Rational Compilation Integrator

User’s Manual

RATIONAL

"+ Product Number: 4000-00500
Rev. 2.0, December 1992 (Software Release 2.0)
NS o i

This document is subject to change without notice.

Note the Reader’s Comments forms at the end of this book, which request the
user’s evaluation to assist Rationak:in preparing future documentation.

ey

h-

e RS G LA | ‘2 """ a
AIX and RISC System/6000 are trademarks and IBM and MVS are regxstered {rademarks of
International Business Machines Corporation.

DEC, VAX, ‘arid 'VMS are trademdrks of Digital Equipment Corporation.
I AR . RS

Rational and R1000 4ré registered trademarks and Rational-€otipilation Integrator and
Rational Environmeg\g are .»u:adgmarks of Rational.

“UOL T

UNIX is a reglstered trademaxik L,UNAX System Iaboratones Inc

Verdixis a registered trademark of Verdix Corporation. .z
P T e -, N [A
S Teg o e e . i

Rational, 3320 Scott Boulevard, Santa Clara, California 95054-3197

Preface

The Rational Compilation Integrator User’s Manual présents information about the
‘— . . Rational Compilation Integrator™ (RCI), a software product tht canbe added to the
basic Rational Environment™.

The RCI enables you to use the Rational Environment to develop application pro-
grams that are compiled and executed on other platforms. The RCI integrates the
Rational Environment’s compilation and library systems wnh the following compo-
nents of the remote compilation environment:

s The third-party vendor compilation system running on the remote platform
s The library system provided by the operating system on that remote platform

The RCI allows application developers to perform the following:

n Take advantage of the Rational Environment facilities for editing, semantic
: checking, library management, and configuration management

= Control remote compilation from the Rational Environment

= Manage consistency between the Rational Environment library system and the
library system on the remote compilation platform

This manual addresses software designers and engineers responsible for implement-
ing target programs using Ada from a Rational R1000® Development System host.
The reader is assumed to be knowledgeable about the Ada programming language
and the Rational Environment. This manual is intended for use with the Rational
Environment Reference Manual.

This manual provides instructions for using an RCI extension, the product that results
from creating a customized RCI.

CONVENTIONS USED IN THIS MANUAL

L

The names of objects and the procedures for using the RCI are determined by the

sy, Customization extension of the RCI and by the remote operating system for which
the extension is built. Therefore, this manual can provide only examples of what
named objects might look like and of what procedures might be followed.

Throughout this manual, the term Custom_Key refers to the target key named by the
customizer; the term Custom_ refers to the name of a particular extension, usually
the same as the Custom_Key. ~ ¢

Space is provided in Appendix C, “Extension.Tables;” for the customizer to fill in
valid values. This manual references these tables in appropriate places in the text.

RATIONAL Dpecember 1992 iii

O

RCI User’s Manual

AUDIENCE AND ORGANIZATION

The following subsections describe the audience and the sections of this manual that
are addressed to those users. All users may find helpful information in Appendix D,
“Quick Reference for Parameter-Value Conventions.”

System Administrator

s . .. If you are responsible for setting up and maintaining hardware and software, you
‘ ~w. .« - should read:

v77 m Chapter 1, “Key Concepts”: Introduces the concept of remote compilation. Read
' - the “Setting Up For Remote Compilation: An Overview” section and the “Soft-
ware Components: An Overview” section.

m Chapter 2, “RCI Setup Operations™: Describes the steps for setting up the RCI
environment. Of particular interest are the “Verifying the RCI Installation,”
“Enabling Remote Extensions Management,” and “Setting Up Remote Communi-
cations,” sections. The rest of the chapter deals with setting up library structures,
which can be performed by the user.

» Appendix A, “Location of Components™: Lists the location of important compo-
nents of RCI software.

First-Time RCI User

If you are unfamiliar with the RCI, or if you want to refresh your memory on using
the RCI, you should read:

m Chapter 1, “Key Concepts”: Introduces the concept, of remote :cqtfnPsiklggpn,ydraws
parallels between the traditional development cyéle anti the ‘native R1000 devel-
opment cycle, introduces the integrated development cycle, outlines the soft-
ware organization of the RCI; defines terminology,:and gives overviews of
setting up and developing in the RCI environment.

m Chapter 2, “RCI Setup Operations™: Describes the steps for setting up the RCI
environment. These are operations that need to be-done only once or occasion-
ally. Some sections are of most interest to a system manager or administrator; the
sections “Setting Up Model Worlds,” “Preparing To Set Up Library Structures,”
and “Setting Up; Library:Structures,” contain information useful to users even if
the user does not actually create library structures.. .

s Chapter 3, “Getting Started”: Assists with the verification of RCI setup, explains
the differences between R1000 and remote compilation, steps through the
_ remote compilation process from creating code to, executing it on the target, and
. explains what happens during that process.

Standard RCI User™ £

If you have proérés'sed beyond the first-time user stage, you may be interested in

the following chapters: '

iv RATIONAL December 1992

Preface

m Chapter 4, “Using Batch Processing with the RCI” Describes using batch opera-
tion with the RCL

~ m Chapter 5, “Maintaining File Consistency”: Describes how consistency is main-
tained between units in different views on the host and between units on the
host and remote machine.

» Chapter 6, “Library Management”: Describes how joined views are kept consis-
tent on the host and explains how the RCI allows you to maintain consistency
e - between host views and remote libraries.

» Chapter 7, “Using Non-Ada Code with the RCI”: Describes how to create, use,
and maintain units in languages other than Ada under the control of the RCIL.
= m Chapter 8, “Package Rci”: Provides conceptual information about the commands
in package Rci and an alphabetic listing and description for each command.
~aca:2 m Chapter 9, “Package Rci_Cmvc”: Provides conceptual information about the com-

s»" mands in package Rci_Cmvc as well as an alphabetic listing and description for
each command.

e
%4

s Chapter 10, “Package Cmvc”: Provides conceptual information about the com-
- 9 mands in package Cmvc as well as an alphabetic listing and description for each
command that has specific RCI extended functionality.

<+ m Appendix B, “Command Summary”: Provides command syntax for commands in
packages Rci and Rei_Cmve.

RCI Customizer

Appendix C, “Extension Tables,” provides blank tables as a convenient way of pro-
viding extension information to the end user. Fill in these tables with the appropriate
information as you work through the customization procedure.

RATIONAL CUSTOMER SUPPORT

Gy T g B
SpiTopoecdr 0 Line R

= . Rational customer support pro‘videsvtechrﬁcal assistance by telephone, fax, fax on
demand, and mail (including electronic mail).
§ b oy R Ty ey,

e’

Telephone and Fax

.

“7 i Telephone support is available Monday through Friday (except holidays) from 6:00
AM. to 6:00 p.M. Pacific time in the United States. International telephone-support
- v " 1. hours span the normal local business. hours.

" Sometimes Rational customer-Support engmeers will ask you to fax information to
“help them diagnose problems You dari also fax questions when that is more conve-
nient for you than using the’ telephone Please mark faxes “Attention: Customer Sup-
port” and be sure to include your return address and telephone number.

TR DL i

The telephone and fax numbers for Rauonal customer support are listed in the fol-
- lowing table. The numbers include the country code, shown with a plus sign, and
the area code, shown in parentheses. You do not need to dial these codes for local
Caus. . .

RAT'ONAL December 1992 \'4

- RCI User’s Manual

vi

Country Telephone Number Fax Number
France +33 (1) 47-1741-77 +33 (1) 47-1741-55
Germany +49 (89) 797-021 +49 (89) 799-343
Sweden +46 (8) 761-0600 +46 (8) 760-0026
Taiwan +886 (2) 720-1938 +886 (2) 723-3899
United Kingdom +44 (962) 877144 +44 (962) 870705
United States +1 (800) 433-5444 +1 (408) 496-3636

Mail

You can get technical assistance on Rational products by sending electronic mail to
support@rational.com. Electronic mail is acknowledged within one working day of
its arrival at Rational.

You can also correspond with Rational at the following mailing addresses. Please
mark correspondence to expedite its routing once it reaches Rational—for example:
“Attention: John Smith” or “Attention: Customer Support.”

Rational Mailing Addresses

Rational International
1 Porchester St.
Campbelltown SA 5074
AUSTRALIA

Rational Scandinavia AB
Veddestavigen 24

$-175 62 Jarfilla

SWEDEN

Rational SARL
Immeuble Delalande
16, rue Henri Régnault
La Défense 6

Rational International
3F-5, Jardine Fleming Bldg.
547, Kuang Fu S. Road
Taipei, Taiwan

F-92411 Courbevoie Cedex R O.C

FRANCE

Rational GmbH Rational Technology, Ltd.
Rosenstrasse 7 28 Temple Street
Grosshesselohe Brighton

D-8023 Pullach im Isartal E. Sussex BN1 3BH
GERMANY UK

Rikei Corporation Rational

Shinjuku Nomura Bldg. 3320 Scott Blvd.

1~26-2 Nishi-Shinjuku
Shinjuku-ku, Tokyo 163
JAPAN

Santa Clara, CA 95054-3197
U.S. A

RATIONAL pecember 1992

Preface

. QUESTIONS AND COMMENTS

g

If you have questions about using your Rational products, contact your Rational rep-
resentative. If you would like to make comments about the usefulness or contents
of this manual, use the forms at the end of the manual and send these to the Rational
Publications Department, 3320 Scott Boulevard, Santa Clara, CA 95054-3197.

RATIONAL pecember 1992 vii

Contents

PREFACE

Conventions Used in This Manual i
Audience and Organization ii
System Administrator i
First-Time RCI User ii
Standard RCI User i
RCI Customizer iii
Rational Customer Support iii
Telephone and Fax iii
Mail iv
Questions and Comments v

1 KEY CONCEPTS

Overview of the RCI 1
Comparing Development Cycles 2
‘ Traditional and Native R1000 Development Cycles 3
Integrated Development Cycle 3
Examples of Software Development Cycles 4
Setting Up for Remote Compilation: An Overview 4
Setting Up the Network and Hardware 5
Setting Up the Remote Compilation Environment 5
Setting Up the Rational Environment 6
Software Components 6
Library Structures 6
Comparing Features of Rational Environment and RCI Compilation 7
Semantic Checking 7
Pragmas and Other Implementation-Dependent Features 7
Generics and Inlined Subprograms 7
Packed Records and Arrays 8
Record Representation 8
Options and Switches 8
Incremental Operations 8
Executable and Object Modules 9
Output 9
Command Windows 9
Simultaneous Compilations 9
Using the RCI: An Overview 10
Developing and Executing Code on the Host 10
Advantages of the R1000 Development Cycle 10
Moving to the Integrated Development Cycle 10
. Developing and Executing Code for the Target Machine 11

RATIONAL December 1992

RCI User’s Manual

Software Components: An Overview 11
General-Purpose Environment Software Components 12
RCI-Specific Software Components 12
RCI Compilation Job 12
RCI User Interface 13
Customization Components 13
Non-Rational-Supplied Components 14
Terminology 14

2 RCI SETUP OPERATIONS 17

Running the RCI 17
Starting the RCI 17
Verifying the RCI Installation 18
Killing the RCI 18
Enabling Remote Extensions Management 18
Setting Up Remote Communications 19
Enabling Remote Access for All R1000 Users 19
Enabling Telnet Ports for RCI 20
Specifying Remote Login Information 20
Remote Machine Name 20
Remote Username and Password 21
Remote Directory 22
A Suggested Strategy 23
Setting Up Model Worlds 25
Features of a Library 25
Features of a Model World 25
Target Keys 25
Library-Switch Files 27
Links 27
Predefined Model Worlds 28
Creating a Project-Specific Model World 28
Preparing to Set Up Library Structures 28
Overview 29
Understanding Subsystems 29
Comparing Types of Views 31
R1000 Views 31
RCI Views 31
Choosing Library Structures 31
Using the R1000 Native Development Cycle 32
Enforcing Target Independence 32
Duplicating Structures on the Compilation Platform 32
Dividing a Project into Logical Subcomponents 32
Examples of Library Structures 33
A Simple Example 33
A More Complex Example 33
Setting Up Library Structures 35
Creating a Subsystem and an R1000 View 35
Displaying Defaults for Remote RCI Names 36
Creating a Subsystem and an RCI View 36
Creating Additional R1000 Views 38
Creating New RCI Views 38
Creating an RCI Spec View 40

X RATIONAL December 1992

Contents

' 3 GETTING STARTED | 43

Setting Up Your Integrated Compilation Environment 43
Verifying the R1000 Library Setup 44
Verifying the Remote Library Setup 45
Setting Session and Library Switches 45
Viewing Switches 48
Changing Switch Values 49
Turning Off Remote Compilation 49
Displaying Remote Process Commands 49
Choosing Interactive or Batch Operations 49
Controlling Batch Unit Transfers 49
Controlling Remote-Directory Creation 50
Setting Switches for Remote Communication 50
Setting Switches for Target-Compiler Operations 50
Saving Assembly Source Code and Ada Listing Files 51
Specifying Unit-Specific Compiler Options 51
Creating an Ada Program for Remote Compilation 52
Creating an Ada Main Unit 53
Using Pragma Main 53
Using Pragma Inline 54
Using Representation Clauses 54
Using Implementation-Dependent Pragmas 54
Remotely Compiling and Linking a Simple Ada Program 55
Creating an Executable Program 55
Output from the RCI Compiler and Linker 56
. Displaying Remote Commands 56
Displaying Remote Standard Output 56
Remote Files and Names 56
Host Associated Files 57
What Happens During the Installing Step 58
What Happens During the Coding Step 59
What Happens During the Linking Step 61
Demoting a2 Unit 62

4 USING BATCH PROCESSING WITH THE RCI 63

Overview of Batch Mode 63
Compilation and Associated-File Retrieval 63
The Batch Script 64
Remote Library and Consistency Management 65
When to Use Batch Mode 65
Mixing Batch and Interactive Operations 66
Preparing to Use Batch Mode 66
Setting Switches That Control Batch Operations 67
Putting Batch Mode into Effect 67
Verifying Batch Registration 67
Using Batch-Mode Operations 68
Building Batch Scripts 68
Building Batch Scripts for Networked Environments 68
. Building Batch Scripts for Tape Environments 70
Checking the Build State 71

RATIONAL December 1992 xi

RCI User’s Manual

Downloading Host Units 71
Executing a Batch Script on the Compilation Platform 71
Retrieving Associated Files 72

Troubleshooting Batch-Mode Operations 72

5 MAINTAINING FILE CONSISTENCY 75

Consistency between Views on the Host 75
Copying and Joining Units from an RCI to an R1000 View 75
Updating All Units in a View 75
Updating a Single Unit 76
Copying and Joining Units from an R1000 to an RCI View 76
Consistency between Host and Remote Units 76
Keeping Code Consistent 76
Maintaining Consistency in Batch Mode 77
Determining Consistency of Host and Remote Units 78
Replacing Host Units with Updated Remote Units 78
Uploading a New Remote Unit to the Host 80

6 LIBRARY MANAGEMENT 83

RCI Library Model 83
Overview 84
Definitions 84
Examples 84
Limitations and Restrictions 85
Management of Remote Libraries 87
Automatic Creation 87
Explicit Creation 88
Building a Remote Library 88
Rebuilding an Existing Remote Library 88
Creating a Remote Library 89
Example of Library Creation 90
Removing Remote Libraries 91
Imports 92
Adding Imports 92
Removing Imports 93
Keeping Imports Consistent 93
Imports Example 94
RCI State Information 94
Where State Information Is Stored 94
When State Information Is Updated 94
Management of Subsystems and Views 95
Removing RCI Views 95
Creating Releases of Views 96
General Release Strategy 96
Remote Releases 96

xii RAT'ONAL December 1992

Contents

7 USING NON-ADA CODE WITH THE RCI 29

Using Non-Ada Units 99
Creating 2 Non-Ada Unit 100
Creating the Controlling Ada Unit (The Primary) 100
Creating the Non-Ada Source File 100
Viewing and Changing Secondaries 102
Viewing Secondary Relationships 102
Changing the Secondary File and Commands 102
Changing Text on the Host 102
Changing Text from the Remote Machine 103
Removing Secondary Relationships 103
Deleting the Primary or Secondary File 104
Changing Secondary Commands and Flags 104
Changing a Secondary’s Remote Command 104
Setting the Process_Primary Flag 104
Processing Secondaries 105
Promoting to Coded 105
Demoting to Installed 106
Example of Compiling Non-Ada Code 106

8 PACKAGE RCI

107

Operations for Batch Compilation 107
Operations for Non-Ada Units 108
Operations for Units 108

Operations for Unit-Compilation Options 109
Operations for Remote Library Management 109
procedure Accept_Remote_Changes 110
procedure Build_Remote_Library 112
procedure Build_Script 113

procedure Build_Script_Via_Tape 116
procedure Check_Consistency 118

procedure Collapse_Secondary_Referencers 120
procedure Create_Secondary 121

procedure Destroy_Remote_Library 124
procedure Display_Default Naming 125
procedure Display_Unit_Options 126
procedure Edit_Secondary 127

procedure Execute_Remote_Command 129
procedure Execute_Script 131

procedure Expand_Secondary_Referencers 133
procedure Link 134

procedure Rebuild_Remote_Library 135
procedure Refresh_Remote_Imports 136
procedure Refresh_View 137

procedure Remove_Secondary 138

RATIONAL December 1992 xiii

o

RCI User’s Manual

procedure Remove_Unit_Option 139
procedure Set_Process_Primary 140
procedure Set_Remote_Unit_Name 141
procedure Set_Secondary_Command 143
procedure Set_Unit_Option 144

procedure Show_Build_State 145
procedure Show_Remote_Information 147
procedure Show_Remote_Unit_Name 148
procedure Show_Secondary 149
procedure Show_Units 150

procedure Transfer_Units 151

procedure Upload_Associated_Files 153
procedure Upload_Unit 154

procedure Upload_Units 156

9 PACKAGE RCI_CMVC 157

RCI Commands for CMVC 157

Import Operations 170

Remote_Machine And Remote_Directory Parameters 158
procedure Build 159

procedure Copy 160

procedure Initial 161

procedure Make_Path 162

procedure Make_Spec_View 163

procedure Make_Subpath 164

procedure Release 165

10 PACKAGE CMVC 167

Library Operations 167
Consistency-Management Operations 168
procedure Abandon_Reservation 169
procedure Accept_Changes 170
procedure Build 171

procedure Copy 172

procedure Destroy_View 173
procedure Import 174

procedure Initial 175

procedure Make_Path 176
procedure Make_Spec_View 178
procedure Make_Subpath 179
procedure Release 180

procedure Remove_Import 181
procedure Revert 182

xiv RATIONAL December 1992

Contents

A LOCATION OF COMPONENTS

183

IModel Library 183

ITargets Library 183
Predefined Packages and Utilities ({Targets. Custom_Ke))
RCI Components (fTargets.Implementation) 184

183

B COMMAND SUMMARY

185

Package Rci 185
Package Rci_Cmve 189

C EXTENSION TABLES

193

Remote Program Libraries and Import Lists 193

Remote Command Names 193

Remote Filename Length 194

Host Switches and Target-Compiler Options 194

Package Standard Types 196

Predefined Libraries 196

Representation Clauses 197

Auributes 198

Pragmas 199
Implementation-Dependent Pragmas 199
Predefined Pragmas 200
Pragma Interface 200

Associated Files 201

Managing Remote Libraries 201
Creating Views and Remote Libraries 202
Creating Remote Libraries for Existing Views 202
Creating Remote Libraries Manually 203
Destroying Views and Remote Libraries 203
Controlling Host and Remote Imports 203
Compiling and Linking Remote Libraries 204
Releasing Views and Remote Libraries 204

RCI Batch-Compilation Support 204

Network-Communications Mechanism 205

Troubleshooting 205

D QUICK REFERENCE FOR PARAMETER-VALUE CONVENTIONS

207

Where to Look 207
Pathnames 208
Library.Resolve Command 208
Designation 208

Parameter Placeholders 208

RAT'ONAL December 1992

RCI User’s Manual

Special Names 209
Context Characters 210
Debugger Context Characters 211
Wildcard Characters 211
Substitution Characters 212
Set Notation 212
Indirect Files 213
Restricted Naming Expressions 213
Pattern-Matching Characters 214
Attributes 214

Attributes with Predefined Arguments
Options Parameter 221
Response Parameter 222

Response Parameter Options 223

216

INDEX

225

RATIONAL December 1992

Key Concepts

This chapter introduces the concept of remote compilation, draws parallels among
traditional, native Rational Environment™, and integrated development cycles, out-
lines the software organization of the Rational Compilation Integrator™ (RCD), de-

fines terminology, and provides overviews of setting up and developing in the RCI
environment.

Specifically, this chapter provides the following sections:
Overview of the RCI

Comparing development cycles

Setting up for remote compilation: an overview

Comparing Rational Environment and RCI compilation features
Using the RCIL: an overview

Software components: an overview

Terminology

OVERVIEW OF THE RCI

Integrated development is the process of designing, generating, and maintaining soft-
ware on one machine (the development platform or bos?) that is compiled on another
machine (the remote compilation platform or remote machine) under the control of
the host for eventual execution on a predetermined machine (the targed). The target
can be the same machine as the remote machine (with a native compiler) or a dif-
ferent machine for which the code was compiled (with a cross-compiler). Integrated
development uses the process of remote compilation to control the target compiler
and linker on the remote compilation platform. This manual refers to the platform
where compilation takes place as the remote compilation platform when discussing
compilation activities and as the remote machine when discussing network opera-
tions such as creating remote directories and downloading files.

Depending on the target compiler, this remote compilation process may need to be
handled in interactive mode, unit by unit, across the network, or in batch mode,
where all units are transferred in at the same time and a minimal number of calls are
made to the target compiler to process them.

To support this process, some sort of cross-system consistency management is also
necessary to ensure that library structures and code are consistent between the host
and remote compilation platform.

The RCI provides utilities to perform many aspects of integrated development
automatically.

Integrated development can be very effective—and sometimes necessary. Several
cases lend themselves to this approach:

RATIONAL pecember 1992 1

RCI User’s Manual

and operating systems. Developing software separately (on different host envi-
ronments) for each target could result in different program characteristics for
each target. Using one development host is an effective way to organize devel-
opment, standardize programs, provide a common user interface, and reduce
duplication of effort.

m The host may be more effective than the target for producing well-engineered
code on a tight schedule for large projects. The host’s advantage may come from
its specialization in development tasks or from limitations of the target—or both.

» The target may be unavailable during part of the project. The ability to develop
and test code on the host allows the project to proceed in a timely manner.

» In some projects, software must run on a variety of target-hardware architectures ‘

Rational’s RCI products provide the means to develop programs on the R1000%,
Rational’s software-engineering server, for a variety of targets, taking advantage of
the R1000’s specially designed software-engineering support environment. A large
portion of a project’s software can be developed and tested on the Environment. Tar-
get-dependent software can be developed and integrated on the Environment and
tested on the target. The RCI’s integrated approach is shown in Figure 1-1.

Remote compilation
Host platform Target

Control

Control

Downloading Downloading
and uploading

Figure 1-1 RCI Integrated-Development Approach

For source code that is either target-independent (portable) or target-dependent,
modifications made on both the Rational Environment development host and the
remote compilation platform can be managed efficiently for different targets.

COMPARING DEVELOPMENT CYCLES

A development cycle is a repeated series of operations within the software-develop-
ment process.

» A traditional cycle might include compiling, assembling, linking, loading, exe-
cuting, and debugging, all occurring on one machine.

= When code is developed entirely on the Rational Environment, the operations
differ enough from a traditional cycle to be called the native R1000 development
cycle.

s When code is developed on the Rational Environment host for execution on a

different machine, the compilation processes on both host and remote machine
make up the integrated development cycle. ’

RATIONAL December 1992

Traditional

Chapter 1: Key Concepts

These cycles are compared in the following subsections.

Traditional and Native R1000 Development Cycles

Depending on the tools you use, one operation may perform the equivalent of sev-
eral operations using different tools. For example, syntactic and semantic checking
can be performed as separate actions in the Rational Environment but may occur
during compilation on another system. As another example, coding an Ada unit in
the Environment may include both assembling and linking, which might require sep-
arate actions on another system.

Figure 1-2 illustrates a development cycle in terms of traditional operations and Envi-
ronment actions. There is no one-to-one correspondence between the operations of
the two development cycles; for example, the Environment steps labeled “check syn-
tax” through “code” cover the same underlying operations as compile, assemble, and
link in the traditional cycle.

Y

Edit

—

Compile

-

Assemble [amf Link | m{ Load | Execute [Debug

Native R1000

Y |

I I —

Edit

-

Check
syntax

Install
Edit || (check [» Edit |e €09 | Execute |m| Debug |e| Edit
semantics) (compile)

Figure 1-2 Traditional and R1000 Native Development Cycles (User’s Perspective)

The power of the native cycle lies in the user’s ability to return to the edit operation
and to perform the operations incrementally. For additional information on the
native R1000 development cycle, see the Rational Environment Reference Manual.

Integrated Development Cycle

In an integrated development cycle, some of the operations described above or parts
of them are carried out on the host in the same manner as for the native cycle, some
on the host with changes based on the intended target, and some on the remote
machine itself. In integrated development, the cycle includes additional communica-
tion operations: downloading and uploading (transferring code from the host devel-
opment platform to the remote compilation platform and vice-versa), host-remote
communication during the operations of remote compilation and remote linking,
and the transfer between host and remote machine of cross-system consistency-man-
agement information. The RCI automates these steps.

The recommended development cycle using the RCI begins with the native R1000
development cycle—that is, creating and testing code on the Rational Environment

RATIONAL December 1992 3

RCI User’s Manual

for target-independent operation. Then, when you are ready to test your code using
the target compiler on the remote compilation platform, the integrated development
cycle begins. You can repeat this process as you iteratively test your system. From
the user’s view, the integrated development cycle is very similar to the native cycle,
as shown in Figure 1-3.

1 I

| —

Edit g Check
syntax

Code
Install Execute Debug
Edit e (check e~ Edit _.(d?ev:nncl’ot:d,_. Rell_'n:te = (on remote#(on remote
semantics) compile) n machine) machine)

Figure 1-3 Integrated Development Cycle (User’s Perspective)

The relationship of various steps to the location in which they execute is discussed
in the next subsection. Applying the integrated development cycle is discussed fur-
ther in Chapter 3, “Getting Started.”

Examples of Software Development Cycles

The development cycles for the Rational Environment and for the RCI are shown in
Figure 1-4 so that you can compare the processes.

All operations in the native R1000 development cycle take place on the host, as
shown in the simplified portion of Figure 1-4 labeled “R1000: Native cycle.”

With the RCI, a native development cycle may first take place entirely on the host.
Then, as shown in Figure 1-4, the integrated development cycle begins, in which
compilation and linking take place on the remote compilation platform but are con-
trolled from the development host. Finally, execution and debugging take place
entirely on the remote machine. In addition, some of the features of configuration
management and version control (CMVC) are extended to maintain consistency
between the development and compilation platform for source code, object code,
and library structures.

R1000 Compilation platform

Cross-system
consistency
management

1| Download/Upload |4

Figure 1-4 Integrated Development Cycle for RCI

SETTING UP FOR REMOTE COMPILATION: AN OVERVIEW

Before you can use the RCI, the appropriate software components must be in place
and several switches and files must be set properly. The system administrator may
be responsible for some of the setup operations and the user for others. This section
provides an overview of:

RATIONAL December 1992

Host (R1000)

Chapter 1: Key Concepts

= Setting up the network and hardware
= Setting up the remote environment
m Setting up the Rational Environment

Figure 1-5 shows the location and relationship of components and library structures
discussed in the following subsections.

RCl components

Subsystem

View
Unit_A

source
Executable

Figure 1-5 Location of Components and Library Structures

Compilation platform Target (if different
(possibly final target) from remote machine)
Communications Communications
for control, " for control,
uploading, uploading,
downloading downloading
Control
Remote linker
Remote loader
Debugger
Directory
Download Unit_A source
Upload l Unit_A executable [Download

Setting Up the Network and Hardware

To use the RCI, the development host and the remote compilation platform must be
connected to the same network, and each machine must be provided with informa-
tion on how to find each other. For the Rational Environment to communicate with
the remote machine, the transport name map must be correctly set on the R1000 to
include the correct network name and address of the remote machine. This informa-
tion is described in more detail in the “Setting Up Remote Communications” section
in Chapter 2. Also refer to the File Transfer Protocol (FTP) book of the Rational Net-
working— TCP/IP Reference Manual for additional information.

Setting Up the Remote Compilation Environment

The RCI uses either DTIA or Telnet/FTP, selected in the customization template, to
communicate with the remote compilation platform. Communication requires net-
work servers operating on the development host and remote compilation platform.

Telnet/FTP customizations do not need the DTIA package.

For customizations that use DTIA for network communication, the Rational DTIA
server must be installed and running on the remote machine before remote compi-

RATIONAL December 1992 5

RCI User’s Manual

lation can take place. The RCI automatically loads and runs the DTIA remote-oper-
ations package for DTIA extensions. ‘

For additional information, see the RCI installation notes and the “Verifying the RCI
Installation” subsection in Chapter 2.

Setting Up the Rational Environment

Setup in the Rational Environment involves making sure that the RCI software com-
ponents exist and are running on the R1000 and establishing library structures for
RCI development.

Software Components

The various levels of software required to develop software under the RCI are set up
during the RCI installation process. These components are described in “Software
Components: An Overview,” later in this chapter. Verifying their installation is
described in the “Verifying the RCI Installation” subsection in Chapter 2.

Library Structures

Development for the native R1000 and integrated development cycles takes place in
library structures (subsystems, paths, views, directories). For the RCI, subsystems are
the highest level of R1000 library structure, and development takes place in com-
bined views within the subsystems. Subsystems for the RCI are discussed in detail in
the “Preparing To Set Up Library Structures” and “Setting Up Library Structures” sec-
tions in Chapter 2.

When creating the R1000 library structures, you are saved from having to define
every aspect of the library by copying a model world that has already been defined
with defaults appropriate to the RCI. A model world provides:

= A target key that identifies the target for which code is to be developed and
determines what compilation system to use

= A library-switch file that defines how the RCI operates

= A set of external links that give visibility to predefined Ada units that reside out-
side the subsystem

Model worlds and their components are described in more detail in the “Setting Up
Model Worlds” section in Chapter 2.

Under the RCI, software is often developed in two roughly parallel libraries: one for
the native R1000 environment and one on the R1000 that targets the remote environ-
ment. The program library on the remote machine is associated with the R1000
remote-targeted library. Although you can make changes in the remote library

and then transfer them back to the host, this practice is not recommended during
development.

For example, if you were to develop an Ada main unit called Unit_A, you might first

create it and test it using Rational Environment utilities in a view with an R1000 target

key (an R1000 view). Later, you would use CMVC tools to copy the file into a view

with a Custom_Key target key (an RCI view), which would also create a copy of the

file in a directory on the remote machine. With the RCI cross-system consistency-
management tools, you could control consistency between the R1000 and remote .
libraries.

QATIONAL December 1992

Chapter 1: Key Concepts

. COMPARING FEATURES OF RATIONAL ENVIRONMENT AND RCI COMPILATION

The integrated RCI compilation system is similar to the native R1000 compilation sys-
tem from the user’s perspective. For both, Ada units exist in an archived, source,
installed, or coded state. For both, the Rational Environment manages all dependen-
cies and guarantees that all required units are available in the proper state.

The same compiler commands are used to control both compilation systems. See the
Editing Specific Types (EST) and Library Management (LM) books of the Rational
Environment Reference Manual for more information.

Since processing for remote compilation involves more than one machine, it is useful
to describe this processing in more detail. This is done in the “Remotely Compiling
And Linking A Simple Ada Program” section in Chapter 3.

The following subsections describe the differences between the native R1000 com-
pilation system and the RCI, citing references to further detail.

Semantic Checking

The RCI supports standard LRM Ada with some implementation-dependent features
for the chosen target. Implementation-dependent differences in Ada source code
input can be determined by comparing the implementation-dependent features
given in Chapter 13 and Appendix F for the R1000 in the Reference Manual for the
Ada Programming Language (Ada LRM) and those in the Appendix F of the Ada

. IRM for the target compiler. Some differences are discussed in the “Creating An Ada
Program For Remote Compilation” section in Chapter 3.

Because of these features, semantic checking, which occurs when a unit is promoted
to the installed state, differs slightly between the two compilers—for example, there
are differences in the pragmas that are recognized. The user interface is the same.
See the “Creating An Ada Program For Remote Compilation” and “What Happens
During the Installing Step” sections in Chapter 3.

Pragmas and Other Implementation-Dependent Features

Pragmas and attributes allowed by semantic checking are determined by the target
key. The definitions of packages System and Standard are also determined by the
target key, as are the definitions of other predefined packages such as Calendar and
Text_Io. The “Using Implementation-Dependent Pragmas” subsection in Chapter 3
lists the implementation-dependent pragmas, and Appendix A provides information
about the location of predefined packages.

Generics and Inlined Subprograms

The R1000 architecture supports shared-code generics so that multiple instantiations
of a generic share the same code. The target compiler may use macro expansion to
implement instantiations of generics, so multiple instantiations might yield multiple

‘ copies of the code. This could introduce additional dependencies not present in
R1000 compilation.

QATIONAL December 1992 7

RCI User’s Manual

Inlining of a subprogram whose body is in a different compilation unit could intro-
duce additional dependencies with the target compiler.

The target compiler may support inlining of subprogram calls to subprograms de-
fined in other units, which is not supported by the R1000 compiler.

Because of these additional dependencies, the demotion of a generic body or an
inlined body under the RCI automatically demotes all units containing instantiations
or inlined calls to the same state as the demoted unit. This action depends on the
scope of the command.

Packed Records and Arrays

For the R1000, all arrays and records are bit-packed by default because the storage
unit for the R1000 is a bit. For other machines, the storage unit may be different. For
some remote machines, for example, the storage unit is 2 byte and the default is
byte-aligned. Minimization of storage must be requested explicitly with pragma
Pack, a length clause, or a record representation specification. Further information
can be found in Appendix F of the Ada LRM for the target compiler.

Record Representation

In the absence of record representation specifications, the R1000 and target compil-
ers may lay out record fields differently. Using record representation specifications,
record layouts for the RCI compiler can be controlled precisely. See the “Using Rep-
resentation Clauses” subsection in Chapter 3 for further information.

Options and Switches

There are additional compiler-option switches for the RCI to control optional outputs
and target-compiler activity. See the “Setting Session and Library Switches” subsec-
tion in Chapter 3.

Incremental Operations

Incremental operations are possible in both native R1000 and RCI views, but there
are some differences in when they can be used.

In an R1000 view, coded package specifications can be changed incrementally. In
RCI views, incremental operations on coded objects are prohibited. The user can
perform incremental operations on units in the installed state in an RCI view, as in
an R1000 view.

RAT'ONAL December 1992

Chapter 1: Key Concepts

Table 1-1 shows the object state and the incremental operations that can be per-
formed in that state. For more explanation about performing incremental operations,
consult the Rational Environment Reference Manual.

Table 1-1 Incrememtal Operations

Object State Incremental Operation R1000 Custom_Key

Installed Add, change, or delete a statement, decla- Yes Yes
ration, or comment

Coded Add, change, or delete a comment any- Yes No
where or a declaration in a library-unit
package specification

Executable and Object Modules

For the native R1000 compilation system, any procedure in the coded state is exe-
cutable. The RCI compiles Ada programs for other processors; an executable module
is produced only when an Ada main unit is compiled and linked remotely.

Output

On the output side of the two compilation systems, the major result is the same: an
executable module. For the RCI, there are additional outputs and differences in out-
put that result directly from the different customization options and implementation-
dependent features.

The target compiler and linker produce files that can be retrieved from the remote
compilation platform and moved onto the host as files associated with the coded
unit. These associated files, such as the object module, source listing, and assembly-
language listing, are discussed in the “Output from the RCI Compiler and Linker”
subsection in Chapter 3.

Command Windows

A command in 2 command window attached to an RCI world or view runs an R1000
program in the same way that it does in any command window.

Simultaneous Compilations

Promotion and demotion operations that occur simultaneously in the same view may
be restricted due to the nature of dependency management, as described in the “Rci
State Information” section in Chapter 6.

In addition, the RCI that you are using may establish a set of fokens that limit the
number of simultaneous user operations. See the RCI release notes for further
information.

RATIONAL December 1992 9

RCI User’s Manual

USING THE RCI: AN OVERVIEW

10

After appropriate setup steps have been performed, you can begin RCI development
by creating and testing code on the host (the native development cycle) and then
move to the process of integrated development.

Read the “Comparing Features Of Rational Environment And Rci Compilation” sec-
tion before reading this section.

Overviews are presented in the following subsections for:

m Developing and executing code on the host
s Developing and executing code for the target machine

Developing and Executing Code on the Host

An optional way to begin remote compilation is to develop and test code as much
as possible in the native R1000 environment; this is referred to as the native R1000
development cycle. Do this in using views with an R1000 target key.

Often, code for a project is developed in at least two subsystem views: one with an
R1000 target key that contains code that is completely portable between the host and
any intended targets (an R1000 view), and one with the custom target key that con-
tains code intended for execution on the host or different targets (an RCI view).

The process of creating source code, checking semantics, installing, coding, execut-
ing, debugging code, and performing configuration management entirely on the
R1000 is described in the Rational Environment Reference Manual.

Advantages of the R1000 Development Cycle

If you choose to begin with the recommended R1000 development cycle, it allows
you to begin developing a project and testing code in the tightly controlled environ-
ment provided by Rational CMVC without concern for network connections, file
transfers between host and remote machine, or ensuring consistency between host
and remote machine,

Turnaround time for unit testing is much faster on the Rational host for a2 number of
reasons, including incremental compilation, run-time evaluation of dependencies,
and the absence of generic macro expansion.

Moving to the Integrated Development Cycle

After you are satisfied that the code has been verified as thoroughly as possible in
the native R1000 environment, the code in all R1000 subsystem views is copied to
and joined with RCI combined views (libraries with a Custom_Keytarget key) where
downloading of the code to the remote machine, remote compilation and linking,
and cross-system consistency management can occur. This copying of code is
described in “Setting Up Library Structures” in Chapter 2 and “Consistency between
Views on the Host” in Chapter 5. This begins the integrated development cycle,
described in the next subsection. As you test, you can repeat this process.

RAT‘ONAL December 1992

Chapter 1: Key Concepts

Developing and Executing Code for the Target Machine

The steps in the integrated development cycle for the chosen target, the second phase
of development, are very similar to those in the native R1000 cycle. The following
steps are described in more detail in Chapter 3, “Getting Started.”

» Creating/modifying Ada source: The facilities for producing Ada source are the
same as for the native R1000 cycle. Typically, much of the code for the target is
first developed in the native R1000 cycle and then ported to the integrated devel-
opment cycle.

» Checking syntax, checking semantics, and installing: The actions done by the
user are the same as for the native R1000 cycle; there is some difference, how-
ever, between how the native Rational Environment and RCI compilers do
semantic checking, because there are target-dependent semantics.

u Writing non-Ada subprograms (optional): Units in languages other than Ada for
the remote compilation platform can be written directly in an R1000 text file. The
text file (called a secondary) can be associated with an Ada unit (called a pri-
mary), which controls when the text file is automatically downloaded and com-
piled or assembled on the remote machine. This is described in more detail in
Chapter 7, “Using Non-Ada Code with the RCI.”

» Coding: In interactive mode, promoting a unit to the coded state automatically
downloads the Ada code to the remote machine if necessary, invokes the target
compiler, and produces an object module on the remote machine. This module
is ready to be linked. In batch mode, you create a batch script that controls the
remote compilation by identifying what units to transfer and how to handle the
target compiler. This compilation step can include automatic linking and execut-
ing the code. This process is discussed in Chapter 3, “Getting Started,” and Chap-
ter 4, “Using Batch Processing with the RCL.”

® Remote linking: After the closure of a main unit is coded, the user can generate a
target executable. The host user must invoke the remote link process, which cre-
ates an executable module from the compiled object modules. This is discussed
further in Chapter 3, “Getting Started.”

w Initiating execution and debugging: Execution and debugging of a program are
initiated directly on the remote machine using remote operating-system utilities.

u Maintaining consistency: Cross-system consistency management consists of RCI
extensions to the Rational CMVC facilities to maintain consistency between the
host and remote machine for libraries, Ada source, and non-Ada source files.
Some operations are performed automatically; some must be requested by the
user. This is described further in Chapter 5, “Maintaining File Consistency,” and
Chapter 6, “Library Management.”

SOFTWARE COMPONENTS: AN OVERVIEW

A remote compilation component is the software that carries out one or more oper-
ations under the control of the RCI. Remote compilation also uses other components,
such as an editor, that are not particular to RCI operations.

RATIONAL December 1992 11

RCI User’s Manual

12

General-Purpose Environment Software Components

The following facilities and components are not specific to the RCI but are required
for various RCI operations:

m The CMVC facility: See the Project Management (PM) book of the Rational
Environment Reference Manual, especially the “Using CDFs with Subsystems”
chapter.

s The library system: See the Library Management (LM) and Session and Job Man-
agement (SJM) books of the Rational Environment Reference Manual.

s Model worlds, including library-switch files and target keys that refer to the RCI:
See “Setting Up the Rational Environment,” in this chapter.

® Network-communication mechanisms: These provide RPC (Remote Procedure
Call) mechanisms for moving objects and executing commands between the host
and remote machine. This includes servers running on both the host and the
remote machine. For RCI these mechanisms include Telnet/FTP or DTIA, de-
pending on your extension.

RCI-Specific Software Components

The following components are tools that are particular to the RCI and run on either
the R1000 or the remote machine under the control of an RCI user:
= RCI compilation job
m RCI user interface: packages Rci and Rci_Cmvc
m Customization components
— Templates
— Predefined units
— Extensions
— Extensions job

Information on where to find these components is given in Appendix A.

RCI Compilation Job

The remote compilation job acts as a server through which all command and com-
pilation operations of the RCI are routed. It runs on the host environment and makes
the facilities of the RCI available to the host system. It coordinates the RCI compiler,
interfaces, customization extensions, and communications.

The remote compilation job controls the RCI compiler. The RCI compiler runs on the
R1000 host and is used in the installing and coding steps. It controls the downloading
and compilation of sets of interdependent Ada units and their secondary non-Ada
units. It invokes the target compilation system to produce object code.

The RCI compiler is similar to the native R1000 compiler from the user’s perspective.
Similarities and differences are discussed in “Comparing Features of Rational Envi-
ronment and RCI Compilation,” earlier in this chapter.

RATIONAL December 1992

Chapter 1: Key Concepts

RCI User Interface

The RCI provides user commands through two interface packages, Rci and Rci-
_Cmvc. Chapter 8, “Package Rci,” and Chapter 9, “Package Rci_Cmvc,” describe
these commands. In addition, the Rational Environment provides RCI support
through package Cmvc. The RCI extensions to CMVC are described in Chapter 10,
“Package Cmvc.”

These packages contain commands to handle RCI user operations. These operations
control RCI activities, including the following:

= Batch-compilation operations, which operate in batch mode rather than interac-
tive mode, build batch scripts to control compilation on the remote compilation
platform, transfer units either over the network or by tape, check the build state
of units, transfer associated files back to the host, and transfer units to different
machines. These operations are described in Chapter 4, “Using Batch Processing
with the RCL.”

m Cross-system consistency management involves tools, some automatic and some
that must be invoked by the user, that ensure a consistent development environ-
ment between the host and the remote compilation platform. Source and object
code, both Ada and non-Ada, can be maintained in a consistent state, as can
libraries and imports. Information about the state of consistency, called RCI state
information, is discussed in more detail in Chapter 5, “Maintaining File Consis-
tency,” and Chapter 6, “Library Management.”

The cross-system management tools are invoked from the R1000; there are no
tools on the remote machine. These tools establish parallel units and libraries and
detect state inconsistencies between the host and remote machine. Unlike CMVC,
they do not prevent inconsistencies from occurring.

» Host and remote library management is handled through packages Cmvc (or

Rci_Cmvc) and Rci, and operations enabled through library extensions in your
customization. Rci and Cmvce (or the corresponding Rei_Cmvc) commands con-
trol library operations that involve imports and views.
The Cmvc view-creation commands have corresponding Rci_Cmve commands to
allow you to directly specify the Remote_Machine and Remote_Directory param-
eters for remote libraries. The CMVC commands use a default RCI switch scheme
to create those values.

m Non-Ada unit support is provided through management of text files containing
source from other languages. The RCI uses the compilation dependencies of an
Ada host-environment unit to determine processing of this secondary text file on
the remote compilation platform.

Customization Components

The RCI includes software components to allow you to customize the facility for your
specific platform. As an RCI user, you do not need to work with these components.
Appendix C provides an area to record the specific details of your extension. For
additional information, see the user’s guide for your extension.

The customization components contain the following elements:

n The RCI customization templates provide a framework to define the characteris-
tics of your target compiler, remote operating system, and network communica-

RATIONAL December 1992 13

RCI User’s Manual

tions mechanism. The RCI uses this information for semantic checking, construc-
tion of remote commands and libraries, remote naming of files, and network com-
munication protocols. Your customizer uses these templates to create an RCI
environment for your specific target compilation system and platform.

n The predefined library units, such as Text_lo, are as specified in Annex C of the
Ada LRM. The host environment needs access to LRM-defined packages for the
target compilation system to use for semantic checking. Your customizer creates
these packages on the host by entering the contents printed in the Ada LRM for
your target compilation system.

Caution: 1t is illegal to copy or upload these packages from the target compilation
system. Contact your compiler vendor for information about your license and
restrictions.

» The library management and compilation extensions allow the customizer to
program additional operations involving remote library management (build,
rebuild, and destroy remote libraries) and compilation (promote and demote).

» The extensions job enables library management and compilation extensions. This
job is run automatically when the RCI compiler job runs.

Non-Rational-Supplied Components

The following components are invoked by the RCI but are not supplied by Rational.
They are assumed to exist on the remote compilation platform as described in the
RCI installation instructions:

m Remote compiler: This is the target compiler, which runs on the remote machine.

® Remote linker: This is the part of the target compilation system that links object
modules.

TERMINOLOGY

14

Ada LRM: Reference Manual for the Ada Programming Language.

batch mode: The mode in which coding units on the host does not cause remote
compilation to occur.

CMVC: Configuration management and version control across objects in the Rational
Environment.

coding: The process of promoting a unit to the coded state in the Rational Environ-
ment, which downloads source code to the remote machine and invokes the target
compiler to produce machine-dependent object code. Under batch mode, coding a
unit simply causes the RCI to record the coding time in the state information for that
unit.

compilation platform: The machine that hosts the compiler controlled by the RCIL.

cross-system consistency management: Consistency management across objects
in the Rational Environment and remote libraries.

Custom_Key: The compilation component of the target-key name as defined by the
RCI customizer; for example: 1186_Vms_Ddc.

RATIONAL becermber 1992

Chapter 1: Key Concepts

downloading: The process of transferring an object from the host to the remote
machine or to the target machine.

DTIA: Distributed tool-integration architecture, a Rational-supported network com-
munication mechanism.

executable module: Code that has been compiled and linked and can be executed
as a stand-alone application.

extension: The RCI development environment produced for a specific remote com-
pilation platform and target. This is done through customizing.

FTP: File Transfer Protocol, a bidirectional mechanism for file transfer used to move
text and binary data files between two or more machines.

host: The primary development and testing machine in a remote compilation envi-
ronment, usually the R1000.

installing: Promoting a unit from the source state to the installed state, during which
semantic checking takes place.

integrated development cycle: The process of using the RCI to create, manage,
compile, and link code using both the host and remote machines to produce exe-
cutable units for the target machine.

interactive mode: The mode in which coding units on the host causes the RCI to
download and compile those units on the remote compilation platform.

joined: Files that represent the same code in two views on the host, where package
Cmvc allows changes to only one copy at a time.

module: The file or set of files that, when compiled, produces a single object
module.

native R1000 development cycle: The creation and testing of code in a Rational
Environment library that contains an R1000 target key—that is, the application is
intended to run on the R1000 rather than on the target.

object module: A binary file produced by a compiler or an assembler that contains
code, data, and relocation information.

primary: An Ada unit on the host that is associated with one or more secondary
text files; the primary is used to determine the compilation ordering of the second-
aries but is not (usually) itself compiled.

program: The set of modules that, when linked, results in a single executable
module.

R1000 view: A view with an R1000 target key.

RCI path/view: A view with a target key defined by the particular customization of
the RCI (the Custom_Key target key).

remote compilation platform: The machine that hosts the compiler controlled by
the RCI; same as compilation platform.

remote compilation system: The compilation system running on the remote com-
pilation platform.

remote import list: A method on the remote machine of providing visibility to code
outside a specific library (referred to in the Rational Environment as /inks). For some
compilers, this is an editable text file known also as the Lbrary list file.

RATIONAL December 1992 15

RCI User’s Manual

16

remote library: A library structure on the remote machine that often consists of a
directory and its enclosed remote program library and remote import list.

remote linker: The linker on the remote machine that is controlled by the Rci.Link
command.

remote machine: The machine that hosts the target compiler controlled by the RCL.

remote program library: A library on the remote machine containing executable
modules.

secondary: A text file on the host that is associated with an Ada-unit primary; the
text file (usually) contains source code that can be compiled or assembled on the
remote machine but not on the host; the associated primary determines the method
and order of the secondary’s compilation.

target: The machine on which remotely developed code ultimately executes.

target compilation system: The compiler on the remote compilation platform
(remote machine) that is controlled by RCI operations. The compiler produces exe
cutable modules for the target machine.

¥

target-dependent: Commands or code that executes correctly only for a specific
target or that depends on features of a given target.

target key: A piece of information associated with each view that determines the
target-code generator and other operations that take place in the view. RCI target
keys contain information included in the compilation component of the target-key
name, including target architecture, remote operating system, and compiler vendor.
A target key consists of two components: a compilation component, which provides
compilation information, and a design component, which defines what program
design language to use.

Telnet: A bidirectional network communications mechanism used to establish con-
nections between machines.

uploading: The process of moving an object from the remote machine to the host
for permanent storage on the host.

RATIONAL December 1992

RCI Setup Operations

This chapter helps users to create their desired development environments and pro-
vides information for the system manager for starting and operating the RCI on the
host and on the remote compilation platform.

Tasks for the system administrator and customizer:

Running the RCI

Starting the RCI

Verifying the RCI installation

Enabling remote extensions management

Setting up remote communications mechanisms

Tasks for the user:

m Setting up remote communications and login information
m Setting up model worlds

m Preparing to set up library structures
m Setting up library structures

RUNNING THE RCI

Starting the RCI

After installation you can start the RCI using the following methods:

® At machine initialization: The RCI is automatically started as a part of the boot
process with machine initialization. The process starts the Rci_Compiler
RevX_X_ X job (your current release) and registers selected target keys. The
selected keys are listed in one of the following files:
~ IMachine Initialization.Site.Rci_Configuration
— !Machine.Initialization.Local.Rci_Configuration

The site file contains targets that apply across all systems at a particular site. The
local file contains targets for a single machine only.

The RCI machine-initialization routine allows you to specify activities in the two
Rei_Configuration files located in Machine.Initialization.Site and 'Machine.Initial-
ization.Local. The first field specifies the target-key name. An optional second field

on each line in the Rci_Configuration files identifies the activity. The format is as
follows:

<TARGET KEY NAME> <ACTIVITY>

RATIONAL December 1992 17

RCI User’s Manual

18

system to register at boot time. If you do not provide a full pathname, initialization
uses the default context, !Targets.Implementation.Rci_Customization.

The <ACTIVITY> specifies the activity used to find an entry for the customization
subsystem. If you do not provide this field, it defaults to tMachine Release.Cur-
rent.Activity.
Using this optional field eliminates the requirement for customers to update
Machine.Release.Current. Activity for site-specific customizations.

= During normal operations: Run Start_Rci_Main to start the Rci_Compiler

RevX_X X job. Then use Custom_KeyRegister to register each customization and
run the associated extensions job.

The <TARGET KEY NAME> specifies the full pathname of the customization sub- .

Verifying the RCI Installation

To verify that the Rational Environment components of the RCI are running, use this
command on the R1000:

What.Users

The following jobs, or jobs with similar names as described in the RCI release notes,
should be running:

» Communications Server for host and remote machines

m Rci_Compiler RevX _X_X

m Extension job, either FTP or DTIA in either interactive or batch mode

— Rci_RevX_X X_Custom_Key FTP (for interactive Telnet/FIP extensions) or
Rci_RevX_X X Custom_Key FTP_Batch (for batch mode)

— Rci_RevX_X X_Custom_Key DTIA (for interactive DTIA extensions) or
Rci_RevX _X_X_Custom_Key DTIA_Batch (for batch mode)

See your current release notes for more information.

To verify that the remote components of the RCI are running, use the appropriate
command from the remote operating system to display running processes. Refer to
the installation instructions and release notes for further information on what pro-
cesses must be running.

Killing the RCI

To kill the RCI, run Kill_Rci_Main. This command kills the Rci_Compiler job, unreg-
isters all extensions, and kills any running extensions jobs.

Enabling Remote Extensions Management

The RCI provides mechanisms in each customization extension to extend operations
involved with library management and compilation.

The RCI maps Rational host environment (RCI) views to remote libraries. CMVC
library-management operations (Make_Path, Import, Remove_Import, and so on)
can be extended to automatically perform similar simultaneous operations on the
library system for the remote operating system so that users of the RCI do not have

RATIONAL December 1992

Chapter 2: RCI Setup Operations

to manage remote libraries as a separate task from managing host libraries. These
library extensions are not included in all customizations.

If these extensions are not enabled, the RCI generates warnings during operations,
and users must verify that host library structures are consistent with remote library
structures.

The RCI also allows compilation-related operations, such as promote and demote,
to be extended. Your customizer provides those extensions as they apply to your
environment.

The special extension job starts automatically after the RCI is running. This job is ini-
tiated with the Register procedure from the !Targets.Implementation.Rci_Cus-
tomization subsystem, which can be run during machine initialization or anytime
thereafter. The extensions are automatically run by the Register procedure. You may
need to register your extension if in the process of troubleshooting, you have killed
all running RCI jobs, or your customizer has made a change to the customization
templates for your extension. See “Verifying the RCI Installation,” above, and the cur-
rent release notes for additional information.

To register your extension:

1. Enter the Custom_KeyRegister command and press [Complete]:

Custom_Key.Register
(Batch_Mode :Boolean = "“False",
Allow_Standard_Rebuild :Boolean = "False';

2. Complete the following parameters:
s Batch_Mode

Specifies that the extension should be registered in batch mode. In this mode,

the RCI supports creation of batch scripts but does not automatically download

units and compile them on the remote platform as it does in interactive mode.
m Allow_Standard_Rebuild

Indicates whether the RCI should automatically rebuild a new package Stan-
dard, if the Standard_Version defined in Get_Predefined_Info is different from
the current Standard_Version in the predefined world. Changing the Standard-
_Version requires demotion of package Standard and all dependent units.
Unless specified in the customization, the default value of Allow_Standard_Re-
build in RCI_Customization.Register is False.

3. Press [Promote] to register your extension.

SETTING UP REMOTE COMMUNICATIONS

The host and remote machines must be connected to the same network to use the
RCI. In addition, the Rational Environment must be informed of the existence and
attributes of the remote machine for all users and of specific login information for
each remote user.

Enabling Remote Access for All R1000 Users

The Machine.Transport_Name_Map file (the transport name map) on the R1000
must contain an entry for the chosen remote machine. This file provides 2 mapping

RAT'ONAL December 1992 19

RCI User’s Manual

20

between machine names and Internet addresses. The RCI needs this information to
transfer Ada units and to execute remote operations.

In the following example, which shows one line of a Transport_Name_Map file, the
communication protocol is TCP/IP, the chosen target is identified both by the name
Tilden and by its Internet address (89.64.128.6), and Tilden is running 2 UNIX®-
based operating system:

tcp/ip 89.64.128.6 Tilden Unix

You may need to set up similar files for communication on the remote machine.
Many systems require a file similar to the Transport_Name_Map to identify other
machines on the network. UNIX systems use .rhost and .rlogin files for connection
and security. Refer to your release notes and user’s guide for the remote operating
system for information about setup requirements on the remote compilation
platform.

Enabling Telnet Ports for RCI

When you use Telnet communication with remote compilation platforms, the R1000
host uses free Telnet ports for communication with the remote machine. This re-
quires that one or more Telnet ports are reserved for RCI use—that is, they are not
enabled for login. System administrators should reserve a number of Telnet ports
equal to the number of RCI users. Use Operator.Disable_Terminal to control the
ports.

The RCI caches remote connections to improve throughput during interactive RCI

operations. After a user establishes a connection, the RCI does not acquire new con- .
nections for the same user to the same remote machine, for as long as the original

connection remains in the cache.

The RCI caches 2 maximum of four connections on the host machine. The amount
of time a connection is held in the cache is customizable, but users should be aware
that holding a connection ties up a network port, and users may run out of available
Telnet ports on the machine because the RCI has cached them and may not free
them for the duration specified in the cache specification file. In such cases, you can
still free the ports by making a call to the programmatic interface Release_Unused-
_Connections. This call releases unused cached connections.

Specifying Remote Login Information

To perform any operation on the remote machine from the host, such as creating
libraries, downloading files, or compiling or linking remotely, the RCI must know:
s Which remote machine name to select from the transport name map

m The remote user and password under whose authorization the operation should
take place

m The remote directory in which the operation is to take place

Remote Machine Name

The name of the remote machine with which RCI commands in a given view should
operate is determined by the first nonnull value in the following lists: ’

QATIO NAL December 1992

Chapter 2: RCI Setup Operations

®» When you create a view for the first time:

— Rci.Custom_Key_Default_Machine switch (one for each registered target key in
a host library) in the host view’s enclosing library compiler switches. The RCI
traverses the enclosing libraries until it finds 2 nonnull switch value.

— Session_Rci. Custom_Key_Default_Machine (one for each registered target per
session). The RCI uses this value if it does not find a nonnull value in the library
compiler switches.

—O0r—

— The Remote_Machine parameter in the command being executed, if such a
command parameter exists (with package Rci_Cmvc commands.)

The RCI uses this value to set the Ftp.Remote_Machine switch for the new view.
s When you use a command with an existing view:

~ The Remote_Machine parameter in the command being executed, if such a
command parameter exists (with package Rci or Rci_Cmvc commands.)

- The Ftp.Remote_Machine library switch in the context of the view or object
against which the command is taking place.

— The Session_Ftp.Remote_Machine switch.

If it cannot find a nonnull value, the host does not attempt to connect to a remote
machine.

The value of the Session_Rci.Auto_Create_Remote_Directory switch controls
whether or not the RCI actually creates a remote directory on the compilation
platform when it creates a new host view as the result of a CMVC command.
The Rci_Cmvc commands create a remote directory regardless of the value of
the Session_Rci.Auto_Create_Remote_Directory switch.

If the RCI finds a value for the remote machine when creating a new view, it sets
the library switch Ftp.Remote_Machine for the view in question, even if it does not
create the remote directory. The CMVC view-creation commands (Cmvec.Initial,
Cmvc.Make_Path, and Cmvc.Make_Subpath) create the remote machine name from
the Rci. Custom_Key_Default_Machine or Session_Rci. Custom_Ke)y Default_Machine
switches. Their corresponding Rci_Cmvc commands (Rci_Cmve.Initial, Rei_Cmvec-
.Make_Path, Rci_Cmvc.Make_Subpath) have a Remote_Machine parameter. Its value
must be nonnull if you want to create a remote library. Otherwise, this value must
come from the Session_Rci. Custom_Key_Default_Machine switch for the registered
target key; the RCI uses that value to set the new view’s Ftp.Remote_Machine switch.

You can display the Ftp.Remote_Machine switch’s current value with the Rci.Show-
_Remote_Information command. You can also display the value that the RCI would
use if you run one of the view-building commands. Use the Rci.Display_Default-
_Naming command to see that information.

Remote Username and Password

The name of the remote user and that user’s password under whose authority activ-
ities should take place on the remote machine are determined by the first nonnull
username value in the following list:

s Library-switch file: The Fip.Username and Ftp.Password switches in the context
of the view against which the command is taking place

m Session-switch file: The user’s Session_Ftp.Username and Session_Ftp.Password
session switches

EATIONAL December 1992 21

RCI User’s Manual

22

m Remote-passwords file: As described in package Remote_Passwords in the Ses-
sion and Job Management (SJM) book of the Rational Environment Reference
Manual

These values apply to operations in RCI views that do not have matching compiler
switches set. Each line in the remote-passwords file contains a remote machine
name, a username, and a password (which may be encrypted):

machinel usernamel passwordl
machine2 *username2" *password2*
machine4 usernamed <DES:018853AB3F000CC4FEB7DSF91C2772FD>

In the first two examples, the username and password are not encrypted. The third
example shows an encrypted password. You can use commands from package
Remote_Passwords to encrypt passwords.

If the RCI cannot find a nonnull username, the host fails to connect with the remote
machine.

When you create an RCI view and want to create the associated remote library at the
same time, you must set these values in the session-switch file or the file designated
by the Profile.Remote_Passwords session switch. (The library-switch file for the view
does not yet exist, because the view does not yet exist.)

Remote Directory

The name of the remote directory, in which RCI commands in a given view should
execute or send and receive files, is determined by the first nonnull value in the fol-
lowing lists.

m When you create a view for the first time:

— The name of the remote directory derived by appending the unique library suf-
fix to:

o Rci.Custom_Key_Default_Roof switch (one for each registered target key in
a host library) in the host view’s enclosing library compiler switches. The
RCI traverses the enclosing libraries until it finds a2 nonnull switch value.

a Session_Rci.Custom_Key_Default_Roof (one for each registered target key
per session). The RCI uses this value if it does not find a nonnull value in
the library compiler switches.

—_—Or—
— The Remote_Directory parameter in the command being executed, if such a
command parameter exists (with package Rci_Cmvc commands).
The RCI uses this value to set the Ftp.Remote_Directory switch for the new view.
m When you use a command with an existing view:

— The Remote_Directory parameter in the command being executed, if such a
command parameter exists (with packages Rci and Rci_Cmve commands).

— The Ftp.Remote_Directory library switch in the context of the view or object
against which the command is taking place (for existing views).

— The Session_Ftp.Remote_Directory switch.

If 2 nonnull value cannot be found, the RCI cannot complete the requested remote
action and displays a2 message.

RAT'ONAL December 1992

Chapter 2: RCI Setup Operations

The value of the Session_Rci.Auto_Create_Remote_Directory switch controls
whether the RCI actually creates a remote directory on the compilation platform
when it creates a new host view as the result of a CMVC command. The Rci_Cmvc
commands create a remote directory regardless of the value of the Session_Rci-
Auto_Create_Remote_Directory switch.

The RCI constructs the remote directory name by appending a suffix to a remote
roof. It finds the remote roof by traversing the new view’s enclosing library for a non-
null value in the Rci.Custom_Key_Default_Roof switch. If the roof is not found, the
RCI uses the value in the Session_Rci. Custom_Ke)_Default_Roof switch.

On the host, for example, assume you want to create a Vax_Vms_Dec_Xt view
named !Projects.Space_Shuttle.User_Interface.Console.Revl_Working on the host.
The first nonnull value for an Rci.Custom_Key.Default_Roof switch is associated with
IProjects.Space_Shuttle and contains the value [Spacel. The RCI takes the unique path
value for the specified view, User_Interface.Console.Revl_Working, and appends it
to the roof value in the switch. It stores the complete value, [Space.User_Interface-
.Console.Revl_Working], in the format for the compilation platform’s operating sys-
tem and then stores the value in the specified host view Fip.Remote_Directory
switch when it creates the new view.

If you use the Session_Rci. Custom_Key_Default_Roof switch, the RCI appends the
full pathname to the value in the switch. If the Session_Rci.Vax_Vms_Dec_Xt_De-
fault_Roof contains the value [Spacel, the RCI creates the name [Space.Projects-
-Space_Shutde.User_Interface.Console.Revl_Working] and stores it in the Ftp.Re-
mote_Directory switch of the Revl_Working view. Because it uses the full path-
name with the session-switch value, the RCI can create deeply nested names using

this method. (Your customizer can also control levels of directory nesting in your
extension.)

The Ftp.Remote_Directory switch is initially set for each RCI view when the view is
created. The CMVC view-creation commands (Cmvc.Initial, Cmvc.Make_Path, and
Cmvc.Make_Subpath) create the remote directory name from the Rci. Custom_Key-
_Default_Roof or Session_Rci. Custom_Key_Default_Roof switches and unique path-
name suffix. The corresponding RCI view-creation commands (Rci_Cmvec.Initial, Rci-
_Cmvc.Make_Path, Rci_Cmvc.Make_Subpath) have a Remote_Directory parameter,
which must be nonnull if you want to create a remote library to match the view; the
RCI uses this value to set the new view’s Ftp.Remote_Directory switch.

You can display the Ftp.Remote_Directory switch’s current value with the Rci-
-Show_Remote_Information command. You can also display the value that the RCI
would use if you run one of the view-building commands. Use the Rci.Display-
_Default_Naming command to see that information.

A Suggested Strategy

Because the RCI is designed to encourage consistency between the host view and
the remote library, each view must be associated with exactly one remote library on
one remote machine.

The RCI provides for the following strategy:

= Setting Remote_Machine and Remote_Directory values

Before your create an RCI view and its associated remote directory, you need to
establish values for the naming scheme that CMVC uses to build library-switch

RAT'O NAL December 1992 23

RCI User’s Manual

24

values for remote parameters and specify whether or not you want remote direc-
tories built when you first create the new host view.

— Set the Remote_Machine value

Before creating an RCI view and its associated remote library, set the library
switch in an enclosing library to contain the value for the Rci.Custom_Key-
_Default_Machine library compiler switch or the RCI Session_Rci. Custom-
_Key_Default_Machine session switch. Use the session switch if you are using
a single compilation platform per target key.

— Set the Default_Roof value

Before creating an RCI view and its associated remote library, set the library
switch in an enclosing library to contain the value for the Rci. Custom_Key-
_Default_Roof library compiler switch or the RCI Session_Rci. Custom_Key-
_Default_Roof session switch. Use the library switch to control the value if you
are using more than one project per host per target key. Use the library
switches to avoid deeply nested directory names.

— Check the Session_Rci.Auto_Create_Remote_Directory value

If you want to create new remote libraries when you create new host views,
confirm that the value of the Session_Rci.Auto_Create_Remote_Directory
switch is set to True.

When you create an RCI view, the Environment automatically creates a library-
switch file for that view. The RCI sets the values for the Ftp.Remote_Machine and
Ftp.Remote_Directory switches from the values in the default naming scheme. If
you specify Remote_Machine or Remote_Directory with parameters on the com-
mand that creates the view (from package Rci_Cmvc), the library switches are set
automatically to those values, regardless of the value of the Session_Rci.Auto_Cre-
ate_Remote_Directory switch.

Setting usernames and passwords

Before creating an RCI view and its associated remote library, you should estab-
lish either the session switches for username and password or the Remote_Pass-
words file (designated by the Profile.Remote_Passwords session switch) to allow
access to the remote machine during view and library creation.

— If all users of a view share the same remote username and password, set
Ftp.Username and Ftp.Password to those shared values in the view’s switch file
with the Switches.Edit or Switches.Set commands.

Or

— If all users log in with their own username on the remote machine, set the val-
ues of your username and password in the Session_Ftp.Username and Ses-
sion_Ftp.Password switches with the Switches.Edit_Session_Attributes.

—Or—

— If you need password encryption or global control over remote users and pass-
words, you can use the Remote_Passwords files as described in package
Remote_Passwords in the Session and Job Management (SJM) book of the
Rational Environment Reference Manual.

Controlling development on more than one compilation platform

If you are developing projects with more than one compilation platform per target

key and must map multiple views of the same subsystem onto those different plat-
forms, you can either:

RATIONAL December 1992

Chapter 2: RCI Setup Operations

N

- Set the Session_Rci.Auto_Create_Remote_Directory switch to False. After you
have created the new view, reset the value to True. Use the Rci.Build_Re-
mote_Library command and specify the values for the different compilation
platforms in the Remote_Machine and Remote_Directory parameters (or their
default library switches).

—or—

- Before you create a view, set the session or enclosing library Rci. Custom_Key-
_Default_Machine switch to the value of the remote compilation platform
where you want to build remote directories. To change this value to the new
platform, modify the switch value before you create a view.

SETTING UP MODEL WORLDS

This section provides an overview of libraries and model worlds, which are de-
scribed in more detail in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual.

Features of a Library

Any library structure in the Rational Environment consists of:
m The library itself (a set of objects such as Ada units and files). For RCI develop-
ment, this is a view.

m A target key that identifies the target and operating system for which code in the
library is being developed. It may refer to the Rational Environment on the
R1000 itself.

» A library-switch file that defines how programs and tools operate in the library.

m A set of external /inks that give the library access to Ada units residing outside
the library.

Features of a Model World

When a library is created, you can set up each of its features manually or you can
copy a model world with previously determined values.

A model world is a library (world) whose directory structure, target key, library-
switch settings, and links are copied into the new library structure.

Target-dependent characteristics of the integrated development-cycle environment
(such as the language characteristics of package Standard) are set by choice of a
model world for that target. The native R1000 environment also is specified by a
model world. Predefined models are provided as described in “Predefined Model
Worlds,” below. You can create new project-specific models using a copy of an exist-
ing model.

Target Keys

The target key determines target-specific aspects of compilation.

RATIONAL December 1992 25

RCI User’s Manual

26

Target keys for the RCI are:

m R1000 (supplied by Rational)

m Custom_Key (defined by customizing to create an extension)—for example,
1186_Vms_Ddc

= Reserved custom keys (for Rational precustomized RCI extensions):
1386_Unix_Als_Xt

1486_Unix_Als_Xt

1960_Vms_Tar_Xt

Rs6000_Aix_Ibm

Sparc_Sun_Xt

Vax_Vms_Dec_Xt

The RCI target key is composed of three components separated by underscores:

» Target architecture: The architecture of the final target—for example, 1186

= Compilation-platform operating system: The operating system that controls the
Ada compilation system on the remote compilation platform—for example, Vms

» Compiler vendor: The abbreviation of the target Ada compiler vendor on the
remote compilation platform—for example, Ddc

This forms a complete target key—for example, 1186_Vms_Ddc.
Only Rational-supported extensions contain the fourth component, Xt.

Table 2-1 lists recommended abbreviations for these compiler vendors.

Table 2-1 Abbreviations for Compiler Vendors

Target Compiler Vendor Abbreviation
Alsys Als

DDC, Inc. Ddc

Digital Equipment Corporation Dec

International Business Machines Corporation | Ibm

Sun Microsystems Incorporated Sun
Tartan Laboratories Incorporated Tar
Telesoft Ts
Verdix Corporation Vdx

The maximum length of a target key is 16 characters, including underscores.

The structure of the target key distinguishes between compilers on the same compi-
lation platform; for example, between an AIX™-based IBM compiler and an AIX-
based Verdix® compiler. This convention ensures uniqueness among possible RCI
target keys.

The form described above defines the compilation portion of the target-key name.
In addition to the compilation portion, some target keys (called design targets) con-
tain a design portion. The design portion specifies a program design language (PDL)

RAT'ONAL December 1992

Chapter 2: RCI Setup Operations

to be used. For further information on PDL and design targets, refer to the Rational
Design Facility: DOD-STD-2167 (or 2167A) User’s Manual.

The RCI now supports RDF/RCI composite target keys, which means that you can
use both the RDF and the RCI in the same view.

RDF views should be built first using Design Initial, without composite keys, to
establish the desired design hierarchy. Once you have the hierarchy, you should cre-
ate new views using the composite target key.

Use these steps to create views using a composite target key:

1. Run What.Users to verify that the RDF and the RCI are elaborated. Check for the
PDL Registration job, the Rci_Compiler job, and the RCI Extensions job.

2. If a composite model world does not already exist, use Design.Create_Model to
create one. For example:

Design.Create_Model

(Compiler_Model => "Rs6000_Aix_TIbm",
Design_Facility_Model => "Rational_2167a_R1000",
New_Model_Name => "A_New_Model") ;

creates a model world called A_New_Model with the following elements:
u The RDF directory structure

u The RCI links
m A composite target key, in this case Rational_2167a_Rs6000_Aix_Ibm

3. Create a new view, using Cmvc.Make_Path (or Rci_Cmvc.Make_Path), specifying
the composite model name in the Model parameter.

Once you create a composite view, both RDF and RCI semantics are performed
when you promote any unit in that view to the installed state.

Note that system views cannot be combined views. This means that you cannot
move any RDF hierarchy component that resides in a system view to a composite
view. This is not a major problem for RCI users since no actual code implementation
takes place in system views. RDF document generation is supported since it does
not require the compiler portion of the target key to be consistent across all views.
That is, views with different target keys can be mixed in your activity for document-
generation purposes as long as the RDF portion of the keys is consistent.

Library-Switch Files

A default library-switch file may be associated with each model world; the switch
settings for a particular directory or world are editable. Switch names, values, and
effects related to RCI use are introduced in “Setting Session and Library Switches” in
Chapter 3 and discussed in the Library Management (LM) book of the Rational Envi-
ronment Reference Manual,

Links
A set of default links is associated with each model world. These mappings of Ada

units to simple names are editable objects that are described in the Library Manage-
ment (LM) book of the Rational Environment Reference Manual.

The links in 2 model can be used to control the portability of code; if links exist only
to portable objects, then with clauses cannot reference specific objects in the Envi-
ronment that do not exist on the compilation platform.

RAT'ONAL December 1992 27

RCI User’s Manual

Predefined Model Worlds

The models supplied by Rational for use in the native R1000 reside in the world
Model. They are:

m R1000: Includes links for R1000-specific facilities and sets the target key to R1000
s R1000_Portable: Includes links for only those facilities specified by the Ada LRM

to ensure portability, such as Text_Io and Calendar, and sets the target key to
R1000

The model for use in the integrated development cycle also normally resides in the
'Model world. The actual target-key name is determined by the customization exten-
sion; this manual uses the name:

» Custom_Key: Includes links for target-dependent facilities as well as Ada LRM-
predefined units and sets the target key to Custom_Key

Creating a Project-Specific Model World

Users can optionally create their own model worlds to suit their particular needs.
When R1000 library structures are created, either a Rational-supplied or project-spe-
cific model world can be used. A project-specific model can be created by modifying
a copy of a Rational-supplied or Custom_Key model, as follows:

1. Create a new Custom_Key model world with Library.Create_World, using Model-
.Custom_Key for the Model parameter. The new model should be located some-
where other than in the !Model directory to avoid potential naming conflicts with
future releases of Rational target tools. A directory specific to the project for which
the new world will be used is a preferred location.

2. Use the Switches.Edit command to customize the model world’s switch file. Edit
the switch file to set library switches with values specific to the project.

3. Use the Links.Edit command to customize the model world’s links. For RCI views,
the model links must refer only to units in the predefined world. The model can
reference only units that are accessible to all libraries on the target machine. The
predefined world is the only place on the R1000 to locate those universally acces-
sible units.

4. Customize the model world’s directory structure as necessary.
You can use this new Custom_Key model world as the Model parameter when cre-

ating RCI views from R1000 views. You must specify the full pathname to the Cus-
tom_Key model world. The new model can be used for any number of RCI views.

PREPARING TO SET UP LIBRARY STRUCTURES

28

The RCI environment for native R1000 and integrated development cycles consists
of library structures (subsystems, paths, views, and directories) and of related library
structures on the remote compilation platform. These structures contain the software
being developed.

Ada units for the chosen target must be compiled within a view with the Custom_Key
target key.

RAT‘ONAL December 1992

Chapter 2: RCI Setup Operations

Note: If you bave not already read “Setting Up the Rational Environment” on page 6
in Chapter 1, do so before continuing with this section.

If you are not familiar with Rational’s system of configuration management and ver-
sion control (CMVC), you may want to have available a copy of the Project Manage-
ment (PM) book of the Rational Environment Reference Manual.

Overview

To set up the appropriate library structure, you must understand the concepts behind
subsystems and views. These are discussed below in “Understanding Subsystems”
and “Comparing Types of Views.”

You must then decide under what software environment you want to develop code.
(See “Choosing Library Structures,” below.)

Once you have decided, you can create appropriate subsystem views, which is dis-
cussed in “Setting Up Library Structures” on page 35.

Understanding Subsystems

The library structures required for development under the RCI are subsystems, in
which native R1000 code and target code are developed in working views of differ-
ent paths. Subsystems in conjunction with CMVC and the RCI extensions to CMVC
operations (called cross-system consistency management) automate much of the
development process. This includes coordinating host and remote versions of the
software, maintaining development history, and synchronizing development among
many developers.

For any working viewin a subsystem, there is a path that includes that working view
and the releases generated from it (see Figure 2-1). Development that takes place in
the working view can be referred to as taking place in the path.

In addition, the RCI allows maintenance of a library structure on the compilation
platform whose contents parallel the contents of the RCI subsystem view on the
R1000. For example, Figure 2-2 (page 30) shows a remote library structure that might
be used to map to the host library structure shown in Figure 2-1. See the “Managing
Remote Libraries” section on page 89 in Chapter 6 for further information.

For details about subsystems, refer to the Project Management (PM) book of the
Rational Environment Reference Manual,

Development in subsystems can use the facilities provided by Rational’s system to
manage project development. For integrated development, a subsystem will proba-
bly contain a native R1000 path and at least one path per target. Typically, host
development is done in 2 working view with an R1000 target key; changes then are
accepted into a working view with a Custom_Key target key.

The CMVC system described in the PM book provides sufficient functionality to per-
form the cross-system library and unit management required for the RCI. Package
Rci_Cmvc provides several corresponding commands that you can use in place of
similarly named commands in package Cmvc. The additional commands supplement
the CMVC functionality if you are unable to use the default remote directory and

machine-naming system by providing command parameters to specify those values
directly.

RATIONAL December 1992 29

RCI User’s Manual

se e

A_Subsystem
Release 2 A | Release_3_A
Release_1_B View_2_Working Release_3_B
Release_1_C Path Path View_3_Working
Path View_1_Working]
.Units |
| Units
.Units

T T T
Files/objects I I
Files/objects

Files/objects
Figure 2-1 Library Structure Showing Subsystems, Views, Patbs, and Releases

Root

A_Main_Directory

|
|]
Subdirectory_1_A Subdirectory_2_A| | [Subdirectory_3_A
Subdirectory_1_B l Subdirectory_2 Subdirectory_3_B |
Subdirectory_E' Subdirectory_3
Subdirectory_1 [7] T

T T
— Files/objects q;;b_rel_‘

Files/objects
Figure 2-2 Remote Library Structure

30 RAT'ONAL December 1992

Chapter 2: RCI Setup Operations

Comparing Types of Views

The Rational Environment and the RCI use different types of views during the inte-
grated development cycle.

Three types of views are available in Rational Environment subsystems:

s Code view
s Spec/load view
s Combined view

For details about types of views and the choice between them, see the Project Man-
agement (PM) book of the Rational Environment Reference Manual.

When a view of any type is discussed, it is referenced by the environment in which
code is developed; therefore an R7000 view has an R1000 target key and is com-
pletely under control of the Rational Environment; an RCI view has a Custom_Key
target key and is under RCI control.

R1000 Views

Because development in R1000 views is intended as the initial step in creating code
to execute on a remote compilation platform, it is expected that you will copy code
in these views into RCI views and the code should therefore be joined between the
views. Therefore, it is strongly recommended that you do development in R1000
paths in subsystems and views rather than worlds and directories.

When possible, it is best to use spec-view/load-view pairs for their advantages in
minimized recompilation requirements and flexible recombinant testing,

RCI Views

In RCI paths, combined views are the only valid type of view; spec/load views are
not allowed. Worlds are not supported. This occurs because the RCI’s goal is to map
host views onto remote libraries, and it is difficult to model the Rational dynamic
importing model used by spec/load views onto most remote library structures. Most
target compilation systems require users to compile directly against the code with
which they will link.

For this reason, you may want to develop code in spec/load views for the native
R1000 development cycle and move it into combined views for the integrated devel-
opment cycle.

The RCI allows limited use of spec views. See “Creating an RCI Spec View” on page
40 for more information.

Choosing Library Structures

Before creating library structures on either the host or the remote compilation plat-
form, you should have some idea of:

® Whether you will use the R1000 native development cycle

m Whether you have target-independent code whose target-independence should
be enforced by Rational Environment facilities

RATIONAL December 1992 31

RCI User’s Manual

32

m Whether you want to maintain an exact duplicate of all library structures, includ-
ing releases, on the compilation platform or only the minimum required libraries .

m The scope of the project and how it divides into logical subcomponents

Using the R1000 Native Development Cycle

This development cycle has all of the advantages described in the “Developing and
Executing Code for the Target Machine” on page 11 in Chapter 1.

This is, however, a recommended and not a required portion of the development
cycle for target code.

Views with R1000 target keys are created and maintained using standard CMVC
commands.

Enforcing Target Independence

When creating R1000 views, you have the option of using either the Model.R1000
model world, which includes links to R1000-specific subprograms, or the Model-
-R1000_Portable model world, which provides links only to standard LRM-pre-
defined routines.

There is no Custom_Key_Portable model world; the effect is maintained by joining
units in RCI views that should remain portable with units in the R1000_Portable view.
Then you can update and test these units in the R1000 view before you accept
changes into their joined files in the RCI view.

Duplicating Structures on the Compilation Platform

Remote library structures are created automatically by any package Cmvc or Rci-
_Cmvc view-creation commands, such as Initial and Release, if the Session_Rci-
Auto_Create_Remote_Directory switch is True and remote library management has
been registered with the RCI. Registering remote library management is described in
“Enabling Remote Extensions Management” on page 18. Discussions in this chapter
assume that registration has taken place.

Remote directories and program libraries that parallel working views must exist for
remote compilation to take place. Several rules apply to remote-to-host library map-
ping; these rules are given in “Limitations and Restrictions” on page 85 in Chapter 6.

Creating a release library on the compilation platform when a view is released on
the host is optional; since the Rational host is being used to take advantage of its
CMVC features, you may decide to maintain releases in only one location. Or you
may decide to have a copy of only the most recent release for each path on the com-
pilation platform. See “Creating Releases of Views” on page 96 in Chapter 6 for
details.

Dividing a Project into Logical Subcomponents

Generally, each major section of a project is placed into its own subsystem. Each
subsystem can contain many views, including one view each for R1000-specific,
target-independent, and target-dependent code, or an additional set of these views
for each subcomponent in the subsystem.

RATIONAL December 1992

Chapter 2: RCI Setup Operations

Examples of Library Structures

Here are two possible scenarios for library structures. They by no means define all
possible or desirable library methodologies, but they offer suggestions to consider
when you design your project structures.

A Simple Example

A minimum library configuration for a simple RCI project might look as shown in
Figure 2-3. This project consists of an Ada main unit, Unit_A, that is target-indepen-
dent. It calls a subprogram that makes use of target-dependent features, such as sys-
tem calls or 2 non-Ada language. This unit is written once using Rational Environ-
ment subprograms for testing on the host (Unit_B) and is rewritten for the integrated
development cycle using the target’s features (Unit_C). Since there is only one target
view, only one directory needs to exist on the compilation platform to contain copies
of Unit_A and Unit_C.

R1000 Compilation platform

Subsystem Directory

l l

View with R1000 View with target's Unit A Unit C
target key target key

Unit A Unit B Unit A Unit C

;_ Remote
Joined Remote association

association
Figure 2-3 Simple Host and Remote Library Structures

A More Complex Example

In the example shown in Figure 2-4, portable and target-dependent code are treated
as separate development projects and are therefore placed in separate subsystems.

Within each subsystem, there is a view to use in the R1000 native development cycle
and one to use in the integrated development cycle. Note that units in joined porta-
ble views should have a one-to-one relationship, but units in joined target-depen-
dent views may be the same or vastly different. For example:

= Unit_A might be essentially the same for execution on the host and on the com-
pilation platform but might call different Standard packages.

s Unit_B might be written using Rational Environment system calls, and Unit_C,
although it performs the same function, might be written using assembly lan-
guage for the target machine.

RATIONAL December 1992 33

RCI User’s Manual

IModel IYour_Models
R1000_Portable R1000 Target Project A Project A
model world model world model world R1000 Target
model world model world
Your_Projects_ Your_Projects_
Nonportable_ Portable
I’ Subsystem " { Subsystem _]
R1000_ Target_ R1000_Working_P| Target_Working_P|
Working_Nonp Working_Nonp view with view with
view with R1000 view with target’s R1000 (portable) target’s (portable)
target key target key target key target key
Units directory Units directory Units directory Units directory

Unit A Unit B Unit A Unit C Unit D Unit E Unit D Unit E

L joined — L Joined t——l
joined

—— Imported

L—— imported
Figure 2-4 Subsystems for Integrated Compilation

m Unit_D and Unit_E might be written using target-independent LRM standard
code, so the units are identical in Revl_Working and Target_Working.

If the Target_Working view under Your_Projects_Portable_Subsystem was the first
view to be created along with the subsystem, the command to create them and the
associated remote library, as shown in Figure 2-5, might be:

Cmvc.Initial

(Subsystem => "Your_Projects_Portable_Subsystem®,
Working_View_Base_Name => "Target",
Model => "!Model.Custom_Key™");

where the default naming scheme or the Remote_Directory parameter of Rci-
_Cmvec.Initial provides the remote directory /root/.../portable.

34 RAT'ONAL December 1992

Chapter 2: RCI Setup Operations

Root
Target_ Target_
Working_Nonp Working_P
(nonportable (portable
directory) directory)
Unit A Unit C Unit D Unit £

Figure 2-5 Remote Libraries Corresponding to Subsystem Views

SETTING UP LIBRARY STRUCTURES

Before proceeding with this section, be sure to read the preceding section, “Prepar-
ing To Set Up Library Structures.”

There are three structures that can be set up separately, although the RCI automati-
cally creates most of the necessary structures:

m Subsystems

= Views: The first view in each subsystem is created automatically when the sub-
system is created.

= Remote libraries: These are created automatically any time that a view with a
Custom_Key target key is created if remote library management is registered with
the RCI as described in “Enabling Remote Extensions Management” on page 18.

Creating a Subsystem and an R1000 View

If you plan on initiating development in a host development cycle, use commands
from package Cmvc to create a subsystem whose first view has an R1000 target key.
To skip the native development cycle, or to create a subsystem that initially contains
only target code, use package Cmvc commands with the necessary RCI target key.

To prepare native R1000 development views in a subsystem:

1. To create the desired subsystem, enter the Cmvc.Initial command in a command
window and press [Complete].

2. Specify the desired model world, either R1000 or R1000_Portable, using the Model
parameter of the Initial command so that the initial working view in each sub-
system has an R1000 target key.

RATIONAL December 1992 35

RCI User’s Manual

36

3. Specify the base-name prefix for the first view in the subsystem, according to
the project’s naming conventions. The view name is constructed by appending
_Working to the base name. For example, the pathname can indicate the path’s
target and whether it is a development or production view, as in:
Working_View_Base_Name = "Rev3_Custom_Key Devel"

This creates a view called Rev3_Custom_Key Devel Working.

4. Press [Promote]. The subsystem and view are created. This initial working view pro-
vides a native R1000 development path.

5. Go to the Units library in the working view of the subsystem that you have just
created.

6. Create Ada units in the Units library, and develop and test them as much as pos-
sible before creating the target paths.

Displaying Defaults for Remote RCI Names

Before you use CMVC to create 2 new RCI view and remote directory structure, you
can display the remote machine and directory name that CMVC will choose for a
potential view with the given target key. These values are based on the current val-
ues defined by the default switch-naming scheme described in “Specifying Remote
Login Information” on page 20.

To display the values:

1. Enter the Rci.Display_Default_Naming command and press [Complete]:

Display_Default_Naming
(Potential_View : String v,
Target_Key : String
Response :+ String

"<PROFILE>");

2. Enter values for the following parameters:

m Potential_View: Specifies the name of the view you want to create using the
CMVC view-creation command.

» Target_Key: Specifies the target key for the view you want to create.

3. Press [Promote]. The command displays the values of Remote_Machine and
Remote_Directory that CMVC would use to create the new view.

Creating a Subsystem and an RCI View

If a subsystem already exists and you need only to add a view, see “Creating Addi-
tional R1000 Views” and “Creating New RCI Views,” below. Usually, R1000 views
and RCI views will exist in the same subsystem.

To create a new subsystem with an RCI view in it:

1. If you want to create the remote directory that is associated with this view at the
same time that you are creating the view:

m Verify that your Session_Ftp.Username and Session_Ftp.Password session
switches are set to provide appropriate access to the remote machine for

RAT'ONAL December 1992

Chapter 2: RCI Setup Operations

library creation, or that the equivalent information is supplied in the Remote-
Passwords file as described in “Remote Username and Password” on page 21.

m Verify that the Session_Rci.Auto_Create_Remote_Directory switch is set to
True.

m If you are using CMVC commands, verify that the RCI default roof and remote
machine switches are correctly set as described in “Specifying Remote Login
Information” on page 20.

m Verify that remote library management has been enabled as described in
“Enabling Remote Extensions Management” on page 18.

n Verify the network-setup information as described in “Setting Up Remote
Communications” on page 19.

2. Enter the Cmvc.Initial command in a command window and press [Complete].
3. Enter the name of the new subsystem into the Subsystem parameter.
4. Specify at least the following parameters:

s Working View_Base_Name: Specify the base name for the first view in the
Working View_Base_Name parameter; the view name is constructed by
appending _Working to the base name.

m If you are using Cmvc.Initial, the default naming scheme controlled by the
default switches provides the Remote_Directory and Remote_Machine values.
If you are using Rci_Cmvec.Initial, complete the following parameters:

— Remote_Machine: Specify the name of the remote machine on which a
directory and program library matching the view should be constructed as
described in “Specifying Remote Login Information” on page 20. For
example:

Remote_Machine = "Tilden"

- Remote_Directory: This is used to construct the appropriate remote library
as described in Chapter 6, “Library Management.” It may be appropriate to
give the remote library the same name as the host view. For example:

Remote_Directory =>
"/usr/projectl/rev3_Custom_Key_devel_working"

The remote library consists of the named directory, which contains a program
library and a set of imports; it will also eventually contain Ada units. If Re-
mote_Directory or Remote_Machine is undefined in switches (for Cmvc com-
mands) or left blank (for Rci_Cmvc commands), the RCI does not create the
remote library, and Ada units in the view cannot be promoted past the in-
stalled state.

m Subsystem_Type: This can be Cmvc.Spec_Load_Subsystem (for R1000 views)
or Cmvc.Combined_Subsystem.

= Model: Specify the full pathname of a model that has a Custom_Key target
key. For example:

Model => "!Model.Custom _Key"

5. Press [Promote]. The remote library is created along with the view, as described in
the “Management Of Remote Libraries” section of Chapter 6, “Library Manage-
ment.”

This working view provides an RCI development path.

RATIONAL December 1992 37

RCI User’s Manual

Creating Additional R1000 Views

To create a new R1000 view within a subsystem, use the Cmvc.Make_Path com-
mand, as described in the Project Management (PM) book of the Rational Environ-
ment Reference Manual.

Creating New RCI Views

RCI views are created either by copying an existing view or by creating a new, empty
view.

To create an empty RCI view in an existing subsystem, use the Cmvc.Initial (or Rci-
_Cmvc.Initial) command as described above, selecting the existing subsystem rather
than naming a new subsystem.

To create an RCI view from an existing R1000 view or another RCI view:

1. If you want to create the associated remote library at the same time as the view
is created, see step 1 in “Creating a Subsystem and an RCI View,” above.

2. Use the Cmvc.Make_Controlled command to place the units under CMVC con-
trol; only these units will be joined between the new RCI path and the original
R1000 path.

3. Make sure all of the units in the R1000 or RCI view are checked in using the
Cmvc.Check_In command.

4. Use the Cmvc.Make_Path (or Rci_Cmvc.Make_Path) command to create a tar-
get path and a unique matching directory on the remote machine, as described
in the “Choosing Library Structures” on page 31. To do this, select the working
view of the R1000 or RCI path. Enter the Cmvc.Make_Path command and press
[Complete]. The command looks like this:

Cmvc .Make_Path

(From_Path : String := "<CURSOR>"
New_Path_Name : String := ">>PATH NAME<";
View_To_Modify : String = *";

View_To_Import : String := "<INHERIT IMPORTS>*;
Only_Change_Imports : Boolean := True;
Create_Load_View : Boolean := False;
Create_Compined_View : Boolean := False;

Model : String := "<INHERIT MODEL>";
Join_Paths : Boolean := True;
Remake_Demoted_Units : Boolean := True;

Goal Compilation.Unit_State
Compilation.Coded;

Comments : String ey
Work_Order : String := *“<DEFAULT>";
Volume : Natural := 0;
Response : String := "<PROFILE>");

5. Specify the New_Path_Name parameter as described for the Working_View-
_Base_Name parameter, above.

6. For Rci_Cmvc.Make_Path, fill in the Remote_Machine and Remote_Directory
parameters as described above.

7. Fill in the Model parameter as described above.

38 RATIONAL December 1992

8.

10.

Chapter 2: RCI Setup Operations

Set Join_Paths to True if all or most of the controlled units are to be shared
(joined) between paths on the host; specify False if none or few of the units are
to be joined. (When corresponding units are joined, changes to one unit can be
propagated automatically to the others in its join set. Furthermore, a joined unit
can be checked out in only one path at a time. Units that are not joined can be
checked out and edited concurrently.)

. Change imports to reference RCI views instead of R1000 views. Figure 2-6 helps

to illustrate when this is necessary.

R1000 target key view 1 Target’s target key view 1

B imports A Import remains the same

key view 2 Target’s target key view 2

Figure 2-6 Make_Path Uses Same Imports

Because the Make_Path command creates a new view, it copies, not changes,
the names of other views from which that view imports subprograms. Hence,
your new target view will still try to import subprograms from a view with an
R1000 target key rather than from your new view.

Note: Because RCI views can import only other RCI views with the same target
key, this causes an error.

Such imports must be changed by you, either by specifying the View_To_Import
in the Cmvc.Make_Path (or Rci_Cmvc.Make_Path) command or afterward with
the Cmvc.Import command. If you are developing in more than one subsystem
(very likely), you can specify only one naming expression for imports with the
Make_Path command and will have to change others afterward (see step 11).
Press [Promote]. All units are copied from the R1000 or RCI path to the RCI path,
and controlled units are joined between paths.

If a connection can be made to the remote machine, the RCI creates an appro-
priate remote library as described in Chapter 6, “Library Management.” If the
remote library cannot be created or located, the RCI issues a warning and the
host units cannot be promoted to the coded state. You will have to create the
remote library explicitly as described in Chapter 6 before units can be promoted
to the coded state.

Host units are promoted to the indicated goal state if possible. Promoting the
units to the coded state causes the RCI to download files to the remote library
and compile them as described in “What Happens During the Coding Step” on
page 59 in Chapter 3. The remote files are named as described in “Remote Files
and Names” on page 56 in Chapter 3.

RAT'ONAL December 1992 39

RCI User’s Manual

40

11. Use the Cmvc.Sever or Cmvc.Join commands as necessary, so that all target-
independent units are joined between the two paths and target-specific units are
severed.

12. Add remaining imports as described in step 8.

13. Use Switches Edit to change settings in the library-switch file if needed. See “Set-
ting Session and Library Switches” on page 45 in Chapter 3.

The resulting RCI path consists of a working combined view that contains a copy of
the units from the R1000 or RCI path. Development can continue in either path, as
appropriate.

If additional units are developed that need to be copied between views, see “Con-
sistency Between Views On The Host” on page 75 in Chapter 5, and then use the
Cmvc.Sever and Join commands as needed.

If additional units are created or edited on the remote machine, see Chapter 5, “Main-
taining File Consistency,” for information on maintaining consistency with the host
units.

Creating an RCI Spec View

In most cases, you use combined views only, since most target compilation systems
require that you compile directly against the code with which they link, invalidating
the spec-load approach. The R1000 compilation system is unique in the sense that
you can compile against spec views and not specify corresponding load views until
link time, using activities.

The RCI provides limited use of spec views. Spec views represent placeholders for
remote libraries. Creating a spec view does not create a new target directory, and
compiling in a spec view does not cause remote compilation to take place. Spec
views should be spawned from preexisting combined views that have remote librar-
ies associated with them. A spec view spawned from a combined view (in a spec-
load subsystem) automatically obtains the same target key and remote information
(machine and directory) as the combined view. You can compile and link against 2
spec view, even if the combined view it was derived from is no longer present, as
long as the remote library still exists.

Note that because of the placeholder nature of spec views, it is possible to create
them on one R1000, use Archive.Copy to copy them to new R1000s, and use them
as you would on the original. When working in RCI views, it is not necessary to have
Ada bodies in the entire execution closure located on each R1000, but you must rep-
resent each remote library by at least a spec view. It is important to note, however,
that the RCI requires each remote library in the execution closure (not including
those represented in the predefined world) to be represented by a view on each new
R1000.

In general, to spawn spec views for a set of subsystems, use the Cmvc.Make_Spec-
_View (or Rci_Cmvc.Make_Spec_View) command as follows:

1. Enter the Cmvc.Make_Spec_View command and press [Complete] to modify the fol-
lowing parameters:

RATIONAL December 1992

Cmvc.Make_Spec_View

(From_Path =>
Spec_View_Prefix =>
View_To_Import =>

Only_Change_Imports =>

Chapter 2: RCI Setup Operations

"<CURSOR>",
">>PREFIX<<",
"<INHERIT IMPORTS>",
True;

2. Enter the value for the following parameters:

= From_Path: The set of views—for example, [S1.<combined_viewl>,

S2.<combined_view2>,

.. SN.<combined_view3>]

m Prefix: The prefix of the spec view—for example, Revl
m View_To_lmport: [S1, S2, S3

SN] (all subsystems in closure)

3. Press [Promote]. The command creates the new spec view.

For example, if the following view structure exists on R1000A:

Subsystem

Imports

sS4

S1.Revl_Working
S2.Revl_Working
S3.Revl_Working
S4.Revl_Working

S2.Revl_Working
S4.Revl_Working
S4.Revl_Working

and you use Cmvc.Make_Spec_View (or Rci_Cmvc.Make_Spec_View) to spawn a
spec view, the new subsystem structure after spec views had been generated would

look like this:

Subsystem

Imports

S3

S4

S1.Revl_Working
S1.Revl_Spec
S2.Revl_Working
S2.Revl_Spec
S3.Revl_Working
S3.Revl_Spec
S4.Revl_Working
S4.Revl_Spec

S2.Revl_Working
S2.Revl_Spec
S4.Revl_Working
S4.Revl_Spec
S4 .Revl_Working
S4.Revl_Spec

If you simply make a spec view S1.Rev1l_Spec and archive it to R1000B, you must
take additional steps in order to compile and link against S1.Revl_Spec on R1000B.
This is because views compiled against S1.Rev1l_Spec may need remote information
about the execution closure for target operations. When spawning a spec view from
a combined view, it is best to spawn an additional spec view for every subsystem in
the closure of the source combined view. The new spec views should import each
other in 2 manner that parallels the source combined view imports. Note that for any
new importing spec view, it is not necessary for units in the imported spec view to
be equivalent on machine B. Every subsystem is represented, but only by a spec
view. The spec views you have copied to machine B are as follows:

Subsystem

Imports

S1.Revl_Spec
S2.Revl_Spec
S3.Revl_Spec
S4.Revl_Spec

S2.Revl_Spec
S4.Revl_Spec
S4 .Revl_Spec

Now it would be possible to compile against any of these spec views just as if they
were their source combined views.

RAT'ONAL December 1992

41

RCI User’s Manual

42

Having the spec views import each other in the appropriate manner ensures that the
RCI knows all remote libraries in the execution closure of the top-level spec view.
If you build a new combined view that imports the top-level spec view, the RCI can
do a remote import of the entire remote execution closure of the new view, which
is necessary for some target compilers.

Note that CMVC only permits you to spawn spec views in spec-load subsystems.
Those users who have done their previous RCI work in combined views need to
convert to spec-load subsystems to use spec views. Note also that when using spec-
load subsystems, you may need to set Create_Combined_View to True for the vari-
ous view-creation operations, because the default behavior in spec-load subsystems
is to create load views.

RATIONAL December 1992

Getting Started

This chapter assists with the verification of setup steps, explains the differences
between native R1000 and remote compilation, and steps through the integrated
compilation process from creating code to executing and debugging it on the com-
pilation platform.

Developing source code in subsystems for a target using the RCI is basically the same
as developing native R1000 source code using the Rational Environment and CMVC.

There are 2 number of important differences in developing Ada units in the host and
target environments, depending on the nature of the project. These differences are
discussed in “Comparing Features Of Rational Environment And Rci Compilation”
in Chapter 1.

The steps the RCI takes during the compilation process vary between interactive and
batch mode. This chapter describes the steps that you use in interactive mode. Chap-
ter 4 describes batch compilation.

Specifically, this chapter describes the following:

= Setting up your integrated compilation environment
- Verifying the R1000 library setup
~ Verifying the remote library setup
— Setting session and library switches
m Creating an Ada program for remote compilation
~ Creating an Ada main unit
— Using pragma Main
— Using representation clauses
— Using implementation-dependent pragmas
s Remotely compiling and linking a simple Ada program
- Creating an executable program
~ Output from the RCI compiler and linker
— What happens during the installing, coding, and linking steps
s Demoting a unit

SETTING UP YOUR INTEGRATED COMPILATION ENVIRONMENT

Although the system administrator may have set up your library structure properly
for remote compilation, you should verify that everything is in order. In addition,
there are library-specific files and switches that you can alter to suit your needs.

Setup steps are the following, discussed in separate subsections below:

RATIONAL December 1992 43

RCI User’s Manual

= Verifying the R1000 library setup
m Verifying the remote library setup
m Setting session and library switches

Verifying the R1000 Library Setup

No matter what your final target will be, you often compile initially for the native
R1000 target. You create code and test it in a library structure with an R1000 target
key. The R1000 target key is not shown on your screen (see Figure 3-1).

Configurations : Directory 92/09/04 13 32:41 Rh Yol 4 { 0}
Rev1_R1000_Working : Load_View 92/09/0% 10:54:08 Rh Yol 3 { 0}
Revl_Rs6000_Aix_Ibm Working : Comb_View 92/09/04 13:32:33 Rh Yol 3 { 0}
State ¢ Directory 92/09/04 10:53:59 Rh Yol 4 { 0}

Exports : Directory 92/09/04 10:54:08 Rh Yol 3 { 0} ;
Imports : Directory 92/09/04 10:54:07 Rh Yol3a {0} ;
State : Directory 92/09/04 10:54:23 Rh Yol 3 { 0} H
Units : Directory 92/09/04 11:07:19 Rh Vol 3 { 0} 3

. MOTION_ECT.EEV] ELI00 WOREDIG

Figure 3-1 Window witb R1000 (Invisible) Target Key

Once the native R1000 development cycle is complete, you will copy your code into
a library with a target key appropriate to your desired target (see “Setting Up Library
Structures” on page 35 in Chapter 2). Remote compilation and remote linking take
place from this new library structure. A window with a Custom_Key target key in the
banner at the base of the window is shown in Figure 3-2.

Note: All sections in this and later chapters assume that you bave already copied your
Ada units into, and are working in, an RCI view.

Configurations : Directory 92/09/04 13:32:41 Rh Vol 4 { 0}
Revl_R1000_Working Load_View 92/09/04 10:54:08 Rh Vol 3 { 0}
Revl_Rs6000_Aix_TIbw Horking : Comb_View 92/09/04 13:32:33 Rb VYol 3 { 0}
State ¢ Directory 92/09/04 10:53:59 Rh VYol 4 { 0}

MOTION_ECT (library)

Exports : D1rectory 92/09/04 13 32 33 Rh Vol 3 { 0} H
Imports : Directory 92/09/04 13:32:33 Rh Yol 3 { 0} ;
State : Directory 92/09/04 13:33:04 Rh Vol 3 { 0} H
Units : Directory 92/09/04 13:32:59 Rh Vol 3 { 0} ;

._RCI.REVI_RS&000_&T IBM WORKING ¢ library) ESclin_sT1%_

Figure 3-2 Window with Rs6000_Aix_ Ibm Target Key

IEM World

You can also confirm your target key by executing this command in 2 command
window:

Compilation.Show_Target_Key

The Rational Environment then displays a message similar to the following in the
current response-profile location (usually a2 message window):

RATIONAL December 1992

Chapter 3: Getting Started

Target key for !USERS.RCI_DEMO.PLANETARY_MOTION.
Rs6000_Aix_Ibm COMBINED_WORKING is Rs6000_Aix_Ibm

The programmatic equivalent of the above is a function that returns the image of the
current target key as a string:

Compilation.Get_Target_Key

If the message window does not show the appropriate target key, then you may
need to create subsystems and/or views as described in “Setting Up Library Struc-
tures” on page 35 in Chapter 2. ‘

Verifying the Remote Library Setup

See Chapter 6, “Library Management”

Setting Session and Library Switches

Certain RCI options are controlled by switches that manage the characteristics of
your working conditions on the Rational Environment. The Rational Environment
maintains session switches for each user in the user’s home world. A user can have
any number of session-switch files, but only one session-switch file is used per ses-
sion. See the Session and Job Management (SJM) book of the Rational Environment
Reference Manual for a detailed discussion of session switches.

Other RCI options are controlled by switches that are part of an extensive system of
library switches. Library switches are maintained in each view in the library switch
file that is created automatically when the view is created. See the Library Manage-
ment (LM) book of the Rational Environment Reference Manual for a detailed dis-
cussion of library switches.

The switches that affect RCI operation can be described in the following sets:

m Session and library switches that control the behavior of the RCI and target com-
piler, labeled Session_Rci and Rci, fall into three categories:

— Switches that affect the behavior of the RCI independent of the target compiler.
The customization-independent RCI library switches appear in all RCI library-
switch files and apply to RCI features common to all RCI extensions. The cus-
tomization-independent RCI session switches control the creation of remote
directories. These switches are shown in Table 3-1.

~ Switches that affect the construction of remote directories for a specific custom-
ization. These include session and library switches containing the customiza-
tion-dependent string (for example: 1186_Vms_Ddc_ or Custom). These
switches are shown in Table 3-2.

- Switches whose names begin with a customization-dependent string to specify
options for the target compiler. Some of these cause the target compiler to
behave in a manner that affects the output of the RCL. Samples of these
switches are shown in Table 3-3. A blank table is provided in Appendix C for
the customizer to fill in the actual switches defined in your extension.

s Switches used to enable RCI communication with the remote machine, labeled
Fip, are shown in Table 3-4. The RCI does not use the similar switches available
in the user’s session-switch file.

RATIONAL December 1992 45

RCI User’s Manual

Switch defaults are usually set to match the target-compiler defaults and to minimize
the number of files created. At a minimum, you may want to:

m Set switches to define target-compiler operations.

m Set customization-independent switches to control host operations.

m Set the switches described in “Setting Switches for Remote Communication” on
page 50.

m Optionally set the switches described in the “Saving Assembly Source Code and
Ada Listing Files” on page 51.

You may be able to disregard other switch settings initially, depending on the
requirements of your RCI extension.

Table 3-1 Rci Session and Library Switcbes

Name Type Default Function
Session_Rci.Auto_Create_Remote | Boolean True If True, when you call a CMVC command to create
_Directory an RCI view, the RCI automatically creates the re-

mote directory for the view. See “Controlling
Remote-Directory Creation” on page 50.

Rci.Auto_Transfer Boolean False If True, the RCI automatically transfers units during
the installed to coded phase in batch mode. If False,
units must be transferred during the Build_Script
operation by specifying the Transfer_To_Target
parameter to be True. See “Controlling Batch Unit
Transfers” on page 49.

Rci.Compiler_Post_Options String Null string | Contains a string value to append to the unit name
in the target-compiler command.

Rci.Compiler_Pre_Options String Null string | Contains a string value to insert before the unit name
in the target-compiler command.

Rci.Host_Only Boolean False If True, the RCI compiles the RCI view but does not
download and compile the units remotely. See
“Turming Off Remote Compilation” on page 49.

Rci.Linker_Post_Options String Null string | Contains a string value to append to the unit name
in the remote linker command.

Rci.Linker_Pre_Options String Null string | Contains a string value to insert before the unit name
in the remote linker command.

Rci.Operation_Mode String Null string | Contains the values “interactive” or “batch.” This
switch overrides the default operation mode for
compilation within the view. A value of null string or
any invalid value causes RCI to use the default oper-
ation mode, determined by the customization or the
Target_Key.Register command. See “Choosing Inter-
active or Batch Operations” on page 49.

Rci.Optimize_Download Boolean True If False, the RCI downloads units to the remote com-
pilation platform, if coding in interactive mode,
regardless of whether their edit times have changed
since the last time they were coded.

Rci.Remote_Library String Null string | Contains the name of the remote program library,
stored as state information. Do not alter this value.

46 RATIONAL December 1992

Chapter 3: Getting Started

‘ Table 3-1 Rci Session and Library Switcbes (continued)

Name Type Default - Function

Session_Rci.Retrieve_Executabie Boolean False Controls whether the RCI uploads the executable file
created by the remote linker. If True, the RCI checks
any extension switches that control uploading exe-
cutable files. This action depends on your extension.
See your extension user’s guide or your customizer
for more information.

Rei.Trace_Command_Output Boolean False If True, the RCI displays the text of remote com-
mands executed during the coding and linking steps.
See “Displaying Remote Process Commands” on
page 49 and “Output from the RCI Compiler and
Linker” on page 56. It may display other information
also, depending on the extension.

Table 3-2 Rct and Session_Rci Custom Switcbes

Name Type | Default Function
Rci. Custom_Default_Machine String | Null string | Specifies the remote compilation platform for newly
created views (one per registered target key per
library).
Rci. Custom_Default_Roof String | Null string | Specifies the roof value used to construct a remote
directory name for newly created views (one per
‘ registered target key per library).

Session_Rci.Custom_Default_Machine | String | Null string | Specifies the remote compilation platform for newly
created views (one per registered target key per ses-
sion).

Session_Rci. Custom_Default_Roof String | Null string | Specifies the roof value used to construct a remote
directory name for newly created views (one per
registered target key per session).

Table 3-3 Sample Rci Switcbes

Name Type Default Function
Custom_Assemble Boolean | False If True, sets the -a option for the target compiler, which creates the
-s file on the compilation platform and the .<Asm> file on the
host.
Custom,_List Boolean | False If True, sets the -1 option for the target compiler, which produces

an Ada listing file with the . 1st extension on the compilation plat-
form and the .<List> file on the host.

Custom_Suppress_All | Boolean | False If True, sets the -s option for the target compiler, which has the
same effect as pragma Suppress.

Custom_Verbose Boolean | False If True, sets the -v option for the target compiler, which displays
informational messages during the compilation that normally are not
displayed.

RATIONAL December 1992 47

RCI User’s Manual

Viewing Switches

These switches can be viewed in the following ways:

m Switches.Edit displays all library switches associated with the view, including an
asterisk to indicate nondefault values.

m Switches Edit_Session_Attributes displays the user’s session switches.

= Switches.Display displays any switches associated with the library that have non-
default values; in addition, if any Rci switch has a nondefault value, all Rci
switches are displayed.

m Rci.Show_Remote_Information displays the values of Ftp.Remote_Directory and
Fip.Remote_Machine.

Figure 3-3 shows a sample listing of the current switch values when viewed using
the Switches.Display command.

Ftp . Account @ Stri Ho
Ftp . Auto_Login : Boolean := False
Rci . Auto_Transfer : Boolean := False
Rci . Compiler_Post_Options : String FE
Rei . Compiler_Pre_Options : String I
Rei . Host_Only : Boolean := False
Rei . Linker Post_Options : String Ho B
Rei . Linker_Pre_Options ¢ String HoB
Rei . Operation Mode ¢ String o
Rei . Optimize_Download : Boolean := True
Ftp . Password : String tm Y
Ftp . Prompt_For_Account : Boolean := False
Ftp . Prompt_For_Password : Boolean := False
Ftp . Remote_Directory : String H
Rci . Remote_Library : String =
Ftp . Remote_Machine : String o
Ftp . Remote_Roof : String tm MY
Ftp . Remote_Type : String R
Ftp . Send_Port_Enabled : Boolean := True
Rei . Trace_Command_Output : Boolean = False
Ftp . Transfer_Mode : Mode_Code := Nil
Ftp . Transfer_Structure : Structure_Code := Nil
Ftp . Transfer_Type : Type_Code := Nil
Ftp . Username : String s M
Rei . Vax_Vms_Dec_Xt_Brief : Boolean := False
Rei . Vax_Wms_Dec_Xt_Check : Boolean := False
Rei . Vax_Vms_Dec_Xt_Cross_Ref : Boolean := False
Rei . Vax_¥ms_Dec_Xt_Debug : String Ho R
Rei . Vax_Wms_Dec_Xt_Default_Machine : String = Y
Rei . Vax_¥ms_Dec_Xt_Default_Roof : String Ho B
Rei . Vax_¥ms_Dec_Xt_Full : Boolean := False
Rei . Vax_Vms_Dec_Xt_Ldebug : Boolean := False
Rei . Vax_V¥ms_Dec_Xt_List : Boolean := False
Rei . Vax_¥ms_Dec_Xt_Map : Boolean := False
Rei . Vax_¥ms_Dec_Xt_Nocheck : Boolean := False
Rei . Vax_Vms_Dec_Xt_Nodebug : Boolean := False
Rei . Vax_Vms_Dec_Xt_Noexecutable : Boolean := False
Rei . Vax_Wms_Dec_Xt_Nomain : Boolean := False
Rei . Vax_¥ms_Dec_Xt_Optimize : String := "(NONE)"
Rei . Vax_Vms_Dec _Xt_Show : String HORR
Wl ki g (511 Switches

Figure 3-3 Switcbes Viewed Using Switcbes.Display

If the Rci switches do not appear when the Switches.Edit or Switches.Display com-
mand is executed, the RCI may not be running on your machine. See “Verifying the
RCI Installation” on page 18 in Chapter 2.

48 RATIONAL December 1992

Chapter 3: Getting Started

Changing Switch Values

Switch values can be altered in the following ways:

» From the display produced by Switches.Edit or Switches.Edit_Session_Attributes,
position the cursor on the line containing the switch to be changed and press
[Edit]. Fill in an appropriate value and press [Promote]. The displayed value is
changed but the new value does not take effect until Common.Commit ([Enter] or
[CommitD or Common.Promote ([Promote]) is used on the switch window.

m With the Switches.Set command for each switch to be altered, as in:

Switches.Set ("Ftp.Username=""frederick""");

Turning Off Remote Compilation

Set the Host_Only library switch to True when you do not want an RCI view com-
piled on the remote compilation platform. Views controlled by Host_Only => True
provide specs for semantic checking, but when units in 2 Host_Only view are coded
in the Environment, they are not transferred and compiled remotely.

This feature is particularly useful when you have a large piece of common code that
changes infrequently and already resides in a remote library.

Use the Host_Only switch in combination with the Trace_Command_Output switch
as you develop code in the host environment. For example, from a host-only view,
you can check the commands that the RCI would send to the remote compilation
platform without actually downloading and compiling on the target compiler.

Displaying Remote Process Commands

Set the Trace_Command_Output switch to True when you want to display the text
of commands sent to the remote machine. This can be useful in testing compile, link,
and process commands sent to the remote machine and in gathering troubleshooting
information about RCI remote commands that fail.

You can use this switch in combination with the Host_Only switch to gather infor-
mation about what is sent to the remote machine. For example, from a host-only
view, you can check the series of commands that the RCI would send to the remote
machine without downloading and compiling on the target compiler.

Choosing Interactive or Batch Operations

The RCI handles remote compilation in one of two modes: interactive or batch. Use
the Rci.Operation_Mode switch to select the mode on a view-by-view basis. The
switch overrides the default value set in the extension or set by the Custom_Key-
.Register command for the view that contains the switch.

Set the switch to a string value of either “interactive” or “batch”. A null string or an
invalid value causes the RCI to use the default operation mode.

Controlling Batch Unit Transfers

The Rci.Auto_Transfer switch determines whether the RCI automatically transfers
units to the remote compilation platform when you promote those units from in-

RATIONAL pecember 1992 49

RCI User’s Manual

50

stalled to coded on the host. The default value is False. Set the value of the switch
to True if you want units to transfer automatically. You can also override the default
value for a single batch script by setting the Transfer_To_Target parameter of the
Rci.Build_Script command to True.

Controlling Remote-Directory Creation

When you use a CMVC command to create an RCI view, the RCI checks the value
of the Session_Rci.Auto_Create_Remote_Directory switch to determine whether to
create the corresponding remote directory on the compilation platform at the same
time it creates the new host view. The default value for the switch is True. If you do

not want to create a remote directory when the RCI creates the host view, set the
switch to False.

Setting Switches for Remote Communication

For the RCI to be able to download and compile an Ada unit when promoting it to
the coded state, the RCI must be able to establish communication with the remote
machine, as described in “Specifying Remote Login Information” on page 20 in
Chapter 2 and “Changing Switch Values,” above. A common solution is to use the
Ftp switches described in Table 3-4 and located in the switch file that is associated
with the view in which the Ada unit is located. All of these switches are of type String
and default to null. The RCI sets the values for Remote_Machine and Remote_Direc-
tory when the view is created from the default switch-naming scheme or command
parameter (see the Initial and Make_Path commands for package Cmvc).

Table 3-4 Ftp Switcbes

Name Function

Password Specifies the password for the remote user.

Remote_Directory | Specifies the remote directory for downloading and compiling.

Remote_Machine Specifies the remote machine with which communications should
take place as defined by the Transport_Name_Map file.

Username Specifies the username for the requested remote machine.

Additional information about Ftp switches can be found in the File Transfer Protocol
(FTP) book of the Rational Networking— TCP/IP Reference Manual.

Setting Switches for Target-Compiler Operations

The Rci switches whose names begin with Custom affect the way in which the target
compiler operates; they map directly to target-compiler options as suggested in
Figure 3-3. These switches remain enabled until the target key is unregistered; at
next registration, they return to the default values for the customization. For more
information on target options, refer to the manual for the target compiler and the
user’s guide for your customization.

The default values of these RCI extension switches serve for the general RCI case.
Of these switches, the extension is likely to have switches similar to the following,
which affect the operation or output of the RCI as described in this manual:

I?ATIONAL December 1992

Chapter 3: Getting Started

» Custom_Assemble and Custom_List: See “Saving Assembly Source Code and Ada
Listing Files,” below.

m Custom_Verbose: Affects output from the target compiler and remote linker.

Saving Assembly Source Code and Ada Listing Files

If provided for by the target compiler and by the RCI customizer, certain switches
specify whether associated files for the Ada units should be created on the host as
described in “Output from the RCI Compiler and Linker” on page 56.

To save the assembly-language source listing generated by the target compiler and
transfer it into an associated file on the host, set the Custom_Assemble-equivalent
switch to True. During the interactive coding step, the assembly-language listing file
is created on the compilation platform and transferred to the host into an associated
file of the original Ada unit, usually named .<Asm> (see Table 3-6, “Sample Suffixes
Identifying Associated Files on the R1000,” on page 58).

To save the Ada source listing generated by the target compiler, set the Custom_List-
equivalent switch to True. During the coding step, the Ada source listing file will be
created on the compilation platform and transferred to the host into an associated
file of the original Ada unit, usually named .<List>.

In batch mode, the target compiler produces these files on the compilation platform,
but they are not automatically uploaded to the host. To transfer them back to the
host, use the Rci.Upload_Associated_Files command described in “Retrieving Asso-
ciated Files” on page 72.

Specifying Unit-Specific Compiler Options

The RCI allows you to modify compiler options on a unit-by-unit basis. Use the
Rci.Set_Unit_Option command to change the compiler options for a particular unit.
When the unit is compiled, these values are used for compiler-option values instead
of the current values in the library-switch file. The RCI stores the new value set by
the Rci.Set_Unit_Option command with the state information. This value remains
enabled until you undo it with the Rci.Remove_Unit_Option command.

To set the value of a specific option for a given unit:

1. Enter the Rci.Set_Unit_Option command and press [Complete}:

List of possible completions
SET_UNIT_OPTION =>
procedure Set_Unit_Option
(Option_Switch : String := ">>OPTION<<';

Switch_Value : Boolean;

Units : String := "<CURSOR>";

Response : String := "<PROFILE>");
procedure Set_Unit_Option

(Option_sSwitch : String := ">>OPTION<<";

Switch_value : String:;

Units : String := "<CURSOR>";

Response : String := “<PROFILE>");

2. Choose the appropriate command to modify your compiler option. If the compiler
option does not have arguments, select the first completion; if it does have argu-
ments, select the second completion.

RATIONAL December 1992 51

RCI User’s Manual

and press [Complete] to copy that command into the command window:

Rci.Set_Unit_Option (Option_Switch => *>>OPTION<<",
Switch_Value > True or "*
Units > "<CURSOR>",
Response > “<PROFILE>");

3. Fill in the parameters as follows:

Put the cursor on the line with the appropriate command, select the command, .

W onon

m Option_Switch: Fill in the name of the compiler option in the RCI view
library- switch file. This can be the name of the compiler option as it appears
in the switch—for example, Optimize—or the fully qualified switch name of
the library switch, Rci.1186_Vms_Ddc_Optimize.

= Switch_Value:

~ For compiler options with no arguments, set the value to True to enable the
compiler switch or False to disable it.

— For compiler options with arguments, fill in the argument’s desired value.
An ampersand means that the option is present with no argument, and an
empty string means the option is not present.

m Units: Specify the units for which the compiler-option values apply.
4. Press [Promote]. The compiler-option values are assigned for the specified units.

For example, to set the compiler option Optimize to use the argument value Time
for the unit indicated at the cursor, enter the following command:

Rci.Set_Unit_Option
(Option_Switch => *Rci.I186_Vms_Ddc_Optimize*,
Switch_Value => *Time",
Units => “<CURSOR>",
Response => "<PROFILE>");

RciDisplay_Unit_Options displays the options set by Rci.Set_Unit_Option for the
specified units.

Values set with the Rci.Set_Unit_Option commands remain enabled, regardless of
changes to the library-switch file, until you remove them with Rci.Remove_Unit_Op-
tion. After you have removed the set option, the compiler option’s value is taken
from the library-switch file for the view.

CREATING AN ADA PROGRAM FOR REMOTE COMPILATION

When you create Ada programs for remote compilation, you need to consider dif-
ferences in the way the remote compilation system handles target-dependent ele-
ments of the programs. If you have not already done so, you may want to read
“Comparing Features Of Rational Environment And Rci Compilation” on page 7 in
Chapter 1. Specifically, regarding the creation of Ada code for the remote machine
you need to be aware that the remote compilation system handles generics and
inlined subprograms, packed records and arrays, record representations, and imple-
mentation-dependent pragmas differently than does the R1000 compilation system.

bl

52 QATIONAL December 1992

Chapter 3: Getting Started

Creating an Ada Main Unit

When an Ada main unit is created under the RCI to run on the compilation platform,
the process is the same as when an Ada unit is created to run on the R1000.

1. Go to the Units directory of the view in which the unit should be created.
2. Press [Object] - [I] to create an open window ready for editing.

3. Enter text as shown in Figure 3-4. The use of pragma Main may be required or
ignored by the target compiler; it may exist in a joined unit in an R1000 view to
affect behavior on the host, and its presence may or may not affect remote com-
pilation (although a warning may be issued).

with Test_Ada_Io;

procedure Test_Ada is

begin
Test_Ada_Io.Request_Response;

end Test._Ada;

pragma Main;

= .. _WORKING. UMITS.TEST &0 BODY Wil fadad

Figure 3-4 Ada Unit with Pragma Main

Restrictions on a main unit for your extension are described in the manual for the
target compiler.

Before the main unit can be promoted to the coded state, all units in the with closure
of the unit must be in the coded state.

Note: Consider giving the unit a name whose first customization-specified number of
characters (or fewer; see Appendix C) are unique compared to other units. The host
unit name might be truncated to create a text filename when the unit is downloaded
to the compilation platform. Creating these names for remote units is described in
“Remote Files and Names” on page 56.

Using Pragma Main

The RCI supports the Rational-defined pragma Main. If you specify pragma Main in
the specification of a main program, the RCI invokes the remote link operation auto-
matically after coding the unit. This produces an executable module without explic-
itly invoking the Rci.Link command. Since this eliminates the need to explicitly link
the main program, the RCI development model more closely matches the Rational

Environment native development model. RCI support of this feature is particularly

useful when you do host-based testing and make the transition from CDF to RCI use.

To use pragma Main, place it immediately after the end of the specification or body
of a main procedure. You can use pragma Main in any library-level Ada unit that can
be linked on the remote compilation platform.

RATIONAL pecember 1992 53

RCI User’s Manual

54

Before a main program can be promoted to the coded state, all compilation units in
its closure must be in the coded state. If all units in the closure are not coded, the
RCI creates a message of the following form:

ERRCR Link failed for <Main_Unit>. Failure in Host_Linker.Prelink.

Attempting to demote a unit in the closure of a coded main unit can result in an error
message.

RCI support for pragma Main does not include parameters, which means that the RCI
issues warning messages in code joined with R1000 or CDF views where pragma
Main can include various parameters.

Refer to Appendix F of the Ada LRM for more information about the R1000 semantics
of pragma Main.

Using Pragma Inline

The RCI supports pragma Inline. It takes into account inlining dependencies when
computing coding order during promotion and obsolescence requirements during
demotion. Units are compiled in an order that allows the target compiler to inline
(macro expand) calls to inlined routines. Inlined callers are obsolesced when the
body of an inlined routine is demoted.

Note that inlining is always in effect, regardless of how your site-specific customiza-
tion extension or Rational-supported extension has been implemented.

Adding pragma Inline incrementally to a unit is prohibited and produces a message.

Using Representation Clauses

The target compiler may place restrictions on representation clauses, which the RCI
enforces. Your customizer determines these restrictions based on the restrictions of
the target compiler, and the RCI enforces the rules specified for your extension. The
customizer can provide a list of restrictions for length, record, and address clauses

in Appendix C of this manual.

Note: Only restrictions specified by the customizer are caught during the promotion
to the installed state; limitations imposed by the target compiler but not by the custom-
ization are not caught until remote compilation occurs.

Using Implementation-Dependent Pragmas

The target compiler may support pragmas not found in the native compiler; the RCI
supports all LRM standard pragmas as well as the target compiler’s target-dependent
pragmas specified by the RCI customization. Some possible target pragmas are
described in Table 3-5. For further information on target-compiler pragmas, see the
manual for the target compiler and the Ada LRM. Appendix C provides a blank table
for the customizer to fill in valid pragmas.

See the discussion of pragma Main in “Creating an Ada Main Unit,” above.

RAT'ONAL December 1992

Chapter 3: Getting Started

Table 3-5 Sample Target Pragmas Recognized by RCI

Pragma Parameters Function

Comment | String Literal

Images Enumeration_Type, Controls the generation of image tables for
When_Generated enumeration types. When_Generated can
be either Immediate or Deferred.
Linkname | Interfaced_Subprogram- Allows pragma Interface to work with rou-
_Name, Link_Name tines whose names are nonstandard.
Os_Task | Priority Directs the placement of tasks into pro-

cesses under the remote operating system.

REMOTELY COMPILING AND LINKING A SIMPLE ADA PROGRAM

In the interactive mode of the RCI, the act of promoting a unit to the coded state
performs a number of operations automatically and may create several output files.
The same is true for the linking step, which is separate from the coding step. This
section describes these steps and output.

Creating an Executable Program

If your target platform is the same as your remote compilation platform, your target
compiler is a native compiler. If your target platform is different from your compila-
tion platform, your target compiler is a cross-compiler. In either case, the target com-
piler generates code for the target platform.

To create a program that is executable on the remote machine from existing Ada
source code:

1. Select the Ada unit that you have created on the host in an RCI view.

2. Press [Promote] to promote from the source state to the installed state. See “What
Happens During the Installing Step” on page 58 for additional information.

3. Press [Promote] again to promote from the installed state to the coded state. As
described in “What Happens During the Coding Step” on page 59, the unit is
downloaded to the remote machine and compiled with the remote compiler. Var-
ious output may be displayed and files created as described in the “Output from
the RCI Compiler and Linker,” below.

Note: If you need to compile more than one unit or to make sure that the entire
closure of a given main unit is in the coded state, you can use the [Code (This World)]
key or the Compilation Make command.

4. Enter the Rci.Link command in the command window associated with the Ada
main unit that includes the newly coded unit in its closure and press [Promote].

The unit on the remote machine is linked as described in the “What Happens During
the Linking Step” on page 61.

RATIONAL December 1992 55

RCI User’s Manual

56

To execute and debug the program, log onto the remote machine and use the remote
operating-system utilities or use remote commands from the host to transfer and con-
trol the target execution.

Output from the RCI Compiler and Linker

When an Ada unit is promoted to the coded state or linked, various output can be
displayed in a host window, and certain files associated with the unit may be pro-
duced automatically on the R1000 and on the compilation platform, as shown in Fig-
ure 3-6 on page 60 and Figure 3-7 on page 62.

Displaying Remote Commands

If the Rci.Trace_Command_Output switch is True, then the actual remote command
used to compile or link a file is displayed in the response window. It may be bene-
ficial to display this if several RCI switches are used to specify nondefault target-com-
piler options.

Displaying Remote Standard Output

Standard output from the execution of a remote command is always displayed in the
current output window. Switches like the Rci. Custom_Verbose switch may provide
additional informational messages.

Remote Files and Names

Files created on the compilation platform are determined by Rci switch settings and
compiler commands. See “Setting Session and Library Switches” on page 45.

Remote filenames are stored permanently on the host for each unit and are calcu-
lated from the simple name of the host unit. For example, names for the RS6000 plat-
form are formed as follows:

® A suffix consisting of an underscore and a serial number is appended to the
name based on the order in which the unit was registered in the RCI state infor-
mation. This guarantees that each remote name is unique.

® An additional suffix of _b is appended for an Ada body and _s for an Ada
specification.

» The .ada extension is appended to the result for Ada bodies and specifications

that the RCI downloads. The target compiler may create files with other exten-
sions as described below.

s Secondary text files are downloaded to the name specified in the Rci.Create_Sec-
ondary command or by default with the same name as on the host.

= The simple name before the suffixes is truncated so that the entire name is no
longer than the customization-specified number of characters (see Appendix C
or the user’s guide for your extension).

Note: The Rci.Set_Remote_Unit_Name command can be used to override this default
name, but it is then the user’s responsibility to verify that no duplicate names are
specified.

RATIONAL December 1992

Chapter 3: Getting Started

Logging onto the remote machine and using a command from the remote operating
system to view the files in the remote directory might reveal a listing like this:

planetary_motion
planetary_motion_1_s.ada
planetary_motion_1_s.1lst
planetary_motion_1_s.s
planetary_motion_2_b.ada
planetary_motion_2_b.1lst
planetary_motion_2_b.s

screen_io_c
the_file_with_an_extremely_long_3_s.ada

In this list, the .ada files are Ada units that were downloaded from the host; the
screen_io_c is a secondary text file whose original host name before downloading
was screen_io_c; the .Ist files were created by the target compiler and contain Ada
listing files; the .s files were also created by the compiler and contain assembly-lan-
guage listings. The file with the long name was called The_File_With_An_Extreme-
ly_Long Name on the host. The file with no extension is the executable module.

In addition, there might be entries for the default remote program library and the
remote import list. See Figures 3-6 and 3-7 and Appendix C for more information.

Host Associated Files

Promoting a host unit to the coded state may result in the creation of associated files
on the host, such as Planetary_Motion.<List>, as shown in the example of a directory
in Figure 3-5.

Input_Operations : C Ada (Pack_Spec);
<Asm> File;
.<{List) : File;
Input_Operations : C Ada (Pack_Body);
.Asm> : TFile;
{List> : File;
Orbit : C Ada (Pack_Spec);
LAsm> : File;
.{List) : File;
Orbit : C Ada (Pack_Body);
<Asm> : File;
{List) : File;
Planetary Motion : C Ada (Main_Proc)
<LAsm> : File;
LList) : File;
Lexe) ¢ File (Binary);
Planetary Motion : C Ada (Main_Body);
<L Asm> : File;
LList) : File;
= ... _RCL.EE¥1_ESei00_aTi TBM WORKING ¢ libraryv: ESeinn_gIli_TEM World

Figure 3-5 Directory Showing Associated Files After Coding and Linking

Associated files are automatically created and/or retained if the appropriate library
switches are set to True, as suggested in Table 3-6. See Figures 3-6 and 3-7 for more
information. Actual associated filenames and switch settings are determined by the
customization; a table in which the customizer can list these values is provided in
Appendix C.

RAT'ONAL December 1992 57

RCI User’s Manual

Table 3-6 Sample Suffixes Identifying Associated Files on the R1000

Suffix Sample Description of File

<Asm> Listing of the assembly-language source. The file’s creation is controlled by
the Rci. Custom_Assemble switch. The file is created on the compilation
platform and uploaded to the host as a text file.

<List> Ada source listing output by the target compiler. The file’s creation is con-
trolled by the Rci. Custom_List switch. The file is created on the compilation
platform and uploaded to the host as a text file.

<Exe> Executable module in target object-module format. The file is created by the
remote linker and is uploaded to the host (if Session_Rci.Retrieve_Execut-
able is True) during execution of the Rci.Link command. The file is not a
text file.

The source listing and assembly-language files can be useful for debugging, and the
<Exe> file can be useful for configuration-management purposes or for direct final
downloading to the target.

If the parent unit is deleted, all of its associated files are deleted automatically. If you
need permanent copies of these files, you can make and control nonassociated files
from them. These files cannot be produced directly; they result only from invoking
the RCI target compiler and RCI remote linker.

The associated files of an Ada unit on the host have names formed by adding a suffix
to the simple name of the unit. Because the suffixed name is enclosed in angle
brackets, these files are often referred to as pointy files.

‘What Happens During the Installing Step

When an Ada unit is promoted to the installed state in an RCI view, either with the
{Promote] key or with the command:

Compilation.Make (Unit => *My_Unit",
Goal => Compilation.Installed);

the RCI performs a number of operations, including target-dependent and target-
independent semantic checking. This includes:

m Verifying the correctness of compiler-specific representation clauses and
attributes.

m Checking the validity of LRM-predefined and implementation-defined pragmas
(those allowed by the target compiler). In checking implementation-defined
pragmas, the RCI verifies the following:

— Is the pragma name valid?

- Does the pragma appear in a valid context?

— Are the types of the pragma’s arguments valid?

~ Do the arguments have legal values?

— Is the quantity and ordering of the arguments correct?

n Checking references to the target-compiler-predefined types, objects, and rou-
tines and comparing them with the specifications for all target-compiler-pre- .
defined units, including Standard, System, and Text_Io, in !Targets. Custom_Key.

58 R)ATIONAL December 1992

Chapter 3: Getting Started

The RCI assumes that a unit is semantically correct with respect to the target compiler
once it has been installed. However, changes to the target compiler or features of
the compiler that are not included in the RCI extension for reasons such as being
difficult to model on the R1000 may result in semantic errors when the unit is com-
piled remotely.

In addition, information about the unit is made known to (registered with) the RCI
state information as described in “Rci State Information” on page 94 of Chapter 6.

See the Rational Environment Reference Manual for further information on what
occurs during the installing step.

What Happens During the Coding Step

When an Ada unit is promoted from the installed state to the coded state in an RCI
view, either with the [Promote] key or with the command:

Compilation.Make (Unit => *My_Unit",
Goal => Compilation.Coded);

the RCI, in interactive mode, performs these steps:

1. The RCI checks whether the units in the closure of the requested unit(s) are in
the coded state. If not, as in the native compiler, the system tries to automatically
code all the units so long as those units are already in the installed state. Compi-
lation ordering is based on standard Ada dependencies and implementation-
dependent dependencies such as those imposed by inlining and generic macro
expansion.

2. The first unit in the compilation order, if its edit time on the host is more recent
that its latest download time, is downloaded to the compilation platform using the
remote connection information described in “Setting Up Remote Communica-
tions” in Chapter 2. Naming of the remote units is discussed in “Remote Files and
Names” on page 56. (See “Processing Secondaries” on page 105 in Chapter 7.)
If the connection fails, an error message is displayed and the unit is not promoted
to the coded state.

3. The RCI issues a command to the target compiler for that unit. The command is
constructed as follows:

= If the unit has a secondary (described in Chapter 7, “Using Non-Ada Code
with the RCI”), the command that is associated with the unit (see the
Rci.Show_Secondary command) when the secondary was created or the
Rci.Set_Secondary_Command is the command used by the remote operating
system to process the secondary unit. Rci switches are not used.

s Otherwise, the options determined by the Rci. Custom switches are used with
the default compiler command (see Appendix C) to construct the command
for the target compiler.

The RCI waits for the compilation to complete before progressing to the next step.
Standard output from the target compiler, including errors, is displayed according
to the response profile. If errors occur, the RCI compiler terminates without
requesting compilation for any other units. Among the errors that can prevent a
unit from being promoted to the coded state are:

m Network errors
m Invalid remote username and password

RATIONAL December 1992 59

RCI User’s Manual

m Unknown remote machine or directory names ‘

m Existence of nonterminals in the code (statement prompts and so on, as
described in the Rational Environment Reference Manual)

= Semantic errors caught by the target compiler that were not caught during the
promote-to-installed step

4. When a unit is successfully compiled by the target compiler, its state is changed
to coded and its consistency information is updated in the RCI state information.

5. If the Rci.Custom_Assemble-equivalent or Rci. Custom_List-equivalent switches
are set, the appropriate assembly-language source listing and Ada source listing

files are uploaded to the host and saved in associated files as described in “Output
from the RCI Compiler and Linker” on page 56.

6. The previous four steps are repeated for each unit that needs compilation.

The program is now ready to be linked.

Note: Promoting to the coded state does not change the executable module on the
compilation platform; whenever any unit is changed, the main unit must be relinked.

See the Rational Environment Reference Manual for further information on what
happens during the coding step.

Input to and output from the compilation step is shown in Figure 3-6. Note that file
suffixes may differ, depending on the extension.

'Ada units in Foo closure

Installed Ada
main unit Foo

Foo.<Asm> I

. . Foo.<List>
Compiler instructions |

Transfer utility
R1000
([E A N N R RN N NN NN NNEN NN NN

’ 4 Jeccossesecsss [] 00000000 OOGNISIOSIOSIIOSISIOOSOIOSOIOPONODS

'\ foo_m_b.ada

Compilation platform

.....

Target compiler

foo assembly listing

Y
foo_m_b.ada
foo_n_s.ada

foo source listing |

foo object code |

Figure 3-6 Input to and Output from tbe RCI Compiler

60 RAT'ONAL December 1992

Chapter 3: Getting Started

The RCI takes different steps in batch operation mode. See Chapter 4, “Using Batch
Processing with the RCI,” for a description of batch coding.

‘What Happens During the Linking Step

Promoting an Ada unit from the installed state to the coded state causes it to be com-
piled, but not linked, on the compilation platform. When the Rci.Link procedure is
invoked, the RCI follows these steps:

1. The RCI checks whether all units in the closure of the requested main unit are in
the coded state. If not, the RCI linker uses the value of the Make_Uncoded_Units
parameter to decide whether to attempt to code the necessary units.

If Make_Uncoded_Units is True, it invokes the RCI compiler on each unit as
described in the previous subsection.

If Make_Uncoded_Units is False and a necessary unit is not coded, or if any
attempted compilations fail, the RCI displays a message and the link fails.

2. A connection to the remote machine is made using the machine, directory, user-
name and password as described in “Setting Up Remote Communications” on
page 19 in Chapter 2.

3. The remote linker is invoked, and instructions are taken from the default linker
command (see Appendix C). The appropriate options from the Rci switch file are
concatenated to the link command.

4. Standard output from the remote linker is displayed according to the response
profile. If any errors occur, 2 new executable module is not generated on the com-
pilation platform (and hence not uploaded to the host). Errors are generated if the
Ada unit does not qualify as 2 main unit.

5. After a successful link, the linked executable module is saved on the compilation
platform with the name specified in the Executable_Name parameter of the Link
command. If Executable_Name is null, the name is the same name as the simple
name of the host Ada unit from which the executable module was generated; the
extension .<Exe> is appended to the name if the target compiler allows such
extensions.

In addition, if the Session_Rci.Retrieve_Executable switch is set to True, the linked
executable module is uploaded to the host and saved as an associated file of the Ada
unit, typically named .<Exe>. This module is not executable on the R1000 host, but
it can be controlled and managed by taking advantage of CMVC and RCI facilities
for cross-system consistency management. It could also be downloaded directly to
a target from the R1000 using FTP utilities.

Input to and output from the RciLink command is shown in Figure 3-7 (note that
the associated filename may differ). See also “Output from the RCI Compiler and
Linker” on page 56.

RATIONAL pecember 1992 61

RCI User’s Manual

Linker and loader

. . Foo.<|
instructions Exe>

Transfer utility
[A AR R E NN NE NRE NN] L X XN

Remote linker

R1000

A A A N A N AR N RN NN N NN R NNN] 900000000 OGCOIOIONOSOSOOSONBREOIOOTSYS

Compilation platform

foo executable

foo object code |

Figure 3-7 Input to and Output from Rci.Link

DEMOTING A UNIT

Either the [Demote] key or the Compilation.Demote command can be used to demote
a coded unit to the installed state and from there to the source state. This process
and standard coding dependencies are described in more detail in the Rational Envi-
ronment Reference Manual. Different actions are taken depending on the particular
customization. Actions performed by the RCI that are different from the standard
Environment actions include:

s Demoting a generic body from coded to installed causes all instantiations of that
generic to become obsolete and to be demoted to the installed state.

= Demoting inlined procedures causes units that call the inlined procedure to be
demoted.

s Demoting any unit with associated files deletes the associated files.

Note: Demoting a unit from coded to installed or source has no impact on the state
of units in the remote program library.

No action is taken on the compilation platform.

62 QAT'ONAL December 1992

Using Batch Processing with the RCI

This chapter addresses how to use the RCI in batch mode to perform batch process-
ing. Under batch mode, promote and demote operations affect only units on the
host; when you are ready to compile units on the remote compilation platform, you
use batch operations to download units, build and download a batch compilation
script, and execute that script.

This chapter includes the following sections:

s Overview of batch mode

m Preparing to use batch mode

s Using batch-mode operations

m Troubleshooting batch-mode operations

OVERVIEW OF BATCH MODE

The Environment’s compilation model is optimized to support quick turnaround of
changes. For example, Environment users can make changes incrementally for the
best turnaround. Although it is possible to issue batch-style compilation commands,
the Environment does not optimize for this case.

The RCI provides added flexibility for compilation by allowing you to work either in
interactive mode or in batch mode. Each mode has its advantages—whereas interac-
tive mode maintains continuous consistency between host and remote units, batch

mode decouples host and remote compilation and reduces network traffic.

The following subsections describe:

» The differences between interactive and batch modes with respect to compila-
tion, associated-file retrieval, library management, and consistency management

= Common reasons for using batch mode
m Considerations when mixing batch and interactive modes

Compilation and Associated-File Retrieval

When you use the RCI in interactive mode, promoting a set of units to the coded
state on the host causes each unit to be downloaded to and then compiled on the
remote compilation platform, starting with the first unit in the compilation order.
When a unit is successfully compiled by the target compiler, its state on the host is
changed to coded; consequently, the coded state indicates that a unit is compiled
both on the host and on the remote platform. Furthermore, associated files such as
object files and listings are automatically uploaded to the host.

RATIONAL pecember 1992 63

RCI User’s Manual

64

When you use the RCI in batch mode, promoting a set of units to the coded state on
the host simply determines whether a proper compilation order can be generated
for the units and their supplier and, if so, marks each unit as “codable” by changing
its unit state to coded and entering a compilation timestamp for it in an internal data-
base on the host. Although the units optionally can be downloaded as part of the
promote operation (if the Rci.Auto_Transfer switch is set to True), these units are not
compiled on the remote platform. Consequently, units on the host can be demoted
and repromoted with no impact on remote compilation.

When you want to compile units on the remote platform, you promote the units to
the coded state on the host and then use RCI batch operations to:

m Generate 2 batch script on the host (a batch script is a file containing remote
commands that invoke the target compiler for the units requiring compilation)

m Download the units to the remote platform (f this was not done during the pro-
mote operation)

s Download and execute the batch script
m Upload the resulting associated files to the host

The RCI allows you to combine these operations or perform them as separate steps.
For example, you can:

s Download units each time you promote them and then use a single command
(Rci.Build_Script) to generate the batch script on the host and to download and
execute the script on the remote compilation platform.

= Promote units without downloading them and then use the Rci.Build_Script
command to generate the batch script, download the units, and download and
execute the batch script.

= Promote units without downloading them and use the Rci.Build_Script command
just to generate the batch script. At a later time, you can use the Rci.Transfer-
_Units command to download units to one or more remote compilation plat-
forms and then use the Rci.Execute_Script command to download and execute
the batch script on these platforms.

In all three of these scenarios, you upload the files that result from remote compila-
tion using the Rci.Upload_Associated_Files command.

Thus, the RCI in batch mode allows you considerable flexibility in your development
process—you can promote, demote, and repromote units on the host without caus-
ing remote compilation; conversely, you can force the remote recompilation of
coded host units without having to demote and repromote them.

The Batch Script

When you enter the Rci.Build_Script command to generate a batch script for a unit,

this command verifies that the unit’s execution closure is in the coded state on the

host, determines which units require remote compilation, and determines the order
in which to compile them. The command then generates a script that contains a tar-
get compiler command for each unit. In addition, the command enters a build time-

stamp in an internal database for each unit included in the script.

The Rci.Build_Script command generates an incremental batch script in that it
includes only obsolete units in the script. Obsolete units are units that have been
coded on the host since the last time they were entered in a batch script. More spe-
cifically, the Rci.Build_Script command examines each unit in the execution closure, .

RAT'ONAL December 1992

Chapter 4: Using Batch Processing with the RCI

compares the unit’s compilation timestamp to its build timestamp, and includes the
unit in the script only if the compilation timestamp is the more recent.

The RCI provides a special batch extension to allow customizers to further optimize
the batch script so that it makes the fewest possible calls to the target compiler. In
this case, instead of generating a batch script that invokes the target compiler once
for each Ada unit, a customized batch script should invoke the target compiler once
for each set of units that belong to the same Ada program library.

The base RCI generates a batch script that contains only target compiler commands
and secondary commands. The RCI provides special batch extensions to allow cus-
tomizers to generate site-specific scripts. Such scripts may contain additional com-
mands, such as MVS® commands and statements.

Note that customizers can use batch extensions to cause the RCI to parse the results
of a batch script execution and to make units on the host obsolete.

Remote Library and Consistency Management

The RCI provides interactive commands that automatically create and destroy remote
libraries when you create, release, and destroy views on the host. You can use these
commands regardless of which mode is in effect, provided that the host and the
remote compilation platform are connected through the network.

When you use RCI in batch mode, you must still use the interactive commands to
manage remote libraries, because the base RCI does not provide special batch oper-
ations for library management. Note that the RCI library extension can be customized
to generate batch-style library-management commands. Check with your customizer
to see whether such commands are available at your site.

When you use the RCI in interactive mode, consistency between the host and remote
libraries is maintained automatically, provided that all code development takes place
on the host. Such consistency can be maintained because information about remote
unit state is sent back to the host with each interactive command. Consequently,
updating a unit’s state to coded on the host guarantees that it has compiled success-
fully on the target.

‘When you use the RCI in batch mode, it is more difficult to maintain consistency
between host and remote libraries. In batch mode, there may not always be an auto-
mated way to determine whether the compilation script executed successfully on the
target. The RCI provides ways to resolve inconsistencies between the host and target.
Refer to “Maintaining Consistency in Batch Mode” on page 79.

When to Use Batch Mode

You may find it preferable or even necessary to use batch mode, particularly in the
following cases:

s Where the remote operating system (for example, DOS or MVS) does not sup-
port concurrent Telnet or FTP connections. (See “Building Batch Scripts for Tape
Environments” on page 72.)

m When there is significant cost associated with reelaborating the remote compiler
for each Ada unit to be compiled. RCI batch extensions allow customizers to
define batch scripts that contain the fewest possible compiler invocations.

RATIONAL pecember 1992 65

RCI User’s Manual

pilation platform, so that, for example, compilation jobs must be scheduled over-
night on some systems. Submitting a batch request on the remote platform
generally provides quicker turnaround and tighter control over the compilation
platform’s resources.

When you need tight control of resources on both the host and the remote com- .

When doing large system builds from scratch. Whereas interactive operation is
more efficient during ongoing development (because of the immediate feedback
and the opportunity for making incremental changes), large system builds are
usually done more efficiently in batch mode.

When your project already uses the Target Build Utility (TBU), using RCI batch
mode can provide a smooth upgrade for TBU users.

Mixing Batch and Interactive Operations

You can switch between batch and interactive mode at any time during develop-
ment. The customizer establishes one of these modes as the basic mode when he or
she registers the RCI for a particular target key. Users can override the basic mode
by registering the RCI in the other mode or by changing the value of the Rci.Oper-
ation_Mode switch for a particular view.

Switching between modes can give rise to a mixed set of units, in which some units
were promoted to the coded state under interactive mode and other units were pro-
moted to the coded state under batch mode. The difference between units coded
under each mode is significant:

Units coded interactively are guaranteed to be compiled on the remote platform. .

Units coded in batch mode are strictly speaking “codable” rather than “coded.”
The “codable” state guarantees only that a proper compilation order may be gen-
erated for those units and their suppliers. There is no implication that these units
have been downloaded to and compiled on the remote platform.

When a mixture of coded units exists, both batch-mode and interactive operations
may end up referencing a combination of coded and codable units. Note that:

Units coded under interactive mode are always considered “codable” by batch-
mode operations. Thus, in batch mode, you can successfully generate batch
scripts that reference interactively coded units. (Building a batch script for inter-
actively coded units is useful for rebuilding an application, either in the same set
of remote libraries or in a new set.)

Units made codable under batch mode may, but need not, be considered
“coded” by interactive operations. In particular, interactive compilation opera-
tions consider such units to be coded only if a batch script for these units was
previously generated and successfully executed. Thus, in interactive mode, you
can successfully compile new units against codable units only if the codable
units have already been compiled on the remote platform.

PREPARING TO USE BATCH MODE

66

Before you can use the RCI in batch mode, you must:

Set appropriate values for two library switches.
Put batch mode into effect.

RATIONAL December 1992

Chapter 4: Using Batch Processing with the RCI

Setting Switches That Control Batch Operations

The following library switches control, for a given view, whether units are down-
loaded by promote operations and which mode is in effect (see also “Setting Session
and Library Switches” on page 45):

s RciAuto_Transfer: Boolean := False;

Set this switch to True if you want units to be downloaded to the remote compi-
lation platform whenever you promote them from the installed state to the coded
mode under batch mode.

Set this switch to False (the default) if you do not want units to be downloaded
by promote operations. In this case, you must download the units either as part
of the Rci.Build_Script command (set the Transfer_To_Target parameter to True)
or as a separate step (enter the Rci.Transfer_Units command).
This switch does not affect operations in interactive mode.

s Rci.Operation_Mode: String := **
Set this switch to the null value (the default) if you want to use the mode in which
the RCI was registered.
Set this switch to Batch to use batch mode in the current view, regardless of the
registered mode. (When you set the switch to Batch, be sure to verify that the
Rci.Auto_Transfer library switch has the value you want.)

Set this switch to Interactive to use interactive mode in the current view, regard-
less of the registered mode.

Putting Batch Mode into Effect

The default mode for the base RCI is interactive. Any of the following operations put
batch mode into effect:

® Your customizer sets the operation mode to Batch in the customization template.

s You execute Custom_Key.Register (Batch_Mode => True) to register the exten-
sion in batch mode and you leave the Rci.Operation_Mode library switch set to
null (**) in the relevant views.

m You set the Rci.Operation_Mode library switch to Batch in the relevant libraries,
regardless of how the extension has been registered or customized.

When batch mode is in effect, be sure to verify that the Rci.Auto_Transfer library
switch has the value you want.

Verifying Batch Registration

The various batch-mode operations fail with errors unless batch mode is in effect.
To see whether batch mode is in effect, inspect the Rci.Operation_Mode library
switch for the view you are working in:

s If the switch has the value Batch, then batch mode is in effect.

= If the switch has the value Interactive, change it to Batch.

s If the switch has the null value (**), then batch mode is in effect only if your
extension has been registered in batch mode.

RATIONAL December 1992 67

RCI User’s Manual

To find out how your extension has been registered, enter the What.Users command
and search for the Custom_Key string for your extension:

m If the extension is in batch mode, you will find this string in an entry like the
following:
— RCI_Rev2_0_0_Custom_Key FTP_Batch
— RCI_Rev2_0_0_Custom_Key DTIA_Batch

= If the extension is in interactive mode, you will find this string in an entry that
does not end with “_Batch™:

- RCI_Rev2_0_0_Custom_Key FTP
- RCI_Rev2_0_0_Custom_Key DTIA

USING BATCH-MODE OPERATIONS

68

Building Batch Scripts

In batch mode, promoting units to the coded state optionally downloads the units
to the remote platform and marks them as codable in the RCI state file (“codable”
means that a proper compilation order may be generated for the units and their sup-
pliers). You must then enter the Rci.Build_Script (or Rei.Build_Script_Via_Tape)
command as a separate operation to build a batch script for these units. All appro-
priate library options, unit options, secondary files and commands are included in
the compilation script.

Before you can build a batch script for a given unit, its entire closure must be in the
coded state. The closure may include units that were promoted to the coded state in
either mode. In fact, building a batch script for interactively coded units is useful for
rebuilding an application, either in the same set of remote libraries or in 2 new set.

The command you use to build a batch script depends on how the host and remote
compilation platform communicate:

= You use the Rci.Build_Script command if communication is done through the
network.

= You use the Rci.Build_Script_Via_Tape command if communication is done
through tape. These are discussed in the following subsections.

Building Batch Scripts for Networked Environments

Use the Rci.Build_Script command if the host and the remote compilation platform
communicate using Telnet and FTP:

1. Enter the Rci.Build_Script command and press [Complete]. The command looks like
this:

Rci.Build_Script

(Host_Units => "<IMAGE>",

Link_Main_Units => True,

Transfer_To_Target => True,

Host_Script_File => "<DEFAULT>",

Remote_Script_File => *>> FULL REMOTE NAME <<",

Build_List_File => "<DEFAULT>", ‘
Execute_Script => False,

RATIONAL December 1992

Chapter 4: Using Batch Processing with the RCI

Effort_Only => False,
Minimal_Recompilation => True;
Make_Units => False,
Response => "<PROFILE>");

2. Specify the Host_Units parameter with the names of the units to be compiled and
linked on the remote compilation platform. The build includes all units in the exe-
cution closure of Host_Units that have been coded since their last build.

You can specify the name of an indirect file containing the complete list of units.
For example, you can specify as an indirect file the build-list file that resulted from
building a previous batch script (see step 5). The RCI then generates the batch
script from this list of units.

Do not specify units for different targets or units from views that are associated
with different remote machines.

3. If any unit in Host_Units (or its closure) contains a pragma Main, set the Link-
_Main_Units parameter to True to include linker commands in the build script.

4. Leave the Transfer_To_Target parameter True if you want to download units to
the remote compilation platform when you build the batch script. This downloads
units whether or not they have changed since the last download.

Set this parameter to False if you want to use a different way of downloading units
(see “Setting Switches That Control Batch Operations,” above, and “Downloading
Host Units,” below).

This option has no effect if the Effort_Only parameter is set to False.
S. Specify the desired filenames for the following parameters:

= Host_Script_File: Specify the name of the batch-script file to be created on the
host. The default value, “<DEFAULT>", causes the RCI to create a file called
Batch_Script in the current context. If you specify a filename that already
exists, the RCI does not overwrite the file and the build fails.

® Remote_Script_File: Specify the full pathname of the batch-script file when it
is downloaded to the remote compilation platform. If the script cannot be
downloaded to the specified file, the command generates warings and
builds the batch script on the host.

= Build_List_File: Specify the name of the build-list file, a host file that contains
a list of the host units selected for remote compilation during the current
build. The RCI creates this file only if the build succeeds; if the RCI cannot
create this file, the build fails. The default value, “<DEFAULT>”, causes the
RCI to create a file called Units_To_Build in the current context.

The units are listed in the order in which they need to be compiled. The build-
list file can be used as an indirect file for regenerating a build or for uploading
associated files for a particular build.

6. Set the Execute_Script parameter to True if you want to download and execute
the batch script automatically on the remote compilation platform. When the
batch script executes, its output is directed to an R1000 window. The Rci.Build-
_Script command fails if remote execution fails; however, even if execution fails,
the units referenced in the batch script retain their build timestamp.

Leave this parameter False if you want to download and execute the batch script
as a separate operation (see “Executing a Batch Script on the Compilation Plat-
form,” below).

7. Set the Effort_Only parameter to True if you just want to find out which units
would be included in a batch script. The names of these units appear in the com-
mand’s output log and no other action is taken—that is, no script is generated,

RATIONAL December 1992 69

RCI User’s Manual

the build operation is not recorded in the RCI state information, nothing is down-
loaded to the remote compilation platform, and no Build_List_File is created. '

8. Set the Make_Units parameter to True if you want to promote the specified units
(and their closure) to the coded state on the host before generating a batch script.
Leave this parameter False if you want to be notified if any unit is not yet coded.

9. Leave the Minimal_Recompilation parameter True if you want the batch script to
include only obsolete units—that is, units (either specified or in the execution clo-
sure) that have been coded since they were last included in a batch script.

Set the Minimal_Recompilation to False if you want the batch script to include the
entire execution closure of the specified units, regardless of whether they are
obsolete.

10. Press [Promote] to initiate the build.

Building Batch Scripts for Tape Environments

Use the Rci.Build_Script_Via_Tape command if you need to transfer files and scripts
to the remote compilation platform using tape. The following command copies the
specified units to the specified tape and includes a host move script, which contains
the commands necessary for writing the files to the appropriate directories on the
remote compilation platform:

1. Enter the Rci.Build_Script_Via_Tape command and press [Complete]. The command

looks like this:

Rci.Build_Script_vVia_Tape
(Host_Units => "<IMAGE>",
Link_Main_Units => True,
Host_Script_File => "<DEFAULT>",
Remote_Script_File => *>> FULL REMOTE NAME <<",
Build_List_File => "<DEFAULT>",
Format => "R1000",
Volume => "
Label => "rci_build",
Logical_Device => "rci:",
Effort_Only => False,
Minimal_Recompilation => True,
Make_Units => False,
Response => “<PROFILE>");

2. Complete the tape-specific parameters:

s Format: Specify the type of tape to be written, either ANSI, R1000, or
R1000_LONG. For details, see the Format parameter of the Archive.Save com-
mand in the Library Management (LM) book of the Rational Environment Ref-
erence Manual.

m Volume: Specify the tape volume name.

s Label: Specify the tape label name. For details, see the Label parameter of the
Archive.Save command in the Library Management (LM) book of the Rational
Environment Reference Manual.

» Logical_Device: Specify the logical device name for the tape device on the
remote machine. The host move script, included on the tape, references the
logical device rather than the physical device name.

3. Complete the remaining parameters as described in the previous section for the
Rci.Build_Script command.

4. Press [Promote] to execute the command.

70 RATIONAL December 1992

Chapter 4: Using Batch Processing with the RCI

Checking the Build State

The Rci.Show_Build_State command displays a report that shows the compilation
timestamp and the build timestamp for the specified units. By setting the Obsolete-
_Units_Only parameter to True, you can use this command to list just the obsolete
units—that is, the units whose compilation timestamp is more recent than their build
timestamp.

1. Enter the Rci.Show_Build_State command and press [Compiete]. The command
looks like this:

Rci.Show_Build_State

(Host_Units => "<CURSOR>",
Execution_Closure => False,
Obsolete_Units_Only => False,
Response => "<PROFILE>");

2. Specify the Host_Units parameter with the names of the units for which you want
build state information. Such information is shown only for coded units.

3. Set the Execution_Closure parameter to True if you also want to display informa-
tion for the coded units in the execution closure of Host_Units.

4. Set the Obsolete_Units_Only parameter to True if you want information about
obsolete units.

5. Press [Promote]. Output similar to the following appears:

unit : !Proj.Sub.Revl_Working.Units.A'Body
last coding time : 92/04/06 09:47:31
last build time : 92/04/06 08:47:31

Downloading Host Units

If the host and remote compilation platform communicate using FIP, you can down-
load units from the host as part of the Rci.Build_Script command (by setting the
Transfer_To_Target parameter to True). Alternatively, you can download units as a
separate step by entering the Rci.Transfer_Units command:

Rci.Transfer Units (Units => "<CURSOR>",
Remote_Machine => "*,
Effort_Only => Falge,
Response => "<PROFILE>");

This command is especially useful during multimachine development, where a host
view maps onto many remote libraries. In this scenario, you can generate the batch
script and the build-list file once and then use the Rci.Transfer_Units command to
download the units to the various remote compilation platforms. You can then
download and execute the batch script on those platforms (see the next section).

Executing a Batch Script on the Compilation Platform

If the host and remote compilation platform communicate using FTP, you can
initiate execution of the batch script from the host as part of the Rci.Build_Script
command (by setting the Execute_Script parameter to True). Alternatively, you can

F5531(>PQI\L. December 1992 71

RCI User’s Manual

download and execute an existing batch script as a separate step by entering the
Rci.Execute_Script command:

Rci.Execute_Script

(Host_Script_File => "<IMAGE>,
Remote_Script_file => ">> FULL REMOTE NAME <<",
Remote_Machine => "<DEFAULT>"
Remote_Username => "<DEFAULT>",
Remote_Password => "<DEFAULT>",
Remote_Directory = """,

Effort_Only => False,
Display_Remote_Commands => False,

The_Key => “<DEFAULT>",

Response => "<PROFILE>");

This command is especially useful during multimachine development, where you
want to execute the batch script on multiple compilation platforms.

Retrieving Associated Files

In interactive mode, the RCI automatically uploads compilation results, such as
object files and listings, when any unit is compiled. In batch mode, you must execute
the following command as a separate operation to upload associated files (note that
the host and remote compilation platform must communicate using FTP):

Rci.Upload_Associated_Files

(Units => “<CURSOR>",
Effort_Only => False,
Response => "<PROFILE>");

Specify the Units parameter with a naming expression that describes the host units

for which to upload compilation results. You can specify an indirect file that contains

the names of the host units. For example, you can upload just the associated files of
units selected for the last build by specifying the build-list file generated by the Rci-
.Build_Script command.

This command may generate errors if a batch script was generated but never exe-
cuted on the target.

TROUBLESHOOTING BATCH-MODE OPERATIONS

72

Batch compilations may fail on the target even when all the host units have coded
successfully. This could happen for any of the following reasons:

a Units were not semantically correct for the target, even if they were installed on
the host. (Semantic checking on the host cannot guarantee that units will com-
pile on the target.)

m The target compiler has bugs and rejects valid Ada code.
= Not all supplier views/units are compiled on the target.
If a batch-script compilation fails, you can recover as follows:

1. Examine the output of the batch script to determine the problem. Determine
which units failed to compile and why. .

FBAJTC)PQA\L. December 1992

Chapter 4: Using Batch Processing with the RCI

2. Fix the failed units on the host. This may mean demoting and promoting more
than one unit.

3. Use the Rci.Build_Script command to generate a batch script for the units you
fixed. Run this incremental batch script on the target.

Note that some target compilers fail for all the units in a library if any unit in that

library fails to compile. In such cases, generating an incremental script is not

enough. To recover, you need to regenerate the batch script to include all the
units in the view.
4. Enter the Rci.Build_Script with the following parameter values:

m Host_Units: Specify the build-list file from the failed build as an indirect file—
for example, “_units_to_build®. This causes the new script to contain all
of the units that failed to compile, not just the ones you fixed.

= Batch_Script: Specify a new filename.

s Build_List_File: Specify a new filename.

s Minimal_Recompilation: Set to False to force the build for all the specified
units, even if they are still coded on the host.

For example:

Rci.Build_Script
(Host_Units => "_units_to_build", -- Failed build

-- units

Link_Main_Units => True,
Transfer_To_Target => True,
Host_Script_File => "batch_script_new", -- New file
Remote_Script_File => ">> FULL REMOTE NAME <<",
Build_List_File => "units_to_build_new", -- New file
Execute_Script => False,
Effort_Only => False,
Minimal_Recompilation => False, ~- Force build
Make_Units => False,
Response => "<PROFILE>");

RATIONAL December 1992 73

Maintaining File Consistency

Maintaining file consistency involves the following major and minor categories,
which are addressed in this chapter:
m Consistency between views on the host

—~ Copying and joining units from an RCI to an R1000 view

— Copying and joining units from an R1000 to an RCI view

m Consistency between host and remote units

— Keeping code consistent

Maintaining consistency in batch mode
Determining consistency of host and remote units
Replacing host units with updated remote units
Uploading a new remote unit to the host

CONSISTENCY BETWEEN VIEWS ON THE HOST

Consistency between files joined from an RCI view to an R1000 view is maintained
automatically by CMVC as described in the Project Management (PM) book of the
Rational Environment Reference Manual. Only one of a set of joined files can be
checked out (Cmvc.Check_Out command) and edited at a time; checking out
another of the set automatically performs updates on that file so that it matches the
updated joined file.

Files that exist in a view used to create a new joined view (Cmvc.Make_Path or
Rci_Cmvc.Make_Path) are automatically copied when the new view is created; those
that are controlled by CMVC (Cmvc.Make_Controlled command) are joined with the
copies in the new view.

After the views have been created and joined, however, it is often necessary to create
new units in one view or the other; in this case, you must copy and join the units,
as described below.

Copying and Joining Units from an RCI to an R1000 View

There are two ways to copy and join new units from an RCI to an R1000 view.

Updating All Units in a View

There are the Cmvc.Accept_Changes command, specifying Source and Destination
views as described in Chapter 10, “Package Cmvc.” All new units in the RCI view that

RATIONAL December 1992 75

RCI User’s Manual

are controlled and checked in are copied into the R1000 view and joined with the
file they were copied from. All existing joined units that are checked in are updated
in the R1000 view as well.

Updating a Single Unit

Normally, you will use the Cmvc.Accept_Changes method described above. How-
ever, if you need to join a single unit without forcing updates in all joined units:

1. From any context, enter the Library.Copy command, specifying the following
parameters:
s From: Specify the pathname of the unit to be copied from.
m To: Specify the pathname of the unit to be copied to.

For example, the following command transfers a single object from an RCI view
to an R1000 view:
Library.Copy

(From => "!Users.My_File.Tr_Test.Working_Units.Foo*,

To => "!Users.My_File.R1000_Directory.Working Units.Foo")};

For a complete discussion of the Library.Copy procedure, see the Library Manage-
ment (LM) book of the Rational Environment Reference Manual.

2. Use Cmvc. Join on the new R1000 unit and specify the old RCI view for the
To_Which_View parameter.

Copying and Joining Units from an R1000 to an RCI View

Use Cmvc.Accept_Changes as you normally would to make two joined views con-
sistent. In this case, when the units are copied into the RCI view and promoted to
the coded state, they are processed as described in “What Happens During the Cod-
ing Step” on page 60 in Chapter 3, which includes downloading the units to the
remote compilation platform.

CONSISTENCY BETWEEN HOST AND REMOTE UNITS

76

Using the integrated development cycle assumes that you do code development
on the host environment, not the remote compilation platform. The RCI does not
prohibit you from making changes to the source code of units located on the com-
pilation platform that are associated with units on the host. Because of this, incon-
sistencies can arise between the host and remote units. This section addresses the
management of issues involved with this process.

Keeping Code Consistent

The RCI keeps host and remote units consistent in the following manner:

= When you ask the RCI to promote a unit to the coded state, its host edit time is
compared to its latest download time. If the edit time is later than the download

RATIONAL December 1992

Chapter 5: Maintaining File Consistency

time, the unit’s source code is downloaded automatically to the compilation plat-
form. This ensures that the source code for a specific module is consistent.

If 2 remote compilation is successful while promoting a unit to the coded state,
the remote edit time of the newly downloaded unit is retrieved and saved in the
RCI state file as the unit’s download time.

When you request a consistency check, the RCI determines how to compare in
one of two ways, controlled by the Compare_Objects parameter:

— If True, the remote unit is uploaded and compared to the host unit.

~ If False, the download time of the host unit is compared to the current edit time
of the remote file currently associated with the unit.

Since code development takes place on the host, these consistency issues may
require action:

When a unit is promoted to the coded state, its remote source file is overwritten
without performing the above consistency checking. “Determining Consistency
of Host and Remote Units,” below, describes how to check whether the remote
source has changed.

You must explicitly upload any new or changed units developed on the compi-
lation platform, as described in “Replacing Host Units with Updated Remote
Units” and “Uploading a New Remote Unit to the Host,” below.

The RCI checks whether the host unit has been updated since it was last down-
loaded only when the unit is promoted to the coded state. Therefore, changes
made to the host file since the last download may not be compatible with
changes uploaded from the remote file. Make sure that host and remote versions
of a unit are not edited at the same time.

The RCI does not perform consistency checks between listing files or object
modules (including the remote program library). A successful promotion to the
coded state with appropriate switches set is the best way to ensure consistency
between associated files and their remote counterparts.

The RCI does not perform consistency checking between executable modules in
a given closure. Once an Ada main unit has been remote-linked, recompiling a
unit in its closure does not affect the executable module. Be sure to always use
Rci.Link to relink the Ada main unit after recompiling units in its closure.

If the remote name associated with a unit is changed with the Rci.Set_Remote-
_Unit_Name command, or if the remote filenames are changed, the RCI is no
longer aware of the existing files on the remote compilation platform.

Maintaining Consistency in Batch Mode

Since there is no synchronous way on the host to gather information on the remote
unit state when you execute a batch compilation script, it is more difficult to maintain
compiled state consistency between host and remote units and libraries. You are
responsible for ensuring that all units have been transferred and the batch compila-
tion script has been executed on the remote compilation platform.

In particular, inconsistencies may develop for the following reasons:

The script can be generated but never, or only partially, executed.
All units are not transferred properly.
Some units fail to compile remotely.

QAT'ONAL December 1992 77

RCI User’s Manual

78

s Units are modified and compiled manually on the remote server.
= Regenerating a previous build can introduce new inconsistencies.

Using the RCI, you can regenerate a build in only one of two ways:

» Force recompilation by using Rci.Build_Script
= Regenerate the last build by rerunning the existing batch script

Determining Consistency of Host and Remote Units

The RCI provides operations to check whether remote text files have changed since
they were last downloaded and to retrieve these units. These operations do not
detect whether the host unit has changed since it was last transferred.

Note: These operations check only source code; they do not detect changes to any list-
ing, object, or executable files, nor do they check for obsolescence in the remote pro-
gram library.

To determine whether one or more units is consistent between the host and the
remote compilation platform:

1. Enter the Rci.Check_Consistency command in a command window and press
[Complete]:

Rci.Check_Consistency (Unit => "<CURSOR>";
Compare_Objects => False,
Response => “<PROFILE>");

2. Fill in the parameters as follows:

= Unit: Specify a naming expression for the Ada units on the host to be com-
pared to their associated units on the compilation platform. The remote name
is determined as described in “Remote Files and Names” on page 57 in Chap-
ter 3.

m Compare_Objects: Specify a value. If False, the RCI compares the host-unit
download time to the remote-unit edit time. If True, upload the remote unit
and compare it to the host unit.

Note: This parameter can be set only to False for a DTIA customization. In a Tel-
net/FIP customization, Compare_Objects is ignored and is always set to True.

3. Press [Promote]. The RCI compares the most recent download times of the specified
units with the current edit time of the remote files, or it uploads the remote unit
and compares it to the host unit. It displays a list of inconsistent units and appro-
priate messages for units that have never been coded or that have been deleted
on the remote machine. If Compare_Objects is True, the RCI also displays the dif-
ferences between the host and target files if they are inconsistent.

Since changes can be made to source code on both the host and the remote compi-
lation platform, you must decide which file is the most recent and should replace
the less recent file.

Replacing Host Units with Updated Remote Units

If one or more remote Ada units or non-Ada files should replace the existing host

equivalents: ‘

RAT'ONAL December 1992

Chapter 5: Maintaining File Consistency

1. Use the Cmvc.Show command to ensure that you have checked out the units

located on the host. Enter the Cmve.Show command in a command window and
press [Complete]:
Cmvc.Show (Objects => "<CURSOR>",

Response => "<PROFILE>");

Fill an @ into the Objects parameter to list all units in the current and subordinate

libraries and press [Promote]. This generates output that includes the following
information for all controlled objects:

Object Name Generation Where Chkd Out By Whom
UNITS.FIRST_UNIT 2 of 3 PROD_REV1_WORKING Yes v
UNITS.SECOND_UNIT 2 of 3 PROD_REV1_WORKING Yes v

If you have checked out the units you want to update, continue with step 3.

2. If someone else has checked out the units, the indicated user must check them in

with the Cmvc.Check_In command before you can proceed. Then check out any
units that are not checked out and need to be updated. Enter the following com-
mand in a command window:

Cmvc.Check_Out (What_Object => "");

Between the quotes, enter a naming expression for the units that are to be
checked out. Press [Promote]. The CMVC command displays messages indicating the
success of the operation.

For additional information on CMVC commands, see the Project Management
book (PM) of the Rational Environment Reference Manual.

3. Enter the Rci.Accept_Remote_Changes command in a command window and

press [Complete]. The result is:
Rci.Accept_Remote_Changes

(Unit => "<CURSOR>",
Allow_Demotion => False,
Compare_Objects => False,
Remake_Demoted_Units => True,

Goal => Compilation.Coded,
Response > "<PROFILE>");

4. Fill in the parameters:

» Unit: Specify a naming expression indicating which host units and/or text files
are to be replaced if necessary by the equivalent remote unit(s). If you want
to update a secondary text file, specify the name of its associated primary.

» Compare_Objects: Specify a value. If True, consistency is checked by compar-
ing host and remote objects; if False, host and remote timestamps are
checked.

If a text file is specified for Unit, then the Allow_Demotion, Remake_Demoted-
_Units, and Goal parameters are ignored.

If an Ada unit is being updated, fill in the following parameters:

= Allow_Demotion: Specify a value. To be updated on the host, an Ada unit
must be in the source state. If this is False, the command does not demote
host units. If demotion is required, the command displays a message and no
changes are accepted for that unit.

s Remake_Demoted_Units: Specify a value. If True, any host units demoted to
make changes are repromoted to the state noted below.

FRA(T1(:)PJA\L. December 1992 79

RCI User’s Manual

m Goal: Fill in a valid Compilation. Unit_State value (such as Compilation.In-
stalled); the RCI attempts to repromote units that are demoted during the
update process to the indicated state. Units can be promoted only to the
installed state; requesting Compilation.Coded gives a warning to this effect.

. Press[Promote]. The specified units are updated and promoted to the indicated state

only if the associated remote units have changed since they were last down-
loaded; otherwise, the host units remain untouched. Units on the remote compi-
lation platform remain unaffected.

Uploading a New Remote Unit to the Host

If you have created new Ada units on the remote compilation platform that should
be maintained in the RCI view, you can upload them either one at a time or as a
group. If you want to upload a single unit, use the Rci.Upload_Unit command. If you
have several units, use the Rci.Upload_Units command,; this allows you to define
remote and host unit names in a text file which is selected by the Upload_Specifica-
tion_File parameter.

To upload a single new Ada unit from the remote machine:

1.

4.

Enter the Rci.Upload_Unit command and press [Complete]:

Rci . Upload_Unit
(Remote_Unit_Name => “>>REMOTE UNIT NAME<<";
Into_View => *"<CURSOR>";
Upload_To_Text_File => False;
Host_Text_File_Name => "*;
Response => "<PROFILE>");

. Fill in the parameters as follows:

m Remote_Unit_Name: Specify the simple name of the Ada unit on the remote
machine.

= Into_View: Specify the view or directory within the view where the specified
remote unit exists.

s Upload_To_Text_File: See Chapter 7, “Using Non-Ada Units,” for further infor-
mation.

m Host_Text_File_Name: Leave null.

. Press [Promote]. The RCI uploads the remote unit onto the host into an Ada unit in

the source state, which is named according to the standard Rational Environment
Ada unit names. If it cannot be parsed, it remains a text file with a name such as
Temp_90_12_11, where the final digits represent the date the file is created.

Use the Cmvc.Make_Controlled command to control the new unit.

To upload more than one new unit from the remote machine to the host (using an
Upload_Specification_File):

1.

Create a text file on the host by pressing [Create.Text] in the view that will contain
the uploaded units. This file will contain information about the name the RCI uses
to find a unit on the remote machine and the new name on the host where it will
store the uploaded unit.

In your open text file, create one text line for each file you want to upload. Enter
one or two name fields on each line of text:

= Remote unit name: Specify the name of the unit on the remote compilation
platform.

RAT'ONAL December 1992

Chapter 5: Maintaining File Consistency

= Host text filename: Specify the new host name for the uploaded unit. If this
field is left blank, the command attempts to upload the remote unit into an
Ada name on the host. The RCI uses the naming scheme for remote units that
has been defined by your extension to create the Ada unit name on the host.

Separate the remote unit name from the optional host text filename by one or
more spaces. A sample file appears as follows:

X.C X_C
new_unit.c unit_in_c
y_s.ada

Using this sample file, remote file x.c is copied into host text file X_C; remote unit
new_unit is copied into host text file Unit_In_C; remote file y_s.ada is copied into
host Ada unit Y’Spec.

If a line of the specification file does not provide a host text filename, the RCI
attempts to upload the file into an Ada unit.

2. Enter the Rci.Upload_Units command and press [Complete]:

Rci.Upload_Units
(Upload_Specification_File => **;
Into_View => “<CURSOR>";
Response => "<PROFILE>");

3. Fill in the parameters as follows:

s Upload_Specification_File: Specify the host text file, created in step 1, which
contains the list of units to upload.

= Into_View: Specify the view in whose associated remote directory the speci-
fied remote units exist.

4. Press [Promote]. The RCI uploads the remote units listed in the specification file onto

the host. Use the Cmvc.Make_Controlled command to control the new units.

RAT'ONAL December 1992 81

Library Management

This chapter describes activities involved with managing host and remote libraries.
Many of the approaches in this chapter depend on the specific characteristics of your
customization extension. Your extension may or may not handle libraries in the man-
ner described in the examples. Use the examples in this chapter as general guidelines
and apply them to your specific extension. Refer to the user’s guide for your exten-
sion or to guidelines provided by your site customizer for additional information.

This chapter includes descriptions of the following:
® RCI library model
— Overview
Definitions
— Examples
- Limitations and restrictions

m Management of remote libraries
— Automatic creation
— Explicit creation
— Example of library creation
— Removing remote libraries

s Imports

Adding imports
Removing imports

Keeping imports consistent
- Imports example

m RCI state information

m Management of subsystems and views
— Removing RCI views
— Creating releases of views

RCI LIBRARY MODEL

The RCI library model is similar to the native R1000 library model. It is limited, how-
ever, by the restrictions of the remote compilation platform’s library model.

RATIONAL December 1992 83

RCI User’s Manual

Overview

The RCI maps RCI combined views to libraries under the remote operating system.
RCI library-management operations (Make_Path, Import, and Remove_Import, for

example) can be extended optionally to perform remote library-system operations
so that you do not have to manage remote libraries as a separate task from managing
host libraries.

Note: If you choose to run without, or if the extension of the RCI does not implement,
remote library management, you will be responsible for the management of the state
of any remote libraries.

To enable these extensions, your system administrator and customizer must modify
the extension. See the “Enabling Remote Extensions Management” in Chapter 2.

The RCI normally is used only with combined views. Combined views generally map
to remote operating-system libraries in a straightforward manner. The Rational Envi-
ronment has the notion of a current working library, as do most library-management
systems. Also, the Rational Environment has a way of defining static imports (CMVC
maintains a list of imports for each combined view on the host), and many library-
management systems maintain an equivalent list of sublibraries to use when resolv-
ing external references on the remote compilation platform.

Definitions

When this manual refers to a remote library, it includes a directory under the remote
operating system, a presumed associated or enclosed target-compiler program
library, and, for some extensions, a remote import list. The RCI uses these parts of
the remote library as follows:

m Ada source is maintained in (or downloaded to) the remote directory.

m Ada source is compiled into the program library; that is, the program library
contains a compiled representation of units.

m The remote import list, which is maintained in the library list file, specifies the
sublibraries (imports) to be used during compilation for some extensions. (Other
approaches to imports include unit-by-unit definitions or hierarchial directory
structures.)

A Rational view is analogous to the remote library: the Units directory of the view
contains all of the source, and information about compiled units is an implicit or hid-
den part of the view.

The implementation and names of these objects are discussed in “Automatic Cre-
ation” on page 89.

Examples

The following examples illustrate possible library-structure mappings between host
subsystems and remote libraries.

Figure 6-1 shows multiple views, each in a different host subsystem, mapped to a
single remote library. Views from several subsystems in the same closure can map
to a remote library in a many-to-one relationship.

RATIONAL December 1992

Chapter 6: Library Management

Figure 6-1 Multiple Subsystems with Single Remote Library

Note: Forsome extensions, the closure of views must all be mapped to the same remote
library, and no otber remote libraries can be imported into this library. If the closure
is not restricted to this single library, the remote-library list file will not accurately
reflect remote imports, and compilation errors will resulit.

Figure 6-2 shows a one-to-one mapping between host views, remote libraries, and
imports.

Host Remote

Figure 6-2 Multiple Subsystems with Multiple Remote Libraries

Limitations and Restrictions

The RCI library model essentially supports a one-to-one mapping of host views to
remote libraries. The following restrictions apply to mapping host views to remote
library structures:

m All RCI development must be done in combined views; the spec/load-view
model is not supported.

RAT'ONAL December 1992 85

RCI User’s Manual

u More than one view in the same host subsystem cannot be mapped to a single
remote library; an attempt to do this results in an error. Figure 6-3 shows this
€rIroneous mapping.

Host Remote

Figure 6-3 Multiple Views in a Single Subsystem

m Views from several subsystems where the views are part of the same closure can
be mapped to a single remote library. However, mapping several of these views
to one remote library and others to another remote library can result in inconsis-
tencies of imports. Figure 6-4 shows this undesirable mapping.

m A host view cannot map to more than one remote library because the remote
library for a view is determined as described in “Remote Directory” on page 22
in Chapter 2. Figure 6-5 shows this impossibility.

® Imports in remote program libraries must be expressed in a manner that is con-
sistent with imports in host views; this should occur automatically if import infor-
mation is controlled from the host using CMVC and RCI commands.

Host Remote ‘

Subsystem_A

I View_1 I

Subsystem_B
View_2

Subsystem_C
View_3

Figure 6-4 Views in the Same Closure

86 RAT‘ONAL December 1992

Chapter 6: Library Management

Host

Subsystem_A

View_1

Figure 6-5 Multiple Remote Libraries

MANAGEMENT OF REMOTE LIBRARIES

If your extension has enabled RCI automatic library management, you have set the
Session_Rci.Auto_Create_Remote_Directory switch to True, and you have set up the
information required for remote communication as described in “Setting Up Remote
Communications” on page 19 in Chapter 2, the RCI creates a remote library when-
ever you create an RCI view. For more information, see the user’s guide for your
extension. Depending on your extension, the RCI creates the nested directories on
the remote platform as well as the specified remote directory. If your extension does
not support this operation, you must create the libraries yourself.

In interactive mode, the RCI cannot promote units in an RCI view to the coded state
unless it can download the units to and compile them on the remote compilation
platform.

Automatic Creation

The CMVC view-creation commands (Initial, Make_Path, Make_Subpath) and their
comresponding Rci_Cmvce commands automatically build the remote library under
the conditions described in “Creating a Subsystem and an RCI View” on page 37 in
Chapter 2.

If the remote library already exists, it is used as is.

Ifthe remote library does not exist, the RCI creates it as a directory whose full path-
name is the value created by the default switch-naming scheme for the Cmvc com-
mand or the Remote_Directory parameter of the Rci_Cmvc command used to create
the view. Within that directory, the RCI also creates the equivalent of these items as
determined by the customization:

m Remote program library
u Remote import list

RAT'ONAL December 1992 87

RCI User’s Manual

Imports in the remote import list are derived from the CMVC imports that exist at the
time of the library’s creation. If no CMVC imports exist, the remote import list is cre-
ated with the minimal entries as described in the next subsection. This list is modi-
fied whenever CMVC imports are modified using CMVC or RCI commands.

See “Imports” on page 94 and Appendix C for further discussion.

Explicit Creation

If the RCI does not create a remote library when you create an RCI view—for exam-
ple, because the remote username and password were incorrect, or because the
remote library-management job was not running—you must create a remote direc-
tory and the appropriate program library and, if necessary for the extension, a
remote import list. Use the Rci.Build_Remote_Library command or create the library
manually using the library-creation procedure for your extension.

Building a Remote Library

The Rci.Build_Remote_Library command builds the remote library for an existing
RCI view. The remote library consists of both the remote directory, where source is
stored, and the program library into which it is compiled. If appropriate, this com-
mand also creates the remote import list.

Use the following steps to explicitly create a remote library:

1. Enter the Rci.Build_Remote_Library command in a command window and press
[Complete]:

Rci.Build_Remote_Library

(View : String := "<CURSOR>";

Remote_Machine : String := "<DEFAULT>";
Remote_Directory : String := "<DEFAULT>";
Response : String := "<PROFILE>");

2. Fill in the parameters as follows:
m View: Specify the host view for the remote directory.

m Remote_Machine, Remote_Directory: Specify these values. If you use the
defaults, the RCI takes the values from the view’s compiler switches. If these
values are not in the view’s compiler switches, the view does not have an
existing remote library, and you must provide them here.

3. Press [Promote]. This connects to the remote machine and creates the remote pro-
gram library, using the specified remote machine and remote directory.

This process works only if the Make_Path_Postprocess RCI customizable library
extension has been implemented. This library extension may or may not be imple-
mented from one RCI extension to another.

For more information on Build_Remote_Library, see Chapter 8.

Rebuilding an Existing Remote Library

If an existing remote library becomes corrupted, the Rci.Rebuild_Remote_Library
command can rebuild it.

Use the following steps to rebuild an existing remote library:

RATIONAL pecember 1992

Chapter 6: Library Management

1. Enter the Rci.Rebuild_Remote_Library command in a command window and
press [Complete]:

Rci.Rebuild_Remote_Library

(View : String = "<CURSOR>";
Remake_Demoted_Units : Boolean := True;
Remote_Machine : String = "<DEFAULT>";
Remote_Directory : String = "<DEFAULT>";
Response : String = "<PROFILE>");

2. Fill in the parameters as follows:
m View: Specify the host view for the remote directory.

= Remake_Demoted_Units: Specify the value. If True, all units and dependents
are recoded.

m Remote_Machine, Remote_Directory: Specify these values. If you use the
defaults, the RCI takes these values from the view’s compiler switches. If

these values are not in the view’s compiler switches, you must provide them
here.

3. Press [Promote]. The process destroys the existing remote library specified by the

View parameter, demoting all units in that view and their dependents. Then it
rebuilds the remote library.

Creating a Remote Library

Use the procedure defined for your remote operating system to manually create a
remote library on the remote machine. Refer to the user’s guide for your remote
operating system and the user’s guide for your extension for more information. Your
RCI customizer provides a list of actual steps to perform remote library management.
Space for this information is provided in Appendix C.

Note: The following steps and commands are specific to a sample customization
Jor the RS6000 target. The actual steps and commands required vary by operating
system.

The following example describes the steps to create a remote library:
1. Log into your remote machine.
2. Enter:

$ mkdir rci_test
$ cd /u/YOURNAME/rci_test

The mkdir command builds a new directory with the name rci_test in the context
in which you logged in (here it is assumed that your home directory is /u/YOUR-
NAME); the cd command changes your context to this new directory.

3. Create the remote import list by entering:
$ cat > alib.list
This presents a blank line into which you must enter the following two lines:

working
/usr/lpp/ada/lib/libada

Press [Control][D] to terminate the input to the cat command and complete the cre-
ation of the remote import list, which contains a list of libraries to be used by the
target compiler when resolving compilation dependencies. You have just placed
two entries into this file:

RAT|ONAL December 1992 89

RCI User’s Manual

= working: the local program library
» /ust/lpp/ada/lib/libada: the target-compiler LRM-predefined units
4. Create the local program library by entering:

$alibinit
5. Log off the remote machine by entering:
$logout

For more information on target program-library management, see the operating-sys-
tem user’s guide for your extension.

Example of Library Creation

This example works as described if the Rci.Host_Only switch is set to False and the
operation mode for the view is Interactive.

Assume that there is currently an R1000 subsystem, Dog_And_Pony_Show, which
contains a view called R1000_Devel_Working. This view’s Units directory contains a
specification and a body for an Ada unit named Dogs. On the remote compilation
platform, which is listed in the transport name map as Tilden, there exists a directory
called /u/jones, which is the home directory when you log into the remote machine
with the remote username Fred and the remote password Farsides. This setup is
shown in Figure 6-6.

Host Remote

ii)og_And_Pony_Show

R1000_Devel_Working

Figure 6-6 Initial Library Setup

The following steps show how the RCI creates a remote library for the RS6000 when
a host view is created:

1. Set your Session_Ftp.Username switch to fred and your Session_Ftp.Password
switch to farsides. (Or use the Remote_Passwords file as described in “Specify-
ing Remote Login Information” on page 20 in Chapter 2.)

2. Position the cursor on the existing viewname.

3. If the default switch-naming scheme for remote directory and machine are cor-
rectly set, enter the Cmvc.Make_Path command. If you need to specify the remote

90 QATIONAL December 1992

Chapter 6: Library Management

machine or directory, enter Rci_Cmvc.Make_Path. See “Creating New RCI Views”
on page 39 for a full description of parameters for these commands.

Enter one of the following commands (with selected parameters shown):

Cmvc.Make_Path
(New_Path_Name => "Target_Devel",

Model => "!Model. Custom_Key",

Goal => Compilation.Coded);
Reci_Cmve.Make_Path

(New_Path_Name => "Target_Devel",

Remote_Machine => *Tilden®,

Remote_Directory => "/u/jones/dog_and_pony-_show",

Model => "!Model.Custom_Key",

Goal => Compilation.Coded) ;

4. Press [Promote].
This action does the following:

m Creates a new host view named Target_Devel_Working and the remote library
structure

Copies the units from the original view into the new view
Downloads each unit from the new view to the remote machine
Invokes the remote compiler on each unit as it is downloaded

Uploads the resulting object modules into the .<Obj> files on the host Gf the
extension uploads object associated files)

m Promotes the host units to the coded state

The result looks as shown in Figure 6-7; actual suffixes vary for your extension.

Host Remote

Figure 6-7 Libraries After Make _Path

Removing Remote Libraries

The RciDestroy_Remote_Library command allows you to remove the remote library
associated with a host view.

Use the following steps to remove a remote library:

RATIONAL December 1992 9

RCI User’s Manual

1. Enter the Rci.Destroy_Remote_Library command in a2 command window and
press [Complete]:
Destroy_Remote_Library
(View : String := "<CURSOR>",
Response : String := "<PROFILE>");

2. Fill in the View parameter to indicate the view whose remote library will be
destroyed.

3. Press [Promote]. This destroys the remote program library, Ada source, and working
directory associated with the specified view and demotes host units.

This process works only if the Destroy_View_Postprocess RCI customizable library
extension has been implemented. This library extension may or may not be imple-
mented from one RCI extension to another.

See Chapter 8 for information about the Rci.Destroy_Remote_Library command.

IMPORTS

92

The Rational CMVC library model has the notion of an import list, which specifies
all of the subsystems (spec views or combined views) to make visible inside the
importing view. Each extension has a different method for handling imports. Under
some target-compiler models (for example, an RS6000), each remote library also has
an import list, often implemented as a library-list text file, whose default name is
determined by your extension. This is called the remote import list.

The required content of the remote import list varies by the remote operating system
and Ada compiler. Generally, the remote import list contains three classes of
information:

s The name of the current remote program library

= External (sublibrary) names that effectively specify imports

m The home of the target-predefined library

For example, as shown in “Explicit Creation” on page 90, this might contain:

working
/usr/lpp/ada/lib/libada

The RCI automatically maintains remote imports if your extension has enabled
remote library management. Adding imports to a host view using RCI commands can
cause imports (sublibraries) to be automatically added to the remote library’s import
list. Removal of imports from a host view using RCI commands causes automatic
removal of sublibraries from the remote import list.

Note: RCI views can import only other RCI views with the same target key.

Adding Imports

The Cmvc.Import command adds an import to both the host view’s import list and
the remote import list. Each time you call Cmvc.Import, it updates or rebuilds
(refreshes) remote imports for the associated remote library.

RATIONAL December 1992

Chapter 6: Library Management

To add an import to a view’s import list, which involves updating the host imports
and the remote import list:

1. Enter the Cmvc.Import command in a command window and press [Complete].

2. Fill in the parameters as described in the Project Management book (PM) of the
Rational Environment Reference Manual for Cmave.Import.

3. Press [Promote].
Imports are created and remote imports are refreshed.

See “Keeping Imports Consistent,” below.

Removing Imports

To remove imports from both the host view and the remote-library import informa-
tion (import list or pathname), depending on your extension, use the Cmvc.Re-
move_Import command. Parameters for the Cmvc.Remove_Import command are

described in the Project Management book (PM) of the Rational Environment Refer-
ence Manual.

Different extensions handle imports in different ways. For example, with the Rs6000
extension, each time that you call Cmvc.Remove_Import, the remote import list for
the associated remote library is completely refreshed. Check with your customizer
for more information.

See “Keeping Imports Consistent,” below.

Keeping Imports Consistent

Import information is stored in the CMVC import list and, depending on the exten-
sion, in the remote import list on the remote machine.

The remote import list is completely refreshed, providing that remote library man-
agement is enabled and a remote connection can be made, whenever any of these
commands is used and when Session_Rci.Auto_Create_Remote_Directory is True
and Operation_Mode is Interactive:

m Cmvc.Make_Path or Rci_Cmvc.Make_Path
Cmvc.Make_Subpath or Rci_Cmvc.Make_Subpath
Cmvc.Initial or Rci_Cmvc.Initial

Cmvc.Import

Cmvc.Remove_Import

® Cmvc_Release or Rci_Cmvc.Release
If the above commands cannot update the remote import list as well as the view’s
import list, the RCI issues a warning and only the view’s import list is updated. In

this case, you will need to correct the problem and explicitly refresh the remote
import list with the Rci.Refresh_Remote_Imports command.

The consistency between CMVC imports and the remote import list can be verified
with the Cmvc.Information or the Rci.Show_Units command.

RAT'ONAL December 1992 93

RCI User’s Manual

Imports Example

Assume the same setup as described in “Example of Library Creation” on page 92.
Assume the existence of another host subsystem, Main_Subsystem, which also con-
tains an RCI view named Target_Devel_Working. The remote program library for this
view is the default, working. This view maps onto the remote library /u/jones/
main_subsystem/devel_working.

Use the command:

Cmve. Import
(View_To_Import => "!...Main_Subsystem.Target_Devel_Working*,
Into_View =>*"!...Dog_And_Pony_Show.Target_Devel_Working");

This adds the View_To_Import to the import list of the view specified in Into_View.
It also looks in the state file of the imported view to find its associated remote pro-

gram library and adds that name (in this case, working) to the remote import list for
Into_View.

RCI STATE INFORMATION

94

Information about the RCI state is stored in each view. Knowledge of the mecha-
nisms for storing state information is not generally important for the user. However,
you may find it useful to know:

m Which files are used by the RCI and should not be touched
= When the information is updated

‘Where State Information Is Stored

RCI state information is stored in these binary files in the Tool_State directory:
= Rci_State_Batch_Times

= Rci_State_Download_Times

s Rci_State_Target Names

s Rci_State_Unit_Options

In addition, the remote library name, which is considered to be part of the state infor-
mation, is maintained as the value of the Rci.Remote_Library switch.

The view-creation commands create the RCI state automatically when they create the
host view; the files should never be deleted or altered by the user. If the files are
damaged or destroyed, you can use the Rci.Refresh_View command to rebuild them.

Secondary information is not stored as part of the state information.

‘When State Information Is Updated

The host and remote names of Ada units and some additional information is regis-
tered in (added to) the state information for any new Ada unit when it is promoted
to the installed state. In addition, its dependencies are calculated and registered.

RAT'ONAL December 1992

Chapter 6: Library Management

Whenever any Ada unit is promoted to the coded state, the consistency information
is updated.

Demoting a unit has no effect on the state information.

Note: Because the state files are locked while being updated, simultaneous installing
or coding steps (and the execution of some commands) may fail with a state-file lock
ervor. If this happens, repeat the command.

Unit-state information is updated as shown in Figure 6-8.

Action State file

R 4
e

Promote unit to installed ———>§

Promote unit to coded ————»§

Rci.Set_Remote_Unit_Name —»@

Rci.Accept_Remote_Changes —» @&
Figure 6-8 State-Information Updates of Unit-Level Information

MANAGEMENT OF SUBSYSTEMS AND VIEWS

Create and use host subsystems and views as described in the Project Management
(PM) book of the Rational Environment Reference Manual.

The Session_Rci.Auto_Create_Remote_Directory switch controls whether or not the
view-creation commands automatically build remote directories and libraries when
you create views. See “Remote Directory” on page 22 for more information.

Package Rci_Cmvc provides corresponding view-management commands to CMVC
for cases in which you cannot take advantage of the default switch-naming scheme
to control remote-machine and remote-directory names.

Use package Rci commands to manage remote libraries.

Chapter 2, “RCI Setup Operations,” provides an overview of subsystems, views, and
remote libraries in “Setting Up Model Worlds” and “Preparing to Set Up Library Struc-
tures.” Chapter 2 also discusses the creation and maintenance of RCI views and
remote libraries in “Setting Up Library Structures.”

Removing RCI Views

The Cmvc.Destroy_View command lets you destroy the host view or destroy the host
and remote views at the same time depending on what value you have set for the
Rci.Host_Only switch. If Rci.Host_Only is set to True, the command destroys the host
view but leaves the remote library intact on the remote compilation platform. If
False, it destroys the remote library and then the host view. For additional parame-
ters, see the Cmvc.Release command.

The default command is:

RATIONAL pecember 1992 95

RCI User’s Manual

Cvc.Destroy_View (What_View => "<SELECTION>",
Remote_Clients => False,
Destroy_Configuration_Also => False,
Comments = "',
Work_Order => "<DEFAULT>",
Response => "<PROFILE>");

Normally, when a view is destroyed, CMVC maintains a history of the view’s exist-
ence, which prevents a new view from being created with that view’s name. If you
need to destroy and then recreate a view of the same name—for example, because
you could not connect to the remote machine during the creation operation—set
Destroy_Configuration_Also to True when destroying the view.

Creating Releases of Views

A released view is a copy of a view that is frozen in time. The Cmvc.Release com-

mand allows a simultaneous release to be made on the remote compilation platform.
The corresponding command, Rci_Cmvc.Release, has additional parameters to spec-
ify remote machine and directory names.

The default command (with selected parameters) is:

Cmvc.Release (From Working_View => "<CURSOR>,
Release_Name => "<AUTO_GENERATE>",
Level => 0,
Views_To_Import => "<INHERIT_IMPORTS>",
Create_Configuration_Only => False,
Compile_The_View => True,
Goal => Compilation.Coded,
Comments = ",
Work_Order => "<DEFAULT>",
Volume => 0,
Response => "<PROFILE>");
General Release Strategy

Because units in a frozen view cannot be demoted, it is important that you release
views imported by other views first. For example, if View_A imports View_B which
imports View_C, View_C must be released first, View_B second, and View_A last.

As you make each release, you must change any existing imports to reference the
appropriate released views.

Remote Releases

If a value exists for Remote_Directory (either in the library switch or in the parameter
when using the Rci_Cmvc command) and a connection can be made to the remote
machine, then a remote release is created as well as a host release. The creation of
the remote release works exactly as creating a remote library does in Cmvc.Make-

_Path. This assumes that the Rci.Host_Only switch is set to False and the operation
mode for the view is Interactive. The RCI takes the following action:

m Creates the new host view
m Creates the specified remote library
s Downloads all units (and secondaries) to the new remote library

F%AUT(:)PJ/\L. December 1992

Chapter 6: Library Management

a Compiles the units
n Uploads all appropriate files to the new view
a Freezes the new view

Note: The RCI does not freeze the new remote library. You may want to use facilities
in the remote operating system to change the access security on the remote library to
allow read-only access so that it is effectively frozen.

If Session_Rci.Auto_Create_Remote_Directory is False, no attempt is made to create
a remote directory. Units in the released view will exist only in the installed state.
All secondary referencers are moved to the new view and frozen. Other associated
files are not moved to the new view.

This latter variety of release is useful when the purpose is to catch a snapshot of
source state at an instant in time.

RATIONAL December 1992 97

Using Non-Ada Code with the RCI

This chapter addresses how you can create and maintain non-Ada code, such as
assembly-language source or C-language source, in the Rational Environment, pro-
cess it from the Rational Environment, and keep it in a consistent state with equiva-
lent code on the remote compilation platform, using the features of CMVC and the
RCI. The operations perform as described in this chapter when the operation mode
is Interactive.

This chapter includes:

s Using non-Ada units

m Creating a non-Ada unit

a Viewing and changing secondaries
m Processing secondaries

USING NON-ADA UNITS

The RCI provides a method to use and maintain non-Ada units, which are text files
that contain source text for other assemblers, language compilers, or macro proces-
sors. The RCI associates these files with Ada units to control processing order on the
remote compilation platform. Such a file is called a secondary; the associated Ada
unit in the host environment is called a primary. The primary controls compilation
dependencies on the remote compilation platform.

The RCI associates a primary with a2 non-Ada unit (a secondary text file), which con-
tains the non-Ada source text, through a secondary referencerfile. This file contains
information about the remote name, remote process command, and host name of a
secondary text file, including the following:

m The name of the secondary text file associated with the primary

s The remote filename into which the secondary text file is downloaded

u The remote command to execute on the remote compilation platform after the
secondary text file is downloaded

» The download time of the secondary text unit on the remote compilation
platform

The name of the associated file (a pointy file) for the secondary referencer is formed
as follows: Primary_Unit_Name.<Secondary_Secondary_Text_File_Name>.

The RCI controls the processing of the primary unit through a Boolean Process-
_Primary value. This value determines whether the primary unit is downloaded and

RATIONAL December 1992 9

RCI User’s Manual

processed on the remote compilation platform. That information is stored in the sec-
ondary state file. The RCI creates a single secondary state file for each primary with
associated secondaries. Each time you use Rci.Create_Secondary with a primary, the
Process_Primary value is updated in the secondary state file. The name of the sec-
ondary state file has the form: Primary_Unit_Name.<Secondary_State>,

Information about the association between the primary and secondary is preserved
in the secondary referencer and the secondary state file.

The example on page 106 shows the units in the host environment.

A primary can have many secondaries; a secondary can be associated with only one
primary.

CREATING A NON-ADA UNIT

100

This section describes the steps necessary to create a non-Ada source file (a second-
ary unit) that is associated with an Ada unit (a primary).

Creating the Controlling Ada Unit (The Primary)

Since the Rational compilation system understands only Ada units as being compat-
ible objects, you must create an Ada unit, either a spec or a body, to represent any
non-Ada code on the host. This primary determines compilation ordering.

To create an Ada primary:

1. Move to the Units directory of the view in which the non-Ada code will reside.

2. Create an Ada unit in that view using the Common.Object.Insert command (press
[Object] [I]). The Rational Environment creates an Ada unit and opens it in 2 window
for editing.

3. Enter valid Ada code and any with clauses needed to determine the secondary’s
compilation dependencies. Good naming practices suggest that the name of the
Ada unit be related to the name of the subprogram that will be contained in the
secondary; for example, if the program in the secondary is named Foo, also call
the Ada unit’s main routine Foo:
procedure Foo;

A primary can be either an Ada spec or body; it cannot be an Ada separate sub-
unit. Promoting the primary causes the secondary to be downloaded and pro-

cessed on the remote machine if the operation mode is Interactive. The primary
itself is downloaded only if the Process_Primary flag is set to True when the sec-
ondary is created, or by specifying so with the Rci.Set_Process_Primary command.

4. Press [Promote] to save the Ada unit in its installed state.

Creating the Non-Ada Source File

Enter non-Ada source code (the secondary text file) on the host.

If you have first created it on the remote compilation platform, see “Changing Text
from the Remote Machine” on page 105.

RATIONAL December 1992

Chapter 7: Using Non-Ada Code with the RCI

Enter non-Ada source code into a Rational text file as described below. In addition,
you must provide instructions that tell the remote operating system what to do with
the code when its primary is promoted to the coded state.

1L

RATIONAL December 1992

Using the remote operating-system command syntax, write down the command
to assemble or compile the code on the remote machine. This command will con-

tain the name of the secondary. For example, to assemble the file named Foo, this
might be:

as foo
or, to invoke the C compiler on the file:

/u/compiler_directory/cc -c foo.c

. Move to the Units directory of the RCI view containing the controlling Ada pri-

mary unit created as described in the previous subsection.

. Position the cursor on the Ada primary.
. In 2 command window, enter Rci.Create_Secondary and press [Complete]:

Rci.Create_Secondary (Primary_Unit => "<CURSOR>";
Command => "";
Secondary_Text => "*%;
Remote_Name => "<DEFAULT>";
Process_Primary => False;
Response => "<PROFILE>");

. The default Ada unit (Primary_Unit) is the one on which the cursor is located.

Alternatively, enter the Ada unit’s name for Primary_Unit, as in this example:

Rci.Create_Secondary (Primary_Unit => "Foo’Spec;*
Command => "";
Secondary_Text => "";
Remote_Name => "<DEFAULT>";
Process_Primary => False;
Response => "<PROFILE>") ;

. Enter the remote command that you noted in step 1. For example, to compile the

file with the compile command shown in step 1:

Rci.Create_Secondary (Primary_Unit => "Foo’Spec";
Command => "cc -c¢ foo.c";
Secondary_Text => "Foo_c*;
Remote_Name => *foo.c*;
Process_Primary => False;
Response => "<PROFILE>");

When the primary is promoted to the coded state and the mode is Interactive, this
causes the specified command to be issued on the remote machine.

. Press [Promote]. The RCI takes the following actions:

a. If a text file that has the same name selected for the secondary already exists,
that file is used for the secondary. If the text file does not exist, the command
creates it in the current view and uses it for the secondary.

b. If the primary is in the coded state, it is demoted to the installed state.
c. A secondary referencer file is created.
d. A secondary state file is created if one does not already exist.

e. The secondary text file is frozen, preventing editing except with the Rci.Edit-
_Secondary command.

101

RCI User’s Manual

f. A message is generated indicating the success of the action and specifying the
name and remote name (see “Remote Files and Names” on page 57 in Chapter
3) that have been assigned to the secondary.

8. If you are maintaining your files under CMVC source control, use Cmvc.Make-
_Controlled to control the secondary file.

9. Edit the secondary using the instructions in “Changing the Secondary File and
Commands,” below.

VIEWING AND CHANGING SECONDARIES

102

Information about secondaries and their associated remote compiler commands is
saved in the secondary referencer and secondary state files.

Viewing Secondary Relationships

The Rci.Show_Secondary command displays a set of one or more Ada primaries and
information about the secondaries associated with each primary, their remote names,
the status of their Process_Primary flags, and the remote operating-system command
associated with them. For example, to display information for all primary units in the
current view: .

Rci.Show_Secondary (Primary_Unit => *22");

Changing the Secondary File and Commands

Use the Rci.Edit_Secondary command to alter a secondary file. Note that, if the sec-
ondary file is not frozen, you can alter it on the host and you can always alter it on
the remote machine, but these methods are not recommended.

Changing Text on the Host

Caution: Changing the host secondary text file without using the Rci Edit_Secondary
command does not cause demotion of the associated primary Ada unit, nor does it
cause a change to the remote copy of the file.

1. Select the secondary referencer for the secondary unit that you want to edit. If the
secondary is controlled, it must be checked out before editing.

2. In a command window, enter Rci.Edit_Secondary and press [Promote]. The fol-
lowing actions occur:

s The primary unit, if coded, is demoted to the installed state.
s The secondary text file is unfrozen.
s The secondary text file is opened in a window for editing.

3. Use the editor as described in the Rational Environment Reference Manual 1o
enter the non-Ada text into the file. Press [Commit] or use the Common.Commit
command periodically to save the file.

4. Close/save the text file.

RATIONAL December 1992

Chapter 7: Using Non-Ada Code with the RCI

Caution: After this procedure is complete, the secondary unit is not refrozen and the
primary unit is not repromoted to the coded state. This means that the RCI temporarily
bas no control over the secondary file.

Promote the primary to the coded state as soon as feasible to ensure control.

If you change the secondary text file on the host, the RCI downloads and processes
it on the remote compilation platform only when you promote its associated primary
from the installed to the coded state (in Interactive mode).

Changing Text from the Remote Machine

Usually you should make all changes to source code on the host. If you change the
source file on the remote compilation platform, refer to Chapter 5, “Maintaining File
Consistency,” for utilities to check the consistency of host and remote units and
determine which you should update.

To update text changes to an existing host secondary from the remote machine using
the Rci.Accept_Remote_Changes command, refer to Chapter 5, “Maintaining File
Consistency.”

To upload the remote version to the host when a secondary does not already exist:

1. Move to the Units directory of the view into which the remote file should be
uploaded, most likely the view in which you will create the secondary file.

2. Enter Rci.Upload_Unitin a command window and press [Complete]:
Rci.Upload_Unit (Remote_Unit_Name

v

">>REMOTE UNIT NAME<<";

Into_View => "<CURSOR>";
Upload_To_Text_File => False;
Host_Text_File_Name => **;

Response => "<PROFILE>");

3. Fill in the parameters as follows:
a Remote_Unit_Name: Specify the simple name or the full remote name of the
source file on the remote machine.

m Into_View: Change this from the default only if you want to upload the file
into some view other than the current view.

s Upload_To_Text_File: Set to True. This informs the RCI that this is a text file
and should not be parsed as an Ada unit.

m Host_Text_File_Name: Specify a name that is 7ot the secondary’s filename.
4. Press [Promote].

The RCI creates the specified text file and places the contents of the text file from
the remote machine into it.

5. Use Rci.Create_Secondary with the Host_Text_File_Name as the value of the Sec-
ondary_Text parameter to associate the uploaded unit as the secondary text file.
(See “Creating the Non-Ada Source File” on page 102.)

Removing Secondary Relationships

Rci.Remove_Secondary removes the secondary referencer and demotes the primary
unit to the installed state. It does not delete the secondary text file on the host, and

RAT‘ONAL December 1992 103

RCI User’s Manual

104

it has no effect on the remote file. The secondary state file is deleted only after all
secondary referencers have been deleted.

Note: If you delete all secondary referencers and then promote the primary to the
coded state, it is treated as any other Ada unit and the RCI downloads and compiles
it on the remote compilation platform. You must recompile the primary to make it
consistent with its associated remote unit.

Deleting the Primary or Secondary File

If you unfreeze a secondary text file and then delete it without first using the Rci-
.Remove_Secondary command, there is no immediate effect if the primary remains
in the coded state. However, if you demote the primary and then repromote it to the
coded state, the RCI attempts to find the secondary text file and an error results.

If you delete an Ada primary without first using the Rci.Remove_Secondary com-
mand, an error may never be reported, because the secondary text file itself is never
referenced during the compilation process.

Changing Secondary Commands and Flags

The RCI provides commands to update the remote operating-system command and
Process_Primary flag values for a primary and its connected secondary. Rci.Show-
_Secondary displays the current values.

Changing a Secondary’s Remote Command

Use Rci.Set_Secondary_Command to associate 2 command string with a secondary
text file.

To change the secondary’s remote command:
1. Check out the primary unit.
2. Enter Rci.Set_Secondary_Command and press [Complete]:

Rci.Set_Secondary_Command (Command R
Secondary_Referencer := "<CURSOR>";
Response = "<PROFILE>");

3. Fill in the parameters:

m Command: Specify the remote command you want to execute on the remote
machine to process the downloaded secondary text file.

m Secondary_Referencer: Specify the secondary referencer that is associated
with the secondary text file.

The primary is demoted to installed.

The next time you promote the primary unit to coded, the RCI downloads the sec-
ondary text file and processes it using the remote command.

Setting the Process_Primary Flag

Use Rci.Set_Process_Primary to assign a value to the Process_Primary flag for the pri-
mary unit you specify.

QATIONAL December 1992

Chapter 7: Using Non-Ada Code with the RCI

To set the Process_Primary flag:
1. Check out the primary unit.

2. Enter Rci.Set_Process_Primary and press [Complete]:

Rci.Set_Process_Primary (Primary_Unit := "<CURSOR>";
Value = False;
Response = "<PROFILE>");

3. Fill in the parameters:

m Primary_Unit: Specify the host Ada unit with which to associate the flag.

s Value: Specify the value for the Process_Primary flag. If True, the primary unit
will be downloaded and processed on the remote machine whenever its sec-
ondaries are downloaded and processed.

The primary is demoted to installed.

If Value is True, the next time you promote the primary to the coded state, the RCI
downloads the primary with the secondaries to the remote compilation platform and
processes it.

Note: Rci.Create_Secondary also sets the Process_Primary flag. When you perform

several Rci.Create_Secondary calls for a given primary, the value of this flag may
change with each call.

PROCESSING SECONDARIES

The RCI downloads a secondary and processes it on the remote compilation plat-
form when you promote its associated primary to the coded state on the host.

Because the secondary is a text file, it has no dependencies of its own. Instead, the

RCI uses the primary’s compilation dependencies to determine when the secondary
is processed.

If the primary is in the coded state, the RCI assumes that the secondary is unchanged.
You must demote the primary to at least the installed state and repromote it to cause
processing of a changed secondary.

Promoting to Coded

When you promote the primary to the coded state, the following events take place:

1. If the Process_Primary flag is set to True, the RCI downloads the primary and pro-

cesses it before any of its secondaries. The primary is not downloaded unless the
flag is set to True.

2. Each secondary text file is downloaded to the remote compilation platform and
processed in the order in which it occurs on the host.

3. Each secondary’s associated compiler command is passed to the remote operating
system as described in “Creating the Non-Ada Source File” on page 102.

4. Each remote file is then processed according to its passed command. If the com-
mand is not successful—for example, if the file is not compiled successfully—
error messages are generated and the primary Ada unit is not promoted to the

RATIONAL December 1992 105

RCI User’s Manual

coded state. See “What Happens During the Coding Step” on page 60 in Chapter
3 for possible errors.

5. If the commands are successful for all of the secondaries, the primary unit is pro-
moted to the coded state and the secondary units are frozen.

Demoting to Installed

Demoting a primary to the installed state has no effect on its secondaries; they
remain frozen.

EXAMPLE OF COMPILING NON-ADA CODE

106

If you promote the Ada specification named Foo to the installed state, it is given a
remote-unit name similar to foo_1_s.ada. Since the unit is not promoted to the coded
state, nothing is downloaded to the remote machine.

The RCI creates a secondary text file that will contain C code for the remote compi-
lation platform and associates the file with this Ada unit with the command:

Rci.Create_Secondary (Primary_Unit => "Foo";
Command => "cc -c¢ foo.c";
Secondary_Text => "Foo_C";
Remote_Name => "foo.c";
Process_Primary => False;
Response => "<PROFILE>");

At this time, the secondary text file is created with the name Foo_C and is assigned
the remote name foo.c. A secondary referencer is also created and is assigned the
name .<Secondary_Foo_C>. The secondary state file is created if one does not
already exist:

Foo_C : FPile (Text)

Foo'’spec : I Ada
.<Secondary_Foo_C> : File (Text)
.<Secondary_State> : File (Text)

When you make a request to promote Foo to the coded state, the RCI downloads
the text file Foo_C to the remote file foo.c. It then issues the command: cc -¢ foo.c
to the remote operating system. If the target compiler processes the file without
errors, the RCI changes Foo’s state to coded and freezes Foo_C if it is not already
frozen.

If you then execute Rci.Remove_Secondary (Secondary_Referencer => “Foo.<Sec-
ondary_Foo_C>"), the RCI demotes Foo to the installed state and deletes .<Second-
ary_Foo_C>.

Now, if you promote Foo again to the coded state, Foo itself is downloaded to
foo_1_s.ada and that file is compiled. This could cause inconsistency if a secondary
is later reassociated with Foo.

RATIONAL December 1992

Package Rci

This chapter provides an overview of the functionality of the commands in package
Rci. Details on how to use and apply these commands are given in earlier chapters,
and those chapters are referenced here.

Following the overview, all of the commands in package Rci are listed in alphabetical
order with a description of their parameters and results,

The commands in package Rci are divided into several logical groupings that reflect
the association between the commands and the operations that you need to perform
while developing in an RCI environment. These groupings are discussed in the fol-
lowing sections.

OPERATIONS FOR BATCH COMPILATION

The following commands provide RCI operations for batch compilation. These com-
mands have an effect only if one of the following is true:

s The extension has set the operation mode to batch through customization default
values.

s The extension has been registered with the batch value set in the Custom_Key-
Register command.

m The Rci.Operation_Mode library switch for the units is set to “Batch.”
In all other cases the batch commands succeed with warning messages.
The batch commands include the following:

® Build_Script: Selects units from the execution closure of units to build on the
remote compilation platform and generates a target compilation script to compile
these units; optionally downloads units and executes the script.

m Build_Script_Via_Tape: Selects units from the execution closure of units to build
on the remote compilation platform and generates an ASCII format tape to con-
tain the units and the target compilation script.

a Execute_Script: Downloads the host script file to the target script file and exe-
cutes the target compilation script.

s Show_Build_State: Displays the last coding time and the last build time for batch
host units.

s Transfer_Units: Transfers all Ada units and any secondaries to the remote
machine.

m Upload_Associated_Files: Uploads to the host the associated files that were cre-
ated on the remote compilation platform.

RAT‘ONAL December 1992 107

RCI User’s Manual

OPERATIONS FOR CONSISTENCY MANAGEMENT

CMVC ensures that only one user at a time can update a unit joined across many
views on the host. However, remote code that is associated with code in RCI views
can be updated at will. It is the responsibility of the user to make sure that host and
remote source remain consistent. The following operations provide support for man-
agement of consistency between host and remote objects:

s Check_Consistency: Checks whether a unit has been edited remotely since it was
last coded on the host (and therefore downloaded).
m Accept_Remote_Changes: Uploads changes made remotely into the host unit.

a Upload_Unit: Transfers a file from the remote machine to the host. This is useful
when the unit does not currently reside in a host view.

s Upload_Units: Transfers new units, specified in a file, from the remote machine
to the host.

OPERATIONS FOR NON-ADA UNITS

The following commands manage the non-Ada source text files that are associated
with Ada units:

= Create_Secondary: Creates a non-Ada secondary text unit and associates it with a
primary Ada unit.
m Remove_Secondary: Dissociates the indicated secondary and primary units.

m Show_Secondary: Displays the name and associated command instructions of
the secondary text unit that is associated with a given Ada primary unit.

m Edit_Secondary: Unfreezes the specified secondary unit and opens it for editing.
m Set_Process_Primary: Sets the Process_Primary flag for the specified primary unit,
which controls the processing of the primary on the remote machine.

m Set_Secondary_Command: Associates the specified command string with the
specified secondary unit.

OPERATIONS FOR UNITS

The following commands are used to control unit operations on the host and remote
compilation platform:

m Link: Used after the coding step has completed to link object modules on the
remote machine.

m Set_Remote_Unit_Name: Sets the remote unit name for an Ada unit or secondary
unit.

= Show_Remote_Unit_Name: Displays the current remote name of a selected host
unit.

= Show_Units: Displays the current information about the state and configuration
of the specified units.

108 RATIONAL December 1992

Chapter 8: Package Rci

’ OPERATIONS FOR UNIT-COMPILATION OPTIONS

The commands in this group modify and display compiler options on a unit-by-unit
basis in an RCI view:

Set_Unit_Option: Sets compiler options on a unit-by-unit basis. There are two
forms of the command, one for options that have arguments and one for options
without arguments.

Display_Unit_Options: Displays information about units’ compiler options that
were modified by the Set_Unit_Option command.

Remove_Unit_Option: Disables compiler-option values set by Set_Unit_Option.

OPERATIONS FOR REMOTE LIBRARY MANAGEMENT

The following commands assist in the management of remote libraries. (These
operations vary depending on whether your customization has implemented RCI’s
remote library extensions.)

Build_Remote_Library: Builds the remote library, which includes both the re-
mote directory and the program library, for an existing RCI view.

Destroy_Remote_Library: Destroys the remote library associated with an RCI
view.

Display_Default_Naming: Displays the value of Remote_Directory and Remote-
_Machine for a potential view when you use CMVC view-creation commands
and the default switch-naming scheme.

Rebuild_Remote_Library: Destroys and rebuilds the remote library associated
with an RCI view. Use this command when the remote library has been
corrupted.

Refresh_Remote_Imports: Refreshes the remote imports to match the host
imports.

Refresh_View: Initializes an RCI view, optionally preserving the existing informa-
tion. Use this command when state information may be corrupted or incorrect.

Show_Remote_Information: Displays the current settings for the remote directory
and remote machine that are associated with a view.

Execute_Remote_Command: Issues a user-specified command on a specified
remote machine and redirects the output to an R1000 window on the host.

RATIONAL December 1992 109

RCI User’s Manual

PROCEDURE ACCEPT_REMOTE_CHANGES

110

procedure Accept_Remote_Changes

(Unit : String := "<CURSOR>";

Allow_Demotion : Boolean := False;

Compare_Objects : Boolean := False;

Remake_Demoted_Units : Boolean := True;

Goal : Compilation.Unit_State

:= Compilation.Coded;

Response : String := "<PROFILE>");

Description

Accepts changes from the associated remote units to make the host and remote units
consistent.

For Accept_Remote_Changes to be successful, host units that you want to change
must be checked in if they are controlled under CMVC and they must be in the

source state. They are automatically demoted to the source state if Allow_Demotion
is True.

Uploaded units are repromoted to the specified goal state if Remake_Demoted_Units
is True.

If Compare_Objects is True, then Accept_Remote_Changes uploads the remote file,

compares the original host and the newly uploaded remote files, displays the differ-
ences, and accepts changes. If False, it compares units by time, uploads only units

whose most recent edit time on the remote machine is later than the download time

stored in the state information, and accepts the changes.

For detailed information on determining the consistency between the host and
remote units and when and how to use this command, see “Consistency between
Host and Remote Units” on page 78 in Chapter 5.

Parameters

Unit : String := "<CURSOR>";

Specifies a naming expression that describes one or more host Ada units in a single
RCI view or the entire RCI view. These can also be primary units with corresponding
secondaries.

Allow_Demotion : Boolean := False;

Specifies whether units on the host that need to be demoted to the source state in
order to be updated should be demoted. If False, uploading fails where a host unit
cannot be demoted to the source state.

Compare_Objects : Boolean := False;

Specifies the method for consistency checking. If True, consistency is checked by
comparing host and remote objects rather than timestamps.

RATIONAL December 1992

Chapter 8: Package Rci

Remake Demoted_Units : Boolean := True;

Specifies whether host units that are demoted as a result of Accept_Remote_Changes
should be promoted to the state indicated by the Goal parameter.

Goal : Compilation.Unit_ State := Compilation.Coded;

Specifies the state to which host units demoted during Accept_Remote_Changes
should be promoted if Remake_Demoted_Units is True. Useful values are Compila-
tion.Source and Compilation.Installed; Compilation.Coded generates a warning that
units will be promoted only to the installed state.

Response : String := “<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Restrictions

With a Telnet customization of RCI, the Compare_Objects parameter is ignored and
True is used as its value.

References

“Consistency Between Host And Remote Units,” page 76

RAT‘ONAL December 1992 111

RCI User’s Manual

PROCEDURE BUILD_REMOTE_LIBRARY

112

procedure Build_Remote_Library

(View : String := "<CURSOR>*;

Remote_Machine : String := "<DEFAULT>";

Remote_Directory : String := "<DEFAULT>";

Response : String := "<PROFILE>");
Description

Builds the remote library for an existing RCI view.

The remote library consists of both the remote directory, where source is stored, and
the program library into which it is compiled.

If <DEFAULT> is given for the Remote_Machine and Remote_Directory parameters,
the values are taken from the view’s compiler switches. If these values do not exist
in the view’s compiler switches, they must be provided here.

This routine assumes that the Make_Path_Postprocess RCI extension has been imple-
mented. This extension may or may not be implemented from one RCI customization
to another.

If the Import_Preprocess and Import_Postprocess extensions are enabled, the re-
mote imports are created by this routine.

Parameters

View : String := “<CURSOR>";

Specifies a naming expression for the existing RCI combined view for which to cre-
ate the associated remote library.

Remote_Machine : String := "<DEFAULT>";
Specifies the remote machine name on which to create the remote library.
Remote_Directory : String := "<DEFAULT>";

Specifies the directory name on the remote machine where the remote library is
created.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Building a Remote Library,” page 88
procedure Destroy_Remote_Library

RATIONAL December 1992

Chapter 8: Package Rci

. PROCEDURE BUILD_SCRIPT

procedure Build_Script

(Host_Units :String = "<IMAGE>";
Link_Main_Units :Boolean := True;
Transfer_To_Target :Boolean := True;
Host_Script_File :String := "“<DEFAULT>";
Remote_Script_File :String
:= "“>> FULL REMOTE NAME <<";
Build_List_File :String = "<DEFAULT>";
Execute_Script :Boolean := False;
Effort_Only :Boolean := False;
Minimal_Recompilation :Boolean := True;
Make_Units :Boolean := False;
Response :String = "<PROFILE>");
Description

Selects units from the execution closure of Host_Units that need to be built on the
target, generates a script file on the host to compile these units on the target, and
then downloads the host script file to the remote script file.

Only obsolete units—that is, coded units whose coding times are more recent than
their build times—are selected for the build. Once a unit is entered into the compi-
lation script, it is considered to have been built.

‘ If Transfer_To_Target is True, the units selected for the build are also downloaded
before the script is downloaded, if the host and remote compilation platform can
communicate through FTP.

If Execute_Script is True, the remote script file is then executed on the target.

If attempts to make a connection to the remote machine associated with the current
view fail, correct the problem and then retry downloading and executing the existing
script using the Rci.Execute_Script command.

Parameters

Host_Units : String := "<IMAGE>";

Specifies a naming expression for the units (and their execution closure) to be
selected for a build (compiling and optionally linking remotely). All units in the exe-
cution closure of Host_Units that have been coded since their last build will be
selected for the current build.

Host_Units can also be an indirect file, such as the Build_List_File specified below,
containing the complete (including execution closure) list of host units to be built

on the target. The batch script is then generated from this list of units. Host_Units

must not specify units belonging to different targets. Also Host_Units must belong to
views associated with only one remote machine.

RATlONAL December 1992 113

RCI User’s Manual

114

Link Main_Units : Boolean := True;

Specifies whether to include link commands in the script file for main units. If True,
link commands are included for all main units (units containing a pragma Main)
specified by Host_Units.

Transfer_ To_Target : Boolean := True;

Determines whether units are downloaded to the compilation platform as the script
is built. If True, units selected for the build are also downloaded to the target. This
downloads units whether or not they have changed since the last download. This
option has no effect if Effort_Only is True.

Host_Script_File : String := "<DEFAULT>";

Specifies the name of the batch script file to create on the host R1000 for a particular
target. The default filename is Batch_Script. If the default is used, the command
builds a file named Batch_Script in the current context. The command does not over-
write any existing script file and fails if it finds one.

Remote_Script_File : string := ">> FULL REMOTE NAME <<";

Specifies the name of the remote file into which the Host_Script will be downloaded.
Failure to download will cause warnings to be generated, but the build command
will still succeed. The Remote_Script_File must specify the complete pathname on
the remote machine.

Build_List_File : String := “<DEFAULT>";

Specifies the name for a new host file in which to place a list of the names of the
host units that were selected for remote compilation during the current build. The
default filename is Units_To_Build; if the default is used, the file is created in the
current context. This file is created when the Build_Script command begins execu-
tion; if the build fails, the file remains empty. Failure to create this file causes the
build to fail. Units are listed in Units_To_Build in the order in which they need to be
compiled. This file provides information when regenerating a Host_Script_File to
upload the associated files for a particular build.

Execute_sScript: Boolean := False;

Specifies whether to execute the remote script file after its creation. If True, the script
is automatically executed on the target with output being redirected to an R1000 win-
dow. Failure to execute this script will produce warnings but will not cause the build
to fail. The Build_Script command will fail if the remote execution fails. However,
units that participated in the build will still be considered to have been built.

Effort_Only : Boolean := False;

Specifies, if True, that a list be displayed of the units specified by Host_Units that
would be included in the build without performing any other build operations.

Minimal Recompilation : Boolean := True;

Specifies whether to include only obsolete units in the build script. If True, only
specified units (and units in their execution closure) that have been made codable
since the last batch script was generated are included in the script. If False, all units
in the execution closure of the specified units are included in the script.

RATIONAL December 1992

Chapter 8: Package Rci

Make_Units : Boolean := False;

Specifies, if True, that any units in the closure of Host_Units that are in the source
or installed state be promoted to the coded state on the host before the batch script
is generated.

Response : String := "<PROFILE>");

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Building Batch Scripts for Networked Environments,” page 68
procedure Execute_Script

RATIONAL pecember 1992 115

RCI User’s Manual

PROCEDURE BUILD_SCRIPT_VIA_TAPE

116

procedure Build_Script_Via_Tape

(Host_Units : String := "<IMAGE>";
Link_Main_Units : Boolean := True;
Host_Script_File : String := "<DEFAULT>";
Remote_Script_File : String
:= ">> FULL REMOTE NAME <<*;
Build_List_File : String := *<DEFAULT>*;
Format : String := *R1000";
Volume : String := *";
Label : String := "rci_build®;
Logical_Device : String := "rci";
Effort_Only : Boolean := False;
Minimal_Recompilation : Boolean := True;
Make_Units : Boolean := False;
Response : String := "<PROFILE>");
Description

Selects units from the execution closure of Host_Units that need to be built on the
target, generates the batch-compilation script to compile these units, and generates
a tape in ANSI format to contain the batch-compilation script, the units to be built
and a script to move the units to the right place on the target.

Only coded units whose coding times are more recent than their build times are
selected for the build. Once a unit is entered into the batch-compilation script, it is
considered to have been built.

Parameters

Host_Units : String := "<IMAGE>";

Link_Main Units : Boolean := True;
Host_sScript_File : String := "<DEFAULT>"“;

See procedure Build_Script for descriptions of the parameters above.

Remote_sScript_File : String := “>> FULL REMOTE NAME <<";

Specifies the name of the remote file to use when copying the Host_Script onto the
tape. Failure to access the tape unit will cause wamings to be generated, but the
build command will still succeed. The Remote_Script_File parameter must specify
the complete pathname on the remote machine.

Build_List_File : String := "<DEFAULT>";
See procedure Build_Script for a description of this parameter.
Format : String := "R1000";

Specifies the type of tape to be written—Ansi, R1000, or R1000_Long. Refer to the
documentation on the Archive package for more information on Format options.

Volume : String := “";

Specifies the tape volume name.

RATIONAL December 1992

Chapter 8: Package Rci

Label : string := "rci_build";
Specifies a string written in front of the data on the tape.
Logical_Device : string := "rci®;

Specifies the logical device name for the tape device on the remote machine. The
move script references the logical device rather than the physical device name.

Effort_Only : Boolean := False;
Minimal Recompilation : Boolean := True;

Make_Units : Boolean := Palse;
See procedure Build_Script for descriptions of these parameters.
Response : String := "<PROFILE>");

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Building Batch Scripts for Tape Environments,” page 70
package Archive in the Library Management (LM) book of the Rational Environ-
ment Reference Manual

RATIONAL December 1992 117

RCI User’s Manual

PROCEDURE CHECK_CONSISTENCY

118

procedure Check_Consistency

(Unit : String = "<CURSOR>";

Compare_Objects : Boolean := False;

Response : String = "<PROFILE>");
Description

Checks the consistency of units against their associated units in the corresponding
remote directory, when given a naming expression describing one or more units
from a single view.

The method of consistency checking is controlled by the Compare_Objects param-
eter value, either by comparing the remote and host objects or by comparing their
edit and download timestamps.

Each time that a host unit is downloaded to the remote machine, the host unit’s
download time is set in the RCI state information by retrieving the edit time of the
remote text file. A host unit is considered inconsistent with its remote unit if the
download time of the host unit differs from the edit time of the remote unit when
the Check_Consistency command is executed.

If Compare_Objects is True, the remote unit is uploaded and then compared line by
line to the host object for consistency.

This command also lists units that are registered in the state information but for
which no remote files exist.

This command does not check whether the host unit has changed since it was last
downloaded, nor does it check whether the remote unit has become obsolete in the
target-compiler program library.

Parameters

Unit : String := "“<CURSOR>";

Specifies a naming expression describing one or more units in a single view. The
units can be primary units with secondaries. The units are compared with their asso-
ciated remote files, whose names can be viewed with the Rci.Show_Remote_Unit-
_Name command.

Compare_Objects : Boolean := False;

Specifies the method for consistency checking. If True, consistency is checked by
comparing host and remote objects rather than timestamps.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RATIONAL pecember 1992

Chapter 8: Package Rci

Restrictions

For Telnet customizations of the RCI, the Compare_Objects parameter is ignored and
True is used as its value.

References

“Determining Consistency of Host and Remote Units,” page 78

RATIONAL December 1992 119

RCI User’s Manual

PROCEDURE COLLAPSE_SECONDARY_REFERENCERS

120

procedure Collapse_Secondary_Referencers

(Directory : String := "<CURSOR>*;
Response : String := "<PROFILE>");
Description

Collapses text files within the specified directory and the subdirectories below it to
secondary-referencer (pointy) files.

In some versions, Archive.Copy does not copy subobjects such as secondary-refer-
encer files. Before you copy a view containing secondaries to a new location, run
Rci.Expand_Secondary_Referencers to expand secondary-referencer files into a form
that can be copied. Once your copy operation has completed, run Rci.Collapse_Sec-
ondary_Referencer to restore the secondary-referencer subobjects.

Since Archive.Copy cannot copy secondary referencers:

1. Convert secondary referencers to text files using the Rci.Expand_Secondary-
_Referencers command.
2. Archive.Copy these text files.

3. Convert text files back to secondary referencers using this command.

Parameters

Directory : String := "<CURSOR>";
Specifies the directory that contains the files to collapse.
Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE CREATE_SECONDARY

procedure Create_Secondary

(Primary_Unit : String = *<CURSOR>";

Command : String := **;

Secondary_Text : String ER

Remote_Name : String = "<DEFAULT>";

Process_Primary : Boolean := False;

Response : String = "<PROFILE>");
Description

Creates a relationship between the specified non-Ada secondary text and the speci-
fied Ada primary unit through a secondary referencer.

This is the method that the RCI uses to support non-Ada units. Create_Secondary
associates a specified secondary text file with an Ada primary unit. The secondary
text file is created if it does not already exist. A primary can be associated with more
than one secondary. The RCI uses the primary’s dependencies to determine the com-
pilation ordering for the associated secondary files.

The secondary text file contains the non-Ada source code. If the secondary text file
does not already exist, Create_Secondary creates that text file in the same view as
the primary unit.

The primary unit points to the secondary text file using a pointy file called the sec-
ondary referencer. The name of the secondary referencer is of the form Primary-
_Unit_Name.<Secondary_Secondary_Text File Name>.

The secondary-referencer file contains the following information:

= Name of the secondary text file associated with the primary

s Remote name into which the secondary text unit is to be downloaded

®» Remote command to be executed after the secondary text is downloaded
= Download time of the secondary text unit on the remote machine

If the primary unit is in the coded state, it will be demoted to installed before its
secondary referencer is created.

The primary unit must be checked out.

When Create_Secondary associates the first secondary file with a primary unit, it cre-
ates a secondary state file for the primary unit. This file contains the current status of
the Process_Primary parameter, which controls how the primary unit is handled
when it is promoted to coded in the host environment. If the Process_Primary value
is True, the primary unit is downloaded and processed on the remote machine with
the secondaries. If it is False, the primary unit is not downloaded. The value in the
secondary state file reflects the value of the most recent call to Create_Secondary.
For a primary unit with more than one secondary, the state file contains the last value
used for the Process_Primary parameter. You can alter that value by using the Set-
_Process_Primary command.

Whenever a primary with an associated secondary is promoted to the coded state,
the RCI sends the secondary text file to the remote machine. The remote compilation
system uses the command associated with the secondary to process the secondary.

RAT'ONAL December 1992 121

‘

RCI User’s Manual

The primary is downloaded and processed (before its secondaries) only if the
Process_Primary parameter associated with it is set to True.

If you then edit the secondary using the Edit_Secondary command on the host envi-
ronment, the associated primary is first demoted to the installed state. This means
that the changed secondary unit is downloaded to the remote machine and compiled
there when the primary is recoded.

To make inadvertent changes more difficult, secondary text units are frozen in the
host library whenever their primary is promoted to the coded state.

All secondary commands operate on the secondary-referencer file instead of the sec-
ondary text file.

The Process_Primary flag contains the value from the last Create_Secondary call. You
may need to change this value when working with multiple secondaries.

Parameters

Primary_Unit : String := "<CURSOR>";

Specifies the name of a single Ada unit with which the secondary unit should be
associated.

Command : String := "";

Specifies the remote operating-system command that processes the secondary text
file on the remote machine.

Secondary_Text : String := "*;

Specifies the name of a text file in the same view as the primary unit with which the
Ada primary unit should be associated. This text file usually contains source code in
some language other than Ada.

Remote_Name : String := "<DEFAULT>";

Specifies the remote name into which the secondary text unit is downloaded when
the primary is promoted to coded in the host environment. The default is the same
name as in the host environment.

Process_Primary : Boolean := False;

Specifies, if True, that the primary unit be downloaded and processed (before any
secondaries are processed) when it is promoted to coded in the host environment.
If False, the primary unit is not downloaded and processed.

Response : String := "“<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Restrictions

The following restrictions apply:

122 RATIONAL December 1992

Chapter 8: Package Rci

m A secondary text file cannot be associated with more than one primary.
m An Ada subunit cannot be a primary unit.
s Both units must be in the same view.

Examples

The following command creates a secondary:

Create_Secondary (Primary_Unit => "tulip’body",
Command => "cc -c open.c*,
Secondary_Text => "open_c";
Remote_Name => "open.c"';

Process_Primary => False);

This results in the following library structure:

Open_C : File (Text)

Tulip‘Body : I Ada -Primary
.<Secondary_Open_C> : File (Text)-- Secondary referencer
.<Secondary_State> : File (Text)-- Secondary state

When Tulip’Body is promoted to the coded state, the secondary text file Open_C is
downloaded into open.c on the remote machine and the target compiler executes
the command cc -c open.c.

References

“Removing Remote Libraries,” page 91
procedure Edit_Secondary

procedure Remove_Secondary
procedure Set_Process_Primary
procedure Set_Secondary_Command
procedure Show_Secondary

RATIONAL December 1992 123

RCI User’s Manual

PROCEDURE DESTROY_REMOTE_LIBRARY

124

procedure Destroy_Remote_Library

(View : String := "<CURSOR>";
Response : String := "<PROFILE>");
Description

Destroys the remote library associated with the view.

This command destroys the remote program library, Ada source, and working direc-
tory and demotes units on the host.

This routine assumes that the Destroy_View_Postprocess RCI extension has been
implemented. This extension may or may not be implemented from one RCI custom-
ization to another.

Parameters

View : String := "<CURSOR>";
Specifies the name of the RCI view associated with the remote library.
Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Removing Remote Libraries,” page 91
procedure Build_Remote_Library
procedure Rebuild_Remote_Library

RATIONAL pecember 1992

Chapter 8: Package Rci

PROCEDURE DISPLAY_DEFAULT_NAMING

procedure Display_Default_Naming

(Potential_vView : String := "";

Target_Key : String := "*;

Response : String := "<PROFILE>");
Description

Displays the remote machine and directory names that would be chosen by CMVC
if Potential_View were to be created with the given Target_Key.

This allows you to determine whether you need to explicitly specify the Remote-
_Machine and Remote_Directory parameters by using commands in package Rci-
_Cmvec.

Parameters

Potential View : String := "*;

Specifies the complete name of a nonexistent view. For example, the Rci_Cmvc-
Initial command allows you to specify only the base name of the working view (for
example, Revl), to which the command would append the text _Working, resulting
in a complete view name of Revl_Working.

Target_Key : string := "";
Specifies the target key under which the view would be created.
Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Displaying Defaults for Remote RCI Names,” page 36

RATIONAL December 1992 125

RCI User’s Manual

PROCEDURE DISPLAY_UNIT_OPTIONS

126

procedure Display_Unit_Options
(Units : String := "<CURSOR>";
Response : String := “<PROFILE>*);

Description

Displays, for each unit specified, the compiler options enabled for that unit by the
Set_Unit_Option command.

These values override the current values in the compiler-options switches of the
library-switch files.

Parameters

Units : String := "<CURSOR>";

Specifies a naming expression for one or more host Ada units for which enabled unit
options are displayed.

Response : String := “<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Specifying Unit-Specific Compiler Options,” page 51
procedure Remove_Unit_Option
procedure Set_Unit_Option

R¢01C)P¢/H_ December 1992

Chapter 8: Package Rci

PROCEDURE EDIT_SECONDARY

procedure Edit_Secondary

(Secondary_Referencer : String = "<CURSOR>";

In_Place : Boolean := False;

Visible : Boolean := True;

Response : : String = "<PROFILE>");
Description

Allows editing of the secondary unit that is associated with a primary unit through
the secondary referencer.

This command opens the secondary text file on the host environment for editing and
displays it in a window on the screen.

If the primary is coded, it is demoted to installed before editing begins. The second-
ary text file is unfrozen for editing. When the primary is promoted to coded, the sec-
ondary is downloaded, processed, and refrozen in the host environment.

Parameters

Secondary_ Referencer : String := "<CURSOR>";

Specifies the secondary-referencer file that is associated with the secondary text file
that is to be edited.

In_Place : Boolean := False;

Specifies, if True, that the secondary associated with the specified primary is opened
in a2 window that replaces the window in which the cursor is currently located. If
False, the default, a different window is used.

Visible : Boolean := True;
Ignored.
Response : String := “<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Errors

This command returns an error if you try to edit these units:

m An Ada unit that does not have a secondary
= A text unit that is not a secondary
m Any type of file other than an Ada unit or text file

RAT‘ONAL December 1992 127

RCI User’s Manual

References

“Changing the Secondary File and Commands,” page 102
procedure Create_Secondary

procedure Remove_Secondary

procedure Show_Secondary

128 ‘ RATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE EXECUTE_REMOTE_COMMAND

procedure Execute_Remote_Command

(Remote_Command : String := *";

Remote_Machine : String := "<DEFAULT>*;
Remote_Username : String := "<DEFAULT>";
Remote_Password : String := "<DEFAULT>";
Remote_Directory : String := "<DEFAULT>";
The_Key : String := "<DEFAULT>*;
Response ¢ String := "<PROFILE>");

Description

Executes the specified remote command on the specified remote machine.

The output of the remote command is displayed in a host-environment window.

Parameters

Remote_Command : String := *";

Specifies the remote operating-system command to be executed on the remote
platform.

Remote_Machine : String := "<DEFAULT>";

Specifies the remote machine on which to execute the command. The default is
taken from the enclosing library-switch file or the session-switch file if not defined
in the library switches.

Remote_Username : String := "<DEFAULT>";

Specifies the username to use for login on the remote machine. The default is taken
from the enclosing library-switch file, the session-switch file, or the Remote_Pass-
words file if not defined in the library switches.

Remote_Password : String := "<DEFAULT>";

Specifies the password to use for login on the remote machine. The default is taken
from the enclosing library-switch file, the session-switch file, or the Remote_Pass-
words file if not defined in the library switches.

Remote_Directory : String := "<DEFAULT>";

Specifies the remote directory from which to execute the command. The default is
taken from the enclosing library-switch file or the session-switch file if not defined
in the library switches.

The_Key : String := “<DEFAULT>";

Specifies a valid RCI target key. The default is taken from the target key of the enclos-
ing world.

RATIONAL December 1992 129

RCI User’s Manual

130

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE EXECUTE_SCRIPT

procedure Execute_Script

(Host_Script_File : String := "<IMAGE>";
Remote_Script_File : String := ">> FULL REMOTE NAME <<";
Remote_Machine : String := "<DEFAULT>";
Remote_Username : String := "<DEFAULT>";
Remote_Password : String := "<DEFAULT>";
Remote_Directory : String := "*;
Effort_Only : Boolean := False;
Display_Remote_Commands : Boolean := False;
The_Key : String := "<DEFAULT>";
Response : String := "<PROFILE>");
Description

Downloads the specified host script file to the specified remote machine and exe-
cutes the script in cases where the host and target can communicate through FTP
and Telnet.

Script files are built by the Rci.Build_Script command. They can be executed at that
time by setting the Execute_Script parameter on the Build_Script command to True.
In cases where the downloading or execution failed during the build, where the
Execute_Script parameter was False, or where the same script file must be executed
on several remote machines (as described in Transfer_Units), this command can be
used to download and execute existing batch scripts.

Parameters

Host_sScript_File : String := "<IMAGE>";

Specifies the name of a host script file generated by the Build_Script or the Build-
_Script_Via_Tape command that is to be downloaded to the specified remote
machine.

Remote_sScript File : String := ">> FULL REMOTE NAME <<";

Specifies the name of the remote file into which the Host_Script will be downloaded.
The Remote_Script_File must specify the complete pathname on the remote
machine.

Remote_Machine : String := "<DEFAULT>";
Remote_Username : String := "<DEFAULT>";
Remote_Password : String := "<DEFAULT>";

Remote_Directory : String := "";

Specify the information about the remote machine needed to download the script
file. The Display_Default_Naming command can be used to determine the default
values for Remote_Machine and Remote_Directory.

Effort_Only : Boolean := False;

Specifies, if True, that the name of the script file be displayed, but it is not down-
loaded or executed.

RAT'ONAL December 1992 131

RCI User’s Manual

132

Display Remote_Commands : Boolean := False;

Specifies whether to display the remote script-file commands on the host as they
execute on the remote machine. The default, False, prevents the commands from
being displayed.

The_Key : String := "<DEFAULT>";

Specifies a valid RCI target key to use. The default is the target key of the enclosing
world.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Executing a Batch Script on the Compilation Platform,” page 71
procedure Build_Script

RATIONAL December 1992

Chapter 8: Package Rci

. PROCEDURE EXPAND_SECONDARY_REFERENCERS

procedure Expand_Secondary_Referencers
(Directory : String := "<CURSOR>";
Response : String := "<PROFILE>");

Description

Expands out secondary-referencer (pointy) files to text files in the specified directory
and all subdirectories within it.

In some versions, Archive.Copy does not copy subobjects such as secondary-refer-
encer files. Before you copy a view containing secondaries to a new location, run
Rci.Expand_Secondary_Referencers to expand secondary-referencer files into a form
that can be copied. Once your copy operation has completed, run Rci.Collapse_Sec-
ondary_Referencer to restore the secondary-referencer subobijects.

Since Archive.Copy cannot copy secondary referencers:

1. Convert all secondary referencers to text files using this command.
2. Archive.Copy these text files.

3. Convert text files back to secondary referencers using the Collapse_Secondary-
_Referencers command.

‘ Parameters

Directory : String := "<CURSOR>";

Specifies the directory that contains the files to expand.
Response : String := "<PROFILE>"“;

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RATIONAL December 1992 133

RCI User’s Manual

PROCEDURE LINK

134

procedure Link
(Main_Unit : String = "<CURSOR>";
Make_Uncoded_Units : Boolean := False;
Executable_Name : String := **;
Response : String = "<PROFILE>");
Description

Links main units using the remote linker.

Each main unit and all units in its closure must be successfully promoted to the
coded state before the link can take place; setting the Make_Uncoded_Units param-
eter to True requests that all uncoded units in the main unit’s closure be coded
before the link operation is executed.

Parameters

Main Unit : string := "<CURSOR>";

Specifies a naming expression for one or more host Ada main units whose remote
counterparts are to be linked with all appropriate object modules on the remote
machine.

Make_Uncoded_Units : Boolean := False;

Specifies whether the main unit and units in its closure that are currently not in the
coded state should be promoted to the coded state before the link takes place. If
False, the link fails unless all units are already in the coded state. If True, then normal
compilation requirements must be met, and coding takes place as described in Chap-
ter 3, “Getting Started”

Executable_Name : String := ““;

Specifies the name to use for the executable module that is the output from the link
operation on the remote machine. If the null string is specified, then the default
name is determined as described in “Remote Files and Names” on page 56 in Chap-
ter 3. Only one main unit can be linked at a time if a nonnull Executable_Name is
specified.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“What Happens During the Linking Step,” page 61

QATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE REBUILD_REMOTE_LIBRARY

procedure Rebuild_Remote_Library

(View : String = "<CURSOR>";

Remake_Demoted_Units : Boolean := True;

Remote_Machine : String = "<DEFAULT>";

Remote_Directory : String = "<DEFAULT>";

Response : String = "<PROFILE>");
Description

Rebuilds the associated remote libraries for one or more RCI views.
This command carries out the following operations for each specified view:

m Demotes all units to the installed state
s Destroys the current remote library

m Rebuilds the remote library

m Recodes all units

Parameters

View : String := "<CURSOR>";

Specifies a naming expression for the existing RCI combined view for which to
destroy and then rebuild the associated remote library.

Remake_Demoted_Units : Boolean := True;

Specifies, if True, that all units and dependents are to be recoded in the rebuilt
library.

Remote_Machine : String := "<DEFAULT>")

Specifies the name of the remote machine name on which to create the remote
library.

Remote_Directory : String := "<DEFAULT>";

Specifies the directory name on the remote machine where the new remote library
will be created.

Response : String := “"<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Rebuilding an Existing Remote Library,” page 88

RATIONAL pecember 1992 135

RCI User’s Manual

PROCEDURE REFRESH_REMOTE_IMPORTS

136

procedure Refresh_Remote_Imports

(View : String := "<CURSOR>";
Response : String := "<PROFILE>");
Description

Compares and updates remote imports to match host imports.

This operation is described in more detail in Chapter 6, “Library Management” This
command directly calls Import_Preprocess and Import_Postprocess if these routines
are implemented in your customization.

Parameters

View : String := "<CURSOR>";

Specifies 2 naming expression for an RCI combined view whose imports should be
compared to the remote imports and used to update mismatched remote imports.

Response : String := "<PROFILE>":;

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Imports,” page 92

RAT'ONAL December 1992

Chapter 8: Package Rci

PROCEDURE REFRESH_VIEW

procedure Refresh_View

(View : String := "<CURSOR>";

Retain_History : Boolean := True;

Response : String = "<PROFILE>");
Description

Refreshes RCI state information that is believed to be corrupted or inconsistent.

If the Retain_History parameter is True, the following information is retained from
the existing RCI state information:

» Remote unit names

m Download timestamps

= Unit options

If Retain_History is False, the command completely reinitializes the state information
for the specified view.

Parameters

View : String := "<CURSOR>";

Specifies an RCI combined view. This must be an RCI view.
Retain_History : Boolean := True:;

Specifies whether to retain existing history.

Response : String := "“<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Errors

This command results in errors if the view is not an RCI view.

RATIONAL December 1992 137

RCI User’s Manual

PROCEDURE REMOVE_SECONDARY

138

procedure Remove_Secondary

(Secondary_Referencer : String := "<CURSOR>";
Response : String := “<PROFILE>");
Description

Removes the specified secondary referencer, thus breaking the association between
a primary and a secondary unit.

This command:

® Demotes the associated primary unit from the coded state Gf that is its current
state) to the installed state.

s Removes the secondary referencer.

m Leaves unchanged the secondary text file previously associated with the primary.

s Makes no changes on the remote machine; in particular, the copy of the second-
ary unit is not removed from the remote machine. This means that the primary
unit must be recompiled to make its associated remote unit consistent with the
host unit.

The primary unit must be checked out.

Parameters

Secondary_Referencer : String := "<CURSOR>";

Specifies 2 naming expression for a single secondary-referencer file that is associated
with a secondary text file.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

Chapter 7, “Using Non-Ada Code with the RCI”
procedure Create_Secondary
procedure Show_Secondary

RATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE REMOVE_UNIT_OPTION

procedure Remove_Unit_Opticn

(Option_Switch : String := "<ALL>";

Units : String := *“<CURSOR>*;

Response : String := "<PROFILE>");
Description

Disables, for each unit specified, the specified option set by the Set_Unit_Option
command.

Switch values for these options are reset to the values in the associated compiler
switch files.

Parameters

Option_switch : String := "<ALL>";

Specifies the name of the compiler-option switch as it appears in the library-switch
file. This can be either the complete switch filename (Rci. Custom_Key,_Option) or the
compiler-option switch name (Option).

Units : sString := "“<CURSOR>";
Specifies a2 naming expression for the units associated with the unit switch options.
Response : String := “"<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Specifying Unit-Specific Compiler Options,” page 51
procedure Display_Unit_Options
procedure Set_Unit_Option

RATIONAL December 1992 139

RCI User’s Manual

PROCEDURE SET_PROCESS_PRIMARY

140

procedure Set_Process_Primary

(Primary_Unit : String = "<CURSOR>";

Value : Boolean := False;

Response : String = "<PROFILE>");
Description

Sets the Process_Primary flag for the specified primary unit.

This operation controls the handling of the specified primary unit when it is pro-

moted to coded. In Interactive mode, if the Process_Primary flag is True, the primary
unit is downloaded and processed on the remote machine before its secondary units
are processed. If False, the primary unit is not downloaded with the secondary units.

The primary unit must be checked out.

The primary unit is demoted to the installed state if necessary.

Parameters

Primary Unit : String := "<CURSOR>";
Specifies the host Ada unit with which to associate the flag.
Value : Boolean := False;

Specifies the value of the Process_Primary flag. If True, this causes the primary unit
to be downloaded and processed on the remote machine when it is promoted to
coded in the host environment.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Setting the Process_Primary Flag,” page 104

RAT'ONAL December 1992

Chapter 8: Package Rci

PROCEDURE SET_REMOTE_UNIT_NAME

procedure Set_Remote_Unit_Name

(Remote_Name : String := ">>REMOTE NAME<<";

Unit : String := "<CURSOR>";

Allow_Demotion : Boolean := True;

Response : String := "<PROFILE>");
Description

Specifies the name to use when the host unit, either an Ada unit or a secondary text
file, is downloaded to the remote machine.

This command normally is not needed, because names are created automatically
based on your RCI customization. Remote names are created automatically for Ada
units. The name of a secondary text file is specified in the Create_Secondary com-
mand, or the RCI uses the same name 2as in the host environment. For more infor-
mation, see “Remote Files and Names” on page 56 in Chapter 3.

When an Ada unit is coded, the unit is downloaded into a remote unit with the spec-
ified name. For a secondary referencer, the secondary text file associated with the
primary is downloaded into the named remote unit.

The user must ensure that the remote name is unique; the RCI does not verify
whether the remote name is used elsewhere, and a duplicate remote name could
result in the unintentional overwriting of another remote file.

The current remote names for host units can be displayed with the Show_Remote-
_Unit_Name or Show_Units command.

If a file exists on the remote machine with an old remote-unit name, you should
delete or rename this file, because the RCI does not perform this cleanup operation.

If the specified host unit is in the coded state, it is demoted to the installed state
when its remote-unit name is changed. This ensures that it will be recoded at some
later date, thus creating the appropriately named remote file. This can be circum-
vented by setting the Allow_Demotion parameter to False.

For secondaries, the primary unit must be checked out.

Parameters

Remote_Name : String := ">>REMOTE NAME<<";

Specifies the name that will be used when the unit is downloaded to the remote
machine. This name is stored permanently as part of the RCI state information. It can
be a maximum of the customization-specified number of characters. If this parameter
is the null string, the unit’s default remote name is assigned or restored as described
above.

Unit : String := "<CURSOR>";

Specifies a naming expression for a single unit in an RCI view whose remote name
should be set to the indicated Remote_Name. This must specify an Ada unit or sec-
ondary-referencer name. If Unit is an Ada unit, the unit, when downloaded, goes

RATIONAL pecember 199 | ”

RCI User’s Manual

142

into a remote unit with the specified remote-unit name. If Unit specifies a secondary
referencer, the associated secondary text file is downloaded into the remote-named
file.

Allow_Demotion : Boolean := True;

Specifies whether the host unit should be demoted to the installed state. If this
parameter is set to False, the host unit remains in its current state. If the host unit is
coded and Allow_Demotion is set to False, the remote name is not changed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Remote Files and Names,” page 56

RAT‘ONAL December 1992

Chapter 8: Package Rci

PROCEDURE SET_SECONDARY_COMMAND

procedure Set_Secondary_Command

(Command : String := "*;

Secondary_Referencer : String := "<CURSOR>‘;

Response : String := "<PROFILE>");
Description

Assigns the given command string to a secondary.

This command executes on the remote machine to process the secondary text file
after it is downloaded to the remote machine (when its primary is coded). The
secondary referencer indicates which secondary text file is associated with the
command.

The primary unit must be checked out.

The primary unit is demoted to the installed state if necessary.

Parameters

Command : String := "*;

Specifies the command to execute on the remote compilation platform when pro-
cessing the downloaded secondary text file.

Secondary_ Referencer : String := "<CURSOR>";

Specifies the secondary referencer for the secondary text file with which to associate
the command.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Changing a Secondary’s Remote Command,” page 104

RATIONAL December 1992 143

RCI User’s Manual

PROCEDURE SET_UNIT_OPTION

144

procedure Set_Unit_Option

(Option_Switch : String := ">>OPTION<<";

Switch_Value : Boolean;

Units : String := "<CURSOR>";

Response : String := "<PROFILE>");
procedure Set_Unit_Option

(Option_Switch : String := ">>OPTION<<";

Switch_Value : String;

Units : String := *<CURSOR>";

Response : String := *<PROFILE>");
Description

Assigns compiler options on a unit-by-unit basis, overriding what appears in the
switch file.

The RCI ignores the value in the switch file for units that have that option set. The
option value stays enabled until it is removed with Remove_Unit_Option.

Parameters

Option_switch : String := "“>>OPTION<<";

Specifies the switch-name entry in the option customization. This can be either the
fully qualified switch filename or the option-switch name.

Switch_Value : Boolean;

Specifies the value for the associated compiler switch.

Switch_Value : String;

Specifies the argument value to assign to the associated compiler switch.

Units : String := "<CURSOR>";

Specifies a naming expression for the units whose unit switch options are to be set.
Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Specifying Unit-Specific Compiler Options,” page 51
procedure Display_Unit_Options
procedure Remove_Unit_Option

RAT'ONAL December 1992

Chapter 8: Package Rci

PROCEDURE SHOW_BUILD_STATE

procedure Show_Build_State

(Host_Units : String := "<CURSOR>";

Execution_Closure : Boolean := False;

Obsolete_Units_Only : Boolean := False;

Response : String = "<PROFILE>");
Description

Displays the last coding time and the last build time for the specified units.

If you are operating in batch mode as described in “Operations for Batch Compila-
tion” on page 109, the coded state indicates only that dependencies have been
recorded for a unit and its closure, not necessarily that the unit has been downloaded
and compiled on the remote machine. In this mode, the Build_Script command must
be run to generate a script, and then the script must be executed on the remote com-
pilation server. The Show_Build_State command displays a report that lists the cod-
ing times and the build times for the specified units; you can use the Obsolete-
_Units_Only parameter to include only the units that are out of date; that is, have
not been generated in a script since they were last promoted to the coded state.

The output of this command appears as follows:

unit : !Proj.Sub.Revl_Working.Units.A'Body
last coding time : 92/04/06 09:47:31
last build time : 92/04/06 08:47:31

Parameters

Host_Units : String := "<CURSOR>";

Specifies a set of units (and optionally their execution closures) whose build states
are to be displayed. Only coded units are reported.

Execution_Closure : Boolean := False;

Specifies whether to also display information about coded units in the execution clo-
sure of Host_Units. If True, they are included in the display.

Obsolete_Units_Only : Boolean := False:;

Specifies, if True, that the state of only obsolete units (units whose coding time is
more recent than their build time) are reported. If False, all units specified by
Host_Units and Execution_Closure are displayed.

Response : String := "<PROFILE>":;

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RATIONAL December 1992 145

RCI User’s Manual

References

“Checking the Build State,” page 71
procedure Build_Script
procedure Build_Script_Via_Tape

146 RATIONAL pecember 1992

Chapter 8: Package Rci

. PROCEDURE SHOW_REMOTE_INFORMATION
procedure Show_Remote_Information
(View : String := "<CURSOR>";
Response : String := "<PROFILE>");
Description

Displays the names of the remote machine, remote directory, and remote program
library associated with the specified host view.

Since this command simply displays the values of the Ftp.Remote_Directory switch
and the Ftp.Remote_Machine switch, the same effect is achieved by displaying the
Ftp.Remote_Directory and Ftp.Remote_Machine switches in the view’s Compiler-
_Switches library-switch or session-switch file.

Parameters

View : sString := "<CURSOR>";

Specifies the RCI view whose Ftp.Remote_Directory and Fip.Remote_Machine val-
ues should be displayed.

Response : String := "<PROFILE>";

. Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Specifying Remote Login Information,” page 20

RATIONAL pecember 1992 147

RCI User’s Manual

PROCEDURE SHOW_REMOTE_UNIT_NAME

148

procedure Show_Remote_Unit_Name
(Unit : String := *<CURSOR>';
Response : String := "<PROFILE>");

Description

Displays the remote name for the specified unit.

For Ada units, the RCI assigns a unique default remote name to each host Ada unit,
but the remote name can be changed. For secondary referencers, the default remote
name is the same as the name of the secondary text file on the host. You must make
sure that the remote name is unique. Use the Rci.Set_Remote_Unit_Name command
to change remote names if necessary.

Parameters

Unit : String := "<CURSOR>";

Specifies a naming expression for one or more units in an RCI view whose remote
names are to be displayed. If Unit is an Ada unit, the remote name of its associated
remote unit is displayed. If Unit is a secondary referencer, the name of the remote
secondary text file is displayed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Restrictions

The Unit parameter must specify either an Ada unit or a secondary referencer. If not,
a warning message is issued and the Unit parameter is ignored.

References

“Remote Files and Names,” page 56
procedure Set_Remote_Unit_Name

RAT'ONAL December 1992

Chapter 8: Package Rci

PROCEDURE SHOW_SECONDARY

procedure Show_Secondary

(Primary_Unit : String := "<CURSOR>";
Response : String := "<PROFILE>");
Description

Displays information about the secondaries associated with one or more primary
Ada units.

The following information is displayed:

m Whether the primary is processed, based on the value of the Process_Primary
flag

m Names of the secondary text units associated with the primary

= Remote names of the secondary text files

= Remote commands associated with the secondary text files

The Primary_Unit parameter can be a naming expression that refers to more than

one unit in a view, so the display includes all of the named units (which must be
Ada units).

Parameters

Primary Unit : String := "<CURSOR>";

Specifies a naming expression for one or more Ada units in an RCI view whose sec-
ondaries and associated information should be displayed.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Restrictions

The specified primary unit must be an Ada unit.

References

Chapter 7, “Using Non-Ada Code with the RCI”
procedure Create_Secondary
procedure Remove_Secondary

RATIONAL December 1992 149

RCI User’s Manual

PROCEDURE SHOW_UNITS

procedure Show_Units

(Unit : String = "<CURSOR>";
Remote_Name : Boolean := True;
Consistency : Boolean := False;
Response : String := "<PROFILE>");

Description

Displays relevant information about the state or configuration of units, when given
a naming expression describing some number of units in a single RCI view.

Parameters

Unit : string := "<CURSOR>";
Specifies a naming expression for one or more units in an RCI view.
Remote_Name : Boolean := True;

Specifies, if True, that the remote names of the units are displayed. If a unit is a
secondary referencer, the displayed remote name is that of its associated secondary
text file.

Consistency : Boolean := False;

Specifies, if True, that the remote units are checked for changes since they were last
downloaded.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

Restrictions

If the unit is not an Ada unit or a secondary referencer, a warning message is dis-
played and the Unit parameter is ignored.

150 RATIONAL December 1992

Chapter 8: Package Rci

PROCEDURE TRANSFER_UNITS

procedure Transfer_Units

(Units : String = "<CURSOR>";

Remote_Machine : String = "',

Effort_Only : Boolean := False;

Response : String = "<PROFILE>");
Description

Transfers all Ada units and any secondaries specified by the Units parameter to the
specified remote machine, if the host and remote machine can communicate through
FTP.

Often there is a need to do multimachine development where a host view maps onto
many target libraries. Under these conditions, it is useful to generate a batch script
and a list of units to build once and then run this batch script on each of the multiple
machines. To do this:

1. Use the Build_Script or the Build_Script_Via_Tape command to generate a host
script file and a file containing a list of the units to build (a Build_List_File).

2. For each remote machine:
a. Download the units that are to be built using the Transfer_Units command.

b. Download and execute the remote script file using the Execute_Script
command.

Parameters

Units : String := “<CURSOR>";

Specifies a naming expression describing the host units that are to be downloaded
to the specified remote machine. Units can also specify an indirect file that contains
the names of the host units to download; for example, to download the units se-
lected for the last build, you can supply the name of the Build_List_File generated
by Rci.Build_Script.

Remote_Machine : String := "";

Specifies the name of the remote machine onto which to download the specified
units.

Effort_Only : Boolean := False;

Specifies, if True, that the names of the files that would be downloaded are dis-
played, but none of them are actually moved to the remote machine.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

RAT!ONAL December 1992 151

RCI User’s Manual

References

“Downloading Host Units,” page 71
procedure Build_Script

procedure Build_Script_Via_Tape
procedure Execute_Script

152 RATIONAL pecember 1992

Chapter 8: Package Rci

PROCEDURE UPLOAD_ASSOCIATED_FILES

procedure Upload_Associated_Files

(Units : String = "<CURSOR>";

Effort_Only : Boolean := False;

Response : String = "<PROFILE>");
Description

Uploads the associated files for the specified units, if the host and remote machine
can communicate through FTP.

This call may generate errors if a batch script was generated but never run on the
remote compilation platform for the specified units.

Parameters

Units : String := “"<CURSOR>";

Specifies a naming expression describing the host units for which to upload associ-
ated files. Units can also specify an indirect file that contains the names of the host

units whose associated files are to be uploaded. For example, to load the associated

files of units selected for the last build, you can supply the name of the Build_List-

_File generated by Rci.Build_Script.

Effort_Only : Boolean := False;

Specifies, if True, that the names of the files that would be uploaded are displayed,
but none of them are actually moved to the host machine.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Retrieving Associated Files,” page 72

RATIONAL December 1992 153

RCI User’s Manual

PROCEDURE UPLOAD_UNIT

154

procedure Upload_Unit

(Remote_Unit_Name : String := ">>REMOTE UNIT NAME<<";

Into_View : String := "<CURSOR>";

Upload_To_Text_File : Boolean := False;

Host_Text_File_Name : String := "*;

Response : String = "<PROFILE>");
Description

Transfers a unit from the remote machine into a host view.

This command should be used on objects that do not currently reside in the host
view. This allows you to move remotely maintained/created code to a Rational view.
This command should be used to upload only new units, which were created on the
remote machine and do not exist on the host, into the host view.

If Upload_To_Text_File is False, the unit is parsed into an Ada unit, and the host unit
name will be the name of the compilation unit. In this case, if there is an existing
unit with the same name, it must be in source state to be replaced by the new unit.

If Upload_To_Text_File is True, no Ada parsing is done and the remote unit is
uploaded into Host_Text_File_Name. If a text file of the same name already exists,
it is overwritten with the new file.

Parameters

Remote_Unit_Name : String := ">>REMOTE UNIT NAME<<";
Specifies the name of the unit in the remote directory that is to be uploaded.
Into_View : String := “<CURSOR>";

Specifies an RCI view.

Upload_To_Text_File : Boolean := False;

Specifies, if True, that no attempt is made to parse the remote object into an Ada
unit. In this case, a Host_Text_File_Name must be supplied.

Host_Text_File Name : String := "*“;

Specifies, for uploading a non-Ada unit, the name of the host text file into which the

remote text should be uploaded. This must be a valid, unambiguous naming expres-
sion. If it is a simple name, the unit is uploaded into Into_View. If it is a full name,

the unit is uploaded into the specified filename, even if that file is not contained in

Into_View.

Response : String := "<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity

to use during the execution of this command. By default, this command uses the

response characteristics specified in the job response profile for the current job. For

other values accepted by this parameter, see Parameter-Value Conventions in the

Reference Summary (RS) of the Rational Environment Reference Manual. ‘

RATIONAL December 1992

Chapter 8: Package Rci

References

“‘Determining Consistency of Host and Remote Units,” page 78
“Uploading a New Remote Unit to the Host,” page 80
“Changing Text from the Remote Machine,” page 103

RATIONAL December 1992 155

RCI User’s Manual

PROCEDURE UPLOAD_UNITS

156

procedure Upload_Units

(Upload_Specification_File : String := "*;

Into_View : String := “<CURSOR>";

Response : String := "<PROFILE>");
Description

Uploads remote units into host units as specified by the Upload_Specification_File
parameter.

Use this command only to upload new units, which were created on the remote
machine and do not exist on the host, into the host view directory.

Upload_Specification_File contains the list of units to be uploaded. Each line of the
file has two fields separated by blanks:

m Remote-unit name: The name of a unit on the remote system.

= Host text filename: The new host name for the uploaded unit. If this field is left
blank, the command attempts to upload the remote unit into an Ada name in
Into_View on the host. The RCI uses the naming scheme for remote units that
has been defined by your extension to create the Ada unit name on the host.

A sample file appears as follows:

X.cC X_C
new_unit.c unit_in_c
y_s.ada

Remote file x.c is copied to host text file X_C in Into_View; remote unit new_unit.c
is copied to Unit_In_C; remote file y_s.ada is copied to host Ada unit Y’Spec.

Parameters

Upload_sSpecification_File : String := "“;

Specifies the file, described above, that contains information on the units to upload.
Into_View : String := "<CURSOR>";

Specifies an RCI view.

Response : String := "“<PROFILE>";

Specifies how to respond to errors, where to send log messages, and what activity
to use during the execution of this command. By default, this command uses the
response characteristics specified in the job response profile for the current job. For
other values accepted by this parameter, see Parameter-Value Conventions in the
Reference Summary (RS) of the Rational Environment Reference Manual.

References

“Uploading a New Remote Unit to the Host,” page 80

QATIONAL December 1992

Package Rci_Cmvc

This chapter provides an overview of the functionality of the commands in package
Rci_Cmvc. Details on how to use and apply these commands are given in earlier
chapters, and those chapters are referenced here.

The library-management operations described in this chapter are affected by the
values of the following switches:

m Operation_Mode (to determine Batch or Interactive mode)
m Session_Rci.Auto_Create_Remote_Directory switch (for view creation)
m Rci.Host_Only switch (for existing views)

Operations may also vary depending on values specific to your extension. See your
extension user’s guide or your customizer for more information.

Following the overview, all of the commands in package Rci_Cmvc are listed in
alphabetical order with a description of how their operation differs from the Cmvc
commands of the same name.

The commands in package Rci_Cmvc provide the same functionality as the corre-
sponding Cmvc commands. The operations in this group are built on top of the
CMVC operations of the same names. They expand the CMVC operations by allow-
ing you to explicitly specify the Remote_Machine and Remote_Directory parameters
for each command. This allows you to define the remote machine and directory
rather than use the default constructed by library-switch settings in your environ-
ment. These commands are available for situations in which the default naming
scheme does not support your naming system or the default names are too long.

RCI COMMANDS FOR CMVC

Package Rci_Cmvc contains the following commands for creating, releasing, destroy-
ing, and recreating views:
m Build: Rebuilds the host view from saved historical information.

m Copy: Copies a new view from an existing view and creates the remote library
for that new view.

m Initial: Creates a new RCI combined view or a new subsystem and RCI combined
view,

m Make_Path: Creates a new RCI combined view from an existing RCI or R1000
view.,

m Make_Subpath: Creates a new RCI combined view from an existing RCI view.
m Release: Creates a release of an RCI view.

m Make_Spec_View: Creates a new RCI spec view from each of the specified RCI
views in a spec/load subsystem.

RATIONAL pecember 1992 157

RCI User’s Manual

REMOTE_MACHINE AND REMOTE_DIRECTORY PARAMETERS

Rci_Cmvc operations accept the two additional parameters:

B Remote Machine : String := "*;

Specifies the machine where the remote library will be located. The value speci-
fied is assigned to the Ftp.Remote_Machine switch in the library-switch or session-
switch file of the view that is created. If the default is used, units cannot be
brought to the coded state in the combined view (and in the remote directory).

B Remote_Directory : String := "*;

Specifies, for view-creation commands, the full pathname of the library on the
remote machine with which this view will be associated. If the library does not
already exist, it is created. The value specified is assigned to the Ftp.Remote-
_Directory switch in the library-switch or session-switch file of the view being cre-
ated. If the default is used, units cannot be brought to the coded state in the
combined view (and in the target program library).

For Rci_Cmvc Release, this parameter specifies the name of a remote library that
should be built to match the host released view. If the default null string is used,
only the host component (view) is released. If a nonnull string is provided, the
remote directory is also released.

To view the default values for Remote_Machine and Remote_Directory that will
be used if these parameters are not specified, use the Rci.Display_Default_Naming
command.

158 RAT‘ONAL December 1992

Chapter 9: Package Rci_Cmvc

‘ PROCEDURE BUILD

procedure Build

(Configuration : String = ">>CONFIGURATION NAME<<";

Remote_Machine : String := "*;

Remote_Directory : String := "*;

View_To_Import : String := "<INHERIT_IMPORTS>";

Model : String = "<INHERIT_MODEL>";

Goal : Compilation.Unit_State

:= Compilation.Installed;

Limit : String := "<WORLDS>"';

Comments : String := *";

Work_Order : String = “<DEFAULT>";

Volume : Natural := 0;

Response : String = "<PROFILE>");
Description

Rebuilds the host view from saved historical information.

If the Configuration parameter refers to a text file, that file is assumed to be an indi-
rect file containing a list of the names of configuration objects that are to be built.

The Unit_State for the Goal parameter is limited to Compilation.Installed, since only
the host view is rebuilt.

Parameters

See Cmvc.Build and “Remote_Machine And Remote_Directory Parameters” on
page 160.

References

“Creating New RCI Views,” page 39

Chapter 6, “Library Management”

procedure Cmvc.Build, page 173

procedure Cmvc.Build, in the Project Management (PM) book of the Rational
Environment Reference Manual

RATIONAL pecember 1992 159

RCI User’s Manual

PROCEDURE COPY
procedure Copy
(From_View : String := "<CURSOR>*;
New_Working View : String := ">>SUB/PATH NAME<<";
Remote_Machine : String := **;
Remote_Directory : String := "*;
View_To_Modify : String := "*;
View_To_Import : String := "<INHERIT_IMPORTS>";
Only_Change_Imports : Boolean := True;
Join_Views : Boolean := True;
Reservation_Token_Name : String := "<AUTO_GENERATE>";
Construct_Subpath_Name : Boolean := False;
Create_Spec_View : Boolean := False;
Create_Load_View : Boolean := False;
Create_Combined_View : Boolean := False;
Level_For_Spec_View : Natural := 0;
Model : String := "<INHERIT MODEL>"‘;
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_State
:= Compilation.Coded;
Comments : String := "*;
Work_Order : String := "<DEFAULT>";
Volume : Natural := 0;
Response : String := "<PROFILE>");
Description

Creates one or more new working views by copying the specified view or views.

Parameters

See Cmvc.Copy and “Remote_Machine And Remote_Directory Parameters” on
page 160.

References

procedure Cmvc.Copy, page 174
procedure Cmvc.Copy, in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual

160 RATIONAL December 1992

Chapter 9: Package Rci_Cmvc

' PROCEDURE INITIAL

procedure Initial

(Subsystem : String := "<IMAGE>";

Working_View_Base_Name : String := "Revl";

Remote_Machine : String := “"*;

Remote_Directory : String := "";

Subsystem_Type : Cmve. System_Object_Enum

:= Cmvce.Spec_Load_Subsystem;

View_To_Import : String := “"*;

Model : String := ">>RCI MODEL<<*;

Comments : String := "*;

Work_Order : String := "<DEFAULT>";

Volume : Natural := 0;

Response : String := "<PROFILE>");
Description

Builds a new combined RCI view in an existing subsystem or builds a new sub-
system and combined RCI view.

The operation of this command is identical to that described for Cmvc.Initial on page
175, with the exception that, to create a remote library, the Remote_Machine and
Remote_Directory parameters must be nonblank.

‘ Parameters

See Cmvc.Initial and “Remote_Machine And Remote_Directory Parameters” on
page 160.

References

“Creating a Subsystem and an RCI View,” page 36

Chapter 6, “Library Management”

procedure Cmvc.Initial, page 175

procedure Cmvc.Initial, in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual

RATIONAL December 1992 161

1

RCI User’s Manual

PROCEDURE MAKE_PATH

procedure Make_Path

(From_Path : String = "<CURSOR>*;
New_Path_Name : String = ">>PATH NAME<<";
Remote_Machine : String = “'*;
Remote_Directory : String = "*;
View_To_Modify : String := "";
View_To_Import : String := "<INHERIT_IMPORTS>";
Only_Change_Imports : Boolean := True;
Model : String := "<INHERIT_MODEL>";
Join_Paths : Boolean := True;
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_State

:= Compilation.Installed;
Comments : String := "*;
Work_Order : String := "<DEFAULT>";
Volume : Natural := 0;
Response : String := "<PROFILE>");

Description

Builds a path that is a2 combined view from an existing R1000 or RCI view.

The operation of this command is identical to that described for Cmvc.Make_Path
on page 176, with the following exceptions:

s Make_Path checks that Remote_Directory, if specified, is not used by any of
the views within the subsystem of the new path. If this parameter is allowed
to default to the null string, units in the new path can be promoted only to
the installed state as described in “Creating New RCI Views,” page 38 in
Chapter 2.

= By default, units copied to the new path are promoted only to the installed state;
they cannot be promoted to the coded state unless they can be downloaded and
compiled on the remote machine. The Remote_Machine and Remote_Directory
parameters must be set to create units on the remote machine.

Parameters

See Cmvc.Make_Path and “Remote_Machine And Remote_Directory Parameters” on
page 158,

References

“Creating New RCI Views,” page 38

Chapter 6, “Library Management”

procedure Cmvc.Make_Path, page 176

procedure Cmvc.Make_Path, in the Project Management (PM) book of the Rational
Environment Reference Manual

162 RATIONAL December 1992

Chapter 9: Package Rci_Cmvc

PROCEDURE MAKE_SPEC_VIEW

procedure Make_Spec_View

(From_Path : String := “<CURSOR>";

Spec_View_Prefix : String = “>>PREFIX<<*;

Level : Natural := 0;

Remote_Machine : String = ",

Remote_Directory : String = "*;

View_To_Modify : String = "';

View_To_Import : String = "<INHERIT IMPORTS>";

Only_Change_Imports : Boolean := True;

Remake_Demoted_Unit : Boolean := True;

Goal : Compilation.Unit_State

:= Compilation.Coded;

Comments : String = **;

Work_Order : String = "<DEFAULT>";

Volume : Natural := 0;

Response : String = "<PROFILE>");
Description

Builds a spec view from an existing RCI view.

For more information, see the Make_Path command in this section and Cmvc-
.Make_Spec_View in the Project Management (PM) book of the Rational Environ-
ment Reference Manual.

Parameters

See Cmvc.Make_Spec_View and “Remote_Machine and Remote_Directory Parame-
ters” on page 160.

References

“Creating New RCI Views,” page 38

Chapter 6, “Library Management”

procedure Cmvc.Make_Spec_View, in the Project Management (PM) book of the
Rational Environment Reference Manual

RATIONAL pecember 1992 163

RCI User’s Manual

PROCEDURE MAKE_SUBPATH

procedure Make_Subpath

(From_Path : String := "<CURSOR>";
New_Subpath_Extension : String := “>>SUBPATH<<";
Remote_Machine : String := "*;
Remote_Directory : String := "";
View_To_Modify : String = "*;
View_To_Import : String := "<INHERIT_IMPORTS>";
Only_Change_Imports : Boolean := True;
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_State

:= Compilation.Installed;
Comments : String := "";
Work_Order : String = “<DEFAULT>';
Volume : Natural := 0O;
Response : String = "<PROFILE>");

Description

Builds a subpath that is 2 combined view from an existing RCI view.

The operation of this command is identical to the Cmvc.Make_Subpath command on
page 176 with the addition of the Remote_Machine and Remote_Directory parame-
ters, as described in the Rci_Cmvc.Make_Path command in this chapter.

Parameters

See Cmvc.Make_Subpath and “Remote_Machine and Remote_Directory Parameters”
on page 160.

References

“Creating New RCI Views,” page 38

Chapter 6, “Library Management”

procedure Cmvc.Make_Path, page 176

procedure Cmvc.Make_Subpath, in the Project Management (PM) book of the
Rational Environment Reference Manual

164 RAT‘ONAL December 1992

Chapter 9: Package Rci_Cmvc

PROCEDURE RELEASE

procedure Release
(From_Working_View : String := "<CURSOR>";
Release_Name : String := "<AUTO_GENERATE>*;
Remote_Machine : String = **;
Remote_Directory : String := *";
Level : Natural := O;
Views_To_Import : String := "<INHERIT_IMPORTS>";
Create_Configuration_Only : Boolean := False;
Compile_The_View : Boolean := True;
Goal : Compilation.Unit_State
:= Compilation.Installed;
Comments : String := **;
Work_Order : String := "<DEFAULT>";
Volume : Natural := 0;
Response : String := *<PROFILE>");
Description

Creates a release of an RCI view.

This command provides the same functionality as the Cmvc.Release command de-
scribed on page 180, with the exception of the addition of the Remote_Machine and
Remote_Directory parameters.

Parameters

See Cmvc.Release and “Remote_Machine and Remote_Directory Parameters” on
page 160.

References

“Creating Releases of Views,” page 96

procedure Cmvc.Release, page 180

procedure Cmvc. Release, in the Project Management (PM) book of the Rational
Environment Reference Manual

RATIONAL December 1992 165

Package Cmvc

This chapter provides an overview of the extended RCI functionality of the com-
mands in package Cmvc. Details on how to use and apply these commands are given
in earlier chapters, and those chapters are referenced here. For more information
about the commands, refer to the CMVC section of the Project Management (PM)
book of the Rational Environment Reference Manual.

The library-management operations described in this chapter are affected by the
values of the following switches:

m Operation_Mode (to determine Batch or Interactive mode)
m Session_Rci.Auto_Create_Remote_Directory switch (for view creation)
= Rci.Host_Only switch (for existing views)

Operations may also vary depending on values specific to your extension. See your
extension user’s guide or your customizer for more information.

Following the overview, all of the commands with extended RCI functionality in
package Cmvc are listed in alphabetical order with a description of how their oper-
ation differs when developing in an RCI environment.

The commands in package Cmvc are divided into several logical groupings that
reflect the association between the commands and the operations that you need to
perform while developing in an RCI environment. These groupings are discussed in
the following sections.

LIBRARY OPERATIONS

The CMVC operations in this group extend functionality for the RCI by manipulating
RCI state information where necessary. For example, when a new view is created,
the appropriate RCI state information is also created. These commands also manip-
ulate the remote libraries associated with the host views.

m Initial: Creates a new RCI combined view or a new subsystem and RCI combined
view.

m Make_Path: Creates a new RCI combined view from an existing RCI or R1000
view.

Make_Subpath: Creates a new RCI combined view from an existing RCI view.
Build: Rebuilds the host view from saved historical information.

Copy: Copies a2 new view from an existing view.

Destroy_View: Demotes all units in the RCI view and removes the view.
Release: Creates a release of an RCI view.

Make_Spec_View: Creates a new RCI spec view from each of the specified RCI
views in a spec/load subsystem.

RATIONAL December 1992 167

RCI User’s Manual

IMPORT OPERATIONS

The following CMVC commands have been extended to support host and remote
imports for the RCI:

a Import: Adds an imported view to a view’s import list.
m Remove_Import: Removes an imported view from a view’s import list.

CONSISTENCY-MANAGEMENT OPERATIONS

CMVC ensures that only one user at a time can update a unit joined across many
views on the host. However, remote code that is associated with code in RCI views
can be updated at will. It is the responsibility of the user to make sure that host and
remote source remain consistent. The following operations provide support for man-
agement of consistency between host and remote objects:

m Accept_Changes: Accepts changes from another object.

m Revert: Replaces the contents of an object with the contents from a specified
generation.

m Abandon_Reservation: Abandons the checkout reservation on an object.

168 RATIONAL December 1992

Chapter 10: Package Cmvc

. PROCEDURE ABANDON_RESERVATION

procedure Abandon_Reservation

(What_Object : String = "<SELECTION>";

Allow_Demotion : Boolean := False;

Remake_Demoted_Units : Boolean := True;

Goal : Compilation.Unit_State

:= Compilation.Coded;

Comments : String := "";

Work_Order : String = "<DEFAULT>";

Response : String = "<PROFILE>");
Description

Abandons a checkout of some object or set of objects.

For the RCI, if the file that is being abandoned is a secondary text file, then the pri-
mary associated with the file is demoted. The secondary text is unfrozen.

Parameters

See Cmvc.Abandon_Reservation.

‘ References

procedure Cmvc.Abandon_Reservation, in the Project Management (PM) book of the
Rational Environment Reference Manual

RAT'ONAL December 1992 169

RCI User’s Manual

PROCEDURE ACCEPT_CHANGES

procedure Accept_Changes

(Destination : String = "<CURSOR>";

Source : String = "<LATEST>";

Allow_Demotion : Boolean := False;

Remake_Demoted_Units : Boolean := True;

Geal : Compilation.Unit_State

:= Compilation.Coded;

Comments : String = "*;

Work_Order : String := "<DEFAULT>";

Response : String := "<PROFILE>");
Description

Accepts changes from one object to another object.

The following special actions are taken for RCI secondary text files and secondary-
referencer files:

m If changes are being accepted into a secondary text file, then the primary unit
associated with the secondary text file is demoted. Specifying Remake_De-
moted_Units as True causes the demoted units to be promoted.

m Using Accept_Changes on a primary unit specifying both source and destination
views causes the secondary referencers of the source primary to be copied to the
secondary referencers of the destination primary.

s Using Accept_Changes on a primary unit specifying <LATEST> as the source
does not copy any secondary referencers.

m Using Accept_Changes unfreezes all text files in the destination view.

Parameters

See Cmvc.Accept_Changes.

References

procedure Cmvc.Accept_Changes, in the Project Management (PM) book of the
Rational Environment Reference Manual)

170 RATIONAL pecember 1992

Chapter 10: Package Cmvc

PROCEDURE BUILD

procedure Build

(Configuration : String = "“>>CONFIGURATION NAME<<';

View_To_Import : String := "<INHERIT IMPORTS>";

Model : String := "<INHERIT_MODEL>";

Goal : Compilation.Unit_State

:= Compilation.Installed;

Limit : String = "<WORLDS>*;

Comments : String := "*;

Work_Order : String = “<DEFAULT>";

Volume : Natural := 0;

Response : String = "<PROFILE>");
Description

Rebuilds the host view from saved historical information.

If the Configuration parameter refers to a text file, that file is assumed to be an indi-
rect file that contains a list of the names of configuration objects that are to be built.

The Unit_State for the Goal parameter is limited to Compilation.Installed, since only
the host view is rebuilt.

Parameters

See Cmvc.Build.

References

“Creating New RCI Views,” page 38

Chapter 6, “Library Management”

procedure Cmvc.Build, in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual

RAT[ONAL December 1992 171

RCI User’s Manual

PROCEDURE COPY

procedure Copy

(From_View : String := "<CURSOR>";
New_Working_View : String := *>>SUB/PATH NAME<<";
View_To_Modify : String := "";
View_To_Import : String := "<INHERIT_IMPORTS>";
Only_Change_Imports : Boolean := True;
Join_Views : Boolean := True;
Reservation_Token_Name : String := "<AUTO_GENERATE>";
Construct_Subpath_Name : Boolean := False;
Create_Spec_View : Boolean := False;
Create_Load_View : Boolean := False;
Create_Combined _View : Boolean := False;
Level_For_Spec_View : Natural := 0;
Model : String := “<INHERIT_MODEL>";
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_State
:= Compilation.Coded;
Comments : String := "**;
Work_Order : String = “<DEFAULT>*;
Volume : Natural := 0;
Response : String = "<PROFILE>") ;
Description
Creates one or more new working views by copying the specified view or views. .
Parameters
See Cmvc.Copy.
References

procedure Cmvc.Copy, in the Project Management (PM) book of the Rational
Environment Reference Manual

172 RATIONAL December 1992

Chapter 10: Package Cmvc

PROCEDURE DESTROY_VIEW

procedure Destroy_View

(What_View : String = "<SELECTION>";

Demote_Clients : Boolean := False;

Destroy_Configuration_Also : Boolean := False;

Comments : String = ",

Work_Order : String = "<DEFAULT>";

Response : String = "<PROFILE>");
Description

Destroys a host view and its corresponding remote library.

If you want to destroy the host view but not the associated remote directory, set the
view’s Rci.Host_Only switch to True.

Cmvc.Destroy_View demotes all units before performing the destroy operation. If
the RCI state information has already been destroyed, preventing normal demotion,
this routine forces the demotion of units in the indicated view before performing the
destroy operation. Use the Rci.Refresh_View command to rebuild the state informa-
tion and then reissue the Destroy_View command.

The configuration object for the view is left in its normal place so the view can be
reconstructed using the Build command.

Parameters

See Cmvc.Destroy_View.

References

“Removing RCI Views,” page 95
procedure Cmvc.Destroy_View, in the Project Management (PM) book of the
Rational Environment Reference Manual

RATIONAL December 1992 173

RCI User’s Manual

PROCEDURE IMPORT

procedure Import
(View_To_Import
Into_View
Only_Change_Imports
Import_Closure
Remake_Demoted_Units

: String
: String
: Boolean
: Boolean
: Boolean

"<REGION>"*;
*"<CURSOR>";
False;
False;
True;

Goal : Compilation.Unit_State
= Compilation.Coded;
Comments : String “r;
Work_Order : String = "<DEFAULT>";
Response : String = "<PROFILE>");
Description

Adds an imported view to a view’s import list.

This operation may apply to remote program-library state, depending on the specific

RCI customization.

Parameters

See Cmvc.Import.

References

“Imports,” page 92

procedure Cmvc.Import, in the Project Management (PM) book of the Rational Envi-

ronment Reference Manual

174 RATIONAL pecember 1992

Chapter 10: Package Cmvc

. PROCEDURE INITIAL

procedure Initial

(System_Object : String = ">>SYSTEM OBJECT NAME<<";
Working_View_Base_Name : String := "Revl";
System_Object_Type : System_Object_Enum
:= Cmvc.Spec_Load_Subsystem;
View_To_Import : String = "*;
Create_Load_View : Boolean := True;
Model : String = "R1000";
Comments : String = "*;
Work_Order : String = "<DEFAULT>";
Volume : Natural := O;
Response : String := "<PROFILE>");
Description

Builds a new combined RCI view in an existing subsystem or builds a new sub-
system and combined RCI view.

In addition to creating a new view, this routine initializes the view’s RCI state, as
described in “Rci State Information” on page 94 in Chapter 6.

If the following items are true, a remote library is also constructed:

s Remote extensions management is enabled, as described in Chapter 2, “RCI

‘ Setup Operations”
m The remote username and password are set in the user’s session switches or in
the Remote_Passwords file, as described in “Specifying Remote Login Informa-
tion” on page 20 in Chapter 2.
s The default switch-naming scheme provides values for Remote_Machine and
Remote_Directory.

In Interactive mode, if any of the above is not true or if the remote library cannot be
built for any other reason, it is not possible to bring units to the coded state in the
combined view until the remote library is built explicitly by the user (as described
in Chapter 6) and the other conditions are also corrected.

Parameters

See Cmvc.Initial.

References

“Creating a Subsystem and an RCI View,” page 36

Chapter 6, “Library Management”

procedure Cmvec.Initial, in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual

RAT'ONAL December 1992 175

RCI User’s Manual

PROCEDURE MAKE_PATH

176

procedure Make_Path

(From_Path : String := "<CURSOR>";
New_Path_Name : String := ">>PATH NAME<<";
View_To_Modify : String := "*;
View_To_Import ¢ String := "<INHERIT IMPORTS>";
Only_Change_Imports : Boolean := True;
Create_Load_View : Boolean := False;
Create_Combined_View : Boolean := False;
Model : String := "<INHERIT_MODEL>";
Join_Paths : Boolean := True;
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_State

= Compilation.Coded;
Comments : String := **;
Work_Order : String := "<DEFAULT>";
Volume : Natural := 0;
Response : String := "<PROFILE>");

Description

Builds a path that is a2 combined view from an existing R1000 or RCI view.

In addition to building a new path, this command initializes the RCI state for the new
view as described in “Rci State Information” on page 94 in Chapter 6.

When a new path is built from an existing view, a new remote directory must be
used to prevent two views in the same subsystem from overwriting the same remote
library. Make_Path checks that the Remote_Directory value specified by default
switches is not used by any of the views within the subsystem of the new path. If
this parameter is allowed to default to the null string, units in the new path can be
promoted to the installed state only as described in “Creating New RCI Views” on
page 38 in Chapter 2.

If the specified remote library does not exist, or exists on the specified remote
machine and is not referenced by any other view in the same subsystem, that library
is associated with the new view.

If the new path is being built from an R1000 view, a2 new model world and new
imports appropriate to the RCI must be specified.

Imports must be from other combined views with the same target key as the new
path.

By default, Make_Path attempts to promote units copied to the new path to the
coded state; to do this, Make_Path must be able to download and compile the units
on the remote machine.

Secondary referencers and secondary text files that are copied are not frozen in the
new view.

RAT'ONAL December 1992

Chapter 10: Package Cmvc

Parameters

See Cmvc.Make_Path.

References

“Creating New RCI Views,” page 38

Chapter 6, “Library Management”

procedure Cmvc.Make_Path, in the Project Management (PM) book of the Rational
Environment Reference Manual

RAT'ONAL December 1992 177

RCI User’s Manual

PROCEDURE MAKE_SPEC_VIEW

procedure Make_Spec_View

(From_Path : String := "<CURSOR>*;

Spec_View_Prefix : String := ">>PREFIX<<*;

Level : Natura := 0;

View_To_Modify : String := "**;

View_To_Import : String := "<INHERIT_ IMPORTS>";

Only_Change_Imports : Boolean := True;

Remake_Demoted_Units : Boolean := True;

Goal : Compilation.Unit_State

:= Compilation.Coded;

Comments : String := "*;

Work_Order : String := "<DEFAULT>";

Volume : Natura := 0O;

Response : String := "<PROFILE>");
Description

Makes a spec view for a path.

Parameters

See Cmvc.Make_Spec_View.

References

procedure Cmvc.Make_Spec_View, in the Project Management (PM) book of the
Rational Environment Reference Manual

178 RATIONAL December 1992

Chapter 10: Package Cmvc

‘ PROCEDURE MAKE_SUBPATH

procedure Make_Subpath
(From_Path

View_To_Modify
View_To_Import
Only_Change_Imports
Remake_Demoted_Units

: String
New_Subpath_Extension :

: Boolean :

String

: String
: String
: Boolean :

"<CURSOR>";
">>SUBPATH<<";
"<INHERIT_IMPORTS>";
True;

True;

Goal : Compilation.Unit_State
= Compilation.Coded;
Comments : String := **;
Work_Order : String := "<DEFAULT>";
Volume : Natural := 0;
Response : String := "<PROFILE>");
Description

Builds a subpath that is 2 combined view from an existing RCI view.

Parameters

See Cmvc.Make_Subpath.

References

“Creating New RCI Views,” page 38
Chapter 6, “Library Management”
procedure Make_Path in this chapter

procedure Cmvc.Make_Subpath, in the Project Management (PM) book of the Ratio-

nal Environment Reference Manual

RAT'ONAL December 1992

179

RCI User’s Manual

PROCEDURE RELEASE

procedure Release

(From_Working_View ¢ String := "<CURSOR>";
Release_Name : String := “<AUTO_GENERATE>";
Level : Natural := 0;
Views_To_Import : String := "<INHERIT_IMPORTS>";
Create_Configuration_Only : Boolean := False;
Compile_The_View : Boolean := True;
Goal : Compilation.Unit_State

:= Compilation.Coded;
Comments : String R
Work_Order : String = "<DEFAULT>"*;
Volume ¢ Natural := 0;
Response : String := "<PROFILE>");

Description

Creates a release of an RCI view.

‘When operating on an RCI view, in addition to the standard release functions, this
command includes the following actions:

m Releases the associated remote library
m Releases secondary referencers

Parameters

See Cmvc.Release.

References

“Creating Releases of Views,” page 96
procedure Cmvc.Release, in the Project Management (PM) book of the Rational
Environment Reference Manual

180 RATIONAL December 1992

Chapter 10: Package Cmvc

PROCEDURE REMOVE_IMPORT

procedure Remove_Import

">>VIEW NAME<<";
"<CURSOR>";
"<DEFAULT>";
"<PROFILE>");

(View : String

From _View : String

Comments : String

Work_Order : String

Response : String
Description

Removes an imported view from a view’s import list.

This command removes an import from the host view and from the view’s associated

remote library.

This operation may apply to remote program-library state, depending on the specific

RCI extention.

Parameters

See Cmvc.Remove_Import.

References

“Imports,” page 92

procedure Cmvc.Remove_Import, in the Project Management (PM) book of the

Rational Environment Reference Manual

RAT'ONAL December 1992

181

RCI User’s Manual

PROCEDURE REVERT

procedure Revert
(What_Object : String := “<SELECTION>";
To_Generation : Integer := -1;
Make_Latest_Generation : Boolean := False;
Allow_Demotion : Boolean := False;
Remake_Demoted_Units : Boolean := True;
Goal : Compilation.Unit_sState

:= Compilation.Coded;

Comments : String := "*;
Work_Order : String = "<DEFAULT>";
Response : String = "<PROFILE>");

Description

Replaces the contents of the specified objects with the contents of the specified
generation.

For the RCI, if the file that is being reverted is a secondary text file, then the primary
associated with the file is demoted.

Parameters

See Cmvc.Revert.

References

procedure Cmvc.Revert, in the Project Management (PM) book of the Rational Envi-
ronment Reference Manual

182 RATIONAL December 1992

Location of Components

This appendix lists the locations of important pieces of the RCIL.
RCI software of interest to the user is delivered in two top-level libraries:
a !Model
s ITargets
— [ITargets.Custom_Key
~ !Targets.Implementation

MODEL LIBRARY

The contents of the !Model library are discussed in Chapter 2, “RCI Setup Opera-
tions.” The model worlds in the !Model library contain links to the 'Targets library.
Model worlds for the chosen target generally are located in:

IModel. Custom_Key

ITARGETS LIBRARY

The !Targets library consists of the following sublibraries:

® Custom_Key: Contains predefined packages and utilities, including those re-
quired by the Ada LRM and those required to interface to the target operating
system.

s Implementation: Contains the subsystems that implement the RCI on the R1000.

Predefined Packages and Utilities (Targets.Custom_Key)

Predefined packages contain the Ada code that user programs may require to be
linked with their application code.

® I/O packages: The predefined I/O packages Direct_lo, Sequential_lo, Text_lo,
and Io_Exceptions can be found in directory:
|Targets.Custom_Key.Io

s Ada LRM packages: The predefined packages System, Calendar, Unchecked-
_Conversion, and Unchecked_Deallocation can be found in directory:

!Targets.Custom_Key.Lrm

RAT'ONAL December 1992 183

RCI User’s Manual

184

» Target-specific tools: These sophisticated RCI features provide advanced func-

tionality for application programs written to run on the chosen target. These .
target-specific components can be found in directory:

!Targets.Custom_Key.Target_Interface

RCI Components (ITargets.Implementation)

s RCI compiler (Start_Rci_Main):

!Targets.Implementation.Rci_User_Interface

Package Rci and package Rci_Cmvc:
!Targets.Implementation.Rci_User_Interface
Customization interface:
!Targets.Implementation.Rci_Customization_Interface

Customizations (includes customization templates and library and compiler
extensions):

!Targets.Implementation.Rci_Customization.Custom_Key

RATIONAL December 1992

Command Summary

PACKAGE RCI

procedure Accept_Remote_Chang

(Unit
Allow_Demotion
Compare_Objects

Remake_Demoted_Units

Goal

Response

(View
Remote_Machine
Remote_Directory
Response

procedure Build_Script

(Host_Units
Link_Main_Units
Transfer_ To_Target
Host_Script_File
Remote_Script_File
Build_List_File
Execute_Script
Effort_Only

Minimal_Recompilation

Make_Units
Response

(Host_Units
Link_Main_Units
Host_Script_File
Remote_Script_File
Build_List_File
Format
Volume
Label
Logical_Device
Effort_Only

Minimal_Recompilation

Make_Units
Response

F%AUT(:)PJ/\L. December 1992

e

procedure Build_Remote_Library

S

String
Boolean
Boolean

: Boolean
Compilation

String

String
String
String
String

String

: Boolean
: Boolean

String
String
String

: Boolean
: Boolean
: Boolean
: Boolean
: String

procedure Build_Script_Via_Tap

String

: Boolean

String
String
String
String

: String
: String

String

: Boolean

Boolean
Boolean
String

"<CURSOR>" ;
False;
False;
True;

.Unit_State

Compilation.Coded;
"<PROFILE>") ;

*<CURSOR>" ;
"<DEFAULT>";
"<DEFAULT>";
"<PROFILE>") ;

<IMAGE>";
True;

True;
"<DEFAULT>";

">> FULL REMOTE NAME <<";

"<DEFAULT>";
False;

= False;
= True;

False;
"<PROFILE>") ;

"<IMAGE>";
True;
"<DEFAULT>";

*>> FULL REMOTE NAME <<";

*<DEFAULT>";
"R1000";

e,
’

*rci_build";
‘rci";
False;
True;
False;
"<PROFILE>") ;

185

RCI User’s Manual

procedure Check_Consistency

(Unit : String := "<CURSOR>";
Compare_Objects : Boolean := False;
Response : String := "<PROFILE>");

procedure Collapse_Secondary_Referencers
(Directory : String := "<CURSOR>*;
Response : String := "<PROFILE>");

procedure Create_Secondary

(Primary_Unit : String := "<CURSOR>";
Command : String 1= "
Secondary_Text : String = "y
Remote_Name ¢ String := "<DEFAULT>";
Process_Primary : Boolean := False;
Response : String := "<PROFILE>");

procedure Destroy_Remote_Library
(View : String := "<CURSOR>";
Response : String := "<PROFILE>");

procedure Display_Default_Naming

(Potential_View : String = *";
Target_Key : String := *";
Regsponse : String := "<PROFILE>");

procedure Display_Unit_Options

(Units : String := "<CURSOR>";

Response : String := "<PROFILE>"); .
procedure Edit_Secondary

(Secondary_Referencer : String := "<CURSOR>";

In_Place : Boolean := False;

Visible : Boolean := True;

Response : String := "<PROFILE>");

procedure Execute_Remote_Command

(Remote_Command : String HE
Remote_Machine : String := "<DEFAULT>";
Remote_Username : String := "<DEFAULT>";
Remote_Password : String := “<DEFAULT>";
Remote_Directory : String := “<DEFAULT>";
The_Key : String := “"<DEFAULT>";
Response : String := “<PROFILE>");

procedure Execute_Script

(Host_Script_File : String := "<IMAGE>";
Remote_Script_File : String := ">> FULL REMOTE NAME <<";
Remote_Machine : String := "<DEFAULT>";
Remote_Username : String := "<DEFAULT>';
Remote_Password : String := "<DEFAULT>";
Remote_Directory : String = "y

Effort_Only : Boolean := False;
Display_Remote_Commands : Boolean := False;

The_Key : String := "<DEFAULT>";

Response : String := "<PROFILE>");

186 RAT‘ONAL December 1992

Appendix B: Command Summary

procedure Expand_Secondary_Referencers
(Directory : String := "<CURSOR>"*;
Response : String := "<PROFILE>");

procedure Link

(Main_Unit : String := *<CURSOR>";
Make_Uncoded_Units : Boolean := False;
Executable_Name : String 1= Y0
Response : String := “<PROFILE>");

procedure Rebuild_Remote_Libra

(View : String := "<CURSOR>";
Remake_Demoted_Units : Boolean := True;
Remote_Machine : String := "<DEFAULT>";
Remote_Directory : String := "<DEFAULT>";
Response : String := "<PROFILE>");

procedure Refresh_Remote_Imports
(View : String := "<CURSOR>";
Response : String := "<PROFILE>");

procedure Refresh_View

(View : String := "<CURSOR>";
Retain_History : Boolean := True;
Response : String := "<PROFILE>");

procedure Remove_Secondary
(Secondary_Referencer : String := "<CURSOR>";
Response : String := "<PROFILE>");

procedure Remove_Unit_Option

(Option_Switch : String 1= "<ALL>";
Units : String := "<CURSOR>";
Response : String := "<PROFILE>"');

procedure Set_Process_Primary

(Primary_Unit : String := "<CURSOR>";
Value : Boolean := False;
Response : String := "<PROFILE>");

procedure Set_Remote_Unit_Name

(Remote_Name : String := ">>REMOTE NAME<<";
Unit : String := "<CURSOR>";
Allow_Demotion : Boolean := True;

Response : String := "<PROFILE>");

procedure Set_Secondary_Command

(Command : String 1= "y
Secondary_Referencer : String := "<CURSOR>";
Response : String := "<PROFILE>");

procedure Set_Unit_Option

(Option_Switch : String := ">>0PTION<<*;
Switch_Value : String;

Units : String := "<CURSOR>";
Response : String := "<PROFILE>");

RAT'ONAL December 1992 187

RCI User’s Manual

188

procedure Set_Unit_Option

(Option_Switch String
Switch_Value Boolean;
Units String :
Response String :

procedure Show_Build_State

(Host_Units String :
Execution_Closure Boolean

Obsolete_Units_Only Boolean

Response
procedure Show_Remote_Information
(View

Response

procedure Show_Remote_Unit_Name

(Unit String

Response String
procedure Show_Secondary

(Primary_Unit String :

Response String :
procedure Show_Units

(Unit String

Remote_Name Boolean:

Consistency Boolean:

Response String :
procedure Transfer_Units

(Units String

Remote_Machine String

Effort_Only Boolean

Response String

procedure Upload_Associated_Files

(Units String
Effort_Only Boolean
Response String

procedure Upload_Unit

(Remote_Unit_Name String
Into_View String
Upload_To_Text_File Boolean
Host_Text_File_Name String
Response String

procedure Upload_Units

(Upload_Specification_File : String
Into_View String
Response String

RATIONAL December 1992

String :

String :
String :

*>>0PTION<<";

"<CURSOR>";
"<PROFILE>") ;

"<CURSOR>" ;
False;

False;
"<PROFILE>");

"<CURSOR>";
"<PROFILE>");

"<CURSOR>";
"<PROFILE>");

"<CURSOR>" ;
"<PROFILE>");

"<CURSOR>";
True;

False;
*<PROFILE>") ;

:= "<CURSOR>";

:= False;
:= "<PROFILE>");

:= "<CURSOR>";

= False;

:= "<PROFILE>");

:= ">>REMOTE UNIT NAME<<";
:= "<CURSOR>";
:= False;

LI S
’

:= "<PROFILE>");

= H

:= "<CURSOR>";
:= "<PROFILE>");

Appendix B: Command Summary

PACKAGE RCI_CMVC

procedure Build
(Configuration
NAME<<" ;
Remote_Machine
Remote_Directory
View_To_Import
Model
Goal

Installed; Limit
Comments
Work_Order

Volume

Response

renames Cmvc.Build;

procedure Copy
(From_View
New_Working_ View
Remote_Machine
Remote_Directory
View_To_Modify
View_To_Import
Only_Change_Imports
Join_Views
Reservation_Token_Name
Ceonstruct_Subpath_Name
Create_Spec_View
Create_Load_View
Create_Combined_View
Level_For_Spec_View
Model
Remake_Demoted_Units
Goal

Comments
Work_Order
Volume
Response

procedure Initial
(Subsystem
Working_View_Base_Name
Remote_Machine
Remote_Directory
Subsystem_Type

system;
View_To_Import
Model

Comments
Work_Order
Volume
Response

RATIONAL December 1992

: String
: Compilation

: Natural

: Boolean

: Natural

: Natural
: String

String

String i=
String =
String :=

String =
String 1=
String

1

String

String
String
String 1=
String
String i=
String

Boolean
String
Boolean
Boolean :
Boolean :
Boolean :=

: Natural :=

String
Boolean :=
Compilation

String 1=
String 1=

It

String

String
String
String 1=
String i=

String t=
String

String t=
String

"

*>>CONFIGURATION

nw o,
7

“n,

"<INHERIT_IMPORTS>";

= “<INHERIT_MODEL>";

.Unit_State
CompilationInstalled;
"<WORLDS>";
"<DEFAULT>";

0;
"<PROFILE>")

"<CURSOR>";
>>SUB/PATH NAME<<;

T
’

wa,
’

"<INHERIT_ IMPORTS>";
True;

True;
‘<AUTO_GENERATE>";
False;

False;

False;

False;

0;
“<INHERIT_MODEL>";
True;

.Unit_State
Compilation.Coded;
"<DEFAULT>";

0;
"<PROFILE>");

"<IMAGE>";
"Revl";

wu .,
7

: Cmvc.System_Object_Enum

Cmvc.Spec_Load_Sub-

*>>RCI MODEL<<";
“<DEFAULT>";

0;

"<PROFILE>");

189

RCI User’s Manual

190

procedure Make_Path

(From_Path
New_Path_Name
Remote_Machine
Remote_Directory
View_To_Modify
View_To_Import
Only_Change_Imports
Model
Join_Paths
Remake_Demoted_Units
Goal

Comments
Work_Order
Volume
Respornse

procedure Make_Spec_View

(From_Path
Spec_View_Prefix
Level
Remote_Machine
Remote_Directory
View_To_Modify
View_To_Import
Only_Change_Imports
Remake_Demoted_Units
Goal

Comments
Work_Order
Volume
Response

procedure Make_Subpath

(From_Path
New_Subpath_Extension
Remote_Machine
Remote_Directory
View_To_Modify
View_To_Import
Only_Change_Imports
Remake_Demoted_Units
Goal

Comments
Work_Order
Volume
Response

RATIONAL pecember 1992

String t=
String :=
String r=
String iz
String t=
String 1=
Boolean :=
String 1=
Boolean :=
Boolean :=

: Compilation

"<CURSOR>";
">>PATH NAME<<*;

nu,
’
ne o,
’

e,
’

"<INHERIT_IMPORTS>*;
True;

"<INHERIT MODEL>";
True;

True;

.Unit_State

= Compilation.Installed;

String 1=
String i=

: Natural :=

String iz

String t=
String t=

: Natural :=

String i=
String 1=
String 1=
String t=
Boolean :=
Boolean :=
Compilation

String t=
String t=

: Natural :=

String :=

String t=
String t=
String 1=
String t=
String 1=
String 1=
Boolean :=
Boolean :=
Compilation

nw o,
7

"<DEFAULT>";
0;
"<PROFILE>");

"<CURSOR>";
">>PREFIX<<";
0;

’

un,
7

"<INHERIT_ IMPORTS>";
True;
True;

.Unit_State

Compilation.Coded;
"<DEFAULT>";

0;

"<PROFILE>"};

"<CURSOR>"*;
*>>SUBPATH<<" ;

wu o,
’

i

"<INHERIT_ IMPORTS>";
True;

True;

.Unit_State

= Compilation.Installed;

String 1=
String 1=

: Natural :=

String t=

*<DEFAULT>";
0;
"<PROFILE>") ;

procedure Release
(From_Working_View
Release_Name
Remote_Machine
Remote_Directory
Level
Views_To_Import

Create_Configuration_Only :

Compile_The_View
Goal

Comments
Work_Order
Volume
Response

E%ﬂTC)PJ/\L. December 1992

String
String
String
String

: Natural

String
Boolean
Boolean

: Compilation

String
String

: Natural

String

Appendix B: Command Summary

"<CURSOR>" ;
"<AUTO_GENERATE>";

o,
’

wn o,
7

0;
"<INHERIT_IMPORTS>";
False;

True;

.Unit_State

Compilation.Installed;
"<DEFAULT>";

0;

"<PROFILE>") ;

191

Extension Tables

This appendix provides blank tables and lists that can be filled in by the customizer
of the RCI for the convenience of the RCI end user. These tables and lists describe
customization values for this extension.

Target-key name (Custom_Key):
Target (execution) architecture:
Remote (compilation) architecture:
Remote operating system:
Third-party Ada compiler:

This appendix describes the following items, with references to the sections in this
manual:

Remote program libraries and remote import structures, page 92
Default target compiler and linker commands
Remote filename length, page 56

Host switches and target-compiler options, page 50
Package Standard types, page 7

Predefined libraries, page 7

Representation-clause restrictions, page 54
Attributes, page 7

Pragmas, page 54

Associated files and names, page 57

Remote library management, Chapter 6
Batch-compilation support, Chapter 4
Network-communications mechanism, page 5
Troubleshooting

REMOTE PROGRAM LIBRARIES AND IMPORT LISTS

The default name of the remote program library is:

The default name of the remote import list, if used, is:

REMOTE COMMAND NAMES

The default target-compiler command is:

The default remote-linker command is:

RAT'O NAL December 1992 193

RCI User’s Manual

REMOTE FILENAME LENGTH

The remote operating system may place a limit on the maximum length for filenames
downloaded to it from the Rational Environment. That limit is: characters.
This information is useful as described in “Remote Files and Names” on page 56 in
Chapter 3.

HOST SWITCHES AND TARGET-COMPILER OPTIONS

194

Host library switches whose names begin with the extension-dependent string
Custom_Key specify options for the target compiler and linker. These switches are
discussed, and examples are given, in “Setting Session and Library Switches” on
page 45.

For more detailed information about these target options, refer to the target-compiler
user’s manual,

Your customizer should provide the actual switch names and the compiler options
that they affect. The following tables provide space to list the RCI-supported com-
piler and linker options, as well as the switches that set them:

= Table C-1 lists the RCI-supported options that apply to the target compiler.

s Table C-1 lists the RCI-supported options that apply to both the target compiler
and the remote linker.

m Table C-1 lists the RCI-supported options that apply to the remote linker. .
s Table C-4 lists the host Custom_Key switches and their values.

Table C-1 Supported Compiler Options
Compiler Option RCI Switch

Table C-2 Supported Compiler/Linker Options

Compiler Option RCI Switch

RATIONAL December 1992

Appendix C: Extension Tables

Table C-2 Supported Compiler/Linker Options (continued)

Compiler Option RCI Switch
Table C-3 Supported Linker Options
Linker Option RCI Switch

Table C4 Host RCI Library Switcbes

Name Type Default Mapping to Target-Compiler Options
Custom_Key_Option_Name Boolean | False/ Description of the option
/String True/
String
value
Custom_Key_Default_Machine String Null For information on the use of this switch, refer to
string the “Remote Machine Name,” subsection in
Chapter 2 of the RCI User’s Manual.
Custom_Key Default_Roof String Null For information on the use of this switch, refer to
string the “Remote Directory,” subsection in Chapter 2

of the RCI User’s Manual.

RATIONAL December 1992

195

RCI User’s Manual

Table C4 Host RCI Library Switcbes (continued)

Name Type Default Mapping to Target-Compiler Options

PACKAGE STANDARD TYPES

The customizable RCI allows the customizer to define implementation-dependent
types in package Standard. Refer to the target-compiler Appendix F for the Reference
Manual for the Ada Programming Language (Ada LRM) for more information. The
predefined types for the extension are the following:

DURATION

PREDEFINED LIBRARIES

This RCI extension provides the following predefined libraries from the target-com-
piler Appendix F:

196 RATIONAL December 1992

Appendix C: Extension Tables

m In !Targets.Custom Key.Io:
— Direct_Io
- lo_Exceptions

Sequential_Io
- Text_lo

s In !Targets.Custom_Key_Lrm:
— System

m In !Targets.Custom_Key.Reusable_Components:

m In !Targets.Custom_Key.Target_Interface:

REPRESENTATION CLAUSES

The customizable RCF allows semantic checking to be performed on representation
clauses, as described in “Using Representation Clauses” on page 54 of Chapter 3. The
following limitations have been placed on representation clauses during semantic
checking:

m Address clauses:

m Record clauses:

a Size clauses:

QATIONAL December 1992 197

RCI User’s Manual

m Small clauses:

= Storage_Size clauses:

s Other:

ATTRIBUTES
The customizable RCI allows semantic checking to be performed on implementa-
tion-defined attributes. Table C-5 lists the implementation-defined attributes defined
for this extension.
Table C-5 Target Atiributes Recognized by RCI .
Attribute Definition Function

198 RAT'ONAL December 1992

Appendix C: Extension Tables

Table C-5 Target Attributes Recognized by RCI (continued)

Attribute

Definition Function

PRAGMAS

This extension may provide support for implementation-specific and predefined
pragmas and pragma Interface support for other languages.

Implementation-Dependent Pragmas

The target compiler may support implementation-specific pragmas not found in the
R1000 compiler. The customizable RCI allows the customizer to define pragmas that
are recognized by the host semanticizer as described in “Using Implementation-
Dependent Pragmas” in Chapter 3. Table C-6 lists these pragmas.

Refer to the target-compiler Appendix F of the Ada LRM for more detailed informa-
tion about these pragmas.

Table C-6 Target-Compiler Pragmas Recognized by the RCI

Pragma

Parameters Function

RAT'ONAL December 1992 199

RCI User’s Manual

Table C-6 Target-Compiler Pragmas Recognized by tbe RCI (continued)
Pragma Parameters Function

Predefined Pragmas

This extension may support the following predefined pragmas as described in the
target-compiler Ada LRM.

Controlled
Elaborate
Inline
Interface

List
Memory_Size

Optimize
Pack

Page

Priority
Shared
Storage_Unit
Suppress
System_Name

Pragma Interface

Pragma Interface supports the following languages:
s C

= FORTRAN

Assembly

Pascal

200 RATIONAL December 1992

Appendix C: Extension Tables

. ASSOCIATED FILES

Files that are created on the remote compilation platform during compilation and
link processes can then be uploaded to the development host into specially named
files that are subordinate to host files.

Associated files are described in “Host Associated Files” in Chapter 3. Associated file-
names and the switches that affect them are specified by the RCI extension; Table
C-7 provides space for that information for this extension.

Table C-7 Suffixes Identifying Associated Files on tbe Rational Environment

Suffix Description of File and RCI Switch Setting

MANAGING REMOTE LIBRARIES

Depending on your customization, the RCI provides support for automated remote
library management. Your customizer should provide information about remote
library management for your extension.

This extension may support the following remote library-management operations:

Creating host views and their associated remote libraries
Destroying host views and remote libraries

Controlling host and remote imports

Releasing host views and remote libraries

RATIONAL December 1992 201

1

RCI User’s Manual

This section describes library-management operations that take place when the
view’s operation mode is Interactive. The values of the Session_Rci.Auto_Create-
—Remote_Directory and the Rci.Host_Only switches also affect these operations.

The following subsections describe how these operations are performed under your
extension. For more information about RCI remote library management, refer to
Chapter 6.

Creating Views and Remote Libraries

The extension may provide operations that automatically create Ada directories and
libraries on the remote machine when you create views on the host. The following
commands accomplish this, provided that the Session_Rci.Auto_Create_Remote_Di-
rectory switch has its default value (True):

m Cmvc.Initial or Rci_Cmvc Initial: Creates a new host subsystem containing an
R1000 or RCI view; also creates a new host view in an existing subsystem. In
either case, this command creates a remote directory and a remote Ada program
library associated with the new host view.

s Cmvc.Make_Path or Rci_Cmvc.Make_Path: Creates a new host view from an
existing RCI or R1000 view. This command also creates a new remote directory
and a remote Ada program library associated with the new host view.

s Cmvc.Make_Subpath or Rci_Cmvc.Make_Subpath: Creates a new host view from
an existing RCI view. This command also creates a remote directory and a
remote Ada program library associated with the new host view.

The commands in package Cmvc obtain the names of the remote machine and
remote directory through the default switch mechanism described in “Specifying
Remote Login Information” on page 20. If you want to override the default switch
mechanism, use the commands in package Rci_Cmvc, which allow you to specify
these names through the Remote_Machine and Remote_Directory parameters.

Creating Remote Libraries for Existing Views

The extension may provide operations that create or replace Ada directories and
libraries on the remote machine when views already exist on the host:

® Rci.Build_Remote_Library: Builds a2 new remote directory and remote Ada pro-
gram library for an existing RCI view. Units in the host view are demoted to the
installed state; they are downloaded to the remote directory only when you pro-
mote them to the coded state on the host.

m RciRebuild_Remote_Library: Destroys and rebuilds the remote directory and
remote Ada program library for an existing RCI view. By default, units are down-
loaded to the new remote directory and compiled.

If supported, the Rci.Rebuild_Remote_Library command is especially useful after a
view-creation command from package Cmvc or Rci_Cmvc takes no action on the
remote machine because the remote library already exists. When this happens, you
can use RciRebuild_Remote_Library to destroy all components of the existing
remote library and build a new remote library. The command also downloads the

Ada source units to the remote directory and compiles them if you set the Remake-
_Demoted_Units parameter to True. ‘

202 RATIONAL December 1992

Appendix C: Extension Tables

Alternatively, you can destroy a remote library and build a2 new one in two separate
operations by entering the Rci.Destroy_Remote_Library command followed by the
Rci.Build_Remote_Library command. Together, these commands execute the same
remote commands as the Rci.Rebuild_Remote_Library command. Note, however,
that the Rci.Build_Remote_Library command demotes units in the host view to the
installed state and therefore does not download them to the new remote directory.
‘You must promote the host-view units to the coded state as a separate operation in
order to download them to the new remote directory.

Creating Remote Libraries Manually

The extension provides automatic remote library and project management. Even
after the customization is performed, however, there are a number of reasons why
you may want to create a remote library manually:

Specialized mapping structure

m Existing directory structures

u Build failure due to incorrect parameters

m No network access to the remote machine

This subject is covered in “Explicit Creation” in Chapter 6.

The instructions for your remote operating system are:

Destroying Views and Remote Libraries

The extension may provide operations that destroy views and remote libraries:

a Cmvc.Destroy_View: Destroys the remote library (unless the Host_Only library
switch for the associated host view has been changed to True) and then destroys
the associated RCI host view.

m Rci.Destroy_Remote_Library: Destroys the remote library associated with an RCI
host view.

These commands delete the remote library in the remote directory that is specified
in the Ftp.Remote_Directory library switch for the specified host view. They delete
all the Ada information in the remote directory, including the Ada program library,
the downloaded source units, and all compilation information. After deleting all the
files in the remote directory, these commands then destroy the directory.

Controlling Host and Remote Imports

Imports are handled through different methods depending on your extension. The
following commands control host and remote imports:

m Cmvc.Initial or Rci_Cmvc.Initial
s Cmvc.Make_Path or Rci_Cmvc.Make_Path
s Cmvc.Make_Subpath or Rci_Cmvc.Make_Subpath

RATIONAL December 1992 203

RCI User’s Manual

8 Cmvc.Release or Rci_Cmvc.Release
& Rci.Build_Remote_Library
= Rci.Rebuild_Remote_Library

The Cmvc and Rci import commands may control imports in host views and remote
libraries:
m Cmvc.Import: Adds an imported view.

® RciRefresh_Remote_Imports: Refreshes the remote imports to match the host
imports.

s Cmvc.Remove_Import: Removes an imported view.

Your extension provides the following method for imports:

Compiling and Linking Remote Libraries

When you use the Common.Promote or Compilation.Make command on the host to
promote one or more units to the coded state, the extension automatically deter-
mines which units have been edited since the last time they were coded, downloads
any new or changed units to the remote machine, and compiles them.

Linking is done automatically if the main program you are compiling contains a
pragma Main. Otherwise, you can use the Rci.Link command as a separate operation.

Releasing Views and Remote Libraries

The extension provides operations for creating releases of host views and remote
libraries. The following commands accomplish this, provided that the Session_Rci-
Auto_Create_Remote_Directory switch has its default value (True):

s Cmvc.Release or Rci_Cmvc.Release: Makes a released view from a host view and
creates a corresponding remote directory and Ada program library.

RCI BATCH-COMPILATION SUPPORT

204

The extension can be customized to support batch-compilation mode, as described
in Chapter 4. Under batch-compilation mode, promote and demote operations affect
only units on the host; when you are ready to compile units on the remote compi-
lation platform, you use the Rci.Build_Script command to:

u Generate a batch script containing commands that invoke the target compiler for
the relevant units

» Optionally download the units to be compiled
= Optionally download the batch script to the remote machine and execute it there

This extension provides the following support for batch mode:

RATIONAL December 1992

Appendix C: Extension Tables

‘ NETWORK-COMMUNICATIONS MECHANISM

The network-communications mechanism controls command and file transfer
between the host and the remote compilation platform. The network-communica-
tions method for the extension is either Telnet/FTP or DTIA.

® You can use the Compare_Objects parameter for the following commands:

- Rci.Check_Consistency: Checks whether a unit has been edited remotely since
it was last coded on the host (and therefore downloaded).

— Rci.Accept_Remote_Changes: Uploads changes made remotely into the host
unit.

For extensions that use DTIA, when the Compare_Objects parameter is False, the

commands compare the timestamp values for the host and remote files. When the

Compare_Objects parameter is True, these commands compare files by uploading

and comparing text. For extensions that use FTP, the RCI uploads and compares

the file text; the value of Compare_Objects is always considered True.

= You can use the Consistency parameter of the Rci.Show_Units command, which
displays the current information about the state and configuration of a specified
unit. When the Consistency parameter is True in a DTIA extension, the time-
stamps of the files are compared for consistency. If it is True in an FTP exten-
sion, the RCI uploads and compares the text files.

TROUBLESHOOTING

. This section contains troubleshooting techniques for your extension.

RAT'ONAL December 1992 205

Quick Reference

for Parameter-Value Conventions

Parameters of RCI and CMVC commands accept values that conform both to Ada and
to Environment-defined conventions. This Quick Reference summarizes the Environ-
ment-defined conventions for parameter values.

WHERE TO LOOK

» Conventions for referencing objects:

Pathnames 208
Designation 208
Parameter Placeholders 208
Library Resolve Command. 208
Special Names 209
Context Characters 210
Debugger Context Characters 211
Wildcard Characters. 211
Substitution Characters 212
SetNotation 212
IndirectFiles 213
Restricted Naming Expressions 213
Auributes.o L. 214
Conventions for specifying other command inputs:

Pattern-Matching Characters 214
Options Parameter 221
Response Parameter 223

Explanations and examples of all Environment-defined parameter-value con-

ventions:

Parameter-Value Conventions tabbed section in the Reference Summary (RS)

book of the Rational Environment Reference Manual

Introductory material describing Ada parameter syntax:
Rational Environment User’s Guide

RATIONAL December 1992

207

RCI User’s Manual

PATHNAMES

m Must be enclosed in quotation marks.
m Consist of name components separated by periods.

— Fully qualified pathnames start with !
"1Users.Anderson.Calculation"

- Relative pathnames start with a character other than ! and are resolved relative
to the current library:
*!Users.Anderson.Calculation"

— Simple names contain only one component:
Calculation”

— Pathnames of deleted objects are enclosed in braces:
*{01ld_Memo} "

m Can be abbreviated with wildcards or context characters.

LIBRARY.RESOLVE COMMAND

s Is useful for testing naming expressions before you use them in commands.

m Evaluates special names, context characters, wildcard characters, substitution
characters, set notation, indirect file notation, and attributes.

m Displays the fully qualified pathname(s) to which an expression expands, rela-
tive to the context in which the command is entered:
Library.Resolve (Name_Of => "[@,~lee,~miyata,~chavez]");

s Displays the fully qualified pathname(s) to which a pair of source and destina-
tion expressions expand (as when used in move/copy operations):

Library.Resolve (Name_Of => "File@",
Target_Name => "0ld_File@");

DESIGNATION

There are three ways to designate an object (specify it for command operation):

= Position the cursor on its name or in its image.
= Select (highlight) its name or image using commands from packages !Com-
mands.Common.Object or !{Commands.Editor.Region.
— Useful key combinations: [Object] - [«]
[Region] - [[] and [Region] - []]
m Select its name or image and position the cursor in the highlighted area.

PARAMETER PLACEHOLDERS

208

m Appear as default parameter values in many commands.
s Have the form *>>clue<<* (for example, ">>LIBRARY NAME<<").
s Must be replaced with a pathname appropriate to the clue.

RATIONAL December 1992

Appendix D: Quick Reference

SPECIAL NAMES

Can be upper- or lowercase.

Special Names for Specific Objects

Can be abbreviated to shortest unambiguous string within the angle brackets.

Shortest
Form Full Form Description
*<h>" *<HOME>" Resolves to the user’s home world.
"<su>" "<SUBSYSTEM>" | Resolves to the enclosing subsystem.
"<vis"® "<VIEW>" Resolves to the enclosing view.

Special Names for Designated Objects

Shortest

Form Full Form Description

"<e> *<CURSOR>" Resolves to the object on which the cursor
is located; any highlighted area is ignored.

tr>" "<REGION>" Resolves to the highlighted object; cursor
can be anywhere. Often specifies a high-
lighted source object in a copy command,
where cursor specifies the destination.

"<s>" “<SELECTION>" | Resolves to the highlighted object; the
highlight must contain the cursor or an
error results.

r<is> *<IMAGE>" Resolves to the highlighted object contain-
ing the cursor (if any); otherwise, resolves
to the object whose image contains the
Cursor.

"<t "<TEXT>" Resolves to the object whose name is a

highlighted string containing the cursor.
Equivalent to copying the highlighted
string directly into the parameter prompt.

RATIONAL December 1992

Are predefined strings that provide a shorthand for referencing various objects.
Must be enclosed in quotation marks.

209

RCI User’s Manual

Special Names for Default Objects

Shortest
Form Full Form Description
t<a>" "<ACTIVITY>" Resolves to the highlighted activity con-
taining the cursor (if any); otherwise,
resolves to the default activity for the
current session.

"<sw>" *<SWITCH>" Resolves to the highlighted library switch
file; otherwise, resolves to the library
switch file associated with the highlighted
library; otherwise, resolves to the library
switch file associated with the current
image. The highlighted area (if any) must
contain the cursor.

CONTEXT CHARACTERS

210

m Are shorthand for object names based on object location or relationship to other

known objects.

Context Characters
Character Description
! Resolves to the Environment’s root world.
! ' name Resolves to the Environment’s root world on an R1000 called name
(only for commands in packages Archive and Queue).
[1 Resolves to the current context (either a library or an Ada unit).
$ Resolves to the current library, when used alone or at the beginning
of a name. (The current library either is or encloses the current
context.
~ Resolves to the closest enclosing object (either a library or an Ada
unit), when used alone or at the beginning of a name.
$ [name] Resolves to the closest enclosing library whose simple name is
name.
$$ [name] Resolves to the closest enclosing world whose simple name is name.
~ [name] Resolves to the closest enclosing object whose simple name is name.
\foo Evaluates the name jfoo relative to the searchlist for the curmrent
session.
library foo | Evaluates the simple name foo relative to the links associated with
library.
unit‘foo Evaluates the simple name foo relative to the objects that are directly
visible in unit.

RATIONAL

December 1992

Appendix D: Quick Reference

‘ DEBUGGER CONTEXT CHARACTERS

m Are used in debugger commands to reference stack frames, tasks, and Ada units
in the program being debugged.

m Can be used in addition to general context characters (see above).

Debugger Context Cbaracters

Character Description

.name Resolves nameto an Ada unit that is referenced in the program
being debugged. Subsequent name components resolve to objects
declared in that Ada unit:

Source (*".Initialize.Status")

_n Refers to the stack frame with the specified frame number (1 is the
top frame). Subsequent name components resolve to objects in the
subprogram whose activation is contained in the frame:

Put ("_3.Status")

%name, %n Refers to the task with the specified task name or number. Subse-
quent name components resolve to objects declared in the task:
Put (*%Debug_sShell._3.Status")

WILDCARD CHARACTERS

‘ m Maich portions of pathnames.
s Allow you to abbreviate single pathnames or specify multiple pathnames as a
single string.

n Differ from restricted naming expressions and pattern-matching characters for
search strings (see page 213).

Wildcard Characters
Character Description

Matches a single character: T#### matches Tools.

c Matches zero or more characters: !U@.@.Tools matches
Users.Anderson.Tools.

? Matches zero or more nonworld name components:
!Users.Anderson? matches !Users.Anderson and all objects in it
except worlds.

2?? Matches zero or more name components, including worlds and their
contents: !Users?? matches !Users, all user home worlds, and their
contents.

RATIONAL December 1992 211

RCI User’s Manual

SUBSTITUTION CHARACTERS ‘

= Are shorthand for specifying destination names in move and copy operations.
s Derive one or more destination names from portions of source names.

Substitution Cbaracters
Character Description
@ Expands to the string or strings matched by a wildcard (#, @, ?, ??) in

the source name; allows you to copy, move, or rename multiple objects
in a single operation. The following command renames Filel through
File50 to be Old_Filel through Old_File50:

Lib.Rename (From => "File@", -- wildcard e
To => "Old_File@"); -- substitution @
Expands to 2 name component from the source name; saves typing

when the source and destination names have components in common.
The following command copies !Users.Anderson.Memo to !Users.And-
erson.Documentation. Memo:
Lib.Copy (From => "!Users.Anderson.Memo",

To => "!#.4.Documentation.#*);

SET NOTATION

= Allows you to specify multiple names in a single string.

Set Notation

Notation Description

[...] Delimits a set of fully qualified or relative names:
"[tusers.lee, !lusers.miyata, users.chavez] "

or name segments:
“!tusers{lee,miyata,chavez]tools"

[...name;name...] | Separates names in set; requires every name in the set to
resolve (an unresolved name is an error):
*[lee;miyata;chavez]"

[...name,name. ..] | Separates names in set; allows unresolved names to be ignored
without causing errors:
"[lee,miyata, chavez]"

[...~name...] Excludes a name from a set:
lusers([@,~lee,~miyata, ~chavez]

212 RAT'ONAL December 1992

Appendix D: Quick Reference

. INDIRECT FILES

m Provide a convenient way to use the same set of pathnames in multiple com-
mands or in commands that are entered multiple times.

m Are specified as a parameter value by prefixing the filename with an underscore:
Archive.Save (Objects => "_users_in_my_group");

= Contain a list of fully qualified or relative pathnames; can contain wildcards,
attributes, set notation, and other indirect files.

— Names are entered on separate lines or are separated by commas or semi-
colons (see separators for set notation).

— Names on separate lines are the same as names separated by commas:

lusers. lee
‘users.miyata
tusers.chavez

— Command converts contents of indirect file into set notation.

RESTRICTED NAMING EXPRESSIONS

m Are used in parameters that accept only a restricted subset of naming possibili-
ties (the For_Prefix of Archive.Copy, the Source parameter of Links.Display).

— Such parameters match string names against a list rather than resolving them
against the library system.

. Restricted Naming Expressions
Character Description
Matches a single character other than a period: T#### matches Tools.
@ Matches zero or more characters not containing a period:
1U@ .@.Tools matches [Users.Anderson.Tools.
? Matches zero or more name components of any kind:
!Users.Anderson? matches !Users.Anderson and everything in it.
[...1] Encloses a set of names:
[{Users.Anderson?, !Users.Miyata?] matches everything in
the home worlds for Anderson and Miyata.
~name Excludes a name from a set: [@,~Tools] matches everything except
Tools.

RATIONAL December 1992 213

RCI User’s Manual

PATTERN-MATCHING CHARACTERS .

m Are used in regular expression matching for search and comparison commands
(packages Editor.Search and File_Utilities).

Wildcard Cbaracters for Patiern Matcbing

Character Description

? Matches any single character.

o

Matches any single character that is legal in an Ada identifier.

$ Matches Ada delimiters: & ' (* + , - . / : ; < = > | When
used outside brackets ([]), $ matches beginning and end of line as
well.

\ Quotes the next wildcard character, causing it to have a literal (not a
wildcard) interpretation. \ must immediately precede the wildcard it
quotes.

{ Matches the beginning of a line, when used at the beginning of the pat-
temn; otherwise, { has a literal meaning.

} Matches the end of a line, when used at the end of the pattern; other-
wise, } has a literal meaning.

(] Defines a set of characters, of which any one can be matched. The set
can be a list (for example, [ABCDE]) or a range (for example,
(A-ZD).

~ Excludes the next character or set of characters; ~a matches any char-
acter other than a, and ~ [abc] or [~abc] matches any character
other than a, b, or c.

* Matches zero or more occurrences of the previous character or set of
characters.
ATTRIBUTES
m Specify properties of objects.

Are postfixed to name components in pathname: Calculation’Body
May or may not accept arguments (see tables, pages 216 to 221).
— Arguments are enclosed in parentheses: My_File’V (5)

~ Multiple arguments are separated by commas: My_File’V(4,6)
m Are often used with wildcards to specify sets of objects by their properties:

- Multiple attributes denote properties shared by all matched objects:
@’Body’S(Installed) matches installed unit bodies.

— Multiple arguments to a single attribute denote disjoint properties:
@’S(Installed,Coded) matches either installed or coded Ada units.

214 RATIONAL December 1992

Appendix D: Quick Reference

- Arguments preceded by ~ denote excluded properties:
@’C(~Binary) matches all objects except binary files.
@’C(File’C(~Binary)) matches all files except binary files.

Attributes

Attribute

Description

'Body

Resolves to the body of an Ada unit:
"Calculation’Body"

'C(arguments)

Specifies an object’s class or subclass:
*@’C(Library)"

*1f (arguments)

Specifies whether an object is controlled, checked in,
checked out, or frozen: "@’If(Frozen)®"

'L (argument)
or
'L

Specifies a library’s links for resolution of subsequent
name components. Omitting argument specifies entire
set of links: "Tools’L.Text_Io"

‘N(nickname)

Specifies an Ada subprogram’s nickname:
"Example.Overloaded’N(First)"

'S (arguments)

Specifies an Ada unit’s compilation state:
"@’s(Source) "

’'Spec

Resolves to the visible part (specification) of an Ada unit:
"Calculation’Spec*"

'Spec_View(activity)
or
‘Spec_View

Specifies the spec view listed for a given subsystem in
activity. Omitting activity uses the default activity:
*IProject.Interface.@.Units’Spec_View"

'T(target_key)

Specifies a library’s target key:
"@_Working’T (Mc68020_Bare)"

'V (arguments)

Specifies an object’s version: “*My_File’V(5)"

‘View(activity)
or
‘View

Specifies the load view listed for a given subsystem in
activity. Omitting activity uses the default activity:
"Command_Interpreter/View"

RAT'ONAL December 1992 215

RCI User’s Manual

216

Attributes with Predefined Arguments

Arguments for tbe Conditional Attribute 'If

Short
Form Full Form Description
Controlled Matches objects if they are controlled.
In Checked_In Matches objects if they are controlled and checked in.
Out Checked_Out | Matches objects if they are controlled and checked out.
Frozen Matches objects if they are frozen.

Arguments for the Link Attribute 'L

Argument Description
Any Resolves the next name component relative to external and internal
links (the default if no argument is specified).
External Resolves the next name component relative to external links only.
External links reference Ada units outside the closest enclosing world.
Internal Resolves the next name component relative to internal links only. Inter-

nal links reference Ada units within the closest enclosing world or any
of its subdirectories.

Arguments for the Compilation-State Attribute 'S

Shortest
Form Full Form Description
A Archived Matches units in the archived state.
S Source Matches units in the source state.
I Installed Matches units in the installed state.
C Coded Matches units in the coded state.

RAT'ONAL December 1992

Arguments for tbe Version Attribute 'V

Appendix D: Quick Reference

Argument Description
All Matches all versions of the object.

Any Matches only the defauit version of the object, which may but need not
be the newest version.

Max Matches the newest version of the object, which may but need not be
the default version.

Min Matches the oldest retained version of the object.

n Matches the version with version number #. Multiple version numbers

can be listed, separated with commas.

-n Matches the nth version preceding the newest version.

Arguments for tbe Class Attribute 'C: Object Classes

Argument Description
Ada Ada program units of any subclass
Archived_Code Objects appearing in a subsystem view for a code-only unit
File Files of any subclass
Group Groups defined for access control
Library Libraries of any subclass
Null_Device Devices that accept output and discard it
Pipe Pipes
Session User session objects
Tape Tape drives in the system
Terminal Terminals in the system
User Users in the system

RATIONAL

December 1992

217

RCI User’s Manual

Arguments for tbe Class Attribute 'C: Library Subclasses

218

Short Form Full Form Description

Comb_Ss Combined_Subsystem Combined subsystem (can contain
only combined views)

Comb_View Combined_View Combined view of a subsystem

Directory Directory

Load_View Load view of a subsystem

Spec_View Spec view of subsystem

Subsystem Spec_Load subsystem (can contain
spec, load, or combined views)

System System_Subsystem System (object managed using
package Cmvc_Hierarchy)

Sys_View System_View View in a system

World World

Arguments for tbe Class Attribute 'C: Ada Subclasses

Short Form Full Form Description
Alt_List Alternative_List Insertion point for alternative list
Comp_Unit Compilation_Unit Compilation unit that has not been
semanticized
Context Context_List Insertion point for context clause
Decdl_List Declaration_List Insertion point for declaration list
Func_Body Function_Body Function body
Func_Inst Function_Instantiation Generic function instantiation
Func_Ren Function_Rename Function rename
Func_Spec Function_Spec Function specification
Gen_Func Generic_Function Generic function
Gen_Pack Generic_Package Generic package
Gen_Param Generic_Parameter_List Insertion point for generic parameter
Gen_Proc Generic_Procedure Generic procedure
Insertion Nonterminal Insertion point
Load_Func Loaded_Function_Spec Code-only function
Load_Proc Loaded_Procedure_Spec Code-only procedure
Main_Body Main_Function_Body Main function body
Main_Body Main_Procedure_Body Main procedure body

PATIONAL December 1992

Appendix D: Quick Reference

Arguments for the Class Attribute 'C: Ada Subclasses (continued)

Short Form Full Form Description
Main_Func Main_Function_Spec Main function specification
Main_Proc Main_Procedure_Spec Main procedure specification
Pack_Body Package_Body Package body
Pack_Inst Package_Instantiation Generic package instantiation
Pack_Ren Package_Rename Package rename
Pack_Spec Package_Spec Package specification
Pragma Pragma_List Insertion point for pragma
Proc_Body Procedure_Body Procedure body
Proc_Inst Procedure_Instantiation Generic procedure instantiation
Proc_Ren Procedure_Rename Procedure rename
Proc_Spec Procedure_Spec Procedure specification
Statement Statement_List Insertion point for statement
Subp_Body Subprogram_Body Subprogram body
Subp_Inst Subprogram_Instantiation Generic subprogram instantiation
Subp_Ren Subprogram_Rename Subprogram rename
Subp_Spec Subprogram_Spec Subprogram specification
Task_Body Task body

Ai'guments for tbe Class Attribute ’C: File Subclasses

Short Form Full Form Description

Activity Activity file (used with subsystem
development)

Binary Binary file

Cmvc_Acc Cmvc_Access File containing CMVC access-control
information for a view or subsystem

Cmvc_Db Cmvc_Database CMVC database (stores source control
information in subsystems)

Code_Db Code_Database Code saved for a subsystem load view

Compat_Db Compatibility_Database Compatibility database for a subsystem

Config Configuration Configuration pointer for CMVC

Dictionry Dictionary For future development

Documents Document_Database Document database (part of Rational
Design Facility)

RATIONAL December 1992

219

RCI User’s Manual

220

Arguments for tbe Class Attribute 'C: File Subclasses (continued)

Short Form Full Form Description

Elements Element_Cache Element cache for storing permanent
collections of Ada program elements
(part of Rational Design Facility)

Exe_Code Executable_Code Executable module generated by the
linker of the Cross-Development
Facility

File_Map Pure_Element_File_Map File map

Log Log file

Mail Collections of messages (part of Ratio-
nal Network Mail)

Mail Db Mail_Database User’s mailbox (part of Rational Net-
work Mail)

Markup Text file containing markup, generated
from abstract document (part of Ratio-
nal Design Facility)

Msg In Incoming Mail Message For future development

Msg Out Outgoing_Mail_Message For future development

Obj_Code Object_Code Relocatable object module generated
by the compilation system of the Cross-
Development Facility

Objects Object_Set Permanent collection of Directory-
.Object

Ps Postscript PostScript file

Search Search_List Searchlist file

Switch Switch file

Swtch_Def Switch_Definition Switch definition file

Text Text file

Venture A collection of work orders for CMVC

Work Work_Order Work order for CMVC

Work_List Work_Order_List Work-order list for CMVC

RATIONAL pecember 1992

Appendix D: Quick Reference

OPTIONS PARAMETER

m Accepts one or more option specifications:
Options => "options specifications”

— Opition specifications are strings that assign values to options.

— A given option can accept values that are Booleans, predefined literals, or user-
specified strings (such as pathnames, time expressions, and so on).

Option Specifications

Syatax

.

Meaning

option = value

General format for an option specification; assigns
value to option using any of three delimiters:

option= true

or Options => "After=12/15/9"
option => value Values containing commas, semicolons, =, =>, or :=
or must be enclosed in parentheses:
option := value Options => "Label:=(May 26, 1991)"
Options => "Object_Acl=>(John=>RW)"
option Specifies Boolean option with value True:
or Options => "Replace"

Options => "Replace => True‘

~option
or
option= false

Specifies Boolean option with value False:
Options => "“~Replace*
Options => "Replace := False"

value
or
option = value

Specifies predefined literal value for option:
Options => "Fixed_Length"
Options => “Format = Fixed Length"

General format for multiple option specifications;

opt = val, opt = val,... uses commas or semicolons as separators (with
or equivalent meaning):
opt = val; opt = val;. Options =>
"After=12/15/91, Format=R1000")
Shorthand format for assigning the same value (va))
to two or more options:
optl [opt2 | ... = val Options =>

"Object_Acl|Default_Acl=Retain")

(~) option (~) option ...

Shorthand format for specifying multiple Boolean
options with either True or False values; uses
blanks as separators:

Options => "Replace Promote"

RATIONAL pecember 1992

221

RCI User’s Manual

RESPONSE PARAMETER

m Specifies the response characteristics for a command.

— Response characteristics include a command’s error response, log generation,
message output and format, activity, remote-passwords file, and remote-ses-
sions file,

= Accepts special values that specify one of the following prepackaged sets of
response characteristics:

— The system default profile (provided by Environment for general use)
- The session response profile (defined in current session-switch settings)

- The job response profile (same as session response profile, unless reset for the
job using package Profile commands)

® Accepts special values that filter message output.
® Accepts option specifications that tailor individual response characteristics.

Special Values for Specifying Profiles

Special Value Description

"<PROFILE>" | Causes the command to obtain its response characteristics from the job
response profile.

"<SESSION>" | Causes the command to obtain its response characteristics from the ses-
sion response profile, ignoring the job response profile.

"<DEFAULT>" | Causes the command to obtain its response characteristics from the sys-
tem default profile, ignoring the job and session response profiles.

Special Values for Filtering Messages

Special Value Description

"<ERRORS>" Logs only negative, error, and exception messages (++°*, ***,
%%%); perseveres at errors, without raising an exception;
otherwise, same as job response profile.

"<IGNORE>" Logs no messages; perseveres at errors, without raising an
exception; otherwise, same as job response profile.

"<NIL>" Logs no messages; quits at the first error, without raising an
exception; uses no activity, remote-passwords, or remote-
sessions file; ignores job and session response profiles.

"<PROGRESS>" Logs only positive, negative, error, and exception messages
(+++, +4%, *** %%%); perseveres at errors, without raising
an exception; otherwise, same as job response profile.

"<QUIET>" Same as "<IGNORE>".

"<RAISE_EXCEPTION>" | Raises an exception at the first error and quits immediately;
otherwise, same as job response profile.

(For package Archive commands, you should use the
string "Raise_Error, <PROFILE>" instead to permit
graceful termination after exception is raised.)

222 RAT'ONAL December 1992

Appendix D: Quick Reference

Special Values for Filtering Messages (continued)

Special Value Description

"<VERBOSE>" Logs all messages except debug messages (?7?); otherwise,
same as job response profile.

“<WARN>" Logs only negative, warning, error, and exception messages
(++4°, 11, ***, %%%); perseveres at errors, without raising an
exception; otherwise, same as job response profile.

Response Parameter Options

Caution: Unspecified options are set to nil; to be safe, use options along with special
names. Examples:

Response => ("Width=255, <PROFILE>")
Response => ("Use_Error, <PROFILE>")
Response => ("Symbols, <PROFILE>")

® Width = n

Sets the width of the message output to the specified number of characters.
M Reaction = literal

Specifies how the command responds to errors:

Quit Stops immediately at the first error; does not raise an
exception.

Propagate Stops immediately at the first error; raises an exception.

Persevere Continues processing when an error is encountered; does
not raise an exception.

Raise_Error Continues processing when an error is encountered; raises

an exception after all processing is complete.
8 Message-symbols
Boolean options that control whether the corresponding types of messages
appear in the log. There are twelve such options, one for each type of message:
HES ?2?7? - +++ >>> ++%
t1 *xx %%% #44 eee $$$
B Prefix = literals
Specifies up to three fields of information to be prefixed to each message:

TIME DATE SYMBOLS
HR_MN_SC MN_DY_YR
HR_MN DY_ MON_YR
YR_MN_DY
8 Log_File = literal

Specifies where log messages are to be directed:

Use_Output Directs messages to Current_Output (by default, same
as Standard_Output).
Use_Error Directs messages to Current_Error (by default, same

as Standard_Error).

Use_Standard_Output Directs messages to Standard_Output (an Environ-
ment output window).

Use_Standard_Error Directs messages to Standard_Error (the Environment
message window).

RATIONAL December 1992 223

RCI User’s Manual

m Activity = activity_name ‘
Specifies the name of the activity to use during execution.
B Remote_Passwords = filename

Specifies the remote-passwords file to use when accessing remote machines.
m Remote_Sessions = filename

Specifies the remote-sessions file to use when accessing remote machines.

224 RAT‘ONAL December 1992

Index

’If conditional attribute, arguments for. 216
<ACTIVITY>, special name for default objects . 210
<CURSOR>, special name for designated objects . 209
<DEFAULT?>, special value for specifying profiles . 222
<ERRORS>, special value for filtering messages 222
<HOME>, special name for objects . 209
<IGNORE>, special value for filtering messages 222
<IMAGE>, special name for designated objects. 209
<NIL>, special value for filtering messages . 222
<PROFILE>, special value for specifying profiles . 222
<PROGRESS>, special value for filtering messages 222
<QUIET>, special value for filtering messages . 222
<RAISE_EXCEPTION>, special value for filtering messages 222
<REGION>, special name for designated objects . 209
<SELECTION>, special name for designated objects . 209
<SESSION>, special value for specifying profiles . 222
<SUBSYSTEM>, special name for objects . 209
<SWITCH>, special name for default objects 210
<TEXT>, special name for designated objects . 209
<VERBOSE>, special value for filtering messages . 223
<VIEW>, special name for objects . 209
<WARN>, special value for filtering messages . 223
Abandon_Reservation procedure

Cmvc.Abandon_Reservation. . 168, 169
Accept_Changes procedure

Cmve.Accept_Changes . 75, 76, 168, 170
Accept_Remote_Changes procedure

Rci.Accept_Remote_Changes .95, 108, 110, 205

uwsing79

RATIONAL December 1992

225

RCI User’s Manual

226

access to units, see links
Ada LRM .

Ada units
checked out, venfymg
coding .
compiling . .
consistency between host and remote .
controlling. -
copying between views .
creating. .
development cycle step
main
creating .
linking
name after uploading .
outside subsystem .
predefined.
replacing from remote
state .
updating between]omed views
see also units

address clauses.
application, see executable module; program

archived state .

arguments
for ’If conditional attribute .
for Ada subclasses .
predefined.

arrays . .
packed .

Asm file . .
see also assembly language source

assembly . .
development cycle step

assembly language
file
listing .
source
see also non-Ada code
subprograms written by user .
Associate procedure
Switches. Associate .

associated files . .
batch mode .
creating.
deleting.
uploading . .

in batch mode

attributes .
with predeﬁned argumems

RAT'ONAL December 1992

.14

. .79
.9, 11

. 11,118
.. .76
11, 38, 52
.53

. .6
.80, 81
.14

75,76

216
216
216

. 8,52
.51, 58

. 51,58, 60
.51, 58

.11

. 28

. 9, 56, 58, 201

. . 51,64
. 57,60, 61
. 58
. 64
153

. 198, 214
216

Auto_Create_Remote_Directory switch
Session_Rci.Auto_Create_Remote_Directory .

Index

. 21, 23, 24, 46, 50, 95

setting . .25
with imports -9
Auto_Transfer switch
Rci.Auto_Transfer . . 46, 49, 64, 67
batch-compilation script, see script
batch compilation, see compilation
batch mode, see operation mode
binary file, see object module
bit packing . 8
Body attribute, described . 215
build-list file. . 69
Build procedure
Cmve.Build .167, 171
Rci_Cmvc.Build . . 157, 159

Build_Remote_Library procedure
Rci.Build_Remote_Library

Build_Script procedure

25, 88, 109, 112, 202, 204

Rci.Build_Script . 50, 64, 107, 113, 131, 204
using . . . DY <
Build_Script_Via_Tape procedure
Rei.Build_Script_Via_Tape . . 107, 116
using70
byte packing 8
Calendar package, directory . 183
characters
context . . 210
pattern-matching 214
substitution 212
wildcard . 211, 214
Check_Consistency procedure
Rci.Check_Consistency . 108, 118, 205
using78
Check_In procedure
Cmvc.Check_In . .38, 79
Check_Out procedure
Cmvc.Check_Out .75

RAT'ONAL December 1992

227

RCI User’s Manual

Checked_In, argument for ’If conditional attribute 216

Checked_Out, argument for ’If conditional attribute 216

dosure. L L e

compiling5
with batchscripts68

see also Ada units

CMVCo 14,29,32, 36
Cmvcpackage231735
commands. . . - 74
comparison to RCI commands . N Y
see also Initial procedure; Join procedure Make Cont.rolled procedure,

Make_Path procedure; Make_Spec_View procedure; Make_Subpath
procedure; Replace_Model procedure; Sever procedure

Cmvecpackage 35167

codable units
inbatchmode,66
codable units, inbatchmode .. .66

code

transfemng host to target see downloadmg
see also Ada units; assembly language, source; non-Ada code

code generation, target-specific2

code view, see view

coded state . . . 2 -)
failure to prornote pnmary P (0
incremental operations forunitsin 8
primary. .. .100,121
promotingto.5355°5661
actionsperfformed 59
festrictions8

development cycle step e
integratedcyclestep1
simultaneous09
see also compilation

coding time, unit .. 145

Collapse_Secondary_Referencers procedure
Reci.Collapse_Secondary_Referencers. 120

command
remote
displaying . . . e (074
displaying while executmg C e e oL 49,56
remote linker
default oL L0 0.0 0L L. 193
secondary
assigning L. ... L. ... 1
displaying 149
target compiler
defaule, 193

228 RATIONAL December 1992

command window
comments, addition and deletion
Common.Promote .

compilation
Ada units .
batch e
conditions for .

optimal .

comparison of native and target compiler .

dependencies, see dependencies
development cycle step .

in integrated cycle .

incremental

output .

remote . .

secondary .

simultaneous .

state, see state

see also coding

Compilation package
Demote procedure . .
Get_Target_Key function.
Make procedure.
Show_Target_Key procedure .

compilation platform.
compilation script, see script
Compilation. Make .

compiler
default target command .
output
selecting with target key . .
switches, see RCI switches; switches
target .
commands .
invoking .
options .
Compiler_Post_Options switch
Rci.Compiler_Post_Options .

Compiler_Pre_Options switch
Rci.Compiler_Pre_Options .

compiling

Common.Promote .
in batch mode

steps . .

in interactive mode
steps .
compiling a unit

Compilation.Make .

in interactive mode.

RATIONAL December 1992

. 55,58, 59

Index

2w

. 63
107
. 65
. 4,11
) 8; 10
. 9,55

.25, 55
105

.62
. 45

44
.1, 14, 15

204

193

229

RCI User’s Manual

components, RCI 11,12
location in Environment 183 ‘
consistency
between host and remote units 11,75, 110, 118
batchmode. 657
checking. Ce Y £
uploading new remoteunit8
betweenviewsonhost77
by comparingobjects 118
by download time 118
remote imports93

context characters. 20
debugger 2

Controlled, argument for 'If conditional attribute 216
conventions, parameter-value. 207

Copy procedure
ArchiveCopy.40
Cmve.Copyo e7
LibraryCopy7
Rei_ CmveCopy .157,160,172

Create_Secondary procedure
Rci.Create_Secondary95 104, 105, 108, 121

Create_World procedure
Library.Create World28

cross-system consistency management.111 13 14 25

Custom Key. 14,193
command window . . 9
subsystem

views,setup3
targetkey L L L L L L L L. Lo L. 26,28
word 0L 28

incremental operations . 8

Custom_Key Register, see Register procedure

Custom_Key_Assemble switch
Rci.Custom_Key Assemble 515860

Custom_Key _List switch
Rci.Custom Key List60

Custom_Key_Verbose switch
Rci.Custom_Key Verbose. .5

customization components. oL L 12

customization template L L. L. L 12
settingbatchmode. .. .67

debugger context characters . 211

230 RATIONAL pecember 1992

debugging .
development cycle step
remote . .

default objects, special names for .
default switch-naming scheme

Default_Machine switch
Rci. Custom_Key_Default_Machine .
Session_Rci.Custom_Key_Default_Machine
strategy . e e
value search order

Default_Roof switch
Rci. Custom_Key_Default_Roof .
Session_Rci. Custom Key Default_Roof .
strategy . . Coe
value search order

deleted objects, pathnames of

Demote procedure
Compilation.Demote .

demoting . .o
effect on assocxated ﬁles
generics .
inlined subprograms -
while making units consistent .

dependencies .
generic macro—expanmon
inlining . .
secondary .

design targets .
designated objects, special names for .
designation .

Destroy_Remote_Library procedure
Rci.Destroy_Remote_Library

Destroy_View procedure
Cmvc.Destroy_View
using

development, multimachine .

development cycle, integrated, see integrated development cycle
development cycle, native R1000

development path, creating native R1000.

Direct_lo package, directory .

directory, remote .

creating.
displaying value

example
name

directory, remote (continued)

RAT'ONAL December 1992

Index

. .5
3,11
.1

210

. 20, 22, 23, 36, 125

21, 47
.21, 47
.23
.21

. 22, 23, 24, 47
. 22,23, 24, 47
.23
.22

208

.7, 10, 62

7
. 8
105

. 26
209
208

.91, 109, 124, 203
. 167, 173, 203

.95
. 24, 71,151

31, 32

183
.60, 61

147

231

RCI User’s Manual

Session_Rci.Auto Create_Remote_Directory switch. . .5
setting . 22, 23
setting default roof . 24
strategy for switches . .24
switches 45 47
where used . 84
see also library, remote
directory, see library, remote program; UNIX, directory
Display procedure
Switches.Display . 48
Display_Default_Naming procedure
Rci.Display_Default_Naming 21, 23, 36, 125
Display_Unit_Options procedure
Rei.Display_Unit_Options . 109, 126
using 52
downloading . 3,4, 11, 15, 50, 59
saving time of download 118
DTIA12
network-communications mechanism . 205
server 5
E
Edit procedure
Links.Edit28
Switches.Edit . 28, 40, 48
Edit_Secondary procedure
Rci.Edit_Secondary . . 102, 108, 127
Edit_Session_Attributes procedure
Switches.Edit_Session_Attributes . . 48
editing. . . .11
development cycle step 3
see also links, editing; switches, hbrary, edmng
editor, using. . 102, 127
Environment facilities .12
errors
compilation . . 59
linker . 61
semantic . 60
Exe file .58, 61
executable module . .15, 58
creating. .9, 11, 55
filename . . .58
name . . 61
uploading . . . 61
see also Exe file; ob]ect module program
Execute_Remote_Command procedure
232 RATIONAL pecember 1992

Index

Rci.Execute_Remote_Command . . 109, 129
Execute_Script procedure
Rci.Execute_Script . .107, 131
using72
executing a program . . . 56
see also program, executing
Expand_Secondary_Referencers
Rci.Expand_Secondary_Referencers . 133
expressions, naming . 213
extension job . 18
extension target-key names . 26
extension, RCI . .15
batch mode . .19
external Ada units, see links
fields, layout. 8
file
associated . . .58
batch mode. .. .64
uploading . . 64, 153
build list . . 69
compilation output55
consistency between host and remote . 118
deleting. . 58
host
associated . 201
indirect
with batch script . . 69
joined, checking out . .75
listing
Ada source . . 58
pointy 58
Rci Conﬁgurauon . .17
remote
comparing to host 110
remote, naming . . . 56
secondary, deleting. 104
state information . %4
text
altering . 102
changes . 105
name . .80, 81
saving. . 102, 127
uploading . . 60, 154

see also Ada units; assembly language hsnng, assembly language source;

associated files; executable module; object module; switches, library, file

RATIONAL December 1992

233

RCI User’s Manual

filename
maximumlength 0 L. 194

files, indirect. 23
filtering, messages. 22
Frozen, argument for ’If conditional attribute 216
Ftp switches, see Password; Remote_Directory; Remote_Machine; Usemname

fully qualified pathnames, defined 208

generator, see code generation

generics L . L. L. 82
demoting86
instantiation

codesharing7
macro expansion.710

Get_Target_Key function
Compilation.Get_Target Key .45

host........................‘....,1,15

Host_Only switch
destroying remote libraries ..
ReiHost Only 4649

host-only view, see view, host-only

234

I/O, see Text_lo package

If conditional attribute, described 215
implementation-dependent pragmas 5458
import list, default name . 193

Import procedure
Cmvelmport. .93 168, 174, 204
using I
imports
changing . . 2
CMVC, copyingtoremote88

RATIONAL December 1992

imports (continued)

host
adding
removing

inconsistent .

remote .
adding
creating exphcnly
creating location .
maintaining consistency
removing
where found

spec view .

incremental batch script.

incremental operations .

Index

174

181

. 86
C.92
. 92, 174

. 89

. 88

.. .9
. 93,181
. 84

.41

. 64
. 3,810

see also coded state; compllanon mcremental mstalled state

indirect files .

Initial procedure
Cmvc.Initial .
Design.Initial . .
Rci_Cmve.Initial .
with imports .

Inline pragma .

RCI support .

inlined subprograms .
demoting .
dependencies.

inlining
installation, verifying RCI .

installed state
demoting to .

incremental operanons for units in .

installing

promoting to .
actions performed
simultaneous .

installing .
integrated development cycle.
comparison . .

example
porting to .

steps.
interactive mode .
Interface pragma .
Internet address

Io directory .

Io_Exceptions package .

RATIONAL December 1992

32, 35, 37, 87, 93, 167, 175, 202, 203

213

. 27
37 87 157 161 202 203
. .93

.54
.54

. .52
862
8

. 54
. 18

7,15
. 62
. 8
11
.55
. 58
9

.15

.1,2,3,11,15
.11

. 4

.. 1
3,11

. 1,15

200

. 20

183

183

235

RCI User’s Manual

job response profile, defined .. 222

Join procedure
CmvcJoin. 40,76

joinset L L L L L L L L oo 3
joined L .. L s
joined file, checkingout7
joinedpaths.3

key, see target key, Custom_Key
Kill Rci Mainprocedure .. .18
killing the RCI, Kill Rei Main.,18

language, non-Ada . . . Ce e e L
see also assembly language

lengthclauses85
length, filename L . 0 . L L L oL L. . 19

library
creating. . . 5
description of model - <
features.2
management8
batchmode.65
effect of enabling. -~
host . . . e
job not runm.ng e e e e oL, .88
remote L. . L L .00 00008
predefined. L Lo 196
program L .. L .12
remoteo L1632
building . . . O & V]
building exphculy T -
creating L. L ..o B2, 087
creatingrelease .165 180
creation faiture 0 0 L 0 0.88
definition8
destroying . 80919
displaying value . 147
duplicates . . . - 71
enabling management P £
management .32175

236 RAT'ONAL December 1992

library (continued)

rebuilding .
releasing.
setting

remote program. . .
creating explicitly.
effect of demotion .
where used.

structure
creating .
examples
selecting. . . .

switches, see library switches

system
units, predefined

Library package
Copy procedure . .
Create_World procedure .

library subclasses, arguments for.

library switches. .o
host and target options .

Link procedure
Rei.Link.
linker
actions performed .
default remote command
invoking
see also Link procedure
output . o
output file .
remote .
options .

Linker_Post_Options switch
Rci.Linker_Post_Options .

Linker_Pre_Options switch
Rcilinker_Pre_Options .
development cycle step .
defaults for model world.
editing .
portable
R1000-specific
specifying .

Links.Edit procedure .

List file.

load view, see view

Lmm directory

RAT'ONAL December 1992

Index

. 88
. 9%
.. .. 158
16, 32, 57, 112
-
. 62
. 84

. 31
. 33
. 28

.12
.14

. 76
.28

218

.23, 45
194

. 55, 58, 61, 108, 134, 204

. 61
193
. 61

. 56
... .. .58
.1, 11, 14, 16, 55
194

. 46

. 46
. .56
.31
6,27, 28
27, 28

. 32

.28, 32
.25

183

237

RCI User’s: Manual

machine,remote60
name e

switch
setting.

oL .24, 47
see also Remote_Machine switch

Machine.Transport Name Map2
Machine_Code package, directory 183

Main pragma, RCIsupport.53

Make procedure
Oompilation.Ma.ke.....................55,58,59

Make_Controlled procedure
Cmvc.Make Controlled37

Make_Path procedure
CmvcMake Path 38 87 93 167, 176, 202, 203
Rei CmveMake Path 38, 87,93, 157, 162, 202, 203
with imports . o T

Make_Spec_View procedure
Cmvc.Make Spec_View 415 167,178
Rei_Cmve.Make Spec_View. 40,157, 163

Make_Subpath procedure
Cmvc.Make Subpath 87 93 167, 179, 202, 203
Rei_Cmve.Make Subpath. 87,693 157, 164, 202, 203

messages, filtering. 0L ... 222

modelworld. 6122528
creating. L L L L L L. L L L L 25,28
predefined.28
switchfile. 27

Model.Custom_Keymodelworld.28

ModelR1000 model world.32

Model R1000_Portable modelworld , 32

module L.
see also Ada units; executable module; object module; program

movescript7

multimachine development24,71, 151

238

name
executablemodule.6

RATIONAL December 1992

Index

name (continued)
remote directory.8
remotefiles 0.0, .5
displaying148,150
setting . . e T4]
remote library list ﬁle 87
remote program hbrary . . - 74
smple R . 0
subsystem . 37
target machine, see Remote Mach.me sthch Lranspon name map
extfile. 8,81

units. L L L L L L L L 538081
name map for machines, see transport name map
naming expressions, restricted . 213
naming scheme, defaultswitch .36

native R1000
codedeveloped.11
developmentcycde. 1531 32

systemmcrementaloperatlons........,..........8

network communications
remote directory switchvalue22
remote login information.2
remote machine switchvalues.2
remote password switch value.21
remote userame switchvalve.21
Remote_Passwords package]
setingup B (]

network-communications mechanism

DTIA. o 12,15, 205
Telnet/FTPo 205

network connections

non-Adacode L L ...
nonterminalsincode.60

notation, set., 12

object classes, argumentsfor 217

object module I 1
from assembly-language code I & |
producing e § |

objects
defaalt 210
deleted. 208

designated. L. 200
specialnamesfor .. 209

RATIONAL December 1992 239

RCI User’s Manual

operating system
identifying, see transport name map

operation mode
batch e 1, 14, 49, 63
consistency between host and remote units ... T7
registering an extension . 19
uses for . e . 65
differences between batch and interactive . I
interactive . .. 1, 15, 49, 63
overriding the default . Y]
setting 49
setting in customization template . . 67
switching between batch and interactive . . 66
Operation_Mode switch
Rci.Operation_Mode . . 46, 49, 66, 67, 107
setting batch mode . Y Y4
Operator.Disable_Terminal
enabling Telnet ports . . 20
optimal batch compilation . . 65
Optimize_Download switch
Rci.Optimize_Download . . 46
option specifications . 221
defined . 221
options
remote linker. . 46
Response parameter . 223
target compiler . . 46
Options parameter 221
output
compiler .55, 56
linker . .56
standard .. 59, 61
displaying . . 56
switches . 8
target compiler . -9
P
Pack pragma 8
package Cmvc . 167
packageRci. 107
command summary 185
package Rci_Cmve 157
command summary 189
package Remote_Passwords . .22
240 RATIONAL pecember 1992

packages
Cmvce
Rai . . .
Rci_Cmvc .
Standard .
rebuilding .
System .

packed
arrays
records .

parameter placeholders .

parameter-value conventions
quick reference for.

password file
Remote_Passwords .

Password switch
Ftp.Password . .
Session_Ftp.Password .

password, remote .
incorrect
setting .
using

creating development .

initializing .

joined . .

joining or severing .

names .

subsystem .

target
creating .

working view.

pathnames . . .
fully qualified. .
of deleted objects .
relative .

pattem-matching characters

PDL.

pointy files .

portablecode
see also R1000_Portable model world; target-independence

porting to integrated development cycle .
differences between compilation systems .
implementation-dependent .

RATIONAL December 1992

Index

.. 167
. 13,107
. 13,157

.7, 183

207
22, 24

L0221
21, 24, 36
60, 61

21, 24
. 161, 175

.25
.39
|40

.37, 38

208
208
208
208

214

27, 32

.11

5
B
52, 54, 58, 199

241

RCI User’s Manual

pragmas (continued)
Inline 0L L Lo 54
Interface L . L L. L ... 200
Pack.8
predefined. e e e e s s 200
see also Comment; Images Os Task

predefined
hbmryunns .o e 1
model world, see model world
models.2
packages 18
pragmas s s s 20
outines. L L. L L L Lo s 32
types
package Standard 19

predefined arguments
attributeswith o 216

assocxaungwnhsecondary e (1)]

connectingtosecondary. 121
ceating. L . L L . L .o 99,100, 121
deleting. L L. 0.0 0L 104
downloading. 104
failure to promote . . . O (¢
promoting to the coded state 100
see also secondary

procedure, see Ada units

Process Primaryflag. .100, 105 121

profiles
jobresponse L. L 222
sessionresponseo oo 222

systemdefault L. Lo L L L L L L L. 222

program s u)
creating. L L55

executing . . . e e 11 56

on remote rnachme .. o |
including assembly-language subprograms T § |
see also executable module

program library
default name O [%)
see also library, remote program
project subcomponents32
promoting, see coded state; installed state

pompts L. ..o

242 RAT'ONAL December 1992

Index

R1000
model world . .
native development cycle
see also native R1000; target key
target key . .
view . .
incremental operauons

R1000_Portable model world .

RCI
components . ..
Environment facilities .
extension .
path/view .
restarting . . .
state information

Rci package .

RCI switches.
see also switches

RCI user interface .
Rci_Cmvc package
Rci_Configuration files .

Rebuild_Remote_Library procedure
Rci.Rebuild_Remote_Library.

recombinant testing .
record clauses .

records
layout .
packed . . .
representation spec;ﬁcauon

Refresh_Remote_Imports procedure
Rci.Refresh_Remote_Imports

Refresh_View procedure
Rci.Refresh_View

Register procedure

Allow_Standard_Rebuild parameter .

Batch_Mode parameter .
Custom_Key.Register .
setting batch mode .

registering remote library management

registering the RCI

RAT'ONAL December 1992

28, 32, 35
31, 32

26, 28, 32, 35, 36
.15
8

28, 32, 35

11, 12
.12
.15
.15
.19
. ¥4

. 13, 107
. 46, 47, 58

.13
13, 29, 32, 157
.17

. 88, 109, 135, 202, 204

. 31
. 54

8
. .8
. 8,52
.8

. 109, 136, 204
. 93

- 109, 137, 173

.19
.19, 67
.19, 67
.19, 67

.32
. 19

243

RCI User’s Manual

244

relative pathnames, defined

Release procedure

208

Cmvc.Release. 32, 96, 167, 180, 204
using L. 9%
Rci_Cmvc.Release . .96, 157, 165, 204
Release_Unused_Connections procedure . . 20
releasing Telnet connections . . 20
releasing, see view, release
remote
commands. . . 129
displaying while executmg 49 56
compilation . . . 1,225
components .11
system .o .15
compilation plat_form . .1
directory .22
default swnch .22
strategy for switches. .24
value search order . .22
file, uploading 154
import list . . .15
default name . 193
library16
creating . .21, 23
definition . . 84
see also hbrary remote
linker . . . 16
see also lmker remote
machine . 1, 16
downloadmg code . . 4
see also machine; Remote_| Machme sw:tch transport name map
strategy for switches. . . 24
value search order . . 21
network connections, cached . .20
password, see password, remote
program library . . .16
default name . 193
unit name
displaying value . . 148, 150
setting 141
remote linker, options . 194
Remote_Directory
parameter for Rci_Cmve commands . 158
Remote_Directory parameter
with Rci and Rci_Cmve commands . .22
with Rci_Cmvec commands . .22
Remote_Directory switch
displaying default . 125
Ftp.Remote_Directory . . .22,50
displaying . . 48, 147
setting . . . 23,158
Session_Ftp.Remote Dn'ectory .22
setting . . 24

RATIONAL December 1992

Remote_Library switch
Rci.Remote_Library.

Remote_Machine parameter
for Rci_Cmve commands.

with Rci and Rei_ Cmve commands .

with Rci_Cmvc commands .

Remote_Machine switch
displaying default .
Ftp.Remote_Machine .
displaying .
displaying value .
setting e
Session_Ftp.Remote_Machine .
setting . o
Remote_Passwords package .

Remote_Passwords switch
Profile. Remote_Passwords .

Remove_Import procedure
Cmvc.Remove_Import.
using

Remove_Secondary procedure
Rci.Remove_Secondary .

Remove_Unit_Option procedure

Index

158
.21
.21

. 125
.21, 50
. 48
147
158
.21

. 24

.22

.22, 24

.93, 168, 181, 204
N« &1

. 95, 103, 104, 108, 138

Rci.Remove_Unit_Option . 109, 139
representation clauses . 7, 8, 52, 197
checking . 58
Resolve procedure
Library.Resolve . 208
Response parameter . 222
options . 223
restricted naming expressions. 213
Retrieve_Executable switch
Session_Rci.Retrieve_Executable . . 47
Revert procedure
Cmvc.Revert . . 168, 182
RPC. .12
running, see executing a program
script
batch compilation . . 64
building . . 68
regenerating .73
using FTP . 113
using tape . 116
move
tape . 70,116

RATIONAL December 1992

245

RCI User’s Manual

command
displaying102 149

compiling59105
dependencies. 105

referencer L. ... 9
referencerfile9
relationship with primary
altering . e [0
creating101121
viewing L. L o L L L L L L L o102
satefile L L L L. ..
text file
altering L L L L Lo 102
creating L. L. L 09912
deleting 104
displayingname .. 149
updating.T9
wploading 103
unit, adding . Ce e e e 101
see also Add_Secondary_Unit procedure; primary unit

semantic checking., 111558
developmentcyclestep 3
differences between compilation systems 7

246

selecting with target key .
semantic errors.
Sequential_lo package, directory

server
DTIA. . .
Telnet/FTP

session response profile, defined
session switches
set notation .

Set_Process_Primary procedure
Rci.Set_Process_Primary .

Set_Remote_Unit_Name procedure
Rci.Set_Remote_Unit_Name .

Set_Secondary_Command procedure
Rci.Set_Secondary_Command .

Set_Unit_Option procedure
Rci.Set_Unit_Option
using

Sever procedure
Cmvc.Sever

Show procedure
Cmvc.Show

RATIONAL December 1992

.25
. 60
183

5
5

222
.23, 45
212

. 104, 108, 140

. 56, 95, 108, 141

.59, 104, 108, 143

. 109, 126, 144
. . 51

. 40

- 79

Show_Build_State procedure
Rci.Show_Build_State .
using .

Show_Remote_Information procedure
Rci.Show_Remote_Information.

Show_Remote_Unit_Name procedure
Rci.Show_Remote_Unit_Name .
using .

Show_Secondary procedure
Rci.Show_Secondary .
example .

Show_Target_Key procedure
Compilation.Show_Target_Key.

Show_Units procedure
Rci.Show_Units .
using .

simple names, defined .
source code, see file, listing; non-Ada code

source state .
demoting to .

Spec attribute, described

spec view, see view

Spec_View attribute, described .
special names .

special values
for filtering messages .
for specifying profiles .

specifications, option.
specifying, profiles
spec-load subsystems

Standard package .
predefined

types .
Start_Rci_Main procedure .

starting the RCI
at machine initialization .
with Start_Rci_Main

state
Ada unit

see also archived state; coded state; installed state; source state

RCI, see state information
state information .

creating . -

download time .

files .

RATIONAL December 1992

Index

. 107, 145
.71

.21, 23, 48, 109, 147

. 108, 118, 148

141

59, 108, 149
102

. 44

. 108, 150, 205

141
208

.07
.62, 79
215

215
209

222

222

221

222

. 42

7, 19, 25, 58
196

. 18

.17
.18

175
118

247

RCI User’s Manual

248

storage
inimizing
unit, processor .

subclasses, file .
subprogram, see program
substitution characters .
subsystems .
creating.
development in .
links to external .

spec-load
converting to for spec views .

see also library; model world; view; world

switches . o

changing values .

compiler .

customxzauon—mdependem

displaying values

host
remote-linker options .
target-compiler options.

library
controlling associated files
default file .
editing
file.
file creation and association .
specifying file .

RCI
custormzauomdependem
custornization-independent .
nonexistent . .
setting batch mode .
transferring batch units.

remote file transfer, see Ftp switches

remote-linker option .
session .
target-compiler opnon
view creation
controlling .

Switches package
Associate procedure

Display procedure .
Edit procedure .

syntax, checking . . .
development cycle step .

system default profile
defined .

System package
directory .

RATIONAL December 1992

|22, 23, 24, 45

8
8

219

212
25, 29, 32

35 36, 37, 175

.29
6

. 42

.59
. .49
. 845

. 49

. 48

194
194

6 12 23 45

7
6,

28,
12

H

wsss&

. 25
.46, 47
. .45
45, 49
. 48
. 67
. 67

194
. 45,194
-9
. 28

. 48
28 4048

.11
3

222

. 7,58
183

Index

tape
move script
using
target .

identifying

see also Remote_Machine switch; target key; transport name map
source consistency, see Ada units, consistency between host and remote

target world, importing units
target-compiler options .
target compiler, see compiler

target key.
confirming.
extension
reserved .
purpose
R1000 S
RCI, structure.
RDF/RCI composite key .
using
returning programmatically .
target path
creating .

Target_Interface package .

target-dependent .
characteristics, setting .
code generation .
compilation .
links to units .
modules, directory .
semantic checking .

target-independence, enforcing .
TCP/IP.

Telnet .
ports.

Telnet/FTP .

network-communications mechanism .

server
testing, recombinant .
text file, changes .

Text_lo package .
directory

Trace_Command_Output switch
RciTrace_Command_Output .
views, troubleshooting with .

RATIONAL pecember 1992

directories and library structures, see library, structure

194

6, 12, 16, 26
.. L 44
. 26
.25
.28
. 26
.27
. 27
. 45

. .29
.37, 38
184

. 16
.25
.25
.25
.28
184
. 58
31, 32
.20

15, 16
. .20

12, 15, 16
205
5

.31
105

183
. 47, 49, 56

. 49

249

RCI User’s Manual

Transfer_Units procedure

Rci.Transfer_Units . . 107, 151
using . .71
transport name map . . . 20
see also machine, remote
types, predefined . 196
types, see arrays; records
8]
Unchecked_Conversion package, directory . 183
Unchecked_Deallocation package, directory 183
unit options, displaying . 126
units
batch
obsolete . . 64
codable. . 66
coded 66
dependencies. .7
downloading
batch . . 64
executable. . 9
obsolete
in batch script . . 64
remote
displaying name . . 148, 150
setting name 141
uploading . 154
transferring batch . e e . 49
see also Ada units; executable module; file; primary; secondary
units, coding time . 145
UNIX
linking, see linking
specifying for communication . .20
Upload_Associated_Files procedure
Rci.Upload_Associated_Files . 51, 64, 107, 153
using72
Upload_Unit procedure
Rci.Upload_Unit . . 108, 154
using . . 80, 103
Upload_Units procedure
Rci.Upload_Units . 108, 156
using . . 81
uploading . .16
associated files . 153
executable module . . 61
remote unit . 118
remote units and text files . 154
secondary text file . 103
250 RATIONAL December 1992

Index

user interface, RCI. 12,13
Username switch
Ftp.Username. .21, 50
Session_Ftp.Username. 21, 24, 36
username, remote . .60, 61
incorrect . .88
setting . .21, 24
using . 161, 175
values
parameter-value conventions . 207
special . 222
verifying RCI installation . 18
view
combined . 42, 84
comparing types. .31
compilation in
restrictions . .o .. 9
consistency between views . .75, 76
copying units between76
creating. 32, 35, 38, 175
from existing view . . 161, 162, 176
joined. .75
destroying . 173
host, destroying . .95
host-only
developing in . . 49
troubleshooting with . 49
imports . . . 39
load31, 40
R1000, creating . . 32
release
copying on remote machine . L. 232
creating . . 96, 165, 180
release, comparing types. Lo L3
setup in subsystem . .35
spec . . 40
creating . . 40
importing .4
updating units in 75, 76
working . 29, 30, 37
development in29
initial . . 36
View attribute, described . 215
view-creation commands
CMVC . . 32
Cmve21
using 23
naming defaults . 125
Rci_Cmve . .21
using . .23

RATIONAL pecember 1992

251

RCI User’s Manual

W
wildcard characters 211
for pattern matching . 214
windows, see coui}nand window
working view, see view, working
world . . 6,27
avoiding . 31
links . . .27
model . .12
creating . . .25
predefined . . 28
user-created L. . 28
see also model world; subsystems
252 RAT'ONAL December 1992

RATIONAL

READER’S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by sending e-mail to support@rational.com. If you use e-mail to submit
documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?
O 6 mo. or less 6 mo.-1 year 3 1-3 years 1 3 years or more

How much experience have you had with the Ada programming language?

Q6 mo. or less 6 mo.-1 year (3 1-3 years QJ 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code

Please return this form to: Publications Department
RATIONAL
3320 Scott Boulevard
Santa Clara, CA 95054-3197

Rational Compilation Integrator User’s Guide

RATIONAL

READER’'S COMMENTS

Note: This form is for documentation comments only. You can also submit problem reports and
comments electronically by sending e-mail to support@rational.com. If you use e-mail to submit
documentation comments, please indicate the manual name, book name, and page number.

Did you find this book understandable, usable, and well organized? Please comment and list any
suggestions for improvement.

If you found errors in this book, please specify the error and the page number. If you prefer, attach a
photocopy with the error marked.

Indicate any additions or changes you would like to see in the index.

How much experience have you had with the Rational Environment?

0 6 mo. or less J 6 mo.-1 year Q1 1-3 years {1 3 years or more

How much experience have you had with the Ada programming language?

0 6 mo. or less U 6 mo.-1 year 0 1-3 years {3 3 years or more
Name (optional) Date
Company
Address
City State ZIP Code
Please return this form to: Publications Department
RATIONAL
3320 Scott Boulevard

Santa Clara, CA 95054-3197

Rational Compilation Integrator User’s Guide 4000-00500

