Rational Environment Trainiﬁg

Basic Product Training Series:
Subsystems and Configuration Management

Instructor’s Notes

=¥ Towry

Gbpyright © 1988 by Rational o S

Document Control Number: 8030A-01

“'Rev. 1.0, September 1988 (Software Rev. D_10_20_0)

-This document is subject to change without notice.

Note the Reader’s Comments forms at the end of this book, which request the user’s evaluation
to assist Rational in preparing future documentation.

Rational and R1000 are registered trademarks and Rational Environment and Rational Subsystems are
trademarks of Rational.

Rational
3320 Scott Boulevard
Santa Clara, California 95054-3197

Contents

Subsystems and CMVC
Issues of Project Management
Project Structuring with Subsystems
Subsystem Construction
Basic Development Methodology
Source Reservation with CMVC
Parallel Development with Subpaths

RATIONAL o188

17
34
44
54

59

AR

1ii

Course Outline

Subsystems and CMVC

‘¢ Issues of Project Management
Project Structuring with Subsystems
Subsystem Construction L
Basic Development'Methodology
Source Reservation with CMVC _ « -
Parallel Development with Subpaths

1 oiss RATIONAL

Notes on Course Outline
Transition: This is an introduction to project management. A more

complete investigation is available in the course on Project Development
Methods.

This course introduces the following cor;cppts: ¥

-

Basic project development methodology
Subsystems and spec/load views ' -
Importing and exporting

Reservations (Check, In and Check Oxgt), \ -
Parallel development subpaths ' '
Propagating changes across subpaths (Accept_Chandges) - -

t"e 3
o

- »o L
3 ¢

Special Instructions:

RATIONAL guss

1-1

.-Subsystems and CMVC: Issues of Project:-Management

Motivations

* Rational’s solution originates from our
experience in:

—]‘;_)evieloping)j;be Environment
— Consulting with customer applieations |

* Existing deVelopment facﬂltles were dlscovered
| to be madequate in: o

— Reducmg the tlme and costs of making and
testing changes to large Ada systems o

— Managlng the complex1ty of a prOJect and
1ts de81g‘n : |

— Supportmg parallel team development and
testing

— Supporting multihost and multisite
development

2 auss RATIONAL

Subsystems and CMVC: Issues of Project Management

Notes on Motivations
®
4 h
Transition:
Special Instructions:._. . e
Key Points: S Ao e

— Rational has developed more than a mllllon 11nes of code Wﬂih a team of
15-30 developers.

— Philips, for example.

i

* As Rational was developing the Environment, the development team ran
* into several unforeseen issues with the developmient of latge"Ada systems.
From this experience, Rational has designed and 1mplemen’ﬁed a i

development methodology and tools to address and minimize some of these
difficulties. : :

[- >
#o g " 5~ T 3t

Y > : R k badal
. NP . oy ‘ . .-
—

-~ e

— Many projects are so large that they require the use of more than one
machine. Also, subcontracting situations will require this. The ability
: to partition projects across multiple hosts with a h;gh degree of _
: transparency can be a distinct advantage. - 5
;4& &

-RATIONAL 9/1/88 2-1

Subsystems and CMVC: Issues of Project Management

Changes to Ada Systems

. Recornhpilation is required to verify the
correctness of changes

- Recompllatlon may not be limited to the -
~ changed unit

— Recompilation time can become a majdr n
factor in development delays

. Co‘ntmqods changes by multiple developers are
difficult to test independently ®

* Historical record of changes is essential to
project management

3 | ouss RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Changes to Ada Systems

. i* ; 5o h g}n/ <"--‘

~ B

Py e e - - -

Transition: Let’s look at a few of these problems. First, let’s look at the
organization of Ada systems and its impact on the development progress of a
project. The first diagram illustrates the dependency closure and
recompilation requirements for a sample change L) n,f St

Special Instructions: Use the diagrarhs to fllustrate the bullets.” Units
shaded with slashes represent the units that would need to be recompiled.
Boxes with two rectangles représent Ada packages.The shaded box -~
represents the body. The box at the top of the diagranr.is the,main driver.
Arrows indicate dependencies between units. The arrow is drawn from the
dependent unit to the specification it withs. :

; . i
.

Key Points:

P e
S dn

® A side effect of requiring that dependenc1es be checked is that
recompilation is required to verify that some change doesn’t,invalidate the
“correctness of the program. The time it takes to perform thls .
. recompilation can cause major delays. ¢ , i

— This we found from ﬁrsthand expemence in developmg the |
Environment. A P T N B

* It is very difficult to tell which changes resulted in specific execution
effects in the program when releases are constantly changing. It would be
preferable to have stable releases from all other developers so that
individuals see the effects of changes to their code only.

®
RATIONAL s

Subsystems and CMVC: Issues of Project Management

Changes to Ada Systems (cont.)

, ouss RATTONAL

Subsystems and CMVC: Issues of Project Management

Notes on Changes to Ada Systems (cont.)

Special Instructions: Dependent units must be recompiled if changes to
Ada units are made. Emphasize transitive closure of dependencies. Even
with several libraries, developer B can impact developer A’s work, requiring
notification and serialization of work. In larger systems, with 15, 30, 50, or
more developers, this can become a major issue.

RATIONAL sss

Subsystems and CMVC: Issues of Project Management

Changes tb AdaxSy‘stems (cont.)

Link and
execute

Link and .

execute

Link and
execute

5 auss RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Changes to Ada Systems (cont.)

Special Instructions: Even with just changes to bodies, it can be difficult
if not impossible to see the cause and effect of changes. With everyone
making changes at the same time, an effect in the program could have been
caused by several factors. It would be preferable to have stable, unchanging
code for all units except those that an individual developer controls.

RATIONAL oss 5.1

Subsystems and CMVC: Issues of Project Management

Design Degradation

* Dependencies in a system reflect part of the o
overall design s

e Unwanted dependencies are easily added b}; y
any developer inserting a with clause .

. Withféimple librafy facilities, no safeguardsi are
available to preserve the integrity of the design

; | suss RATIONAL

Subsystems and CMVC: Issues of Project Management

Notes on Design Degradation

Transition: Another issue facing large development efforts is maintaining
design integrity through the actual development and maintenance phases.

Special Instructions: Use the diagram to illustrate how designs ‘tan'
become corrupted over time.

Key Points: It’s easy to corrupt designs with Ada only. Generally, it is
undesirable for just anyone to change the design. . S WL

Y) e : -3 %

® Design changes of this nature are hard to capture and track They may
have a different functionality than originally intended.

e

RATIONAL ouss

6-1

Subsystems and CMVC: Issues of Project Management

Design Degradation (cont.)

Unwanted
Dependency

7 ass RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Design Degradation (cont.)

RATIONAL ouss 71

;Sub""systems and CMVC: Issues of Project Management

Large Ada Systems

8 oss RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Large Ada Systems

Transition: So far we've looked at two of the issues: recompilation
requirements and design integrity. We've also been looking at small Ada
systems. Let’s look now at these same issues and some new ones with a
larger Ada system.

Special Instructions: Use the diagram to illustrate and explain the key
points. The diagram is placed first for effect. Even though there are only 50
packages, the complexity grows rapidly.

Key Points:

RATIONAL o/ss 81

Subsystems and CMVC: Issues of Project Management

Large Ada Systems (cont.)

L Difﬁcult to understand the application by the
picture

* Difficult to reason about the dependencies
* Required recompilation can take hours or days

* Difficult to allow individuals to develop in
parallel because of Ada’s strong dependencies

* Difficult to partition so that individual
developers can implement and test in parallel

9 ass RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Large Ada Systems (cont.)

¢ It’s hard to understand a system with this many units. Even knowing
what individual packages do doesn’t help in understanding the big picture.

¢ The amount of recompilation that would be required for different kinds of
changes is hard to determine. Ada packages are too fine alevel of =
granularity to provide an effective focus for project management. =7

® They are bound to others by the dependencies of their code on codé 6wned
by other people. '

RATIONAL gwss 91

Subsystems and CMVC: Issues of Project Management

Subsystem Partitioning

* Subsystem partitioning improves
understanding of the application

e Dependencies can be defined at the subsystem
level

* Dependencies between subsystems can be
enforced by tools

* Each subsystem can be assigned to an
individual developer or implementation team o

* Subsystems provide the opportunity to contain
recompilation

10 suss RATIONAL

Subsystems and CMVC: Issues of Project Management

Notes on Subsystem Partitioning

Transition: But if we look at the same system partitioned into several
subsystems ...

Special Instructions: Use the diagram to illustrate and explain the
points. .

Key Points: Subsystem-level partitioning can improve the comprehensmn
and management of large systems. «

This reduces the number of dependencies at the macro or subsysten} leve].,jr

These design decisions can then be enforced.

Mechanisms to do this will not be covered in this course. This is covered in
the course on Project Development Methods. This is similar to the ability
to perform separate compilation but at the subsystem level. It not only
saves time but also increases independence.

RATIONAL ouss 101

Subsystems and CMVC: Issues of Project Management

Subsystem Partitioning (cont.)

11 oss RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Subsystem Partitioning (cont.)

Special Instructions: Use this overlay to partition the previous slide into
subsystems. Talk about the ability to reason about subsystems abstractly as
whole functional units such as user interfaces or databases. Also, show how
dependencies can be formed between subsystems.

RATIONAL ouss 111

Subsystems and CMVC: Issues of Project Management

Subsystems as Higher-Level Packages ®

* Subsystems can be thought of as
meta-packages

— Exports form the visible part
(specification) of the subsystem

— Imports are analogous to with clauses

— Subsystem implementation is analogous to
package bodies

Importers

/1

12 ass [RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Subsystems as Higher-Level Packages

Transition:
Special Instructions:

Key Points:

RATIONAL oss

12-1

Subsystems and CMVC: Issues of Project Management

Subsystem Releases

* Multiple releases define different
implementations of a subsystem

— Each release is composed of a different
configuration of Ada units

— Configurations are stored in compiled
(coded) form

y | s RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Subsystem Releases

Transition:

Special Instructions:

Key Points:

— In contrast to other CM systems that store configurations as source.

RATIONAL ouss

13-1

Subsystems and CMVC: Issues of Project Management

System Testing

* System-build process is simpler and faster

— Execution table specifies system-level
combinations

— No compilation is necessary

— Multiple tables specify multiple test
combinations

Execution
Table

Subs

14 avss RATIONAL

Subsystems and CMVC: Issues of Project Management

Notes on System Testing

Transition:
Special Instructions:

Key Points:

— Changing the system build is a matter of editing the execution table
(later to be called an activity). '

— Each member of the programming team can independently test a
separate combination of subsystems.

RATIONAL o188

14-1

Subsystems and CMVC: Issues of Project Management

Rational Subsystems

* Provide designers and project managers with a
powerful decomposition and structuring
mechanism

* Provide enforcement of design decisions

* Reduce time to make and test changes by
minimizing recompilation requirements

* Facilitate multihost, multisite development

* Support parallel development and testing

15 suss. RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Rational Subsystems

Transition: Rational Subsystems and CMVC are intended to address these
issues.

Special Instructions:

Key Points: This slide summarizes the purpose of subsystems.

¢ Firewalling can localize recompilation when changes are made.

* We won’t talk about how this is done in this course, but subsystem-level
partitioning allows the design team to allocate subsystems to machines for
development. The subsystem serves as the focus for configuration
management and making releases from machine to machine for testing.

By decoupling subsystem development from other development,

. programmers working on a subsystem can develop and test independently
from other subsystems. There are also mechanisms to support parallelism
inside a subsystem, which we will talk about later.

RATIONAL oss 15T

Subsystems and CMVC: Issues of Project Management

Rational CMVC

* Configuration management and version control
— Synchronizes changes to shared code
— Collects change history

— Supports parallel development paths
within a subsystem

— Supports propagation of changes across
development paths ®

16 ass RATIONAL

Subsystems and CMVC: Issues of Project Management

. Notes on Rational CMVC

Transition: This slide summarizes the purpose of CMVC. We will talk
more about CMVC in later sections.

Special Instructions:

Key Points:

RATIONAL owss 161

Course Outline

Subsystems and CMVC
Issues of Project Management

* Project Structuring with Subsystems
Subsystem Construction
Basic Development Methodology
Source Reservation with CMVC
Parallel Development with Subpaths

17 suss RATIONAL

Notes on Course Outline

Transition:

Special Instructions:

RATIONAL o/uss 171

Subsystems and CMVC: Project Structuring with Subsystems

Project Structure

Application

* An application is an entire software system that
can be partitioned into subsystems

* An application can contain any number of
subsystems

@
» s RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Project Structure

Transition:
Special Instructions:

Key Points:

* These approximate the size and function of a CSCI in 2167 language.

RATIONAL ouss

18-1

Subsystems and CMVC: Project Structuring with Subsystems

Subsystem Releases

* Kach subsystem release contains a different
compiled configuration of Ada units

— Subsystem configurations are called views

19 oss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Subsystem Releases

Transition:
Special Instructions:

Key Points:

RATIONAL oss

19-1

Subsystems and CMVC: Project Structuring with Subsystems

Views

* Define a single instance or implementation of a
subsystem

— Contain Ada units in a subdirectory called
Units

— Define exports as a subset of the Ada unit
specifications

— Define imports required from other
subsystems in order to implement the view

A View:

4z Specification - Exports \

_ Imports -

20 ass RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Views

Transition:
Special Instructions:

Key Points:

® The set of views that makes up the system is executed. Imports and
exports are not executed.

RATIONAL o/

20-1

Subsystems and CMVC: Project Structuring with Subsystems

Subsystems

* Define a series of implementations (views)

* Collect development history and information on
project management in a CMVC database

¢ Can include documentation, test cases, and
other management information

A Subsystem:

CMVC Database

21 ouss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Subsystems

Transition:

Special Instructions: Use the diagram to explain the major parts of a
subsystem: exports, imports, implementation.

Key Points:

®* Subsystems are used to manage all pieces of an application, not just the
code.

RATIONAL ouss

21-1

Subsystems and CMVC: Project Structuring with Subsystems

CMVC Database

* The database stores a series of generations of
objects

* A configuration is a combination of generations
from the database

* A view is a real instance of a configuration

4 N

Configuration

<4—Object

Units Generations »
CMVC Database

22 | onss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on CMVC Database

Transition:
Special Instructions:

Key Points:

¢ A generation is different from a version in the directory system. This will
be discussed later.

RATIONAL g/ss

Subsystems and CMVC: Project Structuring with Subsystems

Dependencies between Subsystems

* At any one time, a single view defines a
subsystem

* The view’s exports define the set of Ada units
available to other subsystems

* The view’s imports define the set of available
views from other subsystems

* Ada units in a view can reference exported
units in other subsystem views if they have '
been imported

23 oss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

‘ Notes on Dependencies between Subsystems

Transition:

Special Instructions: Use the diagram to explain the bullets.

Key Points:

RATIONAL ouss

23-1

Subsystems and CMVC: Project Structuring with Subsystems

Dependencies between Subsystems
(cont.)

Exports

f / Exports \

_ Imports

24 ogs RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Dependencies between Subsystems (cont.)

RATIONAL oss 241

Subsystems and CMVC: Project Structuring with Subsystems

Two-Part Views

¢ Advantages of two-part Ada packages
— Visibility control
— Separate compilation
* Spec/load views
— Define a single instance of a subsystem

— Support recompilation containment

— Spec views provide a separate
specification of a subsystem similar to
Ada package specifications

— Load views correspond to the body of the
subsystem

— Spec views can have multiple load views

25 ouss [RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Two-Part Views

Transition:
Special Instructions:

Key Points: There are specific advantages in making two-part views in the
same way that Ada packages have two parts.

— We will not discuss spec and load views in detail in this course. They

will be covered in great detail in the course on Project Development
Methods.

— Together spec and load views provide the same compilation separation
that Ada specs and bodies provide. Thus, compilation firewalls can be
built by allowing a wide class of changes to load views (bodies) without
requiring recompilation of clients that depend on the spec view.

— Load views offer the possibility of multiple bodies for the same spec.
This allows for recombinant testing with different load views.

RATIONAL o188 25.1

Subsystems and CMVC: Project Structuring with Subsystems

Two-Part Views (cont.)

Exports N A

NG
/
1 Spec
View
o %

26 ovss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Two-Part Views (cont.)

RATIONAL oss 26.1

Subsystems and CMVC: Project Structuring with Subsystems

Subsystem Libraries

* Application library

APPLICATION (library

¢ Subsystem library

APPLICATTON.SYSTEM SUBSYSTEM (library

27 aiss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

Notes on Subsystem Libraries

Transition: Now let’s look at some screen images of subsystems and views.
This may help you to better understand what subsystems actually are in the
Environment.

Special Instructions:

Key Points: Use the screen images to point out various structures within
subsystems and views. Stress that subsystems are composed of simple
libraries and use the same compilation system as the basic Environment.
Subsystems are merely a formalized library structure and a set of tools that
manipulate that structure.

¢ Make sure to point out the two subsystems. We will talk about activities
later.

® Note the three views; one spec view, one released load view, and one
working view. Also mention the State directory and the Configurations
directory. Don’t explain too much other than that this is the place where
the subsystem tools store information about the subsystem.

RATIONAL ovss 271

Subsystems and CMVC: Project Structuring with Subsystems

Subsystem Libraries (cont.)

* Spec-view Units directory

. «-.SYSTEM SUBSYSTEM.REV1l (0 SPEC.UNITS (library) g Directory

* Load-view units directory

28 oss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Subsystem Libraries (cont.)

®* Note that the spec view contains no bodies.

* The load view contains bodies and other nonexported packages.

RATIONAL o/uss 281

Subsystems and CMVC: Project Structuring with Subsystems

Sample Application

* The program Profile application counts various
kinds of lines in an Ada program

* The application consists of two subsystems

Program_Profile_System

Report_Subsystem

System_Subsystem

29 avss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Sample Application

Transition:

Special Instructions:

Key Points: Introduce the Program Profile program—what it does and
its initial subsystem structure. '

29-1

RATIONAL ouss

Subsystems and CMVC: Project Structuring with Subsystems

Sample Application (cont.)

®* System Subsystem contains the Ada units that
analyze each line and collect the statistics for
an Ada system

Report_Subsystem

<No Imports>

30 | ass RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Sample Application (cont.)

RATIONAL o1ss 301

Subsystems and CMVC: Project Structuring with Subsystems

Sample Application (cont.)

* Report_Subsystem contains the Ada units that
format the output and provide the user

interface and main driver

Exports

L Program Profile

_

4 Program_Profile

31

ouss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Sample Application (cont.)

@
RATIONAL sss

Subsystems and CMVC: Project Structuring with Subsystems

Terminology Summary

* Application: An entire software system
partitioned into subsystems

* Subsystem: A large partition of an application

* View: A single instance or implementation of a
subsystem

* CMVC database: Subsystem-level object that

collects configuration management information
on units in views

e Configuration: A set of generations of units in
the subsystem

— A view contains a specific configuration

— Configurations are formally kept in
configuration objects

32 oss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

. Notes on Terminology Summary

Transition: This is a recap of the terminology we have defined to this point
in the course.

Special Instructions:

Key Points:

RATIONAL ouss

32-1

Subsystems and CMVC: Project Structuring with Subsystems

Terminology Summary (cont.)

* Generation: One in a series of object versions
stored in the CMVC database

— A new generation is created whenever an
object is checked in

* Exports: The units that are made visible outside
the subsystem to other client subsystems

— A spec view is a realization of a subsystem’s
exports

* Imports: A list of spec views referenced by
a given subsystem

* Layer: Sometimes used to define a group of
subsystems that form some higher-level
partition of the application

33 ouss RATIONAL

Subsystems and CMVC: Project Structuring with Subsystems

Notes on Terminology Summary (cont.)

RATIONAL /s 331

Course Outline

Subsystems and CMVC
Issues of Project Management
Project Structuring with Subsystems
* Subsystem Construction
Basic Development Methodology
Source Reservation with CMVC
Parallel Development with Subpaths

34 oiss RATIONAL

Notes on Course Outline

Transition:

Special Instructions:

RATIONAL g/1ss 341

Subsystems and CMVC: Subsystem Construction

Subsystem Partitioning

e Suggested partitioning criteria

— A subsystem should be a complete, logical
component of the system

— A subsystem should have well-defined,
narrow interfaces

— The total number of subsystems should be
a manageable number

— Subsystem interface packages should ®
export private types

— Subsystem interface packages should avoid
reexporting declarations from other
subsystem interfaces

— A subsystem eventually should contain a

manageable amount of code
(5K—25K lines)

35 oss [RATIONAL

Subsystems and CMVC: Subsystem Construction

‘ Notes on Subsystem Partitioning

Transition: These are some guidelines for designing a system into what
will eventually be developed with Rational Subsystems.

Special Instructions:

Key Points:
[]
— It should have one consistent functional objective.

— This translates into a small number of package interfaces. Subsystem
interfaces should define private types whenever possible to take
advantage of closed private parts.

— Otherwise the complexity starts to overtake you again.

— This will provide the ability to firewall compilation and not let
. lower-level changes propagate through to upper-level subsystems.

— This can limit recompilation to the local subsystem.

— This is a suggested order of magnitude.

®
RATIONAL 9/1/88 35-1

Subsystems and CMVC: Subsystem Construction

Subsystem Partitioning (cont.)

— A subsystem should have 1-5 developers
working on it

— It is better if subsystems are separately
testable

36 ariss RATIONAL

Subsystems and CMVC: Subsystem Construction

. Notes on Subsystem Partitioning (cont.)

— Again, a suggestion. More is possible.

RATIONAL g/ss 361

Subsystems and CMVC: Subsystem Construction

Method for Building Systems
from Bottom Up

¢ Basic method

— Build an initial load view for the lowest
subsystem first

— Copy any available Ada units into the units
directory of the load view

— Import lower-level spec views as necessary
— Compile the Ada units in the load view .
— Hstablish exports and build a spec view

— Add each new subsystem on top of existing
subsystems

— Build all subsystems and their
dependencies in a single pass

37 ovss [RATIONAL

Subsystems and CMVC: Subsystem Construction

Notes on Method for Building Systems
from Bottom Up

Transition:
Special Instructions:

Key Points:

— ONLY SPEC VIEWS SHOULD/CAN BE IMPORTED.
— Use [Code (This World)].

— This will define the Ada units that can be imported into other
subsystems.

RATIONAL oss 371

Subsystems and CMVC: Subsystem Construction

Subsystem Construction

* Build a subsystem and construct an initial load
View: Cmvc.Initial

Important parameters:
— Subsystem: Specifies name of the subsystem

— Subsystem Type: Specifies whether to build
a spec/load view or a combined view; this
course will use the value cmvc.Spec Load

38 oss RATIONAL

Subsystems and CMVC: Subsystem Construction

' Notes on Subsystem Construction

Transition:
Special Instructions:

Key Points:

RATIONAL ouss

38-1

Subsystems and CMVC: Subsystem Construction

Spec-View Construction

* First define exports

— List of units to be exported is in a file called
View_Name .State.Exports

— File must be edited to list only those units
to be exported in the spec view

* Then create a spec view: Cmvc.Make Spec View

Important parameters: ¢

— From_Path: Specifies name of the load view
from which to build the spec view

— Spec_View_Prefix: Specifies the prefix name
for the new spec view

39 agss RATIONAL

Subsystems and CMVC: Subsystem Construction

. Notes on Spec-View Construction

Transition:
Special Instructions:

Key Points:

— All views have a subdirectory called State. The Exports file is in this
directory.

— Thisis very similar to using an indirect file.

— This is the same view whose Exports file has been edited.

-~ This is simply Rev1 of Revl_0_Spec, for example.

RATIONAL s

39-1

Subsystems and CMVC: Subsystem Construction

Importing

* Import a view from another subsystem:
Cmvc.Import

Important parameters:

— View_To Import: Specifies name of the view
to import

— Into_View: Specifies importing view; if the
cursor is anywhere inside a view or any of
its subobjects, that view will import the o
new view

10 oss RATIONAL

Subsystems and CMVC: Subsystem Construction

. Notes on Importing

Transition:
Special Instructions:

Key Points:

¢ IMPORTANT: Views import other views. They do not import subsystems.
Only one view can be imported from each subsystem at any one time.

RATIONAL oss

40-1

Subsystems and CMVC: Subsystem Construction

Subsystem Destruction

* Destroy a view within a subsystem:
Cmvc.Destroy View

— Compilation.Destroy OY Library.Destroy
will not work

* Destroy a subsystem: cmvc.Destroy Subsystem

— All views must be destroyed first

4 oiss RATIONAL

Subsystems and CMVC: Subsystem Construction

. Notes on Subsystem Destruction

Transition: We all make mistakes, occasionally.
Special Instructions:

Key Points:

— This is because one of the state units must be checked out first.
Compilation.Destroy does not know how to do this.

o
RATIONAL sruss

41-1

Subsystems and CMVC: Subsystem Construction

Exercise: Building an Application
in Subsystems

Build a subsystem structure for the

Program Profile application using the

project world called subsystem Application
in your home library. Partition units into two
subsystems as shown in the previous slides.

1. Create the lower (system Subsystem)
subsystem inside the subsystem Application
world. Create a load view for the initial view.

2. Copy the appropriate Ada units for the lower
subsystem from the Program Profile System
in your home library into the load view.

3. Compile the view.

4. Edit the exports file and create a spec view for
this subsystem.

12 oss [RATIONAL

Subsystems and CMVC: Subsystem Construction

‘ Notes on Exercise: Building an Application
in Subsystems

Special Instructions: Go over each step in class before beginning. This
exercise is intended to be be very free-form. Note that the reference to the
model in Cmvc. Initial must be fully qualified—that is:
'Users.Advanced N.Subsystem Application.Model.

Refer to the previous slides showing the sample application for a picture of
the final subsystem partition. Note also that the instructions apply once to
each subsystem.

RATIONAL ouss 421

Subsystems and CMVC: Subsystem Construction

Exercise: Building an Application
in Subsystems (cont.)

5. Create the upper (Report_Subsystem)
subsystem inside the subsystem Application
world. Create a load view for the initial view.

6. Copy the appropriate Ada units for the upper
subsystem from the Program Profile System
in your home library into the load view.

7. Set up the necessary import to the lower
subsystem.

8. Compile the view.
9. Create a spec view for the upper subsystem.

10. Decide what to do with Test Input units.

43 9/1/88 RATIONAL

Subsystems and CMVC: Subsystem Construction

Notes on Exercise: Building an Application
. in Subsystems (cont.)

RATIONAL o188 431

Course Outline

Subsystems and CMVC
Issues of Project Management
Project Structuring with Subsystems
Subsystem Construction

* Basic Development Methodology
Source Reservation with CMVC
Parallel Development with Subpaths

44 orss RATIONAL

Notes on Course Outline

Transition:

Special Instructions:

RATIONAL g/uss a4

Subsystems and CMVC: Basic Development Methodology

Types of Views

¢ Released views
— Are frozen views that cannot be modified

— Are used for execution testing by other
higher-level subsystems

— Sequences of released views are called
paths

* Examples of paths

— Multiple-target development; each target is
a separate path

— Development of major product versions
* Working views
— Are unfrozen views with ongoing changes

— Are often allocated to each subsystem
developer working within a subsystem

45 9/1/88 RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Types of Views

Transition:
Special Instructions:

Key Points:

— The first would be developing the same code to run on multiple targets
with some target-dependent code.

. — The second example is the Gamma-Delta-Epsilon model.

Releases are made from a tested working view.

— Doing this supports parallelism within a subsystem. This is described
in the last section of this course.

RATIONAL oss 451

Subsystems and CMVC: Basic Development Methodology

Releasing

* Changes are made to units in working views

* Releases are made when the current working
view is tested and stable

— Each subsystem can be released
independently

e Release a new load view: Cmvc.Release

Important parameter: ®

— From_Working View: Specifies name of view
to release from

— Use all other defaults

Release Points
{Views Created)

46 asuss RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Releasing

Transition:
Special Instructions:

Key Points:

— This allows each development team to match their release schedule to
their needs. This is the essence of parallelism across subsystems.

® This is the same as with the basic method.

— In our scenario, this would be the integration directory.

RATIONAL guss 461

Subsystems and CMVC: Basic Development Methodology

Execution

* System combinations of views for execution are
specified with an activity object

e Activities

— Specify various views that make up a set of
subsystems that are to be linked and
executed

— Consist of entries of specific spec and load
views for each subsystem .

* Example

47 oss RATIONAL

Subsystems and CMVC: Basic Development Methodology

' Notes on Execution

Transition:
Special Instructions:

Key Points:

®* Previously called an execution table.

¢ Explain what is in each column.

RATIONAL /s

47-1

Subsystems and CMVC: Basic Development Methodology

Current Activity

* Users can have multiple activities with
different view combinations

* Current activity is the activity to be used by the
Environment when executing a program

* User can change current activity to be any
activity

Key commands:

— Set the specified activity to be the current
activity for the session:
Activity.Set_Default

— Display the activity name associated with
the current job or session:
Activity.Current

¢ System default activity is in
'Machine.Release.Current .Activity

— Contains entries for Rational interfaces
delivered as subsystems

48 oss RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Current Activity

Transition:
Special Instructions:

Key Points:

— Students may need to reset their activity to this in order to execute
. certain commands.

RATIONAL ouss

48-1

Subsystems and CMVC: Basic Development Methodology

Modification of Activities

e Activities are a subclass of file objects

* Activity files must be saved to make changes
permanent

* Commands
— Create an activity: Activity.Create
— Edit the current activity: activity.Edit
— Add a new entry to an activity: [Object] - [I] ‘

— Delete a selected entry in an activity:
[Object] - [D]

— EKdit the selected subsystem entry: [Edit]

— Save changes to an activity: [Enter]

49 ass RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Modification of Activities

Transition:
Special Instructions:

Key Points:

¢ Note the similarity to other Environment functionality.

. ~ A Command window will be created with the Activity.Change
command.

RATIONAL oss

49-1

Subsystems and CMVC: Basic Development Methodology

Exercise: Managing Activities

Execute the Program Profile application with two
different implementations of the same subsystem.

1.
2.

50

Create a frozen release for each subsystem.

Create an activity within subsystem Applica-
tions referencing the newly released views.

Make the activity the default activity and
execute Program Profile In the spec view of
Report_ Subsystem.

Modify the body of Report in the working view
of the Report_subsystem to use x characters for
the boundaries instead of - characters.

Test this change by editing the activity to
reference the working view.

Create a new release of the Report Subsystem
when testing is complete.

aiss RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Exercise: Managing Activities

RATIONAL oss 50-1

Subsystems and CMVC: Basic Development Methodology

Work Orders

* Are a tool of project management used for
defining units of work

— Problem reports to be fixed
— Feature additions
— Follow-up documentation and testing

¢ Have three states

— Defined: Work has been specified

— Open: Work is ongoing
— Closed: Work is completed

51 oss RATIONAL

Subsystems and CMVC: Basic Development Methodology
. Notes on Work Orders

Transition:

Special Instructions:

— When the development work order is completed, new work orders for
documentation updates and testing can be generated.

RATIONAL g/ 511

Subsystems and CMVC: Basic Development Methodology

Work Orders (cont.)

e Set a default work order to record all
development: work_oOrder.set_Default

* View a work order: Wwork Order.Edit Or [Definition]
— Expand an elided entry: [Object] - []

— Visit the full list of history entries: [Definition]

52 | avss RATIONAL

Subsystems and CMVC: Basic Development Methodology

‘ Notes on Work Orders (cont.)

® Use [Definition] on a work-order object in a directory.

— Some entries are not completely expanded.

RATIONAL oss 521

Subsystems and CMVC: Basic Development Methodology

Work-Order Lists

* Are collections of like work orders
* Can be used to organize

— Problem class

— Single user’s work

— Subsystem o do list

* View a work-order list: work Order.Edit List or o
[Definition]

53 oiss RATIONAL

Subsystems and CMVC: Basic Development Methodology

. Notes on Work-Order Lists

Transition:
Special Instructions:

Key Points:

RATIONAL ouss 531

Course Outline

Subsystems and CMVC
Issues of Project Management
Project Structuring with Subsystems
Subsystem Construction
Basic Development Methodology

* Source Reservation with CMVC
Parallel Development with Subpaths

54 ouss RATIONAL

Notes on Course Outline

Transition: With multiple people working in a subsystem, we need to
provide some way to synchronize their activities.

Special Instructions:

RATIONAL guss 541

Subsystems and CMVC: Source Reservation with CMVC

Controlled Objects

* Are managed by the CMVC system

* Have reservation tokens requiring Check_Out
and Check In

* Have history collected
— Checkout and checkin times

— Who checked out the unit

— Other information
— Have generations recorded as deltas
* Control objects in a view: cmvc.Make Controlled

— Use what_object parameter to define which

objects should be controlled (wildcards can
be used)

55 oss RATIONAL

Subsystems and CMVC: Source Reservation with CMVC

. Notes on Controlled Objects

Transition:
Special Instructions:

Key Points:

® Check_Out reserves the right to modify a controlled object.

— Examples include when it will be checked in and any comments that the
user may make.

. — A new generation is created on Check_Out.

RATIONAL oss 5.1

Subsystems and CMVC: Source Reservation with CMVC

Modification of Controlled Objects

* Get access to edit by taking the reservation
token: cmvc.Check_Out

Important parameters:

— What_Object: Specifies which objects to
check out

— cComments: Specifies user comments to be
saved in CMVC database as history

— Expected Check_In_Time: Specifies time of
expected checkin

¢ Checkout

— Automatically pulls latest generation from
the CMVC database

— Demotes unit to overwrite with new
generation (Allow Demotion parameter
must be True)

— Creates next generation

56 oss RATIONAL

Subsystems and CMVC: Source Reservation with CMVC

. Notes on Modification of Controlled Objects

Transition:
Special Instructions:

Key Points:
®
— This will accept any legal time image.

— This happens with multiple subpaths, discussed in the next section.

— It is important to distinguish between versions and generations.

RATIONAL o/ss 56.1

Subsystems and CMVC: Source Reservation with CMVC

Modification of Controlled Objects
(cont.)

* Return reservation token: Cmve.Check_In

Important parameters:

— wWhat_Object: Specifies which objects to
check in

— Comments: Specifies user comments to be
saved in CMVC database as history

57 oriss RATIONAL

Subsystems and CMVC: Source Reservation with CMVC

‘ Notes on Modification of Controlled Objects (cont.)

RATIONAL oves 57-1

Subsystems and CMVC: Source Reservation with CMVC

Exercise: Modifying Controlled Objects

Make controlled all units in the initial views of
each subsystem that you created and experiment
with cmve.Check In and Cmvc.Check Out.

1. Use cmvc.Make Controlled to control each unit
in each working view of each subsystem.

2. Visit the body of the Line package. Try to
incrementally add an Ada comment to the
unit.

3. Check out the unit, providing some comment
as to why you are checking out the unit.

4. Incrementally add the Ada comment to the
unit.

5. Check the unit back in, providing additional
comments about your changes.

58 9/1/88 RAT!ONAL

Subsystems and CMVC: Source Reservation with CMVC

. Notes on Exercise: Modifying Controlled Objects

Special Instructions: Comments will be added so as not to change the
execution of the program.

RATIONAL ouss 55.1

Course Outline

Subsystems and CMVC
Issues of Project Management
Project Structuring with Subsystems
Subsystem Construction
Basic Development Methodology
Source Reservation with CMVC

¢ Parallel Development with Subpaths

59 ass RATIONAL

Notes on Course Outline

Transition: Now we need to discuss a methodology that allows us to
support parallel development within a subsystem.

Special Instructions:

RATIONAL oss

59-1

Subsystems and CMVC: Parallel Development with Subpaths

Parallel Development Methodology

e Parallel development within subsystems is
supported through use of subpaths

* Each developer is given a separate subpath
(working view)

— Each subpath is a separate copy of the Ada
units in the subsystem

— All objects are joined to enforce
synchronization across working views

* An integration subpath can used to collect and
test latest unit generations

— Releases are made from the integration
working view

60 oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Parallel Development Methodology

Transition:
Special Instructions:

Key Points:

— Remember that subsystems and views can be thought of as the same at
some level of abstraction.

® This is actually another subpath joined with the other subpaths. Releases
into the path are made from the integration directory.

RATIONAL ovss 60-1

Subsystems and CMVC: Parallel Development with Subpaths

Parallel Development Methodology
(cont.)

/

Release_B
Path

Release_A

(LTI TN
__[Release-B 1

AT T N
‘Release B3
s

."Rél‘ease._A;_;,‘. S »

Subpaths ‘BillWorking: .~ >

(Releasa AL
: Sue_Working

A

Release
Points

NWIH>» TLC®W

Integration

61 oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Parallel Development Methodology (cont.)

RATIONAL ouss 611

Subsystems and CMVC: Parallel Development with Subpaths

Creation of Subpaths

* Select an initial working view

* Create additional working views and join units
1n the new view with units in the source view:
Cmvc.Make Subpath

Important parameters:

— From_Path: Specifies the initial view from
which to create the new subpath

— New_Subpath_Extension: Specifies the name
of the subpath; for example:

Revl Ext Working

62 ass RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes on Creation of Subpaths

Transition:
Special Instructions:

Key Points:

RATIONAL g/uss

62-1

Subsystems and CMVC: Parallel Development with Subpaths

Joined Objects

e Joined objects share a single reservation token

— Ada units and text objects in multiple
working views can be joined

— Joined objects have synchronized access
(only one working view can modify a joined
object at any one time)

e N\

Working View 1 Working View 2

Reservation
B Tokens

63 oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes on Joined Objects

Transition:
Special Instructions:

Key Points:

— Only one view may check out the object.

RATIONAL ouss 63.1

Subsystems and CMVC: Parallel Development with Subpaths

Change Propagation

* Each working view will change subsystem
objects over time

— Changes are recorded in CMVC database
0N Check_ In

— Other subpaths may want to propagate
changes into their working view

— Integrator will want to merge all changes
for test ¢

* All generations are available for restoration
from the database

64 oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes on Change Propagation

Transition:
Special Instructions:

Key Points:

RATIONAL oss

64-1

Subsystems and CMVC: Parallel Development with Subpaths

Change Propagation (cont.)

* Overwrite existing generation with new
generation from the CMVC database:

Cmvc.Accept Changes

Important parameters:

65

— Destination: Specifies a set of new objects,
all in one working view; the name of a view
also can be used

— Source: Specifies which generation to
accept; use the default ("Latest") to get the
most recent generation

— Allow Demotion: Specifies that demotion of
updated unit be allowed if necessary

Returning to a previous generation can be
performed with cmvec.Revert

ass RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Change Propagation (cont.)

— Specifying the view will accept changes for all objects in the view. This
would be especially useful for the integration directory.

— Note that this demotion may cause other units to be demoted.

RATIONAL ovss 65-1

Subsystems and CMVC: Parallel Development with Subpaths

Releasing

* Releases should be made when the integration
view is stable and tested

— Frozen view is created for use by other
subsystems

— New view can now be executed with an
activity

¢ Release a new view: Cmvc.Release

Important parameter:

— From_Working View: Specifies name of view
to release from

66 oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Releasing

Transition:
Special Instructions:

Key Points:

® This is the same as with the basic method.

— In our scenario, this would be the integration directory.

RATIONAL g/uss

66-1

Subsystems and CMVC: Parallel Development with Subpaths

History

e Commands

— Cmvc.Show_History: Shows Check Out and
Check In comments and actual changes
made

— Cmvc.Show All Checked oOut: Lists all
checked-out objects and who has reserved
them

— Cmvc.Show_Out_Of Date_ Objects: Shows all
objects that are not at the most recent
generation

67 ouss [RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on History

Transition:
Special Instructions:

Key Points:

— This will list all objects in a working view that are not the most recent
generation. As others make changes in other working views, objects
will become out of date.

RATIONAL ouss 67-1

Subsystems and CMVC: Parallel Development with Subpaths

Exercise: Creating Parallel
Development Paths

Create additional subpaths within the subsystem
System Subsystem and experiment with Check In,
Check_out,Accept_phanges,anflRelease.

1.

68

If you did not complete the previous exercise
making all units controlled, do so now.

Create three new working subpaths with
Cmvc.Make Subpath. Name them sue, Bill, and
Integration.

Begin in Sue’s working view and make some
change that does not affect the execution of the
program (a comment, perhaps).

Move to Bill’s view and try to check out the
same unit.

Use show_All Checked out to see who has
checked out the unit.

oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

‘ Notes on Exercise: Creating Parallel Development Paths

Special Instructions: You may want to organize groups of two, with each
person playing the role of a single developer in the subsystem.

RATIONAL owss 68-1

Subsystems and CMVC: Parallel Development with Subpaths

Exercise: Creating Parallel

Development Paths (cont.)

10.

11.

69

Return to Sue’s working view and check the
unit back in. Provide good commentary.

Return to Bill’s view and accept the changes
for that unit. Verify that the changes have
propagated.

Make some other change to a unit, providing
good commentary.

Move to the 1ntegration working view and
accept all changes.

Release the integration view with
Cmvc.Release.

Modify the default activity to reference the
new release and verify that the program still
executes the same.

oss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Exercise: Creating Parallel Development Paths
(cont.)

RATIONAL ouss 69-1

Subsystems and CMVC: Parallel Development with Subpaths

Additional Terminology

* Model: A template world defining links, access
control, and other baseline attributes for
subsystem views

* Release: A frozen, nonworking view generated
by the CMVC tools

* Working view: A view in which ongoing
development occurs

e Path: A series of released views

* Activity: A table listing subsystems and specific
spec and load views within those subsystems

— Activities specify which combination of
released load views will execute together

70 aiss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes on Additional Terminology

Transition:
Special Instructions:

Key Points:

RATIONAL ouss

70-1

Subsystems and CMVC: Parallel Development with Subpaths

Additional Terminology (cont.)

* Controlled object: An object for which
generation history is collected in the CMVC
database

— Controlled objects must be checked out
before editing

* Reservation token: A logical token that all
controlled objects reserve during checkout and
return on checkin

— Two people cannot reserve the reservation
token at the same time

* Joined objects: Objects that share a single
reservation token

— Objects are usually joined across multiple
working views to ensure synchronization

71 sss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

. Notes on Additional Terminology (cont.)

RATIONAL o188 711

Subsystems and CMVC: Parallel Development with Subpaths

Additional Terminology (cont.)

* Subpaths: Multiple working views within the
same subsystem

— Each developer within a subsystem is given
a separate subpath

— Synchronization is accomplished with
joined objects

— Change propagation is possible

— The next release in a path is generated
from the integration of changes in all
subpaths

72 auss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes on Additional Terminology (cont.)

RATIONAL ouss 721

Subsystems and CMVC: Parallel Development with Subpaths

® Notes

. | ouss RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes

74 oss [RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

® Notes

75 sss [RATIONAL

Subsystems and CMVC: Parallel Development with Subpaths

Notes

% auss RATIONAL

