Rational Environment
Reference Manual

Appendix F
for the R1000 Target

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-04 (803-002320)

Rev. 1.3, March 1985

Rev. 2, December 1985
Rev. 2.1, July 1986

Rev. 3.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

THIS PRODUCT CONFORMS
TO ANSU/MIL-STD-1815A AS
DETERMINED BY THE AIPC
UNDER ITS CURRENT
TESTING PROCEDURES

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

Rational
1501 Salado Drive
Mountain View, California 94043

F-ii e RATIONAL

Contents

Preface v
Appendix F for the R1000 Target 1
Compilation oo 1
Unit Stateso Lo 1
Treatment of Generics 2
Imstallationo 2
Incremental Operations on Installed Units 3
Coding e 3
Incremental Operations on Coded Units 4
The Predefined Language Environment 4
Package Standardo 5
Package Systemo 6
Unchecked_Deallocation Procedure 7
Unchecked_Conversion Function 7
Package Machine_.Code 7
Attributes Lo 8
Pragmaso 8
Representation Clauses 10
Representation of Objects 10
Length Clauses 12
Enumeration Representation Clauses 12
Record Representation Clauses 12
AddressClauseso 00 12
Interrupts Lo 12
Chapter 14I/O 12
Limits 14
Index 15

RATIONAL 71/er F-iii

RATIONAL

Preface

Appendix F describes the implementation-dependent features of the Ada® lan-
guage implementation provided by the Rational Environment™ for the Rational
architecture and the R1000 Development System. Unlike the Rational Environment
Reference Manual in general, this appendix does not discuss one package or a set of
packages of resources provided by the Environment. Instead, it discusses the topics
that the Reference Manual for the Ada Programming Language specifies must be in
Appendix F.

A table of contents appears at the front of this appendix and an index at the back |
of this appendix.

RAT'ONAL 7/1/87 F-v

RATIONAL

Appendix F for the R1000 Target

This section of the Reference Manual for the Ada Programming Language is Ap-
pendix F for the Rational Environment, the Rational architecture, and the R1000
target. This appendix describes the following implementation-dependent features:

e Compilation

¢ The predefined language environment
o Attributes

o Pragmas

¢ Representation clauses

o Chapter 14 1/0

¢ Limits

Compilation

The following sections introduce some of the concepts that underlie the Rational En-
vironment compilation system and provide a summary of the separate compilation
rules for Ada units in the Environment.

Unit States

The Rational Environment provides an integrated representation of programs, in-
dependent of their compilation state. In the Environment, no distinction is made
between source code, object code, or other implementation-dependent representa-
tions.

In the Environment, each Ada unit can be in one of four basic states, ranging from
archived, the lowest state, to coded, the highest state. Transforming a program to
the state in which it can be executed consists of promoting all of its units from the
source state (or from the archived state) to the coded state; finally, promoting a
command that references the program will execute it. Each of the states is described
in more detail below:

o Archived: The image of the unit cannot be edited. Units in this state also do not
have the definition capability and structure-oriented highlighting that is available
to units in the source, installed, and coded states. Units can be put in the archived
state to save space.

R’AT‘ONAL 7/1/87 F-1

Appendix F for the R1000 Target

* Source: The image of the unit can be edited. Other units that reference it (in
the Ada sense) cannot be in a state higher than the source state.

o Installed: The unit has been syntactically and semantically checked according to
the definition of the Ada language. Other units can now reference it (in the Ada
sense); that is, they can be promoted from the source state to higher states.

* Coded: Code has been generated for the unit, and the unit can be executed from
a Command window (if the unit is R1000 code).

Treatment of Generics

Because the Rational Environment and the Rational architecture do not depend on
macro expansion approaches to compile generics, the specification and the body of
a generic are not required to be compiled at the same time. Bodies of generics can
be changed without making the instantiations of these generics obsolete.

If the formal part of a generic contains private (or limited private) types, certain
additional implicit dependencies among the specification, body, and instantiations of
a generic may be introduced (see Section 13.3.2 of the Reference Manual for the Ada
Programming Language). The effect of these implicit dependencies is described more
fully in “Installation,” below, and in the discussion of the Must_Be_Constrained
pragma in “Pragmas,” later in this section.

Installation

Installation ordering rules follow Ada’s separate compilation rules. Specs must be
installed before their corresponding bodies are installed. Subunits must be installed
after their parents are installed. A unit spec must be installed before another unit
that refers to it can be installed. Bodies can be changed without making other units
that refer to their specification obsolete.

If the formal part of a generic contains private (or limited private) types, certain
additional implicit installation dependencies among the specification, body, and
instantiations of a generic may be introduced (see Section 13.3.2 of the Reference
Manual for the Ada Programming Language).

If the specification and body of such a generic are installed, and if the body contains
language constructs that would require constrained actuals for the formal private
(or limited private) types, instantiations that do not provide constrained actuals
for these formals cannot be installed after this point (semantic errors will be gen-
erated). If, on the other hand, the specification for such a generic and at least one
instantiation with unconstrained actuals for the formals have been installed, the
body for the generic cannot then be installed if it contains language constructs that
would require constrained actuals (semantic errors will be generated).

The Environment supports the Must_Be_Constrained pragma, which can be used
to provide more explicit control over the treatment of generics with formals that
are private (or limited private). More information is available in the description of
the Must_Be_Constrained pragma in “Pragmas,” later in this section.

F-2 7/1/87 R)ATIONAL

Appendix F for the R1000 Target

It is always legal for a generic actual parameter to be a type with discriminants
if the discriminants have default values. In generic unit instantiation, the Ratio-
nal Environment treats such actual parameters as if they were constrained types.
This conforms to the requirements of AI-00037 (a ruling by the Ada board on the
interpretation of the LRM).

Literal declarations outside the bounds of the Long_Integer type are rejected at
installation time. The bounds of Long-_Integer are System.Min_Int .. System.Max-
~Int.

A parameterless function having the same name and type as an enumeration literal
(declared in the same scope) is rejected at installation time. This conforms to
AI-00330 (a ruling by the Ada board on the interpretation of the LRM).

Incremental Operations on Installed Units

The Rational Environment supports the following incrementai changes to units in
the installed state:

o New declarations that are upwardly compatible (based on Ada semantics) can
be inserted. Existing declarations with no dependents can be deleted or demoted
from installed state to source state, edited, and then reinstalled.

o New statements can be inserted. Existing statements can be deleted or demoted
to source state, edited, and then reinstalled.

o New context clause items can be inserted if they are upwardly compatible (based
on Ada semantics). Existing context clause items with no dependents can be
deleted or demoted from installed state to source state, edited, and then rein-
stalled.

o New stand-alone comments (on lines by themselves) can be inserted. Existing
stand-alone comments can be deleted or demoted from installed state to source
state, edited, and then reinstalled.

Irlllcremental insertion, deletion, and editing of stand-alone comment lines is always
allowed.

Incremental operations are not allowed for two-part types, generic formal parts,
or generic specifications with installed instantiations. Incremental operations for
declarations are also supported only for manipulations of the entire declaration,
not for component parts.

Coding

Code is generated for a unit when the body of the unit is promoted to the coded

state. Promoting a specification to coded does not result in the generation of

any code. Code is generated to elaborate declarations in a specification when the

corresponding body is promoted to coded. Promoting a specification to coded

Eesultg i(lll information being computed about the specification that allows clients to
e coded.

RAT'ONAL 7/1/87 F-3

Appendix F for the R1000 Target

Coding order differs in some respects from installation order. A library unit specifi-
cation must be coded before its body can be coded. Package, generic package, and
task subunits are coded before their parents are coded. Subprogram and generic
subprogram subunits are coded after their parents are coded. Library unit specifi-
cations must be coded before any clients can be coded. A main program body cau
be coded only after every specification and body in the closure of the main program
has been coded. The system may optimize these strict ordering rules when it can
make use of information from previous promotions.

Incremental Operations on Coded Units

The Rational Environment supports the following incremental changes to units in
the coded state:

e In a library unit specification, new declarations that are upwardly compatible
(based on Ada semantics) can ve inserted. Existing declarations with no de-
pendents can be deleted, or they can be edited and reinserted. Because the
elaboration code for the declarations in a specification is associated with the cor-
responding body, incremental insertions or deletions in a library unit specification
result in the demotion of the corresponding body to the installed state.

¢ In a library unit specification, pragmas can be incrementally inserted, deleted,
or edited only if all declarations to which the pragma refers are simultaneously
inserted, deleted, or edited within the same insertion point.

o New context clauses that are upwardly compatible (based on Ada semantics) can
be inserted only if the units named in the context clause are coded. Existing
context clauses with no dependents can be deleted, or they can be edited and
then reinserted. Incremental insertion or deletion of context clauses results in the
demotion of any dependent main programs.

¢ Insertion, deletion, and editing of comments are allowed in all coded units.

All restrictions on incremental insertions, deletions, and editing of units in the
installed state also apply to units in the coded state.

The Predefined Language Environment

The following material describes the predefined library units (all in the Ratio-
nal Environment Reference Manual, PT): package Standard, package System, the
Unchecked_Deallocation procedure, and the Unchecked—.Conversion function.

F-4 7/1/87 RAT'ONAL

Appendix F for the R1000 Target

. Package Standard
Package Standard defines all of the predefined identifiers in the language.
package Standard is

tupe Boolean is (False, True);
for Boolean’Size use 1;

type Integer is range -2**31-1 .. 2%x31-1;

type Long_Integer 1is range (-2*%*62 - 2**62) .. (2**62 - 1 + 2%xB62);
- -2%*63 .. 2*x53-1

tupe Float is digits 15 range (2.0**1023) - (2.0+%397) + (2.0+*1023)..
~ ((2.0%+1023) - (2.0%x97) + (2.0%*1023));
—- -1.7977E308 .. 1.7977E308;

type Character is (Nul, ..., Del);
for Character use (@, ..., 127);
for Character’Size use 8;

package Ascii is ... end Ascii;

subtype Natural 1is Integer range @ .. Integer’lLast;
subtype Positive is Integer range 1 .. Integer’Last;

type String is array (Positive range <>) of Character;
. tupe Duration is delta 2.¢++(-15)
-- -3.951757812502E-95

range -(2.0%+32) .. (2.0%*32) - (2.0%*(-15));
—— -4.294967296000E+03 .. 4.294967296000E +09

Constraint_Error : exception;

Numeric_Error : exception;

Program_Error : exception;

Storage_Error : exception;

Tasking_Error 1 exception;
end Standard,

For additional information, see the reference entries in the Rational Environment
Reference Manual, PT, package Standard.

RATIONAL 7/1/87 F-5

Appendix F for the R1000 Target

Package System

Package System defines various implementation-dependent types, objects, and sub-
programs.

Other declarations defined in package System are reserved for internal use and are
not documented. These declarations should not be required for users of the Rational
Environment.

package System 1is
type Name is (R10002);
System_Name : constant Name := R1000;

Bit : constant := 1;

Storage_Unit : constant := 1 * Bit;

Word_Size : constant := 128 * Bit;

Byte_Size . constant := 8 x Bit;

Megabyte : constant := (2 ** 208) * Byte_Size;
Memory_Size : constant := 32 * Megabyte;

-- System-Dependent Named Numbers

Min_Int : constant := Long_lnteger’Pos (Long_Integer’First);
Max_Int : constant := Long_!nteger’Pos (Long_Integer’Last);
Max_Digits : constant := 15;

Max_Mantissa : constant := B63;

Fine_Delta : constant := 1.8 / (2.0 **x B63};

Tick : constant := 200.0E-S;

subtype Priority is Integer range @ .. 5;

type Byte is new Natural range @ .. 255;

type Byte_String is array (Natural range <>) of Byte;

—- Basic units of transmission/reception to/from 10 devices

-- The following exceptions are raised by Unchecked_Conversion or
Unchecked_Conversions

Type_Error : exception;

Capability_Error : exception;

Assertion_Error: exception;
end System;

For additional information, see the reference entries in the Rational Environment
Reference Manual, PT, package System.

For additional information on the exceptions, see the reference entries in the Ratso-

nal Environment Reference Manual, PT, Unchecked_Conversion function and pack-
age Unchecked_Conversions.

F-6 7/1/87 RAT'ONAL

Appendix F for the R1000 Target

Unchecked-Deallocation Procedure

The Unchecked_Deallocation procedure is used to perform unchecked storage de-
allocation for values designated by access types that are not tasks and do not contain
components that are tasks or pointers to tasks.

Its formal parameter list is:

generic
type Object is limited private;
type Name is access Object;
procedure Unchecked_Deallocation(X : in out Name);

The Unchecked_Deallocation procedure assigns null to X and reclaims storage for
the object it designates.

Deallocation is not allowed if the designated type of the access type is a task type or
an access to a task type or if it contains such subcomponents. When the designated
type or its subcomponents is a generic formal or a private type exported from a sub-
system specification having a closed private part, it is not possible to determine at

-compilation time whether deallocation will be performed. The Allows_Deallocation
function in !Tools can be used at run time to determine whether deallocation will
be performed.

For additional information, see the reference entries in the Rattonal Environment
Reference Manual, PT, package Unchecked_Deallocation.
Unchecked-Conversion Function

The Unchecked_Conversion generic function converts objects of one type to objects
of another type.

Its formal parameter list is:
generic
type Source is limited private;

type Target is limited private;
function Unchecked_Conversion (S : Source) return Target;

The Source type is the type of the source object bit pattern that is to be converted
to the Target type.

A faster, package version of the Unchecked_Conversion function can be found in
the Ratsonal Environment Reference Manual, PT, package Unchecked_Conversions.

For additional information and examples, see the reference entries in the Rational

Environment Reference Manual, PT, Unchecked_Conversion function and package
Unchecked_Conversions.

Package Machine-Code
Package Machine_Code is not currently supported.

RATIONAL 7/1/87 F-7

Appendix F for the R1000 Target

Attributes

The Environment supports no implementation-dependent attributes other than
those defined in Appendix A of the Reference Manual for the Ada Programming
Language. The following clarifications and restrictions complement the descriptions
provided in Appendix A:

>Address: This attribute is not supported; any number returned is meaningless.
'First_Bit: This attribute is not supported.

"Last_Bit: This attribute is not supported.

"Position: This attribute is not supported.

'Storage_Size: 'Storage_Size is meaningful only when applied to access types or
access subtypes, in which case it returns the number of storage units reserved for
the collection associated with the base type for the access type or subtype. The
value returned by ’Storage_Size is meaningless for task types or task objects.

Pragmas

The Environment supports pragmas for application software development in addi-
tion to those defined in Appendix B of the Reference Manual for the Ada Program-
ming Language. They are described below, along with additional clarifications and
restrictions for the pragmas defined in Appendix B:

Controlled: Because the implementation does not support automatic garbage
collection, this pragma is always implicitly in effect for the R1000 target.

Disable_Deallocation (X): This pragma is used to disable deallocation for type
X, where X is the name of the type for which you want to disable deallocation.

Enable_Deallocation SX): This pragma is used with the Unchecked_Deallocation
generic to enable deallocation for type X, where X is the name of the access type
for which you want to reclaim storage. This pragma can also be used on a generic
formal to indicate that it should be deallocatable.

Inline: This pragma currently has no effect for the R1000 target.

Interface: The Environment does not currently support the execution of other lan-
guages on the Rational architecture. To support development of target-dependent
software containing this pragma, however, the Environment recognizes the pragma.
The effect of this pragma is that a body is implicitly built that will raise the Pro-
gram_Error exception if the subprogram is executed when the Ignore_Interface-
-Pragmas library switch is false.

List: This pragma currently has no effect.

Loaded_Main: This pragma is generated by the Environment to specify that a
unit is a code-only unit. When package Archive (Rational Environment Reference
Manual, LM) is used to generate a code-only unit, a Main pragma is converted to
a Loaded_Main pragma automatically.

F-8 7/1/87 BA\-“ONAL

Appendix F for the R1000 Target

e Main: This pragma is used to cause the Environment to preload the object code

for the compilation units referenced by a main program. Normally this loading
is done when a Command window referencing these units is promoted.

The pragma takes no parameters and should be placed immediately after the
declaration for the specification or the body of the main subprogram. Note that
there is a restriction that the parameters to subprograms containing this pragma
must be of types defined in package Standard, package System, or any other
predefined package in the Environment directory structure provided by Rational.

The pragma can be placed only after library units. The loading takes place when
the body of the main program is promoted to the coded state. For this to occur,
all compilation units referenced by the main program must be in the coded state.

When subsystems are used, the loading of subprograms containing a Main pragma
will use the current activity to determine the actual subsystem implementations
that will compose the main program. Once the loading has taken place, the
execution of the main program can occur without requiring an activity.

Executing a main program containing this pragma first causes the closure of the
library units referenced by the main program to be elaborated. The program is
then executed. If there are references in the Command window to units in the
closure of the main program other than within the main program, these references
will cause their own copy of these units to be elaborated. These elaborated
instances will be separate from those of the main program’s elaboration.

Memory.Size: This pragma has no effect.

Must_Be_Constrained: This pragma is used in a generic formal part to indicate
that formal private (and limited private) types must be constrained or need not
be constrained.

This pragma allows programmers to declare explicitly how they intend to use the
formals in the specification for a generic. Then the Environment can check that
any instantiations of the generic that are installed before the body of the generic
is installed are legal.

The pragma’s syntax is:
pragma Must_Be_Constrained ([<cond> =>] <type_id>, ...);
The condition can be either yes or no and defaults to the previous value (which is

initially yes) if omitted. The type identifier must be a formal private (or limited
private) type defined in the same formal part as the pragma.

If the condition value of no is specified, any use in the body that requires a
constrained type will be flagged as a semantic error. If yes is specified, any
instantiations that contain actuals that require constrained types will be flagged
with semantic errors if the actuals are not constrained.

o Open_Private_Part: This pragma is used in conjunction with subsystems to

indicate that a subsystem interface has an open private part.

¢ Optimize: This pragma currently has no effect.
e Pack: All records and arrays are stored packed in the minimum number of bits

that they require, unless explicitly overridden by a length representation clause
(see “Representation of Objects,” below). Thus, this pragma has no effect.

R)AT'ONAL 7/1/87 F-9

Apbendix F for the R1000 Target

o Page: This pragma is used by the print spooler to cause a new page. The pragma
will be the last line on the page. The next line will be printed on the next page.

e Page_Limit (X): This pragma specifies that the page limit for the current job
should be no less than X, where X is a number. This pragma overrides the library
switch Page_Limit, which overrides the session switch Default_Job_Page_Limit.
For a more detailed description, see the reference entries in the Rational Environ-
ment Reference Manual, SMU, System_Utilities.Get_Page_Counts and System-
-Utilities.Set_Page_Limit procedures.

e Priority: Priorities can be specified only inside a task or a library main program.
If multiple priorities are specified, only the first priority specified is used. The
default priority is 2.

o Private_Eyes_Only: This pragma is used in conjunction with subsystems to in-
dicate that items following the pragma in a context clause are required only in
the private part of the subsystem interface.

e Shared: This pragma currently has no effect.

¢ Storage-Unit: The only legal storage unit value for the Rational architecture is
1.

o Suppress: This pragma currently has no effect.
¢ System_Name: The only legal system name is R1000.

Representation Clauses

The Rational Environment does not currently provide a complete implementation
for representation specifications. To facilitate host/target development of target-
dependent code containing representation clauses, however, the Environment will
optionally compile unsupported representation clauses when the Ignore_Unsupport-
ed-Rep-Specs library switch is set to true.

Representation of Objects

The Environment follows some simple rules for representing objects in virtual mem-
ory, and these rules can be used to create objects with arbitrary bit images without
using representation clauses.

For discrete types as components of structures (records and arrays), the Rational
architecture representation will allocate the minimum amount of space to represent
the range imposed by the (possibly dynamic) constraints of the applicable subtype,
using a two’s complement representation that is zero based.

F-10 ~ 7/1/87 R)ATIONAL

Appendix F for the R1000 Target

For example:

subtype Binary is Integer range @ .. 1; -- uses 1 bit
subtype A is Integer range -3 .. 120; -- uses 8 bits
tupe B is new Natural range @ .. B63; -- uses b6 bits
type C is new Natural range 1022 .. 1923; -- uses 10 bits
type D 1s (X, Y, Z); -- uses 2 bits
-— X=>0
— Y=>1
-— L =>2
type E is (X); -- uses @ bits

Size representation clauses are supported for all enumeration types that are not
declared with two-part declarations. Thus, the above rules can be overridden. A
specific example is the representation for the Character type in package Standard,
which takes 8 bits instead of 7 because of a size representation clause.

 For records without discriminants, the Rational architecture stores the fields in the
order specified in the type declaration, using the minimum space required for each
field, with no additional Environment-generated fields.

type Rl is -- uses 8+6+1 = 15 bits
record
Field_1l : A;
Field_2 : B;

Field_3 : Boolean:
end record;

type R2 is -- uses 15+1 = 16 bits
record
Field_1l : R};
Field_2 : Boolean;
end record;

For constrained array types, the Rational architecture stores the elements packed,
using the minimum space for each element, with no additional fields.

type Al is array (1..N) of RI; -- uses 15*N bits
_ -- N need not be static
type A2 is array (0..10) of Boolean; -- uses 1l bits
tuype R3 is -- uses 15+11+42 = 28 bits
record

Field_l : Rl1;

Field_2 : A2;

Field_3 : D;

end record;

RATIONAL 7/1/87 F-11

Appendix F for the R1000 Target

Length Clauses

e ’Size: The Rational architecture supports the 'Size attribute for discrete types
only. These types are further limited in that they can have only a single dec-
laration point (that is, they cannot be incomplete or private types). The size
specified must be less than or equal to 64.

e ’Storage_Size for collections: The default collection size is 2**24 bits. The storage
size for a collection can range from 2**8 to 2**32 bits. The storage size for a
collection determines the number of bits required to represent access types for the
collection (for example, for collections of the default 2**24 bit size, the number
of bits required to store objects of the access type that is associated with this
collection is 24). Only types with single declaration points can have storage size
specified (that is, they cannot be incomplete or private types).

Storage sizes for collections must be specified as static expressions.

¢ ’Storage_Size for tasks: Because each task in the Rational architecture gets its
own virtual address space, storage size specifications for tasks are meaningless
and, consequently, are not supported. ,

e 'Small: This length clause is not currently supported.

Enumeration Representation Clauses

No enumeration representation clauses are currently supported.

Record Representation Clauses

No record representation clauses are currently supported.

Address Clauses

No address clauses are currently supported.

Interrupts

Because interrupts do not exist in the Rational architecture, these representation
clauses are not needed and, consequently, are not supported.

Chapter 14 1/0

The Environment supports all of the 1/0 packages defined in Chapter 14 of the Refer-
ence Manual for the Ada Programming Language, except for package Low_Level_Io,
which is not needed. The Environment also provides a number of other I/0O packages.
The packages defined in Chapter 14, as well as the other 1/0 packages supported by
the Environment, are more fully documented in the Rational Environment Refer-
ence Manual, Text Input/Output (TI0) and Data and Device Input/Output (DIO).

F-12 7/1/87 BA\TIONAL

Appendix F for the R1000 Target

The following list summarizes the implementation-dependent features of the Chap-
ter 14 1/0 packages:

Filenames: Filenames must conform to the syntax of Ada identifiers. They can,
however, be keywords of the Ada language.

Form parameter: Depending on the external file being written to, this parameter
affects the way terminals and Ada units are read. For example, it can specify
whether to have the Page pragma read with the Page_Pragma_Mapping option.

Instantiations of package Direct_Io and package Sequential_Io with access types:
Such instantiations are allowed. If files are created or opened using such instan-
tiations, the Use_Error exception is raised.

Count type: The Count type for package Text_lIo and package Direct_Io is defined
as:

package Text_lo is

type Count is range @ .. 1_000_000_000;
ena.fext_lo;
package Direct_lo is

fgbe Count is new Integer
range @ .. Integer’last/Element_Type’Size;

ena.birect_lo;

Field subtype: The Field subtype for package Text_Io is defined as:

subtype Field is Integer range @ .. Integer’Last;

Standard_Input and Standard_Output files: When a job is run from a Command
window, these files are the interactive input/output windows provided by the
Rational Editor. When a job is run from package Program, options allow the
user to specify what Standard_Input and Standard_Output will be.

Internal and external files: More than one internal file can be associated with a
single external file for input only. Only one internal file can be associated with a
single external file for output or inout.

Sequential_Io and Direct_Io packages: Package Sequential_Io can be instantiated
for unconstrained array types or for types with discriminants without default
discriminant values. Package Direct_Io cannot be instantiated for unconstrained
array types or for types with discriminants without default discriminant values.

Terminators: The line terminator is denoted by the character Ascii.Lf, the page
terminator is denoted by the character Ascii.Ff, and the end-of-file terminator
is implicit at the end of the file. A line terminator directly followed by a page
terminator is compressed to the single character Ascii.Ff. The line and page
terminators preceding the file terminator are implicit and do not appear as char-
acters in the file. For the sake of portability, programs should not depend on this
representation, although it can be necessary to use this representation when im-
porting source from another environment or exporting source from the Rational
Environment.

EATIONAL 7/1/87 F-13

Appendix F for the R1000 Target

¢ Treatment of control characters: Control characters, other than the terminators
described above, are passed directly to and from files to application programs.

o Concurrent properties: The Chapter 14 I/O packages assume that concurrent
requests for I1/0 resources will be synchronized by the application program making
the requests, except for package Text-lo, which will synchronize requests for
output.

Limits
The following package specifies the absolute limits on the use of certain language
features:

with system;
package Limits is

Large : constant := <some very large number>;

-- Scanner
Max_Line_Length : constant := 254;
-- Semantics
Max_Discriminants_In_Constraint . constant := 256;
Max_Associations_In_Record_Aggregate : constant := 256;
Max_Fields_In_Record_Aggregate : constant := 256;
Max_Formals_In_Generic ; : constant := 256;
Max_Nested_Contexts : constant := 258;
Max_Nested_Packages : constant := Large;

Max_Units_In_Transitive_Closure Of _With_Lists
: constant := Large;
-- {limited by virtual memory stack size)

Max_Number_Of_Libraries : constant := Large;
-- Code Generator
Max_Indices_!n_Array_Aggregate : constant := 64;
Max_Parameters_In_Call : constant := 255;
Max_Expression_Nesting_Depth : constant := Large;
-- (limited by virtual memory stack size)
Max_Number _O0f_Fields_In_Records : constant := 255;
Max_Number_Of_Entries_In_A_Task : constant := 255;
Max_Number _Of _Dimensions_In_An_Array : constant := 63;
Max_Nesting_Of_Subprograms_Or_Blocks_!n_A_Package
: constant := 14;
-- Execution
Max_Number_Of _Tasks : constant := Large;
-- (limited by available disk space)
Max_Ob ject_Size : constant := (2%x32)*System.Bit;

end Limits;

F-14 7/1/87 HA\TIONAL

Index

Italicized page numbers in this index denote the main entries for command descriptions.

A
’Address attribute 8
archived state 1
attributes 8
C
Character type 11
“coded state 2
concurrent properties
I/Opackages 14
control characters 14
Controlled pragma 8
Count type 13
D
Direct_Io package 13
Disable_Deallocation pragma 8
E
Enable_Deallocation pragma 8
external files 13
F
Field subtype 13
filenames 13
’First_Bit attribute 8
Form parameter 13
|
Inline pragma 8
installed state 2
Interface pragma 8
internal files 13
L
’Last_Bit attribute 8
length clauses 12
Limits package 14
Listpragma 8

' R)ATIONAL 6/1/87

Loaded_Main pragma 8
Low_Level_lIo package 12
M
Machine_Code package 7
Mainpragma 9
Memory.Size pragma 9
Must_Be_Constrained pragma 2,9
o)

Open_Private_Part pragma 9
Optimize pragma 9
P
Packpragma 9
Pagepragma 10
Page_Limit pragma 10
’Position attribute 8
Pragmas e .. 8
Priority pragma 10
Private_Eyes_Only pragma 10
R

- representation clauses 10

S

Sequential_Io package 13
Shared pragma 10
’Size attribute 12
Small attribute 12
sourcestate 2
Source type 7
Standard package 4
Standard_-Input function 13
Standard_Output function 13
’Storage_Size attribute 8, 12
Storage_Unit pragma 10
Suppress pragma 10
System package 4,6
F-15

System_Name pragma 10

T
terminators 13
Text_Io package 13
U
Unchecked_Conversion function 4
Unchecked_Conversion generic function . . 7
Unchecked_Deallocation procedure . . 4,7
unit state 1

F-16

e RATIONAL

RATIONAL

READER'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to
submit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code
Please return this form to: Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

Appendix F: R1000, 8001A-04

