Specification of the Value Board

Functional

2

DRAFT

1}

¢l
[y
oy

i

44

i

peot

=
L2
4

A
crd

1. Summary

This document describes the complete <functionality of the Value
board for the R1000C. The purpose of this specification is to formally
define the operation of the Value board to a level of detail that
allows microcode, hardware, and packaging designers to interface with
this board correctly. The readeyr is presumed to be ressonably familiar
with +the R1000 archiftectur2 and to have access to the specifications
of the other boards for explanations of their functionality.

The organization of this document is as follows: Secticon 2 provides
a detailed definition of the functionality, on a block by block basis,
of each block on the attached block diagram. Section 3 defines the
Value board microword along with its encodings. Section 4, along with

the previous secticn, defines the microcode interface to the Value
board by specifying what hardware TrTesources are available to the
microcoder and the res*ric‘iorc that are placed on these rescurces.
Section 5 discusses the diagnostic egies that are employed to
debug tha boamd at toth the hard and microcode lzvels and what
hardwsre SUppoTY Ll these sipatagias Finally
szztian & data zrn the hardwsrez and pacikag:ing
dzs1gners whan 1 board Thesa itssuess irnclude
CLIMmiTg considar nd nower estimates, and bHozrd
l3yout details
2 Biock Dizsgram Functional Definifion

Thiz section r2ferences ths blcocck diagram of the VYzlue board
attached toc thiz document. The functionality of each block 1n the
diagram is discussed in dehail in the Ffollowing sectians,

Register Fil

ny
Jaey
1]

The principal resource for storing and retrieving data on the Value
beard 1is the register file (RF). The RF is a "three address"”
structure, 1.e. two locations (designated A and B corresponding to ©he
A and B inputs of the ALU) can be independently addressed and wused
either a&s operands to the ALU or multiplier or_as sources to the VAL
or FIU busses. On the same cycle as A and B are addressed, a third
location, named €, can be written into either to stcre the result of
an ALU operation or to store the data coming over the FIU bus. 'All of
the data contained in the RF is &4 bits wide.

The Register File memory is partitioned into three areas. The bottom
15 leocations contain the general purpose Tegisters (GP’3). These
registers, in general, should be used to store temparary values that

msy be needed during exscution of a microinstruction.

in the RF <c¢contain the special purpaose

[}

The next 14 1location

Table of Contents

¢
1

L

S]]

Table of Contents

Summarty
Bleock Diagram Functional Definition

—

L ~A0N

N
.

2 X
b
1

..
on

2

A g

B

[

o
5

it

)
"

Har

> o

ja gl

SISEUEEARY

R PRI R DI D

—4

SRS INN A TR

1.

51

s}
[T
A

.
b

2w

(S

4

|2
B 17

w

An

Register File
2.1.1. Register File Addressing
2.1.2. Contral Stack Accelerator
AlLU
Shift Mux
Multiplier
Zero Detector
Loop Counter
Bug Interfaces
Z.7.1., ¥ai. Data Bus
=, 7.2 FIU Bus
7.3 Address Bus

3
s}
(2
jul
o
4,

shics

PFrilosonhy

Hardwars Supnart

Stand &lone Testing

System Integration Testing
Micro-Diagnosbtics

Ta Cansideratione

Timing Issues

4.1, 1. Data Path Timing

& . 1.2 Clocking Issue

4.1.3. Potential P“oblems and Restrictions
Chip Count and Powsr Estimates
System Interconnections

6.3. 1. Foreplane

6.3. 2. Backplane

Layout

Machines proprietary documen

DRaFT

2

June 4.

CHID N f2 IR P e O 0 00 LI B+ bt b

e

o

W m o o e

i
1
1
1
1
i
"

A

i
=
=
=
22
e
i3
-
PR
P
pael
Pos
—
=4
i
=
=
ot
=
=
=4

0 M

X3

f

’

AR ER IS IV R
L0 00VVVHW

J R

AR LN

29

1982

Table of Contents ii

List of Tables

Table Z2-1 Register File Addressing £
Tabla 2-2: ALY Operations 8

Ratiornal Machinzs tary document DR&aFT 2 June 4, 19R2

Block Diagram Functional Definition 2

addresses. These addresses give the microcode access to the following
TESOUTCES!

— The control stack accelerator (CSA). The CSA is a buffer
that can contain the top 153 elements of the currently
executing control stack. To minimize the number of control
bits, not all of these addresses are 1immediately wvisible,
however they are kept in the RF for efficency of binary

cperations.

The current value stored in the loop counter.
-~ The current contents of the z2vo detector civrcuit

-~ The ouitput of the multiplier.

— The random micro—-s5%tate present on the beoard.

i

17
R PERC R)

i1}

1]
"
)
ot
g
W)

4
W
S

.
oW
"
V-

2 L i Begistsy File Addressing

Zingce there are 1024 RF lcecations, a minimem of 18 bits each is
necasszary in order for the A, B, and € address fi=2lds to sccesz tha
entire RF (13+1C+1C = 30 bits of microward conitrol}) To reduce the
number of microcode bits conirolling RF addresszs, a o bit field
cailad the frame pointar® {(FRAME) was 1introduced and each address
field was veduced to & hits {(&+4+46+3 = 23 bits of control). This
addressing scheme breaks the 1024 RF locations inteo 32 frames of 32
locations each. Frame O contains the 1& GP registers and all of the
special addresses, frames 1 +thtvough 321 <contain +the scratch pad

registers. The encodings of the three address fields are shown _in
Table 1. The notation used in the table is as follows. '

GP XXXX Addresses the general purpose register specified by
the 4 least significant bits of the microcode address
field. The wupper & bits of the address that specify
the registers frame are set to zero by the hardware.

REG(FRAME, XXXXX)
Addresses the register specified by the 5 offset bits

given in the microword. The upper © bits that spscify
the Ttegisters frame are read from the FRAME field of
the microword.

Machines proprietary document DRAFT 2 June 4, 1982

1}
&
1
-
[}
3
th
-

. ¢

Block Diagram Functional Defingéioﬁu:' ‘ 3
TOP+/-N Addresses the element at offset N from the top of the
current control stack.
REG(LOOP_CNTR) Addresses the register pointed at bgvthe 1qop counter.
LOCP COUNTER Addresses the contents of the 10 bit laop counter.
ZERO DETECTOR Addresses the contents of the zero detectdr.
PRODUCT Addresses the ocutput value of the multiplier.

BCT Addresses the bottom valid element in the control
stack accelerator.

Addresses the element one below the bottem valid
elemant of the control stack accelerator

rsl
]
-~
!
—

RanNDOoM STATE Addrasses all of the single bit
caontzined on the board and sssembles
iocation {for easy access. Sese s2
dztalls
Vall BUE (08A Addresses either ths data that i3 on the VAL buszs this
cycle, or the lozation in the tack
gcczlizsratar that corresponds to the tack
sddr=2ss being Teqguested. This mech. the
cpevation of the caontrol stack acceler al
1s discussed in the next section
2.1 2 ontrcl Stack Accelerator
fne control stack accelerator (CSA: is an area in the RF that
5 2 mber (up toc 13) of the top elements of the currently
b
Y

executing stack. The VAL board hardware maintains two pointers
into the CSA. The TOP register, which points to the location in the
CSA that holds the current top of stack. And the BOT register, which
points to the bottom valid element that 1is in the CSA. When the
machine first starts running. the CSA is initialized such that TOP
points to the location one below BOT (so that when the first element
gets pushed onto the CSA TGP and BOT will point to the same location)
and all locaticns in the CSA are marked as invalid

w There are two methods of accessing the control stack accelerator.
One way is to explicitly address a C5A lgcation wunder microcode
control. As indicated in the previous section, not all 15 elements in
the CSA are directly addressable by the microcode. The lgocations
available for direct reading (via an A or B address) or direct writing

{(via 3 C address} ars:

- +1 through -8 relative to the current top of the control
ck (The remaining elements are not explicitly addressatle

Rati1ornal Machines proeprietary document DRAFT 2 June 4, 1982

Block Diagram Functional Definition . 4

Table 2—-1: Register File Addressing

Microword A B c .

Field Addreszs Field Address Field Address Field
O0xxxx gF XXXX gp XXXx gp Xxxx
010000 TCP+0 TOP+0 TCP+0
0100801 TOP+1 TOP+1 TOR+1
0100190 spare spare random state
010011 regl(loop_cntr) regl{ioocp_cntri regi{loop_cntr)
C10100 Trandam state BOT-1 BOT-1
010101 zero destactor BCT
CL10110 product bus (or CS5A) write dizable
010111 lcop counter 2 cuntser
S1LICGo TCP-Z 2
CI1001 TGRE -7 7
C11010 ToP—-£ &
Siioit TOF-3 3
11100 ToF-3 i
L1l z 3

.) ,

za{frams, xxLxx) s3iTrame, TRXTR)

iy *the mic

& but can be access=zag when tThe C54 gsts “"nitg"
Cn & memor = c

=S |

- The bottem valid entry in tha C5A
~ The entry one helow the bottom valid entry in the CEA.

The other method of accessing locations in the CSA is not directly
under microcode control and occurs whenever a control stack location
that 1is being referenced <(as though it were in memory) happens _to
reside in the CSA. '

When the microcode issues a "LOAD MAR" command, the memory monitor
examines the address on the bus to see if it refers to the current
.control stack, and compares it to the current contents of the CSA. If
'the addressed location does reside -in the CSA, then the hardware flags
that the pending memory tead has "hit" in the CSA. This HIT flag
persists until another LOAD MAR command is given. If another LOAD MAR
command is issued before the first location is accessed, the memory
monitor simply rvesets the HIT flag and repeats the comparison
procedure describad above ¢on the new memory address.

I# a READ RDR command is issued, the hardware inhibits the (invalid)
memory data from being placed on the VAL and TYFE busses and instead

M
-
)

Rational Machines proprietary document DRA 2 June 4, 19E2

Block Diagram Functional Definition

drives the value in the CSA out onto the busses. The timing of this
operation, i.e. when the data is placed on the bus or is available as
an operand to the ALU, is exactly the same (from a microcode point of
view) as if the datas had come from memory. Similarly during a START
WRITE command, 1if the addressed location is in the C5A the contents cof
the WDR are written into tha CEA location during the second cycle
after the START WRITE command instead of being written out to memory

Since every time there is a rveference made to memoTy (actually
control stack space) there is a possibility that the dats will come
from the C8A, s restriction is placed on the microcode that nothing
can be sourced from the B address of the RF during a8 READ RDR cycle
Further discussion of this and other microcode restrictions 15 given
in section 4.5 of this document.

The following opertations on the locations in the C5A are available
to the microcode in the C£8A micro—order of the FIU control ward:

PilSH STACK The walues o+ the tos 0of stack pointer TOF, gets
itncremantad by one

EOF STACK The value of TOP gets decrementsd by cmaz

NG BCGT The osointer to the bottom valid lozzfisn of the CEA
{207 getz incremented by cone

cEs BCGT BCT g=2%s decramented by ong

POF DCWM TO This cperation loads the top of stack pointer with a3
nzw address that is some number of locations below the
current top of stack. The sequence of events for this
operaticon are:

1. In "Cycle Q", the address of the new top of
stack is driven cut onto the address ©bus.
During this «cycle the PCP_DOWN_TO command
is given by microcode to the memary

moenitor.

2. During Cycle 1, the CSA control logic in
the memory monitor coemputes +the correct
offset to adjust the TOP register on the
CSA and at the end of this cycle the new
value 1is loaded into this register. If the
operation popped the stack down by more
than the number of valid entries that were
in the CSA, then the CSA will be put into
its initializad state (i. e TGP = BOT-1 and
all entries are invalid).

£y

3. At the beginning of Cycle 2, the new value

=1

P June 4, 192

7

Rational Machines proprietary document PRA

.

Block Diagram Functioenal Definition

of top of stack is ready to be used for any
calculation.

n
)

ALY

The principal resource for manipulating data con ths VAL board is the
41 bit ALU. The ALU has two inputs designated A_INFUT and EBE_IMPUT. The
folllowing sowurces can be A_INPUT operands:

)

— The register file location pointed to by the A address field
of the microword

- The output (product) of the multiplier.

— The value stored in the Zero Detector.

The fellowing scurces can b= B_IMPFUT opezrands
— The ragister fils location pointed to by the § sdirss: fizid
sf the microword
- The walue on the VAL data bus

The ocutpout of the ALY can either be driven onto the address bus.
lnaded into the Loop Counter, or loaded into a Register File C Address
(through the Shift Mux).

The operations that the ALY can perform are specified by a 5 bit
fi=ld in the VaL microword. The mest significant bit cf this field
breaks the operations into two groups: logicsal (Me3 = 13 and
arithmetic (MSB = 0). Table 2-2 shows the micrcword encodings. names,
and tvesults of all of the ALU cperations.

Gf the 146 arithmetic ALU operations listed in the tsble, the last 8
are conditional operations. During each microcycle:, the microcode can
select one of the testable conditions on the VAL board to be sent over
to the SEQUENCER to participate in a conditional branching operation.
At the end of every cycle, the condition that was selected gets
latched on the VAL board and may be used in the following microcycle
to select the outcome of a conditional ALU operation. In general, this
JLAST_VAL condition is the only condition that can participate in the
conditional ALU op, the only exception to this rule is when the DIVIDE
random is selected. In this case, the Q_BIT condition 1is wused to
determine +the the result of the conditional add/subtract operation.
Additional details of the divide operation are described in section
4. 4. 1 of +this document. & description of each conditiconal ALU
cparation is as follows:

Tatisornal Machines proprietary document DRAFT 2 June 4, 1982

Block Diagram Functional Definition

C_ADD/SUB_T The ALU function is PLUS when the condition is TRUE,

' MINUS when the condition is FALSE.

C_ADD/SUB_F The ALU function is PLUS when the condition is FALSE,
MINUS when the condition is TRUE.

C_ADD/INC_T Tha ALU function is PLUS when the condition is TRUE,
PLUS_INC when the conditiaon is FALSE.

C_ADD/INC_F The ALY function is PLUS when the condition is FALSE,

LUS_INC when the condition is TRUE.

C_SUB/DEC_T The ALU function is MINUS when the condition is TRUE,
MINUSE_DEC when the condition is FALSE.

C_SUB/DEC_F The ALU function is MINUS when the condition is FALSE,
MINUS_DEC when the condition is TRUE

C ADD/RPASS BT function 13 PLWUS when th2 condition iz TRUE

whan the condiftion 1s FALSE

D _ADD/PAZZ_E_ 5 Tnz ALY Ffunchion iz PLUS when the condifion iz FALSE

FAZ% B whan the condition is TRUE
In addition to the explicit operations that microcode céﬁ specify

with the ALY micreo-orders additional ALU functionality can be

specified by some o©f fhe encodings 1n the RAD DDM field of the

microword. In particular, the PASS_A_HIGH AND PASS_B_HIGH RANDGM s

cause the 54 bit ALU to perform as taough 1t were tmo 32 bit ALU

zitting side by eide with the following functionality. The ”least

n*r*:ant” alu {(i. e the portion of the ALU operating on the 322

LEE s of the A_INFUT and B_INPUT) will perform the function specified
by tne ALy field of the microword, just as the normal 64 bit ALU
would. The "most significant" alu, however, will perform the function
PASS_A or PASS_B (depending on the RANDOM that is specified) on the
most significant 32 bits of the A_INPUT and B_INPUT. An example of
using this capability is in address generation. The upper 32 bits of
the address {(i.e. the module) can be passed through the ALU while the
lower 32 bits (the offset of the address) «can be appropriately

manipulated.

One note about split ALU operation, when selecting a condition on
»the VAL board that is a function of the ALU output (e.g. A < B, MGB =
1 etc.), the entire 64 bits of the ALU participate in the generation
of the conditian. This means for instance that if you PASS_A when
generating an address, you cannot test whether the lower 32 bits (the

address offset), by themselves, equal zero
Four other encodings in the RANDOM field may specify ALY

functionality although currently none are used. Further discussion of
ALY functionality is given in section 4. 4 of this document

Rational Machines proprietary document PRAFT 2 June 4, 1982

Block Diagram Functional Definition

Table 2-2: ALU Operations

Microword - Operation
Field MName Result

Arithmetic Operations

0 0C00C dec_a F=a -1

O 0001 plus F=4A+01

g 0010 plus_inc F=4A+B+1

C 0011 left_1_a F=A+24

¢ 0100 left_1_inc_a F=A+4A+1

¢ 0131 minus_dec F=aA-3-1

¢ 0116 Minus F=a - B

C O1li inc_a F=na + 1

G 1000 c_add/ st t CIONDE T

o 1001 ¢ _add/sun ¢

Co121o ¢ _=ddSinc _% CONDITICN

G 1C1l ¢ _add/ina _f CONDITIC

o 1100 c:dec/sub_t COMDITI

G 1123 t_dsc/isub _F CONDITE

G 11190 c_addspass_b_t CONDITICNAL

C 111l ¢ _add paszs_b_Ff CCONDITICNAL
Logiczl Cperations

1 0G0 not_a ro= AT

1 0G0t nand Fo= (& and B™

1 0C1G not_a_or_b F AY or B

1 0C1t gnes F -1 (2's cocmp)

1 0100 nor F = (A or B)™

1 0101 not_b F = B™

1 0110 Xnor F = (A xor B)™

1 0111 or_not F = A or B™

1 1000 not_a_and_b F = A~ and B ’

1 1001 XoT F = A xor B

1 1010 pass_b F = B~

1 1011 or F=Aor B

) 1 1100 pass_a F=A

1 1101 and_not F = A and B™

1 1110 and F =464 and B

1 1111 zeT03 F =20

Rational Machines proprietary document DRAFT 2 June 4, 1982

k Diagram Functicnal Definition

data
data

ALU.

latch the
c he 32
exibility
W to align

the

Bloc
2. 3. Shift Mux

The Shift Mux is a device that selects one of four sources of
for storage into the C address of the register file. The four
paths that the Mux can select from are:

1. The unmodified cutput of the ALU.

2. The output of the ALU left shifted by one bit. In this case
the MSB of the ALY output is shifted out (and therefore
lost) and the least significant bit of the shifted result
is zero filled.

3. The output of the ALU right shifted by 146 bits. In this
case the least significant 16 bits of the ALU output are
cshifted out (and therefore lost) and the most significant
145 bits of the shifted rvesult are zero filled.

4 The Write Data Register (WDR). This option is selectad by
the hardware when a START WRITE command has been issued and
the locaticn bsing written to Tesides in the Control Stack
Accelerabtor (see section 2.1.2 The microcode shoulid only
sa2lect this option whsen the WDR needs to be saved in the RF
35 A& piecs 0of microshate.

2.4 pMyltiplier

The mulktiplier logic operates on two, unsigned 1& bit gquantities
(one from the A& PORT of the RF the other from the B PORT) and produces
a 22 hit unsigned product that can be used as an A INFUT to the
Internally: the multipiier contains three rTegisters: tuwo o
H4 bit valuss from the A and B ports of the RF and one fto labtch th
bit product. These three registers provide the microcoder f1
in selecting exactly which bits are to be multiplied and heo
the product.

The two values that are driven onto the & and B ports of
register file will be latched into the two multiplier input registers
simultaneously when the RANDOM micro-order START MULTIPLY is invoked.

Once two values get into these input registers they remain there until
values are loaded in. Each of the two 64 bit input registers is
ed into four 16 bit quarters. Two microword fields, MULT A IN and

new
divid
TMULT
regis
to th
of th

The
to be
of th
Tegls

Raetin

B IN: allow the microcoder to independantly decide for

each

ter which 16 bit quarter—-register should be used as the operands
e multiplier. The encodings of these fields is given in Section 3

is document.

cycle after a multiply is begqun, the product i1s available either
driven out to the FIU or to be used as an operand on the A INPUT
e ALU. Of course to access the multiplier product, the correct
ter file A ADDRESS encoding must be selected. When the 32 bit

nal Machines praoprietary document DRAFT 2 YJune 4,

1982

Block Diagram Functional Definition ‘ 10

multiplier output is selected to be used, several options exist as to
how the output should be aligned within the 64 bit A PORT bus. The
normal {default) mode 1is to have the multiplier product in the 32
1.5B‘s of the bus with the wupper 32 bits 1zero +filled. - Two other
alignments of the product can occur by selecting one of the following
VAL board RANDOMS:

LEFT_32_PRODUCT The product is left shifted 32 bits into <0..31> of
the A INPUT. All other bits of the A INPUT are zero

filled.

LEFT_146_PRORUCT The product is left shifted 146 bits into <14..47> of
he A INPUT. All other bits of the A INPUT are zero

filled.

Thne encodings of these two fumctions are given in Section 3 cof this
document. Choosing eithar 0f thase two zp2cizl alignments dogs niot
inour § 2 penalty and the shifksed product can be usad Just as any
noTmal Al INPLUT, I+ ane of +hese RapDOME 15 cspacifiad but the
miltiplier rodyct 13 nob ssiscted as the & IMPUT to tne ALU. then the
RaAaMNDOM 2 ¥ %s2c%; operation of the VAL bosrd logic proceeds 33 1F
it were not spscifisd. Selecting one of thess two RANDROME is the only
way to align thez multiplier product in a non—-standard format

additional discussion of the multiplier and i%s use in esztendead
multiplications is given in sectiaon 4.4.2 of this document.

2.5 Zero Detsctor

The Zero Detector logic monitonrs the output of the ALU, generating
tastable conditiens that indicate whether certain ranges of the ALU
output are equal %o zero. The conditions available for testing are:

1. All 64 bits of the ALU output = C.

2. Most significant 32 bits of the ALU output = O.

]

3. Most significant 48 bits of the ALU output 0.
4. Bits <32:47>, i.e. the third most significant quarter of
the ALU output = 0. ‘

Each of the above conditions i1s available as a late condition in the
cycle that it gets selected.

In addition to generating testable conditions, the COUNT ZEROS
encoding in the RANDOUM field tells the hardware to count and latch the
number of leading zeros on the output of the ALU. The value of this
number 1s available as an operand on the A INPUT of the ALU on the

Rational Machines proprietary document DRAFT 2 Yune 4, 1982

Block Diagram Functional Definition 11

next cycle following the COUNT ZEROS instruction and remains available
until another one of these instructions is given. The format of the
number of leading zeros that is driven onto the A INPUT is as follows.
The numbers value is driven onto the six LSB’s: 1.e. bits «<58:463>, and
all of the temaining bits are zero filled by the hardware.

2. 4. Loop Counter

The Loop Counter is a general purpose, 10 bit counter that can be
used two different ways. First, the value in the loop counter can be
used by the register file addressing logic te address any A, B, or C
location in the RF. This allows the microcode to get around the
rastriction of only being able to address one of the 322 scratch
reglsters that reside in the frame currently pointed to by the FRAME
field of the microword. The second application of the loocp counter
value 135 as an operand to the A INFUT of the ALU. The 1C bit value is
rgad ocut of the counter onto the 10 LSE’'s of the A INPUT while ail of
the rTemaining bits are zevro filled by *the hardware,

The wvalue contained in the loop counter can be changad two ways., Thea
First way 15 %0 divectly parallel leoad a 10 bit value., This values may
come from one of twe places

1. The 10 LEB's of the ALU can be diresctly losded inta the
locp counter by selecting it with the C ADDRESS FIELD of
the microward,

2. The value of the BOT register in the CSA addressing logic

can bz dirtectly loaded intoc the 4 LEB's of the loop counter
by sperifying a RANDCOM. In this case the upper & bits of
the loop counter are set to zero

The second way to change the value of the loop counter is to use the
RANDOM micro-arders that specify INCREMENT or DECREMENT the loop
counter (NOTE: The DIVIDE micro-order of the RANDOM field will also
decrement the loop counter but this is implicit to that instruction
and not under direct microcode control. Further explanation of the
divide instruction is in section 4. 4.1 of this document). B

Finally, a testable condition generated by the hardware is set to 1
whenever the wvalue of the loop counter equals zero. This is an early
condition to the sequencer board. In the case where this condition is
ytested, and in the same cycle the instruction to increment (or
decrement or load) the loop counter is issued, the test condition will
be TRUE only if the pre—incremented value of the loop counter was
ZeTo0.

Rational Machines proprietary document DRAFT 2 June 4, 1982

Block Diagram Functional Definition

2.7. Bus Interfaces

The VAL board interfaces with three of the five major processor
busses: the VAL bus, the FIU bus, and the ADDRESS bus. The. microcode
contrcl for determining when a particular board should drive data onto
a bus Tesides on cnz of two boards. The SEQUENCER controlis which board
drives the address bus. and the FIU contrcls which boards drive the
Val and FIU busses. The interactions between the VAL board logic and
each of these busses is described in the following sectians

2. 7. 1. VAL Data Bus
The principal point of access to the
the register filez. Any piece of data on
as an operand on the B INPUT of the ALU
the VAL bus Similariy, in any cycle.
the VAL bus can b MPUT to
aonly o%her 3oz tha Val
1y at resides n ogenersa
ol f57 hardws = finvol o owrita2s That hit in
g C3AY ang sho s32d Dy 3d2 whsn sioring uhe
W 23 miITo0sitat
Thera are not many restrichticnz to follow whnan interfacing with tha
JeL bus The only ones currently are thz following
~- The bsoard cannot Tead data from the VAL bus and drive dsta
to the bus in the same cycle
- Whenever & memory rTead iz made. by any board., to & control
stack address space, in the zame cycle of the read as READ
DR is specified the VAL bus MUST be specified as the R
address oF the register file. Whenever a write 15 made., by

any board, to a control stack address s
cycle after the START WRITE instruction is given the
(write disabla) C ADDRESS of the RF must be specified.

—~ When executing a POP DOWN TO instruction on the CSA; in the
cycle immediately after the one when the pop down address is
put on the address bus the VAL bus MUST be specified as the
B address of the register file

2. 7.2 FIU Bus

Data is driven ontao the FIU bus from the & PORT of the register file
and da%a rveceived from the FIU bus can be stored into any location
that can be addressed as a C address. The primary use of the FIU is %o
extract and align data that flows betwesn processor memory and loecal
storage on the VAL and TYFE boards. The previous statement implies
the principal source of data that the VAL board receives over the FIU

Rational Machines proprietary document DRAFT 2 June 4, 1982

t

Block Diagram Functional Definition

is data that has come from main memory via the rotator and mer

13

bus ger
on the FIU. However, since the FIU bus appears to provide a very
flexible data path between almost all of the boards in the processor,
there is a posibility of assuming functionality in the FIU data path
that does not exist. The following are the legal and illegal data
paths to the VAL board over the FIU data bus: o
LEGAL PATHS 1. Data coming from main memory over the VAL bus,
geing through the FIU to the FIU bus and getting
stored directly in the VAL RF.
2. Data coming out of the A PORT of the TYPE board RF,
over the FIU bus and getting stored directly in the
VAL RF.
3. Data coming out of an i1solated (i.e. non tegister
£ile) processor rvegister. going through the FIU to the
FIU bus and getting stored direchtiy in the VAL FRFE.
Ezamplas of isolatad vegisters are Timer values on the
SYZBEUS hoard. SYSRBUE sitatus rsgisiters, Mak, and ROR
ILLEGAL PATHS 1. Data coming out of a RF (eiftha2r VAL or TYPE):, gaoing
thraugh ths FIU to thes FIU bus and getting stored back
inte tha Val RF.
Z. Data. from anu sources, going through the FIU to the
Fild bus, than going through the VAL ALU and getting
stored into the VAL RF. {There 13 currtently no way ko
genarats this path under wmicrocode control. it 1is
includzsd heare for information purposss only
3. Data coming from the TYPE RF across the FIU bus
through the VAL ALU and getting sitored in the VAL RF.
{There is currently no way to gsnerate this path under
microcode control. It is included here for information
purposes only)d.
4. Data coming out of the VAL RF, going over the FIU
bus and through the FIU, then getting written into the
WDR. ’

In addition to the legal data path functions described above, the
receive path of ¢the FIU has one other wuse: merging. When the
appropriate RAMDOM encoding is selected on the VAL board, the
currently selected testable condition is "stuffed" into the LSB of the
FIU bus receiver, the other bits of the FIU bus are unaffected. The
principal use of this feature is when all zeros are driven on the FIU
bus, This zero extends the selected condition and thus allows the
microcode to store the boolean value of the selectead condition in one
cysle.

Rational Machines proprietary document DRAFT Z June 4, 1982

Block Diagram Functional Definition

2. 7.3 Address Bus

The address bus 1is driven by the output of the VAL board ALU. All
addresses that are generated on this board are bit addresses,
i e, when an ALU output is an address, the seven least significant
bits of that output specify which bit the data object of interest
begins at within the the 128 bit word that is accessed Since the main
memotTy system only looks at word addresses, the seven bits of bit
address are fed directly into the FIU to be used for exitracting fields

cut of memorTy words.

For each address space defined in the R100C architecture, the
maximum offset into that address space is, in general, different from
any other space. The microcode does not need to explicitly generate
the correct number of leading zeros to drive onto the address bus for
each different space. This detail is auvtomatically done by the
hardwsre byg %runcating the output of the ALY at the corvect bit
position fav the particular address space and then zevs filling
2. Microword Spscification

following s2ction summarizzs the complets mictouword that
cantrols thée ogeration cof the VAL beard. The organzzsticon of this
section specifies each field in the microword, the encoding a&nd name
2+ e2ach micro—order within a field and, whean nzeded a brief
description of the function the micro-order performs. Since almost all
of the micro-orders are referenced in Section 2. the reader should
rzfer fto The appropriate place in that secticn for a more detailed
dagcription of an encodings functionality

Mota, the name of each encoding in the microword 15 prefixed by a
AV This is used to distinguish bstween the VAL board and TYPE board
micrcowords which %o a large extent are identical.

Rational Machines proprietary document DRAFT 2 June 4, 1982

Microword Specification

s

V RF_A (b bits):

ENCODING NAME FUNCTION

COxxxx v_gp select GP Tegister xxxx

Q10000 v_tos+(C select current top of
control stack

010001 v_tos+1

Q10010 spare

010011 v_teg{lcop_coaounter) select reg. pointed
to by locop counter

Q10100 random state

C101G1 zero_dtect select output of zero_dtect

10110 product select ocutput of multiplier

010111 loop_counter select output of loop counter

G11CC0o v_tos-8&

G110t v_tos=7

011C10 v_tos—&

ORI RSN v_Tos-3

SR RN v_tos-4

S111C v _tzs-3

Ci1:ii0 v_tos—2

ciritd v_tos-1 .

Ixgxyx s_Tegiv_Fframe, xxxxz) select register xxxxx
in the frame pointad
to by v_frame fileld

YV RF_B (& bits sgecify the B address of the register file
OCxxxx v_gp

C100C0 v_tos+0

G10C01 v_tos+l

CiC010 spare

010011 v_reg{loop_counter)

0101C0 v_bot—-1

010101 v_baot

010110 val_bus (CSA)

010111 spare

0110860 v_tos—E

011001 v_tas-7

011010 v_tas-6

011011 v_tos-5

011100 v_tos—-4

0111Ct v_tas-3

01111G v_tos-2

cii1i111 v_tos-1

lxxxxx v_tegl{v_frames, xxxxx)
Rational Machines proprietary document DRa&FT 2 June 4,

specify the A address of the register file

1982

Microword Specification 14

V_RF_C (& bits): specify the C address of the register file

O0xxxx v_gp
10060 v_tos+0
C10C01 v_tos+1
CiC010 random state (writs dissble to RF}
010011 v_tegl(loop_counter)
0101G0 v_bot-1
Q10101 v_bot
010110 write disable
010111 loop_counter (write disable to RF)
011CCO v_tos-8
0115001 v_tos-7
011010 v_tos—&
g11011 v_tos-3
11160 v_%tos—4
QitlCe v_to5=s-3
11110 v_tos-2
Siliid v _tos—i
HES N B8 _regiv_frama. 3143
Faalt (3 bivss spe2cify gcne of ths 32 possitcls frames in the RFE
XEH AN frams
Vv C_SRC (1 bix spacify which data source gets passed to the
C FCORT of the RF
< v_ o Fiu FIU - C address
1 v _C_Mmux MUX - € =ddress

V_MUX (2 bits): specify the data source that the SHIFT MUX will

pass to the C address .
Q0 v_alu_left ALU left shifted 1

01 v_alu ALU vunshifted

10 ' v_alu_right ALY right shifted 16

11 v_wdr WDR tregister

Fational Machines proprietary documant DRaFT 2 June 4. 1982

Microword Specification

V_ALU (5 bits): specify the ALU function

0000
o0t
Q0018
QG011
0G10GC
00101
0011G
0Cc1iti
010006
01001
1010
01011
0110GC
01101

5]
.
-
—

»

PRGN

B U i T)]

RSN @R

F
\‘
3

~ vt (T) ke
-+ {‘*‘ [y (;3 [RTe

‘‘‘‘‘

TGICE
1910
121138
1o1tii
11300
11801
11012
1101t
11100
111081
11110
11111

dec_a

plus

plus_inc
iaft_1_a
left _1_1
minus_de
minus

inc_a

c_add/sub_t
c_add/sub__¥F
c_add/inc_t
c_add/inc__f
c_dec/sub_t
c_dec/sub_¥f
c_add/psass_b
¢ _add’/pass_b

ne_a
c

2330
O |

i o
e
]

b W I 1]

o ey 3
ul

J 300

o w
G
-4
i

b e B s B I
0O or
N

- -

ot

o T B2
[]
0

3

1.

[}

JRs |

{173 = B B & PN
3% T Lo 0
= WYY i

| > 0

=3

3 W or

el

[b]
3
=%

1eras

F=a-1
F=aA+E
F=A+T5 +
F=a+a
F=A+A+
F=A-8 -
F=A-8
F=a+1

conditional
conditional
conditional
conditienal
conditiconal
conditional
conditional
conditional

Fo=oaw

F o= (A and
o= Aa™ or
Fo= =1 {2
F = {Aa or

F = B

F = (A <51
F = A or BY™
F o= A™ and
F =& xcr B
F = B

F = A or B
F =4

F = A and B
F A and B
F = 0

Rational Machines proprigtary document

[IO v

plus or minus
minus or plus

plus or plus_inc
plus_inc or plus
minus or minus_dec
minus_dec oT minus
plus or pass_b
pass_b or plus

[}
[}
3
v

&

DRAFT 2 June 4.

1982

Microword Specification i8

MULT _Aa_IN (2 bits): specify which group of 16 bits is used as
the multiplier A INPUT

00 v_multa_O - bits <0.. 15>
01 v_multa_16 : bits «16&.. 31>
1C v_multa_ 32 bits <32, .47
11 v_multa_48 7 bits <48.. 63>

MULT B_IN (2 bits): speciFg-which group of 14 bits is usad as
the multiplier B INPUT

ol v_multh_0O bits <& . 13>

Ol v_multb_14 bits <14, 31

1< v_multh 32 bits <32 . 47>

il v_multb 48 bits 48, &35

_ESNLD 3 bitsg! specify ths dezcribsd tandom operation

urels na_0p

S0l inc_loop entr

VR dec_looep_cntr

BTN S st_mult start multiply op

G100 bot_to_lnoop EOT -3 Loon caunter

D101 count_zeros count # leading z2Tos

0110 cond_to_fivu selected condition -X
LEB of FIU input

0111 left_32_product oroduct gets left
shifted 32 bits

1000 left_1& product product gets left
shifted 1& bits

iCO1 pass_A_high pass upper 32 bits of
A INPUT to ALU

1010 pass_B_high pass upper 32 bits of

: B INPUT to ALU K

1011 divide

1100 spare

1101 spare

1110 spare

1111 spare

Rational Machines proprietary document DRAFT 2 June 4, 1982

AR

Microword Specification ' ’ 19

V_CONDS (5 bits): specify the selected condition to be sent to the
sequencer for processing. Selected condition also gets
latched on the VAL board. The candition bit is set TRUE
if the equation below is satisfied

00000 zero condition bit = O
oco01 alu_eq_z 64 bit ALU ocutput = 0O
00010 alu_ne_z 64 bit ALU output /= 0O
00011 a_lt_b a_alu < b_alu (signed)
00100 a_le_b a_alu <= b_alu (signed)’
00101 alu_co 64 bit alu carry out
00110 alu_of &4 bit alu overflow
OC111t alu_1%_z2 MSB of alu = 1 (ALU out < 0)
01800 alu_32_z upper 32 bits of ALU ocut = O
alu_48_1 upper 48 bits of ALU ocut = O
alu_mid_z bits <32:47> of ALU out = O
g _bit
loop_cntr_z losp counter = O
v_1ast last cycles VAL condition
a2lu_l=_z &4 b1t ALY cutput = 0
Zpare
spares
spars
spars
spare
spare
1 spare
13118 spatre
10111 spare
1146006 spare
11301 spare
1101C spare
1101 spare
11100 spare
11101 spare
11110 spare
11111 one condition bit = 1 §

TOTAL NUMBER OF BITS IMN MICROWORD = 44

4. Microcode Considerations

The foliowing section describes in more detail some aspects of the
microcode interface to the VAL board. In general. the discussion 1in

this section 1s directed toward three ‘-areas: complex microcode

Rational Machines proprietary document DRAFT 2 June 4, 1982

Microcode Considerati

processes (arithmetic
condition and event ha
imposed by the hardwsr

ons

operations,
ndling. and
e.

microstate saving and restoringl,
microcode restrictions that are

4. 1. Context Switch Microstate
The sum total of microstate that exists on the VAL board consists
cf
— The Register File. The Cantrgl Stack Accelerator ({EA) and
general purpose {(GF) registers, in general, will need to be
savad on every context switch along with some (small?™)
number of scratch pad registers. There 1is no harduare
checking of which RF locations need +tc be saved as
microstate, This must be totally kept track of by microcode.
\ (N bits?
— The valus containaed 1n Tha loop counter (10 bitel
~ Thg walue of +the number of leading revos cantalned 1In the
rern detector (& bitsl.
- cyoles salechted condibtian gets latched on
(1 bid:
Accese to all of this microstate for saving and restoring on condtext
LEoh is wvery sivaighiforward Al o 54, GF, and scratch
ters that need %o be saved can be adid zd onn the B port of the
nd 1mmediately be saved or resitored on the VAL data bus. All of
amaining bits of random state can be accessed thnrough an A PORT
€3 on the RF This random statea is packed inte the least
ficant 17 bits of the word with the rvemaining bits zers Filied by
ardware. The word can immediately be driven onto the FIU bus +o
0 further packed into a "microstate"” block (or whatever) that will
be saved. When rtestoring state, these bits simply get written into
the RANDOM STATE location of the RF and the hardware will unpack it

appropriately.

2.

4. Conditions

The VAL board genera

in cond
be divi

board for
this board
conditions

use

can

egquencer and te
alu conditions

Machines prop

tes 16 testabl

be selected on a given cycle to be sent

any one of which may
the microsequencer

e condit
over

ions,
to

itional sequencing eperations. The conditions on
ded into two types: alu conditions and non—-alu
are designated as late conditions by th
can conly be used 2ither as hints or latched on
ted in the nest cycle. The feollowing is a list of
and a brief description of what the condition
rietary dogcument DRAFT 2 Juns 4, 1982

Microc

ALU_EGQ

A LT B

A LE B

ALU_32

ALU_48

ode Considerations 21

Z

2

_Z

{ALU_MID_Z

A1l

non—aly

This condition is TRUE whenever the &4 bit ALU output
equals zero. The ALU carry out and ALU overFlom bits
are not taken into consideraticn when generating this
condition.

Thiszs condition is TRUE whenever the 64 bit ALU output
does not equal zervo. The ALU carry out and ALU
overflow bits are not taksn into consideration when
genarating this condition.

This condition is TRUE when the A input of the ALU is
less +than the B INPUT. The comparison treats A and B
as signed numbers {i.e. negative A is always less than
positive BJi. Ta gesnerate this condition the ALU must
be executing the SUBTRACT instruction

This condition is TRUE when the A input of the aALU is
iess than or egual to the E INPUT. The comparison
treats A and B as signed numb s {i.®8. negative A is
always less than positive B To generate this
condition the ALY must be ezscuting the SURTRACTY

instyruchion.

is TRUE when &h
iows a &4 bit re

11% conditio s TRUE when the MER (sign bhit] e
ALY = 1. This is equivalesnt to testing whether the &4
bit ALU output < O

e 73

This condition is

£
= 0. This condition
the ALU_LT_Z conditi

ue whenaver the &4 bit ALU ocutput
is logical or of the ALU_EQ_Z7 and
ons

This condition is TRUE when +the upper 32 bits
{(i.e. bits <0..31>) of the ALU output = 0.

3

This condition is TRUE when +the wupper 48 bits
{i.e. bits <0..47>») of the ALU output = 0

This condition is TRUE when bits <32 .47> of the ALU
output = O.

conditions are designated as eavly conditionszs by the

micrpsequencer and so can be used either as braench conditions in the
microcycle or latched on the seguencer and tested in the next

current
cycle.

The follis

wing is a list of the non—alu conditions and a Tief

description of what the condition means.

Rationa

I Machine

ul
©T
-1
]
e
~3
1ed
M
ai
41}
~$
“
ju '
[}
in]
[
3
n
i
ot
j}
i)
T
-~y
18]
T
o
3
i1}
I
e
0
i
B

Microcode Considerations 22
ZERD When this condition is selected a zero is driven out

on the VAL board condition wire.

ONE When this condition is selected a one is driven out on
the VAL board condition wire.

This condition is TRUE when the QG bit on the VAL board
= 1. The Q bit is & condition used by microcode during
a divide operation that determines the outcome of the
conditional add/subtract that needs to be done by the
ALY, For a more detailed discussion of the G bit, andg
the divide operation in general, see Section 4.-4. 1 of

this document.

ied
[xe}
ot
-4

LR CNTR_Z Thizs condition is TRUE when the the lacp
counter = Q. It is ibls tt¢ same cycle
that the value nf the counter 1g tested.
the instruction to ant vt or load)
The loop countar 13 13 in tris & Ifestk
candition will b= T niy if the pre~incremented
valuye of the loop counter wazx zarva

GoLaRT &% the eng th
=alscted on " 1;
hoari {Tthis iz differseny fram th
the microsequencsr hoard? During &
than it is possible using the v_last
zelect as a condition the values of the ¢
WA S latched on the V&L board durin
cyclea This selection 1s primarily
hardware diagnostics, howsver, 1t is mad
the microcode as a selectable condition

are are no micro-events or macro—events generated by the Val

4. 4 GSpecial arithmetic Operations

Each of the following sections describes the details of the hardware
support of the more complicated arithmetic functions that are handled
by the VAL board. For each section: the reader is refered to Secticn
2 of this document for a description of how these operations fit inte
the functionality of the hardware as a whole. .

1

Ratienal Machines praoprietary document DRaAFT 2 June 4. 1982

Microcode Considerations =23

4.4 1. Divide

The divide operation is implemented in microcode with some specific
hardware support built into the VAL board. The goal of dedicating
hardware support 1is to allow a standard non-restoring algorithm that
gxecutes a divide in approximately the same number of cycles as the
number of significant bits of gquotient.

Three pieces of hardware logic are provided as hardware suppori. the
a bit, the ALU_LT_Z bit, and the leading zero counter of the ZERD
DETECTOR. The leading zero couniter has been described in section 2.5
of this document btut &8 brief description will also be given here
Essentially, the number of leading zeros of +the ALYV output can be
counted at any time (subject to the restrictions of section 4.3 of
this document) by selecting the RANDOM micro—order COUNT ZEROS on the

Véal board. Un the next cycle after counting, the number of leading
: :T address of the RF and may be used
the FIU. For the divide insitruction,
the dividend {(numeraltor! angd the
o determing the number of
11 s aproducsd for the current
of Denom minug Leading zeros
tient bits
this
us
that
next
following:
4O BIT = ALY carry out -—= 1if no divide 1s in progress
This is the initial value the G
bit needs to begin a divide. k
G BIT = (0 BIT xor ALU carry out xor ALU_LT Z)™ -— when divide
‘ in progress
Cn the VAL board, for each iteration in the non-restoring divide

algovrithm: thes denominator conditionally gets esither added to or
subtracted fram the numerator, depending on the value of the G bit
The numerator then gets shifited left by one, the loop counter gets
dzcremented by one. and the G bit gets sent over to the TYFE board and

i g R 1 PV o 1y " P -
Rational Machines proprie

ary document RDRAFT 2 June 4, 1982
Y

Microcode Considerations =4

gets shifted in as +the least significant bit of the guotient to
conclude the iteration. This process is Tepeated wuntil the Ilocp
counter Teaches zero. at which point the quotient is complete and
re2sidaes in a register on the TYPE board.

To simplify %the microcode interface . same of the above operations
are performed automatically by the hardware when the microcode selects
the DIVIDE instruction in the VAL boards RaANDOM fiesid During each
cycle of the principal loop in the divide algorithm the DIVIDE random
and the C_ADD/SUDR F conditiconal ALU instruction should be specified.
For each of theses cycles the hardware will:

1. Decrement the loop counter.
2. Use the current @ bit to select eithsr the add or subtract
function for the Y¥AL beoard ALU (G bit equal zero =3 add)
Val
hat
YRS

(el

i1l
[w}
-

i
i
[IR

3
~1
By
i
Lt

P S

i3

3]

-

Y]

e e Vo

.
(10

PR
Ir

o

W,

-

1

bt

[
[
iy

e

-
o)
m
1]
.
o
3]
e}
m
bl
o i
'
}

4 4 2 Multiply

in general:, thers are two types of multiplies that need Lo be done:
those necessary for array indexr calculations and those that are just
regqular multiplications. In terms of speed, array indexing operations
are a wmuch higher priority and so the hardware is optimized for this

case. k

It is anticipated that a very high percentage of all array indexing
multiplications will have operands whose values are less than 16 bits
(It is possible for these operands to be up to 32 bits 1long and so
they must be explicitly checked to see that they fall in the 16 bit
Tange). The VAL board multiplier is optimized for the case of two 16
hit operands. in +%this case the entirve multiply and accumulste
aperation needed for array indexing can be dane in only two cycles. In

the first cycle, he two 44 b1t opevands are latched into the
multiplier input registers by selecting the RANDOM instruction
ST_MULTIFPLY. At the same time., the correct 145 bits of each register
can be passed to the multiplier logic by choosing the appropriate
mrero-erders of the MULT_A_IN and MULT_EB_IN microwprd fislds In the

= June 4, 1982

=
T
o
2
bt
w
fed
=
i
o]
o
b
3
[
1
]
~3
b
=]
)
-
0
ot
B
-3
Lo
Q.
pe
fn]
[
3
19}
i
<t
3
P
g
T
—i
)

Microcode Considerations 25

second cycle, the 32 bit product is available to be added with the
array ‘s base offset to complete the array index operation. The product
can be accessed by specifying the PRODUCT address of the & FUORT of the

RF.

When doing an extended multiply {i.e. the input values are betwesen
14 and &4 bitsi, the multiplier is wsed to produce 32 bit partisl
products (at a rate of one partial product per cycle) which must all
b2 accumulated together +to Fform the final product. This type of
multiply is begun in the same way as a 14 by 14 multiply, by latching
the twe &4 bit operands in the multiplier latches with the ST_MULTIPLY
iﬂ’tr sction and choosing the desired 1& bit multiplier inputs with the

and MULT_B_IN fields. In the next cycle, the first partial
available at the output of the wmultiplier. This partisl
accessed through the A& ports PRODUCT addre

o

through the ALU, or combined with < her o
in some scratch leocation, The partia iTod

szed immediately, it 1 Ti t
until two maw inpu t 1

pond

cle

hi]
RS
ST
L]

a

B

Rt

o & @ :

ti 3 & Can zan fov gezneraiting
product. Thi gaEner artial products i3
2 full multup 5 Com The full details

e laft up fo microcode

available, 1% must be accumulated

chitain the final rtesult, Alzo
ieff by the proper amount heafore
cparation is bhuilt into the

g one of two RANDOM cpesrations
When either of these tftwe RANDOM

te

instructions is G of the multiplier output is shif
to bit 47 (left shift 1&) or bit 31 (left shift 32) before it iz made
available to the ALU input. All other bits are zero Ffilled b
hardware on both of +these shifts to allow immediate addition with

previous partial products

Two final notez on multiplication. First, as previously mentioned.
the multiplier has been optimized to perform a 16 by 16 multiply as
quickly as possible for array indexing. Since arrtay index calculations

re always done on unsigned numbers, this is the only capability built
into the multiplier, If two signed numbers need to be multipliied.

ther some pre—-processing or post-processing (or both) must be done
by the microcode such that only an unsigned mulitiply is necessary.

Second. nones of the three registers in the multiplier are available
ta 2 saved oy restored asz microstate. Thiz implies that some care
must be taken by the microcode to make sure that these wvalues never
nead to be saved.

Rational Machines praoprietary document DRAFT 2 SJune 4.0 1982

Microcode Considerations 26

4 4 3 Floating Point Operatiaons

There is no dedicated hardware support for floating point operations
on the VAL board. All floating point operations will be implemented
gither directly by microcode using the existing Ffunctionality of the

Yal, TYFE and FIU boards, or by software

4 5 wmirreocode Restrictions

This section summarizes all of +the known restrictions that the
hardware imposes (mainly for timing veasons) on the microcode. Most of
thase Tvesiriction were discussad in previcus sections of this

5]
b IS

: 5
ducumant and therefore the reader is refzred, mainly to Section 2, fo
her details of each of these restrictions

-~
N
~ts

¥
o
[
€
o
2
-3
]
N
3
~3
™
i
ot
Jot
=y
it
ii]
b}
i
i
o
]
»]
Ji
1
ju
[
o
o
4]
oy
|
=

ga ol R FoT
tha VAl Vel {C58
addrass. ite 13z made
to a Can sSp3ce in the
sacond oy« af h STARTY WRITE
imstructicon 1S issued the oniy Jegal C
ADDRESS that may be specified Ffor the VAL
agard RKF i3 the default {write dizablel
address. This 1s because it is impussible
to determine & priori whether a given
control rveferencs will "hit” in the £84 and
therefore necessitate the VAL and TYFE
boards asccessing the CSA instead of memory.

mn

When executing & PGP DOWN instruction, the
cycle immediately after the address being '
popped down to is driven onto the ADDRESS
bus, the only legal B ADDRESS that may be
specified for the VAL board RF 1is the
VaL_BUS (CSA) address. This restriction 1is
imposed by hardware timing

3. One note of caution when executing Control
Stack POP or POP_DOWN instructions. The
hardware calculates whether a Control BStack
address hits the CEA in the same cycle that
the MAR is loaded with the address. Let us
say in this example that a particular
contral Ttead hits the C(CS54& at the top of

Ratiornal Machines proprietary document DRa&FT 2 June 4. 1982

Microcode Considerations ' 27

stack minus two (TOP—-2) location. Since the
daeta from this rtead is no%t driven onto the
Vabl, bus until the READ RDR command is
issued (possibly many cycles later) 1t is
paszible for the microcode to POP or POP
DOWN he top of the stack to a point below
where the address hit in the CGA. In +this
case when the READ RDR command is issued,
alid data cannot be guaranteed since the
CSA will be rTeading a location above the
current top of stack. The hardware does not
pnrotect against this scenario. It is up to
the microcoder to exercice restraint in

sing POP and POP DOWN instructions in this
type of situation.

ot

m

&'1’

= \.J'T'LHQ

0 o
sLoraed into th
cuTrently no way
under micrcoode
nera for informadtion purpusas
2. Deta cannot cvome fram the TYPE RF across
the FIU bus, through the VAL ALU and get

stored in the VAL RF. (8Bimilarly VAL data
cannat get stored in the TYPE RF in this
manner {There is currently no way *to
generate this path under microcode control. _
It is inciuded here for information k
purposes only)l.

4 Data cannot come out of the VAL RF, go over
the FIU bus and through the FIU, then get
written into the WDR.

OTHERS The following are all of the other restrictions
imposed by the VAL board hardware

')

The COUNT ZERDS instruc cannot be used
to couynt the number of ing zeros of the
Vel ALU cutput when the INPUT tao the ALY
Ls coming from the VAL BUS {(C54) address of
F. This is because of harduwuare timing

—r

[aad <+
€1

ic
ed
-
Ly

Machines proprietary document DRAFT 2 June 4, 1982

Microcode Considerations 28

5. Diagnostics

This section, and all of the subsections that it contains, will not
be a part of the initial specification of this board. Rather they will
be added later as more of the specific details become known. The
outline of +this section 1is included at this point for the sake of
completeness, and to elicit suggestions as to what +the content and
format of each section should be

contains, will
d. Rather they wl
become known.
int for the sake

-
et 1)
T

D:T
]

e
L o~y §

the content

u

&.1., Timing Issues

&.1. 1. Data Path Timing

6.1. 2. Clocking Issues

& 1.3 Potential Prohlems and Restrictions

Rational Machines propriectary document DRaFT 2 June 4, 1982

Mardware Considerations

o
n

Chip Count and Power Estimates

-

. 3. Suystem Interconnections

&. 3. 1. Foreplane
H 3.2 Backplane

6. 4. layout

Rational

Machines

P

v
1

]

)

rietary document

June 4,

1782

Functional Specification of the Type Board

DRAFT 1

People exaggerate the things they’ve never had,
they admire types because they have no experience
with them.

- George Bernard Shaw

Rational Machines proprietary document.

1. Introduction

This document describes <the functionality of the Type board of the
R1000. The specification defines in detail the microcode and hardware
interfaces to the board. The reader is assumed to be familiar with
both the R1000 architecture and the specifications of the other boards
in the R1000 processor.

The type board is extremely similar to the wvalue board. The
similarities are designed in ¢to allow the microcode to have the
resources of two 64 bit CPU’s gperating in parallel. This point can

not be stressed enough! TWO &4 BIT CPU’S OPERATING IN PARALLEL.
Because of this fact the functionality, hardware, and microcode., for
the two boards are extremely similar.

In general the differences are the value board has a zero detector. a
multiplier, and a shift mux and the type board doesn’t. While the
type board has some checking circuitry (privacy and <class}? and the
value board doesn’t.

This spec will only explain the sections of the type board that are
drastically different from the value board. In maost cases these
diFFerencéfare obvious from the differences in the microword.

2. DBlock Diagram Functional Definition

This section refereces the block diagram of the Type board attached to
this document. The functionmality of each block in the diagram is
discussed in detail in the following sections.

2.1 Register File

Same as the wvalue board except there is no zero detector or
multiplier.

2.1.1. Reqister File Addressing

Same as the last comment.

2.1.2. Control Stack Accelerator

Identical to the value board.

Rational Machines proprietary document DRAFT 1 June 14, 1982

Block Diagram Functional Definition 2

>

U

2 2.

The ALU control and operation is exactly the same as the value ALU,
except there are no conditional ALU operations. (See the microword
specification for the exact ALU control available.)

The random field of the type microword allows the selection of the Q
bit (a bit supplied by the value board over the backplane) as the
carry—in to the ALU. (See the random field of the microword.) When
this random micro—order is not selected the T_ALU field of the type
microword determines the carry—-in to the ALU.

2. 3.

X

ux

The type Mux determines the source of data for storage into the C
address of the register file. The two data paths that the Mux can
select are:

1. The unmodified output of the ALU.

2. The MWrite Data Register (WDR). This option is selected by
the hardware when a START WRITE command has been issued and
the location being written to rtesides in the Control Stack
Accelerator (see the previous CS5A section). The microcode
should only select this option when the WDR needs to be
saved in the RF as a piece of microstate.

(This mux operates differently than the corresponding mux on the value
board.)

2.4. Checker

The checker circuitry on the type board can be divided into three
function units.

1. Privacy Checker ——- does a first level privacy check on one
or two operands

2. Class Check ~- —checks <class compatability of one or two
operands.

3. Of_Kind conditions —— detects special type conditions.

The privacy and class check can cause micro events, and are testable
as conditions.

Rational Machines proprietary document DRAFT 1 June 16, 1982

Block Diagram Functional Definition

2.4.1. Privacy Checker

The privacy checker 1is used ¢to check if the operand{(s) under test
is(are) in the scope of privacy. The check facilities are mostly used
for scalars, but additional testable conditions are available to test
for structures. The privacy checker has a 32 bit outer_frame_name
register that is loadable from bits (0:31) of the B_bus. This
register must be reloaded during every context switch (and WuUTring some
instructions 1like <call and exit}). To use the privacy checker the

type~links of the control_stack operands(s) must be on

the A_bus

and/or DB_bus. The check is selected from the privacy check field of

the microcode

The privacy checker can perform the following five checks:

1. Bin_eq -~ Privacy check for equality and assignment.
operands on both the A and B bus are checked

2. Bin_op -~--~ Privacy check for a binary operation.

operands on both the A and B bus are checked

3. A_op —— Privacy check for a unary operation. The
on the A_bus is checked.

The

The

operand

4., B_op -—-— Privacy check for a unary operation. The oberand

on the B_bus is checked.

5. Names_equal —— Binary check for the same path names on bothﬁl

the A and B bus.

Using the following identifiers the privacy checks can be

expressed as boolean equations.

A}

accurately

Rational Machines proprietary document DRAFT 1 June 16, 1982

Block Diagram Functional Definition

o_f = outer_frame_name register(0:31)
A_name = A_bus(0:31)
B_name = B_bus(0:31)
A_lis_priv = A_bus(34)
B_is_priv = B_bus(34)
A_drv_priv = A_bus(35)
B_drv_priv = B_bus(33)

]

Names_same (A_name = B_name)

A _op = (A_drv_priv) V (A_is_privi(o_f = A_name)”™
B_op := (B_drv_priv) V (B_is_privi)(o_f = B_name)™
Bin_op := (A_op) V (B_op)

Bin_eq := (Bin_op)(Names_same)™

(The last four equations indicate that the first level check fails if
the equation is true.)

The privacy checker control logic can enable one of six possible
privacy checks during a micro—instruction. These six different
privacy checks can generate one of four possible micro events. The
following table indicates the correspondence between the privacy check
enables and the micro events generated. (See the privacy_check field
of the microword for the details on enabling a privacy micro event.)

Privacy Check Micro Event Generated

Bin_eq Bin_eqg

Bin_op Bin_op

A_CTOS1_op [TOSI_ _op
A_LTOS-13_op [TOS-11_op
B_LTOS1_op LTOS1_op
B_CTOS-11_op [TOS-11_op

Table 2-1: Privacy Micro Event Generation

(The hardware doesn‘t check if a operand 1is ([TOSI or [TOS-11.
Therefore there is no guarantee that the correct micro-event is taken
if the microcode is incorrect.)

All of the privacy events are early and non-persistent. Since they
are early events the instruction that caused the event will be re-
executed if the micro event handler returns. Te prevent the privacy
event from re-occuring, when the privacy event handler returns, a
"pass privacy state" exists in the logic. If the micro handler

Rational Machines proprietary document DRAFT 1 June 16, 1982

Block Diagram Functional Definition S

decides that the operand(s) passes the additional privacy check in the
handler, the handler should set the “pass privacy check" state. This
state is set by specifying the ‘"pass privacy check" order of the
privacy check micro-field. If a privacy micro event is enabled and
the pass privacy state is set, the micro event doesn‘t occur and the
pass privacy state 1is cleared. The pass privacy state can also be
cleared from the random field. (NOTE: The pass privacy state has NO
effect on the privacy test conditions.) The pass privacy state must
be cleared during context switches, but does not need to be restored
(the event will occur again). (NOTE: The pass privacy state will not
change when the privacy check micro order is a ‘“"nap", unless the
random field clears the state.)

2.4.2 Class Check

The <Class checker is used to compare the of_kind bits of a type_link
on the A_bus or B_bus to the other bus and/or to a 1literal. This
check provides a parallel mechanism for ensuring that operand(s) are
of the correct or same type for a specific instruction.

The class check hardware is capable of 3 different 7 bit compares
The conditions and events that can be genesrated are shown in the

following table.

Hardware Test Micro event Condition
A _bus(57:63)=class_1it X X
B_bus(57:63)=class_1it X X
A_bus(S57:63)=B_bus(37:63) X X
A _bus(B57:63)=B_bus(57:43)=class_1lit X X

Table 2-2: Class Checks

Only one class check micro event can be enabled during any particular
.micro—instruction. The random +field of the type microword selects
which class micro event is enabled (see the microword specification
section). All of the <class micro events are early events which
prevent the current instruction from completing. (All of the <class
micro checks cause the SAME class event and branch to the same micro
event handler.) Any of the above conditions can also be selected as
the currently tested processor condition (see the microword

specification section).

(Implementation Note: In an effort ¢to reduce the width of the

Rational Machines proprietary document DRAFT 1 June 16, 1982

Block Diagram Functional Definition =)

microword the frame bits of the type microword have been overloaded

with five bits of the class lit. The class 1it is seven bits. The
most significant <two bits are a field in the microword. The least
significant five bits are overload with the frame microbits. I+ a

micro—instruction wuses both a frame address and a class check with a
class 1lit, the frame address must be the same as the least significant
five bits of the class lit. (For more details see the microword

specification section. })

2. 4.3 0f Kind condition

The checker circuitry also provides a special test condition that can
be used for "subrange" detection on the "of_kind" encodings. The
hardware has 64 patterns programmed into two proms. (The class 1lit is
overloaded to <choose the patterns.) The first prom contains a seven
bit pattern which is compared to bits (37:63) of the DB_bus. The
second prom contains a seven bit mask which indicates which bits are
to be compared. The output of the comparator is one of the selectable
conditions on the type board. The following table lists some of the
patterns that are currently included in the test conditions.

PATTERN NUMBER PATTERN NAME BIT PATTERN
thex) (57: 63}
00 TYPED XXXXX00
01 IMPORT XXXX0OX0
02 VALUE XXXX000
03 SCALAR 000X000
04 INDIRECT XXXX100
05 VALUE REF O0XX0100
04 STRUCTURE 1XX0100
07 SUBINDEXED 11XX100
08 REFERENCE XXXX010

09 - 1F unused
20 STATE_WORD XXXX001
21 CONTROL _KEY XXXX101
22 MARK_WORD XXXX111
23 - 3F unused

(The "X" bits are not compared.)

Table 2-3: Of_Kind condition

(NOTE: The «checker circuit also provides tests for some of the

Rational Machines proprietary document DRAFT 1 June 16, 1982

Block Diagram Functional Definition 7

individual bits on the B_bus. These test conditions are very useful
for some type checking and are enumerated in the microword
specification section under the condition field.)

2.3 Loop Counter

Identical to the value board.

2. 6. Bus Interfaces

The type board bus interfaces are exactly the same as the value board,
except the type board connects to the TYPE bus where the value board
connects to the VALUE bus. (This section and the following three
sections, are identical to the wvalue board spec if "TYPE" |is
substituted for "VALUEY.)

2.6.1. VAL Data Bus
2. 6.2 FIU Bus
2. 6.3 Address Bus

Rational Machines proprietary document DRAFT 1 June 14, 1982

Microword Specification 8

3. Microword Specification

T RF_A (&6 bits): specify the A address of the register file

ENCODING NAME FUNCTION

O0xxxx t_gp select GP register xxxx

010000 t_tos+0 select current top of
control stack

010001 t_tos+i

010010 spare

010011 t_reg(loop_counter) select reg. pointed
to by loop counter

010100 random state outer_frame_name, pass_privacy bit,

loop_counter

010101 spare

010110 spare

010111 loop_counter select output of loop counter

011060 t_tos-B

011001 t_tos-7

011010 t_tos-6

011011 t_tos-5

011100 t_tos-4

011101 t_tos—-3

011110 t_tos—2

011111 t_tos-1

lxxxxx t_reg(t_frame, xxxxx) select register xxxxx

in the frame pointed
to by t_frame field

Rational Machines proprietary document DRAFT 1 June 16, 1982

Microword Specification

T RF_B (& bits):

QOxxxx
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
Txxxxx

T RF_C (&6 bits):

O0xxxx
010000
010001
010010

010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
Ixxxxx

T_FRAME (5 bits):
(This field

specify the B address of the register file.

t_gp

t_tos+0
t_tos+l
spare

t_reg(l
t_bot-1
t_bot

type_bu
spare

t_tos-8
t_tos-7
t_tos-6
t_tos-5
t_tos—4
t_tos-3
t _tos—-2
t_tos-—-1

gop_counter)

s (CSA)

t_reg(t_frame, xxxxx)

specify the C address of the register file

t_gp
t_tos+0
t_tos+l

random state (write disable to RF)

out

loo
t_reg(l
t_bot-1
t_bot
write d

er_frame_name, pass privacy bit,

p_tounter
gop_counter?

isable

loop_counter (write disable to RF)

t_tos-8
t_tos-7
t_tos-6
t_tos-5
t_tos—4
t_tos~3
t_tos-2
t_tos-—1
t_reg(t

specify one of the 32 possible frames in the RF
is overloaded with five bits of the class literal

_frame, xxxxx?

and five bits of the type OFf_Kind condition number.)

XXXXX

frame,

class literal (2:4&),

Of_Kind condition_number(2: 6)

Rational Machines proprietary document

DRAFT 1

June 16,

1982

Microword Specification 10

T _C_SRC (1 bit): specify which data source gets passed to the
C PORT of the RF

0 t_c_*fiu FIU -> C address
1 t_c_mux MUX -2 C address

T_MUX (1 bit): specify the data source that the MUX will
pass to the C address

) t_alu ALU
1 t_wdr WDR register

T_ALU (5 bits): specify the ALU function

00000 dec_a F=A-1
00001 plus F=4A+01
00010 plus_inc F=A+DB + 1
00011 left_1_a F=A+A
00100 left_1_inc_a F=A+ A+ 1
00101 minus_dec F=A-8B-1
00110 minus F=A-8B
00111 inc_a F=A+1
01000 spare

01001 spare

01010 spare

01011 spare

01100 spare

01101 spare

01110 spare

01111 spare

10000 not_a F = a™

10001 nand F = (A and B)™
10010 not_a_or_b F = A or B
10011 ones F = -1 (2's comp)
10100 nor F = (A or B)™
10101 not_b F = B™

10110 xXnor F = (A xor B)V
10111 or_not F =A or BY
11000 not_a_and_»b F = A™ and B
11001 xor F = A xor B
11010 pass_b F =18

11011 or F=Aor B
11100 pass_a F=A

11101 and_not F = A and B™
11110 and F = A and B
11111 zeros F =20

Rational Machines proprietary document DRAFT 1 June 14, 1982

Microword Specification

T_RAND (4 bits):

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010

1011
1100
1101
1110
1111

T_CLASS_LIT (2 bits):

XX

PRIVACY_CHECK (3 bits):

000
001
010
011
100
101
110
111

Rational Machines proprietary document

no_ap
inc_loop_cntr
dec_loop_cntr
carry_in_G
spare

write outer_frame_name

clear pass privacy state

spare
spare
pass_A_high

pass_B_high

class_check(A
class_check(B
class_check (A
class_check(A
spare

_bus, 1it%)
__bUS: 1it)
_bus, B_bus)

_bus, B_bus, 1lit}

specify the described random operation

Carry_in = @ bit from val

pass upper 32 bits of
A INPUT to ALU

pass upper 32 bits of
B INPUT to ALU

specify the literal that is compared against

during most of the class checks (the other five bits of
the ctlass literal are overloaded with the frame).
(This field is over loaded with the 2 msb’s of the Of_Kind

condition number.)

The 2 msb’s of the class literal or the 2 msb‘s of the

Of_Kind condition numb

privacy micro events.

theck
check
check
check
check
check
nop

er.

privacy
privacy
privacy
privacy
privacy
privacy

for
for
for
for
for
for

set "pass privacy

This field enables one of the four privacy

equality

A_bus and B_bus
[TOS1 on the A_bus
[TOS-1]1 on the A_bus
[TOS] on the B_bus
[TOS~-1] on the B_bus

state"

DRAFT 1 June 16,

11

1782

Microword Specification 12

T_CONDS: specify the selected condition to be sent to the
sequencer for processing. Selected condition also gets
latched on the TYPE board. The condition bit is set TRUE

if the equation below is satisfied.

Rational Machines proprietary document

0011000 alu_eq_z2 64 bit ALU output = O
0011001 alu_ne_z 64 bit ALU output /= O
0011010 a_gt_b a_alu > b_alu (signed?
0011011 a_ge_»b a_alu »= b_alu (signed)
0011100 loop_cntr_z loop counter = O

0011101 spare

0011110 spare

0011111 spare

0100000 alu_co 64 bit alu carry out

0100001 aluy_of 64 bit alu overflouw

0100010 alu_lt_z MSB of alu =1 (ALU out < 0)
0100011 alu_le_z 64 bit ALU output <= O
0100100 t_last last cycle’s TYPE condition
0100101 spare

0100110 one condition bit = 1

0100111 zero condition bit = O

0101000 Of_Kind (##) Of_HKind condition

0101001 spare

0101010 class(A, 1) class_check(A_bus, 1it)
0101011 class(B, 1) class_check(B_bus, 1it)
101100 class (A, B) class_check(A_bus, B_bus)
0101101 class(A; B, 1) class_check(A_bus, B_bus, 1it)
0101110 privacy(A) privacy_check(A_bus)

0101111 privacy(B)} privacy_check(B_bus)

0110000 privacy(equal}) privacy_check(equality)
0110001 privacy (A, B) privacy_check(bin_op?

0110010 privacy(names) A_bus.path_name = B_bus. path_name
0110011 privacy(struc.) both privacy(A,B) and privacy(names)
0110100 B_bus(32) bit 32 of the B_bus

0110101 B_bus(33) bit 33 of the B_bus

0110110 B_bus(34) bit 34 of the B_bus

. 0110111 B_bus(35) bit 35 of the B_bus

DRAFT 1 June 14, 1982

Microword Specification 13

0111000 B_bus (36} bit 36 of the B_bus
0111001 B_bus(34 or 36) B_bus(34) OR B_bus(36)
0111010 spare

0111011 spare

0111100 spare

0111101 spare

0111110 spare

0111111 spare

TOTAL NUMBER OF BITS IN THE MICROWORD = 39

4. Microcode Considerations

The following subsections detail microcode constraints, conditions;
and events.

4. 1. Context Switch Microstate

The microstate that exists on the TYPE board consists of:

1. The Register File. The Control Stack Accelerator (CS5A} and
general purpose (GP) registers, in general. will need to be
saved on every context switch along with some number of
scrateh pad registers. There is no hardware checking of
which RF locations need to be saved as microstate.

2. The Cuter_frame_name (in the checker). The
outer_frame_name register only needs to be loaded for the
incoming tasks. (The outer_frame must be saved on every
context switch, but presumably the full outer_frame from

the sequencer is written out during the context switch.)
3. The loop counter.

4. The pass privacy bit. Since privacy is an early event, it
should be o. k. to NOT save the pass privacy bit during a
context switch. Then the bhit only needs to be CLEARED
during each context switch.

4.2 Conditions

The TYPE board generates 32 testable conditions. The conditions can
be divided into three groups L - late, ML - meduim late, and E -
early. The early conditions can be used as conditions for conditional
branch types, and don‘t require a hint. The meduim late and late
conditions require hints if used with conditional branch types. Only
the early or medium late <conditions can be used as conditions for

Rational Machines proprietary document DRAFT 1 June 16, 1982

Microcode Considerations 14

conditional memory references. And believe it or not., every condition
can be latched in the microsequencer’s latch

ALU_EQ_Z

ALU_NE_Z

A_GT_B

A_GE_B

ALU_CO
ALU_OF

ALU_LT_Z

ALU_LE_Z

T_LAST(L}

(Lo
This condition is TRUE whenever the 64 bit ALU output
equals zero. The ALU carry out and ALU overflow bits

are not taken into consideration when generating this
condition.

(L)

This condition is TRUE whenever the 64 bit ALU output
does not equal zero. The ALU carry out and ALU
overflow bits are not taken into consideration when

generating this condition.

(L)

This condition is TRUE when the A input of the ALU 1is
greater than the B INPUT. The comparison treats A and
B as signed numbers (i.e. negative A is always less
than positive B). To generate this condition +the ALU
must be executing the SUBTRACT instruction.

(L) ,

This condition is TRUE when the A input of the ALU is
greater than or equal to the B INPUT. The comparison
treats A and B as signed numbers (i.e. negative A is
always 1less than positive B}. To generate this
condition the ALU must be executing the SUBTRACT

instruction.

(L)
This condition is TRUE when there is a carry out of
the most significant bit of the ALU.

(L)
This condition 1is TRUE when the rtesult of an ALU

operation overflows a &4 bit representation.

(L)

This condition is TRUE when the MSB (sign bit) of the
ALU = 1. This is equivalent to testing whether the &4
bit ALU output < O.

(L)

This condition is true whenever the 64 bit ALU output
<=0, This condition is logical or of the ALU_EQG_Z

and the ALU_LT_Z conditions.

(L)
At the end of every microcycle, the condition that was
selected on the TYPE board gets latched on the TYPE

Rational Machines proprietary document DRAFT 1 June 16, 1982

Microcode Considerations 15

TRUE
FLASE

OF _KIND(#)
CLASS(A, LIT)
CLASS(B, LIT?

CLASS (A, B)

CLASS(A, B, LIT)

PRIVACY_A

PRIVACY_B
'PRIVACY_EQ

PRIVACY_AB

PRIVACY_NAMES

board. During any microcycle this latched condition
can be selected as a testable condition. (This
condition is available mostly as a diagnostic feature
rather than a useful microcode feature. No provisions
are made to keep the value of this latch consistent,
across events or context switches.)

(E)

This condition is always true.

(E)

This condition is always false.

(ML)

This condition is the result of the OFf_Kind condition
test. The number specified 1is wused to select the

pattern to match

(ML)
This condition is true if the class literal is equal

to bit (57:63) of the A_bus.

(ML)
This condition is true if the class literal is equal
to bits (57:63) of the B_bus

(ML)
This condition 1is +true if bits (57:63) of the A_bus

are equal to bits (57:463) of the B_bus.

(ML)
This condition is true if bits (57:43) of the A_bus

are equal to bits (57:43) of the B_bus and equal to
the class literal.

(ML)
This condition is true if +the first order privacy

check on the A_bus passes.

(ML)
This condition is ¢true if the first order privacy

check on the A_bus passes.

(ML)
This condition is true if the first order privacy for

equality check passes.

(ML)

This condition is ¢true if the first order privacy
check for both A and B busses pass.

(ML)

Rational Machines proprietary document DRAFT 1 June 16, 1982

Microcode Considerations 16

This condition is true if bits (0:31) of the A_bus
equal bits (0:31) of the B_bus.

PRIVACY_STRUCT. (ML)
This condition is true both PRIVACY_A%B and

PRIVACY__NAMES are true

B_BUS(32) (ML)
This condition is +true if and only if bit 32 of the

B_bus is a one.

B_BUS(33) (ML)
This condition is true if and only if bit 33 of the

B_bus is a one.

B_BUS(34) (ML)
This condition is true if and only if bit 34 of the

B_bus is a one.

B_BUS(35) (ML)
This condition is true if and only if bit 35 of the

B_bus is a one.

B_BUS(36&) (ML) :
This condition is ¢true if and only if bit 3& of the

B_bus is a one.

B_BUS(32_0R_36) (ML)
This condition is true if either bit 32 or bit 3& of

the B_bus are one.

4. 3. Events

The type board can generate five micro events and no macro events
All of the micro events are early and non-persistent, therefore there
are no mask bits for the events (they are each enabled by specific
micro—-orders). The micro events are «class_check. Bin_eq, Bin_op.
[{TOS] _op: and [TOS-11_op. The micro events are explained in detail in
previous sections.

"4. 4. Microcode Restrictions

The microcode restrictions for the TYPE board are exactly the same as
the CSA RESTRICTIONS and FIU RESTRICTIONS from the value spec. Please
consult the value spec for the details

Rational Machines proprietary document DRAFT 1 June 14, 1982

Diagnostics

S. Diagnostics

i

fen
i

jon
i

I
=

e
l<n

10~

G~

1o~
jr-

10~
it

o
j=t

6. 3.

1.

1

j

N

jw

Philosophy

Hardware Support

Stand Alone Testing

System Integqration Testing

Micro-Diagnostics

Hardware Considerations

Timing Issues
Data Path Timing
Clocking Issues
Potential Problems and Restrictions

Chip Count and Power Estimates

System Interconnections

3.1, Foreplane

2. Backplane

Layout

Rational Machines proprietary document DRAFT

1

June 16,

17

1982

Table of Contents

Table of Contents

Introduction
Block Diagram Functional Definition
2. 1. Register File
2.1.1. Register File Addressing
2.1.2. Control Stack Accelerator

2.2. ALU
2. 3. Mux
2.4. Checker

2.4.1. Privacy Checker
2.4.2. Class Check
2.4.3. 0Of_Kind condition
2. 5. Loop Counter
2. 6. Bus Interfaces
2.4. 1. VAL Data Bus
2.6.2. FIU Bus
2.6.3. Address Bus
Microword Specification
Microcode Considerations
4 1. Context Switch Microstate
4.2 Conditions
4. 3. Events
4.4 Microcode Restrictions
Diagnostics
S5.1. Philosophy
Hardware Support
Stand Alone Testing
System Integration Testing
Micro-Diagnostics
are Considerations
Timing Issues
6.1. 1. Data Path Timing
6.1.2. Clocking Issues
6.1.3. Potential Problems and Restrictions
Chip Count and Power Estimates
System Interconnections
6.3.1. Foreplane
6.3. 2. Backplane
6.4, Layout

d

rionay
~EUSWN

oo
W

Rational Machines proprietary document DRAFT

June 16,

NNSNNNNEG DWW R - e

1982

Table of Contents

List of Tables
2-1: Privacy Micro Event Generation
Table 2-2: Class Checks
2-3: Of_Kind condition

Rational Machines proprietary document

DRAFT 1

June 16,

ii

oo

1982

R1000 Microsequencer Specifications

Draftt 2

Rational Machines proprietary document.

Microsequencer Specifications i

1. Summary

This document describes the functionality of the Microsequencer board
of the R1000. The specification defines in detail the microcode and
hardware interfaces to the board. The reader 1is assumed to be
familiar with both the R1000 architecture and the specifications of
the other boards in the R1000 processor.

2. Functional Description

The microcode controlling +the operation of the R1000 is physically
separated on different boards in the processoar, but all of the boards
operate in a lock—-step fashion. The order of execution of the micro-—
instructions in the RIO00 is determined by the microsequencer.

2. 1. Branches

The (BRANCH_TYPE) #field of the microword determines how the next
micro— address is selected. The (BRANCH_TYPE) field also determines
if the next micro—address selection is conditional or wunconditional.
(The condition under test is selected by the (CONDITION) field of the
microsequencer microword.)

The (BRANCH_ADDRESS) field in the microword 1is an absolute branch
address,; which 1is wused as the next address if the branch is taken.
(PC+1 is pushed onto the micro—-stack during a successful call.} The
{BRANCH_ADDRESS) is also selected during wunsuccessful conditional
returns and conditional dispatches.

The microsequencer also maintains a 135 word micro-stack that is wused
during micro—-calls and returns. (The stack also maintains addresses
for micro event handler returns.) The (BRANCH_TYPE} field can specify
conditional and unconditional calls and returns, for both selected
condition true and selected condition false

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Functional Description 2

The 16 branch types are:

brt ——conditional branch (branch if true)

br#f ——-conditional branch (branch if false)

br -—ynconditional branch

cont —-—continue (PC + 1)

callt ——conditional call (call if ftrue’

call# ——conditional call (call if false)

call ——unconditional call

returnt -—conditional return (return if true)

returnf —--conditional return (return if false)

return —--unconditional return

dispt ——conditional dispatch (dispatch if true)

dispf -—conditional dispatch (dispatch if false)?

disp ——unconditional dispatch

case # —-—jump to the branch address plus the 1sb 14 bits
~—of the FIU_DATA from the last cycle

case_call # ~-—same as the case, except PC + 1 is pushed onto
——the stack

push —-push the branch address onto the micro_stack

(NOTE: The case and case_call branch to an address which 15 the sum of
the branch address and +the 14 1sb’s from the last value on the
FIU_DATA bus. This "last value on the FIU_DATA bus" is latched in a
register on the microsequencer. This register is not readable neither
writable. It is therefore necessary not to take micro—events before a
micro—instruction that uses these branch types!')

The next micro—address for each combination of condition valus and
branch type is shown in the following table.

Since it is useful to remember a condition for several micro-cycles,
the microsequencer provides a latch that can store the currently
selected condition. The (LATCH) field of the microword specifies for
each micro—instruction to either remember the previously latched
condition or to latch the currently selected condition. (This feature
is also useful for branching on late conditions, see below.)} The
contents of the latch will be saved and restored on context switches

Because of the timing for the conditions some occur early in a micro-
cycle and some occur late. Early conditions may always be selected
for branches. Late conditions, if selected for a branch condition,
must be followed by a hint. The hint informs the micro-sequencer that
usually the branch will fail (rarely branch) or wusually the branch
will succeed (usually branch). If the hint is not correct the micro-
sequencer will not execute the selected micro—instruction, but will
take one micro-cycle to calculate the correct micro—address. (If both
a bad hint and late micro event or a late macro event occur the
hardware will take two micro-cycles to calculate the correct next
micro—address!) The (BRANCH_TIMING) +field for the early/late/hint
conditions is interpreted as follows:

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Functional Description

(3

During
decoding instruction}.
next cycle.
a write command will change into a read.

dispatch

~the

branch_type

brt

br#f

br

cont
callt
callf
call
returnt
returné
return
dispt
digp#
disp
case

tase_call

push

condition value

true

branch_addr
PC + 1
branch_addr
PC + 1
branch_addr
PC + 1
branch_addr
micro_stack
branch
micro_stack
decode_ram
branch_addr
decode_ram

branch_addr + FIU_data(50:63)

PC + 1

-~ For both tases true and false)

Table 2-1:

branch_timing

- 00

0

1
0
1

Micro—Address Selection for Branch Tgpés

branch
branch
branch
branch

on
on
on
on

Table 2-2:

a wusually dispatch,

that

information.

the
the
the
the

Branch Timing

If the hint is bad,
When memory is aborted a memory read will finish and
Therefore

false

PC + 1
branch_addr
branch_addr
PC + 1
PC + 1
branch_addr
branch_addr
branch
micro_stack
micro_stack
branch
decode_ram
decode_ram

"

PC + 1

early condition
latched condition
late condition,
late condition,

after

aborted

#
#*

hint is usuvally
hint is rarely

memory might be started (depending on the

memory is during

usually

is bad the RDR and the MAR may no longer contain valid

Rational Machines proprietary document

Dratt 2

June 18,

1782

Microsequencer Specifications Functional Description 4

2.2. Dispatch

During a successful dispatch, the microsequencer will do three things
in hardware:

i. Increment the Macro_pc.

2. Start a memory read or write, if the decoding instruction
Tequires a memory reference.

3. Belect the next micro—address., based on the current
decoding macro—instruction.

The decode rams have a 3 bit field for each macro instruction that
selects one of eight possible memory references. (Because a dispatch
can auto— matically start memory. microcode can not allow memory
operations to extend across macro-instruction boundaries. } If the
decoded memory start field, in the decode rams., is not a NOP it is one
of the following memory operations:

CONTROL._READ_LL_DELTA

Start a control or import read (if bits (3:6) of the
decoding instruction are O the read is a import read,
otherwise it’s a control read). Bits (3:&6) of the
decoding instruction are wused as the address to the
resolve Tam. The stack name portion of the address is
read directly #from the resolve rtam. The offset
portion of the address is the output of the resolve
rams plus bits (7:15) from +the decoding instruction
(sign extended).

PROGRAM_READ_PC_PLUS_OFFSET
Start a program read. The program address is equal to
the current macro pc plus bits (5:15) from the
decoding instruction (sign extended).

TYPE_READ_TOS_PLUS_FIELD_NUMBER
Start a type read. The stack name portion of +the
address is read from bits (0:31) of the TOS_LATCH.
The offset portion of the address is the sum of bits
(37:596) in the TOS_LATCH and bits (8:15) 1in the
decoding instruction (zero extended).

TYPE_READ_TOS_TYPE_LINK
Start a type read. Both the name and offset are read

from the TOS_LATCH (bits (0:31) and (37:36),
respectively).

CONTROL _READ_VALUE_ITEM. NAME_AND_FIELD_NUMBER

Start a control read. The name portion of the address
is read from bits (4&4:95) of the TOS_LATCH. The

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Functional Description 5

offset portion of the address is bits (8:15) of the
decoding instruction (zero extended). (Useful on
module field_reads, module field_exes, etc.)

CONTROL _READ_CONTROL _PRED
Start a control read. The stack name 1is the
current_name register and the offset is the control_

pred register.

CONTROL _WRITE_(INNER-PARAMS)
Start a control write. The stack name is the

current_frame name and the offset is the current_frame
offset minus bits (8:15) of the decoding instruction
(zero extended).

2. 3. Macro Events

I+ any macro events are pending during & dispatch., the dispatching
instruction will complete entirely, but the dispatch will not occur.
If the highest priority macro event pending is an early macro the next
micro instruction will be the first micro—-instruction of the
corresponding macro event handler. I+ ¢the highest priority macro
event pending 1is a late macro event the next micro—-instruction will be
a NOP, followed by the #first micro—instruction of the macro event
handler. I+ the macro event 1is IBUFF_EMPTY the hardware will
automatically start a program read at (macro pc + 1).

All 0¥ the macro events are testable as conditions and are maskable

Some of the macro events can be disabled during & particular micro-
instruction (specified as disabled (D)}). The macro events are clsared
by some action that is executed during the handler. The macro events
and some of the characteristics are:

Macro event definitions:

DISPATCH The dispatch macro event occurs every time a micro-
instruction executes a8 successful dispatch. The
sequencer microword allows this macro event to be
disabled if specified as such during an instruction.

.BREAK_CL ASS The sequencer contains a 16 bit register which
specifies 15 break classes and a ‘'"break any macro
bit. During each dispatch the break class of the
"current instruction” is decoded. (There are decode
rams on the output of ¢the current instruction
Tegister. The rams output a 4 bit field for every
instruction. This 4 bit field is either one of the
break classes or it is the ‘“no_break_class" «class.)
If the break class of the current instruction matches
one of the 15 break classes (or break any is set) the
break_class macro will occur.

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer S

MEMORY
refresh memor

SYSBUS
sysbus_status
syshus_packet
slice_timer
gp_timers

SEGQGUENCER
CSA_underflow
CSA_overflow
resolve_ref
TOS_optimizat
dispatch
break_class
IBUF_empty

CSA_UNDERFLOW

Rational Machine

pecifications Functional Description &

Early memory micro
/Late priority specif. address address

y E 0 0100
E 2 0110

E 3 0118

E 5 0128

E () 0130

L 8 0140

L g 0148

L 10 0150

ion_err L 11 0158
L i3 D 0168

L 14 D 0170

L 15 D PC+1 ¢178

(C is the highest priority event)

Table 2-3: Macro Events

The conditions necessary for this macro event to occcur
are tested during each dispatch. If the macro event
occurs:, but the handler for a higher priority macro
event 1is executed, this macro event is not latched
(not remembered). The event will reoccur during the
next dispatch.

Each instruction may requires some number of
operands, from O to 7, to exist in the control stack
accelerator, before the instruction can execute. I¢
the dispatching instruction requires more operands in
the C(CSA, than currently exist, this macro event
gccurs. The handler for this macro event will then
read some number of entries (probably four), from the
current top of the control stack not reflected in the
CSA, and write them into the bottom of the CSA. (The
CSA is located on both the type and value boards.)
(The decode rams contains a 3 bit field for each macro
instruction, which specifies the number of operands
that the instruction requires in the CSA.)

The conditions necessary for this macro event to occur

are tested during each dispatch. I# the wmacro event
0CCUTS, but the handler for a higher priority macro
event is executed, this macro event 1is mnot latched
{not remembered). The event will reoccur during the

next dispatch

s proprietary document Braft 2 June 18, 1982

Microsequencer Specifications Functional Description 7

CSA_OVERFLOW

RESOLVE_REF

Once the handler has filled the CSA appropriately the
macro event will not occwur again, (NOTE: It is
legitimate to change the number of entries in the CSA
during the same micro—instruction that a dispatch is
occuring.)

Each instruction may also requires some number of
invalid locations, from 0 ¢o 3, to exist in the
control stack accelerator, before the instruction can
execute. I+ the dispatching instruction requires more
invalid locations in the CS5A, than currently exist,
this macro event occurs. The handler for this macro
event will then write into memory some number of
entries (probably two), from the bottom of the CSA.
into the corresponding addresses in the control stack.
(The decode ram contains a 2 bit field for each macro
instruction, which specifies the number of holes that
the instruction requires in the CBA.)

The conditions necessary for this macro event %o occur

are tested during each dispatch. If the macro event
oCcCcuUTs, but the handler for a higher priority macro
event is executed, this macro event is not latched
{not remembered). The event will reoccur during the

next dispatch

Once the handler has emptied the CBA appropriately the
macro event will not occur again. (NOTE: It 1is
legitimate to change the number of entries in the CSA
during the same micro—instruction that a dispatch 1is
occuring.)

Any instruction that specifies a lex level, delta
position in the <control stack, requires that the
current rtesolve Tam registers must contain the offset
of that specific lex level. I+ +the dispatching
instruction requires a resolve and the specified lex
level offset is not in the current resolve ram
registers this macro event occurs. The event handler
for this macro will chase activation states in the
control stack until the offset for the specified lex
level is found.

The conditions necessary for this macro event to occur

are tested during each dispatch. If the macro event
occurs, but +the handler for a higher priority macro
event is executed, this macro event 1is not latched
{not remembered). The event will reoccur during the

next dispatch.

As soon as the handler validates the lex level, in the
resolve ram, corresponding to the dispatching lex
level, the macro event will not occur again.

Rational Machines proprietary document Braft 2 June 18, 1982

Microsequencer Specifications Functional Description 8

TOS_OPTIMIZATION_ERROR

IBUFF_EMPTY

To optimize the execution speed of some instructiens
the sequencer hardware attempts to keep a copy of the

current top of the control stack. During the dispatch
cycle of some macro instructions that require a memory
Tead, based on the address in the TOS, the
microsequencer will start the memory read. I+ the
micro—- sequencer does not have a copy of the current
TOS, and the dispatching instruction requires this
optimization, this macro event will occur. The

handler for this event will copy the current TOS from
the CSA and write it into the TOS_LATCH on the
microsequencer. Once the handler wvalidates the
TOS_LATCH the macro event will not reoccur. (NOTE: If
the TOS_LATCH is wvalidated during a dispatching
instruction this macro—-event will NOT occur.)

The conditions necessary for this macro event to occur

are tested during each dispatch. I the macro event
oCCuTrs, but the handler for & higher priority macro
event is executed: this macro event 1s not latched
(not remembered). The event will reoccur during the

next dispatch.

The microsequencer keeps a copy of the‘ currently

dispatching word from program segment memory. If the
dispatching instruction is the eighth instruction in
the buffer, and the instruction is not a call, exit,
case, or any unconditional branch, this macro event

will occur (The instructions which do not cause an
ibuff_empty macro event, when they are the eighth in
the buffer, are marked by the IBUFF_FILL bit out of
the instruction decode. See the Instruction Decoder
section.) During the same cycle the hardware will
avtomatically start a memory read at address (PC + 1)
in program memorTy. The handler for the event should
be one instruction which conditionally loads the read
data from memory into the IBUFF (instruction buffer),
with the IBUFF_EMPTY macro event disabled. (The
condition is that no other macro event is occuring.:

This conditionis necessaryisince the ibuff load will
j@tgtg .over a . macro-instruction. that will not be
dispatched if a macro event occurs.)

2.4, Micro Events

Micro events which are early cause the execution of the current micro-
instruction to be stopped. The next micro—-instruction executed is a

NOP, and

following micro—instruction is the +first micro-

instruction of the appropriate event handler (Each event maps to a
unique address). Events which are late allow the current micro-

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Functional Description 4

instruction to complete and inhibit the completion of the next micro-
instruction. The instruction following the inhibited micro—
instruction is the first micro-instruction of the event handler. (In
either case the micro~PC that is pushed onto the stack is the PC of
the micro-instruction that was inhibited or stopped.) If both early
and late micro events happen during & micro cycle, the micro
instruction is not completed. And the event (early or late) of the
highest priority determines which handler is executed

When an event 1is taken +the handler address is the address
corresponding to the highest priority event that is currently pending
The event bit 1is cleared for the event that is taken, and ALL other
non—persistent events are cleared. (An event is also cleared if the
event is tested.)

The events can be cleared for one of two possible reasons, either A}
the event will occur again because the micro—-instruction that caused
the event to occur will execute again or B) A higher priority event
detects an error that makes the other micro events insignificant (such

as class error). (Since privacy_check is an early event, the privacy
check will be performed again when the micro-code returns from the
handler. The type board allows the microcode to disable this check

for "gne check cycle” in the handler.)

During a <context switch only the persistent memory events must be

saved. These events, page_crossing and page_fault, are part of the
MAR and will be saved during the context switch. The other persistent
events, the sysbus events: are independent of the currently running

task and do not have to be saved

Most of the events are testable as conditions and are maskable. The
masks for a micro event can be one of two types; Althe mask bit is
kept in a register and is readable and writeable by microcode (marked
with a "X" in the ¢table below), or B) the mask bit is specified
(somehow:, see the spec for the specific board in question) by the
microcode during every micro—instruction (marked with a "M" in the
table below). I+ an action occurs that cauvuses a micro event which 1is
masked off, the micro event will not occur until the mask is changed
(If the micro event 1is non-persistant it will clear if another
unmasked event occurs first. The micro event will also clear if it is
tested before the mask is changed.)

-Some of the events are specifiable. These events are normally
disabled and are only enabled when specifically selected by the
microcode. (I+ a specifiable event 1is not selected it is not

remembered, but it is testable.)

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Functional Description

MEMORY MONITOR
cache_miss
ECC error
page_crossing

TYPE CHECK ERRORS
ctlass error
binary_eq_privacy_check
binary_op_privacy_check
Ltos]_op_privacy_check
[tos—=1]1_op_privacy_check

VALUE
none.

SEQUENCER
field_number_error

FIu
none

Csa_CONTROL
none

OTHERS
micro_interrupt (diag}
SYSBUS
new_packet
new_status

cond

X

X

> XX X > X

X
X

mmm

mmmmm

E/L mask specify

M

X

X
E
E
E
E
E
E

X

X

X

(Highest priority is one)

Table 2-4:

Micro Events

Rational Machines proprietary document

10

prior— persis— micro

ity tant addr
1 X
2
9 X
4
5
&
7
8
3
10 X
11 X
12 X
Dratt 2 June 18, 1982

Microsequencer Specifications Functional Description i1

Some examples of micro events and how they are handled.

10 I1 12 ECC 12 13727
Read0O DataQ handler return
e | ———— P et f——— : - - m——— f———— H
1% Vv Y/
ECC_error, Privacy event (Privacy event
privacy_check. has been cleared. may occur.)

(##% A microcode invisible one cycle NOP occurs.)

10 I1 cache_miss privacy
handler return Il handler
e = ### e b e fm———— S T Rttt P
; | ;
1% Vv %
privacy_check., privacy is I1 is te-—
cache_miss. dropped. executed.

Privacy_check
MmicTo occurs
again.

DR is correct.

The microsequencer has a one bit microcode field which specifies

during each instruction if micreo events are enabled or disabled. If
micro events are disabled during a micro—instruction, no early micro
event will occur. I#f events are enabled during. the #following
instruction, and +the micro event is persistent, the early event will
occur during that micro-cycle. (If this is wundesirable, +the micro
event can be <cleared, by testing 1it, before the micro events are
enabled again.) I# a non-persistent micro event occurs while

interrupts are disabled, it is NOT remembered.

I+ a 1late micro event occurs and the following micro—-instruction has
events disabled, the micro event will be remembered and occur as soon
as micro events are enabled again. If a late micro event occurs
during a micro-cycle when events are disabled, it will be forgotten if
it is non—-persistant.

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Functional Description i2

Some timing examples for disabled micro events

I1 12 12

events

disabled NOP handler return

S et e b | e f——————— v ——————— ! e ——— H e i
v

First cycle of handler.

The microsequencer calculates the address
of the handler, of the highest priority
pending micro event (either early or late).

This micro—cycle does NOT complete, but may add more
early and/or late micro events to the current outstanding

events.

Events are disabled and a persistant early micro event occurs

I1 12 13 14
events
disabled
i Y
! Sequencer occurs normally
Vv
Events are disabled and a late non-persistant
micro event occurs. It is forgotten.
11 12 13
events
disabled NOP handler Teturn
¢ “——:'- et | Haniand ; —————— ' ——? ------- (T ——— 1 | T m———— T m———)
H H Vv
H ! Sequencer calculates the handler address.
H Y
H Events are disabled, the late micro is remembered.
\Y

A late micro event occurs.
(The example is true of both persistant and non-persistant events.)

Rational Machines proprietary document Draft 2 June 18, 1982

~)
2.5 Resolve Circuit d \ \ o
\.&J\}" \\jw)v*a Xt

The resolve circuit has ~Sixteen 52 bit registers, corresponding to
each of the 16 lex levels.” 32 bits of the register are stack name
bits (segment number and virtual processor ID) and 20 bits are an
offset. There are also 1& validity bits, one corresponding to each
lex level, which indicates if the contents of each register is valid.
The resolve circuit also contains a current lex level register. (The
architecture and some documents, including this one, refer to some of
the lex level ram registers by specific names. The lex level 1zero
register 1is imports, the lex level one register is the outer_frame.
The register pointed to by the current lex level is ¢the inner_frame.
The register at the current lex minus one is the enclosing frame
(unless the lex level is one, then the inner_frame and enclosing frame

are the same).}

During the dispatch of a macro-instruction that requires the
resolution of a lex level, delta, the resolve circuit will calculate
the control stack address if the lex level is valid. If the lex level
is invalid a macro event will be generated. The control stack address
name is the name portion of the register specified by the lex level
((bits 3:6) of the decoding instruction). The offset is the sum of
the offset portion of the specified register and bits (7:135) of +the
decoding instruction (sign extended).

Microcode has the capabilities to both read and write registers in the

Tesolve circuit. The (LEX LEVEL ADDRESS) +field of the microcode
specifies how the resolve registers are addressed. The sources for
the address are current lex register, incoming lex 1level (bits
(124:127) of the sequencer bus minus 1), loop <counter, Zerao: one.

(The addresses can be used for either reads or writes.)

Microcode can also change the validity bits. In general validity bits
are addressed at the same time the resolve registers are. During any
cycle the addressed wvalidity bit can be set, cleared, ramain
unchanged, or all the wvalidity bits at a greater lex level can be
ctleared. (See the microword specification) The validity bits can also
be cleared all at once, independent of the lex level address (see ¢the
random field of the microword specification).

The resolve circuit 1is also wused to calculate the control or type
addresses that the sequencer starts during some dispatches (see the
+dispatch section).

2. 4. Tos_Latch

The (TOS_LATCH) on the microsequencer is used to latch B4 bits of the
sequencer bus. If during the execution of a macro-instruction the new
TOS (the control stack) is on the VAL and TYPE busses, the micro code
should read the value onto the sequencer bus and latch it into the
(TOS_LATCH). The (TOS_LATCH) also has an associated wvalidity bit.

Rational Machines proprietary document Draftt 2 June 18, 1982

Microsequencer Specifications Functional Description 14

During each successful dispatch the bit is cleared. The bit is set
when the latch is loaded. Some instructions will cause a macro event
if the validity bit is not set. The contents of the TOS_LATCH is used
during the calculation of some of the memory operations that the
sequencerT starts during the dispatch of some macro—-instructions. (see
the dispatch section}

2. 7. Restartable State

For each executing macro—-instruction the microsequencer rtemembers if

the instruction 1is restartable and if restartable, the correct
macro_pc to use. If a micro_event handler checks the restartable
state before a context switch, the amount of state that needs to be
saved can be minimized. (The restartable state is testable as
conditions on the sequencer.) There are two bits of restartable
state. The restartable bit (first bit) indicates if the macro-
instruction 1is restartable or not restartable. If the instruction is

restartable, the address bit (second bit) indicates if the instruction
should be restarted at the current macro_pc or at the current macro_pc
minus one. During the dispatch of each macro—instruction the
restartable bit is set restartable. During a dispatch that causes a
macro event the second bit is set to at macro pc. (During a bad hint
both bits are restored to their previous value.) During any micro-
instruction the microcode <can set or reset each state bit
independently.

(Example: I+ the cache_miss handler checks the state of these bits i%
can detect the case where a cache_miss i1s taken during a macro event
The bits would be set to restartable, at current macro_pc. By
deatecting this case, the saving of wunnecessary micro- state is
avoided.)

2.8 Micro Stack

The microsequencer maintains a 15 word deep LIFO stack of micro
addresses. Micro addresses are automatically pushed and popped as a
result of some of the branches (call, return), and during events. The
microcode can also push FIU_DATA(48:63) onto the stack, clear the
stack, read the top item, or pop an item off of the stack. (see the
random field) (The micro stack hardware has no capabilities for
overflow or underflow detection. The microcode must manage the stack
usage to ensure that neither microcode action, or event actions will
ctavse a3 underflow or overflow of the stack.)

Every time any item is pushed onto the stack the latched condition 1is
also pushed onto the stack. This bit of the micro stack is selectable
as a condition. This facility can be wuseful in the following
circumstances:

1. If a micro event handler wuses the condition latch, it

Rational Machines proprietary document Draft & June 18, 1982

Microsequencer Specifications Functional Description 15

doesn’t need to execute any microcode to save the
previously latched condition. The condition 1is saved on
the micro—stack. To restore the condition the return -
instruction should latch the condition “saved bit from the
micro-stack". (Notice the save and restore take no extra -
micro- cycles.)

2. During a context switch, the latched condition can be saved
on the micro-stack and restored from the micro-stack, Just
as in the above example

3. A subprogram <call that wuses the <condition latch, but
shouldn’t destroy its value can also restore the condition.

NOTE: Many subprograms will not want to restore the condition latch
upon rteturn. I+ a subprogram latches a condition (and doesn’t restore
the latch), it actually returns a boolean to the caller.

2.9 Field Number Checker

The microsequencer has two comparators for checking field numbers
during the execution of the field ops. Each cause the same micro
event; field number error. The variant #field check compares bits
(80:88) of the sequencer bus to bits (7:15) of the current
instruction. The fixed field check compares bits (81:88) of the
sequencer bus to bits (8:15) of the current instruction. In either
case an unequal comparison generates the micro event

2.10. Instruction Decoder

The instruction decode unit on the microsequencer outputs 23 bits of
information about the instruction in the IBUFF (instructieon bufferl,
pointed to by the macro pec. This information is divided into the

following five fields:

1. MEMORY_REF A 3 bit field that indicates the dispatch of
this instruction may need to start one of seven possible
memory references. (The memory references that may be
started are enumerated in dispatch section.)

2. CSA_VALID A 3 bit field that indicates the number of
entries, from O to 7, that must be present in the CGSA

before the instruction can successfully execute. (If the
CSA does not have at least that many entries valid a macro
event will occur. See the macro_event section.)

3. CSA_FREE A 2 bit field that indicates the number of
locations in the CSA, from O to 3, that must be free before

the instruction can successfully execute. (I+ the CSA does
not have at least that many free locations a macro event
will occur. See the macro_event section.)

Rational Machines proprietary document Draft & June 18, 1982

Microsequencer Specifications Functional Description 16

4. MICRO_ADDR A 14 bit +field which is the starting micro-
address for the microcode that executes the decoding macro-—
instruction.

5. IBUFF_FILLL A 1 bit field which indicates 1if current
instruction does not need a IBUFF_empty macro event to
occur if the macro_pc mod B, is 7. (For example: call,
exit, unconditional jump, etc.) (A minor optimization used
by the IBUFF_empty macro event hardware.)

HARDWARE NOTE: The decode rams are organized into two banks. The top
bank of rams (1K x 23) address from the top ten bits of the decoding
instruction. The bottom bank of rams (1K x 23) address from the
bottom ten bits of the decoding instruction. I# the top six bits of
the instruction are zero the bottom bank’s output is enabled otherwise
the top bank is enabled

Information is also decoded about the currently executing instruction.
Another set of decode rtams examines the currently executing
instruction and decodes its break class. The output is 4 bits of
_ break_class information. The instruction can belong %o one (and only
& one) of 15 break_classes or it can belong to no break_class. (If the
Y jnstruction belongs to a break_class and the break class is currently
enabled, or the all_break is enabled, a break_class macro will occyr

during a dispatch.) —_— e~ .} - — ﬁj
during a dispatch.) el o g L, evenahiae ~ A~ U*K/{ A
-~ : : , . -

. N [t;_
2.11. R1000 Processor conditions . . , '
8/ e e s b L Tt
¥ A The R1000 hardware has 128 testable conditions on the processor. The
2 N conditions <come from all of the boards in the processor, except for
N = the memory boards. During each cycle, the hardware selects on of the
) S~ 128 conditions for testing. This condition can be latched on the
- ‘;)\microsequencer and/or wused to resolve a conditional branch or
- v Jconditional memory start. (I+ some conditions are selected they will
o & W also clear the corresponding micro event. This is true of only a feuw
¢ o conditions. GSee the condition section of each spec for details.) The
R microsequencer contains a 7 bit microcode field which selects the

\57655 condition during each cycle.
N .

LT
u\'(\—éf;@, N Gl A »? S JSL (AST b

3 Each board in the R1000 produces some multiple of 8 conditions. The

o 128 conditions are divided between the hardware as shown in the

~ +following table.

S 7 . | o

. d§ ‘é&he Combo conditions are special combinations between the wvalue board
/Q\and the type board. Combo condition XXX is equal to the logical NAND

mqp Y of condition OQQOXXX and 0O011XXX.

TN
x\h/VQ’The conditions can be divided into three groups; L - late, ML - medium
\3*ﬁ2(13te' and E - early. The early conditons can be wsed as conditions
for conditional branch types, and don’t require a hint. The medium
late and late conditions require hints if used with conditional branch

b Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Functional Description 17

BOARD CONDITION
NUMBER

Value C000XXX
CO01XXX
0010XXX

Type 0011XXX
G100XXX
0101XXX
C110XXX
0111XXX

Microsequencer 1000XXX
1001XXX
1010XXX

Fiu (&Mem_M) 1011XXX
1100XXX

Sysbus 1101XXX
1110XXX

Combos 1111XXX

Table 2-5: RI1000 Condition Partioning

types. Only the early or medium late conditions can be used as
conditions for conditional memory references. And believe it or not,
every condition can be latched in the microsequencer’s condition
latch.

3. Some Timing Examples

This section illustrates some timing examples for branch types and
events. {Instructions that do not complete are equivalent to a null
micro—instruction. Machine cycles that the hardware inserts, but no
micro-instruction is executed are indicated as nulls.)

Each microcycle the micro sequencer decides the flow of control based
on the following priorities (highest to lowest):

1. If the last instruction was a hint (and there were no macro
or micro events), check for correctness. I+ the hint was
wrong stop actions started by the wrong hint (such as
dispatch memory starts), stop the current instruction from
continuing, and calculate the new micro—address. (NOTE:
Bad hints only stop memory operations if the branch type
was a dispatch.)

2. If the last instruction was a bad hint and there were macro
events, micro events. or both, stop actions started by the

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Some Timing Examples 18

hint (such as memory starts). Execute a null micro-—-

instruction and calculate the correct address (forgetting

the events). Then follow the appropriate set of rules that ,

follow for the combination of events that occurred. (ool hﬂﬁ-eauyﬂLav
apoacte v upenlted SN O . o) wubi,?

3. If there are any early micro events, stop the insfruction T .

from completing, and push the current micro-address onto
the stack. During the next «cycle execute a null and
calculate the micro address of the micro event handler.
The next micro—instruction is the first instruction of the
handler.

4. I+ the instruction is a dispatch and there are both 1late
micro events and early macro events, complete the
instruction without starting the dispatch. During the next
cycle execute a null, push the macro handler address onto
the stack and calculate the micro address of the micro
event handler. The next micro—instruction 1is the first
instruction of the micro event handler.

5. If the instruction is a dispatch and there are both late
micro events and only late macro events, complete the
instruction without starting the dispatch. I+ the macro
event needs a memory operation, start it (only on the
IBUFF_empty macro event). During the next cycle execute a
null micro—instruction and calculate the address of the
macro event handler. During the following cycle execute a
null, push the address of the macro event handler onto the
stack. and calculate the address of the micro event
handler. The +following micro-instruction 1is the first
micro—-instruction of the micro event handler.

6. If there are only late micro events, complete the current
micro—~instruction (including a dispatch if part of <the
instruction). During the next cycle execute a null and
push the "current micro—-address" (the micro-address ¢that
would be executing if no event had occured) onto the stack.
The next micre—instruction is the first instruction of the
micro event handler.

7. 1+ the instruction is a dispatch and there are any early
macro events, the next micro—instruction will be the first
micro—instruction of the macro event handler.

8. If the instruction is a dispatch and there are only late
mactro events, the next instruction 1is a null. The
following micro—instruction will be the first instruction
of the macro event handler.

?. I+ ¢the instruction does not fall into one of the above

categories it has the best chance of working properly, and
probably does just what you expect.

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Some Timing Examples i9

Example 1: "A bad hint on a usually return®

usually
return null

push item
back onto stack

%
pop stack
bad hint
uPC
Example 2: "A late micro and a early macro®
micro macro dispatch
dispatch null handler return handler {same)
: H v i %
i : First micro—-instruction | The dispatch
H ! of the micro handler. i finally occurs.
H v Y ‘
: Push the micro address of First instruction
! the macro event handler of the macro
! onto the stack. avent handler.
v

A late micro and an early macro event occur.

The dispatch doesn’t start because of the late macro event.
(This means the macro pc doesn’t change. }

I# the macro event requires a memory operation it will start.

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Some Timing Examples 20
Example 3: "A incorrect hint of rarely dispatch (no events)"
Tarely

dispatch null

H H \%

! H First micro—instruction of the dispatched macro.
: v

: Dispatch (ie., inc macro pc., maybe start memory)

Next micro—address is the output of the decode rams.

The hint is wrong (the dispatch is not done yet).
{No events occur)

Example 4: "Two persistant micro events occur at once”
cache_miss sys_msg
10 null handler return null handler return IO
v Vv

of the sys_

4

:

H First instr.

H of the cache_

msg_received

; First instr.
miss handler. H

Hardware calculates vV

event handler. |

of the event handler. the micro—address of |

Push IO on the stack. the event handler. :

Micro—instruction IO, starts :

execution, a cache_miss event

(early) and a sys_msg_received
event (late) both occur.

The sys_msg_rec.

:
'
i
¥
]
1
]
¢
1
1
1
i
the micro—address ! Hardware calculates
:
H
[]
1
1
]
1
1
:
{ handler returns.

The instruction does not V \%

complete. The cache_miss The original in-
handler returns. terrupted micro-—-
(Micro events are instructon starts
disabled.) execution again.

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Some Timing Examples 21

Example 5:
"A incorrect hint of rarely dispatch with a late macro event"
Tarely macro

dispatch null null handler dispatch

1

)

t

1

! First micro-

H instruction of
H the macro

t

H

handler.

\'% v

Hardware calculates Return from the macro

the micro—address of handler by dispatching.

the macro handler.
Y
Bad hint detected. Since there is a macro event, the
dispatch doesn’t occur. (Depending on the macro. a memory

- e M me me e e e mm mem wem me mem

operation may start.)

<

The rarely dispatch is bad.
{The microcode branches.)

4. Microword Specifications

BRANCH ADDRESS (14 bits:}

14 bits The value of this field is the absclute branch
address.

LATCH (1 bit)
The microsequencer contains a one bit latch whose input is the

currently selected condition. During each micro—-instruction a new
value can be latched or the currently latched condition can be
.Temembered.

0 Latch the selected condition.
1 Don‘’t change the value of the condition latch

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microword Specifications 22

BRANCH TYPE (4 bits)

brt conditional branch (branch if true}

brf conditional branch (branch if false)

br unconditional branch

cont continue (PC + 1)

callt conditional call (call if true)

callf conditional call (call if false)

call unconditional call

returnt conditional return (return if true)
returné conditional return (return if false)
return unconditional return

dispt conditional dispatch (dispatch if true)
disp#f conditional dispatch (dispatch if false)
disp unconditional dispatch

case jJump to the branch address plus the 14 1lsb
bits of the FIU_DATA from the last cycle

case_call same as the case, except PC + 1 is pushed
onto the stack

push push the branch address onto the stack

BRANCH TIMING (2 bits)

If a conditional branch type is selected, this field indicates
which condition is used as test condition. (The translator default
should be early condition.)

EARLY CONDITION ~— Test the currently selected early
condition.

LATCHED CONDITION —— Use the output of the latch.

HINT USUALLY -- Take the requested conditional branch.
During the next cycle the hardware will test
the outcome of the previous test condition
and "undo"™ the branch type if incorrect.

HINT RARELY —— Do not take the requested conditional
branch. During the next cycle the hardware
will test the ouvtcome of the previous test
condition and take the branch type i+t
incorrect.

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Microword Specifications 23

PROCESSOR_CONDITIONS (7 bits}

XAXXKXX This field selects the currently tested processor condition.
(5ee the function description of conditions for a detailed
description of how conditions work. See the condition

section in microcode considerations for the sequencer
generated conditions.)

LEX LEVEL VALIDITY CONTROL (2 bits)

During any microcycle the validity bits for the resolve circuitry
can be set or cleared in the following manner. (The lex_level used
is specified in the LEX LEVEL ADDRESS field.)}

CLEAR_LL —-- Clear the specified lex level.
SET_LL -- SBet the specified lex level.

CLEAR 2> LLL == Clear all lex levels greater than the
specified lex level.

NOP —-- Don‘t change any of the wvalidity biﬁa

LEX LEVEL ADDRESS (3 bits)

This field selects the address that is used to address the resclve
T™am.

CURRENT_LEX -- Use the current lex level.

INCOMING_LEX —-- Use the value on bits (124:127) of the
sequencer bus minus one.

LOOP_COUNTER —- Use the 4 lsb of the loop counter.
0 ~-- Address the import frame.

i1 —=- Address the outer frame.

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microword Specifications 24

MICRO EVENT CONTROL (1 bit)

When a micro—instruction disables micro events, no micro events can
gccur between the previous instruction and the currently executing
instruction. (This disabling includes the page_crossing event.)

(See the micro event section.)

DISABLE_ALL_MICROS

NOP

MACRO EVENT CONTROL (2 bit)

When a micro—instruction disables macro events, no macro event can
occur between th previous instruction and the currently executing

instruction.

DISABLE_(BREAK_%_DISPATCH)

NOP —— Allow all mactro events that aren’t mésked

INTERMAL SEQUENCER READS (3 bits)

This field deftermines what data is driven onto the sequencer bus
(The bit format, and the number of bits per field are indicated
in the right margin, for some of the internal reads.)

VAL _TYPE BUS —— Read the val and type busses. (This
should be the assembler default.)

RESOLVE_OUTPUT

resolve_frame. number 0O 23 24
resolve_frame. proc 24 31 g8
Fit3# 32 36 S
resolve_offset 37 Sé 20
##% 57 &3 7
i 64 71 8
macro_pc. segment 72 95 24
#3434 26 148 13
macro_pc. offset 109 120 12
macro_pec. index 121 123 3
current_lex_level i24 127 4

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microword Specifications 25

CONTROL _PRED

current_name. number 8] 23 24
current_name. proc 24 a1 8
#3e3 32 36 5
control_pred 37 56 20
34 % 57 &3 7
3% 3 64 71 B
macro_pc. segment 72 25 24
#343 96 108 13
macro_pc. offset 109 120 12
macro_pc. index 121 123 3
current_lex_level 124 127 4

CONTROL_TOP

current_name. number o) 23 24
current_name. proc 24 31 38
3 32 36 3
control_top 37 56 20
33 57 &3 7
33 &4 71 g
macro_pc. segment 72 25 24
343 %4 108 13
macro_pc. affset 109 120 . 12
macro_pec. index 121 123 3
current_lex_level 124 127 4
NEW_TOP
current_name. number O 23 24
current_name. proc 24 31 8
b3t 32 36 ¥
new_top 37 56 20
#HF 57 a3 7
##% &4 71 8
macro_pc. segment 72 25 24
6 108 13
macro_pc. offset 109 120 12
macro_pc. index 121 123 3
current_lex_level i24 127 4

CURRENT _INSTRUCTION

macro_mask 14
micro_mask 4
break_mask 16
number_in_CSA 4
number_in_micro_stack 4
current_instruction 112 127 14

Rational Machines proprietary document Dratt 2 June 18, 1982

Microsequencer Specifications Microword Specifications

DECODING_INSTRUCTION

macro_mask

micro_mask

break_mask
number_in_CSA
number_in_micro_stack

decoding_instruction 112

TOP_OF _MICRO_STACK

RANDOM FIELD (7 bits)

The random field controls the following specified sequencer
The sequencer hardware will allow 128 combinations

operations.
these operations to be p

ADDR
ADDR
ADDR
ADDR
ADDR

macro_pc

macro_mask

micro_mask

break_mask
number_in_CSA
number__in_micro_stack

top_of_micro_stack 112

rogrammed into a prom.

control_pred
Tesolve ogutput
control_top
macro_pc
return_pc

:= value on sequencer bus

write return_pc

macro_pc = return_pc

Conditional (load IBUFF % macro_PC : =

inc macro_pc

dec macro_pc

loop_counter := fiu_bus(60: 63)

clear loop_counter

inc loop_counter

dec loop_counter

write break_mask

write micro_mask

write macro_mask

control_top := resolve_output

control_top := sequencer_bus (37:56)

control_pred := resolve_output

control_pred := fiu_bus (37: 364}
Rational Machines proprietary document Draft 2

127

127

ADDR

16

16

146

16

16

16

ot

June 18,

26

1982

Microsequencer Specifications Microword Specifications 27

write current_name
write current_instruction

push micro_stack (with FIU(48:43))
pop micro_stack
clear micro_stack

fiu_data := top_of_micro_stack
fiu_data := current_instruction

restartable @PC
restartable @(PC-1)
not_restartable

write resolve circuit, name half
write resolve circuit, offset half
validate_TOS_optimizer
load_IBUFF
invalidate_all_lex_levels
take micro event

interrupt diagnostic processor

check fixed field number
check variant $field number

TOTAL NUMBER OF MICROBITS = 47.

S. Microcode Considerations

The following subsections detail microcode constraints and
restrictions that are necessary for proper hardware operation.

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microcode Considerations 28

5. 1. Conditions

The following conditions are selectable on the microsequencer:

1006000 macro_restartable (E)
1000001 restartable_@(PC-1) (E)
1000010 valid_lex(loop_counter) (E)
1000011 loop_counter_zero (E)
1000100 TOS_LATCH_wvalid (L)
1000101 saved_latched_cond (E)
1000110 previously_latched_cond (E)
1000111 #_entries_in_stack_zero (E)
1001000 ME_CSA_underflow (L)
1001001 ME_CSA_overflow (L.}
1001010 ME_resolve_ref (L)
1001011 ME_TOS_opt_error (L
1001100 ME_dispatch (L)
1001101 ME_break_class L)
1001110 ME_ibuff_empty (L)
1001111 vE_+field_number_error (ML)
1010000 spare

1010001 spare

1010010 spare

1010011 spare

1010100 spare

1010101 spare

1010110 spare

1010111 spare

macro_restartable
This condition is true if the current macro
instruction can be restarted (See next condition for

starting PC).

restartable_@(PC-1)
If "macro_restartable" is true, this condition is true
if the task should be restarted after the macro pc has
been decremented. (If false the task should be
restarted without changing the macro pc.)

valid_lex(loop_counter)
This condition is true if the lex level specified by
the least significant four bits of the loop counter,
is wvalid.

loop_counter_zero

This condition is true if the wvalue of the loop
counter is zero
Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microcode Considerations

TOS_LATCH_wvalid

This «condition 1is true if the tos_latch
is currently being validated.

saved latched_cond

"saved latched
one.

This condition is true if the
the micros stack is currently

previously_latched_cond

This condition 1is true it the

condition is true.

#_entries_in_stack_zero

ME_CSA_underflow

ME_CSA_overflow

ME_resolve_ref

ME_TOS_opt_error

ME_dispatch

ME_break_class

ME_ibuff_empty

This condition is true if the

This condition is true if the dispatching
decoding instruction, with the macro mask
would cause a CSA_underflow macro event.

This condition is true i+ the dispatching
decoding instruction, with the macro mask
would cause a CSA_overflow macro event.

This condition is +true if the dispatching
decoding instruction, with the macro mask
would cause a resolve_ref macro event

This condition is true 1if the dispatching
decoding instruction, with the macro mask
would cause a TOS_opt_error macro event.

dispatching
macro mask

This condition is true if the
decoding instruction, with the
would cause a dispatch macro event.

This condition is true if the dispatching
decoding instruction, with the macro mask
would cause a break_class macro event.

This condition is true if the dispatching
decoding instruction, with the macro mask
would cause a ibuff_empty macro event.

uE_field_number_error

Rational Machines proprietary document

This condition is true if the dispatching
decoding instruction, with the macro mask
would cause a field_number_error macro event.

Dratt 2 June

is valid,

29

or

bit" on

previously latched

micro stack is empty

of the
enabled,

of the
enabled,

of the
enabled,

of the
enabled,

of the
enabled.

of the
enabled,

of the
enabled,

of the
enabled,

18, 1982

Microsequencer Specifications Microcode Considerations 30

5.2. Context Switch

5. 3. Microcode Restrictions

There are certain combinations of microcode fields that are illegal or
at a minimum produce unexpected side effects

5.3.1. Branches

Because a dispatch may start a memory reference (depending on the
decoding macro—instruction), the following combinations of memory
requests and branches are illegal:

i. An unconditional dispatch and any memory reference

2. A conditional dispatch on any early condition and any
memory reference.

3. A conditional dispatch with a ‘“usuvally" hint, and any
memoTy reference.

4. A conditional dispatch, with a ‘“rarely” hint, and a
unconditional memory reference.

The above restrictions should allow only a single combination of
conditional memory rTeference and conditional dispatch as legal
microcode:

1. A conditional dispatch, with a ‘"rarely"” hint, and a
tonditional memory reference.

NOTE: A wusually dispatch may start memory. If the hint is wrong the
memory cycle will be aborted, and the contents of the MAR and the RDR
are destroyed.

The <case and case_call branch types use the previous value on the
FIU_DATA bus as part of the branch address. The microcoder must
disable all events (macro and micro) during the micro—instruction that
uses these branch types to ensure that the branch address is correct.

During returns from ‘event handlers, events (both micro and macro)
should be disabled to allow the stack to remain at a reasonable size.

“p wal ok A

5.3. 2. Sequencer Address Enables

If the microsequencer is driving the address bus with control_pred,
resolve_output, or control_top the internal sequencer read micro field

should be reading the same register if any are read. (ie. ., the
combination SEQUENCER_BUS := CONTROL_PRED and ADDR := CONTROL_TOP is
illegal).

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Microcode Considerations 31

5.3.3. CYA
The are a few other combinations, that are not listed here, that
produce undesired side affects. The reader is warned not to use them.

—

Rational Machines proprietary document Draft 2 June 18, 1982

Microsequencer Specifications Table of Contents

1. Summary

Table of Contents

2. Functional Description

VXN RAON~

. 10.
.11,

NNNNRNRNNRNNN

Branches

Dispatch

Macro Events

Micro Events

Resolve Circuit

Tos_Latch

Restartable State

Micro Stack

Field Number Checker
Instruction Decoder
R1000 Processor conditions

3. BSome Timing Examples
4. Microword Specitfications
2. Microcode Considerations

5.1
5. 2.
5. 3.

Conditions

Context Switch

Microcode Restrictions

5.3.1. Branches

5. 3. 2. Sequencer Address Enables
5.3.3. CvaA

Rational Machines proprietary document

Dratt 2

June 18,

1982

Microsequencer Specifications Table of Contents ii

List of Tables

Table 2-1 Micro—-Address Selection for Branch Types

Table 2-2: Branch Timing

Table 2-3: Macro Events

Table 2-4: Micro Events i
Table 2-5 R100C Condition Partioning 1

NODWW

Rational Machines proprietary document Draft 2 June 18, 1982

Functisnal Specification of the Memcry Monitor

DRAFT 3

Al

Rational Machines croaristary deocumant.

Tn2 R130C memory system «consis*s of from twc to four memory
and c2ntralized control logic called th2 memory monitoar. £ach

hcarcs

menory board Thas a3 capacity of two megabytes, implementad as four
assoclativa "s2ts™ of S12 onages. Zach board consists of a set
s5socra*tiva ta; s%tore peorticn {(where associative address translation
z acc253 control information is storad) and a parallel data array
{un2r2 data 13 s+tcrad).

(4 boards * 4 szts x 512 nages * 1k 8ytes = 8 Mbyte maximum storage)

Tae me2mory bocards csntain 211 the neca2ssary logic to accesss
updata, and meintain uop to sixta2en associative sets in parallel. The
con*rol 1ogic whizch need not be duplicated on each mamory board 1s
imglementad by tha memory monitor., This logic resides on the FIU
Doard exca2nt for tha ZRCC chacker/generator and tha "dummy™ Read Data
K23lstar which arz imonlama2ntad on th2 Sysbus Intarface board.

Ta2 meadsry monlitor contains tne microcode rams for th2 mamory
control fra2ldss, c22125 0f vzrlous mansry s%2t2 resisters (2liminating
tne na2d for each ma2mory bDa2rz *co drive trhe2m cut durlng statz save)s,
and tnz mamory sysztem centrasl lcgic. The memory moni*or alsc contains
circuiltry which tzsts all CTontrol Stack Addraesses to datarmine whether
tnay point in%o th2 Control S*tack dccelarater, If such a "C354 hit"
SCCuUrSy tha memzry ocperaticn 1s radirected to the CSA (on *the Value
anc Typ2 becards). =inally, tna2r2 15 another addra2ss monitoring
mecharisn callzad th2 "scavancer monitor”, which tests all collection
agdresses anay trzcs Lf thz addrassed segmant 1s potantially being
zarbage coLlacted.

2. Functinnal Da2scriptian

The functional dessceription of the memory monitor begins by

descrioing its role in managing the three r2gisters defined 1in +the

memory interface: the Memory Address Register, +the Read Data

Register, and the Write D2ta Register. This section than describes

the mamor system®s basic operations, followed by an overview of the
m

ement ¢cperatiosns. This functional description concludes
iscussion of the address monitoring circuits: the Control
arater Moniter and the Scavenger Monitor.

2.17. Address 8us

The ADD3RESS 3US is =2 wuridirzctional bus for routing address
informa*tion. It 1s split into tuwo portions, the la23st significant 64
bits transfer the logzical bBit addra2ss whila the meost significant 3
pits transfar the snac2 spacification. The two portions ara
controlled s2parataely.

Rational Machin2s propria2tary document DRAFT 3 Dacamber 18, 13982

Memory Monitor Scecification Functional Description 2

The logical bit addrass portion 1s 1ida2ntical to the least
significart 54 bits of the MAR (se2e the desriptions of those fialds in

the naext section).

determined by the memory mcnitor
er of the FIU board., and the
he memary monitor, When the
JENCZ2, both portions of tha ADDRESS
ard.,. Otherwisa2, the space portion
le the address pcrtion 1s driven

The driver of the 2
Using the ACSRzZSS_3US_S2U
MAR_CONTRCL lizrocrde
AJ0O0R=ZSS_B8US_SCURLCES specl
3US arz2 driven by the
15 driven by tha memory =g
by thz s=2l2cted source.

[¢)
3 b
O w

rder specifies RESTORET_MAR or
portion 1is sourced from the
(zlong with the state flags).

ADDREZSS 3US scurce while
s specified. Also., in
s TI 8US scurce on the FIU

e

Nhen the
_MAR_WITH_
ignifizcant
JUINCZR
_WQR or
’ tha TY

N W oW X
"1 ke
- (VAP VRPN
o
O3 o+ D

4+
-4
[)

N Z

—
r+ A
o O
uw O

m
-4
(n
A)
s
T v O
MU

oR
t

L
>
W~

-
<

U 40 3

w -0
B
J X0

purs
A
v LW

<3

[)
[

|
[& 2]

=
M et
T ~h
L
| dBR V)]

- X
D
Uy w oy W
w
b

~4

m A W
TR O] Ul
APV e
(V2N BN G TNT; B N]
: : O
- y
w o+ o
b
ur
oX) g 00
it w C o
W
[&N
oy

¥

(g%
)
(8}

g oW

O o iy
D
w

(ST B W)

U
0}
B

'
O
[l

mirscrdarss, the space portion
memary monitor. For INC_MAaZ,
sur~a2nt contzants o f MAR,
urce o€ the s22c2 portian of

9]

U r»
)
i<
N

4 A)
>
x
>
-
)
<

¥ X))

o

n =y w

o0

30D 0 o
® Y w Q

~¢

-

w

3

ot
3 D 0O

W

poa

<

A

b

w
[¢ V)]
~ T 7

<]
cr

4%
3
-
W
3
-
-
.
i
~t
3
W

T
> O
37y

FYN
)
0

[}
Ad

=
~
rt
)
(v
o
(o]

h &
(o)
{
A
[
v
<
L
C
s
P
(9 .
3
(@3
(1Y
R
be
>
[V V]
L]

[AN]
(AW

Ul b
(6]
~+)
>
)
0
[V)
(G2
C o+
oy
[I

” =

cooy of the MAX
AJ_MA? oparation.

The ma2mory moni
Tni b

a r

[RREN)

Tacn memory pecard contains = copy cf the werd address portion of
MAR, but thesz can only be read by the diagnostlc procassor. The
5 of +tha completz MAR are e2numerated belouw. The least
ficant 67 bits comprise tha actual logical address, and are
5 loaded from the Address bus. Th2 1individual fields on the
ress bus have sepzrate parity bits. The most significant 61 bits
contain severel fislds, admittably throun together for the sake of
state savz efficiency. These bits are loaded from the TI_8US on a
RESTORZ_MAR micro order {(The MAR.SPACE field of the ADDRESS bus 1is
driven frem TYPS_SUS(51:43) during a RESTORE_MAR by the monitor).

“h rt

W o o

U wn

Qb by
€

Q.

1>

The low order 87 bits of +the MAR are aluways loaded from the
address bus. Whan the FIU 1s selezscted as source for the address buss,
the low ordar 57 bDits of the MAR are driven over the address bus to
the mamory boards.

If a microevant adorts tha cycls in which the MAR is loadads the

MAR S on *tn2 memcory boards are locadeds, but not the MAR on the monitor.

Tnis 1nconsistancy must ba2 rasolvaed by loading the MAR before memory
s

started.

-

Raticral Machines propria2tary documant® DRAFT 3 Decemnber 13, 1982

Memory Monitor Specification Functional Description 3

MZMORY AJDRZESS RE
(format fcr R

o e — e pm—————— e e pm—————— D +
] Rafrsh Intvl | Refrsh Windw | Stata |]FIU langth] spare |Space]
| 13y x| (15) = | (3] * x| €D] (12) | (3) |}
fommm b — bmm————— b — e bm—————— pm———— +

< 12 13 31 32 3% 43 43 4% L9 60 61 63
gn the VI/VYAILUZ bus znd le=zst significant 84 hits of the ADDRESS bus:
e i e t—————-——— b m e ——— - e ittt b b m—m———— - +
| Sa2gmznt Numbar] v2id 1 Page2 Number | Word | 3it |
i (24) | (2) | {(19) | (%) | (7) |
D bm—— - fmm— e —————————— R P ———— +

0 23 24 31 32 52 51 S6 57 63

x = Specified cnly for RISTORE_MAR_WITH_REFRESH.

r2*turnad by 2T33_M33, 1g3nored Dy RISTIRET_MAR.

*x - 337ra2, TUST 2 2270,
ZeZale Memory S*zt2 Ti13lz (St2tz)

Tz MAR in tne mamory maoniteor contains 2 nina—bit STATZ field.
Thes2 nits: 2r2 s35vad z3nd res*torad using TI_RUS(32:42)7 some of thase
5its 3arz s2%t by harducre and cle23ared as & side—effact of testing them.
A1l sre leoadad from tnaa TI bus by the R=ZSTOREZ _MAR and
RESTIRZI_MAR_WITAH_RZT=RZ34 microorders., 3riefly, the state flags are:
STAVEINGZR_TRAD? (TI_3U5<I2>»)

in zddre2ss has de2en rafarenced which is specified to
22 trznsad by thz2 scavanger monitor., SCAVENGER_TRAP
iz 1est2ble in the second cycle following loading of
the MAR (until then, the old value remains 1is
returnad). This bit is set in th2 MAR during cycle 2
of 2 memory refarance when the test condition 1s trues,

znd will cause a memory exception microevent. The MAR
bit (and the memory exception) is clearad by testing
this bits, but the test condition is only cleared by
r2lsading the MAR or the scavenger ram contents.
NOTzZ: if scavenger trap occurs during a write, data is
written to memory. The RDR <c¢ontains the2 original
contants of the 1lccation, the handler may undo the
write using th2 contents of the ROR.

CONTROL_ADCRESS_DUTOF_RANGE (TI_BUSK3I3>)
A Control Stack Address that 1is grezater than the

currant Ton cof Control Stack was referancad. This bit
13 availanle 23 a macdium late ta2st condition during
th2 s2cznd cyzcle followins the 1lsaadinmng of MAR or

Rational Machines nrgcoriletary document DRAFT 3 December 18, 1982

Memory Monitor Specification Functional Description 4

CONTROL 76?2 (until thens, th2 o0ld value is returned).
Th2 valus of the ou*of range condition 1is stored 1in
the corrmsponding MAR flag bit during cycle 2 of a
memcry oneratione. T+ will generate a microevent
during cycle 2 of 2 memocry operation if the test
candi*iosn is truez, o5r the MAR flag bit was already
s2t. If +*he =start was a write, data are written
unlass CACAZ MISS i3 also set. The MAR bit (and the
micrzevent) 13 <clz2ared by testing, but the test
cendition 1s cleared only when MAR or CONTROL TOP 1is
lceded with an address that 1s 1in range.

PAGZ_CROSSING {(TI_BUSKIS>)
Indicates +that an INCREMENT_MAR operation incremented
the word offset portion across a half-page boundary.
This will «cause a microavent, whos2a handlar must add
£3%4 to tna MAR (4095 1s 32 words times 12% bits per
woardl, This pit is s2t 1n tnz cycle followuing the
INT_MAR, and cla2zrad whan testad.

SACHZI_MISS (TI_32US<35>)
Tha T3z 22rtizn cf a logicsal address did not match
JurLng; 2 lazizzl gu2rys, no invalid pagzs exist during
an 2viilabls querys, no paces match tne specified stack
nam2 during 2 name Ju2ry or a logical write was
s*ttanptad pto R RTAZ_CNLY gcace cr any raefar2nce was
attamotad to a2 LCAZINS pase. Tha CACHZ_MISS condition
i3 derivad compinataorially from the last completed
mnamory r2fzrance. Zuring cycle 2 of a memory
Jsz2r2%Ticn tn2 congition is updated and latchad in the
MAR (until *hen, thn2 r2sult of 1the last memory
sneraticn is raturnad). Latching & true wvalue 1into
the CAIHZ_MISS MAR fla2g will czuse a ma2mory axception
micrcavent %o cccur as socn as microavents are
anablad, Tasting tha CACHE_MISS condi*ion ¢clz2ars the
cerraspoanding MAR flags but the condition 1is only
changjad by completing another memory operation
(CACHZ_MISS will only c3use a memory exception event
whena th2 MAR flag i3 seot).

FILL_MODEZ (TI_3US<K36>)
The FIli sa2la2cted fill mode value is returned in this
Bit position. Tna latchad fill mode value 1is always
returned by REZAD_MAR, When RESTORE_MAR is specified.,
the micrccode must explicitly latch the fill mode bit
from the TI bus (see the FIU spec).

PHYSICAL_LAST (TI_3US<K3I7?>)
Savas whathar tha last memory start was a physical
rafarance or a lcgiczl refa2renc2. This is used by the
ZRTC 2rror event handler for error logging and
d2termiring which type of reference to wuse when

CRAFT 3 December 13, 1982

Ad
W
ot
P
O
2
U
[
T2
W
O
-
¥
o]
()
vl
O
3
O
v
3
'™
W
IR d
fy
3
~
O
Q
C
3
v
3
lad
IS

Mamory Monitcr 3

WRITZ_

-

AST (TI_8
ITI D (TI
ITI_MINCR

TI_BUS<4]

_IXCEPTION

1l Machine

pecificatisn Functional Description S

griting back the ccrrectad data. Set during cycle 2
of any START microcrder which expects a frame address
i the MAR, cleared during cycle 2 of all other START
micrcordars.

4+

US<33>)

Saves ushether the last memory start was a ra2ad or a
write; this bit turns the START_LAST_COMMAND and
STERT_IF _INCCMPLETEZ microorders 1into START_RZAD or
START_WRITZ for logical or physical memory guery (see
PHYSICAL _LAST and INCCMPLETE_MEMORY_CYCLE)D. Set
foilcuin; =2 START microorder for logical or physical
“ritz2, physical t2¢ writer name gquery and LRU query.
Cl22red hHy 2 START microorder fer logical or physical
rezads physical tag reads availablzs query and tag
GUSry . Unmodified by IDLE, CONTINUE,
START _LAST_COMMAND or START_IF_INCOMPLETE microorder.
WRITZ_LAST 1is sot or cleared during <cycle 1 of a
mamory start, znd 135 testabls 2s & condi*ions and
rzacdanile 1in Ra2 MAR during cycla 2 of tha mamory
start,

_EULKEE»)

Inoicztas that 2 microavent c¢cccurred tna cycle
foellaying 20 INCRIMINT_MAR cperation. Nota the MAR
4ill b2 modifiasd during 2 conditional continue aven 1if
the continuz2 do2: no* cccur. This bit must be queried
Cy 3ny a2vant handler which needs to determine the
address which caused the event (such as ERCC or page
fault)., This bit is 3=2% only o©on a microavent., and
clzared wnen tastad.

Y_OYCLZ {T7TI_3U5S<al>»)

Inci:ates that 2 micrca2vant has aborted cycle 1T of 2
mamory cycla;, 1f this bi%* 1is set, it turns the
microavant raturn micro order (START_IF_INCOMPLETE)
into a S5TART_RSAD cor @ START_WRITS for 1logical or

chysical querysr depending on the WRITEZ_LAST and

PHYSIZAL _LAST bits. If INCOMPLETE_MEMORY_CYCLE 1is
set, and a mamory cycle is in progress, 2
START_IF_INCOMPLSTZ is turned into a CONTINUE (this

combination will occur when a page fault event occurs
during a CONTINUZ). The INCREMENT_MAR_IF_INCOMPLETE

microorder must be specified in the same
microinstruction for the CONTINUE +to be properly
initiated. This bit is cleared when a

START_IF_INCOMPLETZ micro order 1s specified.

ael2>,<45,..80>) thes2 bit is currently not used.

An exception zsccurrad during a memory operation. This

December 18, 1982

1>
=
-
d

3 propriz2tary deccument DR

Memory Monitor Specification Functional Description 6

will cause a micrcevent if not maskad. This event is
caused by SCAVENGER_TRAP, CONTRCL_ADDRESS_OUTOF_RANGE
or CACHZ _MISS MAR flags being set or pecoming set.
The MZMORY_SXCEPTICN event handler will qQquery these
bits to distinguish thez type of fault. . This bit does
not 2xist sa2parately and is not ra2turned by the memory
moni*ar; it is simply the 0OR c¢f these MAR flags. 1t
is tastabls by th2 microcodes 5ut is reset only when
all componant MAR flags are not true. Note that., if
+hae MAR i3 rastored such that one or more of the
memory exc2otion componants becomes set, 3 memory
exception micrcevent will result, even though the
testabla condi*ions corresponding to thesa flags are
not truz. As aluayss, testing the condition will clear
thne MAR flac.

MIMORY_EXCIPTION and 1ts components are tastable as
madium lata condi*tions. MZMORY_EXCEPTION generates @&
micrcevent 1in c¢ycla 2 of the memory operation ghich
zeusa2d *the condition (3522 *the discussion on Memory
Joarations), or in the cyla follouing the RISTORE_MAR
LRicn caused thae MAR flag pit(s) +to becoame sot, Tha
zomponant fTlazes ara2 snly set in tna2 MAR when MEMORY
IXZTIPTION conditicr i3 tru2, and zr2 wvisibla in the
M3 during tane cycle fzllowing that in which MEMORY
IXCEATION becomes truz (l.2./ the third cycle
fecllouwing tha mamory start or the +*third cycle
fellowing thne INC_MAR which causad the
TCONTRCL_ADDREISS_CUTCF_RANGE)D .

Testing a MSMORY_ESXCEZPTICN componant during cycle 2 of
a Temory operatisn prevants that condition from heing
lztche0 in tn= MAR, 2nd prevents the MEMORY_EXCEPTION
microavant.

2alales F1ll Moda (FM) and Langth (FIU length) Fields

usad to save and restore the fill mode {(FM) and

Tha2se fizlds =ara
operand lengtnh state of the FIU using TI_BUS(36),(43:48),
respectively. The FIU can also load thse fields from micro literals
or from type descripters. The only memory functions which will change

thesz field ars the REZSTORE_MAR microorders (see FIU spec for details
of field wuse). The fill mode and 1length registers returned by
RZAD_MAR regarcdless of what might b2 selected by the current
microinstruction. To properly restora FIU state from a saved MAR, the
FIU must bz instructad to latch fill mode and length from the TYP BUS
(TI 3USY in th2 same microinstruction that specifiss RESTORE_MAR or
RESTORZ_MAR_WITH_REFRZSH,

Ratiornal Mzzrin2s proprietary documant CRAFT 3 December 18, 1932

ko]

Memory Monitor Specification Functicnal Description 7

e2e3e Rofresh Zounts

(AW}

dynamic RAM’s in the R1200%s5 main memory are refreshed by

The
micrococde. This is accomplished by using two counters:
REFRISA_INTZIRVAL and REFRESH_WINDOW, which are read and written using
TI_305(0:12),(142:31), raspectively. REFRESH_WINDOW is set to be
grezatzar than tha2 lonzest macro event latency for the current rev of
the machinz. RIFRESH_INTERVAL is s2t to be the raguired 2 millisecond
ra2fresn paricd minus the RIFRISH_WINDOW.

RIFRIZSH_INTZRVAL counts by ona =2very machine cycle. When
REFREISH_INTEIRVAL eaquals the REIFRESH_INTZRVAL preset by microcode {(by
the RZSTOREZ_MAR_WITH_REFRESH microorder from TI_BUS<D0:15>), the
RIFRESA macro 2avent 1s posted and REZFRESH_WINDCW starts counting by
one each machine cyzla., If the ACX_RZIFRESH microorder is issued (by
the ra2fresh macrc eavant handler) Dbefore REFRESHA_WINCOW equals the
RIZFRZSH_WINDCW pra2set Dy microcodea (in the last
RESTORZ_MAR_WITH_KRCFRESH microordar from TI_3US <16:31>), the
RIFREISA_INTERVAL and RZIFRISH_WINDOW counters are reset and the
FORCS_REFIZSA machinae cnack event 1z avoilded. The RZFRISH_INTEZRVAL
count2r 135 rastartes by an ACK_REIFRZISH.

If the ACK_RIFRISH mizrogrdar i35 not issued befeore RIFRISH_WINDCOW
reach2s tr2 prasszt yvaluz, a FORCZI_KZFRZ57 machine chack occursy the
macning 1s frczaen DY thze diagnostic systems 2nd the memory beards
refresh themsalves a1t tna maximum clock rate.

RIFRESAH_INTZIRVAL and RIFRISH_WINDIOW are specified only in the
RESTORZ_MAR_WITHA_REFRISH microordar. TI_8US(C:31)Y ar= ignored for
RZSTIORZ_MAR. Tha preset REFRZSH_INTZIRVAL and REFRESH_WINICOW wvalues
ara always relurned by R:HD_MAR. RZAD_MAR must be specified when the
ACK_RIFRE3Im MEM_START microorder is 1ssu=ad.
2eZ e Memory Spacae Fizld

The memory space iz restored wusing the TJYPE_BUS<KS1:63>, and
selects onrne from th2 following list:

0 - Reserved_for_Future_Use SPALS -— must never be used

1T = CONTROL SPATE ¢y bit word displacement

CE 20 bit word displacement

(A
1
4
-l
sl
rm
wn
e
x>
s

bit word displacement

[O2]
t
[)
<
m
[
(K1)
W
0
X
(]
m
(]
(9]

4 = DATA SPACZ 25 bit word displacement

5 - IMPORT 3PACE 20 bit word displaca2ment

Rational Macnin2s proprietary document DRAFT 3 December 13, 1932

Memory Monitor

-

s
> -

-

(R3]

5 €coC= 57

- 521C

SYSTZM

3
w
=3
Q

o O
o ps 2o
<
[}
I - £ Y
RN 21
QL A
E]
3 vl
o~ =0

A
-]

=l

3 U o~
~ W
« 0O

b 3

.—A.

R 8}

+ w0
}J.

O v

-

oy

0
W

(9]

W a o

30

O

5o
W v
Q.

10

el

o)
t~

(v

W
rt

(o)

~h
=
O
[{7)
[TV}]
o
~
Yy
I IS Y]

O
C

M+ ©

L w

i TIPS IRV

W

v

[T)]

LTI]

OO

re Ty

[
-+

(G

w0

pa-

)
3

L)Yy O 3 3
h 0D

0
U ow
[N
“r N

W+

2
[
t
G n

20 W

W
0]

o v

ot
[}
471
0

w
]
[}
W
(8]

Ix:

Thasa
Physical Tag
significant

SET_NUM3ZR duri

2el 0. wWord dis
ince 1X b
is split by
{VI_3US<32:52>
bits of Paze Nu
during a °h
VAL _30US{32:328)
Rational Machin

Srecification Functicnal Description

m

from a microliteral during
drivas this field

During one of the
TYPE_BUS(61:63)
the ADDRESS_BUS

itcr drives
(se2

the
th

memory mo
ADDRES

2

of
of

size
source

restrictions o¢of the
responsibility of the

p4

D«

w
0 I (I ¥ VS
(&

1))

Q

onto thz addrass bus,.

[a %
+ <

()

3

r+ U
€.

[H

D)

0

b
ot 4N
u -

w 0
R

O

v
u
n O N
o TS SN
[

(@]
b OO

Ct

1

v D

[V

[a R
e |

0y
-
-h C
V]

N

U)
br
]
i
rt
[}
€)
+
b
Q
W
O
-
(5]

LA 1]

EERS

ba
Py
t

D
w

V)
o w
I
L
[a TS
ERE N
Ul
8]
0y
(SN
RENZT
[N
0 BNTH
ot
o+ I
[e}

i
o
)
b
iy
-+
39}
[V
"
(1%}
ke
1
w O
W
Y h
VU
()
HA
[

by
L
O
4+
B
ol
(W
w
w
[9]
730
(U]

(9]

[
v

veid)

1
"1

Number.,

17}
o
~
(¥3)
W
(OS]

mant

(SR

~h
Q

24=bit Segment
These bits are
tha ADDRESS bus.
Number particiovate in

Q
1)}
O
—~+
[
i+
1=
P

oy

O 470 b

—h ¢

[p

3

W o~ ©
|
O

LA e

I I o

I

- ot (D
pb N

tw

<

w
[V}
Ul

<<
“y O O

p-

rt
0y
3
A D b
[0}

2
W D

[V
+ 0
oy

w

2
U]
W 3
[S TN BV}
W
w
L47)
[0 R

Ry

(2]

3]
(]
3
T
-
0]
['8]
]

o]

also used to select the LINE_NUMBER during
Physical Memory operations. The most

of the VIRTUAL_PROCESSOR_ID select the
ysical operations.

are
5
Ph

placemant field (Page Number, Word)

yte pa: are us2d, and a2 word 1s 128 bits, this field
the memory manager 1into twe fields: Page Number
and Word (VI_BUS<S51:546>). The least significant nine

mo22r narticipate in the hash function, and must be zerco

ysical onzration. These kits are saved using
and are2 z_ways loadad from the ADDIRESS bus.
23 praonrietary decument ORAFT 3 Cecember 18, 1932

Memory Monitor Specification Functional Description 9

2elefle Bit Offset Fiald

The bit offset field 1is maintainesd by the FIU as the latched
offs2t field, ratrer than by thae memory monitor (the memery sys*tem
always d=als with werd addresses). During READ_MAR coperations, the

ast cffset field latcnad by the FIU i3 returned as the bit offset
sorticn 2f the MAR (least significant 7 bits of the logical address.
Juring RZSTCORI_MAR operations, the l23ast significant 7 bHits of +the
address bus arez latchad in*to the FIUY offset latch.

ct usad by the memory boards. The
fi21ld 1in the °rogram Counter {(CODE
t, 18-bit macroinstructions storad

5

T O
o uw
()
(1]
Oyl
3

[X"
o}

Arithmeti

(8]

[AY]
a
(Y
.
wa
)
p &3
Q.
.
3
W
U
1]
X
~

for deta2cting arithmetic
erformed on displacemants.
t
o

~<
o+ 3
o0

+

(V]

B!

e

w

poe

@ 0
)

v O D
3% 3 e
W
€
]
3

S no provis
arithmatic

C e
13P L3

x
O
w
9]
o I |

to L“rap around some
ding da2fini+tioans for the
N of th2 mamory spacas).
agprogriats numher cof
r order rasult bits.

[I
e+ O O
3 W]

5

w
b

O

A
<24

O
(&)
=
(@]
o]
¥
[

b ENSE

-
|1

w
)
3w
S
n ook
'™
oy
P A)
o
pe
W
3 @
D o w

[
O 0
0

23

'8

b

w
aOowm
W
w

o]

rt

92

)

vl

H

3

]

3

C

=3

(&

[

)

Q
()
wn
(9]
11
O
(w

I ® _J J T

1]
(YR
Oow

(&
o I o
(L
Ve
17]
ny
+
e
[H]
)
f
[V}
[R Y]
[V
[{V
3 Q
b
'
<
(=
o}
ur d}
o+
W

v
b
9]
)
.
)
O
13
7]
O
v
(V]
i)
-+
)
W
(U]
3
(Y]
)
C
oy
pa
)

2
['9]

~
.
1
L]
N
[]
i
<
v
»)
L
119)
3
n
ps
w
-
[
O
3
i
4o
[}
W
R}
€
o+
=
[#)
o]
Ui

l

and thne CORRZLTARLE_ERXROR handle
usad tha event. The PAGZ_ CRCSS;NG
t2 1f 2n INCRIMINT_MAR occurred
s s2ts then 4093 nust be addad to
rapzround and RISTORZI_MAR 1issued,
_CRCS3SING event. (Tha addition
35 into th2 stack name field.) The
clearad as a side-effect of testing it.

th
>
<
(1
U
-4
4
(W]
P

3
C
P
W
a9
[T}

)

ve4
T
[}

V]
<
w
3

(4]

w
-+ QLU
=
=

Tl =<
3
)
Y1)
+
I
e
]
P2 I VPR I 6 W)
A
WO 3 @
W
o
w
1y

~+ r+ T
)
«
X
A
=3 (S8

wn

< T
[N e)

O

< O

3

ko]

3}

3

ur

(7]

(V)
-
("
I
~ .
Y]
“h
“h rt
3
€y
as
3
10
U
[I &
im

[

If MAR_MODIFIZ! is true {(always true on PAGE_CROSSING) then 128
must be subtracted from the MAR to determine the faulting address. If
both MAR_MODIFI=D and PAGZ_CROSSING are truer both conditions must be

-

handled in order to properly compute the exceptional memory address.

2.3. Read Data Register

There are actually tan poiten*ial sources of data when 3 READ_RDR
micro order i3 specifi=d! There are two Rzad Data Registers on each
of four memory boards {one for each onlane). The memory monitor
rananbers which olan2 Wit la2st and normally s2lects the corresponding

a

RIR. Since each mamory Dbo2ard dec2s not contain a path to load its
ROR“s from a buss, (i* lcads tham frcom 1its RAM"s) a ‘"dummy” RDR is
Ratiocnzl Machinas proprietary document DRAFT 3 Jacember 18, 1932

Memory Monitor Specification Functional Description 10

provided {on the Syshus Interface board) for state restoring.
Wwhanaver a RZSTJRE_RIR micro orcder is ex2cuted, the data 1is 1loaded
into the dummy, and the monitor sourcess subsequent REZAD_RIR operations
(until the2 npext LOAD_MAR) from the dummy. The tenth sourc2 is the
Control Stack Aczelerstor.

R22d data 13 specifiad 25 the sourca for the VAL and TYP buses by
a comdina*tion of bus source microordars on the FIU board (522 th2 FIU

Functional Specificstion).

Tna memory mcnitor determines whicn source of read data is valid
(mamory odoards, cdummy <ZR on the SYS3US board or £CSA), and causes the
aoprozriat: source to drive the VAL and TYP buses. Th2 memory boards
and dummy RIR are driven dirz2ctly =2n*c the VAL and TYP busess while
the CSA drives these buses via the B-port of the VAL and TYP register

file {(respectivaelyl. Data from a memcry Ddoard includas ZCC bits,
which ares c¢cneckad by the S5YS3US bozard and may cause an =RLC event.
Cat> from th2 dummy RIR or £S4 are narity chaeckad only. Se2 the
diszussiorn ¢cf 2SS4 in a2 l3t2r s2c%icn.,

Wn2n ROR 135 spe2cifiad as thz TY? VAL bus sources, 1f the dummy RDIR
i3 vaiid, 1Tt is griven re2nzrdlaess of what othar possible sourcas may
D2 valiz. If th2 dunmy 13 no%t wvalid, but thre LS4 13 nitting, the C3S2A
is arivan ortc tm2 TYP and VAL us:s. If therz2 i3 no {SA hit, which
2var maTory Dcard iz hitting is choszn to drive the buses. If no
menary oz2rd 15 pittinc, thsn noon2 drives the TYP and VAL buses, and
2 garity 2rror machilnz znack or sourisus ZRLCD evant may occur unless
tha CACHE ATSS micrcavant is gnohled. If microz2vanrts arz disablad,
2n¢ Tnis situaticsn srisess the LACHE MISS ceonditicn must bz testad 1in
the cycle 1n whicn ROR 135 haing reads, and, 1f CACHZI MISS is true, the
d43ta r22d must b2 discarded. Testing CALKEZ MISS 1in tnis situati n
srevents TY? and VAL bus parity earror machine checks and spurious ERCC
2VanTs.

Th2 wvalidity of read datz is maintained from cycle 2 of the last
memary read until the MAR 1is reloaded (ex:ept fcr page mode memory
cperations, where the the MAR 1is reloaded in a reversible way). If
the MAR 15 raloaded bafore read data is accesseds, error correction 1is
impessihle (since the source address 1s 1lost) and results are

unpredictable. For page mode operationss, the memory monitor maintains

state (MAR_MODIFIED, PAGES_CROSSING and INCOMPLETE_MEMORY_CYCLE flags)
for the ERCC and MEMORY EXCEPTICN trap hcndlers to recons*ruct the
erron2ous memory addrass.

243214 crror Checking

In the usual casas mh=n data 15 sourca2d by the memory boards., the
F=-oit CHZCK_2IT7 fi2ld is also driven. The ERIC checker on the sysbus
interfaca Dboard chacks for errcrs. If a multiple bit a2rror is
detacted, th2 MULTI_B8IT_ZRRCR machine check evant occurs. If a single
b1t 2rror 1s da2tectad, an ERCC micro svent 1s pcsted. The event

Rational Machinas pronriatary document CRAFT 3 Cecembar 18, 1932

Memory Monitor Specification Functicnal Description 11

handla2r corrects the datar, rastoraes it into the Dummy RCR (with byte
parity), writz2s th2 corra2cted data packr then lcgs the error.

The <¢orreocticn 1s done baszsed on the 7-bit B8aAD_RIT_ID fiald and
tha CAZCK_B8IT_ZRRCR <¢andition generated by the ERCC checker. First
CHECK_BIT_ZRRCR i3 taostad tc determine if the error is in the check
bDits. If tru2s, nc data corrzcticn 15 nacessary since the check bits
will b2 ragenaratad during the write back. If false, then 3AD_BIT_IDO
i3 tast2d to determine 1f tha error is in th2 VALUE half or tha TYPE
nalf A canstant "1" is +then rotated by the FIU, salected by
343_3I7_I2{1:%) and is X2R"ed with the data on the s2lected board.

In all casz2s ¢of ccrrectable errors, the corracted data is written
cack to ma2mory by mizroc2de. The PHYSICAL_LAST monitor state bit must
ce tast2d to datermine 1f +the address 1n the MAR 1s 1logical or
bnys;c:l. The arrar is logged by storing the MAR on the error log
list 1in th2 scratzhpad 2nd incrementing the 2rror count. If this
count 2xc22ds a thrashecld, 3 microcode 1nitiated machine check cccurs.
Tnz ra2frash 2venrt bPaadlar m2intains 2 count which causes periodic
flusna. SFf *his 2rror 123 list to the dizcnestic procassars, using tha
SYS3US. 43 g sids 2ffec+t of chacxing for corra2ctable 2rrors, the
3y35%u3s Interface Hoard cener2t2s bHyta2 parity on po2th th2 VALUS and
TYP:z nrgovas c¢f tr2 r2zz datzs, 2and drivaes 1t on the parity linas.
Tnaraf 2, 210 usar 27 thn2 razcd dota €20 zhnack goarity.
2e+e Wwrlit2 Jata Register

A LJAS_AZR micrsorgar lozds data from the VAL and TY? buses 1into
th2 whRITE SATA RISGISTIR of 31l mamory boards ard the copy of WDR on
the VAL and TY? boards (ViL 2ard TY? poards maintain their respective
na.vas c¢f tha WIR3J. Sincz2 *tn2 VALUZ and TYPZ boards contain a cooy of
trz R & Jatz Ragistar, 2 dummy W2R 13 not necessary on tha memory
nonlicre A RIAT_WNIR state-saving operation 13 perfecrmed locally on
thecs2 hoards. {(Tha VALUZ and TYPS board copies of the WECR are saved
in tna regzister file by selec*ting the raegister file C=-mux source

spropriataly.) (522 tha VALUE and TYP bhoard Functional
Specifications).,

On a LOAD_WZR, tha =RIC circuit ganeratess the c¢heck bits and
S thnam to the nmemory boards. A3 a side effect of generating

drive

thase ch2ck bits, it checks parity on the VALUE and TYPS busses. The
local VALUZ and TYPZ bsard copies of the WLR contain byte parity, not
chaeck bits.

If a microavent aborts ths cycle in which LCAD_WDR is specified,
tha WIOR3 on the memory boards are loadad, but not the copy on the VAL
anc TY? boards. This inconsistency must be resolved by loading WDR
before any start writa moemory operations ars 1issuad.

al Machinas grooariztary documant DRAFT 3 December 18, 1982

Memory Monitor Spa2cification Functionazl LCescription 12

2+.5. Memory Operztions

A1l memcry ocperations invslve thr2e microcycles. Cycle 0 of a
memncry op2ration is defined ts be the microcycle uwnich issued a memory
start micro order. The MAR must be losaded no later than cycle 0.

Zyci2 1 foilcwuss, @nd 1is the cyzle in which the memory operation
actually tek2s glzace. If = micre evant aborts <cycle 1, the
INCOMPLITZ_MIMIORY_LYILE zondition is s2t, and the event return micro
crder START_IF_INCZCMPLZT: will restart the gperation. Curing a memory
irite ope2rations the LOAD _WOR must oczur no later than cycle 1. The
Tag Store guery implied by the particular memory start is performed in
cycle 1. If memory i3 interruptaed during cycle 1, the operation 1is
terminated &end LRU 13 not updated. No d=2tz 1is transferred to or from
MeMOry. R2I2 1s dastroyad,

Cycl2 2 is thz final cycla. 4 this time ha read data is
avaiiatcle Trom *ha RZR and can be used by Issuing 3 RTEAD_RDOR micro
orcar. If reguired, *tha LU 2i*s 2r2 updated during cyclas 2.

If 3 MZMIRY_ZXIzZPIZN 1s raiszd during the operations, 1t causes an
2zr L micro 2vzent in zZycle 2, 1f enadlzd. Nc¢ tac s*sra2 sta*ta 1s
Jsdates and no dits 15 wri*ttan to mermorys, 21though the cantants of the
R SR ara ios+. Tr2 ayent 13 s2rsistant and nizhast priority.
Thzrefor2 1%t sill cccur on thna firs* cycla 1t is 2nabled urtil the
2vent 15 takap or tr: causing ceonditiosns are tastad,

Tne RATJR remsins valid until th2 next LOAD_MAR. After 3 LCOAD_MAR
is 2x2zu*t2d, tne MEMORY_IXIZPTICN and CCORRzZCTAZLEZ_ERRCR handler will
noa* 2 2ole *o determine whicn addrass causezd the event,

OQvarlepecing memcry operations arz allowed. Cycle 2 of one memory
cperatisn car 2e zycle? 0 of th2 na2xt. In the CONTINUE operation the
giz2lining 1is doubly ovarlancad: cycle z of the first orpe2ration
corncides witn cyclia2 1 cf +the sezond opz2ration and cycle 0 of the
third. This can only b2 dcne *5 ccnsecutive addrass {(refar balow to a3
mor2 det3ailad exclanation of CONTINUS)D.

This s2cticn discusses the standard memory operations: Raad
Logicals Write Logizal, and Continue. It 2also describes the
conditional memory refearance mechanism.

Data whose addrass 13 in MAR ara2 accessed. Curing cycle 2 of the
memory operation, data is available via the RZAD_DATA microorder.
Normally, the memory mornitor transfars date from the proper read data
rezistar. If the 2ccassed data resides in the £SA, data is accessed
thares, and the memery datz 1s ignorad (the CSA aluays contains the
most wup to date copy of d2tas sinc2 the (5S4 is not a write—-through
accalaration mechanism). Choice of ROR or £SA data 1is made by the
mamory monlitor transoarently to reguesting microcode.

Ration2l Mechines propri: scumant CRAFT 3 Decenber 18, 1982

v
-t
©
3

~

¥

Memory Monitor Sgecification Functional Description 13

If the specified losiczal address is not encached by the mamory
systems, 3 MEMORY_EXCEPTION micro event is posted, and the CACHE_MTSS
conditinon 13 set. The RDR 1s destroyed. If the specified logical
addrass is encsched, but the PAGE_STATE 1is set ta LOADING, a
MZIMORY_ZXZZ?TICN micro =2vent is postads, and the CACHE_MISS condition
Tre '

13 sS2Ta ROR 15 d2stroyed.

1

(A
]
(%}
]
[AY]
.
27
B
o)
-+
[
r-
(8]
(']
[
(]
1

The contents of the W3IR are written into the memory word whose
1l addresss 1s in the MAR. If tha specified logical address is
cacha2d by the mamory systam, a MZIMORY_EXCEPTION micro event 1is
V4

nat en 2 2
postad and tha CACHZ_MISS cendition 1s s2t. The RIR is destroyad,
Ju*t nc cache locatizcn 1is wrl*ten.

If the cache page baing written 1is in either the LDADING or RELD-
CMLY stater a2 CTACHZI_MISS cendition is generated, The MEMORY_EXCZPTION
evant 13 raitsz2d asz a cycla 2 2vant. The handler must guary the tag
store and cnack nage s*+2a+> to diffarantiate these states from true
Z2Ln2 Mi335a.

I%T i3 1lmpgortent *o nc*t2 that, 2lthouqgnh the pravisus contants of
tha srittan lccaticn 135 placed 1in RO curlins 23 LOGICAL_WRITZ, the
micrscoes: shnould rot Read _RIR. Tnis cculd caus2 an IRIC error which
“i11 write yack th2 corr2ct2ds, ori1igzinal contents and tharefore urdo
tna rirta. Tnis f2atur2: i3 impla~2ntad for dizgnostic purgoses.
2<e3.3. CZontinua

For extraema2ly hizh 35922232 *ransfars (7 30 Megzabytes par sa2cond)
1s or from cons2cutive wLards in mevorys, the page moda feotura of the
gynamiz RAM®s 13 exploitad. This faeatura 1s enabdled by specifying
CONTINUZ 1n the cycla i1mnediately following a memory start. The
INCREMENT_MAR micro order must also be issued. A CONTINUZ can
immediate_y follcw anotha2r CONTINUZ, thereby allowing entire blocks of
cdzta to be transferred 2t *this c¢clip.

INCRZIMcNT_MAR microorder increments the MAR by 128. If the MAR
displacemant mod 4095 bazcomes zero as a rasult of this increment, the
PAGS_CROSSING event 1is postad. The PAGE_CROSSING microevent occurs
after the MAR has been incremanted {i.ec.r, the MAR contains an addrass
which 135 40985 less than the proper address). PAGE_CROSSING is an
early microevent in the cycle following the INCREMENT_MAR microorder.
A CONTINUEZ microerder (with its INCREMENT_MAR) must be 1issued
during cycle 1 of a prac22ding START or CONTINUE memory operation
(th2r2 must be no 1idlz2 memcry cycTes batween the START of a page mode

(=

transfer, and any of th> CONTI S operations).

1f=-¢ 2 boundary crossing triggers the event

U

t a h

iy

Tha reason th

n

S

Rational Machines propriatary dcoccument DRAFT 3 Cacember 13, 1932

Memory Monitor Specification Functional Description 14

is dizaetated by & low-level —constraint from the dynamic RAM s
thamselves. They must be "precharged" every 13 microseconds. 8y
trapping at le2st every 32 cycles, this constraint is met. The time
pena.ty for the event is only &4 cycles (two dead cycles because it"s
an =early event plus the one micrcinstruction handler). Another
considerstisn 1s that, since pa;cs are 44 words in length, each time a
$4 word pagze bsundary is crossed by a page mode access, the tag store

he gqueried again to obtain a new logical to phy51ca1 2ssociation.

mus*t
Wnen INIRIMINT_MAR i35 issued, thne “A? is incremented 2nd driven
ovsr tn2 address buse. Th2 incrementz2d versioaon of MAR is loadead back
into tne MAR from the adcdraess bus. (S22 the description of
MAR_MOZIFIZS state bhit). Note that, shen INCRIMENT_MAR is selected as
L

s
tne MAR_CONTRCL microoarder, tre FIU board must be selacted as source
es

for the addr s busz.

2a3e%. Zonditional Ma2mory Raferencas

Corditional memory starts are supportad, Tr2s2 can be basad on
2ither zolarity 2¢ an early or a "madium=-latz2" condition. If +thea
ccnZiticn 13 not takzns, anothnazr mamory start moy immediately follow.
If tnz corcition 13 tazk2n, 0only @ ZONTINUT or NO_MEMORY_CPZRATION may
follsou. Trna INCREMINT_MAR 13 alss rezulred during conditional
TONTINUT s, put is unconditionel If t=2 ¢ccnditicon i3 not taken, thea
MAR 13 still modifiad, a2nd tne 2a5Z_IRISSING 2vent can s¥till occur.

Th2 o*%tn tur canditional memcry starts arz2 wused by event
nandlars to raconstruct tra memory cyclz2 pipeline.

421 2v2nts nandlers must 1s3u2? a START_I=_INCOMPLETZ in the cycle
1* ra2turns, (Conditional r2turns ar2 not allowed fronm event
nandlars.) I¥ *he 2vant abeortad cycle 1 of 2 memory operaticns, that
op2ration 1is rastsrted by this command. If the event aborted cycle O
2% an opﬁ*aticn/ th2n tha handler will return thar2 and the microcode
will art tne memory cammand. {3y definition, cycle 0 1is the «cycle

whicn issues tna start command.) If the event aborted cycle 2 of an
operation, the op2ration is not restarted since the operaticon was
completad beforea +tha evant. (Cycle 2 is defined as the first cycle
that RZAD_DATA can pe us2d following a START_READ, and the first cycle
that 2 MEMORY_EXCSZPTION will occur. The operation 1is considered
complete after cyclae 1.)

MEMORY _ZXCEZPTION handlers must issue 3 START_LAST_COMMAND in the
microcycle 1mmed1 tely bafore it returns. This will restart the
command that caused thas exception. The last microcycle of these
nandlars {(2s recuirad of all micrs event handlers) will issue2 the
START_I®_INCOMPLITE czommand. If there was a CONTINUE in cycle 1 of
the m2mory oppraflon that causad the excaption, *this eavent return
sction will esta the CONTINUZ. This 1s th2 only circumstance 1in
Lnizh a STA?T_IF INT “MD"TQ will resalva to 2 CONTINUEL. The MAR must
e incremented *o corractly force 2 continue, Thereforas the

Deceambar 18, 1982

lad

(]
)
p &)
n
-4
(V2]

Raticnal Machinas proepriatary documan

Memory Monitaor Specification Functional Description 15

INC_MAR_IF_INCCOMPLETZ micra order must* be issued on MEMCRY_EXCEPTION
nandler r=2turns. Whenaver INC_MAR_IF_INCOMPLETE is issued,
INCOMPLETZ_MZMORY_CYCZLE must be sele ct d as test condition.,

(V]

Z2eHe Memory Manazemant Tperation

Zach memory Scard manages faur sets of Tag Stores used for
gssociative compzrisons ang memory managemant. Instead of four
parallel s2ts of RAM"s and ccmparators, the Tag Stora is implementad
with two banrks of 1K X &4 Static RAM s and can be clocked at tha double
freguancy rate. Sets C and 1 are always referenced in the first half
cf 3 cyciesr 32t3 2 and 4 arz raferanced during the second half.

2.5.1. Tag Value format

M contants ¢f the Tagz Stor2 RAM™s can be read and writtem over
the VALUZ_3US 9oy 3 combination of bus control microcrders {s22 tne
SY33U3 3gecificsticn) znd mencry commands.

A t23 vaiua2 is latchacd a5 tne rasult of 2ny memory operation.
The START_PHYSICAL_TA5_RIAT operation latches the tag value associated
with 2 particular s2% wihout ctharuisa accessing mamory. Th2 tag
valuz may B2 read during cyclz tuwe or later (it must not b2 read
unles3 mamory 13 idla2). 4 SZTUP_TAS _RZ4AC micrcorder must be 1issu=ad
anaz cyzl2 oprisr 12 r2ading tha tag v3aluz2s and must rot be issuaed
2arlier than cycla 1 of tnz 2z2rztion which latches the tag value.
Tne tajs v3aiue 1s ra2turned over *he VAL bus.

The2 tag stora2 13 written wusing the START_PHYSICAL_TAG_WRITE
micrasrdear, START_PHYSICAL_TAG_WRITE 1is a *hrez2 cycle operation
(cyclal:izyclel). The newy tag valuz to b2 written must be loaded in
the valu2 si1de of tha W32 no later than cyclz2 1. Memory must ramain
idle during cyzl2 2 (i.2.r no memory start may be issusd until after
cycle 2).

When 23 tag valua is written, all fields are written, 1including
LRU. Therefcre, cara must be taken tc make sure all sets on 2
particular line have unigue LRY values between zero and +the MRU sot
numMbera. Note also that, following pow2r ups all tags on each line of

th2 cachz must b2 preperly initialized before any mamory operations
are 1issu2d, or parity errors or unpredictable behavior may result.

2.0.2. Tag Store Addrassing

d with a frame address which 1is composed

The tag Stcre 1is addr e
z 3z 1d and a four-bit SET_NUMBER field.

of a nina—=>1%t LIN

LINZ_NUM

) ined by a hash function operating on the
5t s1gnifil ’

the eleven least significant segment

O v

December 18, 1982

(A

t DRAFT

A
(27}
r
H
o
3
—
A
0
O
s
'™
3
w
Ui
o
R
@]
Xel
]
pe
W
ot
n
-
~
[a %
(V]
(a8}
C
=3
w
3

Memory Mcniter Spzcification Functiosnal Description 16

TAG_VALUE:

pm————— ——— e, ———— bm————— —tm————— B et e T e A
] Segment Number | VvPid | Page Number D] LRU}ST Jres]Spci
] (24)] (3) | (19 111 121321 (3) }
pmm e — e m—————— $mmmmm—— e —————— R e i b DA DL Bt
S 2L 32 52 56 53 61

23 31 50 51 55 57 60 63
name pits =2nd th2 ninz2 least* ignificant page bits, producing an
ealevent bit line address. OCn the memory monitor, line address bits 0.,
3 and 17 sre computad combinatorially, while lines address bits 1..8
are obtzinad from 2z RaM:
lin2e addra2ss J 1= paze 2ddress <1£4> x—or saszment namz <13>
iin2 =zddrzss 7 1= sp2c2 <1> x-ar sa2gm2n*t name <225
line fadress 13 1= spzace2 <2> x=or segmant nam2 <23>
line a2ddr233 <le.4> = FAM addra2ssad oy

2222 24dr2335<14..73> and segmant name <14..13>
line &ddrass <3,..3> 1= RA™ =ddr=2ss32d by

22c2 2ddra3s<12..73> and sazment pame <13..21>

Tnz RAM i35 oprogrammnz2d *to produc2 tne same hash function as the 2

M2 merory bDzards, namz2ly th2 bit-uwise eaxclusive=or of Sagmant<15:23>
{l2zst significant 9 sa2gmant hits) as one component, and Page<i8:12>
conc3atz2nated o0 th2 riznt Lith Space<1:2> (least significanmt 7 page
dispiaceamant Dits, with tha2 bit sigrificance reversed, concatenated
Wwith tne least significant tus scace bits) as the other component.
Thnis pairs S2gmant<153> with Paga<13>, Sagment<15%> with Pagza<17>, and
sc forth, until Segment<23> is paired with Space<2>. The most
sisnificant 2 bits of the line address are set tc zeoro.

Whan the hash functicn needs to be bypassed because a particular
LINE_NUM3ER wants to be addressed (such as in a
START_PHYSICAL_TAG_WRITE), the desired LINE_NUMBER is placed in the
l. s. nina bits of tha SEZGMENT_NUM3ZR, and 0°s are placed in the rest
of the bits participating in the hash function.

Tas compariscns are im plemented on twc poertions of the tag value:
the stack name and the ull page logical address. Tha stack name
consists of trne sagment nqmbar {bits D0:23) and tha VPid (bits 24:31).
The pag2 licgical addra2ss consists of the stack name, plus the page
Anumoa2r (Dits 32:57) and the Space (Spc, bits 61:63).

Th2 SZT_NUM3EIR is daterminad by the particular guery moda implied

Rational Mazhines proasria*ary documant CRAFT 3 Cecamber 1%, 1982
Y

[Ca

Memory Monitor Specificaticon Functional Description 17

by the memory start. Cn physical Tag references the SET_NUMBER is
specified by the most significant 4 bits of the VIRTUAL_PROCESSOR_ID.
On Legical Tagc gueries, the s2t that contains the matching logical
page address 1is the selected set. The Least_Recently_Used set 1is
selz2cted by a 3 gR‘ _LRU_JUERY. The first available (invalid) set is
seiected by 2 START_AVAILABLE_ZUERY. In a START_NAME_CUERY, only the
stack name porticn of the *ag is comparsad. In this guery, and in +he
available gu2ry, multipla s2t could hit. T7This is resslved arbitrarily
by tne mamory hardware. (Actually, the lowest set npumber will win
outs but no code shculd b2 written that relies on this.)

Tne remaining tag value bits describe the state of the page. The

O »nit 1s set wheznaver the page 1s writta2n to via a logical guery {it

i3 not sat for physical guaries or mainta2nance or random cperations).

The LRU 1s deszscribad latzar in this document, The reserved bits are

availanle for use by microcode and 2re nct interpreted by hardware.

The cage stata (37) field controls the kinds of access to each
cag2 of the memory data array:

Loeding (233 This =232 13 not yet re2ady to pbe accessad {(data is
52ing transfarr2d to or from this pa=g2). Logical and
name quarias will mztcn this entry, but the
LSAZING_FAULT state b1t will be sats and a
MIMORY_SXCTZIOTION event will cccur (if esnabled).

Re2ad-0nly (31) Thnis p2z2 may b2 reads, but not written., Logical and
nemz queriz2s will match this entry, but logical writes
4111 seat tha WRITZ_FAULT state bit, and a
MEMORY_EXCIPTION event will cccur (if enabled). Note
that da2ta is written even though the page 1is Read-
Cnly. Se¢ the description of Logicsl Write.

This page may be read or written. Logical and name
gueries will match this entry. I1f a match occurss no
tag s*tore related state bits will be set (CACHE_MISS.,

LOADING_FAULT, WRITE_FAULT).

Invalid (11) This page is not assigned any logical page; no logical
or name query will match this entry.

2ef.3. Framz Address

A frame address latchad by the memory late in cycle 2 of each

is
memory op2ration. This may be read after cycle two. Unlike the tag
value, fram2 addresses may b2 read without any preceeding SETUP, The
fram2 address c¢can be read by a <combination of VI bus control

microordars (see the FIY specification).

Raticnal Machinza2s prooriz+tary decumant ORAFT 3 Cecember 18, 1982

R

Memory Monitor Specificaticon Functional Description 13

Ail physical ma2mory and tag store accesses require a frame
address in thne least significant &4 bits of the MAR, Further, all
fi2lds except line numbar 2nd set numbder must be clzared to zero prior
to lsading 1nto MAR. Wnen read, the Frame Address returns the line
numoer *o which the logical address in the MAR hashes, and the last
2* numdar which hi*t {(1f no memory bosard 1s presently hitting, 211
235 ar2 returnad as set numder: th2 frame address may be read to
nvert a logical address to a line number without cycling memory).

$mmn——— fmmmm e R il et et b ket
JSCYNSGR] O07s| Lines NolSet]MRU] 27s]
j (33 1<% 11 EEDRRESE {24)]
pm————— e E R e R ettt +
J 7 3 12 13 23 24 31 63
x SCVYN32 - 5its <7..7> +*hz2 conta:nts of thne scavenger ram are
rz*urnac MUt D3 z2rz Lnzn leoading 2 frame a2ddress into +the
MAR.
= LINZ NO = pits <13..23> +th2 line numdar to uwhich the current
czntants oF MA® hosh2s is r2turned; the physical line - nunber to
22 accassad 13 Lsaded prior to s*tarting a zshysical mamory query.
x SIT = Hits <24,..27> the set number uwhich hit last is returned, or
all cnas 2% no s=2t 135 hitting, contains the physical set number
to b2 2ccessz2d Dy *th2 nex*®t prysical memncry gQuery. Wnen lecading a
pnysic2l frame 2ddress, tne set number must ba less than or egual
to MRU (%tn2 highast valid sat number)., or resuylts will be
unpgradictania.

> tha nhighest valid set number is computed and
latched during IALIZZ_MRU, and 1s returned as part of the
frame addrass. Th232 bits must be cleared to zero prior when
loading a2 frame address into the MAR.

* MU - bits <Z3

The 11ine number portion cf frame address is computed
combinatorially, wusing thz hash function logic. The set number
portion 1s derived from the result of tha specific guery mode. The

MRU s2t number 15 latchad at memory initialization timer and always
returned with the frame address. Finally, the scavenger ram contents
are read wusing the address in the MAR, and returned 2s part of the
frame address. The scava2nger ram contents app2ar combinatorial 1in
that tney are derivad b2sed on the current contents of the MAR, and do
not depend upon the last gquery mode. Note that scavenger ram centents
must ©De 1nitizlizead after cower up ba2fore 2ry frame addresses are
5

resds, or & scavangar parity error may rasult.

Rational Machinas presriztary document DRAST 3 December 1%, 1982

Memory Monitor Spo

2ebeba LRU Managa:

lin2 contain a un

[X o
(X1

i P
.
O

T wv
-
pd
(@
s

x O wan
[
ul

'4

3 ~+ O
)
8]

b

0w O
O w .
Lol "1}
=
O
[l }
k0O
rt
o+
O
o
J N
0 ~+
I o (8]

W <

<<
16
i
o0
L0 O
(VL & BT
(0
3
C o+
T
[a R
)
+
w Ui

W

<
b
Foobe 0y
©
®

unchang

[
w
P
v

T2 Vaouz 2
L3C2Tt13ns3 >n *r
Micrgczzsda trat r2
Addrass fi214ds
Zon*trzcl Stack Azc
3tacxk Acca2leratar
cy tne C5A undarft

ANy odTher
datarmin2 1f th2
CsAa. Tna ader
CONTRIOL_T30P.

During e2xit
in one POP_DTWN_T
must determine
communicate this

2.7«7« Control St

When MAR 1is
stack nama cf
MAR displacemant
currant cantral

raferancz2 13

CONTROL_A3CRzS85_C
faollowing 1o2ding
microorgcer is 1

Rational Machines

ecification Functional Cescription 19

iu2 contains 2 four—-bit LRU field. All the sets in a
igue value in these four bits.

the highest implemented

IZ_MRU microcorder datermines

m 13 defined as the Most_Rez2cently_Used (MRU) value.
s gcart of FRAMZ_ADQDRZSS. Not that INITIALIZZ_MRU
l2z2 any tzg fields; these must be initlallzed
rocade,

cular set hits, andg the guery defines UPDATE_LRU as a
se*”s original LRU value is broadcast,r and replaced
2lue., 2411 sets whose LRU valuz is greater than this
will dacrement their LRU value. All sets whosa LRU
than this valuz2 will remain uncheanged. Therafore the
2d set will have a valuz = 0. Note that the LRU
4 c¢cn 211 s23ts including invalid sets, 2lso the LRU
d by 2 trg store write operaticn.

Agzaelarator Mornitor

nd TYRZ Doards z:In ancacha 25 Tany as fiftaaen
2 tzo 2f it ~drrantly executing Lontrol Stack.
€2r2nc23 *he2 233 directly usas the the Razister File
t: specify loczcations ra2lztive to TCS (the tcocp of the
2lz2rator) or to CSA_32TTC2M (tn2 beottom of the Control
). Tnzs2 1oc2*ions 2ar2 suarantead teo ha in thz £sa
1oz and overfloyr macro 2vants.

dddrass to tra Contrsl Stack mus* be monitorz2d to
m23*% ra2ca2nt varsion of that address resides 1in the
3335 13 2133 menitored for illegzl raferences beyond

operations, sevaral locations are wiped off tha stack
s ope2ration. Aftar 2 POP_DOWN_T0, the CSA monitor
how many wvalid entries remain 1in +the C(SA, and
to the VALYUS and TYPE boards.

ack Acceleratcr Hits

loadad, the new MAR stack name 1is compared with the
the curren* control stack. If they match, the 20 bit
is5 subtracted from the displace2ment of the top of the

stack (CONTROL_TOP)., If this result is negative, the

Seyond tha top of th2 control stack., and thea

CUTO= RANSS condition becomes true in the sacond cycle

cf the MAR. Under these circumstancess, 1if a START
su2d, CONTROL_ADDRISS_OUTOF_RANGZ is set in cycle 2/

nroariziary document ORAFT 3 December 18, 1982

Mamory Moai<tcr Svacification Functional Description 20

posting tne MEMCRY_ZXCZPTION event and aborting memory. If memory is
not startad, tnis condition 1is not s2t and MEMORY_EXCEPTION 1is not
postad. Sinc2 this is a cycle 2 evant, 1if the memory op2ration was a
Writss, data 135 actually uwritan bz2ycocnd th2 top of stack.

ycnd the current CONTRCL_T0P, the ocut

If the MAR 1s 1incraenantad be
¥ rang2 conditior I3 set in the second cycle following the INC_MAR.,
memory 13 =aSortad (Istz2 abort) and MIMCRY_EXCESPTION 1is postad.
MAR_MCOIFIZD wiil e s2%t. If oSther memory exca2nticns ares alsc
assertad (e.g., CACHZI_MISS), the address in the MAR must be unwound to
deta2rmin2 tha addraess responsible.

°f the result of tha subtraction 1is not nagative, then the
diffa2renz2 plus on2 is sub*racted from the number of wv2lid entries
currantly 1in the CSi. If this result 1is negative, the referance falls
p2los tn2 CS4, and 1s directa2d to memocry. If the result is not
nagstivas th2 rafarance falls within *th2 curr2nt contants cf the (CSA
on the VAL =2nd TY?2 poerdss, and the CSA_MIT condition e2xists. This
r2341*1ng differance i3 callad tha HIT_JFFSZT, 2nd 1s ra2lative to
C3A_32T7T. Trz ma2miry monitar proadcasts Dotk ISA_SIT and C3A_DOFFSZT to
trz VAL EXa¥el TY?> Dozrds 2ach cycla. VAL and TY? l2tch them for
acca23sing the LS4 during th2 pa2xt cycles. (SA_AIT AND HIT_OFF3ET are
latcaza 2vzry Cyzle, Lh2tnar cr ret thot cCyclz2 1s bH2ing abortad dus to
3 sad ~int sr Bl 2vant, wh2n cyzle 17 of =z write op2ratisn is not
32.N03 sort2ds P2 memery moniteor Srosdcasts & write signal to the VAL
and TY? noards, uhich L3 3lsoy aluways latcnheds, and wused in the next
cycLz2 (zyzsl2 2) +t2 sat2 da*ta from their copies of the WDR into the
C35A. wnen RIR I3 sp2cifiad 2s the socurce of the TY? and VAL buses,
T2 3/30US 3o0Irs 2532rt3 2 read_RXOR sisgral 2 *thz2 TY? and VAL boards
in thz sam2 Cyc.l2 tnat tne A5 1s bkeing read. Tnese boards wuse this
signals along with thnz CSA_HIT and HIT_OFFSZT values latched the
Dra2vious <yclars tc r22d th2 dzsta from the (35A.

while C3A_HIT 135 TRRJZ, memory s%tarts 2r2 handled as wusu2l: read
operations access memary and lozd the VR while writes uwurite data to
NAMOry. Cacne hits zsre supprassed when CSA_HIT is true. entering
cycle 1 (a2ffactivaly, meamory 15 not star\edr mamory state is Note that
the timing of C3A hits is identical to the timing of any other memory
operation,

During cycla 1 of a write operation, data are loaded into to the
VAL and TYP board cy of the WDR from the VAL and TYP buses (as
alwaysl). Thz me ter informs the VAL and TYP boards that a
m2Mory uwrite cycle is occuringe. VAL and TYP use the CSA_OFFSET
latched in the previous cycle to gate their local copy of WDR 1nto the
rejister file via the L-mux and C-port (s22 the YAL board spec for
reguired C-mux and C-port microorders during cycle 2 of a write

3

o
+
P
(&)
3
oy
e~
<
o
[}
3
’J
3
W
Ji

arosrizatary document DA=T 3 Necember 18, 1932

Memory Monitor Specification Functicnal Description 21

2e7a2« LOaZ CONTRCL TOP, PUSH/PCP and INC/DEC 80T

Tne ma2mery moniltor maintains th2 number of valid CSA entries
{(NGM_VALIT). 11 CS4 refarences from the memory monitor to the VAL
and TYP boarcs zara2 relative to CSA_SCT (which is maintained by the VAL

and TY? boards <concurrantly with the memory monitor and saquencer
copias). Tne meonitor informs the other boards of changes in *the
status of thoa CSQ via HIT_CFFSET and three additionzl wires:
PCP_CCwWN, LOAD_TC Normally, these latter three wires
arz not a;;arL d. asserta2d, the CSA is heing modifiad,
_HIT. None of the (33 modification
d during cycle 1 of a write which should
in the cycl2 prior to r2ading the ROR if
copy of data {(these restrictions really
or any memory 3access whese memory SPACE
the RDR must not he ra2ad until a full

Qi

10
-4
lad
-5

O w
-4

04
o
(s
~
O
W

oy

v u ®
o
X 7 e

(S BNVINPS S o

<4
I
)
a

(1]
)
Q.
+
¥
v
3
3
b
Ad
30
3
wn
C
O
O
(O T
W
[ViR |
© ©
'.4
(SR A I]

p e
V < N
[OV B S e |
W W W e
o CONY B 6 Mile BN SR VA B G 6 V)

O T O

[@ Y4}

anpgly to any CCON
is not knounl). I
memory r2ad cycia

Fy)
[7/ 3 S R 3
o W Q
3
v 0O 0w
’.»A
WU\
[TR
L]

o]
-5
o)+

ds the address on the ADDREISS
D to zero. A minus ona2 1is
nd ViL boards, along with the
22T by the TYS3 and Vil
CS

-

[ITENNNS]
(RIS e]

W =4 2

[¥2]
(BT}

U
i)

O 3

B —d b ke g

-
<y O
Al (DY

< 2

W L

V12 R VI N]

O w1y
LIV VN I V2]
Q)
[SP RN W]
T«
.—4‘
{0
> (D
n ~ i
I3}

L
RN

Oy rt

o,
ot
i

rLr-

(2]

-
Hord (o o UT

< w0
g
3~

nUow
N &
i
o I V)
0
(']
]

WO 3 X
-1 O Ww

rt

(9}

[O T B
3 e
1o

[P}
(%3]

~

3

<

st plus on2 and minus ones
ong witr LCAD_TOS. The TYP?P and VAL

¢ the result in 7CS. These
entry from the top cf the current CSA.

1}
TN
0 <« 1

Qo
1Y)
N D
L
U
Cu
0
W |
N
)
]
RINe]
~ 9
{1

[V
8}
v (O
~

=]

e O W
Oy oW
I T §)
O X W
QO w

3

[a%

W

[VTN & W 2
iy

a I
Q.

(@]

) -
U

[N

lvg

~+

-1

(17}

micraocrders shrink or grouws the (SA from the
y) by adding one tg or subtracting one from the 307
and VAL boards. Plus or minus cne is brocadcast as
manitor, 2long with LCAD_30T7.

o O Q)

2.7«3« START_POP_SCWN and FINISH_PCP_DOWN

SCP_DOWN_TO is a2 two cycle operation. START PCP DCWN latches the
offse* pcrtion of the new CONTROL_TOP from the ADDRESS_BUS into
NTROL TOP, and saves the old CONTROL TOP offset. The NUM VALID is

not clearad.

During FINISH POP DCWN, the new NUMBER_VALIDC is computad by

=
subtracting the CCNTROL_TOP neauw offset from +the saved offset. This

rasult is then subtracted from the number of valid entries in the CSA.,

and a negative result 1is set to zero. A NUMBSR_VALID of zero
indicates that the entira CSA has been invalidated. NUMBER_VALID
minus on2 1is broadcast to the VALUE and TYPE boards during cycle 1 in

clacz2 2f HIT_QFFSZT, along with POP_DOWN. (If NUMBER_VALID is
n2gativay a minus 1 1s Sroadcast to the VAL and TY? boards, uwhich

iAavalidates the entirz C3A contants).

ionsl Machinas propriz2tary dccument 2RAFT 3 Decembar 18, 1982

)
{J
r+
e

Memcry Monitor Spacification Functional Description

hetween 1issuing

ERCC

must be disabled
FINISH PJP DOWN. The
the state of the (CSA, sinca

offs2t reguired by FINISH
CCWN HIT_OFFSET and suppressas CSA_HIT,
De the cyzle which
data should 3o to
cycie following a
£3a.

Events
completin
to modify
savad too
FINISH FOP
must
thara’
ROR
vali
cont

-

-
~
>

b IO}

[NV

in
the
tha
n the

3
te
th the

Csa.

[1V]

2d

~ W

w

ey 0+ C

2.3 Monitor

Scavenger

2

Tnz mamory moniter contains
farencea and ¢an trap on certain pattarns.

=2

3

w

-
[¢]

)

(SO SN
O w

ar2

E

[

+ O

W o
(A s B A

=
[SR VR B 3

v

3
W

@ N
(19}

2]
w

~ 0
RERUNN®
W ord b
W
[{V}
-~ J
{7
[

k9]
[#]

.-4.
3w
[0}

o

jo]

[V
Il N Sl
[V =t

3
'3 e e B 2K

7]
[N
c
=3
[
x
b
~

hos
1

(I

.
[$)
3
~
3
O
ot
3
I I
(9]
ot ot
[N
LU}
bt r-e
[
'.J.
]
W
A

IR I N

O

¥

W
(SR}
[

oty
3
)
'J»
)
0
w

Ul
IR SN 1Y) ~
[0 2]

¥
oy

[(EN

¥
Oy

=)

O QO
Y ke

1]

(V)
Wy o)
W

[9]
0y Ay
Pt
U oW
O
L
p)

27}
T

0

b
LTI
26
[

(]

1]

rt 0l
(Ve |

[CRES S |
[

o+ 0

(@]

w3

[
W
3
L7}
4]
(3
%
)
pt
()
"
8]
[l
w
(8}
P8
(€]
3
a

-
i

]
(L
w
v
Ut
W
C
w
}4.
-5
[VARTS]

Ve
3w
I IS S

n

3

w

1)

Yy
2 J)

[h)

3
w O
[an BN V2 RS ST E B]

o

O

W
i+
S
7}

D
O
L]

'J.

3
of tn MAR
NRITZ_LAST
combiratorl
START or R
cf tne oaddr
addrass.

2

Q 3 W

-3
“h

s

hese

3
W 0o un <
B
O
3
3 O ot b
oy

[alie}

moniter a
5 issued.
raturped as

ou
w e

3
M~ e+

~
8
YO 6]
wn
[ATRS 4
-+
o+
I P
3
O
[
e

La p-4
)
[V TRV B §
[N}
[(Va)
[N
3 O
e
[
)

O

x
TR TR I |

< |

€
X W

~

D n o1y
("]}
(7]
W
[0}
W I
{2

E
m
+r 0O
'J.
O 0
30
(7]

croorder 1s issued for =2
read, and the spaca specificatio
lact a bit within that location.
SCAVENGZR_TRAP mcnitor flag
nt 1s posted during cycle
is cycled and writes complets
memory exception 1s taken. The original <contents
i1ocation a&ar2 saved 1in the RDR. The
writes using the data in the ROR.

3
-

to
bit t
MZMORY_cXCEPTION e
oparation. Mamory

i

b

1s
se
he
ve

2

-~

d during
r random

is not acc
maintanzan

The scaveng E]
or durinj any *

e2ss3@e
ce ©

m
ra2

the scavanga actuall

dnly

rtary docurent

1]

START
event handler must take case not
i¥ CONTROL TOP 1is modified.,
POP TOWN may be lost.
mamory
issues FINISH POP DOWN 1f
Similarly,

circult that monitors
As a bar2 minimum
oroach to garbage collecticon
identifi=2d by the
parts.

midst of garbage
ta2ad

n

If the

S
o}

b4

f

o}

FINISH PQP DOWN
Thesa memory restrictions apply to

n

logical read cor uwrite.,

f

pnysical data
operzationsa.

December 18,

22

POP DOWN and

the
Since
wurites

the

if the

2all 1logical

At any
of actual

must be

ts

for

cn

sarbage
certain

5 perform a2 much

for the

bits
to the
are derived
the time 2

The 8 bit contents
rart of

the frame

a
the MAR
selected
and)
memory

of

set,
the

2ven when SCAVENGER

a written

SCAVENGER TRAP handler must undo

accessasy

used to trap

1982

Memory Monitor Specification Functional Description 23

raferencas. The eighth bit, which would have traced references to
sys*ta2m spacess 13 used to store byte paritye This precludes using the
scavangar to trzce referancas to system address spacese.

The scavenger monitor ram 1is writte over the VAL bus (least
siznificant 3 bHIts) using the WRITZ_SLAVE NuER MCNITOR microorder. The
MAR must have peen loaded with 3 logzical ad*rﬂs: prior to issuih; this
microorcarcy and the propar Scavanﬂcf monitor address must be computed
by pertormnirg a NaMzZI JUZRY (urite access tranping) or an AVAILASLE
Lz Y {r23cd acca2ssing trapping). The r2sults of thes2 operations may
b2 ignored: tney ar:2 anly usad tc s2t the 1internal state of the
scavanger monitcr addrass data path.

Tha 3 hits *ransfarred ocvar the VAL bus must include parity in

ns
bit 7, and & one bit in =2ach o0¢ the preceeding 7 bit positians
corr2spcnding ts tnz sgace wnhich should be trapped (i.2., one in bit 1
will +rap access2s to control segments whose high order 9 sagment bits
corraspsasnd tos tn. rrantly in tha2 MAR). The microcode must compute

corra2ct parity.

O
wy
L
O o
<

3. Micrcousrd Sge2cificatior
341T. Fiald sg2c2fiz2tinons
Jalele MZHMORY_S7TA37T f1r2l0 - S hbits

A1l of +re fcllowlng microordars 2xpect a loglcal address to be
l1sadad 1nto Mi3, 2xce2s* those whese names specify "PHYSICAL"Y.
PAYSICZAL starts roguir2 2 frame addrzss in the least significant 64
pits of th2 MAIR, with 2all fizlds <cleared to z2ro except *he
LINZI_NUMBZR and SEST_NUMB:ZIR,

The fellowing are Data Query microorderss, which access data in
tne memory data array:

* NG_MZMORY_OPERATION (NJP)
* START_RZAD

x START_WRITE

*

CIONTINUE

»
w
-
o
N
—f
Y
m
-
&)
—
all
-4
x)
<
(N1

x START_WRITZ_IF_Trys
Rational Machinas propriz2tary document DRAFT 3 Cecember 18, 1982

Memory
* START_WRITE_IS_FALSE
x START_CONTINUEZ_IF_TRUZ
* START_CONTINUE_IF_FALS
= START_LAST_ZCZMMAND
* START_I=_INCOMPLETE
* START_PHYSICAL_RZIAD
* START_PHYSICAL_WRITE
Tn2 follouing are
These mzaninulate th2 *ag
monitcrs, 2and 32t up data
* STAXT_PHAYSICAL _TAS_ 2712
* START_PHY3I24AL _Tai_w1l
= STAXT_TAG_LLzIxY
*« STAXIT_LRU_IUERY
* STA<T_AVAILAZLI_ZoZIRY
x START_NAMI_JTUSRY
x SITU?_TAG_RzZAC
x INITIALIIZ_MRU
* WRITZ_SCAVINGIR_MLCNITO
* ATK_RZIFRZISH
* 0Lz
Selalda MAR_CONTROL field
x RISTCORI_MAR
* RISTORZI_MAR_WITH_REFRE
* INCRZIMENT_MAR
* INC_MAR_IF_INC2MPLETSE
* L2AC_MAR xxx (scaze 71
Ratlonal *achinz2s prapri2

Monitor Specification Microword Specification

and randecm
ctureas of the
2rss:

titeral driven on ADDRZSS.SPACE)

tag stor
storz an
paths fo
-

Tz

2

- 4 bits
SH

cro

tary doc

Cecember 18,

24

microordars,
memary

1982

Memory Monli*or Specifizestion Microword Specification

K 3R

* R

m
it

STOR

* NC_MAR_CCONTRCOL (NOP)

307230 LOAZ_WCR = 1 5i+
3.1.%. CSA_CONTROL fizld - 3 bits

* PSSO _TSa

* INZRZMINT C33_22770w

x SEILRAEMENT_I324_ 32770

= NO_CSA_TONTRCL (NC23
3alwzae AZ23253_330URZTZE fialzc = 3 bpits

Th2 ca2ntralized con*rsl cf the sourcoa

bits of tne Logical addrass is

incividual sourca2s z2r2 rasnansible for
2zraoing out the apgropriate Most Significant
Tris c2ntrol P3as wmovad tc the sysbus hoard.

4, Conditions

Refar to the following table for an
mecnitcr conditions.

5. Mamory Con*rol Codes

The following table describzs the
mamary monitor to th2 memory boards, and

ariz*tary documant

P
)]
-+
$
(0]
3
w
—
w

)
o]
s
]
W
v
O
-
V]
O

of the
contained in the

menitoring

25

Least Significant 64

memory monitor.
ADDRESS.SPACE

The
and

bits of ADDRESS.PAGE.

enumeration of the memcry

control modes directed by the
their side affects:

ORAFT

(92]

Cecember 18-~

1982

Mamory Monitor

Condition

e

Ly

(@R}

1w In

A)

w
KRNV IO

Y Kt
oy L

L BNV VI O T)

O W»

[T O I O I O
[QN T VRN 9

Wyl

—
-
w
(9]
< @

pa
w
iU}

m

c2
<1

o

1

Active

*x Thas
4

5.

Rational

ALoxe

-
™~ 3=

1PL

2

on Syshus

Micrzozode

x3

W
-~
X
(¥}
-
m oo X

STI_MIMCRY_C

Maman <

T oA

= m
0 Z 0O
-4
r4

o

(@)
<

}

-
(V)

(V4

(O]
rt D
D o
ey
rt
H.
+ O

~ O
V]
’A.

W

x3
=]
(V]
*

A

-

m

[0}

Q)
U]
PR |
VN eY
Lo
[EH }J.
t Q

)
() a2
w0 W
IR 2 B O]
[V 6 W ¥

(b
Jorm
O A in
" oain
[N I £ A v

)

2 of th
follo
d cycl

I w

Hi/lo a

a

lal
L
cendi*tions
intar

Restric

Machines pr

causing the

Ahan

set
L, L2AD_MAR 01

s C1

s, mam start C2

s, men start C2
tLE

s 2vent C1

s event (1

s INT_MAR C1

L

Ls, mam start L2
Ly, mam s*art CZ
,Lac_mi3 L2
L, mam start (2
= RAN5z o«

s, L2A2_MaAR C2
L, mem start (2
L, L232_MaR C1
L, RIAD_RIR CC

, RIAD_RIR T

, RIAD_RSR C1
y2l2 during whic
1in3 ¢or 2vant po
ML = medium lat
2 microcrder
uving the one

Event

no

early macro
no

noe

no

no

early micro
early micro
no

component

no
component

no
conpanagnt

no
23rly micro
no
noc
Y the s2t
sting:
2 conditicns

Specification Microcode Rastrictions

When
cleared

LCAD_MAR
ACK _REFRESH
mem start .
mem start

START_IF_INC
by testing
by testing
by component

mem s*tart
by testing

lo=2c MAR
2y t2sting
load MaAR

Sy testing

LCAD_MAR
by testing
RTAD_RIOR
RTAD_RIR

Late

condition,

26

active
hi/lo

rrIx

r~

-

I T 1T X

o0f the condition

condition

in which the condition was caused

2 fzllowing the one in uwhbich the condition uas

True valua
Fals2 value

face Board
tions
opriztary document CRAFT 3 Decembar

are components of the

MEMORY _EXCEPT

indicatzas the condition is asserted.
indicates the condition 1is asserted.

ION condition

13, 1982

Memory Monitor Spec¢ification Microcode Restrictions

27

WRITE LASY/
QPZRATICN €225 QUERY LRU MOCIFIZD PHYS LAST
PrRYSICAL MZIMDORY WRIT: 2 PHYSICAL PASS PASS 1 1
PHYSICAL MZIMCRY RZAD 1 oHYSICAL PASS PASS 0 1
LIOGTIZ AL MEMQORY WRITES 2 LOGICAL UPDATE SET 1 0
LOGIZTAL MIMORY RZAD 3 LOGICAL UPDATE PASS 8] 0
coPY_3_70_1 4 LIAG PASS PASS 1 0
SCAN_T s JIAG * % * % 0 0
coPy_1_7T2_ 3 ol CIAG PASS PASS 1 0
SCAN_T 7 DIAG * x * % e e
PHYSICAL_TAG_WRITZ 3 PHYSICAL WRITEZ WRITS 1 1
PAYSICAL_TAS_RIAD 3 PHYSICAL PASS PASS o 1
INIT_MRU A CLZAR -- undefined -- 1 ¢
TAG_QUERY 3 L2GIZAL PASS PASS 0 0
NAMEZ_QUzIRY r NaMz PASS PASS 1 a
AVATLAZLZ _QTUzY B AYALL PASS P4SS 2 2
LRU_1JZIRY z L=y u20avs PASS 1 2
IJL:z = == 313 or2vicus state =--
xx during s3C3an 9g2ratisnss, 7232 Stor2 1 15 used 1t sav: the read datas
tnerzfore tne LRU 203 modifiad kit fiz2lds of tag stora 1 z2r2 written
41th th2 zZorr2sgocncing cdato.

1o Thz2 MAR, RZR, 3nd WIZR must be saved by the memory monitor.

2. LCAZ_MAR for raxt r2farance can®t precade RTAD_RDR for last.

3e LCAS_WIR must 22 no later than one cycles after START_WRITE (or
arytning thaet resclves to a START_wWRITZ).,

4. Sctn the LJ3AZ_MAR zncd START_RZAD microorders must be specified
whanaver a DISPATCH or USUALLY_DISPATCH 1s specified. The
sagquancer must b2 specified as source of the ADDRESS B2US. The
seauencar will abort the start, if it isn®t needad, but MAR is
destroyad.

5« FIU must be specified =2s source of ADDRESS bus during
INTREMENT_MAR.

5. PAYSICAL_TAG_WRITEZs for entire line must follow INITIALIZE_MRU.

7« Tha resarved_for_futura_use Memory space should never be
rafa2rencad.

8. Micro events should he disabled when playing with the Tag
Storz.

e A RZAZ_RDR shkzuld not b2 issu2d following a START_WRITE

DRAFT 3 December 138, 1932

Rational Machines propriatary dccument

Memory Msnitor Spgecification Microcode Restrictions

13.

1.

Ta.

16.

START_LAST_COMMANC and INC_MAR_IF_INCCMPLETEZ should only be
used 5y MIMORY_EXCSPTINN handlers. INCOMPLETS _MEMORY_CYCLE

must ba tasted in the cycla that issues the START_IF_INCOMPLETS
or INC_MAR_IF_INCOMPLZITE 1in order to select that condition.
Tzsting alsc clears the condition. .

Nc Ma2nory Start caommands can b2 issued when a RESTORE _MAR is
dzne. fvants must be disabled when doing @ RESTCRE_MAR, memory
must ba idle, Tne sgaca portion of the ADJDRESS BUS is driven
from TYPZ 2US <50..%53>. If th2 new MAR Random bits are
oriszirating on tne TY? board, thay must be routed over the TYPZ
bus to the TI bus (specify TYP ad TI source on the FIU board).
whan r2ading the MAaR, *the TI and VI buses must be routed to the
TY? and VAL buses (ra2spectiv2ly)., The random bits may be both
r2ad and loaded 2%t thz som2 time by sp2cifying MAR_MAR as TI_VI
sourc2, 2and RISTORI_MAR, which drivas the random bits onto the
TIrs 2nd 12zags3 then from thara.

nDoTven> Fandlar sheould navar ra2*turn using a3 conditional

r2Yturn.

START_P2=Y3ICXL _TA5_WRITZ is 2 thr22 cycle opersticn. The naouw
a3 valu2 must L2 grittan t3 th2 AR nco Latar thanm cycla 1.
Cyciaz J muast e en idil2 memory cycid. Trne cycls: following
zyzi2 2 13 thz2 first sne in which 2 mamory ogeration may be
sgc2civiad, Tyvants must Se disabled during this cperaticn,

A conciticr2l star*t cor conditional continue that fails must not
se follcued by @ <¢continua c¢r a conditional continue that
s3uzC2235.

Control ra2farencas to memory must nct be started during START
PSP ODWN.G Th2 RZR must not be read in the cycle following
FINISH PCP ZOWN 1f *p2rz2s any chanca2 the valid data is in the
CS4 until tha nax* full memory reoad comgletes (i.e.r cycle 2 of
the naxt start ra2ad). Mamory may b2 started during FINISH POP
DCWN. No CSA microorder octher than NO CSA LONTRCL (NOP) may be
issued betuwaen START PLOP DOWN &nd FINISH PCP DOWN.

LOAD_CONTRCL_TOP must only be specified when memory is either
idle or in cycle 2. Following @ LOAD_CONTROL_TOP, RDR must not
oe r2ad until a full memcry read cycle completes (i.e.r cycle 2
of th2 next start read).

Microevents which abort 1lcading of MAR or WDR leave these
raglsters 1n 2n inconsistant state (i.e., memory board copy is
loadead, while the processor copy 1s not). These must be mada
consistant by succassfully leading the MAR or WDR before memory
is startad. This is 2asily dona2 Dy handlers always loading MAR
d>2for2 1ssuing ma2mory starts cor reading ROR (which might result

')

1n an ERIT 2veant)., iz long 25 the precper timing of
START_IS_INCCMPLZTS and RITURN =2arz observed, an interrupted
LCAZ_W3? shcould b2 reax2cutad correctly.

28

Ratizsnal Macninz2s propriatzry dacument O2RAFT 3 Decembar 18, 1932

Memory Monitor Specification Microcod2 Rastrictions

(AY]

23.

o

[Q]
“

(AW

£
]

Tha ma2mory monitcr conditions table indicates which memory
monitor conditions are positive asserted, and which are
nagative assertad.

I¥ 2 scavanger tr2p or out of range memory exception occurs
nile writing to mamorys, data are written even though the
nemcry 2axc2-%tiasn 2yant is taxken. In the lattar case (out of
ransz2)s, tr2 wrlt2 may be2 1ignorad, sincez ne valid data exists
baycnd thne *cg of th2 control stack for a running task. In the
formar case (scavenzer trap), the handler must undo the write.,
if i+ checses to, by reading the ROR on the memory board (which
con*tains the old contants of memoryl), and writing it to the
offanding locatisan. Since the DUMMY_RDR is enabled following a
WRITZ, tha handler must issua DISA3SLE_DUMMY_N=XT MAR_CONTROL
rzndam 1in the cycle prior to reading ROR, to gat the old
contents from the mqa2msry board. This may cause ERCC avents.
The R3R i3 nct loaded during pag2 mode writess, s> the R2R will
maintain the con%ta2nits of the first location uritten during nage
moda writas,
LT 37 RANSGI czondiltion i3 testabla 1n th2 sacond cycle
follssiing lcoading 2f *tr2 MAR or tre CONTRCOL TCP.
I¥ you want *tha SXAM: 3332R:SS on tne VAL bus you Tust spacify
~ne ETLU 0 23 VAL 3uU3 SourC2. FRAMZ ACDRESS can’t be read until
CYZLZI3 or la*2r 3f 2 memory cycla. It must naver bz read
duraitsz cyclzx 2 o9f 2 mamory cycla.
Toa Sczavanzaer Ram 15 zccessad using @ bit derived similarly to
wRITZI_LAST. In crier to ra22d or uwrit2 the scavangar ram, this
bit mus*t B2 set orocerlys using NAMZI_QUERY to sat it to one
(WwRRITZ_LAST)Y or AVATLABRLE_LUZRY *to set 1t to zero (READ_LAST).
N2ither of thas2 micrcorders will modify LRU or any othar TAG
stata. Nsgt2: tne s3cavanger ram parity cannot be initialized
undar microscode control without disabling parity checking for
botn the memory 5oard tag stores and the scavengar rams
thensalves.
Testing 2 MEMORY EXCE=PTION component or PAGE_CROSSING condition
during cycLs? cf a memory reference will <cause the
corresponding MAR state bit to get <cleared. If events are

abled, an event will occur in CYCZLZ2, but the MAR state bit
w1~l pe clearad, destroying evidence of why the event occurred.
Thus, events must be disabled when testing MEMCRY EXCEPTION
componant conditions or PAGE CROSSING. Note that
MZIMORY_EXCZPTION may bz testec without side affects.

cleared in the MAR when tasted,

29

MZIMORY CXCEPTICN zcomponants are
which clezars the evant, but tne ta2st condition is not <cleared
until the progar ragistaers are raloadeds, cor (for CACHE_MISS) a
full mamory cperstisn completas.

Raticnal Machinas prosriatary documant DRAFT 3 Jecember 18, 1982

Memory Monitor Specification Microcode Restrictions

30

25. A MIMORY_EXCEPTICN is posted during cycla 2 of a3 memory

cp2ration in which one of thesa <components 1s becoming set
(ZACHZ_MISS) or 1s already set {possibly OUTOF_RANGE or
SCAVEVGZ _TRAP), or in the cycle following the one in which a
RESTORZT_MAR sets one cf these MAR flag bits. .
In thz latter caser the MAR flag bit may be set while the test
concdition is not tru=. In such casess tasting the condition
gill yielc a2 fals2, and cle2ar *th2 MAR flag bit, which may not
be ushat you want. The thra22 memory exception MAR flags, and
tne page <c¢rossing flags, are testable from the TYPZ_S3US {they
fall 1in bits 32..33) independent of the current value of their
respactive memory monitor test conditions.

25« RZIAD_MAR must Dbe specifiad (MAR_MAR in TI_VI_SRC) when the
ACK_RIFRISH MEMCORY_ STuRT microcrder 1s 1ssued.

27. Ahen thz2 TYPZ board 1is se2lacted t2 drive the space part of +the
2ddr 233 Uz (zhicn Nappoens Lrhemzvar 21ther tre TY2Z or VAL
>cerds 2r2 selactad to drive the address bus), tha2 lz23st
sisnificant 2 nits cf 3_Address data are driven onto the sgace
cort o B th2 3ddr2s3s buss, wunlass the current AR _CONTRC
miczrosroar i3 LZATZ_MAT_xxx, in wnich c2s2s5 the literal xxx 1is
crivana. Wwhea RISTIII_MAR L=z tn2 MAR_CONTRCL microorders
whataver 1s s2lectad as TY? 3_R_ddr datarminas the dazta loaded
in<s tn2 MAR sgace por+tion {(this is normzslly the same scurce a3
dzta drivan via tnhna TYP 3us ts the T71 2us to b2 loaded into th2
RANSZM 21ts). wWhen INIRIMEINT_MAR 1s 1ssu=2d a3s MAR_CCNTROL
mlcr3ordarsy but the =IJ i3 nst sa2la2ctad as addrass bus source
Tne m2mory monitor exaecut? 2 L2AT_MAR on whataver 1s driven on
thna addrass and space poar*tions of the address bus. Using this
featura, MAR flags may e cleara2d and th2 address portion of
tne MiI2 medified in 2 singla cycla:

R2ad_MAR, == h=andle page crossing microzvent
Typ { ALY_BUS := Pass_8(TYP_BUS) >,
Val (AJC?‘SS _BUS = 43986 plus VAL_3US 3},
Address_3us_ Src 1= TYPZ_BCARD, Incrament_MAR,
Salect Cond tion FIU (Dage Crossing)s, return =/

7« Zvant Timing ard Aborted Operations

Tha memory board pipelines oper2ation directives, meaning that the

ry board dces net act on a2 dirgsctive (such as a start

memo
until tn2 cycle after the microinstruction in which the
issuad. Thuszer, uwher a start microorder 13 1is3sued in cyclae
lat-hea Sy th2 memory board 2t the and of cycle zero and
axaecutag during cyclz2 onz2, Mamory s5t3t2 changes are commi
cycsla z. Thuss, an opa2ration must b2 aborted in cycle ze
Rational Macnin2s propriztary documant DRAFT 3 Decem

or an abort)
directive 1s
zeros, 1t 1is
examined and
ttad during
ro in order

ber 18, 1982

Mamory Monitor Specification Event Timing and Aborted Operations 31

2 me2mcry state machine 1o ba stopped. Later than cycle zero.
ta st run for its entire cycle before it is availatble
Pt nauw conmands. An e2arly abort suppressas the memory finite
m

[(\]

otk
30
O+ it

achine such that 2 new operation may b2 started immediately.

w O u

Ly anort is issued to tha memcry board during cycle 0 and
c e Zuring cycls 1, the board examines both 22arly abort and the
y con*rol code and, if the operation is not aborted, initiates
ragu2sted odperation. Note tha*t the memory control code must be
stad>l2 durins hoth cycls T and cycle 1, or the memory board will

) T}

w

G 3 ~+ 0
]
o+ 1)
w 0

3
A
PA

®
+
Q0

(8%

[{F)

cenfused.

(1]

W J e+ 3 e
-5
P A (VR |

n“t be altered, stata
2d during cycle 1.
and turns the current
c tha ram arrays, and
1s 1ssuad to the memory
ard only commits statz
’ althou;h the RQOR 1is
praservad 1if the

m
<
W
3 b4
(3]}
W
18]
0w

o+
w
1~
v
E]
o w
30
oy
]
L]
~+
u -

o+

chans:z
Such
opara
suUporas
pcard during

3 N

v

~

=
e w

[]V
S SV V1)
w

(U vl e R T
4K 0D
LU i T |

I
)
[

o9 o+ Ny
(o o T 5 Y V)]

+rn
© O O (L
w
w u
€
R

LUNES T |
. q

)
~+

-
W
3
b
C 20

Y

wi
+
I
w
lad
w

(U]
S aE i YT R

——

J]

.)
» 0O

Pt
(U
0 W
< O

W 3 ke

(] '8}
W 3 O

O G aw C 3

b4 5

o+

4+)
W
]
V]

chanje
los*t =2

an o2

DRV o

) w

O r+ 3

C

[& N TR W o)

[

0T
LJ&:OHH‘\ w 0N

o

[

[e]

[
(VIS
3

oy
o+t
b
§—
90
3
+
W

L[]

2 n
'.4
v}

()
[
3
v
3
X
~+ W O
"‘
1]
O A
)
3
V]
N
vy O P4 oyl

® 3

(1

.)
ui

&)
(@)
-

oy
-t
¥
O
3
e
Ui
(V]
ny
5
2
~
W

W

b4

icns may ha 3

1]
ot
Q
(SN
Wt
“e
O
4]
2J
v
O 4
D
~ v =4
(3 9]
R R (VR |
N
',A
[$]
<D -
b v
[
w oy
b
(o}
- U W
~ W
',4
l\) 2
e+ 3 O W
J 0 4
U N
YRR
w
o v O
Wy e
[SEE RS 3
TN o

| .
1%

W o<
ot
(@}

DX

o

(L]
~
[l

r U D

B

Q

Wl

-

[

B ST
(9]

w
]
@)
O
-t
Pty
LI Sl
(9]
3
3
+ O
N

-h
w
I
(e}
w
3
W
.
H
(8]
50
)
24
[$]
b
o O

s
5 early aborL w;ll abort
ticns in cycle 1 or cycl
isn 1in cycle 1, but not
1s no way to abort an

"y
1),
r+ ¢ ()
r
v 3 O 3 p
3
'J
3
...* .
J
(%)
4]
U
1
(o]
[o]
]
boo
Y]
o+
W

ot
7]
r+ h G
O T ~H N
4D
w
~Aouw O
7]
w

W
Sy
'_KJ
¢
[¢]
»}
et
3
ot O
W e
»
o
10
J
-
)
(8]
© 0V
W

r+ O

-+
w
0O
ul
O
[AV o TN ¢

O WO o
L[]
,..‘
»y
W
-
()

Vo0

G

O

® @© 3

I I 3

1 [
iy
b
e
<
~
, *
[A7]

W
et
'_‘
O]
3
U
"
ny
&
Q
-3 b= Y (D
+
ny
[SPEES 8

Fd
0
W
b
U]
8]
(@)
3
n
4
(o]
3
oy

mogry start is issu2dr, the memory monitor
3 1T 'ﬂu’d for an unconditional start, and
condition provas falsa:

w
W+
¥
[
3
v
3
[T BN
-
~
n
r+ 4
r+ W
D% B |
W W
4]

)
[V V)]
(VIR T
w o

]

asulting action:

=3
%)
e}
R}
Q0
(9]
O
0
[1¥]
»a
-

if FOZ tnoan START_MEMDRY_READ,
START _R:zAL ==> if not FOO than
and 1f; TARLY_A3CRT,

When a microevant occurs, both early and late abort are asserted:
in gen2rals, memcry can”t be started until the second cycle of the
handler 1f the esvant was 2n early event, since the memory may still be

DUSY.

Ah20 a3 DI5PATIH is issuad, the mizrocode must specify START_READ,
LCA2_MAR, and the s2gu2ncar must be tha ADDRESS_BUS_SOURCE for both
lo3iz2: =2dcdress and spaca portisns, The sa2guancer supplias the memory
Rational Machinas proprietary deocument CRAFT 3 Dacember 18, 1932

Memory Monitcr 5Specification Zvent Timing and Aborted Operations 32

gcatch ram, If¥ no memory cp2ration is required.,

address from th s
s EARLY_AZQ0RT in the cycle in which +the dispatch

the seguancer 3
was l1ssued.

A USUALLY_21ISPATIA is handled similarly, exc20t that, when the

Aint p2rova2s false, th2 sa2quencer asserts LATZ_A3CRT and stops tha
clecz fo a cycle. The next seaquential micrcinstruction may start
2 it is delayed in time on2 <clock, allcuwing the mamory

i 5
machine *o run 1its full {(aberted) cycle.

[w]
X
3
n
-4
(2]
o)
O
(8]
w
3
o
1]
"3

18, 1982

Rational Machin2as propriztary document

Memory

1« Sumasry

Z« Functional Ca2
2.7« Address
2.2, Mamery
2.2.7.
2.2.2.
2elat,
2.2.5.
2.2.5.
2.247
2.2.%,
2.2.7
2e3a R2ad 2
2.3,
T.bde Write
2.5. Manory
2.5.1.
245342
Zadald
R R
Ze3. Mamory
Z.2a14
Z2e3.2,
2.4.3%.
Zet.ba
2.7« Contsol
2.7,
2.7.2.
Z.743
Z2e2. Scavean
2. Mizrsuord Sga
3.7 Field
3.1,
3.71.2.
3.17.3.
3714,
3a1a5
4, Concditions
Se Memcry Lontr
6. Microcode Ra2
7. Svant Timing
Rational Machina

Monitor Specificat

(@]
Xy €D womm

RENVEN]

et

O Gy

w

O
~+
pa
O
3

w a w
ES I TN ol S
= O Y N T
(]
w
~ X

-
w
[17]

2w
JQ
¢}

3 U Yo

R

<4 ’J
(]

AU D
o
(Lo O 3
e’}
(%]

e

u

(U]

i(/)?l’)jll{b

)
)
- O
~h b L
uow
w U

I T SR U ¥
< L ¢
@
0O
w
€L w
[47]

oy
~+ I I

w00

w A9

Y b

[
o w3
Y i
18]
3 be
[S V)]
(6

v 0

IELTRY
n

W
)
O
2

(7}

&3]
[N
-

pa

@]

¥
'~
O uy
']

[V}

C

WO
2
[BN
pa-
W

b

w O

[B

300D
vy

7 < uy re

=
oW

4]

)

[
0

(]
o g

3
W

=

1
(93
9

W

m
O

£y

[

o
i

v+ K0y

Li7]
O

A

OO
U (2 r4 35 3 1

ot O

»]

[V I e TS I
P
VU O ol

-4) O

1s Ia

g VN

—d

w
(]

+ D
¥R

T
O
[
w o ~+ O
3O

O
o

=4
KO
[So R AN
Y 0 4y
i < =< e

=

X

zZ
-4 W
A~
O X

» O
OOWVOXEImo w7
(Jl
Q
V)

L)Dl)

ol Codsas
strictions
ard Aborted QOperations

W

[¢]

L47]

+ O

(8]
)

s

Ay

[0]

A et (D
=3

[BN]

R

[O C o~)
nao

TR

(B}

Ta -k
2 O

0

b

W

~ 2 O

ion Table

—

mow 3w ke
+ W
nw

® b

o+
’—4‘

>
E]

w

)

)

Ul

[
ra

(994
=

(9]

[S NS |

I 0w W
- ATY 3w
(D]
s
Q

1

CDNTR“L f
SRE SS_SCuURC

ropriatary document

of Contents

cf Centants

~ T+
e
w7

ald (Statad

and Length (FIU length) Fields

iy

—

~ ()

-

P

vPid)
Word)

ent Number,
d (Pa2ge Number.,

W
©

(YD 2 (U pd P

[¢]

(DUJ

m
b

D 3
D QW
~+

i
nsidarations

31

«
(9]
P . |
A3
w
w
(0]
(8]
0]

~<

0y
')
o]
3
i

+

Wwow

ui
pe
3

'}

)

ot

3
o

)
+

w O

) s
« T O
DN O
(O]
Vo4
W C
riu N
Z Lty
N+
vy o o
[R B)
T
(W TR S8
UV D o+
[S U]
<
(@]
(X1}
(e
w
(@]
-4

o r~

b
Z O

0
(V2]
xI
Ry
Ul

& -

DRAFT Decembar 18,

M 4 L N I =2 D N0 0 00 00~ N O NN b wd

N _a N . . N N N

4

19

P
23

“ s
C)‘Q

s
25
25
25
25

4

30

1082

e

T

R

e

-~
[s]
53
a
G

1y '
12
(] 4
“
S
2 (o8]
]
k- £
a - <47
-
42 o
| Lif)
L1l 1
in
o
-t -
m
[
8] 4+
G- G
0
wn LT
sl
-4 [}
1]
e T
“. —
w
+ [eeel
ot - Y
O T4 b £
e I S) -~
™o W LTI e
[olEr S ar 3o o
A Y o W
ot o & IS S W
ial ~t n
s BT I I o U
-+ L M4 L
el LU oI 1
LELI o R v] el
O et e RS
[RS U WO (VRN il 11
S T I W |
- A Mo D
oM A e
S T ORI o R T e
+ o =]
»

sl B 1]
LG i 7.
il LS SN o +7
o [>
[as
w420
[I T A
2o -
-+ [a]
i pac}
(SR Y
LA 4+
moom e j
QU]
et e 3 N
- e [
[11 BT T =
-~
aowoen]
PLoviy o B A L
| R B T B2 T

H o=k rei
A i l }
o ! e et
-4 j +¥ Y o
o n
w fd (o
E o 1] i)
ced —t 4
i 3 + 4
4 47 +3
@ K=l W s rd
¥ ol uy N
4 s P - 4 4
[[§H i UG -
[a — -~] [}
PR
™
jd
vt
R
= oo
s e e e e e i e . I
L1 o
in =
1 d 1 i
[T e WD o
L T e D N
[a] oo vt T3
id [I R [a
-]] 15N 1
- 40 4 m " < i .
) 34 BT B LA N o B U el 4 RN In
42 Bl = IRt (- o R
1] ©h rt b o i
42 Bl 1§ I LI el) o 1] o
=} oy - T W — K] ey e
[[[{} 3 ! 1} a
3 3 bl W w (&) Wi
4T } R SN v i o0 . LT -
LW [LS R %] Y- 28
Lo =) W SR ad USRS —t (=]] o
[(2] U S R 2 i
G (W i 47 3 et T ot
3 QN et [- T e
i o o =3 (T U o E
‘vt Mmoo i} in LRI { R e
> ™ e AU I SR SR 4] R T T TP R .
5 = i o+ O)
[Hil = m oo 13
> 3 31 R B U I O] e
i Qi m -3 e L et e
¥ ol o] 3 L1100 o BN (TR ool 1] (Wl] +>
— 32 e [SRR I ST i fo b n 4
o] 3 i + T o £- i
i«] cn G 0 - rn [/ T ced m “
a] 4+ m I o0 R QO £ fo O G- r—t B
- 4 Q3 [T ift 1) i fohad R p]
+ it b oo = (SRR L 42 4>]
W PR Foom B i F- i- +
[] i [it} oo o
S -~ IS fir { PE) 1 W I
WL b aoW i [T Ed s ol i
e o T ! M ot o -t e T2 —

il

f- JCaME S At
] ESIEES
+7
i i
e A m
i A o3
b i
(%]
[a1
(il i o
5] A
i o
4 & -
[m] -
a 83} fue [weoof
4 U] 7] a0
0 KL o — o b
et e o) .La
o, Rl R . s
iay) AT 1) 4 oy
2 wo w - &
£ weo . a
s o} [S S v L
ot [11) 0 »4
K3 Ay M g1 sl
=3 o QU e]
s Ral & LD - o0 JE o oot
[z} -+ —t 44
[J1] ™3 11} crd eed
<L oo o e kG 3 A
e et [Wnd N
u [o +2 [j&
ol oom aOom th
—+ 4 — o™ RN =
m 04 54 4 Wi =
T i f -4 TS] 1.
. O et 1.3 rHorm 9
R o EAENE) 1] G R
[} b N ot M L [
i} U o L IR U W
o B] 1 L9 BEENE)
[(LI A BERTCR G B i} - -~ P
W il N oy < i W
+ 2 moen n G o 43 oo
i ORI] a4 4 N et b 4 T
- [] 1 et Ol Fal o o m
m 4 al [D}
s (1] (%) 3 [(TER] 4] s B < B |
i i e T3 - 5] P ¥ ¢ 1] ~ o
o i i =3 [~ LSRRI
zr 40 om @ t~ w 4 . O B g
~ %o "] v IR i} { 3 (]
i) o T i) omh. i . ™] o
S] kS oo i ol o~ n b
& Coar “ e I i3 R o] w0 4 pad
ut ™ M o fer =} - 4 a Y 3]
in | SO S S -+ il A T Q N o Q L
Ll M3 [as 2 3y §e 3 KT |
- o 0 =} i
[+1] L] = R i I~ W
[el ol W () [N} T~ o]
o < I o ™ {.- -4 2} b2 i
[[0y ot () I 5 fre 1 > <
iy = [] >)
(R ¥ X » r
i N b i » L
) i » ot o T
T b i H 48] e bl B o

=y

11
4
w
£

i
.
4
as
U]
.

]

1}

~

i
=

WEFSET_SDUR

L

4
as

.
G-
[n]

-
Vil
[
i

ER]

g

1]
4.
e

oy

Fa
TN

or

he

X}
1

i

1
4

e

and

fi)
42

W

[
e
.
—.u

Teh

el

el

-3

&1

4

L]

I
L
[}
a4

e

o

et
=
LN

i8]
i
)
ri

f..
by R R &
a8 L B Y
(DU S B ot}
- i O R T
B
41 [
o =
1
]
i
-
.
~Q
- I
(A T
L [~ ~ x\u\
s -

L]

(]

]
0z

-

i -
i3 m
i3 <
oo
=
- 3
dot
e
iy [3e

rn

™e

mode

fi1ll

nde

(M

f111

ved
1]

i
ER
e

vt

—4

wm
4
8

SN

P

.

h
Z.

Lt

ster

th ragi

= leang

length

[

]

sl

Microword Specification 5

VI_AND_TI_BUS_SOURCEES (4 bifs!) specify thz source of the TI and Vi
hussas
TI bus sowurce VI bus souroe
VAR
VALUE Bug
FIu_BuUs
VAR
VALLUE _BUS
iy
VAR
YALUE _BUS
(L Bi%i spercifiss whather o Lo i the Mergaz Da
C don Tt
ION_SELECT (& bits) specify the FIUW operation, mod 128 of the
s for start bi%t, end bift, and rotats amownt are ussd by the
aT 8
op merge mask rotate amount
start b1t end bit

GO extract 128~-1langth 127 ~(offset+length!

Gl insert last o offset+langth~1 offset+length

10 insert first offsei 127 offeet+lengtn

i1 insert offset offsat+length-1 offset+length

UT (1 bi%t}y specifiss the source of data to the merger

i rotator output
i marge data rsgister

MERSE _VMUX ! {2 bi¥ts) specify Lthe outpult of the merge vmuy

mergea da registear
f1il wvalys
l'_i 1

1 - IU BUS

[N
T3
|U
[l
e
~t3
ot
I
i
E
S
i
«t
i §
¢
-
4
e]
-4
hoe|
o]
ot
oy
fu)
.
w]
iy
(=N
i
[11]
4
¥
T
€
A
g
¥
C

LOaAaD_TAR (1 bit}

[wX
2

o

-

1A ; : e ax m A - o - - - FU - - ol - -
VAR (L bi¥ specifies whatner or nob to load fThe VAR witn
i - -
! RN RS
o] - WA B R s - -a - . D ~ - ~ - - oy e R - =T TRy I
Soip ERuE SOQURCE Y hifsd sp2217g fae IR ot data onoo owoa S EOUE
mon g
PRELSGRpad R
o = = - - - - de a4 s 1o
LIS o Epaclry T2 o cne VAL
P Cie i mim o cremp gm e e
TYPE_BUs SOURCE Val UE LBUS SOURCE

TYPE board VALLUE board
TYFE board FIU board
FIU board VALUE board
FIt board 1 board
SYSRUS board SYSEUS board
MICROSEQUENCER board MICROSEQUENCER baoar
TYPE board SREMORY bemasd ¢ (RE
RE

AV

FIU board { \gFHQRY-ﬁﬂaad &~ /R
\ :

\i\'\\

. \\\\ A ’,/ " -

& -3
Te o »

1]

sp

m
U
B

soare
T
apare
3pAaTr S
Spars:
31l boards dizablad from driving Yhe o J sind

FY(!

L
Sfabtonal Machinsgs progpristary document DEAaFT 2 13

)

ication
ration

~
-

croword Specif

(B

vl

H

W i3 i AT TR et
i £ i ot rod g
e 33 A L v
o L PR ¢ B 4
[[. Lol
- et §OE -+ [-
I i Q- 1
3 o il LI T S o T B 1 bl
& AT SR TR ndl Y
2 w Y et e W e
W - [ot 1 -t
4 W o W 39 e o]
m po B LD et 13 W b et]
[1] £3 m oM Wowon
[o o B o e Ty
@ o) R T W e
- 98] 11} o 2 0o i
UL o iy - o)
i e o] iR [ol o 4> [
o o . b oo 3 o T [/
o T L et fD b 4+ m .04 T
L3 G Mmoo e o o L s o
b -2 S I S WU W ST T U oo 4 oo [
m Ul O e . i) i Kool o W on W Z L e
£ 03] pa [r{ N (R o] iy 4y et BERES) - o+ m -
@ [AR S TURR (S RN ool { (O PR £ I ol | [ad tomnooel O 0 cnom oo T
N 7 [& a0z /o e 3 fe 4 [LRV P S T 4. = B el S L I
o [N SR R A [A T T I oo 2 B B I Wi bl 1 9 O Coed MU D@
£ [- WM KeiE S ol = moM A oo M W o W e e
m <L [t I o SRS] 4 G L3 W e fe Y O oo m 4
- fH o LD e vt e L e I o P Mot &7 ™ o > |
m [e R A I (L S 1 ol S W S [B L~ [0 e
0. JE o DU 1 B vy oA 0 4 e TR] fod P wo [ool ool ; TR AN 3
4= W LA 11 B hcRE TR TR 11 LTINS (31 PR T | R I o B sl ol
il LA B 1 B] [IRPE N il M [R (= T ol & A ST LI I T 4 3 s
3 K SO (I L S S LI U L S TR [3 o oo | 1=
3 O oeed {03 D e [T A} D I o o 42 G = I S 1) pa}
= [A1} R R I RS HE o e) e~ oo Mmow Wy
e O oo oL R i [Ja - LU i (A1
—t RS -3 Q. -t z W et B SRR B ~ i R & e
vt N U — I O £ (LI ol o B O R v
-4 =T TN (O (I 1 RS] e [ju R RN (s 0w - w o
1w S TR B S TR o e 4w s EEE N Mmoo M =
4 Jq£ g e o i 4> hal foo T e [T e 42 I
© g S b= 11 T O TN e~ Bome oo D oa - 0O mo-. e
- L W] [TR+ { S B st PR LIS T ool s QS R ot L [IR IR T o a
iy L [OCHIN T sl 11} b L &4 1 et Lo oed [{3 h o BN S g =] e
R I o I R w B oM ol L o 11 e o] [} on LTI TR B T B o B K R £
b AT SR S 1 4 [R S A i U] + foo ™ D T e 23
£ B I m oty s Wi o = moed el T oerd (]
-+ [~ T W mn o o £ = G D S (O B w
o 230 T 6 R w0 [et > L e TR W .
s et 1 bt TR0 U et 1] KE] EPE I vofir 2 B A)
Q N ey e e N el cn b 3 [L e
] g B VR S 1 jos [R e] i a] a
R oo ¢! - > o fo r} R alla] a g ot
- [L O R [N R S mn o it (113 o B B ot ST -t
+ [t I i+ A TR R 3 I N 4 =T~ B ol s A
w LR I o B S w I R il i i EERCE] EE R L i
v vt W Q -t =] i1} } b QR o]
“°. s B 53 BT B+ R A o s S 1 et oored 4 5"
- 2 6. £ Tt (30 o il [} [S I R ol il o S AR
)} wWOA R Wt S DWW ¢ %) T et 30 O - W it
> 0 - [IR o T S 3 m Y i1
LU R b~ 0 e £ . U I IFC I TR R T I
e L4 b e B} 4] Ko RETI] woQ L]
. e o> o i 5] T S ced c:
d A S L i i [S A R =
. AT B S S i e - gt B
) W W - i) IXNJ CW [ERN S S o

)

i
]

o

-t

it
hy

Bl
n
I
3
[}

#1
[
[n]
e
4r-.
5.4

t
in
W

gllaneous microcoads

-

1%

ho

iy

L]

+
L
11

e

i
H

e mare i _v...,__,_.._,__._,...._._..)..

i

bage

e e e e e s et = e e i i o o e e o o e s o e o o o im e o o

1

12ld
J’_;>v_.‘. e bt b o — i ,.Ai__.__.,.-,.____._...__“,.____._._,._‘__i,,_.___.._.._.__,_-_._._____,-v,__.__‘;h
i
v ga

-

1

i
1
m
|
m
t
_
!

“
[x]

Tom

-at

e e e i e s o et s i s b i e s e o o o o
e et et o o i e e e e e

mples

I £xa

=

(A
47

KEY

#1
e
> 42
et T
oo
i
o
m W
oo
TE g
L2
i
R
Coon
U
st
AT U
p s
o
moan
e
wo.
E el
EC T
33
E i o
)
0o
£ 2
-4
oy
Dow
e
.
(i B
L]
O
0y et
£t

1]

maTg:-

i
bt
R

43

[n]

=]
R
i
o
G
w

e

iFe

the

on

Ui

a

pes
o

VALUE

I oes
o

Liv i)

2]

P

2 m

ar 1

o
4.

e W

Y ened

T

[LI Y

i €W

|

RO 1]

T =
£

4]

L2 o

£ A
i3]

RS

(U]

FE]

o]

j= 9

4

pn

ja]

fii

o

A

f-
o

&

0

e T et e e

au
]

@

et

R

1

o e

e v ame

e

e o m e o rin s

B

T b T e ap———

e

g
¢

e

i

‘

!

S e

o e n et o e S et At o Rk o o S e e o et e e et o v S MMk At s S e s e e s st e s ot o o e 3 e s e s s e e e

e e s e ot ket s e i

&y

23

xampl

UE

i

-~

£
a
i

]

]
L -
[]
3 >
o
mn
mor
£
| S
[T
f
[l
<o
e
T
U
48
-
pai U
W
U
oo
g m
W]
Lt
L0
43
™
om
33
LA S
e T
1.4
e om
[W
W
Ko
R
oo
o
qrou
~—d
n
e
|
o4
4+
(1L =]
1]
4
< [od
[l
i
ar b
~ -
b~ T
jos
[~
)
i
bl o
ok
£3
Sre

e

B3

fis

f
i
i

B e e o

B e i e e i

+,_,.____.__,,____+,_,_,._.,___..__—._._ -—-—_—.——_——.E-
i o e o o o i e e s b o ot s st 1 o e o S o e

G o o o o o e
o o o st e o e v o i e o ‘ot v 7 o B} T e e o e e o S0 S i o v o e o ot 2 i e 2 S

o e e

!
{
i
i
!
!
t

+
t
._
1
1
;
h
1
1
1

i
=]
eed
et
e
.
g
b
T
LS R v
o
m
.
wn
4
i1}
LD
A7
[-
>
s
A
00
M
Ul
#ed el
-
4
i N
gz
e
ER I
oo
03
g
ar
> f
]
e A
T3
3
mog.
ol
32
1ot
I et
[
LR]
i A
e
|
0o
o
b &
—
o
B o
Sy

i

Il

on
ar
-
o
L o

e

[
‘e
ke

1]

-

iw]

n

and

bus

i

'

the FI!

cnbo

driven

input
ed part)

merger

g

1

R

(rg

o e e e e e e e e e i et e e e e e e

]

[

eld
e e e o et i e e e e o e R o et e o et i e o e e i < <o e e o

1
1

81
i

44

i

11

3

Examplas

—

-
T 1
ik

e
-
Lol I 11 T
T e 4+ --) " ey
[[T | i i o
[. 4 foae) ‘. ¥
e b ! i n
E | { i
1] H {
T | | .
S { i] 1
il IR & b i
2] | t o
W Powo1 o
o 4> b i o w
Cl bomod o1 ot
L~ b RS
U [i
g Vo L
1] e
O + - 4 =8
> oW | } oy
i | |
™D 1 |
o t l L
mnow | ! fooe
el [= | o s
3 boes) W i -
- x ! (U ! O e m.“
@ TR + fA ‘ =
»om o) § vy z
£ooE P ! ! Lo [N
b 4 i { [v
bl ; t : i n
[a S ! ! H e 1
oo | i i The
C 3 }) t I X
o R & ! [Mot
©w | } ! ooy o m
o o A | LR 20
a O b | i ai =
ea Pom o i R JER i
Mol oo H AR St
S o v 1 -
i< N HO i
o ! cno | LR -
R T =
! } (It
i “
§ { [1)
T ; [
2o i m
b
Mol e !
[= S S U
R H
Rl .
@ e o
4 s
I =
£

(11}
8]

I Ezampl

AR

i
(&)

e
pE)

e
S¢

b1

parametsars

1}
e
0
=
I
v A
)
Y 0
2
b o B T S
oA D>
o
[S P A
- i
i 11}
47 0
Lol (N 20}

4

o e

e et e 4 ae e e sk ke iR Sk M e o S e e e e At ke oes SAw Aas et vam Sew i e o

[ESPR R

Uy

B e T i i ndaad e R

R el e

wh

e e e e e

M

e

B T

S Uiy R g

B R R T

o e e e e et e e o o b e e

1]

o

A g + + ;
=+ P e i !
{3 P g i b
i }) ! I i
- ¢ ! ! ' !
7 ; i i i !
! § ! ! ¢ {
+ i b ! ! !
i R -k i i -
! i ! ; ' i -
‘.] { ! ! ! ! o
2 t i } } b]
o ! ! o
4 i ! i boae
—~ a } i i [!
i u i 1 ! ! } 4]
e ! ;] ! })
] = i } } i § fe
2 [a] { !) ! i 1
i § s H ! i <1
r—t t i i } } 6
| i i ! i jos}
iy ! ! t | !
! i i i |
iy Pt ,w f
o } ! ! i t
P " i R - p R -
pay | i et -t } !
. ! t e Pk | i
-t 1 i i t [i
L !] H i § 1
i ! ! i i 1 !
L ! 1 ! § t '
iy ! ! | i t !
! ! S -k ! }
o ! ! 1 1 | !
Eal | i 1 H ¢ !
H { i i | i
i1 i i } i) }
© 1 | i | i ¢
o ! i i | } ' b
e ! | ! ! bk f-
. | i H 1 Vot i
o<t ! | ! i i ! R
- g i | t } i i ;8
I i H t { i e
4 LIRS ! | i i i i =
[a)] | t i } i } o
m o ! | t | { i b,
f | ¥ ' i ! ! i o
4 -+ i i } ! 1 1 o
» o ! ! } i I i
L o B ek + R
LW
s Ty e EE)
[Ky f
[O 0 e -4 g b :
18 2 £ A s} o
— 4oL 3 o 4
[131 28] . o]
= 14 o &)) vt]
i bl R =3 et
o e v . 5t
11 L% v L1 s} -
[] [-y i
" . o = ot i
b wr [aCN o} o} 42 -
. . R [a [T
4 m oy 5] £ [

=t

b

4]
w

P
L2
Fe

onto

is driven

V&R

a
£
3+

Ry

N
i

i

Rail
=

v
2
it}

4o

o

FL]
e

W

f

= -

W

e

f-
W

>

in
o

™

1}

Ay
.
TS

A o e e o e e e i e e e e e e

n
kN
7

e e s o e i i s o e o e 4 e S T i e e 4-......-..._..._._—...._.._..-.«..__——-——--.-.;.7-.-—--—*..._--;—

+.
i
|
!
|
!
1
!
t
}
!
t
i
|
|
!
}
+
!
|
|
!
!
!
}
|
)m.

Ty
e
i

-

£

m
m

o o e e s e o

s ot e o e et o e o e e e e e s o g S e s e ot o am et e

ra

BT S S U S SR S . LT R

L.

Za

:
!
i
t
H
*.
;
|
_
'

g ——

)
LU

By gy g A

et

m bl
| 2
a + ! o
[[T : =
m ST
m PO
}
m ! i
{
Ut]
o !
42 §
|
i }
[AX j
i1 v {
b [»} !
). i
ad o + o
£ - H b
i o o { !
)] 4z t
@ QIR E} - a4 I
[h] fe et T o 40 fiacsy | 10
] (3 et e W fs i o
cL B SO ~ W R e i [1] !
- " I o 4 c
2 3w in . ! 4
4 @D owon u} - 1+ =~
o RA H v 13
o Ay) o 3
v Ly } b s
o3 m { o ! it}
1 [! | } o
hel ! ! ! !
~ * i ! i [3ER
m o i ! ! My 0
+ ! - ' i ot
i —t ! + I
A 3 f ! Hon .
=3 i i [l
™ [i H M L.
Lt [}] | 2N
jon o i |
lag} f H B
- Al i ' @
—t i + o
] £ “«T) H i o
ot ol -t S H t e
-+ A lasd o !) W
3 iy o ! | i
o] 5] o } H 2o =
[- | (SR I + moan
~ = oo
('3 [} u MH Mx
™ 4. . -
Eanl
. it
iy i i =
£ . o
=t - =t Ko

i

=i
Iy
v
fad
[
ot)
(XTI {
4 !
| }
! t ry
! |
} ! -
i 1 L
+ - e
4+ 2 ! o
| Iom 3
t P4 !
} tomo|
[=
in H H
Y Voo |
et Pow g
Kl | 4
b | n
[b t
P | e o
+ bow [
e [S
[l oo
Eal i]
34 EaEE ;
"o H i
+ a1t ! +
. { ! + Do
rd i i t | -
o I } i ! ‘.
U3 o | ! i i
o= i 4a
- o> | v 1 o
g1 oo | } 1 cet
42 o K ! ‘.
am b + ! il o
] o oh ! o
[[H |8
) o> 4> LY i o
[:1) P [N et | B
i P 23] -4 i et
] P o oo o i ¥
- Vo] AL 1 oo c
4 | i o N + pnd -
10 < 4> ! . g -0 pu ! It =
a o | ! o ! Y i
e + =3 ! } Wouon +2 ! T
bel - o i | o] i R X
= i1} -l 3 4 -~ 4 o 3 LA i
M) Q iy
»< [&) z.
11} Q 43 4
4] +» mow e
o . ay [S 1) (=N .
—d " 4 i < B3
o) e o
<} 6 e i

P HE
et 3
i

vd
a1
v
- .
.
5om
(37 .

+

Y e
[E

!]
! |
Lo T £ ook
P oW
Poomo) Kol I o
I =] “ EER N 4
]
tor [S e
! | [T i) W
i | 4 f [S
i { 1 o L. 01 s
§ | oo £ et The oMy
I ! | ol] Lo
i ! (/BTSN ped
W H t 43 Vb L
4 i i [T Rt
et + + LMoo EERE T
o0y I i 4L jos
i } A (e 43I
jon t } Wwoan 3 42
! i aof
4 i H fe ek
b ! | it
m H i £ [
A | i & DINNS]
m b [S S e
= 0 i] } } o
4 AR i ! | et AR oIn
e R i boen ot LIRS '
- : i + | } Wi [CO
u } i o H oot 5 i
1 i # ! by
- } i ke i tom o
&} 1 i oy
A | | [[i t -
m | f § } b ‘.
e} }) o iy bow
! ! o -4 P
™ ! ! o i S
i t ¢ [P £,
. | } 4w N L S
e } ! T et e oo !
R | ! G s b
L ! | w3 < oo
~T i i ag ¥} 4 - [D |
+e t] b e B o + s
£ e} ' | (=% § '
R [= % | | o i Ay H !
s jos ! i o ! H
= [N AR T SRR 3] t P
e o
fo i
. £] o
i i & i}
et E2)) fird -
]] o s L
38 B8 s i
L3 ot o

i

]
o)
B
i i
! |
} 1
| i
]
" m il
i t ,
| |
A e ?
+ o> ! =
| Poomg ar
t R Fa
i Pomod
}oa
- i !
H ! bow
FE) Ko P
ey t [..
0] o
[b
foed G [~
-4 b
+ + L
4 L i S e I |
a -0 -0 1
ot SRS o 4
) 1 ! !
+ RO ! [
= | H T
i | } ! i)
£ J !
m P> i
| ><¢ |
“ } o> s
o o> 0 -
+ 1 > |} - .
] [-
(9] | »c 1} U
[,
2 P} -
o A N -
i oo f- :
™m b i s |
et bond o}] ! f
et 1 ! < F o<t 1 i
i < +7 i | - t
] o | I <8 et
~ + . { l L} 42 | -
O + o i } o t fii
= ;0 et [T o i3 R ¥}
i b -
*» i- i i
Lud o o) T
r$ 4 N R8l e
) . i =g} I}
bt i b .
i [5G :

18
«F
[
{8 [£1]
e 3
1] vod
iz m
iz g
w3 ;
L&) [

I

«

i

- <.
- .
i
(w3
et v
= i
(=] p
o
f- =
(%)
-

A A A0 e 0 et

{ ..w

0 8 16 24 32 40 48 86 64 72 80 €8 -] 104 112 120
| l | i | | i | ! 1 1 i | |
fiu ’ |
refresh refresh flags {length segment vpid page vord | b1t l
intervsl ¥indow reg |) |
ilng! . 82 - scavenger Lrap 38 - 2111 mode 40 - incoaplete
33 - cs out of range 37 - piysical lsst airvy
84 - page crossing 38 - vrite last v
35 - cache miss $9 - mar modified — I TR i
T ls
| segment I vpid ‘ page lllrulpll Ipi
1 | islg icl
page state : 00 - invalid flags : 58 - vired
01 - r/v 59 - permanent
10 - r/0 80 - writadle
11 - loading
S}E USEFUL. TAGS
Discrete : 00 (8O Record . 44 (C4 Sud : 08 (B8 #ull Subprogrtl © 76 Seg Heap : 88 (BS)
Access 10 (90 Variasnt Record : 4C rstnd) 1 18 (968 Utilivy . 68
Task . 18 (98 Vector < BC lllblo) . 28 Accept . : 48 (C8
Packxage : 58 (D8 Matrix T 74 1:1blo L3 Interfsce ¢ : 568 (D8
Float . 08 (88 ArTsy : 7C C rated) : 88 (BS) Exception Var : 7E
BUOCKED STATES
Unblocked . 00 Terainadle At End : 07 In FS Rendezvous : OE Blocking On Accept ;18
Declaring Module : 01 Blocking On Entry : 08 In Vait Sve . OF BlockinJ On Select 19 .
Auaiting Activstlon D02 Delaying On Entry : 09 Delay In Wait Sve : 10 Delaying On Select D IA
Activating Module . 03 Attenpting Entry : OA Blocking On Abort 11 Avail Children Select : 1B
Activating Tasks : 04 Delaylng : 0B Deleted : 12 Terainadle In Select : IC
Avaiting Task Activ @ 05 Aboriing Module @ OC Aborted While In MIS @ 13
Avaiting Children : 08 Terainated 0 In MTS_RendezVoud D14
0 8 18 24 32 40 48 -] o4 72 80 88 96 104 112 120
4 | [| | l | ! | | t I I [1 |
|
| slice stuff l | 600
(09)
tnbpr(l |
debug interface subprograa 1680
(88) I
l delay days l delay ticks scheduling I dedugging ‘ ISOC
@ ebu
I 18 Iu¥ , (38 Bits) -grome ' state]
PO
{ . ! | |]
: $7T2EPOLAL TCUPe ! ! CUELR BILRLL] #ata ertent 480

o et s+ < e s s e e, < ST s et = b

S e e vn s et mi s ae oo s e G e e e

LTul

£33

et e im i s, R

! apcioptsg iramy zuae
H)uae&.‘m\;’.

s A e et ek s e et e rmna o s m———r

