Rational Environment
Basic Operations

Rational Terminal

Copyright © 1985, 1986, 1987 by Rational

Document Control Number: 8001A-03 (803-002318)

Rev.
Rev.
Rev.
Rev.
Rev.

4.0, November 1985
4.1, December 1985
4.2, March 1986

4.3, July 1986

5.0, July 1987 (Delta)

This document subject to change without notice.

Note the Reader’s Comments form on the last page of this book, which requests
the user’s evaluation to assist Rational in preparing future documentation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Rational and R1000 are registered trademarks and Rational Environment and Ra-
tional Subsystems are trademarks of Rational.

ii

Rational
1501 Salado Drive
Mountain View, California 94043

e RATIONAL

Contents

Chapter 1. LoggingInand Qut
LoggingIn e e e e e e s
LoggingOut o0
Saving Changeso o000

Chapter 2. GettingHelp
Getting Helpon Helpo
Getting Help on a Specificltem
Getting Helpon Keys
Displaying Ada Specificationso 0oL
Displaying the Help Window
Getting Helpon Errorso 00000

Chapter 8. Executing Commands
Creating and Executing a Command Window Program
Expanding a Command Window
Shrinking a Command Window
Getting Command Completion
Moving to the Next Prompt or Underline
Moving to the Previous Prompt or Underline
Turning Offa Prompt
Reexecuting the Same Command
Changing and Reexecuting a Command
Entering a New Command in the Same Command Window
Clearing a Command Window of Unneeded Text
Going Back to Previous Commands
Getting the Parameters of a Command BoundtoaKey

RATIONAL 1/1/er

Chapter 4. Managing Windows 9

Finding a Window Using the Window Dxrectory e e e e e e e e 9
Deleting Windows from the Window Directory 9
Moving between Windows oo .9
Expandinga Windowo . 10
Shrinking a Window oL 0oL 10
Expanding Current Window to Include Next Frame 10
Expanding Current Window to Include Previous Frame 10
Transposing Windows 10
Realigning the Windows on the Screen 11
Removinga Windowo 11
.Locking a Window on the Screen I B |
Unlocking a Window on the Screen 12
Scrolling the Imageo L .12
Chapter 5. Traversing the Environment 13
Viewing a Library oo o000 .. 13
Viewing an Object in a lerary e e e e 13
Viewing a Library’s Parent 13
Viewing Your Home Library 13
Viewing the Specification of an Environment Package 14
Chapter 6. Using General Editing Operations15
Selecting an Arbitrary Regionof Text 15
Moving Selected Text C e e e 15
Copying Selected Texto 15
Searchingfora String C e e e e 16
Searching and Replacinga Stringo L. 16
Searching and Replacing All Occurrencesofa String 17
Deleting Texto 17
Joining Lineso oL 17
Transposing Texto 18
Changing the Caseof Text 19

iv 1/1/87 PATIONAL

Chapter 7. Writing Text Files 21
CreatingaFile 21
Viewinga Fileo o000 21
Editing an Existing Fileo o000 21
Savinga Fileo 22
Setting Tabs Lo Lo 22
Setting Overwrite ModeOn 22
Setting Insert ModeOno L Lo 23
Setting Wordwrap for Text 23
Changing the Wordwrap Column 23
Turning Wordwrap Off oL 23

Chapter 8. Writing Ada Programs 25
Creating an Ada Package Specification 25
Creating an Ada Package Body 26
Creating an Ada Subprogram 27
Creatinga Subunit o000 oL 27
Importing Unitso 27
Adding a Statement, Declaration, or Comment 28

. Changing a Statement, Declaration, or Comment 29
Deleting a Statement, Declaration, or Comment 30
Changing the Name or Kind ofan Ada Unit 31
Adding a Subprogramtoa Package 32
Making a Package Body or Subprogram Body into a Subunit 34
Making a Subunit In-line in the Parent 34
Demoting a Unit and Its Dependents 34
Making a Library Program Executable 34
Executing a Library Program 35
Saving the Changes of Incomplete Units 35
Setting Overwrite ModeOn 35
Setting Insert Mode On 35

Chapter 9. Browsing Ada Programs 37
Getting the Definition or Use of an Identifier 37
Viewing the Specification of an Environment Package 37
Viewing a Unit’s Specification fromIts Body 37
Viewing a Unit’s Body from Its Specification 38
Viewing a Unit’s Parent 38
Showing the Using Occurrences of a Defined Ada Name 38

RATIONAL 7y/er v

Chapter 10. Debugging 39

Starting the Debugger00 o 0. 39
Stopping the Debugger o000 39
Displaying the Program Being Debugged 39
Displaying the Value of a Program Variable 39
Displaying the Call Stack 40
Displaying Source for a Call Stack Frame 40
Displaying Parameters for a Call Stack Frame 40
Stepping Through the Program 40
Executing the Programo 000 L 41
Setting Up Exception Handling e e e 41
Setting Breakpoints oL oo 41
Showing Breakpoints oo o000 0L 41
Removing Breakpointso 0oL 42
Modifying a Program Variable 42
Returning to the Point of Program Suspension 42
Displaying the Debugger Window 42
Chapter 11. Managing Libraries 43
Controlling the Library Display 43
Creating Libraries00 44
Deleting Objects in a Library e e e 44
Undeleting Objects or Previous Versions in a Library 45
Copying Objects in a Library 45
Moving Objectsina Library 46
Renaming Objectsina Library 46
Printing Objects Contained in a Library 47
Chapter 12, Managing Links 49
Listing Links—Simple Method 49
Adding Links—Simple Method oo 49
Getting the Pathname for an Environment Package 49
Editing Links fora World 50
Controlling the Link Display 50
Insertinga NewLink 50
DeletingaLinko 0oL 51
Viewing the SourceofaLink 51
Exiting from the Link Display 51
Addinga Setof Linkso . 51

vi 7/1/87 PATIONAL

ReplacingaLinko 51

Chapter 13. Managing Session Switches 53
Editing Session Switcheso 53
Controlling the Session Switch Display 53
Modifying Session Switch Values 54
Getting Help on Session Switches 55
Saving Session Switches o000 00000 55
Exiting from the Session Switch Display55

Chapter 14. Managing Searchlists 57
Editing the Searchlist for a Session 57
Adding a Component to a Searchlist 57
Deleting a Component from a Searchlist 57
Replacing One Component with Another 58
Viewing the Library Named by a Searchlist Entry 58
Exiting from the Searchlist Display 58

Chapter 15. ManagingJobs 59
Disconnecting fromaJobo 59
ReconnectingtoaJobo 59
Killing the Current Job or the Last Job Created 59
Killing Any Jobo 60

Chapter 16. Customizing Your Workspace 61
Building Macroso 61
Defining Your Own Login Procedure 62
Rebinding Keys 62

Chapter 17. Using CMVC 63
Creating a Subsystem 63
Adding, Changing, or Deleting Ada Unitsina View 63
Making Ada Units Controlled 63
Makinga Subpatho o000 64
Checking Out a Unit for Changes 64
Checking In a Unit after Changes 64
Making a Frogzen Release 65
AcceptingChangeso 65
Getting Informationo 66

EATIONAL 7/1/87 vii

Chapter 18. Networking 67

Logging Into Another System with Telnet 67
Interrupting a Telnet Session 67
Resuming a Telnet Session 68
Terminating a Telnet Session 68
Copying a Single Object or Library onto Another R1000 69
Copying Objects or Libraries from Another R1000 70
Copying Objects onto a Non-R1000 System 71
Copying Objects from a Non-R1000 System 71

viii 7/1/87 QATIONAL

Preface

This Rational Environment Basic Operations manual describes, with simple step-
by-step procedures, how to perform various common operations in the Rational
Environment™ using the Rational Terminal.

Not intended as a self-study guide, this manual assumes some familiarity with the
Environment. No conceptual discussions are included. Familiarity typically is ac-
quired through the Rational Environment Training: Fundamentals course or the
Rational Ennironment User’s Guide.

This manual focuses on fundamental areas of the Environment necessary to begin

work on small Ada® programs in single libraries. Some of the areas are: executing
commands, managing windows, writing and debugging programs, and editing text
files. Areas not included are multilibrary development, sophisticated use Rational
Subsystems™, and optional products such as the Rational Design Facility, Rational
Mail Utility, host-target development products, and so on.

RAT'ONAL 7/1/87 ix

RATIONAL

Chapter 1. Logging In and Out

Logging In

Begin with the terminal turned on.

1. Start the login sequence:

2. At the Enter user name: prompt, enter your username and press

3. At the Enter password: prompt, enter your password (it will not be echoed)
and press

4. At the Enter session name: prompt, enter a session name and press (just
press for the default session named S_1).

The Environment momentarily displays a message indicating the last time you were
logged in, the screen goes blank, and the Environment session appears on the screen.
A Login procedure in your home library is executed if it exists and is in the coded
state.

Logging Out

Begin in any window.

1. Create a Command window:
2. Enter quit and press

If no uncommitted (unsaved) images exist and if no programs requesting interactive
input are running, the command is displayed in reverse video; the screen goes blank
and you are logged out.

If any images were left without saving or promoting, or if a program requesting
interactive input is running, an error message is displayed in the Message window
indicating that images were left with unsaved changes. You can save all changed
images (see below) and terminate any such running programs. Otherwise, enter
quit (true) and press [Fremord. This logs you off the Environment without saving
any uncommitted images.

HA\-”ONAL 7/1/87 1

Chapter 1. Logging In and Out

Saving Changes

Begin in any window.

Saving changes one smage at a time

1.

2.
3.
4

5.

Go to the Window Directory: [Windos] - [Defnition]

Place the cursor on a lin: containing an asterisk (*) in the Mod column.
Select the Window Directory entry: - =]

Save the selected image:

The Mod column is now blank.

Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see “Killing Any Job”
in Chapter 15).

Continue saving the changes desired by repeating the steps above.

Saving changes in all images in a single operation

1.
2.
3.

Go to the Window Directory: [Window] - [Definision]
Place the cursor on the top line of the image: [image]-
Save all changes: [Enter

All images that have been changed now have a blank in the Mod column.

Note that running programs requesting input still have a * in the Mod column.
These programs must be terminated by killing their jobs (see “Killing Any Job” in
Chapter 15).

e RATIONAL

Chapter 2. Getting Help

Getting Help on Help

To determine the available help for the Environment:
1. Ask for help:

The Environment displays the available help options in the Help window.

Getting Help on a Specific Item

To get help on an Ada stem (for ezample, a command) in an Ada or a Command
window '
Begin in the window containing the Ada item.

1. Place the cursor on the item for which you want help.
2. Ask for help on the designated item:

If help is available for the command, it is displayed in the Help window.

To get help on a named topic, command name or name fragment, and so on

1. Ask for help: [Frompt For] - [Help]
The Environment creates a Command window and displays the command
Uhat .Does(Name => ""};

2. At the prompt, enter the topic, command name, or command name fragment
for the area of interest and press

If more than one command related to that topic exists, all the related commands
are listed in the Help window. If you want to see the help for one of these items,
place the cursor on the line on which the item is located and press [(Exeisid]. The help
for that item is displayed in the Help window.

If only one command about that topic exists, information about that command,

including a brief command description and a list of any keys bound to the command,
is displayed in the Help window.

RATIONAL 7er 3

Chapter 2. Getting Help

If no commands can be found about that topic, a message appears indicating that
no help is available for that topic.

Getting Help on Keys

To determine what commands are bound to a key or key combination:

1. Ask for help on a key:
The Environment displays the following prompt in the Message window:
Press key to be described:

2. Press the key or key combination of interest.

The command name bound to the key or key combination is displayed in the Mes-
sage window. Additional help about the command, if any exists, is also displayed
in the Help window.

Displaying Ada Specifications
To go to the Ada specification for an item described in the Help window:
Begin in the Help window in the entry for the message of interest.

1. Place the cursor on the line in the Help window containing the text for the Ada
code for the item. '

2. Ask for the definition of the designated item:

If there is an Ada spec for the item, it is displayed and highlighted in an Ada
window.

Displaying the Help Window
Begin in any window.

1. Ask to go to the Help window:

The Help window is brought onto the screen and the cursor is placed in it. You can
now scroll through the contents of the window to view the help messages that have
been requested since you logged in.

Getting Help on Errors

To get additional information about an error in your program or command:

1. Move the cursor onto the underlined error.
2. Ask for help on the error:

Additional messages about the error appear in the Message window if the Environ-
ment has any more information to give you.

4 7/1/87 E/A\TIONAL

Chapter 8. Executing Commands

Creating and Executing a Command Window Program

A Command window program can contain any arbitrarily sized Ada code—for ex-
ample, one-line Environment commands, multiple-line test programs, or Ada main
programs.

Begin in any window.

1. Create a Command window:
2. Enter the program, formatting frequently for multiple-line programs:
3. Semanticize for multiple-line programs:

The Environment marks the errors that exist. Press for further informa-
tion about any errors.

4. Correct any errors and semanticize again.
5. Execute the command program:

Expanding a Command Window

Begin in the Command window you want to expand.
1. Enlarge the window: -

The window expands by four lines.

Shrinking a Command Window

Begin in the Command window you want to shrink.
1. Shrink the window: -0

The window shrinks by four lines.

PATIONAL 7/1/87 5

Chapter 3. Executing Commands

Getting Command Completion
Begin in a Command window.
1. Enter some fragment of the command.

¢ You may supply only a command name or name fragement. Completion will
fail if you enter any part of the argument list, including the parenthesis that
begins the list.

o Completion ignores final semicolons if any exist (for example, if you have
pressed the key and it has added a semicolon after the name or name
fragment).

2. Complete the command and provide prompting for any parameters:

If the command fragment is ambiguous, the complete operation fails and the
Environment displays the possibilities in another window. Enter the necessary
characters to make the command unique and press again.

Moving to the Next Prompt or Underline
Begin in the Command window.
1. Move to the next item (highlighted or underlined):

The cursor is now placed at the next item (to the right or below).

Moving to the Previous Prompt or Underline
Begin in the Command window.
1. Move to the previous item (highlighted or underlined):

The cursor is now placed at the next item (to the left or above).

Turning Off a Prompt

Begin with the cursor on the prompt that is to be turned into text.
1. Turn off the prompt: [1em of

Reexecuting the Same Command

Begin in the Command window containing the command to be reexecuted.
1. Execute the command:

6 7/1/87 QATIONAL

Chapter 3. Executing Commands

Changing and Reexecuting a Command
Begin with the cursor on the command to be changed.

1. Turn the command from a prompt into text:
The command text can now be edited.
2. Execute the changed command:

Entering a New Command in the Same Command Window
Begin with the cursor on the old command prompt.
1. Type the new command over the old command.

The old command prompt disappears.

Clearing a Command Window of Unneeded Text

Begin in the Command window to be cleared.
1. Clear the Command window:

Note that the unneeded text in the Command window has been replaced with a
statement prompt allowing entry of new commands.

Going Back to Previous Commands

A history of commands and Ada programs entered into a Command window is
inaintained. You can access and execute any of the commands in this sequential
istory.

Begin in the Command window.
Redisplaying a previous command in the historical sequence (undoing)
1. Redisplay the previous command: -

Redisplaying a later command in the historical sequence (redoing)
1. Redisplay the next command: - (8]

Getting the Parameters of a Command Bound to a Key
Begin in any window.

1. Create a Command window with the parameters for a command bound to a
key: [Prompt ?or] - [:omm‘nd key]

E’AT‘ONAL 7/1/87 7

RATIONAL

Chapter 4. Managing Windows

Finding a Window Using the Window Directory

Begin in any window.

1. Display the Window Directory: [Window] - [Definition]
The Window Directory is displayed in a new window.

2. Place the cursor on the line of the Window Directory entry that names the
window at which you want to look.

3. Ask to view the object:

The indicated object appears in the same frame as the Window Directory window
(or in an empty frame if one exists).

Deleting Windows from the Window Directory
Begin in the Window Directory window.

1. Place the cursor on the line of the window to be deleted.
2. Select the line: -=
3. Delete the window: - [0

The window is removed from the Window Directory. This releases the image.

Moving between Windows

Moving to the window above (with vertical wraparound)
1. Move to the window above: -

Moving to the window below (with vertical wraparound)
1. Move to the window below: -

RAT'ONAL 7/1/87 9

Chapter 4. Managing Windows

Expanding a Window
Begin in the window you want to expand.

1. Enlarge the window: -

The window expands by four lines.

Shrinking a Window
Begin in the window you want to shrink.
1. Shrink the window: -0

The window shrinks by four lines.

Expanding Current Window to Include Next Frame

Begin in the window you want to expand.
1. Join the windows: -0

The current window expands to the size of the current window plus the window
below, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Expanding Current Window to Include Previous Frame

Begin in the window you want to expand.
1. Join the windows: -

The current window expands to the size of the current window plus the window
above, replacing any window that might have been on the screen. The window
returns to its normal size automatically when the next object is viewed.

Transposing Windows

You can switch the location of a window with that of the window above it (with
vertical wraparound).

Begin in the lower window.
1. Transpose the windows: -

The cursor appears in the new lower window. It is in the same position that it was
in when that window was last viewed.

10 7/1/87 HA\TIONAL

Chapter 4. Managing Windows

Realigning the Windows on the Screen

Begin in any window.

1. Return windows to their default configuration: [Window] - [Forma{

Removing a Window

You can remove a window from your screen in one of three ways.
Removing a window temporanly

This command removes the window from the screen and leaves it available in the
Window Directory.

1. Place the cursor in the window you want to remove.
2. Delete the window: - [0

Releasing an tmage permanently and saving the changes

This command releases the image and removes the window after saving the image.
The window is no longer available in the Window Directory.

1. Place the cursor in the window you want to release.
2. Release the image: - \

Releasing an image permanently without saving the changes

This command abandons the image and removes the window. The window is no
longer available in the Window Directory. Unsaved changes are discarded.

1. Place the cursor in the window you want to release.
2. Abandon the image: [obiect] - [g]

Locking a Window on the Screen
Begin in the window you want to lock.
1. Lock the window: [Window] - [Promote]

An at sign (8) appears in the window banner. The window is not removed unless
you explicitly remove it or unlock it.

RATIONAL 7/1/87 11

Chapter 4. Managing Windows

Unlocking a Window on the Screen
Begin in the window you want to unlock.
1. Unlock the window: [Window] - [Demote]

The at sign (0) disappears from the window banner.

Scrolling the Image

Begin in the window containing the image to be scrolled.

Scrolling the smage up
1. Scroll the image up: -

Scrolling the smage down
1. Scroll the image down: -

Scrolling to the beginning of the image

1. Scroll to the beginning of the image: [image] - [Begin 0f

Scrolling to the end of the smage
1. Scroll to the end of the image: -

Scrolling the current line to the top

1. Scroll the current line to the top: [Window] - [Begin 07]

Scrolling the current line to the bottom

1. Scroll the current line to the bottom: [window] - [End o1]

12 7/1/87 BA\TIONAL

Chapter 5. Traversing the Environment

Viewing a Library

Begin in the world or directory that contains the library.
1. Place the cursor on the line containing the library.
2. View the library:

A window appears, displaying the full pathname of the library underlined and listing
additional library objects, such as Ada units or files, if they exist.

Viewing an Object in a Library
Begin in the library containing the object.

1. Place the cursor on the line of the library object you want to view.
2. View the object:

A window displaying the object appears.

Viewing a Library’s Parent
Begin in the library.
1. View the parent:

A window containing the parent library appears.

Viewing Your Home Library
Begin in any library.
1. View your home library:

A window containing your home library appears.

RATIONAL 7y 13

Chapter 5. Traversing the Environment

Viewing the Specification of an Environment Package

Here is a convenient shortcut for displaying the specifications for Ada units provided
as part of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.

1. Get a prompt for the Definition command: [Frompt For] - [DeRnttion]

2. Enter the simple name of the Ada unit at the prompt for the Name parameter
preceded by the \ character (for example, "\Compilation").

3. Execute the command:

Note that this shortcut for viewing Environment package specifications works for
most Environment packages. If the shortcut fails, an error message appears, and
you will have to traverse to the specification instead.

14 e RATIONAL

Chapter 6. Using General Editing Operations

Selecting an Arbitrary Region of Text

Begin in the window containing the text to be selected.

1. Move the cursor to the start of the region of text to be selected.
2. Define the start of the region: -0

3. Move the cursor to the end of the region of text.

4. Define the end of the region: -0

The selected region is highlighted.

Moving Selected Text
Begin in the window containing the text to be moved.

1. Select the region of text.

2. Move the cursor to the location in which the text will be moved. You can move
text within the same image or to some other image.

3. Move the region of text: - M

The highlighted region of text is deleted from its original location and appears in
the new location.

Copying Selected Text

Begin in the window containing the text to be copied.

1. Select the region of text.

2. Move the cursor to the location in which the text will be copied. You can copy
text within the same image or into some other image.

3. Copy the region of text: -

The region of text appears in its original location and in the new location.

RATIONAL 7/1/87 15

Chapter 6. Using General Editing Operations

Searching for a String

Begin in the text in which you want to search for the string.

1.
2.
3.

Move to the beginning of the image: [imace] - [Begtn o7]
Start the search command (enter composing mode):

Enter the target string, without quotes. Note that the characters you type in
composing mode appear at the SEARCH prompt in the Message window.

Start the actual search (enter search mode):

If the target string is found, the cursor is positioned one character after the
target string.

To get to each additional occurrence of the string:
To return to a previous occurrence of the string:
To cancel the search, press any key—for example, [1].

The SEARCH prompt is removed from the Message window.

Searching and Replacing a String
Begin in the text with the string to be changed.

1.
2.
3.

8.

9.

10.

16

Move to the beginning of the image: -
Start the search/replace command: [Meual[s]

At the SEARCH prompt in the Message window, enter the target string, without
quotes.

Press to move to the REPLACE prompt.

At the REPLACE prompt in the Message window, enter the replacement string,
without quotes.

Start the actual search/replace: [(Mea]s]
The Environment places the cursor one character after the target string.
To replace the target string: [Meuafs]

The Environment replaces the string and places the cursor one character after
the next occurrence of the target string.

To get to each additional occurrence of the string without changing the string:

‘ Control [:
To replace a previous occurrence of the string:

To abort searching and replacing, press any key—for example, [1.
The SEARCH and REPLACE prompts are removed from the Message window.

e RATIONAL

Chapter 6. Using General Editing Operations

Searching and Replacing All Occurrences of a String
Begin in the text with the string to be changed.

1. Move to the beginning of the image: -
2. Start the search/replace command: [Meul[s]

3. At the SEARCH prompt in the Message window, enter the existing string, without
quotes.

4. At the REPLACE prompt in the Message window, enter the new string, without
quotes.

5. Start the actual search and global replace: [numeric -] - [aumeric 1] - [Meta[s]
(Use the numeric keypad to enter the —1.)

The Environment replaces all occurrences of the target string and displays the
number of occurrences in the Message window.

Deleting Text

Text such as characters, words, lines, and regions can be deleted. Text can be
deleted from varying cursor positions.

o Delete the character at the cursor: [control][D]

e Delete the character before the cursor position (backspacing):
o Delete the entire word: - [0

¢ Delete from the cursor to the end of the word: - [x]

¢ Delete from the cursor to the beginning of the word: -

¢ Delete the entire line: [Lind - [D]

o Delete from the cursor to the end of the line: [Lind - (k]

¢ Delete from the cursor to the beginning of the line: -

o Delete the selected text: - [0}

Joining Lines
This command joins the line on which the cursor is located with the following line.

1. Move the cursor to any position on the first line of the two lines to be joined.
2. Join the second line to the end of the first line: [Lind - (3]

RATIONAL 7/1/87 17

Chapter 6. Using General Editing Operations

Transposing Text

Transposing characters

This command switches the character that the cursor is on with the previous char-
acter. Assume, for example, that character 2 follows character 1, and you want
character 1 to follow character 2.

1. Move the cursor to character 2.
2. Transpose the character that the cursoris on and the previous character:

Transposing words

This command switches the word that the cursor is on with the previous word.
Assume, for example, that word 2 follows word 1, and you want word 1 to follow
word 2. Word terminators are blanks, underscores, semicolons, or periods.

1. Move the cursor to any place on word 2.
2. Transpose the word that the cursor is on and the previous word: - [
Transposing lines

This command switches the line that the cursor is on with the previous line. Assume,
for example, that line 2 follows line 1, and you want line 1 to follow line 2.

1. Move the cursor to any place on line 2.
2. Transpose the line that the cursor is on and the previous line: -1

18 7/1/87 EATIONAL

Chapter 6. Using General Editing Operations

Changing the Case of Text

The case of text such as characters, words, lines, and regions can be changed to
lowercase, uppercase, or initial capitals. Begin with the cursor anywhere in the text
to be changed. ‘

¢ Capitalize a character:
o Lowercase a character:

¢ Uppercase a word: -
¢ Lowercase a word: -
o Capitalize a word: -3

o Uppercase a line: -
o Lowercase a line: [Lind -
e Capitalize a line: [Lind - (5]

¢ Uppercase a selected region: -
¢ Lowercase a selected region: -
e Capitalize a selected region: -3

QAT'ONAL 7/1/87 19

RATIONAL

Chapter 7. Writing Text Files

Creating a File
Begin in the library in which you want the file.

1. Create a file:

A Command window with the Text.Create command and its parameter is cre-
ated. '

2. At the Image_Name prompt, enter the name of the file to be created and press

A new window is created for the image of your file, and an entry for the file appears
in the library.

Viewing a File

Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Go to the definition:

A window with a read-only image of the file appears.

Editing an Existing File

Begin in the library containing the file.

1. Move the cursor to the line containing the file declaration.
2. Select the file to be edited: -E

3. Edit the selected file:

The Environment displays the image of the object in a window. You are now
ready to edit the file.

4. Save the image periodically by pressing

5. When you have finished editing, promote the file to a read-only image by press-
ing

RAT‘ONAL 7/1/87 21

Chapter 7. Writing Text Files

Saving a File

A file can be saved in one of two ways.
Saving a file (close for editing)

When you have made some changes and you want to save them and terminate
editing:

1. Place the cursor in the window that has the image of the file.
2. Promote the image to a read-only image:

This command saves the image of the file and allows others to access it.
Saving a file (leave open for editing)

When you have made some changes and you want to save them but continue editing:

1. Place the cursor in the window that has the image of the file.
2. Commit the image:

This command saves the image of the file, and you retain update access.

Setting Tabs
Begin in the text.

1. Create a Command window.
2. To set tab stops at every nth column, enter set.tab_width(n) and press

As you edit the text file, pressing indents n spaces.

Setting Overwrite Mode On
Begin in the text.

1. Set overwrite mode on: - [9]

The banner is updated to indicate that overwrite mode is in effect in this window.

22 7/1/87 EATIONAL

Chapter 7. Writing Text Files

Setting Insert Mode On
Begin in the text.

1. Set insert mode on: - [

Setting Wordwrap for Text
Begin in the text.

1. Turn fill mode on: - (7

The banner shows that fill mode is in effect and indicates the column number. The
column number default is 72.

Changing the Wordwrap Column
Begin in the text.

1. Create a Command window.
2. To set a different wordwrap column, enter set.fill_column and press
3. At the prompt, enter n, where n is the desired column number, and press

Turning Wordwrap Off
Begin in the text.

1. Turn fill mode off: -©

The banner is updated to remove the fill mode indicator and fill column number.

RATIONAL 7/1/87 23

RATIONAL

Chapter 8. Writing Ada Programs

Libraries are of two kinds: directories and worlds. Programs can be written in
either kind of library.

Creating an Ada Package Specification
Begin in the library that will contain the Ada unit.

1.

5.
6.

Create a workspace:
A new window is created with a comp_unit prompt for you to begin editing.

Enter the contents of the specification in the new window at the comp_unit
prompt.

Use for building the private part of the specification, if appropriate.
Format frequently by pressing

The Environment marks any errors that exist. Use for information about
any errors.

Semanticize frequently by pressing

The Environment marks any errors that exist. Use for information about
any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

Correct any errors.
Promote the specification to the installed state:

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

RATIONAL 71/sr 25

Chapter 8. Writing Ada Programs

Creating an Ada Package Body
Begin in the package specification.

1. Use to build the skeletal package body.

A new window appears with the skeletal package body for you to edit.
2. Enter the contents of the body.
3. Format and semanticize frequently.

The Environment marks any errors that exist. Use for information about
any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

4. Correct any errors.
5. Promote the body to the installed state:

The Environment replaces the temporary name in the library with the Ada name
for the unit specification.

26 7/1/87 BA\TIONAL

Chapter 8. Writing Ada Programs

Creating an Ada Subprogram
Begin in the library that is to contain the Ada unit.

1. Create a workspace:

The Environment creates a new window with a comp_unit prompt.
2. Enter the body of the subprogram.
3. Format and semanticize the unit.

The Environment marks any errors that exist. Use for information about
any errors.

The first time you semanticize, a temporary name appears in the banner of
the Ada unit you are editing and in the library that contains the Ada unit. A
temporary name is of the form _Ada_#_, where # is some number.

4. Correct any errors. -
5. Promote the subprogram to the installed state:

The Environment replaces the temporary name in the library with the Ada name
for the unit. It also creates a separate specification for the unit in the library.

Creating a Subunit
Begin in the Ada unit that will contain the subunit.

1. Enter the Ada subunit stub notation. You might enter, for example, procedure
foo 1is separate;

Format.

Place the cursor on the stub.
Select the stub: -[=]
5. Edit the selected stub:

Lol o

A new window containing the skeletal subunit appears. The name of the subunit
appears in the library under the parent unit.

Importing Units
To import units, see “Adding Links—Simple Method” in Chapter 12.

BATIONAL 7/1/87 27

Chapter 8. Writing Ada Programs

Adding a Statement, Declaration, or Comment
Adding to an Ada unst sn the source state

Begin in the Ada unit in which you want to make the addition.

1. Edit the Ada unit, if it is still in read-only mode:

Go the position where the new statement, declaration, or comment is to be
added.

3. Enter the changes.
4. Format and semanticize.
5. Correct any errors.

Adding to an Ada unit in the snstalled or coded state

Begin in the Ada unit in which you want to make the addition.

1. If the Ada unit is a package specification or if the addition you want to make
contains only Ada comments, skip to the next step.

If it is already coded, demote the Ada unit to the installed state: [tnsaiunic

2. Go to the position where the new statement, declaration, or comment is to be
added.

3. Open an insertion point: -

A new window appears with the banner !2beled either statement or declaration,
depending on the location of the insertion point.

The library now contains a temporary name of the form _Ada_#_, where # is
some number, under the library unit you are editing.

4. Enter the new statement, declaration, or comment.

Note that multiple statements, declarations, or comments can be entered per
insertion point.

5. Format and semanticize.
6. Correct any errors.
7. Promote the statement, declaration, or comment: [Promote

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

28 7/1/87 RATIONAL

Chapter 8. Writing Ada Programs

Changing a Statement, Declaration, or Comment
Making changes in an Ada unst sn the source state

Begin in the Ada unit in which you want to make the change.

1.
2.

3.
4.
5.

Edit the Ada unit, if it is still in read-only mode:

Go to the position where the statement, declaration, or comment is to be
changed.

Enter the changes.
Format and semanticize.
Correct any errors.

Making changes in an Ada unit in the snstalled or coded state

Begin in the Ada unit in which you want to make the change.

1.

6.
7.
8.

If the Ada unit is a package specification or if the change you want to make
consists only of Ada comments, skip to the next step.

If it is already coded, demote the unit to the installed state:
Go to the end of the statement, declaration, or comment to be changed.
Select the entire statement, declaration, or comment: - =

Edit the selected statement, declaration, or comment:

The selected statement, declaration, or comment becomes a prompt, and a
window with the statement, declaration, or comment appears on the screen.

The library now contains a temporary name of the form _Ada_#_, where # is
some number, under the library unit you are editing.

Note that if the selected declaration has dependents, the edit operation will not
succeed until all dependents are demoted to source.

Enter the changes.

Note that multiple declarations, statements, or comments can be entered.
Format and semanticize.

Correct any errors.

Promote the statement, declaration, or comment:

The new window disappears, and the prompt in the unit is replaced by the actual
statement, declaration, or comment. The temporary name in the library is removed.

RATIONAL 7/1/87 29

Chapter 8. Writing Ada Programs

Deleting a Statement, Declaration, or Comment

Deleting in an Ada unit in the source state

Begin in the Ada unit in which you want to make the change.

1. Edit the Ada unit, if it is still in read-only mode:
2. Go the position where the statement, declaration, or comment is to be deleted.
3. Use line delete or region delete to remove the statement, declaration, comment.

The unit remains in the source state for further editing.
Deleting in an Ada unit in the installed or coded state

Begin in the Ada unit in which you want to make the change.

1. If the Ada unit is a package specification or if the deletion you want to make
contains only Ada comments, skip to the next step.

If it is already coded, demote the unit to the installed state:
2. Go to the end of the statement, declaration, or comment to be deleted.
3. Select the entire statement, declaration, or comment: -[=
4. Delete the selected statement, declaration, or comment: - [0

The selected statement, declaration, or comment is removed.

Note that if the selected declaration has dependents, the delete operation will not
succeed until all dependents are demoted to source.

30 7/1/87 EA\TIONAL

Chapter 8. Writing Ada Programs

Changing the Name or Kind of an Ada Unit

Changing the name or kind of an Ada unit in the source state

Begin in the library containing the Ada unit to be changed.

1.
2.
3.

4.

Move the cursor to the line containing the Ada unit.
Select the Ada unit: -=
Edit and withdraw the selection:

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit can be edited.

Change the unit name, parameter profile, or unit kind.

The temporary name in the library is replaced by the new actual name for the
Ada unit when you promote the unit. The unit is still in the source state to allow
continued editing.

Changing the name or kind of an Ada unit sn the snstalled or coded state

Begin in the library containing the Ada unit to be changed.

1.
2.
3.

IR

7.

Move the cursor to the line containing the Ada unit.
Select the Ada unit: -=
Edit and withdraw the selection:

The selected Ada unit is replaced by a temporary name, and a window with the
Ada unit appears on the screen. The unit is in the source state.

Note that if the selected unit has dependents, the withdraw operation will not
succeed until all dependents are demoted to source.

Enter the changes.
Format and semanticize.
Correct any errors.
Promote the unit:

The temporary name in the library is replaced by the new actual name for the Ada
unit.

R)ATIONAL 7/1/87 31

Chapter 8. Writing Ada Programs

Adding a Subprogram to a Package

These steps assume that the subprogram is to be added to both the specification
and the body of the package.

Adding to an Ada unit sn the source state

Begin in the package specification in which you want to add the subprogram speci-
fication.

1. Edit the Ada unit, if it is still in read-only mode:

2. Go to the position in the package where the new subprogram specification is to
be added.

Enter the new subprogram specification.
Format and semanticize.

Select the subprogram specification: - =

Create the body:
The skeletal subprogram body is placed at the end of the existing package body.

3
4
5. Correct any errors.
6
7

8. Enter the subprogram body.
9. Format and semanticize frequently.
10. Correct any errors.

32 7/1/87 BAT'ONAL

Chapter 8. Writing Ada Programs

Adding to an Ada unit in the snstalled or coded state

Begin in the package specification in which you want to add the subprogram speci-

fication.

1. Go to the position in the package where the new subprogram specification is to
be added.

2. Open an insertion point: -{
A new window with a declaration prompt is created for editing. A temporary
name appears in the library under the package specification to which you are
adding the subprogram.

3. Enter the new subprogram specification at the prompt.

. Note that multiple subprogram specifications can be entered per insertion point.

4. Format and semanticize.

5. Correct any errors.

6. Promote the declaration:
The new window disappears and the prompt in the package specification is
replaced with the added subprogram specification. The temporary name in the
library disappears.

7. Select the subprogram specification: - =

8. Create the body:
A new window appears on the screen with the skeletal subprogram body.

9. Enter the subprogram.

10. Format and semanticize frequently.
11. Promote the subprogram body:

The window is replaced by a window displaying the existing package body with the
new subprogram installed.

RAT'ONAL 7/1/87 33

Chapter 8. Writing Ada Programs

Making a Package Body or Subprogram Body into a Subunit

Begin in the parent unit containing the declaration stub in either the source or the
installed state.

1. Select the unit that you want to make into a subunit: - =]
2. Make the selected unit separate:

A new window with the subunit appears and the parent unit has an appropriate
subunit stub. Note that the subunit is now in the source state.

Making a Subunit In-line in the Parent

Begin in the parent Ada unit in either the source or the installed state.

1. Select the subunit stub.
2. Make the subunit in-line:

The subunit stub is replaced by the actual subunit code. Note that the in-line unit
is in the same state as the parent.

Demoting a Unit and Its Dependents
Begin in the library that contains the program unit.

1. Place the cursor on the line containing the program unit to be demoted.
2. Select the unit to be demoted: -=
3. Demote the program unit: [Source (This World)]

The progress of the command is displayed in the Environment 1/0 window. The
unit, plus any units that depend on it, is demoted to source.

Making a Library Program Executable
Begin in the library that contains the program.
1. Make the program executable:

All units in the library are promoted to the coded state. The progress of the
command is displayed in the Environment 1/0 window.

34 7/1/87 R)ATIONAL

Chapter 8. Writing Ada Programs

Executing a Library Program

Begin in the library containing the program.
1. Create a Command window.

2. Enter the Ada name for the program.

3. Execute the program:

The Environment then executes the program just as it executes any Environment
command.

Saving the Changes of Incomplete Units

Begin in the Ada unit that is incomplete—that is, the unit still may have errors or
you want to do further development on the unit before promoting it.

1. Save the image:

A message appears in the Message window indicating that the unit has been saved
(committed). The banner of the Ada unit now has a blank in the first character
position.

Setting Overwrite Mode On
Begin in the Ada unit you are editing.

1. Set overwrite mode on: - [9]

The banner is updated to indicate that overwrite mode is in effect in this window.
Overwrite mode is set on a window-by-window basis.

Setting Insert Mode On

Insert mode is the default. Begin in the window that is currently in overwrite mode.
1. Set insert mode on: -0

The banner is updated to remove the overwrite mode indicator.

PAT'ONAL 7/1/87 35

RATIONAL

Chapter 9. Browsing Ada Programs

Getting the Definition or Use of an Identifier

Begin with the cursor on the identifier.

1. Select the identifier: -=
2. Go to the definition:

A window containing the definition of the declaration appears.

Viewing the Specification of an Environment Package

Here is a convenient shortcut for displaying the specifications for Ada units provided
as part of the Environment (for example, for viewing the specification for package
Compilation, which contains the compilation commands).

Begin in any window.

1. Get a prompt for the Definition command: [Promet For] - [Definicton]

2. Enter the simple name of the Ada unit at the prompt for the Name parameter
preceded by the \ character (for example, "\Compilation").

3. Execute the command:

Note that this shortcut for viewing Environment package specifications works for
most Environment packages. If the shortcut fails, an error message appears, and
you have to traverse to the specification instead.

Viewing a Unit’s Specification from Its Body
Begin in the body.

1. Go to the specification:

A window containing the specification appears.

RATIONAL 7/1/87 37

Chapter 9. Browsing Ada Programs

Viewing a Unit’s Body from Its Specification
Begin in the specification.
1. Go to the body:

A window containing the body appears.

Viewing a Unit’s Parent
Begin in the unit.

1. Go to the parent:

A window containing the parent object appears.

Showing the Using Occurrences of a Defined Ada Name
Begin in the window containing the Ada name of interest.

1. Place the cursor on an occurrence of the Ada name.

2. Select the Ada name of interest: -=

3. View the using occurrences:
4

The using occurrences of the Ada name within the current unit are underlined.
Use lNext lteml or [Previoul lteml tO Step thrOugh.

For using occurrences of the Ada name in other units, a window containing the
names of these units appears.

5. Place the cursor on a unit.
. Select the unit: - =
7. View the unit with the using occurrence:

A window appears displaying the selected unit with all occurrences of the Ada
name of interest underlined.

8. Use [Next lte;J or {Prevloun ltem[tO Step through.

38 7/1/87 BA\-”ONAL

Chapter 10. Debugging

Starting the Debugger

Begin in the Command window containing the name of the program to be debugged.
1. Invoke the Debugger: [Meta][Promote]

The Debugger window appears, and a debugging session begins.

Program execution does not begin until further debugging commands are entered.

Stopping the Debugger

A debugging session is terminated automatically when you begin to debug a new
job or when you log off.

Displaying the Program Being Debugged

A window automatically displays a section of the program around the point where
execution was suspended. The statement or declaration to be executed next is
highlighted (selected).

Displaying the Value of a Program Variable
Begin in any window.

1. Place the cursor on an occurrence of the program variable.
2. Select the program variable: - =]
3. Display the value:

The value of the variable is displayed in the Debugger window.

QATIONAL 7/1/87 39

Chapter 10. Debugging

Displaying the Call Stack
Begin in any window.
1. Display the stack:

The call stack is displayed in the Debugger window with the most current call on
the top of the stack (it is frame number one: “_-17).

Displaying Source for a Call Stack Frame

Begin in the Debugger window.

1. Display the stack:
2. Place the cursor on the frame you want to display.

3. Select the frame: - =
4. Display the source for the frame:

The Ada unit corresponding to the frame is displayed with the program counter
location (either current or saved) highlighted.

Displaying Parameters for a Call Stack Frame

Begin in the Debugger window.

1. Display the stack:

2. Place the cursor on the frame for which you want to display the parameters.
3. Select the frame: -[=

4. Display the parameters for the frame:

Steliping Through the Program

You can step in one of two ways. Note that in either case you can step multiple
times with a single command by pressing a numeric prefix key ([numeric a]) before you
press the key to step.

Begin in any window.

Stepping by every statement
1. Press [rud

Stepping by statements without stopping in called subprograms
1. Press

40 7/1/87 RATIONAL

Chapter 10. Debugging

Executing the Program
Begin in any window.
1. Execute the program:

The program runs to completion or until an exception or breakpoint is encountered.

Setting Up Exception Handling

The Debugger stops when any exception is encountered, unless that exception has
been propagated.

Begin in an Ada window containing the unit that declares the exception or a unit
that handles the exception.

Propagating a particular ezception

1. Place the cursor on an occurrence of the exception name.
2. Select the exception: -[=

3. Press

Catching a previously propagated ezception

1. Place the cursor on an occurrence of the exception name.
2. Select the exception: -=
3. Press

Setting Breakpoints

Begin in the window displaying the Ada unit in which you want to set a breakpoint.

1. Place the cursor on the statement or declaration in the Ada unit.

2. Select the entire statement or declaration by pressing - (=] repeatedly.

3. Set the breakpoint:

A breakpoint number is assigned. This breakpoint is in effect until the Debugger
session terminates or until it is explicitly deactivated.

Showing Breakpoints

Begin in any window.
1. Show breakpoints:

The display shows all active and inactive breakpoints.

RATIONAL 7/1/87 41

Chapter 10. Debugging

Removing Breakpoints

Begin in any window.

Removing all breakpotnts

1. Remove all breakpoints:
Removing a specific breakposnt

1. Prompt for the remove command: [Frompt For] - [Remove Breakd]

2. At the Breakpoint prompt, enter the number of the breakpoint you want deac-
tivated and press

Modifying a Program Variable
Begin in the window displaying the program variable.

1. Place the cursor on an occurrence of the program variable you want to change.
2. Select the program variable: =

3. Prompt for the modify command:
4

At the New_Value prompt, enter the desired new variable value (in double quotes)
and press

Returning to the Point of Program Suspension
Begin in any window.

1. Go to the program suspension point:

A window containing the definition of the program being debugged appears with
the statement or declaration to be executed next highlighted.

Displaying the Debugger Window

Begin in any window.
1. Display the Debugger window:

The Debugger window appears on the screen and the cursor is in it. ’

42 ‘ 7/1/87 RAT'ONAL

Chapter 11. Managing Libraries

Controlling the Library Display
Begin with the cursor in the library.

Toggling information on lsbrary objects

1. Move to the beginning of the library: -

2. Change the display:

Repeating this command toggles the library display so that you view one of the
following: only the names of the library objects; the name and the type of library
objects; and the name, type, Ada unit state plus update information.

Showing more detasl on the objects in the library
1. Show more detail: [obiect)- 3

This causes deleted units, versions, and so on to be added to the library display.
This step can be repeated if necessary until the desired detail level is reached.

Showing less detasl on the objects sn the library
1. Show less detail: [Gticct)- [

This causes deleted units, versions, and so on to be removed from the library display.

This step can be repeated if necessary until the desired detail level is reached.

BA\TIONAL 7/1/87 43

Chapter 11. Managing Libraries

Creating Libraries
Creating a dsrectory

Begin in the directory or world that is to contain the new directory.

1. Create the directory:

The Environment creates a Command window containing the Library.Create-
—Directory command and prompts for its parameters.

2. At the Name prompt, enter the name for the new directory and press

The Environment creates a directory. In the containing library, you see the new
directory name inserted in alphabetical order.

Creating a world

Begin in the directory or world that is to contain the new world.

1. Create the world:

The Environment creates a Command window containing the Library.Create-
—World command and prompts for its parameters.

2. At the Name prompt, enter the name for the new world and press

The Environment creates a world. In the containing library, you see the new world
name inserted in alphabetical order.

By default, this world has links to commonly used Ada and Environment packages
such as Text_Io, Calendar, and String_Tools. These links are from the model world
!Model.R1000.

Deleting Objects in a Library
Deleting a lsbrary

Begin in the library containing the library to be deleted.

1. Place the cursor on the line containing the library to be deleted.
2. Select the library to be deleted: - =]

3. Create a Command window:

4. Enter compilation.delete and press

The 1/0 window displays the progress and results of the Delete command. When
the command is complete, the library to be deleted disappears from the library.

Deleting an Ada unst or file

Begin in the library containing the object to be deleted.

44 s RATIONAL

Chapter 11. Managing Libraries

1. Place the cursor on the line containing the object to be deleted.
2. Select the object: -=
3. Delete the object: - (o]

If an Ada unit has no dependents, the declaration is removed from the library.

Undeleting Objects or Previous Versions in a Library
Begin in the library containing the deleted object or version.

1. Expand detail in the library (if necessary) so you can see the object or version
to be undeleted: -0

Repeat as necessary until you can see the deleted object or version you want
to undelete. A deleted object is enclosed in braces ({}) to indicate that it is
deleted. A previous version has its name prefixed with a minus (), indicating
that it is not the default version.

2. Select the object or version to undelete: -=
3. Undelete it: -

The object or version is now undeleted and is displayed without the braces around
it or without the minus in front of it.

Copying Objects in a Library
Copying into a different library
Begin in the library containing the object (library, Ada unit, file) to be copied.

1. Place the cursor on the object to be copied.

2. Select the object to be copied: -=

3. Place the cursor in the new library to which the existing object is to be copied.
4

Copy the selected object: -

A Command window appears with the Library.Copy command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press

The progress of the command is displayed in the Environment I/0 window.
Copying into the same library
Begin in the library containing the object (library, Ada unit, file) to be copied.

RATIONAL 7/1/87 45

Chapter 11. Managing Libraries

1. Select the object to be copied: - =]
Copy the selected object: -

A Command window appears with the Library.Copy command and prompts for
its parameters.

3. At the To prompt, enter the name of the object into which you want to copy.
4. Press

The progress of the command is displayed in the Environment 1/0 window.

Moving Objects in a Library
Moving to a different lsbrary

Begin in the library containing the object (library, Ada unit, file) to be moved.

1. Place the cursor on the object to be moved.

2. Select the object to be moved: -=

3. Place the cursor in the new library to which the existing object is to be moved.
4. Move the selected object: -

A Command window appears with the Library.Move command and prompts
for its parameters. The parameter names are supplied automatically by the
Environment.

5. Press
The progress of the command is displayed in the Environment 1/0 window.
Moving to the same library

This is equivalent to renaming a library object. See “Renaming Objects in a Li-
brary,” below.

Renaming Objects in a Library

Begin in the library structure containing the object (library, Ada unit, file) to be
renamed.

1. Select the object to be renamed: -=

2. Create a Command window: [Create Command]

3. Enter library.rename and press

4. At the To prompt, enter the new name and press

The progress of the command is displayed in the Environment 1/0 window. Ada
units are demoted to source.

46 7/1/87 BA\TIONAL

Chapter 11. Managing Libraries

Printing Objects Contained in a Library

Printing a file or an Ada unit

Begin in the library containing the object to be printed.

1. Move the cursor to the line containing the object to be printed.
2. Select the object: -[=]
3. Print the object:

The progress and status are displayed in the Message window. A listing appears on
the printer.

Printing a lsbrary, its units, and sts subuniis

Begin in the library containing the objects to be printed.

1. Print: [Prompt For] - [Pring

A Command window appears with the Queue.Print command and prompts for
its parameters.

2. At the Name prompt, enter the wildcard symbol ? and press

The progress and status are displayed in the Message window. A listing appears on
the printer.

E)ATIONAL 7/1/87 47

RATIONAL

Chapter 12. Managing Links

Listing Links—Simple Method
Begin in the world for which you want to see the links.

1. Create a Command window:
2. Enter links.display and press

A list of the links appears in the standard 1/0 window.

Adding Links—Simple Method
Begin with the cursor in the world to which you want to add the link.
1. Create a Command window:

2. Enter links.add and press

3. At the Source prompt, enter the full pathname of the Ada unit to which you
want the link to refer and press

The new link is added to the world. The link name is the simple Ada name derived
from the full pathname.

Getting the Pathname for an Environment Package
Begin in any window.

1. Create a command window:
2. Enter library.resolve and press

3. At the Name_Of prompt, enter the simple name of the Ada unit for which you
want the pathname prefixed with the \ character (for example, \Text_!o).

4. Execute the command:
The full pathname is displayed in the I/0 window. If you want to use this pathname

as a parameter to another command, you can select the text of the pathname in
the 1/0 window and then copy this region into a Command window.

RATIONAL 7y/er 49

Chapter 12. Managing Links

Note that this shortcut for getting pathnames works for most Environment pack-
ages. If the shortcut fails, an error message appears, and you have to look for the
pathname in the World ! section of the Reference Summary (in Volume 1 of the
Rational Environment Reference Manual) or in the reference manual for the product
area in question.

Editing Links for a World
Begin in the world for which you want to edit the links.

1. Create a Command window:
2. Enter links.edit and press

A window displaying the links appears. You can now edit the links. See the indi-
vidual editing operations that follow.

Controlling the Link Display
Begin with the cursor in the link display.
Toggling the order of the link display

1. Change display order: -1

Repeating this command toggles the display so that it appears alphabetically either
by source name or by link name.

Toggling the contents of the link display
1. Change display contents: -

Repeating this command toggles the display so that you view one of the following:
only internal links, only external links, or all links.

Inserting a New Link
Begin with the cursor in the link display.

1. Open an insertion point: -

A Command window appears attached to the link display window with the
Insert command and its parameter.

2. At the prompt, enter the full pathname of the Ada unit to which you want the
link to refer and press

The link display is updated to show the new link. The link name is the simple Ada
name derived from the full pathname.

50 7/1/87 RATIONAL

Chapter 12. Managing Links

Deleting a Link
Begin with the cursor in the link display.

1. Move to the link you want to delete.
2. Select that link: -=
3. Delete the link: - [0

The link is deleted and the link display is updated.

Viewing the Source of a Link
Begin with the cursor in the link display.

1. Move to the link whose source you want to view.

2. Select that link: -=
3. Go to the definition:

A window appears containing the definition of the Ada unit to which the link refers.

Exiting from the Link Display
Begin with the cursor in the link display.
1. Release the link image: -

The window containing the link display disappears.

Adding a Set of Links

Begin in the world to which you want to add a set of links.

1. Create a Command window:
2. Enter links.add and press

3. At the Source prompt, enter a name (using substitution characters and wild-
cards, if desired) that specifies the complete set of links and press

All links are added.

Replacing a Link

Begin in the world containing the link you want to replace.
1. Create a Command window:

2. Enter links.replace and press

3. At the Source prompt, enter the new source name you want to have associated
with an existing link and press

The source for the link is replaced.

QAT'ONAL 7/1/87 51

RATIONAL

Chapter 13. Managing Session Switches

Editing Session Switches

Begin in any window.

1. Create a Command window:

2. Enter switches.edit_session_attributes and press

A window displaying the session switches appears. You can now edit the switches.
A session switch file called Current_Session— Name_Switches appears in your home
library, if it does not already exist.

Controlling the Session Switch Display

Begin with the cursor in the session switch display. Two commands toggle the
session switches display so that you see one of the following views: all switches or
nondefault switches (switches that you have modified).

1. Change the display to all switches: -
2. Change the display to nondefault switches: -0

RATIONAL 7//er 53

Chapter 13. Managing Session Switches

Modifying Session Switch Values

Begin with the cursor in the session switch display.

Modifying a Boolean swstch

1. Place tiie cursor on the session switch whose value you want to modify.
2. Edit the selected session switch:

The value toggles between true and false. The session switch display is updated
to show the new value.

3. Save the session switch image:

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

Modifying a non-Boolean sustch
1. Place the cursor on the session switch whose value you want to modify.

2. Edit the selected session switch:

A Command window appears with the Change command and a prompt for its
parameter.

3. At the prompt, enter the new parameter value and press
The session switch display is updated to show the new value.
4. Save the session switch image:

Session switches take effect at varying times: immediately, at login, or when next
displaying the object image.

54 7/1/87 BA\TIONAL

Chapter 13. Managing Session Switches

Getting Help on Session Switches

Begin with the cursor in the session switch display.

Getting an ezplanation

1. Place the cursor on the session switch for which you want to have further infor-
mation.

2. Ask for help:

An explanation of the session switch, if it exists, appears in the switch display below
the selected session switch.

Removing an ezplanation

1. Place the cursor on the explanation that you want to remove.
2. Remove the explanation:

The explanation disappears from the session switch display.

Saving Session Switches
Begin with the cursor in the session switch display.
1. Save the image:

A message appears in the Message window indicating that the session switches have
been saved (committed).

Exiting from the Session Switch Display
Begin with the cursor in the session switch display.
1. Release the switch image: - X

The window containing the session switch display disappears.

RATK)’VAL 7/1/87 55

RATIONAL

Chapter 14. Managing Searchlists

Editing the Searchlist for a Session
Begin in any Command window.
1. Enter search_list.show_list and press

A window displaying the session searchlist appears. You can now edit your search-
list.

Adding a Component to a Searchlist
Begin with the cursor in the searchlist display.

1. Move to the line where the new entry is to be added.
2. Open an insertion point: -0 ‘

A Command window appears with the Add command and prompts for its pa-
rameters.

3. At the Component prompt, enter the new searchlist entry and press
The searchlist display is updated to show the new entry.

Deleting a Component from a Searchlist
Begin with the cursor in the searchlist display.

1. Put the cursor on the searchlist component you want to delete.
2. Select the searchlist component: [Obiect] - []
3. Delete the searchlist component: - [0}

The entry is deleted and the display is updated.

RATIONAL 7/1/87 57

Chapter 14. Managing Searchlists

Replacing One Component with Another

Begin with the cursor in the searchlist display.

1. Select the entry to be replaced: -=

2. Create a Command window:

3. Enter replace and press

4. At the New_Component prompt, enter the new entry and press

The old entry is replaced with the new one.

Viewing the Library Named by a Searchlist Entry
Begin with the cursor in the searchlist display.

1. Move to the searchlist entry you want to view.

2. Go to the definition:

A window appears containing the library.

Exiting from the Searchlist Display

Begin with the cursor in the searchlist display.
1. Release the searchlist image: -

The window containing the searchlist disappears.

58 7/1/87 R)/A\-HONAL

Chapter 15. Managing Jobs

Disconnecting from a Job

1. Disconnect the job: [Control[g]

A user-interrupt message is displayed in the Message window. You can now move
the cursor and perform other tasks. The job continues to execute.

Note that logging out does not terminate disconnected jobs that are still executing
unless these jobs attempt to perform input or output to Editor windows.

Reconnecting to a Job
Begin in any window.

1. Determine the number of the job to be reconnected. The job number is displayed
on the banner of the I/0 window for the job (if used). Otherwise, to display all
the jobs currently running on the system, press

2. Get a prompt for the connect command: [Frompe For] - [Job Connect]
3. At the The_Job parameter, enter the number of the job and press

Killing the Current Job or the Last Job Created
Begin in any window.

1. Kill the last job:

A job-abort message is displayed in the Message window.

QATIONAL 7/1/87 59

Chapter 15. Managing Jobs |

l
@

Killing Any Job
Begin in any window.
1. Disconnect from the current job if necessary:

2. Determine the number of the job to be killed. The job number is displayed on
the banner of the I/0 window for the job (if used). Otherwise, to display all the
jobs currently running on the system, press

3. Prompt for the command to kill the job: [Prompt For] - [30b xunl
4. Enter the job number at the The_Job prompt and press

N oteeéhat the default job number is that of the job from which you just discon-
nected.

A lzgssage is displayed in the Message window indicating that the job has been
killed.

60 1/1/87 RATIONAL

Chapter 16. Customizing Your Workspace

Building Macros

You can bind a series of keystrokes to a single key by building a macro.

Defining the macro

1. Start the definition: [man] -
2. Press the keystrokes that are to make up the macro.

3. End the definition: [Mvar -

Ezecuting the macro
1. Execute the last macro you entered: -

Binding the macro to a function key

1. Press [Mark] = [Definition]

You are prompted in the Message window for a key to bind to the last macro
entered.

2. Press the key to be bound.
The key remains bound only until you log out, unless you explicitly save it.

Saving the macro

1. Create a Command window.
2. Enter macro.save and press

All macros currently bound to keys are permanently saved.

RATIONAL 71/er | 61

Chapter 16. Customizing Your Workspace

Defining Your Own Login Procedure
Begin in your home library.

1. Create a procedure named Login with the commands you want to have executed
each time you log into the Environment.

See “Creating an Ada Subprogram” in Chapter 8 for details.
2. Promote the procedure to the coded state:

The Login procedure is now executed automatically as part of the login process.

Rebinding Keys
Before starting, you may want to press to see if the key is already bound.

You can rebind commands to keys in one of two ways.
Begin in any window.

Rebinding temporarily

1. Create a Command window:

2. Enter key.define and press

3. At the Key_Name prompt, enter the key you want to rebind to the new command.

If you do not know the name of the key, press and then press the key
for which you want to know the name. The key name for that key is displayed
in the Message window.

4. At the Command_Name prompt, enter the name of the command you want bound
to this key and press

The new key binding is in effect until you log out.

Rebinding permanently

Begin in your home world.

1. Create a procedure named Rational_Commands by copying the text from the
template in !Machine.Editor_Data.Rational _User_Commands into an Ada win-
dow.

See “Creating an Ada Subprogram” in Chapter 8 for details.

2. Edit the body of Rational_Commands so that the case statement contains al-
ternatives for those keys you want to rebind.

3. Promote the procedure to the installed state:

The changes will be in effect when you next log in.

62 7/1/87 BA\TlONAL

Chapter 17. Using CMVC

CMVC is an abbreviation for Configuration Management and Version Control.

Creating a Subsystem
Begin in the library that is to contain the subsystem.

1. Create a Command window:
2. Enter cmvc.initial and press
3. At the Subsystem prompt, enter the name of the subsystem and press

The command generates logging messages to the /O window. When the command
completes, the subsystem appears in the library. It contains an initial view called
Rev1_Working.

Adding, Changing, or Deleting Ada Units in a View

Begin in the view’s world (for example, Revl_Working).

1. Go to the directory called Units.
2. Add, change, or delete Ada units as necessary.

Note: You cannot change controlled objects unless they are checked out.

Making Ada Units Controlled

Begin in the units directory for the view containing the units to be controlled.

1. Create a Command window:
2. Enter cmvc.make_controlled and press
3. At the What_Object prompt, enter the wildcard ? and press

The command generates messages to the I/0 window. All units in the view are now
controlled.

Note: If units are later added to the view, they will not be controlled unless you
perform the above operations again.

RATIONAL 7/1/er 63

Chapter 17. Using CMVC

Making a Subpath
Begin in the subsystem.

1. Place the cursor on the working view for the path from which the subpath is to
be created (typically, Revn_Working).

2. Create a Command window:
3. Enter the command cmvc.make_subpath and press

4. At the New_Subpath_Extension prompt, enter the name of the subpath (for
example, the name of the developer who will be working in the subpath) and

press

The command displays messages in the I/O window. When it completes, a new view
appears in the subsystem that is the working view for the subpath. This view has
a name of the form Pathname_Subpathname_Working.

Checking Out a Unit for Changes

Begin in the unit to be changed.

1. Press: [Prompt For] = [Check Out]
The check-out command appears in a Command window.
2. At the Comments prompt, enter the reason for the change and press

The command displays its output in the Message window. When it completes, the
unit can be modified.

Checking In a Unit after Changes

Begin in the unit to be checked in after changes.

1. Press: [Frompt For] - [Check In]

The check-in command appears in a Command window.
2. At the Comments prompt, enter a summary of the changes made and press
The command displays its output in the Message window. When it completes, the

unit can no longer be changed and a new generation will have been created for the
unit.

64 7/1/87 E)ATIONAL

Chapter 17. Using CMVC

Making a Frozen Release

Begin in any library in the working view to be released or in the world for the
working view. All controlled units in the view must be checked in.

1. Create a Command window:

2. Enter cmvc.release and press

The command generates messages to the I/0 window. When it completes, a new
view, which is a frozen copy of the working view, appears in the subsystem world.

The Environment automatically generates a release number. The form of the name
of the released view is Pathname/Subpathname_n—m.

Note: Since the released view is frozen (units cannot be edited, promoted, and so
on), be sure that the units in the working view are at the proper state (typically
coded) before releasing.

Accepting Changes
Begin in the world of the view you want to make current.

If you do not want to accept any changes that will cause units sn your view to be
demoted ‘

1. Place the cursor on the first line of the library display.

Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Accept changes:
The command displays its output to the Message window. All objects in the view

are updated to the most current generation unless updating them causes demotions
in your view.

If you want to accept all changes even sf they cause unils sn your view to be demoted

1. Place the cursor on the first line of the library display.

Note: If you want to accept changes only for a specific unit, you can place the
cursor on the library entry for the unit you want updated instead.

2. Get the command to accept changes in a Command window: [Prompt For] - [Accept Changes]
3. At the Allow_Demotion prompt, enter true and press

The command displays its output. All objects in the view are updated to the most
current generation.

RAT]ONAL 7/1/87 65

Chapter 17. Using CMVC

Getting Information

Determining out-of-date units in a view

Begin anywhere in the view.
1. Ask for a list of units that are out of date:

The list of units that are not the most recent generations available are displayed in
the 1/0 window.

Determining units that are checked out in a view

Begin anywhere in the view.

1. Ask for a list of units that are checked out in the view: [Checked Out In View]

The units that are checked out in the view are displayed in the 1/O window.
Determining units you have checked out (any view)

Begin anywhere in a view that defines the set of units that you may have checked
out in that view or other views sharing its reservation tokens.

1. Ask for the units that you have checked out: [Checkea Out By User]

A list of units you have checked out and the views to which they are checked out is
displayed in the 1/O window.

Change history for a unst

Begin in the unit of interest.

1. Create a Command window:
2. Enter cmvc.show_history_by, press [Compiete], and then press

The history for the unit is displayed in the I/0 window.
General information on a unit

Begin in the unit of interest.
1. Ask for information:

The command generates output to the I/0 window. This output tells you what views
share reservation tokens (this is, are subject to check-in/check-out synchronization
of changes). It also tells you what generation of the unit you have and how many
generations exist, who has the unit checked out, and so on.

66 7/1/87 BA\TIONAL

Chapter 18. Networking

Logging Into Another System with Telnet
Begin in any window.
1. Create a Command window:

2. Enter telnet.connect and press

3. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes) and press

Messages appear in the 1/O window, the screen clears, and you are now connected
to the remote machine and can begin logging in.

Interrupting a Telnet Session

Interrupting a Telnet session leaves the connection intact and takes you back to
your original machine. You can later resume the interrupted session to continue
work on the remote machine.

Begin in a Telnet session connected to a remote machine.
1. Interrupt the session:

The connection to the remote is interrupted and your original R1000 session reap-
pears on the screen.

Note: If you are using a Rational Terminal and you are logged into another R1000
with Telnet, your terminal will be in Rational mode. In this mode the key is

[Control]l Meu[[Mtrk],

Note: If the above steps do not work, the key that interrupts Telnet sessions may
have been changed from to another key. Check with your system manager.

R)ATIONAL 7/1/87 67

Chapter 18. Networking

Resuming a Telnet Session
Begin in any window.
1. Create a Command window:

2. Enter telnet.connect and press

3. At the Remote_Machine prompt, enter the name of the remote machine with
which the connection was interrupted (enclosed in double quotes) and press

The screen clears and the interrupted connection with the remote system is resumed.

You have to press the key that redraws the screen on the remote system (if the
remote machine is another R1000, press to redraw the screen).

Terminating a Telnet Session
If you are still connected to the remote machine

1. Log off the remote machine.

For most remote Telnet servers, this terminates the Telnet session and returns you
to your original session.

If you are not returned to your original session, interrupt from the session as de-
scribed above and then follow the steps below.

If you are in"your original R1000 session

Begin in any window.

1. Create a Command window:
2. Enter telnet.disconnect and press

3. At the Remote_Machine prompt, enter the name of the remote system to which
the session you want to terminate is connected.

4. Execute the command:

The Telnet session is disconnected.

68 7/1/87 E)ATIONAL

Chapter 18. Networking

Copying a Single Object or Library onto Another R1000

Copying into an sdentical library structure keeping the same simple names for the
stems copsed

Begin in the object or the library to be copied onto the other machine. Make sure

that there are no selections in this window.

1. Create a Command window:

2. Enter archive.copy and press

3. At the Use_Prefix prompt, enter the name of the machine onto which to copy
prefixed with the string “!'”—for example, “!!m1”.

4. Execute the command:

The object and its children, or the library and its contents, are copied onto the
designated machine in the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on the
target machine, it is created automatically.

Copying into another lsbrary structure keeping the same ssimple names for the stems
copted

Begin in the object or the library to be copied onto the other machine. Make sure
that there are no selections in this window.

1. Create a Command window:

2. Enter archive.copy and press

3. At the Use_Prefix prompt, enter the name of the machine and the pathname
of the target library to contain the object or library—for example, “!!m1!users-
.8jl.example”.

4. Execute the command:
The object and its children, or the library and its contents, are copied onto the
designated machine in the specified library structure and with the same names as

on the source machine. Note that if the library structure does not already exist on
the target machine, it is created automatically.

RAT'ONAL 7/1/87 69

Chapter 18. Networking

Copying Objects or Libraries from Another R1000

Copying into an identical library structure keeping the same simple names for the
stems copsed

Begin in any window.

1. Create a Command window:

2. Enter archive.copy and press

3. At the Objects prompt, enter the name of the machine and the pathname of
the object from which to copy—for example, “!!m1!users.sjl.some..object”.

4. Execute the command:

The object and its children, or the library and its contents, are copied from the
designated machine into the same library structure and with the same names as on
the source machine. Note that if the library structure does not already exist on
your machine, it is created automatically.

Copying into another library structure keeping the same ssmple names for the stems
copsed

Begin in the library to contain the copied item.

1. Create a Command window:
2. Enter archive.copy and press

3. At the Objects prompt, enter the name of the machine and the pathname of
the target library to contain the object or library—for example, “!!m1tusers.sjl-
.example”.

4. At the Use_Prefix prompt, enter $

5. At the For_Prefix prompt, enter the name of the library in which the ob-
ject is located on the source machine without the machine name—for example,
“lusers.sjl”.

6. Execute the command:
The object and its children, or the library and its contents, are copied from the

designated machine into the specified library structure and with the same names as
on the source machine.

70 7/1/87 BA\TIONAL

Chapter 18. Networking

Copying Objects onto a Non-R1000 System

Begin in the object to be moved.

1. Create a Command window:
2. Enter ftp.put and press

3. At the To_Remote_File prompt, enter the simple name (without a directory
name prefix) of the object on the target system.

4. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

5. At the Username prompt, enter your username on the remote machine (enclosed
in double quotes).

6. At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

7. If you want the object to go to a directory on the remote machine other than
your home directory, at the Remote_Directory prompt, enter the full pathname
of the directory to contain the object on the target (enclosed in double quotes).

8. Execute the Command:

Copying Objects from a Non-R1000 System
Begin in the library to contain the object to be moved.

1. Create a command window:

2. Enter ftp.get and press

3. At the From_Remote_File prompt, enter the simple name (without a directory
name prefix) of the object on the remote system.

4. At the To_Local_File prompt, enter the name you want the object to have on
your system.

5. At the Remote_Machine prompt, enter the name of the remote machine (enclosed
in double quotes).

6. At the Username prompt, enter your username on the remote machine (enclosed
in double quotes{ '

7. At the Password prompt, enter your password on the remote machine (enclosed
in double quotes).

8. If the object on the remote machine is not in your home directory, at the Re-
mote_Directory prompt, enter the full pathname of the directory on the remote
machine containing the object.

9. Execute the command:

RATIONAL 7/1/87 71

RATIONAL

