Rational Networking—TCP/IP

Reference Manual

Transport Layer (TRL)

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8003A-02 (803-002331)
Rev. 1.0, November 1985

Rev. 2.0, July 1986
Rev. 3.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

VAX is a trademark of Digital Equipment Corporation.

Rational
1501 Salado Drive
Mountain View, California 94043

TRLAii 7/1/87 RATIONAL

Contents

How to Use This Book
Key Concepts

Host Names e

Connection and Socket Identifiers
Active and Passive Connects
Connection Ownership
Pretransmission Buffering
package Byte_Defs
subtype Byte
subtype Byte_String .
function “Mod”
function “Rem”
function “=
function “>7, “<?, “>=", “<="
function “+>
function “-> Coe
function “** Co.
function “/>
function “&”>
end Byte_Defs

package Host-Id-Io }. :

function Get

function Get

function Image
procedure Put
procedure Put

RATIONAL 71/sr

...... coevil

BN BN e

N

.............

N

...........

...........

OO,

TRLAii

end Host_Id.Io

package Network

procedure Close-All Coe
procedure Show

procedure Show_Host
procedure Show_Hosts
procedure Time

end Network

package Network-Product

function Is_Installed
exception Is_Not_Installed

end Network-Product
procedure Tcp-Ip-Boot

procedure Tcp_Ip_Boot

package Transport

TRL-iv

procedure Close
procedure Close_All
procedure Connect
type Connection-Id
type Connection.Id_Iterator .
procedure Disconnect
function Done
function Get_Owner

function Hash
procedureInit
function Is_Connected
function Is_Connecting_Active
function Is_Connecting—Passive
function Is_.Open
function Local Host
function Local_Socket . . .
function Network
type Network_Name_Iterator
procedure Next
constant Null_Connection_Id

C e e e S £
............... . 20

.21

.............. .. 22

...... .. 23

. . 25
. 26

................ 29
................ 30
C e e e e e e . 31
............... . 32
............... . 34
............... . 35
.............. . . 36
.............. .. 37
................ 39
................ 40
........ Y. 3 |

..... . Y1
e e e e e 43
.............. . 44
............... . 45
................ 46
............... . 47
............... . 48
.........49
e e e e . . 50
........ B 3 |

e RATIONAL

procedure Open
procedure Receive
function Remote_Host
function Remote_Socket
procedure Set_Owner
procedure Transmit
function Valuee

end Transport

package Transport_Defs
function Hash
type Host_-Id
function Image
type Network_Name
function Normalize
constant Null_Host_Id
constant Null_Network_Name . .
constant Null_Socket_Id
type Socket_Id
type Status.Code

end Transport.Defs

package Transport-Name
function Done
function Host_Id_To_Host . . .
type Host_Iterator
function Host_To_Host_Id . . .

function Host_To_Machine_Type
function Host_To_Network_Name

procedure Init
function Local_Host_Name . . .
procedure Next
exception Undefined
function Value

end Transport-Name

RATIONAL 7er

TRL-v

package Transport-Route 89

procedure Define 91
procedure Load 94
procedure Show 95
procedure Undefine 97

end Transport-Route
Index 99

TRL-vi 7/1/87 RATIONAL

How to Use This Book

The Transport Layer (TRL) book of the Rational Networking—TCP/IP Reference

Manual describes the Ada® package specifications for the facilities provided by
the Rational Networking—TCP/IP implementation of the Transport protocol. This
book is intended for users who are familiar with the Rational Environment™ and
with Ada programming.

Organization of the Networking Manual

The Rational Networking—TCP/IP Reference Manual (Networking Manual for brev-
ity) includes the following volumes:

1 Telnet (TEL)
File Transfer Protocol (FTP)
2 Transport Layer (TRL)

Remote Procedure Call (RPC)

Each volume of the Networking Manual contains two books separated by large col-
ored tabs. Each book contains information on particular features or areas of ap-
plication in networking. The abbreviation for the name of each book (for example,
TEL for Telnet) appears on the binder cover and spine, and this abbreviation is used
in page numbers and cross-references. The books grouped into a given volume are
logically related.

The Networking Manual provides reference information organized to efficiently an-
swer specific questions about the Rational Networking product. Products other
than the Networking product are documented in individual manuals (for example,
the Rational Environment Reference Manual or the Rational Target Build Utslity
Reference Manual).

Volume 1

Volume 1 documents the commands used in the Rational Networking product. This
volume contains the following two books:

RATIONAL 7/1/er TRL-vii

e Telnet: The Telnet (TEL) book contains the commands used to establish and
;erminate connections to a remote host through a terminal logged into a local
ost.

¢ File Transfer Protocol: The File Transfer Protocol (FTP) book contains the
commands used to transfer text and binary data files between two hosts. Pack-
ages File_Transfer, Ftp_Product, and Transfer_Generic can be used to develop
programmatic interfaces for FTP.

Volume 1 also contains a Master Index that combines the index information from
all four books of the Networking Manual.

Volume 2

Volume 2 documents the packages provided to develop new programmatic interfaces.
This volume contains the following two books:

¢ Transport Layer: The Transport Layer (TRL) book describes the concepts and
interfaces used to build networking tools for specific applications.

* Remote Procedure Call: The Remote Procedure Call (RPC) book describes
the concepts and interfaces used to write clients and servers for remote procedure
calls, in which an application running on one host can make procedure calls to
applications running on different hosts.

Volume 2 also contains a Master Index that combines the index information from
all four books of the Networking Manual.

Book Organisation

Each book begins with a colored tab on which the name of the book appears. Each
book typically contains the following sections:

* Key Concepts: This section describes the key concepts that pertain to the
networking facilities documented in the book. The section is located behind its
own tab following the How to Use This Book section.

¢ Unit sections: Each of the commands, tools, and so on has a declaration within
an Ada compilation unit (typically a package). For each unit, there is a section
that contains reference entries for the declarations within that unit. Each section
is preceded by a tab.

The sections for units are alphabetized by the simple names of the units. For
example, the section for package !Tools.Network.Revn.Units.Network_Product is
alphabetized under Network_Product.

For many units, introductory material and/or examples specific to the unit appear
after the section tabs.

Within the section of a given unit, the reference entries describing the unit’s dec-
larations are organized alphabetically after the section introduction. Appearing
at the top of each page of a reference entry are the simple name of the name of
the given declaration and the fully qualified pathname of the enclosing unit.

¢ Index: Preceded by a tab, the Index appears as the last section of each book.
It contains entries for each unit or declaration, along with additional topical

TRL-viii e RATIONAL

references. Each book index covers only the material documented in that par-
ticular book. Each volume contains a Master Index that provides entries for the
information documented in all the books within the Networking Manual.

Italic page numbers indicate the page on which the primary reference entry for a
declaration appears; nonitalic page numbers indicate key concepts, defined terms,
cross-references, and exceptions raised.

Suggestions for Finding Information

The following suggestions can help you find various kinds of information in the
documentation for Rational’s products.

Learning about New Facilities

If you are a novice user starting to use the Rational Environment, consult the
Rational Environment User’s Guide.

If you are familiar with the Rational Environment but are interested in learning
about certain networking commands, for example, you might start by reading the
Key Concepts for the specific book, which describes important concepts and gives
helpful examples.

It can also be useful to glance through the introductions provided for some of the
units in the book. These introductions, located immediately after the tabs for the
units, often contain helpful examples.

Finding Information on a Specific Item

If you know the name of the item and the book in which it is documented, consult
either the table of contents or the index for that book. You can also turn through
the pages of the book using the names and pathnames of the reference entries to
locate the entry that you want. Remember that the reference entries for a unit are
organized alphabetically by simple name within a tabbed section.

If you know the simple name of the entry but do not know the book in which it
is documented, look in the Master Index to find the book abbreviation and page
number.

If you cannot find an item in the Master Index, the item either is not documented
or is documented in manuals for a product other than the Rational Networking—
TCP/IP product (for example, the Rational Environment or the Rational Target
Build Utility). If you know the pathname, consult the World ! section of the
Reference Summary in Volume 1 of the Rational Environment Reference Manual to
determine whether the item is documented and in which manual.

RATIONAL 7/1/er TRL-ix

Using the Index

The index of each book contains entries for each unit and its declarations, organized
alphabetically by simple name. When using the index to find a specific item, consult
the italic page number for the primary reference to that item. Nonitalic page num-
bers indicate key concepts, defined terms, cross-references, and exceptions raised.

Viewing Specifications On-Line

If you know the pathname of a declaration and want to see its specification in a win-
dow of the Rational Environment, provide its pathname to the !Commands.Com-
mon.Definition procedure—for example, Definition ("!Tools.Ftp.Revn.Units-
.Commands .Ftp");. If you know the simple name of the unit in which the dec-
laration appears, in most cases you can use searchlist naming as a quick way of
viewing the unit—for example, Definition ("\Ftp"};.

Using On-Line Help

Most of the information contained in the reference entries for each unit is available
through the on-line help facilities of the Rational Environment. Press the
key or consult the Rational Environment User’s Guide or the Rational Environment
Reference Manual, EST, Help, for more information on using this on-line help facility.

Cross-Reference Conventions
The following conventions are used in cross-references to information:

e Specific page/book: For references to a specific place in a book, the book
abbreviation is followed by the page number in the book (for example, RPC-23).
If the book abbreviation is omitted, the current book is implied (for example, the
page numbers in the table of contents for a book do not include the book prefix).

¢ Declaration in same unit: References to the documentation for a declaration
in the same unit are indicated by the simple name of the desired declaration.
For example, within the reference entry for the Ftp.Connect procedure, a ref-
erence {o the Ftp.Disconnect procedure is “procedure Disconnect.” Note that if
the unit contains nested packages, references to nested declarations use qualified
pathnames.

¢ Declaration in different unit, same book: References to the documenta-
tion for a declaration in another unit are indicated by the qualified pathname
of the desired declaration. For example, within the reference entry for the
Ftp.Connect procedure, a reference to the Ftp_Profile.Auto_Login function is
“function Ftp_Profile.Auto_Login.”

e Declaration in different book: References to the documentation for a decla-
ration in another book are indicated by the addition of the abbreviation for that
book. For example, within the reference entry for the Ftp.Connect procedure, a
reference to the Transport.Connect procedure in the Transport Layer book would
be “TRL, procedure Transport.Connect.”

TRL-x e RATIONAL

Feedback to Rational: Reader’s Comments Form

Rational wants to make its documentation as useful and error-free as possible.
Please provide us with feedback. The last page of each book contains a Reader’s
Comments form that you can use to send us comments or to report errors. You can
also submit problem reports and make suggestions electronically by using the SIMS
problem-reporting system. I you use SIMS to submit documentation comments,
please indicate the manual name, book name, and page number.

RATIONAL 7/1/er TRLxi

RATIONAL

Key Concepts

The Rational Networking—TCP/IP product forms an intersystem interface for host/
target development. Networking facilitates:

* Downloading Ada source code and target object code
® Debugging interactively

Controlling target execution

Updating target state

Transport (TCP/IP Ethernet) provides for byte-stream data transfer when it sets
up connections serving as reliable data pipelines between two Rational R1000s or a
Rational R1000 and another system. Transport does the work of transferring the
data through these connections.

This book is designed for advanced users who may want to build other networking
tools for their own applications. It discusses the basic concepts of the Rational
implementation of the TCP/IP data transfer protocol. These concepts include:

¢ Host, connection, and socket identifiers
o Active and passive data connections

Host Names

Each host machine is identified by both a string name and an address. Host names
and addresses are maintained in the database provided by package Transport_Name.
Transport.Name provides mappings between the TCP/IP network addresses and the
more familiar host string names.

Currently, the database for package Transport_Name is a text file in !Machine-
.Transport_Name_Map. Each line of the file contains the network name, the host
identifier, the host name, and the machine type. Sample entries are:

TCP/IP 839.4.27.1 Clem Rational
TCP/IP 83.4.8.43 Logo VMS

To change the database, change the entry in this file using the Rational Editor,
!Commands.Library.Copy, !Commands.Archive.Restore, or FTP.

RATIONAL 716 TRL-1

Key Concepts

Connection and Socket Identifiers

A data connection is the first item built by the Transport Layer for interaction
between computers. A connection is a bidirectional data pipeline set up between a
pair of data ports, called sockets, one on each machine. The connection “ties up”
the sockets only while the connection is being established. After the connection is
made, the sockets are released so additional programs can connect on them.

To establish a connection, a program on machine A passively waits on a defined
socket. A program on machine B is situated on an arbitrary socket and connects
to the program on the waiting socket of machine A.

The Connection_Id uniquely identifies the connection so the higher-level tools can
access it.

Active and Passive Connects

A connection is established by a passive connect, initiated by one machine, being
followed by an active connect from the other machine to the same Socket_Id. The
active and passive connects represent two halves that join together as a connection.
Active and passive connects differ in that the passive connect is made first and the
active connect is made only to an existing program waiting passively. Once the
connection is completed, it is no longer considered active or passive, and either side
can transmit and receive data in either direction. Either machine can disconnect a
transport connection.

A general state diagram for the Transport Layer is shown in Figure 1-1.

Connection Ownership

A job terminates when all the tasks elaborated by the job terminate. Thus, a job can
be unlimited in size. While a connection is being used by a job, the connection and
all its resources are considered to be “owned” by that job. Upon job termination,
the connection and its associated resources are released. If a job fails to terminate,
the connection resources are tied up until the user enters a !Commands.Job.Kill
command to terminate the job.

Pretransmission Buffering

After a request is made for data transfer, the request will return. The data may
be transmitted immediately or, if there is a problem on the network (noise on the
line, receiving computer accepting data too slowly, and so on), stored in a buffer
for a short time until the problem goes away and transmission completes. The data
size may exceed the buffer size, so the buffered transmission may have to proceed
as several smaller transfers.

TRL-2 \ 7/1/87 BA\TIONAL

Key Concepts

Machine A

Null

Open

(Network name)

Close

Machine B

Null

Close

Open

(Network name)

(Socket_ld=X)

Passive Connect

(Connection_Id)

(Socket_Id)

Opened Opened

7 Y J ¥
Active Connect
(Connection_ld) Disconnect Disconnect

(Host_id=B)
(Socket_ld=X)

v Y

Connected

RATIONAL

Figure 1-1. Transport Layer State Diagram

7/1/87

TRL-3

RATIONAL

package !Tools.Networking.Byte_Defs

package Byte_Defs

subtype Byte 1s System.Byte;

subtype Byte_String is System.Byte_String;

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function
function

function

Y .

Byte;
: Byte) return Byte renames System."Mod";
Byte;
Byte) return Byte renames System."Rem";
Byte;
Byte) return Boolean renames System.">";

Byte_String;

: Byte_String) return Boolean renames System.">";

: Byte;

: Byte) return Boolean renames System."=";
: Byte_String;

"n_mn

: Byte_String) return Boolean renames System."=";

: Byte;
: Byte) return Boolean renames System.">=";
: Byte_String;

Y : Byte_String) return Boolean renames System.">=";

: Byte;

: Byte) return Boolean renames System."<";

: Byte_String;

: Byte_String) return Boolean renames System."<";

: Byte;

Y : Byte) return Byte renames System."/";

"Mod" (X :
Y
"Rem" (X :
'l>ll (x :
Y :
'l>" (X :
Y
'Q=Il (X
Y
I.=" (x
Y
">-" (x
Y
'I> ” (x
"<N (X
Y
N<l| (x
Y
Il/ll (X
‘l*ll (x
Y
"_l! (X :
Y
l|<=" (x :
Y
Il<=ll (x :
Y
ll+ll (x
Y
IISN (X :
Y
l|8" (X
Y
l!S" (x
Y

1 Byte;
: Byte) return Byte renames System."x";

Byte;

: Byte) return Byte renames System. ;

Byte;

: Byte) return Boolean renames System.'"<=";

Byte_String;

: Byte_String) return Boolean renames System."<=";

: Byte;
: Byte) return Byte renames System."+";

Byte_String;

: Byte_String) return Byte_String renames System."&";
: Byte;

: Byte_String) return Byte_String renames System."t";
: Byte_String;

: Byte) return Byte_String renames System."C";

RATIONAL 71/er TRL-5

package !Tools.Networking.Byte_Defs

function "&" (X : Byte;
Y : Byte) return Byte_String renames System."t";

Description

Renames the System.Byte, the System.Byte_String, and the standard operations
defined on these types.

The purpose of this package is to simplify porting applications software written on
top of the Transport Layer to other (non-Rational) environments, where these types
might be declared somewhere other than in package System. Networking software
uses these definitions, not those in System. When porting, you need to modify only
package Byte_Defs to make use of an alternative declaration.

subtype Byte is System.Byte;

Specifies an eight-bit byte.

In portable Ada, this is declared as:
Type Byte is range @ .. 255;

subtype Byte_String is System.Byte_String;
Specifies an unconstrained array of bytes.

In portable Ada, this is declared as:

Type Byte_String is array {Integer range <>) of Byte;
pragma Pack (Byte_String);

function "Mod” (X : Byte;
Y : Byte) return Byte renames System."Mod";

Specifies the standard modulus operator.

function "Rem" (X : Byte;
Y : Byte) return Byte renames System."Rem”;

Specifies the standard remainder operator.

TRL-6 7/1/87 EAT'ONAL

package !Tools.Networking.Byte_Deis

function "=" (X : Byte;
Y : Byte) return Boolean renames System."=";
function "=" (X : Byte_String;

Y : Byte_String) return Boolean renames System."=";

Specifies the standard equality operators.

function ">" (X : Byte;

Y : Byte) return Boolean renames System.">";
function ">" (X : Byte_String;

Y : Byte_String) return Boolean renames System.">";

function "<" (X : Byte;

Y : Byte) return Boolean renames System."<";
function "<" (X : Byte_String;

Y : Byte_String) return Boolean renames System."<";

function ">=" (X : Byte;

Y : Byte) return Boolean renames System.">=";
function ">=" (X : Byte_String;

Y : Byte_String) return Boolean renames System.">=";

function "<=" (X : Byte;

Y : Byte) return Boolean renames System."<=";
function "<=" (X : Byte_String;

Y : Byte_String) return Boolean renames System."<=";

Specifies the standard comparison operators.

function "+" (X : Byte;
Y : Byte) return Byte renames System."+";

Specifies the standard addition operator.

function "-" (X : Byte;
Y : Byte) return Byte renames System."-";

Specifies the standard subtraction operator.

function "*" (X : Byte;
Y : Byte) return Byte renames System."*";

Specifies the standard multiplication operator.

BA\-HONAL 7/1/87 TRL-7

package !Tools.Networking.Byte_Defs

function "/" (X :
Y

Byte;

Byte) return Byte renames System."/";

Specifies the standard division operator.

function
function
function

function

.
.
g
.

(X

Y
(X
Y

: Byte_String;
Y
{x :
Y
(X :

Byte_String}
Byte;

Byte_String)
Byte_String;

: Byte) return
: Byte;
: Byte) return

Specifies the standard catenation

return Byte_String renames System."t";

return Byte_String renames System."8";

Byte_String renames System."&";

Byte_String renames System."&";

operators.

TRL-8

e RATIONAL

package Host_Id_Io

Package Host_Id_Io provides commands that allow you to convert a Host_Id to a
displayable string. The displayable string can be written either to Current_Output
or to a specified file. The displayable output can be read from Current_Input or
from a specified file and converted back into a Host_Id. For example, Host_Id

(12,11,32,57) is converted to 12.11.32.57.

RATIONAL 71/er TRL-9

function Get
package !Tools.Networking.Host_Id_Io

function Get

function Get return Transport_Defs.Host_ld;

Description
Reads a Host_Id from the Current_Input file.
The file should contain a Host_Id in symbolic form.

The Host_Id is returned.

Parameters

return Transport_Defs.Host_!d;

Returns Transport_Defs.Host_Id.

Example

The following example uses the Get function to read a Host_Id value from the
Current_Input file. The value is assigned to Item. The Put procedure then writes
the Host_Id to the Current_Output file.

with Host_Id_lo;
with Text_lo;
with Transport_Defs;
procedure Convert_Host_lds 1is
begin
declare
Item : Transport_Defs.Host_ld := Host_ld_lo.Get;
begin
Text_lo.New_Line;
Host_ld_lo.Put (ltem);
end;
Text_lo.New_Line;
end Convert_Host_lds;

TRL-10 7/1/87 BA\-HONAL

function Get
package !Tools.Networking. Host_Id_Io

function Get

function Get (File : Text_lo.File_Type)} return Transport_Defs.Host_ld;

Description
Reads a Host_Id from the Current_Input file.
The file should contain a Host_Id in symbolic form.

The Host.Id is returned.

Parameters

File : Text_lo.File_Type;
Specifies the handle for a file.

return Transport_Defs.Host_ld;

Returns Transport_Defs.Host_Id.

Example

The following example uses the Get function to read a Host_Id value from the input
file specified by the file handle. The file is opened, the Convert_Host_Ids procedure
writes the Host_Id to the Current_Output file, and then the file is closed.

with Host_ld_lo;

with Text_lo;

with Transport_Defs;

procedure Convert_Host_lds 1is
Host_Id_Handle : Text_lo.File_Type;

Host_Id_File_Name : Constant_String := !Users.Wjh.Host_Id_File;
begin
Text_to.Open (Host_ld_Handle,
in,

Host_id_File_Name);
Host_!d_lo.Put (Host_ld_lo.Get (Host_ld_Handle));
Text_lo.Close(Host_ld_Handle};
end Convert_Host_lds;

R)ATIONAL 7/1/87 TRL-11

function Image
package !Tools.Networking.Host_Id_Io

function Image

function Image (ltem : Transport_Defs.Host_ld) return String;

Description
Converts the item into a human-readable string.

The format of the returned string is: #s.##. .42

Parameters

Item : Transport_Defs.Host_ld;
Specifies the Host_Id to be converted to a string.

return String;

Returns the specified Host_Id as a string.

Example

The following program uses the Image function to convert the byte-string value of
Clem into a human-readable form. The human-readable form is then assigned to
Item. The !To.Text_Io.Put_Line procedure writes Item to the Current_Output file.

with Host_ld_lo;
with Text_lo;
with Transport_Defs;
procedure Convert_Host_lds 1is
Clem : Transport_Defs.Host_Id := (@,14,31,86);

begin
declare
ltem : Transport_Defs.Host_Id := Host_ld_lo.Image {Clem);
begin
Text_lo.Put_Line (Iltem);
end;

Text_lo.New_Line;
end Convert_Host_lds;

TRL-12 1ysr RATIONAL

: procedure Put
package !Tools.Networking. Host_.Id_Io

procedure Put

procedure Put (ltem : Transport_Defs.Host_lId);

Description
Displays a symbolic representation of the specified Host_Id.

This procedure writes to the Current_Output file (usually an output window).

-Parameters

ltem : Transport_Defs.Host_Id;
Specifies the Host_Id to be written.

Example

The following program assigns Clem a byte-string value. The Put procedure writes
the string to the Current_Output file.

with Host_Ild_lo;
with Text_lo;
with Transport_Defs;
procedure Convert_Host_lds 1is
Clem : Transport_Defs.Host_Id := (0,14,31,86);
begin
Text_lo.New_Line;
Host_ld_lo.Put (Clem};
Text_lo.New_Line;
end Convert_Host_lds;

R)ATIONAL 7/1/87 TRL-13

procedure Put
package !Tools.Networking.Host_Id_Io

procedure Put

procedure Put (File : Text_lo.File_Type;
Item : Transport_Defs.Host_ld);

Description
Displays a symbolic representation of the specified Host_Id.

This procedure writes the value of Item to the specified output file.

Parameters

File : Text_lo.File_Type;
Specifies the handle for a file to which the Host..Id is written.

Item : Transport_Defs.Host_ld;
Specifies the Host_Id to be written.

Example

The following program assigns Clem a byte-string value. The Put procedure writes
the string to the output file that was opened for output.

with Host_Ild_lo;

with Text_lo;

with Transport_Defs;

procedure Convert_Host_Ids 1is
Clem : Transport_Defs.Host_Id := (9,14,31,86);
Host_ld_Handle : Text_lo.File_Type;

Host_Id_File_Name : Constant_String := !Users.WUjh.Host_Id_File;
begin
Text_lo.Open (Host_ld_Handle,
Out,

Host_Id_File_Name};
Text_lo.Put (Host_ld_lo.Image{Clem});
Text_lo.Close(Host_ld_Handle};
end Convert_Host_lds;

end Host_Id_Io;

TRL-14 e RATIONAL

package Network

Package Network provides interactive commands entered through Command win-
dows and allows user queries about the transport connections and hosts.

RATIONAL 7/1/er TRL-15

procedure Close_All
package !Commands.Network

procedure Close_All

procedure Close_All;

Description
Closes all open transport connections.

This procedure calls the Transport.Close procedure on all currently open transport
connections. A listing of the connections closed is written into the Current_Output
file (using package !Io.Text_Io). For each connection, various key items of informa-
tion (obtained from package Transport) are displayed.

This is a fairly dangerous operation. If other people on your machine are using
transport connections, their work will be rudely interrupted by calling this proce-
dure. Use it with care.

References
procedure Transport.Close

type Transport.Connection_Id_Iterator

TRL-16 e RATIONAL

procedure Show
package 'Commands.Network

procedure Show

procedure Show;

Description
Shows all open transport connections.
This procedure displays a listing of all currently open transport connections to the

Current_Output file (using package !To.Text_Io). For each connection, various key
items of information (obtained from package Transport) are displayed.

References

type Transport.Connection_Id_Iterator

RATIONAL 7/1/er TRL-17

procedure Show_Host
package !Commands.Network

procedure Show_Host

procedure Show_Host (Host_Name : String := "");

Description
Shows the address of the specified host.

This procedure selects the host specified and displays various key items of informa-
tion &btained from package Transport_Name).

Parameters

"

Host_Name : String := "";

Specifies the name of a host in the network. The default, 7, indicates that no host
is defined.

Example

In the following two examples, the first shows the output from a call to the Show-
—Host procedure when the default is used. The second example shows the output
from a call to the Show_Host procedure when a host name is specified.

with Network;
begin

Show_Host;
end;

1s undefined (Transport_Name.Undefined).

with Network;

begin

Show_Host ("logo"};
end;

logo TCP/IP 89.64.1.83

References

type Transport_Name.Host_Iterator

TRL-18 e RATIONAL

procedure Show_Hosts
package 'Commands.Network

procedure Show_Hosts

procedure Show_Hosts;

Description

Shows the names and addresses of all known hosts.

This procedue iterates over all hosts in the database managed by package Transport-
-Name—that is, all hosts whose names are known by this system. For each host,
various key items of information (obtained from package Transport_Name) are dis-
played.

By default, the display is written to the current output window.

References

type Transport_Name.Host_Iterator

EAT'ONAL 7/1/87 TRL-19

procedure Time
package !Commands.Network

procedure Time

procedure Time (From_Host : in String := "");

Description
Displays the time of day, as reported by the given host.
This procedure initiates a connection to the time server on the given host, receives

the time of day, converts it to local time, and writes it into the Current_Output file
(using package !Io.Text_Io).

Parameters

"wn

From_Host : 1in String := ;

Specifies the name of a host in the network. The default, “”, indicates that no host
is defined.

Errors

If the default, “», is used (host is not known), the network is not up, or no time
server is running on the host, various combinations of error messages and exceptions
occur.

References
package Transport
package Transport_Name

end Network;

TRL-20 e RATIONAL

package Network_Product

Package Network_Product provides a way to check whether the Transport Layer
utilities have been installed on your machine.

RAT'ONAL 7/1/87 TRL-21

function Is_Installed
package !Tools.Networking.Network_Product

function Is_Installed

function Is_lnstalled return Boolean;

Description

Returns true if the Transport Layer utilities have been installed on your machine.

TRL-22 e RATIONAL

