Rational MC6802070S-2000 *
Cross-Development Facility -

"y

Rev. 1,0 Septembe_r 1988
Rev. 1 1, August 1 89 (Software Releaap Rev 4)

Rational and R1000 are reglstered trademarks and Rational Environment and RanonalSubsystems are trademarks of

Ranonal .) T e i

‘Motorola isa registered trademark of Motorola, Inc.

VAX and VMS are trademarks of Digital Equipment Corporation.

Rational
3320 Scott Boulevard :
Santa Clara, California 95054-3197

x

Prefac_e b 4 oL g

i

This Rational MC68020/0S-2000 Cross-Development Facility manu:I 'p'reggift's’ "information for
users about a software product that can be added to the basic Rational Enyironment™. This
Cross-Development Facility (CDF) makes it possible to develop and- deinugnapphcatwn pro-
grams for execution in a target environment havmg an MC68020 CPU runmng the 05-2000
operating system:. o o

This manual addresses software designers and engine®rs. responsible for rmplementmgrtarget

programs using Ada on the Rational® R1000® Development System. - The reader is assumed to
"2 be knowledgeable abott the Ada programming. langdagetand the Rational Embnmenf ‘Thls

manual is intended to be used with the Rational Emnronnfént RéferenceManual e R R At

Chapters 1-3 contain introductory material and bnef descrlpnons of how the CDF is intended
to be used. Major individual components of the CDF, which include cross-compiler, cross-
‘ assembler, cross-linker, runtime system, downloader, and cross-debugger, are described in
Chapters 4-9. Some elements of the CDF (such as the downloader or the command file for the
linker) can be additionally enhanced. Appendixes provide detailed reference information that
may be of interest to some users, including Appendix F for implementation-specific compiler
characteristics, which is required by the Reference Manual for the Ada Programming Lan guage.

The information in this manual has been reviewed carefully and is beheved to be correct as of
the publication date. -

¥f you have questions about using your Rational products, please contact your Rational
representative. If you would like to make comments about the usefulness or contents of this
manual, please send these to:

Publica tions Department
3320 Scott Boulevard SR g AT e BEAT IR Y e
Santa Clara, California 95054—3197

TR : .
S S
v e
. 4 : ; R S
. ® MRS S: P S
- RS . EAE i A

RATIONAL /158 I

Contents

1 KeyConcepts. e e e s e s s e s e s s e ae e s s et e s 1
2 Overview of the MC68020/0S-2000CDF ettt 5
Major Components e e e e e e e e e 5
CompilationModes e e 6
R1000 CompilationMode e 6
Mc68020_0s2000 CompilationMode e e 7
TargetKeys ittt e PR 8
Worlds8
Subsystems e e e e e e @ e e e e e e 9
ModelWorlds e e e e e e e e e e e 9
3. - Using the Cross-Development Facility et s e e e e e 11
UserScenario v v v v vt i e e e e e e e e e e e e e e 11
Preparing For Mc68020/0s-2000 Development e e 13
Setting Up an Mc68020_0s2000 Path 1naSubsystem I
Using Mc68020_0s2000 Worlds e e e e e e e e e e e 14
Creating an Mc68020_0s2000World . . .".o oo 14
Cdf Library Switches e 15 -
Creating theSwitchFile e e e e e e e e e 15
Cross-Compiler Switches e e e e 16
Creating AdaUnits i e 17
Creating Ada Units ina Subsystem or an Mc68020_0s2000 World e R e e e e e 17
Copying R1000-Developed Ada Units into-an Mc68020_! Os2000World 17
Porting R1000-Developed Ada Units to an Mc68020_ 052000 Path 18
Compiling, Assembling, And Linking AdaPrograms - 18
Compiling in an Mc68020_0s2000 VieworWorld 19
Assembling in an Mc68020_0s2000 View or World e e e e e 19 .
Linking in an Mc68020_0s2000 View or World 20
Associated Files e e 20
Converting And Transferring ExecutableModules L. 22
Converting ExecutableModules . . .". 000 22
Transferring ExecutableModules 23
Executing And Debugging 0o oo oo 24
4. MC68020/05-2000 Cross-Compilerot 25
~CompilationStates 25
SourceState e e e e h e e e e e 25
Installed State 26

RATIONAL s/15/89 v

MC68020/0S-2000 CDF

CodedState e e e 26
Compiler Commandsol P 27
Differences Between The Compilers T 30

Chapter 13Support oo v v lin i P 30

Command WIndows .+ . . = . it v e i vl lnii i i 30

Generics L .. 30

Incremental Operatlons e e e e e e e e e T.. 0L 30

PackedRecordsandArrays C e i s e e e e e 31

‘ RecordRepresentatxon...',....;;....l T |
5 MC68020/05-2000 Crcss-Assembler e e e et et, 33
.» Assembler Command (M681< Assemble) e e 33

Example S P &
Assembly-Language Sotirce Code e e e PR ... 35

Source Statements e P A

Format L. A S S
‘LabelField e T |
OperatorField B C. e z .. 35
OperandField = .. 0 o o oo 35
CommentField e LU0 36
ContinuationLines L e 36

Numenc therals e e e e e e 3, ... 36

Symbols e e b L B

Symbal ChgracterSet e , T

: SymbolTypes.‘..-,..'...f_...'...'.'....'
= 'Local Symbols.and Scopmg Rules .-

~ Symbol Resolutlon e e e e e e e Yoo,

. Expression Evaluation e '.‘. T S

Unary Operators I At

A Binary Operators o et e e LSl

’ Operator Precedence e e PR |

* AssemblerDirectives e

™ Llstnglrectlves T e .. . : .

o Stoxage-Allacauon Directives B Ry 0

Uninitialized Block Storage e PR I .40

Initialized Uit Storage v v v v v i i e . 41

Injtialized BlockStorage. e e e e e e e e ey y :

Intermodule Symbol—Deﬁmtlon Directives .

Symbol-Definition Directives e ee e, & e el

:» Miscellaneous Directives e e

= CPU Directive ... S S

Y . SECT Directive e e e e e R
OFFSET Directive oot i i et et e e s o e
RADIX Dlrectxve e e e e e L
IRADIX Directive e e e e e e gre e e [aiwp e - o 46
 ORADIX Directive . - - .

s "REV Directive e ey e e U 46

: ALIGN Directive . g v Y e ' 46
OUTPUT Directive e e qEEE e e 47

vi sn1s/80 RATIONAL

Contents

a¢

. ERROR Directive 47
INCLUDE Directive 47
Repetitive Assembly 47
Conditional Assembly S 5. LU , 48
Macro Assembly A oL e .49
CharacterUsage Y e 50

6: MC68020/0S-2000 Cross-Linker. — 53
v Terminology . . L. ...l it e Lowiie o o0 53
Linker Command (M68k.Link) S P 1

© TheLinking Process™ X Ll S Ve T T L 56
"+ Loading the Specified Modules . FRP ' -, 56
%; Scanning Object Libraries e 56
© . Building Collections T I ET Lt 56
Building Memory Segmients L. ... L. LU 56
Producing theLinkMap e e e e e e P .- 74

- LinkerCommandFiles R V4
Basic Commands Used with Linker Command FxIes Lo oo 59
i Program0 ... 00, Sl h . R 61
© Link L | ‘ CL LS EOTENS 6l
' Use Library P . T A A S0 62
ot Collection 62
s Segment 00 oLy 63
i Place PR A 64 63
"MemoryBounds LLLsn LRt G, T I 64
SegmentType oo vt vt T E cesAn 64
i Suppress Segment Lo o 65
' Exclude Section T e A L. 65
Force orResolve [LT 65

Start At ’ ; 66
Runtime Organization 4.0 otv v ' vt 67
“Introduction e e e e e e e e .. 67
“Program Execution Model e e e T EL. 67
GeneratedCode e e xR ; 67

, MemoryUsage S e e & 68
“* Processor Resource Utlhzatlon e e Al 68
: Registers P T 68
* Memory-Management Optlons A A S AT, T S 69

" SubprogramCall And Return . . .- . .- %07 s 2. . 69
o ASimple ProcedureCall.« ...v. CLolM R4 |
’ ASimple FunctionCall e e e e e . RS Ceo . 72
" Parameter-Passing Conventions [T .. 74
Scalar Typesand AccessTypes e e e e e 74
Simple Record and Array Types i . 74
o Unconstrained Discriminated Record Types T 74
“# .+ - Unconstrained Array Types. e e e e e W e. .. T5
i:‘;‘ - Functions Returning Scalar and Access Types o075
h Functions Returning Simple Structures S e 75

RA-”ONAE §715/89 vi’i’

- MC68020/08-2000 CDF

b

Functions Returmng Unconstramed Structures 75
Finalization. e 75
ExceptionHandling 76
 Exceptions Raised from Hardware Traps L. 76
Exceptions Raised by the Runtime System PR 77
Storage Management e e e e e 78
TheHeap T T IR IR A g T8
Collections 0 . .. 0 0 0. T oL 78
The Global Collection . SN S oL 79
Dynamic Collectlons 79
Allocators 0. . e 80

~ Unchecked Deallocation 80
"Tasking - 80
Tasks and Interprogram Commurucatlon e 80
Priority 81
Timers e e e e e e e e e e e e e e e e e e 82
MC68020/0S-2000 Downloader . . : e I -
Format-Conversion Command (Convert) S 83
Converting The Executable Files 4 IR 84
Transfer Command (Os2000_Put) S oLV L . 84
Transferring The ExecutableFiles 85
ExecutingDirectlyOnTheTarget' L TL R T -
Mcesozwos-zoooCross.mebugger.- RS+ PO X £
DebuggerCommands - PP CoookalL L 87
AdditionalCommands a0 o000 L Lo 90
InvokingtheDebugger:............. S) |
Determining Locations - L. 92
Debug.Address_To_Location -f . .75 e LT 92
Debug:Location_To_ Address5c.......... Lo .. 93
Debug:Object Location % e e v. ... 93

- Displaying Machine-Level Program Values : TR L 9%
Debug.Memery_Display ALCTON 94
‘Debug.Register_Display 95

. Modifying Machine-Level Program Values 95
- Debug.Memory_Modify - 95
Debug.Register-Modify . : . .. So2s00 po L0 b0 oL s 96
Program Control Commands 97
DebugBreak. .. :. o o oo 97
Debug.Current Debugger 98
Debug.Kill 98
Debug.Run 9
Debug.Target_ Request . : . .. ::.:..::. 050, R 5 99
Differences Between The Debuggers P103
Breakpoints F I I T
Exceptionso P [0
Elaboration oo oL P [
Object Evaluation . : : AT 104

viii

8/15/89 RATIONAL

R R e

[¥
t

‘Contents

Memory Display TR L e 104
StackFrames e 104
Naming and Generics S L TP UU A 104
Target-System Characteristics, 0. 105
AppendixI: ASCII Table PO 107

- Appendix II: LocationofComponents. e .. . 109

Appendix III: Assembler and Linker Syntax . S e e e e e 111
Bnf For LinkerCommandFiles.00 .0 . oo, 111
Bnf For Assembler Commands e Vg e e e e e 114

Target-IndependentSyntax T 114

" M68000-Family Syntax [fL.L. . 118
PR B p U

Appendix IV: Compiler Runtime Interface SR R K ¥ 4

~ Appendix V: Appendix F to the LRM for the Mc68020_0s2000 Tarﬁet se” A 1 |

- Implementation-Dependent Pragmas7T.. .. % .0........ 151

*uA .

Predefined Language Pragmas (Lrm Annex B)

PragmaMam e e e e e e e e e

'Using the Target Parameter e e S
Pragmas Import_Procedure and Import_Function . . .
Pragmas Export_Procedure and Export Function - s NP
Pragma Export_Elaboration_Procedure". e E e e e
Pragmas Import_Object and Export_Object «'ojem o 5o ’
Pragma Nickname [TERT ek
Pragma Suppress_All e AT S g e
Pragma Must_Be_An Entry A LT
Pragma Must_Be_Constrained44 .

Implementation-Dependent Attributes
Package Standard (Lrm AnnexC) e
Package System (Lrm 13.7) . .. C e e e e
Representation Clauses And Changes of Representatxon C e e e gk
Length Clauses (LRM 132) 0 g o s a oos oo,
Enumeration Representation Clauses (LRM 13 3). G e i st
_ Record Representation Clauses (LRM 13,4) .
.. Implementation-Dependent Components Ce e . S T
AddressClauses (LRM 13.5) o 0 v vt v o v i ie gyl e
Change of Representation (LRM 13.6) o . wro ¢ ciore v v v g al f o 500
SizeOfObjects W i e
~ Minimum, Default, Packed, and Unpacked Sizes-l e
_ Determination of Size B T R T T I
IntegerTypes....,..,......'..._.t....‘...~...‘~..:_.;~..,~,._.
Enumeration Types ge ga e e s .
Floating-PoINE TYPeS . « & o o v v v v ve ve e e et et e e g
Fixed-Point Types i
AccessTypesandTaskTypes e e e e e e e e e e e e e e
Composite Types S T e
Using a Record Representation Clause fe e e
CAlignmentFiller Lo o e e e e
CTailFiller .. .o oo
_UnpackedCompositeTypes e e e e e e e ... 169

‘QATIONAL '8/15/89 Cix

MC68020/0S-2000 CDF

Packed Composite Types-. 169
Limitations on the Effect of PragmaPack 170
Change of Representation for Packed Composite Types 170
Other Implementation-Dependent Features 170
MachineCode (LRM13.8) 0 ittt it 170
Unchecked Storage Deallocation LRM 13.10.1) 170
Unchecked Type Conversion (LRM 13.10.2) 171
Restrictions on Unchecked TypeConversion 171
Characteristics Of /OPackages« v v vt i vttt e e 171
External Files and File Objects (LRM 14.1) 171
Sequentialand DirectFiles, 172
File Management (LRM14.2.1) it 172
Sequential Input/Output (LRM1422) 172
Direct Input/Output (LRM 14.2.4) 172
Specification of Package Direct_Io (LRM1425) 172
Text Input/Output (LRM14.3) ittt it 173
File Management (LRM14.3.1) 173
Specification of Package Text Jo(LRM 14.3.10) 173
ExceptionsinI/O(LRM 14.4) 173

x s/1s/89 RATIONAL

1 Key Concepts

Often it is necessary or helpful to develop software on one machine (a host, such as the Rational
R1000) that will execute on another machine (called the target). Two classes of programs lend
themselves to this approach:

* Programs that will be run on small, embedded targets. Typically, the targets are micro-
processors that are components of a larger, more complex system. Such targets are powerful
enough to run the application program, but they are not capable of supporting a software-
development environment with editors, compilers, and debuggers. Target examples are:

— MIL-STD-1750A architecture
— Motorola® 68000-family microprocessors

These targets require a separate host for the development, debugging, testing, and integra-
tion of the software.

* Programs that are designed to run on (one or more) other target hardware architectures and
operating systems. The software-development environments of the target computers may
not be optimally designed for producing well-engineered code on a tight schedule. Cross-
developed software can be designed to run on a variety of targets. Developing software
separately for each target could result in different program characteristics for each target.
Using one machine as the development environment for multiple targets is an effective way
to standardize programs.

Rational’s Cross-Development Facility (CDF) products provide users with the ability to develop
programs to run on embedded systems or on nonembedded targets. Such programs are devel-
oped on the R1000 in its specially designed software-engineering support environment. Instead
of generating executable modules designed to run on the R1000, the CDF generates code that
can be executed on the designated target machine.

The code produced on the host can be targeted to many different target machines. With care
taken to ensure portability, programs developed on a Rational R1000 can be ported to the
MIL-STD-1750A architecture, to a bare Motorola 68020 microprocessor environment, to an
M68000 target with its own operating system, and/or to a VAX™/VMS™ target. Although the
executable modules that actually run on each target machine are different, the source code
developed on the host machine can be the same for all of them. Then, if a bug must be fixed, it
can be fixed on the universal host and the improved code can be installed on each target.

RATIONAL s/15/s i

MC68020/0S-2000 CDF

A typical software-development effort includes the following steps: compile, assemble, link,
load, execute, and debug. Depending on the characteristics and facilities supported in the
target, it may be desirable to perform some of these steps there. Cross-compilation and
debugging are always based on the host, because of its superior capabilities. Therefore,
different strategies can be employed for porting code from the universal host to the target
machine. For example: - -
¢ For embedded architectures, the Ada source code is generated on the universal host, the
source code is compiled into object modules on the host, the object modules are linked to
become an executable module, and then the executable module is ported to the target
machine, where it is executed and debugged from the host. (See Figure 1-1.)

R1000 Embedded Target

Cross-compile

Debug

Execute

Cross-assemble

Figure 1-1 CDF for Embedded Targets

* For nonembedded targets, some steps in the development process can take place in the
target. The advantages of cross-development over target-based software development still
apply, but perhaps only the cross-compilation, downloading, and debugging operations
need to be conducted from the host environment. (See Figure 1-2.)

R1000 Nonembedded Target

Cross-compile

Figure 1-2 CDF for Nonembedded Targets

Other distributions of the development stages between host and target are also possible. For
any cross-development strategy, an important component is the downloading stage and subse-

quent debugging of the newly developed programs in their target environment, using debug-
ging facilities from the host.

The Rational CDFs are flexible enough to provide solutions for most cross-development strate-
gies. Each CDF features a cross-compiler that generates target-specific assembly source code.

: o155 RATIONAL

Chapter 1: Key Concepts

This source code and any user-originated assembly iséu:égf"'éail'be cross-assembled and cross-
linked on the R1000 and then the executable module can'be downloaded to the target. For non-
embedded targets, the assembly source code can be downloaded to the target and then
assembled and linked using the target’s native assembler and linker.

The following chapters describe the Rational solution to cross-development of programs to be
executed on targets with Motorola 68020 CPUs running the OS-2000 operating system.

o
At

TN

RATIONAL /155 ;

2 Overview of the MC68020/0S-2000 CDF

The Rational MC68020/0S-2000 Cross-Development Facility (CDF) provides developers work-
ing on the R1000 the ability to generate, compile, assemble, link, and debug Ada programs to be
executed on a target system with a Motorola 68020 CPU that is running the OS-2000 operating
system. The R1000 is a universal host, on which you can create application programs in Ada
using the specialized software-engineering facilities of the Rational Environment.

Typically, you will use the CDF to cross-compile source code into MC68020/0S-2000 assembler
instructions, assemble these to produce an object module, and then link this object module with
other modules (for example, modules from the supplied Ada runtime library) to produce an
executable module. The executable module then is converted to an appropriate format and
transferred to the target. The resulting code can be executed on the target, with cross-
debugging supported from the R1000 host.

The CDF includes all the supporting software you need to accomplish these steps:

* Cross-compile/assemble/link programs targeted to MC68020,/0S-2000 processors.

* Write and cross-assemble your own assembly-language programs, and link them with other
library modules and/or assembled Ada code into executable modules.

* Download the executable module for target execution.
* Debug your program using the MC68020/0S-2000 cross-debugger.

MAJOR COMPONENTS

The major components of the MC68020/0S-2000 CDF include:

* Cross-compiler

¢ Cross-assembler

¢ Cross-linker

* Runtime library

¢ File-transfer software
* Cross-debugger

RATIONAL /1555 5

MC68020/0S-2000 CDF

Each of these is described in detail in following chapters of this manual. Another component of
the Rational Environment is of special importance to CDF users: configuration management
and version control (CMVC). For detailed information about CMVC, see the Project Manage-
ment (PM) book of the Rational Environment Reference Manual.

COMPILATION MODES

In the Rational Environment, a target key associated with a subsystem or a world sets a
compilation mode, indicating to the supporting software the target on which your software will
execute. There are more similarities than differences in use of the compilation modes. Because
cross-developers typically are experienced with the R1000 compilation mode, the following
paragraphs emphasize the differences between this “native” mode and the Mc68020_0Os2000
compilation mode.

In either mode, an active Ada unit exists in one of three states:

e Source
¢ Installed
¢ Coded

(An Ada unit also can exist in the archived state. For a description of this state, see “Ada
Images” in the Editing Specific Types (EST) book of the Rational Environment Reference Manual.)

The source unit contains the Ada code that will be compiled. This code can be edited, more code
can be added, and code can be deleted. The Environment provides facilities for syntactic and
semantic checking of this code.

A unit in the source state can be promoted to a higher state, the installed state. Code in an
installed unit has been verified to be syntactically and semantically correct. If this unit depends
on other Ada units, the Environment ensures that these units also are installed. Incremental
editing and recompilation can be performed on units in the installed state.

An installed unit can be promoted to become a coded unit. In this state, the compilation mode
makes a significant difference.

R1000 Compilation Mode

In R1000 compilation mode, a coded unit can be executed immediately. Some incremental
operations (such as adding a declaration to a package specification) can occur in the coded state.
If other units are required to execute this unit (that is, if they are withed by this unit), the
Environment manages the unit dependencies, ensuring that all the units are in the coded state.
If a required unit does not exist, or if it cannot be promoted to the coded state, the Environment
supplies an appropriate error message.

6 o158 RATIONAL

Chapter 2: Overview of the MC68020/0S-2000 CDF

When you execute an R1000 Ada program consisting of many units, you must know which unit
is the main unit and name that unit for execution. Optionally, you may include a pragma Main
in the unit, but that inclusion does not directly affect execution. Your program executes on the
R1000 hardware, and it uses the supportive Environment tools, such as the R1000 native
debugger.

The major features of native compilation on the R1000 include the following:

* The Ada unit exists in a source, installed, or coded state. There are no separate source and
object files.

* An Ada unit that is in the coded state is executable. You are not concerned with assembling
the object file or linking the necessary files into an executable module.

* The Environment manages all dependencies and guarantees that all the required units are
available in the proper state.

* A pragma Main is not required to specify which Ada unit is the main unit.
* The coded units execute on R1000 hardware.

Mc68020_0s2000 Compilation Mode

In the Mc68020_0s2000 compilation mode, units in the coded state are quite different.
Cross-compilation (promotion to the coded state) produces assembly-language source code that
is automatically cross-assembled. The resulting output is one relocatable object module for each
Ada compilation unit. For program execution on the target, these relocatable object modules
need to be linked to become an executable module.

For the cross-linker to produce an executable module for a program, the spec or body of the
main Ada unit must contain a pragma Main. This causes the linker to treat that unit as the main
program. A main program must be a procedure that is a library unit; it cannot be a function
that is a library unit or a subprogram that is in a package. '

When a main unit is coded, a relocatable object module for that unit is generated, along with an
elaboration module for the entire program. Then the cross-linker is invoked automatically, and
it links all of the program’s object modules, along with necessary modules from the Ada
runtime library, to produce the executable module and a link map that describes the program
layout.

The executable module produced by the cross-linker must be converted from the R1000 format
to the target format. The converted file must then be transferred to the target hardware, where
it can be executed directly using target facilities or indirectly using the cross-debugger that runs
on the R1000. The cross-debugger has the same user interface as the R1000 native debugger,
and it is capable of additional target-specific debugging operations (such as program stepping
at the machine-instruction level).

RATIONAL /15,55 7

MC68020/0S-2000 CDF

In summary, the major features of cross-compilation with the MC68020/0S-2000 CDF are these:

¢ The Ada unit exists in a source, installed, or coded state.

¢ The Environment manages all dependencies and guarantees that all the required units are
available in the proper state.

* The coded state of an Ada unit is not executable. In this state, relocatable object code exists,
but it still must be linked.

¢ A pragma Main is required to specify which Ada unit is the main unit. When the main unit
is promoted, it invokes the linker to generate an executable module.

* The executable file must be converted to the target’s own object-module format and trans-
ferred to the target system.

* The executable module can be executed directly on the target or indirectly using the
MC68020/0S-2000 cross-debugger.

Target Keys

Each world and each path within a subsystem has an associated target key that sets the
compilation mode. The target key specifies the target-specific compiler invoked when you enter
a compilation command (such as Compilation.Make or Promote) and also the target-specific
debugger operations available for the resulting code. The compilers have different code-
generator components; they produce target-specific code. You implicitly set the target key
when a world or a subsystem is created by your choice of a model world or subsystem. (See
Chapter 3 for more information.) Target keys of interest to MC68020/0S-2000 CDF users are:

e R1000 (the default)
* Mc68020_0s2000

Either key selects semantic checking, a code generator, and an appropriate debugger.

WORLDS

Programs can be developed in one or more worlds, which are components of the R1000 library
structure that encapsulates a library’s name space. Worlds provide physical and logical separa-
tion of library contents from enclosing libraries, which may be worlds or directories. For more
information about worlds, see the Library Management (LM) book of the Rational Environment
Reference Manual.

Using worlds for cross-target development is the same as using worlds for the R1000 target
development, except that worlds used for cross-target development must be created with a
model world that has the correct target key. Furthermore, library switches must be set up for
such worlds. (See “Preparing for MC68020/0S-2000 Development” in Chapter 3 for more
details.)

8 9/15/88 RAT]ONAL

Chapter 2: Overview of the MC68020/0S-2000 CDF

SUBSYSTEMS

As an alternative to development in worlds, programs can be developed in Rational Sub-
systems™, which are high-level encapsulations for program components. With subsystems, you
can control interfaces between program components, minimize recompilation requirements,
and enforce configuration management and version control (CMVC). For details about Rational
CMVC and subsystems, see the Project Management (PM) book of the Rational Environment
Reference Manual.

Subsystems have important advantages over worlds for cross-target development. Subsystems
can contain multiple development paths, which are workspaces for building variant imple-
mentations of a program. Typically, one path is set up for developing and testing the program
on the R1000 target. Then an additional path is created in the same subsystem, where the
program can be prepared for the target. The path for the target is created using a model world
that has the Mc68020_0s2000 target key. Paths support the development of common code as
well as code that is specific to each target.

Using subsystems for cross-target development is very similar to using subsystems for R1000
target development. Typically, the path for the Mc68020_Os2000 target contains load views
whose exports are expressed as spec views. However, there are some restrictions:

* If generics will be exported or if subprogram calls from other subsystems must be inlined,
the Mc68020_0s2000 target path must be created to contain combined views instead of load
views. (Use of combined views requires special release considerations; combined views do
not have the same advantages as spec/load views with respect to minimized recompilation
requirements and flexible recombinant testing.)

* Within Mc68020_0s2000 paths that contain spec/load views, private parts are not closed.
* Currently the capability for generating code views is not available in Mc68020_Os2000 paths.

MODEL WORLDS

In the Rational Environment, you use a model world to initialize newly created worlds and
subsystem paths with:

* A set of external links, which provide visibility to Ada units that reside outside the world or
subsystem

¢ Ada units

* Objects such as switch files

You can create your own model worlds, or you can use default models provided with the
Environment (in {Model). The supplied models of interest for the MC68020,/0S-2000 CDF are:

RAT'ONAL 9/15/88 9

MC68020/0S-2000 CDF

* R1000: Includes links for R1000-specific facilities.

* R1000_Portable: Includes links for only those facilities specified by the Reference Manual for
the Ada Programming Language (LRM) to ensure portability.

* Mc68020_0s2000: Includes links for target-specific facilities and additional Rational-
provided facilities for the MC68020/0S-2000.

* Mc68020_0s2000_Portable: Includes links for standard LRM-specified facilities for this
target.

10 o158 RATIONAL

3 Using the Cross-Development Facility

This chapter describes the steps necessary to create, compile, assemble, link, execute, and debug
MC68020/0S-2000 programs in the Rational Environment. The following steps are discussed in
the order required to execute a program:

* Preparing the Mc68020_0s2000 environment

* Establishing an Mc68020_0Os2000 library switch file

¢ Creating Ada units

* Compiling, assembling, and linking

¢ Converting to OS-2000 object-module format

* Transferring the executable file to the target

* Executing and debugging on the target

A sample scenario illustrating these steps is described in the next section; each step is discussed
separately in a subsequent section.

USER SCENARIQO

The following scenario illustrates one possible use of the MC68020/0S-2000 Cross-Develop-
ment Facility (CDF) to develop executable modules for the MC68020/0S-2000 target.

At first, Ada units are developed on the R1000 in a subsystem with the R1000 target key. These
units can be edited, tested, and debugged using all the facilities provided by the Rational
Environment. The tested code then can be moved to a different subsystem or path that has the
Mc68020_0Os2000 target key. See later sections in this chapter for more details about subsystems
and target keys. The MC68020/0S-2000 cross-compiler is applied to Ada units that have the
Mc68020_0s2000 target key.

If required, MC68020/05-2000 assembly source code can be created and cross-assembled in the

same subsystem. See Chapter 5 for details about the MC68020/0S-2000 cross-assembler. To
accommodate assembly code:

RATIONAL o156 T

MCé8020/0S-2000 CDF

* Ada units in the program must have the appropriate Interface, Import, or Export pragmas. .
* The assembler must be invoked explicitly with the M68k.Assemble command.

* The linker command file must be modified to reference the assembly modules for linking
when the main program is compiled. See Chapter 6 for more information about the linker
and the linker command files.

When the Ada units are promoted to the coded state, the compilation system automatically
selects the appropriate code generator, which generates relocatable object modules. For each
unit having a pragma Main, the object modules are linked automatically with required runtime
modules (and object modules produced by the cross-assembler, if any) to create the executable
module.

Once it is linked, the executable module must be converted to the OS-2000 object-module
format with the Convert procedure described in Chapter 8. Finally, the executable module is
transferred to the target, where it can be tested by executing commands from a target console or
by invoking the MC68020/0S-2000 cross-debugger.

Figure 3-3 depicts a possible user scenario.

Runtime library

Assembler

Download
converted
object module

Target-code
generator

Target debugger

Debugger : Debu
user interface kerne

Figure 3-3 Possible User Scenario

" o5/ RATIONAL

Chapter 3: Using the Cross-Development Facility

PREPARING FOR MC68020/0S-2000 DEVELOPMENT

The first step in preparing a cross-development environment is to choose whether to use
subsystems or worlds. It is assumed that you are already familiar with subsystems and worlds;
therefore, only the specifics required to operate with the MC68020/0S-2000 CDF will be
discussed. For more information on subsystems, see Project Management (PM); for worlds, see
Library Management (LM), both in the Rational Environment Reference Manual.

Note that programs for an Mc68020_0Os2000 target must be developed within subsystem views
or worlds that are created for that target. Ada units must be in an Mc68020_0s2000 view or
world in order to be cross-compiled for that target.

Setting Up an Mc68020_0Os2000 Path in a Subsystem

Within subsystems, you can compile, assemble, and link your Ada units as well as use the
facilities provided by configuration management and version control (CMVC) to manage your
project development. Each subsystem can contain multiple paths, one for each target.
Typically, you will do most of your development in the working view of an R1000 path and
then accept these changes into the working view of an Mc68020_0s2000 path.

To prepare an Mc68020_0Os2000 subsystem environment:

1. Use the Cmvc.Initial command to create the desired subsystems, one for each logical
program component. Specify models as appropriate so that the initial working view in each
subsystem has an R1000 target key. This initial working view defines an R1000 path.

2. Develop and test Ada units in the R1000 path. Use the Cmvc.Make_Controlled command to
put these units under CMVC.

3. When desired, create an Mc68020_0s2000 path from the R1000 path. To do this, select the
working view of the R1000 path and enter the Cmvc.Make_Path command, specifying at
least the following parameters:

* New_Path_Name: Specify the name prefix for the new path, according to your site’s
naming conventions. For example, the pathname can indicate the path’s target.

* Model: Specify a model that has an Mc68020_Os2000 target key. Predefined model
worlds are described in Chapter 2.

* Create_Load_View or Create_Combined_View: Specify one of these parameters to
indicate whether the new path will contain load or combined views. If Create_Load_View
is true, a working load view is created; if Create_Combined_View is true, a working
combined view is created. You should use load views if possible; however, you must use
combined views if generics are exported or if inlined subprograms are used.

* Join_Paths: Specify true if all or most of the controlled units are to be shared (joined)
between paths; specify false if none or few of the units are to be joined. (When
corresponding units are joined across paths, changes to one unit can be propagated
automatically to the others in its join set. A joined unit can be checked out in only one
path at a time. Unjoined units can be checked out and edited concurrently.)

RATIONAL 9/15/88 13

MC68020/0S-2000 CDF

4. Use the Cmvc.Sever or Cmvc.Join commands as necessary so that all target-independent
units are joined between the two paths and target-specific units are severed.

The resulting Mc68020_0s2000 path is a working view that contains a copy of the units from the
R1000 path. Development can now continue in either path, as appropriate.

For example, the following command establishes an Mc68020_Os2000_Working path that is
joined to Revl_Working:

Cnvc .Make Path (From Path => "Revl Working™,
New_Path Name => "Mc68020_0s2000_Working",
Create Load View => True,
Model => "Mc68020_0s2000",
Join_Paths => True);

This command creates an Mc68020_Os2000 path containing a working load view. All units are
joined between the R1000 path and the Mc68020_Os2000 path so that changes made to a unit in
one path can be propagated automatically to the corresponding unit in the other path through
the Cmvc.Check_Out or Cmvc.Accept_Changes command.

Within the Mc68020_0s2000 path, you can use the Cmvc.Sever command to sever any units
containing target-specific code. Severing units allows you to make changes to the units in one
view without affecting the corresponding units in the other view.

Using Mc68020_0s2000 Worlds

Typically, development is done with subsystems. However, if your site does not use subsys-
tems, you must create an Mc68020_0s2000 world. Units cannot be cross-compiled for the target
unless they reside in an Mc68020_0Os2000 subsystem or world.

Creating an Mc68020_0s2000 World
To create an Mc68020_0s2000 world initialized with the proper links:

1. Locate the library that will contain the Mc68020_0Os2000 world.
2. Enter the Library.Create_World command, specifying the following parameters:
¢ Name: Specify the desired world name.
* Model: Specify a model that has an Mc68020_0s2000 target key. Predefined model
worlds are described in the previous chapter.
For example, the following command creates a world called Hv_Test:

Library.Create World
(Name => "Hv_Test",
Model => "!Model.Mc68020_0s2000") ;

14 o158 RATIONAL

Chapter 3: Using the Cross-Development Facility

The banner for the new world will contain the following legend (note that the target key is
specified in the banner):

CDF LIBRARY SWITCHES

When an Mc68020_0s2000 world is created, a library switch file must be associated with that
world if you want to control some of the behavior of the MC68020/0S-2000 compiler,
assembler, and linker. (For more information, see package Switches in the Library Management
(LM) book of the Rational Environment Reference Manual.)

If you are using subsystems, a switch file already exists. You can modify these switches.

Creating the Switch File

The following steps are required only if you are using worlds; they are not required if you are
using subsystems.

A library switch file can be created and associated with the new Mc68020_0s2000 world by one
of the following methods:

e Method 1

1. From the new Mc68020_Os2000 world, enter the Switches.Edit command with default
parameters.

A switch file called Library_Switches will be associated with the Mc68020_0Os2000 world.
e Method 2

1. From the new Mc68020_0Os2000 world, enter the Switches.Create command, specifying
the File parameter with the name for the new switch file.

RATIONAL /155 | .

MC68020/0S-2000 CDF

For example, the following command creates a switch file called My_0Os2000_Switches:
Switches.Create (File => "My 0s2000_Switches");

2. Enter the Switches.Associate command, specifying the File parameter with the name of
the newly created switch file.

For example, the following command associates My_Os2000_Switches with a library:

Switches.Associate (File => "My 082000_Switches",
Library => "<IMAGE>");

You can now display and/or edit the library switches as necessary.

Cross-Compiler Switches

The switches of interest for the MC68020/0S-2000 cross-compiler are the Cross_Cg switches.
The Cross_Cg switches provided are:

16

Asm_Source: Takes a Boolean value; controls retention of the assembly source file generated
by the compiler. The filename has an .<Asm> suffix. The default value is false.

Auto_Assemble: Takes a Boolean value; controls whether the assembly source file that is the
result of coding an Ada unit is assembled automatically. Preventing assembly of compilation
units prevents generation of executable programs that depend on these compilation units.
The default value is true.

Auto_Link: Takes a Boolean value; controls whether the target linker runs when you code a
library procedure body that has an associated pragma Main. The default value is true.

Debugging Level: Controls the amount of supporting information that is produced for the
debugger when an Ada unit is coded. The possible values are:

NONE: No debugging information is produced.
PARTIAL: Debugging tables are produced but optimizations are not inhibited.

FULL: Debugging tables are produced and the scope of certain optimizations is
limited.(“Optimizations inhibited” means that code motion across statement
boundaries will not occur and the lifetimes of variables will not be reduced.) The
default value is FULL.

Linker_Command_File: Takes a string; a nonnull value of this switch overrides the default
filename for the linker command file required to link the object modules into an executable
module. The default value is the null string.

Linker_Cross_Reference: Takes a Boolean value; if true, causes the link map to include
cross-reference data that comprises the external symbol name, hex value of its location,
module in which it is defined, and modules that reference it. The default value is false.

o158 RATIONAL

Chapter 3: Using the Cross-Development Facility

* Listing: Takes a Boolean value; controls the generation of assembly-language listing files.
The filename has the suffix .<List>. The default value is false.

¢ Optimization_Level: Takes one of the integer values 2, 1, or 0; controls the amount of
optimization performed during code generation. The code optimization level represents a
trade-off between compiler speed and code quality. This may affect the operation of the
debugger and the size of the executable module. The values represent the following:

2: Fully optimize generated code; this limits effective use of the debugger

1: Minimally optimize; include only selective inlining for subprogram calls (this is the
default

0: No optimization; slowest compiler operation; but recommended for debugging

* Suppress_All_Checks: Takes a Boolean value; when set to true, it has the same effect as a
pragma Suppress_All at the beginning of each Ada unit in the library. The default value is
false.

In addition to the Cross_Cg switches, the following Ftp_Profile switches are of interest because
they are referenced when the converted executable files are transferred to the target. They also
are used by the MC68020/0S-2000 cross-debugger to select a remote machine and a remote
directory on the target: ‘ .

* Remote_Machine: The string value of this switch specifies the FTP name of the default
remote machine for file transfers; this should be the target.

* Remote_Directory: The string value of this switch specifies the name of the OS-2000 directory
on the target to be used for FIP transfers.

CREATING ADA UNITS

Now that you have created a subsystem or Mc68020_0s2000 world and have the proper target
key and the library switch file associated with the view or world, you are ready to create Ada
units. You can create Ada units directly in the new Mc68020_0Os2000 view or world, or you can

create them in an R1000 view or world and then port them to the Mc68020_0s2000 view or
world.

Creating Ada Units in a Subsystem or an Mc68020_0s2000 World

Creating units in an Mc68020_Os2000 view or world is identical to creating units in an R1000
view or world. You ‘ise the Environment facilities to create Ada specs and bodies; [Format] for
syntax checking, syntactic completion, and pretty-printing; and [Semanticize] for interactive
checking of Ada semantics.

There is one additional requirement in creating Ada units in the Mc68020_Os2000 view or

world: you must have a pragma Main at the end of each main unit specification or body. This
triggers the invocation of the linker after coding.

RATIONAL s/15/ss 17

MC68020/0S-2000 CDF

Copying R1000-Developed Ada Units into an Mc68020_0s2000 World

It is suggested that you create, debug, and execute your Ada programs using the features
provided by the Rational Environment and, when they are executing properly, move them to an
Mc68020_Os2000 view. Care must be taken not to with any packages that are specific to the
Rational Environment, because these packages are not available on the MC68020/0S-2000
target.

The programs can be copied between worlds using the Library.Copy command. You should set
the Copy_Links parameter to false; otherwise, you will copy links to R1000 units.

To copy units from an R1000 to an Mc68020_0s2000 world:

1. From any context, enter the Library.Copy command, specifying the following parameters:
* From: Specify the pathname of the R1000 world from which units are to be copied.

* To: Specify the pathname of the Mc68020_Os2000 world into which the units are to be
copied.

* Copy_Links: Change the Copy_Links parameter to false.

For example, the following command transfers the objects to the Mc68020_0s2000 world, where
they will be in the source state:

Library.Copy
(From => "!Users.Wjh.R1000_Directory",
To => "IProject.Start.Mc68020_0S2000_Directory",
Copy_Links => False);

For a more thorough discussion of the Library.Copy procedure, consult the Library Manage-
ment (LM) book of the Rational Environment Reference Manual.

Porting R1000-Developed Ada Units to an Mc68020_Os2000 Path

If you are using Rational Subsystems, you can create, debug, and functionally test your
programs within an R1000 path. Once the programs are executing properly, you can use the
CMVC facilities to move the units automatically to an Mc68020_Os2000 path using the
Cmvc. Accept_Changes command.

To ensure that the target linker will produce the correct executable module, you must place a
pragma Main on the main Ada unit. You can place the pragma Main in the main unit’s
specification or body before you move the units to the Mc68020_0s2000 view or world, or you
can add it into the main unit after you have moved the units.

18 o158 RATIONAL

Chapter 3: Using the Cross-Development Facility

COMPILING, ASSEMBLING, AND LINKING ADA PROGRAMS

Now that you have Ada units in your Mc68020_Os2000 view or world, you are ready to
compile, assemble, and link them into executable modules. Using the default settings in your
library switches (Cross_Cg.Auto_Assemble and Cross_Cg.Auto_Link), you can do all three
steps with one key: [Code (This World)).

The following sections describe these three processes and the files associated with them.

Compiling in an Mc68020_0s2000 View or World

After you have developed your Mc68020_Os2000 Ada units, you can promote them to installed
or to coded using the same approach used in R1000 worlds or views—with [Promote], [Code], or
[Code (This World)]. Normally, the compilation system invokes the assembler automatically when
a compilation unit is promoted to the coded state, and it invokes the linker automatically when
a main program is promoted to the coded state.

Assembling in an Mc68020_0s2000 View or World

Although the compilation system normally invokes the assembler automatically, you can
invoke the assembler explicitly if you have special assembly-code files that you want to
assemble. If these assembly programs are called by your Ada programs, you must ensure that
you use the appropriate pragmas in the Ada code. Each of the following pragmas is placed in
the same unit as the Ada specification that contains the Ada declaration corresponding to the
assembly-language body:

¢ Pragma Import_Function

¢ Pragma Import_Procedure

* Pragma Interface

You now must alter the linker command file so that these assembly modules are included in the
executable module. To do this, enter the necessary link commands into the linker command file
(refer to Chapter 6, “MC68020/0S-2000 Cross-Linker,” for a discussion of the linker command
file).

To assemble the units:

1. Enter the M68k.Assemble command, specifying at least the following parameters:
* Source_File: Specify the name of the input file that contains the assembly source code.
* Object_File: Specify the name of the output file that will contain the assembly object code.
* Listing_File: Specify the name of the output file that will contain the assembly listing.

For example, the following command assembles the source in the My_Assembly_Source file
into assembler object code, places it in the My_Assembly_Object file, and produces a listing file

RATIONAL 9/15/88 19

MC68020/0S-2000 CDF

called My_Assembly_Listing:

‘M68k.Assemble (Source File => "My Assembly Source",
Object File => "My Assembly Object
Listing File => "My Assembly Listing",
Produce Listing => True);

For a more complete description of this command and its parameters, including default values,
see Chapter 5, “MC68020/0S-2000 Cross-Assembler.”

Linking in an Mc68020_0s2000 View or World

The compilation system automatically invokes the linker when you invoke the compiler on a
main unit. You can invoke the linker automatically on a user-created linker command file if, for
example, you want to include some user-generated assembly files with the output from the
compiler. It is strongly suggested that you invoke the linker automatically and use the standard
linker command file or use a slightly modified linker command file. For information on the
linker command file, consult Chapter 6, “MC68020/0S-2000 Cross-Linker.”

If your special requirements necessitate using the linker manually, you can invoke the linker
explicitly. In this case, you are responsible for determining the proper linking order and where
in memory the program will reside. Also, you must name explicitly the compiler-generated
object-code modules and the assembler-generated object-code modules. This will require that
you alter the linker command file substantially.

To invoke the linker manually:

1. Enter the M68k.Link command, specifying (for this example) the following parameters:
¢ Command_File: Specify the name of the file that contains the linker commands.
* Exe_File: Specify the name of the file that will contain the executable object module.
* Produce_Statistics: Specify true if you want statistics.

For example, the following command reads commands in My_Linker_Command_File, pro-
duces an executable object module, and sends it to the Main_68k file; it also produces a
statistical summary of the number of object modules linked, the number of symbols produced,
and the number of fixups required and appends the summary to the link map:

M68k.Link (Command File => My Linker_Command File,
Exe File => Main 68k,
Produce_Statistics => True);

For a more complete description of this command and all its parameters, including default
values, see Chapter 6, “MC68020/0S-2000 Cross-Linker.”

20 o158 RATIONAL

Chapter 3: Using the Cross-Development Facility

Associated Files

When you compile programs, the compiler produces special files called associated files, the
names of which appear enclosed with angle brackets (< >) in the library system. If the library
switches for these files have been set to true, the files will be retained. These files are associated
with their parent (the Ada unit being compiled or assembled). If the parent is deleted or
demoted, all the associated files also will be deleted. You cannot create these files directly; they
result from invoking the MC68020/0S-2000 CDF. These files have names of the form
file_name.<xxx>. If you want to have permanent copies of these files that are not associated with
their parent, you can copy them into another file, but the new name cannot use the angle
brackets (< >).

The associated files are:

* <Asm>: Contains the assembly-language source generated by the compiler for the associated
compilation unit.

* <List>: Contains the assembly listing generated by the assembler from the <Asm> file.

* <Obj>: Contains the object module generated by the assembler from the <Asm> file. This is

- abinary file.

The following files are associated only with the main program (the one containing a pragma
Main):

* <Elab_Asm>: Contains the assembly-language source generated by the compiler for the main
program. The code in this file elaborates each of the units in the Ada program.

* <Elab_List>: Contains the listing for the elaboration code.

* <Elab_Obj>: Contains the object module for the elaboration code.

* <Exe>: Contains the executable module produced by the linker from the <Elab_Obj> file, the

<Obj> files of all compilation units in the transitive closure of the associated main program,
and the Ada runtime library.

* <Link_Map>: Contains the link map generated by the linker, which describes the <Exe> file
associated with the main program.

The following example shows a library that contains the files generated when the MC68020
/0S-2000 CDF is invoked and the Cross_Cg.Listing switch is set to true:

RATIONAL /155 | 21

MC68020/0S-2000 CDF

CONVERTING AND TRANSFERRING EXECUTABLE MODULES

Before you can run executable modules, you must convert them into an object-module format
that executes on the target and then transfer them to the target.

Converting Executable Modules

The executable module produced by the MC68020/0S-2000 linker is in the Rational object-
module format. To run on the target, it must be converted to the OS-2000 object-module format.

To convert an executable module:

1. Create a Command window from the library that contains the executable module.
2. Enter Convert and press [Complete].

2 o158 RATIONAL

Chapter 3: Using the Cross-Development Facility

3. Enter the name of the executable module at the 01d_Module prompt.

4. Enter the name of the executable module to be used on the target at the New_Module prompt.
5. Enter Mc68020_0s2000 at the New_Format prompt.

6. Press [Promote].

For example, the following command converts the object-module format:

Convert (Old Module => "Main 68k.<exe>",
Old Format => "RATIONAL",
New_Module => "Main 68k",
New_Format => "Mc68020_0s2000");

For more details about this command and all its parameters, including default values, see
Chapter 8, “MC68020/0S-2000 Downloader.”

Transferring Executable Modules

The executable module is now in the OS-2000 object-module format, so you can transfer it to the
target.

To transfer an executable module:

. From the library containing the executable module, create a Command window.
. Enter 0s2000_put and press [Complete].
- Enter the name of the executable module on the R1000 at the From Local File prompt.

- Enter the name of the executable module to be used on the target at the To_Remote_File
prompt. (If you want to debug this program later, it is recommended that this be the same
name as the program on the R1000.)

5. Enter the name of the machine that will receive the executable module at the
Remote_Machine prompt. (If you have set the Ftp_Profile Remote_Machine switch in your
switch file, you can use the default value for this parameter.)

6. Enter the name of the directory on the machine that will receive the executable module at the
Remote Directory prompt. (If you have set the Ftp_Profile Remote_Directory switch in
your switch file, you can use the default value for this parameter.)

7. Press [Promote].

W N =

For example, the following command transfers the executable module to the target:

0s2000_Put (From Local File => "Main MC68020",
To_Remote File => "Main MC68020",
Remote__Machine => "<DEFAULT>",
Remote Directory => "<DEFAULT>",
Transliterate => False,
Profile => Profile.Get);

RATIONAL s,15/55 23

MC68020/0S-2000 CDF

For more information about this command and all its parameters, including default values, see
Chapter 8, “MC68020/0S-2000 Downloader.”

EXECUTING AND DEBUGGING

Now that you have produced an executable module and have transferred it to the target, you
are ready to run it on the target. This is accomplished by running your program directly on the
target with commands from the OS-2000 operating system or by using the R1000-hosted
MC68020/0S-2000 cross-debugger. :

To execute the program on target hardware:

1. From a console attached to the target, log into the target.
2. Connect to the directory that contains the OS-2000-formatted executable module.
3. Enter the name of the executable module (for example, Main_M68k) and press [Returmn].

The program now runs on the target, but it does not run under debugger control.

To enable exception and trap tracing, an additional parameter (-e) can be included with the pro-
gram name. For example:

Main_ 68k -e
To execute the program on target hardware using the MC68020,/0S-2000 cross-debugger:
1. From the library containing the selected program, enter the Debug.Invoke command, using

default parameters.

The MC68020/0S-2000 cross-debugger window appears. The debugger is now running and
you are ready to execute and debug your program. Source-level debugging is identical to
debugging an R1000 program. Program output will appear on the console connected to the
target.

2. Press [Execute].
To quit the debugger if the job does not terminate normally, enter the following command:
Debug.Kill (Job => True, Debugger => True);

This command kills the R1000 and target components of the MC68020/0S-2000 cross-debugger
(Debugger => True) and the program being debugged (Job => True). If Debugger => False, the
debugging session remains and can be reused, using the Debug.Invoke command.

For more information on source-level commands for debugging, consult the Debugging (DEB)
book of the Rational Environment Reference Manual. For more information on machine-level
debugging on target, see Chapter 9, “MC68020/0S-2000 Cross-Debugger” and the release note.

2 o158 RATIONAL

4 MC68020/0S-2000 Cross-Compiler

The MC68020/0S-2000 Cross-Development Facility provides the user with the ability to de-
velop and compile programs using the Rational Environment. Choosing the Mc68020_0s2000
target key selects the MC68020/0S-2000 cross-compiler, which has an MC68020 code generator
instead of an R1000 code generator.

The direct output of the Mc68020_0s2000 code generator is MC68020 assembly source code.
Under default conditions, this assembly source code is assembled automatically and the
resulting object modules are linked automatically into an execution module. Therefore, the
differences between the R1000 and Mc68020_0s2000 code generators are not usually visible to
the user, and compilation using the MC68020/0S-2000 CDF is identical to compilation with the
native compilation system.

COMPILATION STATES

To compile a program, a user begins with an object, the Ada unit. An active Ada unit exists in
one of three states: source, installed, or coded.

Each unit has associated with it a compilation mode, determined by the target key of its world
or subsystem. The compilation modes of concern to users of the CDF are the R1000 and
Mc68020_Os2000 target keys. Characteristics of a unit depend on both its state and its target
key, as indicated in following subsections.

Source State

In the source state, an Ada unit contains source code that will be compiled. The Ada unit
initially is registered with the Environment as an anonymous unit. For example, it might be
represented in the world containing it as _Ada_10; this unit cannot be withed by another unit.
Once the unit has been promoted to installed, it is registered with the Environment and can be
withed by other units. The unit can be demoted back to the source state and still will be
registered with the Environment. The source code in either anonymous or registered units can
be edited, more source code can be added, and the code can be syntactically and semantically
checked. The source state is the same in the R1000 mode and the Mc68020_0s2000 mode.

RATIONAL /15,55 25

MC68020/0S-2000 CDF

Units in the source state can be promoted to the next higher state, the installed state. (See
“Compiler Commands,” in this chapter, for a description of commands that can be used to
promote the Ada unit from the source to the installed state.)

Installed State

The installed state is an intermediate state. In this state, an Ada unit is registered in the world
under its package or subprogram name and can now be withed by other Ada units. The Ada
unit is syntactically and semantically correct. If this unit depends on other units, they also must
be installed. Although users cannot freely add code, delete code, or edit code in units in the
installed state, they can perform such operations to a limited extent (see “Incremental Opera-
tions,” in this chapter). The installed state is the same for the R1000 and the Mc68020_0Os2000
targets.

Units in the installed state can be promoted to the next higher state, the coded state, or demoted
to the prior state, the source state. (See “Compiler Commands,” in this chapter, for a
description of commands that can be used to promote an Ada unit from the installed to the
coded state or demote it from the installed to the source state.)

Coded State

In the coded state, the following differences exist between the R1000 compilation mode and the
Mc68020_0s2000 mode:

* In the R1000 mode, the Ada unit can now be executed. If the unit withs any other Ada units,
they also must be in the coded state. If the withed units do not exist or cannot be coded, the
Environment provides an appropriate error message. Some incremental operations can be
performed in the coded state. (See “Incremental Operations,” in this chapter, for a discussion
of incremental operations that can be performed in the coded state.)

A pragma Main optionally may be added to the unit to indicate that it is the main unit.
Figure 4-1 shows the R1000 compilation mode.

¢ In the Mc68020_0s2000 mode, the Ada unit cannot be executed until some additional steps
are taken. By default, the output of the MC68020/0S-2000 code generator is assembly source
for each Ada library unit. The assembly source is assembled automatically by the assembler
into relocatable object modules and the assembly source is deleted. (See Chapter 5,

% o158 RATIONAL

Chapter 4: MC68020/0S-2000 Cross-Compiler

“MC68020/0S-2000 Cross-Assembler,” for more information on the assembly process.) To
execute a program, these relocatable object modules must be linked into an executable
module by the linker.

When the Ada unit is promoted to the coded state, some associated files are produced. These
files may include some or all of the following, depending on the settings of relevant library
switches:

<Asm> <List> .<Obj>
<Elab_Asm> .<Elab_List> .<Elab_Obj>
<Exe> : .<Link_Map>

The library switches also control whether some associated files are retained in the library.
See Chapter 3 of this manual or the Library Management (LM) book of the Rational Environ-
ment Reference Manual for more information about library switches.

Before the executable module can be executed, its object-module format must be changed,
and then it must be downloaded to the target (see Chapter 8, “MC68020/0S-2000
Downloader,” for more information on the conversion and downloading processes).

Figure 4-2 shows the Mc68020_0s2000 compilation mode.

—— -~

- ~<

N Assembler /

Executed

COMPILER COMMANDS

The same commands are used to invoke the MC68020/0S-2000 compiler and the R1000
compiler. The target key associated with the world determines which compiler is invoked. For
an extensive discussion of compilation commands, consult the Editing Specific Types (EST) and
Library Management (LM) books of the Rational Environment Reference Manual or Rational
Environment Basic Operations.

Table 4-1 summarizes editing and compiler commands typically used with the cross-compiler.

RATIONAL /1555 27

MC68020/0S-2000 CDF

Table4-1 Commands Associated with the Compiler

Command

Function

Common.Abandon

Ends the editing of Ada images. Any changes made to the image
since the last commit or promote are lost. However, incremental
changes made to installed or coded units, which are permanent as
soon as they are promoted, are not lost.

Common.Commit

Makes permanent any changes to the Ada image. This procedure is
used only for Ada images that are in the source state. When source
Ada images are edited, this procedure saves the changes to the image
in the underlying permanent representation. The commit operation
also is performed implicitly by the Promote, Ada.Code_Unit, and
Release procedures.

Common.Complete

Completes the selected Ada identifier or the identifiers in the selected
element using Ada semantics for name resolution.

Common.Create_Command

Creates a Command window below the current Ada window if one
does not exist; otherwise, it puts the cursor in the existing Command
window below the current window.

Common.Definition

Finds the defining occurrence of the designated element and brings
up its image in a window on the screen, typically with the definition
of the element selected.

Common.Demote

Demotes an Ada unit or element to a lower state.

Common.Edit

Creates a window in which to edit the named or selected unit and
demotes the unit to source if necessary.

Common.Enclosing

Finds the parent or enclosing Ada unit of the current window and
displays the parent in a window.

Common.Explain

Provides an explanation of the error designated by the cursor position
in the Ada unit in the current window. Used after semantic or
syntactic errors have been discovered, the procedure displays an
explanation of those errors in the Message window.

Common.Format

Checks the syntax of the current Ada image, performs syntactic
completion, and pretty-prints the image.

Common.Insert_File

Copies the contents of the text file specified in the Name parameter
into the current Ada image at the current cursor position.

28

o188 RATIONAL

Chapter 4: MC68020/0S-2000 Cross-Compiler

‘ Table 4-1 Commands Associated with the Compiler (continued)
Command Function
Common.Promote Promotes the Ada image in the current window to the next higher

state.

Common.Release Ends the editing of the Ada unit. The unit is unlocked and any
changes made to the image are committed (made permanent).

Common.Revert Reverts the Ada image in the current window to the last committed
version.

Common.Semanticize Checks the Ada units for semantic correctness. The procedure checks

for compliance with the semantic rules of the Ada language. Errors
discovered during semantic checking are underlined.

Compilation.Atomic_Destroy

Destroys the named objects.

Compilation.Compile Compiles the specified text file into the specified library. This
procedure parses and promotes the units in the specified file or files
to the specified goal state.

Compilation.Delete Demotes and deletes the default version of the specified object and

any subunits. The deletions may be reversible, if the retention count
is nonzero. This command differs from the Destroy and
Atomic_Destroy procedures, which permanently delete and expunge
objects.

. Compilation.Demote

Demotes the specified unit to the specified goal state, demoting any
other units within the limit necessary to achieve the requested
demotion.

Compilation.Dependents Displays the set of units that depend on the current or named units.

Compilation.Destroy Destroys the named objects and any subordinate units and demotes
dependent units.

Compilation. Make Promotes the specified units to the goal state. By default, this

procedure promotes to the coded state the units, their subordinates,
and the specs, bodies, and subunits of all units on which they depend.

Compilation.Parse

Parses the Ada source in the specified files and creates corresponding
Ada units in the specified directory.

Compilation.Promote

Promotes the specified unit in the specified scope to the specified goal
state. This procedure promotes to the coded state the units, their
subordinates, and the specs of all units on which they depend. A unit
is not promoted if it is not a legal Ada unit.

x

|
|
@
\

RATIONAL s/15/ss

29

MC68020/0S-2000 CDF

DIFFERENCES BETWEEN THE COMPILERS

This section briefly highlights the differences between the code generated by the native R1000
compiler for execution on the R1000 and the code generated by the MC68020/0S-2000 cross-
compiler for execution on an MC68020 target.

Chapter 13 Support

Implementation-dependent features of the compilers are different, of course. For more details,
see Appendix F of Rational’s Reference Manual for the Ada Programming Language for the R1000
compiler and Appendix V of this document for the MC68020/0S-2000 cross-compiler.

Command Windows

Command windows attached to Mc68020_0s2000 worlds behave like Command windows
attached to R1000 worlds in that compilations within Command windows reference package
Standard for the R1000 and generate R1000 code, not MC68020/0S-2000 code.
MC68020/05-2000 main programs cannot be executed from a Command window. Programs
must be run by converting the executable module from R1000 object-module format into
0S-2000 format, transferring the converted executable module to the OS-2000 system, and
executing on the target.

Generics

The R1000 architecture supports code-shared generics—multiple instantiations of a generic
share the same code. The MC68020/0S-2000 cross-compiler uses macro expansion to
implement instantiations of generics, so multiple instantiations yield multiple copies of the
code.

Incremental Operations

In an R1000 world, coded package specifications can be changed incrementally. In an
Mc68020_0s2000 world, incremental operations on coded objects are limited to the addition
and deletion of comments. The user can perform incremental operations on units in the
installed state in an Mc68020_0Os2000 world as in an R1000 world.

Table 4-2 shows the object state and the incremental operations that can be performed in that

state. For more explanation about performing incremental operations, consult the Rational
Environment Basic Operations manual.

30 o158 RATIONAL

Chapter 4: MC68020/0S-2000 Cross-Compiler

Table4-2 Incremental Operations

Object State Incremental Operation R1000 MC68020
Installed Add a statement, declaration, or comment. X X
Installed Change a statement, declaration, or comment. X X
Installed Delete a statement, declaration, or comment. X X
Coded Add a comment. X X
Coded Insert a declaration into a library-unit package x

specification.
Coded Change a comment. X X
Coded Change a declaration in a library-unit package

specification.
Coded Delete a comment. X X
Coded Delete a declaration from a library-unit package X

specification.

Packed Records and Arrays

For the R1000, all arrays and records are bit-packed by default. For the Mc68020_Os2000 target,
minimization of storage must be requested explicitly with the pragma Pack for a record or array
type, or with a record representation specification.

Record Representation

The R1000 and MC68020/08-2000 compilers lay out record fields differently.

RATIONAL /15,55

31

5 MC68020/0S-2000 Cross-Assembler

The MC68020/0S-2000 cross-assembler is an important part of Rational’s Cross-Development
Facilities, but it is not highly visible to most users. A separate assembler is provided for each
target computer family, although all assemblers implement the same target-independent
directives, conditional facilities, macro facilities, and object format. The assemblers assemble
compiler output, user modules, and user programs.

This chapter addresses individuals writing assembly-language programs or modules. The user
should be familiar with assembly-language programming style and techniques, target-specific
instructions and instruction syntax, and the Rational Cross-Development Facilities.

Several program examples are provided to illustrate features of the assembler. M68000-family
mnemonics and instruction syntax have been used for every example. However, because the
assembler is mostly target-independent, these examples apply equally to mnemonics and
instruction syntax of any supported target. Knowledge of the M68000 is not required to use this
material.

ASSEMBLER COMMAND (Mé68k.Assemble)

The compilation system normally invokes the assembler when the Cross_Cg.Auto_Assemble
library switch is set to true (the default value). However, it is also possible to invoke the
assembler directly by executing:

M68k.Assemble (Source File : String := "<IMAGE>";
Object_File : String := "<DEFAULT>";
Listing File : String := "<DEFAULT>";
Produce Object : Boolean := True;
Produce_Listing : Boolean := True;
Produce_Statistics : Boolean := False;
Response : String := "<PROFILE>");

The parameters for this command are:

¢ Source_File : String := "<IMAGE>";

Specifies the input file that contains the assembly source code. If <IMAGE> is used, the
object in the attached window or the selected object is used as the assembly source file.

RATIONAL /155 3

MC68020/0S-2000 CDF

Naming expressions also can be used. (Refer to the Library Management (LM) book of the
Rational Environment Reference Manual for information on wildcards that can be used in
naming expressions.) If a naming expression is used, an appropriate target-specific
expression also should be used with the Object_File and Listing_File parameters.

Object_File : String := "<DEFAULT>";

Specifies the output file that will contain the assembly object code. The default appends
—Object to the value of the Source_File parameter after removing the _Asm suffix, if it exists.

Listing File : String := "<DEFAULT>";

Specifies the output file that will contain the assembly listing. The default appends _List to
the value of the Source_File parameter after removing the _Asm suffix, if it exists. The
assembly listing can be useful for finding relative addresses of code and data and exact
locations of erroneous assembly statements.

Produce_Object : Boolean := True;

Specifies whether an object file is generated. The default is true. If false is selected, the
source file will be checked for correctness, but no object file will be generated.

Produce_Listing : Boolean := True;
Specifies whether an assembly listing file is generated. The default is true.
Produce_Statistics : Boolean := False;

Specifies whether statistics of the assembly process are generated. The statistics will be
included at the end of the listing file. The default is false.

Response : String := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what activities and switches to
use during execution of this command. The default is the job response profile.

Example

Assume that you want to assemble a file called User_Example. You want the object file to be

called User_Example_Object_Code and the listing file to be called User_Example_Listing. You
are not interested in generating statistics. The following command accomplishes this:

M68k.Assemble (Source File => "User_ Example_ Asm",
Object_File => "User Example Object_Code",
Listing File => "User_ Example Listing",
Produce_Listing => True);

9/15/88 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

ASSEMBLY-LANGUAGE SOURCE CODE

The input to the assembler is a text file, which consists of a series of source statements. Source
statements are used to control the assembly process, generate machine instructions, allocate
storage, and define constants. The assembler processes source statements one at a time in the
order in which they appear.

Source Statements

Format

A source statement contains four distinct fields; each is optional. A single statement usually
occupies a single line in the source file, but several lines can be used to express a statement by
using the line-continuation mechanism. The typical form of a source statement is:

[label:] [operator [operand(, operand}]] [; comment]

Source statements are separated by the line terminator—the ASCII character linefeed (16#0A#).

Label Field

The label field is used to associate a symbolic name with the current value of the location
counter. The symbolic name is entered into the user symbol table. A label must conform to the
rules for a symbol and must be terminated with the label terminator character, the colon (:). Ifa
label is present within a source statement, it is bound to a value. Although the label may have
been introduced previously via a directive or forward reference, it must not have been bound to
a value. An attempt to bind a symbol to a value more than once results in an assembly error.
The label is associated with the remainder of the source statement only textually, so the
following are equivalent, even though the rest of the source statement is on a separate line in
the second example:

label: lea (label), a0

label:
lea (label), al

Operator Field

The operator field can contain an instruction, an assembler directive, or a macro call. This field
can be terminated by either a space or a tab. The nature of the operator specifies the context for
processing the operand field.

Operand Field

The operand field contains operands that are specific to the operator. For instance, the oper-
ands for an instruction are usually effective addresses, whereas the operand for the .TITLE
directive is a character string. When operators require more than one operand, the operands
must be separated by commas.

RATIONAL 5156 o,

MC68020/0S-2000 CDF

Comment Field .

Comments can be present anywhere in the source file. Comments are separated from the other
fields by a semicolon (). All text between the semicolon and the line terminator is a part of the
comment field and is ignored. No restrictions are placed on the characters within a comment.

Continuation Lines

Normally a single source statement is contained on a single source line. In some cases, it may
be desirable to use several source lines to express a single source statement. To accomplish this,
a line-continuation character is required to indicate that the end of the line is not the end of the
source statement. The line-continuation character is the vertical bar (1). All characters between
the bar and the end-of-line character are ignored.

move.l ([table,d0*4],table entry offset), | this is a comment
([table,d1*4],table_gntry_pffset)

Numeric Literals

Numeric literals consist of two forms: unbased and based. Unbased literals are evaluated in the
current radix. Based literals define a radix for evaluation using Ada syntax. The default radix
is 10. The syntax for based constants is:

radix#numeric_literal#

The base is evaluated in the decimal radix and may be 2, 8, 10, or 16:

.radix 10 ; change the current radix to decimal

.de.b 100 ; this is 100 decimal

.de.b 16#100# ; this is 256 decimal

.radix 16 ; change the current radix to hex

.de.b 100 ; this is 256 decimal

.de.b 10#100# ; the radix is decimal; this is 100 decimal
-dc.b 16#100# ; the base is 16 decimal; this is 256 decimal

To distinguish numeric literals from identifiers, all numeric literals must begin with a digit:
.radix 10#16# make the current radix hex
.de.l ££ this is a reference to the symbol FF

.de.l 0ff ; this is a numeric constant equal to 255 decimal
-de.1l 16#£ff# ; this is never ambiguous

Symbols

Symbols are used to equate a name with a value. Symbols are strings of 1 through 32
characters, as specified below. Symbols that exceed the 32-character limit are flagged as illegal.

3 o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

Symbol Character Set
The following characters may appear within the text of a symbol:

A-Z Letters of the alphabet (case-insensitive)
0-9 Decimal digits

Underscore

. Period

$ Dollar sign

’

Apostrophe

Other characters are illegal within a symbol.

Sjmbol Types
Symbol types include:

* Permanent symbols

* User-defined permanent symbols

* User-defined temporary symbols

* Macro name symbols

Permanent symbols include instruction mnemonics, register symbols, assembler directives, and

one special symbol, the period (.), which is used to represent the current value of the location
counter.

Local Symbols and Scoping Rules

Any identifier beginning with the dollar sign (§) is placed in the local symbol table instead of
the general-purpose symbol table. The local symbol table can be purged with the .LOCAL
directive. This allows simple scoping of identifiers, as shown below:

.local ; new scope
$loop: clr.b (a0)+ clear a byte

NSe e we N

clear_bytes: dbra.w do0,$loop loop for the whole block
rts return
.local ; new scope

$loop: move.b (a0)+, (al)+ ; copy a byte

copy_bytes: dbra.w do0,$loop ; loop for the whole block
rts ; return

In the above example, note that the symbol $LOOP is defined twice. The .LOCAL directive
limits the scope of these labels to the code that references them. The symbols CLEAR_BYTES
and COPY_BYTES are not local symbols because they do not begin with the dollar sign and are
visible throughout the assembly unit. Local symbols cannot be made global or external.

RATIONAL /1555 .

MC68020/0S-2000 CDF

Symbol Resolution

All instruction mnemonics, register names, directives, macro names, and other permanent
symbols are keywords that cannot be redefined by the user. These keywords are listed in
Appendix III. The instruction:

move equ 17

will result in an assembly error because the assembler treats this as a MOVE instruction and
EQU is not appropriate as the source-effective address of a MOVE instruction. In fact, EQU is a
keyword and the assembler will produce a message such as:

Syntax error: Saw EQU but expected: <id>, (, #, ...)

Expression Evaluation

All expressions are evaluated using 64-bit two’s complement arithmetic. Intermediate results
are stored in 32 bits. No overflow checking is performed, although division by 0 is detected and
flagged as an assembler error. The result of evaluation is coerced into the result by removing
the correct number of leading bits. Expressions fall into one of three categories:

* Absolute: These expressions contain only constants or symbols whose values are constant.
Also, the difference of two relocatable symbols, both defined within the same section, is an
absolute expression.

Simple relocatable: These expressions, although not constant, can be folded at assembly time.
These include addition of a constant and a relocatable, or a relocatable minus an absolute.

Complex relocatable: These expressions, covering all of the remaining cases, include any
expression that makes reference to an external symbol, the addition of two relocatable symbols,
and so on.

If an expression cannot be evaluated because it is a complex relocatable expression, it is passed
to the linker. All expressions are legal to the assembler. Some types of complex relocatable
expressions have questionable meaning at best, and some are rejected by the linker and others
by the target-specific loader. For example:

.ext.1l syml,sym2

.sect some_section,relocatable

sym3 equ syml**sym2

.end
If SYM1 and SYM2 are declared in another module as constants, the meaning of SYMS3 is clear.

If, however, SYM1 and SYM2 are relocatable entry points in a module, the meaning and value
of SYM3 are unclear.

38 o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

Unary Operators

Unary operators +, —, and ~ are supported. The ~ operator produces the one’s complement of
its operand.

Binary Operators
= Equality
/= Inequality
Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
* Multiplication
/ Division
MOD Modulo

REM Remainder

& Logical AND

! Logical inclusive OR

\ Logical exclusive OR

+ Two’s complement addition

- Two’s complement subtraction

>> Shift right

<< Shift left

i Exponentiation
Operator Precedence

Operator precedence is, lowest to highest, as follows:

= /= < > <= >=
oA
&

+

*/

oSS <<

Within each line, the precedence of operators is the same.

RATIONAL 9/15/88 39

MC68020/0S-2000 CDF

ASSEMBLER DIRECTIVES

Listing Directives

The following listing directives control the content and format of the assembler listing:

.LISTNC
.LISTTC
.LISTC
.LISTMX
.LISTMC
.LISTNM
.LIST
NLIST
.TITLE
SUBTTL
.PAGE
.BLANK
.HEAD
.FOOT
WIDTH
.LENGTH

List no conditionals

List true conditionals only

List all conditionals (default)

List macro expansion (default)

List macro calls (default)

List no macro expansions or calls

Enable listing (default)

Disable listing

Specify the listing title

Specify the listing subtitle

Eject a page in the listing file

Place blank lines in the listing file

Define a header to be placed at the top of each subsequent page ‘
Define a footer to be placed at the bottom of each subsequent page
Define the width of the listing file

Define the number of lines per listing page

Storage-Allocation Directives

The storage-allocation directives fall into three categories: uninitialized block storage, initialized
unit storage, and initialized block storage. Each is described below.

Uninitialized Block Storage

Each of these directives reserves storage for the specified number of elements by advancing the
location counter as necessary.

.DS.B
DS.W
.DS.L
.DS.S
.DS.D

40

Reserve storage for bytes (8 bits)

Reserve storage for words (16 bits)

Reserve storage for longwords (32 bits)

Reserve storage for single-precision floating point (32 bits)
Reserve storage for double-precision floating point (64 bits)

o158 RATIONAL

Chapter 5: MC68020/05-2000 Cross-Assembler

. .DS.X Reserve storage for extended-precision floating point (96 bits)
DS.A Reserve storage for an address (32 bits)

These directives are followed by an expression that represents the number of storage units to be
reserved. For example:

.ds.w 10 ; allocate 10 words

Initialized Unit Storage

These directives are used to allocate and initialize one or more units of storage. They are
followed by a stream of values, which will be placed in consecutive locations within the current
program section. For example:

.de.w 10,0 ; allocate two words
; set the first to 10
; and the second to 0

.DC.B Define constant bytes (8 bits)
DCW Define constant words (16 bits)
.DCL Define constant longwords (32 bits)
.DC.S Define constant single-precision floating point (32 bits)
DC.D Define constant double-precision floating point (64 bits)
. .DC.X Define constant extended-precision floating point (96 bits)
DC.A Define constant addresses (32 bits)
ASCII Define a constant string, 8 bits per character
ASCIZ Define a constant text string, 8 bits per character, terminated with a null
character

Initialized Block Storage

These directives are used to allocate a number of units and initialize them all to the same value.

For example:
.dcb.w 10,0 ; allocate 10 words and
; initialize them to zero
.DCB.B Define constant-block bytes (8 bits)
.DCBW Define constant-block words (16 bits)
.DCB.L Define constant-block longwords (32 bits)
.DCB.S Define constant-block single-precision floating point (32 bits)
.DCB.D Define constant-block double-precision floating point (64 bits)

o
RAT!ONAL 9/15/88 41

MC68020/0S-2000 CDF

.DCB.X Define constant-block extended-precision floating point (96 bits)
.DCB.A Define constant-block addresses (32 bits)

Intermodule Symbol-Definition Directives

These directives inform the linker that the symbols specified are either defined in the current
module for use in any module (global) or defined in another module and used by the current
module (external). These directives can appear anywhere in the assembly module, either before
or after the references to the symbols. For example:

.gbl.1 syml,sym2, sym3
.ext.l sym4,sym5,symé

.GBL.B Byte global (8 bits)
.GBL.W Word global (16 bits)
.GBL.L Long global (32 bits)
.GBL.A Address global (32 bits)
.EXT.B Byte external (8 bits)
EXT.W Word external (16 bits)
EXT.L Long external (32 bits)
EXT.A Address external (32 bits)

Symbol-Definition Directives

The EQU instruction and any of several .DEF directives can be used to assign symbolic names
to expressions. The .DEF directives allow the user to assign a value and a size attribute. Size
attributes allow the assembler to generate optimal code even if the value of the symbol is not
known.

Consider the following examples:
.ext.w controller
.defp.w ctlr regl:=controller+3

move.b d0, (controller+3)
move.b dO0, (ctlr_regl)

Because CONTROLLER is external, its value is unknown. Although it has a 16-bit size, the
expression CONTROLLER+3 has an unknown size. The first MOVE instruction will require
four bytes for CONTROLLER+3 to ensure that the expression will fit at link time. The second
MOVE instruction will allocate only two bytes for the value CTLR_REG], and a link-time error
will result if the actual value does not fit in two bytes. Note that this situation exists with

2 o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

forward references or with expressions that contain forward references. Using these directives
to specify the size of expressions that cannot be evaluated directly will produce smaller, faster
code in processors that have multiple address representations, such as the M68000 family.

By contrast, the EQU instruction simply creates a symbol of implied size. For example:
ctlr_regl equ controller+3

move.b dO, (controller+3)
move.b do0, (ctlr_regl)

These two MOVE instructions generate identical code. The symbol CTLR_REG1 is of use only
to the programmer and may increase the readability of the source.

The symbol-definition directives include:

.DEFP.B Define a permanent byte symbol (8 bits)

.DEFP.W Define a permanent word symbol (16 bits)

.DEFP.L Define a permanent longword symbol (32 bits)

.DEFP.S Define a permanent single-precision floating-point symbol

.DEFP.D Define a permanent double-precision floating-point symbol

.DEFP.X Define a permanent extended-precision floating-point symbol

.DEFT.B Define a temporary byte symbol

.DEFT.W Define a temporary word symbol

.DEFT.L Define a temporary longword symbol

.DEFT.S Define a temporary single-precision floating-point symbol

.DEFT.D Define a temporary double-precision floating-point symbol

.DEFT.X Define a temporary extended-precision floating-point symbol

SET Define a temporary symbol

EQU Define a permanent symbol
Note that these directives can be used to create permanent or temporary symbols. Once
defined, permanent symbols cannot be redefined. Temporary symbols can be redefined as
frequently as desired if they are always defined with temporary type directives. A

forward-referenced symbol cannot be defined subsequently as a temporary symbol. For
example:

syml equ sym2+10
sym2 set 10

The attempt to define SYM2 as temporary is illegal here because, although it is previously
undefined, there are forward references to it. Another example is:

RATIONAL o/15/s 03

MC68020/0S-2000 CDF

sym2 set 0
syml equ sym2+10
sym2 set 10

In this example, SYM1 has a value of 10 throughout the assembly, because SYM2 was defined
initially with a value of 0.

Miscellaneous Directives

CPU Directive
The CPU directive informs the assembler which CPU-family options are present in the specific
target implementation. For example:

.CPU "mc68020"
.CPU "mc68881"

informs the assembler that the target processor is an MC68020 processor and has an MC68881
floating-point coprocessor. This directive causes any permanent symbols pertaining to the
specified option to be placed in the permanent symbol table.

SECT Directive

The .SECT directive is used to define, or switch between, program sections. When this directive
is used to define a program section, it is followed by the name of the section and a list of
parameters that describe the section. These parameters are:

* ABSOLUTE AT nnn: The section is absolute and starts at address nn.

* RELOCATABLE: The section is relocatable.

¢ CODE: The section contains instructions. This attribute is meaningful only for processors
that differentiate between instruction and data address spaces.

* DATA: The section contains constant data or variable data or both. This attribute is impor-
tant only for processors that have physically distinct instruction and data address spaces.

* READWRITE: The section will be both read and written.
* READONLY: The section will be read only.

* OVERWRITE: Program sections from other modules with the same name as this section will
be overwritten with data from this section.

e CONCATENATE: Program sections from other modules with the same name as this section
will be concatenated at link time.

* ALIGNMENT := nnn: The alignment factor for this program section will be set to nnn bytes.
See the .ALIGN directive for more detail.

4 o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

When a .SECT directive is used to switch between sections, it is followed only by the section
name. A section must be defined only once. Attempting to switch to a section that is undefined
results in an error. Defining a section also switches to that section.

.sect prog,absolute at 16#1000#, code, readonly, alignment :=4
.sect heap,absolute at 16#4000#,data, readwrite, alignment:=1

.sect prog

move.l do0,temp

.sect heap
temp: ds.l 1l

The default parameters for a section are:

.8ect somename, relocatable,data, readwrite, concatenate, alignment :=2

OFFSET Directive

The .OFFSET directive is much like the .SECT directive except that it changes the current section
to be the NULL section and changes the current offset within the section to be a given constant.
The .OFFSET directive normally is used to create mnemonic offsets into records or hardware
registers. For example:

.0ffset 0 H type info is
; record
name: .ds.b 30 H name : string (1..30);
age: .ds.b 1l ; age : byte;
salary: .ds.w 1 ; salary : integer;
info’size equ . ; end;

.sect prog
update_age: ; pointer in a0, age in d0
move.b do0, (age,al)
rts

allocate info: ; return pointer in a0l
move #info’ size,do
jsr allocate
rts

The .OFFSET directive allows any expression to be provided as the initial offset into the NULL
section as long as the expression has no external or forward references. Attempts to generate
code within the NULL section, with either assembler instructions or directives, are illegal.
RADIX Directive

The .RADIX directive can be used to change both input and output radices. The input radix is
used to process numeric literals encountered in the source. The output radix controls the listing

RATIONAL 15/ 55

MC68020/0S-2000 CDF

fields that display addresses and code generated by the assembler. The initial radix is decimal. .
Valid radices are 2, 8, 10, and 16.

.radix 10#16# ; change the radix to HEX
.radix 2 ; change the radix to binary

Note that if the current radix is not clear, it is best to use based numeric constants to change
radices. The base portion of a based numeric literal is always interpreted as decimal and is
always unambiguous.

IRADIX Directive
The .IRADIX directive is similar to the RADIX directive, but it changes only the input radix.

ORADIX Directive
The .ORADIX directive is similar to the .RADIX directive, but it changes only the output radix.

REV Directive

The .REV directive accepts a character string that is placed in the object file produced by the
assembler and is displayed by the linker in the link map. This is useful for tracking module
revision level. For example:

.rev "Version 2.3, last updated 7-aug-88"

ALIGN Directive

The .ALIGN directive is used to realign the offset within the current section. The .ALIGN
directive can be used in two forms. The first form requires an alignment factor. This alignment
factor is an integer indicating a number of 8-bit bytes; the number of bits must be less than or
equal to the alignment factor of the current section as specified by the .SECT directive. The
second form of the .ALIGN directive has no alignment factor and uses the alignment factor of
the current section. If the offset into the current section must be changed to ensure alignment,
zeros are emitted into the current section until alignment is achieved. If the current section is
the NULL section (see the .OFFSET directive), only the first form of the .ALIGN directive is
allowed. Any positive, power of 2, alignment factor can be used within the NULL section. For
example:

.sect heap,relocatable,data,readwrite,alignment:=4
.sect buffer, relocatable,data, readwrite, alignment :=1024
bufferl:.ds.b 100
.align
buffer2:.sect heap
block: .ds.w block’size*block_pount
.align 2
counter:.ds.w
.align

. o5/ RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

In this example, BUFFER2 will begin 1,024 bytes after BUFFER1 because the .ALIGN directive
realigned the section to the alignment factor given in the .SECT directive that defined the
current section, BUFFER. The location COUNTER will be word-aligned regardless of the values
of BLOCK'SIZE and BLOCK_COUNT. Also, the next storage allocated in section HEAP will be
longword-aligned.

OUTPUT Directive

The .OUTPUT directive allows the user’s program to emit messages into the assembler listing
and error-message file. Two forms of the directive exist: the first accepts a character string; the
second accepts an arbitrary expression. Note that the expression’s value must be static when
the .OUTPUT directive is encountered; it cannot contain external or forward references. Each
OUTPUT directive produces a single line of text in the assembler output.

.offset 0 ; type info is
; record
name: .ds.b 30 ; name : string (1..30);
age: .ds.b 1 H age : byte;
salary: .ds.w 1 ; salary : integer;
info’size equ ; end;

.output "The size of INFO is"
.output info’size

ERROR Directive

The .ERROR directive is like the first form of the .OUTPUT directive, except that it causes the
semantic error count to be incremented. This causes the object module produced by the
assembler to be marked as containing errors. Linking such modules produce warnings.

INCLUDE Directive

The .INCLUDE directive can be used to cause a different file to be textually inserted into the
source stream at the point of the directive. There is no limit to the number or nesting depth of
INCLUDE directives. The filename provided may employ Environment naming capabilities;
names are resolved in the job’s context. For example:

.include "lusers.wjh.project.data_definitions”
.include "$’view(my activity).units.macros"
Repetitive Assembly

A looping primitive is provided to assist in creating complex tables, block structures, or
instruction sequences that cannot be created with other directives and are too cumbersome to
code manually. The looping construct causes a group of statements to be repeated as if they
were actually duplicated within the source. For example:

RAT]ONAL 9/15/88 47

MC68020/0S-2000 CDF

.repeat 5

move.b (al0)+, (al)+
.endrepeat

produces:

move.b (a0)+, (al) +
move.b (a0)+, (al)+
move.b (a0)+, (al) +
move.b (a0)+, (al) +
move.b (al0)+, (al)+

Although the repeat count shown here is a constant 5, the assembler allows any expression to be
used as a repeat count if its value can be determined at the time the .REPEAT is encountered.
This means that the expression cannot contain forward or external references. If the repeat
count is less than 1, all text between the .REPEAT and .ENDREPEAT is ignored. There is no
provision for creating unique labels within a repeat loop; if the application requires labels
within a repeat loop, either use local symbols and place a .LOCAL directive inside the loop or
use recursive macros. Placing nonlocal symbols within a repeat loop that is expanded more
than once will result in errors because of multiply defined symbols. For example:

count set 1

fact set 1

table size equ 10
factorial table:

.repeat table size

.de.l fact

count set count + 1

fact set fact * count
.endrepeat

This example creates a table that can be indexed by N to get N factorial.

Conditional Assembly

The conditional-assembly primitive is an if-then-else construct that can be used to parameterize
a single body of code to work under various circumstances. The following example depends on
a symbol CPU to indicate whether an MC68020 instruction, CMP2, should be used or emulated:

mc68000 equ 68000

mc68010 equ 68010
mc68020 equ 68020

18 o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

cpu equ mc68010
.if (cpu=mc68000) ! (cpu=mc68010) ;emulate if 68000 or 68010
.local
cmp . w (a0),do
beq.s S$equal
blt.s $outofbounds
cmp.w (2,a0),d0
beq.s $equal
blt.s $Soutofbounds
move.w #2#00000#, ccx
bra.s $done

Sequal: move.w #2#00100#, ccx
bra.s $done
$outofbounds:
move.w #2#0001#,ccx
$done: .else ;don’t emulate if 68020
cmp2.w (a0),do
.endif

In both the REPEAT and .IF examples, instructions and directives were indented to clarify the
structure. As always, white space is ignored by the assembler and can be used freely to meet
various style requirements.

Macro Assembly

The macro facility allows the programmer to define an identifier (a macro name) to be equiv-
alent to a sequence of assembler statements. The definition is bounded by the .MACRO and
.ENDMACRO directives.

When an identifier that is a macro name is encountered in the source stream (that is, in the
sequence of text statements that is being assembled), the macro is expanded as follows:

* The remaining text on the source line is interpreted as the argument list for this invocation of
the macro: it is scanned to determine the arguments. No identifiers in the line are expanded
at this time; in particular, macro names encountered are not expanded.

* The text constituting the macro definition (that between the MACRO and .ENDMACRO
directives) is inserted into the source stream. Substitution for special symbols (including
macro parameters, described below) occurs as they are encountered.

* Scanning of the source stream resumes at the location of the inserted macro text.
The macro definition can allow use of parameters that are included in the invocation. The
supplied parameters are used within the sequence of statements according to the special

symbols that represent them. The invocation also may specify a size qualifier appropriate to the
target, such as L for longword.

RATIONAL /1555 | o

MC68020/0S-2000 CDF

Macro definitions can contain .IF and .REPEAT directives. These directives are processed when
the macro is expanded. It is possible that the condition for the .IF is itself a parameter macro.

Within macro definitions there can be macro invocations that include additional macro
invocations. However, macro definitions cannot be nested. The following symbols have special
meanings within macro definitions:

%n Expands to the value of the nth parameter specified in the macro invocation; n repre-
sents one or more digits.

%% Expands to the data size specifier (for instance, W for word) specified in the macro
invocation.

%: Expands to $nnn, where nnn is a sequence of digits unique to the macro definition. This
can be used to generate unique labels with macros.

%# Expands to the number of parameters specified in the macro invocation.

%+ (Expands to nothing.) This is a concatenation operator for combining parameters and
strings. For example, %1%+0 concatenates 0 to the value of the first parameter; %10 is
the value of the tenth parameter.

The caret symbol () can precede a comma in the parameter list to indicate that the comma is
part of the value being passed, not a value separator.

A macro is defined between .MACRO and .ENDMACRO directives. The .MACRO directive

must have a macro name as its operand; for the ENDMACRO directive, the name is optional.
For example:

.macro nmv ; general-purpose move
lea (%1),%5 ; "%n" are parameter values
lea (%2),%6

loop%: move.$% #%3,%4 ; "%:" for an identifier name

; "%%" for size qualifier
dbf %4, loops:
.endmacro mv

A macro can be invoked any time after it is defined. Following is an example invocation and
the resulting expansion:

; invocation
nv.w (Const#,PC), (Data*,A5), ; use “ to quote commas

le6, DO, A0, a1

; expansion is

lea (Const,PC) ,AQ

lea (Data,A5),Al
loop$00l: move.w #16,D0

dbf D0, loop$001

0 | o158 RATIONAL

Chapter 5: MC68020/0S-2000 Cross-Assembler

. CHARACTER USAGE

A-Z User symbol characters

a-z User symbol characters

0-9 User symbol characters and numeric literals

! Logical inclusive OR operator

Used for immediate operands and based numeric literals

$ User symbol character

% Indicates special substitutions within macro expansion

& Logical AND operator

* Multiplication operator

O Used for operator precedence control and effective address syntax

- Unary negation and two’s complement subtraction operator
_ User symbol character (underscore), ignored within numeric literals
+ Two’s complement addition operator

= Used for relational operators

[] Used for effective address syntax

{} Used for effective address syntax
. : Used for terminating labels

; Used for delimiting comments

User symbol character (apostrophe)

Used with storage directives for creating ASCII strings and to provide
string arguments to some directives

\ Logical exclusive OR operator
I Line-continuation character
< Used for relational operators
> Used for relational operators
? User symbol character
p Used as a separator (comma)
User symbol character (period)
~ One’s complement unary operator
A

Used to pass commas as arguments to macro calls
Not used, illegal (grave)
space Separator

RATIONAL /1555 51

MC68020/0S-2000 CDF

ascii.ht Separator

ascii.lf Statement separator
ascii.ff Page delimiter

52 o158 RATIONAL

6 MC68020/0S-2000 Cross-Linker

The MC68020/0S-2000 cross-linker is an important part of the Rational Cross-Development
Facilities that typically runs automatically when a main unit is coded. The same linker is
provided for all target computers; however, each target requires a different standard linker
command file. The linker combines the contents of various object modules to produce an
executable program. The modules can be named directly to the linker in the linker command
file or indirectly via object-module libraries.

This chapter addresses individuals writing Ada and/or assembly-language programs or
modules who need more explicit control or understanding of the linking process. The
Cross-Development Facility was designed so that most users will use the default linking
capability supplied during normal compilation; most users will never need to modify the
standard linker command file. Some users may need to create their own command file, but the
standard version can act as a starting point. Few, if any, users will ever need to invoke the
linker explicitly. Instead, Rational intends the normal operation of the linker to be automatic
when a main unit is promoted from the installed to coded state. The user should be familiar
with assembly-language programming style and techniques, target-specific instructions and
instruction syntax, and the Rational Cross-Development Facilities before using this material.

TERMINOLOGY
The following terms are used in describing the linking process:

* Collection: A user-defined and user-named grouping of program sections that can be
referenced as a single entity. The linker command file provides information about the
number of collections, their object-module contents, and their names.

* Compilation unit: An Ada term that refers to an independently compilable Ada construct. A

compilation unit can be a subprogram declaration or body, package declaration or body,
generic declaration, or subunit.

* Linker command file: A text file used by the linker that contains commands specifying the
following:

— Command filename
— Object modules to use as input for the linker

RATIONAL s/1s/e “

MC68020/0S-2000 CDF

— Object-module libraries to use for additional input
— Collections to use during the linking process
— Memory segments to use for the linker output
— Attributes of the memory segments
— Additional commands for controlling content and placement of linker output
* Link map: A linker-generated text file that describes the linked, executable module.

* Memory segment: An address space provided by the target-computer architecture in which
linker-processed code and/or data are stored. The linker command file provides infor-
mation about the number of memory segments required, the collections to be placed in each
memory segment, and the attributes of each memory segment.

* Object library: A grouping of object modules that are named as a single entity, from which
the linker can select required modules. It is a file that contains a list of filenames.

* Object module: A binary file produced by an assembler that contains code, data, and relo-
cation information for one or more program sections.

* Program section: A contiguous area of memory used to store the code for the program.

¢ Separate code and data: An architectural feature of some target computers in which the
processor reads and writes data as though its address space were orthogonal to the address
space from which it reads code. If the target processor supports this notion, it must be
implemented in hardware to be effective.

LINKER COMMAND (M68k.Link)

When you promote a main unit to the coded state with the Auto_Link switch set to true, the
compilation system automatically invokes the linker to produce an executable module. The
compilation system informs the linker of the object modules generated from the program’s Ada
units, so they can be linked. The user must name all assembly-language object modules for the
linker—directly in the linker command file or indirectly via an object library.

The command to explicitly invoke the linker is:

M68k.Link (Command File : String := "<IMAGE>";
Exe File : String := "<DEFAULT>";
Map File : String := "<DEFAULT>";

Produce Debug Table : Boolean := False;
Produce_Symbol Table : Boolean := False;

Produce_Symbol Information : Boolean := False;
Produce_Statistics : Boolean := False;
Response : String := "<PROFILE>");

54 o158 RATIONAL

Chapter 6: MC68020/0S-2000 Cross-Linker

. The parameters for this command are:

¢ Command File : String := "<IMAGE>";
Specifies the input file that contains linker commands. The default is the selected image.
¢ Exe File : String := "<DEFAULT>";

Specifies the executable file produced. The default appends _Exe to the value given to the
Command_File parameter.

® Map_File : String := "<DEFAULT>";

Specifies the file that will contain the link map. The default appends _Map to the value
given to the Command_File parameter.

¢ Produce Debug Table : Boolean := False:

Specifies whether a debug symbol table is generated. The default is false.
¢ Produce Symbol_ Table : Boolean := False;

Specifies whether a symbol table file is generated. The default is false.
¢ Produce_Symbol_ Information : Boolean := False;

Specifies whether symbol cross-reference information will be added to the link map. The
default is false.

¢ Produce_Statistics : Boolean := False;

Specifies whether statistics of the assembly process are generated. The statistics will be
. found at the end of the link-map file. The default is false.

¢ Response : String := "<PROFILE>";
Specifies how to respond to errors, how to generate logs, and what activities and switches to
use during execution of this command. The default is the job response profile.

For example, assume that you want to link a file called User_Example with the files in the
runtime library. You have created a linker command file called User_Linker_Command_File.
You will use the default Exe, Map, Debug_Symbol, and Symbol_Table files. You want to

generate a debug table but do not want any statistics. The following command accomplishes
this:

M68k.Link (Command File => "User Linker_Command File",
Produce_Debug_Table => True);

RATIONAL /1528 55

MC68020/0S-2000 CDF

THE LINKING PROCESS

The following sections discuss internal events in the linking process. In actual operations, these
events are invisible to the user. It is typically the case, however, that user-specified modules,
libraries, and so on are specified even when using the supplied link stream. For extensive
user-customization of the linker command file, more detailed knowledge of individual linker
commands is required. See “Linker Command Files” in this chapter for more details.

Loading the Specified Modules

During the first phase of linking, the linker locates and reads the object modules specified in the
linker command stream. If any of the object modules cannot be read, this is noted in a message.
Similarly, a message is output if a symbol is defined more than once.

Scanning Object Libraries

Any remaining undefined symbols are resolved by scanning the specified object libraries. Each
object module within a library is checked to see if it supplies a definition of an undefined
symbol. If a module defines a needed symbol, that object module becomes part of the
executable program. The linker scans the libraries in the order specified. Within each library,
the object modules are searched in the order in which they appear. If undefined symbols
remain after all libraries have been scanned, the symbols are reported and then defined by the
linker as having the absolute value 0. This value may cause subsequent errors.

Building Collections

The linker then segregates the program sections by grouping them into the collections defined
by the user. A collection can consist of one or many program sections, but no two collections
can contain the same program section. If any program sections are not named to be within any
collection, they are reported and the linking process is aborted.

Building Memory Segments

Some target computers have only one address space; others have many. Each address space for
which the linker produces data is called a segment. The linker command file indicates the
segments this program should have, the collections that should be placed in each segment, and
the attributes of each segment (for example, read-only). The generation of output for a specific
segment can be suppressed altogether; this feature can be useful for suppressing the data
associated with uninitialized operand spaces in some computers. Every defined collection must
be placed in a segment. Within each segment, memory is allocated for:

* Any program sections that were absolute at assembly time
* Collections that are bound to a specific location
* All remaining relocatable sections

56 o158 RATIONAL

Chapter 6: MC68020/05-2000 Cross-Linker

If any assembly or link-time absolute sections overlap or fall outside the link-time-specified
memory bounds of the segment, or if there is insufficient memory for the relocatable sections,
appropriate messages are generated.

Producing the Link Map
During the final stage, the linker produces the link map. The map can be used to determine
where the linker placed certain program sections, the value of global symbols, the size of a
program section or memory segment, where symbols are defined and used, and so on. For
example, the link map contains the following: ‘

* The names of all the segments specified in the linker command file

* The names of the object modules that each segment contains and the amount of unused
memory

¢ The section to which each object module belongs, its starting address, and its word size in
both hexadecimal and decimal notation

* A summary of all modules, including their filenames, their creation date and time, and their
author

* A cross-reference of symbols known at link time (link-time symbols from object code gen-
erated from Ada units may not be recognizable)

LINKER COMMAND FILES

The linker reads a text command file to determine the object modules and relocation
methodology to be used in producing an executable program. Rational provides a standard
linker command file that is used when the linker is invoked automatically. (See Appendix II for
the complete pathname of this supplied default.) Names of libraries in the linker command file
and names of modules within the libraries are resolved in their local context.

The CDF is designed so that most users can use the default linker command file during normal
compilation. Many users will never need to modify the supplied linker command file. Some
users may need their own command file, but they can use the standard version as a starting
point because it is easily customizable. Although users can build their own linker command
files, few will ever need to invoke the linker explicitly; instead, Rational intends the normal
operation of the linker to be automatic. Users should follow the conventions described in the
next section when writing their linker command files.

The name of a user-supplied linker command file must be supplied as the value of the
Cross_Cg.Linker_Command_File library switch, described in “Cross-Compiler Switches” in
Chapter 3. This name is resolved in the context of the containing switch file; it need not be a
complete pathname. This makes it possible to employ the same linker command filename for
different views of the same subsystem.

The following is an example of a linker command file:

RATIONAL 9/15/88 57

MC68020/0S-2000 CDF

program "Standard 0S2000_Linker Commands" is

end;

58

use library "ada_runtime library";
use library "ada_runtime library";

collection
collection
collection
collection
collection
collection
collection

collection
collection
collection
collection

segment sh

segmen

shared header

code

constant_data
initial_values_ header
initial values

initia;_values_trailer i

shared trailer
unshared header
initialized data
writable data
unshared trailer

ared is

t type is code;

is
is
is
is
is
is
is
is
is
is

(module$header) ;

(ada_runtime code, ada code);
(ada_runtime const, ada const);
(module$initial values_begin);
(module$initial_values);
(module$initial_yalues_gnd);
(moduleS$cre) ;

(module$writable data_ begin) ;
(module$initialized data);
(ada_runtime data, ada_data);
(module$writable_data_end);

memory bounds are (0:16#££f ffff¥);

place
place
place
place
place
Place
place

end;

segment un

shared header;

code;

constant_data;

initial values_header:;
initial values;
initial_values_trailer;
shared trailer;

shared is

segment type is data;
memory bounds are (0:16#£ff fEfff#);

pPlace
place
place
place

unshared header:;
initializeq_data;
writable_data;

unshared trailer;

suppress;

end;

o158 RATIONAL

Chapter 6: MC68020/0S-2000 Cross-Linker

The supplied linker command text file is easily modified to include different module names or
segment boundaries. Sophisticated user applications can include customized libraries and more
complex collections. The linker command descriptions in the next section will assist advanced
users who want to make more substantial changes to the linker command file.

The basic commands used in the linking process are described in the next section. They consist
of reserved words, user-defined symbols, and strings.

The symbols can contain from 1 through 32 characters. The following characters may appear
within the text of a symbol:

A-Z Letters of the alphabet (case-insensitive)
0-9 Decimal digits

_ Underscore
Period
$ Dollar sign
! Apostrophe
Pound sign; used in numerical expressions

Strings are enclosed in double quotes ("").

The following reserved words have special significance in the linker command file. Reserved
words must not be used as a user-specified name for object modules, library names, collection
IDs, segment IDs, segment type IDs, or symbol IDs. Reserved words are case-insensitive.

align are at be
bounds collection end exclude
force is libraries library
link memory mod others
place program resolve section
segment start suppress to

type use

Basic Commands Used with Linker Command Files

Each linker command is described in detail in this section. The Backus-Naur form (BNF)
definitions of linker command syntax are provided for reference in the following section.

Table 6-1 lists the linker commands and their purposes.

RATIONAL o/15/ss 59

MC68020/0S-2000 CDF

Table 6-1 Linker Commands

Command Purpose

Collection Specifies what collections are to be created and what name is to be assigned to the
collections.

Exclude Specifies that the section is to be excluded.

Force Specifies where in memory a given symbol is to be placed.

Link Specifies what object modules are to be linked into the executable module.

Memory Bounds | Specifies what region of memory contains the specified segment.

Place Specifies what collections are to be placed in the segment.

Program Specifies the name of the linker command file and contains all the linker commands.

Resolve Specifies where in memory a given symbol is to be placed.

Segment Creates and names the segments that will receive data from the linker.

Segment Type Specifies the user-defined segment type.

Start At Specifies where the linker command file begins to write its data.

Suppress Specifies that the segment is to be suppressed.

Use Library Specifies what object libraries are scanned to resolve undefined symbols.

The following notation is used to define the syntax for linker command files:

* The vertical bar (1) indicates that two symbols are alternatives. For example:

lhs --> AA | BB

indicates that either symbols AA or BB are valid.
* Brackets ([]) indicate that the enclosed symbols are optional. For example:

lhs --> AA[,BB]

indicates that either symbols AA or AA,BB are valid.
* Braces ({)) indicate that the enclosed symbols can be repeated zero or more times. For

example:

lhs --> AA{,BB}

indicates that the symbols AA or AA,BB or AA,BB,BB or AA,BB,BB,BB and so on are valid.

60

015,88 RATIONAL

Chapter 6: MC68020/0S-2000 Cross-Linker

Program

The Program command is a block structure that specifies the name of the linker command file
and contains all of the linker commands. This command is terminated with the reserved word
end, followed by a semicolon.
The format of this command is:
progran file_name is linker commands end;
The user-defined parameters of this command are:
* file_name: Specifies the filename associated with the linker command file. It is a string.
* linker commands: Specifies the particular commands that are executed.

An example of this command is:

program "linker_ command file example" is
== linker commands

end;

Link

The Link command specifies what object modules are to be linked into the executable module.
This command is terminated by a semicolon.

The format of this command is:
link file_name (, file_name) ;
The user-defined parameter of this command is:

* file_name: Specifies the filename of the object module to be linked into the executable module.
It is a string.

Examples of this command are:
link "module_a" , "module_b", "module c";
link "module_a";

link "module b";
link "module c";

RATIONAL /15,5 61

MC68020/0S-2000 CDF

Use Library

The Use Library command specifies what object libraries are scanned to resolve undefined
symbols. This command is terminated by a semicolon.

The format of this command is:
use library | libraries file_name/, file_name} ;
The user-defined parameter of this command is:

© file_name: Specifies the filename of the object library to be scanned to resolve any undefined
symbols. This is a string. Naming expressions may be used; they are resolved in the library
or subsystem context of the linker command file.

Examples of this command are:
use libraries "ada_runtime library", "example library" ;

use library "ada_runtime library" ;
use library "example library" ;

Collection

The Collection command specifies what collections are to be created and what name is to be
assigned to the collections. This command is terminated by a semicolon.

The format of this command is:
collection collection_id is (section_name {, section_name}) ;
The user-defined parameters of this command are:

* collection_id: Specifies the user-defined name of the collection. The name can be 1 through 32
characters long (see the list of valid characters earlier in this section).

© section_name: Specifies the user-defined name of the section. Each section will contain one or
more object modules. The section name and the object modules contained can be seen in the
link map. The name can be 1 through 32 characters long.

A special form of this command uses the reserved name others to represent all sections that are
not yet assigned to a collection:

collection collection_id is (others);

62 o158 RATIONAL

Chapter 6: MC68020/0S-2000 Cross-Linker

Examples of this command are:
collection a is (art_a, user_code_a) ;
collection b is (end of i)
collection ¢ is (art_b, user_data_b) ;
collection d is (end of data) ;

The section order used in the collection command determines the order of program sections in
the resulting collection. If more than one object module has placed data into a section, that data
is ordered alphabetically by module name.

Segment

The Segment command is used to create and name the memory segments that will receive data
from the linker. This command is terminated by the reserved word end and a semicolon.

The format of this command is:
segment segment_id is [segment type] [memory bounds] (place) [suppress segment] end ;
The user-defined parameters of this command are:

* segment_id: Specifies the user-defined name given to the memory segment. The name can be
1 through 32 characters long (see above for valid characters).

* See the following sections for details about the subcommands Place, Memory Bounds, Seg-
ment Type, and Suppress Segment.

Place

The Place command is a subcommand of the linker commands. It specifies what collections are
to be placed in the segment. This subcommand is terminated by a semicolon.

The format of this subcommand is:
place collection_id ; |
Place collection_id at expression ;
place collection_id align mod expression ;
The user-defined parameters of this command are:

* collection_id: Specifies the user-defined name of the collection. The name can be 1 through 32
characters long (see above for valid characters).

* expression: Specifies a numerical memory address.

RATIONAL o/15/s5 63

MC68020/0S-2000 CDF

Examples of this subcommand are:
place data_collection ;
place data_collection at 16#0150% ;
place data_collection at 16#FFF_0150# ;

place data_collection align mod 16#0100# ;

Memory Bounds

The Memory Bounds command is a subcommand of the linker commands. It specifies what
region of memory contains the specified segment and is terminated by a semicolon.

The format of this subcommand is:
memory bounds are (expression : expression) (expression : expression} ;
The user-defined parameter of this subcommand is:

* expression: Specifies a numerical memory address. The first value is the beginning address
and the second value is the ending address of the segment.

An example of this subcommand is:

memory bounds are (16#0100# : 16#FFF_FFFF#) ;

Segment Type

The Segment Type command is an optional subcommand. It specifies the user-defined segment
type. This subcommand is terminated by a semicolon.

The format of this subcommand is:
segment type is segment_type_id ;
The user-defined parameter of this subcommand is:

® segment_type_id: Specifies a user-defined value that typically identifies the type of collections
found in the segment. It can be 1 through 32 characters long (see above for valid characters).

An example of this subcommand is:

segment type is linker example ;

64 9/15/88 RATIONAL

Chapter 6: MC68020/0S-2000 Cross-Linker

Suppress Segment
The Suppress Segment command is a subcommand of the linker commands. It specifies that
code or data associated with the segment are to be ignored. This subcommand is terminated by
a semicolon.
The format of this subcommand is:

suppress ;

Exclude Section

The Exclude Section command specifies what sections will be excluded from the executable
module. This command is terminated by a semicolon.

The format of this command is:
exclude section section_name ;
The user-defined parameter of this command is:

* section_name: Specifies the name of the section that is to be excluded. It can be 1 through 32
characters long (see above for valid characters). :

An example of this command is:
exclude section section name ;

Force or Resolve
The Force or Resolve command specifies the value to which a symbol will be resolved. The
Resolve command will not redefine a symbol that is currently defined. This command is
terminated by a semicolon.
The format of this command is:

force | resolve symbol_namesb_to be expression ;

The user-defined parameters of this command are:

* symbol_name: Specifies the name of the symbol that is to be placed at a particular memory
location. It can be 1 through 32 characters long (see above for valid characters).

* expression: Specifies any valid value.
Examples of this command are:
resolve symbol example to be 16#0199# ;

force symbol example to be 57 ;

RATIONAL 15/ 65

MC68020/0S-2000 CDF

Start At

The Start At command specifies the program counter where the program starts execution. This
command is terminated with a semicolon.

The format of this command is:
start at expression ;
The user-defined parameter of this command is:
* expression: Specifies a numerical memory address.
Examples of this command are:
start at 16#0155# ;

start at 16#££f_ 0155# ;

66 91588 RATIONAL

7 Runtime Organization

INTRODUCTION

This chapter describes the method by which the MC68020/0S-2000 Cross-Development Facility
translates features of the Ada language onto the instruction-set architecture of the MC68020 and
the facilities of the OS-2000 operating system. The topics discussed include memory organiza-
tion, stack model, subprogram call and return sequences, parameter passing, exception hand-
ling, storage management, and tasking. The information in this document should be sufficient
to enable a user to write assembly-language programs that interface with Ada programs or to
modify a linker command file to achieve a desired program organization.

To make the best use of the information in this chapter, a reader should have knowledge of the
Ada language, the M68000-family instruction set, the OS-2000 operating system, and techniques
for mapping high-level languages onto computer architectures and operating systems.

PROGRAM EXECUTION MODEL

The overall organization of a program, use of memory, and execution-time requirements
constitute the program execution model. The compiler, linker command file, runtime system,
target operating system, and target machine contribute to the definition of this model.

Generated Code

The processing of a compilation unit generally results in the production of instruction
sequences and the allocation of data storage. Allocated data may be either constant or
modifiable and may be initialized or uninitialized. The term generated code describes all
instructions and data produced by the compiler.

The compiler places the instructions, constant data, and modifiable data in three separate pro-
gram sections named ADA_CODE, ADA_CONST, and ADA_DATA, respectively. The
definition of the sections can be seen in the optional assembly or listing files produced by the
compiler, as in the following directives:

RATIONAL 15/ 67

MC68020/0S-2000 CDF

.SECT ADA_CODE, RELOCATABLE, CODE, READONLY, . ..
.SECT ADA CONST, RELOCATABLE, DATA, READONLY, . ..
.SECT ADA DATA, RELOCATABLE,DATA, READWRITE, ...

Additional program sections for the OS-2000 runtime system include:

ADA_RUNTIME
ADA_RUNTIME_CONST
ADA_RUNTIME_DATA

The linker command file used for linking a main program specifies the placement of the pro-
gram sections that constitute the program. The program sections required for an 0S-2000 load
module include:

MODULE$HEADER
MODULES$INITIAL_VALUES_BEGIN
MODULESINITIAL_VALUES
MODULESINITIAL_VALUES_END
MODULES$CRC
MODULE$WRITABLE_DATA_BEGIN
MODULE$WRITABLE_DATA
MODULE$WRITABLE_DATA_END

Memory Usage

The generated code for an Ada program presumes no restrictions on the use of addresses within
the M68K-family logical address space. As delivered by Rational, the linker command file
restricts code and data addresses to be within 16#0FFF_FFFF# of the code loading address and
the global database address, respectively. :

Processor Resource Utilization

This section discusses how the MC68020/0S-2000 runtime system uses registers and manages
memory.

Registers

The conventions observed by the Ada runtime model for the usage of the M68K-family registers
are described below. Assembly-language or other subprograms that interface with Ada can

assume that the conditions described hold upon entry and are required to satisfy the conditions
before return.

* A7 is the stack pointer. Because trap handlers may run on the user stack, data above the top
of the stack cannot be used reliably.

* A6 is the frame pointer. The structure of frames is described later in this document.

63 o158 RATIONAL

Chapter 7: Runtime Organization

* A5 is the global data pointer. Because OS-2000 requires that data storage be position-
independent, references to statically allocated data must be made indirect through a register.
The Ada runtime model uses A5 for data indirection. (Note that many other 0S-2000
programs, such as those produced by the OS-2000 C compiler, use A6 as the global data
pointer.)

* A2. A4,D2.. D7, and FP2 .. FP7 are nonvolatile registers. If the body of a subprogram uses
any of these registers, their values must be saved on subprogram entry and restored before
return to the calling environment. Conversely, a body of code that uses any of these registers
can call to any subprogram and have the register values preserved across the call.

* A0, A1, DO, D1, FP0, and FP1 are volatile registers. The body of a subprogram can modify
the values in these registers without saving the prior value. Conversely, if a body of code
wants to preserve a value in one of these registers across a call, the value must be saved
before the call and restored after the return.

Memory-Management Options

The runtime system makes no presumption about the memory configuration of the execution
hardware or about the location at which a program is loaded. No generated code or code in the
runtime system references memory-management hardware.

SUBPROGRAM CALL AND RETURN

The generated code for a call to a subprogram and the execution of the subprogram body
generally result in the construction of a frame on the stack. The return from the subprogram
and other generated code in the calling environment remove the frame. The frame consists of a
number of words on the stack that contain the information required to perform parameter
referencing, up-level referencing, exception handling, and subprogram return.

Figure 7-1 illustrates the general layout of information on the stack.

To better describe the use of the information contained in a frame, portions of the generated
code for the following program fragment will be analyzed:

declare
Local Variable : Integer := 12;

procedure Do_Something
(Left : Integer; Right : Integer) is
begin
Local Variable := Left + Right + Local_Variable;
end Do_Something;

function Compute_ Result

(Left : Integer; Right : Integer)
return Integer is

RATIONAL /15,55 69

MC68020/0S-2000 CDF

Parameters, if any 2 A
(First word of first parameter occupies lowest address)

Return PC
Saved frame pointer

Previous Exception handler address
Frame Static link

Storage for static-sized local variables, if any

Saved registers
(Optional, as needed)

Storage for dynamic-sized local variables, if any

Parameters, if any
(First word of first parameter occupies lowsst address)

Return PC
Saved frame pointer

—p <

Current Exception handler address
Rl Static link

Storage for static-sized local variables, if any

Saved registers
(Optional, as needed)

Storage for dynamic-sized local variables, if any

Lower Memory
Addresses

Figure 7-1 Stack Model

begin
return Left + Right;
end Compute_ Result;

begin
Do_Something (Left => 9, Right => 3);

Local Variable := Compute Result (Left => 12, Right => 9);
end;

It should be noted that the construction of frame information interacts strongly with code
optimizations and that certain elements of a frame need not always be present. In the extreme,
a source-language call may be expanded inline and result in no transfer of control. The
following examples describe the general cases of call and return.

70 9/15/88 RATIONAL

Chapter 7: Runtime Organization

‘ A Simple Procedure Call
The first example is the procedure-call statement:
Do_Something (Left => 9, Right => 3);

The generated code for this call is:

MOVEQ #3,D7 ; note 1
MOVE.L D7, - (A7)

MOVEQ #9,D7 ; 2
MOVE.L D7,~-(A7)

MOVEA.L A6,Al ;3
BSR.W DO_SOMETHING ; 4
ADDQ.W #8,A7 ; 5

These instructions perform the following operations:
1. The first pair of MOVEQ, MOVE.L instructions pushes the value 3 on the stack as the actual
value for the Right formal parameter.

2. The second pair of MOVEQ, MOVE.L instructions pushes the value 9 on the stack as the
actual value for the Left formal parameter.

3. The MOVEA L instruction passes the current frame pointer in A1 for use as the static link.

4. The BSR.W instruction pushes the address of the instruction following the BSR instruction
onto the stack and branches to the first instruction of the Do_Something procedure.

5. The ADDQ.W instruction pops from the stack the two words (8 bytes) that were allocated to
pass the actual parameters.

The generated code for the body of Do_Something is:

DO_SOMETHING:

LINK A6, #0 ;see following note 1
CLR.L - (A7) ;2
MOVE.L A1, - (A7) ;3
;statement # 1
MOVE.L (8,A6),D0 ; 4
ADD.L (12,a6),D0 ;5
TRAPV ; 6
ADD.L DO, ([~8,A6],~8) ;7
TRAPV ; 8
Epilog:
UNLK A6 ;9
RTS ;10

I?ATIONAL 9/15/88 71

MC68020/0S-2000 CDF

These instructions perform the following operations:

1.

S U W

10.

The LINK instruction pushes the value of the frame pointer on the stack and loads A0 with
the address of the saved frame pointer.

. The CLR instruction pushes the value 0 (zero) on the stack for the exception-handler

address, indicating that there is no handler in this frame.

- The MOVE instruction saves on the stack the value of the static link that was passed in Al.

. This MOVE instruction loads DO with the value of the Left formal parameter.

- The ADD instruction computes the value of the subexpression (Left + Right).

- The TRAPV instruction checks for numeric overflow, which might be caused by the pre-

vious arithmetic operation. If a trap occurs, the Numeric_Error exception will be raised.

. The second ADD instruction computes the value of Left + Right + Local_Variable and stores

the result in Local Variable. Note that the indexing expression for Local_Variable is
indirect and based on the static link stored at offset -8 in the frame.

- The second TRAPV instruction checks for numeric overflow, which might be caused by the

previous arithmetic operation.

- The UNLK instruction pops the stack down to the saved frame pointer and then pops the

value of the saved frame pointer in frame pointer A6. The return program counter remains
at the top of the stack.

The RTS instruction pops an address from the top of the stack and branches to the
instruction at that address.

A Simple Function Call

The second example is the assignment statement in which the righthand side is a function call:

Local Variable := Compute_Result (Left => 12, Right => 9);

The generated code for this statement is similar to that for the procedure call, except that after
the two actual parameters are popped from the stack, the function result that is returned in DO
is stored into the location for Local_Variable.

72

o158 RATIONAL

Chapter 7: Runtime Organization

The generated code for the body of the function is:

COMPUTE_RESULT :

LINK A6, #0 ; note 1
CLR.L - (A7)

PEA (4) ; 2
BSR.L __STACK_CHECK

LEA (Handler,PC),Al ;3

MOVE.L Al, (-4,A6)

; statement # 1

MOVE.L (8,A6),D0 .4
ADD.L (12,a6) ,D0
TRAPV

BRA.B Epilog

Handler:
NoOP ;5
LEA (Epilog,PC) , A0 ; 6
MOVE.L A0, (-4,A6)
MOVE.L DO, (-8,A6) ;17
LEA (__Constraint_Error, AS5) ,A0 ; 8
CMPA.L (~8,A6),A0
BNE.L _PROPAGATE_EXCEPTION
; statement # 2
MOVEQ #37,D0 ;9
Epilog:
UNLK A6 ;10

RTS

These instructions perform the following operations:

1.

The LINK and CLR instructions of the prolog code set up the new frame pointer and set the
exception-handler address to 0.

- Four bytes of temporary local data storage will be allocated in the exception handler to

contain the value of the active exception. The PEA and BSR instructions call the runtime
stack-check routine to ensure that sufficient stack space is available; if it is not, the Storage-
_Error exception is raised.

- The LEA and MOVE instructions save the address of the exception handler in the frame.

4. The code for computing the expression in the body of the function is similar to that for the

procedure in the previous example, except that the computed expression is returned in DO.

- Because there are no up-level references in the subprogram, the generated code for the

exception handler begins with NOP to distinguish it from finalization code.

RATIONAL 15/ | 73

MC68020/0S-2000 CDF

6. The LEA and MOVE instructions replace the exception-handler address with the address of
the epilog code.

7. The next MOVE instruction saves the exception ID, which was in DO upon entry into the
handler in the frame.

8. The LEA, CMPA, and BNE instructions compare the raised exception with the exception ID
for Constraint_Error and propagate the exception if the values are not equal.

9. The MOVEQ instruction places 37 into the function return register.
10. The epilog code for the function is the same as that for the procedure described previously.

Parameter-Passing Conventions

Actual parameters to subprograms are passed on the stack. The environment of a call must
push the correct number of parameters in the correct order before branching to a subprogram.
The calling environment also must perform any required copy-back of parameters that are
passed by value and remove the parameters from the stack after return from the call. The order
in which parameters are passed is determined by the compiler and is subject to change.

The manner in which parameters are passed either in Ada subprograms or in other language
subprograms that are to be interfaced with Ada can be specified by using the Export_Procedure,
Export_Function, Import_Procedure, and Import_Function pragmas, as appropriate. Use of
these and other pragmas is described in Appendix V.

The following paragraphs describe the conventions used for passing the actual parameters
corresponding to various kinds of formal types.

Scalar Types and Access Types

Objects of scalar and access types are passed by value on the stack. Scalar parameters occupy
one or two longwords and are passed with the more significant bits in the lower memory
address if two longwords are needed. Access parameters are passed as a single longword. The
calling environment must perform copy-back associated with out and in-out parameters.

Simple Record and Array Types

Simple record and array types include nondiscriminated record types, constrained subtypes of
discriminated record types, and constrained array types and subtypes. Parameters of these
simple types are passed by reference via a single longword on the stack containing the address
of the object. The called subprogram must interpret the data at that address in a consistent
manner.

If objects of a simple type are to be passed to assembly-language subprograms, representation
specifications should be applied to the type to ensure a consistent interpretation of the object in
the assembly code and in generated code. The compiler may choose a layout for objects whose
type does not specify a representation. The manner in which the compiler chooses to represent
objects is subject to change.

74 o/15/88 RATIONAL

Chapter 7: Runtime Organization

Unconstrained Discriminated Record Types

Objects passed as actuals corresponding to formal parameters of unconstrained discriminated
record types occupy one or two longwords on the stack. If the parameter is of mode in, a single
longword containing the address of the object is passed. If the parameter is of mode in out or
out, two longwords are passed. In the latter case, the longword at the higher memory address
contains 0 if the actual is an unconstrained object or 1 if the actual is a constrained object. The
longword at the lower memory address contains the address of the object.

Unconstrained Array Types

Objects passed as actuals corresponding to formal parameters of unconstrained array types
occupy two longwords on the stack. The longword at the higher memory address contains the
address of a compiler-generated descriptor or dope vector for the array. The longword at the
lower memory address contains the address for the data portion of the array object. The layout
of the dope vector is subject to change, so we recommend that assembly-language subprograms
not be written to manipulate objects of unconstrained array types.

Functions Returning Scalar and Access Types

Scalar and access results from functions are returned in one or more registers. The registers
used depend on the size and kind of the result, as shown in Table 7-1.

Table 7-1 Function Return Conventions

Bit Size Register Comments
32 DO Enumeration types, integer types, fixed-point types, 32-bit floating-point
types, access types
64 DO0:D1 64-bit floating-point types

Functions Returning Simple Structures

Functions that return simple record and array types (as defined above) are converted by the
compiler into procedures that have an additional out parameter of the same type as the function

result. The function returns its result as would a procedure with this modified parameter
profile.

Functions Returning Unconstrained Structures

Several different mechanisms exist for returning unconstrained record or array function results.
These mechanisims currently are not documented, and no attempts should be made to write
assembly-language functions that return these objects. The current return mechanisms do not
use the heap for their return values, which is an intentional compiler design goal.

RATIONAL 15/ | .

MC68020/0S-2000 CDF

Finalization

Certain Ada-language features require that actions take place when leaving a block for any
reason, including exception propagation. The code generated to perform these actions is called
finalization code. Finalization code is generated to deallocate collections allocated within a block,
await task termination, and terminate tasks.

EXCEPTION HANDLING

Exception processing removes frames from the stack while searching for a handler for the
exception being raised. Because an exception handler may depend on register contents to work
correctly, the nonvolatile registers saved in each frame must be restored as the frames are
removed. For this reason, each frame has an exception handler that is common with the return

code for that frame. The exception processing assumes that A6 is a valid pointer to the current
frame.

Because the call and return model ensures that the return program counter for a frame is at a
static displacement from the frame pointer, it may be necessary for the runtime system to
change the return program counter of the frame to point back into the runtime system. The
runtime exception processor then jumps to the exception-handling code at the address pointed
to by the exception handler within the frame, again at a static displacement from the frame
pointer.

For most frames, this code is simply the epilog code for the subprogram, as outlined above for
the simple procedure and simple function. This epilog code cuts back the stack, restores saved
registers, and returns. Since the return program counter has been modified, control returns not
to the caller of the subprogram but to the runtime system.

The runtime exception processor repeats this process until a frame with true exception-handling
code is found. The runtime exception processor recognizes true exception-handling code by the
initial NOP instruction, which distinguishes exception handlers from finalization code. The ID
of the exception is available in DO for the exception-handling code. Currently, an exception ID
is the address of a constant string that is the fully qualified Ada name of the exception.

If an exception is propagated out of a procedure that is a main program, an error message will
be output to Standard_Error, indicating that the program has terminated with an exception.

Similarly, if an exception is propagated to the body of a task and not handled, a warning
message will be output.

The runtime exception processing may be invoked in the following three ways:

* From generated code that corresponds either to an explicit raise statement or to an exception
condition detected either dynamically or statically in the generated code
* From a machine trap handler that was entered by a hardware-detected exception condition

* From the runtime system when an exception condition is detected

s | o 1515 RATIONAL

Chapter 7: Runtime Organization

Exceptions Raised from Hardware Traps

Table 7-2 indicates the predefined exceptions that are raised as a consequence of MC68020 traps.

Table 7-2 Exceptions Raised from Traps

Trap Name Exception Name
CHK or CHK?2 instruction Constraint_Error
TRAPcc/TRAPV instruction Numeric_Error
Zero divide Numeric_Error
FPU zero divide Numeric_Error
FPU operand error Numeric_Error
FPU overflow Numeric_Error

Exceptions Raised by the Runtime System

The following list indicates the situations in which exceptions are raised by the runtime system:

Constraint_Error
— T’Image (X), where T is an enumeration type and X does not lie within T'First .. T'Last

— T'Pos (X), where T is an enumeration type with a representation clause and X does not lie
within the range T'First .. T'Last

— T'Pred (X), where T is an enumeration type with a representation clause and X does not lie
within the range T'First + 1 .. T'Last

— T’Succ (X), where T is an enumeration type with a representation clause and X does not lie
within the range T'First .. T'Last - 1

— T'Value (S), where T is an enumeration type and the string S does not have the syntax of
an enumeration literal or the enumeration literal specified by S does not exist for the base

type T
— T'Width (X), where T is a subtype of an enumeration type that does not have static
bounds and X does not lie in the range T’First .. T’Last

— T'Value (S), where T is an integer type and the string S does not have the synatx of a
numeric literal or the numeric literal specified by S does not lie in the range Integer'First ..
Integer'Last

Program_Error

— Execution of a select statement that has no else part and for which all alternatives are
closed (see LRM 9.7.1.11)

RATIONAL s/15/ss 77

MC68020/0S-2000 CDF

— Task elaboration error (see LRM 3.9.6)
* Storage_Error

— Attempts to allocate objects when there is insufficient storage within the collection and the
collection cannot be extended

— Attempts to create access collections when there is insufficient storage within the heap

— Attempts to declare task objects when there is insufficient storage within the heap to
allocate a task-control block

— Attempts to declare a task when there are insufficient system resources to create the
message queues for the task

— Attempts to activate a task when there are insufficient system resources to create the stack
for the task

— Attempts to execute a delay statement, timed entry call, or select with a delay alternative
when there are insufficient system resources to create a timer for the required delay

— When the stack for an activation of a task or the main program becomes exhausted
¢ Tasking_Error

— At the end of a declarative part, when one or more task objects declared become com-
pleted during activation

— At the evaluation of an allocator, when one or more task objects created as components of
the designated object become completed during activation

— Attempts to call an entry of a task that has completed its execution or becomes completed
before accepting the call

— Attempts to call an entry of a task that is abnormal, becomes abnormal before accepting
the call, or becomes abnormal during the rendezvous

STORAGE MANAGEMENT

The storage manager provides support for dynamic memory allocation and deallocation asso-
ciated with Ada access types.

The Heap

The term heap refers to the memory from which collections, task-control blocks, and other
runtime data structures are allocated. The memory to be used for the heap is acquired at
program initialization by an F$SRqMem memory-request system call. The amount of memory
to be requested is provided to the runtime system by generated code and can be set to a
nondefault value by an argument to the Main pragma. If there are insufficient system resources
to fulfill the memory request, a warning message is issued; any subsequent attempt to allocate
storage from the heap will raise the Storage_Error exception.

78 o158 RATIONAL

Chapter 7: Runtime Organization

Collections

A collection is a data structure used by the runtime system to reserve a block of memory for
allocation of objects of a given access type. (Note that this is not the same concept as the
collection in a linker command file, described in the previous chapter.)

The runtime collection contains information to allow rapid reclamation of all associated
memory when the given access type goes out of scope. In general, a collection is created for
every access type at the point of elaboration of the access-type declaration. No collection will be
created for an access type if a Storage_Size length clause is provided for the type with a value
that is statically 0. In this case, no collection is allocated and any attempt to allocate or deallocate
objects of this type will raise the Storage_Error exception.

There are two kinds of collections: extensible and nonextensible. The collection for an access
type that has no Storage_Size length clause is extensible. Extensible collections are created with
a default size determined by the runtime system. Allocations of objects from extensible
collections will extend the collection automatically if there is insufficient free storage within the
collection for the desired object. When a collection is extended, it is extended by the default size
or the size of the object whose allocation necessitated the extension, whichever is larger.
Nonextensible collections are created for collections that have an associated Storage_Size length
clause. In this case, the collection is created with the size specified and will not be extended.

The Storage_Error exception may be raised by allocators that reference either type of collection.

The Global Collection

The global collection is an extensible collection created at the earliest point of program
elaboration and used to provide storage for dynamic-sized objects in static scopes. If no such
objects exist, the global collection is not created. Note that if the collection is needed, it is
created with a default size determined by the runtime system; the minimum size is 2K bytes.
This storage then is inaccessible to the program throughout its execution.

Dynamic Collections

Dynamic collections are created by the generated code at the point of access-type elaboration.
Finalization code is generated to deallocate the collection when the scope in which the access
type was declared is left. This happens at explicit block exit via a goto, exit, return, or
end-of-block statement, as well as by leaving a block because of an exception. The latter case is
handled by a compiler-generated finalization exception handler.

RATIONAL 515/ »

MC68020/0S-2000 CDF

Allocators

All allocations come from a collection—never directly from the heap. The compiler-generated
size of the allocated object is rounded up to an even longword size. If the collection’s free list
does not contain a chunk of memory large enough and the collection is nonextensible or
attempts to extend the collection fail, Storage_Error is raised. Allocation of objects with a size of
0 words are allocated one word (rounded up to two words) of storage to ensure that all
allocations result in a unique object.

Unchecked Deallocation

Unchecked deallocation is the only method of deallocating objects. The specified chunk of
memory is added to the free list of the associated collection, and the free list is coalesced where
possible. '

TASKING

This section discusses the problems of tasking and the runtime system.

Tasks and Interprogram Communication

An Ada main program runs as a process in the OS-2000 system. Additionally, every task object
in an Ada program is implemented as a separate OS-2000 process. The process corresponding
to a task is initiated by an F§Fork system call, which allocates stack space for the process. Each
task inherits four I/O paths from the process that runs as the main program: Standard_Input,
Standard_Output, Standard_Error, and the file of error messages used by the runtime system.

For each task entry or member of a task-entry family, a message queue is created. One add-
itional message queue is created per task for special use by the runtime system, as well as one
message queue for the main program.

The runtime interfaces for associating and dissociating message queues for Interprogram Com-
munication (IPC) are as specified in package Runtime_Support_For_Ipc:

with Message Queue;

pPackage Runtime Support For_ Ipc is
subtype Entry Number is Natural range 1 .. 2 ** 15 - 1;
type Status is (Successful, Invalid Entry, Invalid Queue);
procedure Attach Queue (For_Entry : Entry Number;

New_Queue : Message Queue.Id;
Result : out Status);

. onsss0 RATIONAL

Chapter 7: Runtime Organization

-- Associate a new IPC message queue with the given entry of the

-- task performing the call. Any entry calls pending for the entry
-= will result in Tasking Error.

-~ Status is Successful - attach succeeded

- Invalid Entry - current task has no entry with given
- entry number

-- Invalid Queue - given queue id was not legal

pragma Suppress (Elaboration_Check, Attach_Queue);

pragma Interface (Asm, Attach_Queue);

pragma Import_ Procedure (Attach Queue, "__ ART Attach Queue",
Mechanism => (Value, Reference, Value)):;

procedure Detach_Queue (For Entry : Entry Number; Result : out Status);
-- Dissociate the current IPC queue from the given entry of the

-- task performing the call and create a new regular Ada queue.

-- Status is Successful ~ attach succeeded

- Invalid Entry - current task has no entry with given

- entry number

.- Invalid Queue - the queue for the given entry is not

- an IPC queue

pragma Suppress (Elaboration_Check, Detach Queue);

pragma Interface (Asm, Detach Queue);

pragma Import Procedure (Detach Queue, "__ART Detach Queue",
Mechanism => (Value, Value)):

end Runtime Support_For_Ipc;

The Storage_Error exception is raised at the point of declaration of a task object, if system
resources are insufficient to fork the corresponding process or to create the required message
queues.

When a task has terminated, the messages queues created for the task are deleted. The process
corresponding to the task executes an F$Exit system call, thereby allowing the stack space that
was allocated for the process to be reclaimed by the operating system.

See also Appendix V for details about compiler attributes associated with message queues and
IPC.

Priority
The priority of an Ada task can be specified by a Priority pragma in the task specification. The

Ada priority of the main program is 127 by default; it can be changed in the declaration part
with pragma Priority.

RATIONAL o/15/s 81

MC68020/0S-2000 CDF

At program initiation, the runtime system queries the OS-2000 priority at which the program is .
executing. These two priority values determine a correspondence of Ada task priority to

0OS-2000 process priority, which is maintained when a task is created. For example, if a main

program has priority 10 and is run at OS-2000 priority 100, a task within the program that has a

specified priority of 20 will execute at priority 110 as an OS-2000 process.

Timers

Three Ada-language constructs require timing to be performed: delay statements, timed entry
calls, and selects with delay alternatives. When one of these statements is executed, a timer is
started. If there are insufficient system resources to start the timer, Storage_Error is raised.

82 o158 RATIONAL

8 MC68020/0S-2000 Downloader

The MC68020 linker produces an executable module in the R1000 object-module format. Before
this module can be used, however, its object-module format must be changed from R1000 to
0S-2000 format. The MC68020/0S-2000 CDF provides the Convert command to change the
formats. After the executable module has been converted to the appropriate object-module
format, it must be downloaded to the target. The MC68020/0S-2000 CDF provides the
Os2000_Put command to download the executable module. Once on the target, the file can be
executed directly using the OS-2000 operating system commands. Alternatively, it can be
executed through the use of the MC68020 cross-debugger (see Chapter 9).

FORMAT-CONVERSION COMMAND (Convert)

The output of the MC68020 linker is an executable module in the R1000 object-module format.
However, this format will not execute on the target. The format must first be converted to the
OS-2000 object-module format before it can be executed.

The command that converts the formats is:

Convert (0Old Module : String := "<IMAGE>";.

Old Format : String := "RATIONAL";
New_Module : String;

New_Format : String := "<DEFAULT>";
Options : String := "v;

Response : String := "<PROFILE>");

The parameters of this command are:
¢ 0ld Module : String := "<IMAGE>";
Specifies the name of the executable module that contains a non-OS-2000-compatible format.
® Old_Format : String := "RATIONAL";
Specifies the object-module format of the old module. The default is Rational.
¢ New_Module : String;

Specifies the name of the converted executable module.

RATIONAL /158 83

MC68020/0S-2000 CDF

New Format : String:= "<DEFAULT>";

Specifies the object-module format of the new module. If the value of this string is
"<DEFAULT>" and the enclosing world or subsystem has the Mc68020_0s2000 target key,
then the new format is Mc68020_0s2000.

Options : String:= " *;
Presently no options are implemented.
Response : String:= "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what switches to use during
execution of this command. The default is the job response profile.

CONVERTING THE EXECUTABLE FILES

The executable file produced by the MC68020 linker is in the R1000 object-module format. To
run on the target, it must be converted to the OS-2000 object-module format. To accomplish
this, perform the following steps:

AU S

Create a Command window off the library that contains the executable module.

Enter Convert and press [Complete].

Enter the name of the executable module at the 01d_Module prompt.

Enter the name of the executable module to be used on the target at the New_Module prompt.
Enter Mc68020_0s2000 at the New_Format prompt.

Press [Promote] .

For example, the following command converts the object-module format:

Convert (0ld Module => "Main 68k.<exe>",
Old Format => "Rational",
New_Module => "Main 68k",
New_Format => "Mc68020_0s2000");

TRANSFER COMMAND (0Os2000_Put)

You must now transfer the executable module that has the OS-2000 object-module format to the
target. The transfer command is:

84

0s2000_Put (From_Local_File : String := "<IMAGE>";
To_Remote File : String := "";
Remote_Machine : String := "<DEFAULT>";
Remote Directory : String := "<DEFAULT>";
Transliterate : Boolean := False;
Response : Profile.Response Profile := "<PROFILE>");

o158 RATIONAL

Chapter 8: MC68020/0S-2000 Downloader

The parameters for this command are:

From Local_ File : String := "<IMAGE>";

Specifies the name of the file on the R1000 that contains the OS-2000-compatible executable
module.

To_Remote File : String := "";

Specifies the name of the executable module on the target. The default indicates that the
name of the file on the R1000 will be used. If you do not use the same filename as the main
unit on the R1000, you will not be able to debug your file.

Remote Machine : String := "<DEFAULT>";

Specifies the name of the remote machine to which the executable module is transferred. The
default uses the value of the Ftp_Profile.Remote_Machine switch in your switch file.

Remote Directory : String := "<DEFAULT>";

Specifies the name of the remote directory that will receive the transferred executable
module. The default uses the value of the Ftp_Profile Remote_Directory switch in your
switch file.

Transliterate : Boolean := False:

Specifies, when set to true, that the ascii.lf characters in the R1000 file be transmitted as
ascii.cr. The default is false.

Response : Profile.Response Profile := "<PROFILE>";

Specifies how to respond to errors, how to generate logs, and what switches to use during
execution of this command. The default is the job response profile.

TRANSFERRING THE EXECUTABLE FILES

The executable module is now in the OS-2000 object-module format, and you can transfer it to
the target. To accomplish this, perform the following steps:

AW N e

5.

. Create a Command window off the library containing the executable module.

Enter 0s2000_put and press [Complete].
Enter the name of the executable file on the R1000 at the From Local_ File prompt.

Enter the name of the executable file to be used on the target at the To_Remote_File prompt

(if you want to debug this program later, it must have the same name as the program on the
R1000).

Enter the name of the machine that will receive the executable module at the Remote-
Machine prompt. (If you have set the Ftp_Profile. Remote_Machine switch in your switch
file, you can use the default value for this parameter.)

. Enter the name of the directory on the machine that will receive the executable module at the

Remote Directory prompt. (If you have set the Ftp_Profile.Remote_Directory switch in

RATIONAL /155 85

MC68020/0S-2000 CDF

your switch file, you can use the default value for this parameter.)
7. Press [Promote].

For example, the following command transfers the executable module Main_68k to the remote
machine and directory specified in the switch file (the same name is retained, but ascii.lf
characters are not transferred as ascii.cr):

0s2000_Put (From Local File => "Main_68k",
To_Remote_File => "Main_ 68k",
Remote_Machine => "<DEFAULT>",
Remote Diractory => "<DEFAULT>",
Transliterate => False,
Response => "<PROFILE>");

EXECUTING DIRECTLY ON THE TARGET

To run your executable module on the target, you enter the filename of the module from a
console connected to the target. You can enter a full pathname or a simple filename if you are in
the appropriate target directory.

The command is:

executable_module_name -4 -e -s

The optional parameters are:

* executable_module_name: Specifies the filename of the executable module that you transferred

to the target.

¢ - d: Specifies that task and elaboration diagnostics are to be run. This parameter is optional.
If present, it must be separated from the executable module name and other parameters, if
present, by a blank space.

¢ - e Specifies that exception tracing should be done. With this option, whenever an
exception is raised, the exception name and the location (in decimal) within the module in
which it was raised are sent to Standard_Output.

* - s:Specifies that storage diagnostics are to be run. This parameter is optional. If present, it
must be separated from the executable module name and other parameters, if present, by a
blank space.

For example:

main 68k -e

executes the executable module found in Main_68k with exception tracing enabled.

86 o158 RATIONAL

9 MC68020/0S-2000 Cross-Debugger

The MC68020/0S-2000 Cross-Development Facility provides the ability to debug programs
running on the target. Choosing the Mc68020_0s2000 target key selects the MC68020/0S-2000
cross-debugger. The same interface (!Commands.Debug) is used to control both the R1000
debugger and the MC68020/0S-2000 cross-debugger.

DEBUGGER COMMANDS

Table 9-1 lists the commands in package !Commands.Debug that are used in debugging
programs. These commands are used with both the R1000 native debugger and the
MC68020/0S-2000 cross-debugger. For more information on these commands, consult the
Debugging (DEB) book of the Rational Environment Reference Manual.

Table 9-1 Package Debug Debugging Commands

Command Function

Activate Activates a previously removed (deactivated) breakpoint.

Address_To_Location | Displays the source location corresponding to the address of the specified
machine instruction.

Break Creates a breakpoint at the specified location in the specified task.

Catch Stops execution whenever the named or selected exception is raised in the
specified tasks at the specified location; reports the task name, the location
in which the exception was raised, and the exception name.

Clear_Stepping Removes all pending stepping operations that have been applied to the
specified task(s).

Comment Displays the comment specified by the string parameter in the Debugger
window.

Context Sets the specified context to be the specified pathname.

Convert Converts the string specified in the number parameter to the specified base

representation; 64-bit arithmetic is used.

RATIONAL o15 s -

MC68020/0S-2000 CDF

Table 9-1 Package Debug Debugging Commands (continued)

Command

Function

Current_Debugger

Causes the named debugger to become the current default debugger for the
user’s session.

Debug_Off Terminates debugging of the current job.

Disable Enables or disables the option flag controlling the behavior of the debugger
specified by the variable parameter.

Display Displays an area of source in the Debugger window with statement
numbers included, based on the current selection or the pathname
provided.

Enable Enables or disables the option flag controlling the behavior of the debugger

specified by the variable parameter.

Exception_To_Name

Displays the source name of the exception that corresponds to the specified
implementation-specific representation.

Execute Commences (or resumes) execution of the named task(s).

Flag Sets a flag controlling the behavior of the debugger to a specified string
value.

Forget Removes catch and propagate requests that match the Name, In_Task, and

At_Location parameters.

History_Display

Displays a range of history entries for the specified task.

Hold

Stops execution of the specified task(s) and keeps it stopped until the task is
explicitly released by the Release procedure or until an explicit request is
given for execution of the task by an Execute or Run procedure.

Information Lists information about the specified task.

Invoke Starts the debugger on the selected main unit after determining the target
key.

Kill Kills the job being debugged and/or the debugger for the session.

Location_To_Address

Displays the code address for the machine instructions associated with the
specified location.

Memory_Display

Displays the contents of memory.

Memory_Modify

Modifies the contents of memory.

Modify

Modifies or changes the values of the specified object.

Object_Location

Displays the machine address of the specified object (variable).

sy RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Table 9-1 Package Debug Debugging Commands (continued)

Command Function

Propagate Enters a request to the debugger that the program being debugged not be
stopped when the specified exception is raised in the specified task at the
specified location.

Put Displays the value of the specified object in the Debugger window with

formatting based on the type of the object.

Register_Display

Displays the registers for a given task and stack frame.

Register_Modify

Modifies the value of a register with a given hexadecimal value.

Release

Releases a task (or tasks) from the held state and moves the task to the
stopped state.

Remove

Deactivates and possibly deletes the specified breakpoint(s).

Reset_Defaults

Resets all flag values and Boolean options to their standard values and
unregisters all special displays.

Run

Executes the specified task(s) until the stop event has occurred the number
of times specified by the Count parameter.

Set_Task_Name

Assigns a string nickname for the named task.

Set_Value Sets the numeric variable flag controlling the behavior of the debugger to
the specified value.

Show Displays information about various debugger facilities.

Source Finds the source for the specified location and displays that location
highlighted in an Ada window.

Stack Displays the specified frames of the stack of the named task.

Stop Stops execution of the specified task(s).

Take_History Enables or disables the recording of information about events executed in
the specified task at a specified part of the program.

Target_Request Issues a request to the target debug kernel.

Task_Display

Displays information about the named task(s).

Trace

Enables or disables the tracing of the specified events in the named task.

Trace_To_File

Sends trace output to the file specified by the File_Name parameter.

Xecute

Commences (or resumes) execution of the named task(s).

RATIONAL /1585

89

MC68020/0S-2000 CDF

Table 9-2 lists the commands in package !Commands.Common that are used in debugging
programs. These commands are used with both the R1000 native debugger and the
MC68020/0S-2000 cross-debugger. For more information on these commands, consult the
Debugging (DEB) book of the Rational Environment Reference Manual.

Table9-2 Package Common Debugging Commands

Command

Function

Abandon

Deletes the Debugger window if the debugger has been killed; otherwise,
the command has no effect.

Create_Command

Creates a Command window below the Debugger window if one does not
exist; otherwise, the command puts the cursor in the existing Command
window below the Debugger window.

Definition Finds the defining occurrence of the designated element and brings up its
image in a window on the screen.

Enclosing Displays the library containing the Command window from which the job
being debugged was started.

Release Deletes the Debugger window if the debugger has been killed; otherwise,
the command has no effect.

Write_File Writes the current contents of the Debugger window into the named file.

Object.Child Selects the Repeat child element of the currently selected element.

Object.First_Child

Selects the first child of the currently selected element.

Object.Last_Child

Selects the last child of the currently selected element.

Object.Next Selects the Repeat next element past the currently selected element.

Object.Parent Selects the parent element of the currently selected element.

Object.Previous Selects the Repeat previous element before the currently selected element.
ADDITIONAL COMMANDS

For a full discussion on using the debugger, consult the Debugging (DEB) book of the Rational
- Environment Reference Manual. In addition to the commands described in DEB, some additional
commands are available to support debugging at the machine level.

Table 9-3 lists the commands that are available for machine-level debugging. Hexadecimal
(hex) numeric values in these commands must begin with a pound sign (#).

% o158 RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Table9-3 Machine-Level Debugging Commands

Command Function

Debug.Address_To_Location | Displays the Ada source-code location of the specified address.

Debug.Invoke Starts the debugger on the selected main unit after determining the
target key.

Debug.Location_To_Address | Displays the address of the generated code for a selected source-code
location.

Debug.Memory_Display Displays the memory contents at a particular memory address.

Debug.Memory_Modify Modifies up to a longword (32 bits) of memory.

Debug.Object_Location Displays the machine address of the specified Ada unit (variable).

Debug.Register_Display Displays the CPU registers for a given task and stack frame.

Debug.Register_Modify Modifies the value of a register with a given hex value.

Debug.Run Causes the debugger to step at the various levels supported.

Invoking the Debugger

There is no accelerated key binding for invoking the MC68020/0S-2000 cross-debugger. To
start the MC68020/0S-2000 cross-debugger on a main program, select the unit and then execute
the Debug.Invoke command. Typically, this is done in a Command window.

This command starts the debugger on the selected main unit after determining the target key. If
a previous MC68020/0S-2000 debugger still exists, the default is to use that debugger rather
than start a new one. Optionally, the name of the remote machine and the directory on the
remote machine that contains the transferred executable module in the OS-2000 object-module
format can be specified. If no values are specified, these values are determined from the
Ftp.Remote_Directory and Ftp.Remote_Machine switches in the library switch file.

The format of the command is:

Debug.Invoke (Main Unit => "<Image>",
Options => "v,
Spawn_Job => True);

The parameters for this command are:

* Main Unit: Specifies the name of the main program unit (the unit associated with pragma
Main) that will be debugged. (The pragma may have been included in the unit specification
or its body.)

* Options: Specifies the options to be used with the command. The possible options are:

— "Machine => Network Machine Name": Specifies the machine name of the remote
computer.

RATIONAL s/15/s | o

MC68020/0S-2000 CDF

— "Directory => Target Directory Name": Specifies the name of the target directory
that contains the executable module.

— "Program => Target Program Name": Specifies the name of the executable module on
the target. The program name or its OS-2000 process identification number (ID) must be
specified if the target program name is different from the R1000 name. If the name
applies to multiple processes on the target, then both the name and process ID must be
specified. The target program can be a non-Ada program, but then debugging operations
are limited.

— "Process_ID => Target Process Id": Specifies the OS-2000 process ID of the module
to be debugged. This unambiguously identifies the module. This parameter is
meaningful only if Spawn_Job is set to false.

— "User => User Login": Specifies the R1000 username to be identified with the
debugging session. If this is omitted, the current user login name is assumed. The
target-resident debugger code verifies that no other user has current debugging sessions
on this target machine.

— Reuse_Debugger: Specifies a Boolean value that indicates whether the current debugger
will be used. If set to false, a new debugger will be started and used.

* Spawn_Job: Specifies a Boolean value that indicates whether the current job is started by the
debugger or is already running on the target. The default is true. If the value is false, an
identifying program name or process ID must be specified in the Options parameter.

For example, from a world with target key Mc68020_Os2000 containing a coded main unit
named Main_68k, whose executable has been converted and downloaded to the target where it
has the same name, and with switch values that include:

Debugging_Level := Full
Optimization_Level := 0
Remote Directory := "/h0/test"
Remote Machine := "0s2000_a"

Start a new debugger that initiates target program execution with the command:

Debug. Invoke (Main Unit => "Main 68k",
Options => "Reuse Debugger => False");

Determining Locations

The following commands are used to map from the Ada source to the machine representation of
the code:

¢ Debug.Address_To_Location
¢ Debug.Location_To_Address
* Debug.Object_Location

. o RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Debug.Address_To_Location

This procedure displays the Ada source-code location of the specified runtime address.
The format of this command is:

Debug.Address_To_Location (Address => "");
The parameter of this command is:

* Address: Specifies the memory address whose source location is to be determined. The
address is a hexadecimal value—for example, #3A4BOFFF (up to 8 characters—32 bits).

For example, the following command selects the source-code location corresponding to the
memory address #3A4BOFFF

Debug.Address_To_Location (Address => "#3A4BOFFF");

Debug.Location_To_Address

This command displays the runtime address of the generated code for a selected source-code
location.

The format of this command is:

Debug.Location_To_Address (Location => "<Selection>",
Stack_Frame => 0);

The parameters of this command are:

* Location: Specifies the selected source-code location.

® Stack_Frame: Specifies the stack frame. The default is 0, which means that the location
parameter is used.

For example, the following command returns the address of the selected location:
Debug.Location_To_Address;

However, the following command displays the address of code for the current location indi-
cated by frame 2 of the current task:

Debug.Location_To_Address("",2);

Debug.Object_Location
This procedure displays the machine address of the specified object (variable).

RATIONAL /155 %3

MC68020/0S-2000 CDF

The format of this command is:

Debug.Object_location(Variable => "<Selection>" ’
Options => "");

The parameters of this command are:

* Variable: Specifies the object (variable) whose location is to be determined.

* Options: Specifies the options to be used with this command (no options are currently
supported).

For example, the following command returns the location of the selected object:

Debug.Object_Location;

Displaying Machine-Level Program Values
The following commands are used for displaying machine-level program values:

* Debug.Memory_Display
¢ Debug.Register_Display

Debug.Memory_Display
This command displays the memory contents at a particular memory address.

The format of the command is:

Debug.Memory Display (Address => "",
Count => 0,
Format => "Data");

The parameters of this command are:

* Address: Specifies the address at which to display memory. The address is a hexadecimal
number (up to 8 characters—32 bits) or the name of a source location.

® Count: Specifies the number of locations (32-bit objects) to display.

* Format: Specifies the format of the data to be displayed. The Format parameter must specify
either “Code” or “Data”: “Code” disassembles memory as MC68020 instructions; “Data”
displays memory in hexadecimal notation.

When a name is given (pathname or <Selection>, <Cursor>, and so on), the address of the
specified source is calculated and Count words are then displayed starting from that address
and in the specified format.

For example, the following command displays 10 words of code starting at memory address
#3A4BOFFF:

% o158 RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Debug.Memory Display(Address => "#3A4BOFFF",
Count => 10,
Format => Code);

Debug.Register_Display
This command displays the registers for a given task and stack frame.

The format of this command is:

Debug.Register Display(Name => ",
For_Task => "",
Stack Frame => 0,
Format => "");

The parameters for this command are:

* Name: Specifies the name of the registers to be displayed. If the null string (*") or “All” is
specified, all CPU registers are displayed. (Consult MC68020 32-Bit Microprocessor User's
Manual, 2nd ed., Prentice-Hall: Englewood Cliffs, New Jersey, 1985, for a listing and de-
scription of the registers.)

* For_Task: Specifies the task to be used. If the null string (""), the default, is specified, the
current task is used.

* Stack_Frame: Specifies the stack frame to be used. If Stack_Frame = 0, the task is ignored
and the physical machine registers are displayed. If the Stack_Frame > 0, the registers for the
given task and the given frame are displayed.

* Format: Not used.
For example, the following command displays all of the register values:

Debug.Register Display(Name => "All");

Modifying Machine-Level Program Values

The following commands are used to modify memory or registers:

¢ Debug.Memory_Modify

* Debug.Register_Modify

Debug.Memory_Modify

This command is used to modify up to a longword of memory (32 bits).

The format of this command is:

RATIONAL s/15/s5 9%

MC68020/0S-2000 CDF

Debug.Memory Modify (Address => ">>HEX ADDRESS<<",
Value => ">>HEX VALUE<KL",
Width => 0,
Format => "Data");

The parameters of this command are:
* Address: Specifies the memory address to be modified. The address is a one- to eight-digit

hexadecimal value (for example, #4A3B12AF).

* Value: Specifies the new value that is to be placed in the specified memory location. The
value is also a one- to eight-digit hexadecimal value (for example, #FFFFFFFF).

* Width: Specifies the number of bits to be modified. The default value (0) represents the tar-
get storage-unit size, as specified in package System.

¢ Format: Not used.

For example, the following command places the value #FFFFFFFF in the memory location
#4A3B12AF:

Debug.Memory Modify(Address => "#4A3B12AF",
Value => "#FFFFFFFF"
Format => "Data"):
Debug.Register_Modify

This command is used to modify the value of a register with a given hexadecimal value. .

The format of this command is:

Debug.Register_Modify(Name => ">>REGISTER NAME<<",
Value => ">>HEX VALUE<<",
For_Task => "",
Stack_Frame => 0,
Format => "");

The parameters of this command are:

* Name: Specifies the name of the register. (Consult MC68020 32-Bit Microprocessor User’s
Manual, 2nd ed., Prentice-Hall: Englewood Cliffs, New Jersey, 1985, for a listing and de-
scription of the registers.)

* Value: Specifies a one- to eight-digit hexadecimal value (for example, #3A4B12AF).
® For_Task: Specifies the name of the task (defaulted to the current task by the null string).

* Stack_Frame: Specifies an integer value (default 0). If Stack_Frame = 0, the task is ignored
and the physical machine registers are modified. If the Stack_Frame > 0, the registers for the
given task and the given frame are modified.

® Format: Not used.

% o158 RATIONAL

Chapter 9: MC68020/0S-2000 Cross—Debugger

For example, the following command places the value #FFFFFFFF in register D2:

Debug.Register Modify(Name => "D2",
Value => "#FFFFFFFF"
Format => "");

Program Control Commands

In addition to the foregoing commands, the following commands are used with the
MC68020/05-2000 cross-debugger:

¢ Debug.Break

* Debug.Current_Debugger

¢ Debug.Kill

Debug.Run

Debug.Target_Request

Debug.Break
This command establishes a breakpoint at the specified memory address or Ada location.

The format of this command is:

Debug.Break (Location => "<Selection>",
Stack Frame => 0,
Count => 1,
In _Task => "»,
Default_Lifetime => True);

The parameters of this command are:

* Location: Specifies the location or memory address in hexadecimal notation at which the
breakpoint is to be set.

* Stack_Frame: Specifies the frame in which to set the breakpoint.

® Count: Specifies the number of times the breakpoint must be executed before it interrupts the
execution of the task.

* In_Task: Specifies the task in which the breakpoint is to be set.
* Default Lifetime: Specifies whether the breakpoint is to be permanent or temporary.

For example, the following command sets a breakpoint at location #3A4BOFFF:
Debug.Break ("#3A4ROFFF") ;

Using this command, it is possible to stop a program at a location in runtime code. Because the
runtime code uses some nonstandard calling conventions to improve performance, the debug-

RAT'O NAL 9/15/88 97

MC68020/0S-2000 CDF

ger may be unable to display the stack or indicate the program location in this case. Instead, it
reports that the program is stopped at an unknown location in the runtime system. Use the
Run(Statement or Local_Statement) command to advance the program to the next Ada
statement boundary.

Debug.Current_Debugger

A given session may be running multiple debuggers of different target types—for example, an
R1000 debugger and an MC68020/0S-2000 cross-debugger. When commands are entered into
a new Debugger window, the new debugger becomes the current debugger. The command
Debug.Current_Debugger also can designate one of these debuggers as the current debugger.
All subsequent commands are directed to that debugger.

Running a debugger command in a window directly off an MC68020/0S-2000 cross-debugger
window, or pressing a debugger key while in that window, makes the MC68020/0S-2000 cross-
debugger the current debugger.

Running Debug.Invoke on an Mc68020_0s2000 unit also makes the MC68020/0S-2000
cross-debugger the current debugger.

The format of this command is:
Debug.Current_Debugger (Target => "");

The parameter of this command is:

* Target: Specifies the name of the cross-debugger.

For example, the following command sets the current debugger to be an MC68020/0S-2000
cross-debugger:

Debug.Current_Debugger (Target => "Mc68020");

Debug.Kill

This command terminates the current debugging session and/or the target program. If the
Debugger parameter is not set to true, the target program is terminated, but the debugger is still
active and can be reused to debug another program.

The format of this command is:

Debug.Kill (Job => True,
Debugger => True);

The parameters of this command are:

* Job: Specifies a Boolean value that determines whether the target program will be killed.
* Debugger: Specifies whether the debugger will be killed.

98 ons/ss RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Using Debug Kill to stop target-program execution is equivalent to issuing an abort request to
the O5-2000. There is no guarantee that a blocked job will become unblocked to honor such a
request.

Use Debug Kill to stop execution of the debugger and avoid some processing overhead in the
target. An active debugger monitors synchronous faults in the target even when no process is
being debugged.

For example, the following command kills both the target job and the cross-debugger:

Debug.Kill (Job => True,
Debugger => True);

Debug.Run

This command can be used to provide Ada or machine-level stepping, depending on the setting
of the Stop_At parameter. The Machine_Instruction value in the Stop_At parameter causes the
debugger to step at the machine-instruction level.

The format of this command is:

Debug.Run (Stop_At => Debug.Statement,
Count => 1,
In_Task => "");

The parameters of this command are:

* Stop_at: Specifies the event that will cause the task to stop. The default is any statement.
* Count: Specifies the number of times the event must be executed before the task stops.
* In_Task: Specifies the task to be run.

For example, the following command causes the debugger to single-step at the machine level:
Debug.Run (Debug.Machine_Instruction);

Using this command, it is possible to stop a program at a location in runtime code. Because the
runtime code uses some nonstandard calling conventions to improve performance, the debug-
ger may be unable to display the stack or indicate the program location in this case. Instead, it
reports that the program is stopped at an unknown location in the runtime system. Use the
Run(Statement or Local Statement) command to advance the program to the next Ada
statement boundary.

Debug.Target_Request

This command can be used to control some operations of the target-resident debugger. Among
other things, it can set a stopping model for use with breakpoints. The value specified for the
Options parameter determines which tasks on the target are halted when user breakpoint
conditions are met.

RATIONAL o/15/s5 %

MC68020/0S-2000 CDF

The format of this command is:

Debug.Target_Request (Options := "",
In File := "");

The In_File parameter is not currently used.

The Options parameter can be used in two modes: to control target operation via the debugger
with keywords or to spawn a target program that can interact with the debugger. Possible
Options keyword values are:

* Stop Task: Specifies that only the task whose breakpoint has been reached should stop.

* Stop Program Specifies that all tasks associated with this debugging session (that is, all
tasks associated with this program) should stop when the breakpoint is reached.

* Stop Processor: Specifies that all tasks on the target (except the debugger itself) should
stop when the breakpoint is reached.

* Trapon: Specifies that tracing and stepping continue through the operating system TRAP
instruction handler.

* Trapoff: Specifies that tracing and stepping operations in the debugger should ignore the
operating system TRAP instruction handler, treating each call as a single instruction.

For example, the following command causes all tasks spawned by the executing program to
stop when the next breakpoint is reached:

Debug.Target_Request (Options => "Stop Program");

The other mode for using the Options parameter can extend debugger functionality. In this
mode, the debugger spawns a program that collects target-specific information and passes it to
the user in the Debugger window. A decision about how to proceed with the debugging session
can be made based on this information.

If the Options parameter string begins with a greater-than sign (>), the debugger interprets the
remainder of the string as follows:

* If the next nonblank character is a percent sign (%), the hex digits immediately following are
the name of an Ada program, which the spawned program (named in the next field) can use.

* The pathname of the OS-2000 program follows the > symbol and the task name field.

* After the pathname is an optional modifier field (maximum length 256 characters), which is
passed to the spawned program in the Target_Request_Record.

The task name and modifier fields are optional. The debugger builds a target request record for
communication with the program, spawns the program in the target with the 0S-2000 call
F$Fork, and then pauses (“sleeps”). The debugger passes the three standard 1/O paths to the
spawned program. There is no memory override for this spawned program: it is allocated only
that memory specified in the OS-2000 module header. The debugger passes it a 10-character

100 o158 RATIONAL

Chapter 9: MC68020/OS-2000 Cross-Debugger

command line, which is the memory address of the target request record: eight ASCII
hexadecimal digits and two ASCII nulls.

It is the spawned program'’s responsibility to interpret the ASCII characters as an address, build
a system pointer to access the target request record, and communicate with the debugger. A
spawned program need not interact with the debugger. The debugger resumes operation after
30-60 seconds if the program terminates without communicating with the debugger.

The Ada code corresponding to the target request record and its representation clause are:

type Target Request Record is

record
Version : M68K Word;
Record Address : Short_Array;
Debugger_Pid : M68K_Word;
Task_Pdsc : M68K_Address
Task_Pdb : M68K Address;
System Globals : M68K_Address;
Debugger_Globals : M68K_Address;
Task_Tcb : M68K_Address;
Target_Request_Parameters : Long_Array;
Nth_Call : M68K_Longword;
Result_Ready : M68k_Byte;
Filler : M68k_Byte;
Last_Result : M68k_Byte;
Severity : M68k_Byte;
Result Length : M68k_Word:
Target Request Result : Long Array;

end recorxd;

for Target_Request_Record use
record
Version at 0 range 0 .. 15;
Record Address at 2 range 0 .. 79;
Debugger_Pid at 12 range 0 .. 15;
Task_Pdsc at 14 range 0 .. 31;
Task_Pdb at 18 range 0 .. 31;
System Globals at 22 range 0 .. 31;
Debugger Globals at 26 range 0 .. 31;
Task_Tcb at 30 range 0 .. 31;
Target_Request Parameters at 34 range 0 .. 2047;
Nth_Call at 290 range 0 .. 31;
Result Ready at 294 range 0 .. 7;
Filler at 295 range 0 .. 7;
Last_Result at 296 range 0 .. 7;
Severity at 297 range 0 .. 7;
Result Length at 298 range 0 .. 15;
Target_Request_ Result at 300 range 0 .. 2047;
end record;

RATIONAL o153 101

MC68020/0S-2000 CDF

The record fields are described in Table 9-4.

Table 9-4 Target Request Record

Field

Contents

Version

Target request record version number; current value is 1

Record_Address

A 10-character string; the command line passed by the debugger

Debugger_Pid

0S-2000 process ID of the spawning debugger

Task_Pdsc A four-byte pointer to the OS-2000 process descriptor block; valid
only if the %name parameter is used
Task_Pdb A four-byte pointer to the debugger process database; not intended

for customer use

System_Globals

The address of the OS-2000 system globals

Debugger_Globals

The address of the debugger globals; not intended for customer use

Task_Tcb

A four-byte pointer to the Ada task control block; valid only if the
% name parameter is used

Target_Request_Parameters

A zero-terminated string; the modifier field of the Target_Request
command; designed for direct use by the spawned program

Nth_Call

A counter indicating the number of times the program has returned
results (useful when multiple values of the Target_Request_Result
field must be passed); initially set to 1 and incremented by the
debugger

Result_Ready

A byte that is initially 0; this is set to 1 by the spawned program to
indicate that the Target_Request_Result field is ready for use by the
debugger ’

Filler An alignment byte

Last_Result A byte that is initially 0; this should be set to 1 by the spawned
program if the current Target_Request_Result is the last to be passed

Severity An integer value set by the program to denote the result class: 0 for

no message, 1 for information, 2 for a warning, 3 for an error, 4 for a
fatal error, 5 for a catastrophic error

Result_Length

This integer value is set by the program to indicate the length of the
string in the Target_Request_Result field

Target_Request_Result

A string returned by the program and passed by the debugger to the
host; maximum length is 256 bytes; multiple partial results may be
returned to build a larger string

102

o158 RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

All fields are initially assigned values by the debugger. The spawned program should modify
only the values of the Result_Ready, Last_Result, Severity, Result_Length, and Target_Request-
_Result fields. The program then sends a wake-up signal to the target debugger using the
process ID from the Debugger_Pid field. If this is not the last result, the spawned program
pauses by executing a F$Sleep(0) system call. If this is the last result, the spawned program
should terminate.

The debugger passes the Severity and Target_Request_Result values to the host. If this is not
the last result (that is, if the program did not set the Last_Result field to 1), the debugger
reinitializes the appropriate fields, passes control to the program, and pauses again. When the
program completes, it sets the Last_Result field and all Target_Request_Result values are
concatenated and displayed on the host in the Debugger window, with prefix characters
determined by the Severity class.

DIFFERENCES BETWEEN THE DEBUGGERS

The differences between the R1000 debugger and the MC68020/0S-2000 cross-debugger are
discussed in this section.

Breakpoints

On the MC68020, dead-code elimination results in the disappearance of statements. Break-
points are refused at locations for which no code is generated.

Breakpoints can be set at machine addresses by specifying #<Address> for the location
parameter.

Breakpoints can be set in specific instantiations of a generic but not in the generic itself.

Exceptions

Unlike the native R1000 compiler, the MC68020/0S-2000 cross-compiler does not support
flavors of exceptions—for example, additional detail such as “(Null Access)” when reporting
“Constraint_Error”.

The predefined exceptions (Constraint_Error, Storage_Error, Numeric_Error, and Program_
Error) are always considered implicit. The R1000 debugger is able to distinguish between these
when raised implicitly by the computer architecture or when raised via a raise statement. This
distinction is not made in the MC68020/0S-2000 cross-debugger.

Exceptions in generics are specified by using their instantiation name.

When an exception is caught, the Ada location of the point of raise is correct. The program
counter displayed (when the option address is true) is the program counter in the runtime
system for exception processing.

RATIONAL 15/ 103

MC68020/0S-2000 CDF

The Information(Exceptions) command gives information for the most recently raised excep-
tion. Previous exceptions on the stack are not available. You cannot determine whether the last
raised exception is still active. The raise location is not known unless you catch the exception in
the debugger.

Elaboration

To elaborate an M68000 program, a single task (the root task) is used to elaborate all the
packages. Stepping and breakpointing operate on this task. Because this elaboration model
differs from the one used on the R1000, stepping, breakpointing, and other operations that
depend on task name behave differently during elaboration.

Object Evaluation

No elaboration check is performed by the MC68020/0S-2000 debugger when it displays an
object. Data displays before elaboration return whatever data are currently stored in that
machine location.

Modification does not check that the value is in range. The debugger never corrupts adjacent
data, but the value written may cause a subsequent reference to the modified object to get a
constraint error. Array bounds are checked, since the debugger displays the value before.
modifying the value.

Memory Display

The MC68020/0S-2000 cross-debugger supports two kinds of memory display: Data and Code.
Data provides a hexadecimal dump and Code provides a disassembly listing. The R1000 also
offers Control, Import, and Type, which are not supported on the MC68020/0S-2000
cross-debugger.

Stack Frames

Block statements and accept statements are inlined by the MC68020/0S-2000 cross-compiler.
They are displayed as separate frames (as on the R1000 debugger) even though no physical
frame exists.

Naming and Generics

The cross-debugger does not support naming of locations and exceptions by naming a generic
unit; rather, the names must specify a particular instantiation. Similarly, the cross-debugger
does not display the name of the generic along with the instantiation name. The explanations
and examples to the contrary that are in the DEB volume of the Rational Environment Reference
Manual apply to the native R1000 debugger, not to the cross-debugger.

o 15,5 RATIONAL

Chapter 9: MC68020/0S-2000 Cross-Debugger

Target-System Characteristics

There are limits on use of the debugger with the MC68020/0S-2000 target. Only one user can
debug a particular target system at a time, but that user can conduct multiple debugging
sessions.

For a particular target, there can be no more than eight concurrent debugging sessions, no more
than 64 processes being debugged on all sessions, and no more than 128 breakpoints for all
processes and sessions.

The TCP/IP socket number that is used by the target-resident debugger to initiate a debugging
session is configurable via a text file on the target.

RATIONAL s 15,55 |

Appendix I: ASCII Table

Standard 7-Bit ASCII Code

Bits B7, B6, and BS5 are represented by the column headers.
Bits B4, B3, B2, and B1 are represented by row headers.
000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P ‘ p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 3 C S c s
. 0100 | EOT | DcC4 $ 4 D T d t
0101 ENQ NAK % 5 E 9] e u
0110 ACK SYN & 6 F A f v
0111 BEL ETB ’ 7 G w g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
1010 LF SUB * J z z
1011 vT ESC + ; K [{
1100 FF FS , < L \ 1 I
1101 CR GS - = M 1 m }
1110 SO RS > N A n ~
1111 SI us / ? (@) _ o DEL

RATIONAL 15/

107

Appendix II: Location of Components

This appendix indicates where important pieces of the MC68020/0S-2000 Cross-Development
Facility can be found.

L]

Assembler, linker, and compiler

The procedures to invoke the assembler and the linker and to restart the compiler can be
found in:

!Targets.Implementation .Motorola 68k’Spec_View.Units.Mé68k

Runtime and default linker command files
The runtime object-code files and the default linker command file can be found in:

!Targets.Implementation.Mc68020_0s2000_Runtimes’View.Units

Debugger
The procedure for invoking the debugger can be found in:

!Targets.Implementation.Mc6802 0_0s2000_Debuggers’Spec_View.Units

Predefined I/O packages
Packages Direct_lo, Sequential_lo, Text_lo, and Io_Exceptions can be found in:

!Targets.Mc68020_0s2000.Io

Other predefined packages

Packages System, Calendar, Machine_Code, Unchecked_Conversion, and Unchecked-
_Deallocation can be found in:

!Targets.Mc68020_0s2000.Lrm

RATIONAL 515/

Appendix III: Assembler and Linker Syntax

The following Backus-Naur form (BNF) is used to define the syntax for assembler and linker
commands:

* Case: Uppercase text is used to denote terminal symbols; lowercase text is used to denote
nonterminal symbols.

* |: The vertical bar indicates that two symbols are alternatives. For example:
lhs --> AA | BB
indicates that either symbols AA or BB are valid.
* []: Brackets indicate that the enclosed symbols are optional. For example:
lhs --> AA[,BB]
indicates that either symbols AA or AA,BB are valid.

* {)}: Braces indicate that the enclosed symbols can be repeated zero or more times. For
example:

lhs ~-> AA{(,BB}

indicates that the symbols AA or AA,BB or AA,BB,BB or AA,BB,BB,BB and so on are valid.

BNF FOR LINKER COMMAND FILES
The following BNF defines the structure of the contents of a linker command file:
command file => PROGRAM string IS linker_ commands END ;
1inker_comands -> { specify modules }
{ specify libraries }
specify collections { specify collections }

specify segments { specify segments }
miscellaneous_cmds

 RATIONAL 5556

MC68020/0S-2000 CDF

112

specify modules
specify libraries

specify collections

specify segments

segment_info

memory bounds

segment_type

Placement
suppress_segment
miscellaneous_cmds

set_symbol

set_staxt_pc
expression
termp

termx

termz

termg

LINK string { , string } ;
USE LIBRARY | LIBRARIES string { , string } ;

COLLECTION collection_id IS
(section _name { , section_name }) ;

SEGMENT id IS segment_info END ;

[memory bounds]

{ segment_type }

{ placement }

[suppress_segment]

MEMORY BOUNDS ARE (expression : expression);
SEGMENT TYPE IS id ;

PLACE collection_id ;

PLACE collection id AT expression ;

PLACE collection_id ALIGN MOD expression ;
SUPPRESS

{ set_symbol }
[set_start _pc]

RESOLVE | FORCE id TO BE expression ;
START AT expression

termp

expression rel op termp

termx
termp or_ops termx

termz
termx and op termz

termg
termz add op termg

term
termq mul_op term

o158 RATIONAL

Appendix III: Assembler and Linker Syntax

term -> factor
-> term exp op factor

factor -> element
-> |-| element
-> |+| element
-> NOT_OP element

element -> number
-> id
=> | (] expression |)|

rel op => |=]
-> /=]
=> |>]
-> <]
=> |>=]
-> |<=|
or_ops -> OR_OP
-> XOR_OP
and op =-> |&}
add op => |+]
-> -l
mul_op -> |*]
=> 1/
-> MOD
~-> REM
exp_op => |**|

-> LSHIFT_OP
-> RSHIFT OP

RATIONAL /15,5 13

MC68020/0S-2000 CDF

BNF FOR ASSEMBLER COMMANDS

The following BNF is used with assembler commands.

Target-Independent Syntax

module
statement_list
label

comment

statement

instruction

directive

listing

114

-=> statement_list end statement <EOF>

-==> {[label] statement [comment] <EOL>}

==> symbol :

-=> ; {character}

-=> directive
instruction
conditional

repeat_statement

macro_call

macro_definition

-=-> (see target dependent syntax)

--> listing

define storage expression

define constant expression {, expression}
define string string

define block expression , expression
define globals symbol {, symbol}

define externals symbol {, symbol}

define permanent symbol :=
define temporary symbol := expression

symbol EQU expression
symbol SET expression
miscellaneous_directives

output_directive
section_directive
align_directive

==> .LISTNC
.LISTC
.LISTMC
.LIST
.TITLE
.PAGE
.HEAD

string

.LISTTC
.LISTMX
.LISTNM
.NLIST

.SUBTTL string

.BLANK
.FOOT

expression

9/15/88 RATIONAL

Appendix III: Assembler and Linker Syntax

define storage --> .DS.B | .DS.W | .DS.L | .DS.S | .DS.D | .DS.X | .DS.A
define_ constant --> .DC.B | .DC.W | .DC.L | .DC.S | .DC.D | .DC.X | .DC.A
define string --> .ASCII | .ASICZ

define block --> .DCB.B | .DCB.W | .DCB.L | .DCB.S |
.DCB.D | .DCB.X | .DCB.A

define globals --> .GBL.B | .GBL.W | .GBL.L
define_external --> .EXT.B | .EXT.W | .EXT.L

define permanent--> .DEFP.B | .DEFP.W | .DEFP.L |
.DEFP.S | .DEFP.D | .DEFP.X

define temporary--> .DEFT.B | .DEFT.W | .DEFT.L |
.DEFT.S | .DEFT.D | .DEFT.X
miscellaneous_directives--> .CPU string
.LOCAL
.PUSH expression
.RADIX expression
.IRADIX expression
.ORADIX expression
.INCLUDE string
.REV string
.ERROR string

output_directives--> .OUTPUT string |
.QUTPUT expression

section _directives--> .SECT symbol {, section param } |
.OFFSET expression

RATIONAL 5715 ”

MC68020/0S-2000 CDF

section_param --> ABSOLUTE AT expression

align directive -->

repeat statement-->

conditional -

macro_definition-->

macro_call -—>
actual list -=>
actual -=>
macro_name -=>
end statement -=>
expression -—>
116

DATA

RELOCATABLE
OVERWRITE
CONCATENATE
CODE

READONLY
READWRITE
ALIGNMENT := expression

.ALIGN [expression]

.REPEAT expression [comment] <EOL>
statement list

.END REPEAT [comment] <EOL>

.IF expression [comment] <EOL>
statement list

[.ELSE [comment] <EOL>
statement list]

.ENDIF

-MACRO macro_name [comment] <EOL>
statement_list

.ENDMACRO

macro_name [actual list]

actual {,actual}
expression | string
symbol

.END [comment] <EOL>

factor |
.IRADIX |
.ORADIX |
.POP I
.ALIGN |
(expression) |
unary op expression |
expression binary op expression

o158 RATIONAL

unary_ op

binary op

factor

base_literal
numeric_ literal
based literal
symbol
local_symbol
regular symbol
starting char
digit

alpha

special char
string

char literal

-->

-—>

-—>

-->

-=>

Appendix III: Assembler and Linker Syntax

+1=-1-

+ 1 =1 *| /| * | | mod | rem |
1IN &

<< | > |

=l /=1>]1<|>]<=

numeric_literal |
base_literal I
char literal |

symbol

numeric_literal # based literal #
digit { _ | digit | alpha }

alpha | digit { _ | digit | alpha }
local_symbol | regular symbol

$ {alpha | digit | special_char }

starting_char { alpha | digit | special_char }

alpha | _ |

0111213415161 7] |1 9
alblcldlelflglhlilJlk]|1]|m]|
njlolplglrlislitlulv|iwix]|ylz]
A|B|ICI|ID|E|JF|G|IH|I|JIKI|LI|MI|
N|OI|PIQIRI|S|T|U|]V|WI|X|Y]|Z
$1 71 _ 1

" {character} "

‘ character '

RATIONAL o155 117

MC68020/0S-2000 CDF

M68000-Family Syntax

instruction

cpu_op =--> ABCD

BLS
BLT

118

-=> cpu_op | fpu_op | mm_op

efa mode_00 , efa mode_00
efa_mode 04 , efa_mode 04

all modes , efa mode 00

efa_mode_00 , alterable memory modes
all modes , efa mode 01

immediate , alterable_data_modes
immediate_range 1 to_8 , alterable_modes
efa mode 00 , efa mode_00

efa mode 04 , efa mode_ 04
data_modes_1 , efa_mode 00

efa mode 00 , alterable_memory modes
immediate , alterable data modes
immediate , sr_or_cecr

efa mode_00 , efa _mode 00

immediate_range_1 to_8 , efa_mode 00
alterable memory modes

efa mode_ 00 , efa mode 00

immediate_range_l to_8 , efa_mode 00
alterable memory modes
branch_displacement

efa mode 00 , alterable data_modes
bit _number , alterable data_modes
efa mode 00 , alterable data_modes
bit number , alterable data_modes
branch_displacement
branch_displacement
dn_or_alterable_control_modes

dn_or alterable_control_modes

dn_or_ control modes , efa mode 00
dn_or_control modes , efa_mode 00
dn_or_control modes , efa_mode 00
efa _mode 00 , dn_or_alterable_ control_modes
dn_or_alterable control_modes
dn_or_control modes
branch_displacement
branch_displacement
branch_displacement
branch_displacement

immediate_range 0_7
branch_displacement

branch_ displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement

9/15/88 RAT]ONAL

BPL
BRA
BSET
BSET
BSR
BTST
BTST
BVC
BVS
CALLM

Cas2

CHK2
CLR

cMP2
CMPA
CMPI
cMPM
DBCC
DBCS
DBEQ
DBF
DBGE
DBGT
DBHI
DBHS
DELE
DBLO
DBLS
DBLT
DBMI
DBNE
DBPL
DBT
DBVC
DBVS
DBRA
DIVS
DIVs
DIVSL
DIVU
DIVU
DIVUL
EOR
EORI
EORI
EXG

Appendix III: Assembler and Linker Syntax

branch_displacement
branch_displacement

efa mode_00 , alterable data modes
bit_number , alterable_data_modes

branch_displacement
efa_mode 00 , data modes_ 1
bit_number , data_modes_2
branch_displacement
branch_displacement

immediate range 0_255 , control_modes
efa mode_00 , efa_mode 00 , alterable memory modes
register pair , register_pair , cas2_efa

data modes 1 , efa_mode_ 00
control _modes , rn
alterable data_modes

all modes , efa mode_00
control modes , rn

efa mode 01

all modes ,
immediate
efa_mode_ 03
efa mode 00
efa_mode_00
efa_mode_00
efa_mode 00
efa mode 00
efa _mode 00
efa mode 00
efa_mode 00
efa mode 00
efa mode 00
efa mode 00
efa mode 00
efa_mode 00
efa_mode_00
efa mode_ 00
efa_mode 00
efa mode_ 00
efa mode 00
efa_mode_00
data modes 1
data_modes_1
data_modes 1
data modes_ 1
data_modes 1
data modes_1

efa mode 00 , alterable data_modes
immediate , alterable data_modes

L T R R L T T LT T T TR T T S N . R N

N N N N N~

data_modes_2
efa mode 03
dbce_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbec_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbcc_displacement
dbce_displacement
dbcc_displacement
dbce_displacement
dbce_displacement
dbcc_displacement
dbce_displacement
dbcc_displacement
dbce_displacement
efa mode 00
register pair
register_pair
efa mode_ 00
register_pair
register pair

immediate , sr_or_ccr

rm , rn

RATIONAL o/15/ss

119

MC68020/0S-2000 CDF

120

ORI

efa mode 00
efa_mode 00

control modes

control modes

control modes , efa_mode 01
efa mode 01 , # immediate
efa mode 00 , efa_mode_00
bit_number , efa_mode_00
alterable memory modes

‘efa_mode 00 , efa_mode 00

bit_number , efa mode 00
alterable memory modes

all modes , alterable data_modes
sr_or_ccr , alterable_data modes
data_modes_1 , sr_or_ccr

usp , efa mode 01

efa mode 01 , usp

all modes , efa_mode 01
control_register , rn

rn , control register
register_list , movem dest_mode
movem src mode , register list
efa_mode 00 , efa mode 05

efa mode_05 , efa mode 00

immediate_range_ml28 to_127 , efa_mode 00

rm , alterable memory modes
alterable memory modes , rn
data _modes 1 , efa_mode 00
data_modes_1 , register pair
data_modes 1 , efa_mode_00
data_modes_1 , register pair
alterable_data modes
alterable data modes
alterable data_modes

alterable data_modes

data_modes_1 , efa_mode 00
efa mode_00
immediate
immediate
efa mode 04
efa_mode 00
control modes

alterable data_modes
sr_or_ ccr

N N NN~

efa mode_00 , efa mode 00

immediate_range 1 to_8 , efa_mode 00

alterable memory modes
efa mode_00 , efa mode_00

alterable memory modes

efa_mode_ 04 , # immediate bit_16
efa_mode_00 , # immediate bit_16

TR OTTS TR S S e s o e e e s e e e s Gmae e e m— ma W it — - ot G S — bt i Tt o ot it e e St — o m—— o —

o158 RATIONAL

Appendix III: Assembler and Linker Syntax

‘ ROR # immediate range 1 to_8 , efa mode 00
ROR alterable memory modes
ROXTL efa_mode_00 , efa_mode 00
ROXL # immediate range 1 _to_8 , efa mode_00
ROXL alterable memory modes
ROXR efa mode 00 , efa_mode_00
ROXR # immediate range 1 to_8 , efa mode 00
ROXR alterable memory modes

RTD # immediate_ range m32768_to_32767
RTE

RTM rm

RTR

RTS

SBCD efa mode 00 , efa_mode 00
SBCD efa mode 04 , efa_mode 04

scc alterable data modes
sCs alterable data_modes
SEQ alterable data_modes
SF alterable data_modes
SGE alterable data_modes
SGT alterable data_modes
SHI alterable data_modes
SHS alterable data_modes
SLO alterable data_ modes
SLS alterable data_modes
‘ SLT alterable data_modes
SMI alterable data_modes
SNE alterable data_modes
SPL alterable data_modes
ST alterable data_modes
STOP # immediate bit 16
SUB all modes , efa mode_00
SUB efa mode 00 , alterable memory modes

SUBA all modes , efa mode 01

SUBI # immediate , alterable_data_modes

SUBQ # immediate_range 1 to_8 , alterable_modes
SUBX efa mode_00 , efa mode 00

I
I
|
I
I
I
I
I
I
!
I
I
I
!
I
I
I
I
I
I
I
I
I
SLE alterable data_modes |
I
I
I
I
|
I
I
I
|
I
I
I
|
I
SUBX efa_mode 04 , efa mode_04 I
I

|

I

I

I

I

|

I

I

I

svC alterable data_modes
sVvs alterable_data_modes
SWAP efa mode 00

TAS alterable data_ modes
TRAP # immediate range 0_15
TRAPCC

TRAPCC # immediate

TRAPCS

TRAPCS # immediate

TRAPEQ

RATIONAL o158 121

MC68020/0S-2000 CDF

TRAPEQ
TRAPF
TRAPF
TRAPGE
TRAPGE
TRAPGT
TRAPGT
TRAPHI
TRAPHI
TRAPHS
TRAPHS
TRAPLE
TRAPLE
TRAPLO
TRAPLO
TRAPLS
TRAPLS
TRAPLT
TRAPLT
TRAPMI
TRAPMI
TRAPNE
TRAPNE
TRAPPL
TRAPPIL,
TRAPT
TRAPT
TRAPV
TRAPVC
TRAPVC
TRAPVS
TRAPVS
TST

UNPK
UNPK

mmu_op --> PBBS
PBLS
PBSS
PBAS
PBWS
PBIS
PBGS
PBCS
PBBC
PBLC
PBSC
PBAC

122

immediate

3*=

immediate
immediate
immediate
i;madiate
immediate
immediate
immediate
immediate
immediate
immediate
immediate

immediate

#H= o W = W = I = 2

immediate

immediate

immediate
data_modes_2
efa mode_01

efa mode 04 , efa_mode 04 , # immediate bit_16

efa mode 00 , efa_mode_00 , # immediate bit_16

branch_displacement
branch_displacement
branch displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement
branch_displacement

o158 RATIONAL

Appendix III: Assembler and Linker Syntax

. PBWC branch_displacement
PBIC branch_displacement
PBGC branch_displacement
PBCC branch_displacement
PDBBS efa _mode_ 00 , dbecc_displacement
PDBLS efa mode 00 , dbcc_displacement
PDBSS efa _mode 00 , dbcc_displacement
PDBAS efa mode 00 , dbcc_displacement
PDBWS efa mode 00 , dbcc_displacement
PDBIS efa mode 00 , dbcc_displacement
PDBGS efa_mode 00 , dbcc_displacement
PDBCS efa _mode 00 , dbcc_displacement
PDBBC efa mode 00 , dbcc_displacement
PDBLC efa mode 00 , dbcc_displacement
PDBSC efa mode 00 , dbcc_displacement
PDBAC efa_mode 00 , dbcc_displacement
PDBWC efa mode 00 , dbcc_displacement
PDBIC efa _mode 00 , dbcc_displacement
PDBGC efa_mode 00 , dbcc_displacement
PDBCC efa mode 00 , dbcc_displacement
4

PFLUSH mmufc , bit_
PFLUSH mmufc , bit_4 , alterable_control_modes
PFLUSHA
PFLUSHS mmufc , bit_4
PFLUSHS mmufc , bit_4 , alterable control modes
PFLUSHR memory modes
. PLOADR mmufc , alterable control_modes
PLOADW mmufc ,alterable_ control modes
PMOVE mmu_reg , alterable modes
PMOVE all modes , mmu_reg
PRESTORE movem src_mode
PSAVE movem dest_mode
PSBS alterable data_modes
PSLS alterable data_modes
PSss alterable data_modes
PSAS alterable data_ modes
PSWS alterable data_modes
PSIS alterable data_modes
PSGS alterable data_modes
PSCS alterable_data_modes
PSBC alterable data_modes
PSIC alterable data modes
PSSC alterable data modes
PSAC alterable data_modes
PSWC alterable data_modes
PSIC alterable data_modes
PSGC alterable data_modes
PSCC alterable data_modes
PTESTR mmufc , alterable_control_modes , bit_3

o
RATIONAL 5155 s

MC68020/0S-2000 CDF

PTESTR

PTESTW mmufc , alterable control modes , bit_3
PTESTW

PTRAPBS

PTRAPBS # immediate
PTRAPLS

PTRAPLS # immediate
PTRAPSS

PTRAPSS # immediate
PTRAPAS

PTRAPAS # immediate
PTRAPWS

PTRAPWS # immediate
PTRAPIS

PTRAPIS # immediate
PTRAPGS

PTRAPGS # immediate
PTRAPCS

PTRAPCS # immediate
PTRAPBC

PTRAPBC # immediate
PTRAPLC

PTRAPLC # immediate
PTRAPSC

PTRAPSC # immediate
PTRAPAC

PTRAPAC # immediate
PTRAPWC

PTRAPWC # immediate
PTRAPIC

PTRAPIC # immediate
PTRAPGC

PTRAPGC # immediate
PTRAPCC

PTRAPCC # immediate
PVALID VAL , alterable control_modes
PVALID

fpu_op --> FABS
FABS
FABS
FACOS
FACOS
FACOS
FADD
FADD
FASIN
FASIN
FASIN

124

mmufc , alterable_ control modes , bit 3,efa mode 01

mmufc , alterable control modes , bit_3,efa mode 01

efa mode 01 , alterable control_modes

data_modes 1 , fpn
fpn , fpn

fpn

data_modes 1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn

fpn

o158 RATIONAL

Appendix III: Assembler and Linker Syntax

FATAN data_modes_l1 , fpn
. FATAN fpn , fpn
FATAN fpn
FATANH data modes 1 , fpn
FATANH fpn , fpn
FATANH fpn
FBF branch_displacement
- FBEQ branch_displacement
FBOGT branch_displacement
FBOGE branch_displacement
FBOLT branch_displacement
FBOLE branch_displacement
FBOGL branch_displacement
FBOR branch_displacement
FBON branch_displacement
FBUEQ branch_displacement
FBUGT branch_displacement
FBUGE branch_displacement
FBULT branch displacement
FBULE Dbranch_displacement
‘FBNE branch_displacement
FBT branch_displacement
FBSF branch_displacement
FBSEQ Dbranch_displacement
FBGT branch displacement
FBGE branch_displacement
’ FBLT branch_displacement
FBLE branch_displacement
FBGL branch_displacement
FBGLE branch displacement:
FBNGLE branch_displacement
FBNGL branch_displacement
FBNLE Dbranch_displacement
FBNLT branch_displacement
FBNGE branch_displacement
FBNGT branch displacement
FBSNE branch displacement
FBST branch_displacement
FCMP data_modes_1 , fpn
FCMP fpn , fpn
FCOS data_modes 1 , fpn
FCOSs fpn , fpn
FCOSs fpn
FCOSH data modes_l1 , fpn
FCOSH fpn , fpn
FCOSH fpn
FDBF efa mode 00 , dbcc displacement
FDBEQ efa mode 00 , dbcc_displacement
FDBOGT efa_mode 00 , dbcc_displacement

RATIONAL /1585 | 125

MC68020/0S-2000 CDF

FDBOGE
FDBOLT
FDBOLE
FDBEOGL
FDBEOR
FDBON
FDBUEQ
FDBUGT
FDBUGE
FDBULT
FDBULE
FDBNE
FDBT
FDBSF
FDBSEQ
FDBGT
FDEGE
FDBLT
FDBLE
FDBGL
FDBGLE

FDBNGLE

FDBNGL
FDBNLE
FDBNLT
FDBNGE
FDBNGT
FDBSNE
FDBST
FDIV
FDIV
FETOX
FETOX
FETOX

FETOXM1
FETOXM1
FETOXM1
FGETEXP
FGETEXP
FGETEXP
FGETMAN
FGETMAN
FGETMAN

FINT
FINT
FINT
FINTRZ
FINTRZ
FINTRZ

126

efa_mode_00

dbcc_displacement

14
efa _mode_00 , dbcc_displacement
efa_mode 00 , dbcc_ displacement
efa mode_00 , dbcc_displacement
efa mode 00 , dbcc_displacement
efa mode_ 00 , dbecc_displacement
efa _mode_00 , dbcc_displacement
efa mode_ 00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa mode 00 , dbcc_displacement
efa mode 00 , dbcc_displacement
efa_mode 00 , dbcc_displacement
efa mode 00 , dbecc_displacement
efa mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa mode 00 , dbcc_displacement
efa_mode 00 , dbcc_displacement
efa _mode 00 , dbcc_displacement
efa mode 00 , dbcc_displacement
efa mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa _mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa mode_00 , dbcc_displacement
efa mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode_00 , dbcc_displacement
efa_mode 00 , dbcc_displacement
data_modes 1 , fpn
fpn , fpn
data_modes 1 , fpn
fpn , fpn
fpn
data_modes_1 , fpn
fpn , fpn
fpn
data_modes_1 , fpn
fpn , fpn
fpn
data_modes 1 , fpn
fpn , fpn
fpn
data_modes_1 , fpn
fpn , fpn
fpn
data modes 1 , fpn
fpn , fpn
fpn

o158 RATIONAL

FLOG10
FLOG10
FLOG10
FLOG2
FLOG2
FLOG2
FLOGN
FLOGN
FLOGN
FLOGNP1
FLOGNP1
FLOGNP1
FMOD
FMOD
FMOVE
FMOVE
FMOVE
FMOVE
FMOVECR
FMOVEM
FMOVEM
FMOVEM
FMOVEM
FMOVEM
FMOVEM
FMUL
FMUL
FNEG
FNEG
FNEG
FNOP
FREM
FREM

data_modes_1 , £pn
fpn , fpn

fpn

data_modes 1 , fpn
fpn , fpn

fpn

data_modes 1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , £fpn
fpn , fpn

data modes 1 , fpn

Appendix III: Assembler and Linker Syntax

fpn , alterable data modes

fpn , alterable data modes

fpn , alterable data_modes { bit_7 }

bit 7 , fpn

fpr_list , movem dest_mode
efa mode_ 00 , movem dest mode

movem src mode , fpr list

movem src mode , efa mode 00
fpc_list , alterable modes

all modes , fpc_list
data_modes_1 , fpn
fpn , fpn

data modes_1 , fpn
fpn , fpn

fpn

data _modes 1 , fpn
fpn , fpn

FRESTORE movem src_mode

FSAVE
FSCALE
FSCALE
FSF
FSEQ
FSOGT
FSOGE
FSOLT
FSOLE
FSOGL
FSOR
FSON
FSUEQ
FSUGT
FSUGE

movem dest_mode
data _modes_1 , fpn
fpn , fpn

alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data modes

RATIONAL /155

{ efa_mode 00 }

127

MC68020/0S-2000 CDF

FSULT
FSULE
FSNE
FST
FSSF
FSSEQ
FSGT
FSGE
FSLT
FSLE
FSGL
FSGLE
FSNGLE
FSNGL
FSNLE
FSNLT
FSNGE
FSNGT
FSSNE
FSST
FSGLDIV
FSGLDIV
FSGLMUL
FSGLMUL
FSIN
FSIN
FSIN
FSINCOS
FSINCOS
FSINH
FSINH
FSINH
FSQRT
FSQRT
FSQRT
FSUB
FSUB
FTAN
FTAN
FTAN
FTANH
FTANH
FTANH
FTENTOX
FTENTOX
FTENTOX
FTRAPF
FTRAPF
FTRAPEQ

128

alterable data_modes
alterable data_modes
alterable data modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data_modes
alterable data modes
alterable data_modes
alterable data modes
alterable data_modes
alterable data_modes
alterable data modes
alterable data modes
alterable data_ modes
alterable data modes
alterable data_ modes
alterable data_modes
alterable data_modes
data modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn

data modes_1 , £fpn
fpn , fpn

fpn

data_modes_1 , fpn :
fpn , fpn : fpn
data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn
data_modes_1 , fpn
fpn , fpn

fpn

data_modes_1 , fpn
fpn , fpn

fpn i
data_modes_1 , fpn
fpn , fpn

fpn

immediate

fpn

o158 RATIONAL

FTRAPEQ # immediate

FTRAPOGT
FTRAPOGT
FTRAPOGE
FTRAPOGE
FTRAPOLT
FTRAPOLT
FTRAPOLE
FTRAPOLE
FTRAPOGL
FTRAPOGL
FTRAPOR
FTRAPOR
FTRAPON
FTRAPON
FTRAPUEQ
FTRAPUEQ
FTRAPUGT
FTRAPUGT
FTRAPUGE
FTRAPUGE
FTRAPULT
FTRAPULT
FTRAPULE
FTRAPULE
FTRAPNE
FTRAPNE
FTRAPT
FTRAPT
FTRAPSF
FTRAPSF
FTRAPSEQ
FTRAPSEQ
FTRAPGT
FTRAPGT
FTRAPGE
FTIRAPGE
FTRAPLT
FTRAPLT
FTRAPLE
FTRAPLE
FTRAPGL
FTRAPGL
FTRAPGLE
FTRAPGLE
FTRAPNGLE
FTRAPNGLE
FTRAPNGL
FTRAPNGL

RATIONAL o155

#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

immediate

Appendix III: Assembler and Linker Syntax

129

MC68020/0S-2000 CDF

all modes

FTRAPNLE
FTRAPNLE
FTRAPNLT
FTRAPNLT
FTRAPNGE
FTRAPNGE
FTRAPNGT
FTRAPNGT
FTRAPSNE
FTRAPSNE
FTRAPST
FTRAPST
FIST

#
#
#
#
#
#

immediate

immediate

immediate

immediate

immediate

immediate

data_modes_1

FTWOTOX data_modes_1 , £pn
FTWOTOX fpn , fpn

FTWOTOX fpn

alterable memory modes

130

-->

efa mode 00
efa_mode_ 02
efa_mode_ 04
efa mode 06
efa _mode_08
efa mode_ 10
efa mode_12
efa mode 16
efa mode 18

efa_mode 02
efa_mode_04
efa mode 06
efa_mode 08
efa mode 10

efa mode_ 01
efa mode 03
efa mode 05
efa_mode 07
efa_mode 09
efa mode 11
efa mode_15
efa mode_17
efa mode_19

efa_mode_03
efa_mode 05
efa mode 07
efa_mode_ 09
efa _mode_11

o158 RATIONAL

. alterable data_modes

alterable modes

data_modes_1

dn_or_alterable control_ modes

dn_or_control modes

RATIONAL /155

-—->

Appendix III: Assembler and Linker Syntax

efa mode_ 00
efa mode 03
efa mode 05
efa_mode 07
efa mode 09
efa mode 11

efa _mode 00
efa_mode_ 02
efa mode 04
efa_mode_ 06
efa mode 08
efa mode 10

efa mode 00
efa_mode_ 03
efa_mode 05
efa_mode 07
efa_mode 09
efa mode 11
efa mode_ 15
efa mode_ 17
efa_mode 19

efa _mode_00
efa_mode_ 02
efa mode 05
efa mode 06
efa_mode_ 07
efa _mode 08
efa mode 09
efa mode 10
efa mode 11

efa _mode 00
efa mode 02
efa mode 05
efa_mode 06
efa mode 07
efa mode 08
efa_mode 09
efa mode_ 10
efa_mode_11
efa_mode 15
efa mode 16
efa _mode 17
efa mode_ 18
efa _mode 19

efa_mode 02
efa_mode 04
efa_mode 06
efa_mode 08
efa mode 10

efa mode 01
efa mode 03
efa_mode_05
efa mode_07
efa_mode_ 09
efa mode_11

efa_mode_ 02
efa mode 04
efa_mode 06
efa_mode_08
efa mode 10
efa_mode 12
efa mode_16
efa mode 18

bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field

bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field
bit_field

— v — — — o— — —

MC68020/0S-2000 CDF

data_modes_2 -=>
control modes

alterable control modes -=>
memory_ modes -=>

movem dest mode

movem src_mode -=>

efa mode 00
efa_mode 03
efa mode_ 05
efa_mode_07
efa_mode_ 09
efa_mode 11
efa mode 16
efa mode_ 18

efa_mode 02
efa mode_06
efa mode_08
efa mode_10
efa_mode 15
efa mode 17
efa mode 19

efa mode_02
efa mode 06
efa mode 08
efa mode 10

efa_mode 02
efa mode 04
efa_mode 06
efa mode_08
efa_mode 10
efa mode 12
efa_mode_16
efa mode_ 18

efa_mode_ 02
efa_mode_05
efa mode 07
efa_mode 09
efa _mode 11

efa mode 02
efa_mode_05
efa_mode 07
efa mode 09
efa mode 11

bit_field -=> { bit_spec : bit_spec }
bit_spec =-=> bit_number
dn
cas2_efa ==>(rm) : ()
132

efa mode 02
efa_mode 04
efa_mode_ 06
efa _mode 08
efa _mode_10
efa mode 15
efa mode 17
efa _mode_19

efa mode 05
efa _mode 07
efa mode_09
efa mode 11
efa mode 16
efa mode_ 18

efa_mode_05
efa_mode 07
efa mode 09
efa_mode 11

efa_mode_ 03
efa mode_05
efa mode 07
efa_mode 09
efa_mode 11
efa_mode_15
efa_mode_ 17
efa mode 19

efa_mode 04
efa_mode_ 06
efa_mode 08
efa mode 10

efa mode 03
efa_mode_06
efa mode_ 08
efa_mode_ 10

o158 RATIONAL

Appendix III: Assembler and Linker Syntax

control register--> SFC | DFS | CACR | USP | VBR | CAAR | MSP | ISP

efa mode 00 ==> dn

efa mode 01 -=> an

efa_mode 02 -=> (an)

efa_mode_03 ==> (an) +

efa mode 04 -=> - (an)

efa mode_ 05 -=> (disp_16 , an)

efa_mode_06 --> (disp_08 , an , xn) |
(an , xn)

efa _mode_07 ==> (bd, an , xn) |
(xn) |
(bd ;r X)) |
(bd, an)

efa mode_08 -=> ([bd, an, zn] , od) |
(I an , xn] , od) |
(r xn], od) I
(I an 1, 0d) I
(I xn]) I
(I an 1) I
([bd r X], od) I
([ba] , od) |
([bd r X]) |
([bd]) |
([bd, an 1, 0d) I
([bd, an]) !
([bd, an , xn]) |
(I an , xn])

efa _mode_09 ==>([bd, an] , od, xn) I
([bd 1, xn) I
([bd 1,04, xn) |
([bd, an] , =n) I
(I an] , xn)y
(I an] , od, xn)

efa mode_ 10 ==> (immediate)

efa mode 11 -=> (immediate)

RATIONAL /15,55 133

MCé68020/0S-2000 CDF

efa_mode_ 12
efa_mode 15

efa mode 16

efa_mode_ 17

efa mode_18

efa mode 19

pc

od

index

scale

register_list

register_ range

rn

register pair

an

134

immediate
(disp_16 ,

(disp 08 ,

(bd, pc,
(bd , pc

pc
pPcC
pPC
pc
pec
pPc

- N NN

bd
bd
bd
bd

P e T T)

-~
—

bd ,
bd ,

pPc
pc

PC | zZpC

PC

pc
pPc

)

-

od

od

od

- e N Nt et St

immediate range 0_to_ FFFFFFFF

immediate_range 0_to FFFFFFFF

index | index * scale

DO.W | D1.W
D4.W | D5.W
DO.L | D1.L
D4.L | D5.L
A0.W | A1.W
A4.W | AS.W
A0.L | Al.L
A4.L | AS5.L
SP.W | SP.L
dn | an
expression

register_range {/ register_range}

rn | rm - rn

an | dn

dn : dn

A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | SP

D2.
Dé6.
D2.

D6.

A2.
aA6.
A2,

&
o

(2l < - B I R)

D3.
D7.
D3.
D7.
A3.
aA7.
A3.
A7.

fHrEEbES

o158 RATIONAL

dn
sr_or_ccr

usp

-->D0 | D1

| D2

-=> SR | CCR

-=> USP

dbece_displacement

branch_displacement

bit_number
immediate

immediate_bit;}ﬁ

immediate range 0_15

immediate range 0_255

immediate range 0_7

immediate range 1 _to_8

immediate range ml28_to_127

immediate_range m32768_to_32767

immediate range_ 0_to_ FFFFFFFF

disp 08
disp 16
bit_3
bit_4
bit_7
mmufc

mmu_reg

RATIONAL

| D3

Appendix III: Assembler and Linker Syntax

D4 | D5 | D6 | D7

--> expression
--> expression
-=> expression
--> expression
--> expression
-=> expression
--> expression
--> expression
~-=-> expression
~-> expression
--> expression
--> expression
-=-> expression
--> expression
~~> expression
-=> expression

~-=-> expression

--> bit_4 | DN | SFC | DFC

-=> CRP
PSR
BACO
BAC4
BADO
BAD4

9/15/88

DRP

PCSR
BAC1
BACS
BAD1
BADS

TC
CAL
BAC2
BAC6
BAD2
BAD6

AC |
VAL |
BAC3 |
BAC7 |
BAD3 |
BAD7

135

MC68020/0S-2000 CDF

fpn --> FP0 | FP1 | FP2 | FP3 | FP4 | FP5 | FP6 | FP7
fpc_list -=-> fpc_register {(/ fpc_register}

fpc_register ==> FPCR | FPSR | FPIAR

fpr_list -=-> fpc_range {/ fpc_range}

fpc_range -=> fpn | fpn - fpn

136 | o5 RATIONAL

Appendix IV: Compiler Runtime Interface

In this appendix is a representative Ada specification for the runtime interface of the compiler.
This is presented for information only; it does not match the actual implementation and user
code should not depend on this specification.

pPackage Runtime Interface is
type Address is private;
type Tcb is private;
type Tcb_Array is array (Positive range <>) of Tcb;
type Layer is private;
type Exception Id is private;
package Attributes is
type String Dope Vector is private;

type Enume:atibn_lmage_?able is private;
type Enumeration_ Representation_Table (Count : Positive) is private;

procedure Enum Image (Table : in Enumeration_Image Table;

Value : in Integer;

Str : out String:;

Dope : out String Dope Vector):;
pragma Suppress (Elaboration_Check, On => Enum_Image);
pragma Interface (Asm, Enum_Image) ;
pragma Import Procedure

(Internal => Enum Image,
External => "__ENUM_ IMAGE",
Mechanism => (Reference, Value, Reference, Reference));

function Enum Pos (Table : in Enumeration Representation_Table;

Value : in Integer) return Integer;
pragma Suppress (Elaboration_ Check, On => Enum Pos);

RATIONAL o/15/s 137

- MC68020/0S-2000 CDF

pragma Interface (Asm, Enum Pos);

Pragma Import_ Function (Internal => Enum Pos,
External => "__ENUM POS",
Mechanism => (Reference, Value));

function Enum Pred (Table : in Enumeration_ Representation_Table;
Value : in Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Enum Pred);
pragma Interface (Asm, Enum Pred);
pragma Import Function (Internal => Enum Pred,
External => "__ENUM PRED",
Mechanism => (Reference, Value)):;

function Enum Succ (Table : in Enumeration Representation_Table;
Value : in Integer) return Integer;
pragma Suppress (Elaboration_ Check, On => Enum_Succ);
pragma Interface (Asm, Enum Succ);
pragma Import_ Function (Internal => Enum Succ,
External => "__ENUM SUCC",
Mechanism => (Reference, Value));

function Enum Value (Table : in Enumeration_Image Table;
Length : in Integer;
Stx : in String) return Integer;
pragma Suppress (Elaboration_Check, On => Enum Value);
pragma Interface (Asm, Enum Value);
pragma Import Function (Internal => Enum Value,
External => "__ ENUM VALUE",
Mechanism => (Referénce, Value, Reference)):;

function Enum Width (Table : in Enumeration_Image Table;
Low_Bound : in Integer;
High Bound : in Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Enum Width);
pragma Interface (Asm, Enum Width):;
pragma Import Function (Internal => Enum Width,
External => "__ENUM WIDTH",
Mechanism => (Reference, Value, Value)):;

procedure Int Image (Value : in Integer;
Str : out String:;
Dope : out String Dope_Vector);
pragma Suppress (Elaboration_Check, On => Int_Image);
pragma Interface (Asm, Int_Image);
pragma Import Procedure (Internal => Int_Image,
External => "__ INT IMAGE",
Mechanism => (Value, Reference, Reference)):;

o157 RATIONAL

‘ function Int_Value (Length : in Integer;
Str : in String) return Integer;
pragma Suppress (Elaboration_Check, On => Int_Value);
pragma Interface (Asm, Int_Value);
pragma Import Function (Internal => Int_Value,
External => "___INT VALUE",
Mechanism => (Value, Reference)):;

function Int_Width (Low_Bound : in Integer;

High Bound : in Integer) return Integer:;
pragma Suppress (Elaboration Check, On => Int_Width);
pragma Interface (Asm, Int_Width);
pragma Import_ Function (Internal => Int_Width,

External => "__INT WIDTH",
Mechanism => (Value, Value)):;

- Boolean_Image : constant Enumeration_Image Table;

- pragma Import Object (Internal => Boolean_ Image,
-- External => "__BOOLEAN_ IMAGE");
- Character_ Image : constant Enumeration_Image_Table;
- pragma Import Object (Internal => Character_ Image,
-- External => "__CHARACTER IMAGE");
private
. type Enumeration Image Table is new Integer;

== The actual contents of an Enumeration_Image Table cannot be

-- described in Ada. The table consists of a 16-bit element count
-- that is followed by a group of 16-bit displacements. The

-- image strings immediately follow this table of displacements.
-- The image string for a given enumeration is found by taking

-- the "Pos of the enumeration and indexing into the displacements.
-~ The value thus found is added to the address of the base of

-- the table to form the address of the first character in the

-= string that is its image. The length of the image for a given
-~ enumeration is found by subtracting its displacement from the
-- displacement of the following item.

Appendix IV: Compiler Runtime Interface
|
|
|
|

== On a machine with byte addressing, a table would look like this:

- type T is (A, Bb, Cec, Dddd);

- enum table:

= .dc.w 4 ; 4 elements

- .de.w 12 ; Offset from table to A
- .de.w 13 ; Offset from table to BB
- .de.w 15 ; Offset from table to CCC

RATIONAL 01555

MC68020/0S-2000 CDF

140

- .de.w 18 ; Offset from table to DDDD
- .de.w 22 ; For finding length of ’Last
- .ascii "ABBCCCDDDD" ; Always uppercase

type Enumeration Representations is
array (Positive range <>) of Integer;
type Enumeration Representation_Table (Count : Positive) is
record
Representations : Enumeration_ Representations (1 .. Count);
end record;

type String Dope Vector is
record
Length : Integer:;
First : Integer;
Last : Integer;
end record;

end Attributes;

package Exceptions is

procedure Raise Exception (Id : in Exception_Id);

pragma Suppress (Elaboration_Check, On => Raise_ Exception);

pragma Interface (Asm, Raise_Exception);

pragma Import Procedure (Internal => Raise_ Exception,
External => " __RAISE EXCEPTION",
Mechanism => (Value));

procedure Raise_Constraint_ Error;

pragma Suppress (Elaboration_Check, On => Raise_ Constraint Error);

pragma Interface (Asm, Raise Constraint_Error);

pragma Import Procedure (Internal => Raise_Constraint_Error,
External => "__RAISE_CONSTRAINT_ERROR") ;

procedure Propagate_Exception;

pragma Suppress (Elaboration_Check, On => Propagate_ Exception) ;

pragma Interface (Asm, Propagate Exception);

pragma Import_ Procedure (Internal => Propagate_Exception,
External => "__PROPAGATE_EXCEPTION") ;

procedure Stack_Check (Storage_Units : Natural);

pragma Suppress (Elaboration_Check, On => Stack_Check);

pragma Interface (Asm, Stack_Check);

pragma Import_ Procedure (Internal => Stack_Check,
External => "__ STACK CHECK",
Mechanism => (Value));

end Exceptions;

o158 RATIONAL

Appendix IV: Compiler Runtime Interface

package Storage Management is

type Collection is private;

function Allocate_Collection

(Storage Units : in Integer;

Extensible : in Boolean) return Collection;
pragma Suppress (Elaboration_Check, On => Allocate_Collection);
pragma Interface (Asm, Allocate_Collection);
pragma Import Function (Internal => Allocate_Collection,

External => "__ALLOCATE COLLECTION",
Mechanism => (Value, Value));

function Allocate_Fixed Cell

(Storage Units : in Integer;

From Collection : in Collection) return Address;
pragma Suppress (Elaboration_Check, On => Allocate Fixed Cell);
pragma Interface (Asm, Allocate_Fixed Cell);
pragma Import Function (Internal => Allocate Fixed Cell,

External => "__ ALLOCATE FIXED CELL",
Mechanism => (Value, Reference)):;

procedure Deallocate_Collection (The_Collection : in out Collection);

pragma Suppress (Elaboration_Check, On => Deallocate_Collection);

pragma Interface (Asm, Deallocate Collection);

Pragma Import Procedure (Internal => Deallocate Collection,
External => "__DEALLOCATE COLLECTION",
Mechanism => (Reference));

procedure Deallocate Fixed Cell (Storage Units : in Integer;
To_Collection : in Collection;
Cell : in Address);
pragma Suppress (Elaboration_Check, On => Deallocate Fixed Cell);
pragma Interface (Asm, Deallocate Fixed Cell);
pragma Import Procedure (Internal => Deallocate Fixed Cell,
External => "__DEALLOCATE FIXED CELL",
Mechanism => (Value, Value, Reference));

function Collection_Size (Of _Collection : in Collection) return
Integer;
pragma Suppress (Elaboration_Check, On => Collection_Size);
pragma Interface (Asm, Collection_Size);
pragma Import Function (Internal => Collection Size,
External => "__ COLLECTION SIZE",
Mechanism => (Value)):;

RATIONAL /155

141

MC68020/0S-2000 CDF

pPrivate

type Collection_Information is
record
null;
end record;

type Collection is access Collection_Information;
for Collection’Storage_Size use 0;

end Storage_ Management;
package Tasking is

-- Top_Layer : constant Layer;
- pragma Import_Object (Internal => Top_ Layer,
External => "__TOP_LAYER");

package Task Management is

procedure Initialize_Master (Master_ Layer : in Layer);

pragma Suppress (Elaboration_Check, On => Initialize Master);

pragma Interface (Asm, Initialize Master);

pragma Import_Procedure (Internal => Initialize Master,
External => "___INITIALIZE MASTER",
Mechanism => (Reference));

function Create_Task (Activation_Group : in Tcb;

Master_Layer : in Layer;

Start_Pc : in Address;

Entry Count : in Integer;

Stack_Size : in Integer;

Priority : in Integer;

Frame Pointer : in Address) return Tcb;
pPragma Suppress (Elaboration_Check, On => Create Task);
pragma Interface (Asm, Create_Task);

Pragma Import Function
(Internal => Create_ Task,
External => "__CREATE_TASK",
Mechanism => (Reference, Reference, Reference,
Value, Value, Value, Value));

procedure Activate Offspring

(Activation Group : in out Tcb;

Perform Elaboration Check : in Boolean);
pragma Suppress (Elaboration _Check, On => Activate Offspring)
pragma Interface (Asm, Activate Offspring);

| o158 RATIONAL

Appendix IV: Compiler Runtime Interface

pPragma Import Procedure (Internal => Activate_offspi:ing,
External => "__ ACTIVATE OFFSPRING",
Mechanism => (Reference, Value)):;

procedure Notify Parent (Task _Error : in Boolean);

pragma Suppress (Elaboration_Check, On => Notify Parent);

pragma Interface (Asm, Notify Parent);

pPragma Import_ Procedure (Internal => Notify Parent,
External => "__ NOTIFY PARENT",
Mechanism => (Value)):

procedure Task End;

pragma Suppress (Elaboration Check, On => Task_End);

pragma Interface (Asm, Task End);

pragma Import Procedure (Internal => Task_End,
External => "__ TASK END");

procedure Await_ Dependents;

pragma Suppress (Elaboration_Check, On => Await Dependents) ;

pragma Interface (Asm, Await_Dependents);

pragma Import_ Procedure (Internal => Await_Dependents,
External => "__AWAIT DEPENDENTS");

procedure Task_ Completion;
pragma Suppress (Elaboration_Check, On => Task_Completion);
pragma Interface (Asm, Task Completion):
. pragma Import Procedure (Internal => Task Completion,
External => "__ TASK COMPLETION");

procedure Terminate_Allocated Offspring
(Activation_Group : in out Tcb);
pragma Suppress (Elaboration_Check,

On => Terminate Allocated Offspring);
pragma Interface (Asm, Terminate_Allocated Offspring):
pragma Import Procedure

(Internal => Terminate_Allocated Offspring,
External => "__TERMINATE ALLOCATED OFFSPRING",
Mechanism => (Reference));

procedure Terminate Dependent_Offspring;
pragma Suppress (Elaboration_ Check,

On => Terminate Dependent_ Offspring):;
pragma Interface (Asm, Terminate_Dependent_Offspring);
pragma Import Procedure ,

(Internal => Terminate_Dependent_ Offspring,
External => "___TERMINATE DEPENDENT OFFSPRING") ;

end Task_Management;

RATIONAL o/15/s 143

MC68020/0S-2000 CDF

144

package Rendezvous is

package Entry Calls is

procedure Entry Call (Tsk : in Tcb;
Entry Number : in Positive;
Parameters : in Address);
pragma Suppress (Elaboration_Check, On => Entry Call),
pragma Interface (Asm, Entry Call):
pragma Import Procedure (Internal => Entry Call,
External => "__ ENTRY CALL",

Mechanism => (Value, Value, Value));

function Conditional Entry Call
(Tsk : in Tcb;
Entry Number : in Positive;
Parameters : in Address) return Boolean;
pragma Suppress (Elaboration_Check,
on => COnditional_pntry_pall);
pragma Interface (Asm, Conditional Entry Call);
pPragma Import Function (Internal => Conditional Entry Call,
External =>
"__CONDITIONAL ENTRY_CALL",
Mechanism => (Value, Value, Value));

function Timed Entry Call

(Tsk : in Tcb;

Entry Number : in Positive;

Timeout : in Duration;

Parameters : in Address) return Boolean;
pragma Suppress (Elaboration_Check, On => Timed L Entry Call);
pragma Interface (Asm, Timed] L Entry Call);
pPragma Import_Function

(Internal => Timed Entry Call,
External => "__TIMED ENTRY CALL",
Mechanism => (Value, Value, Value, Value));

end Entry Calls;
package Accepts is

procedure Begin_Accept (Entry Number : in Positive;

Parameters : in out Address);

pragma Suppress (Elaboration_Check, On => Begin Accept);
pragma Interface (Asm, Begin_Accept);
pragma Import Procedure (Internal => Begin_ Accept,

External => "__ BEGIN_ACCEPT",
Mechanism => (Value, Value));

9/15/88 PATIONAL

Appendix IV: Compiler Runtime Interface

procedure End Accept (Propagate Exception : in Boolean);
pragma Suppress (Elaboration Check, On => End_Accept):;

pragma Interface (Asm, End_Accept);

pragma Import_ Procedure (Internal => End Accept,
External => "__ END ACCEPT",
Mechanism => (Value));

procedure Quick Accept (Entry Number :

in Positive):

pragma Suppress (Elaboration_Check, On => Quick_Accept);

pragma Interface (Asm, Quick Accept);

pragma Import_Procedure (Internal => Quick_ Accept,
External => "__ QUICK ACCEPT",
Mechanism => (Value)):

end Accepts;

package Selective Waits is

type Select_Forms is (Terminate Alternative,
Delay Alternative,

Else Part):

for Select_Forms use (Terminate Alternative => -1,
Delay Alternative => 0,

Else Part => 1);

type Entry Number is range 0 .. 32767;

type Branch Number is range 0 .. 32767;

type Arm Info is
record
Is_Simple Accept : Boolean;
For_Entry : Entry Number;
end record; "

for Arm Info use
record

Is Simple Accept at 0 range O -..

For_Entry at 0 range 1 .. 15;
end record;

0;

type Entry Map is array (Branch_Number range <>) of Arm Info;

type Select Information (Arms : Branch Number) is

record
Form : Select_ Forms;
Delay Arm : Branch_Number;
Delay Time : Duration;
Map : Entry Map (1 .. Arms);

RATIONAL /158

145

MC68020/0S-2000 CDF

end record;

for Select_Information use
record
Form at 0 range 0 .. 15;
Arms at 0 range 16 .. 31;
Delay Time at 0 range 32 .. 63;
Delay Arm at 0 range 64 .. 79;
end record;

function Select_Rendezvous
(Info : Select_Information;
Round _Robin : Positive;
Params : Address) return Branch Number;
pragma Suppress (Elaboration Check, On => Select_ Rendezvous);
pragma Interface (Asm, Select_Rendezvous);
pragma Import_Function
(Internal => Select_Rendezvous,
External => "__ SELECT RENDEZVOUS",
Mechanism => (Reference, Reference, Value));

end Selective Waits;

end Rendezvous;

package Miscellaneous is

procedure Abort Multiple Tasks (Count : in Positive;
Tasks : in Tcb_Array);
pragma Suppress (Elaboration Check, On => Abort_Multiple_Tasks) ;
pragma Interface (Asm, Abort Multiple Tasks);
pragma Import Procedure (Internal => Abort_Multiple_Tasks,
External => "__ ABORT MULTIPLE_ TASKS",
Mechanism => (Value, Value)):;

function Check_Return_Task
(Tsk : in Tcb; Frame : in Address) return Boolean:
pragma Suppress (Elaboration_Check, On => Check_ Return_Task) ;
pragma Interface (Asm, Check Return Task);
pragma Import Function (Internal => Check Return Task,
External => "__ CHECK RETURN_TASK",
Mechanism => (Value, Value)):;

pProcedure Delay Statement (Timeout : in Duration);

pragma Suppress (Elaboration_Check, On => Delay Statement);

pragma Interface (Asm, Delay Statement);

pragma Import_ Procedure (Internal => Delay Statement,
External => "__ DELAY STATEMENT",
Mechanism => (Value));

9/15/88 PATIONAL

Appendix IV: Compiler Runtime Interface

function Entry Count (Entry Number : in Positive) return Integer;

pragma Suppress (Elaboration_Check, On => Entry Count);

pPragma Interface (Asm, Entry Count);

Pragma Import_ Function (Internal => Entry Count,
External => "__ENTRY COUNT",
Mechanism => (Value)); -~

function Task_Callable (Tsk : in Tcb) return Boolean;

pragma Suppress (Elaboration_Check, On => Task Callable);

pragma Interface (Asm, Task_Callable);

pragma Import_Function (Internal => Task Callable,
External => "__TASK CALLABLE",
Mechanism => (Value));

function Task_Stack_Size (Tsk : in Tcb) return Integer;

pragma Suppress (Elaboration_Check, On => Task_Stack_Size);

pragma Interface (Asm, Task_Stack_Size);

pragma Import Function (Internal => Task Stack_Size,
External => "__ TASK_STACK SIZE",
Mechanism => (Value));

function Task_Terminated (Tsk : in Tcb) return Boolean;

pragma Suppress (Elaboration_Check, On => Task_Terminated);

pragma Interface (Asm, Task_Terminated);
pPragma Import_ Function (Internal => Task Terminated,
External => "___TASK TERMINATED",
Mechanism => (Value));
end Miscellaneous;

end Tasking;

Package Miscellaneous is

procedure Start_Sequential (Return Pc : in Address);

pragma Suppress (Elaboration Check, On => Start_Sequential);

pragma Interface (Asm, Start_Sequential);

pragma Import Procedure (Internal => Start_Sequential,
External => "__START SEQUENTIAL",
Mechanism => (Value));

procedure Middle_ Sequential;

pragma Suppress (Elaboration_Check, On => Middle_Sequential);

pragma Interface (Asm, Middle_ Sequential);

pragma Import Procedure (Internal => Middle Sequential,
External => "__ MIDDLE SEQUENTIAL") ;

procedure Finish_Sequential;

RATIONAL /155

147

MC68020/0S-2000 CDF

148

pragnia Suppress (Elaboration_Check, On => Finish Sequential); .
pragma Interface (Asm, Finish_Sequential);
pragma Import Procedure (Internal => Finish Sequential,

External => "__ FINISH SEQUENTIAL");

pProcedure Start_Tasking (Return Pc : in Address);
pragma Suppress (Elaboration_Check, On => Start_Tasking);
pragma Interface (Asm, Start_Tasking); ~
pragma Import Procedure (Internal => Start_ Tasking,
: External => "__ START TASKING",
Mechanism => (Value));

procedure Middle Tasking;

pragma Suppress (Elaboration_Check, On => Middle Tasking);

pragma Interface (Asm, Middle Tasking);

pPragma Import Procedure (Internal => Middle Tasking,
External => "__MIDDLE TASKING") ;

pProcedure Finish_ Tasking;

pragma Suppress (Elaboration_Check, On => Finish_ Tasking);

pragma Interface (Asm, Finish_Tasking);

pragma Import Procedure (Internal => Finish_Tasking,
External => "_FINISH TASKING");

type Debug_Info Table is
record
null;
end record;

Debug_Info_Sequential : Debug_ Info_Table;
Pragma Import Object (Internal => Debug_Info_Sequential,
External => "__DEBUG_INFO_SEQUENTIAL") ;

Debug Info_Tasking : Debug_Info_Table;
pragma Import_Object (Internal => Debug_Info_Tasking,
External => "__DEBUG_INFO_TASKING") ;

end Miscellaneous;

package Block Compare is

function Compare 8 Bit_Signed (L : Address;

R : Address;

L _Length : Integer;

R_Length : Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Compare 8 Bit_Signed);
pragma Interface (Asm, Compare_8 Bit_ Signed);
pragma Import Function (Internal => Compare_8_Bit_Signed,

External => "__COMPARE 8 BIT_ SIGNED",

o158 RATIONAL

Appendix IV: Compiler Runtime Interface

Mechanism => (Value, Value, Value, Value));

function Compare 16 Bit_ Signed (L : Address;

R : Address;

L _Length : Integer;

R_Length : Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Compare 16_Bit_Signed);
pragma Interface (Asm, Compare_ 16 Bit_Signed);
pragma Import Function (Internal => Compare_1l16_Bit_Signed,

External => "__ COMPARE_16_BIT SIGNED",
Mechanism => (Value, Value, Value, Value));

function Compare 32 Bit_Signed (L : Address:;
) R : Address;

L _Length : Integer;

R _Length : Integer) return Integer;
pragma Suppress (Elaboration Check, On => Compare_32_ Bit_Signed);
pragma Interface (Asm, Compare_ 32 Bit_Signed);
pragma Import Function (Internal => Compare_32_ Bit_Signed,

External => "__COMPARE_32 BIT_ SIGNED",
Mechanism => (Value, Value, Value, Value)):;

function Compare 8 Bit_Unsigned (L : Address;

R : Address;

L _Length : Integer;

R _Length : Integer) return Integer:;
pragma Suppress (Elaboration_Check, On => Compare_8_Bit_Unsigned);
pragma Interface (Asm, Compare_ 8_Bit_Unsigmed);
pragma Import Function (Internal => Compare_8_Bit_Unsigned,

External => "__COMPARE 8 BIT_ UNSIGNED",
Mechanism => (Value, Value, Value, Value));

function Compare 16_Bit_Unsigned (L : Address;

R : Address;

L Length : Integer;

R_Length : Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Compare_16_Bit_Unsigned);
pragma Interface (Asm, Compare 16_Bit Unsigned);
pPragma Import_Function (Internal => Compare 16_Bit_Unsigned,

External => " _COMPARE_16_BIT UNSIGNED",
Mechanism => (Value, Value, Value, Value)):

function Compare 32 Bit_Unsigned (L : Address;

R : Address;

L_Length : Integer;

R_Length : Integer) return Integer;
pragma Suppress (Elaboration_Check, On => Compare_32 Bit Unsigned);
pragma Interface (Asm, Compare 32_Bit Unsigned);

Pragma Import_ Function (Internal => Compare_32_ Bit Unsigned,

RATIONAL 15/ 149

MC68020/0S-2000 CDF

External => "__COMPARE 32 BIT UNSIGNED",
Mechanism => (Value, Value, Value, Value));

end Block Compare;

private

type Addressable_ Object;

type Address is access Addressable Object;
for Address’Storage_Size use 0;

type Task_Control_Block (Entries : Natural);

type Tcb is access Task_Control Block;
for Tcb’Storage_Size use 0;

type Layer Information;

type Layer is access Layer_ Information;
for Layer’Storage_Size use 0;

type Exception_Id is new Address;

end Runtime Interface;

150

o158 RATIONAL

Appendix V: Appendix F to the LRM
for the Mc68020_0s2000 Target

The Reference Manual for the Ada Programming Language (LRM) specifies that certain features of
the language are implementation-dependent. It requires that these implementation dependen-
cies be defined in an appendix called Appendix F. This is Appendix F for the Mc68020_0s2000
target, compiler version 4. It contains materials on the following topics listed for inclusion by
the LRM on page F-1:

¢ Implementation-dependent pragmas

¢ Implementation-dependent attributes

¢ Package System

* Representation clauses

¢ Implementation-dependent components

¢ Interpretation of expressions that appear in address clauses

* Unchecked conversion

¢ Implementation-dependent characteristics of I/O packages

These topics appear in section and subsection titles of this appendix. The appendix contains
other topics mentioned in the LRM as being implementation-dependent. For these, a reference
to the LRM is given in the section or subsection title. In addition, this appendix contains sections

on predefined pragmas and size of objects. This material is included here because of
implementation dependencies and close relationship to LRM-mandated topics.

IMPLEMENTATION-DEPENDENT PRAGMAS

The MC68020/0S-2000 cross-compiler supports pragmas for application software development
in addition to those listed in Annex B of the LRM.

Pragma Main

A parameterless library-unit procedure without subunits can be designated as a main program
by including a pragma Main at the end of the unit specification or body. This pragma causes the
linker to run and create an executable program when the body of this subprogram is coded.
Before a unit having a pragma Main can be coded, all units in the with closure of the unit must
be coded.

RATIONAL 8/15/89 151

MC68020/0S-2000 CDF

The pragma Main has three arguments:

* Target: A string specifying the target key. If this argument appears and it does not match
the current target key, the pragma Main is ignored. If the Target parameter matches the
current target key or does not appear, pragma Main is honored. A single source copy of a
main program can be used for different targets by putting in multiple Main pragmas with
different target parameters and different stack sizes and/or different heap sizes.

* Stack_Size: A static integer expression specifying the size in bytes of the main task stack. If
not specified, the default value is 4096 (4K) bytes.

* Heap Size: A static integer expression specifying the size in bytes of the heap. If not
specified, the default value is 64K bytes.

The complete syntax for this pragma is:

pragma main ::= PRAGMA MAIN
[(main option { , main option })] ;

main_option TARGET => simple name |
STACK_SIZE => static_integer_ expression |

HEAP SIZE => static_integer_ expression

The pragma Main must appear immediately after the declaration or body of a parameterless
library-unit procedure without subunits.

Using the Target Parameter

Using the Target parameter forces the pragma to be ignored for all targets but the one specified.
This enables joined views of a procedure to have different effects according to the target. One
use is to avoid the effects of declaring a pragma Main when the target is Rational:

pragma Main (Target => Mc68020_0s2000);
Another use is to specify different stack or heap sizes for different targets. For example:

procedure Show_Pragma Main is
begin
Do_Something;
end Show_Pragma Main;
pragma Main (Target => Mcé68020_0s2000, Heap_Size => <10*1024>);
pragma Main (Target => <another target key>, Heap_ Size => <20*1024>);

The procedure Show_Pragma_Main will be a main program in both an Mc68020_0Os2000 view
and a view for the other target. The heap sizes for the two targets will be as specified by the
different pragma Mains.

Multiple pragma Mains may be placed in the specification, the body, or both. If more than one
pragma Main is specified with the same target parameter, only one of the pragmas will have
any effect. The first pragma Main in the specification (if there is one) will be chosen; otherwise,
the first one in the body will be chosen.

152 8/15/89 RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

Pragmas Import_Procedure and Import_Function

A subprogram written in another language (typically, assembly language) can be called from an
Ada program if it is declared with a pragma Interface. The rules for placement of pragma
Interface are given in Section 13.9 of the LRM. Every interfaced subprogram must have an
importing pragma that is recognized by the MC68020/0S-2000 cross-compiler, either Import-
_Procedure or Import_Function. These pragmas are used to declare the external name of the
subprogram and the parameter-passing mechanism for the subprogram call. If an interfaced
subprogram does not have an importing pragma, or if the importing pragma is incorrect,
pragma Interface is ignored.

Importing pragmas can be applied only to nongeneric procedures and functions.

The pragmas Import_Procedure and Import_Function are used for importing subprograms.
Import_Procedure is used to call a non-Ada procedure; Import_Function, a non-Ada function.

Each import pragma must be preceded by a pragma Interface; otherwise, the placement rules
for these pragmas are identical to those of the pragma Interface.

The importing pragmas have the form:

importing pragma ::= PRAGMA importing type
([INTERNAL =>] internal name
[[EXTERNAL =>] external name]
[, [PARAMETER TYPES =>]
parameter_ types]
; [RESULT_TYPE =>] type mark]]
, NICKNAME => string literal]
[MECHANISM =>] mechanisms]) ;

~—

N]

[

IMPORT PROCEDURE | IMPORT_FUNCTION |
IMPORT VALUED_PROCEDURE

importing_type

internal name ::= identifier |

string literal -- An operator designator
external name ::= string literal
parameter_ types ::= NULL | (type mark { , type_mark })
mechanisms ::= mechanism name |

(mechanism name { , mechanism name })

mechanism name VALUE | REFERENCE

The internal name is the Ada name of the subprogram being interfaced. If more than one
subprogram is in the declarative region preceding the importing pragma, the correct subpro-
gram must be identified by either using the argument types (and result type, if a function) or
specifying the nickname. See pragma Nickname below.

RATIONAL &15/s 153

MC68020/0S-2000 CDF

The purpose of the Parameter_Types argument is to distinguish among two or more overloaded
subprograms having the same internal name. The value of the Parameter_Types argument is a
list of type or subtype names separated by commas and enclosed in parentheses. Each name
corresponds positionally to a formal parameter in the subprogram’s declaration. If the
subprogram has no parameters, the list consists of the single word null. The Result_Type
argument serves the same purpose for functions; its value is the type returned by the function.

The external designator, specified with the External parameter, is a character string that is an
identifier suitable for the MC68020 assembler. If the external designator is not specified, the
internal name is used.

The Mechanism argument is required if the subprogram has any parameters. The argument
specifies, in a parenthesized list, the passing mechanism for each parameter to be passed. There
must be a mechanism specified for each parameter listed in Parameter_Types and they must
correspond positionally. The types of mechanism are as follows:

¢ Value: Specifies that the parameter is passed on the stack by value.
* Reference: Specifies that the address of the parameter is passed on the stack.

For functions, it is not possible to specify the passing mechanism of the function result; the
standard Ada mechanism for the given type of the function result must be used by the
interfaced subprogram. If there are parameters, and they all use the same passing mechanism,
an alternate form for the Mechanism argument can be used: instead of a parenthesized list with
an element for each parameter, the single mechanism name (not parenthesized) can be used.

Examples:
procedure Locate (Source: in String;
Target: in String;

Index: out Natural);

pragma Interface (Assembler, Locate);
pragma Import Procedure

(Internal => Locate,

External . => "STRSLOCATE",

Parameter Types => (String, String, Natural),
Mechanism => (Reference, Reference, Value));

function Pwr (I: Integer; N: Integer) return Float;
function Pwr (F: Float; N: Integer) return Float;

pragma Interface (Assembler, Pwr);

pragma Import Function

(Internal => Pwr,

Parameter Types => (Integer, Integer),
Result Type => Float,

Mechanism => Value,

External => "MATH$PWR_OF INTEGER");

154 a5 RATIONAL

Appendix V: Appendix F for the Mc68020_0s2000 Target

pragma Import_ Function

{Internal => Pwr,

Parameter Types => (Float, Integer),
Result_Type => Float,

Mechanism => Value,

External => "MATH$PWR_0F_FLOAT“) ;

Pragmas Export_Procedure and Export_Function

A subprogram written in Ada can be made accessible to code written in another language by
using an exporting pragma defined by the MC68020/0S-2000 cross-compiler. The effect of such
a pragma is to give the subprogram a global symbolic name that the linker can use when
resolving references between object modules.

Exporting pragmas can be applied only to nongeneric procedures and functions.

Exporting a subprogram does not export the mechanism used by the compiler to perform
elaboaration checks; calls from other languages to an exported subprogram whose body is not
yet elaboarated may have unpredictable results when the subprogram body references objects
that are not yet elaborated. Elaboration checks within the Ada program are not affected by the

exporting pragma.

An exporting pragma can be given only for a subprogram that is a library unit or that is
declared in the specification of a library package. An exporting pragma can be placed after a
subprogram body only if the subprogram does not have a separate specification. Thus, an
exporting pragma cannot be applied to the body of a library subprogram that has a separate
specification.

These pragmas have arguments similar to those of the importing pragmas, except that it is not
possible to specify the parameter-passing mechanism. The standard Ada parameter-passing
mechanisms are chosen. For descriptions of the pragma’s arguments (Internal, External,
Parameter_Types, Result_Type, and Nickname), see the preceding section on the importing

pragmas.
The full syntax of the pragmas for exporting subprograms is:

exporting pragma PRAGMA exporting type
([INTERNAL =>] internal name
[, [EXTERNAL =>] external name]
[[, [PARAMETER TYPES =>] parameter_types]
[, [RESULT _TYPE =>] type mark] |
[, NICKNAME => string literal]]) ;
EXPORT_PROCEDURE | EXPORT_FUNCTION
identifier |
string literal -- An operator designator
string literal
NULL | (type mark { , type_mark })

exporting_type
internal name

external name
parameter types

RATIONAL 15 155

MC68020/0S-2000 CDF

Examples:

procedure Matrix Multiply(A, B: in Matrix; C: out Matrix);
pragma Export Procedure (Matrix Multiply):
-- External name is the string "Matrix Multiply"
function Sin (R: Radians) return Float;
pragma Export Function
(Internal => Sin,
External => "SIN RADIANS");
-- External name is the string "SIN_RADIANS"

Pragma Export_Elaboration_Procedure

The pragma Export_Elaboration_Procedure makes the elaboration procedure for a given
compilation unit available to external code by defining a global symbolic name. This procedure
is otherwise unnamable by the user. Its use is confined to the exceptional circumstances where
an Ada module is not elaborated because it is not in the closure of the main program or the
main program is not an Ada program. This pragma is not recommended for use in application
programs unless the user has a thorough understanding of elaboration, runtime, and storage
model considerations.

The pragma Export_Elaboration_Procedure must appear immediately following the compila-
tion unit.

The complete syntax for this pragma is:

pragma_export_elaboration_procedure ::=
PRAGMA EXPORT ELABORATION PROCEDURE (EXTERNAL NAME => external name);

external name ::= string literal

Pragmas Import_Object and Export_Object

Objects can be imported or exported from an Ada unit with the pragmas Import_Object and
Export_Object. The pragma Import_Object causes an Ada name to reference storage declared
and allocated in some external (non-Ada) object module. The pragma Export_Object provides
an object declared within an Ada unit with an external symbolic name that the linker can use to
allow another program to access the object. It is the responsibility of the programmer to ensure
that the internal structure of the object and the assumptions made by the importing code and
data structures correspond. The cross-compiler cannot check for such correspondence.

The object to be imported or exported must be a variable declared at the outermost level of a
library package specification or body.

The size of the object must be static. Thus, the type of the object must be one of:

e A scalar type (or subtype)
¢ Anarray subtype with static index constraints whose component size is static

* A nondiscriminated record type or subtype

156 8/15/89 RAT'ONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

Objects of a private or limited private type can be imported or exported only into the package
that declares the type.

An imported object cannot have an initial value and thus cannot be:

Declared with the keyword constant
* An access type

A record type with discriminants

[]

A record type whose components have default initial expressions

L]

A record or array whose components contain access types or task types

In addition, the object must not be in a generic unit. The external name specified must be
suitable as an identifier in the assembler.

The full syntax for the pragmas Import_Object and Export_Object is:

PRAGMA object pragma type
([INTERNAL =>] identifier
[, [EXTERNAL =>] string literal]) ;

object_pragma

object pragma type IMPORT OBJECT | EXPORT_OBJECT

Pragma Nickname

The pragma Nickname can be used to give a unique string name to a procedure or function in
addition to its normal Ada name. This unique name can be used to distinguish among over-
loaded procedures or functions in the importing and exporting pragmas defined earlier.

The pragma Nickname must appear immediately following the declaration for which it is to
provide a nickname. It has a single argument, the nickname, which must be a string constant.
For example:

function Cat (L: Integer; R: String) return String;
pragma Nickname ("Int-Str-Cat"):;

function Cat (L: String; R: Integer) return String:;
pragma Nickname ("Str-Int-Cat");

pragma Interface (Assembly, Cat);

pragma Import Function (Internal => Cat,
Nickname => "Int-Str-Cat",
External => "CAT$INT_ STR_CONCAT",
Mechanism => (Value, Reference));

pragma Import_ Function (Internal => Cat,
Nickname => "Str-Int-Cat",
External => "CAT$STR_INT CONCAT",
Mechanism => (Reference, Value)):;

RAT'ONAL 8/15/89 157

MC68020/0S-2000 CDF

Pragma Suppress_All
This pragma is equivalent to the following sequence of pragmas:

pragma Suppress (Access Check);
pragma Suppress (Discriminant_Check);
pragma Suppress (Division_Check);
pragma Suppress (Elaboration_Check);
pragma Suppress (Index_ Check):
pragma Suppress (Length Check);
pragma Suppress (Overflow_Check);
pragma Suppress (Range Check);
pragma Suppress (Storage Check);

Pragma Suppress_All allows no name parameter, and it has no effect in a package specification.
See LRM 11.7.3.

Note that, like pragma Suppress, pragma Suppress_All does not prevent the raising of certain
exceptions. For example, numeric overflow or dividing by zero is detected by the hardware,
which results in the predefined exception Numeric_Error. Refer to Chapter 7, “Runtime
Organization,” for more information.

Pragma Suppress_All must appear immediately within a declarative part.

Pragma Must_Be_An_Entry

This pragma must appear in a generic formal part; it names a formal procedure previously
declared in the same formal part. It is used to provide compile-time checks that: (1) the formal
procedure appears in a generic formal part; (2) for each instantiation of the generic, the actual
subprogram supplied for the named formal procedure is a task entry. A warning is issued if any
of these checks fail.

The full syntax is:
entry pragma ::= PRAGMA MUST BE AN ENTRY

([FORMAL SUBPROGRAM NAME =>]
(identifier | string literal)) ;

Pragma Must_Be_Constrained

This pragma is used in a generic formal part to indicate that formal private (and limited private)
types must be constrained or need not be constrained.

This pragma allows programmers to declare explicitly how they intend to use the formals in the
specification for a generic. Then the Environment can check that any instantiations of the
generic that are installed before the body of the generic is installed are legal.

The pragma’s syntax is:

pragma Must_Be Constrained ([<cond> =>] <type_id>, ...):’

158 s1ss RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

The condition can be either yes or no.

The type identifier must be a formal private (or limited private) type defined in the same formal
part as the pragma.

More than one type identifier can follow and be governed by one condition, either yes or no. If
no condition precedes a type identifier, the default is yes. In the example below, Type_1,
Type_2, and Type_5 will be constrained; Type_3 and Type_4 will not be.

pragma Must_Be Constrained
(Type_1, Type_2, No => Type_3, Type_ 4, Yes => Type 5);

If the condition value of no is specified, any use in the body that requires a constrained type will
be flagged as a semantic error. If yes is specified, any instantiations that contain actuals that
require constrained types will be flagged with semantic errors if the actuals are not constrained.

PREDEFINED LANGUAGE PRAGMAS (LRM ANNEX B)
The following table details the effects of predefined language pragmas.

Predefined Pragmas
Pragma Effect

Elaborate As given in Annex B of the LRM.

Inline As given in Annex B of the LRM, subject to the setting of the switch
Inlining_Level.

Interface Used in conjunction with pragmas Import_Procedure and
Import_Function.

List As given in Annex B of the LRM; evident only when the compile
command is used.

Memory_Size | Has no effect.

Optimize Has no effect.

Pack Removes gaps in storage, minimizing space with possible increase in
access time. See section on size of objects.

Page As given in Annex B of the LRM; only evident when the compile
command is used.

Priority As given in Annex B of the LRM.

Shared As given in Annex B of the LRM. Has an effect only for integer,

' enumeration, access, and fixed types.

Storage_Unit | Has no effect.

Suppress As given in Annex B of the LRM.

System_Name | Has no effect.

RATIONAL &5/

159

MC68020/0S-2000 CDF

IMPLEMENTATION-DEPENDENT ATTRIBUTES

The implementation-dependent attributes are as follows:

‘Compiler_Version

‘Dope_Address

‘Dope_Size

"Entry_Number

"Mechanism

160

For a name N, N’Compiler_Version is a compile-time value, a 16-
character uninterpreted string that designates the compiler version used
to code this Ada entity. The entity can be a program unit (package,
subprogram, task, or generic), an object (variable, constant, named
number, or parameter), a type or subtype (but not an incomplete type), or
an exception. This attribute can be used for runtime detection of
incompatibilities in data representation. See also “Target_Key.

For an unconstrained array object A, A’'Dope_Address is the address of
the dope vector. The value is of type System.Address. This can be used
for retrieving information about the object, as when reconstructing the
array. See also ‘Dope_Size.

For an unconstrained array object A, A’'Dope_Size is the size in bits of the
dope vector. The value is of type Universal_Integer. This can be used for
retrieving information about the object, as when reconstructing the array.
See also ‘Dope_Address.

For a task entry or generic formal subprogram E, E’Entry_Number iden-
tifies the entity with a universal-integer value. This may be used by the
runtime system to indicate that the entity corresponds to a process in the
target and therefore requires an IPC queue.

For a subprogram S with formal parameter P or the result of a function F,
S’Mechanism(P) or F’'Mechanism is a universal-integer value that desig-
nates the parameter-passing or function-return mechanism. This may be
used by the IPC message-handling facilities to manipulate the data
passed.

Currently, parameter-passing values and their meanings include:

parameter value is on the stack

parameter address is on the stack

parameter and dope vector address are on the stack
parameter address and ‘Constrained datum are on the stack

= W N =

Currently, function-return values and their meanings include:

11 result is returned in registers

15 address for the array result is on the stack

16 address for the result is in R0, result is on the stack
17 address for the record result is on the stack

18 address for the result is in R0, size in R1

Some details of parameter passing may change with new releases of the
cross-compiler. See the release note for additional information.

sss RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

‘Target_Key For a name N, N'Target_Key is a compile-time value, a 32-character

‘Type_Key

uninterpreted string that designates the cross-compiler (that is, the target
key) in effect when this entity was coded. This can be used for runtime
detection of incompatibilities in data representation. See also ‘Compiler-
_Version.

For a type mark T declared in a subsystem, T'Type_Key is a unique 32-
character uninterpreted string. This can be used for runtime type consis-
tency checking of message data.

PACKAGE STANDARD (LRM ANNEX C)

Package Standard defines all the predefined identifiers in the language.

package Standard is

type
type
type
type

type
type
type
type

type

type

Universal Integer is .

Universal Real¥ is ...

Universal Fixed is ...

Boolean is (False, True);}

Integer is range -2147483648 .. 2147483647;
Short_Short_Integer is range -128 .. 127;

Short_Integer is range -32768 .. 32767;

Float is digits 6 range -16#1.FFFF_FE# * 2.0 ** 127 .

1641.FFFF_FE§ * 2.0 ** 127;
Long_Float is digits 15 range -16#1.FFFF_FFFF_FFFF_F# * 2.0 ** 1023
. 16#1.FFFF_FFFF_FFFF_F# * 2.0 ** 1023;

Duration is delta 16#1.0# * 2.0 ** (-14)
range -16#1.0# * 2.0 ** 17 ..
16#1.FFFF_FFFC# * 2.0 ** 16;

subtype Natural is Integer range 0 .. 2147483647;
subtype Positive is Integer range 1 .. 2147483647;

type

type

Character is .

String is array (Positive range <>) of Character;

pragma Pack (String):;

package Ascii is ..

Constraint_Error : exception;
Numeric_Error : exception;
Storage_ Error : exception;
Tasking Error : exception;
Program Error : exception;

end Standard;

RATIONAL 8/15/89 161

MC68020/0S-2000 CDF

The following table shows the default integer and floating-point types:

Supported Integer and Floating-Point Types

Ada Type Name Size
Short_Short_Integer | 8 bits
Short_Integer 16 bits
Integer 32 bits
Float 32 bits
Long_Float 64 bits

Fixed-point types are implemented using the smallest discrete type possible; it may be 8, 16, or
32 bits. Standard.Duration is 32 bits.

PACKAGE SYSTEM (LRM 13.7)

162

package System is

type Address is private:;

type Name is (Mc68020_ 0s2000);

System Name :

Storage Unit :

Memory Size

: constant :

constant Name := Mc68020_0s2000;

constant := 8;
= +(2 **x 31)

Min_Int : comnstant := -(2 ** 31);
Max Int : constant := +(2 ** 31) - 1;
Max Digits : constant := 15;

Max Mantissa : constant := 31;
Fine_Delta : constant := 1.0 / (2.0
Tick : constant := 1.0 / (2.0

subtype Priority is Integer range 0 ..

function
function

function
function
function
function

To_Address (Value : Integer)
To_Integer (Value : Address)

'l+"
"+'!

wan

(Left : Address; Right :
(Left : Integer; Right
(Left : Address; Right :
(Left : Address; Right :

-1;

* % 31);
**x 13);

255;

return Address;
return Integer;

Integer) return Address;

: Address) return Address:;

Address) return Integer;
Integer) return Address;

snss RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

function "<" (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean:;
function ">=" (Left, Right : Address) return Boolean;

-- The functions above are unsigned in nature. Neither Numeric Error
-- nor Constraint_Error will ever be propagated by these functionms.

-- Note that this implies:

- To_Address (Integer’/First) > To_Address (Integer’ Last)
== and that:

- To_Address (0) < To_Address (-1)

-- Also, the unsigned range of Address includes values which are
-- larger than those implied by Memory Size.

Address_Zero : cohstant Address;

private

end System;

REPRESENTATION CLAUSES AND CHANGES OF REPRESENTATION

The MC68020 CDF support for representation clauses is described in this section with reference
to the relevant section of the LRM. Usage of a clause that is unsupported as specified in this
section or usage contrary to LRM specification will cause a semantic error unless specifically
noted. Further details on the effects on specific types of objects are given in the section “Size of
Objects.”

Length Clauses (LRM 13.2)

Length clauses are not supported for derived types. Length clauses are supported by the
MC68020/0S-2000 CDF as follows:

* The value in a ’Size clause must be a positive static integer expression. ‘Size clauses are
supported for integer and enumeration types only. The value of the size attribute must be
less than or equal to 32 and greater than equal to the minimum size necessary to store the
largest possible value of the type.

* ’‘Storage_Size clauses are supported for access and task types. The value given in a
Storage_Size clause can be any integer expression, and it is not required to be static.

e ‘Small clauses are supported for fixed-point types. The value given in a “Small clause must be
a nonzero static real number that cannot be greater than the delta of the base type.

RATIONAL 8/15/89 163

MC68020/0S-2000 CDF

Enumeration Representation Clauses (LRM 13.3)
Enumeration representation clauses are supported with the following restrictions:

¢ The allowable values for an enumeration clause range from (Integer'First + 1) to Integer’Last.

* Arrays indexed by enumeration types with representation clauses are not supported, unless
the representation clause specifies the default representation, the representation that would
have been used in the absence of the clause. This restriction on array index types is not
enforced until code-generation time.

Record Representation Clauses (LRM 13.4)

Both full and partial representation clauses are supported for both discriminated and undis-
criminated records. Record component clauses are not allowed on:

¢ Array or record fields whose constraint involves a discriminant of the enclosing record

¢ Array or record fields whose constraint is not static
An error at coding time will be generated if a component clause is put on a dynamic field.

The static simple expression in the alignment clause part of a record representation clause
(see LRM 13.4 (4)) must be a power of 2 with the following limits:

1 <= static_simple_expression <= 16

Implementation-Dependent Components

The LRM allows for the generation of names denoting implementation-dependent components
in records. For the MC68020/0S-2000 CDF, there are no such names visible to the user.

Address Clauses (LRM 13.5)

Address clauses are not supported and will generate a semantic error if used.

Change of Representation (LRM 13.6)

Change of representation is supported wherever it is implied by support for representation
specifications. In particular, type conversions between array types or record types may cause
packing or unpacking to occur; conversions between related enumeration types with different
representations may result in table lookup operations.

SIZE OF OBJECTS

This section describes the size of both scalar and composite objects. The first two subsections
cover concepts of size that apply to all object types. The following subsections cover individual
types. The size concepts are most important for the composite types.

164 ' 8/15/89 RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

Minimum, Default, Packed, and Unpacked Sizes
The following terms are used to describe the size of objects:

¢ Storage unit: Smallest addressable memory unit. The size of the storage unit in bits is given
by the named number System.Storage_Unit. Since the MC68020 is byte-addressable, the size
of the storage unit is 8.

¢ Minimum size for a type: The minimum number of bits required to store the largest value of
the type. For example, the minimum size of a Boolean is 1.

» Packed size for a type: The size of a component used in an array or record when a pragma
Pack is in effect. This is the same as the minimum size unless modified by a ‘Size clause (see
“Determination of Size” below).

* Default size for a type: The smallest number of bits required to store the largest value of the
type when stored in whole storage units. For composite types, the default sizes are multiples of
8. The possible default sizes for scalar, access, and task types are given in the following table:

Default Sizes for Scalar, Access, and Task Types

Type | Sizes in Bits
Discrete |8, 16,32
Fixed 8, 16,32

Float 32,64
Access |32
Task 32

e Unpacked size for a type: The size of a component used in an array or record when no
pragma Pack is in effect. This is the same as the default size unless modified by a ‘Size clause
(see “Determination of Size” below).

¢ Maximum size: The largest allowable size for a discrete type. For the MC68020, the maximum
size is 32.

Determination of Size

Top-level scalar and access objects are stored using their unpacked size (by top-level object we
mean an object that is not a component of any array or record). Components of composite
objects having neither pragma Pack nor a record representation clause are also stored using the
unpacked size. Components of composite objects having pragma Pack are stored using the
packed size. Fields of records having record representation clauses may be stored in any
number of bits ranging from the minimum size to the default size of the field type. If a scalar or
composite type component field is specified to be smaller than the default size, a filler field is
introduced, and the data is left-justified. For further information, see the subsections on
composite types.

RATIONAL 8/15/89 165

MC68020/0S-2000 CDF

’Size clauses on discrete types affect sizes by changing the packed and unpacked sizes. When

there is no ‘Size clause, the packed and unpacked sizes are the minimum and default sizes, -

respectively. ‘Size clauses with values outside the minimum and maximum sizes cause a
semantic error. Within that range, there are two cases depending on the value specified by the
clause:

* Value <= Default Size: The packed size is set equal to value. The unpacked size is not affected.
* Value > Default Size: For integer types, the ‘Size clause will cause a semantic error.

Size Examples for MC68020 Target

Minimum | Default | Maximum

Type Declaration of the Example Size Size Size
Integer 32 32 32
Boolean 1 8 32
Float 32 32 32
type Byte is range 0 .. 255 8 16 32
type Primary is (Red, Blue, Yellow) 2 8 32
type X is (Normal, Read_Error, Write_Error) 5 8 32
for X use (7, 15, 31)
type Ary is array (1 .. 100) of Boolean 100 800 n/a

Integer Types

An integer type with a range constraint has a default size the same as that of the smallest
integer type defined in package Standard that will hold its range. For example, consider the
following type declaration:

type Byte is range 0..255;

Type Byte will have a minimum size of 8 and a default size of 16. It has a default size of 16
because the smallest type from which Byte can be derived is Short_Integer.
(Short_Short_Integer, which has a size of 8, does not include values greater than 127.)

The ’Size clause is supported for integer types that are not derived types. The effect of a ‘Size
clause on minimum size is shown in the following example. Consider:

type Byte is range 0 .. 255;
for Byte’Size use n;

where 7 is a static integer expression. The following table shows the effect of n on the packed
and unpacked sizes.

166 8/15/89 RATIONAL

Appendix V: Appendix F for the Mc68020_0s2000 Target

Example of Effect of 'Size Clauses

Packed | Unpacked
'Size Clause Size Size
No ’Size clause 8 16
Use 8 8 16
Use 12 12 16
Use 16 16 16

Enumeration Types

For an enumeration type with n elements, the default internal integer representation range is 0 ..
n-1. The maximum number of elements that may be declared for any one enumeration type
depends on the total number of characters in the images of the enumeration literals. Let L be the
total number of characters of the n elements. Then L and 7 must satisfy the following inequality:
2n+4+ L <21,

’Size clauses are not supported for derived types. An enumeration clause on a derived type is
supported only if the parent type has no enumeration clause. Derived types inherit the parent
type’s minimum and default sizes, as well as the internal integer representation unless, an
enumeration clause applies.

For predefined type Character, the value returned by the ‘Size attribute is 8, and the minimum
size is 8. User-defined Character types behave like ordinary enumeration types and may have a
minimum size of less than 8.

The ’Size clause is supported for enumeration types that are not derived types. The effect of a
’Size clause on representation is shown in the following example. Consider:

type Response is (No, Maybe, Yes);
for Response’Size use n;

where n is a static integer expression. The following table lists the packed and unpacked sizes
for different values of n.

Example
Packed Unpacked
’'Size Clause Size Size
No ‘Size clause 2 8
Use 4 4 8
Use 12 12 16
Use 16 16 16
Use 20 20 32
Use 32 32 32

RAT'ONAL 8/15/89 167

MC68020/0S-2000 CDF

Floating-Point Types

The internal representations for floating-point types are the 32-bit and 64-bit floating-point
representations as outlined by the MC68020 architecture. The ‘Size clause is not supported for
floating-point types; a semantic error will be generated if one is used.

Fixed-Point Types

Fixed-point numbers are represented internally as integers. The integer representation is
computed by scaling (dividing) the fixed-point number by the actual small implied by the
fixed-point type declaration. The values that are exactly representable are those that are precise
multiples of the actual small; numbers between those values are represented by the closest exact
multiple. For example, in the declaration:

type fix is delta 0.01 range -10.0 .. 10.0;

the integer value used to represent the lower bound of the type is =10.0 / (1/128), or —1280,
since the actual small is 1/128. In the example:

type fix is delta 0.01 range -10.6 .. 10.6;

the integer value used to represent the lower bound of the type is =1357, which is the closest
exact multiple of the actual small.

The size of the representation is 32, 16, or 8 bits; the compiler chooses the smallest of these that
can represent all of the safe numbers of the fixed-point type.

Access Types and Task Types

Access and task objects have a size of 32 bits. The ‘Storage_Size length clause is allowed for
access and task types. The value given in a Storage_Size clause may be any integer expression,
and it is not required to be static. Static expressions larger than Integer'Last will generate
compilation warnings; however, a Numeric_Error exception will be raised at run time. For
access types, a ‘Storage_Size clause is used to specify the size of the access type’s collection. If a
‘Storage_Size clause has been applied to an access type, the collection is nonextensible. For task
types, the clause determines the stack size.

A value (either static or not) of 0 is allowed; in this case, no collection or task stack space will be
allocated, and Storage_Error will be raised at run time if any attempt is made to allocate or
deallocate from the collection or activate the task. Negative values are also allowed by the CDF;
however, this will generate a Storage_Error exception when the type is elaborated even if no
attempt is made to allocate or deallocate objects belonging to the collection.

Composite Types

The size of a composite type depends on whether or not it is packed. It is packed if and only if
there is a pragma Pack affecting the type.

168 snsse RATIONAL

Appendix V: Appendix F for the Mc68020_0Os2000 Target

Other factors affecting size are the presence of:

* A record representation clause
¢ Alignment filler
¢ Tail filler

These factors, which mostly affect records, are dealt with first in the following subsections.
Once their effects are understood, the differences between packed and unpacked
representations are fairly simple. Later subsections deal with packed and unpacked
representation and pragma Pack.

Using a Record Representation Clause

If any components or parts of components are covered by a record representation clause, then
that clause controls, whether the composite type is packed or not.

If a record representation clause is used, some fields of a record may not be determined by that
clause. Such fields may be influenced by packing. Also, these fields are placed after all those
that are specified by the clause. In particular, for a discriminant not governed by a clause, the
discriminant field is placed after all the governed fields. Since the discriminant field must then
be placed after the largest possible field, there will be no space savings gained by using the
constrained subtype of the discriminated record.

Alignment Filler

Alignment filler may be present in a composite type when it is a record or is an array containing
records. In the absence of a record representation clause, the compiler reorders record fields in
an attempt to maintain alignment and reduce the need for alignment filler fields. Nonetheless,
sometimes it is necessary to introduce alignment filler fields to maintain alignment. For
example, in an unpacked array of records consisting of a character and an integer, the integers
would be aligned on longword boundaries by introducing an alignment filler of three bytes
between array components. ‘

Tail Filler

The last storage unit of the composite type may contain some unused bits; these bits, called tail
filler, are zeroed when an object is elaborated so that block comparisons can be performed. Tail
filler does not contribute to the size of the composite type as computed by the “Size attribute.

Unpacked Composite Types

When a composite type is unpacked, each component is stored in the same size it would have as
a top-level object. For scalars, that is its unpacked size. Components covered by a record
representation clause obey that clause. For components of composite type, any packing within
the component will be retained.

Packed Composite Types

When a composite type is packed, scalar components are stored in packed size. Packed and
unpacked size can differ only for integer and enumeration types. Tail filler between compo-

RATIONAL /15 169

MC68020/0S-2000 CDF

nents is eliminated; for arrays, alignment filler within components is eliminated; for records, it
is not.

Limitations on the Effect of Pragma Pack

¢ The packed size of discrete types that have a minimum size of 27, 29, 30, or 31 bits is set to 32.

* When an object with a pragma Pack on it is used as a component or subcomponent of a
composite type, applying a pragma Pack to the composite type will have no effect on the
composite.

Change of Representation for Packed Composite Types

Change of representation for packed composite types may cause extra code to be generated to
do packing and unpacking conversion. For example:

type A is array (1..10) of Boolean; -- Size of 80 bits
type B is new A;

pragma Pack (B); -- Size of 10 bits
X : B;

Y : A;

X := B(Y); -- Extra code will be generated here

-- to convert from type B to type A

OTHER IMPLEMENTATION-DEPENDENT FEATURES

Machine Code (LRM 13.8)

Machine-code insertions are not supported at this time.

Unchecked Storage Deallocation (LRM 13.10.1)

Unchecked storage deallocation is implemented by the Unchecked_Deallocation generic func-
tion defined by the LRM. This procedure can be instantiated with an object type and its access
type, resulting in a procedure that deallocates the object’s storage. Objects of any type may be
deallocated.

The storage reserved for the entire collection associated with an access type is reclaimed when
the program exits the scope in which the access type is declared. Placing an access type
declaration within a block can be a useful implementation strategy when conservation of
memory is necessary.

Erroneous use of dangling references may be detected in certain cases. When detected, the
Storage_Error exception is raised. Deallocation of objects that were not created through
allocation (that is, through Unchecked_Conversion) may also be detected in certain cases, also
raising Storage_Error.

170 8/15/89 RAT'ONAL

Appendix V: Appendix F for the Mc68020_0Os2000 Target

Unchecked Type Conversion (LRM 13.10.2)

Unchecked conversion is implemented by the Unchecked_Conversion generic function defined
by the LRM. This function can be instantiated with Source and Target types, resulting in a
function that converts source data values into target data values.

Unchecked conversion moves storage units from the source object to the target object
sequentially, starting with the lowest address. Transfer continues until the source object is
exhausted or the target object runs out of room. If the target is larger than the source, the
remaining bits are undefined.

Restrictions on Unchecked Type Conversion

¢ The target type of an unchecked conversion cannot be an unconstrained array type or an
unconstrained discriminated type without default discriminants.

* Internal consistency among components of the target type is not guaranteed. Discriminant
components may contain illegal values or be inconsistent with the use of those discriminants
elsewhere in the type representation.

CHARACTERISTICS OF I/O PACKAGES

This section specifies the implementation-dependent characteristics of the 1I/O packages
Sequential_Io, Direct_Io, Text_Io, and Io_Exceptions. These packages are located in the library
ITargets.Mc68020_0Os2000.Io. Nondependent characteristics are as given in Chapter 14 of the
LRM. Each section below cites the relevant section in Chapter 14.

The package Os2000_Io is provided as an interface to many of the OS-2000 I/O system calls.
0s2000_Io is in the library !Targets.Mc68020_0s2000.Target_Interface.

Package Low_Level_Io is not provided for the Mc68020_Os2000 target.

External Files and File Objects (LRM 14.1)

An external file is identified by a Name and further characterized by a Form parameter. The
allowable strings for the Name are the legal filenames and full or relative path lists accepted by
0S-2000. See the 0S-9/68000 Operating System User’s Manual for details. There are no
recognized values for the Form parameter.

If a main program completes without closing some Text_Io file, any data output to the file after
the last line or page terminator will not be included in the associated external file.

Input and output are erroneous for access types.

RATIONAL &15/s m

MC68020/0S-2000 CDF

Sequential and Direct Files

This section deals with implementation-dependent features associated with the packages
Sequential_Io and Direct_Io and the file types sequential access and direct access.

File Management (LRM 14.2.1)

The Use_Error exception is raised in the following situations:

* By procedure Create if an external file with the specified Name already exists.

e By procedure Open if the executing process does not have correct access rights for the
external file.

e By procedure Open if another process has already opened the external file for nonsharable
use.

e By either procedure Create or Open if accessing the external file would exceed the OS-2000
limit on the number of open files for the executing process.

e By procedure Open if the external file is currently opened by another process with mode Out
or Inout.

Sequential Input/Output (LRM 14.2.2)

For the Read procedure of Sequential_Io, the Data_Error exception is raised only when the size
of the data read from the file is greater than the size of the out parameter Item.

Direct Input/Output (LRM 14.2.4)

Package Direct_Io may not be instantiated with any type that is either an unconstrained array
type or a discriminated record type without default discriminants. A semantic error is reported
when attempting to install any unit that contains an instantiation in which the actual type is
such a forbidden type.

For the Read procedure of Direct_lo, there is no check performed to ensure that the data read
from the file can be interpreted as a value of the Element_Type.

Specification of Package Direct_Io (LRM 14.2.5)
The declaration of the type Count in package Direct_Io is:

type Count is new Integer range 0 .. Integer’Last / Element_Type’Size;

where Element_Type is the generic formal type parameter.

172 snss RATIONAL

Appendix V: Appendix F for the Mc68020_Os2000 Target

Text Input/Output (LRM 14.3)

The Text_Io default input and output files are associated with the OS-2000 standard input and
standard output paths, respectively. If a program is initiated without any of the standard input,
standard output, or standard error output, then those paths are opened for device/nil. The
terminators used by Text_lo are Ascii.Cr for the line terminator, and the sequence Ascii.Ff,
Ascii.Cr for the page terminator, except for terminators at the end of file, which are implicit and
not represented by any characters.

File Management (LRM 14.3.1)

The Text_lo function Name raises Use_Error when called with either Text_lo.Standard_Input or
Text_Io.Standard_Output as the actual parameter. This implementation for Name was chosen
because OS-2000 does not provide a uniform mechanism for obtaining a string name for the
external file associated with a path.

Specification of Package Text_Io (LRM 14.3.10)
The declaration of the type Count in Text_Io is:

type Count is range 0 .. 1_000_000_000;
The declaration of the subtype Field in Text_lo is:

subtype Field is Integer range 0 .. Integer’Last;

Exceptions in I/O (LRM 14.4)
The exceptions raised in input/output operations are:

¢ The exceptions as specified in LRM 14.4.
* The Use_Error exception as specified in the two file management subsections above.

* The Device_Error exception, raised for any input/output operation that performs an OS-2000
I/0 system call returning as status the error code EfRead or E$Write.

e The Device_Error exception, raised if the status returned from any OS-2000 I/O call is not
among the error codes E$Pnnf, E$Bpnam, E$Bmode, E$Eof, E$Pthful, E$Fna, E$Share,
E$Bpnum, E$Cef, EfRead, or E$Write.

RATIONAL 515/ 173

MC68020/0S-2000 CDF

174 sse RATIONAL

Index
!Common debuggingcommands00 0L o0 s 90
Debug debuggingcommands L L Lo L e e e e e e e 87
ALIGNassemblerdirective Lo o e e e e e e e e e 46
ASCII (define constant string) assembler directive00 L0000 41
.ASCIZ (define constant text string) assemblerdirective00 0L 41
.BLANK (place blank lines in listing file) assembler directive 40
LPUassemblerdirectiveo e e e e e 44
.DC.A (define constant addresses) assemblerdirective L0000 oL 41
.DC.B (define constant bytes) assemblerdirectiveo 0oL 41
.DC.D (define constant double-precision floating point) assembler directive 41
.DC.L (define constant longwords) assembler directive00 41
.DC.S (define constant single-precision floating point) assembler directive 41
.DC.W (define constant words) assemblerdirectiveo 41
.DC.X (define constant extended-precision floating point) assembler directive 41
.DCB.A (define constant-block addresses) assembler directive oL 42
.DCB.B (define constant-block bytes) assemblerdirective0 41
.DCB.D (define constant-block double-precision floating point) assembler directive 41
.DCB.L (define constant-block longwords) assembler directive 41
.DCB.S (define constant-block single-precision floating point) assembler directive 41
.DCB.W (define constant-block words) assembler directiveo 41
.DCB.X (define constant-block extended-precision floating point) assembler directive 42
.DEFP.B (define permanent byte symbol) assembler directiveo 43
.DEFP.D (define permanent double-precision floating-point symbol) assembler directive 43
.DEFP.L (define permanent longword symbol) assembler directive 43
.DEFP.S (define permanent single-precision floating-point symbol) assembler directive 43
.DEFP.W (define permanent word symbol) assembler directive 43
.DEFP X (define permanent extended-precision floating-point symbol) assembler directive 43
.DEFT.B (define temporary byte symbol) assembler directive 43
.DEFT.D (define temporary double-precision floating-point symbol) assembler directive 43

RATIONAL s/15/89 175

MC68020/0S-2000 CDF

.DEFT.L (define temporary longword symbol) assembler directive 43
.DEFT.S (define temporary single-precision floating-point symbol) assembler directive 43
.DEFT.W (define temporary word symbol) assembler directive 43
.DEFT X (define temporary extended-precision floating-point symbol) assembler directive 43
.DS.A (reserve storage for address) assemblerdirective 000000000 41
.DS.B (reserve storage for bytes) assembler directiveo 000000 40
.DS.D (reserve storage for double-precision floating point) assembler directive 40
.DS.L (reserve storage for longwords) assembler directive oo o000 40
.DS.S (reserve storage for single-precision floating point) assembler directive 40
DS.W (reserve storage for words) assembler directiveo oo 40
.DS.X (reserve storage for extended-precision floating point) assembler directive 41
ENDMACRO assemblerdirective 000 e e e 49
.ERROR assemblerdirective oo e e e e e e 47
.EXT.A (address external) assemblerdirective oo 42
.EXT.B (byte external) assembler directive00 oo e 42
.EXT.L (long external) assembler directiveo 42
EXT.W (word external) assembler directiveo oo 42
FOOT (define footer) assemblerdirective« oo v oo 40
.GBL.A (address global) assembler directiveo Lo 42
.GBL.B (byte global) assemblerdirectiveo oo e 42
.GBL.L (long global) assemblerdirective oo o oo 42
.GBL.W (word global) assembler directive Lo 000 42
HEAD (define header) assemblerdirective 0000000 40
INCLUDE assemblerdirective o i vt e e e e e e 47
IRADIX assemblerdirective oL Lo e e e e 46
.LENGTH (define number of lines per listing page) assembler directive 40
LIST (enable listing) assemblerdirective o0 o e 40
.LISTC (list all conditionals) assembler directive oL 40
LISTMC (list macro calls) assembler directiveo 40
.LISTMX (list macro expansion) assembler directive 40
.LISTNC (list no conditionals) assemblerdirective 40
.LISTNM (list no macro expansions or calls) assembler directive 40
LLISTTC (list true conditionals only) assembler directive 40
LOCALdirective L Lo e e e e e e e e e e e e e 37
MACRO assemblerdirectiveo 49
NLIST (disable listing) assembler directive 0o 40

176 s/15,80 RATIONAL

Index

OFFSET assemblerdirective o i v e e e e e e e 45
ORADIX assemblerdirective Lo e e e 46
OUTPUT assemblerdirective o v v vttt ittt e 47
PAGE (eject page in listing file) assemblerdirectiveo 0000 40
RADIX assemblerdirective L L L L L e e e e e e e e e e e 45
REVassemblerdirective Lo e e e e 46
SECTassemblerdirective L e e e e e e e e e 44
SECTdirective e e e e e e e e e e e e e 68
SUBTTL (specify listing subtitle) assemblerdirective, 40
TITLE (specify listing title) assemblerdirective, 40
WIDTH (define width of listing file) assemblerdirective 40
<Asm>file L L L e e e e e e e e e e e e 21
<Elab_Asm>file L e 21
<Elab_List>file o e e e e e e e e e e e e e e e e e e 21
<Elab Obj>file e e e e e e e e e e e e e 21
<Exe>file L L e e e e e e e e 21
<Link_ Map>file L e e e e e e e 21
<List>file e e e e e e e e e 21
<Obj>file e e e e e e e e e e e 21
Abandonprocedure L L L L L L Lo e e e e e e e e e e e e e 27,90
absoluteexpressions L L L Lo L e e e e e e e e e e e e e e 38
Accept_Changesprocedurettt e e e e e e e e 14, 18
aCCESSEYPES L L L L . i e 74
access types, dynamic memory allocation/deallocationo Lo 78
access types, runtime functionsreturning L oL L Lo L0000 o e e 75
Activateprocedure L L L oL o e e e e e e e e e e e e e e e e e 87
Ada programs, compiling, assembling,and linking 000000000 L 18
Adaunitstate L L L L L e e e e e e e e e e e e e e e 6
Ada units, copying into an Mc68020_Os2000world Lo 0oL 17
Adaunits,creating L . L L L L oo e e e e e e e e e e e 17
Ada units, porting to an Mc68020_0Os2000patho o000 oo o oL 18
ADA_CODE programsection s e e e e e e e e e e e e e 67
ADA _CONST program section o .t v v v v bt bt b e e e e e e e e 67
ADA DATA program section oo e e e e e e e e e e e e e 67
ADA_RUNTIME programsectiont vt vttt e e e e e 68
addressclauses R 164
address spacerestriction L L oL L 0L L oL e e e e e e e e e e e e 68

RATIONAL /15789 177

MC68020/0S-2000 CDF

Address_To_Locationprocedure e e e e 87,90, 92
allocators, runtime L L L L L s L e 80
Appendix F, MC68020/0S-2000 cross-compiler« o0 oo e e e e e 151
AITAYLYPES . . . v . b h b e 74
array types,unconstrained L L oL L0 0L L e e e e e e e e e e e e e e e e 75
- = 31
ASCIItable e 107
Asm Sourceswitch L L L L L L L e e e e e e e e e e e e e e e e 16
Assembleprocedure L. L L L L L Lo o e e e e e e e e e e e e e e e 19,33
assembler . . . L L L L L L L L e 5
assemblercommand L L L L L L L L L L e e e e e e e e e e e e e e e e e e 33
assembler command,example L L L. L L Lo Lo e e e e e e e e e e 34
assemblerinput L L L L L L L e e s e e e e e e e e e e e e e e e e e e 35
assembler numericliterals L. L L L L e e e e e e e e 36
assembler source statement continuation linecharactero Lo oo 36
assembler, absolute expressions L L L 0L Lo 0o e e e e e 38
assembler, binaryoperators L . L L Lo e e e e e e e e e 39
assembler, BNF L e e e e e e e e e e e e e e e e e 114
assembler, characterusage Lo o e e e e e e e e 50
assembler, complex relocatableexpressions L. L. oL Lo oL 38
assembler, directives N 40
assembler,directory L L L L L L L e e e e e e e e e e e e e e 109
assembler, expressionevaluation L. L L0000 Lo s 38
assembler, initialized unit-allocation directiveso o000 41
assembler, intermodule symbol-definitiondirectives oL o 0oL o oL 42
assembler, local symbols and scopingruleso o o s oL 37
assembler, MACTOS . .« . . & v v v v i e e e e e e e e e e e e e e 49
assembler, operator precedence L L. 0L e e e e e e e 39
assembler, simple relocatableexpressions L0000 o 38
assembler, source statementfields L oL L0000 o000 o o 35
assembler, storage-allocation directiveso 00000 Lo Lo oo 40
assembler, symbol resolution e e e e e e e e e e e e e e e e e e 38
assembler, symbol-definition directives L L0000 L 00000000 42
assembler,symbols S 36
assembler, syntax L L Lo L L Lo e e e e e e e e e e e e 111, 118
assembler, UNary Operators L L u . e e e e e e e e e e e e e e e e e 39

178 s/1589 RATIONAL

Index

assembly, conditional L L L0 L e e e e e e e e e e e e 48
assembly, repetitive L. 0L Lo s e s 47
assembly-languagesourcecode L. L L L Lo L L0 e s e s e e e e 35
associated files L L L L L Lo e e e e e e e e e e e e e e e 20
associating a switch filewithaworldo 00 o oo oo o o 16
Atomic_Destroyprocedure L L 0L L e e e e e e e e e e e e e e 28
Auto_Assembleswitch L L L e 16, 18, 33
Auto Linkswitch L L L L e 16, 18
Backus-Naur form (BNF) i i it e 59,111
Backus-Naur form, used withassemblercommands00 114
Backus-Naur form, used with linkercommand files« « « . i i i i e e e e e e e 111
based numericliterals L L L L L L L L s s e e e e e e e e e e e e e 36
binaryoperators L L L L L e e e e e e e e e e e e e e e 39
block-allocation directives L L. 0oL Lo e e e e e e e 41
BNF e 111
BNF, used withassemblercommands L0000 e e e 114
BNF, used with linkercommandfiles 0000000 o 111
Break procedure L oL L e e e e e e e e e e e e e e e 87,97
breakpoints L L L L e e e e e e e e e e e e e 103
breakpoints, stoppingmodel00 Lo L L0 e 99
call, function L L L L L L L e e e e e e e e e e e e e e e e 72
call, procedure L L L L L e e e e e e e e e e e 71
call subprogram L L L oL oo e e e e e e e e e e e e e e e e e e 69
cal, system L L L L L L e 80
Catchprocedure 0 . e e e e e e e e e e e e e 87
Chapter 13support A e 30
characterusage L L L L e e e e e e e e e e e e e e e e e 50
Check Outprocedure L e e e e e 14
Child procedure L. e e e e e e 90
Clear_Stepping procedure L. Lo e e e e e e e e 87
closed privatepart L L L L L e e e e e e 9
CMVC . e e e e e e e e e e e e e e e e 13,14
Cmvc.Accept_ Changeso e e e e e e 14, 18
Cmve.Check_Out o o L e e e e e e e e e e e e e e e e e e e 14
Cmvelnitial L e e e e e e e e e e e e e e e 13
CmveJoin L L e 13

RATIONAL s/15/8 179

MC68020/0S-2000 CDF

CmvcMake Controlled L . L e 13
CmveMake Path L e 13
CmveSever i . e 13
codeaddress spacerestriction L L. L. Lo L0 L0 n e e e e e e e e e 68
code optimization, and constructionofaframe L L. L. 0w w e e e e 70
code, assembly-languagesource L L. L. L. o h e e e e e e e e e e 35
code,generated L L L L L L o e e e e e e e e e e e e e e e e e e 67
codedstate L L L e 6,7,25,26
collection L . L L L L e e e e e e e e e e e e e e e e e e e 53
Collectionlinkercommand L. oo e e e e e e e e e e e e e 59, 62
collections L . e 56,78
collections, dynamic L L L Lo e e e e e e e e e e e e e 79
collections, extensible and nonextensible o 00 s 0o el 79
collections, global 0L e e e e e e e e e 79
collections, inthe runtimesystem Lo I/
command file, linker L L L e e e e e e e e e e e e e e e e e e 53
Command windows L. L Lo e e e e e e e e e e e e e e e e 30
commands,assembler L L L L L L. L e 33
commands,compiler L L L L Lo L L L e e e e e e e e e e e e 27
commands,cross-debugger L L L L0 L0 e e e e e e e e e e e 90
commands, debugger, for determininglocation o000 92
commands, debugger, in!{Common e 90
commands, debugger, machinelevel00 oo 90
commands, machine-leveldebugging oL Lo 90
commands, used withdebugger L0 0L 0oL 87
commands, used withlinkercommand file o0 e e 59
comment field, assembler sourcestatements e e e e e e e e e e e e e e e 36
Commentprocedure Lo L Lo e e e e e e e e e e e e e e 87
Commitprocedure L Lo e e e e e e 27
Common.Abandon L L L L L L L Lo e e e e e e e e e e e 27,90
Common.Commit L e e e e e e e e e e e e e 27
Common.Complete e e e e e e e e e 27
Common.Create_ Command i v v v e e e e e e e e e e e e e e e e 27,9
Common.Definition L L L L Lo o e e e e e e e e e e e e e e e 27,90
CommonDemote L L L L e e e e e e e e e e e e e e e e 27
Common.Edit e e e e e e e e e 27
Common.Enclosing L. e e e e e e e 27,90

1éO 8/15/89 RATIONAL

Index
Common.Explain e e e e e e e e e e e e e 27
Common.Format oL L e e e e e e e e e e e e e e e e e e e 27
Commonlnsert_File L L e 27
Common.Object.Child o o o e e e e e e e e e e e e e e 90
Common.Object.First Child oo e e e e e e e e 90
Common.Object.Last_Child 0 i e e e e e e e e 90
Common.ObjectNext it e 90
Common.Object.Parent L .. e e e e e e e e e e e e e e e e 90
Common.Object.Previous L oL e 90
CommonPromote L i e e e e e e e e e e e e e e e 28
Common.Release L e e e e e e e e e e e e e e e 28,90
Common.Revert e e e e e e e e e e e e e e e 28
Common.Semanticize L L L L L e e e e e e e e e e e e e e e e e e 28
Common.Write_File L e e e e e e e e e e e e e e e e e e 90
compilationmode L L L L L L L L L L s e e e e e e e e e e e 6
compilation mode, Mc68020_0s2000 L oL oo e e e e 7
compilationmode, R1000o oo 6
compilation mode, R1000, summary 0000 7
compilationmodes L L L L L L Lo e e e e e e e e e e e 25
compilationstates L L L L L oL oL L s e e e e e e e e e e e e 25
compilationunit L L L L oL L L L s s e e e e e e e e e e e e 53
Compilation.Atomic_Destroy L e e e e e e e e e e e e e e e 28
Compilation.Compile e e e e e e 28
Compilation.Delete Lo e e e e e e e e e e e e 28
Compilation.Demote L. Lo s e e e e e 28
Compilation.Dependents e e e e 28
Compilation.Destroy L e 28
CompilationMake L L s e e e e e 28
CompilationParse Lo e e e e e e 28
CompilationPromote oL e e e e e e e e e 28
Compileprocedureo e e e e e e e 28
compiler
Appendix F L e e e e e e e 151
compilercommands L L L L 0L L Lo L e e e e e e e e e e e e e 27
compiler,directory L L L Lo e e e e e e e e e e e e 109
compiler, runtimeinterface L L L L0000 e 137
compilers, differencesbetween L0000 0L Lo oo oo s o e 30

RATIONAL s/15/8 181

MC68020/05-2000 CDF

complementarithmetic L L L0 L o s e e e e e e e 38
- complement arithmetic and expression evaluation 00000 oL 38
Completeprocedure L L e e e e e e e e e e e e e e e e e 27
complexrelocatableexpressions L. L0 0o e e e e e 38
components, CDF,location L 0 s e e e e e e e e e e e e 109
conditionalassembly oL Lo s e e 48
configuration management and versioncontrol (CMVC)00 13
Constraint_Errorexception L .00 e e e e e e e 74,77
constructionofaframe L Lo Lo s e e e e e e e e e e e e 69
construction of a frame, and code optimization o000 L0000 o0 70
Contextprocedure i i it i e e e e e e e e e e e e e e 87
continuation lines, assembler source statements L. h e e e e e e e 36
Convertprocedure it e e e e e e e e e 22, 83,87
Copyprocedure L e e e e e e e e e e e e e 18
Create Command procedure e e e e e e e 27,90
Create World procedure L L L0 e e e e e e e e e e e e e e e e 14
cross-assembler L L L L L L L L L e e e e e e e e e e e e e e e e e e e 33
cross-assembler, absolute eXpressions oo e e e e e e e e e 38
cross-assembler, binaryoperators L L L0 L 0L 00 e e e e e e 39
cross-assembler, characterusage L. L. L oLl e e e 50
cross-assembler, complex relocatableexpressions 0L 000000 oo 38
cross-assembler, directives L L L L L L e e e e e e e e e e e e e e e e e 40
cross-assembler, expression evaluation L. L. L L 0oL L 0o n s e e e e e 38
cross-assembler, input e e e e e e e e e 35
cross-assembler, local symbolsand scopingrules00 L0000 37
cross-assembler, operatorprecedence L. oL oo ol e e e 39
cross-assembler, storage-allocationdirectives L0000 e e e 40
cross-assembler, symbolresolution L. Lo L0 oL Lo oo 38
cross-assembler,symbols L L L L L0l L0 L e e e 36
cross-assembler, unaryoperators L L L L L L L L L 0w e e e e 39
cross-assembler, using L L L L L L L L e e e e e e e e e e 33
cross-assembler,simple relocatable eXpressions44 u e e e 38
cross<compilation oL L L L L L L L L L s e e e e e e e e e e e e e 7,8
_cross-compilation, major features o 8
cross-compiler . . L. oL L L L L L L s e e e e e e e e e e e e e e 525
AppendixF L L e e e e e e e e e 151
cross<compilerswitches L 0L L o000 o o 16

182 81580 RATIONAL

T8 Index
cross-debugger L L L L L L L e e e e e e e e e e e 7,24,87
crossdebuggercommands L L L L L Lo e e e e e 90
cross-debugger, differences between R1000and target 0. 103
cross-debugger, directory L. L L. L L L e e 109
cross-debugger, executingonthetargetwith o000 o000 L 24
cross-debugger,invoking L L L L L L L Lo L s s e e e e 91
cross-debugger, limitsonuse withtarget L0000 o000 0oL 105
crossdebugger, namingandgenerics Lo 00000 d e 104
cross-debugger, stepping by machineinstructions oL L0000 99
cross-debugger, stopmodel forbreakpoints L0 Lo L0000 99
cross-debugger, terminatingasession L L0 oL L0 s e 98
cross-development, overview L L L L L L L L e e e e e e e e e e e e e 5
cross-development, preparing for L. L L Lo o e e e e e e e 13
cross-linker . . . L L L L L L L e e e e e e e e e e e e e e e e e e 7,53
cross-linker, terminology L L L L L L Lo L e e e e e 53
Cross Cgswitches L . L i e e e e e e e e e e e e e 16, 33,57
Current Debuggerprocedure Lo 0oL e e e e 87,98
dataaddress spacerestriction L Lo oL Lo e e e 68
deallocation, unchecked [80
debug commands for displaying machine level programvalues 94
debug commands for modifying machine-level programvalues 95
Debug.Activate L. e ‘) 87
Debug.Address_ To Location o 87,90, 92
DebugBreak L e e e e e e e e 87,97
Debug.Catch e e e e 87
Debug.Clear_Steppingt o e e e e e e e e 87
Debug.Comment P 87
Debug.Context L e e e e e e e e e 87
Debug.Convert L e e e 87
Debug.Current_ Debugger L e e e e 87,98
Debug.Debug Off v i it e 87
Debug.Disable e e 87
DebugDisplay B R 87
Debug.Enable e e e e e e 87
Debug.Exception_To Name e e e e e e e 87
DebugExecuteo e e e e e e e e 87
Debug.Flag e e e e e e 87

RATIONAL s/15/8 185

MC68020/0S-2000 CDF

Debug.Forget L e e e e e e e e e 87
Debug.History Display 0 o 0 o i oo e e e e e e e e e 87
DebugHold L e e e e e e e e e e e e e e e e 87
Debug.Information L L 0L e e e e e e e e e e e e e 87
DebuglInvoke L L e e e e e e e e e e e e 24, 87,90, 91
Debug Kill e e e e e e e e e e e e e e e e e e e 87,98
Debug.Location_To_Address o0 87,90, 93
DebugMemory Display L. oo e e e e e e e e e e e e 87, 90, 94
Debug.Memory Modify Lo e e e e e e e 87, 90, 95
DebugModify L L e e e e e e e e e e e e e e e 87
Debug.Object_ Location o e e e e e e e e e e e e e e 87,90
Debug.Object_To_Location 0 e e e e e e e e e e e 93
Debug.Propagate L0 e e e e e e e e e e e e e 88
DebugPut L e e e e e e e e e e e e e e e 88
Debug.Register Display 0000 88, 90, 95
Debug.Register Modify oo e 88, 90
DebugRelease L. e e e e e e e e 88
DebugRemove L Lo e e e e e e 88
Debug.Reset Defaults oL o e e e e 88
DebugRun L L e e e e e e e e e 88, 90, 99
Debug.Set_ Task Name 0 v i v it e e e e e e e e e e 88
DebugSet Value I 88
Debug.Show L e e e e e e e e e e e e e e e e e e 88
Debug.Source L L L e e e e e e e e e e e e 88
Debug.Stack ¢ . L s e 88
Debug.Stop e 88
Debug.Take History L oo e e 88
Debug.Target Request e e e e e e e e 88, 99
Debug.Task Display o oo e e e e e e e 88
DebugTrace L e e e e e e e e e e e e e e e e e e 88
Debug.Trace_ To_ File e e e e e e e e e 88
Debug Xecute e e e e e e e e e e e e e 88
Debug_Off procedure e e e 87
‘debuggero fpeas e e e T A 5
debugger command, for establishingabreak 97

debugger command, for establishing the current debugger ." 98

s RATIONAL

debuggercommands L L L L L L Lo e e e e e e e e e e e e e e e e e e 87
debugger commands, for determininglocation L0000 0oL 92
debugger commands,in!Common L. Lo e e e e 90
debuggercommands,infDebug oL Lo L Lo 87
debugger, differences between R1000 and targeto L. 103
debugger,directory L L L e e e e e e e e e e 109
debugger,invoking L L 0L L o o e e 91
debugger, limitsonusewithtarget L0 0oL oo o 0o 105
debugger, MC68020/0S-2000 Lo e e e e e e e e e e 87
debugger, namingand generics L Lo Ll e e e e e e e e e e e e e e 104
debugger, stepping by machineinstructions L L0000 L 99
debugger, stopmodel forbreakpoints L L L L oL L L Lo e e e e e e 99
debugger, terminatingasession L L L. L L 000 u e e e e e e e e e 98
debugging duringelaboration 00 oL 0L Lo s 104
debugging genericinstantiations L ..o L0 oL L Lo e e e 104
Debugging Level switch e e e e 16
Definitionprocedure L L L e e e e e e e e e e 27,9
Deleteprocedure L L L oL e e e e e e e e e e e 28
Demoteprocedure Lo e e e e 27,28
Dependents procedure Lo e e e e 28
Destroy procedure L. L L Lol e e e e e e e e e e 28
directives, assembler L L L L e e e e e e e s 40
directory L L L L e e e e e e e e e e e e e e e e 107
directory, assembler, linker,compiler L. L0000 oo 109
directory,debugger Lo e e e e e e e e e e e e e e e e 109
directory, other predefined packages e e e e e e e e e e e . 109
directory, predefined [/Opackages S 109
directory, runtime and default linker command files Lo 109
Disableprocedure L e e 74
discriminated record types, unconstrained L0 L0000 74
Display procedure, L e e e e e e e e e e e e e FEE 74
dollar sign ($), assembler symbol e e T e e e e e e e e e e e e .37
downloader, MC68020/0S-2000 vt e 83
dynamic collections S .. 79
dynamic memory allocation/deallocation of accesstypes e e e e e e e e e e e e ~78
e parameter, OS-2000 program u Ca e e e Ce e e L Ce .24
Editprocedure | .. R .t2

RATIONAL s/15/89 185

MC68020/0S-2000 CDF

Uelaboration files . . . L L L e 21
.elaboration module L L L e e e e e e e e e e e e e e e e e e e 7
_elaboration, debuggingduring L.l o oo oo s 104
L Enableprocedure L. L Lo e e e e e e e e e e e 87
’ Enclosing procedure 0L L L L e e e e e e e 27,90
enumeration representationclauses L. L0 L0 L oL s e e e e 164
.EQU (define permanent symbol) assembler directive Lo 43
exception handling e 76
exceptionprocessing L L L L oL L0 L e e e e e e e e e e e e e e e e e 76
exception, Constraint_ Error L0000 0000 o 74,77
exception, Numeric_ Error e e e e e e e e e e e e e e e e e e e 72,77
exception, Program_Emr 77
exception, Storage Error L. oL L oL 77,78, 81
exception, Tasking Error L. Lo e e e e e 78
Exception_To Nameprocedure 0 oo oo 87
eXCEPHiONS L . L L L o o e 103
exceptions, raised by the runtimesystem L0000 o0 e e e 77
| exceptions, raised from hardware traps R 76
Exclude linkercommand B 59
Exclude Sectionlinkercommand oL 0L oL Lo e e e 65
executable files, converting L. L. [P 22,84
executable files, transferring e e e 23
executablemodule L L0 L0 Lo e 7,23,24
executablemodules R E 22
Execute procedure e 87
' execution priorities L L L e e e e e e e e e e e 81
Explain procedure e 27
Export_Function 2 -4 11 L 74
Export_ Objectpragmao e e e e e e e e e e e e 156
Export_Procedurepragma e e e e e e 74
expressionevaluationl 38
expression evaluation and complement arithmetic R 38
extensiblecollections 0L L Lo e e e e 79
external symbols, assembler L. L. . e e e e e e 42
BSFOTK . . . e 80
F$Forksystemcall o0 T e e e e e e e e 80

"486 8/15/89 RAT'ONAL

a0y ¢ Index

FSSRqMem memoryrequest o vt v b b e e e h e e e e e e e e e e e e e e e e 78
file-transfer software oL e e e e e e e e e e e e e e A
files, €labOrationt e LA
files,associated e e e e e e e e e e e e e e e e e e .20
files, executable, converting L L. L. L. 0o e e e e e 22,84
files, executable, transferring L L0000 000 ... 23
finalization L L L e e e e e e e e e e e e 75
First Childprocedure 0 o i e e e e e e e ... %0
Flagprocedurettt it e e e e e e e e IR
Forcelinkercommand ii e e e e 59, 65
Forgetprocedure i i i it e e e e e e e e e e e e . 87
Formatprocedure L. e e e e e e e e e SRR
format, conversioncommand L oL L L L L L0 0o s e e e e e e e e e e e e e 83
format,objectmodule L . L L L Lo e s e e e e e e e e e e e e e 84
framestructre oL e e e e e e e e e e e e e e e e e e e 69
FTPswitches 0 o 0 i e e e 17
Ftp.Remote Directory libraryswitcho 0oL o e 91
Ftp.Remote_Machinelibraryswitch VR 91
Ftp_Profileswitches e A I 17
functioncall L L L L e e e e e e e e e e e e e e 72
functionreturnconventionso 000 e e e e 75
functions returning scalar typesand accesstypes e e e e 75
functions returning simplerecord and array types [.. 75
functions returning unconstrained structures0 L. 00l e e e e e e e e 75
generatedcode e e e e e e e e . 67
GENETICS v e e e e e e e e e e . e e 30
generics and naming, in debugging e e e e e e PR e e e 104
global collection e .79
global databaseaddress 000000 L e e e e e e 68
global symbols, assembler e e e e e e e e e e e e W e .. 42
hardware traps,exceptions S o I (]
heap e e PPN [78

size,inpragmaMain00 L e e e e e e e e e e e e e . 152
History Display procedure C . 0oL oo e e 87
Hold procedure L Lo e e e e e e -87
I/0 packages, predefined, directoryo oo . 109

RAT'ONAL 8/15/89 . 187

MC68020/0S-2000 CDF

implementation-dependent components, namesdenoting L0 164
implementation-dependent pragmas 4w e e e e e e e e 151
j Import_ Functionpragma L L. Lo e e e e e e e e e e 74,153
JImPOrt_Object Pragma o v e 156
) ‘Import_Procedure pragma oo e e e e e e e e 74,153
inoutparameter e e e e e e e e e e e e e e 75
m Parameter L L L L L L L L L s e 75
}ncremental operations e 30
Information procedure e e e e e e 87
IRl Procedure e e e e e e e e e e 13
initialized BIOCK SEOTAGE - - « « e e e 40
[initialized block-allocation directiveso 41
initialized unit storage B e e e e e 40
initialized unit-allocation directives e e e e e e 41
) Imsert_Fileprocedure L e e e e e e e 27
installed SEAtE L . L ... i e 6,25, 26
Interfacepragma e e 153
intermodule symbol-definition directives o,)
Interprogram Communication IPC)support 80
“Invoke procedure e e e e e 24, 87,90, 91
Joinprocedure L0, e 13
Killprocedure L e e e e e e e e e e e 87,98
-label field, assembler source statements . . e e e e e e e e e e e e e e e e 35
:Last_Child procedure B I T T 90
clengthclauseo L 0oL e e e 163
Jlengthclause, Storage Size Lo o000 oo o 78
~libraries, object, scanning L L L L L Lo o e e e e e e e e e e e e 56
library switchfile e 15,91
- library switch file,creating S 15
library switches e e e e e e e e e e e e e e e e e 15,91
LibraryCopy e e e e e e e e e 18
‘Library.Create World e e e e e e e 14
.Library_Switches switchfile e e e e e e e e 15
-Link linker command e e e e e e e e e e e e e e e e e e 59, 61
“dinkmap. ..o oL e e e e e e e e e e 54,57
Linkprocedure L L L e e e e e e e e e e 54

158 syisss RATIONAL

e s Indéx

BIKEE . o o oo o e e e e s
linker command 54
linker command file e e e .. 5357
linker command filereservedwords 0L oL oL oo oL . .59
linker command file, basiccommands 0 . 0 e e e e e . s v e e e .' 59
linker command file, directory fordefault L0000 ... 109
linker command file, user-defined e e .. §7
linker, Backus-Naurform(BNF) [\ e ..
linker, buildingcollections L0 o e e e _—)56
linker, building memorysegments e e e . . L. 56
linker,commandfile00 e e e e e ' Ce (.‘ .J . . !‘53
linker, directory 109
linker, loading specified modules e REEIE . .. 56
linker, producing thelinkmap00 o o e 57
linker, reservedwords oL L IR 1. o 58
linker, scanning object libraries e .. 56
linker,symbols I P I A AP "758
linker,syntax L .. .‘ 111
linker, terminologyo 0oL . I 53
linker, user-defined symbols o, v e .’ 58
Linker Command _Filelibraryswitch - 74
Linker Command Fileswitch v« i i e e e e e e e e e e 16
Linker_Cross_Referenceswitch ' i6
linking in an Mc68020_Os2000 view orworld A S P SRR 1)
nKINg process e e e e e e e e e e e e e e e .. 56
linking process, basiccommands T e e e e e e e e e . 59
linking process, building collections oo R N - 3
linking process, building memory segments e e e AT F A -
linking process, loading object modules L T T L. oL 56
linking process, producing the linkmap e e e e e e e e e e e R -4
linking process, scanning object libraries e e e e e e e e e e Ao T56
listing directives, assembler e e e e e e e e e e e e e e 1|
Listingswitch N S S 17
literals, NUMENIC . . . « « + v v e T SR T
load module, required sections st e e e s e e e e Sl iDL 68
local symbols and scopingrules e e e e e e e e /4

RATIONAL s/15/8 +189

MC68020/08-2000 CDF

‘h;‘geation, debugger commands for determining R 92
Lgcation_To_Address procedure e e e e e e e e e e 87,90, 93
logicaladdressspace oL 68
106ping primitive L0000 oo S 47
4M68000”Cross—Development Facility, summary | <. .> 8
Mé68000-dependent assemblersyntax L0 118
M68k.Assemble L L L L e e e e e e e e e e e e e e 19,33
M68k.Link....................i 54
machine-level debuggingcommands 90
macro name symbols,assembler L. 0L L0 000w L s e e e 37
Mainpragma e e e e e e e e e e e e 7,17,18, 21, 78, 81, 151
Makeprocedure L L e e e e e e e e e e e e 28
Make_Controlled procedure P 13
Mzke_Path procedure e e e e e e e e e 13
MC68020/0S-2000 CDF, capabxhtxes 5
MC68020/0S-2000 CDF, library switches e e e e e e e e e 15
I\:(C68020 /0S-2000 CDF, location of components in Environment 109
MC68020/0S-2000 CDF, major components S 5
MC68020/05-2000 CDF, overview e 5
‘l\;IC68020/05-2000CDF,user'scenar‘io e e e e e e 11
MC68020/0S-2000 cross-compiler L e e e e e e e 25
coAppendixF oL oL L 151
MC68020/05-2000 cross-debugger PR S 7,87
MC68020/05-2000 cross-linker B 53
MC68020/05-2000 downloader [P 83
Mc68020_0s2000 compilation mode DR S 7
Mc68020_0s2000 model e P 10
Mc68020_Os2000 path L S 13
- Mc68020_0s2000 path, creating from an RlOOO path e 13
Mc68020,, 052000 view, assemblingin e 19
Mc68020_0s2000 view, compilingin T [19
- Mc68020_0s2000 world assemblingin S e 19
Mc_6,§020_052000 world, compilingin s 19
Mc68020_0s2000 worlds, using [14
..Memory Bounds linker command [e 59, 64
memorybéu;\ds ofasegment B e B 57
memorydl;s#lay e S 104

i"' 190 315,80 RATIONAL

MEMOTYy MANAZEMENt« . « v & v v v v e v o b et e e e e e e e e e e . 69

i A, 3L e de
memory request, FSSRqMem e e e e e e e e e e e e e e e, 78
Mmemory segmentot e e e e e e . - 54
MEMOTY SEEMENES . . + . & & o v v o v v v v e vt e e e e e e e e e e e e e e e - . 56

MEMOTY USAZE .« « = « « « « « v v e e v e L 68
Memory Display procedure 00000000000 o, et @ e e 87 9(},%
Memory_Modify procedure 0oL o e e e NG VTR 0 87, 90795
MESSAGEqUEUE . . . & « & « v ¢ o v e e e e e e e e e e e e e e e S T hei280
modelworlds L L L oL e Ll e e e e e e e e e e e e e e CbeaAnn 9
model, Mc68020 Os2000 L e e el e e e e e e e e P R E) 1
model, programexecutionl L. a . aw b e e s TR T S L s o 6P
model, RI000 & . it e e e e e e e e e e e e e e i e e e e e e o 10
model, R1000_Portable e e e e e e e e P .. 10
Modify procedure et e e e e e e e e b e e e e e ae e s . 87
Must_Be_Constrained pragma O F 1 S PR 1.3

naming and generics, indebuggingo :.- . . 1()4
Nextprocedure R T e e e e 90
Nicknamepragma I T 157

nonextensiblecollections D I AR L . .. ’79
numeric literals T EETERE ’. B .. m , RS I
Numeric_Errorexception R RN EICEE U TR 72,??
objectevaluation [B R 1
objectlibraries B R 62
object libraries, scanning I T s
objectlibrary B -
objectmodule IR e CoUE s

object module, relocatable R Ce P

objectmodules e I L e
object modules, linking process e e e e e .
object-module format L T n,3,83, 84

":x) T - a0

object-module format, R1000 L AR A
object-module format, target . . e e A AR
Object_Locationprocedure S A AR Y ‘87,90
Object_To_Location procedure e S ARG GO S X |
objects, importing and exporting T se

operand field, assembler source statements

RATIONAL s/15/8 191

MC68020/0S-2000 CDF

_ operator field, assembler source statements e e e e ... 35
operator precedenCe 4 e 39
| Optimization_Level SWitch v v i u i e e e e e e 17
| 05-2000 load module, required Sections T 68
05-2000 object-module FOrMat e e 84
(052000 Putprocedure e 23,83
voﬁtﬂparameter e A AR 75
' package Runtime_Support_For_Ipcspecification i . . . o000 e 80
'TpaékageStandard...‘.».,........;;.;....;; 161
- package System e e e e 162
packedrecordsand arrays . . . i . v . . i i . 0 e e e e e e e e e e e e e e e e e e e 31
Parent procedure e 90
Parseprocedureo T I A 28
_path, Mc68020_Os2000 L . . o e 13
permanent symbols, assembler L. 0L L L oL oL oo 37
Placelinkercommand oo . B 59, 63
placement, linker‘ B 63
pragma Export Function A A 74
‘pragma Export_Procedure T A N A A A IR 74
pragma Import_Function e 74
pragma Import_Procedure e B A AR 74
‘pragmaMain e 7,17,18, 21,78, 81
pragma Priority e e e e e e e e e e e e e e e e e e 81
pragmas : ‘
Export Object J 156
' 4mplementation-dependent L0 oo oo 151
"~ Import_Function e 153
“ Import Object e e e e e e e e 156
.. Import_Procedure S 153
Interface 153
CMain L. oL Lo oo e e e e e e e e e 151
Nickname e 157
predefinedlanguageo e 159
i Suppress_Alll Lo L L e e e R e e e e e e e 158
predefined language pragmas e e e e e e e e e e e e e e e e e 159
Previous procedure e e e e e e e 90
.Priority pragma. T G 81
{ priority,execution e e e e e e e e e 81
priority, runtime L. e e e e e e e e e e e e e e e e e 81
_procedurecall R 71

192 g/15/80 RATIONAL

processor resource utilization L. L. S, ;(68
PIOGIAM COUNET & v v v v v s e o e e e e o et e e e e e e e e e e L & 66
programexecutionmodel . . L . L Ll .o h e h e e e e e e e e e e . ‘l .67
Program linker command e e e . e e e e e e e e e T ST ',5~9A.:61
program section e e e h e e e e e e e e e LT . "{’54
program sections L e e e e e e e e e e R :?6,67
program sections, orderof Y |
program sections, runtime GeET e e e e e e e e e e P8
Program_Errorexception o0 R T E fi":’f,77
Promote procedure o h e u e e e e e e e s s e e e e e e e O L 28

Propagateprocedure Lo e e e B R e - .
Putprocedure Lo o e e e e e e R T - .

R1000 compilationmode e e S e e e e e e L . 6
R1000 compilation mode, summary s o oy
RI000model o o vo e SR S U S 1)
R1000 object-module format e o, . P L8

R1000 targetkey e . .. T j o 8
R1000_Portable model T o
radix,assembler SR L, 36
recordlayout 31
record representation clause L L. e T C7 164

recordtypes e E AP IR L 74
recordso e e e e e [e ; 31
Register Display procedure o vt o i R }88,v9;:0',"9;5
Register Modify procedure N T 88’90
registers ‘) V ..

registers, conventions

Release procedure AN e e e e

relocatable object module

relocation

Remote_Directory library switch

Remote_Directoryswitch e U e e
Remote_Machine library switch

Remote_Machineswitch o e e e e e . .
Removeprocedure e e e e e e e e e e e e e w88
repetitiveassembly e e e e e e e e e ;;,,;4 wu. o 47
representationclauses L L0 L0 Lo oo e ST 163

RATIONAL s/ TS

'MC68020/05-2000 CDF

reserved words used in linkercommand files L . .. o0 o e e e e e e e 59
reserved words, linker L. Lo Lo oo o o e e e e 58
Reset_Defaultsprocedure e e e e e e e e e e e e 88
Resolvelinkercommand © i e e e e e e s e e e e e e e e e e 59, 65
;ééolving undefihedsymbols00y N SO 56
s return conventions, functions - e 75
ifétum,subp’rogramr. e e e e e e e e e e e e e e e s [P e e e e e e e e e e 69
KeVert procedure e 28
VR:un procedure e 88, 90, 99
runtimelibrary S S 5
runtime, access types e 74
runtime, allocators h e e e e e e e e e e e e e e e 80
- runtime, array types e e e e e e e e e e e e e e e e e e e 74
“Tuntime, collections e e e e e e e e e e e e e e e e e 78
"‘;untime, compiler interface L. oL oo e e e e 137
runtime, directory for object-codefiles L. e e e e e e e e e e 109
'i"untime, discriminated records of unconstrained types e e e e e e e e e e e 74
:’runtime, exceptionsraised oL oL L o e e e e e e e e e e e e e e e 77
’fu'ntime, F$Forksystemcall o oo L. e e e e e e e e e e e e e e e e 80
" runtime, functions returning scalarand accesstypes L. .. L. oo . o e e e 75
runtime, functions returning simple structures: oo ..o 75
_ runtime, functions returning unconstrained recordsorarrays 75
”'_—runtime,heap‘......‘...;....1..- 78
'runtime, invocation of exceptionprocessing - oL Lo L e e e e e e e e e 76
" runtime, organization . . . , , i e e e e e e e e e e 67
~ runtime, priority P e e e e e e e e e e - 81
runtifhe, programsections 0. . e e e e e e e e e e e e e e 68
runtime, record types T 74
| runtime, scalartypes e e e e e e e e e e e e 74
A»-:i?vrunfikme, tasking. e e e e e e e O 80
. runtime, timers e e e e e e e e e e e e e e e e e e e 82
* riintime, unchecked deallocation e 80
runtime, unconstrained array types e e e e e e e e e e e e e e e 75
;_-4,_Runﬁme_Support_For_lpc package specification L. Lo 80
scalartypes . . . L . .. L L. Lo e e e IR IR 74
scalar types, runtime furictions returning e e e e e e e e e e e 75

* Ai94 »g/1580 RATIONAL

scoping rules and local symbols

Segment linker command

Segment Type linker command :

Semanticize procedure
separatecodeanddata
SET (define temporary symbol) assembler directive
Set_Task_Nameprocedure
Set_Valueprocedure
Sever procedure

severingunits,
Show procedure

simple function call . .

simple procedure call

simple relocatable expressions

source code, assembly language

Source procedure . . .

source state

source statements .

source statements, fields .

source statements, format

stack frames

Stackprocedure
stack size, in pragma Main .

stack structure

standard linker command file

Standard package .

Start At linkercommand

Stop procedure .

storage management
storage-allocation directives
Storage_Errorexception
Storage_Size length clause
structure, frame

structure, stack .

subprogram
parameters for imported

subprogram call and return

RATIONAL s/15/8

it
‘
o e e .
------------ . - v}'.-
P) ;i.'
......
.........
.
-
< g
oAty Sas
i TeeY o b

B . 5 88
: R L E TR
. . 69
Qs AT
. o e N . ~‘”53,"57
e e e s s e e s e . o . 161
gL o
- . 3 3 . 59,66
; e,
. . 88
ny i L P! "~
.. -78
< ~ X Ea
S h e e e e e e e e e e . 77,7881
o " e As 0o S
. 78
fef
. 2 e or b o .
‘o TR - A
. 154

- -MC68020/0S-2000 CDF

SUbSYStEMS L o e e s e 9,13
' :"Suppre'ss linkercommand L L L e e e e e e e e e e e e e s 59
if:{‘Suppress Ség’ment linkercommand e e e e e e e e e e e e 65
%uppress_AlI Y- - 158
"qéuppréss_All_Checks SWItCR © . o o e e e e e e e e e e e e e e e e e 17
"'i::_;witcheé;cfoés-compiler e 16
Cswitches, FIP L ... L. L. . S e 17,91
P gwitches, HBFAEY . o) & 2 v e e e e e e e 15
#Switches.Associate e e e e e e sie e m e e e e s e e e e e e e e e e e e e e 16
4Switches.Create,, e e e e e e e e e e e e e e e e e e 15
*Bwitthes. Edit e 15
symbolresolution L L L L L L L o s e e e e e e e e e e e e e e e e e e e 38
s“symbols,assembler SN e e e e e e e e e e e e e e 36
~ symbols, definition directives' L. L L. Lo oo e e e 42
Tsymbols, inkmap oo e e e e e e e e e e e e e e e e e e e 57
symbols, linker v e 58
wsyntax, assembler . . L. L L L L L L L oL L e e e e e e e e e e e e e e e e e 118
syntax, assemblerand linker ., . ., N 111
“Bystempackage e e e 162
“Take History procedire . . . L. 1. .oo Ao 88
“'target‘d'ebugger limitations ~ R e 105
targetkey i e e LT 8
targetkey,inbannero u e e e e e e e e ... 14
Ctargetkey, RI000 i e e e e e e NPT P 8
“ target object-moduléformat , e e e e e e e e e 7
ttarget,executingon L oL 000 s e e e e B 86
' Target_Request procedure« o« v v v o v e e h e e e e e e e e e e e e e 88, 99
task~controlblocks L L i L o e o e 78
},Task_Display procedure L L L L L e e e e e e e e e e e e e e e e 88
:ytasking,m‘nt'inie e 80
Tasking_Errorexception i oo e e e e e e e e e e e e 78
tasks and Interprogram Communication{IPC) oo o oo 80
tasks, priority L L L Lo e e e e e e e e e 81
terminology, linker L L0 Lo 53
timers, TUNEIMe L. o e 82
Traceprocedureo e e e e e e e e e e e e e e e e 88
Trace_To_Fileprocedure oo Lo e e e e e 88

96 “8/15/89 -~ RATIONAL

. tracing in OS-2000

transfercommand L0
Transferring the ExecutableFiles
types,access o .. 0 e e e e e e e e e e e e

types,array 000 e e
types,record L L L Lo e e e e e e e e

types,scalar oL

unaryoperators 0. .

unbased numeric literals . .

unchecked type conversion
unconstrained arraytypeso L.
uninitialized block storage .

universalhost,

Use Library linker command . .

userscenario

user-defined permanent symbols, assembler . ' .
user-deﬁnedsymbols,linker.......Y...........t......

user-defined temporary symbols, assembler .

worlds
worlds, Mc68020_0s2000,using
worlds,model

Write Fileprocedure

Xecute procedure .

RATIONAL -s/15789

unchecked deallocation e e e e e e e e e . Y.

. user-defined linkercommandfile

world, Mc68020_0s2000, assemblingin. e e h e e e e s
world, Mc68020_Os2000, compilingin 0.

unknown location in theruntimesystem

S

s i .
B o O ioun 51

164
P ‘R wd

F

e

v,
5 &
bt

e

P

s

P

RATIONAL

READER’S COMMENTS

Note: This form is for documentation comments only. You also'can submit problem reports and
comments electronically by using the SIMS-problem-reporting system. If you use SIMS to sub-
mit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? ‘Please cornment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. if you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1year 3 years or more
Name (optional) L L Date -
Company :

Address . . S - ;
City - State ZIP Code _-
Please return this form to: Publications Department

Rational '

3320 Scott Boulevard

Santa Clara, CA 95054-3197

Rational MéSBOQO/OS'-ZDOO Cross-Devslopment Facility, 8027 A

o
VR
P

S — T T, S E

R T

GO S A R e L =R e e g OEPABIRT. B 17 VUV . e

B e w ANESB s o et stmens 0 smentes e Jo—
¥ R ————— p— . . -
I i AN T e s Y ey A e eSS Ay vt v - -
Arrens - ppr e BT I .

SR ME

Ch e —— o T

e et

“ FEP—— - . o —
e e g i o R P s . - o
U " - S . g PN e

-
(SO
o R i
R — b ' g v
' T
.
- N
%f‘;}-’ . » .
e st P—
e s o - - .-
DR bl e € PO

R e = s b et e - -
N T N G o Jo— - T
. 2 e et
3
o oy gptSs
- F e

4

RATIONAL

READER’S COMMENTS

Note: This form is for documentation comments only. You also can submit problem reports and
comments electronically by using the SIMS problem-reporting system. If you use SIMS to sub-
mit documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement. :

It you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
6 months or less 1 year 3 years or more

How much experience have you had with the Ada programming language?

6 months or less 1 year 3 years or mare
Name (optional) Date
Company
Address .

City State ‘ ZIP Code
Please return this form to: Publications Department
- Ratlanal

3320 Scott Boulevard

Santa Clara, CA 95054-3197
Rational MC68020/0S-2000 Cross-Development Facility, 8027A

