
Rational.Environment
R.eference Manual

Project Management (PM)

Copyright (Q 1986, 1987, 1988 by Rational

Document Control Number: 8001A-31

Rev. 0.0, February 1986
~".Rev. 1,.0, July 1986

Rev. 2.0, December 1987
Rev. 3.0, March 1988
Rev. 4.0, August 1988

. ·rr~•..~. to ''1
•.~"!- __», S

"•. <

This document subject to change without notice. i:
. ". ,;:-t.t
. • ..t

Note the Reader's Comments form on the. last page of this book, which requests
the user's evaluation to assist Rational in prepari~J~~r~jdocumentation .

. t .

-
(:: -

~., ,'., ',:.r.; :i'"i-:. } .- ;. ~
t,

;,,'. ;...... - ("
.- ,.,,; 't:: •

Motorola is a registered trademark of Motorola, Inc.
. '. . -..~. ~.~....... ..-

Rational and RIOOO are registered trademarks and Ratlonal Environment 'andRa-
tional Subsystems are trademarks of Rational. ' . . .

./.

Rational . , '.~;..':3

33.20 SCQ~t·B9.ulev..rdJ!; .:
Santa Clara, California 95054-3197

- 'PM-ii

'.','.

Contents

How to Use This Book

Key Concepts

Introduetion
What to Read in This Book

.,.,' '~. \.;

CMVC Overview
Issues of Project Management
Subsystems .
Version Control'. . . . ~. . ~
Configurations and Releases
Interfaces among Subsystems
Program Execution
Parallel Development within Subsystems
Single-Library Applications and Documentation
Project Reporting .
Higher-Level Application Components
Multihost, Multisite Development

'. i • -:..J ~.

Getting Started . .
The Sample Program
Creating a Subsystem . . ,d:-\\·.,

. Internal Structure; o~~,S~.bsyst~m, ,... .."1 .•..
• . ~ ••••... ;~ - •••• ~.,~. " J... .~... • .,I.;"':, :"'i.': jy. :.:.' ',J-:

Working Views'. ,.,;::'.{L:;~.b::;,';:;':.,.
Predefined Library Characteristics

Setting Up the Units Directory
Controlling Objects Using CMVC;. ::iY'

Special Note: ControllingBin<+rY<Oojects: .
Editing Controlled Objects ~'. ~:\·>~·r<.:"-·,i.

WA:l",~NAL? 8/1/88
_.• _ .' ... -:.oi - • ~ J " .' '. "~

, .: -. ;.,

....
:;'·~l:W ,

" .'\

". -~;.;
..;- ..

.. J.~(i ': ..~.'cl'
. ;' .•.. ' \.'i.,':.c,,'ltv

f.' ;:~. ,,:.,., : ~.. •

-',

i:

1
2
3
4

4
6

,t 7

10
12
13
15
15
16
16

:.:.1
','

~.. • I ~ • ;

17
17
20
20

21
22
23
25
25
26

PM-iii

Generations and Versions
Canceling a Checkout "
Reverting to a Previous Geii't~ration , , ' .. ', , ,

;f' .. , ~_. _ • '.

_ Collecting and Displaying Information about Generations '"
'; Compiling Units in a Subsystem 2:',

:~. Releasing Configurations; ",' oJ:':,: ' i ': .l', r.,' •

Released Views·.<. , ·r)" I,' .;.{'. r.

Configuration Releases . ,,' '.
Representation of Releases,:."
Development Paths ' , .'
Release Names . . . , . .
Release Level Numbers . , , ., ': "

Library Management Operations for Controlled Objects ..
Deleting Objects
Withdrawing Objects
Moving Objects
Renaming Ada Units

• ,ij.-

r , ~ • •

Coordinating Development in a Subsystem ,
Creating a Subpath ,
Developing with Joined Objects

Checking Out a Joined Object
Keeping Joined Objects Updated
Retrieving the Latest Generation at Checkout
Accepting Changes . . , , , .
Permitting Demotion
Preventing Automatic Updating
Creating New Joined Objects

Accessing Controlled Objects Concurrently
'Elements, Join Sets, and Reservation Tokens
Merging Changes , . , . ." ,f ", .' • "'. •

':'1- ,~~. -.':; 4~' . =, .

Rejoining Severed Objects ..'.' ': .. , .-"
IntegratingSubpaths into a Single Release .
Setting Up Multiple Development 0 raths . ':,

Creating a Path . .'; , '~" ',:;
" " y.

Managing Views
Deleting Views .

Deleting a View and Allowing Reconstruction

• "1'- -: ..
,..

. !:.; ',! -: r .-... ~. -.

. ~. . . . " . . '.
<C " :; .'.:

37
37
38
39
40
41
41
42
42
42
43
44
45
45
46
47
47
48
48
49

" 'c'" r .,'-:

' ... ;..

PM-iv
',(

8/1/88

"

26
27
28
29
29

, '.: 0 :(. .;, :30
• >.' 30
.. 31

.. . 32
33
34
34
35
35
35
35
36

""

Deleting a View Permanently .
Deleting a Configuration Object .

Building a View from a Configuratibn'Obj~~:t:
Repairing DaID.:ige~ Views /'::" ',~' ,:,"

Renaming Views . . ,

" " .•••• -':.". 0 _.' • _ •

. '?r" '. !~:t"'" ...

.-~4... ;.;,. -,' ,~i.,~

: ~~;;.: ~~';"' ':

~~:~.~

Developing Applications Using Multiple Subsystems}!}:' '.'''':f c ~;;

Basic Compilation and Execution Setup "Jf' 1;,;.' 1.

Kinds of Views . . .,;'.' .".. .
Defining Exports . ::""

Overview of Steps
Locating the State.Exports File
What to Put in the State.Exports File
Using Pragma PtJva.te"':Eyes::'Only' 1.;

Editing the State.Exports File
Creating the Spec View . . .
Spec- View Names and Level Numbers
Controlled Units within Spec Views
Compilation within Spec V~e\V~,;r';'" "'.

Defining Imports '. ' , .
Steps for Defining Imports .
Displaying a View's Imports
Imports and Links
Removing Imports

Using Activities for Execution
_. '~~'H;,". ./

Overview of Steps b.:. s·,.t:.:c.:· ~·i:,;':"J~>:'
Creating an Empty. Activity ,r: >. Ji ::':::";$.:' . r".- 1.:
Adding Activity Entries . . :,d.~,";',:<.:'.,<'}", : <.f.:'
Setting the Default Activity.)~.y,. 2.';. \.: .. ~:~. . ,:'

The Execution Process
Completing the Compilation and' Exectiti6~' S~tup o. '.

Imposing Further Import and Export Controls ..' .. .'..
Ii .~,

Overview of Steps ... ':':4"" : t '~.'" -.".,~..,.
Creating Export Restriction Files .', ,0' :;'. : , . " :::

·,",t~:· '/!"('" . '::' • (' - ,.

Name Resolution in the Export ReStriCtion File
Export and Import Restriction Files
Creating Import Restriction Files'
Import Restriction Filenames

;'·.I~'
.'- .- -: ~

• '. ~ • : ')-t •. _.

(."

"
~. '. I"

49
49
50
50
50

..
~.'.

, 51
51
52
54
55
55
56
57
58
58
59
61
61
62
63
63
64
64
65
65
66

.. 66
67
68
69
69
70

_. 70
72
72
72
73

PM-v

,' What to Put in Imp~'rt.:ltestricfiJn Files C)!'~; i>J~frr.
Summary of Import and Export Regriction Setup)/ - ',:
When the Cmvc.Imporl.C6~ana: Is' Entered): .. " .' ..

:"" ,-
More on Importing :::.',:,: ..

Consistency .:C\' .. < .;i-:'i,j.,t,:. '" ._" .':c' .J ..

Circularity /1' .
Using. General-Purpose Activities:.~ -t

Modes for Creating Activity Entries z r

Creating an Activity with Differential Entries,
Preserving the Default-Actlvity' .betweenLogias

Executing the Entire Application
Testing an Application

Recombinant Testing
Making Implementation Changes

Changing Nonexported Units
Changing Private Parts in Exported' Units ;'

More on Compatibility
More on Closed Private Parts

Making Design Changes
Making Upward-Compatible Changes

Effects of Demotion in a Spec View with Clients
Implications for Prior Releases " . . .

Making Non-Upward-Compatible Changes
Method I
Method II ':
Relocation': . :: .' .". .
Coordinating Level Numbers in Spec alld Released Vie~N~fu~s
Specifying Compatible Load Vie~/s' in l.I{A~tivity- " '. '. .' "~:-

..,.:,. . ,".'r

Adding or Removing Units from Spec Views ..
Replacing the Model in a Path ... 1

Setting Up Subsystems: A Second Look,
Planning .
Setting Up Model World~ . . .::'.
Creating Subsystems from the Bottom Up' ", .:
After Subsystems Are Created

te,

- ,

~~-.-

;1. ", .

. '<~74
75
76

- ;fe ..~* 76
78
79
80
82
82
83
84
85
85
86
86
87
88
89
89
89
90
91
91
91
93
93
94
94
95
96
96
96
97
98
99

PM-vi 8/1/88 RATIONAL

-Developing Appli(ations Using Mm,tu>le:J):osts
Overview of Multiple-Host Developmens _... ::' .i.:.,'· ~.... ::

. ~':. :.

Setting Up Primary and Secondary SUb~l's.teIUs< . ":.' ',:.' '.' \y .
Copying Views among Hosts'. . . :.: .'. ~ ' .. " _'.• 'i >.....

Copying Views and Subsystem Identification Numbe-ts··· ',". ,..'
Copying Releases and Code Views;.:. ~:"~<",~;.::~:

The Compatibility Database ".":>i~;'·i.

Propagating Changes across Hosts , . . -.
Method I: Propagating Incremental Ch~nges .: ..

",1,1. ",

Method II: Propagating Changed Units or Views . '.<,'

Moving a Primary to An~ther Host .. <, '
More on the CDB .
More about Copying between Subsystems

...-: .;.: ..
t

. ;', ..:~~.~•.
,;.:7t.,

..•...-.... " •....

.. :' -, "-:;:.;: ...;"- .

. '. ..~ t}.Using CDFs with Subsystems ',:."
Overview of Cross-Development in Subsystems .. '

Target Keys' -.
Differences and Restrictions

Kinds of Views in Target Paths
Closed Private Parts
Code Views
Execution and Activities

Setting Up Subsystems for Cross-Developrnent
Using Combined Views

When to Use Combined Views' .
Defining Exports Using Export Restrictions
Importing am()~g Target Views . " .". .
Consequences ~iUsing d~Jllbiped}Yiews'i'" .' ;:?:; :.~:_,'.:.;' ,. "':-.L • :',: .r.,

Consequences for Compilation " ':(': . , '0' • ',•• ,~. •

Consequences for Execution .
Methods for Using Combined Views ,

Method I: For Smaller Applicatlons .: .': -. " .. '.
Method II: For Larger Applications . . . ,;', .•, "
Method III: For Development on Mu~ip~e H~sts

.<.. ~.,.

r ., .
, \.('

~.- ", .

RATIONAL

'r
'.~" •.

. ".

101
101
103
103
104
104
105
105
106
107
108
108
109
111
111
113
113
113
113
114
114
115
116
116
116
117
118
118
118
118
119
121
124

PM-vii

.Namlng
.'.':"Special Names
:0:: .Special Values
.. ~ Error Reactions
: ~.,:parameter Placeholders
_." !Wildcards .

- Wildcard #

Wildcard ifi

Wildcard?
Wildcard ??

Substitution Characters
Substitution Character #

Substitution Character ifi

Substitution Character?
Special Characters in Names

Special Character!
Special Character - .
Special Character $.
Special Character $$
Special Character _
Special Character.
Special Character \
Special Character'
Special Characters [1
Special Characters {}

Indirect Files

...... "' .

'-

Reference Entries
package Activity

Editing Activities
Commands from Package !Commands.Common

subtype Activity..Name .
procedure Add . .
proced ure Change
proced ure Create .
type Creatioru.Mode
procedure Current
procedure Display

'.~

PM-viii

127
127
128
128
128
129
129
129
129
129
130
130
130
130
131
131
131
131
132
132
132
132
132
133
133
133

....- ...•~

135
..135

135
139
140
142
144
146
147
148

c8f..1/S8R1\ TIONA[

procedure Edit
proced ure Enclosing..Subeystem
procedure Enclosing..View
procedure Insert
procedure Merge
function Nil
procedure Remove
procedure Set
procedure SeLDefault
procedure Set..Load., View
procedure Set..Spec., View
subtype Subsystem..Name
function Thec.Current..Activity
function 'I'ha..Enclosingc.Subsystem
function Thec.Enclosing., View
subtype UniLName .
su btype View _N ame .
su btype View _Or _Activity _N ame
su btype View _Simple_N ame
procedure Visit
procedure Write

end Activity

package Check
procedure Activity
type Status
procedure Units err.
procedure Views

end Check

package Cmve
Commands Grouped by Topic
System Object and View Types
Managing CMVC Information Interactively

Configuration Images
Levels of Information in Configuration Images
Operations in Configuration Images
Restricting Operations in Configuration Images

.RATIONA:h'

- '"..

,;)i@O
:151
'"'152
153

. '<Q55
'157

158
159
161
162

.-164
166
167
168
169
170
171
172
173
174
175

177
178

··179
180
182

185
186
187
188
189
189
192
192

PM-ix

Alternative Ways of Displaying a Configuration Image
Generation Images

Accessing Generation Images .
Accessing Next and Previous Generation Images
Displaying the Differences between Consecutive Generations

History Images
Accessing History Images
Displaying History from Other Generations
Managing Notes through History Images

Traversing between Library and CMVC Images
Session Switches
Commands from Package !Command~.Common

Commands from Package Common inConfiguration Images
Commands from Package Common in Generation Images
Commands from Package Common in History Images

proced ure Abandon.iReservation
procedure Accept-Changes
procedure Append..Notea
procedure Build
proced ure Check..In
procedure Check_Out
procedure Copy
procedure CreatecEmpty _Note_ Window
proced ure Def
proced ure Destroy _S ubsystem
procedure Destroy..System
procedure Destroy..View
procedure Edit . . .
proced ure Get_Notes
procedure Import
function Importeds.Views
procedure Information
procedure Initial
procedure Join . . .
procedure Make..Code.; View
proced ure Make..Controlled
procedure Make_Path . . .
procedure Make..Spec., View

192
193
193
193
193
194
195
195
196
196
196
196
196
200
200
202
205
210
212
216
218
222
232
234
236
237
238
241
244
246
251
253
256
260
262
264
268
275

PM-x 8/1/88 RA TiOt'--J AL

procedure Maka..Subpath
proced ure Makec.Uncontrolled
procedure Merge..Changes
procedure Notes
procedure PuLNotes

~t ' ,i'-'~:"
proced ure Release
procedure Removes.Import
proced ure Remove., Unused..Imports

' ..-
procedure Replace..Model
procedure Revert
proced ure Sever
procedure Show
procedure Showc.Allc.CheckedcDut
procedure Showc.All..Controlled
proced ure Show _AIL Uncoritrolled
procedure Showc.Checkedc.Outc.By..User
procedure Show..Checkedc.Out.cln.; View
procedure Show..History .
procedure Show _History _By _Generation
procedure Show..Imagec.Ofc.Oeneratlon
procedure Showc.Outc.Of..Datec.Objects
type Systemc.Object..Enum

end Cmve

package Cmve..Hierarehy
Setting Up Systems . .
Setting Up Paths
Releasing System Views . .

procedure Add_Child
procedure Buildc.Activlty
function Children
function Contents
procedure Expand..Activity
function Parents
procedure Remove..Child

end Cmvec.Hierarehy

~ATIONAL 8/1/88
.:'!l

280
~.:;:;,,-. 285

-,'".I ...• ..··,f; 287
290

.; 292
294
299
301

, 303
\ 305

308
310
312
313
314
315
316
317
319
321
323
324

325
326
326
327
328
329
332
333
334
335
336

PM-xi

'pa~kage Cmve..Malntenanee
Commands Grouped by Topic

procedure Checkc.Consistency .
procedure ConverLOld_Subsy,stem
procedure Delete., T~nrefer~~ce(L.Leading_Generations
procedure Destroy..Cdb . . .
procedure Display _Cdb
procedure Display..Code., View
procedure ExpungecDatabase
procedure Make..Primary
procedure Make..Secondary
procedure Repair..Cdb
procedure Update..Cdb

end Cmve..Malntenanee

package Work_Order .
Session Switches

Cmvc..Breakc.Longc.Lines (default true)
Cmvc..Capitalise (default true)
Cmvcc.Commentc.Extent (default 4)
Cmvcc.Configurationc.Extent (default 0)
Cmvc..Fieldc Extent (default 4)
Cmvc..Indentation (default 2)
Cmvcc.Line..Length (default 80)
Cmvc..Shortenc.N ame (default true)
Cmvc..Shortenc Unitc.State (default false)
Cmvcc.Show..Addc.Date (default true) ...
Cmvc..Show _Add_ Time (default true) .
Cmvc..Show _AlLDefaulLLists (default false)
Cmvc..Show _AILDefaulLOrders (default false)
CmvccShow _Deleted_Objects (default false)
Cmvcc.Show _Deleted_ Versions (default false)
Cmvc..Show _Display_Position (default false)
Cmvc..Show _EdiLlnfo (default false) . . .
Cmvc..Show _Field_Default (default true]
Cmvc..Show _Field_Max_Index (default false)
Cmvcc.Show _Field_ Type (default false)
Cmvc..Show _Frozen (default false)

PM-xii 8/1/88

339
339
340
342
343
344
346
348
350
351
354
356
358

361
362
362
362
362
362
362
362
362
362
363
363
363
363
363
363
363
363
363
363
363
363
364

RATIONAL

Omvcc.Show..Hidden.Ttelds (default false)•
Cmvc..Show _Retention (default false) ~,:-:~t~::.
Cmvc.iShow _Boolean (default false) . ", . .
Cmvc..Show _UniLState (defaulttrtre) ,,'. . .'. .
Cmvc..Showc.Users (default false) .:' ; .' ,~.' ..
Cmvc..Show _Verslon..Number (default false) ~.'.
CmvccUppercase (default false)
Cmvc., Version..Extent (default 0)
Default., Venture . . . , ,

procedure Add., To..List
procedure Close
procedure Create
procedure Create..Pield
procedure Create..List
procedure Create..Venture
function Default
function DefaulLList
function Default., Venture
procedure Delete_Field
procedure Display
procedure Display _List
procedure Displays.Venture
procedure Edit , . . .
procedure EdiLList
procedure Edit., Venture
function Notes . . . ,
function Notes..Llst " '.
function Notea..Venture
procedure Removec.From..Llst
procedure SeLDefault
procedure SeLDefaulLList
procedure SeLDefaulL Venture
procedure SeLNoteso..': . ". '.
procedure Set_Notes~List
procedure Set..Notes., Venture :;
procedure SeL Venture_Policy
type Venture..Policy _Switch

package Editor : .

,~ I" _~_ •) -.-

364
364
'364
364
364
364
364
364
364
365
366
367
369
371
372
313
375
377
379
380
381
382
383
384
385
386
387
388
389
390
392
394
395
396
397
398
400
403

:..

RATIONAL
,'r '" c, ..;

8/1/88 PM-xiii

procedure Addc.Comment
procedure Addc.Configuration
procedure AddcUser
procedure Add_Version
proced ure SeLField
procedure SeLField
procedure SeLField
procedure SeLNotes

end Editor
package LisLEditor

procedure Add . . .
procedure SeLNotes

end LisLEditor
package Venture..Editor

procedure SeLDefaulLList
procedure SeLDefaulLOrder
procedure Setc.Field..Info
procedure SeLNotes
procedure SeLPolicy
procedure Spreadc.Fields

end Venture..Editor

405
406
407
408
409
410
411
412

413
414
415

417
419
421
423
425
426
427

end Work_Order

Index 431

PM-xiv 8/1/88 RATIONAL

How to Use This Book

The Project Management (PM) book of the Rational Environment Reference Man-
ual contains reference information describing commands and tools provided by the
Rational Envlronrnent'P'' that are useful primarily for partitioning a project into
components, testing and releasing implemented components, tracking the history
of Ada-unit versions and configurations, and coordinating multiple developers and
multiple development efforts. This reference information is intended for users who
are familiar with the Environment and Ada programming.

Organization of the Reference Manual
The Rational Environment Reference Manual (Reference Manual for brevity) in-
cludes the following volumes (see accompanying illustration):

1 Reference Summary
Keymap
Master Index

2 Editing Images (EI)
Editing Specific Types (EST)

3 Debugging (DEB)
4 Session and Job Management (SJM)
5 Library Management (LM)
6 Text Input/Output (TIO)
7 Data and Device Input/Output (DIO)
8 String Tools (ST)
9 Programming Tools (PT)
10 System Management Utilities (SMU)
11 Project Management (PM)

Each volume of the Reference Manual contains one or more books separated by
large colored tabs. Each book contains information on particular features or areas
of application in the Environment. The abbreviation for the name of each book (for
example, EI for Editing Images) appears on the binder cover and spine, and this
abbreviation is used in page numbers and cross-references. The books grouped into
one volume are not necessarily logically related.

RATIONAL 8/1/88 PM-xv

Organization of the
Rational Environment Reference Manual

I.. 11volumes containing 14books -------------i1
Volume 1: 3 books Volume 2: 2 books

o

o

A sample book

Volume 11: 1 book

Key concepts

+----Book index

Topical section

Unit section

The Reference Manual provides reference information organized to efficiently answer
specific questions about the Rational Environment. The Rational Environment
User's Guide complements this manual, providing a user-oriented introduction to
the facilities of the Environment. Products other than the Rational Environment
(for example, Rational Networking-TCP lIP or Rational Target Build Utility) are
documented in individual manuals, which are not part of the Reference Manual.

Volume 1
Volume 1, intended to be used as a quick reference to the resources provided by the
Environment, contains the following books:

• Reference Summary: The Reference Summary contains the full Ada specifi-
cation for each unit in the standard Environment. The unit specifications are
organized by their pathnames. The World ! section provides a list of the units in
the library system of the Environment and the manual/book in which they are
documented.

• Keymap: The Rational Environment Keymap presents the standard Environ-
ment key bindings, organized by topic and by command name. The topical
section includes both a quick reference for commonly used commands and a more
detailed reference for key bindings.

• Master Index: The Master Index combines all of the index information for each
of the books in the Reference Manual.

Volumes 2-11
Each book in Volumes 2-11 begins with a colored tab on which the name of the
book appears. Each book typically contains the following sections:

• Contents: The table of contents provides a complete list of all the units in the
book and their reference entries.

• Key Concepts section: Most of the books contain a section describing key
concepts that pertain to all of the Environment facilities documented in that
book. This section is located behind its own tab after the table of contents.

• Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package) in the Environment library system.
For each unit, there is a section that contains reference entries for the declarations
(for example, procedures, functions, and types) within that unit. Each section is
preceded by a tab.
The sections for units are alphabetized by the simple names of the units. For
example, the section for package l'Iools.Stringc.Utilities is alphabetized under
String.,Utilities.
For many units, introductory material and/or examples specific to the unit appear
after the section tabs.
Within the section for a given unit, the reference entries describing the unit's
declarations are organized alphabetically after the section introduction. Appear-
ing at the top of each page in a reference entry are the simple name of the given
declaration and the fully qualified pathname of the enclosing unit.

RATIONAL 8/1/88 PM-xvii

• Explanatory jtopical sections: Like the unit sections, explanatory /topical sec-
tions are preceded by tabs, and they are alphabetized with the unit sections. The
topical sections, such as Help, located in Editing Specific Types (EST), discuss
Environment facilities.

• Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical
references. Each book index covers only the material documented in that partic-
ular book. The Master Index (in Volume 1) provides entries for the information
documented in all the books within the Reference Manual.
Ita.lic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information
The following suggestions may help you in finding various kinds of information in
the documentation for Rational's products.

Learning about Environment Fadlities
If you are a novice user starting to use the Environment, consult the Rational
Environment User's Guide.

If you are familiar with the Environment but are interested in learning about the
Environment's library-management commands, for example, you might start by
scanning the specifications for these units in the Reference Summary to get an idea
of the kinds of things these tools can do. You should also look at the Key Concepts
for the particular book, which describes important concepts and gives examples.

It may also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Speeifle Item
If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry you want. Remember that the reference entries for a unit are
organized alphabetically within the unit, and the units are organized alphabetically
by simple name within the book.

If you know the simple name of the entry but do not know the book in which it is
documented, look in the Master Index (in Volume 1) to find the book abbreviation
and page number.

If you know the pathname of the entry but do not know the book in which it is
documented, the World! section of the Reference Summary (in Volume 1) provides
a map of the units in the library system of the Environment and the books in which
they are documented.

PM-xviii 8/1/88 RATIONAL

If you cannot find an item in the Master Index, the item either is not documented or
is documented in the manuals for a product other than the Rational Environment
(for example, Rational Networking-TCP lIP or Rational Target Build Utility). If
you know the pathname, consult the World ! section of the Reference Summary to
determine whether that item is documented and in which manual.

Using the Index
The index of each book contains entries for each unit and its declarations, orga-
nized alphabetically by simple name. When using the index to find a specific item,
consult the italic page number for the primary reference for that item. Nonitalic
page numbers indicate key concepts, defined terms, cross-references, and exceptions
raised.

Viewing Specifications On-Line
If you know the pathname of a declaration and want to see its specification in
a window of the Rational Environment, provide its pathname to the Common-
.Definition procedure-for example, Defim tion (" ICommands. Li br ar-q") ;. If you
know the simple name of the unit in which the declaration appears, in most cases
you can use searchlist naming as a quick way of viewing the unit-for example,
Def in i tion ("\Llbrary");.

Using On-Line Help
Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Environment. Press the ~1-P-;;;fuiP] key
or consult the Rational Environment User's Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross- Reference Conventions
The following conventions are used in cross-references to information:

• Specific page/book: For references to a specific place in a specific book, the
book abbreviation is followed by the page number in the book (for example,
LM-322). If the book abbreviation is omitted, the current book is implied (for
example, the page numbers in the table of contents for a book do not include the
book prefix).

• Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration. For
example, within the reference entry for the Library.Copy procedure, a reference
to the Library.Move procedure would be simply "procedure Move." Note that
if there are nested packages in the unit, references to nested declarations use
qualified pathnames .

• Declaration in different unit, same book: References to the documentation
for a declaration in another unit are indicated by the qualified pathname of the
desired declaration. For example, within the reference entry for the Library.Copy
procedure, a reference to the Compilation.Delete procedure would be "procedure
Compilation .Delete."

RATIONAL 8/1/88 PM-xix

• Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Library.Copy procedure, a
reference to the Editor.Region.Copy procedure in the Editing Images book would
be "EI, procedure Editor.Region.Copy."

References to specific declarations in the library system of the Rational Environ-
ment (not the documentation for them) are typically indicated by fully qualified
pathnames-for example, "procedure !Commands.Library.Copy." When the con-
text is clear, however, a shorter name will be used. If the unit in which the decla-
ration appears is undocumented, you may want to see its explanatory comments to
understand what it does. To see these comments, either look at the unit's specifica-
tion in the Reference Summary or view it on-line using the Rational Environment.

Feedback to Rational: Reader's Comments Form
Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader's
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. If you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

PM-xx 8/1/88 RATIONAL

Key Concepts

Introduetion

Managing a complex software project involves:

• Partitioning the project into components and designing the interfaces among
these components

• Implementing these components
• Testing and releasing implemented components
• Tracking and reporting the history of versions and configurations of Ada units
• Coordinating multiple developers and multiple development efforts

The Rational Environment provides support for project mana~ement through its
system of configuration management and version control (CMVC). Although project
management on the Environment typically refers to managing software systems and
applications written in Ada, CMVC resources also can support the development and
maintenance of documentation, application test beds, and the like.

This Project Management book of the Rational Environment Reference Manual
describes the Environment's CMVC resources, which are defined in the following
packages:

• Activity: Defines a set of operations for creating, editing, and using activities.
Activities enable you to combine alternative implementations of project compo-
nents for test or execution.

• Check: Defines a set of operations for checking whether a software component's
implementation is compatible with its exported interface.

• Cmvc: Defines a set of operations that support the following activities of project
management:

Partitioning projects into components using subsystems and managing the
interfaces among these components
Creating and releasing alternative implementations (views) of individual proj-
ect components
Placing the objects within project components under source control to record
generations of change history and to coordinate the work of multiple devel-
opers

RATIONAL 8/1/88 PM-l

Introduction

• Cmvc.rHierarchy: Defines a set of operations for grouping multiple subsystems
into higher-level application components called systems. Inclusion in a system
provides an automated means of tracking the latest release from each subsystem
and performing system builds by creating activities that reference those releases.

• Cmvc..Maintenance: Defines a set of operations for checking and restoring the
integrity of the various databases associated with the CMVC system. This package
also provides operations for managing primary and secondary subsystems (copies
of subsystems that support development on multiple RlOOOS).

• Work..Order: Defines a set of operations for creating, editing, and using work
orders, work-order lists, and ventures. These objects enable you to define, assign,
and track the progress of project tasks and the objects they affect.

What to Read in This Book
CMVC resources are flexible and can be used to support many different kinds of
development conventions. Accordingly, what you should read in this book depends
on the development conventions in effect at your installation. At most installations,
the development process involves the following participants (whose roles may be
combined in various ways):

• Designers who determine the fundamental components and their interfaces within
the project

• Implementers (or teams of implementers) who write the source code and docu-
mentation for each component

• System integrators who build the finished product from its components
• Managers who coordinate parallel development efforts and track the project's

progress

Within this Key Concepts section of this book, all project participants should read
at least "CMVC Overview" and "Getting Started." These sections summarize the
features of CMVC and describe in detail how to develop a program within a single
subsystem (including how to put objects under CMVC control, reserve such objects
for modification, and create released configurations of specific object versions).

Teams of implementers assigned to single project components also should read "Co-
ordinating Development in a Subsystem," which describes how to reserve shared
objects for exclusive use, how to propagate changes, and how to operate concur-
rently with shared objects.

Project managers should read "Coordinating Development in a Subsystem" to man-
age project teams working on shared objects. Resources for gathering project-level
information and for tracking progress are documented in package WorkcOrder.

Project designers and integrators should read "Developing Applications Using Mul-
tiple Subsystems." This section summarizes design considerations for partitioning
projects into subsystems and describes how to set up subsystem interfaces and ex-
ecute a program composed of multiple subsystems.

PM-2 8/1/88 RATIONAL

CMVC Overview

Projects such as software applications or documents typically consist of many com-
ponent objects. For example, an Ada application typically consists of a set of
interdependent Ada compilation units such as procedures and packages; similarly, a
document such as this book of the Rational Environment Reference Manual consists
of a set of text files, with one file per chapter or major section. As development
and maintenance proceed, individual objects change, new objects are created, and
existing objects are deleted. Thus, over time, the contents of the individual objects
and the overall configuration of objects changes.

The Rational Environment provides the following kinds of support for managing
such projects:

• Project partitioning: You can break a project into a manageable number of
higher-level components called subsystems, each containing a group of logically
related objects. For Ada programs, subsystems are units of decomposition similar
to, but larger than, the Ada package, which preserve on a larger scale the Ada
notion of separate specification and implementation.

• Version control: You can control and track changes to individual objects within
each subsystem and record what changes were made and why they were made.

• Configuration management: You can construct, release, and maintain multiple
consistent sets (or configurations) of versions within each subsystem. (Each al-
ternative configuration constitutes a view of the subsystem.) At a higher level,
configuration management refers to combining views from each subsystem in or-
der to create entire applications.

The Environment's resources for project management are integrated into a set of
operations known as configuration management and version control (CMVC).

RATIONAL PM-3

CMVC Overview

Issues of Project Management
Software projects that contain a large number of Ada units pose certain management
problems:

• It can be difficult to reason about the application's overall design and to allocate
well-defined portions of the application to individual developers or teams.

• It can be difficult to keep track of dependencies among units and to prevent the
introduction of unwanted dependencies.

• Making changes can be time-consuming because the changes must be verified by
recompiling the changed units and all of their direct and indirect dependents.

• Recompilation dependencies make it difficult for individuals and teams to work
and test in parallel, because a change in one team's portion of the application
may entail recompilation of another team's portion.

• Preserving a consistent set of previous versions of units and coordinating access
to shared units can be time-consuming and error-prone.

Although using worlds or directories can make it easier to understand the high-level
structure of a large project, such use cannot solve the other problems of project
management listed above. Another more powerful kind of Environment library
structure, the subsystem, can be used instead to express and enforce an application's
design and to make CMVC operations available.

Subsystems
Subsystems encapsulate a program's compilation units in higher-level components,
just as Ada packages encapsulate related subprograms, type declarations, and the
like. Depending on its size, each subsystem can be assigned to an individual devel-
oper or to a team of developers.

Subsystems are more powerful than other libraries for the following reasons:

• Subsystems, like Ada packages, provide a means for defining and enforcing in-
terfaces among an application's components. These interfaces provide explicit
control over dependencies among units in different subsystems.

• Subsystem interfaces impose explicit bounds on the recompilation required after
changes are made to the implementation. With reduced recornpilation require-
ments, development teams can work and test in parallel.

• Subsystems provide a mechanism for developing alternative implementations of
an application's components. Execution and testing of the entire application is
a matter of specifying the desired combination of precompiled implementations,
one from each subsystem within an application.

• CMVC operations are available within subsystems for tracking unit changes, co-
ordinating access to shared units, and propagating changes across shared units.

PM-4 8/1/88 RATIONAL

CMVC Overview

Figure 2-1 represents an Ada application that has been encapsulated into subsys-
tems. The application's compilation units are represented with both a specification
and a body (dark shading), and dependencies among units are represented by ar-
rows. The units are partitioned into three subsystems (lightly shaded areas), whose
interfaces are represented by heavy arrows.

SUbsystem_1

Figure 2-1. A.n Application Partitioned into Three Subsystems

RATIONAL 8/1/88 PM-5

CMVC Overview

Version Control
When a component of an application is encapsulated in a subsystem, individual
objects in the component can be controlled-that is, made subject to version control.
Controlled objects must be checked out to be modified; checking out an object
reserves it for editing by acquiring the object's reservation token. When desired,
the modified object can then be checked in and made available for other users to
check out.

Every subsystem contains a CMVC database that records the changes made to each
controlled object. Each time an object is checked out and then checked in, a new
generation of the object is created in the CMVC database. Therefore, the CMVC
database records the contents of successive generations of each controlled object
within a subsystem, as indicated in Figure 2-2.

Objects Generations

1 - 2 - 3

1 - 2

1 - 2 - 3 - 4 - 5
CMVC Database~--------------------------------~

Figure 2-2. The CMVC Database

PM-6 8/1/88 RATIONAL

CMVC Overview

Configurations and Releases
Ada units in subsystems reside in program libraries and therefore can be compiled
using the normal Environment mechanisms. Each subsystem contains at least one
working library in which units can be checked out, modified, checked in, compiled,
and tested.

At any given time, the working library contains exactly one generation of each
object, usually the latest (although an object can be reverted to any previous gen-
eration stored in the CMVC database). A combination of generations, one per con-
trolled object in the library, is called a configuration; Figure 2-3 represents the
configuration for a sample working library.

1 - 2

CMVC Database

Objects Generations

1

Figure 2-3. A. Configuration Containing the Latest Object Generations

RATIONAL 8/1/88 PM-7

CMVC Overview

When a configuration of Ada units compiles satisfactorily in the working library,
a release of that configuration can be made. Each release is a frozen copy of the
working library and therefore is itself a full, compiled program library. Successive
releases can be thought of as "views," where a view is a "snapshot" of the contents
of a library at successive points in time. Accordingly, the released libraries and
working libraries within a subsystem are called views (more specifically, released
views and working views). A series of releases created from a single working view is
called a development path, as shown in Figure 2-4.

Working view

~c 1--=---,--
~ Release 1

Release 2

Release 3

Figure 2-4. A Development Path

PM-8 8/1/88 RATIONAL

CMVC Overview

As shown in Figure 2-5, the C:\f\'C database records not only individual object
generations but also the configurations of generations embodied in each view. The
C:\lVC database therefore makes it possible to revert to previous configurations or
to reconstruct deleted views.

Objectso 1

o 1

~ 1

3 I Release 211 Release 11 CMVC Database

Figure 2-5. Configurations in a Development Path

It is important to bear in mind that each view is both:

• A source configuration, in that it specifies a particular generation for each object
in the subsystem

• A program library, in that it enforces Ada semantic consistency among the spec-
ified generations

Thus, unlike other configuration-management facilities you may have used, CMVC
operations integrate configuration management with library compilation manage-
ment.

RATIONAL PM-9

CMVC Overview

Client view
SUbsystem_1

Spec view

Figure 2-6. A Client View Importing a Spec View

Interfaces among Subsystems
Interfaces can be defined between subsystems using different kinds of views. The
working and released views described above are load views; each load view contains
a full implementation of the application component that is encapsulated in the
subsystem.

A second kind of view, called a spec view, can be created to define the set of
implemented units that are potentially available, or visible, to units in views of
other subsystems. Spec views thus define a subsystem's exports; as such, spec views
can be imported by client views in other subsystems. When a client view from one
subsystem imports a spec view from another, dependencies can be set up among
units from the two subsystems. Subsystem imports and exports thus enforce design
decisions, because Ada context clauses (with and use statements) can reference
nonlocal units only from imported spec views.

For example, Figure 2-6 shows that Subsystem..I has load views implementing
three units. In addition, a spec view has been created in Subsysterru.l in order to
export one of those units. A client view in Subsystem..z imports the spec view in
Subsystemc.l , As a result, units in the client view can with or use the exported
unit.

PM-lO 8/1/88 RATIONAL

CMVC Overview

Subsystem interfaces are analogous to Ada package interfaces:

• A spec view is analogous to an Ada package specification, which defines the re-
sources that are available to client units.

• A load view is analogous to an Ada package body, which implements the resources
promised by the specification. (However, only one Ada package body implements
a package specification, whereas more than one load view can implement a given
spec view.)

• At the subsystem level, the import relation is analogous to a with clause; import-
ing enables a unit in a client view to actually with or use exported resources.

Because only spec views can be imported, client views compile against spec views,
not load views. Therefore units in a working load view can be changed without
requiring recompilation of any other views, provided that the working view remains
compatible with the spec view that defines its exports. By definition, a load view is
compatible with a spec view if it implements all of the resources made available by
the spec view.

This definition of compatibility is broad enough to allow a load view to differ in
certain specific ways from the spec view that represents it. For example, changes
to the private part of an exported unit are one important kind of change that
preserves compatibility. If a private type is changed in the load view, no change or
recompilation is required of the spec view or any of its client views. In this way,
subsystem interfaces make closed private parts possible.

By buffering recompilation for many kinds of changes, subsystem interfaces enable
su bsystems to be developed in parallel-a team of developers can change and test
the implementation in its own subsystem without necessarily causing recompilation
elsewhere. (However, design changes do not preserve compatibility and therefore
require modification of both the spec and the load views; a changed spec view can
affect client views in other subsystems.)

RATIONAL 8/1/88 PM-ll

CMVC Overview

Program Execution
A subsystem typically contains at least one spec view, against which client views
are compiled, and at least one load view, which contains the units that are actually
executed. As releases are made from the working load view, a single subsystem
typically accumulates multiple load views, each implementing the interfaces and
capabilities specified in a given spec view.

To execute an application composed of such subsystems, an execution table called
an activity must be set up to specify which of the alternative load views is to be
used from each subsystem. The activity contains one entry for each subsystem that
is required for execution. Activities thus specify combinations of load views for
execution.

Figure 2-7 represents an activity used for executing a program containing two sub-
systems. In this program, each view in Subsystem.i l imports, and is compiled
against, the spec view in Subsystem..Z. The activity specifies that the shaded re-
leases will be used during execution.

Subsystem_1

~
~

Activity

Subsystem Load view

SUbsystem_1 Release 3

Subsystem_2 Release 1

Figure 2-7. An Actil'it,Y Used for Executing Two Subsystems

PM-12 8/1/88 RATIONAL

CMVC Overvie:..•.

Activities provide a flexible means of constructing applications from a set of al-
ternative subsystem implementations. A number of activities can be created; for
example, one activity can specify all of the latest releases, and other activities can
specify customer-specific releases and the like. Recombinant testing is a matter of
editing an activity to specify precompiled views rather than recompiling an entire
application from scratch.

By choosing appropriate views from each subsystem, you can construct system
tests that include only one changed view. This will isolate the effects of specific
changes for testing purposes. For example, to test a new implementation of a
particular subsystem, an activity typically specifies the working view from that
subsystem, along with stable, tested released views from the other subsystems in the
application. The availability of both released and working views enables subsystem
development and testing to proceed in parallel, because each team can continue to
work in its own working view while other teams are testing against stable, frozen
releases that have known characteristics.

Parallel Development within Subsystems
Parallel development is possible unihin. subsystems as well as between them. When
a team is assigned to implement a subsystem, a separate subpath can be created for
each individual on the team. Subpaths are working views in which changes can be
made and tested; they are created as full copies from the path's working view, as
indicated in Figure 2-8.

~ .----------------- -- -- ------ - --.

Spec viewo
0 ~

00
Release 1

2 -
Path

Working

Alex Working

Figure 2-8. Subpetbs Created from a Meit: Patb

RATIONAL 8/1/88 PM-13

CMVC Overview

Editing can proceed without conflict because controlled objects are joined across
subpaths. Each joined object shares a single reservation token with the correspond-
ing object in the other subpaths; a given joined object can be checked out in only one
subpath at a time. In this way, a single set of generations is maintained for multiple
copies of an object. Figure 2-9 shows two subpaths containing joined objects.

Alex Working Sue Working- -
r "" r ""

Reservation
A' Spec token A' Specn t ----

I
lA'

I

BodYI lA' Body
Checked
out to

Alex_Working

'- ~ \... ~

Figure 2-0. Objects Joined across Two Subpaths

A subpath can become out of date when objects are checked out and modified
in other subpaths. Objects in a subpath can be brought up to date by accepiinq
changes, usually from the latest generation into that subpath.

Implementers working in two subpaths can access an object concurrently if it is
severed. Severing provides each copy of the object with its own reservation token,
so that each copy can be checked out independently. Separate sets of generations
are kept for severed objects. The contents of severed objects can be synchronized
later by merging changes from one object to the other.

In addition to supporting parallel development among multiple developers, subsys-
tems support the parallel development of different product variants (for example,
variants of the same application that are to execute on different target processors).
Separate development efforts within a single subsystem are maintained in multiple
development paths. Thus, two development paths can be used to develop an ap-
plication for execution on an RIOOO and on an MC68020 microprocessor. Similarly,

PM-14 8/1/88 RATIONAL

CMVC Overview

maintenance of a previously delivered application can continue in one path while
development of the next customer release proceeds along another path. Note that
units shared by product variants can be joined across paths, whereas units specific
to a particular variant can be severed.

Single-Library Applications and Documentation
Because subsystems are the context in which CMVC operates, they are useful even
for developing documentation and applications that can be contained in a single
library:

• Objects developed in a subsystem can be placed under CMVC control to save
history information for objects that are checked out and checked in.

• Notes and comments about each object can be recorded (see "Project Reporting,"
below).

• Releases can capture configurations at important points during development.
• For single-library Ada applications, spec views and activities can be used to

execute alternative implementations.

Project Reporting
Information about a CMvc-based project can be gathered in several ways. Each
generation of every controlled object has notes associated with it, which can be
used as a scratch pad for arbitrary commentary. In addition, the date, time, and
comments from checkout and checkin commands are automatically logged in an
object's notes. A scratchpad for notes is also associated with each release.

For more comprehensive project reporting, work orders can be used to define and
assign units of development work, often referred to as development tasks. When
development proceeds in response to a given work order, time-stamped comments
are logged to the work order whenever any command from package Cmvc is exe-
cuted. In addition, information characterizing individual tasks can be entered in
user-defined fields on each work order. Work orders can be queried to find out their
current status, who has done work against them, what units were affected, and the
like.

Work orders can be grouped for easy reference using work-order lists. For example,
a work-order list can reference all work orders assigned to a given developer or all
work orders that have been closed.

All the work orders for a given class of tasks are created from a single template
called a venture. Ventures are the place where user-defined work-order fields are
created; ventures also specify policies that govern the work done in response to their
work orders. For example, a policy can prevent a CMVC command from executing
unless the parameter for comments is filled in.

RATIONAL 8/1/88 PM-IS

CMVC Overview

Higher-Level Application Components
When an application consists of multiple subsystems, these subsystems optionally
can be included in an Environment object called a system. Inclusion in a system is a
way of identifying particular subsystems as components of a given application or of
a major portion of an application. Inclusion in a system also provides an automated
means of tracking the latest release from each subsystem and performing system
builds by creating activities that reference those releases.

Subsystems that are included in a system are called children of the system. After
a system's children are established, a release activity can be built in the system.
A release activity automatically contains an entry for each child subsystem that
specifies the latest release from that subsystem. When new releases are made in
the child subsystems, the release activity can be rebuilt so that it references these
new releases.

Release activities can be used to track current releases; they also can be used during
execution of the application. Frozen versions of release activities can be maintained
as releases within the system.

Multihost, MuItisite Development
When an application is partitioned into subsystems, it can be developed on multiple
RIOOOs,either at the same or at different geographic sites. Development on multiple
hosts accommodates very large applications and is especially useful when program
components are assigned to subcontractors.

When multiple R 1000s are used, each one hosts a copy of every subsystem in the ap-
plication. However, only one copy of a given subsystem, called the primary subsys-
tem, supports ongoing development. The other copies, called secondary subsystems,
essentially are local copies for execution and test.

Typically, each RIOOOhosts a primary subsystem and some number of secondary
subsystems. When a new release is made in a primary subsystem, that release can
be copied via network or tape into the corresponding secondary subsystems on each
of the other RlOOOs.On each RIOOO,the copied release then can be compiled with
releases from the other subsystems and the application can be executed.

Note that instead of copying the source for a load view, a code view can be made
on a primary subsystem and then copied into a secondary subsystem. A code view
contains only the executable code from the compiled load view. This no-source
view is especially useful when security requirements restrict visibility to portions of
source code.

PM-16 8/1/88 RATIONAL

Getting Started

This chapter covers the fundamentals of developing a single subsystem, specifically:

• Creating and traversing a subsystem
• Using configuration management and version control (CMVC) within a subsystem

These operations apply to any given subsystem, whether or not it is part of a larger,
multisubsystem program. This chapter focuses on creating one of three subsystems
in a sample program.

The Sample Program
Assume that a team of developers is implementing a basic mail program that will
enable users to:

• Send and receive messages
• Store messages in a mailbox
• Display and delete messages from the mailbox

Eight unit specifications have been defined, with the dependencies shown in Figure
3-1. At the highest level, the program has a main procedure called Rum.Mail, which
makes a series of commands available for manipulating mail messages. Rune.Mail
depends on CommandcUtilities, which provides the interface for entering mail com-
mands.

The basic object in the mail system is the message, which is defined in package
Messages. Messages consist of lines (defined in package Lines) and have addresses
to which they are sent (defined in package Destinations). Objects such as lines and
destinations are strings of unknown length; resources for handling such strings are
provided in package Unbounded. Package Symbolic..Display handles the display of
messages. Finally, messages are stored in mailboxes, which are defined in package
Mailbox.

RATIONAL 8/1/88 PM-17

Getting Started

Figure 3-1. Units in the Mail Program

The project designer has decided to use three subsystems to partition the program's
units into logical groupings. These subsystems are:

• Command..Interpreter, which contains units implementing the mail system's user
interface

• Mailbox, which contains units implementing mailboxes for storing messages
• MaiL Utilities, which contains units implementing the mail system's basic ele-

ments

PM-I8 8/1/88 RATIONAL

Getting Started.

Figure 3-2 represents the proposed partitioning of the mail program. Dependencies
are indicated at the subsystem level by heavy arrows. Note that the MaiL Utilities
subsystem does not depend on either of the other subsystems in the program (that is,
no units in the MaiL Utilities subsystem depend on units from other subsystems).
In this sense, the MaiL Utilities is the bottom layer of the program and will be
developed first.

Command_Interpreter

Mailbox

Figure 3-2. The Mail Program Partitioned into Subsystems

RATIONAL 8/1/88 PM-19

Getting Started

Creating a Subsystem
The subsystems of a program such as the mail system typically are created within
a single project library. A project library is a world that eventually may contain
not only subsystems, but also libraries for documentation, an optional main driver
for the program, and any activities used for executing the entire program.

In this example, assume that a project library called !Programs.Mail exists and that
you are responsible for creating the MaiL Utilities subsystem in it.

To create a subsystem:

1. In a Command window, enter the Cmvc.lnitial command with the name of the
subsystem you want to create. For example:

Cmvc.lnitial (S~stem_ObJect => "Mail_Utilities");

Assuming that the command was entered in the context !Programs.Mail, the sub-
system !Programs.Mail.MaiL Utilities is created.

For most purposes, it is sufficient to specify only the System..Object parameter and
to use the default values for the remaining parameters.

Internal Structure of a Subsystem
Subsystems are created containing various libraries, which in turn contain directo-
ries, files, and other objects. Although much of this predefined internal structure
is for the Environment's use, there are several libraries and files that users need to
know about.

Figure 3-3 shows the MaiL Utilities subsystem.

IProQrams Mail Mall Utilities Library (Subsystem)·
ConfiguratIons Library (DIrectory);
Revl_~orking Library (Load_View);
State Library (DIrectory);

w>
Figure 3-3. The MaiL Utilities Subsystem

PM-20 8/1/88 RATIONAL

Getting Started

As shown in Figure 3-3, the newly created subsystem contains three libraries:

• A directory called Configurations, which contains summary information about
each view in the subsystem (see "Representation of Releases," later in this chap-
ter)

• A program library called RevL Working, in which your ongoing work takes place
(see "Working Views," below)

• A directory called State, which contains information about the underlying objects
in the subsystem

Within a subsystem, users can create other directories for tests or documentation,
as desired. (However, worlds must not be created within subsystems.)

Working Views

Every subsystem is automatically created containing a working view. A working
view is the program library in which the subsystem's Ada units actually are devel-
oped. Although frozen "snapshots" of your work (called releases) can be made from
a working view, the working view itself is never frozen, so it is always available for
further development.

By convention, the working view's name ends with the string" _ Working". The first
portion of the working view's name is specified by the Working., View..Basec Narne
parameter of the Cmvc.lnitial command. Because the example used the default
value ("Rev1") for this parameter, the name of the subsystem's working view is
RevL Working.

Views such as MaiL Utilities.RevL Working are created with predefined internal
structure. As shown in Figure 3-4, MaiLUtilities.RevL Working contains four di-
rectories.

IPro~rams Mall Mall UtilitIes Reyl \!'orkio~ Library (Load View)
Exports
Imports
State
Uoi ts

LIbrary (Directory);
Library (Directory).
LIbrary (Directory);
LIbrary (Directory).

,-.9sm:: »

Figure 3-4. The Working View MaiLUtilities.Revl_ Working

As in subsystems, views can contain additional user-created directories (not worlds).

RATIONAL 8/1/88 PM-21

Getting Started

A view's four predefined directories are:

• Exports, in which users can create export restriction files (see the chapter entitled
"Developing Applications Using Multiple Subsystems")

• Imports, in which users can create import restriction files (see the chapter entitled
"Developing Applications Using Multiple Subsystems")

• State, which contains files and other objects that provide information about this
view to various CMVC commands

• Units, in which the subsystem's Ada units will be created and edited (note that
other user-defined objects, such as text files, also can be kept in the Units direc-
tory)

Of these directories, it is the Units directory in which you will do your day-to-
day work. The other directories are described in the chapter entitled "Developing
Applications Using Multiple Subsystems."

Note that subsystems and views both contain directories called State. In the course
of developing a program, you may need to edit or view one or more of the files in the
view's State directory; however, you normally will not need to visit the subsystem's
State directory.

Predefined Library Charaderisties
By default, the working view within a subsystem is created with certain predefined
library characteristics such as library switches, target keys, links to Environment
commands and tools, and additional user-defined subdirectories. These library char-
acteristics are copied from a model world, which is specified by the Model parameter
in the Cmvc.lnitial command.

The links provided by a view's model world determine the Environment resources
that are visible to the units in that view. Note that a model controls visibility only
to units that are not defined in other subsystems. Units defined in other subsystems
are made visible through imports.

The Environment provides several standard model worlds that provide different sets
of links:

• !Model.RlOOOprovides links to most common Environment commands and tools-
for example, packages l'Ioole.String., Utilities, l'Tools.Tlme.; Utilities, and the like.
!Model.RlOOOis the default model world specified by the Cmvc.lnitial command
and was used in creating Mail., Utilities in the sample program.

• !Model.RlOOo_Portable provides links only for Ada-specified standard facilities-
for example, packages Calendar, Textc.Io, UncheckedcConversion, and the like.
As its name implies, !Model.RlOoO_Portable ensures a program's portability .

• !Model.Rlooo_Implementation provides links for system programming facilities
and for many programmatic interfaces to the Environment.

PM-22 8/1/88 RATIONAL

Getting Started

When creating a subsystem, you can choose among the standard model worlds or
you can specify a user-defined model world, which can be any existing Environment
world with the desired links, switches, and the like. A view's model world can
be replaced using the Cmvc.Replace..Model command. For more information on
models, see "Setting Up Subsystems: A Second Look," in the chapter entitled
"Developing Applications Using Multiple Subsystems."

Setting Up the Units Directory
After a subsystem has been created, you can prepare the Units directory in either
of the following two ways:

• Create Ada units and files directly in the Units directory of the subsystem's
working view

• Copy Ada units and files from other Environment libraries into the Units directory

In the Mail., Utilities example, assume that the specifications for packages Un-
bounded, Messages, and Lines already exist in another Environment library. In
this case, you can use the Library.Copy command to put these objects into the
Units directory of RevL Working in the MaiL Utilities subsystem. The bodies for
these packages, as well as the specifications and bodies for Symbolic..Display and
Destinations, can be created in the Units directory. Figure 3-5 shows the Units
directory after units have been created and copied.

IProQrams Mall Mail Utilities Reyl Working Units Library (Directory)'
DestInatIons
DestInations
LInes
LInes
Messages
Messages
Symbo l icclri sp l ay
Symbolic_DIsplay
Unbounded
Unbounded

S Ada (Pack_Spec);
S Ada (Pack_Body);
S Ada (Pack_Spec),
S Ada (Pack_Body),
S Ada (Pack_Spec);
S Ada (Pack_Body),
S Ada (Pack_Spec);
5 Ada (Pack_Body);
S Ada (Pack_Spec);
5 Ada (Pack_Body);

Figure 3-5. The Units Directory in MeilsUtilities.Revl : Working

RATIONAL 8/1/88 PM-23

Getting Started

Figure 3-6 represents the internal structure of the MaiL Utilities subsystem.

I
Configurations

I
State

I
Exports

Rev1_Working

I
I

Units

I,.-----~ I
Destinations Lines Messages

I
State

I
Imports

• • •...

Figure 3-6. Tbe Structure of the Msii: Utilities Subsystem

If you need to accommodate a large number of units, you can organize these units
in the following ways. You can:

• Subdivide the Units directory by creating other directories within it
• Create additional directories in the view, at the same level as the Units directory

Note that directories, not worlds, should be created. Furthermore, such user-defined
directory structure can be created automatically by predefining it in the model
world; see "Setting Up Subsystems: A Second Look," in the chapter entitled "De-
veloping Applications Using Multiple Subsystems."

PM-24 8/1/88 RATIONAL

Getting Started

Controlling Objeds Using CMVC
Objects in a working view can be put under CMVC to track change history. When an
object is made controlled using CMVC, that object is registered in the CMVC database
for the enclosing subsystem. (Each subsystem has its own CMVC database.) All
changes made to a controlled object are recorded in the CMVC database to permit
the reconstruction of earlier versions of the object, if needed.

Controlled objects must be reserved, or checked out, before they can be modified.
Checking out an object instructs the CMVC database that a new generation of the
object is to be created. The CMVC database associates a reservation token with each
object; these tokens are used by the CMVC database to keep track of checked-out
objects.

Any file, Ada unit, or subunit in a working view can be made controlled, including
objects in user-defined directories. (Note, however, that objects in the view's State
directory cannot be made controlled, because the Environment must be able to
access these objects freely.)

You can make an object controlled at any time during its development; change
history is recorded from that point on. The earlier in its development that you
make an object controlled, the more change history will be recorded for that object.
Note that you should make an Ada unit controlled only after its Ada name (for
example, Destinations) appears in the Units directory listing. Do not make a new
Ada unit controlled while it has a temporary name (for example, "_Ada_8_").

To make one or more objects controlled:

1. In a Command window, enter the Make..Controlled command with the names
of the objects to be controlled. You can use a naming expression to specify
multiple objects.
For example, assume that you are viewing the Units directory of MaiL Utilities-
.RevL Working. Entering the following command from this context controls all
the units in the Units directory:

Note that objects cannot be created controlled; they must be made controlled ex-
plicitly. It is not necessary to make every object in a view controlled.

Special Note: Controlling Binary Objeds

By default, controlled objects are represented textually in the CMVC database;
changes to such objects are recorded as changed lines of text. This is appropriate for
objects such as Ada units and text files. However, such recording is not appropriate
for binary objects, which may not have an ASCII representation. Therefore, when
making binary objects controlled, you must request that the CMVC database not
"save source" for these objects. To do this, enter the value false for the Save..Source
parameter of the Cmvc.Make.i Controlled command.

RATIONAL 8/1/88 PM-25

Getting Started

Objects for which source is not saved still must be checked out before they can be
modified; however, earlier generations cannot be reconstructed for them. Through-
out this and subsequent chapters, it is assumed that all objects have source saved
for them.

Editing Controlled Objects
Before you can edit a controlled object, you must check it out using the Cmvc-
.CheckcOut command. For example, assume that you want to edit Messages'Body.
To do so:

1. Select the desired unit or put the cursor in its image.
2. Enter the Cmvc.Check..Out command, optionally filling in the Comments pa-

rameter (see "Collecting and Displaying Information about Generations," be-
low).

3. Display the unit and open it for editing with the Common.Edit command.

You can check out multiple objects by using a naming expression with the Cmvc-
.Checkc.Out command.

Note that Cmvc.Check..Out checks out a unit to a view, not to a particular user.
Consequently, if a unit in MaiLUtilities.RevL Working. Units is checked out, anyone
with access to MaiLUtilities.RevL Working can modify the object.

When you have finished modifying the object and you want the changes you made
to be recorded in the CMVC database, you must check in the object. For example,
to check in a displayed object:

1. Select the unit you want to check in or put the cursor in its image.
2. Enter the Cmvc.Check..Jn command, optionally filling in the Comments param-

eter (see "Collecting and Displaying Information about Generations," below).
If the object was open for editing, the Cmvc.Check..In command closes it.

You can use a naming expression with the Cmvc.Check..Jn command to check in
multiple objects.

Generations and Versions

Each time you check out an object, a new generation of that object is created in the
CMVC database. Editing changes are collected in the new generation and saved in
the CMVC database only when you check in the object. Thus generations capture
the changes made from checkout to checkout.

Each generation of an object is numbered, starting with generation 1. Generation
1 is created when you make an object controlled; initially generation 1 contains
the text of the object at the time it was made controlled. Over time, the CMVC
database builds up a series of numbered generations for each controlled object.

PM-26 8/1/88 RATIONAL

Getting Started

A generation differs from a version, which is created each time you use Common.Edit
to open a unit for editing. Because you can open and close a unit for editing multiple
times while it is checked out, a given generation can include the changes made in
multiple versions. (The same is true for text files, except that new versions of text
files are created whenever you use Common.Commit.) The relationship between
versions and generations is shown in Figure 3-7.

i CMVC
, generation 1 2

Library
versions

Checkout Check out

Figure 3-7. Generations and Versions

Note that versions are saved in libraries, and the number of saved versions is limited
by the retention count for the library. In contrast, generations are saved in the
C:-'IYC database, which saves every generation back to generation 1. (To save space,
successive generations are saved as changed lines of text from which full textual
images can be reconstructed.)

Canceling a Checkout

Although checking out an object reserves a new generation, the generation is saved
in the C~IYC database only when the object is checked in. If you check out an
object and then decide that the new generation should not be saved, you can cancel
the checkout instead of checking the object back in. You can cancel a checkout by
abandoning your reservation on the object. Abandoning a reservation discards a
generation whether or not changes have been made during that generation.

RATIONAL 8/1/88 PM-27

Getting Started

For example, assume that checking out Destinations'Body creates generation 4 and
that you have made changes that you want to discard. As long as you have not
checked in Destinations'Body, you can cancel generation 4 and return the unit to
generation 3. To abandon your reservation on an object:

1. Designate the object whose reservation you want to abandon.
2. Enter the Cmvc.Abandon..Reservation command, using default parameters.

Reverting to a Previous Generation

You can go back to any previous generation of an object using the Cmvc.Revert
command. An object can be reverted on a temporary basis or it can be reverted so
that subsequent development can proceed from the older generation.

Reverting an object on a temporary basis means that you can look at a previous
generation, compile against it, and even make releases including it. However, if
you check out the reverted object, its latest generation is retrieved from the CMVC
database, so that subsequent development proceeds from the latest generation. For
example, to revert SymboliccDisplay'Body from generation 5 to generation 4 on a
temporary basis:

1. Designate the object you want to revert. The object must not be checked out
currently.

2. Enter the Cmvc.Revert command, using default parameter values. (By default,
the Cmvc.Revert command goes back one generation.)

If you check out Symbollc..Dlsplay'Body at this point, generation 5 is restored and
made available for editing.

Now assume that you want to revert Messages'Body from generation 8 and continue
development from generation 6. To do this:

1. Designate the object you want to revert. The object must not be checked out
currently.

2. Enter the Cmvc.Revert command, using nondefault values for the To..Oenera-
tion and Make..Latestc.Generation parameters:

Cmvc.Revert (To_Generation => 6.
Make_Latest_Generation => True);

As a result, a new generation (generation 9) is made, which contains a copy of the
contents of generation 6.

PM-28 8/1/88 RATIONAL

Getting Started

Colleding and Displaying Inrormation about Generations

When you use the Cmvc.Check..Out and Cmvc.Check..In commands, you can pro-
vide commentary through the Comments parameter. This commentary is stored
with the notes for the relevant generation. You can view the notes for a genera-
tion using the Cmvc.Notes command. Additional information can be entered into a
generation's notes using the Common. Edit and Common.Commit commands from
the window displayed by Cmvc.Notes. The Cmvc.Notes command also displays the
date and time at which the generation was checked out and checked in.

You can view change history between specified generations of an object using the
Cmvc.Show_History_By_Generation command. Among other things, this com-
mand displays:

• The notes for each generation
• When each generation was created
• The lines that were changed from generation to generation

An alternative method for viewing change history is to display an expanded gener-
ation image using the Cmvc.Edit command. See the introduction to package Cmvc
for information about generation images.

Compiling Units in a Subsystem
Because a view is a program library, units in a view are compiled using the same
Environment facilities that are used for compiling units in worlds and directories.
Units can be promoted from the source state, through the installed stated to the
coded state, and then executed. As usual, the Environment automatically deter-
mines the compilation order. Units need not be checked in to be compiled.

The units in MaiLUtilities.RevL Working can be compiled successfully because the
model world for the view provides all of the required links to Environment resources.
If the units in a view depend on units from views in other subsystems, then those
views must be imported to make compilation successful.

Test programs can be developed and executed within MaiLUtilities to unit-test the
resources in each package. However, an activity is required for execution in views
that depend on imports.

Note that you can make a spec view at this point to define the units to be exported
from the Mail., Utilities subsystem. However, you need do this only when another
subsystem is ready to compile against the units in MaiL Utilities. Making a spec
view is not required for development within a single subsystem.

Creating spec views, importing, and using a.ctivities are covered in the chapter
entitled "Developing Applications Using Multiple Subsystems."

RATIONAL 8/1/88 PM-29

Getting Started

Releasing Configurations
As you develop units in a working view, you can preserve certain significant combi-
nations (configurations) of generations. You can do this by making a release from
the working view. A release typically represents a baseline configuration that has
been compiled and tested, and thus is considered stable and usable for execution by
other subsystems. Releases also can serve as reference points in the development
history of a single subsystem.

Several kinds of releases can be made, depending on your needs:

• Released views, which preserve both the source code and the compilation infor-
mation to permit execution.

• Configuration releases, which preserve enough information about configuration
state to permit the construction of released views.

• Code views (also called code-only releases), which permit execution without mak-
ing program source code available. Code views typically are made from a work-
ing view for use by the developers of other subsystems, particularly when the
subsystems are developed on different RIOOOs. See the Cmvc.Make.rCode., View
command.

Released views and configuration releases are discussed below.

Released Views
A released view (also called a full-view release) is a complete, frozen copy of a
working view. As such, a released view contains program source code, and, if the
released view has been compiled, the units in the released view can be executed.
You should make a released view from a compiled working view whenever you want
to both preserve a configuration in a working view and be able to execute its units.
Note that when a release is made from a working view that contains compiled Ada
units, the release is created by copying the compiled units; no recompilation is
necessary when creating releases.

Released views are created using the Cmvc.Release command with default parame-
ter values. For example, assume that development in MaiLUtilities.RevL Working
has reached the point at which you want to release this view. To make a release
from a working view:

1. Compile the view's units, if desired. (Once the released view is created, it is
frozen, so units in it cannot subsequently be compiled or otherwise changed.)

2. Designate the working view to be released. For example, select the view's entry
in the subsystem image.

3. Enter the Cmvc.Release command, using default parameters.

PM-30 8/1/88 RATIONAL

Getting Started

As shown in Figure 3-8, a released view named RevLO_l is created within Mail-
_Utilities. (Naming conventions are covered in "Release Names," below.)

ConfIguratIons
RevL0_1
Revl_liorking
State

utIlities LIbrary (Subsystem) .Iprograms Mail Mail
Library (DIrectory);
Library (Load_View);
Library (Load_VIew);
LIbrary (Directory);

Figure 3-8. The Mail_Utilities Subsystem with Released and Working "'iews

A released view has the same predefined libraries and library characteristics as the
working view from which it was created.

Configuration Releases

A configuration release preserves the state of a working view, without creating
a released view. As such, a configuration release is a summary of configuration
information from which a released view subsequently can be constructed, if desired.
You should make a configuration release when you want to keep a record of a
particular configuration, but you do not need to execute the units immediately.
Making a configuration release is faster and uses less storage than making a released
view. However, reconstructing a released view from a configuration release requires
complete recompilation of the Ada units within the view.

To make a configuration release:

1. Compile the view's units, if desired.
2. Designate the working view to be released. For example, select the view's entry

in the subsystem image.
3. Enter the Cmvc.Release command, changing the default value of the Create-

_Configuration_Only parameter to true:

Cmvc.Release (Create_ConfIguratIon_Only => True);

RATIONAL 8/1/88 PM-31

Getting Started

Representation or Releases

Making any kind of release creates two objects in the subsystem's Configurations
directory, namely:

• A configuration object, which essentially contains a list of particular generations
of controlled objects in that view

• A state description directory, which contains files that store switch values, the
names of exported and imported views, the name of the model world, and the
like

When you make a released view, both of these objects are created in addition to the
frozen view. In contrast, when you make a configuration release, only the objects
in the Configurations directory are created.

For example, Figure 3-9 shows the MaiL Utilities subsystem and the MaiLUtilities-
.Configurations directory after both a released view (Rev LiOc.I] and a configuration
release (RevLO_2) have been made. Note that a configuration object has the same
simple name as the corresponding released view.

IProQrams Mail Mail
Conflgurations
RevL0_1
Revl_W'orking
State

Library (Dlrectory);
Library (Load_View);
Library (Load_View);
Library (Directory);

(Subsystem) .Utilities Library

.;:~ i-en - ->
IProQrams Mail Mail Utillties ConfiQurations Library (Directory)·

RevL0_1
RevL0_LState
RevL0_2
RevL0_LState
RevLW'orking

Fi le (Config).
Library (Directory);
File (Conflg).
Library (Directory).
File (Config).

a

Figure 3-9. The Meil.Utilities Subsystem and Its Configurations Directory

PM-32 8/1/88 RATIONAL

Getting Started

Together, a configuration object and a state description directory contain all the
information the Environment needs to construct a released view from the history
stored in the CMYC database. (Use the Cmvc.Build command.) However, a view
constructed from a configuration release may differ from a released view as follows:

• A released view contains a copy of every object from the working view I controlled
or not.

• A view constructed from a configuration release contains only controlled objects
for which source is saved in the CMVC database.

Because configuration objects are created for each released view, you can destroy
released views to save space and later reconstruct them, if needed. (Use Cmvc-
.Destroy., View and Cmvc.Build, respectively.) Note once again that only controlled
objects can be rebuilt. See "Managing Views" in the chapter entitled "Coordinating
Development in a Subsystem."

Development Paths
A working view followed by a sequence of releases through time is called a develop-
ment path. In a path, ongoing development continues in a working view and releases
serve as "snapshots" of the working view made over time. As releases are made, a
single subsystem comes to contain many views and configuration objects, each rep-
resenting an alternative implementation of the program component encapsulated
by the subsystem. Figure 3-10 shows the development path in MaiL Utilities with
several releases, including a configuration release (shown with broken lines).

--------- ---- ----

.. ~.... :.',' :1:

Figure 3-10. A Development Path in Msii: Utilities

RATIONAL 8/1/88 PM-33

Getting Started

Release Names

The Environment automatically constructs the names of released views and con-
figuration objects (code-view names are entirely user-defined). A released view
and its corresponding configuration object share the same simple name, which is
constructed from two components:

• A pathname prefix (for example, "Revl"). By convention, the pathname prefix
of a view name is the portion of the name up to the first underscore .

• A set of release level numbers (for example, "_0_1").

By default, the pathname prefix in a release name is the same as the base name of
the working view from which the release was made. In the MaiL Utilities example,
"Revl" appears in the release name because the working view base name is "Rev 1".

Although the working view and the releases in a path share the same name prefix
by default, it is possible to distinguish a special release by overriding autogenerated
release names. To do this, you can specify a nondefault string for the Release..Name
parameter of the Cmvc.Release command. The specified string is used as the entire
release name, without adding release level numbers. For example, you may want to
specify a release name like "Fieldc.Release" for a release that is shipped to customers,
using "Rev 1" in the names of all interim development releases.

Release Level Numbers

The pathname prefix in a release name is followed by a set of release level numbers,
which are separated by underscores. By default, two release level numbers are
provided, which you can use to define a series of major and minor releases. The
path in Figure 3-10 shows two releases at the minor level (RevLO_l and RevLO_2)
followed by one major level release (RevLLO).

Release numbers are incremented automatically by the Environment at the mi-
nor level, unless you specify a different level using the Levels parameter in the
Cmvc.Release command. In a released view, release numbers are incremented re-
gardless of the kind of release.

The number of release levels that can be incremented is determined by a user-
created file called Levels in the subsystem's model world. This file should contain
a single integer. (If the model contains no Levels file, two release levels are used.)

PM-34 8/1/88 RATIONAL

Getting Started

Note that the release level numbers replace the" _ Working" suffix that appears in
the working view name:

Rev1_Working
L-...-JI I

I I
Path Suffix
name
prefix

Rev1 0 1- -
~~

Path Release
name level
prefix numbers

Figure 3-11. Structure of riew Names

Library Management Operations for Controlled Objects
Library management operations, such as deleting, withdrawing, moving, and re-
naming objects, involve extra steps when those objects are controlled. In most
cases, the extra steps are required to remove the objects in question from C~fYC
control so that the change can be made.

Deleting Objects

To delete a controlled object:

1. Remove the object from C:\IYC control with the Cmvc.Make..Uncontrolled com-
mand.

2. Delete the object using, for example, Common.Object.Delete.

Withdrawing Objects

To withdraw a controlled object:

1. Remove the object from C\IYC control with the Cmvc.Make., Uncontrolled com-
mand.

2. Withdraw the object using, for example, Ada. Withdraw.

Moving Objects

Objects must be made uncontrolled for other operations that involve implicit dele-
tion. For example, assume that you have several subdirectories within the Units
directory of a view, and you want to move an object from one subdirectory to
another. To do this:

RATIONAL 8/1/88 PM-35

Getting Started

1. Remove the object from CMVC control with the Cmvc.Make..Uncontrolled com-
mand.

2. Move the object to the desired directory using, for example, Common.Object-
.Move.

3. Make the object controlled again using Cmvc.Make..Controlled.

Note that objects are known to the CMVC database by their pathname within the
view. Moving an object from one subdirectory to another within a view changes that
pathname and thus involves implicitly deleting one controlled object and creating
a new one. History for the object in its original directory is still maintained by the
Cl\fVC database under the object's original name; the object in its new location is
made controlled as generation 1.

Renaming Ada Units
Renaming an Ada unit entails withdrawing it from the library, which involves im-
plicit deletion. To rename an Ada unit:

1. Remove the unit from CMVC control with the Cmvc.Makec.Uncontrolled com-
mand.

2. Withdraw the unit from the library, using Ada.Withdraw, The unit's Ada name
is replaced with a temporary name, such as "_Ada.-6_".

3. Edit the unit to change its Ada name.
4. Install the unit with its new name in the library using, for example, Ada.Install-

_Stub.
5. Make the object controlled again using Cmvc.Make..Controlled.

Note that changing a unit's kind (for example, from function to procedure) without
changing its name must be done with care. This kind of change requires that the
Cl\fVC database be expunged, which results in loss of history for that object. See
the Cmvc_Maintenance.Expunge_Database command.

PM-36 8/1/88 RATIONAL

Coordinating Development in a Subsystem

When a subsystem encapsulates a program component that is large enough, it
may be necessary to assign that subsystem to a team of developers rather than
to a single developer. When a team of developers needs to work on units in the
same subsystem, multiple development subpaihs can be set up within the subsystem
to facilitate parallel development. A separate subpath can be assigned to each
developer on the subsystem team.

In addition to separate subpaths within a single path, multiple paths also can be
set up to accommodate distinct development efforts within the subsystem. Multiple
paths are necessary when different development efforts require variant implemen-
tations of the subsystem-for example, for multiple-target development. Whereas
paths represent distinct variants of an application component, subpaths within a
path are intended for the eventual release of a single variant.

Creating a Subpath
Subpaths are full copies of the working view in a path and, as such, are working
views themselves. Within each subpath, units can be edited, compiled, and tested,
as in any program library. Because each subpath contains a copy of every unit in the
path, compilation and execution in one subpath do not interfere with compilation
and execution in the others. Furthermore, the right to modify units is coordinated
across subpaths so that only one copy of a unit can be edited at a time.

A subpath is created from an existing working view, such as MaiL Utilities.Revl-
_ Working. By convention, the Environment constructs each subpath name from:

• The pathname prefix from the original working view (for example, "Revl") .
• The subpath name extension that you specify when you create the subpath. This

extension typically is used to identify the developer to whom the subpath is
assigned.

• A suffix such as "_Working". If releases are made from a subpath, then release
numbers appear in place of the suffix.

RATIONAL 8/1/88 PM-37

Coordinating Development in a Subsystem

For example, assume that two additional developers (Larry and Sue) are to help
maintain the Mail., Utilities subsystem and that you are responsible for setting up
subpaths for them. To create a subpath for Larry:

1. In the working view from which the subpath is to be created (RevL Working),
make sure that the desired objects have been made controlled. (Objects that
are controlled in RevL Working will be controlled automatically in the new
subpath; see "Developing with Joined Objects," below.)

2. Display the subsystem and designate the working view from which the subpath
is to be made (in this example, RevL Working).

3. Enter the Cmvc.Make..Subpatb command, specifying the New..Subpathc.Exton-
sion parameter. For example:

Cmvc. Make_Subpath (New_Subpath_Extens Ion => "Lar-r-q"}:

As a result, a subpath view named Rev LiLarry., Working is created in MaiLUtilities.
At this point, you can create a subpath for Sue and you can either set up a subpath
for yourself or continue working in the main path, RevL Working. (Typically, the
integrator for the subsystem continues to use the working view from the main path.)
Figure 4-1 shows the MaiLUtilities subsystem with sub paths for Sue and Larry:

IproQrarns Mall Mall Utilities lIbrary (Subsys tern).
ConfIgurations Library
Revl_0_1 Library
Revl_Larry_~orklng Library
Revl_Sue_~orking Library
Revl_~orklng LIbrary
State Library

(Directory) ;
(Load_View) .
(Load_View) ;
(Load_View) ;
(Load_View) ;
(Di rectory) .

.~L'-~-_~ --;; .;

Figure 4-1. The Mail-Utilities Subsystem with Subpath Views

Developing with Joined Objects
Development is coordinated across subpaths because subpath views are automati-
cally joined with each other through the working view from which they were created.
When subpaths are joined, each controlled object in a given subpath is joined with
the corresponding objects in the other subpaths, Corresponding objects in different
subpaths originate as copies of the same object and have the same name from the
view name down. For example, the views RevL Working, Rev L.Larry.; Working,
and RevLSue_ Working each contain an object called Units.Destinations'Spec, and
these three instances of Units.Destinations'Spec are joined. A set of joined objects
is called a join set, as shown in Figure 4-2.

PM-38 8/1/88 RATIONAL

Coordinating Development in a Subsystem

Units
Destinations'Spec

Destinations'Spec Destinations'Spec

----~-. ----_._-- ---~

Figure 4-2. The Join Set for Destiuetious'Spec

Although the objects in a join set are separate library objects, they are treated as
a single entity by the C~IVC database:

• Objects in a given join set share a single reservation token. Consequently, a joined
object can be checked out in only one view at a time.

• Objects in a given join set are represented as a single series of generations stored
in the C~IYC database. Consequently, changes made to one object in a join set
can be propagated automatically to the other objects in the set.

Only controlled objects can be joined across views, so it is important to make the
appropriate objects in a working view controlled before you create subpaths. Un-
controlled objects are copied into subpaths; however, because uncontrolled objects
are not joined, they can be modified independently.

Checking Out a Joined Object

Because a joined object can be checked out in only one view at a time, the Cmvc-
.Checkc.Out command quits if you try to reserve an object that has been checked
out in another view. For example, assume that Larry has checked out the unit
Destinations'Body in the subpath Rev Ld.arry., Working. If you now attempt to
check out Destinations'Body in RevLWorking, the Cmvc.Check..Out command
quits with error messages informing you that the unit is already checked out.

RATIONAL 8/1/88 PM-39

Coordinating Development in a Subsystem

To determine where a unit is checked out:

1. Designate the unit for which you want further information. In this example,
you can select Destinations'Body in RevL Working. Units.

2. Enter the Cmvc.Show command using default parameter values.

As a result, a display as shown in Figure 4-3 appears in the output window.

88/02/23 1438.27 [CmvcShow (Objects => "<CURSOR>")).
Views sharing tokens with IPROGRAMS MAIL.MAIL_UTILITIES REVl_~ORKINGUNITS DESTI

IPROGRAMS.MAIL MAIL_UTILITIES REVl_SUE_~ORKING
IPROGRAMS MAIL MAIL_UTILITIES REVl_LARRY_~ORKING

Object Name Generatlon ~here Chkd Out By Whom======================= ========== ================== ---------------- ========UNITS DESTINATIONS 'BODY 4 of 5 REVl_LARRY_~ORKING
88/02/23 14.38 32 [Show has finlshed).

Yes LARRY

kg ==- .,
Figure 4-3, Showing Where a Joined Unit Is Checked Out

The display in Figure 4-3 indicates, among other things, that Destinations'Body
currently is checked out in the view Rev L.Larry., Working and that the user who
checked it out was Larry. (Note that any user who has access to a view such as
Rev l cLarry., Working can check out an object.) When Destinations'Body is checked
in to Rev l LLarry., Working, you will be able to check out the corresponding unit
in RevL Working. The Cmvc.Edit command also can be used to display checkout
information; see the introduction to package Cmvc.

Keeping Joined Objects Updated
When a developer working in one subpath checks out a joined object, the other
objects in the join set are rendered out of date by at least one generation. For ex-
ample, the display in Figure 4-3 indicates that Destinations'Body in RevL Working
is out of date, because it contains generation 4, whereas the latest generation for
units in the join set is generation 5. (Generation 5 was created when Destina-
tions'Body was checked out in Rev l cLarry., Working; this generation will be saved
when Destinations'Body is checked in.)

The Environment provides several ways to propagate changes among joined objects
to keep these objects up to date in each subpath:

• Changes are automatically propagated when objects are checked out. That is,
the checkout operation ensures that you always have the latest generation for
editing.

• Users can explicitly request that changes are propagated to objects without check-
ing them out. This is called accepting changes.

PM-40 8/1/88 RATIONAL

Coordinating Development in a Subsystem

Retrieving the Latest Generation at Checkout

The Cmvc.Check..Out command automatically retrieves the latest generation of an
object from the C;'vfVC database. For example, assume that Destinations'Body has
been checked in, so that Rev L.Larry., Working has the latest generation (genera-
tion 5). If you now check out Destinations'Body in RevL Working, the checkout
operation:

• Replaces the contents of Destinations'Body in RevL Working with the latest
saved generation (generation 5)

• Creates the next generation (generation 6)' which will store the changes you make
while the unit is checked out

Accepting Changes

You can use the Cmvc.AccepLChanges command to update units in your subpath
without having to check out those units. For example, assume that RevLLarry-
_ Working has created and saved generation 4 of package Lines'Body and that Sue
wants to test the units in Rev LiSue., Working against this generation. Sue does not
want to check out Lines'Body because she does not want to edit it, nor does she
want to create a new generation of it.

To update a unit to the latest generation without checking it out, she can:

1. Designate the unit to be updated. For example, she can select Lines'Body in
Rev L.Sue., Working.

2. Enter the Cmvc.AccepLChanges command, using default values for all param-
eters.

As a result, Lines'Body in Rev LiSue., Working is updated to the latest generation,
which is generation 4.

When both a unit specification and body need to be updated, you must accept
changes into the specification before accepting changes into the body.

You can use the Cmvc.AccepLChanges command to update multiple objects by
specifying a naming string for the Destination parameter. If you specify a view name
for the Destination parameter, all controlled objects in the view will be updated.

RATIONAL 8/1/88 PM-41

Coordinating Development in a Subsystem

Permitting Demotion

By default, the Cmvc.CheckcOut and Cmvc.AccepLChanges commands quit when
they try to update the contents of a compiled unit, because such an update requires
the demotion of that unit along with any units compiled against it.

To allow Cmvc.Checkc.Out and Cmvc.AccepLChanges to demote a compiled unit
to update it:

1. Enter the desired command, specifying the value true for the Allow _Demotion
parameter. For example:

Cmvc.Check_Out (Allow_Demotion => True);

As a result, one or more units are demoted to the source state, as needed.

Preventing Automatic: Updating

Although the Environment provides for automatic propagation of changes, you may
want to keep an older generation of a unit in your subpath-for example, for use
when testing other units in the view.

If you want to keep an object at an older generation, you can avoid checking it out.
A safeguard exists in the Cmvc.CheckcOut command to permit an object to be
checked out only if it is already at the latest generation. To use this safeguard:

1. Enter the Cmvc.CheckcOut command, specifying the value false for the Allow-
_ImpliciLAccepLChanges parameter. For example:

As a result, the command can proceed only if the object does not need updating;
otherwise, an error is reported and the command quits.

Creating New Joined Objeds

When subpaths are created, the controlled objects within them are automatically
joined. However, any objects that are created subsequently in one of several sub-
paths must be made controlled and propagated to the other subpaths explicitly.
The Cmvc.AccepLChanges command can be used to copy new controlled objects
from a source view into a destination view.

For example, assume that Sue has created a text file called To..Do in RevLSue-
_ Working. Toe.Do contains a list of things to do on the project and is to be shared
by all developers working in the Mail., Utilities subsystem. To propagate a new
object across subpaths:

1. Make the object controlled where it was created (in this case, Rev l LSue., Work-
ing).

PM-42 8/1/88 RATIONAL

Coordinating Development in a Subsystem

2. Enter the AccepLChanges command to copy the object into one of the other
subpaths. Specify the Source and Destination parameters with the object to be
copied and the view into which it is to be copied. For example, from the context
Rev LiSue.; Working. Units, you can enter:

Cmvc. Accept_Changes (Destlnation => "~~Rev l_Larr~_Work ing" ,
Source => "To Do ";

3. Repeat step 2 for each other subpath (in this case, RevL Working).

Cmvc.AccepLChanges copies the controlled object into the Units directory of the
destination view, makes the object controlled, and joins it to the source object.
Thus, Cmvc.AccepLChanges automatically performs operations that can be per-
formed individually using the Library.Copy, Cmvc.Maka..Controlled, and Cmvc-
.Join commands.

If you use Library.Copy to propagate a controlled object that you intend to join, you
must copy the object so that it has the same name within both views. In particular,
if the two views have been restructured to contain further subdirectories, make sure
that you copy the object into the corresponding subdirectory of the second view.
Objects in different subdirectories cannot be joined, even if the objects themselves
have the same simple name.

Accessing Controlled Objects Concurrently
If you and another user need concurrent access to a controlled object, you can sever
the object in your view. When an object in a view is severed from its join set, that
object acquires its own reservation token. Accordingly, the severed object can be
checked out independent of the other objects in the join set, and a separate series
of generations is stored in the CMVC database for that object. In effect, the severed
object becomes a second join set, one that contains a single object.

For example, assume that you and Larry want to check out and edit package Mes-
sages'Body concurrently, presumably to modify different parts of the package. You
decide to sever the object in your view (RevL Working), leaving the object in
Rev l c Larry.; Working in the original join set. To do this:

1. Select the object to be severed. Make sure that the object is checked in from
RevL Working.

2. Enter the Cmvc.Sever command, using default parameters.

As indicated in Figure 4-4, a second join set for Messages'Body is created in the
CMVC database. The current contents of the unit in RevL Working becomes gen-
eration 1 for the new join set.

Note that if an object is not meant to be shared, it can be severed in every sub-
path. Severed objects can be modified independently, while remaining controlled
and tracked by the CMVC database.

RATIONAL 8/1/88 PM-43

Coordinating Development in a Subsystem

---,
I

Messages
'Body

Messages F====*==============;===========~====~
'Body

Messages
'Body

Joined

CMVC Database

Join sets:
Messages'Body in

Rev1_Sue_Working
Rev1_larry _Working

Messages'Body in
Rev1_Worklng

Generatlons-----t.~

CD • • •

• • •

Figure 4-4. Alter Messages 'Body Has Been Severed in Rev 1_ Working

Elements, Join Sets, and Reservation Tokens
In Figure 4-4, the three objects called Messages'Body are collectively represented
as a single element in the C~fYC database. This element is partitioned into two
join sets, each having its own reservation token that connects corresponding objects
from specific views.

By default, reservation tokens are named automatically by the Environment. How-
ever, through parameters to the Cmvc.Make..Controlled and Cmvc.Sever commands,
you can define your own mnemonic reservation tokens to convey more information
about the join sets into which an element has been partitioned. You can add a
controlled object to a particular join set by specifying the appropriate reservation
token as a parameter value of the Cmvc.Join command.

PM-44 8/1/88 RATIONAL

Coordinating Development in a Subsystem

Merging Changes
Changes can be propagated between two severed objects with the Cmvc.Merge-
_Changes command. More specifically, the Cmvc.Merga..Changes command up-
dates one of the two objects (the destination object) to include any changes that
were made to the other (the source object). Changes that were previously made
to the destination object are preserved, so this operation does not necessarily re-
sult in identical objects (that is, the source object is not updated with the changes
that were made to the destination object). For example, assume that you want
to merge changes from the unit Messages'Body in Rev lc.Larry., Working into the
corresponding severed unit in Rev L Working. To merge changes:

1. Make sure both severed objects are checked in.
2. Select the destination object to be updated, Messages'Body in RevL Working-

.Units.
3. From the context RevL Working.Units, enter the Cmvc.Mergec.Changes com-

mand, specifying the Source..View parameter with the name of the view con-
taining the object to be merged:

The Cmvc.Merge..Changes command finds the common ancestor of the two severed
objects (the last generation they had in common before severing) and compares the
source and destination objects to the common ancestor to determine which lines
need to be merged. The destination object is updated accordingly. When conflicts
exist, changes from both the source and destination objects are marked with the
string *; (an asterisk followed by a semicolon). You must edit the destination object
to resolve conflicts and remove the *; marks.

Note that the Cmvc.Merge..Changes command applies only to objects that be-
longed to the same join set at some time. You must use operations from package
File., Utilities to synchronize objects that are not controlled.

Rejoining Severed Object8

The Cmvc.Merge..Changes command can be used to prepare two severed objects
that you want to rejoin, since objects must be textually identical before they can
be joined. To prepare two objects for joining:

1. Use Cmvc.Mergec.Changes to merge the source object into the destination ob-
ject.

2. Check out and edit the destination object to resolve any conflicts.
3. Check out the source object and copy the contents of the edited destination

object into it.
4. When the two objects are textually identical, use the Cmvc.Join command to

join them.

RATIONAL 8/1/88 PM-45

Coordinating Development in a. Subsystem

Integrating Subpaths into a Single Release
When a new release must be made, the person in charge of integration within the
subsystem can consolidate the changes made in each subpath into a single working
view. The next release can then be made from that single view.

For example, assume that you are the subsystem-level integrator and that you want
to make a release from RevL Working that includes work done by Sue and Larry
in their subpaths. To do this, you can:

1. Gather the changes from each subpath into RevL Working, using Cmvc.Accept-
_Changes to update joined units and Cmvc.Merga..Changes to update severed
units.

2. Compile and test the updated units in RevL Working.
3. When appropriate, make a release from Rev L Working using the Cmve.Relea.se

command.

After the release, you can update the subpaths Revl_Sue_ Working and Revl-
Larry Working so that they match the integration view RevL Working. For ex-
ample, to update Rev L.Sue., Working from RevL Working:

1. Make sure all objects in both views are checked in.
2. Designate the destination view (the view to be updated). For example, if the

Mail., Utilities subsystem is displayed, you can put the cursor on the entry for
Rev LSue_ Working.

3. Enter the Cmvc.AccepLChanges command, specifying the Source parameter
with the name of the view to be matched. For example:

Cmvc . Accept_Changes (Source => "Rev LWork ing") ;

As a result, Rev l LSue., Working is made to look like RevL Working:

• Every controlled object in the source view updates the corresponding object in
the destination view .

• New controlled objects in the source view are copied into the destination view,
made controlled, and joined.

Note that uncontrolled objects in RevL Working are not copied into RevLSue-
_ Working and no objects are deleted when they exist in Rev LSue_ Working but
not in RevL Working.

PM-46 8/1/88 RATIONAL

Coordinating Development in a Subsystem

Setting Up Multiple Development Paths
Development within a single subsystem can involve multiple major development
efforts, each resulting in a variant implementation of the subsystem. For example:

• When an application is intended for multiple targets and the units need to have
variants that contain target-specific code

• When a new major release of an application is developed while the existing release
is maintained

• When a separate quality-assurance group conducts activities to turn a develop-
ment release into a production release

To accommodate these variant implementations, you can set up multiple develop-
ment paths. Multiple paths provide each development effort with its own working
view from which releases can be made. Furthermore, because objects can be joined
or severed across paths, paths enable some objects to be shared and others to be de-
veloped independently. Finally, multiple subpaths can be created from each path to
provide a separate workspace for each developer involved in the same development
effort.

Creating a Path

A path is created as a full copy of an existing working view and, as such, serves as a
working view from which a series of releases can be made. Within the working view
of a path, units can be edited, compiled, and tested, just as in subpaths. In fact, as
copies of working views, paths and subpaths are fundamentally the same, although
they are intended to support parallel development at different levels. Paths and
subpaths differ with respect to what you can specify about them at creation:

• Paths and subpaths have different naming conventions. Therefore, when creating
a path, you must specify a pathname prefix; creating a subpath involves specifying
a subpath name extension.

• Paths can be created with their own library characteristics. Therefore, when
creating a path, you can specify a different model world than the one used by
other views in the subsystem. In contrast, subpaths use the same model as the
path from which they were created.

• Paths can be joined with other views or not. That is, when creating a path, you
must specify whether the controlled objects are to be joined to their counterparts
in the source working view. In contrast, subpaths are always created with all
controlled objects joined.

RATIONAL 8/1/88 PM-47

Coordinating Development in a Subsystem

Assume that you want to set up a path in MaiL Utilities for quality-assurance
activity. To do this:

1. Designate the source view to be copied as the beginning of the new path. For
example, select the entry for RevL Working.

2. Enter the Cmvc.Make..Path command, specifying values for the following pa-
rameters, as needed:

Specifies the pathname prefix for the new path. This prefix
will be shared by all subpaths and releases made from the new
path.
Specifies the name of a model to be used by views in the new
path. You should specify a new model if the new path needs
different links, compilation switches, and the like. By default,
this par~meter specifies the model world inherited from the
source VIew.

.Jo irv Pabhs Specifies whether to join the new path to the source view.
You should specify true if you anticipate that most or all
of the objects will be shared between the two views. You
should specify false if you anticipate that most or all of the
objects will need to be modified independently. By default,
this parameter specifies that the views are joined.

For example, to create a path called Qa.;Working in which all objects are joined
and which uses the inherited model, you can enter:

Model

Cmvc. Make_Path (New_Path_Name => "QA");

3. Use the Cmvc.Join or Cmvc.Sever commands to further fine-tune the objects
that are shared between the new path and the source view.

Managing Views
Operations for managing views require the use of commands from package Cmvc.
Such operations include deleting, rebuilding, copying, and renaming views.

Deleting Views

As you accumulate multiple views in a subsystem, you may want to delete some
of them to save space. To do so, you must use the Cmvc.Destroy _View com-
mand; do not use other Environment deletion commands, such as Library.Delete,
Library.Destroy, Compilation. Delete, or Compilation.Destroy. Deletion commands
from packages Library or Compilation can delete only part of a view, leaving it in
a damaged state. (See "Repairing Damaged Views," below.)

The Cmvc.Destroy _View command allows you to delete views permanently or to
delete views so that they can be reconstructed again.

PM-48 8/1/88 RATIONAL

Coordinating Development in a Subsystem.

Deleting a View and Allowing Reconstruction

To delete a view and allow future reconstruction:

1. Select the view you want to delete.
2. Enter the Cmvc.Destroy., View command, using all default parameters (by de-

fault, the Destroy..Configurationc.Also parameter is false). If the view con-
tains compiled units, you will need to specify the nondefault value for the De-
mote..Clients parameter, as follows:

Cmvc.Destro~_View (Demote_Clients => True);

As a result, the view is deleted, although its configuration object and state descrip-
tion directory are preserved (see "Representation of Releases" in the chapter entitled
"Getting Started"). If you delete a working view, a state description directory is
created for it before the view is deleted.

Deleting a View Permanently

To delete a view permanently:

1. Select the view you want to delete.
2. Enter the Cmvc.Destroy., View command, specifying the nondefault value for

the Destroy _Configuration_Also parameter, as follows:

Cmvc.Destro~_View (Destro~_Configuration_Also => True);

As a result, the view is deleted, along with its configuration object and state de-
scription directory (see "Representation of Releases" in the chapter entitled "Get-
ting Started"). The deleted view cannot be reconstructed using the Cmvc.Build
command.

Deleting a Configuration Object

Assume that you deleted a view to allow future reconstruction and then decided
that the view should be deleted permanently. You can do this by deleting the
configuration object that was left after you deleted the view.

To delete a configuration object:

1. Within the subsystem. Configurations directory, locate the appropriate configu-
ration object and state description directory. These objects are named after the
view you deleted.

2. Use Library.Delete to delete these objects.

RATIONAL 8/1/88 PM-49

Coordinating Development in a. Subsystem

Note that the CMVC database still contains information about the deleted view,
even though the view's configuration object no longer exists. Because of this, you
cannot create a new view with the same name as the deleted view without taking
an extra step:

1. Enter the Cmvc_Maintenance.Expunge_Database command to remove all in-
formation about the deleted view from the CMVC database. You can now create
the new view with the same name.

Building a View rrom a Configuration Object

After making a configuration release, or after deleting a view allowing future re-
construction, you can use the configuration object to rebuild a corresponding view.
Configuration objects are located in the Configurations directory of the subsys-
tem. To build the view corresponding to a configuration object named Configura-
tions.Rev Lfl..Z:

1. From the context of the Configurations directory, enter the Cmvc.Build com-
mand, specifying the desired configuration object, as shown:

Cmvc.Build (Configuration => "RevL'L2");

Repairing Damaged Views

Attempting to delete a view using any command other than Cmvc.Destroy., View
only partially destroys the view. Such damaged views cannot be completely deleted,
even using Cmvc.Destroy _View. To repair a damaged view so that it can be de-
stroyed completely:

1. Designate the view to be repaired. For example, select its entry in the subsys-
tem.

2. Enter the Cmvc_Maintenance.Check_Consistency command with default pa-
rameters.

Renaming Views

To change a view's name:

1. Use the Cmvc.Make..Path or Cmvc.Make..Subpath command to copy the view,
supplying the new name prefix or extension as appropriate.

2. Delete the original view using either of the methods listed above.

If you want to destroy and recreate the view again with the same name, you must
destroy the view permanently and then expunge the database.

PM-50 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

The concepts and operations presented so far (such as release, check in and check
out, subpaths, paths) are relevant for the development of individual subsystems.
This chapter covers what you need to know to compile and execute applications
that consist of multiple subsystems. When dependencies exist across subsystems,
you need to know how to:

• Define interfaces between subsystems to support compilation
• Specify combinations of views, one from each subsystem, for use during execution

The first section in this chapter covers the basic setup required for compiling and
executing multiple subsystems. Subsequent sections expand on various aspects of
this basic setup, describing ways of more precisely controlling interface definition
and system execution.

This chapter concludes by taking a second look at setting up the subsystems in an
application, incorporating the concepts covered in this and the preceding chapters.
This second look provides a more sophisticated checklist of issues to be decided
during subsystem creation.

Basic Compilation and Execution Setup
Before a multisubsystem application can be compiled, interfaces must be set up to
support compilation dependencies among units in different subsystems. Subsystem-
level interfaces are expressed as exports, which make a specific set of implemented
units available for views in other subsystems to import. (The importing views are
called clients of the exporting subsystem.)

Importing enables units in a client view to reference exported units in with clauses.
In fact, compilation dependencies can hold between units of different subsystems
only if:

• The referenced unit is among the exports of one subsystem
• Those exports are imported by the other subsystem (more specifically, by the

view that contains the dependent unit)

Any other dependencies between subsystems are reported as errors. Exports and
imports express and enforce design decisions by permitting or restricting visibility
between subsystems.

RATIONAL 8/1/88 PM-51

Developing Applications Using Multiple Subsystems

Exports and imports must be set up to enable compilation, but an additional step
is required before the application can be executed. Typically, each subsystem con-
tains multiple releases of its implementations. (Furthermore, subsystems with mul-
tiple paths contain multiple variant implementations, each with multiple releases.)
Therefore, an execution table called an activity must be set up to specify which im-
plementation from each subsystem should be used for execution. Note that different
precompiled implementations can be used during execution simply by changing en-
tries in an activity.

Kinds or Views

Setting up exports, imports, and activities involves the creation and use of another
kind of view along with the kind used for developing implementations:

• Subsystem implementations are developed in load views. Load views are program
libraries that contain the specifications and bodies for all units in a given appli-
cation component. The working views and released views described in previous
chapters have all been load views.

• Subsystem exports are expressed in separate views called spec views. Spec views
are special-purpose program libraries that contain a copy of the specification of
each exported unit.

Figure 5-1 illustrates a load view from which one package is exported. Accordingly,
the spec view contains a copy of the exported unit's specification:

Subsystem

Spec view
A'spec

D Load view

AO'spe~

....... , /
CO·SP."l

:.: .., .•.........

Figure 5-1. A Spec Vie,,· That Expresses the Exports from a Load View

PM-52 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Together, the two kinds of views function similarly to Ada package bodies and spec-
ifications, in that spec views, like package specifications, make resources available
to clients, whereas load views, like package bodies, implement those resources.

A spec view typically is created from, and therefore expresses the exports of, a
particular working load view. As subsequent releases are made from that working
view, the same spec view also can serve to express exports for each release that is
compatible for use with that spec view. A load view is compatible if it implements
all the resources promised by the spec view. (If implementation changes result in
releases that are incompatible with an existing spec view, either the existing spec
view must be changed or a new spec view must be made.) Thus, a single spec view
typically is used to express the exports of a family of released load views.

Spec views are what views in other subsystems import to enable compilation. How-
ever, the units in spec views are not actually executed. Instead, the units in load
views are used for execution, one load view for each imported spec view. An activity
specifies which of the compatible load views are to be used for a given execution.
One of the advantages of having separate spec views is that client views can remain
compiled against spec views while changes are made and tested in load views.

A subsystem can contain multiple spec views. Multiple spec views result when new
spec views are created to accommodate changed implementation. Furthermore,
when a subsystem contains multiple development paths for a variant implementa-
tion, each development path typically requires its own exports and consequently
has one or more spec views associated with it. A given spec view thus expresses
the exports of a family of load views within a particular development path.

Note that a third kind of view, called combined views, combines exports and imple-
mentation. However, combined views are required only to accommodate:

• Designs that require circular importing
• Specific Ada structures in cross-development (that is, the development of pro-

grams that are to be executed on target processors other than the RIOOO)

In either case, combined views are used in place of spec and load views. Combined
views are not recommended for more general use because they do not provide the
advantages gained by expressing exports and implementation in separate views.
The remainder of this chapter describes spec and load views; see the chapter en-
titled "Using cnFs with Subsystems" and the introduction to package Cmvc for
information about combined views.

RATIONAL 8/1/88 PM-53

Developing Applications Using Multiple Subsystems

Defining Exports

To illustrate how to define exports, this and the following sections will use the
sample mail program presented in previous chapters. Recall from Figure 3-2 in
"Getting Started" that units in both the Commands.Interpreter and the Mailboxes
subsystems need to with various units implemented in the MaiL Utilities subsystem.
These dependencies are indicated by heavy arrows in Figure 5-2.

Command_Interpreter

i
I------------------------.--~

Figure 5-2. Dependencies between Units in Different Subsystems

From Figure 5-2, it is clear that the MaiL Utilities subsystem must export a total
of four units to support the required compilation dependencies: Messages, Destina-
tions, Lines, and Symbollc..Display.

PM-54 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Overview of Steps

To export units from a given load view, such as RevL Working, you must follow
these general steps, which are clarified in subsequent sections:

1. Specify the desired exports as part ofthe state of the load view that implements
them-in this case, RevL Working. This means editing the Exports file in the
State directory of the load view to specify the units to be copied into the spec
VIew.

2. Enter the Omvc.Make..Spec., View command to create a spec view from the
appropriate load view. The new spec view is created containing a copy of each
unit listed in the load view's State.Exports file.

3. Make sure that the units in the newly created spec view are promoted to the
coded state so that clients will be able to compile against them.

Loeating the State.Exports File

Every view is created with a file called Exports in its State subdirectory. Do not
confuse this file with the Exports directory in the view, which is covered in "Creating
Export Restriction Files," below. The relevant portion of the directory structure
within RevL Working is shown in Figure 5-3.

Rev1_Working

I I I II
Imports Exports State Units

...-~-- ...
Exports (file)

Figure 5-3. The Exports File and the Exports Directory

RATIONAL 8/1/88 PM-55

Developing Applica.tions Using Multiple Subsystems

What to Put in the State.Exports File

The State.Exports file serves as an indirect file for the Cmvc.Maka..Spec., View
command by providing a list of the unit specifications that the command will au-
tomatically copy from the load view into the new spec view. Note that these unit
specifications must exist in the load view, although the unit bodies need not. That
is, exports can be created before the implementation is complete.

The first time you display the State.Exports file, it contains the naming string
?' spec, as shown in Figure 5-4. If you leave the file as is, the new spec view will
contain a copy of all unit specifications from the load view. That is, by default, all
units are exported from a given view. However, if you determine that fewer units
need to be put in the spec view, you can replace the default naming string with a
list of names.

?'spec

Figure 5-4. Tbe Default State.Exports File

When determining the list of units to specify in the State.Exports file, bear in mind
that you eventually will have to compile the units in the spec view. Therefore, the
list in the State.Exports file must include the names of the following:

• The specifications of the units that other subsystems require for compilation
• Any additional unit specifications that are required to compile the spec view

For example, as indicated by Figure 5-2, the State.Exports file for RevL Working
must in fact name all of the unit specifications in that view:

• The units Messages'Spec, Destinations'Spec, Lines'Spec, and Symbolic..Display-
'Spec are included because these units are required by other subsystems.

• The unit Unbounded'Spec is included because three of the four unit specifications
listed above depend on Unbounded'Spec.

Thus, for compilation purposes, a spec view may have to contain more units than
you originally expected to export. In some cases, however, "extra" units can be
omitted from the spec view-specifically, if the units that depend on them refer-
ence them only in private parts (see "Using Pragma Private..Eyesc.Only," below).
Furthermore, export restrictions can be used to prevent particular units in a spec
view from being referenced in client views (see "Imposing Further Import and Ex-
port Controls," below).

PM-56 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Using Pragma Private_Eyes_Only

As shown above, the State.Exports file may need to include certain unit specifica-
tions solely to enable compilation within the spec view and not to support depen-
dencies from other subsystems. When this is the case, you can check to see whether
any of these "extra" unit specifications are required only within the private part
of dependent units. If so, you can omit these "extra" unit specifications from the
State.Exports file. You can omit them because, by default, private parts are closed,
which means they are ignored when a spec view is compiled; the load view supplies
the private parts at execution time. (See "More on Closed Private Parts," later in
this chapter.)

For example, recall that Unbounded 'Spec is required for compiling three of the
unit specifications to be exported-namely, Messages'Spec, Destinations'Spec, and
Lines'Spec. However, Unbounded'Spec is not referenced by units in other subsys-
tems; therefore, you can:

1. Check each of the three dependent units to see where they use Unbounded'Spec.
In this example, resources from Unbounded'Spec are used only in the private
parts of these three units, such as that shown in the abbreviated representation
of Destinations'Spec in Figure 5-5.

with Unbounded;
package Destinations is

type User is private;

private
type User is new Unbounded. Variable_String,

end Destinations.

Figure 5-5. Destiaetious'Spec with Reference to Unbounded in the Private Part

2. Edit each of the unit specifications that reference Unbounded'Spec and insert
the following pragma before the relevant with clause:

pragma Prlvate_E~es_Onl~;
with Unbounded;
Pragma Private..Eyesc.Only applies to any with clause that follows it, so you
may need to insert the pragma between with clauses.

3. Leave Unbounded'Spec out of the State.Exports file.

RATIONAL 8/1/88 PM-57

Developing Applications Using Multiple Subsystems

Editing the State.Exports File

When you edit the State.Exports file:

1. Enter either a list of unit specification names or one or more naming expressions
that matches such a list. (The contents of this file have the same syntax as the
contents of indirect files; see the "Naming" chapter.)

• If you want the spec view to contain all unit specifications in the load view,
use the naming string? .spec.

• If you want to specify a list of names, place the names on consecutive lines
with no delimiters.

2. Be sure to commit the file.

Figure 5-6 shows the State.Exports file for RevL Working.

destinations'spec
lines'spec
messages'spec
symbolic_display'spec

Figure 5-6. The State.Exports File for Revl_ Working

Creating the Spec: View

After you have edited the State.Exports file of the exporting load view, you are
ready to make a spec view from that view. To do this:

1. Designate the exporting load view. For example, if the MaiL Utilities subsystem
is displayed, you can select the entry for RevL Working.

2. Enter the Cmvc.Make..Spec.; View command, specifying the Spec., ViewcPrefix
parameter and using default values for the other parameters.
The Environment uses the value of the Spec.,ViewcPrefix parameter when con-
structing the name for the new spec view. In this example, the specified value
is the pathname prefix from the name of the exporting load view (for example,
"Revl" from "Revl_ Working"):

PM-58 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

As shown in Figure 5-7, a spec view named RevLO_Spec is created within the
MaiL Utilities subsystem. Spec views have the same internal directory structure as
load views; as shown, the Units directory in Rev LiOc.Spec contains a copy of each
unit specification listed in the Rev l., Working.State.Exports file.

'programs Mail Mail Uti lities Library (Sybsystem)'
Conflgurations
Revl_0_1
RevL0_Spec
Revl_Larry_~orking
Revl_Sue_~orking
RevL~orking
State

Library
Library
Library
Llbrary
Library
Library
Library

(Di r-zc tor-y] ;
(Load_View) ;
(Spec_View) ;
(Load_View) ;
(Load_View) ;
ILoad_View) ;
(Directory) ;

'Programs Mall Mail Utliitles Revl 0 Spec UnIts
Des t ina t ions
LInes
Messages
Symbolic_Display

C Ada (Pack_Spec);
C Ada (Pack_Spec);
C Ada (Pack_Spec);
C Ada (Gen_Pcoc);

Library (Directory)

Figure 5-7. The Spec View Revl_O_Spec

Note that RevLO_Spec has no underlying connection to the load view from which
it was created. Each view is a separate library structure; modifying or compiling
units in RevL Working leaves the units in Rev Lfl..Spec unaffected, and conversely.

Spee- View Names and Level Numbers

By default, spec-view names such as RevLO_Spec are constructed automatically
from:

• The spec-view prefix specified by the Spec..View _Prefix parameter of the Cmvc-
.Make..Spec., View command (for example, "Rev 1")

• One or more level numbers (for example, "_0")
• The suffix «_Spec"

The spec-view prefix can be any string, although a typical convention is to use the
pathname prefix from the name of the exporting load view. By this convention,
the association between a spec view and a particular development path is reflected
in the view names. This convention is especially useful when a subsystem contains
multiple paths.

RATIONAL 8/1/88 PM-59

Developing Applications Using Multiple Subsystems

The level numbers in spec-view names are related to the level numbers in release
names. Recall that, by default, release names have two release level numbers, which
you can use to define a series of major (level I) and minor (level 0) releases.

A spec view normally expresses the exports for a series of minor releases. Therefore,
in spec-view names, the rightmost (level 0) number is replaced by the "Spec" prefix,
so that numbering within a spec-view name starts with the level 1 number. (If only
two release levels are maintained, then spec-view names contain only the level 1
number.) Level numbers are shown in Figure 5-8.

Rev1 0 1YY
Level Level

1 0

Rev1_0_Spec
Y'I I
Level Replaces
1 Level

o

Figure 5-8. Structure of Spec- View and Release Nemes

By default, the Cmvc.Release command automatically increments the level 0 num-
ber in release names, creating a series like RevLO_I and RevLO_2. Also by default,
the Cmvc.Make..Spec., View command constructs spec-view names using the level 1
(and higher) numbers from the name of the last release. Thus, in the above exam-
ple, the level 1 number in the name RevLO_Spec is _0 because that is the level 1
number in the name of the configuration release RevLO_2. In this way, level num-
bers can be used to correlate a spec view with a particular family of minor releases
in a development path. In this case, Rev LiOc.Spec correlates with Rev LiOc l and
RevLO_2.

Both the Cmvc.Release and the Cmvc.MakecSpec.; View commands have a Level
parameter that you can use to specify a level number other than 0 for incrementing.
If you increment a nondefault level number when making a release, subsequent spec-
view names will by default be constructed with that number; for example, when
RevLLI is released (with an incremented level 1 number), then the next spec
view will by default have the name RevLLSpec. Conversely, if you increment a
level number when making a spec view, subsequent release names will by default
be constructed with the incremented number.

PM-60 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

You can take advantage of the automatic level numbering to keep track of which spec
and load views are compatible. Major releases (with incremented level numbers)
should be made whenever the implementation has changed enough to require a
new spec view to express its exports. (Note that level numbers are automatically
coordinated only between releases and spec views that are made from the same
working view. See also "Coordinating Level Numbers in Spec and Released View
Names.")

As a final note, you can suppress level numbers in a spec-view name so that the spec-
view prefix is followed directly by _Spec. To do this, specify the value Natural'Last
for the Level parameter in the Cmvc.MakecSpec., View command.

Controlled Uolts withln Spec View.

When a spec view is made, the units in it are deliberately left uncontrolled. By de-
fault, the Environment considers the working view as the place for ongoing changes;
therefore the working view is where change history should be tracked.

Units in spec views can be changed, so some installations may choose to make
units in spec views controlled in order to track change history. However, these
units should never be joined to their counterparts in the working load view. As
shown in later sections, clients ultimately will compile against units in spec views.
Propagation of changes from load-view units to spec-view units will demote not
only the spec-view units but also all clients compiled against them.

Compllation within Spec View.

By default, the Cmvc.Make..Spec., View command copies units into the spec view
and then promotes them to the coded state. The promotion of the copied units is
controlled by the Remakec.Demoted..Units and Goal parameters of the Cmvc.Make-
Spec View command.

After they are copied, units in spec views can be demoted or promoted indepen-
dently from their counterparts in working load views. However, units in a spec view
must be in the installed or coded state for clients to compile against them.

RATIONAL 8/1/88 PM-61

Developing Applications Using Multiple Subsystems

Defining Imports

After exports have been defined in a subsystem, they are available for views in
other subsystems to import. For example, assume that development of the Com-
maude.Interpreter subsystem is in progress and that a prototype of package Com-
mand., Utilities needs to be compiled and tested. At this point, the prototype
of Commandc.Utilities depends only on units from the MaiL Utilities subsystem.
(When complete, Command..Utilltles also will depend on a unit implemented in
the Mailbox subsystem; however, this dependency will be ignored for the present.)

To enable the prototype of Commandc.Utilities to compile, the working view con-
taining Cornmandc.Utilities must import the spec view from MaiL Utilities. More
specifically, ComrnandcInterpreter.Rev L, Working must import (and become a cli-
ent of) Maik.Utilities.Rev Lflc.Spec, as shown in Figure 5-9.

Command_Interpreter

Mail Utilities

Figure 5-9. Importing Mail_Utilities.Re~·l_O_Spec

PM-62 e/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Steps ror Defining Import.

To import a spec view from one subsystem into a client view in another subsystem:

1. Display both subsystems (for example, Commands.Interpreter and MaiLUtili-
ties).

2. In the exporting subsystem, select the desired spec view (in this example, Mail-
_Utilities.RevLO_Spec).

3. Move the cursor to the importing subsystem and put the cursor on the desired
client view (in this example, Command..Interpreter.Rev L,Working).

4. Open a Command window and enter the Cmvc.lmport command, using all
default parameter values.

5. In the client view, you can now compile units, such as the prototype package
Command., Utilities.

Note that you can specify a naming expression for the View _To_Import parameter
in order to import spec views from multiple subsystems.

Only spec views from other subsystems can be imported. Accordingly, a view's
imports refers to a list of spec views. However, either spec views or load views can
have imports, because either type of view may need to compile against units from
other subsystems. A spec view's clients (also called referencers) are the spec and
load views that import it.

By default, a view's imports are inherited by the releases, paths, and subpaths that
are made from it. For example, when a release is made from CommandcInterpreter-
.RevL Working, that release will automatically import Maik.Utilities.Rev Lfk.Spec.
Note that the Cmvc.lmport command can be used to change the imports in the
working view of any path or subpath; however, because releases are frozen, their
imports cannot be changed.

Displaying a View's Import.

You can verify a view's imports by requesting an information display as follows:

1. Designate the view (for example, Commandc.Interpreter.Rev l., Working) whose
imports are to be displayed.

2. Enter the Cmvc.lnformation command.

RATIONAL 8/1/88 PM-63

Developing Applications Using Multiple Subsystems

As a result, a list of imports is displayed along with other information about the
view, as shown in Figure 5-10.

Information for view
Model
Frozen
View Kind
Creation
Imports

IPROGRAMSMAIL.MAIL_UTILiTiES REVl_0_SPEC
Referencers
Unit Summary

coded = 0, installed = 0, source = 4, archived = 0, stubs = 0
88/03/31 12:26 04 (Information has finished}

IPROGRAMS.MAIL.COMMAND_INTERPRETER.REV1_~ORKING
R1000
FALSE
LOAD
March 30, 1988 at 6:03 28 PM

Figure 5-10. Information about CommendcLnterpreter.Rev L: Working

Note that you can also use this command to display a spec view's referencers.

Imports and Links

Imports enable compilation because they create and manage links. When a spec
view is imported, links to its units are automatically created in the client view, thus
enabling units in the client view to compile.

Within subsystems, you should manage links only through imports. This is because
imports alone can manage links across releases, paths, and subpaths. You should
never directly add or remove an individual link from a view using commands from
package Links. Such changes do not get passed on to releases, paths, or subpaths.

The links for a given view should contain only:

• Links resulting from imports; these are links to units in other subsystems
• Links provided by the model world; these are links to units elsewhere in the

Environment

Removing Imports

If you imported the wrong view or you want to make a design change, you can
remove imports with the Cmvc.Remove. Impcrt command. Removing an import
automatically removes all links to the units in the imported spec view. An import
cannot be removed if there are units compiled against any of the links it created.
That is, if units are compiled against even one link in an import, none of the links
from that import are removed. (Thus, removing an import removes either all or
none of the relevant links.) The import can be removed if units in the client view
are demoted to source.

Note that you can change the links provided by the model world by modifying the
model world and using the Cmvc.Replace..Model command. Replacing a working
view's model does not affect previous releases made from that view.

PM-64 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Using Activities lor Execution

After imports have been defined, units in client views can compile against units in
imported spec views. However, spec views do not contain unit bodies and are there-
fore insufficient for execution. To execute units that are compiled against imports,
you must set up an execution table called an activity to specify the implementation
from each subsystem that will actually be used for execution. That is, an activity
must specify one load view for each subsystem from which a spec view is imported.

At this point in the example, recall that the client view CommandcInterpreter. Rev 1-
_ Working has imported the spec view Mall..Utilities.Rev Lnc.Spec (see Figure 5-9).
Within the client view, the prototyped unit Commandc.Utilities has been promoted
to the coded state, and subprograms in it are ready to be tested (assume that
a test driver has been created in Commandclnterpreter.Rev l.; Working to execute
subprograms from Commandc.Utilities}.

Now you must decide which implementation of the Mail., Utilities subsystem to use
for execution. You can choose between any of the working or released views in that
subsystem (note that a configuration release cannot be executed because it is not a
full program library). Assume that you want to test Commandc.Utilities against the
released implementation Mail., Utilitles.Rev Luc.I, because it is frozen and stable.

Overview of Steps

Having decided on the implementations to be executed, you must follow these gen-
eral steps, which are clarified in subsequent sections:

1. Create an activity.
2. Add entries to the activity to specify the chosen subsystem implementations;

in this case, you need one entry that specifies RevLO_l for subsystem Mail-
_Utilities.

3. Set the activity as the default activity for your session.
4. Execute the desired unit (for example, the test driver for Commandc Utilities).

Note that a simple activity will be created for single application use, which is
sufficient for the present example. In practice, however, you will need to build a
more general-purpose activity so that you can run Environment tools and commands
along with your application; this is covered in "Using General-Purpose Activities,"
below.

RATIONAL 8/1/88 PM-65

Developing Applications Using Multiple Subsystems

Creating an Empty Activity

When creating a simple activity for a single application, you can begin with an
empty activity. To create an empty activity:

1. Choose a convenient location for the activity. You can create a special subdi-
rectory for activities within a working view, within a subsystem, or within the
application library that contains the subsystem. In this example, the activity
is created in the application library !Programs.Mail.

2. Enter the Activity.Create command, specifying the The..Activity parameter
with the desired name and using default values for the other parameters:

Acbvit~.Create (The_Activit~ => "MaiLActivit~");

As a result, an empty activity is created, as shown in Figure 5-11.

Subsystem Spec View LQad View Context

Figure 5-11. An Empty Activity

Adding Activity Entries

An activity must contain one entry for each subsystem that needs an implementation
specified for it. To add an entry to an activity:

1. Display the activity.
2. Enter the Activity.lnsert command, specifying two of the three parameters as

follows:

Subsqs t.ern The name of the subsystem for which an entry is to be added
(in this case, MaiLUtilities)

Load_ VIew The name of the load view containing the implementation to
be executed (in this case, RevLO_I)

The third parameter, Spec..View, can be omitted for present purposes.
3. Use Common. Commit to save the contents of the activity.

PM-66 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

For example, the following command creates the entry shown in Figure 5-12:

Acbvity.lnsert (Subsystem => ::,I,Program.Mail MaiLUtllibes",
Spec_View => ,
Load_View => "RevL0_1";

Subsystem Spec View Load View Context
MAIL_UTILITIES I REVl_~_l I IPROGRAMS MAIL

Figure 5-12. An Activity with One Entry

Setting the Derault Activity

After creating an activity that contains the appropriate entries, you must make it
available for the Environment's use during execution. More specifically, you must
make this activity the default for the session in which application and testing will
take place.

To set the default activity for the current session:

1. Select the activity that is to be the default.
2. Enter the Activity.Set-Default command using default parameter values.
3. You can use the Activity.Current command to display the name of the activity

that is currently the default.

Note that one default activity can be set for a given session. An error results if you
try to execute units without a default activity.

CAUTION The simple activity in the above example references only one sub-
system. As long as an activity such as this is the default, you will
not be able to execute other programs that are partitioned into
subsystems, including many Environment tools and commands. To
regain the use of Environment tools and commands, reset the de-
fault activity to the Environment default by entering:

Acti vi ty. Set_Defaul t (" IMachine. Release. Current. Act ivity") ;

The section "Using General-Purpose Activities" describes how to create an activity
for your application that also references the Environment default activity.

RATIONAL 8/1/88 PM-67

Developing Applications Using Multiple Subsystems

The Execution Process

After creating an activity and setting it as the default for the current session, you can
execute the test driver in Commandclnterpreter.RevL, Working to test subprograms
from package Commandc.Utilitles. It is during execution that the default activity
is consulted.

Execution begins by loading, which is the process of determining the units to be
executed, determining their elaboration order, and setting up the machine for exe-
cution. The loading process first looks for the main program (in this case, the test
driver) and then looks for the units in the main program's transitive closure. (A
unit's transitive closure is the set of units that are directly or indirectly withed and
that constitute the program to be executed.)

The loading process follows internal and external links to find the units in the
transitive closure. When internal links lead to units in a load view (in this example:
package Commandc.Utilities in Command..Interpreter.Rev L, Working}, those units
are earmarked for execution. In contrast, when external links lead to units in an
imported spec view, the loading process consults the default activity to locate the
load view that contains the actual units to be executed.

That is, when consulting the default activity, the loading process:

1. Determines which subsystem contains the imported spec view-in this case,
Mail., Utilities.Rev LO_Spec

2. Looks up the activity entry for that subsystem
3. Determines from that entry which load view to use-in this case, MaiL Utilities-

.RevLfl..I
4. Earmarks the appropriate units from that load view for execution

If the default activity contains no entry for the subsystem containing a spec view,
an error such as the following is reported and the program is not executed:

1: ERROR Default actlvity does not define load view for subsystem of
spec unit

rpROGRAMS.MAIL.MAIL_UTILITIES.REVl_0_SPEC.UNITS.MESSAGES'V(l)
In sum, spec views are compiled against statically, but they are never actually
executed. They serve as placeholders used for compilation, representing load views,
which are actually executed.

PM-68 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Completing the Compilation and Exec:ution Setup
As shown above, the basic compilation and execution setup includes defining ex-
ports, defining imports, and using activities. The following sections describe how
to obtain more control over subsystem interfaces and more utility from activities.

At this point in the development of the mail program, an interface has been created
between two subsystems (Commandclnterpreter and MaiL Utilities). Remaining to
be done are the following tasks, which serve as examples in subsequent sections:

• Create interfaces between each of these subsystems and the third subsystem under
development (Mailbox)

• Build a general-purpose activity that specifies the subsystem implementations to
be used during execution

• Decide how you will test the entire application and create an interface between
test drivers and the application's main procedure

Imposing Further Import 8Dd Export Controls

A spec view such as Mail..Utilities.Rev Ln.Bpec makes specific units available for
reference within client views. However, a spec view may make too many units
available for particular client views, for several reasons:

• A spec view may contain "extra" unit specifications that are required only for
compilation within that view (see "What to Put in the State.Exports File,"
above). Such units include those that cannot be omitted by virtue of pragma
Privatec.Eyea..Only, These units are present in the spec view even though no
client needs them for compilation.

• A spec view must contain specifications for the entire set of units needed outside
the subsystem. By design, however, a particular client view may require only a
subset of these units for compilation.

Importing a spec view that contains too many units creates more links in the client
view than are needed to support the design of the program. By virtue of these links,
developers potentially can introduce dependencies that violate the program's design.
To prevent this from happening, you can specify export and import restrictions,
which make specific subsets of spec-view units available to specific client views.
You can use these restrictions to minimize the links created in each of the spec
view's clients.

For example, the spec view Maik.Utilities.Rev L.Oc.Spec contains four units, all of
which are required for compilation by units in the client view Commandclnterpreter-
.RevL Working. However, only one of these four units (package Messages) is re-
quired for compilation within subsystem Mailbox, which implements a single pack-
age called Mailboxes (see Figure 5-2). Importing Mailc.Utilities.Rev lc.Oc.Spec as
is creates links to three additional units, making them available for package Mail-
boxes to with. To prevent this, you can specify export and import restrictions so
that when Mail..Utilities.Rev Lfk.Spec is imported, only the desired link is created
to package Messages in Mailbox.Rev l., Working.

RATIONAL 8/1/88 PM-69

Developing Applications Using Multiple Subsystems

The Environment offers several levels at which the availability of implemented units
can be restricted:

• At the first level, the spec view defines which load view units are potentially
available to any client view.

• At the second level, a spec view optionally can contain export restrictions that
define subsets of exported units. Particular export restrictions can be requested
by client views through their import restrictions.

• At the third level, import restrictions themselves optionally can be used to further
restrict the subset of units from the requested export subset.

Overview of Steps

Export and import restrictions are created as files in particular subdirectories within
the exporting and importing views. These files are consulted automatically by the
import operation.

To import MailcUtilities.Rev Lfk.Spec into Mailbox.RevL Working using restric-
tions, you must follow these general steps, which are clarified in subsequent sec-
tions:

1. In the Exports subdirectory of the exporting (supplier) view, create an export
restriction file that specifies the minimum set of spec-view units required by the
client view.

2. In the Imports subdirectory of the client view, create an import restriction file
that specifies, among other things, the export restriction file created in step 1.

3. Enter the Cmvc.Import command as before. The files created in steps 1 and 2
are used automatically to determine which links to create.

In the present example, only one export restriction file is created, because only
one client requires a subset of exported units. However, in applications in which
multiple clients require different subsets from a single supplier view, you must create
multiple export restriction files, one for each subset.

Similarly, only one import restriction file is needed in this example because only one
import needs to be restricted. However, in applications in which a given client view
needs subsets from multiple imports, you must create multiple import restriction
files, one for each import.

Creating Export Restrietion Files

Every view is created with a subdirectory called Exports in which export restriction
files can be created. The Exports subdirectory is at the same level of hierarchy as the
view's Units directory. Do not confuse the Exports directory with the State.Exports
file within the view (see "Locating the State.Exports File," above).

PM-70 8/1/88 RATIONAL

Developing Applications Using M ultl ple~ iJ osy stems

Export restriction files ultimately must reside in the Exports directory of the spec
view to be imported (in this case, Mailc Utilitles.Rev Ln..Spec). However, because
ongoing development and maintenance occur in working views, it is recommended
that you create and edit export restriction files in the working view containing the
subsystem implementation and then copy the files into the appropriate subdirectory
of the spec view. This makes it easier for you to create new spec views from the load
view at any time. Note that export restriction files can be created in a working view
before spec views have been made from it. In this case, the Cmvc.Make..Spec., View
command automatically copies the files into the new spec view.

To create an export restriction file:

1. Use the Text.Create command to create a text file in the Exports directory of
the relevant working view (in this case, MaiLUtilities.RevL Working).
You can establish your own naming convention for export restriction files. In this
example, a file called SubseLl is created in the MaiLUtilities.RevL Working-
.Exports directory.

2. In the empty file, specify the names of the exported units to be included in the
restricted subset. For multiple names, enter one name per line or use a naming
expression. In this example, only one name is entered-namely, Messages.

3. Commit the file.
4. If you want to be able to rebuild the file from a configuration release, you can

make the file controlled using the Cmvc.Make..Controlled command.
5. Copy the export restriction file into the Exports directory of the spec view to

be imported [Mallc.Utillties.Rev Lflc.Spec].

The resultant file and its parent directory are shown in Figure 5-13.

'ProQrams Mail Mall utillties Reyl Working Exports
Subset_l File (Text).

Library (Directory)

"'" .. -•. HAI tt!.'t· >to 8.REVLWO KING XPORTS i t i or-er- t Dlrector

messages

Figure 5-13. An Export Restriction File Called Subset.i l.

RATIONAL 8/1/88 PM-71

Developing Applications Using Multiple Subsystems

Name Resolution in the Export Restriction File

Names in the export restriction file are resolved against the Units directory within
the view. Therefore, you can use a simple name like Messages for units located in the
Units directory. If the Units directory contains subdirectories, you must use partly
qualified names for units in those subdirectories. For example, for a unit called Mes-
sage..Lists in the directory Units. Utilities, you would enter Utilitiea.Messagec.Lists
in the export restriction file.

Note that you need to use the caret special character (~) in naming expressions to
specify units in directories at the same level of hierarchy as the Units directory.

Export and Import Restriction Files

At this point, a subset of exported units has been defined by creating an export
restriction file and copying it into the appropriate spec view. The next step is
to create an import restriction file in the client view to enable that view to take
advantage of the export subset. An import restriction file uses the following two
conventions to request a particular export restriction file:

• The import restriction file must have the same name as the subsystem containing
the supplier view. (See "Import Restriction Filenames," below.)

• The first line of the import restriction file specifies the simple name of the desired
export restriction file. Omitting this line implicitly specifies an export restriction
file named Default.

For example, because Mailbox.Rev l.,Working requires the export restriction file
SubseLl from the supplier view MaiL Utilities. Rev LO_Spec, you must create a
corresponding import restriction file called Mail., Utilities that specifies SubseLl in
its first line. Note that when a given supplier view defines multiple export subsets,
it is the correspondence between restriction files that enables a client view to specify
which of many subsets to use during import.

Creating Import Restriction Files

Import restriction files are created in the Imports directory within the client view.
Like the Exports directory, the Imports directory is at the same level of hierarchy
as the view's Units directory. Note that because both spec and load views can be
client views, you may need to create import restriction files in both kinds of views.
Within a given client view, one import restriction file must be created for each
supplier view from which an export subset is required.

To create an import restriction file:

1. Use the Text.Create command to create a text file in the Imports directory of
the importing view (in this example, Mailbox.Rev l.,Working).
Because an import restriction file is named for the subsystem containing the
supplier view, the new file in this example is called Mail., Utilities. (See "Import
Restriction Filenames," below.)

PM-72 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

2. On the first line of the empty file, enter the name of the desired export restriction
file as shown (do not put blanks around or between the => characters):

export_restriction=>subset_l
3. Starting on the second line of the file, enter one or more naming expressions

that specify those units in the export restriction file for which links are to be
created. Naming expressions should match simple names. In this example, a
link is needed for the only name in the export subset, so the at sign (i?) wildcard
is entered (111 matches all names in the export restriction file). (See "What to
Put in Import Restriction Files," below.)

4. Commit the file.
5. If you want to be able to rebuild the file from a configuration release, you can

make the file controlled using the Cmvc.Make..Controlled command.

Figure 5-14 shows the resultant file and its parent directory.

'ProQrams Mail Mailbox Reyl WorkloQ Imports Library (Directory)'
Mall_UtIlItIes File (Textl;

.•••._. .~t.80X·~RE\tLWO ¥.ING.IMPORTS r I ror-er- I OlrectOf'

export_restrictioo=>subset_l
@

_•• . ,'hMA I-L.::.Ulid· IES I Vt-i! I- f sex t I

Figure 5-14. An Import Restriction File That References SubseLl

Import Restrietion Filenames

Typically, the simple name of the supplier subsystem (for example, MaiL Utilities)
is used for the name of the import restriction file.

In very large applications where subsystems in different worlds have the same sim-
ple name, you can derive the import restriction filename from the fully qualified
subsystem name by:

• Omitting the preceding! in the fully qualified name
• Changing the dot (.) between name components to underscores (_)

For example, Prograrnsc.Mailc.Maik.Utilities is the import restriction filename de-
rived from the fully qualified subsystem name lPrograms.Mail.MaiLUtilities.

RATIONAL 8/1/88 PM-73

Developing Applications Using Multiple Subsystems

What to Put in Import Restriction File.

As shown above, the first line of an import restriction file can be used to identify
which of the supplier view's export restriction files to use. The first line consists
of the string export_restriction=> followed by the export restriction filename. Do
not enter blank spaces in this line. Omitting this line implicitly specifies an export
restriction file named Default, which is used if such a file exists; otherwise, the entire
supplier view is used.

On subsequent lines in the file, you can enter naming expressions to specify a further
subset of the units listed in the export restriction file. Enter one naming expression
per line. Links are created in the importing view for the units that are matched by
the naming expressions. Note that if no naming expressions are specified, no links
are created.

Because the import restriction file essentially specifies a set of link names, only
simple Ada names should be used in the naming expressions. This is true even for
names that are qualified within the export restriction file. Whereas names in an
export restriction file are resolved as library names, names in an import restriction
file are resolved as link names.

You can use naming expressions to:

• Request links for all units in the export restriction file by entering (0 (as shown
in Figure 5-14)

• Request links for subsets by using wildcard expressions such as (sa_pkg

• Exclude links to units by using expressions such as -Urii t_Name (such an expression
normally follows an expression such as (0)

• Rename links to units by specifying the unit name followed by the new link name
(see below)

If a unit in an imported view has the same simple name as a unit in the client view,
the internal link that already exists in the client view prevents the creation of the
external link from the import. In such a case, you can use the import restriction
file to rename the link, thereby allowing the link to be created without renaming
the imported unit.

For example, if a client view contains a unit named Interface and the import contains
a unit named Interface, the following entry in the import restriction file creates an
external link called Other..Interface instead of Interface:

interface other_interface

In units within the client view, you use a statement such as with Other _, nterface
to reference the unit Interface from the supplier view.

Note that links should be renamed only if absolutely necessary. Instead, you should
design your application so that the main program does not reference two units with
the same simple name.

PM-74 8/1/8& RATIONAL

Developing Applications Using Multiple Subsystems

Summary a! Import and Export Restrietion Setup

At this point in the example, MaiLUtilities.RevLO_Spec contains an export re-
striction file called Subsct..l , which is referenced by the import restriction file called
MaiLUtilities in Mailbox.RevLWorking. This setup is represented in Figure 5-15.

Import
Restriction
File

Export
Restriction
File

RATIONAL

Mailbox.Rev1 Working
Imports: Directory

Mail Utilities: file

•... ... Subset_1
@ • • •

Units: Directory

with
Messages

• • •

Import

Mail Utilities.Rev1 0 Spec ~r
Exports: Directory

Subset 1: file

•.. Messages

• • •

Units: Directory
Messages Destinations Users Symbolic_

'spec 'spec 'spec Display'spec

D D D D
Figure 5-15. Import and Export Restriction Setup

8/1/88 PM-75

Developing Applications Using Multiple Subsystems

When the Cmve.lmport Command Is Entered

To complete the import operation, enter the Cmvc.Import command as before,
specifying the supplier view for the Vlewc'Io..Import parameter and the client view
as the Intoc.View parameter. Do not specify restriction filenames as parameters to
the Cmvc.Import command.

When the Cmvc.Import command is entered, the information from the restriction
files is used as follows:

1. From the name of the supplier view specified by Viewc.Toc.Import, the im-
port operation determines the name of the enclosing subsystem (in this case,
MaiLUtilities).

2. In the Imports directory of the client view, the import operation looks for an
import restriction file with the name that was obtained in step 1.

3. If no file is found with that name, links are made for units as specified by the
supplier view. Specifically, links are made for the units named in an export
restriction file named Default, if there is one; otherwise, links are made for all
units in the supplier view.

4. If there is an import restriction file with that subsystem's name, the import
operation looks inside the file to find the name of the export restriction file. (If
no export restriction file is named, an export restriction file named Default is
used, if one exists.)

5. The import operation gets a set of names from the export restriction file.
6. To this set of names, the import operation applies the naming expressions from

the import restriction file, eliminating names as specified.
7. The import operation makes links for the resultant set of names.

More on Importing

Preparing an entire application for compilation typically involves many import op-
erations. So far in the mail program, two clients have imported the spec view from
Mail., Utilities. To set up imports for the entire mail program:

1. Create a spec view from the working view in subsystem Mailbox. By default, the
Cmvc.Make..Spec.; View command causes the new spec view to inherit imports;
therefore, the spec view in Mailbox automatically imports the spec view from
MaiL Utilities, as required.

2. Import the spec view from subsystem Mailbox into the load view in subsystem
Commands.Interpreter.

3. For completeness, create a spec view from the working view in subsystem Com-
mand..Interpreter. This spec view should contain only the specification for the
main procedure, Rune.Mail,
Because Ruru.Mall'Spec contains no with clauses, the spec view requires no
imports. To prevent the spec view from inheriting imports from the work-
ing view, enter the null string ("") for the View _'Io..Import parameter in the
Cmvc.Make..Spec., View command.

PM-76 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

The complete network of import relationships is represented in Figure 5-16.

CEIJMall - Spec view

Load view

./ <,

Mailbox /' ~Mail Utilities., ~

Spec view •• Spec view------- ~------- 0Load view Load view

Command Interpreter

Figure 5-16. Import Relationships in the Mail Program

Within a single program, networks of import relationships among spec and load
views must have the following properties, which are explained below:

• They must be consistent.
• They may not be circular.

Import operations automatically enforce these properties. In fact, import operations
will fail if you attempt to create a network of imports that violate either of these
properties.

RATIONAL 8/1/88 PM-77

Developing Applications Using Multiple Subsystems

Conslsreney

Within a consistent set of imports, no view can directly or indirectly import more
than one spec view from the same subsystem. Thus, if a subsystem contains more
than one spec view, only one of these spec views can be used throughout a single
chain of imports. ("Making Non-Upward-Compatible Changes" describes condi-
tions under which additional spec views are created.)

For example, assume that a second spec view is created in the MaiL Utilities sub-
system to accommodate implementation changes. The diagram in Figure 5-17 il-
lustrates an inconsistent network of import relationships.

Command_InterpreteroSpecview

D,vlew

..:..;;;;.:::::..------- ...""'.:::.:.::.:~....._----J
..:.::..,

Mailbox::: Maif':::Ulilities

O
·~.:-:J Rev ~,_sp""'e-e--R-e-V-1_-0_-s-p-e-c"'"

.'.~'p'.:~~.i.~~ , C Messages ~ ~ Messages ~

Spec viewsoLoad view (< mviews

Figure 5-17. An Inconsistent Network of Import Relationsbips

This network is inconsistent because a view in Commandc.Interpret er directly im-
ports RevLO_Spec and indirectly imports RevLLSpec from MaiLUtilities. As
a result, ambiguous references are introduced into the mail program; for example,
a reference to package Messages is ambiguous because both spec views contain an

PM-78 !/1/8! RATIONAL

Developing Applica.tions Using Multiple Subsystems

instance of package Messages. To prevent you from creating illegal Ada programs
in this way, the Cmvc.lmport command will fail if you try to set up inconsistent
imports.

Circularity

Within a set of imports among spec and load views, no spec view can indirectly
import itself. For example, the diagram in Figure 5-18 illustrates a circular network
of import relationships.

Command_Interpreter

.:::>"

..):/: ..

Mailbox .(i

O·
Spec view

oLoad view

Mai I':U t ilit ies
10.....Spec view

oLoad view

................J .

Figure 5-18. A Circular Network of Import Relationships

The Cmvc.Import command will fail if you try to set up circular imports. Note
that some existing applications require circular imports among program compo-
nents. Such applications should be developed in combined views within combined
subsystems. These are discussed in the introduction to package Cmvc.

RATIONAL PM-79

Developing Applications Using Multiple Subsystems

Using General-Purpose Adivities

When you execute an application that is partitioned into subsystems, the Environ-
ment consults the default activity to look up which implementation to execute from
each subsystem. Therefore, when you execute an entire application, the default ac-
tivity must contain one entry for each subsystem in the application. For example,
to execute the entire mail application with MaiLActivity as the default activity,
you must add two more entries to it, such as those shown in Figure 5-19.

Subsystem Spec View load View Context
COMMAND_INTERPRETER
MAilBOXMAIL-UTiliTIES

REVL'w'ORKING
REVL~Ll
REVL"'_l

'PROGRAMS MAil
'PROGRAMS MAil
'PROGRAMS MAll

Figure 5-19. An Activity Containing Entries for the Entire Mail Application

While logged into a given session, however, you typically need to execute more than
just one such application; in fact, many Environment and user-defined commands
and tools are partitioned into subsystems. Therefore, the default activity for a
session must accommodate more than just a single application; it must specify
imp~ementations for any subsystem-based application that you execute during that
seSSIOn.

One obvious way to construct such a default activity is to add all the required
entries to a single-application activity such as MaiLActivity. However, this method
typically is not practical because of the large number of entries required to support
tools and commands. Another option is to reset the default activity each time
you want to execute a different application, tool, or command. This option is
impractical also, for example, when using user-defined tools to debug an application
as it executes.

Instead, it is recommended that you construct a separate general-purpose activity
that references other, more special-purpose activities. Such an activity references
other activities by containing pointers to their entries. In this example, you can
create a general-purpose default activity that references:

• The Environment's standard activity (!Machine.Release.Current.Activity), which
contains the required entries for tools and commands provided by the Environ-
ment

• MaiLActivity, which contains entries for the subsystems in the mail program

PM-80 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Figure 5-20 illustrates an activity called Test-Activity that accommodates both
the mail program and standard Environment tools and commands. As shown,
Test-Activity contains pointers to entries in MaiLActivity and to entries in the
Environment's standard default activity, !Machine.Release.Current.Activity. (Thus,
Test-Activity constitutes a superset of the standard default activity.)

!Machine.Release.Current.Activity
Subsystem Spec_View

Ftp Code9 1 °

Test_Activity
Subsystem

Ftp

Command
Interpreter

Mailbox
Mali_Utilities

=> Rev1_0_1
=> Rev1_0_1

Subsystem

Command_
Interpreter

Mailbox
Mali_Utilities

Rev1_0_1
Rev1_0_1

The user edits this activity

Figure 5-20. A General-Purpose Acti~'ity That Points to Two Other Acti"ities

RATIONAL PM-81

Developing Applications Using Multiple Subsystems

Modes Cor Creating Aetivity Entries

Recall that new entries, such as those in MaiLActivity, are created directly, us-
ing the Activity.Insert command. Alternatively, entries in an activity such as
Test-Activity (shown in Figure 5-20) are derived from entries in other existing
activities. There are three modes for deriving entries from a source activity:

Di fferent ial Entries created in differential mode are pointers to a source ac-
tivity's entries. Test-Activity contains differential entries.

Exact_Copy Entries created in exact-copy mode are copies of the entries in the
source activity.

Value_Copy Entries created in value-copy mode are the dereferenced values of
the entries in the source activity. (This is useful when the source
activity itself contains pointers to entries in other activities.

Several commands allow you to specify a mode for creating activity entries, including
Activity.Add, Activity.Create, and Activity.Merge. Note that you can insert new
entries among derived entries; furthermore, all types of entries can be deleted or
changed (see package Activity).

Differential entries are especially useful because they allow you to manage special-
purpose activities (for example, MaiLActivity) separately, automatically reflecting
any changes made to the referenced activities.

Creating an Aetivity with Differential Entries

As shown in Figure 5-20, Test-Activity is to contain differential entries from two
other activities, !Machine.Release.Current.Activity and MaiLActivity. Differential
entries from one source activity are created when Test-Activity is created; differ-
ential entries from the other source activity are subsequently merged in a separate
step, as follows:

1. In the appropriate context (in this case, !Programs.Mail), enter the Activity-
.Create command, specifying the name of the new activity, one of the source
activities from which entries are derived, and the mode for deriving these entries:

Activity.Create (The_Activity => "Test_Activity",
Source => "IMachine.Release.Current.Activlty",
Mode => Activity.Differential);

2. Select the new activity and create a Command window.
3. Enter the Activity.Merge command, specifying the name of the remaining source

activity and the mode for deriving entries from the source activity (use default
values for the remaining parameters):

Activity.Merge (Source => "MaiLActivity",
Mode => Actlvity.Differential);

4. Use Activity.Set.rDefault to set Test-Activity as the default activity.

PM-82 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Preserving the Derault Adlvity between Logins

When you set a default activity for a session, that activity is recorded automatically
in your session switches. In this way, your default activity is preserved from login
to login.

If, however, you find that your default activity has been reset the next time you
log in, check the login procedure(s) that are executed for your login. These may
include an Environment default login procedure (!Machine.Release.Current.Com-
mands.Login) or a customized login procedure of your own. Login procedures typ-
ically call Activity.Set-Default to ensure that a default activity is set when you
log in. In particular, the default Environment login procedure resets the default
activity to be !Machine.Release.Current.Activity.

To prevent your default activity from being reset inadvertently, delete the call to
Activity.Set.i.Default from your own login procedure, if you have one; otherwise, de-
fine a login procedure of your own (see the Rational Environment Basic Operations)
that does not call Activity.Set-Default. (Do not edit the Environment default login
procedure.)

RATIONAL 8/1/88 PM-83

Developing Applications Using Multiple Subsystems

Executing the Entire Application

To execute an entire application, you must execute its main program, which is the
procedure that serves as the root of the application's dependency closure. (For
applications that execute on RIOOO targets, main programs can be subprograms in
the library or in packages; for targets other than the RIOOO, main programs typically
are parameterless procedures.) For example, the procedure Rum.Mail is the main
program for the mail application.

Within an application that is partitioned into subsystems, the specification for the
main program typically exists in multiple contexts-specifically, in one or more spec
and load views. Figure 5-21 shows the main program Run..Mail in each of several
views within the subsystem Command..Interpreter.

Command_Interpreter

~
~

Figure 5-21. Multiple Instances of an Application's Main Progretu

Although the main program can be executed from any of these contexts, it is rec-
ommended that you execute the instance of the main program in the spec view.

PM-84 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

When you do this, the execution process consults the default activity to look up
and use the implementation specified for the top-level subsystem. In contrast, if
you execute the main program from a load view, the implementation in that load
view is executed, regardless of the implementation specified by the default activity.

For example, if you execute Rune.Mail from the spec view Rev Lfr..Spec, the execu-
tion process consults the default activity to find out which implementation to use
from the Commandc.Interpreter subsystem. Recall that the default activity refer-
ences MaiLActivity, which specifies the implementation RevL Working, as shown
in Figure 5-20 above. If, on the other hand, you execute Run..Mail from the load
view Rev l cOc.l , then the implementation in RevLO_l is executed instead of the
one specified in the default activity. In both cases, the default activity is consulted
for every imported spec view. (The role of activities during execution is covered in
"The Execution Process," above.)

Testing an Application
Testing typically involves test drivers that call the application's main program.
There are several strategies for setting up test drivers. One strategy is to create
test drivers in a world external to the application subsystems. For example, you
can create test drivers in the application world !Programs.Maii. In this case, you
must use Links.Add to create a link to the appropriate instance of the main program
Run..Mail-e-namely, to the instance in Command_Interpreter.RevLO_Spec. (If you
link to an instance of Run..Mail in a load view, the execution process will bypass
the default activity when loading the Command..Interpreter subsystem.)

Alternatively, you can create a subsystem in which to maintain test drivers. In this
case, you can put all test drivers in a working load view that imports the spec view
containing the main program. (Note you must use imports instead of creating links
when the test drivers are in a subsystem.)

Rec:ombinant Testing

You can test different combinations of implementations by changing entries in the
default activity (or by changing entries that are referenced by the default activity).
For example, assume that you want to test the entire application using a new,
un released implementation of MaiL Utilities-namely, RevL, Working. To do this:

1. Display the activity that contains entries for the application (in this case,
MaiLActivity) .

2. Select the entry to be changed (in this case, the MaiL Utilities subsystem).
3. Enter the Activity.Change command, specifying the Load..View parameter with

the name of the desired implementation (in this case, RevL Working).
4. Use Common.Commit to save the contents of the activity.

The default activity (Test-Activity) is updated automatically because it con-
tains differential entries that point to MaiLActivity.

Assuming that the units in MaiLUtilities.RevL Working are compiled, you can
now execute Runs.Mail (or a test driver that calls Run..Mail] to run the entire
application.

RATIONAL 8/1/88 PM-85

Developing Applications Using Multiple Subsystems

By changing activity entries, you can test alternative implementations without re-
compiling the entire application. That is, for applications partitioned into subsys-
tems, a "system build" amounts to specifying a particular combination of precom-
piled load views in an activity. Without having to recompile the application, you
can easily isolate the effects of a new release by testing it against proven releases in
other subsystems.

Note that you can specify alternative test combinations in separate activities. Then,
instead of changing entries in an activity, you can reset the default activity to test
the desired combination.

Making Implementation Changes
Implementation changes are those changes that affect only a working view within
a single subsystem. Such changes do not affect the units in spec views or the
client views that are compiled against spec views. Several types of implementation
changes are described in the following sections. Changes that affect spec views and
their clients are covered in "Making Design Changes," below.

Changing Nonexported Units

The simplest type of implementation change involves nonexported units in a working
view. You can make arbitrary changes to any unit body in the working view as
well as to any unit specs that occur only in the working view. For example, in the
MaiL Utilities subsystem, the nonexported units are: Destinations'Body, Line'Body,
Messages'Body, Symbolic..Display'Body, Unbounded'Body, and Unbounded'Spec.

Assume that you need to fix a problem that affects both Unbounded'Body and
Unbounded'Spec. To make the necessary implementation changes:

1. Within RevL Working, change the relevant portions of Unbounded'Body and
Unbounded'Spec. You can demote the units to the source state or edit them
incrementally.

2. Recompile the affected units in RevL Working. This includes all units in the
present example, because all units in this view depend on Unbounded'Spec.

3. If desired, make a new release (RevLO_3) from RevL Working. Because only
nonexported units were changed, RevLO_3 is compatible with Revl_O_Spec
and therefore can be executed with views that import RevLO_Spec.

4. To test the new release, change the appropriate activity entry to reference
RevLO_3 and execute the application. (See "Recombinant Testing," above.)

Note that because clients are compiled against spec views, not load views, the units
in a load view can be recompiled without affecting the clients. In effect, the presence
of a spec view serves to minimize the recompilation required after making changes.

PM-86 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Changing Private Parts in Exported Units
The Environment provides support for the conceptual separation of private parts
from visible package declarations, in that private parts in spec view units are closed
by default. Closed private parts are ignored when spec views are compiled; the load
view supplies the private parts at execution time. Accordingly, private parts in
exported units can be changed in the load view without affecting the corresponding
spec view and without requiring the recompilation of client views. Thus, changing
the private part in an exported unit is effectively an implementation change.

For example, the MaiL Utilities subsystem exports a package called Destinations,
which contains a private type called User. Assume that you need to optimize the
completion of Destinations. User by implementing it as a linked list instead of a
variable string. To do this:

1. Make the change in the private part of Destinations'Spec in the load view
RevL Working. (This private part is shaded in Figure 5-22.) You can edit
the unit specification or use incremental operations.

2. Make the necessary adjustments to Destinations'Body.
3. Recompile the units in RevL Working and test the application.

As the preceding steps indicate, changes to an exported unit's private part need to
be made only in the load view, which means that the unit in the working view now
differs from the corresponding unit in the spec view. This difference does not affect
the compatibility between the working view and spec view, and the working view
still can be executed as a valid implementation of the spec view.

As a matter of user preference, you can keep units textually identical across spec
and load views by changing the corresponding private part in the spec view. This
extra step is not necessary, however, because closed private parts are ignored when
spec views and their clients are compiled. Note that if you do modify a unit in the
spec view, demoting the unit to source will entail the demotion of dependent units
in client views as well.

RATIONAL 8/1/88 PM-87

Developing Applications Using Multiple Subsystems

Private part In
Destinations'Spec

DUnchanged

~ Changed

ReV1_Working

Figure 5-22. Compatible Spec and Load Views with Different Private Part

More on Compatibility

A load view is compatible with a spec view if it implements the unit specifications
in that spec view. When a spec view is created from a load view, the exported unit
specifications are identical across the two views. The preceding discussion shows
that corresponding units in spec and load views can be different without rendering
the two views incompatible. Following are the specific differences that can exist
between corresponding units in compatible spec and load views:

• Declarations in the private part can be completely different. (This is true only
when private parts are closed. See "More on Closed Private Parts," below.)

• Context clauses (with and use) can be different.
• Declarations can appear in different order, although they must have the same

form.
• Unit specifications in a load view can contain additional declarations that are not

present in their spec-view counterparts.

PM-88 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

More OD Closed Private Parb

Private parts are closed only in spec views that have target key RIOOO. Furthermore,
private parts are closed only in units that are not generics. Accordingly, private
parts are open in generics and in units in spec views that have other target keys.
Open private parts are compiled along with the rest of the spec view. Therefore,
when private parts are open:

• Pragma Privatec.Eyes..Only has no effect. (See "Using Pragma Prlvate..Eyes-
_Only," above.)

• Changes to private parts must be made not only in the working view but also in
the corresponding spec view; otherwise, the spec and working view are rendered
incompatible. See "Making Non-Upward-Compatible Changes," below, for more
information.

Making Design Changes
Design changes are those changes that affect subsystem interfaces, including changes
to exported unit specifications in spec views. Design changes potentially entail the
recompilation of units in client views. Design changes include:

• Upward-compatible changes to unit specifications-for example, adding new dec-
larations

• Non-upward-compatible changes to unit specifications-for example, changing
the parameter profile in a subprogram declaration

• Adding or removing unit specifications from spec views
• Changing a view's imports
• Changing a view's model

Making Upward-Compatible Changes

Upward-compatible design changes include adding new declarations to exported
units as well as deleting unused declarations (declarations that have no depen-
dents). Such changes are upward-compatible in that they introduce no conflicts
with existing declarations and dependencies in the program.

For example, assume that you are required to add a new field to mail messages in
the mail program. You can do this by adding new selectors and constructors; that
is, by adding declarations for new procedures and functions to the unit specification
of package Messages. To do this:

1. Add the new declarations to Messages'Spec in MaiLUtilities.RevL Working,
using incremental operations.

2. Make the necessary additions to Messages'Body.
3. Recompile units in Rev l., Working as necessary and test the changes within the

working view. Note that testing is limited to the working view because the new
declarations are not yet available for units in client views to reference.

RATIONAL 8/1/88 PM-89

Developing Applications Using Multiple Subsystems

4. If desired, make a new release (RevLO_4) from RevL Working. Note that
RevL Working and RevLO_4 are compatible with Rev Lfk.Spec, even though
they implement additional declarations.

5. Export the new declarations by using incremental operations to add them to
Messages'Spec in Rev LO_Spec. If, for some reason, the addition cannot be
done incrementally (for example, if the new declaration introduces a naming
conflict), continue with step 3 in either of the methods described in "Making
Non-Upward-Compatible Changes," below. See also "Effects of Demotion in a
Spec View with Clients," immediately below.

6. Modify those client view units that need to reference the new declarations. Note
that:

• Clients can take advantage of the new feature without having to reimport the
Rev LiOc.Spec.

• Clients that do not need to reference the new declarations do not need to be
changed or recompiled.

Note that these steps call for implementing the new declarations before exporting
them. Depending on the methodology at your installation, you can also export the
new declarations first and then implement them. This amounts to doing step 5
before any of the other steps.

Etreets or Demotion in a Spee View with CDenh

Step 5 above recommends the use of incremental operations to change the unit in
the spec view and advises against demoting the unit to source. This is necessary
because demoting a unit to source entails demoting its transitive closure, which
consists of all units that directly or indirectly depend on the unit to be changed.
Demoting a unit in a spec view poses two problems when that spec view has clients:

• If the spec view's clients include released views, then the required demotion can-
not take place, because units in releases are frozen. In this case, the unit in
question cannot be demoted and changed.

• If all of the spec view's clients are working views, then units in the transitive
closure can be demoted as required and the unit in question can be changed.
However, clients cannot execute while a spec view is demoted, and, depending on
the size of the transitive closure, the recompilation cost can be high.

In contrast, incremental operations require neither the demotion of an entire unit
nor the demotion of a unit's transitive closure. Therefore, changes that can be
made incrementally do not affect units in client views. When changes cannot be
made incrementally (because they introduce a conflict), you can use the method
described in "Making Non- Upward-Compatible Changes," below.

To prevent inadvertent demotion of units in spec views, make these units either
uncontrolled or controlled but not joined. This is necessary because controlled units
must be checked out to perform incremental operations, as in step 5. However, if
the unit is joined to its counterpart in the load view, the checkout operation will
attempt automatically to demote the unit to source and then update it to the latest
generation.

PM-90 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Implleatlons for Prior Releases

When you make an upward-compatible change to a unit in a spec view, client
releases that were made before the change still can be executed against any im-
plementation of the changed spec view. For example, assume that the Com-
mandc.Interpreter subsystem contains several releases that import MaiLUtilities-
.Rev LO_Spec. These releases were compiled against the spec view before the new
declarations were added to Messages'Spec. Upward-compatibility guarantees that
you can specify any of these prior releases in an activity for successful execution
after the spec-view change.

Furthermore, the MaiL Utilities subsystem itself contains several releases that were
compatible with Rev LiOc.Spec before the new declarations were added. These prior
releases are now technically incompatible with the changed spec view because they
do not implement the new declarations. However, you can specify any of these
prior releases for execution, provided that you specify prior releases from client
subsystems as well.

Making Non-Upward-Compatible Cbanges

Non-upward-compatible changes are changes to existing declarations in spec-view
units. Such changes include changing the parameter profile of a subprogram or
changing a non private type. Such changes typically require the demotion and re-
compilation of other units.

This section presents several methods for making non-upward-compatible changes.
Each method involves making a new spec view to avoid the demotion problems
imposed by frozen, released clients. The methods differ with respect to the amount
of editing and recompilation required. Therefore, the method you should choose
depends on the size of your program and the nature of the changes to be made.
Note that any upward-compatible change also can be made using any of these
methods.

Method I

Method I involves generating a new spec view from a working view. This method
is easiest for keeping units textually identical across spec and load views, with a
minimum amount of editing effort. However, because this method has the maximum
recompilation cost, as shown below, it is preferable in the following situations:

• When making many changes to one or more exported units
• When relatively few units depend directly or indirectly on the units in the changed

spec view (that is, when the transitive closure for the entire view is small)

RATIONAL 8/1/88 PM-91

Developing Applications Using Multiple Subsystems

For example, assume that you need to completely rewrite package Messages in the
MaiL Utilities subsystem. To do so:

1. Rewrite package Messages in MaiLUtilities.RevL Working and test the changed
package in that view.

2. If desired, make a release from RevLWorking.
Note that the changes to package Messages make this release incompatible with
the existing spec view (Revl_O_Spec). Therefore, you can increment the re-
lease's level 1number to indicate the start of a new family of compatible releases.
To do this, specify the value 1 for the Level parameter in the Cmvc.Release com-
mand. The resulting release is called Revl_l_1.

3. Make a new spec view from RevL, Working. The new spec view automatically
contains a copy of the changed Messages'Spec.
Note that if you followed step 3 to create a new release with an incremented level
1 number, you do not have to specify the Level parameter in the Cmvc.Make-
Spec View command. Instead, the previously incremented number is used
automatically in the new spec view name, RevLLSpec.

4. Switch the imports of all unfrozen client views from the old spec view (Revl-
_O_Spec) to the new spec view (RevLLSpec). (This means switching imports
for client working and spec views, not released views.)
In this example, the imports of three client views need to be switched. To
do so, select the entry for RevLLSpec within the MaiLUtilities subsystem
and enter the Cmvc.lmport command, specifying the Into..View parameter and
using default values for the remaining parameters:

Cmvc. Import (Into_VIew =>
"~[Mailbox.[Revl_Working,Revl_0_Spec],Command_lntl?RevI_Working]");

Imports for all clients must be switched in a single operation; multiple client
views can be specified by using a naming expression for the Into..View param-
eter. (The expression in the example is resolved relative to the context lPro-
grams.Mail.MaiLUtilities.) Import operations fail if you try to switch imports
one client at a time, because doing so results in an inconsistent import closure.

5. To verify that the imports were successfully changed, you can select the new spec
view, Revl_LSpec, and enter the Cmvc.lnformation command. The display
s~ould list the three client views specified above as referencers for the new spec
VIew.

Switching a client's imports creates links to the units in the newly imported spec
view. Links to units in the previously imported spec view are deleted. To permit
the change of links, all units that depend directly or indirectly on the imported
view's units are demoted to the source state. (That is, the transitive closure of
the entire spec view is demoted.) The Cmvc.lmport command automatically repro-
motes the demoted units to the coded state when default values are used for the
Remake..Demotedc.Unlts and Goal parameters.

PM-92 8/1/88 RATIONAL

Developing Applications Using Multiple Subsystems

Method II

Method II involves generating a new spec view from the existing spec view, not
from the working view. This method potentially reduces recompilation cost when
compared to Method I. However, this method involves editing units in both the
spec and the load view. This method is preferable:

• When changing relatively few exported units
• When the cost of recompiling the changed units is smaller than the cost of re-

compiling the entire spec view

For example, assume that you need to change declarations in package Symbolic-
_Display in the MaiL Utilities subsystem. To do so:

I. Make and test the required changes to package Symbolic..Display in Mail-
_Utilities.RevL Working.

2. If desired, make a release from RevL Working.
As before, you can increment the release's level 1 number to indicate the start of
a new family of compatible releases. In this case, the resulting release is called
RevL2_1.

3. Use Cmvc.Makc..Spec., View to make a copy of the latest spec view, which is
Rev l c Ic.Spec in this example.
Because the newly created spec view ultimately will be compatible with the
release made in step 2, you should use the Level parameter to increment the
level 1 number, thus creating RevL2_Spec. Note that, in Method II, you must
increment the level number explicitly in both this and the preceding step (see
"Coordinating Level Numbers in Spec and Released View Names," below).

4. In the new spec view (RevL2_Spec), make the same changes to Symbolic-
_Display'Spec as you made in the working view in step 1. If many changes
must be made, you can use Library.Copy to copy the changed unit specification
from the working view to the new spec view.

5. Compile the units in RevL2_Spec.
6. Switch the imports of all unfrozen client views from the previous spec view

(RevLLSpec) to the new spec view (RevL2_Spec). Use the Cmvc.Import
command to switch imports for three client views, as shown in step 4 in Method
I, above. By default, the Cmvc.Import command will perform any necessary
recompilation to the coded state.

Reloeation

Making a spec view from another spec view (as in step 3 of Method II) takes
advantage of an Environment optimization called relocation. Relocation enables
the Environment to copy compiled units, preserving the internal representation of
at least their installed state. When imports are switched, units in client views that
were compiled against the source spec view can depend on the relocated units of
the new spec view without requiring recompilation. However, when a change of
any kind (even incremental) is made to a relocated unit, the changed unit loses its
preserved internal representation. Consequently, any client-view units that depend
on the changed unit must be recompiled when imports are switched.

RATIONAL 8/1/88 PM-93

Developing Applications Using Multiple Subsystems

In the above example, the transitive closure of Symbolic..Display'Spec must be re-
compiled when the imports are switched because that unit was changed in step
4. The transitive closure of Symbollc..Dlsplay'Spec consists of two units in Com-
mandc.Interpreter.RevL, Working. However, under Method I, which does not use
relocation, all units in the transitive closure of the new spec view would require
recompilation. That is, using Method I for this change causes the additional recom-
pilation of units in Mailbox.RevL Working and Mailbox.Rev Lfl..Spec.

Coordinating Level Numbers In Spec and Released View Names

You can indicate which families of releases are compatible with a given spec view
by coordinating the level numbers in the view names. (See "Spec-View Names and
Level Numbers," earlier in this chapter.] In the above examples, the levell number
is incremented for each set of compatible views. However, the two methods differ
with respect to how these level numbers are coordinated.

In Method I, the level number was explicitly incremented once, by specifying the
Level parameter in the Cmvc.Release command. The subsequently created spec
view was named automatically using the same incremented level number. Auto-
matic coordination is possible in this case because both views were created from
the same working view. In contrast, Method II required that you specify the Level
parameter both when creating the release and when creating the spec view. This is
necessary because each view is created from a different source view.

Level numbers for newly created releases or spec views are recorded in a predefined
file within the source view. This predefined file is called State.Lastc.Release..N ame.
The next time a release or spec view is created from that source view, the file is
consulted and the level numbers in it are incremented as specified. When spec
views and releases are created from the same working view, both operations consult
the working view's State.Last..Releasec.Name file, so level numbers are coordinated
automatically. When spec views and releases are created from different source views,
different State.Last.iReleasec.Name files are consulted.

Note that State.Lastc.Release..Name files can be edited to resynchronize level num-
bers. The first digit in the file represents the number of levels that can be incre-
merited; subsequent digits represent the current number at each level.

Specifying Compatible Load Views In an Activity

In each of the above examples, a new spec view is created to accommodate non-
upward-compatible changes in the working view. The changed working view and
subsequent releases made from it therefore are compatible with the new spec view,
whereas releases made before the changes are not compatible with the new spec
view. Thus, the subsystem now contains a "compatibility family" of load views for
each spec view.

When imports are switched so that clients import a new spec view, the application
can be executed only if the activity is also changed so that it specifies a load view
that is compatible with the new spec view. For example, after the change made in
Method II above, clients import Revl_2_Spec from MaiLUtilities. Therefore, the
activity entry for Mail., Utilities must be changed to specify either RevL, Working

PM-94 8/1/88 RATIONAL

Developing Applications USIng Multiple Subsystems

or Revl_2_1, which are compatible with Revl_2_Spec. An error message is dis-
played if execution is attempted while the activity entry for MaiLUtilities specifies
RevLO_1.

In general, the activity entry for each subsystem must specify a load view that is
compatible with the spec view imported from that subsystem. If you attempt to
execute an application and the default activity specifies an incompatible load view
for some subsystem, an error message is displayed.

Adding or Removing Units !rom Spec: Views

Adding or removing whole units from spec views basically involves the same meth-
ods used for adding or removing individual declarations from exported units.

If the change is upward-compatible (that is, adding or deleting a unit that has no
dependents), you can make the change directly to an existing spec view, as in the
following steps:

I. Add or delete the unit from the load view.
2. Edit the State.Exports file in the load view. If necessary, edit any export re-

striction files. (This step has no direct effect on following steps; however, it is
recommended to avoid confusion in the long run.)

3. Make a new release from the working view, if desired.
4. Add or delete the unit from the current spec view. (If units in the spec view

need to be recompiled at this point, you are not making an upward-compatible
change; see the next set of steps in this section.)

5. Refresh the imports in each client view by entering the Cmvc.Import command
with the Viewc'Io..Import parameter set to the null string (""). This parameter
value causes the same spec view to be reimported, thereby adding a new link
or disallowing the use of an old link, as appropriate.

6. Change units in client views as necessary to take advantage of any newly added
units.

If the change is not upward-compatible (that is, deleting a unit on which client
units depend or adding a unit on which other spec-view units depend), you should
create a new spec view to which to make the change, as in the following steps:

1. Add or delete the unit in question from the working view.
2. Edit the State.Exports file (and any export restriction files) in the load view.

Note that this step may have a direct effect on step 4.
3. Make a new release from the working view, if desired.
4. Use the Cmvc.Make..Spec., View command to create a new spec view from the

working view.
Alternatively, if you want to take advantage of relocation, you can make a
new spec view from the current spec view. In this case, you must edit export
restriction files as necessary in the new spec view, because these files will not
have been copied from the load view.

RATIONAL 8/1/88 PM-95

Developing Applications Using Multiple Subsystems

5. Add or delete the unit from the new spec view, and compile the new spec view.
6. Switch the imports of client views to the new spec view.
7. Change units in client views as necessary and recompile.

Replacing the Model in a Path
As you work within a development path, you may find that you need to change
certain of the predefined library characteristics that are determined by the model.
You can change these characteristics by replacing the current model with a different
model that has the desired characteristics. To replace a path's model, use the
Cmvc.Replace..Model command in the working view of the path; the units in the
working view must be in the source state.

You can replace the model for a path to:

• Add, change, or delete links to units that are not in subsystems (for example, to
Environment tools required for compilation).

• Change the number of release levels that are represented in the names of release
and spec views.

• Change the library switches.

Note that you can replace a model in order to change a target key; however, the
target key can only be changed to a compatible target key, as defined by the Cross-
Development Facility (CDF) for that target.

Setting Up Subsystems: A Second Look
Having familiarized yourself with the concepts in the preceding chapters, you can
use the following checklists to help you to partition an application into subsystems
and then set up those subsystems.

Planning
Before creating subsystems:

• Examine the application design and consider the development team to determine
the best partitioning. Ideally:

Each subsystem is a complete, logical component of the application.
Each subsystem has well-defined, restricted interfaces.
The application is partitioned into a manageable number of subsystems.
Each subsystem eventually contains a manageable amount of code (5-25K
lines).
Each subsystem has one to five developers working in it.
Each subsystem interface exports private types and avoids reexporting dec-
larations from other subsystem interfaces.

PM-96 8/1/88 RATIONAL

Developing Applications Using Multipie Subsystems

• Decide how many development paths each subsystem will contain. Plan on one
path per target.

If any non-RIOOOtarget exports generics, its path must contain combined
views instead of spec and load views. This is determined when new paths are
created. See the chapter entitled "Using CDFs with Subsystems."
Decide whether units will be joined across these paths.

• Determine the internal directory structure for views in each subsystem. This can
be specified as part of the model; see "Setting Up Model Worlds," below.

• Establish application-wide naming conventions:

Determine where the application will reside in the Environment. Locate or
create a project library.
Choose appropriate names for each subsystem.
Choose the pathname prefix for the views in each path (depending on your
development conventions, you may want to specify more descriptive base
names than "Revl").
Set up the release structure for each subsystem. Determine whether to use
release level numbers. If release level numbers are to be used, decide how
many levels to use and when to increment each level. (This is specified as
part of the model; see "Setting Up Model Worlds," below.)
If desired, establish naming conventions for sets of spec and load views.

• Determine the external resources needed by units in the subsystems. Different
paths may require different sets of links to units not in subsystems.

• Determine the interfaces between subsystems, mapping out the network of im-
ports among subsystems. Which subsystems will need to import spec views from
which other subsystems?

If imports are hierarchic, use spec/load subsystems (the default subsystem
type).
If imports are circular, consider changing the application design so that im-
ports are hierarchic; otherwise, you must use combined subsystems (different
from combined views; see the introduction to package Cmvc).

Setting Up Model Worlds

After planning the basic subsystem elements, you can create or choose a model for
the initial development path in each subsystem. (You may need additional models
when you set up additional paths.) Models are Environment worlds that provide
specific library characteristics for each view in the path. You can create project-
specific model worlds or choose among the predefined Environment models located
in !Models. Project-specific models can be created anywhere.

RATIONAL S/1/8S PM-97

Developing Applications Using Multiple Subsystems

The model for a given development path must have:

• Links to the external resources needed by units in the path
• The library switches needed for compiling units in the path
• The desired target key

Additionally, models determine:

• The number of release levels to be used in automatically generated names of spec
and released views. By default, two release levels are used. Alternatively, you can
create in the model world a file called Levels that contains an integer representing
the desired number of levels.

• The user-defined directory structure to be created in each view in the path.
Such structure is created in addition to the Environment-defined subdirectories.
If you want directories at the same level as the Units directory in each view,
create appropriately named directories in the model world. If you want the Units
directory in each view to contain two subdirectories, create a directory called
Units in the model world, and then create the two subdirectories within that
Units directory.

Creating Subsystems from the Bottom Up

After model worlds are in place, you can create the subsystems for an application.
The Cmvc.Initial command creates each subsystem containing the working view for
one path; other paths must be created separately. The following parameters specify
some of the information that was determined during the planning phase:

• Working..View _Base_N ame: Specifies the base name for the working view in the
initial path.

• Systerru.Object.; Type: Determines whether circular imports are permitted within
an application. If your application requires only hierarchic imports, as is recom-
mended, all subsystems in the application should be of type Cmvc.Spec..Load-
_Subsystem. Circular imports are permitted only among subsystems of type
Cmvc.Combined..Subsystem .

• View., To.iImport: Specifies the views to be imported from other subsystems
(if any) for the initial path. Using this parameter is equivalent to using the
Cmvc.Import command after the subsystem is created. (However, do not use
this parameter if export and import restrictions files will need to be created.)

• Create..Load., View: Specifies the type of working view to be created within a
spec/load subsystem. Use the default value (true) to create load views, as in the
previous chapters. Specify false if you want to create combined views. Paths for
cross-development in spec/load subsystems must contain combined views when
generics are exported.

• Model: Specifies the model for the initial path.

PM-98 8/1/88 RATIONAL

Developing Applications Using Mulnpie Subsystems

The following overview of the steps for creating the subsystems in an application
starts with the lowest-level subsystems. These steps assume you are using spec and
load views within spec/load subsystems:

1. Create any subsystem(s) that do not require imports.
2. Copy or create units in the working view of each subsystem, and compile the

units.
3. Export units from each subsystem:

Edit and commit the State.Exports file to include names of the units to be
exported.
If desired, create export restriction files in the Exports subdirectory.
Enter the Cmvc.MakecSpec., View command to make a spec view from each
working view.
Compile the units in each spec view.

4. Create subsystems for the next layer in the application design. These are the
subsystems that import spec views from the first set of subsystems.

5. Import spec views from the lower layer of subsystems into the working views of
the next layer:

If no import restrictions are needed, imports can be created by the same
operation that creates the higher-level subsystems (specify the View., To-
_Import parameter in the Cmvc.Initial command).
If import restrictions are needed, create the subsystems first, then create
the import restriction files, and finally perform the import operation using
the Cmvc.Import command.

6. Copy or create units in the working view of each subsystem. Note that these
units will not compile unless the imported spec views are compiled.

7. Repeat steps 3-6 to create subsequent layers of subsystems. Use the Cmvc.Im-
port command to create imports for spec views. At the top layer, put the main
program in a spec view, where test drivers can link to it.

A.fter Subsystems A.re Created

After a given subsystem is created containing an initial development path, you can:

1. Control the desired objects in each working view.
2. Make additional development paths.
3. Join or sever controlled objects across paths as desired.
4. Make subpaths within paths to accommodate multiple developers. Decide how

to integrate work from each subpath.

RATIONAL 8/1/88 PM-99

RATIONAL

Developing AppIic:ationsUsing Multiple Hosts

A single application that is partitioned into subsystems can be developed on multiple
host RIOOOs.This is useful when:

• The application is too large to be developed on a single host.
• Parts of the application are to be developed by subcontractors, typically on hosts

at different sites.

This chapter covers the basic aspects of multiple-host development.

Overview of Multiple-Host Development
Assume that three host RlOOOsare to be used for developing the mail program
described in previous chapters. This application consists of three subsystems, each
of which is allocated to a specific machine for development. In particular, the
MaiLUtilities subsystem is to be developed on Machine..L, the Mailbox subsystem
on Machina..Z, and the Commands.Interpreter subsystem on Machlne..S.

A copy of each subsystem resides on each host machine. However, only one copy
of a given subsystem can support ongoing development. This copy is called the
primary subsystem. The other copies, called secondary subsystems, are essentially
local copies for execution and test. As shown in Figure 6-i, the primary subsys-
tem for MaiL Utilities resides on Machine.i l , whereas Machinecz and Machine..S
host secondary subsystems for MaiL Utilities. Similarly, the primary subsystem for
Mailbox resides on Machine..S, with secondary subsystems on each of the other
hosts.

Note that a given machine typically hosts multiple primaries; if the mail program
were to be developed using two machines, two primaries could reside on one of those
machines with the third primary on the other machine.

Development proceeds in each primary subsystem as described in the preceding
chapters. When a new release or spec view is made in a given subsystem, that release
or spec view can be copied, via network or tape, to the corresponding secondary
subsystems on each of the other hosts. Views in the primary subsystem on each
host can then import and compile against the copied spec views in the secondary
subsystems; the default activity on each host can specify the copied releases for
execution.

RATIONAL 8/1/88 PM-lOi

Developing Applications Using Multiple Hosts

Machine 1

.'11_1::::::::::::::: .::::::::::::::::.:::.:.:.::::: ::::::::::t::::·:·:······· ::::::::::
•.•::.$:.:·.:·.8:· ...:.·.:::.::0.::... ·:··.::0..·:··.·:·.::1t.·::.:::.::.•·.d:·.·:.. ·.·.:.a.:.·.::·.::·.r:· .• : •.••.~ .. ::.:•• :.: ..:.• :.:::.:. :\::: :'::::::::,":-:':::-"~: :::::::::::::::~:~:}}~:rr

Primary

Machine 2

Mailbox

Primary

Machine 3

Command_
Interpreter

Primary

Figure 6-1. Primary and Secondary Subsystems

In R 1000 development scenarios, code views, rather than released views, can be
copied from primary to secondary subsystems. Code views are copies of views that
store executable code in place of Ada units. Code views thus require the minimum
amount of storage necessary to permit execution of the view. Furthermore, no
recompilation is required when copying code views between machines.

Because code views do not contain Ada units, full source-level debugging is not
available. Furthermore, the program source cannot be browsed directly as in
released views, although source representation from the CMVC database can be
viewed through configuration and generation images (see the introduction to pack-
age Cmvc). Note that a code view can be browsed in a secondary subsystem only
if the following objects have been copied from the primary subsystem: the config-
uration object for the code view and the CMVC database. (See also "More about
Copying between Subsystems," below.)

PM-I02 8/1/88 RATIONAL

Developing Applications Using Multiple Hosts

Setting Up Primary and Secondary Subsystems
To set up the mail application as described above:

1. Locate or create the desired application libraries on each host. For example,
you can create a library called !Programs.Mail on each RIOOO. Be sure that the
access-control list for these application libraries will permit you to create and
copy subsystems, views, links, switches, and the like.

2. Use the Cmvc.lnitial command to create the each primary subsystem on the
appropriate machine. That is, createMaiLUtilitiesonMachine_I.Mailbox on
Machine..Z, and Commands.Interpreter on Machine..S. Note that all subsystems
created by Cmvc.Initial are primary.

3. Using the Archive.Copy command or the Archive.Save and Archive.Restore
commands, copy the model world for each primary subsystem onto the other
machines. This model is used when the secondary subsystems are created.

4. Using the Archive.Copy command or the Archive.Save and Archive.Restore
commands, create secondary subsystems on the appropriate machines. By de-
fault, the Archive.Copy and Archive.Restore commands create secondary copies
from primary subsystems.
For example, you can use the Archive.Copy command to copy !!Machine_I-
!Programs.Mail.MaiLUtilities onto Machine.iz and Machine..S, thereby creating
secondary subsystems on those machines.

In this example, the secondary subsystems are created from a primary subsystem
that contains only an empty working view. Note that secondary subsystems also
can be created from a primary subsystem that already contains spec views and
releases, and these are copied in the process of creating the secondaries.

Copying Views among Hosts
Development now proceeds within the working view of each of the primary subsys-
tems created above. When appropriate, a spec view is created to express the exports
from the primary subsystem MaiL Utilities on Machine..I. Compiled releases also
can be made in Mail., Utilities because it is the bottommost layer in the application
(it has no imports). However, compiled releases cannot be made in either of the
other primary subsystems until the working views in these subsystems import the
spec view from Mail., Utilities. To be imported into subsystems on other hosts, this
spec view must be copied into the secondary MaiL Utilities subsystems on those
hosts.

To copy a view from a primary subsystem into a secondary subsystem:

1. Within the primary subsystem, make sure that the units in the view have been
promoted to the coded state. This step is necessary because it ensures that
certain compilation information is recorded in the primary subsystem.

2. Use the Archive.Copy command (or Archive.Save and Archive.Restore) to copy
the desired view into each secondary subsystem.

RATIONAL 8/1/88 PM-I03

Developing Applications Using Multiple Hosts

For example, in the context !!Machine_l!Programs.Mail.MaiLUtilities, the fol-
lowing command copies Revl_O_Spec into the corresponding secondary subsys-
tem on Machinec.Z. Note that specifying Promote for the Options parameter
causes the view to be recompiled in the secondary subsystem:

Archive.Copy (Objects => "Revl_0_Spec".
Use_Prefix => "! IMachine_2" •
Options => "Promote");

The working views in the primary subsystems on Machine.iz and Machine..S can
import and compile against the spec view after it has been copied into the secondary
subsystems. After all the necessary spec views have been created, copied into
secondary subsystems, and imported, the entire application can be compiled.

Copying Views and Subsystem Identifleation Numbers
The first time units are compiled in a primary subsystem, that subsystem is as-
signed a unique subsystem identification number. Furthermore, the first time views
are copied from a primary subsystem into an empty secondary subsystem, that sec-
ondary inherits the primary subsystem's identification number. A shared subsystem
identification number thus defines a family of associated subsystems within which
views and associated compilation information can be copied.

Because the association between primary and secondary subsystems is not formed
until the first time a compiled view is copied, you must be careful to copy the
first views into the correct secondary subsystems. Failure to do so will associate
the wrong primary and secondary subsystems; to recover, you must destroy each
incorrectly associated secondary subsystem and recreate it.

Note that when a secondary subsystem is created from a primary that already
contains compiled units, the secondary subsystem is created with the primary sub-
system's identification number. In this case, there is no danger of associating the
wrong subsystems.

Copying Releases and Code Views
As development proceeds in each primary subsystem, releases (or code views) can be
made from the compiled working views in all of the primary subsystems. However,
the application cannot be executed on any machine until releases and code views
are copied from the primary subsystems into the corresponding secondary systems.

You can copy releases and code views using commands from package Archive, as in
the steps above. Code views are copied in the coded state. However, when released
views are copied, all compiled units in the resulting copies require recompilation.
Therefore, releases should be copied using the Promote option, which unfreezes,
recompiles, and refreezes the copied release in the secondary subsystem.

When a given host has a complete set of releases or code views, activities can be
set up on that host to specify these releases for execution.

PM-I04 8/1/88 RATIONAL

Developing Applications Using Multiple Hosts

The Compatibility Database
Spec views and releases can be copied into secondary subsystems in any order
relative to each other, as long as they are both compiled in the primary subsys-
tem. This is necessary because each primary subsystem maintains a compatibility
database (COB) which collects compilation information about the views compiled in
the subsystem.

The COB maintains compilation consistency between the load views and spec views,
ensuring that, for each usage of a given declaration in an exported spec view, the
correct declarations are executed in the compiled load view. More specifically, the
COB assigns a unique label, or declaration number, to every declaration in every
unit in a spec view. These same declaration numbers represent the corresponding
declarations in load-view units. When a unit in a client view compiles against a
spec view, references to exported declarations are represented as calls to unique
declaration numbers, which are matched with load-view declarations for execution.

COBs are used in single-host development (where every subsystem is a primary
subsystem) to enable compatible load views and code views to execute in place of
imported spec views. In multiple-host development, the COB additionally serves to
ensure consistent compilation across machines. That is, when views are copied using
commands from package Archive, the COB from the primary subsystem is copied
automatically into the secondary subsystem. When compilation on the secondary
host involves the copied views, the copied COB is consulted for the appropriate
declaration numbers. The copied COB is especially important when code views
are copied into a secondary subsystem. The COB ensures that spec views on the
secondary host are compiled consistently with the precompiled code views.

A COB is identified by the subsystem identification number of the primary subsystem
that contains it. A COB can be copied only into secondary subsystems sharing
that identification number. Whereas Archive.Copy allows you to copy views from
a primary subsystem into a secondary subsystem with a different identification
number, the COB is not copied along with it. Failure to copy the COB is reported
as a warning in the Archive.Copy log. The subsystem identification number for a
subsystem can be displayed using the Cmvc_Maintenance.Display_Cdb command.

Propagating Changes across Hosts
Ongoing development is permitted in a primary subsystem because its COB can be
updated to reflect new or changed declarations. In contrast, secondary subsystems
contain read-only copies of the primary subsystem's COB. Therefore, in a secondary
subsystem, declarations cannot be changed or added to unit specifications in any
kind of view. Such changes must be made in the primary subsystem and propagated
to the secondary subsystems.

The following methods are most appropriate for propagating changes among spec
views or combined views (for information on combined views, see the chapter enti-
tled "Using cnFs with Subsystems"). When you change a working load view in a
primary subsystem, you should propagate changes in any of the following ways:

RATIONAL 8/1/88 PM-IDS

Developing Applications Using Multiple Hosts

• Make a new release of the load view on the primary subsystem and copy it into
the secondary subsystem. Note that when releases are copied, all units in the
resulting copies require recompilation; using the Promote option in the Archive
commands automatically unfreezes, recompiles, and refreezes copied releases in
the secondary subsystem.

• Make a code view from the load view on the primary subsystem and copy it into
the secondary subsystem. Copying a code view is faster than copying a released
view because the code view does not need to be recompiled on the secondary
subsystem. Note, however, that source-level debugging of the code contained in
the code view is not possible.

• Move the new and changed units in the load view on the primary subsystem to a
working view on the secondary subsystem. This provides source-level debugging
for the code in the view and minimizes the recompilation that results from the
copy operation because only the changed units and the units that depend on them
need to be recompiled. Note that this alternative is the recommended approach
for moving changes into target paths in cross-development (see "Method III:
For Development on Multiple Hosts," in the chapter entitled "Using CDFs with
Subsystems").

It is important to be aware that units in a secondary subsystem are not necessarily
frozen, even though the CDB is frozen. Leaving units unfrozen in a secondary
subsystem allows you to use incremental operations according to Method I in the
following section. However, it is possible to freeze all units in secondary subsystems
to prevent any kind of change from being made there. In this case, you must use
Method II exclusively to propagate changes.

Method I: Propagating Incremental Changes

Incremental changes can be made to units in the primary subsystem and then
propagated to the secondary subsystem as follows:

1. Make the incremental change to the appropriate units in the primary subsys-
tem-for example, incrementally adding a declaration in a unit in a spec view.
When you promote the change to the coded state, compilation information is
recorded in the CDB.

2. From the secondary subsystem, enter the Cmvc_Maintenance.Update_Cdb com-
mand to copy the CDB from the primary subsystem into the secondary subsys-
tem.
Alternatively, if the two machines are not on the same network, you can use the
Archive.Save and Archive.Restore commands with the Cdb option (see "More
about Copying between Subsystems," below).

3. Make the same incremental change to the appropriate units in the spec view
in the secondary subsystem. The copied CDB is consulted when the change is
promoted. Note that the insertion window cannot be promoted unless the CDB
has been copied.

PM-106 8/1/88 RATIONAL

Developing Applications Using Multiple Hosts

For completeness in this example, note that you also should change the working load
view on the primary subsystem so that it is compatible with the changed spec view.
Then you can make a new release from the working load view and use Archive.Copy
to copy the new release into the secondary subsystem.

Method TI: Propagating Changed Units or Views

Changes that are not made incrementally can be propagated as follows:

1. Make the desired changes to the appropriate units in the primary subsystem.
2. Promote the changed units to the coded state. This operation records compi-

lation information in the CDB.

3. Use the Archive.Copy command to copy either the changed units or the view
containing the changed units into the secondary subsystem. The CDB is copied
automatically by this operation.

For example, assume that you changed units in RevLO_Spec in the primary sub-
system MaiL Utilities. The following command overwrites the corresponding units
in Rev LiOc.Spec in the secondary subsystem on Machine.cz:

Archive.Copy (Objects => "RevL0_Spec",
Use_Prefix => "! IMachine_2" ,
Options => "Changed_Objects,Replace,Remake");

The values for the Options parameter have the following effects:

• Changed..Objects: Causes new and modified objects to be copied.
• Replace: Permits units with dependents to be demoted and overwritten. Depen-

dent units also are demoted.
• Remake: Repromotes all units that were demoted by the Replace option.

If necessary, delete any units from the spec view in the secondary subsystem that
had been deleted from the spec view in the primary subsystem. Following are
special considerations when units are controlled in the secondary subsystem:

• Controlled units in the secondary subsystem must be checked out before the
Archive.Copy command is entered. Otherwise, the changed units cannot be over-
written with the updated units.

• The Archive.Copy command does not automatically make controlled any new
units that it copies. New units will have to be made controlled on the secondary
subsystem as a separate step.

Note that history information maintained by CMVC is valid only in the primary
subsystem.

RATIONAL 8/1/88 PM-I07

Developing Applications Using Multiple Hosts

Moving a Primary to Another Host
Occasionally it is necessary to move the primary development of a subsystem to
a different host RIOOO. For example, assume that, because of machine loads, the
primary subsystem MaiLUtilities is to be moved to Machinecz and the primary
subsystem Mailbox is to be moved to Machinec l.

To rehost a primary subsystem:

1. Find or create an associated secondary subsystem on the desired host. In this ex-
ample, a secondary subsystem for MaiLUtilities already exists on Machine..z.

2. Enter the Cmvc_Maintenance.Update_Cdb command to copy the CDB from the
primary subsystem into the secondary subsystem.

3. Convert the secondary subsystem into a primary subsystem using the Cmvc-
_Maintenance.Make_Primary command with the Moving..Primary parameter
set to true. This causes the converted subsystem to retain its original subsystem
identification number and thus its previous association with other subsystems.

4. Convert the original primary subsystem to a secondary subsystem with the
Cmvc_Maintenance.Make_Secondary command. This step must be done to
prevent corruption of the CDB.

CAUTION If the ODE is corrupted, it must be destroyed in all associated
primaries and secondaries, which demotes all views in those
subsystems to the source state and destroys all code views in
those subsystems.

It is crucial that the subsystem identification number be preserved when converting
the secondary subsystem to a primary subsystem. (This is achieved by setting the
Moving..Primary parameter to true when entering the Cmvc.rMaintenance.Make-
_Primary command.) If the subsystem identification number is allowed to change
(by leaving the Movingz Primary parameter false), then the new primary subsystem
is effectively severed from its former associates. The changed subsystem identifica-
tion number means that the CDB cannot be copied between the new primary and
what were intended to be its secondary subsystems.

More on the CDB
A CDB exists in a subsystem only after units have been promoted to the installed or
coded state in that subsystem. Accordingly, the CDB contains declaration numbers
only for declarations that have been compiled. The CDB contains a reference to all
declarations that were ever compiled in the subsystem, even those that have been
deleted.

The CDB for a subsystem consists of objects in the State. Compatibility directory
of that subsystem. The CDB is corrupted if any object in this directory is deleted.
The CDB is also corrupted if compilation takes place in multiple primary subsystems
that share the same subsystem identification number (see "Moving a Primary to
Another Host," above).

PM-108 8/1/88 RATIONAL

Developing Applications Using Multiple Hosts

A corrupted cnB may need to be destroyed using the Cmvc..Maintenance.Destrcy-
_Cdb command (consult your Rational technical representative). If you destroy a
cnB in a primary subsystem, you must also destroy the cnB in all the associated
secondary subsystems. Destroying a subsystem's cnB:
• Demotes all views to the source state in that subsystem
• Destroys all code views in that subsystem

In a primary subsystem, the cnB is recreated automatically the next time you
compile units in the subsystem. However, the cnB is recreated with a new subsystem
identification number, which severs the subsystem from any associated subsystems.

More about Copying between Subsystems
To copy a view or an object from a primary subsystem into a secondary subsystem,
you can:

• Use the Archive.Save and Archive.Restore commands to copy via tape.
• Use the Archive.Copy command to copy via the network.

For complete information about commands in package Archive, see Library Man-
agement (LM).

With respect to copying among subsystems, the Archive.Save, Archive.Restore, and
Archive.Copy commands have the same default behavior:

• The CDB is copied automatically whenever a subsystem, a view, or individual
units in a view are specified.

• The CMVC database is not copied automatically when a view is copied, so objects
that are controlled in the source are not controlled in the copy. To cause copies
to be controlled, you must copy the CMVC database explicitly by naming it in
the command.

• When subsystems are copied, secondary subsystems are created unless otherwise
specified.

• The corresponding configuration object is created automatically for each specified
view. However, the configuration object is of no use unless the CMVC database is
copied.

RATIONAL 8/1/88 PM-log

Developing Applications Using Multiple Hosts

In the Archive.Restore and Archive.Copy commands, an Options parameter accepts
the following values pertaining to subsystems:

• Cdb: Causes only the COB for the specified subsystem to be moved. Thus, the
following command is equivalent to using the Cmvc_Maintenance.Update_Cdb
command with the appropriate subsystems specified:

Archlve.COP'd (Objects => "MaiLUtilities",
Options => "Cdb");

• Ignore..Cdb: Causes the specified objects, views, or subsystems to be copied
without copying the COB. When a subsystem is specified, this option creates a
copy that is not associated with the source subsystem. Note that the COB is
always ignored when you copy views or objects into unrelated subsystems, in
which case this option merely saves time.

• Primary: Causes the specified subsystem to be copied as a primary (with read/
write access to COB). Otherwise, a secondary is created with a read-only COB.

Specifying Primary creates a primary copy that has the same subsystem identifi-
cation number and is therefore equivalent to using the CmvccMaintenance.Make-
_Primary command with the Moving..Primary parameter set to true. Note that
when you have two primary subsystems with the same subsystem identification
number, you must make one of them a secondary; otherwise, the COB will be cor-
rupted. If the COB is corrupted, it must be destroyed in all associated primaries
and secondaries, which demotes all views in those subsystems to the source state
and destroys all code views in those subsystems.

• ReverLCdb: Allows a less recently updated version of a COB to be restored over
a more recently updated version. This may be useful when restoring a subsystem
from tape over a subsystem that contains a corrupted COB (for example, if any of
the objects in the subsystem.State.Compatibility directory are deleted). However,
apart from correcting overt corruption of the COB, there is no reason to use this
option, because all versions of a COB are consistent.

PM-110 8/1/88 ~TIONAL

Using CDFs with Subsystems

With Rational's family of Cross-Development Facility (CDF) products, you can
develop applications on an RIOOOfor execution on specific target processors. As
described in the CDF user's manual for each target, the basic cross-development
scenario is to:

1. Develop the Ada units in the application on the RIOOO,where you can take
advantage of the Environment for language-specific editing, compilation man-
agement, and functional execution testing.

2. Use the CDF on the RIOOOto cross-compile, cross-assemble, and link the appli-
cation into an executable module for the desired target.

3. Download and execute the executable module on the target.
4. From the RIOOO,debug the application as it runs on the target.

Applications intended for non-RIOOOtargets can be developed either in worlds or in
subsystems. This chapter will cover the basic aspects of using subsystems as the
environment in which cross-development takes place.

Overview of Cross-Development in Subsystems
Using subsystems for cross-development allows you take advantage of development
paths, which are working views for developing variant implementations. Paths sup-
port the development of code that is common to each variant as well as code that
is specific to individual variants. More specifically:

• Controlled units in a given path can be joined to their counterparts in other
paths, so that changes made in one path can be propagated to the other paths
through the Cmvc.Check..Out and Cmvc.AccepLChanges commands .

• Controlled units in a given path can be severed (or left unjoined), so that they
can be checked out and modified independently, without propagating changes.

Each path contains a separate series of releases that are made from its working
view. (For more information on paths, see "Setting Up Development Paths" in the
chapter entitled "Coordinating Development in a Subsystem.")

Applications developed for non-RIOOOtargets typically are partitioned into subsys-
tems that contain one path for RIOOOdevelopment and another path for target devel-
opment. Ada units containing target-independent code are joined across these paths

RATIONAL 8/1/88 PM-l1I

Using CDFs with Subsystems

so that changes can be propagated automatically. Figure 7-1 shows two subsystems,
each containing paths for two targets-namely, the RIOOO and a Motorola ® MC68020
microprocessor. These paths contain load views whose exports are expressed as spec
views; note that views in each path import views from the corresponding paths in
the other subsystem.

(
Spec
_ view(Spec

view

R1000
Path

Mc68020_
Path

R1000
Path

Mc68020_Bare
Path

Typically, the target-independent units in the application are developed and tested
as much as possible in the RIOOO path. When appropriate, changes are propagated
to the working view of the target path, where target-specific code is also being
developed. Units in the target-specific path are cross-compiled and cross-linked
using the CDF for that target. The resulting executable module is downloaded to
the target processor for execution. As it executes on the target, the application can
be debugged using the cross-debugger invoked from the target-specific path.

PM-112

Figure 7-1. Paths for Two Targets

S/l/SS RATIONAL

Using: CDFs with. Subsystems

Target Keys
Each path is identified for a particular target by a target key. The target key
defines the compilation mode within that path, enabling Ada units to be compiled
for the target named by the key. That is, the CDF for a target such as the MC68020
microprocessor is invoked only when you compile units in a working view that has
the Mc68020_Bare target key. For targets other than the RlOOO,the target key for
a path is displayed in the window banner for any view in that path. (The RlOOO
target key designation is not displayed.)

The target key for a path is supplied by the model world used to create the path.
Thus, a path for RIOOOdevelopment is created with a model such as !Model.Rlooo,
which has an RIOOOtarget key. Predefined model worlds exist for each target; these
are located in !Model. See the appropriate CDF user's manual for more information
about target-specific model worlds.

Differences and Restrictions

For the most part, subsystem and CMVC usage is the same for cross-development
as it is for RlOOOtarget development, which is presented in the preceding chapters.
However, there are some differences and restrictions in the areas listed below.

Kinds or Views in Target Paths

Typically, the path for each target contains load views whose exports are expressed
as spec views. However, in the following two cases, the target path must be created
using combined views instead of spec and load views:

• If generics are to be exported
• If inlined subprograms are to be exported

Combined views are discussed in "Using Combined Views," below. Note that spec
and load views should be used when possible because combined views entail special
release considerations. Combined views do not have the advantages of spec/load
views with respect to minimized recompilation requirements and flexible testing
combinations.

Closed Private Parts

In spec views that have target key RIOOO,private parts are closed, which means that
they are not compiled along with the rest of the spec view. Closed private parts are
useful because they can be changed without requiring recompilation of clients. (See
"Changing Private Parts in Exported Units" in the chapter entitled "Developing
Applications Using Multiple Subsystems.")

In contrast, private parts are open in spec views that have non-RlOOOtarget keys.
This is true because cross-compilers are limited by the target architecture for which
they must generate code. When private parts are open:

RATIONAL 8/1/88 PM-1l3

Using CDFs with Subsystems

• Changes to private parts must be made not only in the working view but also
in the corresponding spec view; otherwise, the spec and load views are rendered
incompatible. Spec and load views must be made compatible before you can link
an executable module.

• Pragma Privatec.Eyea..Only has no effect.

See "More on Closed Private Parts" in the chapter entitled "Developing Applica-
tions Using Multiple Subsystems."

Code VIews

Currently the capability for generating code views is not available in paths for
targets other than RIOOO.

Note, however, that the executable module for a main program can be copied with-
out copying the program source. Furthermore, host/target machine-level debugging
is available for executable modules through the CDF for each target.

Exeeutlon and Activities

When a path contains spec and load views, an activity is required for execution,
regardless of the path's target key. However, exactly when the activity is consulted
depends on whether pragma Main is used in the application's main program. Appli-
cations that are to be cross-compiled for execution on a non-RIOOOtarget must have
main programs containing pragma Main; applications that are to be compiled for
execution on the RIOOOmay, but need not, have main programs containing pragma
Main.

The sequence of events for execution on the RIOOO(without pragma Main) follows:

1. Units are promoted to the coded state.
2. The application is executed; the activity is consulted during this step.

The sequence of events for a non-RIOOOtarget (with pragma Main) follows:

1. Units are promoted to the coded state and linked using the CDF. Because an
executable module is made as a result of cross-compiling and cross-linking, the
activity is consulted during this step.

2. The application is downloaded to the target processor and executed.

When pragrna Main is not used (the first sequence), changing the activity between
steps 1 and 2 affects execution in step 2. When pragma Main is used (the second
sequence), changing the activity between steps 1 and 2 has no effect on execution
in step 2.

Note that pragma Main causes an executable module to be created containing code
for all units in the application. This executable module sets up an implicit depen-
dency between the main program's code and the code of the other units executed
in the application-if any unit in the application is subsequently demoted below
the coded state, then the main program is demoted automatically to the installed

PM-114 8/1/88 RATIONAL

Using CDFs with Subsystems

state. Hence the main program should never be released after being executed with
units in working views, because demoting units in the working views would require
demoting the executable module in the frozen release.

Setting Up Subsystems for Cross-Development
If the application to be developed has not yet been partitioned into subsystems,
start with step 1. If the application is already partitioned into subsystems whose
working views have the RlOOO target key, you can start with step 2.

1. Use the Cmvc.Initial command to create the desired subsystems, one for each
logical program component. Specify models as appropriate so that the initial
working view in each subsystem has an RIOOO target key. This initial working
view defines an RIOOO path.

2. Develop and test Ada units as much as possible in the RIOOO path. Use the
Cmvc.Makec.Controlled command to put these units under CMVC.

3. When desired, create a target path from the RIOOO path in each subsystem. To do
this, select the working view of the RIOOO path and enter the Cmvc.Make..Pafh
command, specifying at least the following parameters:

• New..Pathc.Name: Specify the name prefix for the new path, according to
your project's naming conventions. For example, the path name can indicate
the path's target.

• Model: Specify a model that has the appropriate target key. Predefined model
worlds exist in !Model and are described in the CDF user's manual for each
target. Predefined models can be used to create your own project-specific
models.

• Create..Load., View: Specify true if a working load view is to be created.
• Createc Combined., View: Specify true if a working combined view is to be

created. You should use load views if possible; however, you must use com-
bined views if generics or inlined subprograms are exported.

• Join..Paths: Specify true if all or most of the controlled units are to be
shared (joined) between paths; specify false if none or few of the units are to
be joined.

4. Use the Cmvc.Sever or Cmvc.Join commands as necessary so that all target-
independent units are joined between the two paths and target-specific units
are severed.

The resulting target-specific path is a working view that contains a copy of the units
from the RIOOO path. Development can now continue in either path, as appropriate.
Changes can be accepted between paths for the joined units only.

RATIONAL 8/1/88 PM-l1S

Using CDFs with Subsystems

Using Combined Views
Combined views are a third kind of view that must be created in spec/load subsys-
tems. When a path is created using combined views, that path contains a working
combined view from which releases can be made.

Combined views combine characteristics of spec and load views:

• Like load views, combined views are used for execution because each contains a
complete subsystem implementation, including specifications and bodies for all
units.

• Like spec views, combined views can be imported because they contain the spec-
ifications of exported units; in fact, unless export restrictions are imposed, every
unit specification in a combined view is exported.

Combined views are similar in content to load views, yet they can be imported
directly by client views.

When to Use Combined Views
A path for a non-RIOOOtarget must contain combined views when:

• Generics are to be exported from the path.
• Inlined subprograms (units containing pragma Inline) are to be exported from

the path.

This is necessary because target compilation requires the bodies of generics and
inlined subprograms to be in the same view as their specifications.

A target path should contain spec and load views whenever possible because com-
bined views do not have the recompilation and testing advantages that are gained
by separating exports and implementation.

Note that a single subsystem can contain paths containing spec/load views and
paths containing combined views. Furthermore, within a single application, the
path for a given target may contain load views in some subsystems and combined
views in others.

Defining Exports Using Export Restridions
Because combined views are imported directly, every unit specification in an im-
ported combined view is by default available for client-view units to reference. To
export a smaller subset of unit specifications from a combined view, you can use
export and import restrictions. More specifically, you must create an export re-
striction file in the Exports directory of the combined view, and then create the
corresponding import restriction file in the Imports directory of the client view.
(See "Imposing Further Import and Export Controls" in the chapter entitled "De-
veloping Applications Using Multiple Subsystems.")

PM-116 8/1/88 RATIONAL

Using CDFs with Subsystems

Importing among Target Views

You can set up imports among target-specific views using the Cmvc.lmport com-
mand. Any kind of view (spec, load, or combined) can import combined views;
furthermore, combined views can import either spec views or other combined views.
Note that a client view can import only a view that has the same target key.

Figure 7-2 shows a sample network of imports among working views in Mc68020-
_Bare target paths in three subsystems. Note that the target path in the topmost
subsystem contains load views, whereas the target path in the lower subsystems
contains combined views.

Imports

Imports

RATIONAL

Figure 7-2. An Import Network Tbat Contains Load and Combined l"iews

8/1/88

Because these imports are among views in spec/load subsystems, this import net-
work must be hierarchic (that is, no view can directly or indirectly import itself).
However, import relationships can be circular among combined views that are in
combined subsystems (see the introduction to package Cmvc).

PM-117

Using CDFs with Subsystems

Consequences oC Using Combined Views

The fact that combined views do not separate exports from implementation has
consequences for compilation and for execution. As a result, using combined views
has implications for making, testing, and releasing changes.

Consequenees Cor Compilation

Because combined views are imported, units in client views depend directly on units
in imported combined views. Therefore, compilation obsolescence in an imported
combined view can propagate to its client views. Consequently, demoting and re-
compiling unit specifications in an imported combined view must be coordinated
with the development of the client views. In contrast, units in load views can be
recompiled with no direct impact on clients (unless client units contain pragma
Main) because the clients are compiled against spec views; new spec views can be
imported at the client's convenience.

As a further consequence of direct dependencies, no released view should ever import
a working combined view, because frozen client releases cannot be recompiled to
accommodate changes made in working combined views. An imported combined
view can be thought of as an extension of its clients; if a client is a frozen release,
any combined views it imports should also be frozen releases.

Consequeneea Cor ExeeutIon

Because combined views contain both exports and implementation, imported com-
bined views are used not only for compilation but also for building executable
modules. Consequently, when a combined view is imported from a subsystem, no
activity entry is needed for that subsystem in order to specify an implementation
for execution.

Testing in paths that contain combined views is less flexible than in paths that con-
tain spec/load views. When spec views are imported, alternative implementations
can be tested by changing activity entries; no recompilation is required. In contrast,
when combined views are imported, executing an alternative implementation means
importing a different combined view, and changing imports entails recompilation of
client views.

Note, however, that client views can change imports only if they are working views,
because frozen released views cannot be recompiled. Therefore, to test a new release
of a combined view against existing released client views, you must release not only
the combined view you want to test but also all clients of that view. In effect,
s:parate sets of releases must be made for each desired combination of combined
VIews.

Methods for Using Combined Views

Because of the direct dependencies on units in imported combined views, devel-
opment methods for combined view paths differ from development methods for
spec/load view paths. Two general methods are presented below. The first method
is workable for a small number of subsystems (two or three) in which changes to

PM-l1S 8/1/88 RATIONAL

Using CDFs with Subsystems

exported units are made fairly infrequently (for example, once a week). The second
method is preferred for larger applications or when changes to exported units occur
more frequently.

Method I: For Smaller ApplleatioDs

Method I is similar to development using spec and load views, in that releases are
used to facilitate parallel development in the target path. However, because Method
I involves the highest recompilation cost when changes are made, this method is
suitable only for smaller applications (two or three subsystems) in which changes
are made fairly infrequently (approximately once a week).

Under Method I, development proceeds in parallel in the working views of the target
paths. To facilitate this, working views from the higher layers import releases made
from the lower layers. In this method, released combined views play a role similar
to that of spec views, providing stable unit specifications against which views in
higher layers can compile.

For example, consider the application shown in Figure 7-2 above. This applica-
tion contains three subsystems: Top..Layer, Mid..l.ayer, and Bottorru.Layer. Each
subsystem contains an RlOOO path and a path for an MC68020 target; the target
path in Top..Layer contains load views and the target paths in Mid..Layer and
Bottoms.Layer contain combined views. Finally:

• Top..Layer imports MidcLayer.
• Mid.iLayer imports Bottorru.Layer.

Under Method I, development proceeds as in the following steps (these steps are
represented by number in Figure 7-3):

1. Develop the Ada units in the working combined view in Bottom..Layer until
these units are ready for use by the higher-level subsystems. Then make a
release of the working combined view in BottomcLayer.

2. make the working view in Mid.iLayer import the released combined view from
Bottomc.Layer. Compilation and testing can now proceed in Mid..Layer.

3. After appropriate development, make a release from the working combined view
in Midc.Layer. Note that, by default, the new release inherits the working view's
imports, so that the release in Mid.iLayer imports the release in BottomcLayer.

4. Make the working view in 'Top..Layer import the released combined view in
Midc.Layer. Compilation and testing can now proceed in Tope.Layer.

5. If a complete set of releases is desired, you can now make a release from the
working view in 'Iop..Layer. A release in Topcl.ayer is not required for pur-
poses of parallel development but is useful for complete system testing or for
identifying a major system release. Note that, by default, this release imports
the released view from Midc.Layer.

RATIONAL 8/1/88 PM-119

Using CDFs with Subsystems

Released
load
vIew ®

Released
combIned
vIew ®

Mc68020_

Released
combIned
vIew G)

Mc68020_Bare path

The steps shown above serve as a "bottom-up" method for making releases serially
from combined views. Making releases from the bottom up prevents releases from
depending on working combined views.

When a new release is made from a lower-level combined view, these steps must
be repeated to take advantage of the new release. That is, all clients need to be
re-released to execute a new lower-level release.

Figure 7-3. Method I Development Steps

For example, as shown in Figure 7-4, a new release is made in Bottom..Layer (1).
This new release must be imported (2) by the working view in Mid..Layer. At this
point, however, Mid..Layer contains the only working view that can test against
the new release, because the working view in 'Iop..Layer still indirectly imports the
original release in Bottom..l.ayer.

To solve this, a new release (3) must be made in MidcLayer, which imports the new
release in Bottoms.Layer. Finally, the new Mid..Layer release must be imported by
the working view in Tope.Layer (4). Only then can the working view in Tope.Layer
test against the most current release in Bottom-Layer.

PM-120 e/1/ee RATIONAL

Using CDFs with Subsystems

Top_Layer

Rel_2
Rel_1

®
path

Mid_Layer

Rei 2
Rel_1

CD
path

Bottom_Layer

Rei 2

CD
Mc68020-Bare path

Figure 7-4. Taking Ad,·antage of a New Release in Bottottu.Leyer

Method II: For Larger ApplieatioDS

Method II is preferred for larger applications or when changes to exported units
occur more frequently. In this method, the bulk of development and functional
testing takes place in an RlOOO path, where spec and load views facilitate parallel
development. The target path is reserved for final target integration and minor
changes. In Method II, released combined views do not playa role in facilitating
parallel development; instead, releases are made from the target path only at major
release points.

Consider once again the application containing the subsystems Tope.Layer, Mid-
_Layer, and Bottom..Layer. Assume that an initial RlOOO version has been imple-
mented and tested in an RIOOO path in each subsystem. Each RlOOO path contains
spec and load views; views from Top..Layer import the spec view from MidcLayer
and views from Mid.iLayer import the spec view from Bottorru.Layer. Assume also
that the target paths in MidcLayer and Bottoms.Layer must contain combined views
because of exported generics or inlining, whereas the target path in Top..Layer can
contain load views.

RATIONAL 8/1/88 PM-121

Using CDFs with Subsystems

Under Method II, development proceeds according to the following general guide-
lines (steps 1, 3, and 5 are numbered in Figure 7-5):

1. After ensuring that units in the RIOOO path are controlled, set up the target
paths from the bottom up, joining each with the RIOOO path:

a. From the working view in the RIOOO path in Bottoms.Layer, create a target
path containing a working combined view.

b. From the working view in the RlOOO path in Mid..Layer, create a target path
that contains a working combined view. The newly created view should
import the working combined view in Bottom..Layer.

c. From the working view in the RIOOO path in Tope.Layer, create a target path
that contains a working load view. The newly created view should import
the working combined view in Mid..Layer.

2. In the RIOOO paths, continue development or maintenance as necessary. Perform
functional testing by setting up an activity and executing the application on
the RlOOO.

3. When ready for final target integration, propagate changes between RIOOO and
target paths in each subsystem, from the bottom up. That is, operations such
as the following should be done first for Bottorn..Layer, then for Mld..Layer,
then for Tope.Layer:

• Use the Cmvc.AccepLChanges command to update the working view in the
target path from the working view in the RIOOO path. (Under this method,
most if not all units should be controlled and joined between the RIOOO and
target paths.]
The Allow..Demotion parameter must be set to true so that units with com-
pilation dependencies can be updated. As a result, accepting changes into
combined views demotes the updated units and their dependents in client
views. However, by default, all affected units are recompiled automatically
by the Cmvc.AccepLChanges command; in the target path, they are recom-
piled using the appropriate cross-compiler.

• If necessary, delete any units from the target path that had been deleted
from the RIOOO path. (Note that any new controlled units in the RIOOO path
are copied automatically into the target path by the Cmvc.AccepLChanges
command; however, no units are deleted by this command.)

• If necessary, refresh the imports of client views to take advantage of added
or deleted units.

4. At major release points, use the Cmvc.Release command to make a set of releases
from the target paths of all subsystems. (Note that the From., Working., View
parameter in the Cmvc.Release command accepts a list of views to release at
the same time.)
When you release a set of combined views among which import relations hold,
the imports are adjusted automatically so that the new releases reference each
other as appropriate, instead of referencing working views.
Note that if source-level debugging is not required for the released application,
you can save time and space by copying the executable module into an appropri-

PM-122 8/1/88 RATIONAL

Using CDFs with Subsystems

ate location and then making a set of configuration releases instead of released
views. Retaining the executable module allows you to execute the released ap-
plication; the configuration objects can be used to rebuild the set of released
views from the bottom up, if necessary.

(spec

Bare

R1000 path
Mc68020_Bare
path

Figure 7-5. Setup for Development under Method II

Because accepting changes may cause the demotion and recompilation of units in
client views, Method II requires more synchronized development efforts. That is,
changes should be accumulated in the RIOOO working view and propagated to the
target working view only at synchronization points that are agreed upon by devel-
opers of all affected subsystems.

However, the advantage of Method II is that recompilation requirements are mini-
mized. That is, when changes are accepted, the only units that require recompilation
are the changed units themselves and any units in their transitive closures. In con-
trast, under Method I, changes are propagated by making and then importing new
releases; changing imports potentially causes entire client views to be recompiled.

RATIONAL 8/1/88 PM-123

Using CDFs with Subsystems

For example, assume that a statement in a unit body is changed in Bottoms.Layer.
Under Method I, this change is made available to clients by making a new release
from the target path in BottomcLayer, changing the imports of the target working
view in Mid.d.ayer, and then making a release in Mid..Layer and changing the
imports of Tope.Layer. Under this method, two new releases need to be made and
two working views need to be recompiled as a result of changing imports.

Under Method II, the changed unit body is accepted from the RIOOO path into the
working view of the target path in Bottom..Layer, where that unit is recompiled.
No further recompilation is necessary because no units depend on unit bodies.

Method III: For Development on Multiple HOlh

Method III builds on Method II to accommodate cross-development on multiple
hosts. Assume that primary subsystems for Bottom.Layer and Mid..Layer exist
on separate machines and that secondary subsystems have been created for each
primary subsystem on the appropriate machines. Like the primary subsystems,
each secondary subsystem is set up with two paths (as shown in Figure 7-6):

• An RIOOO path containing spec views and releases copied from the RIOOO path in
the associated primary subsystem

• A target path containing working combined (or load) views copied from the target
path in the associated primary subsystem

Imports are set up on the secondary subsystem as they are on the primary.

Method II is used for development within each primary subsystem. For example,
assume that changes have been made in the RlOOO path in the primary subsystem for
Bottorru.Layer on Machine..I. These changes are propagated from the RIOOO path
to the target path within the primary subsystem, using the Cmvc.AccepLChanges
command. Now you must propagate these changes from the target path in the
primary subsystem (on Machinec.I) to the target path in a secondary subsystem (on
Machinecz}. (Note that this is also covered as "Method II: Propagating Changed
Units or Views" in the chapter entitled "Developing Applications Using Multiple
Hosts.")

To propagate changes to the secondary subsystem:

1. Use the Archive.Copy command to copy only the changed units from the target
working view on the primary subsystem to the target working view on the
secondary:

Ar-ch ive i Copq (Objects => "Revl_Working".
Use_Prefix => "I IMachine_2" •
Options => "Changed_Objects,Replace,Remake");

In this command, the Changedc.Objects option causes new and modified ob-
jects to be copied. The Replace option permits units with dependents to be
demoted and overwritten. Dependent units are also demoted. The Remake
option repromotes all units that were demoted by the Replace option.
Because only changed units are copied, recompilation in the subsystems on
Machine_2 is limited to the transitive closure of the changed units.

PM-124 8/1/88 RATIONAL

Using CDFs with Subsystems

Machine 2Machine 1

Mid_layer (Secondary Subsystem)Mid_layer (Primary Subsystem)

(Spoc~ew)

R1000 path Mc68020 Bare
path

,
~--.---------. ---------------------------'

Figure 7-6. Setup for Multiple-Host Cross-Development

2. If necessary, delete any units from the target working view in the secondary
subsystem that had been deleted from the target working view in the primary
subsystem.

Following are special considerations when units are controlled in the secondary
subsystem:

• Controlled units in the secondary subsystem must be checked out before the
Archive.Copy command is entered. Otherwise, the changed units cannot be over-
written with the updated units .

• Unlike the Cmvc.AccepLChanges command, the Archive.Copy command does
not automatically make controlled any new units that it copies. New units will
have to be made controlled on the secondary subsystem as a separate step.

Note that history information maintained by CMVC is valid only in the primary
subsystem.

RATIONAL PM-125

RATIONAL

Naming

Many commands in the Rational Environment require a way of naming objects in
the Environment to move those objects or to perform operations on those objects.
The Environment uses two forms of naming: Ada names and string names. Ada
names are used in program units or when executing a command. String names
typically are used in the parameters to Environment commands.

Ada names are used to call an Environment command in a Command window or
to reference an Ada unit in a program. Ada names are the extended Ada names as
defined in the Reference Manual for the Ada Programming Language. Ada names
are used to reference Ada units only. Files, worlds, directories, and other non-Ads
objects in the Environment cannot be referenced with an Ada name.

String names are used as arguments to commands. These strings are very similar
to Ada names but can be used to reference any object in the Environment. Also,
string names have five important additions: special names, parameter placeholders,
unldcards, special characters, and attributes. The ability also exists to create a set
of names using simple set notations and to substitute characters.

Special Names
Special names are used as parameter values for many Environment operations to
specify text, objects, and regions. Special names allow you to specify selections and
designations without providing a pathname. Anywhere that a string name can be
used, special names can be used. They take the form «<special name> ", where
special name specifies the text, object, region, or activity, as described below:

..<SELECT ION)" References the highlighted object if the cursor is located in a
highlighted area.
References the highlighted object.
References the object on which the cursor is located, whether
or not there is a highlighted area in the window.
References the highlighted object if the cursor is in a high-
lighted area. If the cursor is not located in the highlighted
area, this special name references the image on which the
cursor is located.

"<REGION)"
"<CURSOR)"

"<IMAGE>"

RATIONAL 8/1/88 PM-127

Naming

References the highlighted text in the image in the window.
References the default activity. If an activity is highlighted
and the cursor is in the highlight, this special name references
that activity rather than the default activity.

Special names are used as default parameter values to many operations. The user
can replace them with another special name or other form of string name, as ac-
cepted by that operation.

"<TEXD"

"<ACTIVITY>"

Special Values
Many operations in the Environment have a Response parameter that specifies how
the command should respond to errors.

Error Reactions
When errors are discovered in a command, the system can respond by:

• Ignoring the error and trying to continue.
• Issuing a warning message and trying to continue.
• Raising an exception and abandoning the operation.

For each job, the Rational Environment maintains a default action for commands
in package !Tools.Profile (documented in SJM) to take if an error occurs. There are
commands to specify and display the default error reaction for a job. Regardless of
the default error reaction, any error reaction can be specified for any command.

The Environment has special values used as parameters to commands for which
profile it should use when responding to errors in a command. These are "<PRO-
F ILE>", "<SESS I ON>", and "<DEFAULD", which refer, respectively, to the job response
profile, the session response profile, and the default profile returned by the Pro-
file.Default..Profile function. See SJM, package Profile, for further information on
profiles.

Parameter Placeholders
Many Environment commands use parameter placeholders as default parameter val-
ues. They take the form "> >parameter placeholders; <". This naming convention is
used, as its name suggests, as a placeholder indicating the type of string name that
must be entered to replace it. Executing a command without replacing a parameter
placeholder results in an error. Parameter placeholders include:

"»FILE NAME«"
"»PATH NAMES«"
"»ACT I V I TV NAME«"

For example, an operation that has the "»F ILE NAME«" parameter placeholder
requires a filename, such as "!Users.John.File_l".

PM-128 8/1/88 RATIONAL

Naming

Wild(ards
Wildcards allow for both the abbreviation of names and the specifying of several
objects with one name. The wildcards are: pound sign (#), at sign (i?), question
mark (?), and double question mark (??).

Wildeard #
The pound sign (#) represents any single identifier character in a name, including
the underscore (_). It can be used several times within a single name. For example,
F### will match the name Food.

Any wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.####y, can be created to refer to the first two of
them.

Wildeard ~
The at sign (~) represents zero or more identifier characters in a name, including
the underscore (_). It does not match any subunits of Ada units. It can be used
several times within a single name. For example, the name !Users.Fred.Food can
be written !UI1l.~.Foodif that abbreviation is unambiguous.

This wildcard can be used to represent a set of named objects. For example, if there
are objects in the directory !Users.Stooges called Larry, Curly, and Moe, a single
string, such as !Users.Stooges.~, can be created to refer to all three of them.

This wildcard can be combined with the special characters, discussed in the next
section, to create very short names that represent sets of objects in the current
context. As before, if there are three Ada units in the current context called Larry,
Curly, and Moe, the string i? can be used to represent all three Ada units, but it
would not include their subunits.

Wildeard!
The question mark (?) represents zero or more components in a name, which are not
worlds or objects contained by those worlds. For example, the name !Users.Stooges?
represents the Ada units called Larry, Curly, and Moe and any of their subunits.

Also note that periods before and after the wildcard are optional. For example, the
name A.?B is equivalent to the name A?B.

Wildeard tr
The double question mark (71) represents zero or more components in a name,
including worlds or objects contained by those worlds. For example, the name
!Users?? represents the home worlds of all users and the contents of those worlds;
!Users.Bill represents everything in his home world, including worlds and the objects
within those worlds. As another example, consider that I?? matches all objects in
the directory system on a given machine.

Note that periods before and after the wildcard are optional. For example, the
name A.71.B is equivalent to the name A71B.

RATIONAL 8/1/88 PM-129

Naming

Substitution Characters
Similar to the way in which wildcard characters can be used to specify a source
group of objects, substitution characters can be used to create target names from
source names.

The substitution characters and their definitions are described below. Note that
if a substitution character is encountered after all segments/wildcards have been
exhausted, the characters are replaced by the null string. If the character # or ? is
replaced by the null string, an immediately following period (.) is also elided from
the resulting string.

Substitution Character #
The pound sign (#) is replaced by the next complete segment in a name. For
example, if there are Ada units in the world !Users.Stooges called Larry, Curly,
and Moe, and the user wants to copy them into !Users.Stooges.New_ World, the
user could build the target name parameter (from the !Users.Stooges source name
parameter) using substitution characters as follows: !#.#.New_ World.#.

Substitution Character !!:I
The at sign (!!:I)is replaced by the portion of the current segment that is matched by
a wildcard in the source name. If there is more than one wildcard in the segment, a
separate !!:Iis needed in the target to match each one. If the current segment has no
wildcards, the next character that is followed by any of the special (not wildcard)
characters covered in this section is not eligible as the source of the substitution.
(For the purpose of this matching, !!:I,#, ?, and ?? are considered to be wildcards.)

For example, there is a world called !Users.Gzc containing files File..I through
File_50. The user wants to rename these objects My_File_l through My_File_50.
The source name parameter would be Illsers.Gac.File.,e. The target name param-
eter, using substitution parameters, would be !#.#.My_File_!!:I.

Substitution Character!
The question mark (?) is replaced by successive full segments until the segment
for a world is encountered. For example, to copy everything in a world up through
the next-level world !Users.Mary to !Users.John, the source string would be !Users-
.Mary?? and the target string would be !Users.John?

PM-130 8/1/88 RATIONAL

Naming

Special Characters in Names
Special characters can be used in names to specify either relative or absolute con-
texts or to specify indirect files of names. These special characters apply to names
used throughout the Environment.

A special character in a name determines the context in which the remaining portion
of the name will be interpreted. A special character of exclamation (!), caret (~),
dollar sign ($), double dollar sign ($$), percent (%), underscore (_), period (.),
backslash (\), or grave (') causes an explicit interpretation of the remainder of the
name as described below.

Character pairs are also used to enclose a name and to give that name an additional
meaning. Character pairs are brackets ([]) and braces ({}), which are also described
below.

Speeial Charader !
The exclamation mark (!) specifies that the context for resolving the remainder of
the name should be set to the root of the directory system. This creates a fully
qualified name. This character represents the root of the library system in any
context.

Speeial Charader ~

The caret (~) specifies that the context should be set to the immediately enclosing
object. This climbs the hierarchy of objects and eventually reaches the root of
the directory system. This prefix can be used repeatedly to define the context to
be several units above the current context. The parent object of the root of the
directory system is itself.

A special use of this character occurs in combination with a bracketed name. A
name component of the form ~[some_unit] resolves to the closest containing object
whose simple name is Some..Unit. Brackets normally are used for creating sets of
objects.

The caret also can be used as a shorthand method for referring to objects in a
parent unit. For example, if the current context is !Users.Pete, another user named
Joe can be referred to as !Users.Joe or simply ~Joe.

Special Character •

The dollar sign ($) specifies that the context should be set to the immediately
enclosing library. A library is either a directory or a world. If the current context
is a library, this character has no effect.

A special use of this character occurs in combination with a bracketed name. A name
component of the form $[some.clibrary] resolves to the closest containing library
whose simple name is Somes.Library.

RATIONAL 8/1/88 PM-131

Naming

Speeial Character ••
The double dollar sign ($$) specifies that the context should be set to the immedi-
ately enclosing world. This is more restrictive than the single dollar sign ($), which
is either a world or a directory. If the current context is a world, this character has
no effect.

A special use of this character occurs in combination with a bracketed name. A
name component of the form $$[some_world] resolves to the closest containing world
whose simple name is Some..World.

Speeial Charader _
The underscore (_) is interpreted as an indirect file prefix when used in some En-
vironment commands. If the first character after the underscore is an alphabetic
character, then it is assumed to be the first character of the name of a file that
contains other names. This provides a way of building lists of objects and referring
to that list in a name. (See "Indirect Files," below.) The underscore also must be
used when specifying an activity file as an indirect file.

Speeial Charader .

The period (.) is used both as a name component separator and as a name prefix.
As a separator, it is used just as in Ada names to separate components of a name.
For example, in the name Commands.Ada, the period separates the two components
of the name.

Special Charader \
The backslash (\) specifies that the next name component be evaluated in the
current searchlist. For example, a name such as Larry would be evaluated in the
current context. However, a name such as \Larry would be evaluated in each of the
contexts of the searchlist in turn until all occurrences of the name Larry are found
in those contexts. If more than one occurrence is found, a menu is displayed.

More information about searchlists can be found in Session and Job Management
(SJM).

Special Charader '
The grave (') is used to evaluate names using the current context and the set of
links associated with the current context. The grave evaluates the name as if it
were the name of an Ada unit in a with clause of a unit in the library that contains
the current context. For example, the name 'Moe resolves to an Ada unit called
Moe in the containing library. Moe could be a link to some other library.

This kind of naming does not allow for renamed packages or instances of generic
packages or subprograms to be used. It does not "look through" renaming declara-
tions.

More information about links can be found in Library Management (LM).

PM-132 8/1/88 RATIONAL

Naming

Special Cbaraders I]
Brackets ([]) define a set notation. Sets are created by enclosing a series of name
components, separated by commas, in brackets. For example, the name [Larry,
Curly, Moe] represents only those three objects in the current context.

The semicolon character also can be used to separate name components. Commas
and semicolons cannot be mixed. If semicolons are used, each name component
in the set must resolve to at least one object. For example, Foo?['C(Lib), 'Specj
matches any component of Foo that is either a library or an Ada spec. Foo[AjB
must match A and B in Foo.

Names also can be excluded from a set with the tilde C). For example, the name
[@, "Curly] represents all names in the current context except the name Curly.

The special string [] represents the current context, whether that context is a
directory, world, Ada unit, or other object.

Spedal Cbaraders (}
Braces ((}) denote objects that have been deleted but not expunged as well as
objects that have not been deleted. For example, if the object Curly is deleted but
not expunged, the name ((i refers only to Larry and Moe, but the name {~} refers
to Larry, Curly, and Moe.

Indirect Files
Indirect files are text files that contain one or more object names or naming expres-
sions. When an indirect file is given as a parameter value, the Environment converts
the file's contents into set notation (see "Special Characters r]," above). An indirect
file is thus a way of maintaining a list of objects that can then be referenced using
a single name.

In an indirect file, you can put each name or naming expression on a separate line:

Larry
Curly
Mae
@_pkg

Alternatively, you can separate name components with commas or semicolons (with
semicolons, each name component in the set must resolve to at least one object):

Larry,Curly
Mae,@_pkg

When resolving the contents of an indirect file, the Environment inserts commas in
place of new lines and preserves any existing commas or semicolons.

To specify an indirect file as a parameter value, it must be prefixed with an under-
score (_) (see "Special Character .,", above). For example, to specify an indirect
file called Archlve..List, enter:

Objects => "_Archive_List"

RATIONAL 8/1/88 PM-133

RATIONAL

package Activity

An activity maintains a mapping between subsystems and pairs of views. The pair
consists of a spec view and a load view from that subsystem. An activity typically
is used to specify an implementation from each subsystem to be used for execution.

This package provides operations for creating, viewing, and manipulating activities
and for identifying which activity is the current activity for a running job or session.

Editing Activities
In addition to the commands relating to activities, an editor provides editing opera-
tions specific to activities. Many of the operations in package !Commands.Common
apply to activities. An activity can be viewed with the Edit command (or sim-
ply by getting the definition of the activity) and then can be edited with com-
mon editing operations. This section describes the commands from package !Com-
mands.Common that apply to activities. Operations from package Common that
do not apply to activities produce a message to that effect in the Message window.

Changes to activities are not made permanent until committed. When an activity
is changed, but not yet committed, the # symbol appears in the window banner.
Committing the activity makes all changes to the activity permanent, and the =
symbol appears in the window banner.

Commands from Package !Commands. Common
procedure Common.Abandon

Ends editing of the activity and removes the window from the screen. Because all
changes to activities are not made permanent until committed, any uncommitted
changes will be lost.

procedure Common.Commit

Makes permanent any changes made to the activity.

RATIONAL 8/1/88 PM-135

package !Commands.Activity

proeedure Common.Create_Command

Creates a Command window below the current window. The use clause in the
Command window includes package Activity, so operations in package Activity are
directly visible without qualification in the Command window.

proeedure Common.Deflnltlon

Finds the definition of the subsystem corresponding to the selected entry or the entry
on which the cursor resides, in the compressed form of an activity. For expanded
entries (that is, those expanded to three lines: one each for the subsystem, the spec
view, and the load view), this command finds the definition of the corresponding
subsystem, spec view, or load view. This procedure creates a window containing
that subsystem or view.

proeedure Common.Edlt

Prompts the user for changes to the selected entry, or to the entry on which the
cursor resides when IEdltl is pressed, by crea.ting a Command window a.nd placing in
it the command:

Change (Spec_View => "", Load_View => "");

The user fills in values for one or both parameters, as desired.

Spec- or load-view entries also can be specified indirectly through another activity.
By specifying the name of an activity rather than the name of an actual view,
the user indicates that the name of the desired view should be derived from the
subsystem's corresponding entry in the specified activity.

proeedure Common.Releue

Makes any changes to the activity permanent, releases control of (unlocks) the
activity, and then destroys the window.

proeedure Common.SertcImege

Sorts the activity image according to the specified sort format. These formats are
specified by number:

1 Sorts by subsystem
2 Sorts by kind and subsystem
3 Sorts by kind and value
4 Sorts by kind and view
5 Sorts by value and subsystem
6 Sorts by value and kind
7 Sorts by view and subsystem
8 Sorts by view and kind

PM-136 8/1/88 RATIONAL

package !Commands.Activity

procedure Common.Object.Child

Selects the entry in the activity on which the cursor currently resides. If an entry
is already selected, this command has no effect.

procedure Common.Obleet.Delete

Deletes the selected entry or the entry on which the cursor resides.

procedure Common.Object.Ellde

Controls the level of detail displayed in the image of the current activity. Successive
uses display successively less information about the activity entries, proceeding from
top to bottom in the following list:

• All data by subsystem
• Load data by subsystem (indirections are identified)
• Spec data by subsystem (indirections are identified)
• Both views by subsystem
• Load views by subsystem (indirections are not identified)
• Spec views by subsystem (indirections are not identified)
• Subsystems by subsystem

procedure Common.Object.Expand

Controls the level of detail displayed in the image of the current activity. Successive
uses display successively more information about the activity entries, proceeding
from bottom to top in the list given under Common.Object.Elide.

procedure Common.Object.Explain

Uncompresses a subsystem entry, separating each component (subsystem name,
spec view, and load view) of the entry onto separate lines.

procedure Oommen.Objeet.PlreecOhlld

Selects the first entry of the activity.

procedure Ocmmon.Objeet.Insert

Inserts a new subsystem entry or modifies an existing entry in the activity by
prompting the user. Creates a Command window and places in it the command:

RATIONAL 8/1/88 PM-137

package !Commands.Activity

Insert (Subsystem => "", Spec_View => "", Load_View => "H);
The user fills in values for parameters, as desired. If the subsystem name is omitted,
it will be derived from the view names, provided that these are full pathnames.

Spec- or load-view entries also can be specified indirectly through another activity.
By specifying the name of an activity rather than the name of an actual view,
the user indicates that the name of the desired view should be derived from the
subsystem's corresponding entry in the specified activity.

proeedure Common.ObJeet.Lut_Chlld

Selects the last entry of the activity.

proeedure Common.ObJeet.Next

Selects the next entry in the activity if an entry is selected. If no entry is selected,
this command selects the entry on which the cursor currently resides. If all entries
are selected, this procedure produces an error.

proeedure Commou.ObJeet.Parem

Selects the entry in the activity on which the cursor currently resides. If an entry
is already selected, the procedure selects all entries in the activity. Otherwise, the
procedure has no effect.

procedure Common.Obleet.Prevleus

Selects the previous entry in the activity if an entry is selected. If no entry is
selected, the procedure selects the entry on which the cursor currently resides. If
all entries are selected, this procedure produces an error.

PM-138 8/1/88 RATIONAL

subtype Activityc.Name
package !Commands.Activity

subtype Activity..Name

subt~pe Activit~_Name is String;

Description

Defines a string pathname that resolves to an activity in the directory system.

RATIONAL S/l/SS PM-139

procedure Add
package !Commands.Activity

procedure Add

procedure Add
(Subs~stem
Load_Value
Spec_Value
The_Activit~
Mode
Response

Subs~stem_Name .- "<CURSOR)";
View_Or_Activit~_Name .- Activit~.Nil;
View_Or_Activit~_Name .- Activit~.Nil;
Activit~_Name .- Activit~.The_Current_Activit~;
Creation_Mode .- Activit~.Exact_Cop~;
String .- "<PROFILE)");

Description

Modifies the activity specified by The_Activity parameter by updating an existing
entry for a subsystem or by adding a new entry if an entry for the specified subsystem
does not already exist.

Parameters

Subs~stem: Subs~stem_Name := "<CURSOR)";
Specifies the subsystem name for the new entry. This name is resolved in the current
context. The default is the subsystem name on which the cursor is located.

Load_Value : View_Or_Activit~_Name := Activit~.Nil;
Specifies the name of a load view within the specified subsystem or an activity from
which the load view can be derived (based on the Mode parameter) for the new
entry. The view's name is resolved within the context of the specified subsystem.
The default is the empty activity, indicating no load-view component.

Spec_Value : View_Or_Activit~_Name := Activit~.Nil;
Specifies the name of a spec view within the specified subsystem or an activity from
which the spec view can be derived (based on the Mode parameter) for the new
entry. The view's name is resolved within the context of the specified subsystem.
The default is the empty activity, indicating no spec-view component.

The_Activit~ : Activit~_Name := Activit~.The_Current_Activit~;
Specifies the activity to which the new entry will be added. The default indicates
the current selection or image.

Mode: Creation_Mode := Activit~.Exact_Cop~;
Specifies the mode by which the new entry shall be derived, if either the Spec..Value
or the Load..Value parameter specifies the name of an activity and not a view.

PM-140 8/1/88 RATIONAL

procedure Add
package !Commands.Activity

Response: Str ing := "<PROF1LE>" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

Add (Subsys tern_Name => "User _I nterface" ,
Load_Value => "Revl_0_4",
Spec_Value => "Revl_0_Spec",
The_Acti vi ty => "I Application_Name. CurrenLRelease") ;

References

type Creatlon.iMode

RATIONAL 8/1/88 PM-141

procedure Change
package !Commands.Activity

procedure Change

procedure Change (Spec_View
Load_View

View_Or_Activity_Name .-
View_Or_Activity_Name .-

,
If II) ;

Description

Modifies the spec-view and/or load-view components of the currently selected sub-
system entry or the entry on which the cursor currently resides.

The !Commands.Common.Edit command prompts the user with this command.
This command is meaningful only in a Command window associated with an activ-
ity.

Parameters

Spec_View: View_Or_Activity_Name := "";

Specifies the name of the new spec view. The null string indicates that the spec
view should not be changed.

Load_View: View_Or_Activity_Name .-
Specifies the name of the new load view. The null string indicates that the load
view should not be changed.

Example

The following command changes only the load-view component of the designated
entry to Revl_O_7:

Change (Load_View => "RevL0_7");

The following command changes only the spec-view component of the designated
entry to Rev Lc l LSpec:

Change (Spec_View => "Revl_LSpec");

The following command changes both spec- and load-view components of the des-
ignated entry:

Change (Spec_View => "Revl_0_Spec", Load_View => "RevL0_7");

PM-142 S/l/SS RATIONAL

procedure Change
package !Comma.nds.Activity

The following command changes the spec-view component in the designated entry
to be the spec view used in the corresponding entry in the named activity:

Change (Spec_View => "Some_Activity_Name");

References

EST, procedure Common.Edit

RATIONAL 8/1/88 PM-143

procedure Create
package !Commands.Activity

procedure Create

procedure Create (The_Activlty
Source
Mode
Response

Activity_Name '- "»ACTIVITY NAME«";
Activity_Name .- Activity.Nll;
Creation_Mode '- Activity.Exact_Copy;
String .- "(PROF ILE)") ;

Description

Creates a new activity.

The created activity may be derived from the source activity based on the Mode
parameter.

Parameters

The_Activity Activity_Name:= »ACTIVITY NAME«;
Specifies the name of the new activity. The default parameter placeholder "»AC-
T IV ITY NAME«" must be replaced or an error will result.

Source Activity_Name:= Activity.Nil;
Specifies the name of the activity from which the new activity is to be created. The
default is an empty activity.

Mode: Creation_Mode := Activity.Exact_Copy;
Specifies the mode by which the entries shall be derived from the source activity.

Response: String:= "(PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example

The following command creates a new activity with indirect entries for all subsys-
tems in the source activity !Release.Current.Activity:

Create (Activity => "My_Private_Activity",
Source => "IRelease.Curren~.Activity",
Mode => Activity.Differential);

PM-144 8/1/88 RATIONAL

procedure Create
package !Commands.Activity

References

type Creatlon.JMode

RATIONAL 8/1/88 PM-145

type Creationc.Mode
package !Commands.Activity

type Creatioru.Mode

t~pe Creation_Mode is (Differential. Exact_Cop~, Value_Cop~);

Description

Defines three modes for the creation of spec-view and load-view references for sub-
system entries.

Enumerations

Differential
Indicates that the new entry should be formed as an indirect reference to the source
activity. The created entry will not be the name of a view but the name of another
activity that specifies an actual view or another activity from which to derive the
view. With this mode, changes made to the source activity will be reflected in the
target activity.

ExacLCop~
Indicates that the new entry should be formed as an exact copy of the entry in the
source activity. Thus, if the source entry contains the name of an actual view, the
new entry also will contain the actual view. If the source entry contains an indirect
reference, the new entry will contain an identical indirect reference.

Value_Cop~
Indicates that the new entry should be formed as the dereferenced value of the
corresponding source entry. Indirect (differential) references will be resolved until
an actual view is found.

PM-146 8/1/88 RATIONAL

procedure Current
package !Commands.Activity

procedure Current

procedure Current (Response String .- "<PROFILE)");

Description

Displays the name of the activity that is associated with the current job.

If no activity has been associated with the job, the procedure returns the activity
currently associated with the running session.

The current activity is set by the Set and SeLDefault procedures.

Parameters

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

proced ure Set

procedure SeLDefault

RATIONAL 8/1/88 PM-147

procedure Display
package !Commands.Activity

procedure Display

procedure Display
(Subsystem

Spec_View
Load_View
Mode
The_Activity
Response

Subsystem_Name .-
View_Name
View_Name
Creation_Mode
Activity_Name
String

II?II.· ,II?,. .· ,
"?II.· ,.- Activity.Value_Copy;

.- Activity.The_Current_Activity;

. - "<PROFILE)");

Description

Displays an image of the specified activity.

Only the mappings that match the patterns (Environment naming conventions, in-
cluding wildcards) given in the Subsystem, Spec..View, and Load.iView parameters
are listed. In Value..Copy mode, all indirect references are resolved; only the reso-
lution is displayed. In Exact-Copy mode, indirect mappings are not resolved; the
name of the source activity is displayed. In Differential mode, the indirect mappings
are resolved; both the resolution and the original indirect activity are displayed.

Parameters

Subsys tem: Subsys tem_Name := "?";

Specifies the name of the subsystem entry to be displayed. The default indicates
that all subsystem entries should be displayed.

Spec_View: View_Name:= "?";

Specifies a pattern for spec-view entries. Only patterns that match are displayed.
The default indicates that all spec views are acceptable.

Load_View: View_Name: = "?";

Specifies a pattern for load-view entries. Only patterns that match are displayed.
The default indicates that all load views are acceptable.

Mode: Creation_Mode := Activity.Value_Copy;
Specifies the mode by which the image of each entry shall be derived from the
activity.

PM-148 8/1/88 RATIONAL

procedure Display
package !Commands.Activity

The_Activity : Activity_Name := Activity.The_Current_Activity;
Specifies the name of the activity to be displayed. The default indicates the activity
associated with the running job. If no activity has been associated with the job,
the procedure returns the activity associated with the running session.

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function ThecCurrentc.Activity

RATIONAL 8/1/88 PM-149

procedure Edit
package !Commands.Activity

procedure Edit

procedure Edit (The_Activity Acti vi ty_Name . - "<ACTIVITV)") ;

Description

Invokes the activity object editor on the specified activity.

The default is to edit the current activity.

Parameters

The_Activi ty Acti vi ty_Name : = "<ACTIVITV)";

Specifies the name of the activity to be edited. The default indicates the activity
for the current job or session.

PM-ISO 8/1/88 RATIONAL

procedure Enclosingc.Subsystem
package !Commands.Activity

procedure Enclosing..Subsystem

procedure Enclosing_Subsystem (View
Response

View_Name .- "<IMAGE)";
String .- "<PROFILE>");

Description

Displays the name of the subsystem that contains the specified view.

The default is the currently selected view, the view containing the current selection,
or the view containing the current context.

The view may be either a spec or a load view.

Parameters

VieUJ: VieUJ_Name := "< IMAGE)" ;
Specifies the name of the view whose enclosing subsystem is desired. The default is
the currently selected view, the view containing the current selection, or the view
containing the current context.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-ISI

procedure Encloeing..View
package !Commands.Activity

procedure Enclosing..View

procedure Enclosing_View (Unit Unit_Name .- "<IMAGE)";
Response Str ing . - "<PROFILE>") ;

Description

Displays the name of the view that contains the specified unit.

The default is the currently selected unit or unit image.

Parameters

Uni t: Uni t_Name := "< IMAGE)";

Specifies the name of the unit for which the enclosing view is desired. The default
is the currently selected unit or unit image.

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-152 S/l/SS RATIONAL

procedure Insert
package !Commands.Activity

procedure Insert

procedure Insert
(Subsystem

Spec_View
Load_View

Subsystem_Name . - "»SUBSYSTEM NAME«";
View_Or_Activity_Name .-
View_Or_Activity_Name .-

1111 •.
It II) ;

Description

Modifies an activity to update an existing entry for a subsystem or adds a new
entry if one does not already exist for the specified subsystem.

The !Commands.Common.Object.Insert command prompts the user with this com-
mand. This command is meaningful only in a Command window associated with
an activity.

Parameters

Subsystem: Subsystem_Name : = "»SUBSYSTEM NAME«";

Specifies the name of the subsystem. The default parameter placeholder "»SUB-
SYSTEMNAME«" must be replaced or an error will result.

Spec_View: View_Or_Activity_Name := "";

Specifies the name of the spec-view for the subsystem entry. A null string specifies
no entry if an entry does not already exist for the subsystem or no change if the
subsystem does exist.

Load VIew: View_Or_Activity_Name ._

Specifies the name of the load view for the subsystem entry. A null string specifies
no entry if an entry does not already exist for the subsystem or no change if the
subsystem does exist.

Name resolution: The subsystem name is resolved in the current context. Names
within spec- and load-view indications are resolved within the context of the spec-
ified subsystem.

RATIONAL 8/1/88 PM-153

procedure Insert
package !Commands.Activity

Example 1

procedure Insert (Subsystem => "User_Interface",
Spec_View => "Revl_"'_Spec" ,
Load_View => "Rev L"'_S ");

Example 2

procedure Insert (Subsystem => "User_Interface",
Spec_View => ,
Load_View => "Current_Release");

where CurrenLRelease is the name of an activity in !My_Application.User_Inter-
face.

References

EST, procedure Common.Object.Insert

PM-154 8/1/88 RATIONAL

procedure Merge
package !Commands.Activity

procedure Merge

procedure Merge (Source Activit~_Name .- "»ACTIVITY NAME«" ;
Subs~stem Subs~stem_Name U?"..- ISpec_View View_Name .- n?".,
Load_View View_Name .- II?".,
Mode Creation_Mode .- Activit~.Exact_Cop~;
Target Activit~_Name .- "<ACT IV ITY>" ;
Response String .- "<PROFILE>");

Description

Copies into the specified target those subsystem entries defined in the source activity
that match the patterns specified in the Subsystem, Spec..View, and Load..View
parameters.

New subsystem entries are added as necessary; existing subsystem entries are re-
placed.

Patterns for the Subsystem, Spec..View, and Load..Ylew parameters are the stan-
dard Environment naming conventions and wildcards.

Parameters

Source: Activit~_Name:= "»ACTIVITY NAME«";
Specifies the name of the activity from which entries are to be copied. The default
parameter placeholder "»ACT IV ITY NAME«" must be replaced or an error will result.

Subsqstem: Subsus tem_Name := "?";

Specifies the subsystem entries to be copied. The default indicates that all subsys-
tem entries should be copied.

Spec_View: View_Name := "?";

Specifies a pattern for spec-view entries. Only patterns that match are copied. The
default indicates that all spec views are acceptable.

Load_View: View_Name:= "?";

Specifies a pattern for load-view entries. Only patterns that match are copied. The
default indicates that all load views are acceptable.

Mode: Creation_Mode := Activit~.Exact_Cop~;
Specifies the mode by which entries are derived from the source activity.

RATIONAL 8/1/88 PM-155

procedure Merge
package !Commands.Activity

Target; Activity_Name ;= "(ACTIVITY)";
Specifies the name of the activity into which the new entries are to be copied. The
default target activity is the current activity for the job or session.

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-156 8/1/88 RATIONAL

function Nil
package !Commands.Activity

function Nil

function Nil return Activity_Name;

Description

Returns the name of an empty activity.

RATIONAL 8/1/88 PM-157

procedure Remove
package !Commands.Activity

procedure Remove

procedure Remove
(Subs~stem
The_Activit~
Response

Subsqstem_Name .- "<SELECT ION)" ;
Activit~_Name .- Activity.The_Current_Activity;
String .- "<PROFILD");

Description

Deletes a subsystem entry from an activity.

The default activity is the current activity for the job or session.

Parameters

Subsys tem: Subsys tem_Name := "<SELECT ION)" ;
Specifies the name of the subsystem entry to be deleted. The default is the current
selection.

The_Activity Activity_Name:= Activity.The_Current_Activity;
Specifies the name of the activity from which the entry is to be deleted. The default
indicates the current activity for the job or session.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-158 8/1/88 RATIONAL

proced ure Set
package [Commands.Activity

procedure Set

procedure Set (The_Activity
Response

Activity_Name .- "<ACTIVITY)";
String .- "<PROFILE)");

Description

Changes the current activity for the running job to the specified activity.

A session may have a current activity associated with it. The SeLDefault procedure
is used to form this association. When a job begins execution, its current activity
is that of the current session. The Set procedure changes a job's current activity
without changing the session's activity. Thereafter, until the job terminates, the
new activity is consulted when necessary, instead of the current session's activity.

Note that this procedure cannot be used to affect the loading of a subsequent
command in the same job. Loading is done for the entire job before execution
begins and thus would be unaffected by the execution of the Set command. In the
following example:

Activity.Set ("New_Activity_Name");
Command_Requiring_Loading;

the Commandc.Requiringc.Loading command will be loaded with the current ses-
sion's activity and not with New..Activityc.Name.

By contrast, in the example:

Activity.Set ("New_Activity_Name");
Program. Run ("Command_Requiring_Loading");

the loading for the command via Program. Run is performed after the execution of
the Set procedure and thus will use NewcActivityc.Name.

Parameters

The_Acti vity Activity_Name := "<ACT IV ITY)" ;
Specifies the name of the activity to make current for this job. The default indicates
the activity for the current session.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-159

procedure Set
package !Commands.Activity

References

procedure SeLDefault

PM-160 8/1/88 RATIONAL

procedure SeLDefault
package !Commands.Activity

procedure Set..Default

procedure Set_Default (The_Activity
Response

Acti vi ty_Name .- "<ACTIVITY)" .
String .- "<PROFILE)") ;

Description

Makes the specified activity the current activity for the current session.

This procedure sets the value of the Profile. Activity..File session switch. If the
current activity of the job that executes SeLDefault is nil, the procedure sets this
activity as well.

The default activity for a session is also preserved across logouts.

Parameters

The_Activit!:! Activity_Name:= "<ACTIVITY)";

Specifies the name of the activity to make current. The default indicates the current
activity.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Set

RATIONAL 8/1/88 PM-161

procedure SeLLoad_ View
package !Commands.Activity

procedure Setc.Load.; View

procedure Set_Load_View
(Load_View : View_Or_Activit~_Name .-

Subs~stem Subs~stem_Name
Mode Creation_Mode
The_Activit~ Activit~_Name
Response String

"<CURSOR)";
,

.- Activit~.Differential;

.- Activit~.The_Current_Activity;

.- "<PROFILE)") ;

Description

Modifies the load view for the specified subsystem entry in The_Activity parameter.

If an entry for the specified subsystem does not exist, one is added to the activity.

Parameters

Load_View: View_Or_Activit~_Name := "<CURSOR)";
Specifies the name of the new load-view entry. Name resolution is performed within
the context of the specified subsystem. The default is the load-view name or activity
name on which the cursor is located.

If the Loads.View parameter designates a view, that view is associated with the
subsystem that contains it. The value of Loadc.View must be the simple name of a
load view.

If the LoadcView parameter designates an activity, that activity must contain an
entry for the subsystem specified by the Subsystem parameter. The load view
associated with Subsystem in this activity becomes the load view associated with
Subsystem in the activity named by Thee Activity.

Subsystem: Subsystem_Name := "";
Specifies the name of the subsystem entry. Name resolution is performed relative
to the current context. The default value (U") resolves to the current context
and therefore can be used only when the current context is the subsystem that
contains the view specified by the Loads.View parameter. Otherwise, the Subsystem
parameter must name the subsystem that contains the view designated by the
Load., View parameter.

Mode: Creation_Mode := Activity.Differential;
Specifies the mode by which the entry shall be derived if an activity is designated
by the Load..View parameter.

PM-162 8/1/88 RATIONAL

procedure Set..Load., View
package !Commands.Activity

The_Activit~ : Activit~_Name := Activit~.The_Current_Activit~;
Specifies the name of the activity to be modified. The default indicates the current
selection or image.

Response: String:= "(PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

Set_Load_View (Load_View => "RevLL4" ,
Subsystem => "User_ Interface",
The_Activity => "Current_Release");

is equivalent to:
SeLLoad_View (Load_View => "User_interface.Revl_2_4",

Subs~stem => ,
The_Activit~ => "Current_Release");

Example 2

SeLLoad_View (Load_View => "Working_Activity",
Subsystem => "User_Interface",
Mode => Activit~.Value_Cop~,
The_Activit~ => "Current_Release");

This command changes the load view for the User..Interface subsystem in the Cur-
rent-Release activity. The command will set the load view to the same value as
that specified for the User.iInterface subsystem in Working..Activity,

RATIONAL 8/1/88 PM-163

procedure Set..Spec., View
package !Commands.Activity

procedure Set..Spec.,View

procedure Set_Spec_View
(Spec_View : View_Or_Activity_Name '- "<CURSOR)";
Subsys tem Subsys tem_Name . - "";
Mode Creation_Mode .- Activity.Differential;
The_Activity Activity_Name '- Activity.The_Current_Activity;
Response Str ing . - "<PROFILE)") ;

Description

Modifies the spec view for the specified subsystem entry in Thee.Activity parameter.

If an entry for the specified subsystem does not exist, one is added to the activity.

Parameters

Spec_View: View_Or_Activity_Name := "<CURSOR)";
Specifies the name of the new spec-view entry. Name resolution is performed within
the context of the specified subsystem. The default is the spec-view name or activity
name on which the cursor is located.

If the Spec..View parameter designates a view, that view is associated with the
subsystem that contains it. The value of Spec..View must be the simple name of a
spec view.

If the Spec..View parameter designates an activity, that activity must contain an
entry for the subsystem specified by the Subsystem parameter. The spec view
associated with Subsystem in this activity becomes the spec view associated with
Subsystem in the activity named by The..Activity.

Subsystem: Subsystem_Name := "";
Specifies the name of the subsystem entry. Name resolution is performed relative
to the current context. The default value ("") resolves to the current context
and therefore can be used only when the current context is the subsystem that
contains the view specified by the Spec..View parameter. Otherwise, the Subsystem
parameter must name the subsystem that contains the view designated by the
Spec., View parameter.

Mode: Creation_Mode := Activity.Differential;
Specifies the mode by which the entry shall be derived if an activity is designated
by the Spec..Vlew parameter.

PM-164 8/1/88 RATIONAL

procedure Set..Spec., View
package !Commands"Activity

The_Activit~ : Activit~_Name := Activit~.The_Current_Activit~;
Specifies the name of the activity to be modified. The default indicates the current
selection or image.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Example 1

Set_Spec_View (Spec_View => "Revl_2_Spec",
Subs~stem => "User _, nterface" ,
The_Activi t~ => "Current_Release");

is equivalent to:

Set_Spec_ View (Spec_View => ::~ser _interface. RevLLSpec" ,
Subsqs tem => ,
The_Activit~ => "Current_Release");

Example 2

Set_Spec_View (Spec_View => "Working_Acti vi t~" ,
Subs~stem => "User _, nterface" ,
Mode => Activit~.Value_Cop~.
The_Acti vi t~ => "CurrenLRelease");

This command changes the spec view for the User..Interface subsystem in the Cur-
renLRelease activity. The command will set the spec view to the same value as
that specified for the User..Interface subsystem in Working..Actlvlty.

RATIONAL 6/1/88 PM-165

subtype Subsysterru.N ame
package !Commands.Activity

subtype Subsystenu.Name

subtype Subsystem_Name is String;

Description

Defines a string pathname that resolves to a subsystem in the directory system.

PM-166 8/1/88 RATIONAL

function ThecCurrentc.Activity
package !Commands.Activity

function Thc..Currentc.Activity

function The_Current_Activity return Activity_Name;

Description

Returns the name of the current activity associated with the running job.

If no activity has been associated with the running job, this function returns the
activity associated with the running session.

RATIONAL 8/1/88 PM-167

function 'Thec.Encloaing..Su bsystem
package !Commands.Activity

function The..Enclosing..Subsystem

function The_Enclosing_Subsystem (View View_Name := "<IMAGE>")
return Subsystem_Name;

Description

Returns the name of the subsystem that contains the specified view.

The default is the currently selected view, the view containing the current selection,
or the view containing the current context.

Parameters

View: View_Name := "<IMAGE>";
Specifies the name of the view whose enclosing subsystem is desired. The default is
the currently selected view, the view containing the current selection, or the view
containing the current context.

return Subsystem_Name;
Returns the name of the subsystem that contains the specified view.

PM-168 8/1/88 RATIONAL

function The..Encloaing., View
package !Commands. Activity

function The..Enclosing., View

function The_Enclosing_View (Unit Unit_Name.- "<IMAGE>")
return View_Name;

Description

Returns the name of the view that contains the specified unit.

Parameters

Unit: Unit_Name := "<IMAGD";
Specifies the name of the unit whose enclosing view is desired. The default is the
currently selected unit or unit image.

return View_Name;
Returns the name of the view that contains the specified unit.

RATIONAL 8/1/88 PM-169

subtype UniLName
package !Commands.Activity

subtype Unit..Name

subtype Unit_Name IS String;

Description

Defines a string pathname that resolves to an Ada compilation unit in the directory
system.

PM-170 8/1/88 RATIONAL

subtype VlewcName
package !Commands. Activity

subtype View..Name

subtype View_Name 1S String;

Description

Defines a string pathname that resolves to a view of a subsystem.

RATIONAL 8/1/88 PM-I 71

subtype View_Or_Activity _Name
package !Commands.Activity

subtype Viewc.Orc.Activity..Name

Description

Defines a string pathname that resolves either to a view of a subsystem or to an
activity in the directory system.

PM-172 8/1/88 RATIONAL

subtype View_Simple_N ame
package !Comma.nds.Activity

subtype View..Simplec.Name

subt~pe View_Simple_Name is String;

Description

Defines a string that is the simple name of a view of a subsystem.

A simple name is an unqualified name not prefixed with the name of the object's
parent.

Example 1

Rev! 0 5

not:

User Interface.Rev3 4 7

RATIONAL 8/1/88 PM-173

procedure Visit
package !Commands.Activity

procedure Visit

procedure Visit (The_Activity Activity_Name .- "<ACTIVITY)");

Description

Invokes the activity editor on the specified activity and replaces the old activity if
one is currently being edited.

This procedure is identical to the !Commands.Common.Edit command, except that
if the command is given on an activity window, the new activity is displayed in that
window rather than in a new one.

Parameters

The_Acti vi ty Acti vi ty_Name := "<ACT IV ITY)" ;
Specifies the name of the activity to be visited. The default is the current activity
for the job or session.

References

EST, procedure Common.Edit

PM-174 8/1/88 RATIONAL

procedure Write
package !Commands.Activity

procedure Write

procedure Write (File Activity_Name.- "<ACTIVITY)");

Description

Copies the contents of an activity window into a new activity In the directory
system.

This command is valid only in an activity window.

Parameters

FIle: Acbvity_Name := "<ACTIVITY)";

Specifies the name of the new activity. The name is resolved relative to the current
context. The default is the current activity for the job or session.

end Activity;

RATIONAL 8/1/88 PM-175

RATIONAL

package Check

Package Check provides interfaces for checking the compatibility between spec and
load views in a subsystem. Compatibility is defined in the Key Concepts to this
book. Command-oriented interfaces and programmatic interfaces with status values
are provided. Interfaces are available for comparing units in load views with their
corresponding units in spec views or for comparing a set of spec/load-view pairs.

The compatibility checking done by this package checks that every declaration ex-
ported by a spec-view unit is also exported by the corresponding load-view unit
and that the spec and load views have the same target key. These declarations
do not need to be in the same order or textually identical. Two declarations are
considered equivalent if they match according to the subprogram specification con-
formance rules of the Reference Manual for the Ada Programming Language, section
6.3.1. All units involved in the check must be in the installed or coded state.

It is possible to construct an activity such that the spec/load-view pairs named by
the activity are compatible but the set of load views specified would not execute
correctly together. For example, this could happen if two load views in the activity
import different spec views of the same subsystem. The checks done by this package
will not catch those situations, but the loader will check for this and report these
types of problems at load time.

RATIONAL 8/1/88 PM-177

procedure Activity
package !Tools.Compati bility.Revn. Units. Check

procedure Activity

procedure Activity (The_Activity String .- "<ACTIVITY)";
Menu Boolean .- False;
Response String .- "<PROF ILD");

function Activity (The_Activity String .- "<ACTIVITY)";
Response String . - "<PROFILE)") return Status;

Description

Checks the compatibility of all spec-view and load-view pairs specified in an activity.

For each subsystem entry in the activity, each unit in the spec view is checked
for compatibility with the corresponding unit in the load view. If an entry for a
subsystem does not specify both a spec and a load view, that subsystem will not
be checked.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

The_Activity String:= "<ACTIVITY)";
Specifies the name of the activity whose spec-view and load-view pairs should be
checked for compatibility.

Menu: Boolean := False;
Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command's execution.

If false, a log file is produced as specified by the Response parameter.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-178 8/1/88 RATIONAL

type Status
package !Tools.Compatibility.Revn. Units. Check

type Status

t!:Jpe Status is (Compatible, Incompatible, Error);

Description

Defines the range of possible outcomes of a compatibility check.

Enumerations

Compatible

Indicates that the unit or units included in the check are all compatible with each
other.

Error

Indicates that the operation failed to complete successfully. For example, the name
of a unit or view may not be resolvable. The log output can be consulted to
determine the reason for the error.

Incompatible

Indicates that at least one unit included in the check is not compatible with another
unit. The log output can be consulted to determine which unit or units are not
compatible.

RATIONAL 8/1/88 PM-179

procedure Units
package !Tools.Compatibility.Revn. Units. Check

procedure Units

procedure Units (Load_View_Units String .- "<CURSOR)" ;
Spec_Views String .- "<ACTIVITY)";
Menu Boolean .- False;
Response String .- "<PROF ILD"};

function Units (Load_View_Units String .- "<CUR SOR)" ;
Spec_Views String .- "<ACT IV ITY)" ;
Response String .- "<PROF ILD"} return Status;

Description

Checks the compatibility of a set of units in load views with their corresponding
units in the specified spec views.

The Load., Viewc Units parameter specifies the set of units to be checked, and the
Spec., Views parameter specifies the set of spec views used to perform the check.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

Load_View_Uni ts String: = "<CURSOR)";
Specifies one or more units in load views to be checked. Multiple units can be
specified by using wildcards, context characters, set notation, or an indirect file.
(For further information, see "Naming" in the Key Concepts section of this book.)

Spec_Views: String:= "<ACTIVITY)";
Specifies one or more spec views to be used to perform the check. Multiple views
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see "Naming" in the Key Concepts
section of this book.) Furthermore, Spec..Vlews can name an activity as an indirect
file, which is equivalent to naming the spec view associated with each subsystem
listed in the activity.

PM-180 8/1/88 RATIONAL

procedure Units
package !Tools.Compa:tibility.Revn.Units.Check

Menu: Boolean := False;

Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command's execution.

If false, a log file is produced as specified by the Response parameter.

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate 10gJ, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The naming expressions for the Spec..Yiews parameter must resolve to subsystem
views or an activity and must not specify multiple spec views from the same sub-
system. The naming expressions for the Load., View..Unlts parameter must resolve
to compilation units. Spec..Views must specify a spec view for each subsystem that
contains one or more of the units specified by Load., Viewz.Units.

Example

In a Command window off a window displaying a unit 10 a working view of a
subsystem, the command:

Check .Uni ts (Load_View_Uni ts => "<CURSOR>",
Spec_Views => "<ACTIVITY>");

will check compatibility of the unit in the working view with the unit in the spec
view as specified in the user's default activity. Using the default values for the Menu
and Response parameters will result in log file output.

RATIONAL 8/1/88 PM-ISI

procedure Views
package !Tools.Compatibility.Revn. Units. Check

procedure Views

procedure Views (Load_Views String ,- "<CURSOR)" ;
Spec_Views String ,- "<ACTIVITY)";
Menu Boolean ,- False;
Response String ,- "<PROF ILE)");,-

function Views (Load_Views String ,- "<CURSOR)" ;
Spec_Views String ,- "<ACTIVITY)";
Response String ,- "<PROFILE>") return Status;

Description

Checks the compatibility of all units in one or more spec/load-view pairs.

The Loadc.View parameter specifies the set of views to be checked, and the Spec-
_Views parameter specifies the set of spec views used to perform the check.

Two interfaces are provided: a procedure interface for Command window usage and
a functional interface returning a status value for use in building tools.

Parameters

Load_Views : String:= "<CURSOR)";
Specifies one or more load views to be checked. Multiple views can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see "Naming" in the Key Concepts section of this
book.) Furthermore, Loads.Views can name an activity as an indirect file, which
is equivalent to naming the load view associated with each subsystem listed in the
activity.

Spec_Views String:= "<ACTIVITY)";
Specifies the spec views used to perform the check. Multiple views can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see "Naming" in the Key Concepts section of this
book.) Furthermore, Spec..Views can name an activity as an indirect file, which
is equivalent to naming the spec view associated with each subsystem listed in the
activity.

PM-182 8/1/88 RATIONAL

procedure Views
package !Tools.Compatibility.Revn. Units. Check

Menu: Boolean := False;

Specifies whether to display a menu output. This parameter applies only to the
procedure interface.

If true, any incompatible units will be reported in a menu image instead of in
messages in a log file. Traversing to a spec-view unit from this menu displays the
unit with the incompatible declarations underlined. You can also change the elision
level of the menu to display these declarations. When this parameter is true, no log
file is produced unless there are errors in the command's execution.

If false, a log file is produced as specified by the Response parameter.

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The naming expressions for the Spec..Viewe and Loadc.Views parameters must re-
solve to subsystem views or an activity. The Spec..Vlews parameter should not
specify multiple spec views of the same subsystem, and it should specify a spec
view for each subsystem that contains one or more of the views specified by the
Load., Views parameter. Combined views named by these parameters are not con-
sidered for checking.

Example

In a Command window off a window displaying the Rev l.,Working view of My-
_Subsystem, the command:

Check. Views (Load_Views => "<CURSOR>",
Spec_Views => "<ACTIVITY>");

will check compatibility of units in the spec view for My..Subsystem, as specified
by the user's default activity, with the units in Rev l.,Working. Using the default
values for the Menu and Response parameters will result in log file output.

end Check;

RATIONAL 8/1/88 PM-l83

RATIONAL

package Cmvc

Package Cmvc defines a set of operations that support the following activities of
project management:
• Partitioning projects into components using subsystems and managing the inter-

faces among these components
• Creating and releasing alternative implementations (views) of individual project

components
• Placing the objects within project components under source control to record

generations of change history and to coordinate the work of multiple developers
• Coordinating parallel development efforts both within and between subsystems

The Key Concepts section of this book provides a guide to project development
using subsystems, views, and source control.

The following sections in this package introduction provide:

• A list of CMVC commands grouped by topic
• A summary of the types of objects you can create and manage through CMVC

commands
• A guide to the images and operations for managing configuration information

interactively
• A list of switches and commands from package Common that pertain to CMVC

RATIONAL 8/1/88 PM-185

package !Commands.Cmvc

Commands Grouped by Topic
The commands in package Cmvc fall into several functional groups. They are listed
here by group for your convenience. (Note that the reference entries for these
commands are arranged in alphabetical order by command name.)

• Commands for creating and destroying subsystems and systems:
Initial Destroy_Subsystem Destroy_System

• Commands for creating, releasing, destroying, and recreating views:
Build Copy Destroy_View
Initial Make_Code_View Make_Path
Make..Spec.;View Make_Subpath Release

• Commands for managing source control:
AbandoncReservation AccepLChanges
Check..Out Join
Make..Uncontrolled Merges.Changes
Sever

Check..In
Make..Controlled
Revert

• Commands for managing subsystem interfaces:
Import Imported..Viewe
Remove., Unused..lmports Replaces.Model

Removec.Imports

• Commands for interactively viewing notes and configuration information:
Def Edit Notes

• Commands for displaying reports in I/O windows:
Information Show
Show_AILChecked_Out Show_AILControlled
Show_AILUncontrolled Showc.Checked..Outc.Byc.User
Show_Checked_OuLIn_ View Show_History
Show_History_By_Generation Show_Image_OLGeneration
Show..Outc.Ofc.Date

• File-oriented commands for managing notes:
Appendc.Notea Create..Emptyc.Note., Window
GeLNotes PuLNotes

PM-186 8/1/88 RATIONAL

package !Commands.Cmvc

System Object and View Types
The Cmvc.lnitial command can create several types of system objects (see also Sys-
temcDbjecf..Enum type). A system object refers to both systems and subsystems:

• Subsystems provide a means of partitioning applications into components to fa-
cilitate parallel development, minimize recompilation dependencies, and enforce
design decisions. Each subsystem contains the units that implement a component
of an application. As development progresses within a given subsystem, releases
can be made of its implementation.

• Systems provide an optional means of grouping the subsystems that compose
an application; within a system, operations are available for tracking the latest
release from each subsystem and for referencing those releases for execution.
These releases are referenced by release activities that are built and maintained
within the system. Systems can form a hierarchy by including other systems.

There is only one type of system, and systems contain only one type of view-
namely, system views. In contrast, there are two types of subsystem-spec/load
subsystems and combined subsystems. Spec/load subsystems can contain spec and
load views, which function together, as well as combined views. Combined subsys-
tems can contain only combined views.

Within a spec/load subsystem, load views and combined views can be created us-
ing the Initial, Copy, or Make..Path command; spec views are created using the
Maka..Spec., View or Copy command:

• A load view contains an implementation of a subsystem. Load views are specified
in activities and are actually used for execution.

• A spec view expresses a subsystem's exports. Exports are the specifications of im-
plemented units that are made available for units in other subsystems to reference
in with clauses. When a spec view is imported by a view in another subsystem,
units in the importing view can compile against the units in the imported view.

• A combined vs"ewcombines characteristics of spec and load views. A combined
view both contains a subsystem implementation and expresses the exports from
that implementation. When a combined view is imported, units in the importing
subsystem can compile against the combined view's units; at execution time, the
units in that combined view are executed.

Spec and load views provide greater flexibility than combined views during devel-
opment and test. Using spec and load views minimizes the recompilation required
after changes are made and eliminates the need for recompilation during recom-
binant testing. Using combined views involves no such reduction of recompilation
requirements; from a recompilation point of view, development in combined views is
equivalent to development in worlds. (Note, however, that development in combined
views makes CMVC operations available, which are not available in worlds.)

In spite of the advantages of spec and load views, combined views must be used
in spec/load subsystems under certain circumstances-namely, when generics or
inlined subprograms are exported from implementations for non-RIOOOtargets.

RATIONAL 8/1/88 PM-187

package !Commands.Cmvc

Combined views also must be used in combined subsystems. Combined subsystems
must be used when import relationships in an application need to be circular-that
is, when a given view must be within its own import closure (for example, when
two views must import each other). In contrast, import relationships among views
in spec/load subsystems must be hierarchic.

Within any system object (subsystem or system}, there are working views within
which ongoing development and maintenance proceeds. A view is recognized as a
working view through a naming convention-namely, the _Working suffix. A load
view, a combined view, or a system view can serve as a working view.

At any time during development and maintenance, a release can be made from a
working view. A release is a frozen copy of the working view; releases typically are
made after the implementation in the working view is compiled and tested.

Managing CMVC Information Interactively
When objects are controlled in one or more views in a subsystem, you typically
need to know the following information, which is managed by the CMVC database:

• Which objects are controlled?
• Which objects are checked out and to which views?
• Which objects are joined to objects in other views?
• Which views contain the other objects in the join set?
• Which objects in a join set are out of date and which view contains the latest

generation of these objects?

Furthermore, because multiple generations typically exist for a given object in a
view, it is useful to be able to:
• View images of past generations for the object.
• View the line-by-line differences between two successive generations.
• Find out when a given generation was created.
• Keep a scratchpad of notes recording the changes that were made to each gener-

ation.
• Review the comments that were supplied each time the object was checked out

and checked in.

The Def, Edit, and Notes procedures bring up three kinds of images in which such
information is displayed. These images are configuration images, generation images,
and history images. These images not only provide several levels of information but
also make available commands from package Common, which you can use to traverse
to other images and perform certain CMVC operations.

PM-188 S/1/8S RATIONAL

package lCommands.Cmvc

Configuration Images

The Edit procedure displays a configuration image for a specified view or configu-
ration object or for the view enclosing a specified controlled object. A configuration
image for a view is a library-like display of CMVC information pertaining to the
configuration embodied by that view. (A configuration is a set of generations, one
for each controlled object in the view.) Note that Edit can be used to display a
configuration image for a configuration object that has no view associated with it
(for example, a configuration release).

The information displayed in a configuration image represents the contents of the
C~IVC database at the time the Edit procedure is entered. Subsequent CMVC oper-
ations can change the CMVC database without automatically updating the configu-
ration image. You can refresh a configuration image using the Common. Format or
Common.Revert command.

Levels or Information in Configuration Images

Several levels of information are available in a configuration image. For example,
Figure 11-1 shows the configuration image displayed for the view !Programs.Mail-
.MaiL Utilities.

IProQrams Mail Mail Utillties Configurations Reyl Working
Exports

Subse tLl 'G(Z)
Uni ts

Destinations'G(3)
Destinations'G(4/5)
Lines 'G(Z)
Lines 'G(4)
Messages'G(I/Z)
Messages'G(g)
Symbolic_Display'G(I)
Symbolic_Display'G(Z)
To_Do'G(8)
Unbounded'G(I)

Figure 11-1. The First Level of Information in a Configuration Image

This image contains the first level of configuration information. This level contains
an entry for each controlled object in the view's configuration. Each entry indicates
the generation of the object that is present in the view. An entry also indicates
the latest generation that exists for the object in any view, if the object is out of
date. Thus, RevL Working contains generation 4 out of a possible five generations
for Destinations'Body.

RATIONAL 8/1/88 PM-189

package !Commands.Cmvc

With the cursor on the first line in the configuration image, the Common.Expand
command displays the second level of configuration image, as shown in Figure 11-2.

IPrograms Mail Mail Utilities Configyrations Reyl ~orking
Exports Lib

SubseLI 'G(2) In 88/05/11 16:50:07 ANDERSO
Uni ts Lib

Destinations'G(3) In 88/05/11 16:32:48 ANDERSO
Destinations'G(4/5) .! In 88/05/11 16:33:26 ANDERSO
Lines'G(2) In 88/02/23 11:42 .01 M"IlERSO
Lines'G(4) In 88/02/23 11:41.51 ANOERSO
Messages'G(I/2) .! In 88/02/25 1042 15 ANDERSO
Messages'G(9) In 88/02/23 11:44:16 ANDERSO
Symbolic_Dlsplay'G(1) In 88/02/23 105731 ANDERSO
Symbolic_Display'G(3) Qui 88/05/20 194159 ANDERSO *current_vlew*
To_Do'G(8) In 88/03/30 11:57.08 ANDERSO
Unbounded'G(1) In 88/02/23 10:57:32 ANDERSO

Figure 11-2. The Second Level of Information in a Configuration Image

Each entry in this expanded configuration image contains the following additional
information (from left to right):
• An asterisk indicating whether the object is out of date in the view
• An indication of whether the unit is currently checked out (Out) or checked in

(I n)j libraries are indicated as Lib

• The date and time at which the object was checked out (if the object is currently
checked out) or checked in (if the object is currently checked in)

• The user who performed the last checkout or checkin
• The view in which a given object is currently checked out

When objects are checked out or out of date, portions of their entries are underlined,
so you can use the Editor.Cursor.Next and Editor.Cursor.Previous commands to
move the cursor among these objects.

PM-190 8/1/88 RATIONAL

package !Commands.Cmvc

Using Common.Expand again displays a third level of configuration information,
as shown in Figure 11-3. Each entry now displays the reservation token associated
with each controlled object in the view.

,pcogcams Mail Mail Utilities Configurations Reyl Working
Expocts

Subset_l'G(Z)
Units

Destinatlons'G(3)
Destinations'G(4/S)
Lines'G(2)
Lines 'G(4)
Messages'G(1/2)
Messages'G(g)
Symbolic_Display'G(I)
Symbolic_Display·G(3)
To_Do'G(8)
Unbounded'G(I)

REVI
REVI
REVI
REVI
REVI
REVI
REVI
REVI
REVI
REVI
REVI

Figure 11-3. The Third Level of Information ill a Contiguration Image

Finally, using Common.Expand again displays a fourth level of configuration infor-
mation, as shown in Figure 11-4. At this level, the entry for a given joined object
displays the views containing other objects in the join set.

,pcogcams Mall Mail Utilities Configucations Reyl Vorking
Expocts

SubseLI 'G(Z)
Uni ts

Destinations'G(3)
Destinatlons'G(4/S)
Lines'G(Z)
Lines'G(4)
Messages'GrI/2)
Messages'G(g)
Symbolic_Display'G(l)
Symbolic_Display'G(3)
To_Do'G(8)
Unbounded'G(I)

REVl => Revl_Vorking
REVI
REVI
REVl
REVI
REVI
REVI
REVl
REVI
REVI
REVl

=> Revl_Sue_Vocking Revl_Laccy_Vocking Revl_Vor
=> Revl_Sue_Vocking Revl_Lacry_Vocking Revl_Voc
=> Revl_Sue_Vocking Revl_Larry_Vocking Revl_Vor
=> Revl_Sue_Vocking Revl_Larry_Vocking Revl_Vor
=> Revl_Sue_Wocking Revl_Lacry_Vocking Revl_Voc
=> Revl_Sue_Vocking Revl_Larry_Vorking Revl_Vor
=> Revl_Sue_Vorking Revl_Larcy_Vocking Revl_Vor
=> Revl_Sue_Vorking Revl_Larry_Vocking Revl_Vor
=> Revl_Sue_Vorking Revl_Laccy_Vocking Revl_Vor
=> Revl_Sue_Vocking Revl_Larry_Vocking Revl_Vor

Figure 11-4. The Fourth Level of Information in a Contiguration Image

RATIONAL 8/1/88 PM-191

package !Commands.Cmvc

Operation. in Configuration Image.

At any level of expansion, a configuration image provides a convenient way to:

• Check objects in, using the Common. Promote command
• Check objects out, using the Common. Demote command
• Accept changes on objects, using the Common. Complete command
• Access generation and history images, using the Common.Definition and Com-

mon.Explain commands, respectively
• Traverse to the designated object in the associated view, using the Cmvc.Def

command

A complete list of operations is given in "Commands from Package !Commands-
.Common," below.

Restricting Operations In Configuration Image.

Operations in configuration images can be restricted using the Edit command.
When creating a configuration image, you can set the AllowcCheck..Out, Allow-
_Check_In, and Allow_AccepLChanges parameters to false to prevent the corre-
sponding operations from accessing objects through the configuration image.

You can also use the Edit command to reset the restrictions on these operations
in an existing configuration image. For example, if a checkout operation currently
is not permitted in a given configuration image, you can enter the Edit command
with Allowc.Check..Out set to true.

Alternative Way. of Displaying a Configuration Image

The basic way to create a configuration image is to enter the Edit command from
a view or object. Following are two alternative ways of creating a configuration
image:
• Within the Configurations directory in a subsystem, put the cursor on the name

of a configuration object and enter the Common. Definition command.
• From a generation image (see "Generation Images," below), enter the Com-

mon.Enclosing command.

In both of these cases, checkin, checkout, and accept-changes operations are auto-
matically restricted in the configuration image. However, the Edit command can
be entered from the existing configuration image to change these restrictions as
specified by the Allowc.Check..Out, Allowc.Check..In, and Allow_AccepLChanges
parameters.

PM-192 8/1/88 RATIONAL

package !Commands.Cmvc

Generation Images
Generation images are textual representations of particular generations of controlled
objects. Generation images can be displayed even for generations of objects that
do not currently exist outside the CMVC database. For example, using generation
images, you can browse the text of past generations from configuration-only releases
or from code views, which no longer contain source objects. A given generation
image can be expanded to show differences between that generation and the previous
one. Generation images are available only for controlled objects for which source is
saved.

Aeeessing Generation Imagel

Generation images can be accessed in several ways. They can be accessed from
configuration images:
1. Display the configuration image for a view, code view, or configuration object.
2. With the cursor on the configuration image entry for the desired object, enter

the Common. Definition command.

Alternatively, you can access a generation image for a given object directly from
view, as follows:
1. Put the cursor on the object's entry in the view.
2. Enter the Cmvc.Def command.

Generation images contain text reconstructed from the CMVC database and does
not have the underlying structure of an Ada unit. Therefore, commands such as
Common.Object.Parent select text structures such as lines rather than Ada struc-
tures. A generation image is identified in the window banner by the generation
attribute following the object's name and by the string (cmvc).

Aeeessing Next and Prevleus Generation Imagel

An object's generations form a sequence from the starting generation to the latest
generation. When the image of a particular generation is displayed, you can access
images for the previous and next generations in the sequence as follows:
• With the cursor in the generation image, enter the Common. Undo command to

access the image for the previous generation in the sequence. Repeated uses of
Common. Undo iterate toward the starting generation.

• With the cursor in the generation image, enter the Common.Redo command
to access the image for the next generation in the sequence. Repeated uses of
Common. Redo iterate toward the latest generation.

DIsplaying the Dlfferenees between Conseeutive GeneratloDi

A given generation image can be expanded to show the differences between it and
the previous generation. Enter the Common. Expand command to expand a gen-
eration image. (The Common.Elide command removes the differences from the
display.) For example, Figure 11-5 shows the result of using Common.Expand in
the generation image for generation 4 of Destinations'Body.

RATIONAL 8/1/88 PM-193

package !Commands.Cmvc

Iwith System_utilities;
Iwith String_Utilities;
I
Ipackage body Destinations is
I
I
I
I
I
I
I
I

=-L
+1
+1

I
I

procedure Deflne (New_User
begin

[statement)
end Define;

String) is

function Image (The_User User) return String is
begin

return Unbounded. Image (Unbounded. Variable_String (The_User));
return (Unbounded. Image (Unbounded. Variable_String

(The_User.User_Names))) ;
end Image;

Figure 11-5. Differences between Generations 3 and 4 of Destinations 'Body

Differences are shown on a line-by-line basis:

• A line beginning with the minus sign (-) indicates that the line was deleted from
the previous generation.

• A line beginning with the plus sign (+) indicates that the line was added to the
previous generation.

• One or more lines beginning with the minus sign immediately followed by one or
more lines beginning with the plus sign indicate changed lines.

Regions of difference begin with an underline so that you can use the Editor.Cursor-
.~ext and Editor.Cursor.Previous commands to move the cursor among such re-
gions.

Other operations available in generation images are listed in "Commands from
Package !Commands.Common," below.

History Images
The CMVC database stores history information pertaining to each generation of a
controlled object. The history image for a given generation displays this stored infor-
mation. Figure 11-6 shows the history image for generation 4 of Destinations'Body.

The history image for a generation of an object contains:

• The history for the generation, which lists the time of checkout and checkin and
the user who performed these operations

• The notes for the generation, which contains comments provided to various CMVC
commands as well as arbitrary commentary associated with that generation

The CMVC database also stores release history for each configuration. Release his-
tory contains comments provided through the Cmvc.Release command and also lists
the date and time at which spec views and releases were created.

PM-194 8/1/88 RATIONAL

package !Commands.Cmvc

History for Units Destinations'Body
Checked-out on 88/05/20 19:41:59 by ANDERSON
Checked-in on 88/05/24 14:58:46 by ANDERSON
Notes for Generation 4
CHECK_OUT: Changing return statement in function image.
CHECK_IN. Change has been tested
-- Notes from 88/05/24 15:06:19 by ANDERSON --
Still need to implement procedure Define.

Figure 11-6, The History Image for Generation 4 of Destinations 'Body

Aeeeuing Instory Images

History images can be accessed in several ways. They can be accessed from config-
uration images:

1. Display the configuration image for a view, code view, or configuration object.
2. With the cursor on the configuration image entry for the desired object, enter

the Common.Explain command.
If the cursor is on the header line of a configuration image, then Common.Explain
displays the release history for the configuration.
If the cursor is on an underline other than the header line, an explanation of the
underline is displayed in the Message window. Move the cursor off the underline
to display a history window.

History images also can be accessed from generation images:

1. With the cursor in the appropriate generation image, enter the Common. Explain
command.

Finally, a history image for a given object can be accessed directly, as follows:

1. Put the cursor on the object or on its directory entry.
2. Enter the Cmvc.Notes command.

Displaying Instory from Other Generatlona

From a history image, the Common. Undo and Common. Redo commands iterate
through history images of the previous and next generations, respectively.

Furthermore, using the Common.Expand command in a history image displays
the cumulative history and notes for a range of previous generations within the
same image. The number of previous generations for which history is displayed

RATIONAL 8/1/88 PM-195

package !Commands.Cmvc

is determined by the Repeat parameter of the Common.Expand command. The
Common. Elide command reduces the amount of cumulative history by the number
of generations specified by its Repeat parameter.

Managing Notes through mstory Images

History images provide an interactive way to manage notes. From a history image,
new notes can be added and saved. The Common. Edit command displays a prompt
in which additional notes can be entered. The Common.Save or Common.Commit
commands save the new notes in the CMVC database.

The window banner for a history image contains the object name followed by a
generation attribute (for example 'G(3)), followed by the attribute 'Hi s tor-q, Fur-
thermore, the window banner contains the string (cmvc).

Traversing between Library and CMVC Images
Subsystems, views, configuration objects, and objects such as files and Ada units are
all part of the Environment library system. Associated with these library objects
are configuration images, generation images, and history images, which display
information managed by the CMVC database.

As shown in Figure 11-7, the Cmvc.Edit, Cmvc.Def, and Cmvc.Notes commands
traverse between objects in the library system and images managed by CMVC. Com-
mands from package Common traverse among images within each group.

Figure 11-8 shows the use of Common. Undo and Common. Redo to access generation
images for different generations of the same object.

Session Switches
A number of session switches have names that begin with the prefix "Cmvc.,". All
but one of these pertain to objects that are managed by commands in package Work-
_Order and are documented in that package. The remaining switch, Cmvc..Enable-
_Relocation, is for use by Rational personnel only.

Commands from Package !Commands.Common
Commands from Package Common in Configuration Images

procedure Common.Complete

Equivalent to entering the AccepLChanges command to update the designated
object (or the objects in the designated configuration) to the latest generation. The
AccepLChanges operation is performed with default parameter values, except that
Allow..Demotlon has the value true. The configuration image is updated to reflect
the operation. The operation performed by the command is subject to restriction
according to the Allow_AccepLChanges parameter of the Cmvc.Edit command.

PM-196 8/1/88 RATIONAL

package !Commands,Cnwc

CMVC Information from
subsystem's CMVC database

Information from
library system

Subsystem

Cmvc.Edit
View

Cmvc.Def

Cmvc.Def

Cmvc.Def

History
Image

Figure 11-7. Summary of Traversal Commands

procedure Common.DefinItion

Displays the generation image for the current generation of the object whose entry
is designated in a configuration image. An Inc.Place parameter specifies whether
the current frame should be used.

RATIONAL 8/1/88 PM-197

package !Commands.Cmvc

Generation
N·2
Imag.

••
Information from
library system

CMVC Information from
subsystem's CMVC database

(Current)
Nth

generation
Image

(Current)
object
Image

Common.Redo

Generation
N + 2
Imag.

Figure 11-8. Traversing between Generation Images

procedure Common.Demote

Equivalent to entering the Check..Out command to check out the designated ob-
ject (or the objects in the designated configuration). The Check..Out operation
is performed with default parameter values, except that Allow..Demotion has the
value true. The configuration image is updated to reflect the operation. The op-
eration performed by the command is subject to restriction according to the Al-
lowc.Check.rOut parameter of the Cmvc.Edit command.

procedure Common.Edlt

Checks out the object whose entry is designated in the configuration image and
then displays the object. The object is not opened for editing, in case it is an
Ada unit to which you want to make incremental changes. The Check..Out op-
eration is performed with default parameter values, except that Allow.iDemotion
has the value true. The configuration image is updated to reflect the operation.
The operation performed by the command is subject to restriction according to the
Allow..Checkc Out parameter of the Cmvc.Edit command.

PM-198 8/1/88 RATIONAL

package !Commands.Cmvc

procedure Common.Ellde

Reduces the level of information displayed in the configuration image. As designated
by the cursor, the level can be reduced for an individual entry or for the entire image
(the cursor must be on the top header line of the image). See "Levels of Information
in Configuration Images," above.

procedure Oommcn.Eneloelng

Displays the subsystem that contains the configuration represented in the configu-
ration image. An Ins.Place parameter specifies whether the current frame should
be used.

procedure Common.Explain

Displays the history image for the generation of the designated object. If the cursor
is on the top header line in the configuration image, release history for the config-
uration is displayed. If the cursor is on an underline (other than the header), an
explanation of the underline is given.

procedure Common.Expand

Increases the level of information displayed in the configuration image. As desig-
nated by the cursor, the level can be increased for an individual entry or for the
entire image (the cursor must be on the top header line of the image). See "Levels
of Information in Configuration Images," above.

procedure Common.Format

Updates the configuration image with current information from the CMVC database.
Note that the configuration image is updated automatically after Common.Promote,
Common.Demote, or Common. Complete is executed, but it is not updated when
the CMVC database is changed by any other operation.

procedure Common.Promote

Equivalent to entering the Check..Jn command to check in the designated object
(or the objects in the designated configuration). The configuration image must
have a view associated with it. The Check..In operation is performed with default
parameter values. The configuration image is updated to reflect the operation.

procedure Common.Revert

Updates the configuration image with current information from the CMVC database.
Note that the configuration image is automatically updated after Common.Promote,
Common.Demote, or Common.Complete is executed, but it is not updated when
the CMVC database is changed by any other operation.

RATIONAL 8/1/88 PM-199

package !Commands.Cmvc

Commands from Paekage Common in Generation Images

procedure Common.Deflnltlon

Displays the controlled object associated with the generation in the generation image
containing the cursor. An In..Place parameter specifies whether the current frame
should be used.

procedure Common.Elide

Removes from the generation image the differences that were displayed by the Com-
mon.Expand command.

procedure Common. Enclosing

Displays the configuration image for the last configuration that was visited. An
In.iPlace parameter specifies whether the current frame should be used.

procedure Common.ExplaIn

Displays the history image for the generation represented in the current generation
image. If the cursor is on an underline, an explanation of the underline is given.

procedure Common.Expand

Displays the differences between the generation in the generation image and the
previous generation. Differences are shown on a line-by-line basis. Lines beginning
with a minus sign (-) indicate lines deleted from the previous generation. Lines
beginning with a plus sign (+) indicate lines added to the previous generation. The
start of each difference region is underlined.

procedure Common.Redo

Displays the generation following the generation represented in the current genera-
tion image. A Repeat parameter specifies which succeeding generation is displayed,
relative to the currently displayed generation.

procedure Common. Undo

Displays the generation previous to the generation represented in the current gener-
ation image. A Repeat parameter specifies which preceding generation is displayed,
relative to the currently displayed generation.

Commands from Package Common in History Images

procedure Common. Commit

Saves the new notes entered through the prompt given by the Common.Edit com-
mand.

PM-200 8/1/88 RATIONAL

package !Commands,Cmvc

procedure Common.DeftnlUon

Displays the controlled object associated with the generation for which history is
displayed. An Ins.Place parameter specifies whether the current frame should be
used.

procedure Common.Edit

Provides a prompt in the current history image in which new notes can be entered.

procedure Common.EUde

Reduces the cumulative history that is displayed in the current history image. The
Repeat parameter specifies the number of generations by which the cumulative
history should be reduced.

procedure Common.Eneio.lng

Displays the generation image for the generation associated with the current history
image. An Ia..Place parameter specifies whether the current frame should be used.

procedure Common.Expand

Expands the cumulative history that is displayed in the current history image. The
Repeat parameter specifies the number of generations by which the cumulative
history should be increased.

procedure Common.Format

Updates the history image with current information from the CMVC database.

proeedure Common.Promote

Saves the new notes entered through the prompt given by the Common.Edit com-
mand.

proeedure Common. Redo

Displays the history image for the generation following the current generation. A
Repeat parameter specifies which succeeding history image is displayed, relative to
the generation of the current history image.

procedure Common.Revert

Updates the history image with current information from the CMVC database.

procedure Common.Undo

Displays the history image for the generation previous to the current generation. A
Repeat parameter specifies which preceding history image is displayed, relative to
the generation of the current history image.

RATIONAL 8/1/88 PM-201

procedure AbandoncReservatlon
package !Commands.Cmvc

procedure Abandons.Reservation

procedure Abandon_Reservation
(What_Object :

Allow_Oemot ion
Remake_Oemoted_Units
Goal
Comments
Work_Order
Response

String
Boolean
Boolean
Compilation.Unit_State
String
String
String

.- "(SELECTION)";

.- False;

.- True;

.- Compilation.Coded;
" " ,

.- "(OEF AULT>" ;

.- "<PROF ILE>");

Description

Abandons the reservation on one or more checked-out objects, effectively canceling
the checkout of those objects.

Any changes made during the canceled checkout are discarded.

When an object is checked out, a new generation is created. The Abandonc.Reser-
vation procedure cancels this newly created generation and causes the object to
revert to the last checked-in generation.

Note that checking out an object automatically updates that object to the latest
checked-in generation, accepting changes as necessary. This procedure does not
undo the implicit accept changes, so the object remains at the latest generation.

Parameters

What_Object : String:= "<SELECTION)";
Specifies the object or objects whose reservations are to be abandoned. Objects
that are not checked out are ignored. The default is the currently selected object.
View names cannot be specified.

Multiple objects must be in the same view. Multiple objects can be specified by
using wildcards, context characters, special names, set notation, or an indirect file.
(For further information, see "Naming" in the Key Concepts in this book.)

PM-202 8/1/88 RATIONAL

proced ure Abandon..Reservation
package !Commands.Cmvc

Allow_Demotion : Boolean:= False;
Specifies whether the Abandonc.Reservation procedure is allowed to demote Ada
units in the process of reverting units to the last checked-in generation.

If the Allow..Demotion parameter is true, the Abandon.Reservation procedure is
permitted to demote Ada units if necessary. If this parameter is false, the command
can proceed only if no demotion is required; otherwise, an error is reported and the
command quits.

Remake_Demoted_Units Boolean:= True;
Specifies whether to recompile any units that were demoted in the process of re-
verting units to the last checked-in generation.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

Goal : Compilation.Unit_State := Compilation.Coded;
Specifies the state to which demoted units are recompiled when the Remake..De-
moted., Units parameter is true.

The goal can be any of the enumerations of the Compilation. Unit-State type, except
Compilation. Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remakec.Demoted..Units parameter.

Comments: String:= "";
Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work_Order: String:= "<DEFAULT>";
Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date on which the reservation was aban-
doned, the objects affected, and the username and session in which the command
was entered. If the Comments parameter is specified, this comment is also entered
in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

RATIONAL 8/1/88 PM-203

procedure Abandonc.Reservation
package !Commands. Cmvc

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure CheckcOut

PM-204 8/1/88 RATIONAL

procedure Accept-Changes
package !Commands.Cmvc

procedure Acceptc.Changes

procedure Accept_Changes
(Destination

Source
Allow_Demotion
Remake_Demoted_Units
Goal
Comments
Work_Order
Response

String
String
Boolean
Boolean
Compilation.Unit_State
String
String
String

·- "<CURSOR>";
·- "<LATEST>";
.- False;
·- True;
.- Compilation.Coded;

II II ,
·- "<DEF AULT>" ;
·- "<PROF ILE>") ;

Description

Updates the object(s) specified in the Destination parameter to the generation(s)
indicated by the Source parameter; that is, the destination objects are changed to
reflect any modifications that have been made to the corresponding source objects.

When changes to individual Ada units are being accepted, unit specifications should
be updated before their corresponding bodies to ensure that the units compile
correctly.

Typically, the Accepts.Changes procedure is used to update each destination ob-
ject to the latest generation. The procedure thus is a means of synchronizing the
development of controlled objects that are joined to objects in other views. When
an object in a join set is checked out and then checked in, a new generation is
created, rendering the other objects in the set at least one generation out of date.
This procedure can be used on the out-of-date objects to update them to the latest
generation. (Checking out an out-of-date object implicitly accepts changes.)

The Accept-Changes procedure also can be used to "go backward in time." If
the name of a previous configuration is given as the Source parameter, the objects
specified by the Destination parameter are changed to the generations given in that
configuration. Unless such objects are subsequently severed, however, checking them
out automatically updates them to the latest generation.

The Accept-Changes procedure also can be used to copy new controlled objects
from the source view into the destination view. This is more effective than using
Library.Copy to propagate new objects across views.

If Ada units are compiled against a specified unit, accepting changes to that unit
may require the demotion of the other dependent units. The value of the Allow-
_Demotion parameter controls whether the command actually performs the demo-
tion and updates the unit.

The configuration image displayed by the Edit command uses an asterisk to indi-
cate objects that require updating. Alternatively, the Show..Outc.Ofc.Datec.Objects
command can be used to determine the objects that may require updating.

RATIONAL 8/1/88 PM-205

procedure Accept-Changes
package !Commands.Cmvc

Parameters

Destination : String: = "<CURSOR)";

Specifies one or more objects to be updated. If multiple objects are named, they
must be in the same view. A view name can be used to specify all the objects in
that view. The default is the object on which the cursor is located.

Destination objects must be controlled. If uncontrolled objects are named, they
are noted in the output log generated by the command. If a destination object is
checked out, it is not updated and a warning message is issued.

If a destination object was made controlled without saving source, the object can
be updated only if the Source parameter names an object that exists in some view.
(For example, when updating such a destination object, the Source parameter may
not name a configuration object that has no view associated with it.)

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Source: S tr ing : = "<LATEST)";

Specifies the object(s) to which the corresponding destination object(s) are updated.
The Source parameter can be the special name "<LATEST)", the name of one or
more objects, a view name, or a configuration name. Note that subdirectories (for
example, Units) are not accepted as object names; instead, you must use naming
expressions that resolve to the contents of such subdirectories (for example, Units.e},

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

The Source and Destination parameters interact as follows:

• Source =>"<LATEST>"

When the Source parameter is the default special name "<LATEST>", the Desti-
nation parameter can name a set of objects or a view. Each destination object is
updated to the most recently checked-in generation. If the most recent generation
is currently checked out, the previous generation is used and a warning message
appears in the output log .

• Source => object(s) or view
When the Source and Destination parameters name a set of objects or a view,
each source object must have a more recent generation than the corresponding
destination object. (The source object can, but need not, have the latest gener-
ation.) If the destination is more recent than the source, the destination is not
changed and a warning note appears in the output log.

PM-206 8/1/88 RATIONAL

procedure Accept-Cha.nges
package !Commands.Cmvc

As before, if a source object is currently checked out, the most recent checked-in
generation is used, and a warning message appears in the output log.
The following combinations of Source and Destination parameters are permitted.
Note that when the Source parameter names a set of objects, the Destination
parameter must name a view.

Source => objectfs]; Destination => view: If the Source parameter names
a set of objects and the Destination parameter names a view, the command
updates the objects in the destination view that correspond to the source
objects. If Source names controlled objects that are new, these objects are
copied into the Destination view, where they are made controlled and joined
to the original source objects.
Source => view; Destination => object(s): If the Source parameter names
a view and the Destination parameter names a set of objects, the command
updates the destination objects to match the corresponding objects in the
source view.
Source => view; Destination => view: If the Source and Destination param-
eters each name a view, the destination view is made to look like the source
view. Every controlled object in the source view updates the corresponding
object in the destination view. New controlled objects in the source view
are copied into the destination view. The copied objects are automatically
controlled and joined to the corresponding source-view objects.

• Source => configuration
When the Source parameter names a configuration, the Destination parameter
can name a set of objects or a view. The command causes each destination object
to have the generation of the corresponding object in the specified configuration.
Consequently, naming an older configuration causes the destination objects to
"go back in time" to earlier generations.
Naming a source configuration is the same as naming a view, except that naming
a view always updates destination objects to more recent generations, whereas
naming a configuration can change the destination objects to older generations.
(The name of a previously released view cannot be used in pla.ce of a configuration
in order to go back in time.)
Note that changing a destination object to an older generation does not cause
that generation to become the latest one (see the Revert command). Checking
out such an object updates it to the latest generation.

Allow_Demotion : Boolean:= False;
Specifies whether the Accept-Changes procedure should be allowed to demote Ada
units in order to update the specified destination objects.

If the Allow.i.Demotion parameter is true, the Accept-Changes procedure is per-
mitted to demote Ada units if necessary. If this parameter is false, the command
proceeds only if no demotion is required; otherwise, an error is reported and the
command quits.

RATIONAL 8/1/88 PM-207

procedure Accept-Changes
package !Commands.Cmve

Remake_Demoted_Units : Boolean := True;
Specifies whether to recompile any units that were demoted in the process of up-
dating the destination objects.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

Goal : Compilation.Unit_State := Compilation.Coded;
Specifies the state to which demoted units are recompiled when the Remake..De-
mot ed., Units parameter is true.

The goal can be any of the enumerations of the Compilation. Unit-State type, except
Compilation. Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.lnstalled. If
Compilation.Source is specified, the demoted units are put in the source state,
regardless of the value of the Remakec.Demoted..Units parameter.

Comments: String:= "";
Specifies a comment to be logged in the work order indicated by the Work.Order
parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work_Order : String:= "<DEFAULT>";
Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date on which changes were accepted, the
objects affected, and the username and session in which the command was entered.
If the Comments parameter is specified, this comment is also entered in the work
order.

The, special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Response String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error is noted in the output if an attempt is made to accept changes into a
previous generation by naming objects other than a configuration.

PM-20B 8/1/88 RATIONAL

procedure Accept-Changes
package !Commands.Cmvc

References

procedure Revert

procedure Show_OuLOLDate_Objects

RATIONAL 8/1/88 PM-209

procedure Appends.Notes
package !Commands.Cmvc

procedure Append..Notes

procedure Append_Notes (Note
What_Object
Response

String .- "<WINDOW)";
Str ing . - "<CURSOR)";
String .- "<PROFILE)");

Description

Appends the specified string to the end of the notes for the specified controlled
object.

The notes for a controlled object are stored in the CMVC database. An object's
notes can be used as a scratch pad for arbitrary commentary to be associated with
particular generations.

The contents of a file can be appended by specifying the filename as an indirect file.

Appendc.Notes is one of a set of file-oriented commands for managing notes. That
is, these commands, including GeLNotes, Createc.Empty..Note., Window, and Put-
_Notes, are most useful for managing notes through files. However, these commands
also manage special-purpose notes windows (identified by the Notes for string in
the banner) in which the Append..Notes command can be used as follows:

• If the Createc.Empty..Note., Window procedure has been used to display an empty
notes window for an object, text entered in this window can be appended to the
object's existing notes using the Appends.Notes procedure. In this case, Append-
_Notes must be entered (with default parameter values) from a Command window
attached to the window that was created by the Createc Empty..Note., Window
procedure.

Note that modified notes windows retain the * symbol in their window banners, even
after their contents have been entered in the CMVC database using Append..Notes
or PuLNotes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use the Common.Abandon procedure to remove these windows.

The Notes command provides an interactive alternative to Create..Emptyc.Note-
_ Window, Append..Notes, and the like. The Notes command displays a history
image (identified by 'Hi s tor~ attribute following the object name and generation in
the window banner), which allows interactive operations for managing an object's
notes.

PM-210 8/1/88 RATIONAL

procedure Appendc.Notes
package !Commands.Cmvc

Parameters

Note: String:= "(WINDOW)";
Specifies a string to be appended to an object's existing notes. If the Note parameter
names an indirect file, the contents of that file are appended to the existing notes
for the specified controlled object.

If the default special name "(WINDOW)" is used, it refers to the contents of a notes
window created by either the Get-Notes or the Create.zEmptyc.Note., Window com-
mand. When the default value is used, Append..Notes must be entered from a Com-
mand window attached to the notes window. The first line of the notes window con-
tains the name of the object associated with the notes; therefore, the What-Object
parameter is ignored.

What_Object: String:= "(CURSOR)";
Specifies the object whose notes are to be augmented. The specified object must be
both controlled and checked out; otherwise, the command quits.

The What-Object parameter is ignored if the Note parameter's default value is
used.

Response String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Create..Emptyc.Note., Window

procedure Get-Notes

procedure Notes

procedure Put-Notes

RATIONAL 8/1/88 PM-211

procedure Build
package !Commands.Cmvc

procedure Build

procedure Sui ld
(Configuration
View_To_lmport
Model
Goal
Limit
Comments
Work_Order
Volume
Response

String
String
String
Compilation.Unit_State
String
String
String
Natural
String

·- "»CONF IGURAT ION NAME«";
.- "(INHERIT_IMPORTS>";
·- "< INHER IT MODEL>"·
.- Compilation.lnstailed;
·- "(WORLDS>";
.- ,
·- "(DEFAULT>";
.- 0;
·- "(PROF ILE>");

Description

Builds views from the specified configuration objects.

Views corresponding to the specified configuration objects must not already exist.

Whenever a view is created or released, a configuration object is created for it
automatically. The configuration object for a view lists the specific generations of
the controlled objects in that view and provides an index into the CMVC database
where the source for these generations is stored. Thus, views are realizations of
configuration objects, in that views contain library structure and compilable units,
whereas configuration objects merely summarize the contents of the corresponding
views.

Because configuration objects provide enough information to reconstruct views,
space can be saved by creating or keeping only the configuration objects for views
whose units do not need to be compiled and executed frequently:

• The Release command creates only a configuration object without creating the
corresponding released view if the Create..Configurationc.Only parameter is true.

• The Destroy _View command destroys only a view without destroying the cor-
responding configuration object if the Destroy..Configurationc Also parameter is
false.

The Build command is used when it is necessary to build a view for a released
configuration object or rebuild a destroyed view.

Note that when a view is built (or rebuilt) from a configuration object, the only
objects that can be recreated are controlled objects for which source is saved in
the CMVC database. (Controlled objects for which source is not saved cannot be
rebuilt.)

Configuration objects reside in the directory subsystem-name. Configurations. Each
configuration object has the same simple name as the view to which it corresponds.

PM-212 8/1/88 RATIONAL

procedure Build
package !Commands.Cmvc

Parameters

Configuration String: = "»CONF IGURATION NAME«";

Specifies one or more configuration objects from which views are to be built. If
the command is executed in the subsystem library, the configuration names can be
specified using relative naming-for example, Configurations.Rev Lfk.I names the
configuration for which the corresponding view RevLO_l is built.

Multiple configuration objects can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
"N aming" in the Key Concepts in this book.)

View_To_lmport : String:= "<INHERIT_IMPORTS)";

Specifies one or more views to be imported by each of the newly built views. The
views specified by this parameter must be spec or combined views.

If the View _To..Import parameter is the default special name" < INHERIT_I MPORTS)" ,
imports are determined by information in the state description directory associated
with each configuration object. (State description directories are created auto-
matically for released views and are named subsystem.Configurations.release_name-
_State.)

If the View _Toe.Import parameter is the null string (""), no views are imported.

If the View _Tc..Import parameter specifies one or more views, only the specified
views are imported, and any imports listed in a corresponding state description
directory are ignored.

The Importedc.Views function can be used to return another view's imports as the
value of the View c'Toc.Import parameter. This is a convenient way of setting the
newly built view's imports to be the same as another view's imports.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, the View _To_Import parameter
can name an activity as an indirect file, which is equivalent to naming the spec view
associated with each subsystem listed in the activity.

RATIONAL 8/1/88 PM-213

procedure Build
package !Commands.Cmvc

Model: String:= "(INHERIT_MODEL)";
Specifies a model world for each newly built view. If the specified name cannot be
resolved in the context !Model, the name is resolved relative to the current context.

If the Model parameter is the default special name "(INHER IT_MODEL)", each newly
built view uses the model that was recorded in the state description directory as-
sociated with the relevant configuration object. (State description directories are
created automatically for released views and are named subsystem. Configurations-
.release_name_State.)

Goal : Compilation.Unit_State := Compilation. Installed;
Specifies the state to which units in the view are compiled. The goal can be any of
the enumerations of the Compilation. Unit-State type. By default, the compilation
goal is the installed state. To set the compilation goal to the coded state, specify
Compilation. Coded.

Limit: String:= "(WORLDS>";
Specifies the units that can be compiled to the state specified by the Goal parameter.
Because views are worlds, the default special value "(WORLDS)" means that only units
within the newly built views can be compiled. Other values for this parameter are
given as enumerations of the Compilation. Change..Limit subtype. For example, the
string "(ALL_WORLDS)" permits the compilation of units in other subsystems in order
to compile the units in the newly built views.

Comments : String: = "";
Specifies a comment to be logged in the work order indicated by the WorkcOrder
parameter. If no work order is specified, and if there is no default work order, the
comment is discarded.

Work_Order : String:= "(DEFAULT)";
Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date of the build operation as well as
the usernarne and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "(DEF AULT>" refers to the default work order for the current
seSSIOn.

Volume: Natural := 0;
Specifies the volume on which to build the views. The default value specifies that
the views should be built on the volume with the most free space.

PM-214 8/1/88 RATIONAL

procedure Build
package !Commands.Cmvc

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Destroy..Vlew

procedure Release

RATIONAL 8/1/88 PM-21S

procedure Check.Jn
package !Commands.Cmvc

procedure Check..In

procedure Check_In (What_Object
Comments
Work_Order
Response

String .- "<CURSOR)" ;
String .- ,
String .- "<DEFAULT)" ;
String .- "<PROF ILE) ");

Description

Releases the reserved right to update the specified object or set of objects and stores
the text of the new generation(s) in the CMVC database.

An object that is checked in cannot be modified until it is checked out again. Only
controlled objects can be checked in or out.

Because checked-in objects cannot be modified in any way, it is recommended that
all incremental additions or changes to Ada units be promoted before those units
are checked in. Errors will result from attempting to compile the checked-in units
that contain insertion points, because promoting insertion points would require the
modification of checked-in units.

Note that checking in an object that was made controlled without saving source
simply releases the right to update that object; no text is recorded in the CMVC
database.

Parameters

What_ObJect : String: = "<CURSOR>";
Specifies one or more objects to be checked in. These objects must be controlled. If
uncontrolled objects are named, they are noted in the output log generated by the
command and ignored.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Comments: String:= "";
Specifies a comment to be stored in the CMVC database with the notes for the spec-
ified object(s). Notes can be displayed using the GeL Notes command. This com-
ment also appears in the display generated by the Showc.History..By.Xleneration
command.

In addition, the specified comment is logged to the work order specified by the
Workc.Order parameter.

PM-216 8/1/88 RATIONAL

procedure Check_In
package !Commands.Crnvc

Work_Order : String:= "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment is also entered in the work order.

The. special name "<DEFAULT)" refers to the default work order for the current
seSSIOn.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The Check..Jn procedure takes time proportional to the size of the object(s) being
checked in. Large objects may exhaust the job page limit and fail. In this case, the
job page limit must be increased.

References

procedure Check..Out

procedure Make..Controlled

RATIONAL 8/1/88 PM-217

procedure Check.Out
package !Commands.Cmvc

procedure Check..Out

procedure Check_Out
(What_Object
Comments
Allow_lmplicit_Accept_Changes
Allow_Demotion
Remake_Demoted_Units
Goal
Expected_Check_ln_Time
Work_Order
Response

String ._ "<CURSOR)";
String .-
Boolean .-
Boolean .-
Boolean .-
Compilation.Unit_State .-

Compilation.Coded;
.- "<TOMORROW)";
.- "<DEF AULT>" ;
.- "<PROF ILE)") ;

.True;
False;
True;

String
String
String

Description

Reserves the right to modify the specified controlled object or objects.

Controlled objects can be modified only while they are checked out. However,
objects need not be checked out in order to be compiled.

When objects are joined across multiple views, they share the same reservation
token, so that only one of the joined objects can be checked out at a time. Checking
out a joined object in one view renders the corresponding objects in the other views
unavailable for update. (In contrast, objects that do not share the same reservation
token can be checked out and modified independently.)

A new generation of an object is created when it is checked out. The new gen-
eration can be preserved by the Check.Jn command or abandoned by the Acan-
done.Reservation command. When one object in a join set is checked out and then
checked in, the other objects in the set are rendered at least one generation out of
date. Checking out one of the out-of-date objects automatically updates it to the
latest generation, unless the Allow_ImpliciLAccepLChanges parameter has been
set to false, in which case the checkout operation fails. Setting this parameter to
false allows an object to be checked out only if it is at the latest generation already.
(Note that if an object was made controlled without saving source, Check.i.Out
can implicitly update it only if an object in some view actually contains the latest
generation; see the Make..Controlled command.)

If Ada units are compiled against a unit that requires updating, checking out that
unit may require the demotion of the other dependent units. In this case, the value
of the Allow..Demotion parameter controls whether the command actually performs
the demotion and checks out the unit.

Various commands can be used to determine whether objects are currently checked
out, including Show, Showc.All.eCheckedc.Out, Show..Checkedc.Outc.In.; View, and
Show..Checkedc.Outc.Byc.Ilser. Other related information, such as the checkout
date, time, and user, can be displayed using the Showc.Historyc.Byc.Generation
command.

PM-218 8/1/88 RATIONAL

procedure Check..Out
package !Commands.Cmvc

The reservation obtained by the CheckcOut procedure can be abandoned using the
Abandon..Reservation command.

Parameters

What_Object: String:= "(CURSOR)";
Specifies one or more objects to be checked out. If multiple objects are specified, all
must belong to the same view. If a view name is specified, the CheckcOut procedure
attempts to check out all the objects in the view.

If the Check..Out procedure encounters an object that is checked out in another
view, an error is reported at that point and the command quits without looking
at any more specified objects. Checkouts made before the command quits are
abandoned.

Objects must be controlled to be checked out. If uncontrolled objects are named,
they are noted in the output log generated by the command.

If multiple objects are specified, they must be in the same view. Multiple objects
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see "Naming" in the Key Concepts in
this book.)

Comments : String: = "";
Specifies a comment to be stored in the CMVC database with the notes for the speci-
fied object(s). The notes can be displayed using the Get-Notes command. This com-
ment also appears in the display generated by the Show _History _By _Generation
command.

In addition, the specified comment is logged to the work order specified by the
Work..Order parameter.

Allow_lmplicit_Accept_Changes Boolean:= True;
Specifies whether the Check..Out procedure is allowed to update the specified ob-
jects to the latest generation.

If this parameter is true, the CheckcOut procedure is permitted to update the
objects. If it is false, the command proceeds only if the specified objects are already
at the latest generation; otherwise, an error is reported and the command quits.

RATIONAL 8/1/88 PM-219

procedure Check_Out
package !Commands.Cmvc

Allow_Demotion : Boolean:= False;
Specifies whether the Check..Out procedure is allowed to demote Ada units in order
to update the specified objects to the latest generation.

If this parameter is true, the Check..Out procedure is permitted to demote Ada
units if necessary. If it is false, the command proceeds only if no demotion is
required; otherwise, an error is reported and the command quits.

Remake_Demoted_Units : Boolean := True;
Specifies whether to recompile any units that were demoted in the process of up-
dating the specified objects to the latest generation.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

Goal : Compilation.Unit_State := Compilation.Coded;
Specifies the state to which demoted units are recompiled when the Remakes.De-
moted..Units parameter is true.

The goal can be any of the enumerations of the Compilation. Unit-State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation. Source is specified, the demoted units are put in the source state,
regardless of the value of the Remakec.Demoted..Units parameter.

Expected_Cheek_I n_Time : String: = "<TOMORROW)";
Specifies the anticipated date and time at which the objects will be checked in. The
value of this parameter can be any string accepted by the "Iools.Timec.Utilitles-
.Value function (documented in PT). The default value, "<TO~'ORROW)",supplies the
date and time for the next day. The expected checkin time can be viewed using
commands such as Show.

Work_Order : String:= "<DEFAULT>";
Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date of checkout, the objects affected,
and the username and session in which the command was entered. If the Comments
parameter is specified, this comment is also entered in the work order.

The. special name "<DEFAULT)" refers to the default work order for the current
seSSIOn.

PM-220 8/1/88 RATIONAL

procedure Check..Out
package !Commands.Cmvc

Response: String: = "(PROF ILE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

proced ure Abandon..Reservaticn

procedure Check_In

procedure Show

procedure Show_AlLChecked_Out

procedure Showc.Checkedc.Outc.Byc.User

procedure Showc.Checked..Outc.In.; View

procedure Show _History _By _Generation

RATIONAL 8/1/88 PM-221

procedure Copy
package !Commands.Cmvc

procedure Copy

procedure Cop~
(From_View String ·- "<CURSOR)" ;
New_WorkIng_View String ·- "»SUB/PATH NAME«" ;
View_To_Modif~ String .- ,
View_To_lmport String .- "<INHERIT_IMPORTS)";
Onl~_Change_lmports Boolean .- True;
Join_Views Boolean .- True;
Reservation_Token_Name String .- "<AUTO_GENERATE)" ;
Construct_Subpath_Name Boolean ·- False;
Create_Spec_View Boolean ·- False;
Create_Load_View Boolean .- False;
Create_Combined_View Boolean .- False;
Level_For_Spec_View Natural .- 0·,
Model String .- "<INHERIT_MODEL)";
Remake_Demoted_Units Boolean .- True;
Goal Compilation.Unit_State .- Compilation.Coded;
Comments String lilt.- ,
Work_Order String .- "<DEFAULT)" ;
Volume Natural .- 0·,
Response String .- "<PROF ILE)");

Description

Creates one or more new views by copying the specified view or views.

By default, the Copy command makes new spec views, new working load views, or
new working combined views, depending on the kinds of source views named by the
From., View parameter. This procedure also can be used to make views of a specific
type, depending on the values of the Create..Spec., View, Create..Load.; View, and
Create..Comblned.; View parameters. (At most, only one of these three parameters
can be true.)

The Copy command can be used to make new paths, subpaths, and spec views, al-
though specialized commands [Makes.Path, Make..Subpath, and Make..Spec., View)
exist for this purpose. (Note that all of the special-purpose commands call the Copy
command.)

Objects in new working load or combined views are made controlled if the corre-
sponding objects were controlled in the source views. Objects in new spec views are
left uncontrolled.

Controlled objects in a new view can, but need not, be joined to the corresponding
objects in the view from which it is copied. Two views should be joined (using the
Join., Views parameter) if the majority of the controlled objects in them are to be
joined. (Joined objects cannot be checked out and modified independently.) The
controlled objects that need to be modified independently can be severed subse-
quently with the Sever command.

PM-222 S/1/88 RATIONAL

procedure Copy
package !Commands.Cmvc

A new view should not be joined to the view from which it is created if most of
the controlled objects in these two paths are to be modified independently. (Note
that changes can be propagated across unjoined objects with the Merge..Ohanges
command.) Although the new path is not created joined, individual objects in it
subsequently can be joined to the corresponding objects in other views (see the Join
command).

By default, each new view has the same imports as the view from which it was
copied. It is also possible to specify different imports in the process of creating the
new paths by using the View_To_Import and Onlyc.Change..Imports parameters.
Import adjustments are subject to the same consistency checking that is performed
by the Import command.

Parameters

From_View: String:= "<CURSOR>";

Specifies the source view or views from which copies are to be made. The default
is the view on which the cursor is located. This parameter can name:
• Combined, load, or spec views
• Working or released views

All controlled objects in a view named by the From..View parameter must be
checked in. If the parameter names multiple views, a new view is copied from
each of the named views. Each new view is created in the same subsystem as the
view from which it is copied.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. The named views can be in the same or in
different subsystems. (For further information, see "Naming" in the Key Concepts
in this book.)

RATIONAL 8/1/88 PM-223

procedure Copy
package !Commands.Cmvc

New_Working_View : String:= "»SUB/PATH NAME«";

Specifies the string to be used in constructing the names of the new views.

The string specified by the New., Working_View parameter is used in several ways,
depending on the values of the Construcf..Subpathc.N ame and Create..Spec., View
parameters:
• If both Createc.Subpath..Name and Creata..Spec.; View are false, the string speci-

fied by New_Working..View is used as a pathname prefix for a working view-for
example, Rev2 in Revz., Working.

• If Createc.Subpath..Name is true, the string specified by New.,Working., View is
used as a subpathname extension for a working view-for example, Anderson
in Rev lc.Anderson., Working. The new name is constructed using the pathname
(Revl) from the source view.

• If Createc.SubpathcName is false and the New., Working_View string contains
an underscore, the string specified by New., Working_View is used as both the
pathname prefix and subpath extension-for example, Rev2_Miyata in Rev2-
_Miyata- Working.

• If Create..Spec., View is true, the string specified by New., Working_View is used
as a spec view prefix-for example, Revl in Revl_O_Spec.

Other portions of the constructed names, such as _Working and _O_Spec, are sup-
plied automatically.

If the From..View parameter names multiple views, all of the new views will use
the same name prefix or extension.

New., Working..View can be any string that constitutes a legal Ada identifier. Note
that a string containing an underscore is interpreted as a path prefix followed
by a subpath extension and not merely as a path prefix containing an under-
score. This has consequences for subsequent CMVC operations. For example, if the
New., Working..View parameter specifies the string "TargeL2" and the Construct-
_Subpath_Extension parameter is false, the Copy command creates a view named
TargeL2_ Working. If another subpath view is subsequently created from this view,
the string "2" will be replaced by the new subpath extension.

PM-224 8/1/88 RATIONAL

procedure Copy
package !Commands.Cmvc

VieUJ_To_Modify : String:= "";
Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new views, provided that those new views are combined or
spec views. The imports of the views specified by this parameter also are updated
using the views named by the Viewc'IocImport parameter. The Vlew..Tcc.Modify
views are updated by View., 'Io..Import views as if Onlyc.Changec.Imports were true,
regardless of this parameter's actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

VieUJ_To_lmport : String:= "<INHERIT_IMPORTS>";
Specifies one or more spec or combined views to be imported by the new views. The
views named by this parameter also are used to update the imports of the views
named by the View _Toz.Modify parameter.

If View _'Io..Import specifies the default special name "< INHER IL IMPORTS>", each
new view uses the same imports as the view from which it was copied. (However,
if the From.View parameter names multiple combined views among which import
relations hold, the imports are automatically adjusted so that the working views
in the new paths reference each other as appropriate, instead of referencing the
working views in the original paths.)

If View..To..Import specifies the null string (""), no views are imported.

If View _To.ilmport specifies one or more views, the specified views are imported
by the new views in the manner specified by the Onlyc.Change..Imports parameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, Vlewc.Tc..Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

RATIONAL 8/1/88 PM-225

proced ure Copy
package !Commands.Cmvc

Onl~_Change_lmports : Boolean:= True;
Specifies the manner in which the views specified by the View., 'Ic..Import parameter
are actually used as imports by the new views. Only _Change_Imports has no effect
if View _To_Import specifies ..< 1NHER 1T _I MPORTS>" or the null string.

If this parameter is false, the entire list of views given by View., 'Ic..Import is im-
ported by each new view created by the Copy command. No imports are inherited.

If the parameter is true (the default value):

• Each new view inherits its imports from the view from which it was copied .
• The list of views in View., Toe.Import is compared to the inherited views. If

a Viewc'To..Import view is from the same subsystem as an inherited view, the
Viewc.Tc..Import view replaces that inherited view.

Thus, if Only _Change_Imports is true, the list of views in View _Toe.Import is used
to update the inherited imports of each new view. In this way, the replacement
imports for every new view can be specified in a single list without forcing each new
view to import everything in the list.

Join_Views : Boolean:= True;
Specifies whether to join each new view to the view from which it was copied. Only
new working views (either load or combined) are joined. (That is, the value of
Join., Views is ignored if the Create..Spec., View parameter is true.)

If Join..Views is true (the default value), the controlled objects in each copied
working view are joined to the corresponding objects in each source view named
by the From.View parameter. The reservation tokens from the source views are
used. If a source view contains no controlled objects, then no objects can be joined.
Note that Joinc.Views affects only controlled objects that exist at the time the
Copy command is executed. Objects created after the new views are made must be
controlled explicitly and joined using the MakecControlled and Join commands.

If Joiru.Views is false, new reservation tokens are created for all of the controllci
objects. The value for New., Working..View is used as the reservation token, unless
Reservation., Tokenc.N ame specifies a nonnull value.

PM-226 8/1/88 RATIONAL

procedure Copy
package !Commands.Cmvc

Reservation_Token_Name : String:= "<AUTO_GENERATE>";
Specifies the name of the reservation token to be associated with each specified
object. The value of this parameter is used only if the Joins.Views and Create-
_Spec_View parameters are false.

The default value "<AUTO_GENERATE>" means that the reservation token is generated
automatically by the Environment. Names of reservation tokens that are gener-
ated automatically are derived from the first portion of the enclosing view name
(up to the first underscore character). For example, the controlled objects in a
view called RevL Working would have Revl as their automatically generated token
name. (Where necessary, a number is appended to produce a unique name for the
reservation token-for example, Rev LiL]

A user-defined token name can be supplied instead to provide subsequent join sets
with more meaningful or mnemonic token names.

Note that supplying an existing token name cannot be used to join the newly
controlled objects to any other objects.

Construct_Subpath_Name : Boolean:= False;
Specifies, whether each new view should be named as a subpath of the corresponding
source VIew,

If true, the string specified by the New., Working..View parameter is used as a sub-
pathnarne extension in each new view's name. Each new view name is constructed
from the pathname prefix of the source view followed by the string specified by
New _ Working., View. The string" _ Working" is automatically added to the name's
end. For example, if From.View names a source view called "RevL4_5" and New-
- Working..View specifies the string" Anderson", then setting ConstrucLSubpath-
_Name to true causes the new view to be called Rev L.Anderson., Working.

If false (the default value), the string specified by the New _ Working..View param-
eter is used either as a pathname prefix or (if Create..Spec., View is true) as a
spec-view prefix in the new view names.

The value of Construct..Subpathc.Narne is ignored if the Create..Spec., View param-
eter is true.

RATIONAL 8/1/88 PM-227

procedure Copy
package !Commands.Cmvc

Create_Spec_View : Boolean:= False;
Specifies whether to create spec views instead of working load or combined views.

If Createc.Spec., View is false (the default value), the type of view created depends
on the values of the Create.iLoad., View and Create..Combined., View parameters.
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create..Spec., View is true, a new spec view is created from each of the source
views specified by Frome.View. In this case, the values of Create..Spec., View and
CreatecCombined., View must be false. Objects in the new spec views are uncon-
trolled.

Each new spec view is created with only those units named in the Exports file of the
corresponding source view. (This file is located in the view_name.State directory.)
The new spec view contains a copy of the specifications of those units. If no units
are specified in the Exports file, the new spec view copies the specifications of all
of the units in the source view.

When Create..Spec., View is true, the string specified by New., Working..Vlew is
used as a spec-view prefix. The name of each new view thus is constructed from the
specified string, followed by one or more release level numbers (as determined by the
LeveLFor _Spec_ View parameter), followed by the string "_Spec". For example,
if From..Vlew names a source view called "Revl_Anderson_ Working" and New-
_Working..Vlew specifies the string "Rev2", then setting Create..Spec., View to true
causes the new view to be called Rev2_n-Spec (where n represents the current
release level number).

When Create..Spec., View is true, the values of the Joiru.Views, Reservation., Token-
_Name, and Constructc.Subpath..Name parameters are ignored.

The value of Create..Spec., View is ignored when the Copy command is entered in
a system or in a combined subsystem. Systems can contain only system views and
combined subsystems can contain only combined views.

PM-228 8/1/88 RATIONAL

proced ure Copy
package !Comr::lands.Crnvc

Create_Load_Vlew : Boolean:= False;
Specifies whether to create working load views instead of spec views or working
combined views.

If CreatecLoad., View is false (the default value), the type of view created depends
on the values of the Create..Spec., View and Create..Combined., View parameters,
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create..Load., View is true, a new load view is created from each of the source
views specified by Frome.View. In this case, the values of Create..Spec., View and
Create.cCombined., View must be false.

The value of Create..Load., View is ignored when the Copy command is entered in
a system or in a combined subsystem. Systems can contain only system views and
combined subsystems can contain only combined views.

Create_Combined_View : Boolean := False;
Specifies whether to create working combined views instead of spec views or working
load views.

If Create..Combined., View is false (the default value), the type of view created de-
pends on the values of the Create..Spec., View and Createc.Load., View parameters.
If all three parameters are false, each new view is the same type as the source view
from which it was copied.

If Create..Combined., View is true, a new combined view is created from each of the
source views specified by From.View. In this case, the values of Create..Spec., View
and CreatecLoad., View must be false.

The value of Create..Comblned., View is ignored when the Copy command is entered
in a system. Systems can contain only system views.

RATIONAL 8/1/88 PM-229

procedure Copy
package !Commands.Cmvc

LeveLFor _Spec_Vi eui : Natural := 0;

Specifies which level number to increment when creating spec-view names. If the
value of this parameter is Natural'Last, spec-view names are generated without
level numbers.

Level numbers in a spec-view name are generated from the level numbers in the
name of the most recently released view in that subsystem. Note that a released-
view name contains as many numbers as there are release levels; the rightmost
number is the Oth level. In a spec-view name, the string "_Spec" replaces the
rightmost (Oth level) number, so a spec-view name has one number less than a
released-view name.

If Leval..Forc.Spec., View is 0, no release level numbers are incremented, because the
Oth-level number has been replaced. In this case, the spec-view name contains the
same numbers (starting with level 1) as the most recent release. If Levek.For..Spec-
_View is 1, the first-level number in the most recent release name is incremented
before the appropriate level numbers are inserted into the spec-view name. The
number of levels that can be incremented is determined by the Levels file within
the model world for the view. The Copy command quits if the value of the Level-
_For _Spec_ View parameter is a number other than Natural'Last that exceeds the
total number of levels specified by the Levels file.

For example, assume that there are two release levels and the most recently released
view is called RevL4_2. If Create..Spec., View is true and Level..Fot..Spec., View
is 1, the name generated for the new spec view is Rev Lfi..Spec (assuming that the
Newc.Working..View parameter specifies the string "Revl").

The value of Levelc.For..Spec., View is ignored if the Create..Spec., View parameter
is false.

Model: Strlng:= "<INHERIT_MODEL>";

Specifies a model world for each new working view. If the specified name cannot be
resolved in the context !Model, the name is resolved relative to the current context.
By default, the new working view uses the same model as the view from which it
was copied.

Remake_Demoted Unlts : Boolean := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

PM-230 8/1/88 RATIONAL

procedure Copy
package !CommandsoCmvG

Goal: Compllatlon.Umt_State := Cornp i l a t i orv.Coded ;

Specifies the state to which demoted units are recompiled when the Remake..De-
mot ed.rUnits parameter is true.

The goal can be any of the enumerations of the Compilation. Unit-State type, except
Compilation.Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.Installed. If
Compilation. Source is specified, all units in the view are put in the source state,
regardless of the value of the Remakec.Demotedc Units parameter.

Comments: Strlng:= "":

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : Strlng:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date when the new working view was
copied and the username and session in which the command was entered. If the
Comments parameter is specified, this comment also is entered in the work order.

The. special name "<DEF AULT>" refers to the default work order for the current
seSSIOn.

Volume: Natural : = 0;

Specifies the volume on which to make the new working views. The default value
specifies that the new working views should be created on the volume with the most
free space.

Response: Strlng:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Make..Path

procedure Make..Spec., View

procedure Maka..Subpath

procedure Mergez.Changes

RATIONAL 8/1/88 PM-231

procedure Creates.Empty _Note_ Window
package !Commands.Cmvc

procedure Create..Emptyc.Note., Window

procedure Create_Empty_Note_Window (What_Object
Response

String .- "(CURSOR)";
String .- "(PROFILE)");

Description

Creates an empty window for the purpose of composing notes for the specified
controlled object. The banner of the created window identifies it as Notes For
followed by the object's name.

The notes for a controlled object are stored the CMVC database. An object's notes
can be used as a scratch pad for arbitrary commentary to be associated with par-
ticular generations.

After the notes window has been edited:

• The Appends.Notes command can be used to append the window's contents to
the object's existing notes .

• The PuLNotes command can be used to replace the object's existing notes with
the window's contents.

Modified notes windows retain the * symbol in their window banners, even after
their contents have been entered in the CMVC database using Append..Notea or
PuLNotes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use Common. Abandon to remove these windows.

The Notes command provides an interactive alternative to Appendc.Notes, Cre-
ate..Emptyc.Note., Window, and the like. The Notes command displays a history
image (identified by the 'Hi s t or-q attribute following the object name and gener-
ation in the window banner), which allows interactive operations for managing an
object's notes.

Parameters

What_Object : String: = "<CURSOR>";
Specifies the object for which an empty notes window is to be created. The specified
object must be controlled.

Response: Str 1ng := "<PROF ILE>" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-232 8/1/88 RATIONAL

procedure Create..EmptyvNote., Window
package !Commands.Cmvc

References

procedure Appends.Notes

procedure Get-Notes

procedure Notes

procedure Put-Notes

RATIONAL 8/1/88 PM-233

procedure Def
package !Comma.nds.Cmve

procedure Def

procedure Def (What_Object
In_Place

String .- "<CURSOR)";
Boolean .- False);

Description

Traverses between various objects managed by the Environment library system a.nd
images managed by the CMVC editor.

In some contexts, the Def command serves as the inverse of the Edit command:

• Entering Edit from a view or from a controlled object in the view displays the
configuration image for that view.

• Entering Def from the configuration image for a view displays the view itself or
a controlled object in the view (depending on the location of the cursor within
the configuration image).

In other contexts, the Def command serves as the inverse of the Notes command:

• Entering Notes from a controlled object in a view displays the history image for
the object.

• Entering Def from the history image for a controlled object displays the object
itself.

Finally, Def traverses back and forth between a controlled object in a view and its
current generation image. If images of other generations are displayed subsequently,
Def also displays the controlled object from any of these other generation images.

A particularly useful application of Def is to use it to display an object's current
generation image and then use Common.Expand to see the differences between the
current generation and the previous generation.

Parameters

WhaLObJect : Strlng: = "<CURSOR)";
Specifies the object or image from which to traverse. Objects must be controlled.
Images include configuration, generation, and history images.

The default is the object or image on which the cursor is currently located.

PM-234 8/1/88 RATIONAL

procedure Dei
package !Commands.Cmvc

In_Place : Boolean:= False;
Specifies whether the current frame should be used to display the Image. The
default specifies that the least recently used frame should be used.

RATIONAL 8/1/88 PM-235

procedure Destroy..Subsystem
package !Commands.Cmvc

procedure Destroyc.Subsystern

procedure Destro~_Subs~stem (WhaLSubs~stem
Comments
Work_Order
Response

Strlng .-
String .-
Strlng .-
String .-

"<SELECTION>" ;
1111 ,
"<DEFAULT>";
" <PROFILE>") ;

Descrtptlon

Destroys the specified subsystem or subsystems.

All views in each subsystem must be destroyed (with the Destroy.i.View command)
before that subsystem can be destroyed.

Parameters

What_Subs'dstem String: = "<SELECTION>" ;

Specifies one or more subsystems to be destroyed. There can be no views in the
specified subsystems. By default, the selected subsystem is destroyed.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Comments : Strlng: = "";

Specifies a comment to be logged in the work order indicated by the Works.Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : Strlng:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date when the subsystem is destroyed
and the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Response Str 1ng := "<PROFILE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-236 8/1/88 RATIONAL

procedure Destroy..System
package !Commands.Cmv(

procedure Destroy.rSystem

procedure Destro~_S~stem (What_S~stem StrIng . - "<SELECT ION)" ;
Comments StrIng .- .
Work_Order String .- "<DEFAULT>" ;
Response String .- "<PROF ILE>") ;

Description

Destroys the specified system or systems.

All views in each system must be destroyed (with the Destroy.rView command)
before the subsystem can be destroyed.

Parameters

What_S~stem : StrIng:= "<SELECTION)";

Specifies one or more systems to be destroyed. There can be no views in the specified
systems. By default, the selected system is destroyed.

Multiple systems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Comments : StrIng:= "";

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order : StrIng.- "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date the system is destroyed and the
userriame and session in which the command was entered. If the Comments param-
eter is specified, this comment also is entered in the work order.

The special name "<DEF AULT>" refers to the default work order for the current
session.

Response StrIng:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-237

procedure Destroyc.View
package !Commands.Cmvc

procedure Destroy.rView

procedure Destro~_View
(What_Vlew
Demote_Cllents
Destro~_Configuration_Also
Comments
Work_Order
Response

String .- "<SELECTION)";
Boolean .- False;
Boolean = False;
String
String
String

.- "<DEFAULT)";

.- "<PROF ILE)");

Description

Destroys the named view or views and all of their subdirectory structure, including
the Ada units in the Units directories.

This procedure destroys views in subsystems and in systems.

All objects are first unfrozen if they are currently frozen, and then they are deleted
and expunged from the directory system. A view cannot be destroyed in any of the
following cases:

• The view contains controlled objects that currently are checked out.
• The view is currently imported by client views.
• The view is included in a system as a result of operations in the Cmvc..Hierarchy

package.

Destroy _View is the only command that should be used to destroy a view. In par-
ticular, neither the Library.Destroy nor the Compilation. Destroy command should
be used, because these commands cannot destroy the entire view structure. If an
attempt was made to destroy a view using any command other than Destroy.rView,
you can recover as follows:

1. Enter the Cmvc_Maintenance.Check_Consistency command to repair the par-
tially destroyed view.

2. Enter the Destroy..View command to destroy the view completely.

By default, views are destroyed so that they can be rebuilt using the Build com-
mand. Views can be destroyed permanently by setting the Destroy.cConfiguration-
_Also parameter to true.

PM-238 8/1/88 RATIONAL

procedure Destroyc.View
package !Colll1lJ.3.l1ds.Cmvc

Parameters

What_VIew: String:= "<SELECTION)";
Specifies one or more views to be destroyed. The default, "<SELECT ION)", means
that the selected view is destroyed. The specified views cannot contain controlled
objects that currently are checked out.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Demote_ClIents : Boolean:= False;
Specifies whether a view can be destroyed if other views import it. If false (the
default value), the Destroy.rView command quits if the specified view is imported
by other views. If true, the specified view is removed from the imports of any
referencing views and then destroyed. Note that units in the referencing views may
be demoted as a result of removing the import.

Destro~_Conflguratlon_Also : Boolean:= False;
Specifies whether to destroy the configuration object associated with each specified
view. If false (the default value), the configuration object is preserved for each
destroyed view. In addition, the state description directory is preserved for each
released view and a state description directory is created for each spec and working
view. (State description directories exist in the subsystem. Configurations directory
along with configuration objects.)

As a result, any view destroyed while this parameter is false can be reconstructed
using the Build command. (Note that only the controlled objects in a view can be
reconstructed by Build.) Destroying a view while this parameter is false is useful
for saving space without losing information. Note that as long as the configura-
tion object exists, a new view with the same name cannot be created in the same
subsystem.

If true, the configuration object is expunged from the CMVC database. The de-
stroyed view cannot be reconstructed, although a new view with the same name
can be created.

Comments : StrIng.-
Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-239

procedure DestroycView
package !Commands.Cmvc

Work_Order : String:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date the view is destroyed and the user-
name and session in which the command was entered. If the Comments parameter
is specified, this comment also is entered in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Response String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

A view cannot be destroyed if it contains controlled objects that currently are
checked out, if it is imported by other views, or if it is included in a system.

PM-240 8/1/88 RATIONAL

procedure Edit
package 'Cornmands.Cmvc

procedure Edit

procedure Edlt (View_Or_Config String .- "<CURSOR)" ;
In_Place Boolean .- False;
Allow_Cheek_Out Boolean .- True;
Allow_Cheek_In Boolean .- True;
Allow_Accept_Changes Boolean .- True) ;

Description

Displays a configuration image for the specified view or configuration object or for
the view enclosing the specified object.

A configuration image for a view is a library-like display of Ci\IVC information
pertaining to that view.

Every view embodies a specific configuration, where a configuration is a combination
of generations, one for each controlled object in the view. A configuration image
for a view thus contains an entry for each controlled object in the view, indicating
the generation of the object that is present in the configuration embodied by the
view. Each entry also indicates the latest generation that exists for that object in
any VIew.

A configuration image for a view provides a convenient way to:

• Check in, check out, and accept changes on controlled objects .
• Determine whether an object is checked out, to whom it is checked out, whether

it is out of date in a given view, and which other views contain objects in the
same join set. (The Common.Expand command displays increasing levels of
information from this image.)

• Access generation images (textual representations of previous generations) and
history images (the notes stored in the CMVC database for each controlled object).
Note that a given generation image can be expanded to show differences between
that generation and the previous one. Generation images are available only for
controlled objects for which source is saved.

Note that Edit can be used to display a configuration image for a configuration
object that has no view associated with it (for example, a configuration release). In
this case, the configuration image provides access to generation images and history
images even for objects that may not still exist outside the CMVC database. This is
a useful means for browsing past generations of objects.

Similarly, the Edit command can be used to display configuration images for code
views, which do not contain source objects.

The Def command traverses from a configuration image for a view to the view itself
(or to an obj ect in that view).

RATIONAL 8/1/88 PM-241

procedure Edit
package lCommands.Cmvc

By default, commands from package Common can be used to perform checkin,
checkout, and accept-changes operations in a configuration image that was created
by the Edit command. To restrict such operations, set the Allow..Checkc.Out,
Allowc.Check..In, and Allow..Acceptc.Changes parameters to false when you enter
the Edit command.

As an alternative to using the Edit command, configuration images can be created
using commands from package Common. In this case, checkin, checkout, and accept-
changes operations are restricted automatically. However, the Edit command can
be entered from the configuration image to change these restrictions as specified by
the Allowc.CheckcOut, Allow..Cbeckc.In, and Allow_AccepLChanges parameters.

Parameters

View_Or _Conflg String: = "<CURSOR>";
Specifies the view or object for which to display a configuration image. A configu-
ration object also can be specified, even if the corresponding view no longer exists.
If an object is specified, it must be controlled.

The default is the object or view on which the cursor is currently located.

In_Place : Boolean := False;
Specifies whether the current frame should be used to display the image. The
default specifies that the least recently used frame should be used.

Allow_Cheek_Out : Boolean := True;
Specifies whether to permit checkout operations in configuration images. If true
(the default), commands from package Common can be used to check out objects
from a configuration image. If false, checkout operations are not permitted.

Allow_Cheek_In : Boolean:= True;
Specifies whether to permit check in operations in configuration images. If true (the
default), commands from package Common can be used to check in objects from a
configuration image. If false, checkin operations are not permitted.

Allow_Aeeept_Changes : Boolean := True;
Specifies whether to permit changes to be accepted in configuration images. If true
(the default), commands from package Common can be used to accept changes
into objects from a configuration image. If false, accept-changes operations are not
permitted.

PM-242 8/1/88 RATIONAL

procedure Edit
package lComrnaods.Cmvc

References

procedure Def

RATIONAL 8/1/88 PM-243

procedure GeLNotes
package !Commands.Cmvc

procedure Cetc.Notes

procedure Get_Notes (To_File
What_Object
Response

String .-
String .-
String

"<WINDOW>" ;
"<CURSOR>" ;
"<PROF ILE>");

Description

Retrieves the notes for the current generation of the specified controlled object.

The GeL Notes command retrieves an object's notes from the CMVC database and
displays them in a special-purpose window or writes them into a file. An object's
notes can be used as a scratch pad for arbitrary commentary to be associated with
particular generations.

GeLNotes is one of a set of file-oriented commands for managing notes. That
is, these commands, including PuLNotes, Createc.Emptyc.Note..Window, and Ap-
pend..Notes, are most useful for managing notes through files. However, these
commands also manage special-purpose notes windows, which are identified in the
banner by the string Notes For followed by the object's name. The contents of the
window can be edited; however, the edited text in the window can be saved into
the CMVC database only as follows:

• The Append..Notes command can be used to append the window's contents to
the object's existing notes.

• The PuLNotes command can be used to replace the object's existing notes with
the window's contents.

Note that modified notes windows retain the * symbol in their window banners even
after their contents have been entered in the CMVC database using Appends.Notes
or PuLNotes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use Common. Abandon to remove these windows.

The Notes command provides an interactive alternative to GeLNotes, PuLNotes,
and the like. The Notes command displays a history image (identified by the 'HiS-

torI,!attribute following the object name and generation in the window banner),
which allows interactive operations for managing an object's notes.

PM-244 8/1/88 RATIONAL

procedure Get-Notes
package 'Commands.Cmvc

Parameters

ToJde: String: = "(W I NDOW)" ;

Specifies where to put the retrieved notes. If a new filename is specified, a file is
created and the notes are written into it. If an existing filename is specified, the
contents of that file are replaced with the notes.

If the default special name "<w I NDOW>" is used, a window is opened in which the
notes are displayed. Note that this window is not a normal text file; changes to this
window can be saved only by using the PuLNotes command.

What_Object : StrIng: = "<CURSOR>";

Specifies the object whose notes are to be retrieved. Only controlled objects have
notes. The default is the object on which the cursor is located.

Response: Stnng: = "<PROF I LE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Append..Notes

procedure Create..Emptyc.Note., Window

procedure Notes

procedure PuLNotes

RATIONAL 8/1/88 PM-245

procedure Import
package !Commands.Cmvc

procedure Import

procedure Import
(View_To_lmport

Into_Vlew
Onl~_Change_lmports
Import_Closure
Remake_Demoted_Unlts
Goal
Comments
Work_Order
Response

String := "<REG ION)" ;
String := "<CURSOR)";
Boolean := False;
Boolean := False;
Boolean := True;
Compilation.Unlt_State := Compllation.Coded;
String := "";
String := "<DEFAULT>";
String := "<PROFILE)");

Description

Imports the specified spec or combined views into the designated view(s).

Some or all of the views specified by the View., 'Io..Import parameter are imported
by a given view, depending on the value of the Only..Change.clmports parameter.

The Import command can be used to:

• Add new imports
• Change an existing import by importing a different view from the same subsys-

tem
• Refresh a view's existing imports after new specifications have been added to the

imported views

Consistency checking is done to ensure that no view directly or indirectly imports
more than one view from the same subsystem. The import operation checks the
closure of the importing view and the closures of all views that import it. An error
results if any new or changed import would cause an inconsistency.

Furthermore, within spec/load subsystems, circularity checking is done to ensure
that no view directly or indirectly imports itself. (Circular importing is permitted
among views in combined subsystems, however.)

An import operation succeeds only if the target key of the importing (client) view
is compatible with the target key of the imported (supplier) view. For example, a
view with target key RIOOO cannot import a view with target key Mc68020_Bare.

Importing operations create and manage links among subsystems. When one view
imports another, links are created in the client view to each of the units in the
su pplier view. Imports alone enable links to be managed across paths, su bpaths,
and releases; links should never be added individually through commands from
package Links.

PM-246 8/1/88 RATIONAL

procedure Impc n.
package 'Commands.Cznv.

An import operation will create links to a subset of the units in a supplier view if
export and import restrictions exist. Users create export and import restrictions as
text files in the supplier and client views, respectively.

An export restriction file is a text file in the Exports subdirectory within the supplier
view. An export restriction file defines a subset of the units in the supplier view
either through a list of unit names (one per line) or through naming expressions.
Names in an export restriction file are resolved against the Units directory within
the view. The Exports subdirectory can contain multiple export restriction files
that define alternative subsets of the view.

An import restriction file is a text file in the Imports subdirectory within the client
view. A given import restriction file determines which subset to use from a partic-
ular supplier view. A client view may have multiple import restriction files, one for
each of its supplier views. The following rules pertain to the creation of an import
restriction file that corresponds to a particular supplier view:

• The import restriction file must have the same name as the subsystem contain-
ing the supplier view. Typically the subsystem's simple name is used; however,
a fully qualified subsystem name can be converted to a filename by omitting
the preceding! and changing the dots (.) between name components to un-
derscores (_). For example, an import restriction file for a supplier view in the
subsystem !Programs.Mail.MaiL Utilities can be named either Mail., Utilities or
Programsc.M aiLMaiL Utili ties.

• The first line of the file must consist of the string expcr t ir-es tr-i c t i one > followed
by the simple name of the desired export restriction file from the supplier view.
No blanks should appear in this line. Omitting this line implicitly specifies an
export restriction file named Default, if such a file exists; otherwise, the entire
supplier view is used.

• Subsequent lines in the import restriction file can contain names or naming ex-
pressions to specify a further subset of the units listed in the export restriction
file. Links are created in the client view for the units that are matched by the
naming expressions. If no naming expressions are specified, no links are created.
Because an import restriction file essentially specifies a set of link names, only
simple Ada names should be used in the naming expressions. This is true even
for names that are qualified within the export restriction file. Whereas names
in an export restriction file are resolved as library names, names in an import
restriction file are resolved as link names.
Naming expressions can be used to:

Request links for all units in the export restriction file by entering ICI

Request links for subsets by using wildcard expressions such as !~_pkg
Exclude links to units by using expressions such as -Unit..Name (which should
follow an expression such as :CI)

Rename links to units by specifying the unit name followed by the new link
name

RATIONAL 8/1/88 PM-247

procedure Import
package !Commands.Cmvc

Parameters

VIew_To_lmport String:= "<REGION)";

Specifies one or more views to be imported by the views named in the Into..View
parameter. The views specified by View _TocImport must be spec or combined
views. If View _TocImport specifies a set of views, these views are imported in the
manner specified by the Only..Changec.Imports parameter.

If View _Toe.Import is the null string (''''), the existing imports of IntocView are
refreshed to include any new unit specifications that have been added.

If both View _Tc..Import and Into..View name the same set of combined views, the
named views import each other.

The Importeds.Views function can be used to return another view's imports as
the value of Viewc.Tc..Import. This is a convenient way of setting the imports of
Into., View to be the same as another view's imports.

Note that this parameter accepts only view names; export and import restriction
files never need to be specified explicitly.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, View., Tc..Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Into_VIew: Strlng:= "<CURSOR)";

Specifies the view or views to which imports are to be added. The default is the
view on which the cursor is located. Into..View can specify spec, load, or combined
VIews.

If both the View _Tc..Import and Into.iView parameters name the same set of com-
bined views, the named views import each other.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

PM-248 8/1/88 RATIONAL

procedure Import
package lCo-nmacde.Cmvc

Onl~_Change_lmports : Boolean := False;
Specifies the manner in which the views specified by the View., To.Jmport parameter
are actually used as imports.

If false (the default value), the entire list of views given by View..Toclmport is
imported into each view specified by Into..Vlew. Existing imports are not affected
unless a View., 'Io..Import view is from the same subsystem as an existing import.
In this case, the Viewc.To.clmport view replaces the corresponding existing import.

If true, a View., To..Import view is imported only if it is from the same subsystem as
an existing import. The View., Te..lmport view then replaces the existing import.
Thus, if Only..ChangecImports is true, the list of views in View , To..Import is
used lo update existing imports rather than add new imports. In this way, all
replacement imports can be specified in a single list without forcing every view to
import everything in the list.

Import_Closure : Boolean:= False;
Specifies whether to import not only the views named by View., To..Import but also
the views in their closures.

If false (the default value), imports are limited to the views named by View..To-
_Import.

If true, imports include the views in the closures of the View., Tc..Import VIews,
subject to Onlyc.Changec.Imports,

Remake Demoted Unlts : Boolean .- True;
Specifies whether to recompile any units that were demoted by the import operation.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by the import operation are left in the demoted state.

Goal : Compilatlon.Unlt_State := Compllatlon.Coded;
Specifies the state to which demoted units are recompiled when the Remakc..De-
mot ed., Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation. Unit-
_State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To compile units to the installed state, specify Compilation.Installed.
If Compilation. Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake..Demotedc.Units parameter.

RATIONAL 8/1/88 PM-249

procedure Import
package !Commands.Cmvc

Comments : S tr ing : = '''';
Specifies a comment to be logged in the work order indicated by the WorkcOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : String: = "<DEFAULT>";

Specifies the work order in which the command's action is recorded. The command's
action is recorded only if the Comments parameter is specified. In addition to the
comment, the work order records the time and date as well as the username and
session in which the command was entered.

The. special name "<DEF AULT>" refers to the default work order for the current
seSSIOn.

Response Strlng: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Importedc.Views

PM-250 8/1/88 RATIONAL

function Importedc.Views
package lComman.ds.Cmvc

function ImportedcViews

function Imported_Views (Of_VIew
Include_1mport_Closure
Include_Importer
Response

String
Boolean
Boolean
String

.- "(CURSOR)";

.- False;

.- False;

.- "(WARN)")
return String;

Description

Returns a string that names all the views that are imported by the specified view.

Parameters

Of_VIew: StrIng:= "<CURSOR)";
Specifies one or more views whose imports are to be returned in a naming string.
If multiple views are specified, the ImportedcViews function returns the union of
all the imports of the specified views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Include_lmport_Closure : Boolean .- False;
Specifies whether to return the names of the indirectly imported views in addition
to directly imported views.

If false (the default value), only the views directly imported by the OL View param-
eter are listed. If true, the returned naming string lists all of the views in OL View's
import closure.

Include_Importer Boolean:= False;
Specifies whether to return the names of the views specified by the OL View pa-
rameter. If false (the default value), only the names of imported views are listed. If
true, the returned naming string includes the names specified by OL View as well.

Response: StrIng: = "<WARN)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is a response profile that puts
negative messages, warning messages, error messages, and exception messages in
the log.

RATIONAL 8/1/88 PM-251

function Importedc.Views
package !Commands.Cmvc

return String;
Returns a string that names all the views that are imported by the specified view.

PM-252 8/1/88 RATIONAL

procedure Information
package !Commands.Cmvc

procedure Information

procedure Information (For_View String ·- "<CURSOR)" ;
Show_Model Boolean .- True;
Show_Whether_Frozen Boolean .- True;
Show_View_Kind Boolean ·- True;
Show_Creation_Time Boolean .- True;
Show_I mpo :"> Boolean ·- True;
Show_Referencers Boolean ·- True;
Show_Unit_Summar~ Boolean ·- True;
Show_Control led_Objects Boolean ·- False;
Show_Last_Release_Numbers Boolean ·- False;
Show_Path_Name Boolean ·- False;
Show_Subpath_Name Boolean ·- False;
Show_Switches Boolean · - False;
Show_Exported_Units Boolean ·- False;
Response String ·- "<PROF ILE>") ;

Description

Displays various kinds of information about the specified view in the output window.

Each parameter specifies whether to display a particular kind of information.

Parameters

For VIew: Strlng.- "<CURSOR)";
Specifies the view for which information is to be displayed. The default is the view
on which the cursor is located. The specified view can be in a subsystem or in a
system.

Show Model Boolean:= True;
Specifies whether to display the name of the view's model. If true (the default
value), the name is displayed.

Show Whether Frozen . Boolean. _ True;
Specifies whether to display the view's status with respect to freezing. If true (the
default value), this information is displayed.

Show_View_Kind : Boolean:= True;
Specifies whether to display the view's kind-for example, spec, load, or combined.
If true (the default value), the kind is displayed.

RATIONAL 8/1/88 PM-253

procedure Information
package !Commands.Cmvc

Show_Creatlon_Time : Boolean := True;
Specifies whether to display when the view was created. If true (the default value),
the creation time is displayed.

Show_Imports : Boolean:= True;
Specifies whether to display a list of all imported views. If true (the default value),
the imports are displayed.

Show Referencers : Boolean.- True;
Specifies whether to display a list of all subsystems that import this view. If true
(the default value), this information is displayed.

Show_Unit_Summar~ : Boolean:= True;
Specifies whether to display a. summary of the compilation states of all units in
the view. If true (the default value), the number of coded units, installed units,
source units, and empty stubs is displayed. If Fore.View specifies a system view,
this parameter causes the view's release activity to be displayed.

Show_Controlled_Objects : Boolean:= False;
Specifies whether to display a list of all controlled objects in the view. If false (the
default value), this information is not displayed. If true, the display includes the
same information a.s the Show _AILControlled command-namely, the number of
generations that exist for each controlled object, whether the object is checked out,
and by whom.

Show_Last_Release_Numbers Boolean:= False;
Specifies whether to display the level numbers that appear in the name of the most
recently released view. These numbers will be incremented if another released view
or spec view is created. If false (the default value), this information is not displayed.

Show_Path_Name : Boolean:= False;
Specifies whether to display the string within the view's name that serves as the
pathname. If false (the default value), this information is not displayed.

Show_Subpath_Name : Boolean:= False;
Specifies whether to display the string within the view's name that serves as the
subpathname. If false (the default value), this information is not displayed.

PM-254 8/1/88 RATIONAL

procedure Information
package 'Coromands.Cmvc

ShOW_Swltches : Boolean := False;
Specifies whether to display the settings for all switches associated with the view.
If true, switch settings are displayed, along with the view's target key. If false (the
default value), this information is not displayed.

Show_Exported_Unlts : Boolean:= False;
Specifies whether to display a list of all exported units. If false (the default value),
this information is not displayed.

Response: StrIng:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-255

procedure Initial
package !Commands.Cmvc

proced ure Initial

procedure Initial
(S~stem_ObJect
Working_View_Base_Name
S~stem_Object_T~pe
View_To_lmport
Create_load_View
Model
Comments
Work_Order
Volume
Response

String ,- "»SYSTEM OBJECT NAME«";
String ,- "Revl";
S~stem_ObJect_Enum ,- ~~vc,Spec_Load_Subs~stem;
Strwg
Boolean
String
StrIng
String
Natural
String

.True;
,- "Rl!Zl00";.,- "<DEFAULT>";
,- 0;
,- "<PROF ILE> ") ;

Description

Builds a new system or a new subsystem of the specified type-namely, spec/load
or combined.

Subsystems partition a project or application into high-level components by group-
ing Ada units or other objects. A system pulls an application's components together
by logically grouping particular releases from the component subsystems. Opera-
tions for systems are in package Cmvc..Hlerarchy,

The new subsystem or system contains an empty working view that has the specified
imports. The Initial command also can be used to create an empty view in an
existing subsystem or system.

The initial view is set up according to the specified model. This includes the setting
of the switches and initial links for the view. The model also may contain a file
named Levels whose integer contents specify the number of levels for automatic
name generation for released and spec views. Furthermore, the model may con-
tain user-defined directory structure to be created in the view in addition to the
predefined directories.

The name of the initial view of the subsystem or system is:

[S~stem_ObJectJ,[Worklng_Vlew_Base_NameJ_Working

Parameters

S~stem_ObJect String: = "»SYSTEM OBJECT NAME«";
Specifies the name of the subsystem or system to be created. The default parameter
placeholder "»SYSTEM OBJECT NAME«" must be replaced or an error will result.

PM-256 8/1/88 RATIONAL

procedure Initial
package lCOIDL1-'1.ncis.Cmvc

Working_View_Base_Name : String:= "Revl";
Specifies the base name of the initial view in the subsystem or system. If the default
value is used, the initial view is named RevL Working.

The string given for Working_ View..Basec.Name can be any legal Ada identifier. By
convention, if this string contains no underscores, it serves as a pathname prefix;
if the string contains an underscore, it serves as a pathname prefix followed by a
subpathname extension.

S~stem_ObJect_T~pe : S~stem_ObJect_Enum := Cmvc.Spec_Load_Subs~stem;
Specifies whether to create a system or one of two types of subsystem-namely,
spec/load or combined.

Systems are an optional device for creating logical groupings of releases from com-
ponent subsystems in an application. Operations for systems are in package Cmvc-
_Hierarchy.

Subsystems partition applications into high-level components. The two types of
subsystem determine the kinds of views that can be created as well as whether
hierarchic importing is enforced. The default value, Cmvc.Spec..Loadc.Subsystem,
causes the Initial procedure to build a subsystem that can contain either spec/load
or combined views. Within such a subsystem, all imports must be hierarchic, in that
no view is permitted to be in its own import closure. If Cmvc.CombinedcSubsystem
is specified, the Initial procedure builds a subsystem that can contain only combined
views, among which circular import relations may hold.

RATIONAL 8/1/88 PM-257

procedure Initial
package !Commands.Cmvc

View_To_lmport : String:= "";

Specifies one or more views to be imported by the new working view. The views
specified by View., Tc..Import must be spec or combined views.

If View _Tee.Import is the null string (""), the default value, no views are imported.

The Importedc.Views function can be used to return another view's imports as the
value of View., To..Impcrt. This is a convenient way of setting the new working
view's imports to be the same as another view's imports.

Note that if export and import restrictions will be needed, it is recommended that
you do not use this parameter to create imports. Instead, after the subsystem is
created, you can create the export/import restriction files and use the Cmvc.lmport
command to perform the import operation.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, View _To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Create_Load_View : Boolean:= True;

Specifies whether to create a load view for the initial working view. If true, the
initial working view is a load view. If false, the initial working view is a combined
VIew.

The value of this parameter is used only when the Systemc.Object..Type parameter
has the value Cmvc.Specc.LoadcSubsystem; otherwise, this parameter is ignored.
(When a combined subsystem is created, the initial view is a combined view; when
a system is created, the initial view is a system view.)

Model : StrIng:= "RllZllZllZl";

Specifies a model world for the initial view in the subsystem. If the specified name
cannot be resolved in the context !Model, the name is resolved relative to the current
context. By default, the view uses the model !ModeI.RlOOO.

Comments: StrIng:= ;

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

PM-258 8/1/88 RAfiONAL

procedure Initial
package !Commands.Cmvc

Work_Order: String:= "(DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, if the Comments parameter is specified, the work order records the time and
date when the subsystem was created, the username and session in which the com-
mand was entered, the specified comment, and the creation of the release history
file.

If the Comments parameter is not specified, only the creation of the release history
file is logged.

The special name "<DEFAUl T>" refers to the default work order for the current
session.

Volume: Natural := 0;

Specifies the volume on which to make the new subsystem. The default value
specifies that the new subsystem should be created on the volume with the most
free space.

Response: St!""ing:= "<PROFilE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

type Systemc.Object..Enum

RATIONAL 8/1/88 PM-259

procedure Join
package !Commands.Cmvc

procedure Join

procedure Join (What_Object String ·- "<SELECT ION)" ;
To_Which_View Strlng ·- "»VIEW NAME«" ;
Reservation_Taken_Name String .-
Comments String ·-Work_Order String ·- "<DEF AUL T>" ;
Response String ·- "<PROF ILE>") ;

Description

J?ins the specified controlled objects to the corresponding objects in the designated
VIew.

When objects are joined across views, they form a join set. Objects in a join set
have the same pathname within their respective views and share a single reservation
token, so that only one object in the set can be checked out at a time. Thus, joining
allows synchronized changes to an object when there are instances of the same object
in multiple working views.

The objects to be joined must be textually identical. The Merge..Changes command
can be used to prepare objects for joining.

There are two alternative ways to specify the join set to which objects are to be
joined. One is to specify a view that contains an object in the desired join set. The
other is to specify the reservation token associated with the desired join set. (See
the To., Which., View and Reservation., Token..N ame parameters, below.)

Parameters

What_ObJect: Strlng:= "<SELECTION)";
Specifies one or more objects to be joined to the corresponding objects in the des-
ignated view. This parameter must specify controlled objects. The text of the
specified objects must be identical to the text of the objects to which they are to be
joined. The Merge..Changes command can be used to prepare objects for joining.

If What-Object names an object that already belongs to a join set, the Join com-
mand implicitly severs that object from its original join set before joining the object
to the new join set.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

PM-260 6/1/88 RATIONAL

procedure Join
package !Comma.nds.Cmvc

To_Which_View : String:= "»VIEW NAME«";

Specifies the view containing the objects to which the specified objects are to be
joined. Objects in the specified view must be checked in.

The default parameter placeholder "»VIEW NAME«" must be replaced unless a value
is given for the Reservation., Token..N ame parameter.

Reservation_Token_Name : String:= "";

Specifies the reservation token of the join set to which the specified objects are to be
joined. This parameter is used only if no value is specified for the To., WhichcView
parameter.

Reservation tokens are displayed in expanded configuration images (see the Cmvc-
.Edit command).

Comments : String.-

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order: StrIng.- "<DEFAULT>";

Specifies the work order in which the command's action is recorded: More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the usernarne and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Response Str ing : = "<PROFILE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-261

procedure Make..Code., View
package !Commands.Cmvc

procedure Makec.Code., View

procedure Make_Code_View (From_View String ,- "<CURSOR)" ;
Code_View_Name String , -
Comments String , - ,
Work_Order Strlng ,- "<DEFAULT>" ;
Volume Natural ,- 0',
Response String , - "<PROF ILE>" ,1;

Description

Makes a code view from the specified load view.

Code views are copies of views that store executable code in place of Ada units.
Code views thus require the minimum amount of space necessary to permit execu-
tion of the view. The executable code is stored in an object called CodecDatabase
within the view.

The Units directory of a code view contains a copy of any non-Ada objects from
the original view.

Because Ada units in code views are stored as executable code, these units cannot
be modified or browsed except through configuration and generation images (see
the Cmvc.Edit command).

Parameters

From_View: String:= "<CURSOR>";
Specifies one or more views from which code views are to be made. The named
views must be load views. The default is the view on which the cursor is located.

All units in the named views must be coded and must contain bodies for all specifi-
cations that require them. All controlled units in the named views must be checked
in.

If multiple views are named, they must be in different subsystems. Multiple views
can be specified by using wildcards, context characters, special names, set notation,
or an indirect file. (For further information, see "Naming" in the Key Concepts in
this book.)

PM-262 8/1/88 RATIONAL

procedure Make..Code.; View
package !Comrna.ncts.Cmvc

Code_View_Name : String:= "";

Specifies the simple name of the new code view. No part of a code-view name is
automatically generated, so the string specified by Code., View..Name constitutes
the entire name.

If multiple views in different subsystems are named, each will have the name spec-
ified by Code., ViewcName. The name can be any legal Ada identifier.

Comments : String:= "";

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order: String.- "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date when the code view is created and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<DEF AULT)" refers to the default work order for the current
seSSIOn.

Volume: Natural := 0;

Specifies the volume on which to make the new code views. The default value
specifies that the new views should be created on the volume with the most free
space.

Response Str 1ng : = ..<PROF I LE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-263

procedure Make..Controlled
package !Commands.Cmvc

procedure Makec.Controlled

procedure Make_Controlled
(WhaLObJect
Reservation_Token_Name
Join_With_View
Save_Source
Comments
Work_Order
Response

String .- "<CURSOR)";
Sbr inq .- "<AUTO_GENERATE>";
String ._ "<NONE)";
Boolean ._ True;
String
String
String

,
.- "<DEFAULT)"';
.- "'<PROFILE)") ;

Description

Makes the specified object or objects controlled by the CMVC system and therefore
subject to reservation.

Once controlled, an object must be checked out before it can be modified and it
must be checked in before various commands can access it.

When an object is controlled with the Save..Source parameter set to true, the tex-
tual changes from one generation to the next are stored in the C~fVC database.
This permits the reconstruction of previous generations through, for example, the
Revert command or by rebuilding a view from a configuration object. (Note that
because changed lines are determined textually, changing an Ada unit's pretty-
printing causes all lines to be stored as changed lines.)

When an object is controlled with the Save..Source parameter set to false, no textual
representation is stored in the C~[YC database. This is useful for binary objects
that have no ASCII representation or for very large files (when storage space is an
issue). Even though previous generations cannot be reconstructed when objects are
controlled without saving source, such objects still need to be checked out before
they can be modified. (Generation numbers thus record the number of times objects
were checked out and checked in.)

Controlling an object associates a reservation token with it. The Check..In and
Check..Out procedures operate by manipulating reservation tokens, and joined ob-
jects share not only the same name but also a single reservation token.

PM-264 8/1/88 RATIONAL

procedure Makez Controlled
package !C0mmaods.Cmv(;

Parameters

What_Object : String: = "<CURSOR>";

Specifies one or more objects to be controlled. A view name can be specified,
although specifying a view causes the unnecessary controlling of objects outside
the Units directory. If a named object is already controlled, a note appears in the
output log. Before a subunit can be controlled, its parent must be controlled.

If multiple objects are specified, all must be in the same subsystem. Naming multiple
views not only controls those views but also effectively joins them under a single
reservation token.

Objects in the State subdirectory of a view cannot be controlled; attempting to do
so produces an error message. Similarly, derived objects resulting from cross-target
development cannot be controlled (the names of such objects are enclosed in angle
brackets in directory displays).

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Reservabon Token Name : Strmg.- "<AUTO_GENERATE>";

Specifies the name of the reservation token to be associated with each specified
object. This is useful for associating mnemonic names of reservation tokens with
particular join sets. Note that an existing name of a reservation token can be used
to implicitly join the newly controlled objects to other objects.

The value of Reservation., Token..N ame is used only if the Join., Withc.Vlew param-
eter has its default value" <NONE>".

The default special name "<AUTO_GENERATE>" means that the reservation token is
generated by the Environment.

RATIONAL 8/1/88 PM-265

procedure Make..Controlled
package !Commands.Cmve

Join_Wi th_ v ieui : String: = "<NONE>";

Specifies a view to which the specified objects are joined. That is, if Join., With-
_View names a view, the objects named by What-Object are joined to the corre-
sponding objects in the named view, and the reservation token name for the objects
is taken from that view. (In this case, the Reservation., TokencN ame parameter is
ignored.)

To be joined, the objects named by What-Object must be identical in content to
the corresponding objects in the view named by Join., With., View. Furthermore,
the corresponding objects in the view named by Join., With_View must already be
controlled.

The default special name" <NONE>" means that the newly controlled objects are not
joined to any objects in any other views. (In this case, the Reservation., Token..N ame
parameter determines the reservation token name.)

Save_Source : Boolean:= True;

Specifies whether source is saved in the CMVC database for a controlled object.

If true (the default value), the textual changes from one generation to the next are
stored in the Cl\IVC database. Consequently, previous generations can be recon-
structed by the Revert command or by the Build command. Furthermore, when
source is saved for joined objects, out-of-date objects can be updated explicitly with
the Accept-Changes command or implicitly with the Check..Out command.

If false, no textual representation is stored in the CMVC database, although objects
must still be checked out before they can be modified. This parameter is typically
set to false when controlling binary objects that have no ASCII representation or
when controlling very large objects (when storage space is an issue).

When source is not saved for a controlled object, previous generations cannot be
reconstructed-for example, when rebuilding a view from a configuration object.
Furthermore, the Accept-Changes and Check..Out commands will update such a
controlled object to the latest generation only if an object in some view actually
contains that generation.

If instances of an object exist in multiple views, all of the controlled instances of
the object must save source or else none of them can save source.

Comments : String: = •.•. ;

Specifies a comment to be logged in the work order indicated by the Works.Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

PM-266 8/1/88 RATIONAL

procedure Make..Controlled
package !Commands. Cn. vc

Work_Order : Strlng:= "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date when the objects were controlled,
the object affected, and the username and session in which the command was en-
tered. If the Comments parameter is specified, this comment also is entered in the
work order.

The. special name "<DEFAULT)" refers to the default work order for the current
seSSIOn.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Restrictions

The Make..Contrclled procedure cannot join the specified objects with the view
named by the Join., With.,View parameter unless the specified objects are identical
in content to the corresponding objects in the view.

RATIONAL 8/1/88 PM-267

proced ure Make., Path
package !Commands.Cmvc

procedure Make..Path

procedure Make_Path
(From_Path
New_Path_Name
View_To_Modify
View_To_lmport
Only_Change_lmports
Create_Load_Vlew
Create_Combined_Vlew
Model
JOin_Paths
Remake_Demoted_Unlts
Goal
Comments
Work_Order'
Volume
Response

String .- "<CURSOR)" ;
String ·- "»PATH NAME«" ;
String ·- ,
String ·- "< INHER IT _IMPORTS)" ;
Boolean · - True;
Boolean ·- False;
Boolean .- False;
String ·- "< INHER IT _MODEL)" ;
Boolean ·- True;
Boolean ·- True;
Compilation.Unit_State ·- Compilatlon.Coded;
String .- ,
String ·- "<DEFAULT>" ;
Natural ·- 0;
String ·- "<PROF ILE>");

Description

Creates a copy of each of the specified views, starting new development paths.

A path is a logically connected series of views within a subsystem or a system.
For each view specified, the Make..Path command creates a new working view that
serves as the start of such a series of views.

A subsystem or a system can contain multiple paths. For example, if an application
has muitiple targets, a path can be made for each target. Similarly, if a new major
release of an application must be developed while the existing release is maintained,
a separate path can be made for the new major release.

A new path can, but need not, be joined to the view (and hence to the path) from
which it is created. Two paths should be joined (using the JoincPaths parameter)
if the majority of the controlled objects in them are to be joined. (Joined objects
cannot be checked out and modified independently.) The controlled objects that
need to be modified independently can be severed subsequently with the Sever
command. For example, if an application has two targets, the target-independent
code is shared and the target-dependent code is not. Assuming that a path already
exists for one of the targets, a joined path can be created for the second target and
then the target-dependent units can be severed.

A new path should not be joined to the path from which it is created if most of the
controlled objects in these two paths are to be modified independently. For example,
if a new major release of an application is developed while the previous major
release is maintained, the objects in the two paths typically need to be modified
independently, so the paths are not joined. (Note that changes can be propagated
across unjoined objects with the Merge..Changes command.) Although the new
path is not joined when created, individual objects in it subsequently can be joined
to the corresponding objects in other views (see the Join command).

PM-268 8/1/88 RATIONAL

procedure Makec.Patn
package !Commands.Cmvc

By default, the working view for each new path has the same imports as the view
from which it was copied. It is also possible to specify different imports in the
process of creating the new paths by using the Viewc.To..Import and Only..Change-
_Imports parameters. Import adjustments are subject to the same consistency
checking that is performed by the Import command.

Parameters

From_Path: String: = "<CURSOR>";

Specifies the view or views that are to be copied as the beginning(s) of new path(s).
The default is the view on which the cursor is located. The From..Path parameter
can name:

• Combined, load, or spec views
• Either working or released views

All controlled objects in a Frorru.Path view must be checked in. If Frome.Path
names multiple views, a new path is made from each of the named views. Multiple
views can be in the same or in different (sub)systems, creating a family of new paths
across multiple (sub)systems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

New_Path_Name : String: = "»PATH NAME«";

Specifies the pathname prefix to be used in constructing the names of the views in
the new paths. Because the Maka..Path procedure creates new working views, the
names of these views are constructed from NewcPathc.Name and the" _ Working"
suffix. For example, if New _Path_N ame has the value "Rev2", the working view
created for the new path is "Revz., Working" (the underscore is supplied automati-
cally). If the Frome Path parameter names multiple views, all of the new paths will
have the same pathname prefix.

The Newc Pathc.Name parameter can be any string that constitutes a legal Ada
identifier and therefore can contain one or more underscore characters. However,
other C1\fVC operations (such as generating reservation tokens or creating subpaths)
conventionally consider a view's pathname prefix to be the portion of a view name
up to (but not including) the first underscore in the name. Therefore, if the New-
_Path_N ame string contains an underscore (for example "TargeL2"), only the first
portion of that string ("Target") is actually considered to be the pathname. If a
subpath is created from this path, the "2" will be replaced with the subpathnarne.

RATIONAL 8/1/88 PM-269

procedure Make..Path
package !Commands.Cmvc

Vlew_To_Modlfy : Strlng:= "";

Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new working views, provided that the new working views
are combined views.

The imports of the views specified by View., To_Modify are also updated using the
views named by the View., To..Import parameter. The View., Tc..Modify views are
updated by View., Toe.Import views as if the Only..Changec.Imports parameter were
true, regardless of this parameter's actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

View_To_lmport : String:= "<INHERIT_IMPORTS>";

Specifies one or more spec or combined views to be imported by the new working
views. The views named by Viewc'Io..Import are also used to update the imports
of the views named by the View..Toc.Modify parameter.

If View _To..Import specifies the default special name "< INHERI T_I MPORTS>", each
new working view uses the same imports as the view from which it was copied.
(However, if the From..Path parameter names multiple combined views among
which import relations hold, the imports are automatically adjusted so that the
views in the new paths reference each other as appropriate, instead of referencing
the views in the original paths.)

If Viewc.Toc.Import specifies the null string (""), no views are imported.

If the View _To..Import parameter specifies one or more views, the specified views
are imported by the new working views in the manner specified by Only _Change-
_Imports.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, View., To..Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

PM-270 8/1/88 RATIONAL

procedure Make..Patb
package !Commands.Cmvc

Create_Load_Vlew : Boolean:= False;
Specifies whether to create working load views instead of working combined views.

If Createc.Load., View is false (the default value), the type of view created depends on
the value of the Create..Combined., View parameter. However, if both parameters
are false, a new combined view is created from each combined view specified by
From..Path, and a new load view is created from each load or spec view specified
by From_Path.

If Create..Load.; View is true, a new load view is created from each of the source
views specified by From.View. In this case, the value of Create..Comblned., View
must be false.

The value of Create..Load., View is ignored when the Make..Path command is en-
tered in a system or in a combined subsystem. Systems can contain only system
views and combined subsystems can contain only combined views.

Create_Comblned_View : Boolean := False;
Specifies whether to create working combined views instead of working load views.

If Create..Comblned., View is false (the default value), the type of view created de-
pends on the value of the Creata..Load., View parameter. However, if both parame-
ters are false, a new combined view is created from each combined view specified by
Frorn..Path, and a new load view is created from each load or spec view specified
by Frome.Path.

If Create..Ccmblned., View is true, a new combined view is created from each of the
source views specified by From..View , In this case, the value of Createc.Load., View
must be false.

The value of Create..Combined., View is ignored when the Make..Path command is
entered in a system. Systems can contain only system views.

RATIONAL 8/1/88 PM-271

procedure Make..Path
package !Commands.Cmvc

Onl~_Change_lmports : Boolean:= True;
Specifies the manner in which the views specified by the View., To..Import parameter
are actually used as imports by the new working views. Only..Changec.Imports has
no effect if View _Toclmport specifies "<, NHER 'T _, MPORTS>" or the null string.

If this parameter is false, the entire list of views given by View _To_Import is im-
ported by each new working view created by the Make..Path procedure. No imports
are inherited.

If the parameter is true (the default value):

• Each new working view inherits its imports from the view from which it was
copied.

• The list of views in View _To_Import is compared to the inherited views. If
a View.rTcc.Import view is from the same subsystem as an inherited view, the
View _To..Import view replaces that inherited view.

Thus, if Onlyc.Change..Imports is true, the list of views in View..Toc.Import is
used to update the inherited imports of each new working view. In this way, the
replacement imports for every new working view can be specified in a single list
without forcing each new view to import everything in the list.

Model: StrIng:= "<INHERIT_MODEL>";

Specifies a model world for the views in the new path. If the specified name cannot
be resolved in the context !Model, the name is resolved relative to the current
context. By default, the new working view uses the same model as the view from
which it was copied.

.Joi rv.Patbs : Boolean: = True;
Specifies whether to join each new working view to the view from which it was
copied.

If true (the default value), the controlled objects in each Frome.Path view are joined
to the corresponding objects in the copied working view. The reservation token from
the From.iPath view is used. If a From..Path view contains no controlled objects,
then no objects can be joined. Note that Join..Paths affects only controlled objects
that exist at the time the Make..Path command is executed. Objects created after
the path is made must be controlled explicitly and joined using the Make..Controlled
and Join commands.

If false, new reservation tokens are created for all of the controlled objects. The
value for Newc.Pathc.Narne is used as the reservation token.

PM-272 8/1/88 RATIONAL

procedure Make_Path
package lCommands.Cmvc

Remake_Demoted_Unlts : Boolean := True;

Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compllation.Unit_State := Compilation.Coded;

Specifies the state to which demoted units are recompiled when the Remake..De-
moted..Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation. Unit-
_State type, except Compilation.Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compilation-
.Installed. If Compilation.Source is specified, all units in the view are put in the
source state, regardless of the value of the Remake..Demotedc.Units parameter.

Comments : String: = "";
Specifies a comment to be logged in the work order indicated by the Work_Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work Order : String = "<DEFAULD";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date the path was made and the username
and session in which the command was entered. If the Comments parameter is spec-
ified, this comment also is entered in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Volume: Natural : = 0;

Specifies the volume on which to make the new paths. The default value specifies
that the new paths should be created on the volume with the most free space.

Response: Strlng: = "<PROF ILE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-273

procedure Make_Path
package !Commands.Cmvc

References

procedure Join

procedure Merge..Changee

procedure Sever

PM-274 8/1/88 RATIONAL

procedure Make..Spec., View
package 'Commands. emvc

procedure Make..Spec.; View

procedure Make_Spec_View
(From_Path

Spec_View_Prefix
Level
View_To_Modif~
View_To_Import
Onl~_Change_Imports
Remake_Demoted_Units
Goal
Comments
Work_Order
Volume
Response

String .- "<CURSOR)" ;
String ·- "»PREFIX«";
Natural ·- 0;
String ,
String ·- "<INHERIT_IMPORTS)";
Boolean .- True;
Boolean - True;
Compllation.Unit_State · - ~~mpllation.Coded;
String ·- ,
Stnng = "<DEFAULT)";
Natural = 0;
5tnng · - "<PROF ILE)") ;

Description

Creates a new spec view from each of the specified views in a spec/load subsystem.

Each new spec view is created with only those units named in the Exports file of the
corresponding source view. (This file is located in the view_name.State directory.)
The new spec view contains a copy of the specifications of those units. If no units
are specified in the Exports file, the new spec view copies the specifications of all of
the units in the source view. Units in each new spec view are compiled according
to the Remake..Demotedc.Units and Goal parameters.

By default, units in spec views are not made controlled. If these units are subse-
quently made controlled for purposes of history tracking, they should not be joined
to their counterparts in working views.

Portions of each new spec view's name are automatically generated unless the Spec-
_View _Prefix and Level parameters specify otherwise. An automatically generated
spec-view name consists of a spec-view prefix, one or more level numbers that
correlate with a particular numbered release, and the _Spec suffix-for example,
RevLLSpec.

By default, each spec view has the same imports as the view from which it was
copied. It is also possible to specify different imports in the process of creating the
spec views by using the View _Tc..Import and Only _Change_Imports parameters.
Import adjustments are subject to the same consistency checking that is performed
by the Import command.

RATIONAL 8/1/88 PM-275

procedure Make..Spec __View
package !Commands.Cmvc

Parameters

From_Path: String:= "<CURSOR)";

Specifies the view or views from which spec views are to be made. The default is
the view on which the cursor is located. The Frome.Path parameter can name any
view in a spec/load subsystem:

• Either load, spec, or combined views
• Either working or released views
• Views belonging to paths or views belonging to subpaths

All controlled objects in a From..Path view must be checked in. If Frome.Path names
multiple views, a new spec view is made from each of the named views. Multiple
views can be in the same or in different subsystems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Spec_View_Prefix : String:= "»PREFIX«";

Specifies the string that replaces both the path and subpath portion of the names
listed in the Frome.Path parameter. For example, if Frorru.Path specifies the string
"Rev LiAnderson., Working", the value of Spec.,View..Prefix replaces "Rev LAnder-
son" in the name of the new spec view.

The default parameter placeholder "»PREF IX«" must be replaced or an error will
result.

PM-276 8/1/88 RATIONAL

procedure Make..Spec., View
package !Commands.Cmvc

Level : Natural : = IZ!;

Specifies which level number to increment within each spec view's name. The auto-
matic insertion of level numbers can be suppressed by setting Level to Natural'Last.

Level numbers in a spec-view name are generated from the level numbers in the
name of the most recently released view. Note that a released-view name contains
as many numbers as there are release levels; the rightmost number is the Oth level.
In a spec-view name, the string" _Spec" replaces the rightmost (Oth level) number,
so a spec-view name has one number less than a released-view name.

If Level is 0, no release level numbers are increment ed, because the Oth-level number
has been replaced. In this case, the spec-view name contains the same numbers
(starting with level 1) as the most recent release. If Level is 1, the first-level number
in the most recent release name is incremented before the appropriate level numbers
are inserted into the spec-view name. The number of levels that can be incremented
is determined by the Levels file within the model world for the view. The Make-
Spec View command quits if the value of the Level parameter exceeds the total
number of levels specified by the Levels file.

For example, assume that there are two release levels and the most recently released
view is called RevL4_2. If a new spec view is created and Level is 1, the name
generated for the spec view is RevLfi..Spec (assuming that the Spec.,View..Prefix
parameter specifies the string "Rev 1").

Vi eur, To_ModI f~ : String: = "";
Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new spec views. The imports of the views specified by
View., Toe.Modify are also updated using the views named by the View., Toe.Import
parameter. The View., To..Modify views are updated by View., To..Import views as
if the Onlyc.Changec.Imports parameter were true, regardless of this parameter's
actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

RATIONAL 8/1/88 PM-277

procedure Make..Spec.; View
package !Commands.Cmvc

View_To_lmport : String:= "<INHERIT_IMPORTS)";

Specifies one or more spec or combined views to be imported by the new spec views.
The views named by View., To_Import are also used to update the imports of the
views named by the View _To..Modify parameter.

If View _To_Import specifies the default special name ..< INHERIT_I MPORTS)", each
new spec view uses the same imports as the view from which it was copied.

If View _To_Import specifies the null string (""), no views are imported.

If View _To_Import specifies one or more views, the specified views are imported
by the new spec views in the manner specified by the Oulyc.Change..Imports pa-
rameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, View., Toe.Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

Onl~_Change_lmports : Boolean:= True;

Specifies the manner in which the views specified by the View., 'To..Import parameter
are actually used as imports by the new spec views. Only _Change_Imports has no
effect if View _To_Import specifies "< INHERI T_I MPORTS)" or the null string.

If this parameter is false, the entire list of views given by View., Toe.Import is im-
ported by each new view created by the MakecSpec., View command. No imports
are inherited.

If the parameter is true (the default value):

• Each new spec view inherits its imports from the view from which it was copied .
• The list of views in View., Tc..Import is compared to the inherited views. If

a View _Tc..Import view is from the same subsystem as an inherited view, the
View _To..Import view replaces that inherited view.

Thus, if Only _Change_Imports is true, the list of views in View _To_Import is used
to update the inherited imports of each new spec view. In this way, the replacement
imports for every new spec view can be specified in a single list without forcing each
new view to import everything in the list.

PM-278 8/1/88 RATIONAL

procedure Make..Spec.; View
package 'Commands.Cmvc

Remake_Demoted_Units : Boolean := True;
Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compilatlon.Unlt_State := Compilatlon.Coded;
Specifies the state to which demoted units are recompiled when the Remake..De-
mot ed.,Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation.Unit-
_State type, except Compilation. Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compila-
tion.Installed. If Compilation. Source is specified, all units in the view are put in
the source state, regardless of the value of the Remakec.Demoted.i Unlts parameter.

Comments: String:= "";
Specifies a comment to be logged in the work order indicated by the Workc.Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order String:= "<DEFAULT>";
Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date when the spec view was made and
the usernarne and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEFAUL 1)" refers to the default work order for the current
seSSIOn.

Volume Natural: = 12J;

Specifies the volume on which to make the new spec views. The default value
specifies that the new views should be created on the volume with the most free
space.

Response String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-279

procedure Make..Subpath
package !Commands.Cmvc

procedure Make..Subpath

procedure Make_Subpath
(From_Path
New_Subpath_ExtensIon
View_To_ModlfSj
View_To_lmport
OnlSj_Change_lmports
Remake_Demoted_Units
Goal
Comments
Work_Order
Volume
Response

String ·- "<CURSOR)" ;
String ·- "»SUBPATH«" ;
String = ,
String = "<INHERIT_IMPORTS>";
Boolean .- True;
Boolean ·- True;
Compilation.Unit_State ·- Compilation.Coded;
StrIng 1111

·- ,
String · - "<DEF AULT> " ;
Natural .- 0;
StrIng ·- "<PROF ILE>" } ;

Description

Creates a copy of each of the specified views in order to start new development
subpaths,

A subpath is a series of working views that constitutes an extension of a path.
Multiple subpaths in a single path support parallel development within that path,
allowing multiple developers to make and test changes without conflict. Parallel
development can proceed because the controlled objects in each subpath are au-
tomatically joined to the corresponding objects in the other subpaths and in the
parent path. A controlled object therefore can be checked out and modified in only
one subpath view <It a time.

Subpaths share the same model as their parent path, which means that they share
the same target key and initial links.

By default, the working view for each new subpath has the same imports as the
view from which it was copied. It is also possible to specify different imports
in the process of creating the new subpaths by using the View., 'Io..Import and
Only..Changec.Imports parameters. Import adjustments are subject to the same
consistency checking that is performed by the Import command.

Subpaths can be created in systems as well as subsystems.

PM-280 8/1/88 RATIONAL

procedure Make..Bubpatb
package lCommaads.Cmvc

Parameters

From_Path: String: = "<CURSOR)";

Specifies the view or views that are to be copied as the beginning(s) of new sub-
path(s). The default is the view on which the cursor is located. The From..Path
parameter can name:

• Combined or load views only (not spec views).
• Either working or released views.
• Views belonging to paths or views belonging to subpaths. However, if From-

_Path names a subpath, the new subpaths are created at the same level, not as
"su bsu bpaths."

All controlled objects in a Frome.Path view must be checked in. If From..Path
names multiple views, a new subpath (with the same subpathnarne extension) is
made from each of the named views. Multiple views can be in the same or in
different (sub)systems.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

~lew_Subpath_ExtenslOn : Strlng:= "»SUBPATH«";

Specifies the subpathname extension to be used in constructing the names of the
views in the new subpaths. Because the Make..Subpath procedure creates new
working views, the names of these views are constructed by inserting New..Subpath-
_Extension between the pathname prefix and the "_Working" suffix. For example,
if the From .Path parameter specifies a view called "Revz., Working" and News.Sub-
patlu.Extension has the value "Anderson", the working view created for the new
subpath is "Revz..Anderson., Working". If Frome.Path names multiple views, all of
the new paths will have the same subpathnarne extension.

The Newc.Subpathc.Extension parameter can be any string that constitutes a le-
gal Ada identifier and therefore can contain one or more underscore characters.
However, the underscores preceding and following the subpathnarne extension are
inserted automatically.

The New..Subpathc.Extension is inserted after a pathname prefix, which, by con-
vention, is the portion of a view name up to the first underscore in the name. The
New..Subpathc.Extension thus replaces any characters between the first underscore
and the "_Working" suffix. For example, if Frome.Path is "Targef..z., Working" and
Newc.Subpath..Extcnsion is "Anderson", the subpathname is "TargeLAnderson-
_Working" .

RATIONAL 8/1/88 PM-281

procedure Make..Subpath
package !Commands.Cmvc

View_ To_Modi f~ : Strmg: = "";
Specifies one or more spec, load, or combined views whose imports should be
changed to refer to the new working views, if those new views are combined views.
The imports of the views specified by View., To..Modify are also updated using the
views named by the View..Tcc.lmport parameter. The Viewc'Io..Modify views are
updated by View., To..Import views as if the Only..Change.clmports parameter were
true, regardless of this parameter's actual value.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

View_To_lmport : String:= "<INHERIT_IMPORTS>";
Specifies one or more spec or combined views to be imported by the new working
views. The views named by View., Tc..Import are also used to update the imports
of the views named by the View., To..Modify parameter.

If View _To_Import specifies the default special name "<,NHER f T_,MPORTS>", each
new working view uses the same imports as the view from which it was copied.
(However, if the FromcPath parameter names multiple combined views among
which import relations hold, the imports are automatically adjusted so that the
working views in the new subpaths reference each other as appropriate, instead of
referencing the working views in the original paths.)

If Viewc'Io..Import specifies the null string (""), no views are imported.

If View _To_Import specifies one or more views, the specified views are imported
by the new working views in the manner specified by the Only _Change_Imports
parameter.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.) Furthermore, View _To_Import can name an
activity as an indirect file, which is equivalent to naming the spec view associated
with each subsystem listed in the activity.

PM-282 8/1/88 RATIONAL

procedure Maka..Subpath
package !CommanJs.Cmvc

Onl~_Change_lmports : Boolean := True;
Specifies the manner in which the views specified by the View _To_Import parameter
are actually used as imports by the new working views. Only _Change_Imports has
no effect if View _To_Import specifies "< I NHER 1T _I MPORTS>" .

If this parameter is false, the entire list of views given by View., To.cImport is im-
ported by each new working view created by the Make..Subpath command. No
imports are inherited.

If the parameter is true (the default value):

• Each new working view inherits its imports from the working view from which it
was copied .

• The list of views in View., To..Import is compared to the inherited views. If
a View _Toe.Import view is from the same subsystem as an inherited view, the
View _To..Import view replaces that inherited view.

Thus, if Onlyc.Change..Imports is true, the list of views in View., Tc..Irnport is
used to update the inherited imports of each new working view. In this way, the
replacement imports for every new working view can be specified in a single list
without forcing each new view to import everything in the list.

Remake_Demoted_Unlts : Boolean := True;
Specifies whether to recompile any units that were demoted by adjusting imports.

If true (the default value), units are recompiled to the state specified by the Goal
parameter.

If false, any units demoted by adjusting imports are left in the demoted state.

Goal : Compllatlon.Unlt_State := Compllatlon.Coded;
Specifies the state to which demoted units are recompiled when the Remake..De-
mot ed., Units parameter is true.

The compilation goal can be any of the enumerations of the Compilation. Unit-
_State type, except Compilation. Archived. By default, the compilation goal is the
coded state. To set the compilation goal to the installed state, specify Compila-
tion.Inst alled. If Compilation. Source is specified, all units in the view are put in
the source state, regardless of the value of the Remake..Demotedc.Units parameter.

Commen ts : StrIng := "";
Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-283

procedure Make..Subpatb
package !Commands.Cmvc

Work_Order : String:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records the time and date when the subpath was made and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<OEFAULT>" refers to the default work order for the current
session.

Volume : Natural : = 0;

Specifies the volume on which to make the new subpaths. The default value specifies
that the new subpaths should be created on the volume with the most free space.

Response: Stnng : = "<PROF!LE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-284 8/1/88 RATIONAL

procedure Make., Uncontrolled
package 'Commands.Cmvc

procedure Makec.Uncontrolled

procedure Make Uncontrolled (What_Object
Comments
Work_Order
Response

StrIng .- "<CURSOR)" ;
Strinn = ,
String .- "<DEFAULT>" ;
String . - "<PROF ILE>");

Description

Makes the specified objects uncontrolled, so that change information about them is
no longer collected in the CMVC database.

Existing history for these objects remains in the CMVC database until the database
is expunged using the Cmvc_Maintenance.Expunge_Database command. Objects
can be made controlled again using the Make..Controlled command; if the CMVC
database has not been expunged, the history for the recontrolled objects continues
where it stopped.

Because controlled objects cannot be deleted or withdrawn, the Makc..Uncontrolled
procedure is used to prepare a controlled object for deletion. Similarly, an Ada unit's
kind cannot be changed (for example, from procedure to function) while the unit is
controlled. Therefore, the unit must be made uncontrolled and then the database
must be expunged (using Cmvc_Maintenance.Expunge_Database) before the unit's
kind can be changed.

Parameters

WhaLObJect : StrIng:= "<CURSOR)";
Specifies the object(s) to be made uncontrolled. Multiple objects can be specified
by using wildcards, context characters, special names, set notation, or an indirect
file. (For further information, see "Naming" in the Key Concepts in this book.)

Comments : String: = "";
Specifies a comment to be logged in the work order indicated by the Works.Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-285

procedure Make..Uncontrolled
package !Commands.Cmvc

Work_Order : Strwg:= "<DEFAULD";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEFAULD" refers to the default work order for the current
session.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of th is command. The default is the job response profile.

References

procedure Makes.Controlled

procedure Cmvc_Maintenance.Expunge_Database

PM-286 8/1/88 RATIONAL

procedure Merge..Changes
package [ComrnandsCmvc

procedure Mergec.Changes

procedure Merge_Changes
(Destinatlon_ObJect

Source_View
Report_File
Fail_lf_Conflicts_Found
Comments
Work_Order
Response

String
String
String
Boolean
String
String
String

·- "<SELECT ION)" ;
·- "»V IEW_NAME«" ;

,
False;

,
·- "<DEFAULT)";
= "<PROF! LE)") ;

Description

Merges two objects that previously were joined and then severed from each other.

The object named by the DestinationcObject parameter is updated to include any
changes that have been made to the corresponding object located in the view named
by the Source..View parameter. The updated destination object is left in the source
state; the source object is left unchanged.

The Merge.rChanges procedure can succeed only if the views named by the Source-
_View and Destinatioru.Object parameters were created from a common view (for
example, by commands such as Make..Path]. The configuration object for the
common view must still exist. Merge..Changes uses the common ancestor of the
two objects to determine the changes from the source object that need to be merged
into the destination object.

Merges.Changes compares both the destination object and the source object with the
common ancestor to determine the lines that need to be merged. Lines that have
been added, deleted, or changed in the source object are correspondingly added,
deleted, or changed in the destination object. Lines that have been added, deleted,
or changed in the destination object are left as is.

Conflicts exist when the same lines have been changed in both the source and des-
tination objects. When conflicts exist, the destination object is updated to contain
the changed lines from both the destination and the source objects. These changed
lines are marked with the string "*;". When a unit contains lines marked with
"* ;", the unit must be edited to remove these marks before it can be compiled.

Besides updating the destination object, the Merge..Changes procedure writes a
report containing the text of the Destinatioru.Object in which the following conven-
tions indicate the lines that were affected by the merge:

• Added lines are marked by the + character.
• Deleted lines are redisplayed, marked with the - character.
• Each changed line is indicated as a deleted line followed by an added line.

RATIONAL 8/1/88 PM-287

procedure Merge.rChanges
package !Commands.Cmvc

• Conflicting lines are bracketed by *** START CONFLICT and *** END CONFLICT.

Following the + or - symbol is a number or letter indicating the origin of the modified
line:

• The number 1 indicates changes that were merged from the source object.
• The number 2 indicates changes that existed in the destination object.
• The letter B indicates changes that were made in both the source and the desti-

nation objects.

The Failc.If..Conflictac Found parameter can be set to true to cause the command
to produce the merge report without actually updating the destination object.

The Merge..Changes procedure is used for updating objects that are not joined-for
example, objects in unjoined paths or severed objects in joined paths. In contrast,
the Accept-Changes command is used for updating objects that are joined.

Merge..Changes can be used to prepare two objects for joining since objects must be
textually identical before they can be joined. To prepare two objects for joining:

1. Merge the source object into the destination object.
2. Check out and edit the destination object to resolve any conflicts.
3. Check out the source object and copy the contents of the destination object into

it.

Parameters

Des t ina t i oriDb jec t String:= "<SELECTION)";

Specifies the object into which changes are to be merged. If a member of a join set,
the specified object must be at the most recent generation (that is, all changes must
already be accepted from the other objects in the join set). If the object named
by the Destinatioru.Object parameter currently is checked out, the Merge..Changes
command automatically checks it in.

The default is the currently selected object.

Source_View: String:= "»VIEW_NAME«";

Specifies the view containing the object whose changes are to be merged into the
destination object. The object in the designated view must be checked in.

Report_FIle: StrIng:= "";

Specifies the name for the report file generated by the merge operation. The default
value ("") allows the command to generate the filename by appending the string
_Merging_Report to the simple name of the destination object. The file is created
in the same library as the destination object.

PM-288 8/1/88 RATIONAL

procedure Merger Changes
package !Commands.Cmvc

Fail_lf_Conflicts_Found : Boolean:= False;

Specifies whether the command should fail to update the destination object if con-
flicting changes are found.

If true, the command produces the report file without actually updating the destina-
tion object. If false (the default value), the command both updates the destination
object and produces the report file even if conflicts are found.

Comments : String: = "";

Specifies a comment to be stored in the CMVC database with the notes for the
specified object(s). This comment appears in the display generated by the Show-
_History _By _Generation command.

In addition, the specified comment is logged in the work order indicated by the
Work..Order parameter.

Work_Order: String:= "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the usernarne and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEF AULT>" refers to the default work order for the current
session.

Response String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Accept-Changes

RATIONAL 8/1/88 PM-289

procedure Notes
package !Commands.Cmvc

procedure Notes

procedure Notes (What_Object
In_Place

String .- "<CURSOR>'"
Boolean .- False); ,

Description

Displays the history image for the current generation of the specified controlled
object.

A history image for a generation contains:

• The history for the generation, which lists the time of checkout and checkin, the
user who performed these operations, and comments provided to various C~fVC
commands

• The notes for the generation, which can be used as a scratch pad for arbitrary
commentary to be associated with that generation

History images provide an interactive way to manage notes. From a history image,
new notes can be added and saved using the Common.Edit and Common. Commit
or Common.Promote commands. Furthermore, operations are available in a history
image for displaying notes from other generations.

The Notes procedure thus provides an interactive alternative to the set of file-
oriented commands (Get-Notes, Create..Emptyc.Note., Window, Appendc.Notes, and
Put-Notes). These file-oriented commands are most useful for retrieving notes di-
rectly into files, although these commands can put notes into special-purpose notes
windows.

The window banner for a history image contains the object name followed by a
generation attribute (for example' G(3}), followed by the attribute 'HI s tor~. Fur-
thermore, the window banner contains the string t cmvc). In contrast, the banner of
a notes window brought up by the Get-Notes or Creata..Emptyc.Note., Window pro-
cedures contains the string Notes for followed by the object name. No interactive
operations are available from a Notes for window.

Parameters

WhaLObject : String: = "<CURSOR>";

Specifies the view or object for which to display the history image. A configuration
object also can be specified, even if the corresponding view no longer exists. If an
object is specified, it must be controlled and it can be checked out.

The default is the object or view on which the cursor is currently located.

PM-290 8/1/88 RATIONAL

procedure Notes
package !C/)rnmanG.3.Cmvc

In_Place : Boolean := False;
Specifies whether the current frame should be used to display the Image. The
default specifies that the least recently used frame should be used.

RATIONAL 8/1/88 PM-291

procedure PuLNotes
package !Commands.Cmvc

procedure Put_Notes

procedure Put_Notes (From_File
What_Object
Response

String .- "<WINDOW)";
String .- "<CURSOR)";
String .- "<PROFILE)");

Description

Replaces the notes for the specified controlled object with the contents of the spec-
ified file.

The notes for a controlled object are stored the CMVC database. An object's notes
can be used as a scratch pad for arbitrary commentary to be associated with par-
ticular generations.

PuLNotes is one of a set of file-oriented commands for managing notes. That
is, these commands, including GeL Notes, CreatecEmptyc Note., Window, and Ap-
pend..Notes, are most useful for managing notes through files. However, these
commands also manage special-purpose notes windows (identified by the Notes for
string in the banner) in which the PuLNotes command can be used as follows:

• If the GeLNotes procedure has been used to display an object's notes in a notes
window, this window can be modified and its contents saved using the PuLNotes
procedure. In this case, PuLNotes must be entered (with default parameter
values) from a Command window attached to the window that was created by
GeLNotes.

• If the Createc.Empty..Note., Window procedure has been used to display an empty
notes window for an object, PuLNotes can be used to replace the object's existing
notes with any text entered in this window. In this case, PuLNotes must be
entered (with default parameter values) from a Command window attached to
the window that was created by the Createc.Emptyc.Note., Window command.

Note that modified notes windows retain the * symbol in their window banners, even
after their contents have been entered in the CMVC database using Appendc.Notes
or PuLNotes. Accordingly, the Quit command reports these windows as changed
images when logout is attempted. Because these windows cannot be committed,
use the Common. Abandon procedure to remove these windows.

The Notes command provides an interactive alternative to GeLNotes, PuLNotes,
and the like. The Notes command displays a history image (identified by 'Hi s tor-q
attribute following the object name and generation in the window banner), which
allows interactive operations for managing an object's notes.

PM-292 8/1/88 RATIONAL

procedure Put..Notes
package lCommands,Clllv\"

Parameters

From_File: String:= "<WINDOW>";

Specifies where to find the new notes for the specified object. If this parameter
names a file, the contents of that file replace the existing notes for the specified
controlled object.

If the default special name "<W INDOW>" is used, it refers to the contents of a notes
window created by either the GeL Notes or the Create..Emptyc.Note., Window com-
mand. When the default value is used, PuLNotes must be entered from a Command
window attached to the notes window. The first line of the notes window contains
the name of the object associated with the notes; therefore, the What..Object pa-
rameter is ignored.

What_Object : String, - "<CURSOR>";

Specifies the object whose notes are to be replaced. The specified object must be
both controlled and checked out; otherwise, the command quits.

The WhaLObject parameter is ignored if the From..File parameter's default value
is used.

Response String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Append.iNotes

procedure Create..Emptyc.Note., Window

procedure GeLNotes

procedure Notes

RATIONAL 8/1/88 PM-293

procedure Release
package !Commands.Cmvc

procedure Release

procedure Release
(From_Working_View
Release Name
Level
Views_To_lmport
Create_Configuration_Only
Complle_The_View
Goal
Comments
Work_Order
Volume
Response

String .- "<CUR SOR>" ;
String ·- "<AUTO_GENERATE>";
Natural .- 0·.String .- "<INHERIT_IMPORTS>";
Boolean = False;
Boolean · - True;
Compilation.Unit_State ·- Compllatlon.Coded;
String =

1111 ,
String .- "<DEFAULT)" ;
Natural ·- 0;
Stnng = "<PROF ILE>") ;

Description

Creates a new released view from each of the specified working views. Releases can
be made in subsystems and in systems.

A released view is a frozen copy of the working view and can serve as a baseline [or
testing and execution.

In addition to creating a new released view, the Release command creates two
objects in the directory (sub)system_name.Configurations. These objects are:

• A configuration object named release..name.
• A state description directory named release_name_State. This directory contains

several files that store switch values, the names of exported and imported views,
the model name, and the like.

If the newly created view is subsequently destroyed to save space, it can be recon-
structed from these objects.

If saving space is important, the Release command can be used to create only the
configuration object and the state description directory for each specified working
view. Full released views can be created subsequently from the configuration object
using the Build command. (Note, however, that a configuration object references
only the controlled objects in a view; therefore, only the controlled objects can be
created by the Build command.) Creating only a configuration is much faster than
making a view.

When a released view is created, the controlled objects in it are automatically joined
to the corresponding objects in the working view and in the previously released views
in the same development path.

PM-294 8/1/88 RATIONAL

procedure Release
package !Commands.Cmvc

Parameters

Fr-orn jllor-k iriq Yi eur String:= "<CURSOR)";

Specifies one or more working views from which released views are to be cre-
ated. Multiple working views can be in the same or in different (sub)systems.
From., WorkingcView can specify either combined or load views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Release_Name : StrIng: = "<AUTO_GENERATE>";

Specifies the simple name of the new released view(s).

The default special name" <AUTO_GENERATE>" allows new release names to be gener-
ated automatically. An automatically generated name consists of the path or sub-
pathname (the portion of the view name up to "_Working") followed by "_n-m" ,
where nand m represent automatically incremented level numbers. (The Level pa-
rameter controls how these numbers are incremented. The number of levels that
can be incremented is determined by the Levels file within the model world for the
view.)

If the From., Working.View parameter names multiple views and Releasee.Name has
a nondefault value, all of the new released views will have the same simple name.
In contrast, if Release..Name has the default value, the name of each new released
view is generated individually.

RATIONAL 8/1/88 PM-295

procedure Release
package !Commands.Cmvc

Level : Natural : = 0;

Specifies which level number to increment within each released view's name. The
Level parameter is ignored if a nondefault value of the Release..Name parameter is
specified.

The default Level value (0) means that the rightmost number is incremented. If
Level is 1, the next-to-rightmost number is incremented and so on. Level numbers
to the right of the incremented number are reset to o.
For example, assume that the previously released view was called RevL4_2. If a
new release is created from Rev L Working and Level is 0, the name generated for
the next release is RevL4_3. If a subsequent release is created from Rev l., Working
and Level is 1, the name generated for this next release is RevL5_0. (Note that
the portion of the name up to "_Working" is fixed, so the "1" in "Revl" is not
subject to being incremented.)

The number of levels that can be incremented is determined by the Levels file within
the model world for the view. The Release command quits if the value of the Level
parameter exceeds the total number of levels specified by the Levels file.

Vi eurs , To_I mport : Strlng: = "(1NHER 1T _I MPORTS>" ;

Specifies one or more spec or combined views for the new releases to import. The
default special name "(1NHER 1L1MPORTS>" means that each new released view will
have the same imports as the working view from which it was released.

Note that if the From., Workings.View parameter names multiple combined views
among which import relations hold, the imports are automatically adjusted so that
the new releases reference each other as appropriate, instead of referencing the
working views.

Imports can be changed during the release operation by specifying a nondefault
value for Views., Toe.Import. However, care must be taken to import views that
allow the released views to compile.

Views., Toe.Import can name an activity as an indirect file; if so, the new releases
will import the spec view associated with each subsystem, as listed in the activity.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

PM-296 8/1/88 RATIONAL

procedure Release
package !Commands.Cmve

Create_Configuration_Onl~ : Boolean := False;
Specifies whether to save space by creating only the configuration object and the
associated state description directory for each specified working view.

If true, only the configuration object and directory are created. A full released view
is not created at this time; if desired, the view must be built by a subsequent Build
operation. (Note, however, that a configuration object references only the controlled
objects in a view; therefore, Build can recreate only the controlled objects for which
sou.rce has been saved.) Creating only a configuration is much faster than making
a VIew.

If false (the default value), a full released view is created in addition to the config-
uration object and directory.

Whether or not a view is created in addition to the configuration object, the con-
tents of a configuration can be viewed through a configuration image (see the Edit
command).

Complle_The_View Boolean:= True;
Specifies whether to compile all the units In the specified released views before
freezing these views.

If true (the default value), an attempt is made to compile the units to the state
specified by the Goal parameter. For example, setting Compile_ The.,View to true
recompiles any units that were demoted by changing imports (that is, by specifying a
nondefault value for the Viewsc.Tc..Import parameter). The views are subsequently
frozen even if compilation fails.

If false, units remain demoted.

Unless you are making a configuration-only release, it is recommended that this
parameter be left as true to guarantee that released views can be executed.

Goal : Compllatlon.Unlt_State := Compilatlon.Coded;
Specifies the state to which units are compiled when the Cornpile., The., View pa-
rameter is true. The compilation goal can be any of the enumerations of the
Compilation. Unit-State type. By default, the compilation goal is the coded state.
To compile units to the installed state, specify Compilation.Installed. If Compila-
tion.Source or Compilation.Archived is specified, all units in the view are put into
this state, regardless of the value of the Compile., The., View parameter.

RATIONAL 8/1/88 PM-297

procedure Release
package !Commands.Cmvc

Comments : StrIng: = "";
Specifies a comment to be stored in the CMVC database. In particular, the comment
is stored with the notes for the history files that are associated with the specified
working views. The history file for each view is called view_name.State.Release-
_History. The notes can be viewed with the GeLNotes command.

The comment is also logged in the work order indicated by the Work..Order param-
eter. The comment appears with the check in of the history file.

Work_Order : StrIng:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specif-
ically, the work order records when the history files were checked out and in, the
name of the new release, and the username and session in which the command was
entered. If the Comments parameter is specified, this comment also is entered in
the work order.

The. special name "<DEF AULT>" refers to the default work order for the current
seSSIOn.

Volume: Natural : = 0;

Specifies the volume on which to create the new releases. The default value specifies
that the releases should be created on the volume with the most free space.

Response: StrIng:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-298 8/1/88 RATIONAL

procedure Rernovec.Import
package 'Commauds.Cmvc

procedure Remove..Jmport

procedure Remove_Import (View String .- "»VIEW NAME«" ;
From_View String .- "<CURSOR)";
Comments String .- ,
Work_Order StrIng .- "<DEFAULT)" ;
Response String .- "<PROF ILE>") ;

Description

Removes the links that were created when the view specified by the View parameter
was imported.

This command does not remove an import if there are units compiled against any
of the links it created. However, such an import can be removed if the units are
demoted to the source state.

Parameters

VIew: Strlng = "»VIEW NAME«";

Specifies one or more views to be removed from the imports of the view specified
by the Frorru.View parameter. The default parameter placeholder must be replaced
or an error will result.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

From_VIew: Strlng:= "<CURSOR>";

Specifies one or more views from which the specified imports are to be removed.
Imports cannot be removed from code views. The default is the view designated by
the cursor.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Comments : StrIng: = "";

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-299

procedure Remove..Import
package !Commands.Cmvc

Work_Order : String: = "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEF AULT)" refers to the default work order for the current
seSSIOn.

Response StrIng: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Remove., UnusedcImports

PM-300 8/1/88 RATIONAL

procedure Remove., Unusedc.lmports
package !Commands.Cmvc

procedure Removec.Unusedc.Imports

procedure Remove_Unused_lmports (From_View
Comments
Work_Order
Response

String .-
String .-
String .-
String .-

"<CURSOR)" ;
fin ,
"<DEFAULT>" ;
"<PROF I LE)");

Description

Removes imports from the specified view or views if none of the links created by
those imports are needed for compilation.

Links are removed only on an import-by-import basis. Thus, if any of the links
from a given import are needed for compilation, then none of the links created by
that import are removed.

A link is needed for compilation if it is referenced in a. unth. clause in at least one
unit that is in the source, installed, or coded state (archived units are ignored).
Compare this with the Remove..Import command, which is sensitive only to units
that actually are compiled against the link.

Parameters

From_VIew: StrIng:= "<CURSOR)";
Specifies one or more views from which unused imports are to be removed. Imports
cannot be removed from code views. The default is the view designated by the
cursor.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Comments: StrIng:= "";
Specifies a comment to be logged in the work order indicated by the Work.rOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-30!

procedure Remove..Unusedc.Imports
package !Commands.Cmvc

Work_Order : String:= "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
session.

Response String: = "<PROFILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Remove..Import

PM-302 8/1/88 RATIONAL

procedure Replace..Modei
package 'Commauds.Cmvc

procedure Replacc..Model

procedure Replace_Model {New_Model String .- "»NEW MODELNAME«" ;
In_VIew String ,- "<CURSOR)";
Comments String .- .
Work_Order String .- "<DEFAULT)" ;
Response String .- "<PROFILE)") ;

Description

Replaces the model world for the specified view.

A view's model can be changed to:

• Invoke a new switches file for the view.
• Rebuild the view's links.
• Reset the number of levels for automatic name generation for released and spec

views. (This affects only future releases.)
• Change the view's target key. However, the change must be to a target key that

is compatible with the current target key. For example, a view with target key
RIOOO cannot change to a model with target key Mc68020_Bare.

Parameters

New_Model : String:= "»NEUJ MODELNAME«";

Specifies the name of the world to be used as the model for the view. The context
for the resolution of this name is the world !Model, although a model in another
world can be specified by using a fully qualified name.

The default parameter placeholder "»NEW MODELNAME«" must be replaced or an
error will result.

In_View: String:= "<CURSOR)";

Specifies the view whose model is to be replaced. The default is the view designated
by the cursor.

All units in the view must be in the source state.

Comments : StrIng: = "";

Specifies a comment to be logged in the work order indicated by the Work.iOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

RATIONAL 8/1/88 PM-303

procedure Repla.ce_Model
package !Commands.Gmvc

Work_Order : String: = "<OEFAUl T>" ;

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The special name "<OEF AUl T>" refers to the default work order for the current
session.

Response String:= "<PROF!lE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-304 8/1/88 RATIONAL

procedure Revert
package lCommands.Cmvc

procedure Revert

procedure Revert
(What_Object
To_Generation
Make_Latest_Generatlon
Allow_Demotlon
Remake_Demoted_Units
Goal
Comments
Work_Order
Response

String
Integer
Boolean
Boolean
Boolean
Compilation.Unit_State
String
String
String

.- "<SELECTION)";

.- -1;

.- False;

.- False;

.- True;

.- Compilation.Coded;
" "

J.- "<DEFAULT>";
.- "<PROF ILE>");

Description

Reverts the specified object or objects to the specified generation.

This procedure replaces the contents of each object with the contents of the indicated
generation of that object.

The generation to which an object is reverted can be retained as the latest generation
if the Maka..Latestc.Generation parameter is true. Otherwise, the reverted object
is updated to the latest generation the next time the object is checked out.

Parameters

What_ObJect: StrIng:= "<SELECTION>";
Specifies the object or objects to be reverted. Only controlled and sourced objects
can be reverted. (An error is reported if you try to revert an object that was made
controlled without saving source.) An object that is currently checked out cannot
be reverted, and this is reported in the output log. By default, the selected object
is reverted.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

RATIONAL 8/1/88 PM-305

procedure Revert
package !Commands.Cmvc

To_Generatlon: Integer:= -1;
Specifies the generation to which the specified object is reverted. A positive integer
expresses a particular generation number (each generation is numbered, starting
from 0). A negative integer expresses a previous generation, counting back from
the object's current generation; for example, the default value of -1 indicates the
object's previous generation.

If multiple objects are specified and the To..Generation parameter has a positive
value, the Revert procedure attempts to change all objects to the same genera-
tion. If multiple objects are specified and Toe.Generation has a negative value, the
generation of each object is calculated individually.

Make_Latest_Generation : Boolean := False;
Specifies whether to retain Toc.Ceneration as the latest generation. If true, To-
_Generation becomes the latest generation, from which subsequent development
can proceed. (In this case, the Revert procedure is equivalent to checkin& out an
object, copying the specified generation into the object, and checking it in.)

If false, Toe.Generation does not become the latest generation. Consequently, a
reverted object can be inspected or compiled against other units; however, the next
time the object is checked out, it is updated to the latest generation. (In this
case, the Revert procedure is equivalent to using the Accept-Changes command to
update an object from a configuration containing the specified generation.)

Allow_Demotlon : Boolean:= False;
Specifies whether the Revert procedure is allowed to demote Ada units in order to
revert the specified objects to the specified generation.

If this parameter is true, the Revert procedure is permitted to demote Ada units
if necessary. If it is false, the command proceeds only if no demotion is required;
otherwise, an error is reported and the command quits.

Remake_Demoted_Unlts : Boolean := True;
Specifies whether to recompile any units that were demoted in the process of re-
verting the specified objects.

If true (the default value), demoted units are recompiled to the state specified by
the Goal parameter. If false, units remain demoted.

PM-306 8/1/88 RATIONAL

proced ure Revert
package 'Commande.Ccivc

Goal : Compllatlon.Unlt_State := Compilatlon.Coded;

Specifies the state to which demoted units are recompiled when the Remake..De-
motedc.Units parameter is true.

The goal can be any of the enumerations of the Compilation. Unit-State type, except
Compilation. Archived. By default, the compilation goal is the coded state. To
set the compilation goal to the installed state, specify Compilation.lnstalled. If
Compilation. Source is specified, the demoted units are put in the source state,
regardless of the value of the Remake..DemotedcUnits parameter.

Comments: Strlng:= "":

Specifies a comment to be logged in the work order indicated by the Work..Order
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : Strlng:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date, the unit reverted, and the username
and session in which the command was entered. If the Comments parameter is spec-
ified, this comment also is entered in the work order.

The. special name "<DEF AULT>" refers to the default work order for the current
seSSIOn.

Response StrIng:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-307

procedure Sever
package 'Cornmands.Cmvc

procedure Sever

procedure Sever (What_Objects
New_Reservation_Token_Name
Comments
Work_Order
Response

String '-
String .-
String .-
String .-String ._

"<SELECT ION)" ;
"<AUTO_GENERATE>" ;."<DEFAULT>" ;
"<PROF ILE>") ;

Description

Severs the specified objects from their respective join sets.

When an object is severed, it is given a different reservation token, so that it can
be checked out and modified independent of the objects to which it had previously
been joined.

Parameters

What_Objects String:= "<SELECTION>";
Specifies one or more objects to be severed. By default, the selected object is
severed. If a view is specified, all the objects in the view are severed.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

New_Reservatlon_Token_Name String:= "<AUTO_GENERATE>";
Specifies the name of the reservation token to be associated with each newly severed
object.

The default special name "<AUTO_GENERATE>" means that the reservation token is
generated automatically by the Environment. Automatically generated names of
reservation tokens are derived from the first portion of the enclosing view name
(up to the first underscore character). For example, the severed objects in a view
called Rev L Working would have "Revl" as the automatically generated name of
the reservation token. However, if "Rev I" is currently in use, then "Rev L I" is
generated.

A user-defined token name can be supplied instead to provide subsequent join sets
with more meaningful or mnemonic token names.

Note that supplying an existing reservation token name cannot be used to implicitly
join the newly controlled objects to any other objects.

PM-30B 8/1/88 RATIONAL

procedure Sever
package !Commands.Crove

Comments : Strlng: = "';

Specifies a comment to be logged in the work order indicated by the Work.Drder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : String:= "<DEFAULT)";

Specifies the work order in which the command's action is recorded. More specifi-
cally, the work order records the time and date of checkin, the objects affected, and
the username and session in which the command was entered. If the Comments
parameter is specified, this comment also is entered in the work order.

The. special name "<DEFAULT>" refers to the default work order for the current
seSSIOn.

Response Stnng:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-309

procedure Show
package !Commands. Cmvc

procedure Show

procedure Show (Objects
Response

String .- "<CURSOR)";
String .- "<PROFILE)");

Description

Displays checkout and generation information for the specified controlled objects.

In addition, this procedure lists the views containing objects that are joined to each
specified object.

The display produced by the Show procedure includes the following fields:

Object Name Generation Where Chkd Out B~ Whom Expected Check In
============== ========== ------------------------ ---------------- ======= =================UNITS.CMVC_TEX 3 of 3 REVl_WORKING Yes SJL June 15, 1988

For each object listed, the fields display the following information:

Object Name ~isplays the portion of the object's name that follows the
VIew name.

GeneratIon Lists a pair of numbers. The first number is the generation
of the object in the current view. The second number is the
number of generations that exist for that object.

Where Displays a view name. If the object is currently checked out,
this field names the view in which it is checked out. If the
object is currently checked in, it names the view that contains
the most recent generation.

Chkd Out Indicates whether the object is currently checked out. If
"Yes," the following two fields provide more information.

B~ Whom Displays the usernarne of the user who checked out the ob-
ject.

Expected Check In Displays the value that was supplied for the Expectedc.Check-
_In_Time parameter of the Check..Out command.

The Show command also displays the names of the views to which the specified
objects are joined.

PM-31O 8/1/88 RATIONAL

procedure Show
package !Commands.Cr.1VC

Parameters

ObJects: String. - "<CURSOR)";

Specifies the objects for which information is displayed. If a view is specified,
information is displayed for the objects in the Units directory as well as for the
Release..History file in the State directory.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Response: Strlng: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-311

procedure Show.c Alk.Checkedc.Out
package !Commands.Cmvc

procedure Showc.Allc.Checked..Out

procedure Show_All_Checked_Out (In_View
Response

String .- "(CURSOR>";
String .- "(PROF ILE>") ;

Description

Displays a list of the objects in the specified view that are checked out.

The objects are listed in the same format used by the Show command.

Parameters

In_View: String:= '"(CURSOR>";
Specifies one or more views whose checked-out objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Response: String:= '"(PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

PM-312 8/1/88 RATIONAL

procedure Show_AIL-Controlled
package !C0mmands.Cmvc

procedure Show..Allc.Controlled

procedure Show_AIl_Controlled (In_View
Response

String ._ "(CURSOR>'"
String .- "(PROFILE>,");

Description

Lists the controlled objects in the specified view or views.

The objects are listed in the same format used by the Show command.

Parameters

In_View: StrIng:= "(CURSOR>";

Specifies one or more views whose controlled objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Response: Strlng:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

RATIONAL 8/1/88 PM-313

procedure Show _AIL Uncontrolled
package !Commands.Cmvc

procedure Show..Alk.Uncontrolled

procedure Show_AIl_Uncontrolled (In_View
Response

String . _ "<CURSOR)";
String ._ "<PROFILE)");

Description

Lists all uncontrolled objects in the specified views.

Parameters

In_Vlew: String:= "<CURSOR)";

Specifies one or more views.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-314 8/1/88 RATIONAL

procedure Show_Checked_OuLBy_Gser
package !Commandg,Cmvc

procedure Showc.Checkedc.Outc.By..User

procedure Show_Checked_Out_B~_User
(In_View
Who
Response

String . _ "<CURSOR)";
String .- S~stem_Utilities.User_Name;
String ._ "<PROFILE)");

Description

Lists the objects in the specified view(s) that are checked out by the specified user.

The objects are listed in the same format used by the Show command.

Objects are listed even if they are controlled in the specified view but checked out
in another view.

Parameters

In_VIew: String:= "<CURSOR)";

Specifies one or more views to be searched for objects checked out by the specified
user.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Who StrIng:= "S~stem_Utll1ties.User_Name";

Specifies the username whose checked-out objects are to be listed.

Response: StrIng:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

RATIONAL 8/1/88 PM-315

procedure Show.cCheckedc.Outc.ln., View
package !Commands.Cmvc

procedure Show..Checkedc.Outc.In., View

procedure Show_Checked_Out_ln_View (In_View
Response

String . - "<CURSOR)"·
String .- "<PROFILE):');

Description

Lists the objects that are checked out in the specified view or views, regardless of
who checked them out.

The objects are listed in the same format used by the Show command.

Parameters

In_View: String:= "<CURSOR)";

Specifies one or more views whose checked-out objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Response: String: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

PM-316 8/1/88 RATIONAL

procedure Show _History
package 'Cornmands.Cmvc

procedure Show..History

procedure Show_History (For_Objects
Display_Change_Regions
Starting_Generation
EndIng_Generation
Response

String .- "(CURSOR>";
Boolean .- True;
String .- "(CURSOR)";
String
String

,
.- "(PROF ILE>");=

Description

Displays the history for the specified view or object within a view.

This procedure shows what has changed between two configurations (or two views)
on the same path. For example, the Show..History command can be used to display
the differences between two released views, between a working view and a previously
released view, and the like. It also can be used to display how a particular object
has changed from one view or configuration to another.

The Show.iHistory procedure provides the following information for each specified
object (if a view is specified, this information is shown for each controlled object in
the view):

• The join set name (the name of the reservation token for the joined objects)
• The object's history for the generations that were created between the configura-

tions specified by the Starting..Generation and Endingc Generation parameters

For each of the requested generations of an object, the history includes:

• The time and date of the checkout and checkin that created the generation
• The notes for the object
• The changes that occurred since the previous generation (if requested by the

Display..Changec.Regions parameter)

Parameters

For_ObJects: StrIng:= "<CURSOR)";
Specifies the object or objects whose history is to be displayed. This parameter can
specify one or more views or one or more controlled objects within a view. The
default is the object on which the cursor is located.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

RATIONAL 8/1/88 PM-317

procedure Show _History
package !Commands.Cmvc

Dlspla~_Change_Regions : Boolean := True;

Specifies whether to display the differences between a given generation and the one
before it.

If true (the default value), the text of the changes is displayed in the same format as
that produced by the !Commands.File_Utilities.Difference(Compressed_Output=>
True) procedure (see the LM book of the Rational Environment Reference Manuaf).
If false, no changes are displayed.

StartIng_GeneratIon : StrIng:= "<CURSOR)";

Specifies the view or configuration that serves as the starting point for the displayed
history. The specified view or configuration must contain some generation of each
of the objects designated by the For..Objects parameter. The Showc History proce-
dure displays the history for each object, starting with changes to the generation
contained in the specified view or configuration.

The default is the view or configuration on which the cursor is located. If the null
string (",,) is used, the display starts at generation 1.

Ending_Generation: Strlng:= "":

Specifies the view or configuration that serves as the ending point for the displayed
history. The specified view or configuration must contain some generation of each
of the objects designated by the For..Objects parameter. The history displayed for
each object ends with the generation contained in the specified view or configuration.

The default value (",,) specifies that history is displayed up to the latest generation.

Response: Str 1ng := "<PROF I LE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-318 8/1/88 RATIONAL

procedure Show.c History.c By..Generatiou
package !Commands. Cmvc

procedure Show_History _By _Generation

procedure Show_Histor~_B~_Generation
(For_Objects

Displa~_Change_Regions
Starting_Generation
Ending_Generation
Response

String .- "<CURSOR>";
Boolean .- True;
Natural .- 1
Natural .- Natural 'Last;
String .- "<PROFILE>");

Description

Displays the history for one or more controlled objects across the specified range of
generations.

This procedure uses generation numbers to delimit the extent of the displayed his-
tory, whereas the Show..History procedure uses views or configurations to delimit
the display.

The Show..History .Byc.Generation procedure provides the following information
for each specified object (if a view is specified, this information is shown for each
controlled object in the view):

• The join set name (the name of the reservation token for the joined objects)
• The object's history for the generations that were created between the configura-

tions specified by the Starting..Oeneration and Endingc.Generation parameters

For each of the requested generations of an object, the history includes:

• The time and date of the checkout and checkin that created the generation
• The notes for the object
• The changes that occurred since the preVIOUSgeneration (if requested by the

Displayc.Change..Regions parameter)

Parameters

For _Objects : StrIng: = "<CURSOR>";
Specifies the object or objects whose history is to be displayed. This parameter can
specify one or more views or one or more controlled objects within a view. The
default is the object on which the cursor is located.

Multiple objects can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

RATIONAL 8/1/88 PM-3I9

proced ure Show _History _By _Generation
package !Commands.Cmvc

Displa~_Change_Regions : Boolean := True;
Specifies whether to display the differences between a given generation and the one
before it.

If true (the default value), the text of the changes is displayed in the same format as
that produced by the !Commands.File_Utilities.Difference(Compressed_Output=>
True) procedure (see the LM book of the Rational Environment Reference Manua0.
If false, no changes are displayed.

Starting_Generatlon : Natural := 1;
Specifies the number of the generation to serve as the starting point for the displayed
history. The default value (1) causes history to be displayed from generation 1 of
the specified objects.

If the For..Objects parameter specifies multiple objects, the displayed history of
each object begins with the same generation number, as specified by Starting-
_Generation.

Ending_Generation Natural:= Natural 'Last;
Specifies the number of the generation to serve as the ending point for the displayed
history. The default value (Natural'Last) causes history to be displayed up to the
most recent generation of the specified objects.

If the For..Objects parameter specifies multiple objects, the displayed history of each
object ends with the same generation number, as specified by Ending..Generation.

Response: Str lng := "<PROF ILE>" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-320 8/1/88 RATIONAL

proced ure Show _Ima.ge_OL Generation
package 'Commands.Cmvc

procedure Showc.Imagec.Of..Generation

procedure Show_lmage_Of_Generation
(Object
Generation
Output_Goes_To
Response

String
Integer
String
String

·- "<CURSOR)";
.- -1;
· - "<W I NDOW) " ;
·- "<PROF ILE>") ;

Description

Reconstructs an image of the specified generation of the designated controlled ob-
ject.

Successive generations of a controlled object are stored in the C:\1VC database as a
series of changed increments. This command reconstructs a textual image of the
specified generation. The reconstructed image is displayed in the output log, unless
the Output..Coes.; To parameter specifies a file.

Showc.Image..Ofc.Generation is a report-oriented command that is most useful for
putting the image of a single generation into a file. As an alternative, the Edit and
Def procedures can be used to bring up generation images from which interactive
operations can be used to display images of other generations and of the differences
between successive generations.

Parameters

Object Strmg.- "<CURSOR)";
Specifies the object for which a previous generation is displayed. The default is the
object on which the cursor is located.

Generatlon: Integer: = -1;
Specifies the generation of the specified object that is to be reconstructed. The
default value specifies the generation before the current generation of Object.

A negative number specifies a previous generation relative to the object's current
generation. For example, a value of -3 displays the third generation back from the
current one.

A positive number specifies an actual generation number.

RATIONAL 8/1/88 PM-321

procedure Show _Image_OLGeneration
package !Commands.Cmvc

OutpuLGoes_ To : String: = "(W INDOW>" ;

Specifies where to put the text of the reconstructed generation. If a new filename
is specified, a file is created and the text is written into it. If an existing filename
is specified, the contents of that file are replaced.

If the default special name "<WINDOW>" is used, the reconstructed generation is
displayed in the window containing the output log.

Response: Strlng:= "(PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-322 8/1/88 RATIONAL

procedure Showc.Outc.Of..Datec.Objects
package 'Commands. Cmvc

procedure Show..Outc.Ofc.Datec.Objects

(In_View
Response

St r inq . - "<CURSOR)";
String "<PROF ILE>") ;

Description

Lists the objects III the specified view or VIews that are not at the most recent
generation.

The objects are listed in the same format used by the Show command.

Parameters

In_VIew: Stnng:= "<CURSOR)";

Specifies one or more views whose out-of-date objects are to be listed.

Multiple views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming"
in the Key Concepts in this book.)

Response: S tr wg : = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Show

RATIONAL 8/1/88 PM-323

type Systenu.Objectc.Enum
package !Commands.Cmvc

type System..Objectc.Enum

t~pe 5~stem_Object_Enum is (5pec_Load_5ubs~stem. Combined_5ubs~stem.
5~stem);

Description

Defines the types of system objects that can be created, where a system object is
either a system or a subsystem.

There are two types of subsystems. A subsystem's type determines what kind of
views the subsystem can contain--for example, spec/load views or combined views.

A subsystem's type also determines whether hierarchic importing is enforced.

Enumerations

Comblned_5ubs~stem
Defines a type of subsystem that can contain only combined views. Within a Com-
bined subsystem, circular import relations may hold-that is, a view is permitted
to be in its own import closure.

5pec_Load_Subs~stem
Defines a type of subsystem that can contain spec, load, or combined views. Within
a Spec..Load subsystem, all imports must be hierarchic-that is, no view is permit-
ted to be in its own import closure.

5~stem
Defines a system, which is an optional device for creating logical groupings of re-
leases from component subsystems in an application. Operations for systems are in
package Cmvc..Hierarchy,

References

procedure Initial

end Cmvc;

PM-324 8/1/88 RATIONAL

package Cmvc..Hierarchy

When an application consists of multiple subsystems, these subsystems optionally
can be included in an Environment object called a system. Inclusion in a system
is a way of identifying particular subsystems as components of a given application
or of a major portion of an application. Inclusion in a system also provides an
automated means of tracking the latest release from each subsystem and building
activities that reference those releases.

A subsystem is included in a system by establishing a parent-child relationship
between the system and the subsystem. Therefore, a system does not actually
contain its component subsystems in the same way that a subsystem view contains
component objects.

Systems have the same internal directory structure as subsystems. Systems contain
views called system views (not spec/load or combined). As in subsystems, views
in systems contain the same subdirectories found in subsystem views (for example,
Units) plus an additional subdirectory called Paths.

The initial system view is a working view. Within the State directory of the working
system view, you can build a release activity. A release activity automatically
contains entries that reference the latest release from each child subsystem. After
creating a release activity, you can make a release from the working system view to
preserve that activity as a frozen object. Every time new releases are made in child
subsystems, you can rebuild the release activity and then make a new release of the
working system view. You can use the Cmvc.Information command to display the
release activity for a given system view.

A system can contain multiple paths that correspond to the paths in the child
subsystems. The release activity in each system path references releases from the
corresponding paths in the child subsystems.

RATIONAL 8/1/88 PM-325

package !Commands.Cmvc_Hierarchy

Setting Up Systems

1. U:se the Cmvc.lnitial command to create a system. It contains a working system
VIew.

2. Use the AddcChild command to establish the parent-child relationship between
the desired subsystems and the system.

3. At each major release point, you can run the Buildc.Activity command in the
working system view to build (or update) a release activity called Release..Ac-
tivity that references the latest releases from child subsystems. Releasee.Activity
is located in the State directory.

4. Make the release activity the default and execute the application.
5. If desired, you can edit the release activity using Builds.Activity to change one

of the activity entries (do not use commands from package Activity to modify
a release activity).

After a release activity is created, the releases it references cannot be deleted.

Setting Up Paths
You can use the Cmvc.Makec.Path command in a system to create multiple paths,
one for each path in the component subsystems. Before building a release activity
in a given system path, you must explicitly set up the correspondences between
that system path and the desired paths from the child subsystems. To do this:

1. Locate the Paths directory in the working view of the system path.
2. In the Paths directory, create a file corresponding to each child subsystem. The

name of each file must be the same as the name of the subsystem to which it
corresponds.

3. In the file for each subsystem, enter a naming expression that matches the
release names in the desired path from that subsystem.

4. When you build a release activity in a given system path, the entry for each
subsystem will reference the latest release that matches the naming expression
in the Paths file for that subsystem.

For example, assume that a system called MaiLSystem has a child subsystem called
MaiL Utilities and that the child contains two paths whose prefixes are Rev! and
Rev2. Assume further that MaiLSystem contains a Rev! path and that this system
path is to reference releases from the Rev! path in MaiL Utilities. To establish the
correspondence between the Rev! system path and the Rev! subsystem path:

1. Within the MaiLSystem.RevL Working. Paths directory, create a file called
MaiL Utilities.

2. Edit the file, entering a naming expression that matches the release names in
the Rev! path of the MaiL Utilities subsystem-for example: Rev l~

3. Commit the file.

PM-326 8/1/88 RATIONAL

package !Commandso Cmvc.iHierarchy

4. If a Rev2 path is desired in MaiLSystem, repeat these steps starting in Mail-
System.Rev2 Working.Paths and entering a naming expression such as Rev2r?

The naming expression in a Paths file can match releases from more than one path
in a given subsystem. In this case, the latest of the releases from among these paths
is entered in the release activity.

Releasing System Views
You can use the Cmvc.Release command to make releases of working system views
to preserve release activities as frozen objects. When a system view is released, a
su bdirectory called Releasee.Information is created within the released system view.
The Releasee.Information directory contains four controlled text files that can be
used to rebuild the release activity and the views it references from configuration
objects.

The Releasee.Information directory for a released system view is shown in Figure
12-1.

IUsers RatIonal Test System Reyl 0 1 Release InformatIon Directory
Load_ConfIguratIons FIle,
Load_Views FIle,
Spec_ConfIguratIons FIle,
Spec_VIews FIle,

Figure 12-1, The Releese.Luiormetiou Directory

Assume that you have built a release activity in a working system view and made
a release of that view. Furthermore, assume that you have destroyed the released
system view without deleting its configuration object and then you have destroyed
each of the releases that were referenced in the release activity, without deleting
their configuration objects. To rebuild the deleted views and release activity:

1. Use the Cmvc.Build command to rebuild the deleted system-view release from
its configuration object. The system view will be rebuilt except for the release
activity.

2. Locate the Releasee.Information directory in the rebuilt system view. Using
the Loadc.Configurations and Spec..Configurations files as indirect files, use the
Cmvc.Build command to rebuild the views that were referenced in the release
activity. (This step assumes that the child subsystems still exist and contain
configuration objects for those views.)

3. From the Units directory of the rebuilt system view, enter the Builds.Activity
command with default parameters to rebuild and then freeze the release ac-
tivity. The Buildc.Activity command automatically consults the files in the
Releasee.Information directory.

RATIONAL 8/1/88 PM-327

procedure Addc.Child
package 'Commands. Cmvc..Hierarchy

procedure Add_Child

procedure Add Cb i l d (Child String , - "»SYSTEM/SUBSYSTEM NAME«" ;
To_S!:jstern String ,- "<CURSOR)" ;
Comments String ,- ,
Work_Order String , - "<DEFAULT>" ;
Response String ,- "<PROF ILE)") ;

Description

Adds a new child (a subsystem or another system) to the designated system.

A system provides an automated means of tracking the latest release from each
child and building activities that reference those releases.

A system cannot directly or indirectly be a. child of itself.

Parameters

Chlld: Stnng: = "»SYSTEM/SUBSYSTEM NAME«";

Specifies one or more systems or subsystems to be added as children of a. system.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
"N arning" in the Key Concepts in this book.)

To_S!:jstem Stnng, = "<CURSOR>";

Specifies the system to which children are to be added.

Comments: StrIng:= "":

Specifies a comment to be logged in the work order indicated by the WorkcOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order : Stnng:= "<DEFAULT>";

Specifies the work order in which the command's action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

Response: S tr wg : = "<PROF I LE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command.

PM-328 8/1/88 RATIONAL

procedure Builds.Activity
package !Commands.Cmvc.Hierarchy

procedure Builds.Activity

procedure B'.Jlld_Acbvit'd (Working_S'dstem_Vlew StrIng .- "<CURSOR)" ;
Views_To_lnclude String ,- "<LATEST>" ;
Update_Imports Boolean , - True;
Allow_Code_Views Boolean , - False;
Comments String , - ,
Work_Order StrIng , - "<DEFAULT>" ;
Response String .- "<PROF ILE)");

Description

Builds or updates the release activity III the working system view to include the
specified views.

By default, the latest releases of all the children of the system are included in the
release activity. Views are included in the release activity only if they have been
created after the Builds.Activity command was last run on the specified working
system view.

Path restrictions can be used to control which releases are included.

By default, the working system view imports spec views from all of the subsystems
referenced by the release activity. Updating the system view's imports allows you
to execute test programs from the system view, if desired. Note that this importing
is subject to the normal compatibility requirements.

By default, code views are overlooked in favor of including the latest load view in
the release activity. However, changing the Allow..Code., Views parameter to true
allows code views to be included in the release activity.

Parameters

Work Ing_S'dstem_VIew StrIng: = "<CURSOR)";
Specifies one or more working system views in which release activities are to be
built or updated. By default, the working system view designated by the cursor is
used.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
"N arning" in the Key Concepts in this book.)

RATIONAL 8/1/88 PM-329

procedure Build..Activity
package lCommands.Cmvcc.Hierarchy

Views_To_lnclude : String:= "<LATEST)";
Specifies one or more views to be included in the release activity. These views must
b; in subsystems that are children of the system containing the designated system
VIew.

If the default value, "<LATEST>", is specified, then the latest releases of all the
children of the system are included in the release activity. Nondefault values for
this parameter are especially useful when using the Builds.Activity procedure to
change entries in an existing release activity.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
"Naming" in the Key Concepts in this book.)

Update_Imports : Boolean:= True;
Specifies whether or not the working system VIew imports spec VIews from the
subsystems referenced by the release activity.

If true, the default, the working system view imports spec views from all of the
subsystems referenced by the release activity. Views are imported as specified by
the Views., Tee.Include parameter. Updating the system view's imports allows you
to execute test programs from the system view, if desired. Note that this importing
is subject to the normal compatibility requirements.

If false, no spec views are imported.

Allow_Code_Vlews : Boolean:= False;
Specifies whether to include code views in a release activity.

If false, the default, code views are overlooked in favor of including the latest load
view in the release activity.

If true, code views are included in the release activity.

Comments : StrIng: = "";
Specifies a comment to be logged in the work order indicated by the Work.rOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work_Order: Strlng:= "<DEFAULT>";
Specifies the work order in which the command's action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

PM-330 8/1/88 RATIONAL

procedure Build._Activity
package !Commands.Cmvc_Hi~rarchy

Response: String: = "<PROF ILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-331

function Children
package !Commands. Cmvc..Hierarchy

function Children

function Children (Of_System
Recursive
Response

String .- "<CURSOR)'"
Boolean .- True; .
String '- "<WARN)") return String;

Description

Returns a list of designated subsystem's children.

Parameters

Of_System: String: = "<CURSOR)";
Specifies the system whose children are to be listed.

Recursive : Boolean:= True;
Specifies whether to list children recursively when the designated system includes
other systems as children. If true, the default, child systems are expanded so that
their children are listed.

If false, child systems are listed simply as systems.

Response: String:= "<WARN)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return String;
Returns a list of system children.

PM-332 8/1/88 RATIONAL

function Contents
package !Commands.Cmvc~Hierarchy

function Contents

function Contents (Of_S~stem_View
Recursive
Response

String ,- "<CURSOR>";
Boolean ,- True;
String ,- "<WARN>") return String;

Description

Returns the contents of the release activity of the designated system view.

The function returns a string formatted as a naming expression. This naming
expression contains the fully qualified name of each view referenced in the release
activity. The names are separated by commas and the entire list is enclosed in
brackets.

Parameters

Of_S~stem_VIew String:= "<CURSOR>";
Specifies the system view that contains the release activity whose contents are to
be displayed. By default, the system view designated by the cursor is used.

Recursive : Boolean:= True;
Specifies whether to display release activity contents recursively when a release
activity includes references to system views. If true, the default value, references
to system views are expanded so that the contents of their release activities are
returned.

If false, the contents of re.ease activities are not expanded.

Response: StrIng:= "<WARN>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return String;
Returns the contents of the release activity of the designated system view.

RATIONAL 8/1/88 PM-333

procedure ExpandcActivity
package !Commands. Cmvc..Hierarchy

procedure Expands.Activity

procedure Expand_Activit~
(New_Activit~

S~stem_View
Response

String .- "»NEW ACTIVITY NAME«";
String . - "(CURSOR)";
Str i ng . - " (PROF ILE)") ;

Description

Makes a dereferenced copy of the release activity in the designated system view.

That is, in the new release activity, the procedure replaces the entries for system
views with the entries from the release activities in those system views.

Parameters

New_Activit~ StrIng:= "»NEW ACTIVITY NAME«";

Specifies the name for the new release activity.

S~stem_VIew : StrIng:= "(CURSOR)";

Specifies the system view whose release activity is to be copied.

Response: StrIng:= "(PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-334 8/1/88 RATIONAL

fllllcti(JU Parents
package !Commands, Cmvc _ II ierarchy

function Parents

functIon Parents (Of_Subs~stem
Recursive
Response

String
Boolean
String

.- "<CURSOR)";

.- False;

.- "<WARN)") return Strlng;

Description

Returns a list of systems that are parents to the designated subsystem.

Parameters

Of_Subs~stem String: = "<CURSOR)";
Specifies the subsystem whose parents are to be listed.

Recurslve : Boolean:= False;
Specifies whether to list parent systems recursively. If true, the default, all parents,
grandparents, and so on, are listed.

If false, only direct parent systems are listed.

Response: Strlng:= "<WARN)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is to list errors and warnings
but not positive progress messages.

return Strlng;
Returns a list of systems that are parents to the designated subsystem.

RATIONAL 8/1/88 PM-335

procedure Remove..Child
package !Commands.Cmvc_Hierarchy

procedure Remove..Child

procedure Remove_Child
(Chi ld String ·- "»SYSTEM/SUBSYSTEM NAME«" ;
From_System String ·- "<CURSOR)" ;
Comments String ·- .
Work_Order String ·- "<DEFAULT>" ;
Response String .- "<PROF ILE>") ;

Description

Severs the relationship between a child system or subsystem and its parent.

This procedure is the opposite of the Addc.Child procedure.

Parameters

Ch1ld: Stnng: = "»SYSTEM/SUBSYSTEM NAME«";

Specifies one or more child systems or subsystems to be removed.

Multiple systems and subsystems can be specified by using wildcards, context char-
acters, special names, set notation, or an indirect file. (For further information, see
"Naming" in the Key Concepts in this book.)

From_S'::Jstem : StrIng: = "<CURSOR>";

Specifies the system from which the specified children are to be removed. By default,
the system designated by the cursor is used.

Comments: String:= "":

Specifies a comment to be logged in the work order indicated by the Work.iOrder
parameter. If no work order is specified and if there is no default work order, the
comment is discarded.

Work _Order : S tr Ing : = "<DEFAULT>";

Specifies the work order in which the command's action is recorded. If the Com-
ments parameter is specified, this comment also is entered in the work order.

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-336 8/1/88 RATIONAL

procedure Remcve..Chlid
package lCommands.Cmvcc.Hierarchy

end Cmvc..Hicrarchy;

RATIONAL 8/1/88 PM-337

RATIONAL

package Cmvc..Malntenance

Packages Cmvc..Maintenance defines a set of operations for checking and restor-
ing the integrity of the various databases associated with the CMVC system. This
package also provides operations for managing primary and secondary subsystems
(copies of subsystems that support development on multiple RlOOOS).

Commands Grouped by Topic
The commands in package Cmvc..Malntenance fall into several functional groups.
They are listed here by group for your convenience. (Note that the reference entries
for these commands are arranged in alphabetical order by command name.)

• Commands for managing the CMVC database:

Check..Conslstency Expunges.Database

• Commands for managing the
development:

Destroy..Cdb
Make..Prlmary
Repair..Cdb

compatibility database (CDB) and multiple-host

Displayc.Cdb
Make..Secondary
Update.iCdb

• Commands for managing code views:

Display _Code_ View

RATIONAL S/l/SS PM-339

procedure Check.Consistency
package !Commands.Cmvc_Maintenance

procedure Check..Consistency

procedure Check_Consistency (Views
Response

String := "<CURSOR)";
String := "<PROFILE)");

Description

Checks the consistency of the specified views with respect to the CMYC database
and the Environment library system.

In some cases, corrective action is taken. The specified views can be in subsystems
or in systems.

The Cl\fVC database and the Environment library system both record various types
of information about controlled objects. The Check..Consistency command makes
sure that information in the database agrees with the information in the library
system. Specifically, Check..Consistency ensures that:

• There is a configuration object in the Configurations directory for every config-
uration represented in the database. Missing configuration objects are recreated
from the database.

• Both the library system and the CMVC database are synchronized with respect to
which objects are controlled. If the library system and the CMVC database do not
agree, the information in the library system is changed to match the information
in the database.

• The text of each object in the view directories matches the text stored in the C:\IVC
database for the appropriate generation. Note that this is a textual comparison,
so that differences due to changed pretty-printer switches will be reported. No
action is taken by Check.rConsistency to reconcile the differences; the Cmvc-
.Check..Out or Cmvc.AccepLChanges command can be used to get the latest
generation from the database.

The Checkc.Consistency command also checks the library structure independently
of the C:\IVC database. The Check..Consistency command ensures that:

• The directory structure within the specified views or subsystems is complete.
Checkc.Consistency reconstructs deleted directories and/or missing objects such
as the Subpathc.Narne and Lastc.Release.rName files in the view.State directory.
(Note that the Lastc.Release..Name file contains the level numbers of the most
recently released view; when Check..Consistency reconstructs this file, all the
level numbers are set to 0 and the file must be edited by hand to restore the
correct level numbers.)

• The specified views have a model associated with them. Views that reference
deleted models lose that reference; the Cmvc.Replace..Model command can be
used to provide new models for those views.

The Check.rConsistency command verifies that all imported views still exist and
ensures that, whenever a view is imported by another view, both views maintain

PM-340 8/1/88 RATIONAL

procedure Check.Consistencv
package !Commands.Cmv<:" _Maintenance

a record of this relationship. Discrepancies are resolved in favor of the importing
view. That is, if Viewc.l imports View_2, but View_2 does not list Viewc.l as a
referencer, then View_2's list of referencers is updated to include Vlew..I. On the
other hand, if View_2lists Viewc l as a referencer, but View..l does not list View_2
as an import, Viewc.l is removed from View_2's list of referencers.

Finally, the Checkc Consistency command makes sure that the proper links exist
for each specified view. Specifically, Check.Donsistency examines the with clauses
within the specified views' Ada units and reports references for which links do not
exist. Furthermore, Check..Conaistency reports unacceptable links-namely, links
that resolve to load views and links that resolve to unimported spec views. (Typ-
ically, such reported links result from improperly using the Links.Add command
instead of the CMVC importing operations.)

The Check..Consistency command can be used to:

• Reconstruct a configuration object that was deleted by mistake.
• Recover from an attempt to delete a view with commands in package Library or

Compilation. CheckcConsistency reconstructs enough of the view so that it can
be deleted successfully with the Cmvc.Destroy., View command.

• Reconstruct the directory structure within a view after deleting directories or
objects on which other C~fVC commands may depend (for example, the State,
Exports, or Imports directories.)

• Reconcile conflicting reports and error messages-for example, if error messages
indicate that an object is already checked out, whereas commands such as Cmvc-
.Show..Alk.Checkedc.Out have indicated that the object is checked in.

Parameters

Views : S tnng : = "<CURSOR>";

Specifies the views whose consistency is to be checked. The default is the view
designated by the cursor. If a subsystem or system is specified, all of the views in
that (sub)system are checked, along with the directory structure at the (sub)system
level.

Multiple views, subsystems, or systems can be specified by using wildcards, context
characters, special names, set notation, or an indirect file. (For further information,
see "Naming" in the Key Concepts in this book.)

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs! and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-34 1

procedure Convert..Oldc Subaystem
package !Commands. Cmvc..Maintenance

procedure Convertc.Oldc.Subsystem

procedure Convert_Old_Subs~stem (Which
Response

String .- "<SELECTION>'"
String . - "<PROF ILE>"); ,

Description

Converts the views in one or more subsystems from the Gamma format to the Delta
format so that CMVC operations can be used.

This is not applicable to subsystems created on an RIOOO that already has been
converted from the Gamma release of the Environment to a Delta release.

Parameters

WhICh: String:= "<SELECTION>";

Specifies the subsystem whose views are to be converted. The default is the current
selection.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-342 8/1/88 RATIONAL

procedure Delete_ Unreferencedc.Leading..Generations
package [Commands.Cmvc..Mainteuance

procedure Delete_ Unreferenced_Leading_Generations

procedure Delete_Unrererenced_Leading_Generations
(In_Subsystem
Response

StrIng ,- "<CURSOR>";
String ,- "<PROFILE>");

Description

Not yet implemented.

Parameters

In_Subsystem String
Not yet implemented.

"<CURSOR>" ;

Response: Strlng := "<PROF ILE>" ;
Not yet implemented.

RATIONAL 8/1/88 PM-343

procedure Destroy..Cdb
package !Commands.Cmvc_Maintenance

procedure Destroy.i.Cdb

procedure Destro~_Cdb (Subs~stem
Limit
Effort_Onl~
Response

Strmg .- "<SELECT ION)";
String .- ..<WORLDS)" ;
Boolean .- True;
String .- ..<PROF ILE)");

Description

Destroys the compatibility database for the specified subsystem.

When units are compiled in a subsystem, information from the compatibility data-
base is incorporated into the DIANA representation for those units. Therefore, when
a compatibility database is destroyed, all compiled units in the subsystem are de-
moted to the source state and all code views are deleted.

When the EfforLOnly parameter is true, the compatibility database is not actually
destroyed; instead, a report is generated listing the units that would be demoted as
a result of destroying the database.

The compatibility database for a subsystem is recreated automatically the next time
units are compiled in that subsystem. When recreated, however, the compatibility
database provides a new subsystem identification number, effectively severing the
subsystem from any secondary or primary subsystems with which it was associated.
A subsystem is automatically made primary whenever its compatibility database is
destroyed and then recreated.

Destroying a compatibility database may be useful in the following cases:

• A compatibility database may need to be destroyed if it is corrupted-for ex-
ample, if any of the objects in the subsystem.State.Compatibility directory are
deleted.

• A compatibility database can be destroyed to remove references to any units that
were once compiled in the subsystem but are now deleted.

Parameters

Subs~stem: String:= "<SELECTION)";
Specifies one or more subsystems whose compatibility databases are to be destroyed.
The default is the selected subsystem.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

PM-344 8/1/88 RATIONAL

procedure Destroy __Cdb
package !Commands.Cmvc_Maintenance

Limit: String:= "<WORLDS>";
Specifies which units can be demoted as a side effect of destroying the compatibility
database of each specified subsystem.

The default special value "<WORLDS>" means that demotion is limited to the units in
the views of the specified subsystems. Other values for this parameter are given as
enumerations of the Compilation. Changec.Limit subtype. For example, the string
"<ALLWORLDS>" permits the demotion of units in other subsystems in order to de-
mote the units in the specified subsystems.

Effort_Onl~ : Boolean:= True;
Specifies whether to report the effort required without actually destroying any com-
patibility databases.

When true (the default value), a report is generated listing the units that would be
demoted as a result of destroying the compatibility database. The database is not
actually destroyed. The effort rating reported is a relative measure of the amount
of work involved.

When false, the compatibility database is destroyed.

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-345

procedure Display..Cdb
package !Commands.Cmvc_Maintenance

procedure Display..Cdb

procedure Displa~_Cdb (Subs~stem
Show_Units
Response

String . - "<CURSOR)";
Boolean .- False;
String .- "<PROFILE)");

Description

Displays information from the compatibility database for each of the specified sub-
systems.

A subsystem contains a compatibility database only after units have been promoted
to the installed or coded state in that subsystem.

The following information is displayed in the output window:

• Whether the subsystem is primary or secondary
• The subsystem identification number
• How many Ada units are represented in the compatibility database

If the Show..Units parameter is true, each unit is listed along with the number of
declarations it contains. Note that every unit that was ever compiled in a given
subsystem is represented in that subsystem's compatibility database. Therefore,
even deleted units appear in the listing.

Parameters

Subs~stem: Stnng: = "<CURSOR)";

Specifies one or more subsystems whose compatibility database information is to
be displayed. The default is the subsystem designated by the cursor.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Shour Un ; ts : 8oolean: = Fal se;

Specifies whether to list the units represented in the compatibility database for
the specified subsystems. If true, each unit is listed, followed by the number of
declarations it contains. If false (the default), only the total number of units is
displayed.

PM-346 8/1/88 RATIONAL

procedure Display _Cdt
package !Commands.Cmvc ...M aintenance

Response: String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-347

procedure Display _Code_ View
package !Commands.Cmvc_Maintenance

procedure Display..Code., View

procedure Dlspla~_Code_View (VIew
Verbose_UnIt_Info
Show_Map_lnfo
Response

String . - "<CURSOR)"·
Boolean .- False; .
Boolean .- False;
String .- "<PROFILE>");

Description

Displays information about the specified code view.

By default, the command displays a list of units in the code view. (Recall that code
views are created by the Cmvc.Make..Code., View command.)

If the Verbose..Unitc.Info parameter is true, the command displays the withed units
and other compiler information for each unit in the code view.

If the Show _Map_Info parameter is true, the command displays a mapping of the
code segments and exceptions from the code view to the original view. Since code
views do not support source-level debugging, setting Showc.Map..Info to true can
be used as a debugging aid.

Parameters

VIew: StrIng = "<CURSOR>";

Specifies one or more code views about which to display information. The default
is the code view designated by the cursor.

Multiple code views can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Verbose_UnIt_Info : Boolean:= False;

Specifies whether to display a full report for each unit in the specified code views.
If true, the command displays the withed units and other compiler information for
each unit in the code view. By default, a full report is not displayed.

Show_l-1ap_lnfo : Boolean := False;

Specifies whether to display the code segment mapping between each specified code
view and the load view from which it was generated. By default, the mapping is
not displayed.

PM-348 8/1/88 RATIONAL

procedure Display..Code., View
package !Commands. Cmvc __Mal r.•ten ance

Response: String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-349

procedure Expunges.Database
package !Commands.Cmvc_Maintena.nce

procedure Expunge..Database

procedure Expunge_Database (In_Subsystem
Response

String . - "<CURSOR>";
String .- "<PROFILE>");

Description

Expunges the CMVC database, removing stored information and history about un-
used configurations or objects.

Expunging the database deletes any configuration represented in the database for
which there is no corresponding configuration object in the subsystem.Configura-
tions directory.

Expunging the database also deletes any join set represented in the CMVC database
if no configuration references any object in the set. All generations associated with
the join set are deleted, effectively deleting the history for the unused objects from
the database.

The Expunges.Database command is useful when attempting to delete a view and
then recreate it with the same name. To do this:

1. Enter the Cmvc.Destroy., View command with the Destroy..Configurationc.Also
parameter set to true. (This destroys the configuration object and the state
description directory along with the view.)

2. Enter the Expungc..Database command to remove references to the configura-
tion from the C;\fVC database.

3. Recreate the view.

Parameters

In_Subsystem String:= "<CURSOR>";

Specifies the subsystem whose Ct\IVC database is to be expunged. The default is
the subsystem designated by the cursor. A system name can be specified for this
parameter as well.

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-350 8/1/88 RATIONAL

procedure Maka..Pritnary
package !Commands.Crnvc ~_Ma.~D.tenallce

procedure Make..Primary

procedure Make_Primary (Subsystem
Movlng_Prlmary
Response

Strlng
Boolean
String

.- "<SELECT ION)" ;

.- False;

.- "<PROF ILE>") ;

Description

Converts the specified secondary subsystem into a primary subsystem with its own
updatable compatibility database.

When development occurs on multiple RIOOOS, a copy of each subsystem needs to
reside on each machine so that the entire application can be executed. One copy
of a given subsystem, called the primary subsystem, contains an updatable compat-
ibility database and thus supports ongoing development. The other copies, called
secondary subsystems, have frozen compatibility databases and essentially are local
copies for execution and test. Every secondary subsystem is associated with exactly
one primary subsystem and shares its subsystem identification number.

Subsystems created by the Cmvc.lnitial command are always created as primary
subsystems. A subsystem also is made primary whenever its compatibility database
is destroyed and then recreated (see the Destrcy..Cdb command). By default, sub-
systems created by the Archive.Copy or Archive.Restore commands are secondary
subsystems, even if they were copied from primary subsystems. (Note, however,
that the Options parameter in each of these Archive commands can be set to Pri-
mary to create primary subsystems.)

The Maka..Primary command converts secondary subsystems to primary subsys-
tems and can be used as one step in the process of:

• Creating a a separate, updatable subsystem from an existing subsystem. To
create a new primary subsystem that is not associated with any other existing
subsystems:

1. Make a copy of the existing subsystem using the Archive.Copy command. If
the default value for the Options parameter is used, a secondary subsystem
is created.

2. Convert the secondary subsystem to a primary subsystem using the Make-
_Primary command with the Moving..Primary parameter set to false. The
converted subsystem is given a unique subsystem identification number and
so is no longer associated with any other primary subsystem.

• Relocating a primary subsystem to a different host. To move a primary subsystem
to a location currently occupied by an associated secondary subsystem:

1. Find or create an associated secondary subsystem on the desired host.
2. Update the compatibility database in the secondary subsystem using the

Update_Cdb command.

RATIONAL 8/1/88 PM-351

procedure Make..Primary
package !Commands.Cmvc_Maintena.nce

3. Convert the secondary subsystem to a primary subsystem using the Make-
_Primary command with the Moving..Primary parameter set to true. This
causes the converted subsystem to retain its original subsystem identification
number and thus its previous association with other subsystems.

4. Either destroy the original primary subsystem or convert it to a secondary
subsystem with the Make.Secondary command. This step must be done to
prevent corruption of the compatibility database.

Care must be taken to ensure that the Moving..Primary parameter has the correct
value for the desired operation. In particular, the value false assigns the subsystem a
new identification number, severing its association from other subsystems, including
its original primary subsystem. The new identification number is retained, even if
the subsystem is made secondary again.

Parameters

Subsystem: Strlng:= "(SELECTION)";
Specifies one or more secondary subsystems to be converted to primary subsystems.
The default is the selected subsystem.

If the specified subsystem is already a primary subsystem, this command has no
effect.

If the specified subsystem contains views with target keys other than RlOOO, the
units in these views cannot be in the coded state.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

MOVing_Primary : Boolean:= False;
Specifies whether the converted subsystem is to retain its original subsystem iden-
tification number.

When false (the default), the converted subsystem is given a new subsystem identi-
fication number and so is no longer associated with its original primary subsystem.

When true, the converted subsystem retains its original subsystem identification
number and preserves its previous association with other subsystems. This is in-
tended for moving a primary subsystem to a new location.

Response: Strlng:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-352 8/1/88 RATIONAL

procedure Mase..Prirnarv
package !Commallds,Cmvc~Ma.illtenan~f'

Restrictions

If the specified subsystem contains views with target keys other than RIOOO, the
units in these views cannot be in the coded state.

References

procedure Destroyc.Cdb

procedure Make..Secondary

procedure Update..Cdb

LM, procedure Archive.Copy

RATIONAL 8/1/88 PM-353

procedure Make..Secondary
package !Commands.Cmvc_Maintenance

procedure Make..Secondary

procedure Make_Secondar~ (Subs~stem
Response

String .- "<SELECT ION)" ;
String .- "<PROFILE>");

Description

Converts the specified primary subsystem into a secondary subsystem with a read-
only compatibility database.

When development occurs on multiple RIOOOS, a copy of each subsystem needs to
reside on each machine so that the entire application can be executed. One copy
of a given subsystem, called the primary subsystem, contains an updatable compat-
ibility database and thus supports ongoing development. The other copies, called
secondary subsystems, have frozen compatibility databases and essentially are local
copies for execution and test. Every secondary subsystem is associated with exactly
one primary subsystem and shares its subsystem identification number.

By default, secondary subsystems are created by the Archive.Copy or Archive-
.Restore commands, even if they were copied from primary subsystems. (Note,
however, that the Options parameter in each of these Archive commands can be set
to create primary subsystems.)

The Make..Secondary command is used in the last step in the process of moving a
primary subsystem:

1. Update the compatibility database in the secondary subsystem using the Update-
_Cdb command.

2. Convert the secondary subsystem to a primary subsystem using the Make-
_Primary command with the MovingcPrimary parameter set to true. This
causes the converted subsystem to retain its original subsystem identification
number and thus its previous association with other subsystems.

3. Either destroy the original primary subsystem or convert it to a secondary
subsystem with the Make..Secondary command. This step must be done to
prevent corruption of the compatibility database.

PM-354 8/1/88 RATIONAL

proced ure Makec.Secondary
package !Commands,Cmvc_Ma.in<zenance

Parameters

Subs~stem: String:= "<SELECTION>";

Specifies one or more primary subsystems to be converted to secondary subsystems.
The default is the selected subsystem.

If the specified subsystem is already a secondary subsystem, this command has no
effect.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

Response: StrIng:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Make..Primary

procedure Update..Cdb

L:'\I, procedure Archive.Copy

LM, procedure Archive.Restore

RATIONAL 8/1/88 PM-355

procedure Repair..Cdb
package [Commands.Cmvcc.Maintenance

procedure Repair..Cdb

procedure RepaIr_Cdb (Subsystem
VerIfy_Only
Delete_Current
Response

String . - "<SELECT ION)" ;
Boolean . - True;
Boolean .- False;
String .- "<PROF ILE)" J ;

Description

Verifies that the information in the specified subsystem's compatibility database is
consistent with the DIA~A representation of the subsystem's compiled units.

When the Verify..Only parameter is false, some or all of the inconsistencies are
repaired, depending on the value of the Delete..Current parameter.

When units are compiled in a subsystem, information from the compatibility data-
base is incorporated into the DIANA representation for those units. If the compat-
ibility database is corrupted after units have been compiled, it can be repaired or
rebuilt using information from the DIANA representation of the compiled units. For
example, if an object in the subsystem.State.Compatibility directory is deleted, the
Repair..Cdb command can rebuild the object.

Note that Repair..Cdb can rebuild a compatibility database only from the DIANA
representation of installed or coded units. Therefore, Repair..Cdb cannot be used to
restore a database destroyed by the Destroy..Cdb command, because Destroy..Cdb
also deletes the DIANA representation.

As long as there is at least one installed or coded unit in the subsystem, the database
can be rebuilt with the same subsystem identification number.

Parameters

Subsystem: StrIng:= "<SELECTION)";
Specifies one or more subsystems whose compatibility databases are to be repaired.
The default is the selected subsystem.

Multiple subsystems can be specified by using wildcards, context characters, special
names, set notation, or an indirect file. (For further information, see "Naming" in
the Key Concepts in this book.)

PM-356 S/1/88 RATIONAL

procedure Re~a.it _Cdb
package !Commands" em v«: _M aiuten ance

Verlf~_Onl~ : Boolean := True;
Specifies whether to verify the consistency of the compatibility database without
actually trying to repair it.

When true (the default value), only a report is generated, and no repair is under-
taken.

When false, an attempt is made to repair inconsistencies between the compatibility
database and the DIANA representation of compiled units. The extent of the repair
depends on the value of the Delete..Current parameter.

Delete_Current : Boolean:= False;
Specifies whether to delete and rebuild the entire existing compatibility database.

If false (the default value), the existing compatibility database is preserved. Existing
entries in the compatibility database are verified and missing entries are added.

If true, the entire database is deleted and rebuilt.

Regardless of the value of this parameter, the database can be rebuilt with the same
subsystem identification number, provided that at least one installed or coded unit
is in the subsystem.

The value of the Delete..Current parameter is ignored if the Verify _Only parameter
is true.

Response Strlng:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-357

procedure Update..Cdb
package !Commands.Cmvc_Maint€uance

procedure Updatc..Cdb

procedure Update_Cdb (From_Subs~stem
To_Subs~stem
Response

String .- "<ASSOCIATED_PRIMARY)";
String .- "<SELECTION)";
String .- "<PROF ILE)");

Description

Updates a secondary subsystem's compatibility database by copying the compati-
bility database from another subsystem.

The two subsystems must have the same subsystem identification number, although
they can be on different RlOOOs.

Typically, a compatibility database is copied from a primary subsystem into an
associated secondary subsystem to:

• Compile incremental changes in the secondary subsystem
• Prepare a secondary subsystem to be converted to a primary subsystem (see the

Make..Prirnary command)

Note that the compatibility database is automatically moved whenever Archive.Copy
is used to copy views or individual units from one subsystem into another. In con-
trast, the Updates.Cdb command copies only the compatibility database. Thus,
using the Update..Cdb command is equivalent to entering the Archive.Copy com-
mand with Options => "cdb",
The Update..Cdb command cannot be used to revert a compatibility database to
a previous version. See the ReverLCdb value of the Option parameter of the
Archive.Copy command.

PM-358 8/1/88 RATIONAL

procedure Update..Cdb
package !Comma.nds.Cmvc_Maintena.nc~

Parameters

From_Subs~stem String: = "<ASSOC I ATED_PR IMARY>" ;

Specifies the subsystem whose compatibility database is to be copied. The compat-
ibility database in Frome.Subsystem must be more recent than the compatibility
database in Tc..Subsystem.

The default special name "<ASSOC I ATED_PR IMARY>" designates the primary subsys-
tem associated with the secondary subsystem specified by the Tcc.Subsystern pa-
rameter. The default value gets the name of the associated primary subsystem from
the subsystem.State.Compatibility.State file within the secondary subsystem. Note
that if the primary subsystem has been moved, this file may be out of date. If so,
the file must be edited to supply the correct pathname for the associated primary
subsystem; otherwise, the name of the associated primary must be specified as the
value for the From..Subsystem parameter.

To_Subs~stem : String:= "<SELECTION>";

Specifies the secondary subsystem whose compatibility database is to be updated.
The default is the selected subsystem.

Response: String: = "<PROF I LE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

proced ure Maka..Primary

LM, procedure Archive.Copy

end Cmvc..Maintenance;

RATIONAL 8/1/88 PM-359

RATIONAL

package Work..Order

This package provides operations for creating, viewing, and manipulating work
orders, work-order lists, and ventures. These objects can be associated with user
sessions (that is, with user IDs and session names) to collect and convey data about
project management among team members involved in large-system development
using subsystems.

Many characteristics of work orders, work-order lists, and ventures are controllable
with session switches, which are described in a following section.

Work orders are designed to communicate r18tails about specific tasks to be accom-
plished. They may present instructions to a developer and collect project work
data to mark ongoing progress. A particular work order may address one or more
developers, but typically it is limited in scope; a work order may describe one bug
to be fixed, for example.

Groups of related work orders constitute a work-order list. For example, a work-
order list may relate to a particular module of code or it may be the set of work
orders assigned to an individual developer.

A larger component of project management is the venture. A venture is a manage-
ment tool that contains information about groups of work orders and work-order
lists and controls their use via venture policy switches. Each work order must have
a venture that is its "parent."

Ventures, work-order lists, and work orders are library objects. For each project-
management object, package Work..Order provides subprograms to:

• Create, display, and edit the object
• View and set the default object for a user or session
• View and set the textual notes within the object

Although there are editing commands in packages within package Work..Order for
each object, viewing and editing of work orders, work-order lists, and ventures is
perhaps most easily done with commands from package Common. See the following
introductions to subpackages Editor, List-Editor, and Venture..Editor for sample
displays and specific information about using Common commands for editing.

RATIONAL 8/1/88 PM-361

package !Commands. Work_Order

Session Switches
Many session switches determine how information in work orders, work-order lists,
and ventures are formatted. See SJM, Session Switches, for more information on
session switches.

The following session switches pertain to project-reporting objects. Unless otherwise
specified, the full name for each switch begins with Session. For example, the full
name for Cmvc..Break..Longc.Lines is Session.Cmvc_Break_Long_Lines.

Cmve_Break_Long_Llnes (default true)

Controls whether lines in work orders, work-order lists, and ventures that exceed
the value of the Cmvc..Llnec.Length switch are broken. User-entered strings are
never broken.

Cmve_Capitallze (default true)

Determines whether words, other than those in user-entered strings, in work orders,
work-order lists, and ventures are capitalized.

Cmvc_Comment_Extent (default 4)

Specifies, as an integer value, the number of comments displayed in a work order.

Cmvc_Contlguration_Extent (default 0)

Specifies, as an integer value, the number of configurations displayed 10 a work
order.

Cmvc_Field_Extent (default 4)

Specifies, as an integer value, the number of elements of vector fields that are
displayed in a work order.

Omveclndentatlon (default 2)

Specifies, as an integer value, the number of spaces used for indentation 10 work
orders, work-order lists, and ventures.

Cmvc_Line_Length (default 80)

Specifies, as an integer value, how long a line in a work order, work-order list, or
venture can be before it is eligible to be broken.

Cmve_Shorten_Name (default true)

Shows object names in work orders, work-order lists, and ventures in a shortened
form.

PM-362 8/1/88 RATIONAL

package !Commands. Work..Order

Cmve_Shorten_Unit_State (default false)

Shows the state of work orders in a shortened form.

Cmve_Show_Add_Date (default true)

Displays the date an entry is added to a work order.

Cmve.s Show _Add_ Time (default true)

Displays the time an entry is added to a work order.

Cmvec Show _All_Default_Lists (default false)

Displays only the user's default work-order list in a venture.

Cmvc., Show _ All_Default _Orders (default false)

Displays only the user's default work order in a venture.

Cmve..Shcw _Deleted_Objeds (default false)

Shows deleted work orders or work-order lists in a work-order list. Display of deleted
objects is controlled by elision.

Cmvc..Shcw _Deleted_ Versions (default false)

Shows version numbers and information for all versions of a work order or work-
order list. Display of deleted versions is controlled by elision.

Cmvec Show _Display _Position (default false)

Shows display position of user-defined work-order fields.

Omve. Show _Edit_InCa (default false)

Shows edit information for objects displayed in work orders, work-order lists, or
ventures.

Cmve..Shcw _Field_Default (default true)

Shows the default value for vector fields. If this switch is true, vector fields will
show the default value of all elements that have not been assigned.

Cmve..Show _Field_Max_Index (default false)

Shows the number of entries in a vector field that have been written.

Omve..Shcw _Field_ Type (default falae)

Shows the type of field (that is, Boolean, integer, or string) for all scalar and vector
fields.

RATIONAL 8/1/88 PM-363

package !Commands. Work..Order

Cmvec.Show _Frozen [default false]

Shows "Frz" for frozen objects displayed in work orders, work-order lists, or ven-
tures.

Cmve..Show _Hidden_Fields [default false]

Displays hidden fields in a venture.

Cmve..Sbow _Retention [default false]

Shows the retention count when displaying objects in work orders, work-order lists,
or ventures.

Cmvc..Show _Boolean [defsult false]

Shows the size of the version, in bytes, when displaying objects in a work order,
work-order list, or venture.

Cmve_Show_Unit_State [default true)

Shows the state of work orders listed In ventures and work-order lists (that IS,
pending, in progress, closed).

Omvec.Show..Usere [default false]

Shows the list of users in the users field of work orders. Display of users is controlled
by elision.

Cmve_Show_ Version_Number [default ralse)

Shows the version number of objects displayed in work orders, work-order lists, or
ventures.

Cmve., Uppercase [default ralse)

Determines whether words, other than those in user-entered strings, in work orders,
work-order lists, and ventures are displayed in uppercase.

Cmve., Version_Extent [default 0)

Specifies, as an integer value, the number of versions displayed in a work order.

Default ; Venture

Specifies a filename for the default venture for the session. The full switch name is
Cmvc.DefaulL Venture.

PM-364 8/1/88 RATIONAL

procedure Add.,Toe.List
package [Commands. Work.Drder

procedure Add_To_List

procedure Add_To_List (Order_Names
LisLNarne
Response

String .- "<IMAGE>";
String . _ "<WORK_L1ST>" ;
StrIng .- "<PROFILE>");

Description

Adds one or more work orders to a work-order list.

Parameters

Order_Names: String:= "<IMAGE>";

Specifies one or more work orders to be added to the list. The default special
name "< IMAGE>" designates the currently selected work order if the cursor is in the
selection; otherwise, it designates the work order in the current image.

Multiple work-order names can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
"N aming" in the Key Concepts in this book.)

List_Name: String:= "<WORClIST>";

Specifies the work-order list to which work orders will be appended. The default
spe~ial name "<WORK_lI ST>" specifies the default work-order list for the current
seSSIOn.

Response StrIng:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error will result if the work order(s) specified by the Order _N ames parame-
ter were not created on the same venture as the work-order list specified by the
LisLName parameter.

References

procedure Remove..Frorn.List

RATIONAL 8/1/88 PM-365

procedure Close
package !Commands. Work..Order

procedure Close

procedure Close (Order_Name
Response

String .- "(ORDER)";
String .- "(PROFILE>");

Description

Sets the status of the specified work order to closed.

Once a work order has been closed, i~no longer can be modified.

Parameters

Order_Name : String:= "(ORDER)";

Specifies the work order to be closed. The default special name "(ORDER)" specifies
the default work order for the current session. The null string (" ") is interpreted to
mean "<CURSOR)".

Response: Strlng:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-366 8/1/88 RATIONAL

procedure Create
package !Commands. Work.Order

procedure Create

procedure Create (Order_Name String · - "»OBJECT NAME«" ;
Notes Strlng ·- ,
On-LIst StrIng ·- "<WOFK_LI ST>" ;
On_Venture String ·- n <VEr~TURE>" ;
Make_Default_Work_Order Boolean ·- True;
Response String ·- ..<PROF ILE>") ;

Description

Creates a work order on the specified venture and adds it to a work-order list.

The new work order is created on the default venture for the current session
unless the One.Venture parameter names a venture. The string specified in the
Notes parameter is entered into the notes field of the new work order. If the
Makc..Default., Work..Order parameter is true, the new work order becomes the
default work order on the parent venture.

Parameters

Order_Name: String:= "»OBJECT NAME«";

Specifies the name for the new work order. The default parameter placeholder
"»OBJECT NAME«" must be replaced or an error will result.

Notes: String:= ;

Specifies a string to be saved in the notes field of the work order. Notes typically
are used to provide a brief description of the work order.

On_List: String:= "<WORK_LIST>";

Specifies a work-order list to which the new work order is appended. The default
special name "<WORK_LI ST>" specifies the default work-order list for the current
session. If the current session has no default work-order list, a warning message
appears in the output log. If the value of this parameter is the null string ('",), the
work order is not added to any work-order list.

On_Venture: String:= "<VENTURE>";

Specifies the venture for which the work order is created. The default special name
"<VENTURE>" specifies the default venture for the current session.

RATIONAL 8/1/88 PM-367

procedure Create .
package !Commands. Workc.Order

Make_Default_Work_Order : Boolean:= True;
Specifies whether to set the new work order as the session default. If true (the
default value), the new work order becomes the default work order on the specified
venture.

Response String:= "(PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

Errors

An error will result if the work-order list specified by the On..List parameter was
not created on the venture specified by the On..Venture parameter.

References

function Default

procedure Set-Default

PM-368 8/1/88 RATIONAL

procedure Createc.Fleld
package !Commands. WorkcOrder

procedure Creates.Field

procedure Create_ Field
(Fleld_Name String ·- "»FIELD NAME«" ;
Field_T~pe String ·- "»BOOLEAN ISTR ING IINTEGER«" ;
Is_Vector Boolean ·- False;
Is-Controlled Boolean ·- False;
Default String .- ,
Displa~_Position Natural .- Natural 'Last;
On-Venture String · - "(VENTURE>" ;
Propagate Boolean ·- True;
Renumber_Flelds Boolean ·- True;
Response String · - "(PROF ILE>");

Description

Creates a new user-defined field with the designated data type in the specified
venture.

This field appears in all work orders subsequently created on this venture. If the
Propagate parameter is true, all work orders already created on this venture are
updated to contain this field. The new field appears with the initial value specified
by the Default parameter.

Parameters

Field_Name : String: = "»F IELD NAME«";
Specifies the name for the user-defined field. The default parameter placeholder
"»FIELD NAME«" must be replaced or an error will result.

Field_ T~pe : String: = "»BOOLEAN ISTR ING IINTEGER«" ;
Specifies the data type for the new field. Fields can be created that contain Boolean,
string, or integer data. The default parameter placeholder "»BOOLEAN ISTR ING I IN-
TEGER«" must be replaced or an error will result.

Is_Vector : Boolean:= False;
Specifies whether the field accepts an array of values or a single value. If false (the
default value), the field accepts a single scalar value.

If true, the field accepts an array of values. The range of array indexes is l..Posi-
tive'Last. Because each value of a user-defined field can be modified only once, the
field should be created as a vector if its value will need to be updated. Successive
elements in the array then can be modified. In this way, a history of changes to this
field is provided.

RATIONAL 8/l/88 PM-369

procedure Create_Field
package !Commands. Works.Order

Is_Controlled : Boolean := False;
Specifies whether the new field is controlled by the Allow.iEditc.Of., Work.rOrders
policy switch.

If true, the field can be edited interactively only if the Allowc.Edif..Of., Workc.Orders
policy switch is true in the venture. If false (the default value), the field can be
edited interactively regardless of the value of the Allow_EdiLOL Work.rOrders pol-
icy switch.

Default: StrIng:= "";
Specifies an initial value for the field. The initial value will appear on new work
orders and in existing work orders if the field is propagated.

Display_Position: Natural := Natural 'Last;
Specifies the display position of the field in the work order. If this is set to 0, the
field will not be visible when the work order is displayed with the editor.

On_Venture : StrIng:= "<VENTURE>";
Specifies the name of the venture to which the new field is added. The default
special name "<VENTURE>" specifies the default venture for the current session.

Propagate: Boolean:= True;
Specifies, if true, that the field will be added to all existing work orders on the
venture.

Renumber_Fields : Boolean := True;
Specifies, if true, that the fields will be reordered if this is necessary to make the
new field have the Display _Position ordinal.

Response: String := "<PROF ILE>" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-370 8/1/88 RATIONAL

procedure Create..List
package lCommands,Work_Order

procedure Create..List

procedure Create_List (LisLName
Notes
On_Venture
Make_Default_List
Response

String . - "»OBJECT NAME«";
String . - ,
String . - "<VENTURE>";
Boolean .- True;
String . - "<PROFILE>") ;

Description

Creates a work-order list on the specified venture.

Parameters

List_Name: String: = "»OBJECT NAME«";
Specifies the name of the new work-order list. The default parameter placeholder
"»OBJECT NAME«" must be replaced or an error will result.

Notes: String:= "";
Specifies a string to be saved in the notes field of the work-order list. Notes typically
are used to provide a brief description of the work-order list.

On_Venture : String:= "<VENTURE>";
Specifies the name of the venture to which the new work-order list is added. The
d.efault special name "<VENTURE>" specifies the default venture for the current ses-
sion.

Make_Default_List Boolean:= True;
Specifies whether to set the new work-order list as the session default. If true (the
default value), the new list becomes the new default work-order list in the specified
venture.

Response String:= "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure SeLDefaulLList

RATIONAL 8/1/88 PM-371

procedure Create..Venture
package !Commands. Work..Order

procedure Creates.Venture

procedure Create_Venture
(Venture_Name
Notes
Make_Default_Venture
Response

String ._ "»OBJECT NAME«";
String . - ,
Boolean .- True;
String .- "<PROFILE)");

Description

Creates a new venture.

Parameters

Venture_Name String: = "»OBJECT NAME«";

Specifies the name of the new venture. The default parameter placeholder "»OBJECT
NAME«" must be replaced or an error will result.

Notes: StrIng: = "";
Specifies a string to be saved in the notes field of the venture. Notes typically are
used to provide a brief description of the venture.

Make_Defaul t_'lenture : Boolean := True;

Specifies whether to set the new venture as the default. IT true (the default value),
the new venture becomes the default venture for the current session.

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure SeLDefaulLVenture

PM-372 8/1/88 RATIONAL

function Default
package !Commands. Work.Drder

function Default

function Default (For_Venture-For_User
Ignore_Garbage

String
String
Boolean

__ "<VENTURE>" .
_- "<CURRENT_USER>";
.- True) return String;

Description

Returns the name of the user's default work order in the specified venture.

Parameters

For_Venture: String:= "<VENTURE>";
Specifies the name of the venture to reference. The default special name" <VENTURE>"
specifies the default venture for the current session.

For_User : String:= "<CURRENT_USER>";
Specifies the usernarne for which the default work order is requested. If only a
username is supplied, session S_1 is assumed. If the user has multiple sessions with
default work orders in the venture, both the username and the session name must
be specified when the default work order for a session other than S_1 is desired.
The default special name "<CURRENT_USER>" specifies the current session.

Ignore_Garbage : Boolean:= True;
Specifies how to present results in case the once-valid default work order is missing.
If true (the default), the function result is "<>". If false, the contents of the function
result are unpredictable. When function results are to be used directly in CMVC
commands, it is recommended that Ignores.Garbage is true.

return String;
Returns the pathname of the default work order.

Example

The command:

displays the name of the default work order for the current user's current session in
the default venture.

RATIONAL 8/1/88 PM-373

function Default
package !Commands. Workc.Order

The command:

Text_lo.Put_Line(Work_Order.Default (For_Venture => "M~_Venture",
For_User => "Userl"));

displays the name of the default work order for user Userl, session S_I, in My.,Ven-
ture.

The command:

Tex t ; I0 .Put_Line(Work_Order .Defaul t (For_Venture => "M~_Venture",
For _User => "Used. Work ing")) ;

displays the name of the default work order for user Used, session Working, in
My _Venture.

References

procedure SeLDefault

PM-374 8/1/88 RATIONAL

function Defaulf..List
package !Comm.ands. Work .Drder

function Defauln..List

function Default LIst (For_Venture
For_User
Ignore_Garbage

String
String
Boolean

.- "<VENTURE>" ;
"<CURRENT_USER>";

.- True} return String;

Description

Returns the name of the user's default work-order list in the specified venture.

Parameters

For_Venture: String:= "<VENTURE>";
Specifies the name of the venture to reference. The default special name" <VENTURE>"
specifies the default venture for the current session.

For_User: String:= ·"<CURRENT_USER>";
Specifies the username for which the default work-order list is requested. If only a
username is supplied, session S_1 is assumed. If the user has multiple sessions with
default work-order lists in the venture, the username and the session name must be
specified when the default work-order list for a session other than S_1 is desired.
The default parameter "<CURRENT_USER>" specifies the current session.

Ignore_Garbage : Boolean:= True;
Specifies how to present results in case the once-valid default work- order list is
missing. If true (the default), the function result is "<>". If false, the contents of
the function result are unpredictable. When function results are to be used directly
in Cl\fVC commands, it is recommended that Ignore..Garbage is true.

return String;
Returns the pathname of the default work-order list.

Example

The command:

Text_lo.Put_Line(Work_Order.Default_List)

displays the name of the default work-order list for the current user's current session
in the default venture.

RATIONAL 8/1/88 PM-375

function DefaulLList
package !Commands. Workc.Order

The command:

Text_' o. Put_Line(Work_Order. Defaul LLlst (For_Venture => "M~_Venture" ,
For _User => "User 1")) ;

displays the name of the default work-order list for user Userl, session S_I, in
My_ Venture.

The command:

Text_lo.PuLLine(Work_Order.DefaulLList (For_Venture => "M~_Venture",
For_User =>

"Userl.Working"));

displays the name of the default work-order list for user Userl, session Working, in
My _Venture.

References

procedure SeLDefaulLList

PM-376 a/1/aa RATIONAL

function Default., Venture
package lCommands. Work.Drder

function Default..Venture

function Default_Venture (For_User
Ignore_Garbage

String .- "<CURFENT_USER>";
Boolean .- True) return String;

Description

Returns the pathname of the default venture for a user.

Parameters

For_User : String: = "<CURRENLUSER>";
Specifies the username for which the default venture is requested. If only a usernarne
is used, session S_1 is assumed. If the user has multiple sessions and wants the
default venture for a session other than S_I, the session name must be specified.
The default special name "<CURRENT _USER>" specifies the current session.

Ignore_Garbage : Boolean:= True;
Specifies how to present results in case the once-valid default venture is missing. If
true (the default), the function result is "<>". If false, the contents of the function
result are unpredictable. When function results are to be used directly in CMVC
commands, it is recommended that Ignore..Oarbage is true.

return String;
Returns the pathname of the default venture.

Example

The command:

displays the name of the default venture for user Userl, session S_1.

The command:

Text_lo.Put_Line(Work_Order.Default_Venture (For_User =>
"Userl.Working"));

displays the name of the default venture for user Userl, session Working.

RATIONAL 8/1/88 PM-377

function DefaulLVenture
package !Commands. Workc.Order

References

procedure SeLDefaulL Venture

PM-378 8/1/88 RATIONAL

procedure Delete_Field
package !Commands, Work.Order

procedure Delete.Field

procedure Delete_Field (Field_Name
Venture_Name
Even_1f_Data_Present
Response

String .- "»FIELD NAME«";
String .- "<VENTURE)";
Boolean .- False;
String .- ·'<PROFILE>");

Description

Deletes the named field from the venture.

Parameters

Fleld_Name: String:= "»FIELD NAME«";

Specifies the name of the field to be deleted.

Venture_Name : String: = "<VENTURE)";

Specifies the name of the venture from which the field is deleted. The default
parameter "<VENTURE)" specifies the default venture for the current session.

Even_lf_Data_Present : Boolean := False;

Specifies whether to delete the field despite the presence of data in this field for
existing work orders. If false (the default value), the field is not deleted when data
would be lost.

If true, the field is deleted from the specified venture and any data in that field of
work orders is lost.

Response : String: = "<PROFILE)" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

proced ure Createc.Field

RATIONAL 8/1/88 PM-379

procedure Display
package !Commands. Work..Order

procedure Display

procedure Displa~ (Order_Name
Options
Response

String .-
String ._
String .-

"<ORDER)" ;
,

"<PROF ILE)") ;

Description

Formats and displays the contents of the specified work order in the output window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a work order, see the Edit command.

Parameters

Order_Name: String -: = "<ORDER)";

Specifies the name of the work order to be displayed. The default special name
"<ORDER)" specifies the default work order for the current session. The null string
('",) is interpreted to mean "<CURSOR)".

Options: String: = "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work..Order. When
using these switch names as options, omit "Cmvc.," in the switch name.

The following special options exist:

<TERSE) the default, specifies an abbreviated display
<DEFAULT) specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Edit

PM-380 8/1/88 RATIONAL

proced ure Display _List
package !Commands, Work..Drder

procedure Displayc.l.ist

procedure Displa~_List (List_Name
Options
Response

String . - "<WORK_L1ST)" ;
String .-
StrIng .-

,
"<PROF ILE>") ;

Description

Formats and displays the contents of the specified work-order list in the output
window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a work-order list, see the EdiLList command.

Parameters

LIst_Name: StrIng:= "<WORK_LIST)";

Specifies the name of the work-order list to be displayed. The default special name
"<WORK_LI ST>" specifies the default work-order list for the session. The null string
('",) is interpreted to mean "<CURSOR)".

Options : String: = "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work..Order. When
using these switch names as options, omit "Cmvc_" in the switch name.

The following special options exist:

<TERSE) the default, specifies an abbreviated display
<DEFAULT> specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure EdiLList

RATIONAL 8/1/88 PM-38!

procedure Display.iVenture
package !Commands. Work..Order

procedure Display.rVenture

procedure Displa~_Venture (Venture_Name
Options
Response

String .-
String .-
String .-

"<VENTURE>" ;
1111 ,
" <PROF ILE>") ;

Description

Formats and displays the contents of the specified venture in the output window.

The format of the display is controlled by the Options parameter. This display
cannot be edited; to edit a venture, see the EdiL Venture command.

Parameters

Venture_Name String:= "<VENTURE>";

Specifies the name of the venture to be displayed. The default special name- "<VEN-
TURE>" specifies the default venture for the current session. The null string (",,) is
interpreted to mean "<CURSOR>".

Options: String:= "";

Specifies the format of the display. Valid options include names and values for any
of the session switches described at the beginning of package Work..Order. When
using these switch names as options, omit "Cmvc.," in the switch name.

The following special options exist:

<TERSE> the default, specifies an abbreviated display
<DEFAULT> specifies use of current session-switch values
<VERBOSE> specifies an explanatory display

Response: String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

procedure Edit.,Venture

PM-382 S/l/SS RATIONAL

procedure Edit
package !Commands. Work..Order

procedure Edit

procedure Edit (Order_Name String ._ "<ORDER>");

Description

Edits the designated work order.

The procedure creates a window in which the designated work order is displayed. If a
window already exists for that work order, the window is reused. From the window,
the work order can be edited with the operations from package !Commands.Common
that apply to this class of object.

Parameters

Order _Name : Str ing := "<ORDER>";

Specifies the name of the work order to be edited. The default special name "<OR-
DER>" specifies the default work order for the current session. The null string (",,)
is interpreted to mean "<CURSOR>".

RATIONAL 8/1/88 PM-383

procedure Edit-List
package !Commands. Work..Order

procedure Edit_List

procedure Edit_list (List_Name String . - "<WORCLlST>");

Description

Edits the designated work-order list.

The procedure creates a window in which the designated work-order list is displayed.
If a window already exists for that work-order list, the window is reused. From
the window, the work-order list can be edited with the operations from package
!Commands.Common that apply to this class of object.

Parameters

Llst_Name: Str'ing:= "<WORK_LIST>";

Specifies the name of the work-order list to be edited. The default special name
"<WORK_LI ST>" specifies the default work-order list for the current session. The null
string (",,) is interpreted to mean "<CURSOR>".

References

package Editor

PM-384 8/1/88 RATIONAL

procedure Edit- Venture
package !Commands. Work., Order

procedure Editc.Venture

procedure Edit_Venture (Venture_Name String . - "<VENTURE)");

Description

Edits the designated venture.

The procedure creates a window in which the designated venture is displayed. If a
window already exists for that venture, the window is reused. From the window,
the venture can be edited with the operations from package !Commands.Common
that apply to this class of object.

Parameters

Venture Name String:::: "<VENTURE)";

Specifies the name of the venture to be edited. The default special name "<VEN-
TURD" specifies the default venture for the current session. The null string (" ,,) is
interpreted to mean "<CURSOR)".

References

package LisLEditor

RATIONAL 8/1/88 PM-385

function Notes
package !Commands. Work..Order

function Notes

function Notes I. Order _Name String .- "(ORDER)") return String;

Description

Returns the notes field of the specified work order.

The notes field typically contains descriptive information about a work order.

Parameters

Order _Name : St r ing : = "(ORDER)";

Specifies the work order whose notes field is to be displayed. The default special
name "(ORDER)" specifies the default work order for the current session. The null
string (",,) is interpreted to mean "(CURSOR)".

return String;

Returns the notes field of the specified work order.

References

package Ventures.Editor

PM-386 8/1/88 RATIONAL

function Notes..List
package !Commands. Work_Order

function Notes_List

function Notes_List (List_Name String . - "<WORK_LIST>") return String;

Description

Returns the notes field of the specified work-order list.

The notes field typically contains descriptive information about a work-order list.

Parameters

List_Name: Strlng:= "<WORK_LIST>";

Specifies the work-order list whose notes field is to be displayed. The default special
name" <WORK_L1ST>" specifies the default work-order list for the current session. The
null string ("") is interpreted to mean "<CURSOR>".

return Sbr i nq ;

Returns the notes field of the specified work-order list.

RATIONAL 8/1/8S PM-387

function Notes..Venture
package !Commands. Work..Order

function Notca..Venture

function Notes_Venture (Venture_Name String .- "<VENTURE>")
return String;

Description

Returns the notes field for the specified venture.

The notes field typically contains descriptive information about a venture.

Parameters

Venture_Name String:= "<VENTURE>";
Specifies the venture whose notes field is to be displayed. The default special name
"<VENTURE>" specifies the default venture for the current session. The null string
(" ,,) is interpreted to mean "<CURSOR>".

return String;
Returns the notes field for the specified venture.

PM-388 8/1/88 RATIONAL

procedure Remcvec Frorru.Lise
package 'Commands. Work.Order

proced ure Removec.Frorru.List

procedure Remove_From_List (Order_Names
List_Name
Response

String .- "<IMAGE>";
String . - "<WORK_L1ST>" ;
String .- "<PROFILE>");

Description

Removes the entry for the specified work order from a work-order list.

Parameters

Order_Names: String:= "<IMAGE>";

Specifies one or more work orders to be deleted from the specified work-order list.
The default special name" < IMAGE>" designates the currently selected work order if
~he cursor is in the selection; otherwise, it designates the work order in the current
Image.

Multiple work-order names can be specified by using wildcards, context charac-
ters, special names, set notation, or an indirect file. (For further information, see
"Naming" in the Key Concepts in this book.)

List_Name: String:= "<WORK_LIST>";

Specifies the work-order list from which the work orders are deleted. The default
special name "<WORK_LI ST>" specifies the default work-order list for the current
session.

Response String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

RATIONAL 8/1/88 PM-389

procedure SeLDefault
package !Commands. Workz.Order

procedure Set_Default

procedure Set_Default (To_Work_Order
For_Venture
For_User
Response

String .- "<CURSOR)";
String .- "<VENTURE>";
String ._ "<CURRENT _USER)·';
String .- "<PROFILE)");

Description

Sets the specified work order to be the default for a given user and session whenever
the work order's parent venture is the default.

Each venture contains a list of mappings between user sessions and work orders.
When a user sets a venture as the default in a given session, the work order mapped
to that session in the venture automatically becomes the user's default work order.
This command modifies the venture by adding or changing the mapping from session
to work order in the specified ventur~.

Parameters

To_Work_Order String:= "(CURSOR)";
Specifies the new default work order for the specified venture. The default value for
this parameter is the work order on which the cursor is located.

Setting the To., Workc.Order parameter to either "<>" or "" causes there to be no
default work order on the specified venture for the specified user and session.

For_Venture: String:= "<VENTURE)";
Specifies the venture for which the default work order is to be set. The default
special name "<VENTURE>" specifies the default venture for the current session.

For_User: String:= "<CURRENT_USER)";
Specifies the user and session for which the default work order is to be set. This
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.Scz]. If only a username is supplied, session 8_1 is
assumed. The default special name "<CURRENT _USER)" specifies the current session
for the current user.

Response: String := "<PROF ILE)" ;
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-390 8/1/88 RATIONAL

procedure SeLDefault
package !Commands_ Work..Order

Errors

An error occurs if the To., Work..Order parameter names a work order that was not
created from the venture named by the Fot..Venture parameter.

References

function Default

RATIONAL 8/1/88 PM-391

procedure SeLDefaulLList
package !Comm;1nds. Work..Order

procedure Set..Defaultc.List

procedure Set_Cefault_List (To_List
For_Venture
For_User
Response

String . - "<CURSOR)";
String . - "<VENTURE>";
StrIng = "<CURRENT_USER>";
String . - "<PROF ILE>" i ;

Description

Sets the specified work-order list to be the default for a given user and seSSIOn
whenever the work-order list's parent venture is the default.

Each venture contains a list of mappings between user sessions and work-order lists.
When a user sets a venture as the default in a given session, the work-order list
mapped to that session in the venture automatically becomes the user's default
work-order list. This command modifies the venture by adding or changing the
mapping from session to work-order list in the specified venture.

Parameters

To_List: String: = "<CURSOR)";

Specifies the new default work-order list for the specified venture. The default for
this parameter is the work-order list on which the cursor is located.

Setting the To..List parameter to either "<>" or "" causes there to be no default
work-order list on the specified venture for the specified user and session.

For_Venture: String:= "<VENTURE>";

Specifies the venture for which the default work-order list is to be set. The default
special name "<VENTURE>" specifies the default venture for the current session.

For_User: String:= "<CURRENT_USER>";

Specifies the user and session for which the default work-order list is to be set. This
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.Scz}. If only a username is supplied, session S_1 is
assumed. The default special name "<CURRENT_USER>" specifies the current session
for the current user.

Response: S tr ing : = " <PROF ILE>" ;

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-392 8/1/88 RATIONAL

procedure SeLDefaulLList
package !Commands. Work..Order

References

function DefaulLList

RATIONAL a/l/aa PM-393

procedure SeLDefaulLVenture
package !Commands. Work.cOrder

procedure Setc.Default.,Venture

procedure Set_Default_Venture (To_Venture
For_User
Response

String ._ "<CURSOR)";
String = "<CURRENT_USER)";
Strlng .- "<PROFILE)");

Description

Sets the default venture for the specified session.

Setting a venture to be the default automatically sets the default work order and the
default work-order list for the current session, if such defaults have been specified
for that venture.

Setting a default venture with this command automatically sets the value of the
Cmvc.Default., Venture session switch to the specified venture name.

Parameters

To_Venture : Stnng:= "<CURSOR)";
Specifies the name of the new default venture. The default for this parameter is the
venture on which the cursor is located.

Setting the To..Venture parameter to either "<>" or "" causes there to be no default
venture for the specified user and session.

For_User: String:= "<CURRENT_USER)";
Specifies the user and session for which the default venture is to be set. This
parameter can be a username (for example, Anderson) or a username and session
name (for example, Anderson.Scz]. If only a username is supplied, session S_1 is
assumed. The default special name "<CURRENT _USER>" specifies the current session
for the current user.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-394 8/1/85 RATIONAL

procedure Set..Notes
package !Commands. Works.Order

procedure Sct..Notes

procedure Set_Notes (To_Value
Order_Name
Response

String .- "»New Notes«";
String .- "<ORDER)";
String .- "<PROFILE)");

Description

Modifies the notes field for the specified work order.

Any existing notes in the specified work order are replaced by the new notes. Unlike
user-defined fields, the notes field can be updated multiple times.

The notes field typically is used to provide a brief description of the work order.

Parameters

To_Value: String:= "»New Notes«";

Specifies the new notes. The default parameter placeholder "»New Notes«" must
be replaced or an error will result.

Order _Name : String: = "<ORDER)";

Specifies the work order whose notes field is to be updated. The default special
name "<ORDER)" specifies the default work order for the current session. The null
string (" ,,) is interpreted to mean "<CURSOR)".

Response: String:= "<PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes

RATIONAL 8/1/88 PM-395

procedure Set.c Notes..Llst
package !Comma.nds. Works.Order

procedure Setc.Notess.List

procedure Set_Nates_List (To_Value
List_Name
Response

String . - "»New Notes«";
String .- "(WORK_LIST)";
Strlng .- "(PROFILE>");

Description

Modifies the notes field for the specified work-order list.

Any existing notes in the specified work-order list are replaced by the new notes.

The notes field typically is used to provide a brief description of the work-order list.

Parameters

To_Value: String:= "»New Notes«";
Specifies the new notes. The default parameter placeholder "»New Notes«" must
be replaced or an error will result.

List_Name: String:= "(WOReli ST>";
Specifies the work-order list whose notes field is to be updated. The default special
name "<WORK_lIST>" specifies the default work-order list for the current session.
The null string (",,) is interpreted to mean "(CURSOR)".

Response: String:= "(PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes.rList

PM-396 8/1/88 RATIONAL

procedure Setc.Notes., Venture
package !Commands"Work_Order

procedure Setc.Notes., Venture

procedure Set_Notes_Venture (To_Value
Venture_Name
Response

String .- "»New Notes«";
Strlng . - "(VENTURE>";
String .- "(PROFILE>");

Description

Modifies the notes field for the specified venture.

Any existing notes in the specified venture are replaced by the new notes.

The notes field typically is used to provide a brief description of the venture.

Parameters

To_Value : String:= "»New Notes«";

Specifies the new notes. The default parameter placeholder "»New Notes«" must
be replaced or an error will result.

Venture_Name : String:= "(VENTURE)";

Specifies the venture whose notes field is to be updated. The default special name
"(VENTURE>" specifies the default venture for the current session. The null string
Coo,) is interpreted to mean "(CURSOR)".

Response: String:= "(PROFILE)";

Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

References

function Notes..Venture

RATIONAL 8/1/88 PM-397

procedure SeL Venture..Policy
package !Commands. Work..Order

procedure Set., Venture..Policy

procedure Set_Venture_Polic~
(The_Switch
To_Value
Venture_Name
Effort_Onl~
Response

Venture_Pollc~_Switch;
Boolean;
String
Boolean
String

.- "<VENTURE)" ;

.- False;

.- "<PROF ILE>");

Description

Sets the specified venture policy switch to the specified value.

This command also can be used to determine the value of a particular switch for a
venture that currently is not displayed.

Parameters

The_Switch : venture_Pollc~_Swltch;
Specifies the venture policy switch to be modified or queried. This must be the fully
qualified name of the object-for example, Work_Order.Require_CommenLLines.

To_Value : Boolean;
Specifies the new value for the venture policy switch--either true or false.

Venture_Name : String:= "<VENTURE)";
Specifies the venture whose policy switch is to be modified or queried. The default
special name "<VENTURE>" specifies the default venture for the current session. The
null string (",,) is interpreted to mean" <CURSOR)".

Effort_Onl~ : Boolean := False;
Specifies whether to simply determine the value of the specified policy switch, with-
out actually changing that value. If true, the current value of the policy switch is
displayed in the output window and the switch is not modified.

Response: String:= "<PROFILE)";
Specifies how to respond to errors, how to generate logs, and what activities to use
during the execution of this command. The default is the job response profile.

PM-398 8/1/88 RATIONAL

procedure Set., Venturc..Policy
package !Commands. Work..Order

References

type Venture..Policy _Switch

RATIONAL 8/1/88 PM-399

type Venture..Policy _Switch
package !Commands. Work..Order

type Venturc..Policy _Switch

t~pe Venture_Polic~_Switch is (Require_Current_Work_Order,
Require_Comments_At_Check_ln,
Require_Comment_Lines,
Journal_Comment_Llnes,
Allow_Edit_Of_Work_Orders);

Description

Defines the policies that can be enforced for a venture.

When a user has a default venture, the policies on that venture are followed by
C~fVC commands; errors result if any policies are violated. For example, if the
policy Require..Current., Work..Order is enforced for the user's default venture, the
user must have a default work order to execute any CMVC commands that would
update a work order, such as Cmvc.Check..In and Cmvc.Check..Out.

Using package !Implementation. Work..Orderc.Implementation, these policies can be
interrogated and enforced by other user-defined commands.

Enumerations

Allow_Edlt_Of_Work_Orders
Defines a policy in which controlled user-defined fields can be modified interactively.
User-defined fields that are not controlled can be modified, independent of this
policy. Note that all user-defined fields can be modified only once.

Journal_Comment_Lines
Defines a policy in which comment strings provided to CMVC commands are recorded
in the work-order comments field. It makes no sense to enforce Requira..Comments-
_ALCheck_In or Requirec.Comment.Lines without enforcing JournaLComment-
_Lines.

Require_Comment_Lines
Defines a policy that requires users to provide a string comment to all CMVC com-
mands that have a Comments parameter. The null string will not be accepted.

Require_Comments_At_Check_ln
Defines a policy that requires users to provide a string to the Comments parameter
of the Cmvc.Check..Jn command. The null string will not be accepted.

PM-400 S/1/8S RATIONAL

type Venture..Pollcy _Switch
package !Commands. Work.Drder

Require_Current_Work_Order
Defines a policy that requires users to have a default work order in order to execute
any CMVC commands that have a Work_Order parameter.

References

procedure Set..VenturecPolicy

RATIONAL 8/1/88 PM-401

RATIONAL

package Editor

The commands in package Work.Order.Editor are used for interactively editing
work orders. Generally, users will not enter these commands directly but will invoke
them through commands in package !Commands.Common.

The formatted display of a sample work order is shown below. Following this is a
field-oriented list of applicable commands from package Common.

Notes:
+ "NeUJ notes for this UJork order"
Parent Venture: C IUsers. Drk. W_l ...)

...A_Venture
Status: In_Progres s

Created at 87/04/13 10:40:12 by Drk.S_l
Fields:

"A Vector String Field" 5 Strings =>
2 => "number 2"
3 => "number 3"
4 => "some more values"
5 => "another value"

+ 0 => "a value UJhich hasn't been saved yet"
others => "uninitialized"

= "A Controlled Boolean" => False
Comments: 1 + 1

87/04/27 11:40: 03 Drk. S_1 for "»Element Name«" => "»Comment«"
+ 87/04/28 14:30:23 Drk.S_l for "»Element Name«" =>
+ "»A NeUJ and much longer Comment«"
Users: 1

Drk.5_1
Versions: 1 CIUsers.Drk ...)

87/04/28 11:38:48 "A_Venture".1 ...W_l
Configurations: 1

87/0~/23 15:18:48 IMachine.Error_Logs

RATIONAL 8/1/88 PM-403

package !Commands. Work..Order. Editor

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing work-order display. Commands
not listed have no effect or produce results consistent with the descriptions in the
EST book.

Field Command/Program Action
Notes Delete reverts to old notes, if any; Edit/Insert prompt in a Com-

mand window for new notes.
Fields Definition creates minor window to show detailed information

about all fields; Delete removes a newly inserted field for which
no values have been saved; Edit/Insert prompt in a Command
window for data about a new field; Expand/Elide show more/less
of field extent; Explain shows maximum index, defaults, and type
for each field.

Comments Definition creates minor window to show all comments; Delete re-
moves newly inserted comment, if it has not been saved; Edit/In-
sert prompt in a Command window for a new comment; Expand/
Elide show more/less of comment extent; Explain shows the date
and time comment was added.

Users Definition traverses to session object in user's home directory;
Expand/Elide show/hide list of users.

Versions Definition creates minor window to show all versions; Delete re-
moves newly inserted version data, if it has not been saved; Edit!
Insert prompt in a Command window for information about a new
version; Expand/Elide show more/less of version extent; Explain
shows the date and time version was added.

Configurations Definition creates minor window to show all configurations; Delete
removes newly inserted configuration, if it has not been saved;
Edit/Insert prompt in a Command window for information about
a new configuration; Expand/Elide show more/less about a con-
figuration; Explain shows the date and time configuration was
added.

When a work order is edited interactively, the object is locked and the # symbol
appears in the window banner. Individual changes are marked by a + symbol until
they are saved using Common. Commit. Changes can be undone until they are
saved.

PM-404 8/1/88 RATIONAL

procedure Addc.Commeut
package !Commands. Work, Order .Editor

procedure Addc.Comment

procedure Add_Comment (The_Comment
The_Element
The User

String .- "»Comment«";
String . - "»Element Name«";
String .- "<CURRENLUSER>");

Description

Adds;', comment to those recorded in the work order.

Once a comment has been added, it cannot be removed.

Parameters

The_Comment : StrIng: = "»Comment«";
Specifies the text of the comment to be added. The default parameter placeholder
"»Comment«" must be replaced or an error will result. This is an Ada string, which
cannot span multiple lines.

The_Element : String: = "»Element Name«";
Specifies the name of the object to which the comment applies. The default param-
eter placeholder "»Element Name«" must be replaced or an error will result.

The_User : String: = "<CURRENT_USER>";
Specifies the name of a user session. If only a username is given, session 8_1 IS
assumed.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

EdItor.Add_Comment (The_Comment => "This is a comment",
The_Element => "An_Element_Name",
The_User => "Sue");

RATIONAL 8/1/88 PM-405

procedure Addc.Configuration
package !Commands. Work_Order. Editor

procedure Add..Configuration

procedure Add_Configuration (The_Configuration : String :=
"»Configuration Name«");

Description

Adds a configuration to those recorded in the work order.

Once a configuration has been added, it cannot be removed.

Parameters

The_Configuration String: = "»Configuration Name«";

Specifies the pathname of the configuration. The default parameter placeholder
"»Conflguration Name«" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Edi tor. Add_Configuration (The_Configuration =>
"IProject.User_lnterface.Revl_2_1");

PM-406 8/1/88 RATIONAL

procedure Add..User
package !Commands. Work.Drder.Editor

procedure Add_User

String .- "<CURRENT_USER>");

Description

Adds a user session to those recorded in the work order.

Once a user has been added, it cannot be removed.

Parameters

The_User: String:= "<CURRENT_USER>";
Specifies the name of a user session. If only a username is given, session 8_1 IS
assumed.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Example command:

Editor.Add_User (The_User => "Bill");
Example user field in a work order:

Users: 2
Sue.DevelBill.S_l

RATIONAL 8/1/88 PM-407

procedure Add., Version
package !Commands. Work.Order.Editor

procedure Add..Version

procedure Add_Version
(The_Configuratlon
The_Element
The Generatlon

String
String
Natural

·- "»Configuration Name«";
·- "»Element Name«";
·- 0);

Description

Adds a version to those recorded in the work order.

Once a version has been added, it cannot be removed.

Parameters

The_Conflguration String: = "»Configuration Name«";
Specifies the name of the configuration containing the version. The default pa-
rameter placeholder "»Conflguration Name«" must be replaced or an error will
result.

The_Element String:= "»Element Name«";
Specifies the name of the object for which a version entry is to be added. The
default parameter placeholder "»Element Name«" must be replaced or an error
will result.

The_Generation Natural:= 0;
Specifies which generation of the object to add.

Restrictions

This command must be executed in a Command window attached to a work order.

Example

Editor. Add_Version
(The_Configuration => "!Project .User _lnterface.RevLL1" ,
The_Element => "An_ElemenLName",
The_Generation => 0);

PM-40B 8/1/88 RATIONAL

procedure SeLField
package !Commands. Work..Order. Editor

procedure Set_Field

procedure Set Fleld (To_ValueThe_Index
Thefield

Boolean .- False;
Natural .- 0;
String .- "»Fleld Name«");

Description

Sets the Boolean value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value : Boolean := False;
Specifies the Boolean value for the field.

The_Index : Natural := 0;
Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

The_Field: String:= "»Field Name«";
Specifies the name of the field to modify. The default parameter placeholder
"»Field Name«" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

RATIONAL 8/1/85 PM-409

procedure Set-Field
package !Commands. Workc.Order. Editor

procedure Set_Field

procedure Set_Field (To_Value
The_Index
The Fleld

Integer
Natural
String

.- 0;

.- 0;

.- "»Fleld Name«");

Description

Sets the integer value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value: Integer:= 0;
Specifies the integer value for the field.

The_Index : Natural := 0;
Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

The_Field: String: = "»Field Name«";
Specifies the name of the field to modify. The default parameter placeholder
"»Field Name«" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

PM-410 8/1/88 RATIONAL

procedure Set __Field
package !Commands. Work..Otder.Editor

procedure Set_Field

procedure Set_Field (To_Value
·The_lndex
The_Field

String
Natural
StrIng

0- "»Field Value«";
0- 0;
0- "»Field Name«o,);

Description

Sets the string value of the specified work-order field to the specified value.

Once a work-order field has been set, it cannot be modified further.

Parameters

To_Value: String:= "»Fleld Value«";

Specifies the string value for the field. The default parameter placeholder "»Field
Value«" must be replaced or an error will result.

The_Index : Natural := 0;

Specifies which element of a vector field to modify. If the field is a scalar field, this
parameter is ignored.

TheJield: String: = "»Field Name«";

Specifies the name of the field to modify. The default parameter placeholder
"»Field Name«" must be replaced or an error will result.

Restrictions

This command must be executed in a Command window attached to a work order.

RATIONAL 8/1/88 PM-411

procedure SeLNotes
package !Commands. Work.Order .Editor

procedure Set..Notes

procedure Set_Notes (Notes String . - "»New Notes«");

Description

Sets the notes field of the work order to the specified string.

The specified text will replace the existing text.

Parameters

Notes : String: = "»New Notes«";

Specifies the text that will be placed in the notes field of the work order. The
default parameter placeholder "»New Notes«" must be replaced or an error will
result.

Restrictions

This command must be executed in a Command window attached to a work order.

end Editor;

PM-412 8/1/88 RATIONAL

package Listc.Editor

This package provides operations for adding work orders to work-order lists and
setting the notes for a work-order list.

The formatted display of a sample work-order list is shown below. Following this is
a field-oriented list of applicable commands from package !Commands.Common.

Notes: "Outstanding uior-k orders"

Parent Venture: (I USERS. DRK. W_l. ..)
... A_Venture

Work Orders: (I USERS. DRK. W_1 ...)
... Order _1 : In_Progress;
... Order_2 : Pending
... Order 3

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing display. Commands not listed
have no effect or produce results consistent with the descriptions in the EST book.

Orders

Command/Program Action
Delete reverts to old notes, if any; Edit/Insert prompt in a Com-
mand window for new notes.
Delete removes unsaved insertions; marks an existing order to be
removed from the list.

Field
Notes

RATIONAL 8/1/88 PM-413

procedure Add
package !Commands. Workc.Order.Liat..Editor

procedure Add

procedure Add (Work_Orders String . - "»Work Order Names«");

Descr ipt.lon

Adds the specified work orders to the local work-order list.

Parameters

Work_Orders : String: = "»Work Order Names«";

Specifies which work orders to add to the local work-order list. The default param-
eter placeholder vx-ue-k Order Names«" must be replaced or an error will result.

Wildcards can be used to add multiple work orders with a single command.

Restzlctdons

This command must be executed in a Command window attached to a work-order
list.

PM-414 S/1/8S RATIONAL

procedure SeLNotes
package !Commands. Work..Order .Listc.Editor

procedure Set_Notes

procedure Set_Notes (Notes String.- "»New Notes«");

Description

Sets the notes field of the work-order list to the specified string.

The specified text will replace the existing text.

Parameters

Notes : String: = "»New Notes«";
Specifies the text that will be placed in the notes field of the work-order list. The
default parameter placeholder "»New Notes«" must be replaced or an error will
result.

Restrictions

This command must be executed in a Command window attached to a work-order
list.

end Listc.Editor;

RATIONAL 8/1/88 PM-415

RATIONAL

package Venture..Editor

These commands are intended for use when editing ventures. They will execute
only in a Command window attached to a venture; all operations modify that
venture. Many commands are bound to keys that, when pressed, prompt the user
for parameter completion through a Command window.

The formatted display of a sample venture is shown below. Following this is a
field-oriented list of applicable commands from package !Commands.Common.

Notes: "Notes for this venture"
Policy_Switches:

Require_Current_Work_Order => False
Require_Comment_At_Check_ln => True
Require_Comment_Lines => True
Journal_Comment_Lines => True
Allow_Edit_Of_Work_Orders => False

Fields:
"A Hidden Field" Integer (a 0 => 0

= "A Controlled Hidden Field" Integers (a 0 => -1
= "A Controlled Boolean" Boolean (a 1 => False

"A Vector String Field" Strings (a 2 => "unini tial ized"
Work_Orders:

·..Order _1
·..Order _2
·..Order_3
·..Order 4

(IUsers.Drk.W_l ...)
In_Progress;
Pending

Default_Work_Orders: (IUsers.Drk.W_l ...)
Drk.S_l => Order_2
Drk.S_2 => Order_3

Work_Order_Lists: (IUsers.Drk.W_1 ...)
·..A_List

Default_Work_Order_Lists: (IUsers.Drk.W_l ...)
Drk.S_2 => ...A_List

RATIONAL 8/1/88 PM-417

package !Commands. Workc.Order. Venture..Editor

In the following list are brief descriptions of the operations affected by commands
from package Common for each field in the foregoing display. Commands not listed
have no effect or produce results consistent with the descriptions in the EST book.

Policy

Command/Program Action
Delete reverts to old notes, if any; Edit/Insert prompt in a Com-
mand window for new notes.
Delete sets the policy to false; Edit toggles current policy switch;
Insert prompts in a Command window for new policy value.
Delete sets display to begin with field 0; Edit prompts for new
type and position on a field display line; Expand/Elide show/hide
hidden fields; Explain shows defaults and type for each field; Insert
prompts in a Command window for data about a new field.
Insert prompts in a Command window to create a new work or-
der.
Delete sets the default work order to nil; Edit/Insert prompt in
a Command window for a new default work order; Expand/Elide
show /hide list of users.
Insert prompts in a Command window to create a new work-order
list.
Delete sets the default work-order list to nil; Edit/Insert prompt
in a Command window for a new default work-order list; Ex-
pand/Elide show/hide list of users.

Field
Notes

Fields

Orders

Default..Orders

Lists

DefaulLLists

PM-418 8/1/88 RATIONAL

procedure SeLDefaulLList
package !Commands. Work..Drder. Venture., Editor

procedure Set.rDefaultc.List

procedure Set_Default_List (New_Default
For_User

String . - "<SELECTION>" ;
String .- "<CURRENT_USER>");

Description

Sets the default work-order list for a specific user session on the local venture.

Each user session can have a different default work-order list. Several commands
reference the default work-order list of the default venture when determining which
work-order list to use.

Parameters

New_Default : String:= "<SELECTION>";

Specifies which work-order list shall be made the default for the local venture. The
default special name" <SELECTION>" specifies the currently selected work-order list.

For_User: String:= "<CURRENT_USER>";

Specifies the user session for which the default is set. If only a username is provided,
session S_1 is assumed.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Assume that a venture has two work-order lists associated with it, as follows:

Work_Order_Lists: (IUsers.Sue.Development ...)
... Task_List
... New_Tasks

The user enters the following command, selecting the work-order list Task..List and
specifying the session Sue.Si.I:

Venture_Editor.Set_Default_List
(New_Defaul t => "<SELECTION>", For _User => "Sue. 5_1") ;

RATIONAL S/l/sa PM-419

procedure SeLDefaulLList
package !Commands. Workc.Order, Ventures.Editor

As a result, the following entry appears in the venture's list of default work-order
lists:

Default_Work_Order_Lists: (IUsers.Sue.Development ...)
Sue.S_l => ... Task_List

PM-420 8/1/88 RATIONAL

procedure SeLDefaulLOrder
package !Commands. Work.Drder. Ventures.Editor

procedure Setc.DefaultcOrder

procedure Set_Default_Order (New_Default
For_User

String .- "<SELECT ION>'"
String .- "<CURRENT_USER>");

Description

Set the default work order for a specific user session on the local venture.

Each user session may have a different default work order. Several commands
reference the default work order of the default venture when determining which
work order to use.

Parameters

New_Default: String:= "<SELECTION>";
Specifies which work order shall be made the default -for the local venture. The
default special name "<SELECT ION>" specifies the currently selected work order.

For_User: String:= "<CURRENT_USER>";
Specifies the user session for which the default is set. If only a username is provided,
session S_1 is assumed.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Assume that a venture has two work orders associated with it, as follows:

Work_Orders: (IUsers.Sue.Development ...)
...Update_Ll : Pending
...Update_Rl : Pending

The user enters the following command, selecting the work-order name Updata..Ll
and specifying the session Sue.Si.I:

Venture_Editor.Set_Default_Order
(New_Default => "<SELECTION>", For_User => "Sue.S_l");

RATIONAL 8/1/88 PM-421

procedure SeLDefaulLOrder
package !Commands. Work_Order. Venture..Editor

As a result, the following entry appears in the venture's list of default work orders:
Default_Work_Orders: (IUsers.Sue.Development ...)

Sue.S_l => ... Update_Ll

PM-422 8/1/88 RATIONAL

procedure SeLField_Info
package !Commands.Work_Order ..Venture..Editor

procedure Set_Field_Info

procedure Set_Field_lnfo (Is_Controlled
Display_Position
The_Field

Boolean .- False;
Natural .- 1;
String .- "»Field Name«");

Description

Sets the numeric tag of a user-defined field and specifies whether that field is mod-
ifiable.

Numeric tags control the relative display position of the field within the venture.

Parameters

Is_Controlled Boolean:= False;
Specifies whether the field should be made controlled. Controlled fields are subject
to interactive modification only if the Allow_EdiLOL Work..Drders venture policy
switch is true.

Display_PositIon Natural:= 1;
Specifies the numeric tag of the field.

TheJield: String:= "»Field Name«";
Specifies the name of the field whose numeric tag and controlled flag shall be mod-
ified. The default parameter placeholder "»Field Name«" must be replaced or an
error will result.

Restrictions

This command must be executed in a Command window attached to a venture.

Example

Given the following user's fields in the venture:

Fields:
"Completion_Date" String Ii:l 5 => ""
"Problem_Description" String Ii:l 10 =>
"Project" String I{l 20 => ""

RATIONAL 8/1/88 PM-423

procedure SeLField_Info
package !Commands. Work_Order. Venture..Edltor

the following command will move the "Completion_Date" field between the "Prob-
Ierne.Description" and "Project" fields:

Venture_Editor.Set_Field_lnfo (Is_Controlled => False,
Display_Position => 15,
TheJield => "Completion_Date");

PM-424 8/1/88 RATIONAL

procedure SeLNotes
package !Commands. Work_Order. Venture..Edhor

procedure Set..Notes

procedure Set_Notes (Notes String ,- "»New Notes«");

Desczlpt.lon

Sets the notes field of the venture to the specified string.

The specified text will replace the existing text.

Parameters

Notes: String:= "»New Notes«";
Specifies the text that will be placed in the notes field of the venture. The default
parameter placeholder "»New Notes«" must be replaced or an error will result.

Restzictfons

This command must be executed in a Command window attached to a venture.

RATIONAL 8/1/88 PM-425

proced ure SeL Policy
package !Commands. Work_Order. Ventures.Editor

procedure Set..Policy

procedure Set_Policy (To_Value
The Switch

Boolean .- False;
Venture_Policy_Switch);

Description

Sets the value of the specified venture policy switch to the specified value.

Parameters

To_Value: Boolean:= False;
Specifies, if true, that the policy shall be enforced by the CMVC system.

The_Switch: Venture_Policy_Switch;
Specifies which policy switch to modify.

Restrictions

This command must be executed in a Command window attached to a venture.

References

type Venture..Policy _Switch

PM-426 !/1/!! RATIONAL

procedure Spreadc.Fields
package !Commands. Work.DrderVeuturec Editor

procedure Spreads.Fields

procedure Spread_Fields (Interval Natural .- 10);

Desczlpt.lon

Renumbers all user-defined fields, assigning new numeric tags using the specified
interval.

This command is useful for creating a place to insert a new field between two existing
fields that are consecutively numbered.

Parameters

interval : Natural := 10;
Specifies the interval between numeric tags for all fields.

RestrictioDs

This command must be executed in a Command window attached to a venture.

Example

Given the following fields:

Fields:
"Problem_Description" String ~ 1 =>
"Completion_Date" String ~ 2 => ""
"Project" String ~ 3 => ""

the command:

Venture_Editor. Spread_Fields (Interval => 5);

will result in:

Fields:
"Problem_Description" String ~ 5 =>
"Completion_Date" String ~ 10 =>
"Project" String ~ 15 => ""

RATIONAL 8/1/88 PM-427

procedure Spread.if'ields
package !Commands. Work_Order. Venturc..Edltor

end Venturez.Editor;

PM-428 8/1/88 RATIONAL

package !Commands- Work_Order.

end Work..Order;

RATIONAL 8/1/88 PM-429

RATIONAL

Index

This index contains entries for each unit and its declarations as well as definitions, topical
cross-references, exceptions raised, errors, enumerations, pragmas, switches, and the like.
The entries for each unit are arranged alphabetically by simple name. An italic page
number indicates the primary reference for an entry.

! (exclamation mark)
special character . PM-131

PM-135

PM-135

PM-135

PM-136

PM-136

PM-136, PM-142, PM-114

PM-131

PM-131

PM-131

PM-131

PM-131

PM-131

PM-131, PM-153

PM-138

PM-138

PM-138

PM-138

PM-136

!Commands.Common package

!Commands.Common.Abandon

!Commands.Common.Commit

!Commands.Common.Create_Command

!Commands. Common. Definition

!Commands.Common.Edit . .

!Commands.Common.Object.Child

!Commands. Common. Object.Delete

!Commands.Common.Object.Elide

!Commands. Common. Object.Expand

!Commands.Common.Object.Explain

!Commands.Common.Object.FirsLChild

!Commands.Common.Object.lnsert

!Commands.Common.Object.Last_Child

!Commands.Common.Object.Next .

!Commands.Common.Object.Parent

!Commands.Common.Object.Previous

!Commands. Common. Release

RATIONAL 8/1/88 PM-431

!Commands.Common.Sort-Image

!Implementation. Work_Order_Implementation package

!Machine.Release. Current .Activi ty

!Machine.Release.Current.Commands.Login

PM-l36

PM-400

PM-80, PM-83

PM-83

PM-22

PM-22

PM-22

!Model.RlOOO

!Model.RlOOO_Implementation

!Model.Rl OOO_Portable

(pound sign)
library wildcard . .
substitution character
symbol in window banner

S (dollar sign)
special character .

. . . . PM-129

. . . . PM-130
PM-135, PM-404

PM-131

$S (double dollar sign)
special character .

* (asterisk)
symbol in window banner

PM-132

-
PM-210, PM-232, PM-244, PM-292

+ (plus) symbol

, (comma)
in set notation

PM-404

PM-133

. (period)
special character

; (semicolon)
in set notation
separator . .

PM-132

PM-133
PM-133

= (equals)
symbol in window banner

? (question mark)
library wildcard . . .
substitution character

?? (double question mark)
library wildcard

PM-135

PM-129
PM-130

PM-129

€I (at sign)
library wildcard
substitution character

PM-129
PM-130

[1 (brackets)
special characters

\ (backslash)
special character .

PM-131, PM-133

PM-132

PM-432 S/l/SS RATIONAL

~ (caret)
special character

_ (underscore)
special character

PM-131

PM-132

, (grave)
special character

{} (braces)
special characters

- (tilde)
symbol

PM-132

PM-131, PM-133

PM-133

A

abandon . . PM-27

Abandon procedure
Common.Abandon

Cmvc.Appendc.Notes procedure
Cmvc.Get-Notes procedure
Cmvc.Put..Notes procedure

AbandoncReservation procedure
Cmvc.Abandonc.Reserv ation . .

Cmvc.Check..Out procedure

PM-135
PM-210
PM-244
PM-292

PM-28, PM-202
PM-218

accept
changes .

Accept-Changes procedure
Cmvc.Accept-Changes

Cmvc.Merge..Ohangee procedure
Cmvc.Revert procedure

PM-14, PM-40, PM-41, PM-202, PM-205

PM-41, PM-42, PM-46, PM-205
PM-288

. PM-306

access
controlled objects, concurrently . PM-43

activity
adding entries
creating an empty activity
defined
differential entries
editing
modes for creating entries
release
setting the default . . .
specifying compatible load views in .
using for execution

PM-12, PM-29, PM-52, PM-65, PM-136, PM-137, PM-139
PM-66
PM-66
PM-I

PM-82
PM-135, PM-150

PM-82
PM-16
PM-67
PM-94
PM-65

Activity package

Activity procedure
Cheek. Activity .

PM-I, PM-195

PM-178

RATIONAL 8/1/88 PM-433

<ACTlvlTY> special name

activity window.

Activity_File session switch
Activity.SetcDefault procedure

Activlty..Name subtype
Acflvlty.Activity..Neme .

Ada
name .
name resolution mode

Add procedure
Activity.Add .
Links.Add

Cmve..Malntenance. Check; Consistency procedure
Work_Order.List_Editor.Add

Add_Child procedure
Cmvc..Hlerarchy .Add., Child .

PM-l28

PM-175

PM-161

PM-139

PM-127
PM-132

PM-82, PM-140

PM-341
PM-414

PM-326, PM-328

Adds.Comment procedure
Work_Order.Editor.Add_Comment

Add., Configuration procedure
Work_Order.Editor.Add_Configuration

Add., Tc..Llst procedure
Work_Order.Add- To_List

Adds.User procedure
Work_Order.Editor.Add_ User

Add., Version procedure
Work_Order.Editor.Add_ Version .

Allow..Edltc.Of'; Work_Orders enumeration
Work_Order. VenturecPolicy..Swltch

Work_Order. Creates.Field procedure

AppendcNotes procedure
Cmvc.Append..Notea

Cmvc.Create..Empty _N ote., Window procedure
Cmvc.Getc.Notes procedure
Cmvc.Pur..Notes procedure .

application
execution ..
single library
testing . . .

PM-405

PM-406

PM-365

PM-407

PM-408

PM-400
PM-370

PM-21 0
PM-232
PM-244
PM-292

PM-84
PM-15
PM-85

PM-434 8/1/88 RATIONAL

at sign (~)
library wildcard
substitution character

PM-129
PM-130

PM-127attributes

B

backslash (\)
special character

binary objects, controlling

braces ((})
special characters

PM-132

. PM-25

PM-131, PM-133

brackets ([])
special characters PM-131, PM-133

Build procedure
Cmvc.Build

Cmvc.Destroy., View procedure
Cmvc.Release procedure . .

Build..Activity procedure
Cmvc..Hierarchy .BuildcActivi ty

PM-33, PM-49, PM-50, PM-2l2
PM-239

. PM-294

PM-326, PM-929

c
caret (-)

special character PM-131

CDB PM-IDS, PM-I08

CDFs
using with subsystems

Change procedure
Activity.Change . . .

characters
character pairs ([land (})
special

PM-HI

PM-85, PM-142

Check package

Check., Cons istency procedure
Cmvc..Malntenance. Check; Consis tency

Check_In procedure
Omvc.Check..In .

Cmvc.Check..Out procedure
Cmvc.Makec.Oontrolled procedure

Check..Out procedure
Omvc.Check..Out .

Cmvc.MakecControlled procedure

PM-131
PM-127

PM-I, PM-177

PM-50, PM-940

PM-26, PM-29, PM-2l6
PM-2l8
PM-264

PM-26, PM-29, PM-39, PM-41, PM-42, PM-2l8
. PM-264

RATIONAL 8/1/88 PM-435

checkin

checkout

. . . . PM-6, PM-26, PM-202, PM-216, PM-317

canceling
retrieving latest generation

Child procedure
Common. Object. Child

child subsystem

children

Children function
Cmvc..Hierarchy. Children

PM-6, PM-25, PM-26, PM-202, PM-218, PM-310,
PM-312, PM-315, PM-316, PM-317

PM-27
...... PM-41

PM-137

PM-16

PM-16

client view

PM-992

PM-53, PM-79

PM-51

PM-10

circular importing

client

Close procedure
Wotk_Order.Close PAf-966

closed private part PM-l1, PM-57, PM-87, PM-89, PM-113

PM-3
PM-25
PM-25
PM-1

PM-26
PM-188

PM-3

CMVC
controlling binary objects
controlling objects . . .
defined
editing controlled objects
managing CMVC information interactively
overview .

CMVC database ... PM-6, PM-9, PM-25, PM-188, PM-212, PM-216,
. PM-232, PM-244, PM-285, PM-321, PM-340, PM-350

PM-I, PM-185Cmvc package

Cmvcc.Break..Longc.Llnea session switch

Cmvcc Capitalize session switch

Cmvc..Oommentc.Extent session switch

Cmvo..Oonfiguratlonc.Extent session switch

Omvcc.Enablec.Relocation session switch

PM-362

PM-362

PM-362

PM-362

PM-196

PM-362

PM-2, PM-925

PM-362

PM-362

Cmvcc.Field..Extent session switch

Omvc..Hierarchy package. . . .

Cmvcc.Indentation session switch

Cmvc_Line_Length session switch

PM-436 8/1/SS RATIONAL

Cmvc..Maintenance package

Omvc..Shorten..Neme session switch

Cmvcc.Shortenc.Unitc.State session switch

CmvccShowc.Add..Date session switch .

Cmvc..Showc.Addc.'I'ime session switch .

Cmvc_Show_AILDefault-Lists session switch

Cmvc_Show_AILDefault_Orders session switch

Cmvcc.Show..Booleen session switch

Cmvcc.Show..Deletedc.Objects session switch

Cmvc..Show _Deleted_Versions session switch

Cmvc..Show _Display_Position session switch

Cmvc..Showc.Editc.Info session switch . .

Cmvcc Showc.FieldcDefault session switch

Cmvcc.Show..Eieldc.Maxc.Index session switch .

CmvccShowc.Fleld., Type session switch

CmvccShowc.Frosen session switch

Omvcc.Showc.HiddencFlelds session switch

Omvc..Showc.Retention session switch .

Omvc..Showc Unit..State session switch

Cmvcc.Showc.Users session switch . . .

Omvc..Show., Verslon..Number session switch

Cmvc..Uppercase session switch. . .

Cmvc., Verslom.Extent session switch

code view .
copying in multihost development

combined
subsystems
views. . .

Combinedc.Subsystem enumeration
Cmvc.System..Object..Enum type

comma (,)
in set notation

commands
from package !Commands.Common .
from package Cmvc, grouped by topic

RATIONAL 8/1/88

PM-2, PM-Ssg

PM-362

PM-363

PM-363

PM-363

PM-363

PM-363

PM-364

PM-363

PM-363

PM-363

PM-363

PM-363

PM-363

PM-363

PM-364

PM-364

PM-364

PM-364

PM-364

PM-364

PM-364

PM-364

PM-16, PM-30, PM-102, PM-262, PM-348
. PM-I04

. . .. PM-79, PM-97, PM-lI7, PM-187
PM-53, PM-79, PM-lI3, PM-lI6, PM-187

PM-324

PM-133

PM-135
PM-186

PM-437

comment PM-I5, PM-405

PM-135commit

Commit procedure
Common. Commit PM-27, PM-66, PM-135

........ PM-88

PM-105, PM-108, PM-344, PlvI-346, PM-35l,
PM-354, PM-356, PM-358

PM-I, PM-ll

compatibility

compatibility database

compatible

Compatible enumeration
Check.Status PM-179

compilation
multiple subsystems

Complete procedure
Common. Complete

configuration
defined
releasing configurations

. PM-51

PM-192

configuration images

configuration management
defined

PM-3, PM-9, PM-30, PM-406
. PM-7
..... PM-30

PM-188, PM-189

PM-3, PM-9
PM-I

PM-32, PM-2l2
PM-50

.... PM-49

configuration object . .
building a view from
deleting.

consistency
in imports PM-78

Contents function
Cmvc..Hierarchy, Contents

controlled

PM-999

PM-6

controlled objects
accessing concurrently
deleting.
editing
library-management operations
moving .
withdrawing.

Convert-Old-Subsystem procedure
Cmvc_Maintenance.Convert_Old_Subsystem

coordinating development in a subsystem

PM-43
PM-35
PM-26
PM-3S
PM-3S
PM-3S

PM-942

. PM-97

PM-438 8/1/88 RATIONAL

Copy procedure
Archive.Copy

Cmvc_Maintenance.Make_Primary procedure
Cmvc_Maintenance.Make_Secondary procedure
Cmvcc.Maintenance. UpdatecCdb procedure

Cmvc.Copy .
Library.Copy

PM-I03, PM-I09
PM-351
PM-354
PM-358
PM-222

PM-23, PM-43, PM-93

create
new joined objects
path ..
spec view . .
subpath

Create procedure
Activity.Create
Text.Create . .
Work..Order. Create

Create..Command procedure
Common. Create..Command

PM-42
PM-47
PM-58
PM-37

PM-66, PM-82, PM- 1..44
PM-71, PM-72

. PM-367

PM-136

Create..Emptyc.Note., Window procedure
Cmvc.Createc.Empty..Note., Window

Cmvc.AppendcNotes procedure
Cmvc.Put-Notes procedure

Createc.Field procedure
Work_ Order. Create_Field

PM-232
PM-210
PM-292

PM-369

Create..List procedure
Work_Order.Create_List

Create., Venture procedure
Work_Order.Create_ Venture

Oreation..Mode type
Activity.Creationc.Mode

cross-development
using CDFs with subsystems

Current procedure
Activity.Current . . .

<CURSOR> special name

PM-371

PM-372

PM-146

PM-HI

PM-67, PM-147

PM-l28

o
declaration number

Def procedure
Cmvc.Def

PM-105

PM-192, PM-234

default
activity .
response profile

. PM-65
PM-l28

RATIONAL 8/1/88 PM-439

Default function
Work_Order.Default

<DEFAULT> special value

Default_List function
Work_Order.Default_List

PM-373

PM-128

PM-975

Default., Venture function
Work_Order. Default., Venture PM-977

Default- Venture session switch
Work_Order.Set_Default- Venture procedure

Definition procedure
Common.Definition

PM-364
PM-394

PM-136, PM-192

delete
configuration object
objects . . .
view .

PM-49
PM-35
PM-48

Delete procedure
Common.Object.Delete
Compilation. Delete .
Library.Delete

Delete.Field procedure
Work_ Order .Delete_Field

PM-35, PM-137
. ... PM-48
PM-48, PM-49

PM-379

Delete_UnreferencecLLeading_Generations procedure
Cmvcc.Maintenance.Delete., Unreferenceds.Leading.; Generations

deleted objects, referring to

PM-943

PM-133

Demote procedure
Common. Demote

demotion
effects of
permitting

design changes

Destroy procedure
Compilation.Destroy
Library.Destroy

Deatroy..Cdb procedure
Omvc..Maintenance.Deatroy _Cdb

PM-192

PM-90
PM-42

PM-89

PM-48
PM-48

PM-I09, PM-944

Destroy..Subeyetem procedure
Cmvc.Destroy _Subsystem

Destrcy..Syatem procedure
Omvc.Deatroy..System

PM-236

PM-237

PM-440 8/1/88 RATIONAL

Destroy., View procedure
Cmvc.Destroy., View

Cmvc.Build procedure

development
applications using multiple hosts
applications using multiple subsystems
copying views among hosts
making design changes
making implementation changes . . .
managing CMVC information interactively
managing views
moving a primary subsystem to another host
propagating changes across hosts
setting up multiple paths
setting up primary and secondary subsystems
setting up subsystems
testing an application
using CDFs with subsystems
with joined objects
see also subsystem

development path . .

Differential enumeration
Activity. Creation..Mode

Activity.Display procedure

directory name . .

Display procedure
Activity.Display
Work_ Order .Display

Display..Cdb procedure
OmvccMaintenance.Display _Cdb

Display..Oode., View procedure
Cmvc..Maintenance.Display _Code_View

Display..List procedure
Work_Order.Display_List . .

Display _Venture procedure
Work_Order.Display _Venture

dollar sign ($)
special character . .

dollar sign, double (SS)
special character . .

RATIONAL 8/1/88

PM-33, PM-48, PM-50, PM-298
. PM-2l2

. . . . PM-lOl

..... PM-51
PM-103, PM-109

· PM-89
· PM-86
PM-188

· PM-48
PM-108
PM-105

· PM-47
PM-103

· PM-96
· PM-85
PM-UI

· PM-38

PM-8, PM-33, PM-UI, PM-268

PM-I46
PM-I48

PM-I27

PM-148
PM-980

PM-I05, PM-946

PM-948

PM-981

PM-982

PM-I31

PM-I32

PM-441

double dollar sign ($S)
special character .

double question mark (77)
library wildcard . . .

PM-132

PM-129

E

edit
activities
controlled objects
State.Exports file
ventures
work orders .
work-order list

IEditl key

Edit procedure
Activity.Edit
Cmvc.Edit
Common.Edit

Activity.Change procedure
Activity.Visit procedure

Work_Order.Edit

Edit-List procedure
Work_Order.Edit_List

PM-135, PM-150
· PM-26
· PM-58
PM-385, PM-411

PM-403
PM-384

PM-136

PM-135, PM-150
· PM-40, PM-241

PM-26, PM-27, PM-136
PM-142
PM-174
PM-989

PM-984

Edit_Venture procedure
Work_Order.Edit_ Venture

Editor package
Work_Order.Editor

PM-985

element

PM-409

. PM-44

Elide procedure
Common. Elide
Common.Object.Elide

enclosing
library
object
world.

Encloslng..Subsystem procedure
Activity.Encloslng.Bubaystem

Enclosing., View procedure
Activity.Enclosing., View

PM-193
PM-137

PM-131
PM-131
PM-132

PM-151

PM-152

PM-442 8/1/88 RATIONAL

enumerations
Activlty.Creatlon..Mode

Differential .
Exact-Copy
Value..Copy

Check.Status
Compatible
Error ...
Incompatible

Cmvc.Syetemc.Object..Enum
Combinedc.Subsystem
Spec..Loadc.Subaystem .
System .

Work..Order. VenturecPolicyc.Switch
Allow _Edi t.;Of., Work., Orders
J ournalc.Commentc.Lines
RequirecCommentc.Lines
Require_Comments_At_Check_In
Require., Current- Work., Order

Error enumeration
Check.Status

PM-146, PM-148
PM-146, PM-148
PM-146, PM-148

PM-179
PM-179
PM-179

PM-324
PM-324
PM-324

PM-370, PM-400
PM-400
PM-400
PM-400
PM-401

error reactions

PM-179

PM-128

Exact-Copy enumeration
Actlvity.Creation..Mode

Activity.Display procedure

exclamation mark (I)
special character

PM-146
PM-148

PM-131

execution
setup for compiling multiple subsystems

Expand procedure
Common. Expand
Common.Object.Expand

Expands.Activity procedure
Cmvc_Hierarchy.Expand_Activity

expanded generation image

. PM-51

PM-190, PM-193
. . . . PM-137

PM-334

. PM-29

Explain procedure
Common. Explain
Common.Object.Explain

export restriction files
creating
name resolution

PM-192
PM-137

PM-22, PM-247
.... PM-70
.... PM-72

PM-56, PM-69export restrictions

RATIONAL 8/1/88 PM-443

exports
changing private parts
defining.

Expunges.Database procedure
Cmvc_Maintenance.Expunge_Database

Cmvc.Make., Uncontrolled procedure

PM-10, PM-51, PM-215
PM-81

. PM-54

PM-50, PM-950
PM-285

F
Flle., Utilities package

files, indirect

Firstc.Child procedure
Common. First_Child

Format procedure
Common. Format

· PM-45

PM-132, PM-133

PM-131

frozen

full-view release

PM-189

PM-8

PM-30

PM-13lfully qualified name

generation
G

PM-6, PM-9, PM-25, PM-26, PM-305, PM-3l0,
PM-3l1, PM-3l9, PM-32l, PM-323, PM-340

· PM-29
PM-188, PM-193

PM-4l
· PM-28

collecting and displaying information
images .
retrieving latest at checkout
reverting to previous

Get..Notes procedure
Cmvc.Get-Notes .

Omvc.AppendcNotes procedure
Omvc.Oheck..In procedure .
Cmvc. Oheck..Out procedure
Cmvc.Put..Notes procedure

grave (')
special character

PM-2·U
PM-21O
PM-2l6
PM-2l9
PM-292

PM-132

H

history images PM-188, PM-194

<IMAGE> special name

images
configuration
generation
history . . .

PM-128

PM-189
PM-193
PM-194

PM-444 8/1/88 RATIONAL

implementation changes

Import procedure
Cmvc.Import

Cmvc. Copy procedure

import restriction files
creating
filenames

........... PM-86

import restrictions

Imported., Views function
Cmvc.Imported., Views

Cmvc.Build procedure .
Cmvc.Initial procedure

imports

PM-63, PM-70, PM-76, PM-92, PM-246
PM-223

PM-22, PM-247
PM-72
PM-73

PM-69

PAI-251
PM-213
PM-258

circular
consistency
defining.
links ...
removing .

Incompatible enumeration
Check.Status

PM-la, PM-ll, PM-22, PM-51, PM-63, PM-76,
. PM-246, PM-25l, PM-270, PM-283, P~-299, PM-30l

PM-53, PM-79
PM-78
PM-62
PM-64
PM-64

index

PM-179

PM-431

PM-132, PM-133indirect files

Information procedure
Cmvc.Information PM-63, PM-92, PM-253

Initial procedure
Cmvc.Initial PM-20, PM-2l, PM-22, PM-103, PM-256, PM-326

Cmvc_Maintenance.Make_Primary procedure PM-35 1

Inline pragma PM-1l6

Insert procedure
Activity.Insert
Common. Object. Insert

Activity.Insert procedure

InstalLStub procedure
Ada.InstalLStub

PM-66, PM-153
PM-137
PM-153

interfaces, among subsystems

.... PM-36

PM-la, PM-ll

RATIONAL 8/1/88 PM-445

J

job
response profile

join

PM-128

PM-14, PM-226, PM-260, PM-266, PM-268, PM-288, PM-310

Join procedure
Cmvc.Join .

Cmvc.Copy procedure . . .
Cmvc.MakecPath procedure

PM-43, PM-44, PM-45, PM-48, Pl\,f-260
. PM-223, PM-226
. PM-272

join set

joined .

joined object
accepting changes
checking out. .
creating new
developing with
keeping updated
permitting demotion
preventing automatic updating
retrieving latest at checkout . .

PM-38, PM-43, PM-44, PM-205, PM-308, PM-3l7, PM-350

PM-38

PM-4l
PM-39
PM-42
PM-38
PM-40
PM-42
PM-42
PM-4l

J ournalc.Comment..Lines enumeration
Work_Order. Venture..Policy _Switch PM-400

l

Laat..Child procedure
Common.Object.LasLChild PM-138

level numbers.
coordinating in spec and released view names
spec-view names

PM-34, PM-230, PM-275, PM-303
PM-94

. PM-59

library
enclosing
name ..
root

PM-13l
PM-127
PM-13l

PM-9
PM-35

PM-64, PM-30l, PM-303
PM-132

. PM-132

library management
operations for controlled objects

link .
name resolution mode
special character grave (.)

List_Editor package
Work_Order.LisLEditor PM--I13

PM-446 8/1/88 RATIONAL

load view .
specifying compatible

loading

Main pragma .

main program
execution .

Makec.Code., View procedure
Cmvc.Makec.Code., View

Make..Controlled procedure
Cmvc.Makec.Controlled .

Cmvc.Copy procedure
Cmvc.Makec.Path procedure

Makes.Path procedure
Omvc.Makc..Path

Cmvc.Copy procedure
Cmvc.Merge., Changes procedure

Meke..Primary procedure
Cmvc_Maintenance.Make_Primary .

Make_Secondary procedure
Cmvc_Maintenance.Make_Secondary

Make..Spec., View procedure
Omvc.Makec.Spec., View .

Cmvc.Copy procedure

Make..Subpath procedure
Cmvc.Make..Subpath . .

Cmvc.Copy procedure

Make., Uncontrolled procedure
Cmvc.Make., Uncontrolled

merge
changes ...

Merge procedure
Activity.Merge

Merge..Ohanges procedure
Cmvc.MergecOhaages

Cmvc.Copy procedure
Cmvc.J oin procedure
Cmvc.Make..Path procedure

mode

RATIONAL 8/1/88

PM-IO, PM-II, PM-52, PM-136, PM-137, PM-187
PM-94

................ PM-B8

M

PM-1I4

. PM-84

PM-262

PM-25, PM-36, PM-43, PM-44, PM-71, PM-264
PM-226

. PM-272

PM-48, PM-50, PM-268, PM-326
PM-222

· . . . PM-287

PM-I08, PM-951

PM-I08, PM-954

PM-55, PM-58, PM-92, PM-275
. . . . PM-222

PM-38, PM-50, PM-280
. . . . PM-222

PM-35, PM-285

PM-14, PM-45

PM-82, PM-155

PM-45, PM-46, PM-287
PM-223

· . . . PM-260'
· . . . PM-268

PM-146, PM-148

PM-447

model
replacing in a path

model world
setting up

PM-96

PM-22
PM-9l

move
objects . PM-35

Move procedure
Common.Object.Move

multihost development. .
copying views among hosts
moving a primary subsystem to another host
propagating changes across hosts.
setting up primary and secondary subsystems
using CDFs with subsystems

multiple paths

multisite development

PM-36

. PM-16, PM-lOl
PM-103, PM-109

PM-108
PM-105
PM-103
PM-HI

PM-3l

PM-16

N

name
Ada .
character pairs ([J and ())
fully qualified
special
special characters
string

naming
objects

Next procedure
Common.Object.Next
Editor.Cursor.Next

PM-12l
PM-13l
PM-13l
PM-12l
PM-13l
PM-12l

PM-1f7
PM-12l

PM-138
PM-190

Nil function
Activity.Nil . PM-157

note. . . PM-15, PM-29, PM-232, PM-244, PM-3ll, PM-386, PM-38l, PM-388, PM-4l2

Notes function
Work..Order.Notes PM-S86

Notes procedure
Cmvc.Notes ...

Notesc.List function
Work_Order.Notes_List

Notes., Venture function
Workc.Order. Notes., Venture

PM-29, PM-195, PM-f90

PM-S87

numeric tag
PM-S88

PM-423, PM-42l

PM-448 8/1/88 RATIONAL

o
object

binary, controlling
configuration

deleting
controlled

accessing concurrently
deleting
moving
withdrawing

enclosing
joined

accepting changes
checking out .
creating new . .
developing with .
keeping updated
permitting demotion
preventing automatic updating
retrieving latest generation at checkout

name .
referring to deleted .
severed

merging changes
rejoining .

open private part . . .

PM-25

PM-49

PM-43
PM-35
PM-35
PM-35

PM-l3l

PM-4l
PM-39
PM-42
PM-38
PM-40
PM-42
PM-42
PM-4l

PM-l27
PM-l33

· PM-45
· PM-45

PM-89, PM-113

p

parallel development
within subsystems

parameter placeholders

Parent procedure
Common.Object.Parent

parent unit

Parents function
Cmvcc.Hlerarchy. Parents

partitioning of projects

path .
creating .
differences between paths and subpaths
multiple
replacing model
setting up . . .
setting up multiple development paths

PM-280
· PM-l3

PM-l27, PM-128

. -. ;~.

PM-l38

PM-l3l

PM-335

PM-3

PM-8, PM-268
PM-47 '.
PM-47
PM-37·
PM-96

PM-326
· PM~.7·

RATIONAL 8/1/88 PM-449·.

pathname
patterns in
prefix. . .

PM-127, PM-139, PM-166, PM-170, PM-17I, PM-I72, PM-224, PM-227
PM-129

PM-34, PM-47

period (.)
special character

placeholders, parameter

policy .

pound sign (#)
library wildcard
substitution character
symbol in window banner

PM-132

PM-127, PM-I28

. PM-I5

PM-I29
PM-I30
PM-I35

pragmas
Inline.
Main .
PrivatecEyea..Only

Previous procedure
Common. Object. Previous
Editor.Cursor.Previous .

. PM-116

. PM-114
PM-57, PM-89, PM-114

PM-138
PM-I90

primary subsystem
copying view into secondary
setting up

private part
closed
open .

Private_.Byes_Only pragma

profile.

<PROFILE> special value

PM-2, PM-I6, PM-lOl, PM-339, PM-35I, PM-354
PM-103
PM-I03

PM-87, PM-89
PM-87, PM-113
.... PM-89

PM-57, PM-89, PM-114

PM-128

PM-128

program
execution

multiple subsystems
. library
testing

project
management

defined
issues .

partitioning
reporting .

Promote procedure
Common. Promote

PM-12, PM-84
PM-51
PM-9

PM-85

PM-I
PM-4
PM-3

PM-15

PM-192

, ,
\. ':: .•.

8/1/88 RATIONALPM-450

Put-Notes procedure
Omvc.Put..Notes

Cmvc.Appendc.Notes procedure
Cmvc.Oreatec.Emptyc.Note., Window procedure
Cmvc.Oet..Notea procedure

PM-292
PM-210
PM-232
PM-244

Q

qualified name, fully " .

question mark (7)
library wildcard
substitution character

Pr-v£-131

PM-129
PM-130

question mark, double (77)
library wildcard . . . PM-129"

R

recombinant testing

Redo procedure
Common.Redo

· PM-8S

PM-193

referencers . . .

<REGION> special name

· PM-63

PM-128

release. . . " .
activity . . .
configuration
copying in multihost development
defined . "
full view
implications of upward-compatible changes
integrating subpaths
level number

PM-7, PM-21, PM-30, PM-187, PM-188, PM-268, PM-294
PM-16, PM-187, PM-325

· PM-3l
PM-I04

PM-8
PM-30
PM-91
PM-46 ...>

PM-34, PM-230
PM-34

· PM-30
· 'PM-32

names . " ..
of configurations
representation of

Release procedure
Cmvc.Release

Cmvc.Build procedure
Common. Release

released view

PM-30, PM-46, PM-92, PM-194, PM-294, PM-327
PM-212
PM-136

PM-8, PM-30

· PM-93relocation

Remove procedure
Activi ty .Remove PM-158

Remove..Child procedure
Omvc..Hlerarchy.Removec Ohlld PM-996

RATIONAL 8/1/88
/4..;

PM-451'

Removec.From..Liet procedure
Work; Order .Remove..Prom..Liat PM-989

Remove..Import procedure
. Cmvc.RemovecImport

Cmvc.Remove., Unusedc.Imports procedure

Removec.Unusedc.Imports procedure
Cznvc.Remove., Unusedc.Imports

PM-64, PM-299
PM-301

PAI-90l

rename
Ada units .
view .

PM-36
PM-50

Repair.iCdb procedure
Omvc..Maintenance.Repair _ Cdb

Replace..Model procedure
Cmvc.Replace..Model

Requirec.Commentc.Lines enumeration
Workc.Order. Venture..Policy _Switch

PAf-9S6

PM-23, PM-64, PM-96, PM-90S

PM-400

Require_Comments_At_Check_In enumeration
Work..Order. Venture..Policy _Switch

Require..Current.; Work..Order enumeration
Work_ Order. Venture.:..Policy _S witch

PM-400

PM-401

reservation token PM-6, PM-14, PM-25, PM-44, PM-226, PM-227,
. PM-264, PM-308, PM-317

Restore procedure
Archive.Restore

Cmvc_Maintenance.MW<:e_Primary procedure .
Cmvc_Maintenance.Make_Secondary procedure

PM-I03, PM-lOg
PM-351
PM-354

PM-7
"

revert

Revert procedure
Omvc.Revert .

Cmvc.Acceptc.Changes procedure
Common. Revert .

PM-28, PM-90S
PM-207
PM-189

PM-131root of library system

s
Save procedure

Archive. Save PM-I03, PM-lOg

searchlist
name resolution mode

secondary subsystem
setving up

PM-132

PM-2, PM-16, PM-lOl, PM-339, PM-351, PM-354
. PM-I03

PtvF-452 8/1/88 RATIONAL

<SELECTION> special name

semantic consistency

semicolon (j)
in set notation
separator . .

session
response profile
switches, see switches

<SESSION> special value

set notation

Set procedure
Activity.Set

Activi ty.Current procedure

Set_Default procedure
Activity.SeLDefault

Activity.Current procedure
Activity.Set procedure

Work..Order.Setc.Default

SeLDefaulLList procedure
Work_Order.SeLDefauILList
Work_Order. Venture_Editor.Set_Default_List

Set..Defaultc.Order procedure
Work..Order. Venture_Editor.Set-Default_Order ..

Setc.Default., Venture procedure
Workc.Order.Set..Default., Venture

Set_Field procedure
Workc.Order.Editor.Set..Fleld

SeLField_Info procedure
Work., Order. Venturec.Edltor.Ser..Fteldc.Info

PM,-128
}" .:' .•

FM-9

'PM:~133
PM-133

PM-128

PM-133

PM-159
PM::....147

'.~·~ r- ,r:c· PM~67, PM-82, PM-iJ61
.-, c- • PM~147

PM-IS!)·
pM-.390

- ..
PM~'{J92
PM-419

PM-421

SeLLoad_ View procedure
Activity.Setc.Load., View

SeLNotes procedure
Workc.Order.Editor.Setc.Notes
Work_Order.List_Editor.SeLNotes
Work_Order.SeLNotes
Work_Order. Venture..Edltcr. Set_Notes

Setc.Notea..Llst procedure
Workc.Order.Setc.Notesc.List . .

. ,....

Set..Notes.; Venture procedure
Work_Order.SeLNotes_ Venture

RATIONAL 8/1/88

PM-409, PM-410, PM:::~lr{

~.I .i , .. ' . '"

',cj PM-162

PM-412
PM-415
PM-~95

_ . . ".f:M-425

"';

PM-39'6"

PMT4~,3'1

Set-Policy procedure
. ~.:Work..Order. VenturecEditor. Set..Pollcy

Set..Spec., View procedure
Activity.Set..Spec., View

PM-426

PM-164

Set __Venture..Pollcy procedure
, Work..Order.Set., Venture..Policy PA/-S98

sever PM-14, PM-43, PM-308

Sever procedure
Cmvc.Sever , , . .

Cmvc.Copy procedure . . .
Cmvc.Make..Path procedure

severed objects
'. merging changes

rejoining

PM-43, PM-44, PM-48, PAI-S08
PM-222

. . . , ' . , . . , PM-268

PM-45
PM-45

Show procedure
.' "Cnrvc.Show .
:.' Cmvc.Check..Out procedure

Show _AlL Checked..Out procedure
Omvc.Showc All..Checkedc Out .

Cmvc.Check..Out procedure

Show _AlL Controlled procedure
Cmvc.Show..Alk.Controlled .

PM-40, PA/-Sl0
PM-218

PM-S12
PM-218

PM-31S

Show _AlL Uucontrolled procedure
Crovc.Show _AlL Uncontrolled

ShQW _Checked_Out_By _User
Cznvc.Show _Checked_Out-By _User

Cmvc.Check..Out procedure

Show __Checked., Our..By _User procedure
•. Cmvc.Show_Checked_Out-By_User

Showc Oheckedc Out..ln.; View
.'Cmvc.Show _Checked_Out-In_ View

Cmvc. Check., Out procedure
'..

PM-914

PM-218

PM-S15

PM-218

Showc.CheckedcOutc.In., View procedure
. Omvc.Showc.Checked..Outc.In., View

Show _His tory procedure
Omvc.ShowcHlstory

PM-S16

PM-917

Show ~History _By _Generation procedure
Cmvc.Show _History _By _Generation

Omvc.Oheck..In procedure . . .
Cmvc.Merge..Chengea procedure

PM-29, PM-319
PM-216
PM-289

8/1/88 RATIONAL

Showc lmage..Of..Generation procedure
Cmvc.Show_Image_OLGeneration .

Show_OuLOLDate_Objects procedure
Cmvc.Show _Out_OLDate_Objects .

Cmvc.AccepLChanges procedure

single-library application

sort format.

Sort_Image procedure
Common. Sortc.Image

source configuration . .
.t _,:~.'

'pM-321
.... .,

':.; I _. '--<!::~_~;"''"'
", .. ,

P.M;.,.929
PM-205

...,.. f •
, '

" PM-15

PM:-136

- ..
P~M.;...136

•. PM-9

spec view , . PM-lO, PM-ll, PM-29, PM-52, PM-136, PM-137, PM-187
adding or removing units from .. - :'PM~95
compilation . . ',' TM-61
controlled units PM-61
creating ,... T: :<., PM-;q'8
names and level numbers ,y PM-59

spec/load subsystems .. , PM-187

Spec..Loadc.Subsystem enumeration .:;..... .
Omvc.Systemc.Objectc.Enum type'

,~#.!.;. '.'. ,: ~- ~- ':'"
PM-131

'PM~f:!2
. .'l"M::"133

'1' ,. ,. ~ .•. ',:, ...• , .,. f'M"7'l~,
':-1 .J:..)' :"PM-13i
·E:!~~~(;·...7~···.:~!.:.. :.-.:--:"

PM-131
~- .' 'j:-: FM-'-132

. ':.2 "PM-131
. j.),. . . • ;1. ~ •. '-[PM-132

PM-132
~~~132:
PM-127.
pK{:::'12i'

'Pki";;'128
PM-128

. ~lPM7-128'
.·PM'::'128

pM-12&
~ . ~";.,._~.1: ',_ .

..;~~ '",PM7128
,PlJ-:-128. .

"f>Mi!l2~
'1iM'::"i2s

special characters
backslash (')
braces (u)
brackets ([ 1)
caret (-)
dollar sign ($)
double dollar sign (SS)
exclamation mark (!)
grave (')
period (.) . .
underscore (_)

special names. .
<ACTIVITY>
<CURSOR>
<Ir..fAGE>
<REGION>
<SELECTION>
<TEXT> ..

e -~;.,~i:' -:<....

'";;:.;. w "',

• .J _.....;_ •• _.

<r :

0" r, '~",.'.. : .... ,\'
'-~-"." ..... - ...

"r.J:: ...~;O ~!?"'" ,:;._"~

special values . .
<DEFAULT>
<PROFILE>
<SESSION>

. ~~;-:
. . . . .

"':<J:";:., . ::1l~ '. ""'.J.[;?~~:~;).,..':
..1(-:lr,·uH.15. ".'{.1_·,~-:, ,;~

• :. '~i.!?l,~,O"~·:-· '" <~~~:'
Spreads.Fields procedure

Work_ Order. Venture..Edltor. SpreadcFields

RATIONAL

'-- '«,

PM-.27



~t,a~,edescription directory

Status. type
Check.Status

strings
name

subpath
creating

. differences between paths and subpaths
integrating into a single release
name extension

substitution characters
>:;:at.sign (:';1)
" pound sign (#)
. question mark (7)

Sll.psystem ' . . .
···~hild . . . . . .
- .~oIPpiling units
. , .copying identification number

'copying releases and code views
,c;o?ying views among hosts
creating .....

";".'. sample program
C'. defined . . . , . .
: "developing applications using multiple

developing with joined objects
c : development paths . . . . .'

edmng controlled objects '. .
executing an entire application

.'exports . . . . . .
,}dentification number
imports, ....
interfaces , . . . ,
internal structure

, making design changes
making implementation changes

.managing CMVC information interactively
managing views , . . . . , . .
moving a primary to another host

,:priIUary, . . . , , . . . . . .
, program development within '
~.propegating changes across hosts .
. releasing configurations. ...
'sec.Qn,dary., . ." . . . . . . . . .

i setting up '. .; . . . ' . . . , .
setting up for cross-development .
setting up multiple development paths
setting up primary and secondary

, PM-32

PM-179

PM-127

PM-13, PM-37, PM-224, PM-227, P:\i-280
P~i-37

, , . , PM-47
, . , , PM-4G
nt-37, P:\i-47

PM-130
PM-130
PM-130
PM-130

. PM":'3,PM-4, PM-5, PM-13G, PM-137, PM-187
, PM-16
, PM-29
PM-104
Pl\f-104

PM-103, PM-lOg
PM-17, PM-20, PM-98

, .. PM-11
PM-3, PM-4

PM-51
PM-38
PM-33
PM-26
PM-84
PM-lO

PM-104
, PM-lO

PM-lO, PM-ll
PM-20, PM-24

· PM-89
, PM-86
PM-188

· PM-48
PM-108

PM-2, PM-16, PM-339, PM-35l, PM-354
· PM-13
PM-I05

· PM-30
'PM-2, PM-16, PM-339, PM-351, PM-354

· PM-96
PM-1I5

· PM-41
PM-I03

8/1/88 RATIONAL



subsystem, continued
setting up Units directory
testing an application
using CDFs with
using CMVC
working view

predefined library characteristics
putting objects under CMVC

Subsystemc.Name subtype
Activity .SubsystemcN ame

supplier .

switches
session . . . . . . . . . .

Activity_File . . . . . .
Cmvc..Breakc Long..Llnee
Cmvc..Capitalize . . . .
Cmvc..Commentc.Extent .
Cmvc..Conflgurationc.Extent
CmvccEnable..Relocation
Cmvc..FieldcExtent
Cmvc..Indentation
Omvc..Llnec.Length
Omvcc.Shorten..N ame
Cmvc..Shortenc.Unit.Btate
Cmvc..Show _Add_Date
Cmvc..Showc.Addc.Tlme .
Cmvc_Show_AILDefault-Lists
Cmvc_Show_AILDefault-Orders
Cmvc..Sbowc.Boolean ....
Cmvcc.Show..Deletedc Objects
Cmvc..Show _Deleted_ Versions
Cmvc..Show _Display _Position
Cmvc..Show _Edit-Info
Cmvc..Showc.Fleld..Default ..
Cmvc..Show _Field_Max_Index
Cmvcc.Show..Fteld., Type . .
Cmvc..Show _Frozen . . . .
Cnrvc..Show _Hidden_Fields
Cmvc..Show _Retention
Cmvc..Showc.Unitc.State . .
Omvc..Showc.Ueers . . : ~ .' . :,~.~t
Cmvc..Show., Version-Number
Cmvc..Uppercase . .
Cmvc., Versionc.Extent
Default- Venture

RATIONAL 8/1/88

...
"J.: ::-::-

.. PM-23

.:' P~85
',~' . 2;:P~{':':'1l1

r~""J.1
. pM''':'21
. PM-22
.·:PM~25

PM"':362
.::.;~ ; P·M...:.."}61

PM::...362
PM-;.3~2.
I.'M:":?62
P1f·::362
PM-i96
p1vl~362
P1-4-362
rM::-~62
PM":'362

.~M;:363
.. ' . . rM·...:363

'<CH.':":.i.i :;,r·. ~..;.. ..{~:s '<:,:!- ->: ",

""::">';'.) :;",~;:' ':\' ;··.:.;.~¥~~63

.. :-.:.~~,:>";:':',: ~';;'.;~:~>.i~;~~i
; .. 'P:U-364

'~,'" r . . .,. :,f! 'PM-S63
. . . . , 'P,M~,~63

7'.;,; . . PM"':363
. rr·i-363
~N:-]63
'PM"::~63

.; • -:;.!::X. '":', - ..~'. :.' .. ·~·~~·PK.f~~63
: ;.•~:', C, .:':''-'''~:,:, ,'. ,.. YPM~364

·1' ..:~.:,::; 'I.! ~.':PM-364
. . .:":,:'pM~364

... ' -. ~'~PM::,:'364

PM-364
PM...::i64

'··::~i. ?,. L' " ' , '..'PM2364
. . .- .:.: ,',; .:I'P,'¥-:.364

PM-364;{.ffl;f~94

'"ri.:

;,l~:<r:....{.,;~.,~.',...z
:--:.(i.;J':~(, ~!..~}).:-'.~:'. .s -~5b ~,



=
syst-em>.

object
'. ~et~ing.up
. ' '." ..•.. ..•. vlew ..

releasing .

System enumeration
.. Cmvc.Systern..Objectc.Enum
' ,

SyHeth_ObjecLEnum type .
Cmvc.Syatemc.Object..Enum

type

"1" . $.'.'

t~rt~{~y .
~::);t-..i. ...

task .....
::.: ¥

. ".1'

test:.,.: = ;
I .' application
i • recombinant

<;:~~T?special name.

The_Current_Activity function
-, .A.ctivity.The., Ourrent..Activlty

. : - \ . . -
'I'he..Encloaing..Subsyatem function

. Activity. The..Encloslng.Bubsyetem

ihe-;~nclos.ing- View function
:.··Activity. Thec.Enclosing., View

til<iffry'!' .. ,1 .J: •

. ..s!tnbol ...

tr.ansiti'Ve closure.

underscore (-f'
:' identifier character
:. :~p~~ial character

'. -
Undo procedure

,--Common, Undo
''';' ..•. .•.

UJli~·_Name subtype
ACtivity. Unite.Name

T

u

... _ PM-135, PM-404
PM-210, PM-232, PM-244, PM-292

. PM-45
. . . . . . . PM-404
. . . . . . . PM-135

PM-16, PM-181, PM-325
· . . . PM-181
· . . . PM-326
PM-181, PM-325

· . . . PM-321

..~.

PM-324

PM-924

n·t-1l3, PM-3D3

PM-15

PM-85
PM-85

PM-l28

PM-167

PM-168

PM-169

PM-133

. PM-68

PM-129
PM-132

PM-193

PM-170

8/1/88 RATIONAL



Update..Cdb procedure
Cmvcc.Maintenance. UpdatecCdb . . . . . . . .

Cmvc_Maintenance.Make_Primary procedure

updating
preventing automatic

Units directory, setting up

Units procedure
Check. Units

unlock ....

update
joined objects

using CDFs with subsystems

Value., Copy enumeration
Activity. Creation..Mode

Activi ty .Display procedure

venture . . . . . .
editing .....

venture policy switch

Ventures.Editor package
Work.Drder.VenturecEdltor

Venture..Policy _Switch type
Work., Order. Ventures.Polley _Swi tch

version

version control
defined . .

view .....
building from a configuration object
client . .
code
combined
deleting.
load
managing
names, coordinating level numbers
released. . . . .
renaming ....
repairing damaged
spec
working .....

RATIONAL 8/1/88

PM-J.80

PM-4-36

PM-108 :··PiJ.c:958, .
.PM"':'35I

'~'H.,.:.,ei.: ,,_ '., PAf.-;U,L_0_ -1..:1: .• '

v .:: .> -;

. , ..... P~-146

.. , .. , 'PM2:H~
PM-2, PM-15, PM-36i.'~

PM-385, PM-417

, , :~~'~M-361
;:).J\t:.. . '<;0:·:::'

4~ ··.:.:~::=n.:/! .:.~: :.~~~::,.'\..~ l.~l~"l·!'!J:J....:td1··=:>. :::.,)-.:~\-:':T:\:l;p~..!:loo. ~ ....',
"'._:"'j''I # ;"':~"'J-._;:~.:': 'i~ -.•"'!"(~:"'.,' .' 1.

'-' ".';'ftci "~'24!!le<,"),,::, .;;;: . ,;r,;M~408

.. ~ ;j; ',( -, ' . " ....• ~M;:-3
"",IV:.':': '1~' p~...::~,,·~¥::o

PM-I, PM-3,P.t-.f::·8;.
, . . '.' ;.', ;~~~,50"
. , .. , . pM-lO

Pl\·(-16, PM-30, Pza..,262,.PM~8Mt
.... , PM-53, PM-116
. , PM-48

Pl\i-lO, PM-ll, PM-52, PM-136 PM-l;31. ,~,- .. , .. · .• c
. . . . . . . . , '.' . . .' ;,PM-:48'

;: ..'~..: .':'.';jM-94
'! .. ~i.: :... . .lpMU30

. .-.;;t>-; . J~.M~@':
, ·C·.' . ,;L;:·:;~~:-50

PM-IO, PM-Il, PM-52, PM-131
, , . . . .>: PM~21,P:M-22l'l

~;:ii:' l::?)./·#



f, ,
'.

View _Name subtype
Acttvity.ViewcName . . . . . . .

Y!~"'7?rZ:r,:A~t1!.it~-.:N~Fe,~s~Q~!l'e . ! ';1:;
~:' ~.~~~t~vlt)'·YI~~_O~~~ctIVI.~~";'l':\~:l!'-e,:. ,_.

\-. . .:~ ~ t•• -.' L'........ "'.'. .
.vi~w(_?!mp!e-NarI);e $4~ype' .

Activlty.Viewc.Simplec.Name

Views procedure
Check.Viewe .

PM-171

, '. z: '--I. ."......~...' ,•..•.' I,.

PM-172
i t:',

PM-173

,'"
PAf-182

Visit procedure
Activity.Visit PM-174

~.wildc(ards
.. "-Uotary

at sigfi'(~) '-'
double question mark (??)
pound slgn C#J .: ':>:." , , '
questionmark" (7)

.-=~=....._.,'._.._.__0.- __ ..~.~__ PM-127, PM-129

..•., ..• -' • J" ~ ••.

PM-129
PM-129
PM-129
PM-129

window banner
# 'symbol

-'. symbol
':C, --::::symbol

.. ~,',' . . . . .. ,_ PM-135, PM-404
--:-">. . .:'..". .. --: "-'PM-210, PM-232, PM-244, PM-292

:......:.. :.. :. -. - .....'.. :....:' .": . : PM-135
..• ~..:..:.:.~.• -::'_.. :.,._ ..•.. _ ~._., ...•. ~._ •..•r;;.;:~~· __ ._·~ ·_ .~ .. ,-.~-- -•• - - .••.

Withdraw procedure
Ada. Withdraw . . . . PM-35, PM-36

withdrawing
...... objects. - _. "~'-'''-.'' .: :,,,.•... , ,.-..,.. ;-'":~'. .: ; '; ' ;-

work-order list
editing . .

Work_Order package
}':-., , ,- ..' ,",'

...
;' ~f" ':,_ r .'

..... PM-35

PM-2, PM-15, PM-361
. . . . . . PM-403

PM-2, PM-15, PM-361
PM-384

PM-961

Work_Order.:....lmph~men.t,ation package ..
Ilinplementatlon. Work_Order _Implementation

Wcrd..Order. Ven~~1;e.,:"Poli~;r-:,SY,li~~i··tY;R~::. ;" . "~":'

working library . . . . .' . . . .

PM-400

PM-7
, r __--1 •• ~~.,. .•• .,

working view": =,':': '. . . . .
predefined library characteristics
putting objects UJ?~~~CMVC

. CC'. releesingconfigurations' . ,;;;;.·co-;, :~.. '

.. :...: ..••

PM-8,PM-21, PM-188, PM-224
PM-22

. PM-25

. PM-30

PM-132
'" - :-:-:':"~"'-- ";--:. .,.~~-,... -.- ¥.,'v.:~~~~.,~·~~.~~o~__~g~..;.~··~.~""''-.:._..__~__. '-'-'~:.~."...-'~'...::--.~~...~.-~

Wl"it-e.procedur~'~ '-;'\~, ,_" ..._, ... ,.:'"'',C',.

Activity. Write PM-175



RATIONAL

READER'S COMMENTS . ~;'~f:-;;..n" if ,-,¥'·... '"'v/~

\-~;_ V·!',! 1:- .• :~- i-·': ">1"

~,.:,_. 'r ,''', ',' '" .'_: .: ~.. "", t· I, #~ -:",1 .;, •. ::., ,i"

Note: This form is for documentation comments only. YO~i,ear'l))so ;$.~~1(,R~~!'~rD·:(~~orts and
comments electronically by using the SIMS problem-repoffiflg sysfem. rr you use SIMS to
submit documentation comments, please indicate the manual name; bobk name; atldPci~e"hurhber.. .» , ,;',

Did you find this book understandable, usable, and well organized? Please q:;>pynenhand list any
suggestions for improvement.

" j;""

If you found errors in this book, please specify the error and the page numoer.Jf;You Pf~J~r,attach a
photocopy with the error marked.

',.

Indicate any additions or changes you would like to see in the index.

; "j," .:....- ;:

How much experience have you had with the Rational Environment?

6 months or less _ 1 year _

How much experience have you had with the Ada',progrnrnrning4Emguage?-
.,,

6 months or less _ 1 year _-'-----" 3 years or mor~ -'- __ ....••..':.,,'

;,U"', 8'O"'''~ 'to. '"),::.;';;'

Name (optional), --'--''-- __ ....:...;;.'.~'~Dai~'''''''''::-----'--f..:.:"5..•c'-'.. ~.SJ__ -'--';";'

Company --'--'__ ~~ ~--_~
Address ~ ~ __ ~ ~~·_C'!_.~_~_~ ..

City State ZIP Code ~:--""~~).''---o...:.:...

Please return this form to: Publications Department
Rational
3320 Scott Boulevard
Santa Clara, CA 95054-3197

Rational Environment Reference Manual, Project Management (p~·.-aQ(H A-31



•.... -, ..... "". ".'
.•.. ". ; ..•... ;.:,-

..;,.
'<

..~...r.· .i.-., •
u.'

,',.9,. :"1 .- "

~ •••• "."-''"'"~_'''~"- __".,,, .• '~'''''_H __ . ...._. . _....•__ •.•.. _. _

<:»

.~." '. i .

.;;;':..



RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

6 months or less _ 1 year _ 3 years or more _

How much experience have you had with the Ada programming language?

6 months or less _ 1year_~ 3 years or more _

Name (optional). .------'D.ate--------
Company ----- --
Add~ss ---
City State ZIP Code --

Please return this form to: Publications Department
Rational
3320 Scott Boulevard
Santa Clara, CA 95054-3197

Rational Environment Reference Manual, Project Management(PM),800tA-31




