Rational ME8K/OS-9
Cross-Development Facility

Rahonal and RIOOO are registered trademarks and ‘Rational Environment and: Rational
Subsystems are trademarks of Rational. '*

Motorola is,-;a’: reglstered trademark of Motamla, Inc:

VAXisa trademark of Digital Equipment Corporatioh:

Rational
1501 Salado Drive -
Mountain View, California 94043 .

* yins RATIONAL

Preface

. The Rational M68K/0S-9 Cross-Development Facility manual (prerelease version) contding .
introductory material and descriptions of the components and features of the Rational
M68K/OS-9 Cross-Development Facility. This manual is divided into sect:lons vnth
identifying tabs. There is a master table of contents for the manual '

The Rational M68K/0S-9 Cross-Development Facility manual assumes farmhanty 'mth‘
Ada, the M68K/OS-9 instruction set, the 0S-9/68000 operating system, and the Ratioril
Environment. It also assumes familiarity with the user interface of the Rational Editor.
For more information, consult the Rational Environment Reference.-Munual, the Ratidhal.
Environment Basic Operations, the 0S-9/68000- Operatlng System Techn;cal M&hud ;aﬁﬁg
the OS-9/68000 Operating System User’s Manual , : iy

The information in this manual is prehmmary and is subJect to’ change with newer releases.
of the Rational M68K/OS-9 Cross-Develo;:ment Facility. :

If you have any comments about the org:aﬂrzatlon or content of this manuaf p‘léase address:
your comments to: ’

Publications Department
Rational

1501 Salado Drive
Mountain View, CA 94043

R
S

L

RATIONAL 2228 144+

Contents

1. Key Concepts
2. Rational M68K/OS-9 Overview
2.1. Capabilities
2.1.1. Compilation Mode
2.1.1.1. R1000 Compilation Mode
2.1.1.2. Motorola_68k Compilation Mode
2.1.2. Worlds
2.1.2.1. Defining a World
2.1.2.2. Target Keys
2.2. Major Components
3. Using the M68K/0OS-9 Cross-Development Facility
3.1. User Scenario
3.2. Preparing a Motorola_68k Environment
3.2.1. Using Motorola_68k Subsystem Views
3.2.1.1. Creating a Motorola_68k Path from an R1000 Path
3.2.2. Using Motorola_68k Worlds
3.2.2.1. Creating a Motorola_68k World
3.2.2.2. Setting the Target Key
3.3. Library Switches Specific to the M68K/OS-9 Cross-Development Facility
3.3.1. Creating the Switch File
3.3.2. Cross-Compiler Switches
3.4. Creating Ada Units
3.4.1. Creating Ada Units in a Subsystem or a Motorola_68k World
3.4.2. Porting R1000-Developed Ada Units to a Motorola_68k World
3.4.3. Porting R1000-Developed Ada Units to a Motorola_68k Path
3.5. Compiling, Assembling, and Linking Ada Programs
3.5.1. Compiling in a Motorola_68k View or World
3.5.2. Assembling in the Motorola_68k View or World
3.5.3. Linking in the Motorola_68k View or World
3.5.4. Associated Files
3.6. Converting and Transferring Executable Modules
3.6.1. Converting Executable Modules
3.6.2. Transferring Executable Modules
3.7. Executing and Debugging
4. M68K/OS-9 Cross-Compiler
4.1. Compilation States
4.1.1. Source State
4.1.2. Installed State
4.1.3. Coded State
4.2. Compiler Commands ,
4.3. Differences between R1000 and M68K/OS-9 Compilers
4.3.1. Chapter 13 Support
4.3.2. Command Windows
4.3.3. Generics :
4.3.4. Incremental Operations’
4.3.5. Packed Records and Arrays
4.3.6. Record Layout
4.3.7. Program Elaboration

RATIONAL 2228

Contents

. NN N DN NN N ok pd pd ek ek ok e ek ok ok, D e e bt X

SE&EKR

Rational M68K/OS-9 Cross-Development Facility

5. M68K/OS-9 Cross-Assembler 37
5.1. Introduction 37
5.2. Assembler Command (M68k.Assemble) 37

5.2.1. Example 38

5.3. Assembly-Language Source Code 38
5.3.1. Source Statements 39
5.3.1.1. Label Field 39

5.3.1.2. Operator Field 39

5.3.1.3. Operand Field 39

5.3.1.4. Comment Field 39

5.3.1.5. Continuation Lines 40

5.3.2. Numeric Literals 40
5.3.3. Symbols 40
5.3.3.1. Symbol Character Set 41

5.3.3.2. Symbol Types 41

5.3.3.3. Local Symbols and Scoping Rules 42

5.3.3.4. Symbol Resolution 42

5.3.4. Expression Evaluation 43
5.3.4.1. Unary Operators 43

5.3.4.2. Binary Operators 43

5.3.4.3. Operator Precedence 44

5.4. Assembler Directives 45
5.4.1. Listing Directives 45
5.4.2. Storage-Allocation Directives 45
5.4.2.1. Uninitialized Block Storage 46

5.4.2.2. Initialized Unit Allocation 46

5.4.2.3. Initialized Block Allocation 47

5.4.3. Intermodule Symbol-Definition Directive 47
5.4.4. Symbol-Definition Directive 48
5.4.5. Miscellaneous Directives 49
5.4.5.1. The CPU Directive 49

5.4.5.2. The SECT Directive 50

5.4.5.3. The OFFSET Directive 51

5.4.5.4. The RADIX Directive 51

5.4.5.5. The IRADIX Directive . 51

5.4.5.6. The ORADIX Directive 52

5.4.5.7. The REV Directive 52

5.4.5.8. The ALIGN Directive 52

5.4.5.9. The OUTPUT Directive 53

5.4.5.10. The ERROR Directive 53

5.4.5.11. The INCLUDE Directive , 53

5.5. Repetitive Assembly and Condltlonal Assemb1y 53
5.5.1. Repetitive Assembly s 53
5.5.2. Conditional Assembly 54

5.6. Character Usage 55
5.7. Syntax of Assembler Commands S 57
5.7.1. Backus-Naur Formalism (BNF) Used with Assembler Commands 57
5.7.2. Target-Independent Syntax 57
5.7.3. M68K-Family-Dependent Syntax 61
5.7.4. M68K-Family Instruction Mnemomcs 78

* 6. M68K/OS-9 Cross-Linker 93

vi

22z RATIONAL

6.1.
6.2.
6.3.

6.4.

6.5.

Terminology
Linker Command (M68k.Link)
The Linking Process
6.3.1. Loading the Specified Modules
6.3.2. Scanning Object Libraries
6.3.3. Building Collections
6.3.4. Building Memory Segments
6.3.5. Producing the Link Map
Linker-Command Files
6.4.1. Basic Commands Used with Linker-Command Files
6.4.1.1. Program
6.4.1.2. Link
6.4.1.3. Use Library
6.4.1.4. Collection
6.4.1.5. Segment
6.4.1.6. Place :
6.4.1.7. Memory Bounds
6.4.1.8. Segment Type
6.4.1.9. Suppress Segment
6.4.1.10. Exclude Section
6.4.1.11. Force or Resolve
6.4.1.12. Start At
Backus-Naur Formalism (BNF) Used with Linker-Command Files

7. Run-Time Organization

7.1.
7.2.

7.3.

74.

7.5.

Introduction
Program Execution Model
7.2.1. Generated Code
7.2.2. Memory Usage
7.2.3. Processor Resource Utilization
7.2.3.1. Registers
7.2.3.2. Memory-Management Options
Subprogram Call and Return
7.3.1. Stack Structure
7.3.2. A Simple Procedure Call
7.3.3. A Simple Function Call
7.3.4. Parameter-Passing Conventions
7.3.4.1. Scalar Types and Access Types
7.3.4.2. Simple Record and Array Types
7.3.4.3. Discriminated Records of Unconstrained Types
7.3.4.4. Unconstrained Array Types «
7.3.4.5. Functions Returning Scalar and Access Types
7.3.4.6. Functions Returning Fixed-Sized Structures
7.3.4.7. Functions Returning Dynamic-Sized Structures
7.3.5. Finalization
Exception Handling
7.4.1. Exceptions Raised from Hardware Traps
7.4.2. Exceptions Raised by the Run-Time System
Storage Management =
7.5.1. The Heap
7.5.2. Collections
7.5.2.1. The Global Collection

RATIONAL y22/88

Contents

93
94
95
96
96
96
96
97
97
99
101
101
102
102
103
103
104
104
104
105
105
105
106
109
109
109
109
110
110
110
110
111
112
112
114
115
115
116
116
116
116
117
117
117
117
118
118
120
120
120
121

Rational M68K/OS-9 Cross-Development Facility

7.5.2.2. Dynamic Collections
7.5.3. Allocators
7.5.4. Unchecked Deallocation
7.6. Tasking
7.6.1. Tasks
7.6.2. Priority
7.6.3. Timers
7.7. Compiler/Run-Time System Interfaces
7.7.1. Attributes
7.7.2. Delays
7.7.3. Exceptions
7.7.4. Storage Management
7.17.5. Tasking
7.7.6. Utilities
7.7.7. Miscellaneous
8. M68K/OS-9 Downloader
8.1. Format-Conversion Command (Convert)
8.2. Converting the Executable Files
8.3. Transfer Command (Os9_Put)
8.4. Transferring the Executable Files
8.5. Command Used to Execute Directly on the D85 Hardware
9. M68K Cross-Debugger
9.1. Commands Used with the M68K Cross-Debugger
9.1.1. Invoking the Debugger
9.1.1.1. Debug.Invoke
9.1.1.2. M68k_Debugger
9.1.2. Determining Locations
9.1.2.1. Debug.Address_To_Location
9.1.2.2. Debug.Location_To_Address
9.1.2.3. Debug.Object_Location
9.1.3. Displaying Machine-Level Program Values
9.1.3.1. Debug.Memory_Display
9.1.3.2. Debug.Register_Display
9.1.4. Modifying Machine-Level Program Values
9.1.4.1. Debug.Memory_Modify
9.14.2. Debug.Register_Modify
9.1.5. Additional Debug Commands
9.1.5.1. Debug.Current_Debugger
9.1.5.2. Debug.Kill
9.1.5.3. Debug.Run
9.2. Commands Used with Debuggers
9.3. Differences between the R1000 and the M68K Cross-Debugger
9.3.1. Breakpoints
9.3.2. Exceptions
9.3.3. Elaboration
9.3.4. Object Evaluation
9.3.5. Memory Display
9.3.6. Stack Frames
10. Configuration Management and Version Control
10.1. CMVC Review
10.1.1. Issues of Project Management

121
121
121
121
122
122
122
122
123
124
124
125
126
130
130
133
133
133
134
135
136
137
137
138
138
139
140
140
140
141
141
141
142
143
143
144
144
145
145
146
146
150
150
151
151
151
152
152
153
153
153

viii 22 RATIONAL

Contents

10.1.2. Subsystems 154

10.1.3. Version Control : 154

10.1.4. Configurations 155

10.1.5. Interfaces among Subsystems 155

10.1.6. Program Execution 156

10.1.7. Parallel Development within Subsystems 157

10.1.8. Project Reporting 157

10.1.9. Multihost, Multisite Development 158

10.2. Differences between R1000 and M68K/OS-9 Subsystems 158
10.2.1. Combined Views 159

10.2.1.1. Releases of Combined Views 159

10.2.1.2. Change Propagation in Combined Views 159

10.2.2. Code Views 160

10.3. CMVC Commands 160
10.3.1. Package !Commands.Activity 160

10.3.2. Package !Commands.Cmve 163

10.3.3. Package !Commands.Cmvce_Maintenance 166

10.3.4. Package !Commands.Work_Order 167

11. Appendix F for the Rational M68K/OS-9 Cross-Development Facility 171
A ASCII Table 179
B Rational M68K/0OS-9 Run-Time Error Messages 181
C M68K/OS-9 Directory Structure 187

RATIONAL sns .

Key Concepts

1. Key Concepts

It often is necessary to develop software on one class of machine (for example, the
Rational® R1000®) and execute the software on another machine (for example, D85
hardware). Two principal kinds of programs require this approach:

* Programs that are to run on small, embedded targets. These targets are powerful enough
to run the end application but are not capable of supporting a complete software-develop-
ment environment. That is, they are too small to support an operating system but
contain a kernel that is large enough to run the application. Examples of this class of
target are:

— MIL-STD-1750A architecture
— Bare Motorola® M68000 (M68K) microprocessor family

Each of these requires a separate host for the development, debugging, testing, and
integration of the software.

* Programs that are designed to run on various computer hardware architecture and
operating systems. Although the computers may be capable of developing the software,
their software-development environments may not be sufficiently advanced to allow the
code to be developed on schedule. Perhaps the software is to be developed to run on a
variety of different targets. Developing it on each target could lead to different software
being run on each target. Using one machine as the development machine and the other
machines as the target machines is a good solution.

A cross-development facility (CDF) provides the mechanism for developing programs to run
on embedded systems and generating programs that will run on machines with their own
operating systems. The programs are developed on the universal host using all the soft-
ware-engineering support features provided by the host machine. However, instead of
generating host-specific executable modules designed to run on the host, the host generates
target-specific code that can be executed on the target machine. The code produced on the
host can be targeted to many different target machines. For example, with care taken to
ensure portability, code developed on a Rational R1000 can be ported to a MIL-STD-1750A
architecture, to a bare M68K architecture, to an M68K architecture that has its own
operating system, and to a VAX™ architecture. Although the executable modules that
actually run on each target machine are different, the source code developed on the host
machine is the same for all of them. If a bug must be fixed, it can be fixed on the universal
host and then the change can be ported to each target machine. Each target machine will
still be running the same program as the others.

Different strategies can be employed in porting code from the universal host to the target
machine. For example: ‘

* For embedded architectures, the Ada source code is generated on the universal host, the
source code is compiled into object modules on the universal host, the object modules are
linked into an executable module on the universal host, and the executable module is
ported to the target machine on which it is to be executed. (See Figure 1-1.)

RATIONAL 2228 1

Rational M68K/OS-9 Cross-Development Facility

R1000 R1000 R1000 g‘ 000 Embedded
Compilation |—p Cross p| Cross | LOWN- »| Target
Assembler Linker Loader

Figure 1-1 CDF Used with Embedded Target

* For architectures with their own operating systems, the Ada source code is generated on
the universal host, the source code is compiled into object modules on the universal host,
the object modules are linked into an executable module on the universal host, and the
executable module is ported to the target machine on which it is to be executed. (See
Figure 1-2.)

R1000 R1000 R1000 31 000 gor:,- dded
Compilation |——pl Cross p| Cross > own- mbedde
Assembler Linker Loader — Target

Figure 1-2 CDF Used with Nonembedded Target and
R1000 Cross-Assembler and Linker

For architectures with their own operating systems, the Ada source code is generated on
the universal host, the object modules are created using facilities provided by the target
machine, the object modules are linked into an executable module using the linker
provided by the target machine, and the executable module is executed on the target
machine. (See Figure 1-3.)

R1000 R1000 Non-
Target Target Embedded
Compilation |—p| Down-
Loader —1 Assembler — Linker —— Target

Figure 1-3 CDF Used with Nonembedded Target and
Target’s Assembler and Linker

For any of these strategies, a critical component of the CDF is the software that ports the
code from the universal host to the target machine, the downloader.

The Rational Cross-Development Facilities provide solutions to all of the above strategies.
These facilities generate target-specific assembly source code. This assembly source code
can be assembled on the host cross-development assembler and linked on the host cross-
development linker, and then the executable module can be downloaded to the target.
Alternatively, the assembly code can be downloaded to the target; then assembly and
linking occur using the target’s assembler and linker.

22288 RATIONAL

Key Concepts

The following chapters describe in detail the Rational solution to developing code on the
. R1000 to be executed on the M68K architecture.

@
RATIONAL sz ;

Rational M68K/OS-9 Overview

2. Rational M68K/0OS-9 Overview

The Rational M68K/OS-9 Cross-Development Facility (CDF) provides you, the developer
using the Rational R1000 Development System, the ability to write, compile, assemble,
link, and debug Ada programs that will be targeted for execution on D85 hardware. The
R1000 acts as a universal host on which you can create application programs using the
facilities provided by the R1000 to write Ada code. You then use the CDF to cross-compile
the code into M68K/OS-9 instructions, assemble the code to produce an object module, and
then link this object module with other object modules (for example, run-time modules from
the run-time library) to produce an executable module. The executable module is converted
to the OS-9 object-module format that is transferred to the D85 hardware. The end result
of this process is the creation of code that executes on the D85 hardware. The code can be
executed and debugged on the D85 hardware.

2.1. Capabilities
Using the features provided in this release, you can accomplish the following:

* Compile, assemble, and link application programs targeted to M68K/OS-9 processors.

* Write your own assembly-language programs, assemble them, and then link them with
other assembled modules and/or assembled Ada code into executable modules.

* Debug your Ada program using the M68K/OS-9 cross-debugger.

2.1.1. Compilation Mode

This section discusses two compilation modes:

* R1000

* Motorola_68k

To develop applications targeted for the M68K/OS-9, you need to understand both the
R1000 and the Motorola_68k compilation modes. These modes differ in certain specific
ways.

2.1.1.1. R1000 Compilation Mode

In the R1000 compilation mode, an Ada unit can exist in one of three states:

* Source

* Installed

* Coded

RATIONAL 222 5

Rational M68K/OS-9 Cross-Development Facility

The source unit contains the Ada code that will be compiled. This code can be edited, more
code can be added, and code can be deleted. The Rational Environment™ provides facilities
for syntactic and semantic checking of this code.

The unit in the source state can be promoted to a higher state, the installed state. The code
in this unit is syntactically and semantically correct. If this unit depends on other Ada
units, the Environment ensures that these units also are installed. Incremental operations
can be performed on units in the installed state.

The installed unit can be promoted to a coded unit. The unit can now be executed. Some
incremental operations also can occur in the coded state. If other units are required to
execute your unit (that is, they are withed by your units), the Environment manages the
unit dependencies within your program, ensuring that all the units are in the coded state.
If the unit does not exist or cannot be coded, the Environment provides an appropriate error
message.

When executing your Ada program, you must know which unit is the main unit. A Main
pragma optionally may be added to the unit to indicate that it is a main unit.

Your units will execute on the R1000 hardware using the R1000 tools available (for exam-
ple, the debugger).

In summary, the major features of compilation on the R1000 are the following:

* The Ada unit exists in a source, installed, or coded state. There are no separate source
and object files.

* The coded state of an Ada unit is executable. You are not concerned with assembling the
object file or linking the necessary files into an executable module.

* The Environment manages all dependencies and guarantees that all the required units
are available in the proper state.

* A Main pragma is not required to specify which Ada unit is the main unit.

* The coded units execute on R1000 hardware.

2.1.1.2. Motorola_68k Compilation Mode

In the Motorola_68k compilation mode, the Ada unit also exists in one of three states:
* Source

¢ Installed

* Coded

The first two states are similar to the states in the R1000 mode; any operations that you
can perform on the R1000 objects, you also can perform on the Motorola_68k objects.

6 2228 RATIONAL

Rational M68K/OS-9 Overview

The coded state, however, is somewhat different. By default, the output of the coding
process is a relocatable object module for each Ada library unit. For program execution,
these relocatable object modules must be linked into an executable module.

For the linker to produce an executable module for the program, the spec or body of the
main Ada unit must contain a Main pragma. This pragma tells the linker that the unit is
the main program. A main program must be a procedure that is a library unit; it cannot be
a function that is a library unit or a subprogram that is in a package.

When a main unit is coded, a relocatable object module for that unit is generated along with
an elaboration module for the entire program. Then the M68K linker is invoked automat-
ically, and it links all of the program’s object modules along with necessary modules from
the Ada run-time library to produce an executable module (and a link map describing the
program layout).

The executable module produced by the linker must be converted from the R1000 object-
module format to the OS-9 object-module format. The converted file must be transferred to
the D85 hardware, where it can be run either directly using OS-9 operating-system com-
mands or indirectly using the R1000-hosted M68K cross-debugger. The M68k cross-
debugger has the same user interface that is used for debugging R1000 programs, but it
provides additional specific M68K/OS-9 debugging operations (for example, machine
instruction stepping).

In summary, the major features of compilation on the M68K CDF are the following:
* The Ada unit exists in a source, installed, or coded state.

* The Environment manages all dependencies and guarantees that all the required units
are available in the proper state.

* The coded state of an Ada unit is not executable. In this state, relocatable object code
exists, but it still must be linked. .

* A Main pragma is required to specify what Ada unit is the main unit. When the main
unit is promoted, it invokes the linker to generate an executable module.

* The executable file is converted to the OS-9 object-module format and transferred to the
D85 hardware.

* The executable module can be executed directly on D85 hardware using OS-9 operating-
system commands or indirectly using the M68K cross-debugger.

2.1.2. Worlds

Worlds are components of the R1000 library structure that encapsulate the library’s name
space, thus providing physical and logical separation of library contents from enclosing
libraries. Within a world, there are internal links between Ada units. To import Ada units
residing outside a library, you must create external links to these units.

RATIONAL 222 7

Rational M68K/OS-9 Cross-Development Facility

2.1.2.1. Defining a World

The Rational Environment provides facilities for defining a model world that can be used to
initialize newly created worlds. Models typically contain:

* A set of external links
¢ Ada units
* Objects such as switch files

Instead of creating your own model world, you can use default models provided by the
Environment. The models of interest for the M68K/OS-9 CDF are:

* R1000: Includes links for the R1000 facilities.

* R1000_Portable: Includes links only for Ada-specified standard facilities to ensure port-
ability.

* Motorola_68k: Includes links for M68K/OS-9 facilities and additional Rational-provided
facilities for the M68K/OS-9.

* Motorola_68k_Portable: Includes links for Ada-specified standard M68K/OS-9 facilities to
ensure portability.

2.1.2.2. Target Keys

Each world has a target key associated with it. The target key specifies what target-
dependent compiler is invoked when you enter a compilation command (such as Com-
pilation.Make or Promote), as well as what target-specific cross-debugger operations are
available. The compilers have different code generators and produce target-specific code.
The target keys are set by commands that are discussed in a later chapter. The two target
keys of interest here are:

* R1000 (the default)

* Motorola_68k

The R1000 target key selects:

* R1000-dependent semantic checking
* R1000 code generator

¢ R1000 debugger

g 2228 RATIONAL

Rational M68K/OS-9 Overview

The Motorola_68k target key selects:

. * M68K/OS-9-dependent semantic checking
* M68K/OS-9 code generator
* M68K/OS-9 cross-debugger

2.2. Major Components

The major components of the M68K/OS-9 CDF present in this release are:
¢ Cross-compiler

* Cross-assembler

* Cross-linker

* Object-module converter

Cross-debugger

Run-time library

08S-9 file-transfer software

RATIONAL 222 9

Using the M68K/OS-9 Cross-Development Facility

3. Using the M68K/OS-9 Cross-Development Facility

This chapter provides the necessary steps that you will need to create, compile, assemble,
link, execute, and debug your programs in the M68K/OS-9 environment. The following
steps will be discussed in the order required to execute a program:

* Preparing the Motorola_68k environment

¢ Establishing a Motorola_68k library-switch file
* Creating Ada units

* Compiling, assembling, and linking

¢ Converting to OS-9 object-module format

* Transferring the executable file to the hardware

* Executing and debugging on the hardware

3.1. User Scenario

The following scenario illustrates the use of the M68K/OS-9 Cross-Development Facility
(CDF) to develop executable modules that will run on D85 hardware:

1. Develop the source units on the R1000 in an R1000 world. These units can be developed
and tested using all the facilities provided by the Rational Environment. The tested code
then can be ported to a program library on the R1000 that is a Motorola_68k world. You
also can develop M68K assembly code and keep it in a Motorola_68k world on the R1000.

2. Promote the Ada units to the coded state by pressing [Code (This World)].

* The appropriate compiler is selected automatically, and it generates M68K assembly
source code.

* The assembler automatically assembles this source code into relocatable object mod-
ules.

* The linker automatically links the object modules and any required run-time modules
into an executable module.

3. Assemble user-developed assembly source code.

* The Ada code must have the appropriate pragmas to deal with the external assembly
code.

* The assembler must be invoked explicitly by the M68k.Assemble command.
* The linker-command file must be modified to include the external assembly source.

RATIONAL 22258 11

Rational M68K/OS-9 Cross-Development Facility

4. Convert the executable module from R1000 object-module format to OS-9 object-module
format.

5. Transfer the converted executable module to the D85 hardware.

6. Run the OS-9 executable module on the D85 hardware by invoking the OS-9 operating-
system commands through an OS-9 console or by invoking the M68K cross-debugger.

Figure 3-1 shows a possible user scenario.

R1000
Program
Library .
Run time/
D kernel
D _»| Assembler l
O ———
Taraet.cod "‘ Converted to 0S-9
arget-code module format
—®1 generator k
e
r
R
] 1
T []]
arget o ! M68K/OS-9 !
debugger ’: ,
[] L}
t '- - e - Em e EEw s '
Debugger user
interface

Figure 3-1 Possible User Scenario

12 2228 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

3.2. Preparing a Motorola_68k Environment

Development of programs targeted to D85 hardware must be done within subsystem views
or worlds created for M68K development. Failure to correctly specify a Motorola_68k view
or world will prevent you from compiling programs using the M68K CDF.

3.2.1. Using Motorola_68k Subsystem Views

You can use subsystem views to compile, assemble, and link your Ada units and use the
facilities provided by configuration management and version control (CMVC) to manage
your project development. It is assumed that you are already familiar with Rational
Subsystems™; therefore, only the specifics required to operate with the M68K CDF will be
discussed. If you require more information on subsystems, consult the Rational Environ-
ment Basic Operations manual.

3.2.1.1. Creating a Motorola_68k Path from an R1000 Path

You probably will do most of your development in an R1000 view and then accept these
changes into a Motorola_68k view. You can accomplish this by creating a path between an
R1000 view and a Motorola_68k view. However, the views do not have to be the same
kind—the R1000 can be a spec/load view.

To create a Motorola_68k path from an R1000 path:

1. From the R1000 view from which you want to create the path, create a Command
window.

2. Enter Cmvc.Make_Path and press [Complete].

3. Set the From_Path parameter to the R1000 view from which you want to create the path
(for example, Revl_Working). You could have used the default.

4. Set the New_Path_Name parameter to the name of the Motorola_68k view (for example,
Motorola_68k_Working).

5. Set the Model parameter to Motorola_68k.
6. Set the Create_Load_View parameter to True.

7. Press [Promote].

RATIONAL 2228 13

Rational M68K/OS-9 Cross-Development Facility

For example, the following command establishes a Motorola_68k_Working path that is
joined to Rev_1_Working: .

Cmvc.Make_Path (From Path => "Revl Working",
New_Path_Name => "Motorola_68k_Working",
View_To_Modify => "v,

View_To_Import => "<INHERIT_ IMPORTS>",
Only_Change_Imports => True,
Create_Load_View => True,
Model => "Motorola_68k™",
Join_Paths => True,
Create_Combined View => False,
Remake_Demoted Units => True,
Goal => Compilation.Coded,
Comments => "n,

Work_Order => "<DEFAULT>",
Volume => 0,

Response => "<PROFILE>");

You can use CMVC to check out units in one view, modify them, and then check in the
units. The other view can check out and check in the same units. You can accept changes
made in one view into the other.

There may be some units, however, for which changes made in one view could be incom-
patible with the same units in the other view (for example, target-dependent units). You
would not want changes made in one view to be reflected in the other view. To prevent
changes made in one view from being accepted into another view, sever the path between
the involved units using the following steps:

1. From the view that contains the units you want to sever, create a Command window.
2. Enter Cmvc. Sever and press [Complete].

3. Set the What_Objects parameter to the name of the unit you want to sever.

4. Press [Promote].

For example, the following command severs the selected objects:

Cmvc.Sever (What_Objects => "<SELECTION>",
New_Reservation_Token_Name => "<AUTO_GENERATE>",
Comments => "",
Work Order => "“<DEFAULT>",
Response => "<PROFILE>"):;

You can now make changes to the units in one view without affecting the units in the other
view.

14 22288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

3.2.2. Using Motorola_68k Worlds

You have seen how to create subsystem views so that you can compile, assemble, and link
Ada units using the CDF. An alternative method is to create a Motorola_68k world and set
the Motorola_68k target key. For the M68K compiler to be invoked, the unit being
compiled must reside in a Motorola_68k world. You create this world using a two-step
process: create the world and set the target key.

3.2.2.1. Creating a Motorola_68k World

To create a Motorola_68k world initialized with the proper links:

1. From the library that will contain the Motorola_68k world, press [Create World].
2. Enter the world name.

3. Rational supplies two model worlds for the M68K:

* !'Model.Motorola_68k: Includes links for Motorola_68k facilities, including nonstandard
packages provided by Rational.

* 'Model.Motorola_68k_Portable: Includes links for Ada-specified standard Motorola_68k
facilities to ensure portability.

Enter !Model.Motorola_68k (or !Model.Motorola_68k_Portable) following the
Model prompt.

4. Press [Promote].

For example, the following command creates a world called Heinze_Motorola_68k_Pro-
grams:

Library.Create_World
(Name => "Heinze Motorola_68k_Programs",
Kind => Library.World,
Vol => Library.Nil,
Model => "!Model.Motorola_ 68k",
Response => "<Profile>");

3.2.2.2. Setting the Target Key

After creating a Motorola_68k world, you must associate the appropriate Motorola_68k
target key with it to ensure that the proper cross-compiler and cross-debugger are selected.

To set the target key:
1. From the newly created world, create a Command window.

2. Enter Compilation.Set_Target_Key and press [Complete].

RATIONAL 2228 15

Rational M68K/OS-9 Cross-Development Facility

3. Enter Motorola_68k following The Key prompt.
4. Press [Promote].
For example, the following command sets the target key to Motorola_68k:

Compilation.Set_Target Key
(The_Key => "Motorola_68k",
To_World => "<Image>",
Response => "<Profile>"),

The banner for the new world will contain the following legend (note that the target key is
specified in the banner):

= !USERS.YOUR_NAME.WORLD_NAME (library) Motorola_68k WORLD

3.3. Library Switches Specific to the M6SK/OS-9
Cross-Development Facility

When a Motorola_68k world is created, a library-switch file must be associated with that
world if you want to control some of the behavior of the M68K compiler, assembler, and
linker. (For more information, see package Switches in the Library Management (LM) book
of the Rational Environment Reference Manual.)

If you are using subsystems, a switch file will already exist. You can modify these switches
if necessary.
3.3.1. Creating the Switch File

Note that the following steps are required only if you are using worlds; they are not re-
quired if you are using subsystems.

A library-switch file can be created and associated with the new Motorola_68k world by one
of the following methods:

* Method 1
1. From the new Motorola_68k world, create a Command window.
2. Enter Switches.Edit and press [Complete].

A switch file called Library_Switches will be associated with the Motorola_68k world.

16 2288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

* Method 2
1. From the new Motorola_68k world, create a Command window.
2. Enter Switches.Create and press [Complete].
3. Enter the name you want to give the switch file at the File prompt.
4. Press [Promote].

For example, the following command creates a switch file called Heinze_Motorola-
_68k_Switches:

Switches.Create (File => "Heinze_Motorola_ 68k Switches",
Categoxry => L',
Response => "<PROFILE>");
5. From a Command window, enter Switches.Associate and press [Complete].
6. Enter the switch filename at the File prompt.

7. Press [Promote].

For example, the following command associates the Heinze_Motorola_68k_Switches
with the library:

Switches.Associate (File => "Heinze_Motorola_68k_Switches",
Library => "<IMAGE>",
Response => "<PROFILE>");

You can now display and/or edit the Motorola_68k library switches as necessary.

3.3.2. Cross-Compiler Switches

The switches of interest for the M68K/OS-9 cross-compiler are the Cross_Cg processor
switches. The Cross_Cg switches provided are:

* Asm_Source: Takes a Boolean value; controls the retention of the assembly source file

generated by the compiler. The filename has an .<Asm> suffix. The default value is
false.

* Auto_Assemble: Takes a Boolean value; controls whether the assembly source file that is
the result of coding an Ada unit is assembled automatically. Preventing assembly of
compilation units prevents generation of executable programs that depend on these
compilation units. The default value is true.

* Auto_Link: Takes a Boolean value; controls whether the target linker runs when you

code a library procedure body that has an associated Main pragma. The default value is
true.

RATIONAL 2228 17

Rational M68K/OS-9 Cross-Development Facility

* Debugging Level: Controls the amount of information that is produced for the debugger
when an Ada unit is coded. The possible values are:

NONE: No debugging information is produced.
PARTIAL: Debugging tables are produced but optimizations are not inhibited.

FULL: Debugging tables are produced and certain optimizations are inhibited. (“Opti-
mizations inhibited” means that code motion across statement boundaries will not occur
and the lifetimes of variables will not be reduced.)

The default value is FULL.

Linker_Command_File: Takes a string; a nonnull value of this switch overrides the
default filename for the linker-command file required to link the object modules into an
executable module. The default value is the null string.

Listing: Takes a Boolean value; controls the generation of assembly-language listing files.
The filename has the suffix .<List>. The default value is false.

Optimization_Level: Takes an integer value in the range O .. 4; controls the amount of
optimization performed during code generation (see Chapter 4, “M68K/0S-9 Cross-
Compiler,” for a full discussion of the optimizations). The possible values are:

0: Constant folding
Algebraic transformations
Context determination

1: Peephole optimizations
Elimination of common subexpressions within basic blocks
(Plus the optimizations found in level 0)

2: Lifetime analysis for variables
Value tracking
Elimination of unreferenced value assignments
Elimination of dead variables
Construction of flow and call graphs
Elimination of dead code
Mapping of local variables onto registers
Register targeting
Determination of evaluation ordering
Short-circuit evaluation
Constraint-check elimination
(Plus the optimizations found in levels 0 and 1)

3: Loop-strength reduction
(Plus the optimizations found in levels 0, 1, and 2)

22288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

4: Inline expansion
(Plus the optimizations found in levels 0, 1, 2, and 3)

* Suppress_All_Checks: Takes a Boolean value; when the switch is set to true, it has the
same effect as a Suppress_All pragma at the beginning of each Ada unit in the library.
The default value is false.

In addition to the Cross_Cg switches, the following two FTP switches are of interest
because they are used in transferring the converted executable files to the D85 hardware

and are used by the M68K cross-debugger to select a remote machine and a remote
directory on the D85 hardware:

* Remote_Directory: Takes a string value; specifies the name of the directory on the D85
hardware that will receive the executable file.

* Remote_Machine: Takes a string value; specifies the name of the D85 hardware that
receives the executable file.

3.4. Creating Ada Units

Now that you have created a subsystem or Motorola_68k world and have the proper target
key and the library-switch file associated with the view or world, you are ready to create
Ada units. You can create Ada units directly in the new Motorola_68k view or world, or you
can create them in an R1000 view or world and then port them to the Motorola_68k view or
world.

3.4.1. Creating Ada Units in a Subsystem or a Motorola_68k World

Creating units in a Motorola_68k view or world is identical to creating units in an R1000
view or world. You use the Environment facilities to create Ada specs and bodies. You use
the [Format] key for syntax checking, syntactical completion, and pretty-printing. You use
the [Semanticize] key for incremental checking of Ada semantics.

There is one requirement in creating Ada units in the Motorola_68k view or world: you
must have a Main pragma at the end of the main unit’s specification or body. This is
required to invoke the linker.

3.4.2. Porting R1000-Developed Ada Units to a Motorola_68k World

It is suggested that you create, debug, and execute your Ada programs using the features
provided by the Rational Environment and, when they are executing properly, port them to
an M68K. Care must be taken not to with any packages that are specific to the Rational
Environment, because these will not function on the M68K cross-compiler.

The programs can be transferred between worlds using the Library.Copy command. With
this procedure, you also can copy the links into the Motorola_68k world, but because these

RATIONAL 2228 19

Rational M68K/OS-9 Cross-Development Facility

links are to R1000 library units rather than equivalent Motorola_68k library units, you
should set the Copy_Links parameter to false and explicitly create links between Motor-
ola_68k worlds.

To transfer units from an R1000 to a Motorola_68k world:

1. From a Command window, enter Library.Copy and press [Complete].
2. Enter the name of the R1000 world at the From prompt.

3. Enter the pathname of the Motorola_68k world at the To prompt.

4. Change the Copy_Links parameter to False.

5. Press [Promote].

For example, the following command transfers the objects to the Motorola 68k world,
where they will be in the source state:

Library.Copy
(From => "!Users.Wjh.R1000_Directory",
To => "!!Jazmo!Users.Wjh.Motorola_68k _Directory",
Recursive => True,
Response => "<Profile>",
Copy_ Links => False,
Options => "v);

For a fuller discussion of the Library.Copy procedure, consult the Library Management
(LM) book of the Rational Environment Reference Manual.

3.4.3. Porting R1000-Developed Ada Units to a Motorola_68k Path

If you are using subsystems, you can create, debug, and functionally test your programs in
an R1000 path. Once the programs are executing properly, you can use the CMVC facilities
to automatically port the units to a Motorola_68k path using the Cmvc.Accept_Changes
command.

Note that, because you often do not use a Main pragma when you create Ada units in an
R1000 view or world, you must make sure that there is a Main pragma on the main Ada
unit. You can enter the Main pragma at the main unit’s specification or body before you
port the units to the Motorola_68k view or world, or you can enter it into the main unit
after you have ported the units.

3.5. Compiling, Assembling, and Linking Ada Programs
Now that you have Ada units in your Motorola_68k view or world, you are ready to compile,

assemble, and link them into executable modules. Using the default settings in your
library switches (Cross_Cg.Auto_Assemble and Cross_Cg.Auto_Link), you can do all three

20 22288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

steps with one key: [Code (This World)].

The following sections describe these three processes and the files associated with them.

3.5.1. Compiling in a Motorola_68k View or World

After you have developed your Motorola_68k Ada units, you can promote them to installed
or to coded using the same approach used in R1000 worlds or views—with [Promote],
[Code], [Code (This World)]. When the units in your Motorola_68k view or world have been
coded, you will have invoked the assembler automatically (and the linker if the unit is a
main procedure) to produce object modules and an executable module. Although it is
possible to invoke the compiler alone, the normal operation is to invoke all three together.

3.5.2. Assembling in the Motorola_68k View or World

Although you normally invoke the assembler automatically when you invoke the compiler,
you can invoke the assembler explicitly if you have special assembly files that you want to
assemble. If these assembly programs are called by your Ada programs, you must ensure
that you use the appropriate pragmas in the Ada code. Each of the following pragmas is
placed in the unit where the Ada specification corresponding to the assembly-language body
is declared:

* Interface pragma

* Import_Function pragma

* Import_Procedure pragma

You now must alter the linker-command file so that these assembly modules are included
in the executable module. To do this, enter the necessary link commands into the linker-
command file.

To assemble the units:

1. From a Command window, enter M68k . Assemble and press [Complete].

2.Enter the name of the input file that contains the assembly source code at the
Source_File prompt.

3. Enter the name of the output file that will contain the assembly object code at the
Object_File prompt.

4. Enter the name of the output file that will contain the assembly listing at the
Listing File prompt.

5. Enter True at the Produce Listing prompt.

6. Press [Promote].

RATIONAL 22288 | 21

Rational M68K/OS-9 Cross-Development Facility

For example, the following command assembles the source in the My_Assembly_Source file
into assembler object code, places it in the My_Assembly_Object file, and produces a listing
file called My_Assembly_Listing:

Mé8k.Assemble (Source_File => "My Assembly Source",
Object_File => "My Assembly Object
Listing File => "My Assembly Listing",
Produce_Listing => True);

For a more complete description of using the assembler, consult Chapter 5, “M68K/OS-9
Cross-Assembler.”

3.5.3. Linking in the Motorola_68k View or World

You normally invoke the linker automatically when you invoke the compiler. You can still
invoke the linker automatically on a user-created linker-command file if, for example, you
want to include some user-generated assembly files with the output from the compiler.
However, if you have special requirements that necessitate using the linker manually, you
can invoke the linker explicitly, but you will be responsible for determining the proper
linking order and where in memory the program will reside. To do this, you may have to
alter substantially the linker-command file. It is strongly suggested that you invoke the
linker automatically and use the standard linker-command file that is provided or use a
slightly modified linker-command file. For information on the linker-command file, consult
Chapter 6, “M68K/OS-9 Cross-Linker.”

If you have produced your own linker-command file, you are ready to invoke the linker
manually.

To invoke the linker:
1. From a Command window, enter M68k . Link and press [Complete].

2. Enter the name of the file that contains the linker commands at the Command_File
prompt.

3.Enter the name of the file that will contain the executable object module at the
Exe_File prompt.

4. Enter True in response to the Produce Statistics prompt.

5. Press [Promote].

For example, the following command reads commands in My_Linker_Command_File,
produces an executable object module, and sends it to the Main_68k file; it also produces a
statistical summary of the number of object modules that were linked, the number of
symbols that were produced, and the number of fixups that were required and appends it to
the link map:

22 228 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

M68k.Link (Command_File => My Linker_ Command File,
Exe_File => Main_ 68k,
Produce_Statistics => True);

3.5.4. Associated Files

When you compile programs, the compiler produces special files called associated files,
which appear enclosed with angle brackets (< >) in the library system. If the library
switches for these files have been set to true, the files will be retained. These files are
associated with their parent (the Ada unit being compiled or assembled). If the parent is
deleted or demoted, all the associated < > files also will be deleted. You cannot create these
files directly; they result from invoking the M68K CDF. These files can be specified using
names of the form file_name.<xxx>. If you want to have permanent copies of these files
that are not associated with their parent, you can copy them into another file.

The associated files are:

* <Asm>: Contains the assembly-language source generated by the compiler for the
associated compilation unit.

* <List>: Contains the assembly listing generated by the assembler from the <Asm> file.

* <Obj>: Contains the object module generated by the assembler from the <Asm> file. This
is a binary file.

The following files are associated only with the main program (the one containing a Main
pragma):

* <Elab_Asm>: Contains the assembly-language source generated by the compiler for the
associated main program. The code in this file elaborates each of the units in the Ada
program.

* <Elab_List>: Contains the listing for the elaboration code.

* <Elab_Obj>: Contains the object module for the elaboration code.

* <Exe>: Contains the executable module produced by the linker from the <Elab_Obj> file,
the <Obj> files of all compilation units in the transitive closure of the associated main
program, and the Ada run-time library.

* <Link_Map>: Contains the link map generated by the linker, which describes the <Exe>
file associated with the main program.

RATIONAL 22288 23

Rational M68K/OS-9 Cross-Development Facility

The following example shows a library that contains the files generated when the M68K
CDF is invoked and the Cross_Cg.Listing switch is set to true:

= Rational (Deltal) WJH.HEINZE

!Users.Wjh.Demo

Bench : Ada (Pack_Spec):
.<List> : File;
.<0Obj> : File:;

Benchmark Switches
Guidance

: File (Switch);
: Ada (Pack_Spec):;

.<List> : File;
.<0bj> : File;

Guidance : Ada (Pack_Body):

.<List> : File;
.<Obj> : File;
.Trajectory : Ada (Proc_Body):
.<List> : File;
.<Obj> : File;
.Range : Ada (Proc_Body):
.<List> : File;
.<0bj> ¢ File;

Main : Ada (Proc_Spec);
.<List> : File;

.<0bj> : File;

Main : Ada (Main_Body):
.<Elab_List> : File;
.<Elab_Obj> : File;

.<Exe> : File;
.<Link_Map> : File;
.<List> : File;
.<0bj> : File;

Typedefs : Ada (Pack_Spec):
.<List> : File;

.<0bj> : File;

3.6. Converting and Transferring Executable Modules

Before you can run executable modules, you must convert them to an object-module format
that executes on the D85 hardware and then transfer them to the D85 hardware.

24

22288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

3.6.1. Converting Executable Modules

The executable module produced by the M68K/OS-9 linker is in the R1000 object-module
format. To run on the D85 hardware, it must be converted to the OS-9 object-module
format.

To convert an executable module:

1. From the library that contains the executable module, create a Command window.
2. Enter Convert and press [Complete].

3. Enter the name of the executable module at the 01d_Module prompt.

4. Enter the name of the executable module to be used on the D85 hardware at the
New_Module prompt. '

5. Enter Os9 at the New_Format prompt.
6. Press [Promote].

For example, the following command converts the object-module format from Rational to
0S-9:

Convert (Old Module => "Main_68k.<exe>",
New_Module => "Main_68k 0Os9",
New_Format => "Os9");

3.6.2. Transferring Executable Modules

The executable module is now in the 0S-9 object-module format, so you can transfer it to
the D85 hardware.

To transfer an executable module:

1. From the library containing the executable module, create a Command window.
2. Enter 0s9_Put and press [Complete].

3.Enter the name of the executable module on the R1000 at the From_Local File
prompt.

4.Enter the name of the executable module to be used on the D85 hardware at the
To_Remote_File prompt. (If you want to debug this program later, it must be the same
name as the program on the R1000.)

5.Enter the name of the machine that will receive the executable module at the
Remote_Machine prompt. (If you have set the Ftp_Profile. Remote_Machine switch in
your switch file, you can use the default value for this parameter.)

RATIONAL 2228 %

Rational M68K/OS-9 Cross-Development Facility

6. Enter the name of the directory on the machine that will receive the executable module
at the Remote_Directory prompt. (If you have set the Ftp_Profile. Remote_Directory
switch in your switch file, you can use the default value for this parameter.)

7. Press [Promote].
For example, the following command transfers the executable module to the D85 hardware:

Os9_Put (From_Local File => "Main_Motorola_68k_Os9",
To_Remote_File => "Main_Motorola_68k_0Os9",
Remote Machine => Ftp Profile.Remote_ Machine,
Remote_Directory => Ftp Profile.Remote Directory,
Text_File => False,
Response => Profile.Get);

3.7. Executing and Debugging

Now that you have produced an executable module and have transferred it to the D85
hardware, you are ready to run it on D85 hardware. This is accomplished by running your
program directly on the D85 hardware with commands from the OS-9 operating system or
by using the R1000-hosted M68K cross-debugger.

To execute the program on target hardware:
1. From a console attached to the D85 hardware, log into the D85 hardware.
2. Go to the directory that contains the OS-9-formatted executable module.

3.Enter the name of the executable module (for example, Main_M68k_0s9) and press
[Return].

The program now runs on the D85 hardware (however, it does not run under debugger
control).

To obtain diagnostic messages, two parameters can be used when entering the program
name:

* -d: Specifies task and elaboration diagnostics.

* -s: Specifies storage diagnostics.

The parameters are separated from the program name by at least one space; if both are
used, they are separated from each other by at least one space. The following is an example

of an execution command with both parameters:

Main_M68k_0s9 ~-d -s

26 22288 RATIONAL

Using the M68K/OS-9 Cross-Development Facility

To execute the program on target hardware using the M68K cross-debugger:

1. With your library FTP switches set to the remote machine and remote directory that
contains the program that you will debug, select the program to be debugged (the unit
that contains the Main pragma—that is, the unit whose body has the .<Exe> file
associated with it; the program on the D85 hardware must have the same name).

2. From the library containing the selected program, create a Command window.
3. Enter Debug. Invoke and press [Complete].
4. Press [Promote].

The M68K cross-debugger window appears. The debugger is now running and you are
ready to execute and debug your programs. Source-level debugging is identical to
debugging an R1000 program. Program output will appear on the 0S-9 console
connected to the D85 hardware.

5. Press [Execute].
To quit the debugger, enter the following command:
Debug.Kill (Job => True, Debugger => True);

This command kills the R1000 and OS-9 components of the M68K cross-debugger
(Debugger => True) and the program being debugged (Job => True). If Debugger => False,
the debugging session remains and can be reused, using the Debug.Invoke command.

For more information on source-level commands for debugging, consult the Debugging
(DEB) book of the Rational Environment Reference Manual. For more information on
machine-level debugging on D85 hardware, see Chapter 9, “M68K/OS-9 Cross-Debugger,”
and the release note.

RATIONAL 2225 27

M68K/OS-9 Cross-Compiler

4. M68K/OS-9 Cross-Compiler

The M68K/OS-9 Cross-Development Facility provides the user the ability to develop and
compile programs using the Rational Environment. However, choosing the Motorola_68k
target key selects the M68K code generator instead of the R1000 code generator. The
output of the M68K code generator is M68K assembly source code. Under default condi-
tions, the assembly source code is assembled automatically and the resulting object
modules are linked automatically into an execution module. Therefore, the differences
between the R1000 and M68K code generators are invisible to the user, and compilation
using the M68K/OS-9 Cross-Development Facility is identical to compilation in the Rational
Environment.

4.1. Compilation States

To compile a program, a user begins with an object, the Ada unit. An Ada unit can exist in
one of three states:

¢ Source
¢ Installed
¢ Coded

It is important to realize that an Ada unit can exist in only one of these states at a given
time. Additionally, these states are sequential; a unit cannot go directly from the source
state to the coded state without first going through the installed state.

The two compilation models of concern are:
* R1000
* Motorola_68k

4.1.1. Source State

In the source state, an Ada unit contains source code that will be compiled. The Ada unit is
registered with the Environment as an anonymous unit; for example, it is represented in
the world containing it as _Ada_10. This unit cannot be withed by another unit. The
source code can be edited, more source code can be added, and the code can be syntactically
and semantically checked. The source state is the same in the R1000 model and the
Motorola_68k model.

The source state can be promoted to the next higher state, the installed state (see

“Compiler Commands,” in this chapter, for a description of commands that can be used to
promote the Ada unit from the source to the installed state).

RATIONAL 2228 29

Rational M68K/OS-9 Cross-Development Facility

4.1.2. Installed State

The installed state is the intermediate state. In this state, an Ada unit is registered in the
world under its package or subprogram name and can now be withed by other Ada units.
The Ada unit is syntactically and semantically correct. If this unit depends on other units,
the Environment checks to see if the other units are also installed. Although users cannot
freely add code, delete code, or edit code in units in the installed state, they can still
perform incremental operations (see “Incremental Operations,” in this chapter). The in-
stalled state is the same in the R1000 model and the Motorola_68k model.

The installed state can be promoted to the next higher state, the installed state, or demoted
to the prior state, the source state (see “Compiler Commands,” in this chapter, for a
description of commands that can be used to promote an Ada unit from the installed to the
coded state or demote it from the installed to the source state).

4.1.3. Coded State

In the coded state, the following differences exist between the R1000 model and the Motor-
ola_68k model: :

* In the R1000 model, the Ada unit can now be executed. If the unit withs any other Ada
units, the Environment checks to see that the other units are in the coded state; if not,
the Environment manages the unit dependencies within the program, ensuring that all
units are in the coded state. If the withed units do not exist or cannot be coded, the
Environment provides the user with an appropriate error message. Some incremental
operations can be performed in the coded state (see “Incremental Operations,” in this
chapter, for a discussion of incremental operations that can be performed in the coded
state).

When executing an Ada unit, the user must know which unit is the main unit. A Main
pragma optionally may be added to the unit to indicate that it is the main unit.

Figure 4-1 shows the R1000 compilation model.

Source) Installed) Coded Executed

Figure 4-1 R1000 Compilation Model

* In the Motorola_68k model, the Ada unit cannot be executed until some additional steps
are taken. By default, the output of the M68K code generator is assembly source for each
Ada library unit. The assembly source is assembled by the assembler into relocatable
object modules and the assembly source is deleted (see Chapter 5, “M68K/OS-9 Cross-
Assembler,” for more information on the assembly process). To execute a program, these

30 | 222 RATIONAL

M68K/OS-9 Cross-Compiler

relocatable object modules must be linked into an executable module by the linker.
Although, by default, the code generator, assembler, and linker are invoked automat-
ically to produce the executable module, it is possible to invoke each separately (see the
section on library switches in Chapter 3, “Using the M68K/OS-9 Cross-Development
Facility”).

When the Ada unit is promoted to code, files associated with the Ada unit are produced.
These files include the following:

— <Asm>

— <List>

— <Obj>

— <Elab_Asm>
— <Elab_List>
— <Elab_Obj>
— <Exe>

— <Link_Map>

Depending on the switch settings, these files may or may not be retained (see Chapter 3,
“Using the M68K/OS-9 Cross-Development Facility,” for a discussion of the associated
files).

For the linker to know that it needs to produce an executable module for the program,
the spec or body of the main Ada unit must contain a Main pragma. A main program
must be a procedure that is a library unit; it cannot be a function that is a library unit or
a subprogram that is in a package.

When the unit is coded, a relocatable object module for that unit is generated along with
an elaboration module for the entire program. Then the M68K linker is invoked auto-
matically, and it links all of the program’s object modules along with any necessary
modules from the Ada run-time library to produce an executable module (see Chapter 6,
“M68K/OS-9 Cross-Linker,” for more details on the linking process).

Before it can be executed, the executable module must have its object-module format
changed, and then it must be downloaded to the D85 hardware (see Chapter 8,
“M68K/0OS-9 Downloader,” for more information on the conversion and downloading
processes).

The Ada unit can be demoted from the coded state to a lower state (see “Compiler
Commands,” below, for a description of commands that can be used to demote an Ada
unit from the coded to the installed state).

RATIONAL 22288 31

Rational M68K/OS-9 Cross-Development Facility

Figure 4-2 shows the Motorola_68k compilation model.

Target-
Source instalied specific code
generator

ASM —.Llnkcr

Figure 4-2 Motorola_68k Compilation Model

4.2. Compiler Commands

The same commands are used to invoke the M68K compiler that are used to invoke the
R1000 compiler. The target key associated with the world determines which compiler is
invoked. For an extensive discussion of compilation commands, consult the Editing Specific
Types (EST) and Library Management (LM) books of the Rational Environment Reference
Manual or Rational Environment Basic Operations.

Table 4-1 summarizes the compiler commands.

Table 4-1 Compiler Commands

Command

Function

Common.Abandon

Ends the editing of Ada images. Any changes made to the image
since the last commit or promote are lost. However, incremental
changes made to installed or coded units, which are permanent as
soon as they are promoted, are not lost.

Common.Commit

Makes permanent any changes to the Ada image. This procedure
is used only for Ada images that are in the source state. When
source Ada images are edited, this procedure saves the changes to
the image in the underlying permanent representation. The
commit operation also is performed implicitly by the Promote,
Ada.Code_Unit, and Release procedures.

Common.Complete

Completes the selected Ada identifier or the identifiers in the
selected element using Ada semantics for name resolution.

Common.Create_Command

Creates a Command window below the current Ada window if one
does not exist; otherwise, it puts the cursor in the existing
Command window below the current window.

Common.Definition

Finds the defining occurrence of the designated element and
brings up its image in a window on the screen, typically with the
definition of the element selected.

Common.Demote

Demotes an Ada unit or element to a lower state.

32

2228 RATIONAL

M68K/OS-9 Cross-Compiler

Table 4-1 Compiler Commands (continued)

Command

Funection

Common.Edit

Creates a window in which to edit the named or selected unit and
demotes the unit to source if necessary.

Common.Enclosing

Finds the parent or enclosing Ada unit of the current window and
displays the parent in a window.

Common.Explain

Provides an explanation of the error designated by the cursor
position in the Ada unit in the current window. Used after
semantic or syntactic errors have been discovered, the procedure
displays an explanation of those errors in the Message window.

Common.Format

Checks the syntax of the current Ada image, performs syntactic
completion, and pretty-prints the image.

Common.Insert_File

Copies the contents of the text file specified in the Name
parameter into the current Ada image at the current cursor
position.

Common.Promote

Promotes the Ada image in the current window to the next higher
state.

Common.Release

Ends the editing of the Ada unit. The unit is unlocked and any
changes made to the image are committed (made permanent).

Common.Revert

Reverts the Ada image in the current window to the current value
in the underlying representation.

Common.Semanticize

Checks the Ada units for semantic correctness. The procedure
checks for compliance with the semantic rules of the Ada
language. Errors discovered during semantic checking are
underlined.

Compilation.Atomic.Destroy

Destroys the named object and any dependent units.

Compilation.Compile

Compiles the specified text file into the specified library. This
procedure parses and promotes the units in the specified file or
files to the specified goal state.

Compilation.Delete

Demotes and deletes the default version of the specified object and
any subunits. The deletions are reversible. This command differs
from the Destroy procedure, which permanently deletes and
expunges objects.

Compilation.Demote

Demotes the specified unit to the specified goal state, demoting
any other units, within the limit necessary to achieve the
requested demotion.

Compilation.Dependents

Displays the set of units that depend on the current or named
units.

~ RATIONAL 222

33

Rational M68K/OS-9 Cross-Development Facility

Table 4-1 Compiler Commands (continued)

Command Function
Compilation.Destroy Destroys the named object and any subordinate units and demotes
dependent units.
Compilation.Make Promotes the specified units to the goal state. By default, this

procedure promotes to the coded state the units, their
subordinates, and the specs, bodies, and subunits of all units on
which they depend.

Compilation.Parse Parses the Ada source in the specified files and creates
corresponding Ada units in the specified directory.

Compilation. Promote Promotes the specified unit in the specified scope to the specified
goal state. This procedure is applied recursively to the named unit
and any other units in the specified scope. A unit is not promoted
if it is not a legal Ada unit.

4.3. Differences between R1000 and M68K/OS-9 Compilers

This section briefly highlights the differences between the code generated by the R1000
compiler for execution on the R1000 and the code generated by the M68K/OS-9 Cross-
Development Facility for execution on M68K/OS-9 hardware or simulator.

4.3.1. Chapter 13 Support

In general, the M68K/OS-9 compiler provides different support for Chapter 13 of the LRM
than does the R1000 compiler. For more details, see Appendix F for each, as well as the
release note for this product.

4.3.2. Command Windows

Command windows attached to Motorola_68k worlds behave like Command windows
attached to R1000 worlds in that compilations within Command windows reference package
Standard for the R1000 and generate R1000 code, not M68K/OS-9 code. M68SK/OS-9 main
programs cannot be executed from a Command window. Programs must be run by convert-
ing the executable module from R1000 object-module format into OS-9 format, transfer-
ring the converted executable module to the 0S-9 system, and executing on the actual
target hardware.

4.3.3. Generics

The R1000 architecture enables code-shared generics—multiple instantiations of a generic
share the same code. The M68K cross-compiler uses macro expansion to implement instan-
tiations of generics, so multiple instantiations yield multiple copies of the code.

34 2288 RATIONAL

M68K/OS-9 Cross-Compiler

4.3.4. Incremental Operations

In an R1000 world, coded package specifications can be changed incrementally. In a
Motorola_68k world, incremental operations on coded objects are limited to the addition
and deletion of comments. The user can perform incremental operations on units in the
installed state in a Motorola_68k world as in an R1000 world.

Table 4-2 shows the object state and the incremental operations that can be performed in

that state. For more explanation on how to perform incremental operations, consult the
Rational Environment Basic Operations manual.

Table 4-2 Incremental Operations

Object State Incremental Operation R1000 M68K

Installed Add a statement, declaration, or comment. X X

Installed Change a statement, declaration, or comment. X X

Installed Delete a statement, declaration, or comment. X X

Coded Add a comment. X X

Coded Add a statement or a declaration to a package X
specification.

Coded Change a comment. X

Coded Change a statement or a declaration to a package X
specification.

Coded Delete a comment. X X

Coded - | Delete a statement or a declaration to a package X
specification.

4.3.5. Packed Records and Arrays

In an R1000 world, all records and arrays are always packed automatically. In a Motor-

ola_68k world, the user must explicitly use the Pack pragma or a record representation
clause to obtain packing.

4.3.6. Record Layout
The R1000 and M68K/OS-9 compilers lay out record fields differently.

RATIONAL 2228 35

Rational M68K/OS-9 Cross-Development Facility

4.3.7. Program Elaboration

The elaboration model is different for the M68K/OS-9. This has some impact on certain ‘
debugger operations. See Chapter 9 for more details.

36 2208 RATIONAL

M68K/OS-9 Cross-Assembler

5. M68K/0OS-9 Cross-Assembler

5.1. Introduction

The M68K/OS-9 cross-assembler is part of Rational’s Cross-Development Facilities. A
separate assembler is provided for each specific target computer family, although all
assemblers implement the same target-independent directives, conditional facilities, macro
facilities, and object format. The assemblers are used to assemble compiler output, user
modules, and user programs.

This chapter addresses individuals writing assembly-language programs or modules. The
user should be familiar with assembly-language programming style and techniques, target-
specific instructions and instruction syntax, and the Rational Cross-Development Facilities.

Several program examples are provided to illustrate features of the assembler. M68K-
family mnemonics and instruction syntax have been used for every example. However,
because the assembler is mostly target-independent, these examples apply equally to
mnemonics and instruction syntax of any supported target. Knowledge of the M68K is not
required to use this material. '

5.2. Assembler Command (M68k.Assemble)

The normal operation of the assembler is automatic. When the library Cross_Cg.Auto-
—Assemble switch is set to true (the default value), the output of the compiler is assembled
automatically. A major reason you would want to use the assembler manually is when you
have a separate assembly-language source file that you want to assemble.

The assembler command is:

M68k.Assemble (Source_File : String := "<IMAGE>";
Object_File : String := "<DEFAULT>";
Listing File : String := "<DEFAULT>";
Produce_Object : Boolean := True;
Produce_Listing : Boolean := False:;
Produce_Statistics : Boolean := False;
Response : String := "<PROFILE>"):;

The parameters for this command are:
® Source_File : String := "<IMAGE>";

Specifies the input file that contains the assembly source code. If <IMAGE> is used, the
object in the attached window or the selected object is used as the assembly source file.

RATIONAL 22288 37

Rational M68K/OS-9 Cross-Development Facility

® Object_File : String := "<DEFAULT>";

Specifies the output file that will contain the assembly object code.
®* Listing File : String := "<DEFAULT>";

Specifies the output file that will contain the assembly listing.
® Produce Object : Boolean := True;

Specifies whether an object file is generated. The default is true. If false is selected, the
source file will be checked for correctness, but no object file will be generated.

® Produce_Listing : Boolean := False;
Specifies whether an assembly-listing file is generated. The default is false.
® Produce_Statistics : Boolean := False;

Specifies whether statistics of the assembly process are generated. The statistics will be
included at the end of the .<List> file. The default is false.

¢ Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and switches
to use during execution of this command. The default is the job response profile.

5.2.1. Example

Assume that you want to assemble a file called User_Example. You want the object file to
be called User_Example_Object_Code, and you want the listing file to be called User-
_Example_Listing. You are not interested in generating statistics. The following command
accomplishes this:

M68k.Assemble (Source_File => "User_Example",
Object_File => "User_Example_Object_Code",
Listing_File => "User_Example_Listing",
Produce_Listing => True):

5.3. Assembly-Language Source Code

Input to the assembler comes from a compiler or from a text file created using the text
editor, or it is moved to the Rational Environment from another computer system. This
text file consists of a series of source statements. Source statements are used to control the
assembly process, generate machine instructions, allocate storage, and define constants.
The assembler processes source statements one at a time in the order in which they appear.

38 222 RATIONAL

M68K/0OS-9 Cross-Assembler

5.3.1. Source Statements

A source statement contains four distinct fields; each is optional. A single statement
usually occupies a single line in the source file, but several lines can be used to express a
statement by using the line-continuation mechanism. The typical form of a source
statement is:

[label:] [operator [operand{, operand}]] [;comment]

Source statements are separated by the line terminator—the ASCII character linefeed
(16#0A#).

5.3.1.1. Label Field

The label field is used to associate a symbolic name with the current value of the location
counter. The symbolic name is entered into the user symbol table. A label must conform to
the rules for a symbol and must be terminated with the label terminator character, the
colon (:). If a label is present within a source statement, it is bound to a value. Although
the label may have been introduced previously via a directive or forward reference, it must
not have been bound to a value. An attempt to bind a symbol to a value more than once
results in an assembly error. The label is associated with the remainder of the source
statement only textually, so the following are equivalent, even though the rest of the source
statement is on a separate line in the second example:

label: lea (label), al

label:
lea (label), a0l

5.3.1.2, Operator Field

The operator field can contain an instruction, an assembler directive, or a macro call. This
field can be terminated by either a space or a tab. The nature of the operator specifies the
context for processing the operand field.

5.3.1.3. Operand Field

The operand field contains operands that are specific to the operator. For instance, the
operands for an instruction are usually effective addresses, whereas the operand for the
.TITLE directive is a character string. Some operators require more than one operand, in
which case the operands must be separated by commas.

5.3.1.4. Comment Field

Comments can be present anywhere in the source file. Comments are separated from the
other fields by a semicolon (;). All text between the semicolon and the line terminator is a
part of the comment field and will be ignored. No restrictions are placed on the characters
within a comment.

RATIONAL 22288 39

Rational M68K/OS-9 Cross-Development Facility

5.3.1.5. Continuation Lines

Normally a single source statement is contained on a single source line. In some cases, it
may be desirable to use several source lines to express a single source statement. To
accomplish this, a line-continuation character is required to indicate that the end of the line
is not the end of the source statement. The line-continuation character is the vertical bar
(1). All characters between the bar and the end-of-line character are ignored.

move.l ([table,d0*4],table_entry_offset), | this is a comment
([table,d1*4],table_entry offset)
5.3.2. Numeric Literals
Numeric literals consist of two forms: unbased and based. Unbased constants are eval-
uated in the current radix. Based constants define a radix for evaluation using Ada syntax.
The syntax for based constants is:

base#numeric_literal#

The base is evaluated in the decimal radix and may be 2, 8, 10, or 16:

.radix 10 ; change the current radix to decimal
.dc.b 100 ; this is 100 decimal

.dc.b 16#100# ; this is 256 decimal

.radix 16 ; change the current radix to hex
.dc.b 100 ;> this is 256 decimal

.de.b 10#100# ; the radix is decimal; this is 100 decimal
.dec.b 16#100# ; the base is 16 decimal; this is 256 decimal

To distinguish numeric literals from identifiers, all numeric literals must begin with a digit:

.radix 10#16# ; make the current radix HEX

.dec.l £ff ; this is a reference to the symbol FF

.dc.1 0ff ; this is a numeric constant equal to 255 decimal
.dc.1 l6#ff# ; this is never ambiguous

5.3.3. Symbols

Symbols are used to equate a name with a value. Symbols are strings of 1 to 32 characters,
as specified below. Symbols that exceed the 32-character limit are flagged as illegal.

40 228 RATIONAL

M68K/OS-9 Cross-Assembler

5.3.3.1. Symbol Character Set
. The following characters may appear within the text of a symbol:
A ..Z Letters of the alphabet (case-insensitive)
0..9 Decimal digits

_ Underscore
Period

$ Dollar sign

’ Apostrophe

A Caret

The caret is used to provide symbol uniqueness within macros. It is replaced by a decimal
character string that is equal to the number of macro expansions performed when the caret
is encountered. This character is not allowed within symbols except within a macro
definition.
5.3.3.2. Symbol Types
Symbol types include:

. * Permanent symbols
* User-defined permanent symbols
¢ User-defined temporary symbols

* Macro name symbols

Permanent symbols include instruction mnemonics, register symbols, assembler directives,
and a group of special symbols. Special symbols are used to represent implied entities such
as the current value of the location counter. The special symbol is:

Value of the current location counter

o
RATIONAL 22288 4

Rational M68K/OS-9 Cross-Development Facility

5.3.3.3. Local Symbols and Scoping Rules

Any identifier beginning with the dollar sign ($) is placed in the local symbol table instead
of the general-purpose symbol table. The local symbol table can be purged with the
.LOCAL directive. This allows simple scoping of identifiers, as shown below:

.local ; new scope

clear_bytes:
tst.w do
beqg.s $done
subg.w #1,d0
$loop: clr.b (al) +
dbra d0, $1loop

address in AQ, count in DO.W
check the count

if zero clear nothing

adjust count for DBRA instruction
clear a byte

loop for the whole block

LY O TR YRR

~e

$done: rts ; return
.local ; new scope
copy_bytes: ; source addr in A0, dest addr in Al
; count in DO.W
tst.w do ; check the count
begq.s $done ' ; if zero copy nothing
subg.w #1,d0 ; adjust count for DBRA instruction
$loop: move.b (al)+, (al)+ ; copy a byte
dbra do, $1loop ; loop for the whole block
$done: rts ; return

In the above example, note that the symbols $LOOP and $DONE are defined twice. The
.LOCAL directive limits the scope of these labels to the code that references them. The
symbols CLEAR_BYTES and COPY_BYTES are not local symbols because they do not
begin with the dollar sign and are visible throughout the assembly unit. Local symbols
cannot be made global or external.

5.3.3.4. Symbol Resolution

All instruction mnemonics, register names, directives, macro names, and other permanent
symbols are keywords that cannot be redefined by the user. For example:

move equ 17

will result in an assembly error because the assembler treats this as a MOVE instruction
and EQU is not appropriate as the source-effective address of a MOVE instruction. In fact,
EQU is a keyword and the assembler will produce a message such as: ‘

Syntax error: Saw EQU but expected: <id>, (, #, ...)

42 2/22/88 F&/\]1<:>PJ/\1.

M68K/OS-9 Cross-Assembler

5.3.4. Expression Evaluation

All expressions are evaluated using 64-bit two’s complement arithmetic. No overflow
checking is performed, although division by 0 is detected and flagged as an assembler error.
The result of evaluation is coerced into the result by removing the correct number of
leading bits. Expressions fall into one of three categories:

* Absolute: These expressions contain only constants or symbols whose values are
constant. Also, the difference of two relocatable symbols, both defined within the same
section, is an absolute expression.

* Simple relocatable: These expressions, although not constant, can be folded at assembly
time. These include addition of a constant and a relocatable, or a relocatable minus an
absolute.

* Complex relocatable: These expressions, covering all of the remaining cases, include any
expression that makes reference to an external symbol, the addition of two relocatable
symbols, and so on.

If an expression cannot be evaluated, because it is a complex relocatable expression, it is
passed to the linker. All expressions are legal to the assembler. Some types of complex
relocatable expressions have questionable meaning at best, and some are rejected by the
linker and others by the target-specific loader. For example:

.ext.l syml,sym2

.sect some_section,relocatable

sym3 equ syml**sym2
.end

If SYM1 and SYM2 are declared in another module as constants, the meaning of SYMS3 is
clear. If, however, SYM1 and SYM2 are relocatable entry points in a module, the meaning
and value of SYM3 are unclear.

5.3.4.1. Unary Operators

Unary operators +, —, and ~ are supported. The ~ operator produces the one’s complement
of its operand.

5.3.4.2. Binary Operators

= Equality
/= Inequality
< Less than

> Greater than
<= Less than or equal to

RATIONAL 2228 43

Rational M68K/OS-9 Cross-Development Facility

>>

<<

AFkok

Greater than or equal to
Multiplication

Division

Modulo

Remainder

Logical AND

Logical inclusive OR
Logical exclusive OR
Two’s complement addition
Two’s complement subtraction
Shift right

Shift left

Exponentiation

5.3.4.3. Operator Precedence

Operator precedence is, lowest to highest, as follows:

= /=
roA
&

+ -

* /

< > <= >=

** oSy <<

Within each line, the precedence of operators is the same.

22288 RATIONAL

M68K/OS-9 Cross-Assembler

5.4. Assembler Directives

5.4.1. Listing Directives

The following listing directives control the content and format of the assembler listing.

.LISTNC
.LISTTC
.LISTC
.LISTMX
.LISTMC
.LISTNM
LIST
NLIST
.TITLE
.SUBTTL
.PAGE
.BLANK
.HEAD
FOOT
.WIDTH
.LENGTH

List no conditionals

List true conditionals only (default)

List all conditionals

List macro expansion (default)

List macro calls (default)

List no macro expansions or calls

Enable listing

Disable listing (default)

Specify the listing title

Specify the listing subtitle

Eject a page in the listing file

Place blank vlines in the listing file

Define a header to be placed at the top of each subsequent page
Define a footer to be placed at the bottom of each subsequent page
Define the width of the listing file

Define the number of lines per listing page

5.4.2. Storage-Allocation Directives

The storage-allocation directives fall into three categories: uninitialized block storage,
initialized unit storage, and initialized block storage. Each is described below.

RATIONAL 2228 s

Rational M68K/OS-9 Cross-Development Facility

5.4.2.1. Uninitialized Block Storage

Each of these directives reserves storage for the specified number of elements by advancing
the location counter as necessary. These directives are followed by an expression that
represents the number of storage units to be allocated. For example:

.ds.w
.DS.B
DS.wW
.DS.L
.DS.S
.DS.D
DS X
.DS.A

10 ; allocate 10 words
Reserve storage for bytes (8 bits)
Reserve storage for words (16 bits)
Reserve storage for long words (32 bits)
Reserve storage for single-precision floating point (target-specific)
Reserve storage for double-precision floating point (target-specific)
Reserve storage for extended-precision floating point (target-specific)

Reserve storage for an address (target-specific)

5.4.2.2. Initialized Unit Allocation

These directives are used to allocate and initialize one or more units of storage. They are
followed by a stream of values, which will be placed in consecutive locations within the
current program section. For example:

.dc.w

.DC.B
.DC.W
.DC.L
.DC.S
.DC.D
DCX
.DC.A
ASCII
ASCIZ

46

10,0 ; allocate two words
; set the first to 10
; and the second to 0

Define constant bytes (8 bits)

Define constant words (16 bits)

Define constant long words (32 bits)

Define constant single-precision floating point (target-specific)
Define constant double-precision floating point (target-specific)
Define constant extended-precision floating point (target-specific)
Define constant addresses (target-specific)

Define a constant string, 8 bits per character

Define a constant text string, 8 bits per character terminated with a null
character

2228 RATIONAL

M68K/0OS-9 Cross-Assembler

5.4.2.3. Initialized Block Allocation

. These directives are used to allocate a number of units and initialize them all to the same
value. For example:

.dcb.w 10,0 ; allocate 10 words and
; initialize them to zero

.DCB.B Define constant block bytes (8 bits)
.DCB.W Define constant block words (16 bits)

.DCB.L Define constant block long words (32 bits)

.DCB.S Define constant block single-precision floating point (target-specific)
.DCB.D Define constant block double-precision floating point (target-specific)
.DCB.X Define constant block extended-precision floating point (target-specific)

.DCB.A Define constant block addresses (target-specific)

5.4.3. Intermodule Symbol-Definition Directive

These directives inform the linker that the symbols specified are either defined in the
. current module for use in any module (GLOBAL) or defined in another module and used by

the current module (EXTERNAL). These directives can appear anywhere in the assembly

module, either before or after the references to the symbols. For example:

.gbl.l1 syml,sym2,sym3
.ext.l sym4,sym5,symé6

.GBL.B Byte global (8 bits)
.GBL.W Word global (16 bits)
.GBL.L Long global (32 bits)
.EXT.B Byte external (8 bits)
EXT.W Word external (16 bits)
.EXT.L Long external (32 bits)

o
RATIONAL sz20s a

Rational M68K/OS-9 Cross-Development Facility

5.4.4. Symbol-Definition Directive ‘

The following directives are used to assign symbolic names to expressions. Two forms of
directives are available. The first form allows the user to assign a symbol a value and a
size attribute. These attributes allow the assembler to generate optimal code even if the
value of the symbol cannot yet be determined.

.ext.w controller
.defp.w ctlr_regl:=controller+3

move.b dO0, (controller+3)
move.b d0, (ctlr_regl)

Because CONTROLLER is external, its value is unknown. Even though it has a 16-bit size,
the expression CONTROLLER+3 has an unknown size. The first MOVE instruction will
require four bytes to express CONTROLLER+3 to ensure that the expression will fit at link
time. The second MOVE instruction will allocate only two bytes for the value CTLR_REG]1,
and a link-time error will result if the actual value will not fit in two bytes. Note that this
situation exists with forward references or with expressions that contain forward ref-
erences. Using these directives to specify the size of expressions that cannot be evaluated
directly will produce smaller, faster code in processors that have multiple address
representations, such as the M68K family.

The second form of symbol definition directive simply creates a symbol of implied size. An
example of the second form is: .

ctlr_regl equ controller+3

move.b d0, (controller+3)
move.b d0, (ctlr_regl)

These two MOVE instructions generate identical code. The symbol CTLR_REGI is of use
only to the programmer and may increase the readability of the source.

These directives can be used to create permanent or temporary symbols. Once defined,
permanent symbols cannot be redefined. Temporary symbols can be redefined as fre-
quently as desired if they are always defined with temporary type directives. A forward-
referenced symbol cannot be defined subsequently as a temporary symbol. For example:

syml equ sym2+10
sym2 set 10

The attempt to define SYM2 as temporary is illegal here because, although it is previously
undefined, there are forward references to it. Another example is:

sym2 set 0O
syml equ sym2+10
sym2 set 10

48 2oz RATIONAL

M68K/0S-9 Cross-Assembler

In this example, SYM1 has a value of 10 throughout the assembly, because at the time it
was defined, SYM2 had a value of 0.

.DEFP.B Define a permanent byte symbol (8 bits)

.DEFP.W Define a permanent word symbol (16 bits)

.DEFP.L Define a permanent long word symbol (32 bits)

.DEFP.S Define a permanent single-precision floating-point symbol
.DEFP.D Define a permanent double-precision floating-point symbol
.DEFP.X Define a permanent extended-precision floating-point symbol
.DEFT.B Define a temporary byte symbol

.DEFT.W Define a temporary word symbol

.DEFT.L Define a temporary long word symbol

.DEFT.S Define a temporary. single-precision floating-point symbol
.DEFT.D Define a temporary double-precision floating-point symbol
.DEFT X Define a temporary extended-precision floating-point symbol ;
SET Define a temporary symbol

EQU Define a permanent symbol

5.4.5. Miscellaneous Directives
5.4.5.1. The CPU Directive

The CPU directive informs the assembler which CPU-family options are present in the
specific target implementation. For example:

.CPU "mc68020"
.CPU "mc68881"

informs the assembler that the target processor is an MC68020 processor and has an

MC68881 floating-point coprocessor. This directive causes any permanent symbols pertain-
ing to the specified option to be placed in the permanent symbol table.

RATIONAL 22288 4

Rational M68K/OS-9 Cross-Development Facility

5.4.5.2. The SECT Directive

The .SECT directive is used to define, or switch between, program sections. When the
.SECT directive is used to define a program section, it is followed by the name of the section
and a list of parameters that describe the section. These parameters are:

* ABSOLUTE AT nnn: The section is absolute and starts at address nnn.
* RELOCATABLE: The section is relocatable.

* CODE: The section contains instructions. This attribute is meaningful only on processor
implementations that have physically distinct instruction and data address spaces.

DATA: The section contains constant data or variable data or both. This attribute is
important only on processor implementations that have physically distinct instruction
and data address spaces.

READWRITE: The section will be both read and written.
READONLY: The section will be read only.

OVERWRITE: Program sections from other modules with the same name as this section
will be overwritten with data from this section. A linker option can be used to ensure
that the data being written are identical to the data being overwritten.

CONCATENATE: Program sections from other modules with the same name as this
section will be concatenated at link time.

* ALIGNMENT := nnn: The alignment factor for this program section will be set to nnn
bytes. See the .ALIGN directive for more detail.

When a .SECT directive is used to switch between sections, it is followed only by the section
name. A section must be defined only once. Attempting to switch to a section that is unde-
fined results in an error. Defining a section also switches to that section.

.sect prog,absolute at 16#1000#,code, readonly,alignment :=4
.sect heap, absolute at 16#4000#,data,readwrite,alignment:=1

.sect prog
move.l dO,temp
.sect heap

temp: ds.l 1

The default parameters for a section are:

.sect somename, relocatable, data,readwrite, concatenate, alignment:=2

2228 RATIONAL

M68K/OS-9 Cross-Assembler

5.4.5.3. The OFFSET Directive

The .OFFSET directive is much like the .SECT directive except that it changes the current
section to be the NULL section and changes the current offset within the section to be a
given constant. The .OFFSET directive normally is used to create mnemonic offsets into
records or hardware registers. For example:

.offset 0 ; type info is
; record

name: .ds.b 30 H name : string (1..30);
age: .ds.b 1 ; age : byte:;
salary: .ds.w 1 ; salary : integer;
info’size equ . : end;
update_age: ; pointer in a0, age in d0

move.b d0, (age,al)

rts
allocate_info: ; return pointer in a0

move #info’size, d0

jsr allocate

rts

The .OFFSET directive allows any expression to be provided as the initial offset into the
NULL section as long as the expression has no external or forward references. Any
attempts to generate code within the NULL section, with either assembler instructions or
directives, is illegal.

5.4.5.4. The RADIX Directive

The .RADIX directive can be used to change both input and output radices. The input radix
is used to process numeric literals encountered in the source. The output radix controls the
listing fields that display addresses and code generated by the assembler. The initial radix
is decimal. Valid radices are 2, 8, 10, and 16.

.radix 10#1l6# ; change the radix to HEX
.radix 2 ; change the radix to binary

Note that if the current radix is not clear, it is best to use based numeric constants to
change radices. The base portion of a based numeric literal is always interpreted as deci-
mal and is always unambiguous.

5.4.5.5. The IRADIX Directive

The .IRADIX directive is similar to the .RADIX directive, except that it changes only the
input radix.

RATIONAL 222 51

Rational M68K/OS-9 Cross-Development Facility

5.4.5.6. The ORADIX Directive

The .ORADIX directive is similar to the .RADIX directive, except that it changes only the
output radix.

5.4.5.7. The REV Directive

The .REV directive accepts a character string that is placed in the object file produced by
the assembler and is displayed by the linker in the linkage map. This is useful for tracking
module revision level. Compiler-generated code usually outputs the revision of the compiler
with this directive.

.rev "Version 2.3, last updated 7-jan-88"
5.4.5.8. The ALIGN Directive

The .ALIGN directive is used to realign the offset within the current section. The .ALIGN
directive can be used in two forms. The first form requires an alignment factor. This
alignment factor must be a positive power of 2 that is less than or equal to the alignment
factor of the current section as specified by the .SECT directive. The second form of the
.ALIGN directive has no alignment factor and uses the alignment factor of the current
section. If the offset into the current section must be changed to ensure alignment, zeros
are emitted into the current section until alignment is achieved. If the current section is
the NULL section (see the .OFFSET directive), only the first form of the .ALIGN directive
is allowed. Any positive, power of 2, alignment factor can be used within the NULL section.
For example:

.sect heap, relocatable,data, readwrite,alignment :=4
.sect buffer,relocatable,data,readwrite,alignment :=1024

bufferl:.ds.b 100

.align
buffer?2:
.sect heap
block: .ds.w block’size*block_count
.align 2
counter:.ds.w
.align

In this example, BUFFER2 will begin 1,024 bytes after BUFFER1 because the .ALIGN
directive realigned the section to the alignment factor given in the .SECT directive that
defined the current section, BUFFER. The location COUNTER will be word-aligned
regardless of the values of BLOCK'SIZE and BLOCK_COUNT. Also, the next storage
allocated in section HEAP will be long-word-aligned.

52 wezss RATIONAL

M68K/0S-9 Cross-Assembler

5.4.5.9. The OUTPUT Directive

The .OUTPUT directive allows the user’s program to emit messages into the assembler
listing and error-message file. Two forms of the directive exist: the first accepts a character
string; the second accepts an arbitrary expression. Note that the expression’s value must
be static when the .OUTPUT directive is encountered; it cannot contain external or forward
references. Each .OUTPUT directive produces a single line of text in the assembler output.

.offset 0 H type info is
H record
name: .ds.b 30 H name : string (1..30);
age: .ds.b 1 H age : byte:;
salary: .ds.w 1 ; salary : integer;
info’size equ . ; end;

.output "The size of INFO is"
.output info’size

5.4.5.10. The ERROR Directive

The .ERROR directive is like the first form of the .OUTPUT directive, except that it causes
the semantic error count to be incremented. This will cause the object module produced by

the assembler to be marked as containing errors. Linking such modules will produce link-
time warnings.

5.4.5.11. The INCLUDE Directive

The .INCLUDE directive can be used to cause a different file to be textually inserted into
the source stream at the point of the directive. There is no limit to the number or nesting

depth of .INCLUDE directives. The filename provided should be a fully qualified pathname
to the file. For example:

.include "lusers.wjh.project.data_definitions"

5.5. Repetitive Assembly and Conditional Assembly

5.5.1. Repetitive Assembly

A looping primitive is provided to assist in creating complex tables, block structures, or
instruction sequences that cannot be created with other directives and are too cumbersome
to code by hand. The looping construct causes a group of statements to be repeated as if
they were actually duplicated within the source. For example:

.repeat 5
move.b (al)+, (al)+
.endrepeat

RATIONAL 2228 53

Rational M68K/OS-9 Cross-Development Facility

produces:
move.b (a0)+, (al)+
move.b (a0)+, (al) +
move.b (al)+, (al)+
move.b (a0)+, (al)+
move.b (al0)+, (al)+

Although the repeat count shown here is a constant 5, the assembler allows any expression
to be used as a repeat count if its value can be determined at the time the .REPEAT is
encountered. This means that the expression cannot contain forward or external ref-
erences. If the repeat count is less than 1, all text between the .REPEAT and .END-
REPEAT is ignored. There is no provision for creating unique labels within a repeat loop; if
the application requires labels within a repeat loop, either use local symbols and place a
-LOCAL inside the loop or use recursive macros. Placing nonlocal symbols within a repeat
loop that is expanded more than once will result in errors because of multiply defined
symbols. For example:

count set 1

fact set 1

table_size equ 10
factorial table:

.repeat table_size

.dec.l fact

count set count + 1

fact set fact * count
.endrepeat

This example creates a table that may be indexed by N to get N factorial.

5.5.2. Conditional Assembly

The conditional assembly primitive is an if-then-else construct that can be used to param-
eterize a single body of code to work under various circumstances. The following example
depends on a symbol CPU to indicate whether an MC68020 instruction, CMP2, should be
used or emulated.

mc68000 equ 68000
mc68010 equ 68010
mc68020 equ 68020

cpu equ mc68010

54 w8 RATIONAL

.if (cpu=mc68000) ! (cpu=mc68010)

.local
cmp . w (a0),do
beqg.s Sequal
blt.s $outofbounds
cmp.w (2,a0),d0
beq.s $equal
blt.s S$outofbounds
move.w #2#00000#,ccr
bra.s $done
$equal: move.w #2#00100#,ccr
bra.s Sdone
Soutofbounds:
move.w #2#0001#, ccr
Sdone:
.elsif cpu=mc68020
cmp2.w (a0),do
.else
.output cpu
.error "Unknown processor."
.endif

M68K/OS-9 Cross-Assembler

;emulate if 68000 or 68010

;don’t emulate if 68020

;don’t know this CPU

In both the REPEAT and .IF examples, instructions and directives were indented to clarify
the structure. As always, white space is ignored by the assembler and can be used freely to
meet various style requirements.

5.6. Character Usage

A-Z User symbol characters

a-z User symbol characters

0-9 User symbol characters and numeric literals

! The logical inclusive OR operator

Used for immediate operands and based numeric literals

$ User symbol character

% Used to insert formal parameters into the definition of a macro
& The logical AND operator

* The multiplication operator

RATIONAL 2228

55

Rational M68K/OS-9 Cross-Development Facility

56

) Used for operator precedence control and effective address syntax

- The unary negation and two’s complement subtraction operator
User symbol character (underscore), ignored within numeric literals
+ The two’s complement addition operator

= Used for relational operators

[] Used for effective address syntax
{} Used for effective address syntax
Used for terminating labels

; Used for delimiting comments
User symbol character

Used with storage directives for creating ASCII strings and to provide
string arguments to some directives

\ The logical exclusive OR operator

| The line-continuation character

< Used for relational operators
> Used for relational operators
? User symbol character
, Used as a separator
User symbol character
~ The one’s complement unary operator
A

Used to pass commas as arguments to macro calls and to generate
unique labels within macro body definitions

¢ Not used, illegal
space A separator

ascii.ht A separator

ascii.lf A statement separator

ascii.ff A page delimiter

22288 RATIONAL

M68K/OS-9 Cross-Assembler

5.7. Syntax of Assembler Commands

5.7.1. Backus-Naur Formalism (BNF) Used with Assembler Commands
The following BNF is used to define the syntax for assembler commands:

* Case: Uppercase text is used to denote terminal symbols; lowercase text is used to
denote nonterminal symbols.

I: The vertical bar indicates that two symbols are alternatives. For example:
lhs --> AA | BB

indicates that either symbols AA or BB are valid.

[J: Brackets indicate that the enclosed symbols are optional. For example:
lhs --> AA[,BB]

indicates that either symbols AA or AA,BB are valid.

{}: Braces indicate that the enclosed symbols can be repeated zero or more times. For
example:

lhs =--> AA{,BB}
indicates that any of the following symbols AA or AA,BB or AA,BB,BB or AA,BB,BB,BB
and so on are valid.
5.7.2. Target-Independent Syntax
module —=> statement_list end_statement <EOF>

statement_list --> {[label] statement [comment] <EOL>}

label -=> symbol :

comment ==> ; {character}

statement --> directive
instruction
conditional

repeat_statement
macro_call
macro_definition

instruction --> (see target dependent syntax)

FQIQ{TIC:)Pq/e\l. 2/22/88 57

Rational M68K/OS-9 Cross-Development Facility

directive -
listing -—>
define_storage -->
define_constant -->
define_ string -—->
define_block -—>
define_globals =-->
define_external -->

define_permanent-->

define_temporary-->

58

listing

define storage expression

define constant expression {, expression}
define_string string

define_block expression , expression
define_globals symbol {, symbol}
define_externals symbol {, symbol}
define_permanent symbol := expression
define_temporary symbol := expression
symbol EQU expression

symbol SET expression
miscellaneous_directives
output_directive

section_directive

align_directive

.LISTNC
.LISTTC
.LISTC
.LISTMX
.LISTMC
.LISTNM
.LIST
.NLIST
.TITLE
.SUBTTL
.PAGE
.BLANK
.HEAD
.FOOT

.DS.B |

.DC.B |

.ASCII

.DCB.B
.DCB.D

.GBL.B

.EXT.B

.DEFP.B
.DEFP.S

.DEFT.B
.DEFT.S

string
string
.DS.W | .DS.L | .DS.S | .DS.D | .DS.X | .DS.A
.DC.Ww | .DC.L | .DC.S | .DC.D | .DC.X | .DC.A
.ASICZ
.DCB.W | .DCB.L | .DCB.S |
.DCB.X | .DCB.A
.GBL.W | .GBL.L
.EXT.W | .EXT.L
| .DEFP.W | .DEFP.L |
| .DEFP.D | .DEFP.X
| .DEFT.W | .DEFT.L |
| .DEFT.D | .DEFT.X

2228 RATIONAL

M68K/OS-9 Cross-Assembler

miscellaneous --> .CPU string
.LOCAL
.PUSH expression
.RADIX expression
.JRADIX expression
.ORADIX expression
.INCLUDE string
.REV string
.ERROR string

output --> .OUTPUT string |
.OUTPUT expression

section -=-> .SECT symbol {, section_param } |
.OFFSET expression

section_param --> ABSOLUTE AT expression
RELOCATABLE
OVERWRITE
CONCATENATE
CODE
DATA
READONLY
READWRITE
ALIGNMENT := expression

align_directive --> .ALIGN [expression]

repeat_statement--> .REPEAT expression [comment] <EOL>
statement_list
.END_REPEAT [comment] <EOL>
conditional -=> .IF expression [comment] <EOL>
statement_list
{ .ELSIF expression [comment] <EOL>
statement_list}
[.ELSE [comment] <EOL>
statement_list]
.ENDIF

macro_definition--> ,MACRO macro_name [comment] <EOL>
statement_list

.ENDMACRO
macro_call --> macro_name [actual_list]
actual_ list --> actual {,actual}
actual --> expression | string
macro_name -=~> symbol

RATIONAL 2228 59

Rational M68K/OS-9 Cross-Development Facility

end_statement

expression

unary_op

binary op

factor

base_literal
numeric_literal
based_literal
symbol
local_symbol
regular_ symbol
starting_char
digit

alpha

special_char
string

char_literal

60

-—>

-—>

-—>

.END [comment] <EOL>

factor
.IRADIX
.ORADIX
.POP
.ALIGN

(expression)
unary_op expression

I
I
!
!
I
!
|

expression binary op expression

+ 1 -
+ | -
L AN
<< | >>

* %

numeric_literal |

base_ literal
char_literal

symbol

| mod |

rem |

numeric_literal # based literal #

digit { _ | digit | alpha }

alpha | digit { _ | digit | alpha }

local_symbol | regular_symbol

$ {alpha | digit | special_char }

starting_char { alpha | digit |

alpha |
01 1]
al b |
ni{ o |
A} B |
N | O}
$ 17

N

T QYO0

|

.

0 0o

" {character}

! character /

f-Y

o EHH O

[30 7 I)

H Q4
e s

=)}

special char }

[}

< H G -

4 Ew.

(e}

XR N~
I o L
N XN B

2228 RATIONAL

M68K/OS-9 Cross-Assembler

5.7.3. M68K-Family-Dependent Syntax

instruction

cpu_op --> ABCD

ANDI
ASL
ASL
ASL
ASR
ASR
ASR
BCC
BCHG
BCHG
BCLR
BCLR
BCS
BEQ
BFCHG
BFCLR
BFEXTS
BFEXTU
BFFFO
BFINS
BFSET
BFTST
BGE
BGT
BHI
BHS
BKPT
BLE
BLO
BLS
BLT
BMI
BNE
BPL
BRA

-=> cpu_op | fpu op | mmu_op

efa_mode_00 , efa_mode 00
efa_mode_04 , efa_mode 04

all_modes , efa_mode 00

efa_mode_00 , alterable_memory modes
all modes , efa_mode_01

immediate , alterable_data_modes

immediate_range 1 _to_8 , alterable_modes
efa_mode_00 , efa_mode 00

efa mode 04 , efa_mode 04
data_modes_1 , efa_mode_ 00

efa _mode_00 , alterable memory modes
immediate , alterable_data_modes

immediate , sr_or_ccr

efa mode 00 , efa_mode 00

immediate_range_1_to_8 , efa_mode 00
alterable memory modes

efa_mode 00 , efa_mode 00

immediate_range_1_to_8 , efa_mode_ 00
alterable memory modes
branch_displacement

efa_mode_00 , alterable_data_modes
bit_number , alterable_data_modes
efa_mode_00 , alterable_data_modes
bit_number , alterable data_modes
branch_displacement
branch_displacement

dn_or_alterable control_modes
dn_or_alterable_control_modes
dn_or_control_modes , efa_mode 00
dn_or_control _modes , efa_mode 00
dn_or_control_modes , efa_mode_00
efa mode_00 , dn_or_alterable control_modes
dn_or_alterable_control modes
dn_or_control_modes
branch_displacement
branch_displacement
branch_displacement
branch_displacement

immediate_range_0_7
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement

branch displacement
branch_displacement

RATIONAL 2228

61

Rational M68K/OS-9 Cross-Development Facility

62

BSET
BSET
BSR
BTST
BTST
BVC
BVS
CALLM
CAS
Ccas2
CHK
CHK2
CLR
CMP
CMP2
CMPA
CMPI
CMPM
DBCC
DBCS
DBEQ
DBF
DBGE
DBGT
DBHI
DBHS
DBLE
DBLO
DBLS
DBLT
DBMI
DBNE
DBPL
DBT
DBVC
DBVS
DBRA
DIVsS
DIVS
DIVSL
DIVU
DIVU
DIVUL
EOR
EORI
EORI
EXG
EXT
EXTB
ILLEGAL
JMP
JSR

efa_mode_00 , alterable data_modes
bit_number , alterable_data_modes

branch_displacement
efa mode_00 , data_modes_1
bit_number , data_modes_2
branch_displacement
branch_displacement

immediate_range_0_255 , control_modes
efa_mode_00 , efa mode 00 , alterable memory modes
register_pair , register_pair , cas2_efa

data_modes_1 , efa_mode_ 00

control modes

, In

alterable_data_modes
all modes , efa_mode_ 00

control modes

, In

all modes , efa_mode 01

immediate ,
efa_mode_03 ,
efa mode_ 00 ,
efa_mode_00 ,
efa_mode_00 ,
efa _mode_00 ,
efa_mode_00 ,
efa_mode_ 00 ,
efa_mode_00 ,
efa_mode 00 ,
efa mode_00 ,
efa_mode_00 ,
efa_mode_00 ,
efa_mode_00 ,
efa mode_00 ,
efa_mode_00 ,
efa mode_00 ,
efa _mode_00 ,
efa_mode_00 ,
efa_mode_ 00 ,
efa_mode_00 ,
data_modes_1
data_modes_1
data _modes_1
data_modes_1
data_modes_1
data_modes_1
efa_mode_00 ,
immediate ,
immediate ,
rn , rn
efa_mode_ 00
efa mode_00

control modes
control_modes

data_modes_2
efa_mode_03
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbce_displacement
dbcc_displacement

dbcc_displacement .

dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
efa_mode_00
register_pair
register pair
efa_mode_00
register_ pair
register pair

alterable data modes
alterable_data_modes

sr_or_ccr

22288 RATIONAL

LEA
LINK
LSL
LSL
LSL
LSR
LSR
LSR
MOVE
MOVE
MOVE
MOVE
MOVE
MOVEA
MOVEC
MOVEC
MOVEM
MOVEM
MOVEP
MOVEP
MOVEQ
MOVES
MOVES
MULS
MULS
MULU
MULU
NBCD
NEG
NEGX
NOP
NOT
CR
OR
ORI
ORI
PACK
PACK
PEA
RESET
ROL
ROL
ROL
ROR
ROR
ROR
ROXL
ROXL
ROXL
ROXR
ROXR
ROXR

M68K/OS-9 Cross-Assembler

control_modes , efa_mode 01
efa_mode_01 , # immediate
efa_mode_00 , efa_mode_00
bit_number , efa_mode_ 00
alterable_memory_modes
efa_mode_00 , efa_mode_00
bit_number , efa_mode_00
alterable_memory modes

all modes , alterable_data_modes
sr_or_ccr , alterable data_modes
data_modes_1 , sr_or_ccr

usp , efa_mode_ 01

efa_mode_01 , usp

all _modes , efa_mode 01

control_ register , rn

rn , control register
register_list , movem_dest_mode
movem src_mode , register_list
efa _mode_00 , efa_mode_ 05
efa_mode_05 , efa_mode_00

immediate_range_ml28_to_127 , efa_mode_00
rn , alterable memory_modes
alterable memory modes , rn

data_modes_1
data_modes_1
data_modes_1
data_modes_1

4

4

r

’

alterable data_:
alterable data_modes
alterable_data_modes

efa_mode_00
register pair
efa_mode_ 00
register_pair
modes

alterable_data_modes
data_modes_1 , efa_mode 00

efa_mode_00
immediate
immediate
efa_mode_ 04
efa_mode_00

14

14

4

14

control _modes

alterable memory_modes

alterable data_modes

sSr_or_ccr

efa_mode_04 , # immediate bit_16
efa_mode_00 , # immediate bit_16

efa_mode_00 , efa_mode_00

immediate_range_1 to_8 , efa_mode 00
alterable memory_ modes

efa_mode_00 , efa_mode_00

immediate_range_1 to_8 , efa_mode_00
alterable memory_modes

efa_mode_00 , efa_mode_ 00

immediate_range_l1 to_8 , efa_mode_00
alterable memory_modes

efa_mode 00 , efa_mode 00

immediate_range 1 to_8 , efa_mode 00
alterable memory_modes

RATIONAL 22288

63

Rational M68K/OS-9 Cross-Development Facility

64

RTD
RTE
RTM
RTR
RTS
SBCD
SBCD
SCC
SCS
SEQ

SF

SGE
SGT
SHI
SHS
SLE
SLO
SLS
SLT
SMI
SNE
SPL

ST
STOP
SUB
SUB
SUBA
SUBI
SUBQ
SUBX
SUBX
sSvC
BAYAS
SWAP
TAS
TRAP
TRAPCC
TRAPCC
TRAPCS
TRAPCS
TRAPEQ
TRAPEQ
TRAPF
TRAPF
TRAPGE
TRAPGE
TRAPGT
TRAPGT
TRAPHI
TRAPHI
TRAPHS
TRAPHS

immediate_ range m32768_to_32767

n

efa_mode_00 , efa_mode 00
efa_mode_04 , efa_mode 04

alterable_data_modes
alterable data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
immediate_bit_16

all_modes , efa_mode_00

efa mode_00 , alterable memory modes

all modes , efa mode_01

immediate , alterable_data_modes

immediate_range_1_to_8 , alterable_modes
efa_mode_00 , efa_mode_ 00

efa _mode_04 , efa_mode 04

alterable_data_modes
alterable_data_modes
efa_mode_00

alterable_data_modes

immediate_range_0 15

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

228 RATIONAL

TRAPLE
TRAPLE
TRAPLO
TRAPLO
TRAPLS
TRAPLS
TRAPLT
TRAPLT
TRAPMI
TRAPMI
TRAPNE
TRAPNE
TRAPPL
TRAPPL
TRAPT
TRAPT
TRAPV
TRAPVC
TRAPVC
TRAPVS
TRAPVS
TST
UNLK
UNPK
UNPK

mmu_op ~-=> PBBS
PBLS
PBSS
PBAS
PBWS
PBIS
PBGS
PBCS
PBBC
PBLC
PBSC
PBAC
PBWC
PBIC
PBGC
PBCC
PDBBS
PDBLS
PDBSS
PDBAS
PDBWS
PDBIS
PDBGS
PDBCS
PDBBC
PDBLC

immediate
immediate
immediate
immediate
immediate
immediate
immediate

immediate

immediate

immediate
data_modes_2
efa mode_01

efa_mode_ 04 , efa_mode_04 , # immediate_bit_16

M68K/0OS-9 Cross-Assembler

efa mode_00 , efa_mode 00 , # immediate_bit_16

branch_displacement
branch_displacement
branch_ displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement

efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00

RATIONAL 222

dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement

65

Rational M68K/OS-9 Cross-Development Facility

66

PDBSC
PDBAC
PDBWC
PDBIC
PDBGC
PDBCC
PFLUSH
PFLUSH
PFLUSHA
PFLUSHS
PFLUSHS
PFLUSHR
PLOADR
PLOADW
PMOVE
PMOVE

efa mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement

mmufc , bit 4

mmufc , bit:4 ¢ alterable_control_modes

mmufc , bit_ 4

mmufc , bit_4 , alterable_control_modes

memory modes

mmufc , alterable_control_modes
mmufc ,alterable_control_modes
mmu_reg , alterable_modes

all modes , mmu_reg

PRESTORE movem_src_mode

PSAVE
PSBS
PSLS
PSSS
PSAS
PSWS
PSIS
PSGS
PSCS
PSBC
PSLC
pPSsC
PSAC
PSWC
PSIC
PSGC
PSCC
PTESTR
PTESTR
PTESTW
PTESTW
PTRAPBS
PTRAPBS
PTRAPLS
PTRAPLS
PTRAPSS
PTRAPSS
PTRAPAS
PTRAPAS
PTRAPWS
PTRAPWS
PTRAPIS
PTRAPIS
PTRAPGS
PTRAPGS

movem_dest_mode

alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable _data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes

mmufc
mnufc
mmufc
mmufc

14

r

14

[4

alterable control_ modes
alterable_control_modes
alterable_control_modes
alterable_control_modes

immediate

immediate

immediate

immediate

immediate

immediate

immediate

14

14

’

14

bit_3
bit_3,efa _mode_ 01
bit_3
bit_3,efa_mode_ 01

zoms RATIONAL

PTRAPCS
PTRAPCS
PTRAPBC
PTRAPBC
PTRAPLC
PTRAPLC
PTRAPSC
PTRAPSC
PTRAPAC
PTRAPAC
PTRAPWC
PTRAPWC
PTRAPIC
PTRAPIC
PTRAPGC
PTRAPGC
PTRAPCC
PTRAPCC
PVALID

PVALID

fpu_op =--> FABS
FABS
FABS
FACOS
FACOS
FACOS
FADD
FADD
FASIN
FASIN
FASIN
FATAN
FATAN
FATAN
FATANH
FATANH
FATANH
FBF
FBEQ
FBOGT
FBOGE
FBOLT
FBOLE
FBOGL
FBOR
FBON
FBUEQ
FBUGT
FBUGE
FBULT
FBULE

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

VAL , alterable_control_modes

M68K/OS-9 Cross-Assembler

efa_mode_01 , alterable_control_modes

data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn

branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement

RATIONAL 2228

67

Rational M68K/OS-9 Cross-Development Facility

68

FBNE
FBT
FBSF
FBSEQ
FBGT
FBGE
FBLT
FBLE
FBGL
FBGLE
FBNGLE
FBNGL
FBNLE
FBNLT
FBNGE
FBNGT
FBSNE
FBST
FCMP
FCMP
FCOS
FCOS
FCOS
FCOSH
FCOSH
FCOSH
FDBF
FDBEQ
FDBOGT
FDBOGE
FDBOLT
FDBOLE
FDBOGL
FDBOR
FDBON
FDBUEQ
FDBUGT
FDBUGE
FDBULT
FDBULE
FDBENE
FDBT
FDBSF
FDBSEQ
FDBGT
FDBGE
FDBLT
FDBLE
FDBGL
FDBGLE
FDBNGLE
FDBNGL

branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch displacement
branch_displacement
branch_displacement
branch displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
data_modes_1 , fpn

fpn , fpn

data_modes_1 , fpn

fpn , fpn
fpn

data_modes_1 , fpn

fpn , fpn
fpn
efa_mode_00
efa_mode_00
efa_mode_ 00
efa_mode_00
efa_mode_00
efa_mode_ 00
efa_mode_00
efa mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa _mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa_mode_00
efa _mode 00
efa_mode_00
efa_mode_00
efa mode_00

dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement

a2 RATIONAL

FDBNLE
FDBNLT
FDBNGE
FDBNGT
FDBSNE
FDBST
FDIV
FDIV
FETOX
FETOX
FETOX
FETOXM1
FETOXM1
FETOXM1
FGETEXP
FGETEXP
FGETEXP
FGETMAN
FGETMAN
FGETMAN
FINT
FINT
FINT
FINTRZ
FINTRZ
FINTR2
FLOG10
FLOG10
FLOG10
FLOG2
FLOG2
FLOG2
FLOGN
FLOGN
FLOGN
FLOGNP1
FLOGNP1
FLOGNP1
FMOD
FMOD
FMOVE
FMOVE
FMOVE
FMOVE
FMOVECR
FMOVEM
FMCVEM
FMOVEM
FMOVEM
FMOVEM
FMOVEM
FMUL

efa_mode_00
efa_mode_ 00
efa_mode_00
efa_mode_00
efa_mode_ 00
efa_mode_ 00

fpn , fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fepn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn
data_modes_1
fpn , fpn
fpn

data_modes_1

fpn , fpn

14

4

14

14

r

14

14

14

M68K/OS-9 Cross-Assembler

dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
data_modes_1 , fpn

fpn

fpn

fpn

fpn

fpn

fpn

fpn

fpn

fpn

fpn

fpn

data_modes_l1 , fpn

fpn , alterable_data_modes
fpn , alterable data_modes
fpn , alterable_data_modes
bit_7 , fpn

fpr_list , movem_ dest_mode

{ efa_mode_ 00 }

{ bit_7 }

efa_mode_00 , movem dest_mode

movem src_mode , fpr_list

movem src_mode , efa_mode_00

fpc_list , alterable_modes
all modes , fpc_list

data_modes_1 , fpn

RATIONAL 2228

69

Rational M68K/OS-9 Cross-Development Facility

70

FMUL
FNEG
FNEG
FNEG
FNOP
FREM
FREM

fpn , fpn
data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

FRESTORE movem src_mode

FSAVE
FSCALE
FSCALE
FSF
FSEQ
FSOGT
FSOGE
FSOLT
FSOLE
FSOGL
FSOR
FSON
FSUEQ
FSUGT
FSUGE
FSULT
FSULE
FSNE
FST
FSSF
FSSEQ
FSGT
FSGE
FSLT
FSLE
FSGL
FSGLE
FSNGLE
FSNGL
FSNLE
FSNLT
FSNGE
FSNGT
FSSNE
FSST
FSGLDIV
FSGLDIV
FSGLMUL
FSGLMUL
FSIN
FSIN
FSIN
FSINCOS
FSINCOS

movem_dest_mode
data_modes_1 , fpn
fpn , fpn
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable data_modes
alterable_data_modes
alterable data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
alterable_data_modes
data_modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn

fpn

data _modes_1 , fpn
fpn , fpn : fpn

fpn

2228 RATIONAL

FSINH data_modes_1 ,
FSINH fpn , fpn
FSINH fpn

FSQRT data meodes_1 ,
FSQRT fpn , fpn
FSQRT fpn

FSUB data_modes_1 ,
FSUB fpn , fpn

FTAN data_modes_1 ,
FTAN fpn , fpn

FTAN fpn

FTANH data_modes_1 ,
FTANH fpn. , fpn
FTANH fpn

FTENTOX data_modes_1 ,
FTENTOX fpn , fpn
FTENTOX fpn

FTRAPF

FTRAPF # immediate
FTRAPEQ

FTRAPEQ # immediate
FTRAPOGT

FTRAPOGT # immediate
FTRAPOGE

FTRAPOGE # immediate
FTRAPOLT

FTRAPOLT # immediate
FTRAPOLE

FTRAPOLE # immediate
FTRAPOGL

FTRAPOGL # immediate
FTRAPOR

FTRAPOR # immediate
FTRAPON

FTRAPON # immediate
FTRAPUEQ

FTRAPUEQ # immediate
FTRAPUGT

FTRAPUGT # immediate
FTRAPUGE

FTRAPUGE # immediate
FTRAPULT

FTRAPULT # immediate
FTRAPULE

FTRAPULE # immediate
FTRAPNE

FTRAPNE # immediate
FTRAPT

FTRAPT # immediate
FTRAPSF

FTRAPSF # immediate
FTRAPSEQ

RATIONAL 2228

fpn

fpn

fpn

fpn

fpn

fpn

M68K/0S-9 Cross-Assembler

71

Rational M68K/OS-9 Cross-Development Facility

all modes

FTRAPSEQ
FTRAPGT
FTRAPGT
FTRAPGE
FTRAPGE
FTRAPLT
FTRAPLT
FTRAPLE
FTRAPLE
FTRAPGL
FTRAPGL
FTRAPGLE
FTRAPGLE
FTRAPNGLE
FTRAPNGLE
FTRAPNGL
FTRAPNGL
FTRAPNLE
FTRAPNLE
FTRAPNLT
FTRAPNLT
FTRAPNGE
FTRAPNGE
FTRAPNGT
FTRAPNGT
FTRAPSNE
FTRAPSNE
FTRAPST
FTRAPST
FTST

#

#

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

data_modes_1

FTWOTOX data_modes_1 , fpn

FTWOTOX fpn
FTWOTOX fpn

alterable memory modes

72

4

fpn

-—>

efa_mode_00
efa_mode_02
efa_mode_04
efa mode_06
efa_mode_08
efa_mode_10
efa_mode_12
efa_mode_16
efa_mode_18

efa_mode_02
efa_mode_04
efa_mode_06
efa_mode_08
efa_mode_10

efa mode 01
efa_mode 03
efa_mode 05
efa mode_ 07
efa mode 09
efa mode_11
efa mode_15
efa mode_17
efa mode 19

efa_mode_03
efa_mode_05
efa_mode_07
efa mode 09
efa_mode_11

22288 RATIONAL

alterable_data_modes

alterable_ modes

data_modes_1

dn_or_alterable control_modes

dn_or_control modes

RATIONAL 2228

-—>

-—>

efa_mode 00
efa mode_ 03
efa_mode_ 05
efa _mode_ 07
efa_mode_ 09
efa_mode 11

efa_mode_ 00
efa _mode_02
efa_mode_ 04
efa mode 06
efa mode 08
efa_mode 10

efa_mode 00
efa_mode_ 03
efa_mode_ 05
efa_mode_ 07
efa_mode_ 09
efa _mode_11
efa mode_15
efa_mode_ 17
efa_mode_19

efa_mode 00
efa_mode 02
efa mode_05
efa _mode_ 06
efa_mode_07
efa_mode_08
efa mode 09
efa_mode 10
efa_mode_11

efa_mode_00
efa_mode_02
efa_mode_ 05
efa mode_06
efa_mode_07
efa _mode 08
efa_mode_09
efa_mode_10
efa_mode 11
efa_mode 15
efa_mode_ 16
efa_mode_17
efa_mode_ 18
efa_mode_19

M68K/OS-9 Cross-Assembler

efa_mode 02
efa mode_04
efa_mode_06
efa_mode_08
efa_mode_10

efa mode_01
efa mode_03
efa mode_05
efa mode_07
efa_mode_09
efa_mode_11

efa mode_02
efa _mode_04
efa mode_06
efa_mode_08
efa_mode_10
efa mode_12
efa_mode_16
efa_mode_18

bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field

bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field

73

Rational M68K/OS-9 Cross-Development Facility

data_modes_2

control modes

alterable control_modes

memory modes

movem_dest_mode

movem_src_mode

-

bit_field -=> { bit_spec
bit_spec -=> bit_number

dn
cas2_efa -=> (rn) : (rn)
74

efa_mode_00
efa mode_03
efa_mode_ 05
efa_mode_07
efa mode_09
efa_mode_11
efa_mode_16
efa_mode_ 18

efa_mode_02
efa_mode_06
efa_mode_08
efa_mode_10
efa_mode_15
efa mode_17
efa mode 19

efa_mode_02
efa_mode_ 06
efa_mode_08
efa_mode_10

efa mode_02
efa_mode_04
efa_mode_06
efa_mode_ 08
efa mode_10
efa mode_12
efa mode_16
efa _mode_18

efa mode_02
efa_mode_ 05
efa_mode_07
efa_mode_09
efa mode 11

efa_mode_02
efa_mode_05
efa mode_07
efa _mode_09
efa_mode_11

: bit_spec }

efa_mode_02
efa mode 04
efa_mode_06
efa mode 08
efa_mode_10
efa mode_15
efa mode_17
efa mode_19

efa mode_ 05
efa_mode_07
efa _mode_ 09
efa mode_11
efa_mode_16
efa mode_18

efa_mode_05
efa_mode_07
efa_mode_09
efa_mode_11

efa_mode_03
efa _mode_05
efa mode_ 07
efa_mode_09
efa _mode 11
efa_mode_15
efa mode_ 17
efa mode_19

efa_mode_04
efa_mode 06
efa mode_ 08
efa_mode_10

efa_mode_03
efa_mode_06
efa_mode_08
efa_mode_10

ezes RATIONAL

M68K/OS-9 Cross-Assembler

control register--> SFC | DFS | CACR | USP | VBR | CAAR | MSP | ISP

efa_mode_00 ==> dn

efa_mode_ 01 -=> an

efa_mode_02 ==> (an)

efa_mode_03 -=> (an) +

efa_mode_04 -=> = (an)

efa_mode 05 -=> (disp_16 , an)

efa _mode_06 -=> (disp 08 , an , xn) |

an , xn)

efa_mode_07 -=> {bd, an , xn) |
(xn) |
(bd ¢ XN) |
(bd , an)

efa _mode_08 -==> ([bd, an, xn] , od)]
([an , xn] , od) |
(1 xn], od) [
(O an 1, 0d) I
(O xn]) [
(O an]) I
([bd r %0] , od) !
([bd 1, od) I
([bd ¢ Xn]) !
([bd]) I
([bd, an], od) |
([bd, an]) [
([bd, an , xn]) !
(G an , xn])

efa_mode_09 ==>([bd, an] , od, xn) |
([bd 1, xn) !
({ bd 1, 0d, xn) I
([bd, an], xn) I
(! an] , xn) I
(an] , od , xn)

efa_mode_10 ==> (immediate)

efa_mode_11 -=> (immediate)

efa_mode_12 ==> # immediate

efa_mode_15 ==> (disp_16 , pc)

RATIONAL 2228 75

Rational M68K/OS-9 Cross-Development Facility

efa mode 16
efa mode_17

efa_mode_18

efa_mode_19

pc
bd
od
Xn

index

scale
register_ list
register_range
rn
register_pair
an

dn

Sr_or_ccr

usp

76

-—>

(disp_08 ,
(

(bd , pc,
{ bd , pc
([bd, pc
([bd , pc
([bd , pc
([bd , pc
([pc
(1 pc
([bd, pc
([bd, pc
PC | ZPC

pc .,
PC

Xxn
Xxn

Xxn
Xxn

[NS VU R U R S W W}

od
Xn

immediate_range 0_to_ FFFFFFFF

immediate_range_0_to FFFFFFFF

index |
DO.W | D1.wW
D4.W | DS5.W
DC.L | D1.L
D4.L | D5.L
A0.W | Al.W
A4.W | AS.W
A0.L | Al.L
A4.L | AS5.L
SP.W | SP.L
dn | an
expression

D2.
D6.
D2.
D6.
AZ.
A6.
AZ.
Ab6.

[S T o]

index * scale

D3.
D7.
D3.
D7.
A3.
A7.
A3.
A7.

[T T o

register_range {/ register_range}

rn |
an |
dn :

A0 |

usp

rn - rn
dn

dn

Al | A2
D1 | D2
CCR

| A3

| D3

| A4 | A5 | A6 | A7 | SP

| D4 | D5 | D6 | D7

228 RATIONAL

dbcc_displacement
branch_displacement
bit_number

immediate

immediate bit_16
immediate_range_0_15
immediate_range 0_ 255
immediate_range 0_7
immediate_range 1 to_8
immediate_range ml28 to_127
immediate_range_m32768_to_32767

immediate range_0_to_ FFFFFFFF

AC

VAL

expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression

expression

BAC7

BAD3

I |
| I
| BAC3 |
I I
I I
[

BAD7

FP3 |

FP4 | FPS

disp_08
disp 16
bit_3
bit_4
bit_7
mmufc --> bit_4 | DN .| SFC |
mmu_reg -->CRP | DRP | TC
PSR | PCSR | CAL
BACO | BACl1l | BAC2
BAC4 | BACS | BACS6
BADO | BAD1 | BAD2
BAD4 | BADS5 | BAD6
fpn --> FPO0 | FP1 | FP2 |
fpc_list --> fpc_register {/ fpc_register)
fpc_register --> FPCR | FPSR | FPIAR
fpr_list -~> fpc_range {/ fpc_range}
fpc_range --> fpn | fpn - fpn

RATIONAL 2228

M68K/OS-9 Cross-Assembler

FP6 | FP7

77

Rational M68K/OS-9 Cross-Development Facility

5.7.4. M68K-Family Instruction Mnemonics

M68K-Family Instruction Mnemonics

Mnemonic

w L S D

X P Notes

ABCD

™

ADD

>4

ADDA

ADDI

ADDQ

ADDX

AND

ANDI

IRl Rl Rl A R I B
IR R i Rl R Rl R

ANDI to CCR

PAL DA pA] DA] M

ANDI to SR

ASL

ASR

BCC

iRl Rl R

BCHG

BCLR

BCS

>

BEQ

i R R L A A R

R R A R A R A L A B

BFCHG

BFCLR

BFEXTS

BFEXTU

BFFFO

BFINS

BFSET

BFTST

BGT

BHI

BHS

IR R

AR L
IR Rl B

RDINvINdINDIo oo ovfonlonfon ool o] o] o] o e] -

BKPT

78

vezes RATIONAL

M68K/OS-9 Cross-Assembler

. M68K-Family Instruction Mnemonics (continued)

w
€

Mnemonic S D X P Notes
BLE
BLO
BLS
BLT
BMI
BNE
BPL
BRA
BSET
BSR
BTST
BVC
BVS
CALLM
CAS
CAS2
’ CHK
CHK2
CLR
CMP
CMP2
CMPA
CMPI
CMPM
DBCC
DBCS
DBEQ
DBF
DBGE
DBGT
DBHI
DBHS

IR Rt R A R Rl

>4

»

PO L PR DA DA DA DA DA D4 D4 D] D] |
el R R I R e R I R A R R o R R R R R
(CH LY I N) XY SR R B EE) Y

>

>

Al e e M

»

Ll Rl Rl R R R B Il B

»
PAT DAl DAl DA DA DA DA DA D] D De | bd d] pd] ba| Dd] a0

o
RATIONAL s2zne .

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

€

L

S

D

X P Notes

DBLE

DBLO

DBLS

DBLT

DBMI

DBNE

DBPL

DBRA

DBT

DBVC

DBVS

DIVS

DIVSL

DIVU

DIVUL

Ouf o | OV

EOR

»

EORI

>

R R R L I R L R R L B R I R A R R R R B

A PR DA D] M| M

EORI to CCR

EORI to SR

>

EXG

>

EXT

>

EXTB

»

ILLEGAL

JMP

>

JSR

]

LEA

LINK

LSL

»

LSR

>

MOVE

I L AR A R R

MOVE to CCR

MOVE to SR

I I R R R R

80

wves RATIONAL

M68K/OS-9 Cross-Assembler

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

w

L

S

D

X P Notes

MOVE to USP

X

MOVE from CCR

>

MOVE from SR

MOVE from USP

MOVEA

»

MOVEC

MOVEM

MOVEP

MOVEQ

MOVES

MULS

MULU

IRl Rl Rl R

R Rl R el R

NBCD

NEG

>

»

e

NEGX

o

>

NOP

NOT

OR

»

ORI

ORI to CCR

ORI to SR

P e e

PACK

PEA

>

RESET

ROL

ROR

ROXL

ROXR

IRl Rl

AP] M

RTD

L R R

D]]~

RTE

RT™

RTR

RATIONAL 222

81

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

w

L

S

D

X P Notes

RTS

SBCD

SCC

SCSs

SEQ

SF

SGE

SGT

SHI

SHS

SLE

SLO

SLS

SLT

SMI

SNE

SPL

ST

AP PR DO DA DAL DA DA DA D | D] D] D Dd] e | pe] e

STOP

SUB

>

SUBA

SUBI

SUBX

IR R A R)

iRl Rl Rl Ko

SvC

SVs

PAL DA e |

SWAP

TAS

>

TRAPCC

>

5,7

TRAPCS

>

»

5,7

TRAPEQ

5,7

82

228 RATIONAL

M68K/0OS-9 Cross-Assembler

MG68K-Family Instruction Mnemonics (continued)

Mnemonic B W L S D Notes
TRAPF X X 5,7
TRAPGE X X 5,7
TRAPGT X X 5,7
TRAPHI X X 5,7
TRAPHS X X 5,7
TRAPLE X X 5,7
TRAPLO X X 5,7
TRAPLS X X 5,7
TRAPLT X X 5,7
TRAPMI X X 5,7
TRAPNE X X 5,7
TRAPPL X X 5,7
TRAPT X X 57
TRAPV

TRAPVC X X 5,7
TRAPVS X X 5,7
TST X X X

UNLK

UNPK 5
PBAC X X

PBAS X X

PBBC X X

PBBS X X

PBCC X X

PBCS X X

PBGC X X

PBGS X X

PBIC X X

PBIS X X

PBLC X X

PBLS X X

PBSC X X

RATIONAL 2228

83

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

+

L

S

D

X P Notes

PBSS

PBWC

PBWS

X
X
X

PDBAC

PDBAS

PDBBC

PDBBS

PDBCC

PDBCS

PDBGC

PDBGS

PDBIC

PDBIS

PDBLC

PDBLS

PDBSC

PDBSS

PDBWC

PDBWS

Il Rl Rl R BRI R R Rl Bl ol R B R B R R I I

PFLUSH

PFLUSHA

PFLUSHR

PFLUSHS

PLOADR

PLOADW

PMOVE

PRESTORE

PSAVE

PSAC

PSAS

PSBC

PSBS

P pd]]

2228 RATIONAL

M68K/0OS-9 Cross-Assembler

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

™

w

L

S

D

X P Notes

PSCC

PSCS

PsSIC

PSIS

PSLC

PSLS

PSsC

PSSS

PsSwC

PSWS

iR Rl R A A R A R R R A R R A

PTESTR

PTESTW

PTRAPAC

PTRAPAS

PTRAPBC

PTRAPBS

PTRAPCC

PTRAPCS

PTRAPIC

PTRAPIS

PTRAPLC

PTRAPWC

PTRAPWS

PUL DT DA DA DA DA] DA DAL DA D DA Da] M|] 4] 4

Qlujalalalalalalalalalalalalala

PVALID

FABS

>
™

el Rl R R R e A R R R R R R R A R R A R A R

RATIONAL 2228

85

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

D

Notes

FACOS

FADD

FASIN

FATAN

FATANH

IR Rl B]

Rl R R I R A K

IR Rl R R

PP R e e e
el R A R T R

FBEQ

FBF

FBGE

FBGL

FBGLE

FBGT

FBLE

FBNE

FBNGE

FBNGL

FBNGLE

FBNGT

FBNLE

FBNLT

FBOGE

FBOGL

FBOGT

FBOLE

FBOLT

FBON

FBOR

FBSEQ

FBSF

FBSNE

FBST

FBT

FBUEQ

ol Kol Ral Rall Roll Kol Ral Boll Bol Rol Bl B B B B e e e e e N I I I I I IR s imsIsare E -}

ol Ral Kol Ral Rall Ral Ral Bal R Bl Bl B B B B e s e e e I I i s mramsasamsmese

86

22288 RATIONAL

M68K/0OS-9 Cross-Assembler

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

L

S

D

Notes

FBUGE

FBUGT

FBULE

FBULT

FCMP

>

>

>

FCoOs

>

>

pd

FCOSH

IR R R R A R A

FDBEQ

FDBF

FDBGE

FDBGL

FDBGLE

FDBGT

FDBLE

FDBLT

FDBNE

FDBNGE

FDBNGL

FDBNGLE

FDBNGT

FDBNLE

FDBNLT

FDBOGE

FDBOGL

FDBOGT

FDBOLE

FDBOLT

FDBON

FDBOR

FDBSEQ

FDBSF

FDBUEQ

DAL DAL DAL DA DA DA DAl D Da] a] a] b e ba| ba] bd| b | b b | b | pa] v] pa| ba| pe| pe| e b b] bl ¢ ¢ €

RATIONAL 222

87

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B

-]

L S D X P Notes

FDBUGE

FDBUGT

FDBULE

FDBULT

FDBSNE

FDBST

FDIV

FETOX

FETOXM1

FGETEXP

FGETMAN

FINT

FINTRZ

FLOG10

FLOG2

FLOGN

FLOGNP1

FMOD

FMOVE

FMOVECR

el R R L L e R R R e R e R R I L R A A T R

UL DAL DR DAl D DA D] D D] D e e 4] 4
IR I R R R R R I B R I])
IR R I R A e A R R L R A R A R R L A R A
PAP DAL DA DA DA DAL DA D] B D D] Da] D) D4

FMOVEM

FMUL

]
»
»
e
»

FNEG

Sl Rl Rl Rl ol Bl Il IR Bl B B B I L) B
el Rl Rl Rl Rl R IR R R B] R I) D T

>
o]
»
»
»

FNOP

FREM

>
]
4
»
>
»
4

FRESTORE

FSAVE

FSCALE

FSEQ

FSF

FSGE

FSGL

LI R R A

88

22288 RATIONAL

M68K/0OS-9 Cross-Assembler

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

-]

A

L

D

»

~

Notes

FSGLDIV

X

X

X

FSGLE

FSGLMUL

FSGT

FSIN

>

P

>

pd

>

FSINCOS

>

>

>

»

>

>4

FSINH

FSLE

FSLT

FSNE

FSNGE

FSNGL

FSNGLE

FSNGT

FSNLE

FSNLT

FSOGE

FSOGL

FSOGT

FSOLE

FSOLT

FSON

FSOR

FSQRT

FSSEQ

FSSF

FSSNE

FSST

FST

FSUB

FSUEQ

DAL DR DAl DA DR DA DR DAL DAL DA DA DAL DA DA D] Da| D] D Da| D] b D D] b b |] b D f] b 2] ¢

FSUGE

RATIONAL 2228

89

Rational M68K/OS-9 Cross-Development Facility

MG68K-Family Instruction Mnemonics (continued)

Mnemonic

B w L S D X P Notes

FSUGT

FSULE

FSULT

FTAN

»
»
>
>4

FTANH

P
»
»
>

FTENOX

AL DA pA DR e >4

FTRAPEQ

FTRAPF

FTRAPGE

FTRAPGL

FTRAPGLE

FTRAPGT

FTRAPLE

FTRAPLT

FTRAPNE

FTRAPNGE

FTRAPNGL

FTRAPNGT

FTRAPNLE

FTRAPNLT

FTRAPOGE

FTRAPOGL

FTRAPOGT

FTRAPOLE

FTRAPOLT

FTRAPON

FTRAPOR

FTRAPSEQ

FTRAPSF

FTRAPSNE

FTRAPUEQ

UL DAL PR DA DA D] DAL DA DA] D DL D Da| Da pa] Daf] D] Da| b ba] | pd]] b e e] b e
PAL DAL DAL DA DR DAL DT DA DA DA DA DA DA D] D DA e D e D] D] D] b |] D f pd| b D] e

NNl Ql@ulalalalalalalalalaj@lalalalalalalawlala]lwlal g

90

a2 RATIONAL

M68K/0OS-9 Cross-Assembler

M68K-Family Instruction Mnemonics (continued)

Mnemonic B w L S D X P Notes
FTRAPUGE X X 7
FTRAPUGT X X 7
FTRAPULE X X 7
FTRAPULT X X 7
FTRAPT X X 7
FTST X X X X X X X

FTWOTOX X X X X X X X

1. These shift and rotate type instructions allow only WORD operands if the destination is a
memory location. BYTE, WORD, and LONG operands are allowed when the operation is
performed on a data register.

2.These PC-relative branch instructions support LONG displacements only on the
MC68020 implementation. MC68000 and MC68010 support only BYTE and WORD dis-
placements.

3. These bit instructions allow only BYTE operands if the bit is within a memory location.
LONG operands are allowed only if the operation is performed on a data register.

4. Only the MC68020 implementation supports the LONG form of this instruction. All pro-
cessors support the WORD form.

5. This instruction is supported only by the MC68020 implementation.

6. This instruction is supported by the MC68010 and MC68020 implementations but not the
MC68000.

7. These instructions take no operand when used without a size designator.

8. The operand size of the PMOVE instruction is destination-dependent. CRP, SRP, and
DPR are DOUBLE LONG operands. TC is a LONG operand. BACn, BADn, AC, PSR,
and PCSR are WORD operands. CAL, VAL, and SCC are BYTE operands. The assem-
bler requires that the size designator of the instruction match that of the MMU operand.

9. The FMOVEM instruction allows only EXTENDED operands when moving to or from
floating-point registers and only LONG operands when moving to or from floating-point
control registers.

RATIONAL 2228 o1

M68K/OS-9 Cross-Linker

6. M68SK/OS-9 Cross-Linker

The M68K/OS-9 cross-linker is a part of Rational’s Cross-Development Facilities. The same
linker is provided for each target computer; however, each target requires a different stan-
dard linker-command file. The linker is used to produce executable programs by com-
bining the contents of various object modules, which can be supplied directly to the linker
or retrieved from object-module libraries.

This chapter addresses individuals writing Ada and/or assembly-language programs or
modules who need more explicit control or understanding of the linking process. The Cross-
Development Facility was designed so that most users will use the default linking cap-
ability supplied during normal compilation. For example, most users will never need to
modify the standard linker-command file. Some users may need to create their own
command file, but the standard version can act as a starting point. Few, if any, users will
ever need to invoke the linker explicitly. Instead, Rational intends the normal operation of
the linker to be automatic when a main unit is promoted from the installed to coded state.
The user should be familiar with assembly-language programming style and techniques,
target-specific instructions and instruction syntax, and the Rational Cross-Development
Facilities before using this material.

6.1. Terminology

The following terms are used in describing the linking process:

* Collection: A user-defined and user-named grouping of program sections that can be
referenced as a single entity. The linker-command file provides information about the
number of collections, their object-module contents, and their names.

* Compilation unit: An Ada term that refers to an independently compilable Ada construct.
A compilation unit can be a subprogram declaration or body, package declaration or body,
generic declaration, generic instantiation, subunit, or task body.

* Linker-command file: A text file used by the linker that contains commands specifying
the following:

— Command filename

— Object modules to use as input for the linker

— Object-module libraries to use for additional input
— Collections to use during the linking process

— Memory segments to use for the linker output

— Attributes of the memory segments

— Additional commands for controlling content and placement of linker output

RATIONAL 2228 93

Rational M68K/OS-9 Cross-Development Facility

* Link map: A linker-generated text file that describes the linked, executable module.

* Memory segment: An address space provided by the target-computer architecture in
which linker-processed code and/or data are stored. The linker-command file provides
information about the number of memory segments required, the collections to be placed
in each memory segment, and the attributes of each memory segment.

* Object library: A grouping of object modules that are named as a single entity, from
which the linker can select required modules. It is a file that contains a list of filenames.

* Object module: A binary file produced by an assembler that contains code, data, and
relocation information for one or more program sections.

* Program section: A contiguous area of memory that is used to store the code for the
program.

* Separate code and data: An architectural feature of some target computers in which the
processor reads and writes data as though its address space were orthogonal to the
address space from which it reads code. If the target processor supports this notion, it
must be implemented in hardware to be effective.

6.2. Linker Command (M68k.Link)

The normal operation of the linker is automatic. When the Auto_Link library switch is set
to true (the default value), the output of the compilation system is linked automatically
with other object files (for example, run-time files) to create an executable module when a
main program is promoted to coded.

The linker command is:

M68k.Link (Command File : String := "<IMAGE>";

Exe_File : String := "<DEFAULT>";
Map_File : String := "<DEFAULT>";
Debug_Symbol_File : String := "<DEFAULT>";
Symbol_Table File : String := "<DEFAULT>";
Produce_Debug Table : Boolean := False;
Produce_Symbol Table : Boolean := False;
Produce_Statistics : Boolean := False;

Response : String := "<PROFILE>"):;
The parameters for this command are:
®* Command File : String := "<IMAGE>";
Specifies the input file that contains linker commands. The default is the selected image.
® Exe_File : String := "<DEFAULT>";

Specifies the executable file produced.

94 2228 RATIONAL

M68K/OS-9 Cross-Linker

® Map_File : String := "<DEFAULT>";

Specifies the file that will contain the link map.
® Debug_Symbol File : String := "“<DEFAULT>";

Specifies the output file that will contain the debug-syinbol table, if one is generated.
¢ Symbol_Table File : String := “<DEFAULT>":

Specifies the output file that will contain the symbol table, if one is generated.
¢ Produce_ Debug Table : Boolean := False;

Specifies whether a debug-symbol table is generated. The default is false.
® Produce_Symbol Table : Boolean := False;

Specifies whether a symbol-table file is generated. The default is false.
® Produce_Statistics : Boolean := False:;

Specifies whether statistics of the assembly process are generated. The statistics will be
found at the end of the link-map file. The default is false.

® Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and switches
to use during execution of this command. The default is the job response profile.

For example, assume that you want to link a file called User_Example with the files in the
run-time library. You have created a linker-command file called User_Linker_Command-
_File. You will use the default Exe, Map, Debug_Symbol, and Symbol_Table files. You
want to generate a debug table but do not want any statistics. The following command
accomplishes this:

M68k.Link (Command File => "User_Linker_Command File",
Produce_Debug_Table => True);

6.3. The Linking Process

The following sections discuss the internal events in the linking process. In actual
operations, these events are invisible to the user. It is typically the case, however, that
user-specified modules, libraries, and so on be specified even when using the supplied link
stream. For extensive user-customization of the linker-command file, more detailed know-
ledge of individual linker commands is required. See “Linker-Command Files,” in this
chapter, for more details.

RATIONAL 222 9

Rational M68K/OS-9 Cross-Development Facility

6.3.1. Loading the Specified Modules

During the first phase of linking, the linker locates and reads the object modules specified
in the linker-command stream. If any of the object modules cannot be read, this is noted in
a message. Similarly, a message is output if a symbol is defined more than once.

6.3.2. Scanning Object Libraries

Any remaining undefined symbols are resolved by scanning the specified object libraries.
Each object module within a library is checked to see if it supplies a definition of an unde-
fined symbol. If a module defines a needed symbol, that object module becomes part of the
executable program. The linker scans the libraries in the order specified. Within each
library, the object modules are searched in the order in which they appear. If undefined
symbols remain after all libraries have been scanned, the symbols are reported and then
defined by the linker as having the absolute value 0. This value may cause errors later.

6.3.3. Building Collections

The linker then segregates the program sections by grouping them into the collections
defined by the user. A collection can consist of one or many program sections, but no two
collections can contain the same program section. If any program sections are not named to
be within any collection, they are reported and the linking process is aborted.

6.3.4. Building Memory Segments

Some target computers have only one address space; others have many. Each address
space for which the linker produces data is called a segment. The linker-command file
indicates the number of segments this program should have, the collections that should be
placed in each segment, and the attributes of each segment (for example, read-only rec-
ords). In addition, the generation of output for a specific segment may be suppressed al-
together. This feature may be useful for suppressing the data associated with uninitial-
ized operand spaces in some computers. Every collection defined previously must be placed
in a segment. Within each segment, memory is allocated for:

* Any program sections that were absolute at assembly time
¢ Collections that are bound to a specific location
¢ All remaining relocatable sections

If any assembly and/or link-time absolute sections overlap or fall outside the link-time-
specified memory bounds of the segment, or if there is insufficient memory for the relo-
catable sections, appropriate messages are generated.

% 2228 RATIONAL

M68K/OS-9 Cross-Linker

6.3.5. Producing the Link Map

During the final stage, the linker produces the link map. The map can be used to deter-
mine where the linker placed certain program sections, the value of global symbols, the size
of a program section or memory segment, and so on.

For example, the link map contains the following:
* The names of all the segments specified in the linker-command file

* The names of the object modules that each segment contains and the amount of unused
memory

* The section to which each object module belongs, its starting address, and its word size in
both hexadecimal and decimal notation

* A summary of all modules, including their filenames, their creation date and time, and
their author

* If requested by the link command, a statistical summary of the number of object modules
that were linked, the number of symbols that were processed, and the number of fixups
required

6.4. Linker-Command Files

The linker reads a textual command file to determine the object modules and relocation
methodology to be used in producing an executable program. Rational provides a standard
linker-command file that is used when the linker is invoked automatically. The
Cross-Development Facility was designed so that most users can use the default linking
capability supplied during normal compilation. Most users will never need to modify the
standard linker-command file. Some users may need to create their own command file, but
they can use the standard version as a starting point because it is easily customizable.
Although users can build their own linker-command files, few will ever need to invoke the
linker explicitly. Instead, Rational intends the normal operation of the linker to be
automatic. Users should follow the conventions described in the next section when writing
their linker-command files.

The following is an example of a linker-command file:

program "Standard Linker_Commands" is
link "module_header_asm object™;

use library "ada_runtime_library":

RATIONAL 2228 | o7

Rational M68K/OS-9 Cross-Development Facility

collection
collection
collection
collection

collection
collection
collection

segment sh

segmen

shared header is
code is
constant_data is
shared_trailer is

unshared header is
writeable_data is
unshared_trailer is

ared is

t type is code;

(moduleS$header) ;
(ada$runtime, tlcode):
(adaSruntime_const, tlconst):
(moduleS$crce) ;

(module$writeable_data_begin);
(adaSruntime_data, tldata):;
(module$writable_data_end):

memory bounds are (0:16#fff ffff#);

place

place

place

place
end;

segment un

segmen

shared_header;
code;
constant_data;
shared_trailer;

shared is

t type is data:;

memory bounds are (0:16#fff ffff#4);

place
place
place

suppre
end;
end;

unshared_header:;
writeable_data;
unshared_trailer;

Ss;

The supplied linker-command text file is easily modified to include different module names
or segment boundaries. Sophisticated user applications can include customized libraries
and more complex collections. The linker-command descriptions in the next section will
assist advanced users who want to make more substantial changes to the linker-command

file.

The commands described in the next section are the basic commands used in the linking
process. They consist of reserved words, user-defined symbols, and strings.

The symbols can contain from 1 to 32 characters, as specified below.

98

22288 RATIONAL

M68K/OS-9 Cross-Linker

The following characters may appear within the text of a symbol:
A ..Z Letters of the alphabet (case-insensitive)
0..9 Decimal digits

_ Underscore
Period
$ Dollar sign
’ Apostrophe
Pound sign; used in numerical expressions

Strings are enclosed in double quotes ("").

The following reserved words have special significance in the linker-command file. Re-
served words must not be used as a user-specified name for object modules, library names,
collection IDs, segment IDs, segment type IDs, or symbol IDs. Reserved words are case-
insensitive,

align is resolve
are libraries section
at library segment
be link start
bounds memory suppress
collection mod to

end place type
exclude program use
force

6.4.1. Basic Commands Used with Linker-Command Files

Each linker command is described in detail in this section. The BNF definitions of linker-
command syntax are provided for reference in the following section.

RATIONAL 22288 9

Rational M68K/0S-9 Cross-Development Facility

Table 6-1 lists the linker commands and their purposes.

Table 6-1 Linker Commands

Command Purpose

Collection Specifies what collections are to be created and what name is to be assigned to
the collections.

Exclude Specifies that the section is to be excluded.

Force Specifies where in memory a given symbol is to be placed.

Link Specifies what object modules are to be linked into the executable module.

Memory bounds | Specifies what region of memory contains the specified segment.

Place Specifies what collections are to be placed in the segment.

Program Specifies the name of the linker-command file and contains all the linker
commands.

Resolve Specifies where in memory a given symbol is to be placed.

Segment Creates and names the segments that will receive data from the linker.

Segment type Specifies the user-defined segment type.

Start at Specifies where the linker-command file begins to write its data.

Suppress Specifies that the segment is to be suppressed.

Use library Specifies what object libraries are scanned to resolve undefined symbols.

The following notation is used to define the syntax for linker-command files:

e |-
:

lhs

The vertical bar indicates that two symbols are alternatives. For example:

-=> AA | BB

indicates that either symbols AA or BB are valid.

*[]

lhs

Brackets indicate that the enclosed symbols are optional. For example:

--> AA[,BBR]

indicates that either symbols AA or AA,BB are valid.

* {}: Braces indicate that the enclosed symbols can be repeated zero or more times. For

example:

lhs

indicates that the symbols AA or AA,BB or AA,BB,BB or AA,BB,BB,BB and so on are

valid.

100

-=> AA{,BB}

22288 RATIONAL

M68K/0OS-9 Cross-Linker

6.4.1.1. Program
. The Program command is a block structure that specifies the name of the linker-command
file and contains all of the linker commands. This command is terminated with the
reserved word end, followed by a semicolon.
The format of this command is:
program file_name is linker commands end ;
The user-defined parameters of this command are:
* file_name: Specifies the filename associated with the linker-command file. Itis a string.
* linker commands: Specifies the particular commands that are executed.

An example of this command is:

program "linker_ command_file example" is

-- linker commands

. end;

6.4.1.2. Link

The Link command specifies what object modules are to be linked into the executable
module. This command is terminated by a semicolon.

The format of this command is:
link file_name {, file_name) ;
The user-defined parameter of this command is:

* file_name: Specifies the filename of the object module to be linked into the executable
module. It is a string.

Examples of this command are:

link "module a" , "module_b", "module c";

link "module_a";
link "module_b";
link "module_ c";

RATIONAL saune |

Rational M68K/OS-9 Cross-Development Facility

6.4.1.3. Use Library

The Use Library command specifies what object libraries are scanned to resolve undefined
symbols. This command is terminated by a semicolon.

The format of this command is:
use library | libraries file_name {, file_name]) ;
The user-defined parameter of this command is:

* file_name: Specifies the filename of the object library to be scanned to resolve any
undefined symbols. It is a string.

Examples of this command are:

use libraries "ada_runtime_library", "example library" ;

use library "ada_runtime_library" :;
use library "example library" ;

6.4.1.4. Collection

The Collection command specifies what collections are to be created and what name is to be
assigned to the collections. This command is terminated by a semicolon.

The format of this command is:
collection collection_id is (section_name {, section_name)) ;
The user-defined parameters of this command are:

* collection_id: Specifies the user-defined name of the collection. The name can be 1 to 32
char- acters long (see the list of valid characters earlier in this section).

* section_name: Specifies the user-defined name of the section. Each section will contain
one or more object modules. The section name and the object modules contained can be
seen in the link map. The name can be 1 to 32 characters long.

Examples of this command are:

collection a is (art_a, user_code_a) ;
collection b -is (end_of_i)
collection c is (art_b, user_data_b) ;
collection d is (end_of_data) :

102 20288 RATIONAL

M68K/OS-9 Cross-Linker

6.4.1.5. Segment

The Segment command is used to create and name the memory segments that will receive
data from the linker. This command is terminated by the reserved word end, followed by a-
semicolon.

The format of this command is:

segment segment_id is (placement} [memory bounds] [segment type]
[suppress segment] end ;

The user-defined parameters of this command are:

* segment_id: Specifies the user-defined name given to the memory segment. The name
can be 1 to 32 characters long (see above for valid characters).

* See the following sections for details about the subcommands Place, Memory Bounds,
Segment Type, and Suppress Segment.

6.4.1.6. Place

The Place command is a subcommand of the linker commands. It specifies what collections
are to be placed in the segment. This subcommand is terminated by a semicolon.

The format of this subcommand is:

place collection_id ;

place collection_id at expression ;

place collection_id align mod expression ;
The user-defined parameters of this command are:

* collection_id: Specifies the user-defined name of the collection. The name can be 1 to 32
characters long (see above for valid characters).

* expression: Specifies a numerical memory address.
Examples of this subcommand are:
place data_collection ;
place data_collection at 16#0150# ;
place data_collection at 16#FFF_0150# ;

place data_collection align mod 16#0150# ;

RATIONAL 2228 103

Rational M68K/OS-9 Cross-Development Facility

6.4.1.7. Memory Bounds

The Memory Bounds command is a subcommand of the linker commands. It specifies what
region of memory contains the specified segment. This subcommand is terminated by a
semicolon.

The format of this subcommand is:
memory bounds are expression :expression ;
The user-defined parameter of this subcommand is:

* expression: Specifies a numerical memory address. The first value is the beginning
address and the second value is the ending address of the segment.

An example of this subcommand is:
memory bounds are (16#0100# : 16#FFF FFFF#) ;
6.4.1.8. Segment Type

The Segment Type command is a subcommand of the linker commands. It specifies the
user-defined segment type. This subcommand is terminated by a semicolon.

The format of this subcommand is:

segment type is segment_type_id ;

The user-defined parameter of this subcommand is:

* segment_type_id: Specifies a user-defined value that is used to identify the type of
collections found in the segment. It can be 1 to 32 characters long (see above for valid
characters).

An example of this subcommand is:

segment type is linker_example ;

6.4.1.9. Suppress Segment

The Suppress Segment command is a subcommand of the linker commands. It specifies
that the segment is to be suppressed. This subcommand is terminated by a semicolon.

The format of this subcommand is:
suppress ;
An example of this subcommand is:

suppress ;

104 228 RATIONAL

M68K/OS-9 Cross-Linker

6.4.1.10. Exclude Section

The Exclude Section command specifies what sections will be excluded from the executable
module. This command is terminated by a semicolon.

The format of this command is:
exclude section section_name ;
The user-defined parameter of this command is:

* section_name: Specifies the name of the section that is to be excluded. It can be 1 to 32
characters long (see above for valid characters).

An example of this command is:
exclude section section_name ;
6.4.1.11. Force or Resolve

The Force or Resolve command specifies the value to which a symbol will be resolved. The
Resolve command will not redefine a symbol that is currently defined. This command is
terminated by a semicolon.

The format of this command is:
resolve | force symbol_name to be expression ;
The user-defined parameters of this command are:

* symbol_name: Specifies the name of the symbol that is to be placed at a particular
memory location. It can be 1 to 32 characters long (see above for valid characters).

* expression: Specifies any valid value.

Examples of this command are:
resolve symbol_example to be 16#0199%# ;
force symbol_example to be 57 ;

6.4.1.12. Start At

The Start At command specifies the program counter where the program starts execution.
This command is terminated with a semicolon.

The format of this command is:

start at expression ;

RATIONAL 2228 105

Rational M68K/OS-9 Cross-Development Facility

The user-defined parameter of this command is:
* expression: Specifies a numerical memory address.
Examples of this command are:

start at 16#0155# ;

start at 16#fff 0155#% ;

6.5. Backus-Naur Formalism (BNF)
Used with Linker-Command Files

The following BNF is used to define the syntax for linker-command files:

* Case: Uppercase text is used to denote terminal symbols; lowercase text is used to
denote nonterminal symbols.

* |: The vertical bar indicates that two symbols are alternatives. For example:
lhs --> AA | BB
indicates that either symbols AA or BB are valid.
* []: Brackets indicate that the enclosed symbols are optional. For example:
lhs =--> AA[,BB]
indicates that either symbols AA or AA,BB are valid.

* () Braces indicate that the enclosed symbols can be repeated zero or more times. For
example:

lhs -~-> AA{,BB}

indicates that the symbols AA or AA,BB or AA,BB,BB or AA,BB,BB,BB and so on are
valid.

The following BNF defines the structure of the contents of a linker-command file:
command_file —-> PROGRAM string IS linker_commands END ;
linker_commands -> { specify modules }

{ specify libraries }

specify collections { specify_collection }

specify segments { specify_ segment }

miscellaneous_cmds

specify modules -> LINK string { , string } ;

106 2208 RATIONAL

specify libraries

specify collections

specify segments

segment_info

memory_bounds
segment_type

placement

suppress_segment

miscellaneous_cmds

set_symbol

set_start_pc

expression

termp

termx

termz

termg

RATIONAL 2228

M68K/0S-9 Cross-Linker

USE LIBRARY | LIBRARIES string { , string } :

COLLECTION collection_id IS

(section_name { , section_name }) ;

SEGMENT id IS segment_info END ;

memory bounds]
segment_type]
placement }

— - ——

MEMORY BOUNDS ARE (expression

SEGMENT TYPE IS id

PLACE collection_id ;

suppress_segment]

expression);

PLACE collection_id AT expression ;
PLACE collection_id ALIGN MOD expression ;

SUPPRESS

{ set_symbol }
[set_start pc]

RESOLVE | FORCE id TO BE expression ;

START AT expression

termp

expression rel op termp

termx
termp or_ops termx

termz
termx and_op termz

termg
termz add_op termg

term
termg mul _op term

107

Rational M68K/OS-9 Cross-Development Facility

term

factor

element

rel_op

or_ops

and_op

add_op

mul op

eXp_op

108

factor
term exp _op factor

element

|-] element
|+] element
NOT_OP element

number
id
| (| expression |[) |

=1
/=1
1>
<l
[>=]
| <=

OR_OP
XOR_OP

| &1

f+1
=1

[
/1
MOD
REM

[**]
LSHIFT_OP
RSHIFT_OP

2228 RATIONAL

Run-Time Organization

7. Run-Time Organization

7.1. Introduction

This chapter describes the method by which the M68K/OS-9 Cross-Development Facility
translates features of the Ada language onto the instruction-set architecture of the M68K
family and the facilities of the OS-9 operating system. The topics discussed include memory
organization, stack model, subprogram call and return sequences, parameter passing,
exception handling, storage management, and tasking. The information in this document
should be sufficient to enable a user to write assembly-language programs that interface
with Ada programs or to modify a linker-command file to achieve a desired program
organization.

The user should have knowledge of the Ada language, the M68K-family instruction set, the
OS-9 operating system, and the techniques for mapping high-level languages onto computer
architectures and operating systems.

7.2. Program Execution Model

The overall organization of a program, the usage of memory, and the execution time re-
quirements compose the program execution model. The compiler, linker-command file, run-
time system, target operating system, and target machine contribute to the definition of
this model.

7.2.1. Generated Code

The processing of a compilation unit generally results in the production of instruction
sequences and the allocation of data storage. Allocated data may be either constant or
modifiable and may be initialized or uninitialized. The term generated code describes all
instructions and data produced by the compiler. The compiler places the instructions,
constant data, and modifiable data in three separate program sections. The program sec-
tions currently are named TLCODE, TLCONST, and TLDATA, respectively. The defini-
tion of the sections can be seen in the optional assembly or listing files produced by the
compiler, as in the following directives:

.SECT TLCODE, RELOCATABLE, CODE, READONLY, ...
. SECT TLCONST, RELOCATABLE, DATA, READONLY, ...
.SECT TLDATA, RELOCATABLE, DATA, READWRITE, ...

The linker-command file used for linking a main program specifies the placement of the
program sections that constitute the program.

RATIONAL 2228 109

Rational M68K/OS-9 Cross-Development Facility

7.2.2. Memory Usage

The generated code for an Ada program presumes no restrictions on the use of addresses
within the M68K-family logical address space. As delivered by Rational, the linker-com-
mand file restricts code and data addresses to be within 16#0FFF_FFFF# of the code
loading address and the global database address, respectively.

7.2.3. Processor Resource Utilization
This section discusses how the M68K/OS-9 run-time uses registers and manages memory.
7.2.3.1. Registers

The conventions observed by the Ada run-time model for the usage of the M68K-family
registers are described below. Assembly or other language subprograms that interface with
Ada can assume that the conditions described hold upon entry and are required to satisfy
the conditions before return.

* A7is the stack pointer. Because trap handlers may run on the user stack, data above the
top of the stack can be used reliably.

* A6 is the frame pointer. The structure of frames built is described later in this document.

* A5 is the global data pointer. Because OS-9 requires that data storage be position-
independent, references to statically allocated data must be made indirect through a
register. The Ada run-time model uses A5 for data indirection. (Note that many other
0S-9 programs, such as those produced by the OS-9 C compiler, use A6 as the global data
pointer.) :

* A2 .. A4,D2 .. D7, and FP2 .. FP7 are nonvolatile registers. If the body of a subprogram
uses any of these registers, their values must be saved and restored before return to the
calling environment. Conversely, a body of code that uses any of these registers can call
to any subprogram and have the register values preserved across the call.

* AQ, Al, DO, D1, FPO, and FP1 are volatile registers. The body of a subprogram can
modify the values in these registers without saving the prior value. Conversely, if a body
of code wants to preserve a value in one of these registers across a call, the value must be
saved before the call and restored after the return.

7.2.3.2. Memory-Management Options
The run-time system makes no presumption about the memory configuration of the

execution hardware or about the location at which a program is loaded. No generated code
or code in the run-time system references memory-management hardware.

110 2oz RATIONAL

Run-Time Organization

7.3. Subprogram Call and Return

. The generated code for a call to a subprogram and the execution of the subprogram body
generally result in the construction of a frame on the stack. The return from the sub-
program and other generated code in the calling environment remove the frame. The frame
consists of a number of words on the stack that contain the information required to perform
parameter referencing, up-level referencing, exception handling, and subprogram return.

To better illustrate the structure of a frame and the usage of the information contained in a
frame, portions of the generated code for the following program fragment will be analyzed:

declare
Global Variable : Integer := 12;

procedure Do_Something
(Left : Integer; Right : Integer) is
begin
Global _Variable := Left + Right + Global Variable;
end Do_Something;

function Compute Result
(Left : Integer; Right : Integer)
return Integer is
begin
. return Left + Right;
end Compute_Result;

begin
Do_Something (Left => 9, Right => 3);
Global_Variable := Compute (Left => 12, Right => 9);
end;

It should be noted that the construction of frame information interacts strongly with code
optimizations and that certain elements of a frame need not always be present. In the
extreme, a source-language call may be expanded inline and result in no transfer of control.
The following examples describe the general cases of call and return.

RATIONAL 2228 111

Rational M68K/OS-9 Cross-Development Facility

7.3.1. Stack Structure

Figure 7-1 illustrates the general layout of information on the stack:

Parameter, if any
First word of first parameter occupies lowest address

Retumn PC
Saved Frame Pointer
Exception Handler Address

I

Previous
Frame Static LInk

A Saved Registers
Optional as needed

Storage for static sized local variables, if any

Storage for dynamic sized local variables, if any

Parameters, if any
First word of first parameter occupies lowest address

Return PC

v Saved Frame Pointer —— A
Exception Handler Address

Current
Frame Static Link

Saved Registers
Optional as needed

Storage for static sized local varables, if any

Storage for dynamic sized local variables, if any
Lower Memory < A7
Addresses

Figure 7-1 Stack Model

7.3.2. A Simple Procedure Call
The first example is the procedure-call statement:

Do_Something (Left => 9, Right => 3);

112 2/22/88 RATIONAL

Run-Time Organization

The generated code for this call is:

MOVEQ #3,D7 1
MOVE.L D7,- (A7)

MOVEQ #9,D7 2
MOVE.L D7,- (A7)

MOVEA.L A6,Al 3
BSR.W DO_SOMETHING 4
ADDQ.W #8,A7 5

These instructions perform the following operations:

1. The first pair of MOVEQ, MOVE.L instructions pushes the value 3 on the stack as the
actual value for the Right formal parameter.

2. The second pair of MOVEQ, MOVE.L instructions pushes the value 9 on the stack as the
actual value for the Left formal parameter.

3. The MOVEA.L instruction passes the current frame pointer in Al for use as the static
link.
4.The BSR.W instruction pushes the address of the instruction following the BSR

instruction onto the stack and branches to the first instruction of the Do_Something
procedure.

5. The ADDQ.W instruction pops the two words from the stack that were allocated to pass
the actual parameters.

The generated code for the body of Do_Something is:

Do_Something:

LINK A6, #-8 1
MOVE.L Al, (-8,A6) 2
LEA (Epilog,PC),A0D

MOVE.L A0, (-4,26) 3
MOVE.L (8,A6),D0 4
ADD.L (12,246),D0 5
ADD.L DO, ([-8,A6],-8) 6

Epilog:

LEA (-8,A6),A7 7
UNLK A6 8
RTS 9

RATIONAL 22288 113

Rational M68K/OS-9 Cross-Development Facility

These instructions perform the following operations:

1. The LINK instruction pushes the frame pointer A6 on the stack, loads A6 with the
address of the saved frame pointer, and allocates two more words on the stack to be used
for the exception-handler address and for the saved static link. If the subprogram had re-
quired additional space for static-sized local variables, that space also would be allo-
cated using the link instruction.

2. The first MOVE.L instruction saves the static link in the frame.

3. The pair of instructions LEA, MOVE.L computes the address of the epilog code (or
exception handler, if any) and saves the address in the frame. If this subprogram used
any nonvolatile registers, these would be pushed on the stack at this point.

4. The next MOVE.L instruction loads DO with values of the Right formal parameter.
5. The first ADD.L instruction computes the subexpression Left + Right.

6. The next ADD.L instruction adds the previously computed value to the value of Global-
_Variable and stores the result in Global_Variable. Note that the addressing of Global-
_Variable is done using the saved static link.

7. The LEA instruction in the epilog pops the stack back to include only the space allocated
for saved registers, local variables, and the objects in the frame. If nonvolatile registers
had been saved on entry to the subprogram, they would be restored here.

8. The UNLK instruction pops the stack down to the frame pointer and then pops the value
of the saved frame pointer into the frame pointer A6. The return program counter is left
as the word on top of the stack.

9. The RTS instruction pops an address from the top of the stack and branches to the
instruction at that address.
7.3.3. A Simple Function Call

The second example is the assignment statement in which the righthand side is a function
call:

Global_Variable := Compute (Left => 12, Right => 9);

The generated code for this statement is similar to that for the procedure call, except that
after the two actual parameters are popped from the stack, the function result that is
returned in DO is stored into the location for Global_Variable.

114 | 22268 RATIONAL

Run-Time Organization

The generated code for the body of the function is:

Compute: .
LINK A6, #-8
MOVE.L Al, (-8,A6)
LEA (Epilog,PC),A0Q
MOVE.L AQ, (-4,A6)
MOVE.L (8,A6),D0
ADD.L (12,26),D0
Epilog:
LEA (-16,A6) ,A7
UNLK A6
RTS

The body of the function is very similar to that of the procedure analyzed above, except that
the result computed by the function is returned in DO.

7.3.4. Parameter-Passing Conventions

Actual parameters to subprograms are passed on the stack. The environment of a call must
push the correct number of parameters in the correct order before branching to a sub-
program. The calling environment also must perform any required copy-back of parameters
that are passed by value and remove the parameters from the stack after return from the
call. The order in which parameters are passed is determined by the compiler and is subject
to change.

The manner in which parameters are passed either in Ada subprograms or in other
language subprograms that are to be interfaced with Ada can be specified by using the
Export_Procedure, Export_Function, Import_Procedure, and Import_Function pragmas, as
appropriate.

The following paragraphs describe the conventions used for passing the actual parameters
corresponding to various kinds of formal types.

7.3.4.1. Scalar Types and Access Types

Objects of scalar and access types are passed by value on the stack. Scalar parameters
occupy one or two long words and are passed with the more significant bits in the lower
memory address if two long words are needed. Access parameters are passed as a single
long word. The calling environment must perform copy-back associated with out and in-out
parameters.

RATIONAL 2228 115

Rational M68K/OS-9 Cross-Development Facility

7.3.4.2. Simple Record and Array Types

Simple record and array types include nondiscriminated record types, constrained subtypes
of discriminated record types, and constrained array subtypes. Parameters of these simple
types are passed by reference via a single long word on the stack that contains the address
of the object. The called subprogram must interpret the data at that address in a consistent
manner.

If objects of a simple type are to be passed to assembly-language subprograms, repre-
sentation specifications should be applied to the type to ensure a consistent interpretation
of the object in the assembly code and in generated code. The compiler may choose a layout
for objects whose type does not specify a representation. The manner in which the compiler
chooses to represent objects is subject to change.

7.3.4.3. Discriminated Records of Unconstrained Types

Objects passed as actuals corresponding to formal parameters of unconstrained discrim-
inated record types occupy two long words on the stack. The long word at the higher
memory address contains a 0 if the actual is an unconstrained object and a 1 if the actual is
a constrained object. The long word at the lower memory address contains the address of
the object.

7.3.4.4. Unconstrained Array Types

Objects passed as actuals corresponding to formal parameters of unconstrained types
occupy two long words on the stack. The long word at the higher memory address contains
the address of a compiler-generated descriptor or dope vector for the array. The long word
at the lower memory address contains the address for the data portion of the array object.
The layout of the dope vector is subject to change, so we recommend that assembly-lan-
guage subprograms not be written to manipulate objects of unconstrained array types.

7.3.4.5. Functions Returning Scalar and Access Types

Scalar and access results from functions are returned in one or more registers. The
registers used depend on the size and kind of the result, as shown in Table 7-1.

Table 7-1 Function Return Conventions

Bit Size Register Comments
32 DO Enumeration types, integer types, fixed-point types, 32-bit floating-
point types, access types
64 D0:D1 64-bit floating-point types

116 22288 RATIONAL

Run-Time Organization

7.3.4.6. Functions Returning Fixed-Sized Structures

Functions that return fixed-size structures are converted by the compiler into procedures
that have an additional out parameter of the same type as the function result. The function
returns its result as would a procedure with this modified parameter profile.

7.3.4.7. Functions Returning Dynamic-Sized Structures

Several different mechanisms exist for returning dynamic-sized function results. These
mechanisims currently are not documented, and no attempts should be made to write
assembly-language functions that return these objects. The current return mechanisms do
not use the heap for their return values, which is an intentional compiler design goal.

7.3.5. Finalization

Certain Ada-language features require that actions take place when leaving a block for any
reason, including exception propagation. The code generated to perform these actions is
called finalization code. Finalization code is generated to deallocate collections allocated
within a block, await task termination, and terminate tasks.

7.4. Exception Handling

Exception processing removes frames from the stack while searching for a handler for the
exception being raised. Because an exception handler may depend on register contents to
work correctly, the nonvolatile registers saved in each frame must be restored as the frames
are removed. For this reason, each frame has an exception handler that is common with
the return code for that frame. The exception processing assumes that A6 is a valid pointer
to the current frame. Because the call and return model ensures that the return program
counter for a frame is at a static displacement from the frame pointer, the run times may
change the return program counter of the frame to point back into the run times. The
run-time exception processor then jumps to the exception-handling code pointed to by the
exception-handler address within the frame, again at a static displacement from the frame
pointer. For most frames, this code is simply the epilog code for the subprogram, as
outlined above for the simple procedure and simple function. This code cuts back the stack,
restores all saved registers, and returns. Since the return program counter has been
modified, control returns not to the caller of the subprogram but to the run times. The run-
time exception processor repeats this process until a frame with exception-handling code is
found. The code generated for an exception handler begins with a NOP instruction, which
allows the run-time exception processor to distinguish exception handlers from finalization
code. The ID of the exception is available to the generated code for the handler in DO.

Exception IDs are currently the address of a constant string that is the fully qualified Ada
name of the exception.

RATIONAL 222 117

Rational M68K/OS-9 Cross-Development Facility

If an exception is propagated out of a procedure that is a main program, an error message
will be output to Standard_Error, indicating that the program has terminated with an
exception. Similarly, if an exception is propagated to the body of a task and not handled, a
warning message will be output.

The run-time exception processing may be invoked in the following three ways:

* From generated code that corresponds either to an explicit raise statement or to an
exception condition detected either dynamically or statically in the generated code

* From a machine trap handler that was entered by a hardware-detected exception
condition

* From the run-time system when an exception condition is detected
7.4.1. Exceptions Raised from Hardware Traps

Table 7-2 indicates the predefined exceptions that are raised as a consequence of MC68020
traps.

Table 7-2 Exceptions Raised from Traps

Trap Name Exception Name
CHK or CHK2 instruction Constraint_Error
TRAPce/TRAPYV instruction Numeric_Error
Zero divide Numeric_Error
FPU zero divide Numeric_Error
FPU operand error Numeric_Error
FPU overflow Numeric_Error

7.4.2. Exceptions Raised by the Run-Time System

The following list indicates the situations in which exceptions are raised by the run-time
system:

¢ Constraint_Error
—T’Image (X), where T is an enumeration type and X does not lie within T°First .. T'Last

—TPos (X), where T is an enumeration type with a representation clause and X does not
lie within the range T'First .. T'Last

118 22288 RATIONAL

Run-Time Organization

—TPred (X), where T is an enumeration type with a representation clause and X does
not lie within the range T'First + 1 .. T'Last

—TSucc (X), where T is an enumeration type with a representation clause and X does
not lie within the range T’First .. T'Last — 1

—TValue (S), where T is an enumeration type and the string S does not have the syntax
of an enumeration literal or the enumeration literal specified by S does not exist for the
base type T

—T'Width (X), where T is a subtype of an enumeration type that does not have static
bounds and X does not lie in the range T'First .. T'Last

—T Value (8), where T is an integer type and the string S does not have the synatx of a
numeric literal or the numeric literal specified by S does not lie in the range
Integer’First .. Integer’Last

Program_Error

—Execution of a select statement that has no else part and for which all alternatives are
closed (see LRM 9.7.1.11)

—Task elaboration error (see LRM 3.9.6)
Storage_Error

—Attempts to allocate objects when there is insufficient storage within the collection and
the collection cannot be extended

—Attempts to create access collections when there is insufficient storage within the heap

—Attempts to declare task objects when there is insufficient storage within the heap to
allocate a task-control block

—Attempts to declare a task when there are insufficient system resources to create the
message queues for the task

—Attempts to activate a task when there are insufficient system resources to create the
stack for the task

—Attempts to execute a delay statement, timed entry call, or select with a delay
alternative when there are insufficient system resources to create a timer for the
required delay

—When the stack for an activation of a task or the main program becomes exhausted

RATIONAL s2s 119

Rational M68K/OS-9 Cross-Development Facility

e Tasking_ Error

—At the end of a declarative part, when one or more task objects declared become
completed during activation

—At the evaluation of an allocator, when one or more task objects created as components
of the designated object become completed during activation

—Attempts to call an entry of a task that has completed its execution or becomes
completed before accepting the call

—Attempts to call an entry of a task that is abnormal, becomes abnormal before
accepting the call, or becomes abnormal during the rendezvous

7.5. Storage Management

The storage manager provides support for dynamic memory allocation and deallocation
associated with Ada access types.

7.5.1. The Heap

The term heap refers to the memory from which collections, task-control blocks, and other
run-time data structures are allocated. The memory to be used for the heap is acquired at
program initialization by an F$SRqMem memory-request system call. The amount of
memory to be requested is provided to the run-time system by generated code and can be
set to a nondefault value by an argument to the Main pragma. If there are insufficient
system resources to fulfill the memory request, Storage_Error is raised.

7.5.2. Collections

A collection is a data structure used by the run-time system to reserve a block of memory
for allocation of objects of a given access type. A collection contains information to allow
rapid reclamation of all associated memory when the given access type goes out of scope. In
general, a collection is created for every access type at the point of elaboration of the access-
type declaration. No collection will be created for an access type if a Storage_Size length
clause is provided for the type with a value that is statically 0. In this case, no collection is
allocated and any attempt to allocate or deallocate objects of this type will raise Storage-
_Error.

120 2/22/88 RAT’ O N AL

Run-Time Organization

There are two kinds of collections: extensible and nonextensible. The collection for an
access type that has no Storage_Size length clause is extensible. Extensible collections are
created with a default size determined by the run-time system. Allocations of objects from
extensible collections will extend the collection automatically if there is insufficient free
storage within the collection for the desired object. When a collection is extended, it is
extended by the default size or the size of the object whose allocation necessitated the
extension, whichever is larger. Nonextensible collections are created for collections that
have an associated Storage_Size length clause. In this case, the collection is created with
the size specified and will not be extended.

Storage_Error may be raised by allocators that reference either type of collection.
7.5.2.1. The Global Collection

The global collection is an extensible collection created at the earliest point of program
elaboration and used to provide storage for dynamic-sized objects in static scopes. If no
such objects exist, the global collection is suppressed. Note that if the collection is needed,
it is created with a default size determined by the run-time system. This storage then is
inaccessible to the program throughout its execution.

7.5.2.2. Dynamic Collections

Dynamic collections are created by the generated code at the point of access-type
elaboration. Finalization code is generated to deallocate the collection when the scope in
which the access type was declared is left. This happens at explicit block exit via a goto,
exit, return, or end-of-block statement, as well as by leaving a block because of an excep-
tion. The latter case is handled by a compiler-generated finalization exception handler.

7.5.3. Allocators

All allocations come from a collection—never directly from the heap. The compiler-
generated size of the allocated object is rounded up to an even word size. If the collection’s
free list does not contain a chunk of memory large enough and the collection is non-
extensible or attempts to extend the collection fail, Storage_Error is raised. Allocation of
objects with a size of 0 words are allocated one word (rounded up to two words) of storage to
ensure that all allocations result in a unique object.

7.5.4. Unchecked Deallocation

Unchecked deallocation is the only method of deallocating objects. The specified chunk of
memory is added to the free list of the associated collection, and the free list is coalesced
where possible.

7.6. Tasking
This section discusses the problems of tasking and the run-time system.

RATIONAL 2228 121

Rational M68K/OS-9 Cross-Development Facility

7.6.1. Tasks

An Ada main program runs as a process in 0S-9. Additionally, every task object in an Ada
program is implemented as a separate OS-9 process. The process corresponding to a task is
initiated by an F$Fork system call, which allocates stack space for the process. Each task
inherits four I/O paths from the process that runs as the main program: Standard_Input,
Standard_Output, Standard_Error, and the file of error messages used by the run-time
system.

For each task entry or member of a task-entry family, a message queue is created. One
additional message queue is created per task for special use by the run-time system, as well
as one message queue for the main program.

Storage_Error is raised at the point of declaration of a task object, if system resources are
insufficient to fork the corresponding process or to create the required message queues.

When a task has terminated, the messages queues created for the task are deleted. The
process corresponding to the task executes an F$Exit system call, thereby allowing the
stack space that was allocated for the process to be reclaimed by the operating system.

7.6.2. Priority

The priority of an Ada task can be specified by a Priority pragma in the task specification.
The Ada priority of the main program is provided to the run-time system by generated code
and can be set to a nondefault value by an argument to the Main pragma. At program
initiation, the run-time system queries the OS-9 priority at which the program is executing.
These two values determine a correspondence of Ada task priority to OS-9 process priority,
which is maintained when a task is created.

For example, if a main program has priority 10 and is run at OS-9 priority 100, a task
within the program that has a specified priority of 20 will execute at priority 110 as an
0OS-9 process.

7.6.3. Timers

Three Ada-language constructs require timing to be performed: delay statements, timed
entry calls, and selects with delay alternatives. When one of these statements is executed,
a timer is started. If there are insufficient system resources to start the timer,
Storage_Error is raised.

7.7. Compiler/Run-Time System Interfaces

A large number of interfaces are used by the compiler to access the run-time system. These

are documented below for informational purposes only; run-time interfaces are subject to
change with major releases of the compiler.

122 2288 RATIONAL

Run-Time Organization

7.7.1. Attributes

¢ Enumeration_Image

procedure Enumeration Image (Table : System.Address;
Value : Integer;
String : System.Address;
Dope : System.Address);

Called to produce the string for T'Image (X), where T is an enumeration type and X is not
static.

Enumeration_Pos

function Enumeration_Pos (Table : System.Address;
Value : Integer) return Integer;

Called to evaluate T'Pos (X), where T is an enumeration type with a representation
specification and X is not static.

Enumeration_Pred

function Enumeration_Pred (Table : System.Address;
Value : Integer) return Integer;

Called to evaluate T'Pred (X), where T is an enumeration type with a representation
specification and X is not static.

Enumeration_Succ

function Enumeration_Succ (Table : System.Address;
Value : Integer) return Integer;

Called to evaluate T'Pred (X), where T is an enumeration type with a representation
specification and X is not static.

Enumeration_Value

function Enumeration_Value (Table : System.Address;
Length : Integer:
String : System.Address)
return Integer:;

Called to evaluate T"'Value (X), where T is an enumeration type and X is not static.

RATIONAL 2228 123

Rational M68K/OS-9 Cross-Development Facility

* Enumeration_Width
function Enumeration Width (Table : System.Address;
Lower : Integer;
Upper : Integer) return Integer;

Called to evaluate T"'Width, where T is a constrained subtype of an enumeration type
with dynamic bounds.

¢ Integer_Image

procedure Integer Image (Value : Integer;
String : System.Address:;
Dope : System.Address):;

Called to evaluate T'Image (X), where T is an integer type and X is not static.
* Integer_Value

function Integer Value (Length : Integer:;
Value : System.Address) return Integer;

Called to evaluate T"Value (X), where T is an integer type and X is not static.
¢ Integer_Width

function Integer Width (Lower : Integer;
Upper : Integer) return Integer;

Called to evaluate T'Width, where T is a constrained integer type with dynamic bounds.

7.1.2. Delays
¢ Delay_Statement

procedure Delay Statement (Delay : Duration;
Scale : Integer);

Called to evaluate a delay statement.

7.7.3. Exceptions
* Raise_Exception
procedure Raise Exception (Exception_Id : System.Address);

Called to raise a specified exception.

124 22288 RATIONAL

Run-Time Organization

* Propagate_Exception
procedure Propagate_Exception;

Called from an exception handler that contains no alternative for the exception at hand
or from finalization code.

¢ Reraise_Exception
procedure Reraise Exception (Exception_Id : System.Address):
Called to evaluate an Ada raise statement that specifies no exception.
* Raise_Constraint_Error |
procedure Raise_Constraint_Error;
* Raise_Numeric_Error
procedure Raise_Numeric_Error;
¢ Raise_Program_Error
procedure Raise_Program Error;
¢ Raise_Storage_Error
procedure Raise_Storage Error;
* Raise_Tasking Error

procedure Raise_ Tasking Error;

7.7.4. Storage Management
¢ Allocate_Collection

function Allocate Collection (Size : Integer;
Extensible : Boolean)
return System.Address:;

Called at the point of elaboration of an access-type declaration.
¢ Allocate_Fixed_Cell

function Allocate_Fixed Cell (Size : Integer;
Collection : System.Address)
return System.Address;

Called to evaluate an allocator.

RATIONAL 2z 125

Rational M68K/OS-9 Cross-Development Facility

¢ Collection_Size

function Collection_Size (Collection : System.Address)
return Integer;

Called to evaluate T’Storage_Size, where T is an access type.
* Deallocate_Collection

procedure Deallocate_Collection
(Collection : in out System.Address):;

Called when leaving a block that declared an access type.
* Deallocate_Fixed_Cell

procedure Deallocate_Fixed Cell

(Size : Integer;
Collection : System.Address;
Cell : in out System.Address);

Called from Unchecked_Deallocation.

7.7.5. Tasking
* Abort_Multiple_Tasks

procedure Abort_Multiple Tasks
(Count : Integer:;
Tasks : array (l..Count) of System.Address):;

Called for an Ada abort statement that names multiple tasks.
* Abort_Task
procedure Abort_Task (Task : System.Address):
Called to evaluate an Ada abort statement that names a single task.
¢ Activate_Offspring
procedure Activate_ Offspring (Activation_Group : System.Address):;

Called when entering a block if that block declared objects of task types; called as part of
the evaluation of a statement that contains an allocator of task types.

126 2228 RATIONAL

Run-Time Organization

¢ Await_Dependents
procedure Await_ Dependents;
Called when leaving a block that is the master of one or more tasks.
* Begin_Accept
function Begin_Accept (Entry : Integer;
Parameters : in out System.Address)
return System.Address;
Called by a task that is entering the synchronization point for accepting a rendezvous.
¢ Check_Return_Task

function Check_Return Task (Task : System.Address;
Frame : System.Address)
return Boolean;

Called to ensure that the task object that is being returned by a function will be in the
activation of some block after the function has returned.

* Close_Alternatives
procedure Close Alternatives;
Called to close all delay, terminate, and entry alternatives of a task.
* Conditional_Entry_Call

function Conditional_Entry Call
(Task : System.Address;
Entry : Integer;
Parameters : System.Address) return Boolean:;

Called to make a conditional entry call.

RATIONAL 2228 127

Rational M68K/OS-9 Cross-Development Facility

® Create_Task

function Create_task (Activation_Group : in out System.Address:;

Master : System.Address;
Starting Pc : System.Address;
Entry Count : Integer;
Stack_Size : Integer;
Priority : Integer;
Closure : System.Address)

return System.Address;

Called at the point of elaboration of the declaration of a task object or at the point of
evaluation of an allocator of a task type.

¢ End_Accept
procedure End Accept;
Called at the conclusion of the synchronization point for an accept statement.
* Entry_Call

procedure Entry Call (Task : System.Address;
Entry : Integer;
Parameters : System.Address):;

Called to effect an unconditional, untimed entry call.
e Entry_Count
function Entry_Count (Entry : Integer) return Integer;
Called to evaluate X’Count, where X names a task entry.
* Initialize_Master

function Initialize Master (Layer : System.Address)
return System.Address;

Called as part of the elaboration of a block that is a task master.
* Notify_Parent
procedure Notify Parent (Cause_Tasking Error : Boolean):

Called by a task when it has completed its activation.

128 228 RATIONAL

Run-Time Organization

Open_Delay_Alternative

procedure Open_Delay_ Alternative
(Delay : Duration
Scale : Integer;
System.Address : System.Address);

Called to indicate that a delay alternative is open for the select statement being
evaluated.

Open_Entry

procedure Open_Entry (Entry : Integer;
System.Address : System.Address);

Called to indicate that an entry is open for the select statement being evaluated.
Open_Terminate_Alternative
procedure Open_Terminate Alternative;

Called to indicate that a terminate alternative is open for the select statement being
evaluated.

Select_Rendezvous

function Select_Rendezvous (Has_Else Part : Boolean;
Parameters : System.Address)
return Integer;

Called to complete the evaluation of a select statement.
Synchronization_Point
procedure Synchronization Point;
Task_End
procedure Task_End;
Called to indicate that the currently executing task is terminating.
Task_Stack_Size
function Task Stack_Size (Task : System.Address) return Integer:;

Called to evaluate T’Storage_Size, where T is a task type or an object of a task type.

RATIONAL 2228 129

Rational M68K/OS-9 Cross-Development Facility

* Task_Terminated
function Task_Terminated (Task : System.Address) return Boolean;
Called to evaluate T'Terminated, where T denotes an object of a task type.
* Terminate_Allocated_Offspring

procedure Terminate_Allocated Offspring
(Activation_Group : in out System.Address):;

Called to cause the termination of the offspring of a block that has allocated tasks.
* Terminate_Dependent_Offspring
procedure Terminate_Dependent_ Offspring;
Called to terminate all offspring tasks of the current task.
* Timed_Entry_Call

function Timed_Entry Call (Task : System.Address;
Entry ¢ Integer;
Delay : Duration;
Scale : Integer;

Parameters : System.Address)
return Boolean;

Called to evaluate a timed entry call.

7.7.6. Utilities
¢ Stack_Check
procedure Stack_Check (Space : Integer):;

Called whenever stack space is about to be allocated to ensure that the desired amount of

storage is available.
7.7.77. Miscellaneous
* Start_Tasking

pProcedure Start_tasking (Return_Pc : System.Address):;

Called to initialize the run-time system for a tasking program.

130 22288 RATIONAL

Run-Time Organization

¢ Middle_Tasking
procedure Middle Tasking:;

Called to indicate to the run-time system that a tasking program has finished its
elaboration and is about to begin execution.

* Finish_Tasking
procedure End Tasking:;

Called to indicate to the run-time system that the task that is the main program has
terminated.

¢ Start_Sequential
procedure Start_Sequential (Return Pc : System.Address);
Called to initialize the run-time system for a sequential program.
* Middle_Sequential
procedure Middle_Sequential;

Called to indicate to the run-time system that a sequential program has finished its
elaboration and is about to begin execution.

* Finish_Sequential
procedure Finish_Sequential;

Called to indicate to the run-time system that the main program has terminated.

RATIONAL 2228 131

M68K/OS-9 Downloader

8. M6SK/0OS-9 Downloader

The M68K/OS-9 linker produces an executable module in the R1000 object-module format.
Before this module can be used, however, its object-module format must be changed from
R1000 to OS-9 format. The M68K/OS-9 CDF provides the Convert command to change the
formats. After the executable module has been converted to the appropriate object-module
format, it must be downloaded to the D85 hardware. The M6SK/OS-9 CDF provides the
Os9_Put command to download the executable module. Once on the D85 hardware, the file
can be executed directly using the OS-9 operating-system commands. Alternatively, it can
be executed through the use of the M68K/0S-9 cross-debugger (see Chapter 9).

8.1. Format-Conversion Command (Convert)

The output of the M68K/OS-9 linker is an executable module in the R1000 object-module
format. However, this format will not execute on the D85 hardware. The format must first
be converted to the OS-9 object-module format before it can be executed.

The command that converts the formats is:

Convert (0ld Module : String :
Old_Format : String :
New_Module : String;
New_Format : String):

"<IMAGE>";
"RATIONAL";

The parameters of this command are:
¢ O0ld Module : String := "<IMAGE>";
Specifies the name of the executable module that contains a non-OS-9-compatible format.
¢ Old_Format : String := "RATIONAL";
Specifies the object-module format of the old module. The default is Rational.
® New_Module : String:;
Specifies the name of the converted executable module.
® New_Format : String;

Specifies the object-module format of the new module.

8.2. Converting the Executable Files
The executable file produced by the M68K/OS-9 linker is in the R1000 object-module for-

mat. To run on the D85 hardware, it must be converted to the OS-9 object-module format.
To accomplish this, perform the following steps:

RATIONAL 2228 133

Rational M68K/OS-9 Cross-Development Facility

1. Create a Command window off the library that contains the executable module.
2. Enter Convert and press [Complete].
3. Enter the name of the executable module at the 01d_Module prompt.

4. Enter the name of the executable module to be used on the D85 hardware at the
New_Module prompt.

5. Enter 0s9 at the New_Format prompt.
6. Press [Promote].

For example, the following command converts the object-module format from Rational to
0S-9:

Convert (0Old_Module => "Main 68k.<exe>",
Old_Format => "Rational",
New_Module => "Main_ 68k_Os9",
New_Format => "Os9");

8.3. Transfer Command (Os9_Put)

You must now transfer the executable module that has the OS-9 object-module format to
the D85 hardware.

The transfer command is:

Os9_Put (From Local File : String := "<IMAGE>";
To_Remote File : String := "";
Remote_Machine : String := Ftp Profile.Remote Machine;
Remote Directory : String :=
Ftp_Profile.Remote_Directory;
Text_File : Boolean := False;
Response : Profile.Response_Profile := Profile.Get);

The parameters for this command are:
¢ From Local File : String := "<IMAGE>";

Specifies the name of the file on the R1000 that contains the 0OS-9-compatible executable
module.

® To_Remote_File : String := "%;

Specifies the name of the executable module on the D85 hardware. The default indicates
that the name of the file on the R1000 will be used. If you do not use the same filename
as on the R1000, you will not be able to debug your file.

134 2228 RATIONAL

M68K/0OS-9 Downloader

®* Remote_Machine : String := Ftp_Profile.Remote_Machine;

Specifies the name of the remote machine to which the executable module is transferred.
(If you have set the Ftp_Profile.Remote_Machine switch in your switch file, you can use
the default.)

* Remote_Directory : String := Ftp_Profile.Remote Directory;

Specifies the name of the remote directory that will receive the transferred executable
module. (If you have set the Ftp_Profile. Remote_Directory switch in your switch file, you
can use the default.)

®* Text_File : Boolean := False;

Specifies, when set to true, that the Ascii.Lf characters in the R1000 file be transmitted
as Ascii.Cr. The default is false.

®* Response : Profile.Response Profile := Profile.Get;

Specifies how to respond to errors, how to generate logs, and what switches to use during
execution of this command. The default is the job response profile.

8.4. Transferring the Executable Files

The executable module is now in the 0S-9 object-module format, and you can transfer it to
the D85 hardware. To accomplish this, perform the following steps:

1. Create a Command window off the library containing the executable module.
2. Enter 0s9_Put and press [Complete].
3. Enter the name of the executable file on the R1000 at the From Local_File prompt.

4. Enter the name of the executable file to be used on the D85 hardware at the
To_Remote_File prompt (if you want to debug this program later, it must have the
same name as the program on the R1000).

5.Enter the name of the machine that will receive the executable module at the
Remote_Machine prompt. (If you have set the Ftp_Profile. Remote_Machine switch in
your switch file, you can use the default value for this parameter.)

6. Enter the name of the directory on the machine that will receive the executable module
at the Remote_Directory prompt. (If you have set the Ftp_Profile. Remote_Directory
switch in your switch file, you can use the default value for this parameter.)

7. Press [Promote].

RATIONAL 222 135

Rational M68K/OS-9 Cross-Development Facility

For example, the following command transfers the executable module Main_68k_Os9 to the
remote machine and directory specified in the switch file (the same name is retained, but
Ascii.Lf characters are not transferred as Ascii.Cr):

O0s9_Put (From_Local File => "Main_68k_Os9",
To_Remote File => "Main_ 68k _Os9",
Remote_Machine : String := Ftp_Profile.Remote_Machine;
Remote_Directory : String :=
Ftp_Profile.Remote Directory;
Text_File : Boolean := False;
Response : Profile.Response_Profile := Profile.Get);

8.5. Command Used to Execute Directly on the D85 Hardware

To run your executable module on the D85 hardware, you enter the filename of the module
from a console connected to the D85 hardware. However, you must be in the directory on
the remote machine that contains the executable module.

The command is:
executable_module_name -4 -s
The parameters are:

* executable_module_name: Specifies the filename of the executable module that you
transferred to the D85 hardware.

* -d: Specifies that task and elaboration diagnostics are to be run. This parameter is
optional. If present, it must be separated from the executable module name and other
parameters, if present, by a blank space.

* -s: Specifies that storage diagnostics are to be run. This parameter is optional. If
present, it must be separated from the executable module name and other parameters, if
present, by a blank space.

For example:

main 68k_os9 -d -s

executes the executable module found in Main_68k_Os9 and generates elaboration, task,
and storage diagnostics.

136 2228 RATIONAL

M68K Cross-Debugger

9. M68K Cross-Debugger

The M68K/OS-9 Cross-Development Facility provides the user with the ability to debug
programs running on D85 hardware. Choosing the Motorola_68k target key selects the
M68K cross-debugger instead of the R1000 debugger. The same interface (ICommands-
-Debug) is used to control both the R1000 debugger and the M68K cross-debugger.

A given session may be running multiple debuggers of different target types. When
commands are entered into a new Debugger window, the new debugger becomes the
current debugger. The Debug.Current_Debugger command can also designate one of these
debuggers as the current debugger. All subsequent commands are directed to that

debugger.

9.1. Commands Used with the M68K Cross-Debugger

For a full discussion on using the debugger, consult the Debugging (DEB) book of the

Rational Environment Reference Manual.

Table 9-1 lists the commands that are used with the M68K cross-debugger.

Table 9-1 Debug Commands

Debugging Command

Function

Debug.Address_To_Location

Displays the Ada source-code location of the specified address.

Debug.Current_Debugger

Establishes an M68K cross-debugger as the current debugger.

Debug.Invoke Starts the debugger on the selected main unit after determining
the target key.
Debug Kill Terminates an M68K debugging session.

Debug.Location_To_Address

Displays the address of the generated code for a selected source
code location.

Debug.Memory_Display

Displays the memory contents at a particular memory address.

Debug.Memory_Modify

Modifies a word of memory.

Debug.Object_Location

Displays the machine address of the specified object (variable).

Debug.Register_Display

Displays the registers for a given task and stack frame.

Debug.Register_Modify

Modifies the value of a register with a given hex value.

Debug.Run

Causes the debugger to step at the machine instruction level.

M68k_Debugger

Starts debugging of the selected main unit.

RATIONAL 2225

137

Rational M68K/OS-9 Cross-Development Facility

9.1.1. Invoking the Debugger

There is no accelerated key binding for invoking an M68K cross-debugger. To start the
M68K cross-debugger on a main program, select the unit and then execute one of the fol-
lowing commands:

¢ Debug.Invoke
* M68k_Debugger
9.1.1.1. Debug.Invoke

This command starts the debugger on the selected main unit after determining the target
key. If a previous M68K debugger still exists, that debugger is used rather than a newly
created one. Optionally, the name of the remote machine and the directory on the remote
machine that contains the transferred executable module in the OS-9 object-module format
can be specified. If no values are specified, these values are determined from the Ftp-
-Remote_Directory and Ftp.Remote_Machine switches in the library-switch file. Debug-
Invoke is the suggested method for starting a debugger.

The format of the command is:
Debug.Invoke (Main_Unit => "<Image>",
Options => ",
Spawn_Job => True) ;

The parameters for this command are:

® Main Unit => "<Image>": Specifies the name of the main program unit (the unit
associated with the Main pragma) that will be debugged.

® Options => "": Specifies what options are to be used with the command. The three
options are:

—"Machine => Network Machine Name": Specifies the machine name given to the
remote computer.

—"Directory => Os-9 Directory Name": Specifies the name of the directory that
contains the executable module.

—Reuse_Debugger => True: Specifies that the current debugger will be used. If set to
false, a new debugger will be started and used.

® Spawn_Job => True: Specifies a Boolean value that determines whether the current job
is spawned. The default is true.

138 2228 RATIONAL

M68K Cross-Debugger

For example, the following command debugs the Main_68k_Os9 program. The values for
the remote machine and the remote directory are obtained from the library-switch file. The
default is used for the Spawn_dJob parameter. A new debugger is started and used:

Debug.Invoke (Main Unit => "Main_68k_Os9",
Reuse_Debugger => False);

9.1.1.2. M68k_Debugger

This command starts debugging of the selected main unit. Each time this command is
used, a new debugger is started (the old debugger may still be active but not current).
Optionally, the name of the remote machine and the directory on the remote machine that
contains the transferred executable module in the OS-9 object-module format can be
specified. If no values are specified, these values are determined from the Ftp.Remote-
_Directory and Ftp.Remote_Machine switches in the library-switch file.

The format of the command is:
M68k_Debugger (Main_Unit => "<Selection>",
Options => "»,
Spawn_Job => True);

The parameters for this command are:

®* Main_Unit => "<Selection>": Specifies the name of the main program unit (the unit
associated with the Main pragma) that will be debugged.

® Options => "": Specifies what options are to be used with the command. The two
options are:

—"Machine => Network Machine Name": Specifies the machine name given to the
remote computer.

—"Directory => 0s-9 Directory Name": Specifies the name of the directory that
contains the executable module.

® Spawn_Job => True: Specifies a Boolean value that determines whether the current job
is spawned. The default is true.

For example, the following command debugs the Main_68k_Os9 program. The values for
the remote machine and the remote directory are obtained from the library-switch file. The
default is used for the Spawn_Job parameter:

M68k_Debugger (Main_Unit => "Main_68k_Os9");

RATIONAL 22288 139

Rational M68K/OS-9 Cross-Development Facility

9.1.2. Determining Locations
The following commands are used to determine locations:
¢ Debug.Location_To_Address
* Debug.Address_To_Location
* Debug.Object_Location
9.1.2.1. Debug.Address_To_Location
This procedure displays the Ada source-code location of the specified run-time address.
The format of this command is:
Debug.Address_To_Location (Address => "");
The parameter of this command is:
®* Address => "": Specifies the memory address whose source location is to be
determined. The address is a hexadecimal value—for example, #3A4B (up to 8

characters—32 bits).

For example, the following command selects the source-code location corresponding to the
memory address #FFFF3A4B:

Debug.Address_To_Location(Address => "#FFFF3A4B#);
9.1.2.2. Debug.Location_To_Address

This command displays the run-time address of the generated code for a selected source-
code location.

The format of this command is:

Debug.Location_To_Address(Location => "<Selection>",
Stack_Frame => 0);

The parameters of this command are:

® Location => "<Selection>": Specifies the selected source-code location.

® Stack_Frame => 0: Specifies the stack frame. The default is O.

For example, the following command returns the address of the selected location:

Debug.Location_To_Address

140 22288 RATIONAL

M68K Cross-Debugger

9.1.2.3. Debug.Object_Location
This procedure displays the machine address of the specified object (variable).
The format of this command is:
Debug.Object_Location(Variable => "<Selection>",
Options => "),
The parameters of this command are:

®* Variable => "<Selection>": Specifies the object (variable) whose location is to be
determined.

® Options => "": Specifies the options to be used with this command.
For example, the following command returns the location of the selected object.

Debug.Object_Location;

9.1.3. Displaying Machine-Level Program Values

The following commands are used for displaying machine-level program values:
* Debug.Memory_Display

* Debug.Register_Display

9.1.3.1. Debug.Memory_Display

This command displays the memory contents at a particular memory address.
The format of the command is:

Debug.Memory Display(Address => "',
Count => 0,
Format => "Data"):

The parameters of this command are:

* Address => "": Specifies the address at which to display memory. The address can be
a hexadecimal number—for example, #3A4B 12AF# (up to 8 characters—32 bits)—or a
name of a source location.

* Count => 0: Specifies the number of items to display.

RATIONAL 2228 141

Rational M68K/OS-9 Cross-Development Facility

* Format => "Data": Specifies the format of the data to be displayed. The Format
parameter must specify either “Code” or “Data”: “Code” disassembles instruction mem-
ory; “Data” displays operand memory in hexadecimal notation.

When a name is given (pathname or <Selection>, <Cursor>, and so on), the address of the
specified source is calculated and “Count” words are then displayed starting from that
address and in the specified format (you should specify “Code”).

For example, the following command displays 10 words of code starting at memory address
#3A4B12AF:

Debug.Memory Display(Address => "3A4B12AF",
Count => 10,
Format => Code):

9.1.3.2. Debug.Register_Display
This command displays the registers for a given task and stack frame.
The format of this command is:

Debug.Register Display(Name => ",
For Task => "",
Stack_Frame => 0,
Format => "");

The parameters for this command are:

® Name => "": Specifies the name of the registers to be displayed. If the null string ("") or
“All” is specified, all registers are displayed.

® For_Task => "": Specifies the task to be used. If the null string ("), the default, is
specified, the current task is used.

* Stack_Frame => 0: Specifies the stack frame to be used. If Stack_Frame = 0, the task
is ignored and the physical machine registers are displayed. If the Stack_Frame > 0, the
registers for the given task and the given frame are displayed.

® Format => "": Specifies the format of the register data to be displayed. Format is not
used.

For example, the following command displays all of the register values:

Debug.Register Display(Name => "All");

142 2228 RATIONAL

M68K Cross-Debugger

9.1.4. Modifying Machine-Level Program Values
‘ The following commands are used to modify memory or registers:
* Debug.Memory_Modify
* Debug.Register_Modify
9.1.4.1. Debug.Memory_Modify
This command is used to modify a word of memory.
The format of this command is:

Debug.Memory Modify (Address => ">>HEX ADDRESS<<",
Value => ">>HEX VALUE<<",
Width => 0,
Format => "Data");

The parameters of this command are:

* Address => ">>Hex Address<<": Specifies the memory address to be modified. The
address is a one- to eight-digit hexadecimal value (for example, #4A3B12AF).

* Value => ">>Hex Value<<": Specifies the new value that is to be placed in the
. specified memory location. Value is also an eight-digit hexadecimal value (for example,
#FFFFFFFF).

* Width => 0: Specifies the number of bits to be modified.

¢ Format => "Data": Specifies the format of the data to be modified. The Format
parameter can specify either “Code” or “Data”: “Code” modifies operand memory; “Data”
modifies instruction memory. You can only modify data within your address space.
Other references will indicate an error.

For example, the following command places the value FFFFFFFF in the memory location
4A3B12AF, which is instruction memory:

Debug.Memory Modify (Address => "4A3B12AF",
Value => "FFFFFFFF"
Format => "Data"):

@
RATIONAL s2zee

Rational M68K/OS-9 Cross-Development Facility

9.1.4.2. Debug.Register_Modify
This command is used to modify the value of a register with a given hexadecimal value.
The format of this command is:

Debug.Register_Modify (Name => ">>REGISTER NAME<<",
Value => ">>HEX VALUE<<",
For_Task => "",
Stack_Frame => 0,
Format => "");

The parameters of this command are:

* Name => ">>REGISTER NAME<<": Specifies the number of the register (for example,
D2).

® Value => ">>HEX VALUE<<": Specifies an eight-digit hexadecimal value (for example,
#3A4B12AF).

® For_Task => "": Specifies the name of the task (defaulted to the current task by the
null string).

* Stack_Frame => 0: Specifies an integer value (default 0). If Stack_Frame = 0, the task

.

is ignored and the physical machine registers are modified. If the Stack_Frame > 0, the
registers for the given task and the given frame are modified.

® Format => "": Specifies the format of the data to be modified. The Format parameter
can specify either “Code” or “Data”: “Code” modifies operand memory; “Data” modifies
instruction memory. You can only modify data within your address space. Other
references will indicate an error.

For example, the following command places the value FFFFFFFF in the register D2; the
format is instruction memory:

Debug.Register Modify (Name => "D2V,
Value => “FFFFFFFE"
Format => "Data"):;

9.1.5. Additional Debug Commands

In addition to the above commands, the following commands are used with the M68K
cross-debugger:

* Debug.Current_Debugger
* Debug.Kill
* Debug.Run

144 228 RATIONAL

M68K Cross-Debugger

9.1.5.1. Debug.Current_Debugger

This command is used to establish an M68K cross-debugger as the current debugger (if the
M68K cross-debugger already exists).

Making a debugger the current debugger means that debugging commands will now control
the execution of the current debugging job.

Running a debugger Command window directly off an M68K cross-debugger window, or
pressing a debugger key while in that window, makes the M68K cross-debugger the current
debugger.

Running Debug.Invoke on a Motorola_68k unit also makes the M68K cross-debugger the
current debugger.

The format of this command is:
Debug.Current Debugger (Target => "");

The parameter of this command is:

* Target => "":Specifies the name of the M68K cross-debugger.

For example, the following command sets the current debugger to an M68K cross-debugger:
Debug.Current_Debugger (Target => "Motorola_ 68k");

9.1.5.2. Debug.Kill

This command terminates an M68K cross-debugger session.

If the Debugger parameter is not set to true, the 0S-9 program is terminated, but the
debugger is still active and can be reused to debug another program.

The format of this command is:
Debug.Kill(Job => True, Debugger => True);
The parameters of this command are:

* Job => True: Specifies a Boolean value that determines whether the the OS-9 program
will be killed.

* Debugger => True: Specifies whether the debugger will be killed.
For example, the following command kills both the OS-9 job and the M68K cross-debugger:

Debug.Kill (Job => True,
Debugger => True):;

RATIONAL 2228 145

Rational M68K/OS-9 Cross-Development Facility

9.1.5.3. Debug.Run .

This command can be used to provide machine-level stepping. The Machine_Instruction
value in the Stop_At parameter causes the debugger to step at the machine-instruction
level.

The format of this command is:
Debug.Run (Stop At => Debug.Statement,
Count => 1,
In_Task => "");

The parameters of this command are:

®* Stop_At => Debug.Statement: Specifies the machine instruction at which machine-
level stepping will commence.

® Count => 1:Specifies the number of machine-level steps to take.
® In_Task => "":Specifies the task in which the machine-level stepping is to occur.

For example, the following command causes the debugger to single-step at the machine
level:

Debug.Run (Debug.Machine Instruction);

9.2. Commands Used with Debuggers

Table 9-2 lists the commands found in package !Commands.Common that are used when
debugging programs. These commands are used with both the R1000 native debugger and
the M68K cross-debugger. For more information on these commands, consult the Debug-
ging (DEB) book of the Rational Environment Reference Manual.

Table 9-2 Package Common Debugging Commands

Debugging Command Function

Abandon Deletes the Debugger window if the debugger has been killed;
otherwise, the command has no effect.

Create_Command Creates a Command window below the Debugger window if one does
not exist; otherwise, the command puts the cursor in the existing
Command window below the Debugger window.

Definition Finds the defining occurrence of the designated element and brings
up its image in a window on the screen.

Enclosing Displays the library containing the Command window from which
the job being debugged was started.

146 2oms RATIONAL

M68K Cross-Debugger

Table 9-2 Package Common Debugging Commands (continued)

Debugging Command Function

Release Deletes the Debugger window if the debugger has been killed; o]
otherwise, the command has no effect.

Write_File ;’\lfrites the current contents of the Debugger window into the named

e.

Object.Child Selects the Repeat child element of the currently selected element.

Object.First_Child Selects the first child of the currently selected element.

Object.Last_Child Selects the last child of the currently selected element.

Object.Next Selects the Repeat next element past the currently selected element.

Object.Parent Selects the parent element of the currently selected element.

Object.Previous Slelects the Repeat previous element before the currently selected
element.

Table 9-3 lists the commands found in package !Commands.Debug that are used when
debugging programs. These commands are used with both the R1000 native debugger and
the M68K cross-debugger. For more information on these commands, consult the Debug-
ging (DEB) book of the Rational Environment Reference Manual.

. Table 9-3 Package Debug Debugging Commands
Debugging Command Function
Activate Activates a previously removed (deactivated) breakpoint.
Address_To_Location Displays the source location corresponding to the address of the
specified machine instruction.
Break Creates a breakpoint at the specified location in the specified task.
Catch Stops execution whenever the named or selected exception is raised

in the specified tasks at the specified location; reports the task
name, the location in which the exception was raised, and the
exception name.

Clear_Stepping Removes all pending stepping operations.that have been applied to
the specified task(s).

Comment Displays the comment specified by the string parameter in the

: Debugger window.

Context Sets the specified context to be the specified pathname.

Convert Converts the string specified in the number parameter to the

specified base representation; 64-bit arithmetic is used.

o |
RATIONAL s2z06

Rational M68K/OS-9 Cross-Development Facility

Table 9-3 Package Debug Debugging Commands (continued)

Debugging Command

Function

Current_Debugger

Causes the named debugger to become the current default debugger
for the user’s session.

Debug_Off Terminates debugging of the current job.

Disable Enables or disables the option flag controlling the behavior of the
debugger specified by the variable parameter.

Display Displays an area of source in the Debugger window with statement
numbers included, based on the current selection or the pathname
provided.

Enable Enables or disables the option flag controlling the behavior of the

debugger specified by the variable parameter.

Exception_To_Name

Displays the source name of the exception that corresponds to the
specified implementation-dependent representation.

Execute Commences (or resumes) execution of the named task(s).

Flag Sets a flag controlling the behavior of the debugger to a specified
string value.

Forget Removes catch and propagate requests that match the Name,

In_Task, and At_Location parameters.

History_Display

Displays a range of history entries for the specified task.

Hold

Stops execution of the specified task(s) and keeps it stopped until
the task is explicitly released by the Release procedure or until an
explicit request is given for execution of the task by an Execute or
Run procedure.

Information

Lists information about the specified task.

Kill

Kills the job being debugged and/or the debugger for the session.

Location_To_Address

Displays the code-segment address for the machine instructions
associated with the specified location.

Memory_Display

Displays the contents of absclute memory.

Modify

Modifies or changes the values of the specified object.

Propagate Enters a request to the debugger that the program being debugged
not be stopped when the specified exception is raised in the specified
task at the specified location.

Put Displays the value of the specified object in the Debugger window
with formatting based on the type of the object.

148 vss RATIONAL

M68K Cross-Debugger

Table 9-3 Package Debug Debugging Commands (continued)

Debugging Command Function

Release Releases a task (or tasks) from the held state and moves the task to
the stopped state.

Remove Deactivates and possibly deletes the specified breakpoint(s).

Reset_Defaults Resets all flag values and Boolean options to their standard values
and unregisters all special displays.

Run Executes the specified task(s) until the stop event has occurred the
number of times specified by the Count parameter.

Set_Task_Name Assigns a string nickname for the named task.

Set_Value Sets the numeric variable flag controlling the behavior of the
debugger to the specified value.

Show Displays information about various debugger facilities.

Source Finds the source for the specified location and displays that location
highlighted in an Ada window.

Stack Displays the specified frames of the stack of the named task.

Stop Stops execution of the specified task(s).

Take_History Enables or disables the recording of information about events
executed in the specified task at a specified part of the program.

. Task_Display Displays information about the named task(s).

Trace Enables or disables the tracing of the specified events in the named
task.

Trace_To_File Sends trace output to the file specified by the File_Name parameter.

Xecute Commences (or resumes) execution of the named task(s).

Table 9-4 lists the commands found in package !Commands.Debug_Tools that are used
when debugging programs. These commands are used with both the R1000 native debug-
ger and the M68K cross-debugger. For more information on these commands, consult the
Debugging (DEB) book of the Rational Environment Reference Manual.

®
RATIONAL sz2s6

Rational M68K/OS-9 Cross-Development Facility

Table 9-4 Package Debug_Tools Debugging Commands

Debugging Command Function

Ada_Location Returns a string representing the Ada name of the source location
in the calling subprogram or a caller of the calling subprogram.

Debug_Off Disables debugging in the calling task.

Debug_On Enables debugging for the calling task.

Debugging Returns true if the currently executing program is under the control

of the debugger; otherwise, the command returns false.

Get_Exception_Name Returns the name of the most recently raised exception for the task
that calls this function; optionally, the command returns additional
machine-related information about the exception.

Get_Release_Location Returns a representation of the location in the source from which
the most recent exception for the task calling this function was
raised; optionally, the command returns additional machine- related
information about the raised location.

Get_Task_Name Returns any task name set by the Set_Task_Name procedure.

Image Returns the string that is the image of the value of the Value
parameter for the special display for T.

Message Causes a message to be displayed in the Debugger window.

Register Provides facilities that enable the user to write special display

routines for the debugger; the debugger uses the routines to display
the value of variables and to perform other actions.

Set_Task_Name Assigns a string nickname for the named task.

Un_Register Causes a special display registered for a type to be used no longer
by the debugger for displaying objects of that type.

User_Break Causes the calling task to stop as though a breakpoint were
reached.

9.3. Differences between the R1000 and the M6SK Cross-Debugger
The differences between the R1000 debugger and M68K cross-debugger are discussed in
this section.

9.3.1. Breakpoints

On the M68K, dead-code elimination results in the disappearance of statements. Break-
points are refused at locations for which no code is generated.

150 2228 RATIONAL

M68K Cross-Debugger

Breakpoints can be set at machine addresses by specifying #<Address> for the location
parameter.

Breakpoints can be set in specific instantiations of a generic but not in the generic itself.

9.3.2. Exceptions
The M68K cross-compiler and run-time system does not support flavors of exceptions.

The predefined exceptions (Constraint_Error, Storage_Error, Numeric_Error, and Program-
_Error) are always considered implicit. The R1000 debugger is able to distinguish between
these when raised implicitly by the computer architecture or when raised via a raise
statement. This distinction is not made in the M68K cross-debugger.

Exceptions in generics are specified by using their instantiation name.

When an exception is caught, the Ada location of the point of raise is correct. The program
counter displayed (when the option address is true) is the program counter in the run times
for exception processing.

The Information(Exceptions) command gives information for the most recently raised
exception. Previous exceptions on the stack are not available. You cannot determine
whether the last raised exception is still active. The raise location is not known unless you
catch the exception in the debugger.

9.3.3. Elaboration

To elaborate a program on the M68K, a single task (the root task) is used to elaborate all
the packages. Stepping and breakpointing operate on this task. Because this elaboration
model differs from the one used on the R1000, stepping and breakpointing and other
operations that depend on task name behave differently during elaboration.

9.3.4. Object Evaluation

On the M68K, no elaboration check is performed by the debugger when it displays an
object. Data displayed before elaboration return whatever data are currently stored in that
machine location.

Modification does not check that the value is in range. The debugger never corrupts
adjacent data, but the value written may cause a subsequent reference to the modified
object to get a constraint error. Array bounds are checked, since the debugger displays the
value before modifying the value.

RATIONAL 2228 151

Rational M68K/OS-9 Cross-Development Facility

9.3.5. Memory Display

The M68K cross-debugger supports two kinds of memory display: Data and Code. Data
provides a hexadecimal dump and Code provides a disassembly listing. The R1000 also
offers Control, Import, and Type, which are not supported on the M68K debugger.

9.3.6. Stack Frames
Block statements and accept statements are inlined by the M68K cross-compiler. They are

displayed as separate frames (as on the R1000 debugger) even though no physical frame
exists.

152 2228 RATIONAL

Configuration Management and Version Control

10. Configuration Management and Version Control

The M68K/OS-9 Cross-Development Facility provides the user with the Rational Environ-
ment’s resources for configuration management and version control (CMVC). These
resources can be used to accomplish the following:

* Project partitioning: The user can break a project into a manageable number of higher-
level components called subsystems, each containing a group of logically related objects.
For Ada units, subsystems are units of decomposition similar to, but larger than, the Ada
package, which preserves on a larger scale the Ada notion of separate specification and
implementation.

* Version control: The user can control and track changes to individual objects within each
subsystem, determine which versions can be changed and who can change them, and
record why the changes were made.

* Configuration management: The user can construct, release, and maintain multiple
consistent sets (or configurations) of versions within each subsystem. (Each alternative
configuration constitutes a view of the subsystem.) At a higher level, configuration
management refers to combining views from each subsystem in order to build entire
programs.

10.1. CMVC Review

This section presents an overview of configuration management and version control. For
details on commands, consult the Project Management (PM) book of the Rational
Environment Reference Manual. For an example of CMVC and subsystem use, see “Using
Motorola_68k Subsystem Views” in Chapter 3.
10.1.1. Issues of Project Management
Although using worlds or directories can make it easier to understand the high-level
structure of large projects, their use cannot solve the following problems in project
management:
* Project size: When there are too many program units, it can be difficult to:

—Reason about the program’s overall design

—Keep track of the dependencies among units

—Allocate well-defined portions of the program to individual developers or development
teams

RATIONAL 222 153

Rational M68K/OS-9 Cross-Development Facility

* Program dependencies: When there are too many dependencies, making changes can be
time-consuming because the changes must be verified by recompiling the changed units
and all of their direct and indirect dependents. These recompilation dependencies also
make it difficult for developers and teams to work and test in parallel, because a change
in one team’s portion of the program may entail recompilation of another team’s portion.

* Design degradation: Regardless of the size of the program, it is difficult to prevent design
degradation resulting from the introduction of unwanted dependencies between units.

* Version control: Preserving previous versions of units and controlling access to shared
units can be cumbersome.

A more powerful kind of Environment library structure, the subsystem, can be used instead
to express and enforce program design.

10.1.2. Subsystems

Subsystems encapsulate a program’s compilation units into higher-level components, just
as Ada packages encapsulate related subprograms, type declarations, and the like.
Depending on its size, each subsystem can be assigned to individual developers or to a team
of developers.

Subsystems are more powerful than other libraries for the following reasons:

* They provide a mechanism for defining and limiting interfaces among the program
components they encapsulate.

* They provide a mechanism for developing alternative implementations of program
components. Execution and testing is a matter of specifying the desired combination of
precompiled implementations, one from each subsystem.

* CMVC operations are available only within subsystems.

10.1.3. Version Control

When a program component is encapsulated within a subsystem, individual objects in the
component can be controlled—that is, made subject to version control. Controlled objects
must be checked out to be modified; checking out an object reserves it for editing by
acquiring the object’s reservation token. When desired, the modified object can be checked
in.

Every subsystem contains a CMVC database that records changes made to each controlled
object. Each time an object is checked out and then checked in, a new generation of the
object is created in the CMVC database. Therefore, the CMVC database records the
successive generations of each controlled object within a program component.

154 22288 RATIONAL

Configuration Management and Version Control

10.1.4. Configurations

Objects in subsystems reside in program libraries and therefore can be compiled using the
normal Environment mechanisms. Each subsystem contains at least one working library
from which units can be checked out, modified, checked in, compiled, and tested.

When a particular combination (or configuration) of object generations compiles satis-
factorily, a release of that configuration is made. Each release is a frozen copy of the
working library and therefore is a full program library itself. Successive releases can be
thought of as “snapshots” or “views” of the subsystem through time. Accordingly, the
release libraries and working libraries within a subsystem are called views (more
specifically, release views and working views). A series of releases created from a single
working view is called a development path.

It is important to keep in mind that each view is:

* A source configuration, in that it specifies a particular generation for each object in the
subsystem

* A program library, in that it enforces Ada semantic consistency among the specified
generations

Therefore, CMVC operations integrate configuration management with library manage-
ment.

10.1.5. Interfaces among Subsystems
Interfaces can be defined between subsystems using different kinds of views.

* Load view: The working and released views are load views. Each load view contains a full
implementation of the program component that is encapsulated in the subsystem.

* Spec view: A second kind of view, called the spec view, can be created to define the set of
implemented units that are potentially available, or visible, to units in other subsystems.
Spec views thus define a subsystem’s exports; as such, spec views can be imported by
client views in other subsystems. When a client view from one subsystem imports a spec
view from another subsystem, dependencies can be set up among units from the two
subsystems. Subsystem imports and exports thus enforce design decisions, because with
clauses can reference only units from imported views.

* Combined view: A third kind of view, called the combined view, is similar in contents to
the load view. However, it contains both exported specifications and their implemen-
tation and also may be imported. Combined views do not require an activity for
execution. Combined views do have working and release forms. See the section on
“Differences between R1000 and M68K/OS-9 Subsystems,” in this chapter, for a
discussion of the limitations of combined views.

RATIONAL 2228 155

Rational M68K/OS-9 Cross-Development Facility

Subsystem interfaces are analogous to Ada package interfaces, as follows:

* A spec view is analogous to an Ada package specification, which defines the resources
that are available to client units.

* Aload view and a combined view are analogous to a package body, which implements the
resources promised by the specification.

* The import relation is analogous to a with clause, which enables a client unit to actually
use the specified resources.

Because only spec views can be imported, client views compile against spec views, not load
views. Therefore, units in a working load view can be changed without requiring recom-
pilation of any other views, provided that the working views remain compatible with the
spec view that defines its exports.

Compatibility allows a load view to differ in certain specific ways from the spec view that
represents it. One important kind of change that preserves compatibility is to change the
private part of an exported unit. If such a change is made to a load view, no change or
recompilation is required of the spec view or any of its client views. In this way, subsystem
interfaces make closed private parts possible.

By buffering recompilation for many kinds of changes, subsystem interfaces enable sub-
systems to be developed in parallel—that is, a team of developers can change and test the
implementation in its own subsystem without necessarily causing recompilation elsewhere.
However, changes that do not preserve compatibility require modification of both spec and
load views; a changed spec view can affect client views in other subsystems.

10.1.6. Program Execution

A subsystem typically consists of at least one spec view, against which client views are
compiled, and at least one load view, which contains the units that are actually executed.
As periodic releases are made from the working load view, a single subsystem accumulates
multiple load views, each implementing the resources specified in a given spec view.

To execute the program composed of such subsystems, an execution table, called an activity,
must be set up to specify which of the alternative load views is to be used with the spec
view that is imported from each subsystem. Because only one spec view can be imported
from a given subsystem, the activity contains exactly one entry for each subsystem that is
required for execution. Activities thus can be thought of as specifying configurations of
views, which contain configurations of generations. Note that subsystems with combined
views do not require activities. (See the section on “Differences between R1000 and
M68K/OS-9 Subsystems,” in this chapter, for a discussion of the use of combined views.)

156 2/22/88 QAT'ONAL

Configuration Management and Version Control

Activities provide a flexible means of constructing programs from alternative subsystem
implementations. Any number of activities can be created; recombinant testing is a matter
of editing an activity to specify precompiled views rather than recompiling an entire
program from scratch. (Note that each. entry must specify a compatible pair of load and
Spec views.)

By choosing appropriate views from each subsystem, the user can construct system tests
that isolate the effects of specific changed views. For example, to test a new imple-
mentation of a particular subsystem, an activity typically specifies the working view from
that subsystem, along with stable baseline releases from the other subsystems in the
program. The availability of both released and working views enables subsystem testing to
proceed in parallel, because each team can continue ongoing work in the working view
while other teams are testing against frozen releases.

10.1.7. Parallel Development within Subsystems

Parallel development is also possible within subsystems as well as between them. When a
team is assigned to implement a subsystem, a separate subpath can be created for each
individual on the team. Subpaths are working views in which changes can be made and
tested. They are created as full copies of the main path’s working view.

Editing can proceed without conflict because controlled objects are joined. Each joined
object shares a reservation token with the corresponding objects in the other subpaths; a
given joined object can be checked out in only one subpath at a time. In this way, a single
set of generations is maintained for multiple copies of an object.

A subpath can become out of date when objects are checked out and modified in other
subpaths. Objects in a subpath can be brought up to date either by checking them out or by
accepting changes from the latest generation into that view.

Developers working in two subpaths can access an object concurrently if it is severed.
Severing provides separate copies of an object with their own reservation tokens, so that
both copies can be checked out independently. Separate sets of generations are kept for
severed objects. Severed objects can be synchronized by merging changes from one object
into the other.

Separate development efforts within a single subsystem can be maintained in alternative
development paths. For example, maintenance of an existing program can continue in one
path while development of the next major field release proceeds in another path.

10.1.8. Project Reporting

Information about a project can be gathered in several ways. Each generation of every con-
trolled object has notes associated with it, which can be used as a “scratchpad” for arbitrary
comments. Comments from checkout and checkin commands are automatically entered in
an object’s notes. A scratchpad for notes also is associated with each release, and it
automatically logs any comments that are specified when a release is made.

RATIONAL 222 157

Rational M68K/OS-9 Cross-Development Facility

For more comprehensive project reporting, work orders can be used to define and assign
units of work. When development proceeds in response to a given work order, time-
stamped comments are logged into the work order whenever commands from package Cmvc
are executed. In addition, information can be entered in user-defined fields on each work
order.

Work orders can be grouped for easy reference using work-order lists. For example, a work-
order list can contain entries for all work orders assigned to a given user or for all work
orders that have been closed.

All the work orders for a given project or subproject are created from a single template
called a venture. User-defined fields are created in ventures; ventures also determine pol-
icies that govern the work done in response to work orders. For example, a policy can
prevent a CMVC command from executing unless the parameter for comments is filled in.

User-generated tools can be used to create reports from the information gathered by work
orders.

10.1.9. Multihost, Multisite Development

When a program is partitioned into subsystems, it can be developed on multiple R1000s,
either at the same site or at different geographic sites. Such development accommodates
very large programs, especially when program components have been assigned to
subcontractors.

When multiple R1000s are used, each one hosts a copy of every subsystem in the program.
However, only one copy of a given subsystem, called the primary subsystem, can support
ongoing development. The other copies, called secondary subsystems, are essentially local
copies for execution and test.

Typically, each R1000 hosts a primary subsystem and some number of secondary sub-
systems. When a new release is made in the primary subsystem, that release can be
copied, via network or tape, into the corresponding secondary subsystems on each of the
other R1000s. On each R1000, the copied release then can be compiled with the releases
from the other subsystems and the program can be executed. Note that, instead of
releasing the source for a load view, a code view can be made and copied from the primary
to secondary subsystems. A code view contains only the executable code from the compiled
load view.

10.2. Differences between R1000 and M68K/OS-9 Subsystems
When possible, M68K/OS-9 subsystems should be constructed using spec and load views.

However, although the use of subsystems is similar for R1000 and M68K/OS-9 subsystems,
there are some features of M68K/OS-9 subsystems of which the user should be aware.

158 2228 RATIONAL

Configuration Management and Version Control

10.2.1. Combined Views

Rational uses code-shared generics, whereas M68K/OS-9 systems use macro expansion with
their generics. Therefore, if a program exports generics, combined views must be used in
the subsystem. However, there are some limitations to the use of combined views:

* Since combined-view exports are directly imported, compilation obsolescence propagates
to importing views. Therefore, a change in one view can require recompilation in all
other views that import the changed view. This recompilation can be extensive and time-
consuming in large programs with many subsystems and views.

* Closed private parts are not available.

* Because execution with a new release of a combined view requires importing the new
view, recompilation may be required. When the new view is imported, the old view must
be removed completely from the import-closure consistent semantic network. Therefore, a
released combined view cannot import working combined views.

10.2.1.1. Releases of Combined Views

Integration of combined views, which is similar to integration of spec views, requires that:
* A single semantic network be maintained

* The imports be changed simultaneously for all clients

Releasing combined views differs from releasing spec/load views. Released views are frozen
and cannot be modified. Therefore, non-upward-compatible changes cannot be made to
imported views. Testing the subsystem thus is less flexible than with spec/load views.

When using the Cmvc.Release command:

* The From_Working View parameter accepts a list of views to release at the same time.
* The imports now automatically point to the other released views in the new set.
10.2.1.2. Change Propagation in Combined Views

Changes made in the code of combined views propagate in source form. Incremental
changes made in one combined view are not propagated incrementally to other views. If a
change is made that requires demotion to the source state, the units in the dependency
closure also are demoted to source.

Incremental changes are possible, but they must be done manually—that is, a change made

in one view also must be made in the importing view; otherwise, the views are demoted to
source.

RATIONAL 2228 159

Rational M68K/OS-9 Cross-Development Facility

10.2.2. Code Views

Another important difference in M68K/OS-9 subsystems is that code views cannot be
created.

10.3. CMVC Commands

The more frequently used CMVC commands are listed here. These commands are found in
the following four packages:

* Activity

* Cmvc

* Cmvc_Maintenance
* Work_Order

Package Work_Order contains the following three packages as well as its functions and
procedures:

¢ Editor
¢ List_Editor
* Venture_Editor

The commands used with CMVC and their functions are listed here in tabular form. For a
complete description of the CMVC commands, consult the Project Management (PM) book
of the Rational Environment Reference Manual.

10.3.1. Package !Commands.Activity

Package Activity provides operations for creating, viewing, and manipulating activities and
for identifying which activity is the current activity for a running job or session.

In addition to the commands relating to activities, an editor provides editing operations
specific to activities. Many of the operations in package !Commands.Common apply to
activities. Table 10-1 lists the commands found in package Common that apply to
activities.

160 2228 RATIONAL

Configuration Management and Version Control

Table 10-1 Package Common Commands for Editing Activities

Command Purpose
Abandon Ends editing of the activity and removes the window from the
screen. Because all changes to activities are not made
permanent until committed, any uncommitted changes will be
lost.
Commit Makes permanent any changes made to the activity.

Create_Command

Creates a Command window below the current window. The use
clause in the Command window includes package Activity, so
operations in package Activity are directly visible without
qualification in the Command window.

Definition Finds the definition of the subsystem corresponding to the
selected entry on which the cursor resides. This procedure
creates a window containing that subsystem.

Edit Prompts the user for changes to the selected entry, or to the
entry on which the cursor resides when the command is given, by
creating a Command window and placing in it the command:
Change (Spec_View => "", Load View => "");

The user fills in one or both parameters, as desired.

Release Makes any changes to the activity permanent, releases control of
(unlocks) the activity, and then destroys the window.

Sort_Image Sorts the activity image according to the specified format.

Object.Child Selects the entry in the activity on which the cursor resides.

Object.Delete Deletes the selected entry on which the cursor resides.

Object.Elide Controls the level of detail displayed in the image of the current
activity.

Object.Expand Controls the level of detail displayed in the image of the current
activity.

Object.Explain Uncompresses a subsystem entry, listing each component

(subsystem name, spec view, and load view) of the entry on
separate lines.

Object.First_Child

Selects the first entry of the activity.

RATIONAL 2228

161

Rational M68K/OS-9 Cross-Development Facility

Table 10-1 Package Common Commands for Editing Activities (continued)

Command

Purpose

Object.Insert

Inserts a new subsystem entry or modifies an existing entry in
the activity by prompting the user. This command creates a
Command window and places in it the following command:

Insert (Subsystem => "", Spec_View => "",
Load_View => "");

The user fills in the details as desired.

Object.Last_Child

Selects the last entry of the activity.

Object.Next Selects the next entry in the activity if an entry is selected. If no
entry is selected, this commands selects the entry on which the
cursor currently resides.

Object.Parent Selects the entry in the activity on which the currently resides.

If an entry is already selected, the procedure selects all entries in
the activity.

Object.Previous

Selects the previous entry in the activity if an entry is selected.
If no entry is selected, the procedure selects the entry on which
the cursor currently resides.

Table 10-2 lists the commands found in package !Commands.Activity.

Table 10-2 Package Activity Commands

Command Purpose

Add Modifies the activity specified by The_Activity parameter by
updating an existing entry for a subsystem or by adding a new
entry if an entry for the specified subsystem does not already
exist.

Change Modifies the spec-view and/or load-view components of the
currently selected subsystem entry on which the cursor currently
resides.

Create Creates a new activity.

Current Displays the name of the activity that is associated with the
current job.

Display Displays an image of the specified activity.

Edit Invokes the activity object editor on the specified target activity.

162 voss RATIONAL

Configuration Management and Version Control

Table 10-2 Package Activity Commands (continued)

Command Purpose

Enclosing_Subsystem Displays the name of the corresponding subsystem for the
specified view.

Enclosing View Displays the name of the view that contains the specified unit.

Insert Modifies an activity to update an existing entry for a subsystem
or adds a new entry if one does not already exist for the specified
subsystem.

Merge Copies into the specified target those subsystem entries defined
in the source activity that match the pattern specified in the
Subsystem, Spec_View, and Load_View parameters.

Nil Returns the name of an empty activity.

Remove Deletes a subsystem entry from an activity.

Set Changes the current activity for the running job to the specified

activity.

Set_Default

Makes the specified activity the current activity for the current
session.

Set_Load_View

Modifies the load view for the specified subsystem entry in
The_Activity parameter.

Set_Spec_View

Modifies the spec view for the specified subsystem entry in
The_Activity parameter.

The_Current_Activity

Returns the name of the current activity associated with the
running job.

The_Enclosing_Subsystem

Returns the name of the subsystem that contains the current
view.

The_Enclosing View

Returns the name of the view that contains the specified unit.

Visit

Invokes the activity editor on the specified activity and replaces
the old activity if one is currently being edited.

Write

Copies the contents of an activity window into a new activity in
the directory system.

10.3.2. Package !Commands.Cmve

Package Cmvc provides operations for creating, viewing, and manipulating subsystems as
well as creating and controlling paths within the subsystem.

Table 10-3 lists the commands found in package !Commands.Cmve.

RATIONAL 222 163

Rational M68K/OS-9 Cross-Development Facility

Table 10-3 Package Cmvc Commands

Command

Purpose

Abandon_Reservation

Abandons the reservation on one or more checked-out objects,
effectively canceling the checkout of those objects.

Accept_Changes

Updates the object(s) specified in the destination parameter to
the generation(s) indicated by the Source parameter; that is,
the destination objects are changed to reflect any modification
that have been made to the corresponding source objects.

Append_Notes

Appends the specified string to the end of the notes for the
specifed controlled object. The notes for a controlled object are
stored in the CMVC database.

Build Builds views from the specified configuration objects. Views
corresponding to the specified configurations must not exist.

Check_In Releases the reserved right to update the specified object or set
of objects and stores the text of the new generation(s) in the
CMVC database.

Check_Out Reserves the right to modify the specified object(s).

Copy Creates one or more new views by copying specified view(s). By

default, the Copy command makes new working load or
combined views, depending on the kind of views named in the
From_View parameter. Copy can also be used to make spec
views by setting the Create_Spec_View parameter to true.

Create_Empty_Note_Window

Creates an empty window for the purpose of composing notes
for the specified controlled object. The notes for a controlled
object are stored in the CMVC database.

Destroy_Subsystem

Destroys the specified subsystem(s).

Destroy_View

Destroys the named view(s) and all of their subdirectory
structures, including the Ada units in the Units directories.

Get_Notes Retrieves the notes for the specified controlled objects. The
notes are retrieved from the CMVC database and are either
displayed in a window or written into a file.

Import Imports the specified spec or combined views into the

designated view(s).

Import_Views

Returns a naming string that names all the views that are
imported by the specified view.

Information Displays various kinds of information about the specified view
in the output window.
Initial Builds a new subsystem of the specified type—namely,
spec/load or combined.
164 228 RATIONAL

Configuration Management and Version Control

Table 10-3 Package Cmve Commands (continued)

Command

Purpose

Join

Joins the specified controlled objects to the corresponding objects
in the designated view. When views are joined across views,
they form a join set. Objects in a join set have the same simple
name and share a reservation token, so that only one object in
the set can be checked out at a time.

Make_Code_View

Makes a code view from the specified load view.

Make_Controlled

Makes the specified object(s) controlled by the CMVC system and
therefore subject to reservation.

Make_Path

Creates a copy of each of the specified views, starting new
development paths.

Make_Spec_View

Creates a new spec view from each of the specified views in a
spec/load subsystem.

Make_Subpath

Creates a copy of each of the specified views in order to start new
development subpaths.

Make_Uncontrolled

Makes the specified objects uncontrolled, so that change
information about them is no longer recorded in the CMVC
database.

Merge_Changes

Merges two instances of the same object that are located in two
different working views.

. Put_Notes

Replaces the notes for the specified controlled object with the
contents of the specified file. The notes for a controlled object are
stored in the CMVC database.

Release

Creates a new released view from each of the specified working
views.

Remove_Import

Removes the links that were created when the view specified by
the View parameter was imported.

Remove_Unused_Imports

Removes imports from the specified view(s) if none of the links
created by those imports are needed for compilation. Links are
removed only on an import-by-import basis.

Replace_Model

Replaces the model world for the specified view.

Revert

Reverts the specified object(s) to the specified generation.

®
RATIONAL z206

165

Rational M68K/OS-9 Cross-Development Facility

Table 10-3 Package Cmvc Commands (continued)

Command Purpose
Sever Severs the specified objects from their respective join sets. When
an object is severed, it is given a different reservation token.
Show Displays checkout and generation information for the specified

controlled objects.

Show_All_Checked_Out

Displays a list of the objects specified in the view that are
checked out.

Show_All_Controlled

Lists the controlled objects in the specified view(s).

Show_All_Uncontrolled

Lists any of the specified objects that are uncontrolled.

Show_Checked_Out_By_User

Lists the objects in the specified view(s) that are checked out by
the specified user.

Show_Checked_Out_In_View

Lists the objects that are checked out in the specified view(s),
regardless of who checked them out.

Show_History

Displays the history for the specified view or object within a
view.

Show_History_By_Generation

Displays the history for one or more controlled objects across the
specified range of generations.

Show_Image_Of_Generation

Reconstructs an image of the specified generation of the
designated object.

Show_Out_Of_Date_Objects

Lists the objects in the specified view(s) that are not at the most
recent generation.

10.3.3. Package !Commands.Cmvc_Maintenance

Package Cmvc_Maintenance provides operations for maintaining the subsystem.

Table 10-4 lists the commands found in package !Commands.Cmvc_Maintenance.

166

22288 RATIONAL

Configuration Management and Version Control

Table 10-4 Package Cmvc_Maintenance Commands

Command

Purpose

Check_Consistency

Checks the consistency of the specified views with respect to the
CMVC database and the Environment library system.

Convert_Old_Subsystem

Converts the views in one or more subsystems from the Gamma
format to the Delta format so that CMVC operations can be used.

Destroy_Cdb

Destroys the compatibility database for the specified subsystem.

Display_Cdb

Displays information from the CMVC compatibility database for
each of the specified subsystems.

Display_Code_View

Displays information about the specified code view. By default,
the command displays a list of the units in the code view.

Expunge_Database

Expunges the CMVC database, removing stored information and
history about unused configurations or objects.

Make_Primary

Converts the specified secondary subsystem into a primary
subsystem with its own updatable compatibility database.

Make_Secondary

Converts the specified primary subsystem into a secondary
subsystem with a read-only compatibility database.

Repair_Cdb Verifies that the information in the specified subsystem’s
compatibility database is consistent with the DIANA
representation of the subsystem’s compiled units.

Update_Cdb Updates a secondary subsystem’s compatibility database by

copying the compatibility database from another subsystem. The
two subsystems must have the same R1000 subsystem
identification number, although they may be on different
R1000s.

10.3.4. Package !Commands.Work_Order

Package Work_Order provides operations for creating and using work orders.

Table 10-5 lists the commands found in package !Commands.Work_Order.

RATIONAL 2228

167

Rational M68K/OS-9 Cross-Development Facility

Table 10-5 Package Work_Order Commands

Command

Purpose

Add_To_List

Adds one or more work orders to a work-order list.

Close Sets the status of the specified work order to closed. Once a
work order has been closed, it no longer can be modified.
Create Creates a work order on the specified venture and adds it to the

work-order list.

Create_Field

Defines a new user-defined field with the designated type in the
specified venture.

Create_List

Creates a work-order list on the specified venture.

Create_Venture

Creates a new venture.

Default

Returns the name of the user’s default work order in the
specified venture.

Default_List

Returns the name of the user’s default work-order list in the
specified venture.

Default_Venture

Returns the pathname of the default venture for a user.

Display

Displays the contents of the specified work order in the output
window.

Display_List

Displays the contents of the specified work-order list in the
output window.

Display_Venture

Displays the contents of the specified venture in the output
window.

Edit

Edits the designated work order. If a window already exists for
that work order, the window is reused. From the window, the
work order can be edited with the operations from package
!Commands.Common that apply to this class of object.

Edit_List

Edits the designated work-order list. If a window already exists
for that work-order list, the window is reused. From the window,
the work-order list can be edited with the operations from
package !Commands.Common that apply to this class of object.

Edit_Venture

Invokes the venture object editor for the designated venture.

The procedure creates a window in which the designated venture
is displayed. If a window already exists for that venture, the
window is reused. From the window, the venture can be edited
with the operations from package !Commands.Common that
apply to this class of object.

168

2228 RATIONAL

Configuration Management and Version Control

Table 10-5 Package Work_Order Commands (continued)

Command Purpose
Notes Returns the notes field of the specified work order.
Notes_List Returns the notes field of the specified work-order list.

Notes_Venture

Returns the notes field for the specified venture.

Remove_From_List

Removes the entry for the specified work order(s) from a
work-order list.

Set_Default

Sets the specified work order to be the default for a given user
and session whenever the work order’s parent venture is the
default. This command modifies the venture by adding or
changing the mapping from session to work order in the specified
venture.

Set_Default_List

Sets the specified work-order list to be the default for a given
user and session whenever the work-order lists’s parent venture
is the default. This command modifies the venture by adding or
changing the mapping from session to work order in the specified
venture.

Set_Default_Venture

Sets the default venture for the specified session. Setting a
venture to be the default automatically sets the default work
order and the default work-order list for the current session, if
such defaults have been specified for that venture. Setting a
default venture with this command automatically sets the value
of the Cmve.Default_Venture session switch to the specified
venture name.

Set_Notes

Modifies the notes field for the specified work order. Any
existing notes in the specified work order are replaced by the
new notes.

Set_Notes_List

Modifies the notes field for the specified work-order list. Any
existing notes in the specified work-order list are replaced by the
new notes.

Set_Venture

Modifies the notes field for the specified venture. Any existing
notes in the specified venture are replaced by the new notes.

Set_Venture_Policy

Sets the specified venture policy switch to the specified value.
This command also can be used to determine the value of a
particular switch for a venture that is not currently displayed.

Editor.Add_Comment Adds a comment to those recorded in the work order. Once
added, a comment cannot be removed.
Editor.Add_Configuration Adds a configuration to those recorded in the work order. Once

added, a configuration cannot be removed.

o
RATIONAL 2206

169

Rational M68K/OS-9 Cross-Development Facility

Table 10-5 Package Work_Order Commands (continued)

Command

Purpose

Editor.Add_User

Adds a user session to those recorded in the work order. Once
added, a user cannot be removed.

Editor.Add_Version

Adds a version to those recorded in the work order. Once added,
a version cannot be removed.

Editor.Set_Field

Sets the Boolean value of the specified work-order field to the
specified value. Once set, a work-order field cannot be modified.

Editor.Set_Field

Sets the integer value of the specified work-order field to the
specified value. Once set, a work-order field cannot be modified.

Editor.Set_Field

Sets the string value of the specified work-order field to the
specified value. Once set, a work-order field cannot be modified.

Editor.Set_Notes

Sets the notes field of the work order to the specified string. The
specified text replaces the existing text.

List_Editor.Add

Adds the specified work orders to the work-order list.

List_Editor.Set_Notes

Sets the notes field of the work-order list to the specified string.
The specified text replaces the existing text.

Venture_Editor-
.Set_Default_List

Sets the default work-order list for a specified user session on the
local venture. Each session can have a different work-order list.

Venture_Editor-
.Set_Default_Order

Sets the default work order for a specific user session on the local
venture. Each user session can have a different default work
order.

Venture_Editor.Set_Field_Info

Sets the numeric tag of a user-defined field and specifies whether
that field is modifiable. Numeric tags control the relative display
position of the field within the venture.

Venture_Editor.Set_Notes

Sets the notes field of the venture to the specified string. The
specified string replaces the existing text.

Venture_Editor.Set_Policy

Sets the specified policy switch to the specified value.

Venture_Editor.Spread_Fields

Renumbers all user-defined fields, assigning new numeric tags
using the specified interval.

170

2228 RATIONAL

Appendix F

11. Appendix F for the Rational M68K/OS-9
Cross-Development Facility

The Reference Manual for the Ada Programming Language specifies that certain features-of
the language are implementation-dependent. It requires that these implementation depen-
dencies be defined in an appendix called Appendix F.

This chapter of the Rational M68K/0S-9 Cross-Development Facility manual is the Appen-
dix F for the M68K/OS-9 cross-compiler. It contains sections that describe the following
implementation-dependent features:

* Implementation-dependent pragmas

* Implementation-dependent attributes

¢ Package Standard

* Package System

* Restrictions on representation clauses

* Names denoting implementation-dependent components

* Interpretation of expressions that appear in address clauses
* Unchecked conversion

* Machine code

Implementation-Dependent Pragmas

The M68K/OS-9 cross-compiler supports pragmas for application software development in
addition to those listed in Appendix B of the Reference Manual for the Ada Programming
Language. They are described below, along with additional clarifications and restrictions
for pragmas defined in Appendix B of the Reference Manual for the Ada Programming

Language.

* Main: A parameterless library unit procedure can be designated as a main program by
including a Main pragma at the end of the specification or body of the unit. This pragma
causes the linker to run and creates an executable program when the body of this
subprogram is coded.

The pragma has the following optional parameters:

—Stack_Size => <static integer expression>: Specifies the size of the main task stack in
storage units; if not specified, a default of 4K words is used.

—Heap_Size => <static integer expression>: Specifies the size of the heap in storage
units; if not specified, a default of 16K words is used.

RATIONAL 22288 171

Rational M68K/OS-9 Cross-Development Facility

—Priority => <static integer expression>: Specifies the priority of the main program,; if
not specified, a default of 127 is used.

* Suppress_All: This pragma must appear immediately within a declarative part. It is
equivalent to the following sequence of pragmas:

pragma Suppress (Access_Check);
pragma Suppress (Discriminant_Check) ;
pragma Suppress (Index_Check):

pragma Suppress (Length_Check);
pragma Suppress (Range_ Check);

pragma Suppress (Division_ Check):
pragma Suppress (Overflow_Check);
pragma Suppress (Elaboration_Check);
pragma Suppress (Storage Check);

Note that the Suppress_All pragma cannot prevent the raising of certain exceptions. For
example, numeric overflow is detected by hardware, which results in the predefined
Numeric_Error exception being raised. Refer to Chapter 7, “Run-Time Organization,” for
more information.

Import_Object: This pragma allows Ada units to reference objects declared in non-Ada
units. The user of this pragma is responsible for understanding the representation of the
object being imported. Only objects at static scopes—that is, not within any task or
subprogram—can be designated by this pragma. Parameters are:

—The Ada name that is used to reference the object being imported.
—The link name of the object that is being imported.

The pragma must appear in the same declarative part as the named Ada unit, which
must be directly visible at the point of the pragma. :

References to the named Ada unit are translated by the cross-compiler into references to
the link name. The link name must be exported by another module of the program. The
following example shows a variable (Imported_Variable) of type Integer, which is being
imported from another module; the link name associated with the variable is XYZ:

Imported Variable : Integer;
pragma Import_Object (Imported Variable, "XY2"):;

Note that the cross-compiler does not ensure that the syntax of the link-name string is
consistent with that required by the assembler and the linker.

172 20288 RATIONAL

Appendix F

* Export_Object: This pragma allows Ada units to be exported to non-Ada objects. The
user of this pragma is responsible for understanding the representation of the unit being
exported. Only units at static scopes—that is, not within any task or subprogram—can
be designated by this pragma. Parameters are:

—The Ada name that is used to reference the object being exported.
—The link name of the object that is being exported.

The pragma must appear in the same declarative part as the named Ada unit, which
must be directly visible at the point of the pragma.

A global symbol is created to represent the address of the storage allocated to the Ada
unit. Non-Ada modules reference the link name of the object. The following example
shows a variable (Exported_Variable) of type Integer, which is being exported to another
module; the link name associated with the variable is ABC:

Exported Variable : Integer;
pragma Export_Object (Exported Variable, "ABC"):

Note that the cross-compiler does not ensure that the syntax of the link-name string is
consistent with that required by the assembler and the linker.

* Import_Procedure: This pragma allows an Ada unit to call a non-Ada procedure. This
pragma supplements the Interface pragma and is used to specify the interface to such an
imported subprogram. The user of this pragma is responsible for ensuring that all
requirements for the called subprogram are met. The following example shows a
procedure (Imported_Procedure) that is an external subprogram being imported:

procedure Imported Procedure(X : Integer; Y : out Float):
pragma Import_Procedure (Imported Procedure, "PQR");

* Import_Function: This pragma allows an Ada unit to call a non-Ada function. This
pragma supplements the Interface pragma and is used to specify the interface to such an
imported subprogram. The user of this pragma is responsible for ensuring that all the
requirements of the called subprogram are met. The following example shows a function
(Imported_Function) that is an external subprogram being imported:

procedure Imported Function(X : Integer) return Float;
pragma Import_Function (Imported_Function, "STU");

The complete syntax for these pragmas is:

pragma IMPORT FUNCTION
(internal_name
[, external name]
[, function profile]
, mechanisms)

RATIONAL 2228 m

Rational M68K/OS-9 Cross-Development Facility

pragma

pragma

pragma

pragma

internal_ name 0

external name

IMPORT_PROCEDURE |
IMPORT_VALUED_ PROCEDURE
(internal name
[, external name]
[, procedure profile]
, mechanisms)

EXPORT_FUNCTION
(internal_name
[, external name]
[, function_profile])

EXPORT_PROCEDURE
(internal name
[, external name]
[, procedure profile])

IMPORT_OBJECT |
EXPORT_OBJECT
(internal_name
[, external name]
[, size])

[INTERNAL NAME

[EXTERNAL NAME

=>] designator

=>] string_literal

function profile ::= param profile, result profile | nickname
procedure profile ::= param profile | nickname
param profile ::= [PARAMETER TYPES =>] parameter_types
result_profile ::= [RESULT_TYPE =>] type_mark
parameter_types ::= (null) | (type mark {, type_mark})
nickname :i= [NICKNAME =>] identifier | integer literal
mechanisms ::= [MECHANISM =>] mechanism | (mechanism

{, mechanism})
mechanism ::= VALUE | REFERENCE

174

wazss RATIONAL

Appendix F

Implementation-Dependent Attributes

There are no implementation-dependent attributes.

Package Standard

Package Standard defines all the predefined identifiers in the language.

package Standard is

type
type
type
type
type
type
type
type

type

type

Universal Integer is
Universal Real is
Universal Fixed is
Boolean is (False, True):;
Integer is range -2147483648 .. 2147483647;
Short_Short_Integer is range -128 .. 127;
Short_Integer is range -32768 .. 32767;
Float is digits 6
range -3.40282346638529E+38 .. 3.40282346638529E+38;
Long_Float is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;
Duration is delta 9.76562500000000E~04
range -1.31072000000000E+05 .. 1.31071999023437E+05;

subtype Natural is Integer range 0 .. 2147483647;
subtype Positive is Integer range 1 .. 2147483647;

. type

String is array (Positive range <>) of Character:

pragma Pack (String);
package Ascii is

Constraint_Error : exception;
Numeric_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;
Program Error : exception;

type

Character is

end Standard;

RATIONAL 222 175

Rational M68K/OS-9 Cross-Development Facility

Table 11-1 shows the default integer and floating-point types:

Table 11-1 Supported Integer and Floating-Point Types

Ada Type Name Size

Integer 32 bits
Short_Short_Integer 8 bits
Short_Integer 16 bits
Float 32 bits
Long_Float 64 bits

Note that fixed-point types are implemented using the smallest discrete type possible; it

may be 8, 16, or 32 bits. Standard.Duration is 32 bits.
Package System

package System is

type Name is (Motorola_68k);

System Name : constant Name := Motorola_ 68k:

Storage_Unit : constant := 8;
Memory Size : constant := 2 ** 31 - 1;

Min_Int : constant := -(2 ** 31);
Max_Int : constant := +(2 ** 31) - 1;

Max_Digits : constant := 15;

Max Mantissa : constant := 31;
Fine_Delta : constant := 2.0 ** (-31);
Tick : constant := 1.0E-03;

subtype Priority is Integer range 1
type Address is private;

Address_Zero : constant Address;

function "+" (Left : Address:; Right

function "+" (Left : Integer; Right

176

254;

Integer)

: Address)

return Address:;

return Address;

22288 RATIONAL

Appendix F

function "-" (Left : Address:; Right : Address) return Integer:;
‘ function "-" (Left : Address:; Right : Integer) return Address;

function "<" (Left, Right : Address) return Boolean;

function "<=" (Left, Right : Address) return Boolean;

function ">" (Left, Right : Address) return Boolean;

function ">=" (Left, Right : Address) return Boolean;

function To Address (X : Integer) return Address;

function To_Integer (X : Address) return Integer;

private

end System;
Representation Clauses
The M68K/OS-9 cross-compiler supports the following representation clauses:
. * Length clauses:
—for Access_Type’ Storage_Size use X;
If X is static and equal to 0, no collection is allocated. Any attempt to evaluate an
allocator will raise a storage error. (Other values of X, which need not be static, are
honored.)
—£for Task_Object’Storage Size use X;
—for Task_Type’ Storage_Size use X:

—for Fixed Type’Small use X;

* Record representation clauses: The compiler supports both full and partial representation
clauses for both discriminated and undiscriminated records.

* Enumeration representation clauses.

* Address clauses for interrupts.

RATIONAL 2228 177

Rational M68K/0OS-9 Cross-Development Facility

Restrictions on Array and Record Packing and Record Representation Clauses

* Arrays: Packed arrays of discretes (Integer and Enumeration types, including Booleans)
are supported. Components of packed arrays occupy the minimum possible number of
bits, which may range from 1 to 24.

* Records: A record field can consist of any number of bits between 1 and 32, inclusive;
otherwise, it must be an integral number of words.

e Change of representation: Change of representation is supported wherever it is implied
by support for representation specifications. In particular, implicit or explicit type
conversions between array types or record types may cause packing or unpacking to
occur; conversions between related enumeration types with different representations may
result in table lookup operations.

The following example shows support for a change of representation of an array:

type Arr is array(l..10) of boolean;
type Brr is new Arr;
pragma Pack (Brr)

X : Arr := (1..10 => false):
Y : Brrxr := Brr (X):;

Change of representation occurs in the type conversion to Brr.
Names Denoting Implementation-Dependent Components
There are no user-visible implementation names.

Interpretation of Expressions That Appear in Address Clauses
Address clauses can be used with statically allocated objects.

Unchecked Conversion

The target type of an unchecked conversion cannot be an unconstrained array type or an
unconstrained discriminated type.

Machine Code

Machine-code insertions are not supported at this time.

178 22208 RATIONAL

ASCII Table

. Appendix A
ASCII Table
Standard 7-Bit ASCII Code
Bits B7, B6, and B5 are represented by the column headers.
Bits B4, B3, B2, and B1 are represented by row headers.
000 001 010 011 100 101 110 111
0000 | NUL DLE SP 0 @ P ¢
0001 SOH DC1 ! 1 A Q a
0010 STX DC2 2 B R b r
0011 ETX DC3 3 C S c s
0100 EOT DC4 4 D T d t
0101 ENQ | NAK % 5 E U e u
0110 | ACK SYN & 6 F \% f v
0111 BEL ETB ’ 7 G A g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
. 1010 LF SUB * Jd Y/ j z
1011 vT ESC + ; K [k ({
1100 FF FS , < L \ 1 I
1101 CR GS - = M] m)
1110 SO RS . > N A n ~
1111 SI Us / ? (o) - o DEL

RATIONAL 222 179

Rational M68K/OS-9 Run-Time Error Messages

Appendix B
Rational M68K/OS-9 Run-Time Error Messages

The following is a list of the M68K/OS-9 run-time error messages.

128:001 (***) Exception elaborating ADA runtime
An exception was raised and not handled while elaborating the Ada run time.

Please report this problem to Rational.

128:002 (***) Exception finalizing ADA runtime
An exception was raised and not handled while finalizing the Ada run time.

Please report this problem to Rational.

128:003 (***) Unhandled trap in main program

A machine trap occurred while executing the main program, for which no trap handler was
installed.

Please report this problem to Rational.

128:004 (***) Unhandled trap in ADA task
A machine trap occurred while executing a task, for which no trap handler was installed.

Please report this problem to Rational.

128:005 (***) Exception elaborating library units

An exception was raised and not handled while elaborating a library unit, before executing
the main program. The debugger can help identify where the exception occurred.

128:006 (***) Unhandled exception in main program

An exception was raised and not handled while executing the main program. The debugger
can help identify where the exception occurred.

RATIONAL 2228 181

Rational M68K/OS-9 Cross-Development Facility

128:007 (***) Bad Entry Number

Please report this problem to Rational.

128:008 (***) <UNUSED ERROR CODE>

Please report this problem to Rational.

128:009 (***) Bad Open Alternatives

Please report this problem to Rational.

128:010 (***) Unexpected Reply

Please report this problem to Rational.

128:011 (***) Bad Message Id From Send

Please report this problem to Rational.

128:012 (***) Bad Status From Wait_Nonblocking

Please report this problem to Rational.

128:013 (***) Bad Status From Wait

Please report this problem to Rational.

128:014 (***) Bad Status From Length

Please report this problem to Rational.

128:015 (***) Bad Status From Remove_ Message

Please report this problem to Rational.

128:016 (***) Bad Status From Send

Please report this problem to Rational.

182

@
s RATIONAL

Rational M68K/OS-9 Run-Time Error Messages

128:017 (***) Bad Status From Send_Without Priority

Please report this problem to Rational.

128:018 (***) Bad Status From Retrieve Message

Please report this problem to Rational.

128:019 (***) Bad Status From Create

Please report this problem to Rational.

128:020 (***) Bad Status From Delete

Please report this problem to Rational.

128:021 (***) Bad Status From Delete If Empty

Please report this problem to Rational.

128:022 (***) Bad Status From Start_Timer

Please report this problem to Rational.

128:023 (***) Bad Status From Stop_Timer

Please report this problem to Rational.

128:024 (***) Bad Status From Set_Priority

Please report this problem to Rational.

128:025 (***) Bad Status From Fork

Please report this problem to Rational.

128:026 (***) Unexpected Null Task Id

Please report this problem to Rational.

RATIONAL 222

183

Rational M68K/OS-9 Cross-Development Facility

128:027 (***) Bad Tcb Checksum

Please report this problem to Rational.

128:028 (***) Unexpected Null Layer

Please report this problem to Rational.

128:029 (***) Layer State Inconsistency

Please report this problem to Rational.

128:030 (***) Task Activated Twice

Please report this problem to Rational.

128:031 (***) Bad Message Size From Retrieve

Please report this problem to Rational.

128:032 (***) Bad Index From Wait

Please report this problem to Rational.

128:033 (***) Suspension State Inconsistency

Please report this problem to Rational.

128:034 (***) Bad Message In Queue

Please report this problem to Rational.

128:035 (***) Unemptiable Queue

Please report this problem to Rational.

128:036 (***) Reply Queue Not. Empty

Please report this problem to Rational.

184

a2 RATIONAL

Rational M68K/0OS-9 Run-Time Error Messages

128:037 (***) Negative Delay Amount

Please report this problem to Rational.

128:038 (***) Bad Id from Start_Timer

Please report this problem to Rational.

128:039 (***) Entry Queue Not Already Deleted

Please report this problem to Rational.

128:040 (***) Reply Queue Already Deleted

Please report this problem to Rational.

128:041 (***) Acceptor Not Done Activating

Please report this problem to Rational.

128:042 (***) Parent Notified Twice

Please report this problem to Rational.

129:001 (---) Unhandled exception in Ada task

An exception was raised and not handled while executing a task. The debugger can help
identify where the exception occurred.

129:002 (---) Unable to allocate the heap for the program

Allocation of memory to use for the program heap failed; the operating system call
(F$SRqMem) returned an error. This may cause Storage_Error to be raised.

129:003 (---) Heap for the program has been exhausted

All memory allocated for use as the program heap has been used. This may cause
Storage_Error to be raised. Increasing the heap size for this program may be appropriate.

RATIONAL 22288 185

M68K/OS-9 Directory Structure

Appendix C
M68K/OS-9 Directory Structure

This appendix indicates where important pieces of the Cross-Development Facility can be
found. When the notation [current_load_view], [current_spec_view], or [current_code_view]
appears, see the current release note to find out what to insert.

* Assembler, linker, and compiler

The procedures to invoke the assembler and the linker and to restart the compiler can be
found in:

!Targets.Implementation.Motorola 68k. [current_spec_view] .Units.M68k
* Run times and default linker-command files
The run-time object-code files and the default linker-command file can be found in:

!Targets.Implementation .Motorola_ 68k. [current_code_view].
Units.Runtimes

* Object-module converter
The procedure to invoke the object-module converter can be found in:

. !Targets.Implementation.Object_Conversion. [current_spec_view].Units

* File-transfer utilities
The procedures to invoke the file-transfer utilities can be found in:

!Targets.Implementation.Motorola_68k_Transfer.[current_speq_view].
Units.0s9

* Debugger
The procedure for invoking the debugger can be found in:

!Targets.Implementation.Motorola_68k_Debuggers.[current_spec_view].
Units

* 0S-9 I/O packages
Packages Os9_Io and Simple_Io can be found in:

!Targets.Motorola_68k.Target Interface

RATIONAL 228 187

Rational M68K/OS-9 Cross-Development Facility

* Predefined I/O packages

Packages Text_Io and Io_Exceptions can be found in:
!Targets.Motorola_68k.Io
* Other predefined packages

Packages System, Calendar, Machine_Code, Unchecked_Conversion, and Unchecked-
_Deallocation can be found in:

!Targets.Motorola_68k.Lrm

188 2228 RATIONAL

!Common Debugging Commands
!Debug Debugging Commands
!Debug_Tools Debugging Commands

.Align 52
Align Directive
Ascii 46
Asciz 46
.Blank 45
Cpu 49
.Dc.A 46
.De.B 46
.De.D 46
.De.L 46
.Dec.S 46
DeW 46
DeX 46
.Dcb.A 47
.Dcb.B 47
.Dcb.D 47
.Dcb.L 47
.Dcb.S 47
Dcb.W 47
.Dcb.X 47
Defp.B 49
Defp.D 49
Defp.L. 49
.Defp.S 49
.DefpW 49
Defp.X 49
Deft.B 49
Deft.D 49
Deft.L 49
Deft.S 49
Deft.W 49
Deft.X 49
.Ds.A 46
.Ds.B 46
.Ds.D 46
.Ds.LL 46
.Ds.S 46
Ds.W 46
.DsX 46
Error 53
Error Directive
.Ext.B 47
Ext.L 47
ExtW 47
.Foot 45
.Gbl.B 47
.Gbl.L 47
GblLW 47
.Head 45

RATIONAL 22288

Index

189

Rational M68K/OS-9 Cross-Development Facility

JInclude 53

JInclude Directive 53
Jradix 51

JIradix Directive 51
.Length 45

.List 45

Listc 45

.Listmce 45

.Listmx 45

.Listnc 45

.Listnm 45

Listte 45

.Local Directive 42
Nlist 45

.Oradix 52

.Oradix Directive 52
.Output 53

.Output Directive 53
.Page 45

Radix 51

.Radix Directive 51
Rev 52

.Rev Directive 52
Sect 50, 109

Subttl 45

.Title 45

.Width 45

<Asm> File 23
<Elab_Asm> File 23
<Elab_List> File 23
<Elab_Obj> File 23
<Exe> File 23
<Link_Map> File 23
<List> File 23
<Obj> File 23

Absolute Expressions 43

Accepting Changes 157

Access Types 115

Activity 156

Ada Unit State 5
Address_To_Location 140
Allocators 121

Array Types 116

Asm_Source Switch 17

Assembler 9

Assembler Absolute Expressions 43
Assembler Binary Operators 43
Assembler Character Usage 55
Assembler Command 37
Assembler Command Example 38
Assembler Command Syntax 57
Assembler Complex Relocatable Expressions
Assembler Directive - .Align 52
Assembler Directive - .Blank 45

190

43

2228 RATIONAL

Assembler Directive - .Cpu 49
Assembler Directive - .Error 53
Assembler Directive - .Foot 45
Assembler Directive - .Head 45
Assembler Directive - .Include 53
Assembler Directive - .Iradix 51
Assembler Directive - .Length 45
Assembler Directive - .List 45
Assembler Directive - .Listc 45
Assembler Directive - .Listme 45
Assembler Directive - .Listmx 45
Assembler Directive - .Listnc 45
Assembler Directive - .Listnm 45
Assembler Directive - .Listtc 45
Assembler Directive - .Nlist 45
Assembler Directive - .Oradix 52
Assembler Directive - .Qutput 53
Assembler Directive - .Page 45
Assembler Directive - .Radix 51
Assembler Directive - .Rev 52
Assembler Directive - .Sect 50
Assembler Directive - .Subtt] 45
Assembler Directive - .Title 45
Assembler Directive - .Width 45
Assembler Directive - Offset 51
Assembler Directive .Local 42

Assembler Directive .Sect Parameter - Absolute At Nnn 50

Assembler Directive
Assembler Directive
Assembler Directive
Assembler Directive
Assembler Directive
Assembler Directive
Assembler Directive
Assembler Directive

.Sect Parameter - Alignment := Nnn
.Sect Parameter - Code 50

.Sect Parameter - Concatenate 50
.Sect Parameter - Data 50

.Sect Parameter - Overwrite 50
-Sect Parameter - Readonly 50
.Sect Parameter - Readwrite 50
.Sect Parameter - Relocatable 50

Assembler Directives 45

Assembler Expression Evaluation 43
Assembler Expression Evaluation And Complement Arithmetic
Assembler Initialized Block Allocation Directive - .Dcb.A
Assembler Initialized Block Allocation Directive - .Dcb.B
Assembler Initialized Block Allocation Directive - .Dcb.D
Assembler Initialized Block Allocation Directive - .Dcb.L
Assembler Initialized Block Allocation Directive - .Dcb.S
Assembler Initialized Block Allocation Directive - .Dcb. W
Assembler Initialized Block Allocation Directive - .Dcb.X
Assembler Initialized Block Allocation Directives 47
Assembler Initialized Unit Allocation 46

Assembler Initialized Unit Allocation Directive - .Ascii
Assembler Initialized Unit Allocation Directive - .Asciz
Assembler Initialized Unit Allocation Directive - .Dc.A
Assembler Initialized Unit Allocation Directive - .De.B
Assembler Initialized Unit Allocation Directive - .Dc.D
Assembler Initialized Unit Allocation Directive - .Dec.L
Assembler Initialized Unit Allocation Directive - .De¢.S
Assembler Initialized Unit Allocation Directive - .De.W
Assembler Initialized Unit Allocation Directive - .De.X

RATIONAL 2225

50

47
47
47
47
47
47
47

46
46
46
46
46
46
46
46
46

43

Index

191

Rational M68K/OS-9 Cross-Development Facility

Assembler Initialized Unit Allocation Directives 46

Assembler Input 38

Assembler Instruction Mnemonics 78

Assembler Intermodule Symbol Definition Directive 47
Assembler Intermodule Symbol Definition Directive - .Ext.B 47
Assembler Intermodule Symbol Definition Directive - .Ext.L 47
Assembler Intermodule Symbol Definition Directive - .ExtW 47
Assembler Intermodule Symbol Definition Directive - .GbL.B 47
Assembler Intermodule Symbol Definition Directive - .GbL.L 47
Assembler Intermodule Symbol Definition Directive - .GbLW 47
Assembler Intermodule Symbol Definition Directive - External 47
Assembler Intermodule Symbol Definition Directive - Global 47
Assembler Listing Directive - .Blank 45

Assembler Listing Directive - .Foot 45

Assembler Listing Directive - .Head 45

Assembler Listing Directive - .Length 45

Assembler Listing Directive - .List 45

Assembler Listing Directive - .Liste 45

Assembler Listing Directive - .Listme 45

Assembler Listing Directive - .Listmx 45

Assembler Listing Directive - .Listnc 45

Assembler Listing Directive - .Listnm 45

Assembler Listing Directive - .Listtc 45

Assembler Listing Directive - .Nlist 45

Assembler Listing Directive - .Page 45

Assembler Listing Directive - .Subtt} 45

Assembler Listing Directive - .Title 45

Assembler Listing Directive - .Width 45

Assembler Listing Directives 45

Assembler Local Symbol Indentifier 42

Assembler Local Symbol Table 42

Assembler Local Symbols 42

Assembler Numeric Literals 40

Assembler Operator Precedence 44

Assembler Permanent Symbol Redefinition 42

Assembler Scoping Rules 42

Assembler Simple Relocatable Expressions 43

Assembler Source Statement Comment Field 39

Assembler Source Statement Comment Separators 39
Assembler Source Statement Continuation Line Character 40
Assembler Source Statement Continuation Lines 40
Assembler Source Statement Fields 39

Assembler Source Statement Label Field 39

Assembler Source Statement Label Field Symbols 39
Assembler Source Statement Label Field Use 39

Assembler Source Statement Label Terminator Character 39
Assembler Source Statement Operand Field 39

Assembler Source Statement Operand Field Contents 39
Assembler Source Statement Operand Field Separators 39
Assembler Source Statement Operator Field 39

Assembler Source Statement Operator Field Contents 39
Assembler Source Statement Operator Field Terminator 39
Assembler Source Statement Separators 39

Assembler Source Statements 38

Assembler Storage Allocation Directives 45

Assembler Symbol Character Set 41

192

22208 RATIONAL

Assembler Symbol Definition Directive 48

Assembler Symbol Definition Directive - .Defp.B 49
Assembler Symbol Definition Directive - .Defp.D 49
Assembler Symbol Definition Directive - .Defp.L. 49
Assembler Symbol Definition Directive - .Defp.S 49
Assembler Symbol Definition Directive - .Defp.W 49
Assembler Symbol Definition Directive - .Defp.X 49
Assembler Symbol Definition Directive - .Deft.B 49
Assembler Symbol Definition Directive - .Deft.D 49
Assembler Symbol Definition Directive - .Deft.l. 49
Assembler Symbol Definition Directive - .Deft.S 49
Assembler Symbol Definition Directive - .DeftW 49
Assembler Symbol Definition Directive - .DeftX 49
Assembler Symbol Definition Directive - Equ 49
Assembler Symbol Definition Directive - Set 49
Assembler Symbol Resolution 42

Assembler Symbol Size 40

Assembler Symbol Structure 40

Assembler Symbol Types 41

Assembler Symbol Types - Macro Name Symbols 41
Assembler Symbol Types - Permanent Symbols 41
Assembler Symbol Types - User-Defined Permanent Symbols
Assembler Symbol Types - User-Defined Temporary Symbols
Assembler Symbols 40

Assembler Unary Operators 43

Assembler Uninitialed Block Storage Directive - .Ds.A 46
Assembler Uninitialed Block Storage Directive - .Ds.B 46
Assembler Uninitialed Block Storage Directive - .Ds.D 46
Assembler Uninitialed Block Storage Directive - .Ds.. 46
Assembler Uninitialed Block Storage Directive - .Ds.S 46
Assembler Uninitialed Block Storage Directive - Ds.W 46
Assembler Uninitialed Block Storage Directive - Ds.X 46
Assembling In The Motorola_68k View Or World 21
Assembly Language Source Code 38

Associated Files 23

Associating A Switch File With AWorld 17
Auto_Assemble Switch 17

Auto_Link Switch 17

Backus-Naur Formalism 57,106

Backus-Naur Formalism Used With Assembler Commands
Backus-Naur Formalism Used With Linker Command Files
Based Numeric Literals 40

Binary Operators 43

Block Allocation Directives 47

Bnf 57,106

Bnf Used With Assembler Commands 57

Bnf Used With Linker Commanad Files 106

Building Collections 96 E

Building Memory Segments 96

Call 111,112,114

Call And Return 111

Capabilities 5

Change Propagation In Combined Views 159
Chapter 13 Support 34

RATIONAL 2225

41
41

57
106

Index

193

Rational M68K/OS-9 Cross-Development Facility

Character Usage 55

Checked In 154, 157

Checked Out 154, 157

Clients 155

Closed Private Part 159

Closed Private Parts 156

Cmve 13, 14, 153

Cmvc Commands 160

Cmvec Database 154

Cmvc Review 153

Code Address Space Restriction 110

Code And Data Address Space Restriction 110

Code Optimization And Construction Of A Frame 111
Code View 158

Coded State 6, 7, 29, 30

Collection 93

Collection - Dynamic 121

Collection - Global 121

Collections 96, 102, 120

Collections - Extensible 121

Collections - Non Extensible 121

Combined View 155

Command M68k.Assemble 37

Command Syntax 57

Command Windows 34

Commands Used With A Linker Command File 99
Commands Used With Debuggers 146

Comment Field 39

Compatible 156

Compilation Mode 5

Compilation Models 29

Compilation States 29

Compilation Unit 93

Compiler Commands 32

Compiler-Runtime System Interface For Attributes 123
Compiler-Runtime System Interface For Delays 124
Compiler-Runtime System Interface For Exceptions 124
Compiler-Runtime System Interface For Miscellaneous 130
Compiler-Runtime System Interface For Storage Management
Compiler-Runtime System Interface For Tasking 126
Compiler-Runtime System Interface For Utilities 130
Compiler-Runtime System Interfaces 122

Compiling In A Motorola_68k View Or World 21
Compiling, Assembling, And Linking Ada Programs 20
Complement Arithmetic 43

Complement Arithmetic And Expression Evaluation 43
Complex Relocatable Expressions 43

Conditional Assembly 53

Configuration 155

Configuration Management 153

Configuration Management And Version Control 153
Consistent Semantic Network 159

Constraint_Error 118

Construction Of A Frame 111

Construction Of A Frame And Code Optimization 111
Contents Of An Assembler Source Statement Operator Field

194

125

39

®
s RATIONAL

Contents Of Linker Command File 93

Contents Of The Assembler Source Statement Operand Field 39
Contents Of The Link Map 97

Continuation Lines 40

Controlled 154

Converting And Transferring The Executable Files 24
Converting The Executable Files 25,133

Creating Ada Units 19

Creating Ada Units In A Motorola_68k World Or Subsystem 19
Creating Ada Units In The R1000 World Or Subsystem 19
Creating An Motorola_68k Path From An R1000 Path 13
Creating The Library Switch File 16

Creating The M68K/0OS-9 World 15

Creation Of Dynamic Collection 121

Cross Compiler Switches 17

Cross Linker Reference Manual 93

Cross-Compiler 9

Cross_Cg.Auto_Assemble Switch 37

Current_Debugger 145

Data Address Space Restriction 110

Debug Command For Establishing The Current Debugger 145
Debug Command For Stepping By Machine Instructions 146
Debug Commands For Determining Location 140

Debug Commands For Displaying Machine Level Program Values
Debug Commands For Modifying Machine Level Program Values
Debug.Address_To_Location 140

Debug.Current_Debugger 145

Debug.Invoke 138

Debug.Kill 145

Debug.Location_To_Address 140

Debug.Memory_Display 141

Debug.Memory_Modify 143

Debug.Object_To_Location 141

Debug.Register_Display 142

Debug.Run 146

Debugger 9, 150

Debugging Commands Found In !Common 146

Debugging Commands Found In !Debug 147

Debugging Commands Found In !Debug_Tools 149
Debugging During Elaboration 151

Debugging_Level Switch 18

DefiningAWorld 8

Design Degradation 154

Differences Between The R1000 And M68K/OS-9 Compilers 34
Directive Align 52

Directive .Ascii 46

Directive .Asciz 46

Directive Blank 45

Directive Cpu 49

Directive De. A 46

Directive DeB 46

Directive DeD 46

Directive DcL. 46

Directive Dc.S 46

Directive De.W 46

RATIONAL 2z

141
143

Index

195

Rational M68K/OS-9 Cross-Development Facility

Directive .Dc.X 46
Directive .Dcb.A 47
Directive .Dcb.B 47
Directive .Dcb.D 47
Directive .Dcb.L 47
Directive .Dcb.S 47
Directive .Dcb.W 47
Directive .Dcb.X 47
Directive .Defp.B 49
Directive .Defp.D 49
Directive .Defp.L. 49
Directive .Defp.S 49
Directive .Defp.W 49
Directive .Defp.X 49
Directive .Deft.B 49
Directive .Deft.D 49
Directive .Deft.L 49
Directive .Deft.S 49
Directive .Deft.W 49
Directive .Deft.X 49
Directive .Ds.A 46
Directive .Ds.B 46
Directive .Ds.D 46
Directive .Ds.L 46
Directive .Ds.S 46
Directive .Ds.W 46
Directive .Ds.X 46
Directive .Error 53
Directive .Ext.B 47
Directive .Ext.L 47
Directive .Ext.W 47
Directive .Foot 45
Directive .Gbl.B 47
Directive .Gbl.L 47
Directive .Gbl.W 47
Directive .Head 45
Directive .Include 53
Directive .Iradix 51
Directive .Length 45
Directive .List 45
Directive .Listc 45
Directive .Listme 45
Directive .Listmx 45
Directive .Listnc 45
Directive .Listnm 45
Directive .Listtc 45
Directive .Local 42
Directive .Nlist 45
Directive .Oradix 52
Directive .Qutput 53
Directive .Page 45
Directive .Radix 51
Directive .Rev 52
Directive .Sect 50
Directive .Subtt] 45
Directive .Title 45

196

2e2s RATIONAL

Directive .Width 45

Directive Equ 49

Directive External 47

Directive Global 47

Directive Offset 51

Directive Set 49

Directory 185

Directory: Assembler, Linker, Compiler 187
Directory: Debugger 187

Directory: File Transfer Utilities 187

Directory: Object-Module Converter 187

Directory: Os-9 /O Packages 187

Directory: Other Predefined Packages 188
Directory: Predefined /O Packages 188

Directory: Runtimes And Default Linker Command Files 187
Discriminated Records Of Unconstrained Types 116
Dynamic Collection 121

Dynamic Collection - Creation 121

Dynamic Collection - Finalization 121

Dynamic Memory Allocation Of Access Types 120
Dynamic Memory Deallocation Of Access Types 120

Elaboration Files 23

Elaboration Module 7

Enforcing Design Decisions 155

Equ 49

Example Of A Library With Associated Files 24
Example Of The Assembler Command 38
Exception Handling 117

Exception Processing 117

Exceptions 151

Exceptions Raised By The Runtime System 118
Exceptions Rasied From Hardware Traps 118
Excluding A Section 105

Executable Code 158

Executable Module 7

Executing And Debugging 26

Executing On Target Hardware Using The Motorola_68k Cross Debugger
Executing On The Target Hardware 26
Executing On The D85 hardware 136
Execution Table 156

Exports 155

Expression Evaluation 43

Expression Evaluation And Complement Arithmetic 43
Extensible Collections 121

External 47

F$Fork 122

F$Fork System Call 122

F$Srqmem Memory Request 120
Finalization 117

Finalization Of Dynamic Collection 121
Force 105

Format Conversion Command 133
Frame Structure 111

Frozen Copy 155

RATIONAL 222ss

27

Index

197

Rational M68K/OS-9 Cross-Development Facility

Frozen Releases 157

Ftp Switches 19

Function Call 114

Function Return Conventions 116

Functions Returning Access Types 116

Functions Returning Dynamic Size Structures 117
Functions Returning Fixed Size Structures 117
Functions Returning Scalar Types 116

Generated Code 109
Generation 154, 155, 157
Generics 34

Global 47

Global Collection 121

Global Data Base Address 110

Hardware Traps 118
Heap 120

Imports 155

Incremental Operations 35

Initialized Block Allocation 47

Initialized Block Allocation Directive - .Dcb.A 47
Initialized Block Allocation Directive - .Dcb.B 47
Initialized Block Allocation Directive - .Dcb.D 47
Initialized Block Allocation Directive - .Dcb.L 47
Initialized Block Allocation Directive - .Dcb.S 47
Initialized Block Allocation Directive - .Dcb. W 47
Initialized Block Allocation Directive - .Dcb.X 47
Initialized Block Allocation Directives 47

Initialized Unit Allocation 46

Initialized Unit Allocation Directive - .Ascii 46
Initialized Unit Allocation Directive - .Asciz 46
Initialized Unit Allocation Directive - .Dc.A 46
Initialized Unit Allocation Directive - .Dc.B 46
Initialized Unit Allocation Directive - .De.D 46
Initialized Unit Allocation Directive - .De.L 46
Initialized Unit Allocation Directive - .Dc.S 46
Initialized Unit Allocation Directive - .De.W 46
Initialized Unit Allocation Directive - .Dc.X 46
Initialized Unit Allocation Directives 46

Input To The Assembler 38

Installed State 6, 29, 30

Interfaces Among Subsystems 155

Intermodule Symbol Definition Directive 47
Intermodule Symbol Definition Directive - .ExtB 47
Intermodule Symbol Definition Directive - .Ext., 47
Intermodule Symbol Definition Directive - ExtW 47
Intermodule Symbol Definition Directive - .Gbl.B 47
Intermodule Symbol Definition Directive - .Gbl.L, 47
Intermodule Symbol Definition Directive - .GbLW 47
Intermodule Symbol Definition Directive - External 47
Intermodule Symbol Definition Directive - Global 47
Invoke 138

Invoking The Debugger 138

198

2228 RATIONAL

Joined 157
Kill 145

Label Field In Assembler Source Statement 39
Library Switch File 16

Library Switches 16

Link Command To Specify Object Modules 101
Link Map 94, 97

Link Map Contents 97

Linker 7,9

Linker - Backus-Naur Formalism 106

Linker - Bnf 106

Linker - Building Collections 96

Linker - Building Memory Segments 96
Linker - Loading The Specified Modules 96
Linker - Producing The Link Map 97

Linker - Scanning Object Libraries 96

Linker Collection Command 102

Linker Command 94

Linker Command File 93, 96, 97

Linker Command File - Basic Commands 99
Linker Command File - User-Defined 97
Linker Command File Command 101

Linker Command File Contents 93

Linker Command File Reserved Words 99
Linker Command Table 100

Linker Command To Exclude A Section 105
Linker Command To Set A Symbol 105

Linker Command To Set The Starting Pc 105
Linker Command To Specify Collections 102
Linker Command To Specify Memory Bounds 104
Linker Command To Specify Object Libraries 102
Linker Command To Specify Placement 103
Linker Command To Specify Segment Type 104
Linker Command To Specify Segments 103
Linker Command To Suppress A Segment 104
Linker Command Use 100

Linker Commands 100

Linker Exclude Section Command 105

Linker Force Command 105

Linker Link Command 101

Linker Memory Bounds Command 104

Linker Placement Command 103

Linker Reserved Words 98

Linker Resolve Command 105

Linker Segment Command 103

Linker Segment Type Command 104

Linker Start Command 105

Linker Suppress Command 104

Linker Symbols 98

Linker Terminology 93

Linker Use Command 102

Linker User-Defined Symbols 98
Linker_Command_File Switch 18

Linking In The Motorola_68k View Or World 22

RATIONAL 222

Index

199

Rational M68K/OS-9 Cross-Development Facility

Linking Process 95

Listing Directives 45

Listing Switch 18

Load View 155

Loading The Specified Modules 96
Local Symbol Identifier 42

Local Symbol Table 42

Local Symbols 42

Local Symbols And Scoping Rules 42
Location Of Comments In An Assembler Source File 39
Location_To_Address 140

Logical Address Space 110

M68000 Assembler Instruction Mnemonies 78
M#68000 Dependent Assembler Syntax 61
M68k.Assemble Command 37

M68k/Os-9 Banner 16

M68k/Os-9 Compilation Mode 6

M68k/Os-9 Cross Debugger 7

M68k/Os-9 Cross Development Facility Summary 7
M68Kk/Os-9 Cross-Development Facility-Specific Library Switches
M68k/Os-9 Model 8,15

M68k/Os-9 Overview 5

M68Kk/Os-9 Portable Model 8

M68k/0Os-9 Switches 17

M68k/Os-9 Target Key 8 .

M68k/Os_9 Portable Model 15-.
M68k_Debugger Command 139

Macro Expansion 41

Major Components 9

Memory Bounds 104

Memory Bounds Of A Segment 96

Memory Management 110

Memory Management Options 110

Memory Request - F$§Srqmem 120

Memory Segment 94

Memory Segments 96

Memory Usage 110

Memory_Display 141,152

Memory_Modify 143

Merging Changes 157

Models 8

Motorola M68000 Dependent Assembler Syntax 61
Multihost Development 158

Multiple Load Views 156

Multisite Development 158

Non Extensible Collections 121

Normal Use Of The Assembler 37

Notes 157

Numeric Literals 40

Numeric Literals - Based 40

Numeric Literals - Distinguishing From Identifiers 40
Numeric Literals - Evaluation Of A Base 40

Numeric Literals - Syntax For Based Constants 40
Numeric Literals - Unbased 40

200

16

22288 RATIONAL

Object Evaluation 151

Object Libraries 96, 102

Object Library 94

Object Module 94

Object Module Converter 9

Object Modules 96, 101
Object_To_Location 141

Offset 51

Offset Directive 51

Operand Field 39

Operator Field 39

Operator Precedence 44
Optimization_Level 18

Optional Fields In A Assembler Source Statement 39
Os-9 Diagnostics 26

Os-9 Object Module Format 7,133
Os-9 Transfer Software 9
Overview 5

Packed Records And Arrays 35
Permanent Symbol Redefinition 42
Permanent Symbol Types 41
Permanent Symbols - Special 41
Placement 103

Policy 158

Porting R1000-Developed Ada Units From An R1000 Path To A Motorola _68k Path
Porting R1000-Developed Ada Units From An R1000 To A Motorola_68k World

Pragma Export_Function 115

Pragma Export_Procedure 115

Pragma Import_Function 115

Pragma Import_Procedure 115

Pragma Main 6, 7, 20, 23, 27, 120, 122
Preparing A Motorola_68k Environment 13
Primary Subsystem 158

Priority 122

Private Parts 156

Procedure Call 112

Processor Resource Utilization 110

Producing The Link Map 97

Program Dependencies 154

Program Elaboration 36

Program Execution Model 109

Program Execution Model - Compiler 109
Program Execution Model - Linker Command File 109
Program Execution Model - Runtime System 109
Program Execution Model - Target Machine 109
Program Execution Model - Target Operating System 109
Program Execution With Subsystems 156
Program Section 94

Program Sections 96, 109

Program Error 119

Project Management Issues 153

Project Partitioning 153

Project Reporting 157

Project Size 153

RATIONAL 2

in. Index

201

Rational M68KIOS-9 Cross-Development Facility

R1000 Compilation Mode 5

R1000 Compilation Mode Summary 6

R1000 Cross Linker Reference Manual 93

R1000 Cross-Assembler 37

R1000 Model 8

R1000 Object Module Format 7,133

R1000 Target Key 8

R1000_Portable Model 8

Recombinant Testing 157

Record Layout 35

Record Types 116

Redefinition Of Permanent Symbols 42

Register Conventions 110

Register_Display 142

Registers 110

Release 155

Release Libraries 155

Released Views 155

Releasing Combined Views 159

Relocatable Object Module 7

Relocation 96

Remote_Directory Switch 19

Remote_Machine 19

Repetitive Assembly 53

Reservation Token 154, 157

Reserved Words Used In Linker Command Files 99
Resolve 105

Resolving Undefined Symbols 96

Return 111

Run 146

Runtime - Access Types 115

Runtime - Allocators 121

Runtime - Array Types 116

Runtime - Constraint_Error 118

Runtime - Discriminated Records Of Unconstrained Types 116
Runtime - Exceptions Raised 118

Runtime - F$Fork System Call 122 »
Runtime - Functions Returning Access Types 116
Runtime - Functions Returning Dynamic Size Structures 117
Runtime - Functions Returning Fixed Size Structures 117
Runtime - Functions Returning Scalar Types 116
Runtime - Heap 120

Runtime - Priority 122

Runtime - Program_Error 119

Runtime - Record Types 116

Runtime - Scalar Types 115

Runtime - Storage_Error 119

Runtime - Tasking 121

Runtime - Tasking Error 119

Runtime - Tasks 122

Runtime - Unchecked Deallocation 121

Runtime - Unconstrained Array Types 116
Runtime Invocation Of Exception Processing 117
Runtime Library 9

Runtime Organization 109

Runtime _ Timers 122

202

s RATIONAL

Scalar Types 115

' Scanning Object Libraries 96
Scoping Rules 42
Scoping Rules And Local Symbols 42
Scratchpad 157
Secondary Subsystem 158
Segment Type 104
Segments 103
Separate Code And Data 94
Set 49
Setting A Symbol 105
Setting The Starting Pc 105
Setting The Motorola_68k Target Key 15
Severing Units 14
Simple Function Call 114
Simple Procedure Call 112
Simple Relocatable Expressions 43
Source State 5,6,29
Spec View 155
Special Permanent Symbols 41
Specifying Collections 102
Specifying Memory Bounds 104
Specifying Object Libraries 102
Specifying Object Modules 101
Specifying Placement 103 "
Specifying Segment Type 104 -
Specifying Segments 103

Stack Structure 112 o

Stack_Frames 152) i
. Standard Linker Command File 93, 97 9

Start 105

Storage Allocation Directive 45

Storage Allocation Directive Initialized Block Storage 45

Storage Allocation Directive Initialized Unit Storage 45 e
Storage Allocation Directive Uninitialized Block Storage . 45 L e
Storage Management 120 o
Storage Management - Dynamic Memory Allocation Of Access Types - 120
Storage Management - Dynamic Memory Deallocation Of Access Types 120
Storage_Error 119, 120, 122 i
Structure Of AFrame 111
Structure Of Assembler Symbols 40 R
Subpath 157 oo _
Subprogram Call 111 "
Subprogram Call And Return 111 e
Subprogram Return 111)
Subsystem Interfaces 155

Subsystems 13, 153, 154

Suppress 96, 104

Suppress_All_Checks 19

Suppressing A Segment 104

Suppressing Output Of A Memory Segment 96

Switch Cross_Cg.Auto_Assemble 37 .
Symbol Character Set 41

Symbol Definition Directive 48

Symbol Definition Directive - .Defp.B ~ 49
Symbol Definition Directive - .Defp.D 49

At

RATIONAL 2255

_Rgiggonal M68K/0S-9 Cfoss-Development Facility

Symbo] Definition Directive - .Defp.L. 49
Symbol Definition Directive - .Defp.S 49
Symbol Definition Directive - .Defp.W 49
Symbol Definition Directive - .Defp.X 49
Symbol Definition Directive - .Deft.B 49
Symbol Definition Directive - .Deft.D 49
Symbol Definition Directive - .Deft.L 49
Symbol Definition Directive - .Deft.S 49
Symbol Definition Directive - .Deft. W 49
Symbol Definition Directive - .Deft.X 49
Symbol Definition Directive - Equ =~ 49
Symbol Definition Directive - Set 49
Symbol Resolution 42

Symbol Types 41

Symbols 40

Symbols Used In Assembler Source Statement Label Fields 39
Syntax Of Assembler Commands 57

Target Key 8

Task Control Blocks 120

Tasking 121

Tasking_Error 119

Tasks 122

Terminating A Motorola_68k Cross Debugger Session 145
Terminology 93

Time-Stamped Comments In Work Orders 158

Timers 122

Tlcode 109
Tlconst 109
Tldata 109

Transfer Command 134

Transferring The Executable Files 25, 135
Types Of Permanent Symbols 41

Typical Source Statement 39

Unary Operators 43
Unbased Numeric Literals 40

Unchecked Deallocation 121

Unconstrained Array Types 116

Uninitialed Block Storage Directive - Ds.A 46
Uninitialed Block Storage Directive - Ds. B 46
Uninitialed Block Storage Directive - .Ds.D 46
Uninitialed Block Storage Directive - .Ds.L, 46
Uninitialed Block Storage Directive - .Ds.S 46
Uninitialed Block Storage Directive - Ds.W 46
Uninitialed Block Storage Directive - Ds.X 46
Universal Host 5

Use Of An Assembler Source Statement Label Field 39
User Scenario 11

User-Defined Linker Command File 97

Using The Assembler 37

Using The M68K/OS-9 Cross-Development Facility 11
Using M68K/OS-9 Worlds 15

Using Motorola_68k Subsystem Views 13

Venture 158

204

22ss RATIONAL

Version Control
View 155

153, 154

Work Order List 158

Work Orders And Time-Stamped Comments
Work Orders And User-Defined Fields 158
Working Libraries 155

Working Library = 155

Working Views 155

Worlds 7

Motorola_68k Cross Debugger Commands

RATIONAL 2228

158

137

i ¥E b

o~ LA [
Tt e, THEL Ty

L :
3 ad,
1
¢ =
2 3
. ¢ $
i : ¢
ELE .
2
PR !
PR 8o
% pezd
* i
i k2 N
i
b g Yy
5 4#1
5 5 e L
T ¢
.
s
. . L1
§ 12 B
;‘(?A,_’¥' ;o w(”!" BY YEE et
gy

- t

e oot
-

L

205

