> BT, - Mo . '?m—lzs‘
<SESSION> . PM-128

Spread_Fields procedure _— T
Work-Order.Venture_Editor.Spread—Fields| . . . PM-427

R)ATIONAL 8/1/88 PM-485i

state description directory

ébatus; type
‘Chleck.Status

strings
" name .

subpath
creating

_differences between paths and subpath. .

integrating into a single release
_ name extension

substitution characters .
_o.at sign (3) . .
© pound sign (#)
question mark (7)

sixbsystem
“child
complhng units
‘ ,copylng identification number
copylng releases and code views
copying v1ews among hosts
‘creating)
~_sample program
" defined
. "developing apphca.txons usmg mult\ple
"'_developing with joined objects
. development paths
editing controlled objects
executing an entire application
_exports . .
__identification number .
. imports .
" Interfaces
. internal st;ructure

. PM-32
PM-179

PM-127

PM-13, PM-37, PM~-224, PM-227, PM-280
. PM-37

. PM-47

. . PM-46

PM-37, PM-47

PM-130
PM-130
- PM-130
PM-130

PM-3, PM-4, PM-5, PM-136, PM-137, PM-187

. PM-16

. PM-29
PM-104

PM-104
PM-103, PM-109
PM-17, PM-20, PM-98
. PM-17

PM-3, PM-4

. PM-51

. PM-38

. PM-33

. PM-26

. PM-84

PM-10

PM-104

. . PM-10
PM-10, PM-11
PM-20, PM-24

making design changes . PM-89
A maklng implementation changes G e e e e . PM-86
. managing CMVC information mteractwely PM-188
managxng views . . . PM-48
movxng a primary to another host PM-108
_ primary . . . P\i 2 PM—16 P\I 339 PM-351, PM-354
* program development w1th1nPM-13
‘g;propagatmg changes across hosts . PM-105
" ‘releasing conﬁgurations . . PM-30
‘secondary. . PM-,., PM- 16 PM—339 PM-351, PM-354
" gettingup . . . Ce e PM-96
setting up for cross- development PM-115
setting up multiple development paths . PM-47
setting up primary and secondary PM-103

PM-456

snss RATIONAL

subsystem, continued

setting up Units directory .

testing an application

using CDFs with .

using CMVC

working view .
predefined hbrary characterlstxcs
putting objects under CMVC .

Subsystem-_Name subtype
Activity.Subsystem_Name .

supplier

switches

session . .
Actnnty_Flle .
Cmvc._Break. Long-Llnes
Cmvc-Capitalize .
Cmvec..Comment_Extent .
Cmve_Configuration-Extent
Cmvc_Enable_Relocation
Cmvec.Field_Extent
Cmvc..Indentation
Cmve_Line_Length
Cmvec..Shorten—Name
Cmve.-.Shorten-Unit_State
Cmvc.Show_Add..Date
Cmvc_Show_Add_Time . . .
Cmve_Show_All_Default_Lists

Cmve.Show_All_ Defa.ult._Orders-

Cmvec..Show_Boolean . . .
Cmve_Show_Deleted_ Objects
Cmve._Show_Deleted _Versions
Cmvc-Show._Display_Position
Cmvc..Show_Edit_Info .
Cmvc_Show_Field_Default . .
Cmvc.Show_Field .Max._Index
Cmvc..Show_Field.Type .
Cmvc..Show_Frozen . .
Cmvc_Show-Hldden_Flelds
Cmvc_Show_Retention
Cmvc.Show._Unit_State
Cmvce._Show..Users
Cmvc-Show..Versnon.Number
Cmvc..Uppercase
Cmve._Version_Extent .
Default_Venture

RATIONAL &/

. PM-23

. PM~85

o, 2PM-111
PM-17

. PM-21

| PM-22

.~ PM=25

L PM%M&
7 PM-70

. . . .7 PM-362
ST PMS161

3 PM=362
. PM:3_6_2

" PM=362

. PM-362

_ PM-196

PM-362

PM-362

PM-362

. PM-362

. PM-363

e ... PM-363
LT T PM-363
o DL AP‘M—363
.77 PM-363
S r‘—'Pwr-364
S .":"_PM—asa
. PM~363

. PM-363
. PM-363

. . PM-363
C ,‘PM—?;es
. 7 PM-363
. PM-364
.. PM-364
T PM-364
' PM-364
PM—364

PM—;4571;

symbols -

system:.
object
.. setting up . .
.view . 7.
releasing .

System enumeration
" Cmve.System_Object—-Enum type
Si{éféﬁi_Object_Enum type
Cmvc.System_Object_Enum

target key
task .
test: 1 ©

, - application

" recombinant .
<TEXT?> special name .
The_Current-Activity function

. Ac‘tivity.The-Current_Activity

The_Enclosing.Subsystem function

Activity. The_Enclosing._Subsystem .

’I“he.uij:ncloysing_View function
" Activity.The_Enclosing_View
gilde (7y
symbol
transitive closure. ...

underscore (-)
, identifier character .
, .special character .

Undo procedure
Qdﬁlqu;.Undo

Un;t-Name subtype
Activity.Unit_Name

PM:458

PM-135, PM-404

PM-210, PM-232, PM~244, PM-292

. PM-45
PM-404
PM-135

PM-16, PM-187, PM-325
... PM-187

ce - PM-326
. PM-187, PM-325
: . . . PM-327

PM-324

PM-824

PM-113, PM~-303

. PM-15

. PM-85

. PM-85

PM-128

PM-167

PM-168

PM-169

PM-133
. PM-68

PM-129
PM-132

PM-193

PM-170

siss RATIONAL

Units directory, setting up

Units procedure
Check.Units .

unlock .

update
joined objects

Update—-Cdb procedure
Cmvc_Maintenance.Update-Cdb .

Cmvc_Maintenance.Make_Primary procedure

updating
preventing automatic .

using CDFs with subsystems

Value_Copy enumeration
Activity.Creation-Mode
Activity.Display procedure

venture
editing

venture policy switch

Venture_-Editor package
Work_Order.Venture_Editor

Venture_Policy_Switch type
Work_Order. Venture_Policy-Switch

version

version control

defined

view .

client .

code

combined

deleting .

load

managing . :
names, coordmatlng level numbers
released

renamxng
repairing damaged
spec

working .

RATIONAL &2

building from a conﬁguratlon object

PM-108; PA(-358
. PM-351

- R e e e

- PM-111

ik T R T e :

P [

BT

o

PM-146

PM-T48

PM-2, PM~15, PM-361 |

PM-385, PM~417
. Pp-361
L PN

L el

R

L PME1T

TR N SN SO o .
I b o PEE NGRS AR o P o S TN a7

e e _BM-3
. . :."..‘ PM—I. ‘

=300
" PM-d08°

PM-1, PM-3, PM‘S: .

.. PM-50

'. PM-10

PM—16 PM 30 PM—*ZGZ PM+848

. PM-53, PM-116

. PM—48

PM—]O PM—ll PM—52 PM 136 PM—137
' PM-48"

A w—94
RO o U'BME30

ks - PM=B0 1

~_rM'5O

PM-10, PM~11, PM—sz‘P‘M-lsr
.7t PM-21, pmazzﬂ

LA

PMr459.

View_Name subtype =
Activity.View_Name . PM-171
Vxew-Or-Actlvxty-Name subtype Mrs e ez
: Actlvxty Vlew_Or._Actlwtg_.Name B T T T PM-172
;Vlew-Sxmp‘e_Name subtype - . S
Activity.View_Simple_Name . PA-178
Views procedure L ')
Check.Views 1. . < PM-182
Visit procedure
Activity. Visit ..~ ool PM-174
" wildéards i o L . PM-127, PM-129
““libfary T) i _
~ at sign (8) . PM-129
double question mark ("‘7) . C e e PM-129
‘pound sign (#) . i no St e b e e PM-129
question mark (?) L ET PM-129
_window banner N o .
_ # symbol . . et e P\/I—-135 PM-404
~* symbol T T s PM 210 ' PM-232, PM-244, PM-292
= symbol~ L Tl i ’ - g PM-135
Withdraw ﬁrbcedu}e
Ada.Withdraw . . . PM-35, PM-36
withdrawing SR E a
- .*,;objem P N S P T e e o . PM_35
“work otder "~ - P PM-2, PM-15, PM-361
editing "7 7. BETR) - A PM-403
work-order list PM-2, PM-15, PM-361
editing PM-384
Work_Order package . PM-361
Work.Order..Implementation package :
!Implementation. Work_Order_Implementation
Word_Ordex'.Ventnze.,Poliq{y-I.Swi;‘c}‘;;«txpg;: ol PM-400
working library PM-7
working view . . L) PM-8, PM-21, PM~188, PM~224
predefined hbrary characterlstxcs . . PM~-22
putting objects under CMVC . . PM-25
- releasing- conﬁguratlons T " . PM-30
world enclosmg e . , # e - PM-132
Write-proceduré ~ T = & -
Activity.Write crrr Y e sbieninined PM-175
- PM_460 P - ey ”‘““:‘ '.":i"{:; Rl }3 Y T 8/1/88 I%TIONAL

RATIONAL

Note: This form is for documentation comments only. You ¢an also sut;mrt :%blem reports and
comments electronically by using the SIMS problem- reporf‘hg sysfem ' f you use SIMS to
submit documentation comments, please indicate the manual name, bsok name and page~ humber.

Did you find this book understandable, usable, and well organized? Please Cghyﬁéhi;@hd list any
suggestions for improvement.

If you found errors in this book, please specxfy the error and the page number Ifyou preter attach a
photocopy with the error marked.)

b
-,

-
Indicate any additions or changes you would like to sée in the index.
- =
How much experience have you had with the Rational Environment? ppdar X
6 months or less 1 year 3 years or more
How much experience have you had with the A&a pro.:gra;‘t‘ﬁmg ianguage” a3
6 months or less | 1 year L 3 years or mi;rgt;,__i_: .

Name (optional) . =7 Date
Company - } e .
Address -] T e
City State . ZIP Code - e E
Please return this form to: Publications Department B
Rational

3320 Scott Boulevard
Santa Clara, CA 95054-3197

. Rational Environment Reference Manual, Project Management (PN®,-8a01 A-31

w. W L ama o P s o v b e e e
T PRVRRPI P,
G s sy -~ N -

b s -

. mae e mmaern Nt ader

F T S - s o -
o S et e e e en e e e [S . S,
= T P . ¢ .
- B P - o -

N}, ot i S v e e o e

Y g s A

B i s e T e

B T i T L

R

- B T e o T T R A

ot < AR S 4 s 15—

B T B e

i = =

Attt A n AR aRA - A faan T emeSS e

o e S NPT A

-

- m e e

“mo

B e ar s ek e R P T cat i meee e e aes e

g

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1year 3 years or more
Name (optional) . _Date
Company -
Address
City State ZIP Code
Please return this form to: Publications Department
Rational
3320 Scott Boulevard

Santa Clara, CA 95054-3197
Rational Environment Reference Manual, Project Management (PM), 8001A-31

