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Functional Specification of the Value Board

DRAFT 2

People exaggerate the things they've neve~ had.
they admire values because they have no experiencs
with them.

George Bernard Shaw
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L Summary

This document describes the complete functionality of the Value
board for the R1000. The purpose of this specification is to formally
define the operation of the Value board to a level of detail that
allows microcode, hardware, and packaging designers to interface with
this board correctly. The reader is presumed to be reasonably familiar
with the R1000 architecture and to have access to the specifications
of the other boards for explanations of their functionality.

The organization of this document is as follows; Section 2 provides
a detailed definition of the functionality, on a block by block basis,
of each block on the attached block diagram. Section 3 defines the
Value board microword along with its encodings. Section 4, along with
the previous section, defines the microcode interface to the Value
board by specifying what hard~are resources are available to the
microcoder and the restrictions that are placed on these resources.
Section 5 discusses the diagnostic strategies that are employed to
debug the board at both the hardware and microcode levels and what
hardware support is available to support these strategies. Finally.
s~ctiGn 6 details the iSSU~5 that concern the hardware and packaglng
designers wh?n interfacing to the Value board. These issues include
timing considerations. chip count and power estimates. and board
la q o u t details.

'!c:... ~loc~ Diaqra~ Functional De-Pinition

This section reFerences the block diagram of the
attached to this document. Ine functionality of each
diagram is discussed in detail in the following sections.

1,,'aIue
block

board
in the

2.1. Register File

The principal resource for storing and retrieving data on the Value
board is the register file (RF). The RF is a "three a d dr-ess ":
structure, 1. e. two locations (designated A and B corresponding to ehe
A and B inputs of the ALU) can be independently addressed and used
either as operands to the ALU or multiplier or_as sources to the VAL
or FlU busses. On the same cycle as A' and B are addressed, a third
location, named C, can be written into either to store the result of

,an ALU operation or to store the data coming over the FlU bus. 'AIl of
'the data contaiQed in the RF is 64 bits wide. ·X

~.
I

The Register File memory is partitioned into three areas. The bottom
16 1 0 cat ion s con t a in the Q en era 1 QJL!.'..P-..9sere g is t er 5 (GP' s ) . The se
registers, in general, should be used to store temparary values that
may be needed during execution of a microinstruction.

The next 16 locations in the RF contain the special purpose
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Block Diagram Functional Definition

addresses.
r e sour c es:

These addresses give the microcode access to the following

The control stack accelerator (CSA). The CSA is a ·buffer
that can contain the top 15 elements of the currently
executing control stack. To minimize the number of control
bits, not all of these addresses are immediately visible,
however they are kept in the RF fo~ efficency of binary
operations.

The current value stored in the loop counter.

The current contents of the zero detector circuit.

The output of the multiplier.

The random micro-state present on the board.

The r ema i n in c 992 Lc cst i on s contain the srra·tch pact.. Le;·;lsJer-s. In
ge~er21, these registers should be useJ to store COT1stants. templates
and mas~s, and tempara~y variables that are needed for longer than a
single microinstruction. Further discussion about when to use GF!s
and when to use scratch registers is contained in section 4 1 G~ this
d o c urn e n t .

Since there are 1024 RF locations, a minimum of 10 bits each is
necessary in order for the A, B, and C address fields to access the
entire RF (10+10+10 - 30 bits of microword control) To reduce the
number of microcode bits controlling RF addresses. a 5 bit field
called the "frame p o i n t er " (FRAr1E) was introduced and each address
field was reduced to 6 bits (6+6+6+5 == 23 bits of control). This
addressing scheme breaks the 1024 RF locations into 32 frames of 32
locations each. Frame 0 contains the 16 GF registers and all of the
special addresses} frames 1 through 31 contain the scratch pad
registers. The encodings of the three address fields are shown ~in
Table 1. The notation used in the table is as follows. •

GP XXXX Addresses the general purpose register specified by
the 4 least significant bits of the microcode address
field. The upper 6 bits of the address that specify
the registers frame are set to zero by the hardware.

REG(FRAI'1E} XXXXX)
Addresses the register specified by the 5 offset bits
given in the microword. The upper 5 bits that specify
the registers frame are read from the FRAME field of
the microword.

Rational Machines proprietary document DRAFT 2 June 4, 1982
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~-~,..... -:

TOP+/-N Addres~es the element at offset N from the top of the
current control stack.

, ::..

REG(LOOP_CNTR) Addresses the register pointed at by the loop counter.

LOOP COUNTER Addresses the contents of the 10 bit loop co~~ter.

ZERO DETECTOR Addresses the contents of the zero detector.

PRODUCT Addresses the output value of the multiplier.

BOT Addresses the bottom valid element
stack accelerator.

in the control

BOT --1 Addresses the
element of the

element one
control stack

below the
a c c e l e r-a b o r-.

bottom valid

RANDor·l STATE Addresses
contained
location
d,=ta:ls.

all of the single bits of
on the board and assembles them
for easy access. See section

micro-state:'
all into one
4. 1 f or more

\'/~L BUS (CS,-;) Addresses eithe, the data that is on the VAL bus this
cuc Le . 0, the location in the control stack
accele,ator that corresponds to the con~rol stack
address being requested This mechanism, and the
operation of the control stack accele,ator in general
is discussed in the next section.

2. 1.2. Control Stack Accelerator

The control stack accelerator (CSA) is an area in the RF that
contains some number (up to 15) of the top elements of the currently
executing control stack. The VAL board hardware maintains two pointers
into the CSA. The TOP register, which points to the location in the
CSA that holds the current top of stack. And the BOT register, which
points to the bottom valid element· that is in the CSA. When the
machine first starts running, the CSA is initialized such that Top
points to the location one below BOT (so that when the first elemen~
gets pushed onto the CSA TOP and BOT will point to the same location)
and all locations in the CSA are marked as invalid.

" There are two methods of accessing the control stack e c ce Le r-e t or-.
One way is to explicitly address a CSA lqcation under microcode
con tr 0 1. As in d icat edin the pre vi 0 usse c t ion , not a 1.1 15 e 1em e10 tsin
the CSA are directly addressable by the microcode. The locations
available for direct reading (via an A or B address) or direct writing
(via a C address) are:

+1 through -8 relative to the current top of the control
stack (The remaining elements are not explicitly addressable

Rational Machines proprietary document DRAFT 2 June 4, 1982



Block Diagram Functional Definition

f-lic 1" ow or d
Field

OOxxxx
010000
010001
010010
010011
010100
010101
010110
010111
01100{)
011001
011010
011011
C;111 OCi
011101
011110
0111i1
I x x x x x

Table 2-1: Register File Addressing

A
Address Field

gp x xxx
TOP+O
TOP+1
spare
reg (loop_cntr)
random state
zero detector
product
loop counter
TOP-8
TOP-7
TOP-.~·
TOP-S
TOP-if
TCP-3
TOP-2

E
Address Field

gp xxxx
TOP+O
TOP+1
spare
reg (loop_cntr)
BOT-1
BOT
VAL bus (or CSA)
spare
TOF-8
TCP-7
TOP-6
TCF-5
TCF-::j.
TOP-3
TfJP-2
TOF-l
reg (-PrdrneJ x x x x x )

C
Address Field

gp xxxx
TOP+O
TOF+l
random state
reg\loop_cntr)
BOT-1
BOT
write disable
loop counter
TOP -8
TOP--;
TCP-b
TOP-3

TOF-3

"TOF-l
r e q v r r am e . x x x x x )

01:;) the microcode but can be accessed when the CSA gets "hit"
on a memory reference).

The bottom valid entry in the CSA.

The entry one below the bottom valid entry in the CSA.

The other method of accessing locations in the CSA is not directly
under microcode control and occurs whenever a control stack location
that is being referenced (as though it were in memory) happens)to
reside in the CSA.

When the microcode issues a "LOAD MAR" command, the memory monitor
examines the address on the bus to see if it refers to the current

.control stack, and compares it to the current contents of the CSA. If
·the addressed location does reside ·in the CSA, then the hardware flags
that the pending memory read has "hit" in the CSA. This HIT flag
persists until another LOAD MAR command is given. If another LOAD MAR
command is issued before the first location is accessed, the memory
monitor simply resets the HIT flag and repeats the comparison
p~ocedure described above on the new memory address.

If a READ RDR command is issued, the hardware inhibits the (invalid)
memory data from being placed on the VAL and TYPE busses and instead

Rational Machines proprietary document DRAFT 2 ,)une 4, 1982
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Block Diagram Functional Definition

drives the value in the CSA out onto the busses. The timing of this
operation, i. e. when the data is placed on the bus or is available as
an operand to the ALU, is exactly the same (from a microcode point of
view) as if the data had come from memory. Similarly during a START
WRITE command, if the addressed location is in the CSA the ~ontents of
the WDR are written into the CSA location during the second cycle
after the START WRITE command instead of being written out. to memory.

Since e v er q time there is a reference made to m emo r q (actually
control stack space) t~ere is a possibility that the data will come
from the CSA, a restriction is placed on the microcode that nothing
can be sourced from the B address of the RF during a READ RDR cycle.
Further discussion of this and other microcode restrictions is given
in section 4.5 of this document.

The following
to the microcode

operations on the locations in the CSA are available
in the CSA micro-order of the FlU control word:

PUSH STACK The value of the tap of stack
incremented by one.

pointer (TOP) gets

POP STACK. The value of TOP gets decremented by one.

INC BOT The pointer to the bottom valid loc3tion of the CSA
(30T) gets incremented by one.

DEe BOT BOT gets decremented by one.

POP DOWN TO This operation loads the top of stack pointer with a
new address that is some number of locations below the
current top of stack. The sequence of events for this
operation are:

1. In "Cycle 0", the address of the new top of
stack is driven out onto the address bus.
During this cycle the POP_DOWN_TO command
is given by microcode to the memory
monitor.

.,

2. During Cycle 1, the CSA control logic in
the memory monitor computes the correct
offset to adjust the TOP register on the
CSA and at the end of this cycle the new
value is loaded into this register. If the
operation popped the stack down by more
than the number of valid entries that were
inth e CSA, the nth e CSA w ill b e put in t0

its initialized state (i. e. TOP = BOT-1 and
all entries are invalio).

3. At the beginning of Cycle 2, the n eui value

Rational Machines proprietary document DRAFT 2 ....June4,1982



Block Diagram Functional Definition

of top of stack is rea~y to be used for any
calculation.

The principal resource for manipulating data on the VAL board is the
64 bit ALU. The ALU has two inputs designated A INPUT and E INPUT. The
foillowing sources can be A_INPUT operands:

The register file location pointed to by the A address field
of the microword.

The output (product) of the multiplier.

The value stored in the Zero Detector.

- The value stored in the Loop Counter.

The following sources can be B_INFUT operands:

The register file location pointed to by th2 E ad~~2ss field
of the microword.

The value on the VAL data bus.

The output of the ALU can either be driven onto the address bus.
loaded into the Loop Counter, or loaded into a Register File C Address
(through the Shift Mux).

The operations that the ALU can perform are specified by a 5 bit
field in the VAL microword. The most significant bit of this field
breaks the operations into two groups: logical (M6B = 1) and
arithmetic (MSB = 0). Table 2-2 shows the microword encodings, names,
and results of all of the ALU operations.

Of the 16 arithmetic ALU operations listed in the table. the last 8
are conditional operations. During each microcycle. the microcode can
select one of the testable conditions on the VAL board to be sent ov~r
to the SEGUENCER to participate in a conditional branching operation.
At the end of every cycle. the condition that was selected gets
latched on the VAL board and may be used in the following microcycle
to select the outcome of a conditional ALU operation. In general, this

,LAST_VAL condition is the only condition that can participate in the
conditional ALU op, the only exception to this rule is when the DIVIDE
rand~m is selected. In this case, the G_BIT condition is used to
determine the the result of the conditional add/subtract operation.
Additional details of the divide operation are described in section
4.4.1 of this document. A description of each conditional ALU
operation is as follows:

Rational Machines proprietary document DRAFT 2 ,-June 4, 1982
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Block Diagram Functional Definition

The ALU function is PLUS when the condition
MINUS when the condition is FALSE.

The ALU function is PLUS when the condition is FALSE,
MINUS when the condition is TRUE.

The ALU function is PLUS when the condition is TRUE,
PLUS_INC when the condition is FALSE.

The ALU function is PLUS when the condition is FALSE,
PLUS INC when the condition is TRUE.

The ALU function is MINUS when the condition is TRUE,
MINUS_DEC when the condition is FALSE.

The ALU function is MINUS when the condition is FALSE,
MINUS_DEC when the condition is TRUE.

C__ADD/PASS_B_T The ALU function is PLUS when the con d r t i on is TRUE;
PASS_B whe •. the condition is FALSE

C_ADDiPASS_8_F Th~ A~U function is PLUS wh2n the cond~tion is FALSE;
PASS B when the condition is TRUE.

In addition to the explicit operations that microcode can specify
with the ALU micro-orders. additional ALU functionality can be
specified by 50me of the encodings in the RANDOM field of the
m i cr ou or d. In particular s the Pp,SS_A_HIGH AND PASS_B_HIGH RANDOM's
cause the 64 bit ALU to perform as though it were two 32 bit ALU's
sitting side b'J side with the following functionality. The "least
s i q n i f a cen b" alu (i. E. the portion of the ALU operating on the 32
LSB's of the A_INPUT and B_INPUT) will perform the function specified
by the ALU field of the microword, Just as the normal 64 bit ALU
would. The "most significant" a Lu. however, will p er f cr rn the function
PASS_A or PASS_E (depending on the RANDOl"1 that is specified) on the
m6st significant 32 bits of the A_INPUT and B_INPUT. An example of
using this capability is in address generation. The upper 32 bits of
the address (i. e. the module) can be passed through the ALU whilettle
lower 32 bits (the offset of the address) can be appropriately
man ip u lated.

One note about split ALU operation, when selecting a condition on
,the VAL board that is a function of the ALU output (e. g. A < B, MSB =
1 etc.), the entire 64 bits of the ALU participate in the generation
of the condition. This means for instance that if you PASS_A when
generating an address, you cannot test whether the lower 32 bits (the
address offset), by themselves, equal zero.

Four other encodings in the RANDOM field may specify ALU
functionality although currently none are used. Further discussion of
ALU functionality is given in section 4.4 of this document.

Rational Machines proprietary document DRAFT 2 ,..Iun e 4, 1982
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Tab 1e 2-2:

Microword
Field

Arithmetic Operations

o 0000
o 0001
o 0010
o 0011
o 0100
o 0101
o 0110
o 0111
o 1000
o 1001
o 1010
o 1011
l.J 1100

o 1110
o 1111

Logical Operations

1 0000
1 0001
1 0010
1 0011
1 0100
1 0101
1 0110
1 0111
1 1000
1 1001
1 1010
1 1011
1 1100
1 1101
1 1110
1 1111

ALU Operations

Operation
Name Result

dec a F = A - 1-plus F = A + B
plus_inc F = ;., + B + 1
left 1 a F = A + A- -left 1 inc a F = A + A + 1- - -minus dee F = A - B - 1
minus c:- = to. - EI I.

lnc a F = ,4. + 1-
c add/sub t CDND I T I Of'iAL-
c-add:' sub -f CONDITIONAL
c add:' Inc .-t COND IT IGi'j~':L.-c-add/inc '-r- COND IT IONp,L
c dee/ sub .j.. CONDITIONAL'-'

c dee/ sub - -r- CONDITIONAL
c_add/pass_b_t CONDITIONAL
c_add/pass_b_f CONDITIONAL

not a F = A"v-nand F = (A and B)'"
not a or b F - A'" or B- - -ones F = -1 (2/s camp)
nor F = (A or E)'"
not b F = B'"-xnor F = (A xor B)'"
or _not F = A or B'"
not _a _and b F = A'" and B-xor F = A xor B
pass_ b F = B
or F = A or B
pass_a F = A
and _not F = A and B'"
and F = A and B
zeros F = 0

Rational Machines proprietary document DRAFT 2 June 4, 1982
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Block Diagram Functional D~finition

2.3. Shift Mux

The Shift Mux is a device that selects one of four sources of data
for storage into the C address of the register file. The four data
paths that the Mux can select from are:

1. The unmodified output of the ALU.

2. The output of the ALU left shifted by one bit. In this case
the MSB of the ALU output is shifted out (and therefore
lost) and the least significant bit of the shifted result
is zero filled.

3. The output of the ALU right shifted by 16 bits. In this
case the least significant 16 bits of the ALU output are
shifted out (and therefore lost) and the most significant
16 bits of the shifted result are zero filled.

4 The Write Data Register (WDRl. This option is selected by
the hardware when a START WRITE command has been issued and
the location being written to resides in the Control Stack
Accelerator (see section 2.1.2). The microcode should only
select this option when the WCR needs to be saved in the RF
as a piece of microstate.

2. 4.. i~1u 1tip 1 i er

The multiplier logic operates on two. unsigned 16 bit quantities
(one from the A PORT of the RF the other from the B PORT) and produces
a 32 bit unsigned product that can be used as an A INPUT to the ALU.
Internally, the multiplier contains three registers: two to latch the
64 bit values from the A and B ports of the RF and one to latch the 32
bit product. These three registers provide the microcoder flexibility
in selecting exactly which bits are to be multiplied and how to align
the product.

The two values that are driven onto the A and B ports of the
reg is t er f i Ie will bel a tchedin tot h e two m u Itip 1ier in p lJ t reg ist elrs
simultaneously when the RANDOM micro-order START MULTIPLY is invoked.
Once two values get into these input registers they remain there until
new values are loaded in. Each of the two 64 bit input registers is
divided into four 16 bit quarters. Two microword fields, MULT A IN and

~MULT B IN, allow the microcoder to independantl~ decide for each
register which 16 bit quarter-register should be used as the operands
to the multiplier. The encodings of these fields is given in Section 3
of this document.

The cycle after a multiply is bequn, the product is available either
to be driven out to the FlU or to be used as an operand on the A INPUT
of the ALU. Of course to access the multiplier product. the correct
register file A ADDRESS encoding must be selected. When the 32 bit

Rational Machines proprietary document DRAFT 2 June 4. 1982
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multiplier output i~ selected to be used, several options exist as to
how the output should be aligned within the 64 bit A PORT bus. The
normal (default) mode is to have the multiplier product in the 32
LSB's of the bus with the upper 32 bits zero filled .. Two other
alignments of the product can occur by selecting one of the·following
VAL board RANDOMS:

LEFT_32_PRODUCT The product is
th e A INPUT.
filled.

left shifted 32 bits into <0 ..31> of
All other bits of the A INPUT are zero

LEFT 16_PRODUCT The product is left shifted 16 bits into <16 .. 4T> of
the A INPUT. All other bits of the A INPUT are zero
filled.

The encodings of these two Functions are given in Section 3 of this
document Choosing either of these two special alignments does not
incur any time penalty and the shifted product can be used Just as any
normal ALU A INPUT. If one of these RANDCMS is specified but the
multiplier product is not selected as the A INPUT to the ALU. th~n the
RANDOM has no a;~ect; operation of the VAL board logic proceeds as if
it were not specified. Selecting one of these two RANDOMS is the only
way to align the multiplier product in a non-standard forma~

Additional discussion
multiplications is given

of the multiplier and its use in eAtended
in section 4.4.2 of this document.

The Zero Detector logic monitors the output of the ALU, generating
testable conditions that indicate whether certain ranges of the ALU
output are equal to zero. The conditions available f~r testing are:

1. All 64 bits of the ALU output = O.

2. Most significant 32 bits of the ALU output = O.

3. Most significant 48 bits of the ALU output = O.

4. Bits <:32: 47:>, i .2. the third most significant
the ALU output = O.

quarter· of

Each of the above conditions is available as a late condition in the
cycle that it gets selected.

In addition to generating testable conditions, the COUNT ZEROS
encoding in the RANDOM field tells the hardware to count and latch the
number of leading zeros on the output of the ALU. The value of this
number is available as an operand on the A INPUT of the ALU on the

Rational Machines proprietary document DRAFT 2 ,June 4, 1982
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next cycle following the COUNT ZEROS instruction and remains available
until another one of these instructions is given. The format of the
number of leading zeros that is driven onto the A INPUT is as follows.
The numbers value is driven onto the six LSB's, 1. e. bits <:58: 63)-, and
all of the +emaining bits are zero filled by the hardware.

2. 6. Loop Counter

The Loop Counter is a general purpose, 10 bit counter that can be
use d two d iff ere n t wa y s . Fir st r the val ue in the 1 00 P c0 un ter can b e
used by the register filE addressing logic to address any A, B, or C
location in the RF. This allows the microcode to get around the
restriction of only being able to address one of the 32 scratch
registers that reside in the frame currently pointed to by the FRAME
field ~f the microword. The second application of the lciop counter
value is as an operand to the A INPUT of the ALU. The 10 bit value is
read out of the counter onto the 10 LSB's of the A INPUT while all of
the remaining bits are zero filled by the hardware.

The value contained in the loop cGunter
first way is to directly parallel load a
come from one of two places:

can be
1 ~ r • ,
~U D1-::;

c h a n 9 e d t l!.l 0

value. This
i.!Ja I~ s .

v a lu s
The

1. The 10 LSB!s of the ALU can be
loop counter by selecting it
the microword.

directly
with the

loaded intp the
C ADDRESS FIELD of

The
can
b IJ
the

value of the BOT register in the CSA addressing logic
be directly loaded into the 4 LSB's of the loop counter
specifying a RANDOM. In this case the upper 6 bits of
loop counter are set to zero.

The second way to change the value of the loop counter is to use the
RANDOM micro-orders that specify INCREMENT or DECREMENT the loop
counter (NOTE: The DIVIDE micro-order of the RANDOM field will also
decrement the loop counter but this is implicit to that instruction
and not under direct microcode control. Further explanation of the
divide instruction is in section 4.4.1 of this document>. ')

Finally, a testable condition generated by the hardware is set tol
whenever the value of the loop counter equals zero. This is an early
condition to the sequencer board. In the case where this condition is

,tested, and in the same cycle the instruction to ~ncrement (or
decrement or load) the loop counter is issued, the test condition will
be TRUE only if the pre-incremented value of the loop counter was
zero.
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2.7. Bus Interfaces

The VAL board interfaces with three of the five major processor
busses: the VAL bus, the FlU bus, and the ADDRESS bus. The. microcode
control for determining when a particular board should drive.data onto·
a bus resides on one of two boards. The SEQUENCER controls which board
drives the address bus. and the FlU controls which boards drive the
VAL and FlU busses. The interactions between the VAL board logic and
each of these busses is described in the following sections.

The principal point of access to the VAL data bus is the B PORT of
the register file. Any piece of data on th9 VAL board that can be used
as an operand on the B INPUT of the ALU can as well source data onto
the VAL bus. Similarly, in any cycle, the data that is currently on
the VAL bus can be used as a B INPUT to the ALU (or multiplier). The
only other access to data on the VAL bus is th~Gugh th~ copy of the
WDR that resides on the board. In general, this register is present
only for hardware timing reasons {involving memory write~ that hit in
the (SA) and should only be accessed by the microcode when storing the
WDR as microstate.

There
VAL bus.

are not many restrictions
.The only ones currently

to follow when interFacing
are the following:

the

The board cannot read data from the VAL bus and drive data
to the bus in the sa'me cq c le

Whenever a memory read is made, by any board r to a control
stack address space, in the same cycle of the read as READ
RDR is specified the VAL bus i'1UST be specified as the B
address qf the register file. Whenever a write is made, by
any board, to a control stack address space, in the second
cycle after the START WRITE instruction is given the default
(write disable) C ADDRESS of the RF must be specified.

When executing a POP DOWN TO instruction on the CSAj in the
cycle immediately after the one when the pop down address is
put on the address bus the VAL bus MUST be specified as the
B address of the register file.

2.7.2. FlU Bus

Data is driven onto the FlU bus from the A PORT of the register file
and data received from the FlU bus can be stored into any location
that can be addressed as a C address. The primary use of the FIU is to
extract and align data that flows between processor memory and local
storage on the VAL and TYPE boards. The previous statement implies
the principal source of data that the VAL board receives over the FlU
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bus is data that has come from main memory via the rotator and merger
on the FlU. However. since the FlU bus appears to provide a very
flexible data path between almost all of the boards in the processor.
there is a posibility of assuming functionality in the FIU data path
that does not exist. The following are the legal and i'IIegal data
paths to the VAL board over the FIU data bus:

LEGAL PATHS 1. Data coming from main memory
going through the FIU to the
stored directly in the VAL RF.

over the VAL bus.
FlU bus and getting

2. Data coming out of the A PORT of the TYPE board RF.
over the FlU bus and getting stored directly in the
VAL RF.

3. Data coming out of an isolated (i. e. nen register
file) processor register, going through the FlU to the
FlU bus and getting stored directly in the VAL RF.
Examples of isolated registers are Timer values on the
S\:SBUS board .. SYSBUS status registers s "1AR.. and RDR.

ILLEGAL PATHS 1. Data coming out
through the FlU to
into t he VAL RF.

of a RF
the FlU

(ei"!-;her
bus and

\jAL or TYPE), going
getting stored back

2. Data r from anq source, going through the FlU to the
FLU bus, then going through the VAL ALU and getting
stored into the VAL RF. (There is currently no way to
generate this path under microcode control. It is
included here for information purposes only).

3. Data coming from the TYPE RF across the FlU bus
through the VAL ALU and getting stored in the VAL RF.
(There is currently no way to generate this path under
microcode control. It is included here for information
purposes only>.

4. Data coming out of the VAL RF. going over the ~1U
bus and through the FlU, then getting .written into the
WDR.

'f In addition to the legal data path functions described above. the
receive path of the FlU has one other use: merging. When the
appropriate RANDOM encoding is selected on the VAL board, the
currently selected testable condition is "stuffed" into the LSB of the
FlU bus receiver, the other bits of the FlU bus are unaffected. The
principal use of this feature is when all zeros are driven on the FlU
bus. This zero extends the selected condition and thus allows the
microcode to store the boolean value of the selected condition in one
cycle.
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2. 7. 3. Address Bus

The address bus is driven by the output of the VAL board ALU. All
addresses that are generated on this board are bit addresses,
i. e. when an ALU output is an address, the seven least significant
bits of that output specify which bit the data object of interest
begins at within the the 128 bit word that is accessed. Sihce the main
memory system only looks at word addresses, the seven bits of bit
address are fed directly into the FLU to be used for extracting fields
out of memory words.

For each address space defined in the RiOOO architecture, the
maximum offset into that address space iSI in generaL different from
any other space. The microcode does not need to explicitly generate
the correct number of leading zeros to drive onto the address bus for
each different space. This detail is automatically done by the
hardware by truncating the output of the ALU at the correct bit
position for the particular address space and then Zel'D filling.

Micr~~Dori Specific3tio~

The following section summarizes the complete microword that
controls the operation of the VAL board. The organization of this
52ction specifies each field in the microword. the encoding and name
of each micro-order within a field. and, when needed. a brieF
description of the function the micro-order performs. Since almost all
of the micro-orders are referenced in Section 2. the reader should
r2fer to ~ne appropriate place in that section for a more detailed
description of an encodings functionality.

Note, the name of each encoding in the mic~oword is prefixed
'v'. This is used to distinguish between the VAL board and TYPE
microwords which to a large e~tent are identical.

by a
board

.,
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specify the A address of the register file

ENCODING NAME FUNCTION

OOxxxx
010000

select GP register xxxx
select current top of

control stack
010001
010010
010011

v_tos+l
spare
v_reg(lcop_counter) select reg. pointed

to by loop counter
010100
010101
010110
010111
011000
011001
011010
0.11011
011100
011101
c i i i io
011111

random state
zero_dtect
product
loop_counter
v tos-8
'y'_tos-7
v_tos-6

select output of zero_dtect
select output or multiplier
select output of loop counte~

V tOS-L~

1x x x x x

v_tos-3
Y_tos-2
v_tos-l
v_ T' e 9 ( v _ f " a me, x x x x x ) select registe~ xxxxx

in the frame pointed
to by v_frame field

OOxx:\x
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001

" 011010
011011
011100
011101
011110
011111
l x x x x x

Y-gp
Y_tos+O
v_tos+1
spare
v_reg(loop_counter)
v_bot-l
v_bot
val_bus (CSA)
spare
v_tos-s
v_tos-7
v_tos-6
v_tos-5
v_tos-4
v_tos-3
v_tos-2
Y_tos-1
Y_reg(Y_frame, xxxxx )

-,
>
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V_RF_C (6 bits): specify the C address of the register file

OOxxxx
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
01tlOl
Oll110
011111
1:::x x A X

v-9P
v_tos+O
v_tos+l
random state (write disable to RF)
v_reg(loop_counterj
v_bot-l
v_bot
write disable
loop_counter (write disable to RF)
v_tos-s
v_tos-7
v_tos-6
v_tos-5
v_tos-4
'V tas-3
v_tos-2
v tos-l

V FRAME (5 bits): specify one 0; the 32 possible frames in the RF

V_C_SRC (1 bit): specify which data SOUT'ce gets passed to the
C PORT of the RF

o
1

FlU
i"iUX

-:> C address
:> C address

v._c _f i IJ

V_C_inUX

V_1"1UX (2 bits): specify the data source that the SHIFT MUX will
pass to the C address

00
01
10
11

ALU left shifted 1
ALU unshifted
ALU right shifted 16
WDR regis,ter

v_alu left
v_aIu
v _a I u_1' i 9 h t
v_wdr
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V_ALU (5 bits): specify the ALU function

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
lOOGO
10001
10010
10011
10100
10101
10 t 10
10111
11000
11001
11010

dec_a
plus
plus_ine
left_1_a
left_1_inc_a
minus_dec
minus
inc_a
c_add/slib t
c _a d d / sub _ f
c_add/inc_t
c_add/inc_f
c_dec/sub_t
c_dec/sub_f
c_add/pass_h_t
c_add/pass_h_f
not_a
nand
not._a OT'_b

ones
noT'
not_b
xnor
or_not
not_a_and b
xor
pas s_b
or
pass_a
and_no t
and
zeros

11011
11100
11101
11110
11111

"

F = A - 1
F = A + B
F = A + B + 1
F = A + A
F = A + A + 1
F = A B 1
F = A B
F = A + 1
conditional plus or minus
conditional minus or plus
conditional plus or plus_ine
conditional plus_ine or plus
conditional minus or minus_dec
conditional minus_dec or minus
conditional plus or pass_b
conditional pass_b or plus
F = A'V
F -- (A and B)-J

F = A~ or B
F - -1 (2 IS CGmp )

F = U•. 0-;' B ) n,

F .- En,

F _. (A xor B) -,

F = A 0'1 B'"
F = An, and E
F = A xor B
F = B
F = A 0'1 B
F = A
F -- A and B"-'
F = A and B
F = 0
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MULT_A_IN (2 bits): specify which group of 16 bits is used as
the multiplier A INPUT

00
01
10
11

v_mul ta_O
v_multa_16
v_mul ta_32
v_mu 1ta_ 48

bits <:0.. 15:>
bits <:16.. 31:>
bits <:32.. 47:::-
bits <:48.. 63>

MULT_B_IN (2 bits): specify which group of 16 bits is used as
the multiplier B INPUT

00 v_multb _0 b its ·:~C;. 15:>
01 v-multb 16 bits <16. 31>-10 v_multb 32 b its o:~32. 4-'-·'- ' -'
11 v-multb 48 b its <48. 6T>-

V ~AND (4 bits): specify the described ~andom operation

OCI()O
C()Ol
oo io
0011
0100
0101
0110

no_op
i n c _1 0 0 p __en t r
dec_loop_cntr
st_rriult
bot_to_loop
count_zeros
cond_to fiu

start multiply op
EDT -> Loop counter
count # leading zeros
selected condition ->

LSB of FlU input
product gets left

shifted 32 bits
product gets left

shifted 16 bits
pass upper 32 bits of

A INPUT to ALU
pass upper 32 bits of

B INPUT to ALU

0111

1000

1001

1010

1011
1100
1101
1110

, 1111

divide
spare
spare
spare
spare
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V_CONDS (5 bits): specify the selected condition to be sent to the
sequencer for processing. Selected cond(tion also gets
latched on the VAL board. The condition bit is set TRUE
if the equation below is satisfied.

00000 zero
00001 alu _eq_ z
00010 alu _ne z
00011 a-It-b
00100 a-Ie-b
00101 alu -co
00110 alu -of
00111 alu -It z
01000 alu -32-z
01001 alu _48 -z
01010 alu -rn i d z':-~1:.~01011 q-bit
01100 loop_cntr _z
01101 y-last
01110 alu 12 z
o 1111 spare
1\)000 spare
1~:hJ<)1 s ps r e
1-JO10 spare
10011 spare
10100 spare
10101 spare
10110 spare
10111 spare
11.000 spare
11001 spare
11010 spare
11011 spare
11100 spare
11101 spare
11110 spare
11111 one

condition bit = 0
64 bit ALU output = 0
64 bit ALU output /= 0
a_alu < b_alu (signed)
a_alu <= b_alu (signed)
64 bit alu carry out
64 bit alu overflow
MSB of alu = 1 (ALU out
upper 32 bits of ALU out
upper 48 bits of ALU out
bits <32:47~ of ALU out

~ 0)<•••

= 0
= 0
= 0

loop counter = 0
last cycles VAL condition
64 bit ALU output <= 0

coiictition bit = 1
\

TOTAL NUMBER OF BITS IN MICROWORD = 44

~ Microcode Considerations

The following section describes in' more detail
microcode interface to the VAL board. In general}
this section is directed toward three 'areas:

some aspects of the
the discussion in

complex microcode
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processes (arithmetic operations,
condition and event handling, and
imposed by the hardware.

microstate saving and restoring),
microcode restrictions that are

~ Context Switch Microstate

The sum total
of:

of microstate that exists on the VAL board consists

The Register File. The Control Stack Accelerator (CSA) and
general purpose (GP) registers, in general, will need to be
saved on every context switch along with some (small?)
number of scratch pad registers. There is no hardware
checking of which RF locations need to be saved as
microstate. This must be totally kept track of by microcode.
(N bits)

The value contained in the loop counter (10 bits).

The value of the number of leading zeros contained in the
zero detector (6 bits).

The previous cycles selected condition that gets latched on
the VAL board (1 bit).

Access to all of this microstate for saving and restoring on context
switch is v er q straightforward. All of the (SA, GP, and scratch
registers tha~ need to be saved can be addressed on the B port of the
RF and immediately be saved or restored on the VAL data bus. All of
the remaining bits of random state can be accessed through an A PORT
address on the RF. This random state is packed into the least
significant 17 bits of the word with the remaining bits zero filled by
the hardware. The word can immediately be driven onto the FlU bus to
get further packed into a "microstate" block (or whatever) that will
be saved. When restoring ~tate, these bits simply get written into
the RANDOM STATE location of the RF and the hardware will unpack it
appropriately.

4.2. Conditions

The VAL board generates 16 testable conditions, any on~ of which may
,be selected on a given cycle to be sent over to the microsequencer
board for use in ~onditional sequencing operations. The conditions on
this b oa r-d can be divided into two types: alu conditions and non-alu
conditions.

All alu conditions are designated as late conditions by the
microsequencer and so can only be used either as hints or latched on
the sequencer and tested in the next cycle. The following is a list of
the alu conditions and a bT'ief description of what the condition
means.
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This condition is TRUE whenever the 64 bit ALU output
equals zero. The ALU carry out and ALU overflow bits
are not taken into consideration when generating this
condition.

This condition is TRUE whenever the 64 bit ALU output
does not equal zero. The ALU carry out and ALU
overflow bits are not taken into consideration when
generating this condition.

This condition is TRUE when the A input of the ALU is
less than the B INPUT. The comparison treats A and B
as signed numbers (i. e. negative A is always less than
pas it ive B). Tog en eI' ate t his con d i t ion the AL U m us t
be executing the SUBTRACT instruction.

This condition is TRUE when the A input of the ALU is
less than or equal to the B INPUT. The comparison
treats A and B as signed numbers (i. e. negative A is
always less than positive B). To generate this
condition the ALU must be executing the SUBTRACT
instruction.

This condition is TRUE when there is a carry out of
the most significant bit of the ALU.

This condition is TRUE when the result of an ALU
operation overflows a 64 bit representation.

This condition is TRUE when the MSB (sign bit) of the
ALU - 1. This is equivalent to testing whether the 64
bit ALU output ( o.

This condition is true whenever the 64 bit ALU output
<:= O. This condition is logical or of the ALU_EG_Z and
the ALU_LT_Z conditions.

This condition is TRUE when the upper 32 bits
(i. e. bits <0..31» of the ALU output = O. )

This condition is TRUE when the upper 48 bits
( 1. e. bits <0..47)·) of the ALU output = O.

This condition is TRUE when bits <32 ..47> of the ALU
output = O.

All non-alu conditions are designated as early conditions by the
microsequencer and so can be used either as branch conditions in the
current mic~ocycle or latched on the sequencer and tested in the next
cycle. The following is a list of the non-alu conditions and a brief
description of what the condition means.
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ZERO When this condition is selected a zero is driven out
on the VAL board condition wire.

ONE When this condition is selected a one is driven out on
the VAL board condition wire.

This condition is TRUE when the Q bit on the VAL board
= 1. The Q bit is a condition used by microcode during
a divide operation that determines the outcome of the
conditional addisubtract that needs to be done by the
AL U. For a m 0 red eta i led d is c U 5 5 ion 0 f the Q bit, and
the divide operation in general. see Section 4.-4.1 of
this document.

This condition is TRUE when the value of the loop
counter = O. It is possible that in the same cycle
that the value of the loop counter is being tested,
the instruction to increment (or decrement or load)
the loop counter is issued. In this case, the test
condition will be TRUE only if the pre-incremented
value of the loop counter was zero.

At the end of every microcycle, the condition that was
selected on the VAL board gets latched on the VAL
board (this is different from the conditign latch on
the microsequencer board). During any microcycle.
then, it is possible using the v_last instruction to
select as a condition the value of the condition that
was latched on the VAL board during the previous
cycle. This selection is primarily provided for
hardware diagnostics, however, it is made available to
the microcode as a selectable condition also.

L3. Events

There are no micro-events or macro-events generated by the VAL
board.

~ Speci~l Arithmetic Operations

Each of the following sections describes the details of the hardware
.support of the ~ore complicated arithmetic functions that ~re handled
by the VAL board. For each section, the reader is refered to l5ection
2 of this document for a description of how these operations fit into
the functionality of the hardware as a whole.
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4.4.1. Divide

The divide operation is implemented in microcode with some specific
hardware support built into the VAL board. The goal of dedicating
hardware support is to allow a standard non-restoring algorithm that
executes a divide in approximately the same number of cycles as the
number of significant bits of quotient.

Three pieces of hardware logic ar~ provided as hardware support: the
G bit, the ALU_LT_Z bit, and the leading zero counter of the ZERO
DETECTOR. The leading zero counter has been described in section 2.5
of this document but a brief description will also be given here.
Essentially, the number of leading zeros of the ALU output can be
counted at any time (subject to the restrictions of section 4.5 of
this document) by selecting the RANDOM micro-order COUNT ZEROS on the
VAL board. On the next cycle after counting, the number of leading
zeros can be accessed by an A PORT address of the RF and may be used
in an ALU operation or sent to the FlU. For the divide instruction,
the number of leading zeros o-F both the dividend (numerator) and the
divisor (denominator) are counted to determine the number of
significant bits of ~uotient that will be produced for the current
division (Quotient Bits = Leading zeros of Denom. minus Leading zeros
of Num.). As mentioned before, since the number of quotient bits
determines the number of iterations in the divide loop, once this
number is computed it can be loaded into the loop counter ~nd be used
to determine when to end the divide OReration.

The f,LU_LT_Z bit is simply a copy of the MSB of the ALV output that
gets latched for use in determining the value of the G bit in the next
cycle of the divide.

The G bit is a condition whose value is determined by the following:

G BIT = ALU carry out if no divide is in progress.
This is the initial value the G
bit needs to begin a divide.

G BIT = (0 BIT x or- ALU carry out xor ALU_LT_Z)'" when divide
in progress

On the VAL board. for each iteration in the non-restoring divide
algorit~m, the denominator conditionally gets either added to or
subtracted from the numerator, depending on the value of the G bit.
The numerator then gets shifted left by one, the loop counter gets
decremented by one. and the Q bit gets sent over to the TYPE board and
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gets shifted in as
conclude the iteration.
counter reaches zero,
resides in a register on

the least significant bit'of the ~uotient to
This process is repeated until the loop
at which point the quotient is complete and
the TYPE board.

To simplify the microcode interface, some of the above operations
are peT'formed automatically by the hardwdre when the microcode selects
the DIVIDE instruction in the VAL boards RANDOM field. During each
cycle of the principal loop in the divide algorithm the DIVIDE random
and the C_ADD/SUB_F conditional ALU instruction should be specified.
For each of these cycles the hardware will:

1. Decrement the loop counter.
...,
<::.. Use the current G bit to select either the add or

function for the VAL board ALU (0 bit equal zero _ ..•..-..'
subtract

ad d).

3. Provide a data
board) and the
the quotient
on each cycle.

path between the G bit (generated on the VAL
carry in input of the TYPE board ALU so that
bit can get shifted into the LSB of that ALU

All of the other details of the divide algorithm are left to the
sp@cific microcode algorithm that gets chosen. One final note about
divide s the values of the G bit and the ALU_LT_Z bit are n ob currently
packed into the bits of random state that get saved and restored on
context switch. It is possible to include these bits later, however
it is not thought to be necessary at this time. This does imply that
care should be taken by the microcode to make sure that these values
never need to be saved.

4. 4. 2. Multiply

In general, there are two types of multiplies that need to be done:
those necessary for array index calculations and those that are Just
regular multiplications. In terms of speed, array indexing operaklons
are a much higher priority and so the hardware is optimized for this

')case.

It is anticipated that a very high percentage of all array indexing
multiplications will have operands whose values ar~ less than 16 bits
<It is possible for these operands to be up to ~2 bits long and so

,they must be explicitly checked to see that they fall in ~he 16 bit
range). The VAL board multiplier is optimized for the case of two 16
bit operands, in this case the entire multiply and accumulate
operation needed for array indexing can be done in only two cycles. In
the first cycle, the two 64 bit operands are latched into the
multiplier input registers by selecting the RANDOM instruction
ST_MULTIPLY. At the same time, the correct 16 bits of each register
can be passed to the multiplier logic by choosing the appropriate
micro-orders of the MULT_A __IN and r'1ULT_B_IN rn i cr-ouro r d fields. In the
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second cycle, the 32 bit product is available to be added with the
array's base offset to complete the array index operation. The product
can be accessed by specifying the PRODUCT address of the A PORT of the
RF.

When doing an extended multiply (i. e. the input values are between
16 and 64 bits), the multiplier is used to produce 32 bit partial
products (at a rate of one partial product per cycle) which must all
be accumulated together to form the final product. This type of
multiply is begun in the same way as a 16 by 16 multiply, by latching
the two 64 bit operands in the multiplier latches with the ST_MULTIPLY
instruction and choosing the desired 16 bit multiplier inputs with the
MUL T_A_I N an d MUL T_B _I N fie 1ds. In the n ext cyc 1e, thef ir st par t i a 1
product is available at the output of the multiplier. This partial
product is a~ces5ed through the A ports PRODUCT address and can either
be passed through the ALU, or combined with some other offset and then
be stored in some ~cratch location. The partial product does not have
to be accessed immediately, it will remain in the output latch of the
multiplier until two new inputs are chosen to be multiplied together.
In the same cycle that the first partial product first becomes
available, the next 16 bit operands can be selected from the 64 bit
input latches to g~nerate the second partial product. On the following
cycle the second partial product is available at the output of the
muliplier and the third set of 16 bits can be chosen for generating
the third partial product. This loop of generating partial products is
repeated until the full multiplication is completed. The full details
of the algorithm are left up to the microcode.

When each partial product becomes available. it must be accumulated
with the previous partial products to obtain the final result. Also,
each partial product must be shifted left by the proper amount before
it can be added in.. This left shift operation is built into the
hardware and is used by selecting one of two RANDOM operations:
LEFT_16_PRODUCT and LEFT_32_.PRODUCT. When either of these two RAND()M
instructions is chosen, the LSB of the multiplier output is shifted up
to bit 47 (left shift 16) or bit 31 (left shift 32) before it is made
available to the ALU input. All other bits are zero filled by the
hardware on both of these shifts to allow immediate addition with
previous partial products. '

Two final notes on multiplication. First, as previously mentioned,
the multiplier has been optimized to perform a 16 by 16 multiply as
quickly as possible for array indexing. Since array index calculations

'are always done on unsigned numbers, this is the only capability built
into the multiplier. If two signed numbers need to be multiplied,
either some pre-processing or post-processing (or both) must be done
by the mic+oiode such that only an unsigned multiply is necessary.

Second. none of the three registers in the multiplier are available
to be saved or restored as microstate. This implies that some care
must be taken by the microcode to make sure that these values never
need to be saved.
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4.4.3. Floating Point Operations

There is no dedicated' hardware support for floating point operations
on the VAL board. All floating point operations will be implemented
either directly by microcode using the existing functionality of the
VAL, TYPE and FlU boards, or by software.

~ Microcod~ Restrictions

This section summarizes all of the known restrictions that the
hardware imposes (mainly for timing reasons) on the microcode. Most of
these restrictions were discussed in previous sections of this
document and therefore the reader is refered, mainly to Section 2, for
further details of each of these restrictions.

CSA RESTRICTIONS
The following restrictions are imposed by the CSA.

1. Whenever a memory read is made to a Control
Stack address space. during the cycle when
the READ RDR instruction is issued the ~~
legal B ADDRESS that may be specified for
the VI'-\Lboard RF is the Vf-\L_EVS.(CSA)
address. Whenever a memory write is made
to a Control Stack address space. in the
second cycle after the START WRITE
instruction is issued the ~ legal C
ADDRESS that may be specified for the VAL
board RF is the default (write disable)
address. This is becaus~ it is impossible
to determine a priori whether a given
control reference will "hit" in the CSA and
therefore necessitate the VAL and TYPE
boards accessing the CSA instead of memory.

2. When executing a POP DOWN instruction, the
cycle immediately after the address being
popped down to is driven onto the ADDRESS
bus, the ~ legal B ADDRESS that may be
spe~ified for the VAL board RF is the
VAL_BUS (CSA) address. This restriction is
imposed by hardware timing.

3. One note of caution when executing Control
Stack POP or POP_DOWN instructions. The
hardware calculates whether a Control Stack
address hits the CSA in the same cycle that
the MAR is loa de d UJ ith the add res s. Let us
say in this example that a particular
control read hits the CSA at the top of
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stack minus two (TOP-2) location. Since the
data from this read is not driven onto the
VAL bus until the READ RDR command is
issued (possibly many cycles later) it is
possible for the microcode to POP or POP
DOWN the top of the stack to'a point below
where the address hit in the CSA. In this
case when the READ RDR command is issued,
valid data cannot be guaranteed since the
CSA will be reading a location above the
current top of stack. The hardware does not
protect against this scenario. It is up to
the microcoder to exercise restraint in
using POP and POP DOWN instructions in this
type of situation.

FlU RESTRICTIONS
The following restrictions on driving data onto the
FLU bus are imposed by hardware timing.

1. Data coming from the VAL board RF cannot go
across the FlU bus. through the FlU and
then get stored back into the VAL RF.

2. Data. from anq Vf\L board SOUTce. c enn o t go
through the FlU. come back across the FlU
bus. then go through the VAL ALU and get
stored into the VAL RF. (There is
currently no way to generate this path
under microcode control.. It is included
here for information purposes only).

3. Data cannot come from the TYPE RF across
the FlU bus, through the VAL ALU and get
stored in the VAL RF. (Similarly VAL data
cannot' get stored in the TYPE RF in this
manner) (There is currently no way to
generate this path under microcode control.
It i~ included here for information
purposes only).

" ,

4. Data cannot come out of the VAL RF, go over
the FlU bus and thfough the FlU, then get
written into the WDR.

OTHERS The following are all of the other restrictions
imposed by the VAL board hardware.

1. The COUNT ZEROS instruction cannot be used
to count the number of leading zeros of the
VAL ALU output when the B INPUT to the ALU
is coming from the VAL BUS (CSA) address of
the RF. This is because of hardware timing.
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~ Diagnostics
This section, and all of the subsections that it contains, will not

be a part of the initial specification of this board. Rather they will
be added later as more of the specific details become known. The
outline of this section is included at this point for the sake of
completeness, and to elicit suggestions as to what the content and
format of each section should be.

5. L, Phi 10 sop h y

~2. Hardware Support

5. 3. S tan d. AID neT est in...!l

5.5. Micro-Diagnostics

This section, and all of the subsections that it contains, will not
be a part of the initial specification of this board. Rather they will
be added later as more of the specific details become known. The
outline of this section is included at this point for the sake of
compietenessl and to elicit suggestions as to what the content and
format of each section should be.

6.1._ Timing Issues

6. 1. 1. Data Path Timing

6.1.2. Clocking Issues

~~ Potential Problems and Restrictions
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~ Chip Count and Power Estimates

~ System Interconnections

6.3.1. Foreplane

6.3.2. Backplane

t2..:..!±.:.... Layout
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Functional SpeciTication oT the Type Board

DRAFT 1

People exaggerate the things they've never had,
they admire types because they have no experience
with them.

- George Bernard Shaw

Rational Machines proprietary document.
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1. Introduction

This document describes the functionality of the Type board of the
RlOOO. The specification defines in detail the microcode and hardware
interfaces to the board. The reader is assumed to be familiar with
both the RI000 architecture and the specifications of the other boards
in the RI000 processor.

The type board is extremely similar to the value
similarities are designed in to allow the microcode
resources of two 64 bit CPU's operating in parallel.
not be stressed enough! TWO 64 BIT CPU'S OPERATING
Because of this fact the functionality, hardware, and
the two boards are extremely similar.

board. The
to have the

This point can
IN PARALLEL.

microcode, for

In general the differences are the value board has a zero detector, a
multiplier, and a shift mux and the type board doesn't. While the
type board has some checking circuitry <privacy and class) and the
value board doesn't.

This spec will only explain the sections of
drastical~ different from the value board.
differenc,are obvious from the differences in

the type board that are
In most cases these

the microword.

~. Block Diagram Functional Definition

This section refereces the block diagram of the Type board attached to
this document. The functionality of each block in the diagram is
discussed in detail in the following sections.

~.1. Register File

Same as the value board except there is no zero detector or
mu 1tip 1ier.

~.1.1. Register File Addressing

Same as the last comment.

~.1.~. Control Stack Accelerator

Identical to the value board.
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Block Diagram Functional Definition 2

The ALU control and operation is exactly the same as the value ALU,
except there are no conditional ALU operations. (See the microword
specification for the exact ALU control available. )

The random field of the type microword allows the selection of the G
bit (a bit supplied by the value board over the backplane) as the
car r y- in tot heAL U. (See the ran d0m fie Id 0 f the m icrow 0rd.) W hen
this random micro-order is not selected the T_ALU field of the type
microword determines the carry-in to the ALU.

The type Mux determines the source of data for storage into the C
address oT the register Tile. The two data paths that the Mux can
select are:

1. Th e unmod iT ied outp ut of th e ALU.

2. The Write Data Register (WDR). This option is selected by
the hardware when a START WRITE command has been issued and
the location being written to resides in the Control. Stack
Accelerator (see the previous CSA section). The microcode
should only select this option when the WDR needs to be
saved in the RF as a piece oT microstate.

(This mux operates differently than the corresponding mux on the value
board. )

g. i. Checker

The checker circuitry on the type board can be divided into three
function units.

1. Privacy Checker
or two operands.

does a first level privacy check on one

2. Class Check
operands.

checks class compatability of one or two

3. Of_Kind conditions detects special type conditions.

The privacy and class check can cause micro events, and are testable
as conditions.
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~.!. 1. Privacy Checker
The privacy checker is used to check if the operand(s) under test
is(are) in the scope of privacy. The check facilities are mostly used
Tor scalars, but additional testable conditions are available to test
Tor structures. The privacy checker has a 32 bit outer_Trame_name
register that is loadable from bits (0:31) oT the B_bus. This
register must be reloaded during every context switch (and during some
instructions like call and exit>. To use the privacy checker the
type-links of the control_stack operands(s) must be on the A_bus
and/or B_bus. The check is selected Trom the privacy check field oT
th e mi croc od e.

The privacy checker can perTorm the following Tive checks:

1. Bin_eq -- Privacy check for equality and assignment. The
operands on both the A and B bus are checked.

2. Bin_op Privacy check Tor a binary operation. The
operands on both the A and B bus are checked.

3. A_op -- Privacy check for a unary operation.
on the A_bus is checked.

The operand

4. B_op Privacy check for a unary operation.
on the B_bus is checked.

The operand

5. Names_equal -- Binary check for the same path names on both ~
the A and B bus. ,

Using the following identifiers the privacy checks can be accurately
expressed as boolean equations.
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Block Diagram Functional Definition 4

0 f = outer frame _name registerCO:31)- -A_name = A_bus CO: 31)
B _name = B_busCO:31)

A_is_priv = A bus(34)-B _i sJr iv = B bus(34)-A_drvJriv = A bus(3S)-B_drvJriv = B bus(3S)-

(The last four equations indicate that the first level check fails if
the equation is true. )
The privacy checker control logic can enable one of six possible
privacy checks during a micro-instruction. These six different
privacy checks can generate one of four possible micro events. The
following table indicates the correspondence between the privacy check
enables and the micro events generated. (See the privacy_check field
of the microword for the details on enabling a privacy micro event. )

Privacy Check Micro Event Generated

Bin_eq
Bin_op
A_[TOSJ_op
A_[TOS-I J_op
B_[TOSJ_op
B_[TOS-IJ_op

Bin_eq
Bin_op
[TOSJ_op
[TOS-IJ_op
[TOSJ_op
[TOS-IJ_op

Tab Ie g-l: Privacy Micro Event Generation

(The hardware doesn't check if a operand is [TOSJ or [TOS-IJ.
Therefore there is no guarantee that the correct micro-event is taken
if the microcode is incorrect. )

All of the privacy events are early and non-persistent. Since they
are early events the instruction that caused the event will be re-
executed if the micro event handler returns. To prevent the privacy
event from re-occuring, when the privacy event handler returns, a
"pass privacy state" exists in the logic. If the micro handler
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Block Diagram Functional Definition 5

decides that the operand(s) passes the additional privacy check in the
handler, the handler should set the "pass privacy check" state. This
state is set by specifying the "pass privacy check" order of the
privacy check micro-field. If a privacy micro event is enabled and
the pass privacy state is set, the micro event doesn't occur and the
pass privacy state is cleared. The pass privacy state can also be
cleared from the random field. (NOTE: The pass privacy state has NO
effect on the privacy test conditions.) The pass privacy state must
be cleared during context switches, but does not need to be restored
(the event will occur again). (NOTE: The pass privacy state will not
change when the privacy check micro order is a "nop", unless the
random field clears the state. )

g. i. g. Class Check

The Class checker is used to compare the of_kind bits of a type_link
on the A_bus or B_bus to the other bus and/or to a literal. This
check provides a parallel mechanism for ensuring that operand(s) are
of the correct or same type for a specific instruction.

The class check hardware is capable of 3
The conditions and events that can
following table.

different 7 bit compares.
be generated are shown in the

Hardware Test Micro event Condition

x x

x x
x x
x x

Table a-a. Class Checks

Only one class check micro event can be enabled during any particular
,micro-instruction. The random field of the type microword selects
which class micro event is enabled (see the microword specification
section). All of the class micro events are early events which
prevent the current instruction from completing. (All of the class
micro checks cause the SAME class event and branch to the same micro
event handler.) Any of the above conditions can also be selected as
the currently tested processor condition (see the microword
specification section).

(Implementation Note: In an effort to reduce the width of the
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Block Diagram Functional Definition 6

microword the frame bits of the type microword have been overloaded
with five bits of the class lit. The class lit is seven bits. The
most significant two bits are a field in the microword. The least
significant five bits are overload with the frame microbits. If a
micro-instruction uses both a frame address and a class check with a
class lit, the frame address must be the same as the least significant
five bits of the class lit. (For more details see the microword
specification section. »

g. i.~. Of Kind condition

The checker circuitry also provides a special test condition that can
be used for "subrange" detection on the "of_kind" encodings. The
hardware has 64 patterns programmed into two proms. (The class lit is
overloaded to choose the patterns.) The first prom contains a seven
bit pattern which is compared to bits (57:63) of the B_bus. The
second prom contains a seven bit mask which indicates which bits are
to be compared. The output of the comparator is one of the selectable
conditions on the type board. The following table lists some of the
patterns that are currently included in the test conditions.

PATTERN NUMBER
(hex)

PATTERN NAME BIT PATTERN
(57:63)

00 TYPED XXXXXOO
01 IMPORT XXXXOXO
02 VALUE XXXXOOO
03 SCALAR OOOXOOO
04 INDIRECT XXXXI00
05 VALUE REF OXXOI00
06 STRUCTURE lXX0100
07 SUB INDEXED 11XX 100
08 REFERENCE XXXXOI0

09 - IF unused

20 STATE_WORD XXXXOOl
21 CONTROL_KEY XXXXI01
22 MARK_WORD XXXXlll

23 - 3F unused

(The "X" bits are not compared. )

Table a-a Of_Kind condition

(NOTE: The checker circuit also provides tests for some of the
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Block Diagram Functional Definition 7

individual bits on the B_bus. These test conditions are very useful
for some type checking and are enumerated in the microword
specification section under the condition field. )

~. 2. Loop Counter

Identical to the value board.

~.~. Bus Interfaces

The type board bus interfaces are exactly the same as the value board,
except the type board connects to the TYPE bus where the value board
connects to the VALUE bus. (This section and the following three
sections, are identical to the value board spec if "TYPE" is
substituted Tor "VALUE". )

~. ~.~. Address Bus
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Microword Specification 8

~. Microword Specification

T_RF_A (6 bits): specify the A address of the register file

ENCODING NAME FUNCTION

OOxxxx
010000

select GP register xxx x
select current top oT

control stack
010001
010010
010011

t_tos+1
spare
t_reg (loop_counter) selec t reg. pointed

to by loop counter
random state outer_frame_name, pass-privacy bit,

loop_counter
010100

010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
lxxxxx

spare
spare
loop_counter
t_tos-8
t_tos-7
t_tos-6
t_tos-S
t_tos-4
t_tos-3
t_tos-2
t_tos-l
t_reg (t_frame, xxxxx )

select output of loop counter

select register xxxxx
in the frame pointed
to by t_frame field

••
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Microword Specirication 9

T_RF_B (6 bits): speciry the B address Or the register rile.

OOxxxx
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
lxxxxx

t-9P
t_tos+O
t_tos+l
spare
t_reg(loop_counter)
t_bot-l
t_bot
type_bus (CSA)
spare
t_tos-S
t_tos-7
t_tos-6
t_tos-5
t_tos-4
t_tos-3
t_tos-2
t_tos-l
t_reg(t_frame, xxxxx)

T_RF_C (6 bits): specify the C address or the register rile

OOxxxx
010000
010001
010010

t_gp
t_tos+O
t_tos+l
random state (write disable to RF)

outer_rrame_name, pass privacy bit,
loop_counter

t_reg(loop_counter)
t_bot-l
t_bot
write disable
loop_counter (write disable to RF)
t_tos-S
t_tos-7
t_tos-6
t_tos-5
t_tos-4
t_tos-3
t_tos-2
t_tos-l
t_reg(t_rrame, xxxxx)

010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110

, 011111
1xxxxx

T_FRAME (5 bits): speciry one Or the 32 possible rrames in the RF
(This rield is overloaded with rive bits oT the class literal
and Tive bits OT the type OT_Kind condition number. )

xxxxx Trame, class literal (2:6),
OT_Kind condition_number(2:6)
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Microword Specification 10

T_C_SRC (1 bit): specify which data source gets passed to the
C PORT of the RF

o
1

FlU -> C address
MUX -> C address

T_MUX (1 bit): specify the data source that the MUX will
pass to the C address

o
1

ALU
WDR register

T_ALU (5 bits): specify the ALU function

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

dec_a
plus
plus_inc
left_l_a
left_l_inc_a
minus_dec
minus
inc_a
spare
spare
spare
spare
spare
spare
spare
spare
not_a
nand
not_a_or _b
ones
nor
not_b
xnor
or_not
not_a_and_b
xor
pass_b
or
pass_a
and_not
and
zeros

F = A - 1
F = A + B
F = A + B + 1
F = A + A
F = A + A + 1
F = A - B - 1
F = A B
F = A + 1

F = A'"
F = (A and B)'"
F = A'" or B
F = -1 (2's comp)
F = (A or B)'"
F = B'"
F = (A xor B)'"
F = A or B'"
F = A'" and B
F = A xor B
F = B
F = A or B
F = A
F = A and B'"
F = A and B
F = 0
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Microword Specification 11

T_RAND (4 bits): specify the described random operation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

no_op
inc_l oop_cntr
dec_Ioop_cntr
carry_in_G
spare
write outer_frame_name
clear pass privacy state
spare
spare
pass_A_h igh

Carry_in = G bit from val

1010

pass upper 32 bits of
A INPUT to ALU

pass upper 32 bits of
B INPUT to ALU

1011
1100
1101
1110
1111

class_check(A_bus. lit)
class_check(B_bus. lit)
class_check(A_bus. B_bus)
class_check(A_bus. B_bus. lit)
spare

T_CLASS_LIT (2 bits): specify the literal that is compared against
during most of the class checks (the other five bit~ of
the class literal are overloaded with the frame).
(This field is over loaded with the 2 msb's of the Of_Kind
condition number. )

XX The 2 msb's of the class literal or the 2 msb's of the
Of_Kind condition number.

PRIVACY_CHECK (3 bits): This Tield enables one oT the Tour privacy
privacy micro events.

000 check privacy for ectuality
001 check privacy for A_bus and B_bus
010 check privacy for eTOS] on the A_bus
011 check privacy for eTOS-l] on the A_bus
100 check privacy for eTOS] on the B-bus
101 check privacy for eTOS-l] on the B-bus
110 nop

,111 set "pass privacy state"
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T_CONDS: specify the selected condition to be sent to the
sequencer for processing. Selected condition also gets
latched on the TYPE board. The condition bit is set TRUE
if the equation below is satisfied.

0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111

al u_eq_z
alu_ne_z
a_gt_b
a-ge_b
loop_cntr _z
spare
spare
spare

0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111

alu_co
alu_of
alu_lt z
a 1u_l e_z
t_last
spare
one
zero

0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111

Of_Kind(##)
spare
class(A,I)
class(B,I)
class(A,B)
class(A,B,l)
privacy(A)
privacy(B)

0110000
0110001
0110010
0110011
0110100
0110101
0110110

,0110111

privacy<equal)
privacy(A,B)
privacy(names)
privacy(struc. )
B_bus (32)
B_bus(33)
B_bus(34)
B_bus(35)

64 bit ALU output = 0
64 bit ALU output /= 0
a_alu > b_alu (signed)
a_alu >= b_alu (signed)
loop counter = 0

64 bit alu carry out
64 bit alu overflow
MSB of alu = 1 (ALU out < 0)
64 bit ALU output <= 0
last cycle's TYPE condition

condition bit = 1
condition bit = 0

Of_Kind condition

class_checkCA_bus, lit)
class_check(B_bus, lit)
class_check(A_bus, B_bus)
class_check(A_bus, B bus, lit)
privacy_check(A_bus)
privacy_check(B_bus)

privacy_check(equality)
privacy_check(bin_op)
A_bus. path_name = B_bus. path_name
both privacy(A,B) and privacy(names)
bit 32 of the B_bus
bit 33 of the B_bus
bit 34 of the B_bus
bit 35 of the B_bus
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0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111

B_bus(36) bit 36 of the B_bus
B_bus(34 or 36) B_bus(34) OR B_bus(36)
spare
spare
spare
spare
spare
spare

TOTAL NUMBER OF BITS IN THE MICROWORD = 39

~ Microcode Considerations

The following subsections detail microcode constraints, conditions,
and events.

i· 1· Context Switch Microstate

The microstate that exists on the TYPE board consists of:
1. The Register File. The Control Stack Accelerator (CSA)

general purpose (GP) registers, in general, will need to
saved on every context switch along with some number
scratch pad registers. There is no hardware checking
which RF locations need to be saved as microstate.

and
be
of
of

2. Th e Outer _frame_name {in th e chec ker >. Th e
outer_frame_name register only needs to be loaded for the
incoming tasks. (The outer_frame must be saved on every
context switch, but presumably the full outer_frame from
the sequencer is written out during the context switch. )

3. The loop counter.

4. The pass privacy bit. Since privacy is an early event, it
should be o. k. to NOT save the pass privacy bit during a
context switch. Then the bit only needs to be CLEARED
during each context switch.

i.~. Conditions

The TYPE board generates 32 testable conditions. The conditions can
be divided into three groups L - late, ML meduim late, and E
early. The early conditions can be used as conditions for conditional
branch types, and don 't require a hint. The meduim late and late
conditions require hints if used with conditional branch types. Only
the early or medium late conditions can be used as conditions for
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Microcode Considerations 14

conditional memory references. And believe it or not, every condition
can be latched in the microse~uencer's latch.

(L)
This condition is TRUE whenever the 64 bit ALU output
equa Ls zero. The ALU carry out and ALU overflow bits•are not taken into consideration when generating this
condition.
(L)

This condition is TRUE whenever the 64 bit ALU output
does not e~ual zero. The ALU carry out and ALU
overflow bits are not taken into consideration when
generating this condition.
(L)

This condition is TRUE when the A input of the ALU is
greater than the B INPUT. The comparison treats A and
B as signed numbers (i. e. negative A is always less
than positive B). To generate this condition the ALU
must be executing the SUBTRACT instruction.
(L)
This condition is TRUE when the A input of the ALU is
greater than or e~ual to the B INPUT. The comparison
treats A and B as signed numbers (i. e. negative A is
a Iways Iess than p0sit ive B ). Tog en era te this
condition the ALU must be executing the SUBTRACT
instruction.
(L)
This condition is TRUE when there is a carry out of
the most significant bit of the ALU.
(L)
This condition is TRUE when the result of an ALU
operation overflows a 64 bit representation.
(L)
This
ALU
bit

condition is TRUE when the MSB (sign bit) of the
= 1. This is e~uivalent to testing whether the 64

ALU output c o.

(L)
This condition is true whenever the 64 bit ALU output
<= O. This condition is logical or of the ALU_EG_Z
and the ALU_LT_Z conditions.

T_LAST(L) (L)

At the end of every microcycle, the condition that was
selected on the TYPE board gets latched on the TYPE
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Microcode Considerations 15

TRUE

FLASE

CLASS(A,LIT)

CLASS(B, LIT)

board. During any microcycle this latched condition
can be selected as a testable condition. (This
condition is available mostly as a diagnostic ~eature
rather than a use~ul microcode feature. No provisions
are made to keep the value of this latch consistent,
across events or conte xt swi tc hes. )
(E)
This condition is always true.
(E)
This condition is always fa 1se.

(ML)
This condition is the result of the O~_Kind condition
test. The number specified is used to select the
pattern to match.
(ML)
This condition is true if the class literal is equal
to bit (57:63) of the A_bus.
(ML)
This condition is true if the class literal is equal
to bits (57:63) of the B_bus.

CLASS(A, B) (ML)
This condition is true i~ bits (57:63) of the A_bus
are equal to bits (57:63) o~ the B_bus.

CLASS(A,B,LIT) (ML)
This condition is true if bits (57:63) o~ the A_bus
are equal to bits (57:63) of the B_bus and equal to
the class literal.

PRIVACY_NAMES

(ML)
This condition is true if the
check on the A_bus passes.

first order privacy

(ML)
This condition is true if the first order privacy
check on the A_bus passes.
(ML)
This condition is true if the first order privacy for
equality check passes.

(ML)
This condition is true if the first order privacy
check for both A and B busses pass.

(ML)
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This condition is t~ue if bits (0:31) of the A_bus
equal bits (0:31) of the B_bus.

PRIVACY_STRUCT. CML)
This condition is t~ue
PRIVACY __ NAMES a~e true.

both and

B_BUS(32) CML)
This
B..:..bus

condition
is a one.

is true if and only if bit 32 of the

(ML)
This condition is true if and only if bit 33 of the
B_bus is a one.

condition
is a one.

is t~ue if and only if bit 34 of the

(ML)
This condition is true if and only if bit 35 of the
B_bus is a one.

condition
is a one.

is true if and only if bit 36 of the

B_BUSC32_0R_36) (ML)
This condition is true if either bit 32 or bit 36 of
the B_bus a~e one.

1.;:1. Events

The type board can generate five micro events and no macro events.
All of the mic~o events a~e early and non-pe~sistent, therefore there
are no mask bits for the events (they a~e each enabled by specific
m i cr c+o r-d er s }. The m i cr o events are class_check, Bin_eq, Bin_op,
CTOSJ_op, and CTOS-1J_op. The mic~o events a~e explained in detail in
previous sections.

'1· 1· Microcode Restrictions

The microcode rest~ictions for the TYPE board are exactly the same as
the CSA RESTRICTIONS and FlU RESTRICTIONS f~om the value spec. Please
consult the value spec fo~ the details.
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Microsequencer Specifications 1

1. Summary

This document describes the functionality of the Microsequencer board
of the RIOOO. The specification defines in detail the microcode and
hardware interfaces to the board. The reader is assumed to be
familiar with both the RI000 architecture and the specifications of
the other boards in the RIOOO processor.

2. Functional Description

The microcode controlling the operation of the RlOOO is physically
separated on different boards in the processor, but all of the boards
operate in a lock-step fashion. The order of execution of the micro-
instructions in the RI000 is determined by the microsequencer.

2. 1. Branches

The (BRANCH_TYPE) field of the microword determines how the next
micro- address is selected. The (BRANCH_TYPE) field also determines
if the next micro-address selection is conditional or unconditional.
(The condition under test is selected by the (CONDITION) f.ield of the
mi crosequenc er mi croword. )

The (BRANCH_ADDRESS) field in the microword is an absolute branch
address, which is used as the next address if the branch is taken.
(PC+l is pushed onto the micro-stack during a successful call. ) The
(BRANCH_ADDRESS) is also selected during unsuccessful conditional
returns and conditional dispatches.

The microsequencer also maintains a 15 word micro-stack that is used
during micro-calls and returns. (The stack also maintains addresses
for micro event handler returns.) The (BRANCH_TYPE) field can specify
conditional and unconditional calls and returns, for both selected
condition true and selected condition false.
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The 16 branch types are:

brt
brf
br
cont
caUt
calIf
call
returnt
returnf
return
dispt
dispf
disp
case *

--conditional branch (branch if true)
--conditional branch (branch if false)
--unconditional branch
--continue (PC + 1)
--conditional call (call if true)
--conditional call (call if false)
--unconditional call
--conditional return (return if true)
--conditional return (return if false)
--unconditional return
--conditional dispatch (dispatch if true)
--conditional dispatch (dispatch if false)
--unconditional dispatch
--Jump to the branch address plus the lsb 14 bits
--of the FlU_DATA from the last cycle
--same as the case, except PC + 1 is pushed onto
--the stack
--push the branch address onto the micro_stackpush

(NOTE: The case and case_call branch to an address which is. the sum of
the branch address and the 14 lsb's from the last value on the
FlU _DA TAb us. T his "Ias t val ueon the FlU _DA TAb us" is Iatchedin a
register on the microsequencer. This register is not readable neither
writable. It is therefore necessary not to take micro-events before a
micro-instruction that uses these branch types!)

The next micro-address for each combination of condition value and
branch type is shown in the following table.

Since it is useful to remember a condition for several micro-cycles,
the microsequencer provides a latch that can store the currently
selected condition. The (LATCH) field of the microword specifies for
each micro-instruction to either remember the previously latched
conditinn or to latch the currently selected condition. (This feature
is also useful for branching on late conditions, see below.) The
contents of the latch will be saved and restored on context switches.

Because of the timing for the conditions some occur early in a micro-
.cycle and some occur late. Early conditions may always be selected
for branches. Late conditions, if selected for a branch condition,
must be followed by a hint. The hint informs the micro-sequencer that
usually the branch will fail (rarely branch) or usually the branch
will succeed (usually branch). If the hint is not correct the micro-
sequencer will not execute the selected micro-instruction, but will
take one micro-cycle to calculate the correct micro-address. (If both
a bad hint and late micro event or a late macro event occur the
hardware will take two micro-cycles to calculate the correct next
micro-address!) The (BRANCH_TIMING) field for the early/late/hint
conditions is interpreted as follows:
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condition value
branch _type true false

brt branch _addr PC + 1
brf PC + 1 branch addr
br branch _addr branch _addr
cont PC + 1 PC + 1
callt branch _addr PC + 1
callf PC + 1 branch addr
call branch _addr branch _addr
returnt micro -stack branch
returnf branch micro stack-return micro -stack micro stack-dispt decode _ram branch
dispf branch _addr decode _ram
disp decode -ram decode -ram
case branch _addr + FlU data(SO:63) *-case call II II *-push PC + 1 PC + 1

<* -- For both cases true and false)

Tab Ie 2-1: Micro-Address Selection for Branch Types

branch_timingo 0
o 1
1 0
1 1

branch on the early condition
branch on the latched condition
branch on the late condition, hint is usually
branch on the late condition, hint is rarely

Table 2-2: Branch Timing

During a usually dispatch, memory might be started <depending on the
decoding instruction>. If the hint is bad, memory is aborted during

.the next cycle. When memory is aborted a memory read will finish and
a write command will change into a read. Therefore after a usually
dispatch that is bad the RDR and the MAR may no longer contain valid
information.
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2.2. Dispatch

During a successful dispatch, the microsequencer will do three things
i n h a r d wa r e :

1. Increment th e Macr o_p c.

2. Start a memory read or write, if the decoding
requires a memory reference.

instruction

3. Select the next micro-address,
decoding macro-instruction.

based on the current

The decode rams have a 3 bit field for each macro instruction that
selects one of eight possible memory references. (Because a dispatch
can auto- matically start memory, microcode can not allow memory
operations to extend across macro-instruction boundaries.) I~ the
decoded memory start field, in the decode rams, is not a NOP it is one
of the following memory operations:

CONTROL_READ_LL_DELTA
Start a control or import read (if bits
decoding instruction are 0 the read is
otherwise it's a control read). Bits
decoding instruction are used as the
resolve ram. The stack name portion of
read directly from the resolve ram.
portion of the address is the output of
rams plus bits (7: 15) from the decoding
(sign extended).

(3:6) of the
a import read,
(3:6) of the
address to the
the address is

The offset
the resolve
instruction

PROGRAM_READ_PC_PLUS_OFFSET
Start a program read. The program address is equal to
the cur r en t ma cr 0 pcp 1usb its (5: 15 ) fro m the
decoding instruction (sign extended).

TYPE READ TOS_PLUS_FIELD_NUMBER
Start a type read. The stack name portion of the
address is read from bits (0:31) of the TOS_LATCH.
The offset portion of the address is the sum of bits
(37: 56) in the TOS_LATCH and bits (8: 15) in the
decoding instruction (zero extended).

TYPE_READ_TOS_TYPE LINK
Start a type read. Both the name and offset are read
from the TOS_LATCH (bits (0: 31) and (37: 56),
respectively).

CONTROL_READ_VALUE ITEM. NAME AND_FIELD_NUMBER
Start a control read. The name
is read from bits (64:95) of

portion of the address
the TOS_LATCH. The
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offset portion of the address is bits (8: 15) of the
decoding instruction (zero extended>. (Useful on
module field_reads, module field_exes, etc.)

CONTROL_READ_CONTROL PRED
Start a control read. The stack
current_name register and the offset is
pred register.

name is the
the control

CONTROL_WRITE_(INNER-PARAMS)
Start a control write. The stack name is the
current_frame name and the offset is the current frame
offset minus bits (8: 15) of the decoding instruction
(zero extended).

2.3. Macro Events

If any macro events are pending during a dispatch, the dispatching
instruction will complete entirely, but the dispatch will not occur.
If the highest priority macro event pending is an early macro the next
micro instruction will be the first micro-instruction of the
corresponding macro event handler. If the highest priority macro
event pending is a late macro event the next micro-instruction will be
a NOP, followed by the first micro-instruction of the macro event
handler. If the macro event is IBUFF_EMPTY the hardware will
automatically start a program read at (macro pc + 1).

All of the macro events are testable as conditions and are maskable.
Some of the macro events can be disabled during a particular micro-
instruction (specified as disabled (D». The macro events are cleared
by some action that is executed during the handler. The macro events
and some of the characteristics are:

Macro event definitions:

DISPATCH The dispatch macro event occurs every time a
instruction executes a successful dispatch.
sequencer microword allows this macro event to
disabled if specified as such during an instruction.

micro-
The

be

The sequencer contains a 16 bit register which
specifies 15 break classes and a "break any macro"
bit. During each dispatch the break class of the
"current instruction" is decoded. (There are decode,
rams on the output of the current instruction
register. The rams output a 4 bit field for every
instruction. This 4 bit field is either one of the
break classes or it is the "no_break_class" class.).
If the break class of the current instruction matches
one of the 15 break classes (or break any is set) the
break_class macro will occur.
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Early memory micro
MEMORY /Late priority specif. address address

refresh memory E 0 0100

SYSBUS
sysbus_ status E 2 0110
sysbus_packet E 3 0118
slice timer E 5 0128-ss.;timers E 6 0130

SEGUENCER
CSA underflow L 8 0140-CSA overflow L 9 0148-resolve _ref L 10 0150
TOS_optimization_err L 11 0158
dispatch L 13 D 0168
break -class L 14 D 0170
IBUF _empty L 15 D PC+l 0178

(0 is the highest priority event)

Table 2-3: Macro Events

The conditions necessary for this macro event to occur
are tested during each dispatch. If the macro event
occurs, but the handler for a higher priority macro
event is executed, this macro event is not latched
(not remembered). The event will reoccur during the
next dispatch.

Each instruction may re~uires some number of
operands, from 0 to 7, to exist in the control stack
accelerator, before the instruction can execute. If
the dispatching instruction re~uires more operands in
the CSA, than currently exist, this macro event
occurs. The handler for this macro event will then
read some number of entries (probably four), from the
current top of the control stack not reflected in the
CSA, and write them into the bottom of the CSA. (The
CSA is located on both the type and value boards.)
(The decode rams contains a 3 bit field for each macro
instruction, which specifies the number of operands
that the instruction re~uires in the CSA. )

The conditions necessary for this macro event to occur
are tested during each dispatch. If the macro event
occurs, but the handler for a higher priority macro
event is executed, this macro event is not latched
(not remembered). The event will reoccur during the
next dispatch.
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Once the handler has filled the CSA appropriately the
macro event will not occur again. (NOTE: It is
legitimate to change the number of entries in the CSA
during the same micro-instruction that a dispatch is
occuring. )

Each instruction may also requires some number OT
invalid locations, from 0 to 3, to exist in the
control stack accelerator, berore the instruction can
execute. IT the dispatching instruction requires more
invalid locations in the CSA, than currently exist,
this macro event occurs. The handler Tor this macro
event will then write into memory some number oT
entries (probably two), Trom the bottom or the CSA,
into the corresponding addresses in the control stack.
(The decode ram contains a 2 bit Tield Tor each macro
instruction, which specifies the number of holes that
the instruction requires in the CSA. )

The conditions necessary for this macro event to occur
are tested during each dispatch. IT the macro event
occurs, but the handler for a higher priority macro
event is executed, this macro event is not latched
(not remembered). The event will reoccur. during the
next dispatch.

Once the handler has emptied the CSA appropriately the
macro event will not occur again. (NOTE: It is
legitimate to change the number of entries in the CSA
during the same micro-instruction that a dispatch is
occuring. )

Any instruction that specifies a lex level, delta
position in the control stack, requires that the
current resolve ram registers must contain the oTfset
of that specific lex level. If the dispatching
instruction requires a resolve and the specified lex
level offset is not in the current resolve r-am
reg isters th is macro event oc curs. Th e event hand 1er
for this macro will chase activation states in the
control stack until the oTTset Tor the specified lex
level is Tound.

The conditions necessary Tor this macro event to occur
are tested during each dispatch. If the macro event
occurs, but the handler Tor a higher priority macro
eve n tis e xecut ed. this ma croe v en tis not Ia tched
(not remembered). The event will reoccur during the
next dispatch.

As soon as the handler validates the lex level, in the
resolve ram, corresponding to the dispatching lex
level, the macro event will not occur again.
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TOS_OPTIMIZATION_ERROR
To optimize the execution speed or some instructions
the sequencer hardware attempts to keep a copy of the
current top of the control stack. During the dispatch
cycle of some macro instructions that require a memory
read, based on the address in the TOS, the
microsequencer will start the memory read. If the
micro- sequencer does not have a copy or the current
TOS, and the dispatching instruction requires this
optimization, this macro event will occur. The
handler for this event will copy the current TOS from
the CSA and write it into the TOS_LATCH on the
microsequencer. Once the handler validates the
TOS_LATCH th e macro event wi 11 not reoc cur. (NOTE: If
the TOS_LATCH is validated during a dispatching
instruction this macro-event will NOT occur. )

IBUFF_EMPTY

The conditions necessary for this macro event to occur
are tested during each dispatch. If the macro event
occurs, but the handler for a higher priority macro
event is executed, this macro event is not latched
(not remembered). The event will reoccur during the
next dispatch.

The microsequencer keeps a copy of the currently
dispatching word from program segment memory. If the
dispatching instruction is the eighth instruction in
the bu-Ffer, and the instruction is not a call. exit,
case, or any unconditional branch, this macro event
will occur (The instructions which do not cause an
ibuff_empty macro event, when they are the eighth in
the buffer, are marked by the IBUFF_FILL bit out of
the instruction decode. See the Instruction Decoder
section. ) During the same cycle the hardware will
automatically start a memory read at address (PC + 1)
in program memory. The handler for the event should
be one instruction which conditionally loads the read
data from memory into the IBUFF (instruction buffer),
with the IBUFF EMPTY macro event disabled. 9XTh'e'

;,condi.t·ion~~f"is.""that~mo:"other-:tmac'r,o ·'eve.t ~is'oc'c'U'i-. 'g:
\;l;W':':~i'P"".t~ci~i"~if'o~,:,t\w"'·fl'i:·....~~.+"" ·itf'k.·~1;'Jt.(:·:tb.il'ftf~;=l'oicf~··:'~i i1;;',
.' _,0:~i;:'!a'l1>~;aC{o:f,1~n"S'lt:i,:t'c"t1'~ri'~~':-tha-'t'~"'wi11 e'not ~ti~e

~ •. ~"''10- -. _~ •.•,"':4-.- ': -;rr"'.•.• ", '";Y-. I' Ii . _'Ilspa checf,,'i'ft:a' ma'c'T'o-~even'toccurs·,.)
~~.~ ••..••.~~~_ ..,.~, -,.!, ,,J., -;••;.....~ ••,.. • ,.. • ...c. ~ ,;. _ .J

2.4. Micro Events

Micro events which are early cause the execution or the current
instruction to be stopped. The next micro-instruction executed
NOP, and the rollowing micro-instruction is the first
instruction of the appropriate event handler (Each event maps
unique address>. Events which are late allow the current

micro-
is a

micro-
to a

micro-
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instruction to complete and inhibit the completion OT the next micro-
instruction. The instruction Tollowing the inhibited micro-
instruction is the Tirst micro-instruction oT the event handler. (In
either case the micro-PC that is pushed onto the stack is the PC oT
the micro-instruction that was inhibited or stopped.) IT both early
and late micro events happen during a micro cycle, the micro
instruction is not completed. And the event (early or late) of the
highest priority determines which handler is executed.

When an event is taken the handler address is the address
corresponding to the highest priority event that is currently pending.
The event bit is cleared Tor the event that is taken, and ALL other
non-persistent events are cleared. (An event is also cleared iT the
event is tested. )

The events can be cleared Tor one OT two possible reasons, either A)
the event will occur again because the micro-instruction that caused
the event to occur will execute again or B) A higher priority event
detects an error that makes the other micro events insigniTicant (such
as class error). (Since privacy_check is an early event, the privacy
check will be perTormed again when the micro-code returns Trom the
handler. The type board allows the microcode to disable this check
Tor "one check cycle" in the handler. )

During a context switch only the persistent memory events must be
saved. Th es e events, pag e_cross ing and pag e_fau It, ar e par t oT th e
MAR and will be saved during the context switch. The other persistent
events, the sysbus events, are independent oT the currently running
task and do not have to be saved.

Most oT the events are testable as conditions and are maskable. The
masks for a micro event can be one of two types; A)the mask bit is
kept in a register and is readable and writeable by microcode (marked
with a "X" in the table below), or B) the mask bit is specified
(somehow, see the spec Tor the speciTic board in question) by the
microcode during every micro-instruction (marked with a "M" in the
table below). IT an action occurs that causes a micro event which is
masked ofT, the micro event will not occur until the mask is change'd.
(IT the micro event is non-persistant it will clear iT another
unmasked event occurs Tirst. The micro event will also clear iT it is
tested beTore th e mas k is chang ed. )

,Some oT the events are specifiable. These events are normally
disabled and are only enabled when specifically selected by the
microcode. (If a speciTiable event is not selected it is not
remembered, but it is testable. )
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prior- persis- micro
cond ElL mask specify ity tant addr

MEMORY MONITOR
cache_miss
ECC error
page_crossing

TYPE CHECK ERRORS
class error X
binary_eq_privacy_check X
binary_op_privacy_check X
[tosJ_op_privacy_check X
[tos-1J_op-privacy_check X

VALUE
none,

SEQUENCER
field_number_error

FIU
none

CSA_CONTROL
none

OTHERS
micro_interrupt (diag>

SYSBUS
new-packet
new_status

X 1
2
9 x

E
E
E

M
X
X

x

X

E
E
E
E
E

E
E
E
E
E

4
5
6
7
8

X E E 3

x L xx 10

x
X

L
L

x
X

11
12

x
X

(Highest priority is one)

Tab 1e 2-4: Micro Events
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Some examples of micro events and how they are handled.

10 11
ReadO

12
DataO

ECC
handler

12 I3??
return

1-----1-----1----- *** :-----J-----:-------:-----;-----:
V

ECC error,
privacy_check.

V
Privacy event
has been cleared.

V
(Privacy event
may occur. )

<*** A microcode invisible one cycle NOP occurs. )

10 11 cache_miss
handler return 11

privacy
handler:-----:----- *** :-------1,,

1-------1-----1 *** 1-------1--

V
privacy_check,
c a c h e _m i s s .

V
privacy is
dropped.

V
11 is re-
executed.
Privacy_check
micro occurs
again.

V
RDR is cor r-e ct.

The microsequencer has a one bit microcode field which specifies
during each instruction if micro events are enabled 01' disabled. If
micro events are disabled during a micro-instruction, no early micro
event will occur. If events are enab~ed during- the following
instruction, and the micro event is persistent, the early event will
occur during that micro-cycle. (If this is undesirable, the micro
event can be cleared, by testing it, before the micro events are
enabled again.) If a non-persistent micro event occurs while

.interrupts are disabled, it is NOT remembered.

If a late micro event occurs and the following micro-instruction has
events disabled, the micro event will be remembered and occur as soon
as micro events are enabled again. If a late micro event occurs
during a micro-cycle when events are disabled, it will be forgotten iT
it is non-persistant.
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Some timing examples Tor disabled micro events.

11 12
events
disabled

12

NOP handler return:----------:------ :----------:----------1
I I
I I

I
I

1--------:-------:
V

First cycle oT handler.
V

The microsequencer calculates the address
oT the handler, aT the highest priority
pending micro event (either early or late).

V
This micro-cycle does NOT complete, but may add more
early and/or late micro events to the current outstanding
events.

V
Events are disabled and a persistant early micro event occurs.

11 12
events
disabled

13 14

:----------1----------:----------:----------:
V

Sequencer occurs normally.
V

Events are disabled and a late non-persistant
micro event occurs. It is Torgotten.

11 12
events
disabled

13

NOP handler return
,:----------J----------I----------:----------I

I I I
I I I

I
I

I
I

:-------1-------:
V

Sequencer calculates the handler address.
V

Events are disabled. the late micro is remembered.
V

A late micro event occurs.
(The example is true oT both persistant and non-persistant events. )
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The resolve circuit has~x:~:n 52 bit register~ corresponding to
each of the 16 lex levels. 32 bits of the register are stack name
bits (segment number and virtual processor ID) and 20 bits are an
offset. There are also 16 validity bits, one corresponding to each
lex level, which indicates if the contents o-r each register is valid.
The resolve circuit also contains a current lex level register. (The
architecture and some documents, including this one, refer to some o-r
the lex level ram registers by specific names. The lex level zero
register is imports, the lex level one register is the outer_-rrame.
The register pointed to by the current lex level is the inner_-rrame.
The register at the current lex minus one is the enclosing -rrame
(unless the lex level is one, then the inner_frame and enclosing -rrame
are the same>. )

2.5. Resolve Circuit

During the dispatch of a macro-instruction that requires the
resolution o-r a lex level. delta, the resolve circuit will calculate
the control stack address i-r the lex level is valid. If the lex level
is invalid a macro event will be generated. The control stack address
name is the name portion of the register specified by the lex level
«bits 3:6) of the decoding instruction). The of-rset is the sum of
the offset portion of the specified register and bits (7:15) of the
decoding instruction (sign extended).

Microcode has the capabilities to both read and write registers in the
resolve circuit. The (LEX LEVEL ADDRESS) -rield o-r the microcode
speci-ries how the resolve registers are addressed. The sources for
the address are current lex register, incoming lex level (bits
(124: 127) o-r the sequencer bus minus 1), loop counter, zero, one.
(The addresses can be used -ror either reads or writes. )

Microcode can also change the validity bits. In general validity bits
are addressed at the same time the resolve registers are. During any
cycle the addressed validity bit can be set, cleared, remain
unchanged, or all the validity bits at a greater lex level can be
cleared. (See the microword speci-rication) The validity bits can also
be cleared all at once, independent o-r the lex level address (see the
random -rield o-r the microword specification).

The resolve circuit is also used to calculate the control or type
addresses that the sequencer starts during some dispatches (see the

,dispatch section).

2.6. Tos_Latch

The (TOS LATCH) on the microsequencer is used to latch 84 bits of the
sequencer bus. If during the execution of a macro-instruction the new
TOS (the control stack) is on the VAL and TYPE busses, the micro code
should read the value onto the sequencer bus and latch it into the
(TOS_LATCH). The (TOS_LATCH) also has an associated validity bit.
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During each successful dispatch the bit is cleared. The bit is ~et
when the latch is loaded. Some instructions will cause a macro event
if the validity bit is not set. The contents of the TOS_LATCH is used
during the calculation of some of the memory operations that the
sequencer starts during the dispatch of some macro-instructions. (see
tne dispatch section)

2.7. Restartab IeState

For each executing macro-instruction the microsequencer remembers if
the instruction is restartable and if restartable, the correct
macro_pc to use. If a micro event handler checks the restartable
state before a context switch, the amount of state that needs to be
saved can be minimized. (The restartable state is testable as
conditions on the sequencer.) There are two bits of restartable
state. The restartable bit (first bit) indicates if the macro-
instruction is restartable or not restartable. If the instruction is
restartable, the address bit (second bit) indicates if the instruction
should be restarted at the current macro_pc or at the current macro_pc
minus one. During the dispatch of each macro-instruction the
restartable bit is set restartable. During a dispatch that causes a
macro event the second bit is set to at macro pc. (During a bad hint
both bits are restored to their previous value.) During. any micro-
instruction the microcode can set or reset each state bit
ind ep end ent 1y.

(Example: If the cache miss handler checks the state of these bits it
can detect the case where a cache_miss is taken during a macro event.
The bit s w 0 u 1d be set tor est art a b 1e , at cur r en t ma c r- 0 _p C . By
detecting this case, the saving of unnecessary micro- state is
avoided. )

2. 8. Mi cr o Stac k

The microsequencer maintains a 15 word deep LIFO stack of micro
addresses. Micro addresses are automatically pushed and popped as a
result of some of the branches (call, return), and during events. The
microcode can also push FIU_DATA(48:63) onto the stack, clear the
stack, read the top item, or pop an item off of the stack. (see the
random field) (The micro stack hardware has no capabilities for

'overflow or underflow detection. The microcode must manage the stack
usage to ensure that neither microcode action, or event actions will
cause a underflow or overflow of the stack. )

Every time any item is pushed onto the stack the latched condition is
also pushed onto the stack. This bit of the micro stack is selectable
as a condition. This facility can be useful in the following
circumstances:

1. If a micro event handler uses the condition latch, it
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doesn't need to execute any microcode to save the
previously latched condition. The condition is saved on
the micro-stack. To restore the condition the return~
instruction should latch the condition "saved bit from the'
micro-stack". (Notice the save and restore take no extra -
micro- cycles. )

2. During a context switch, the latched condition can be saved
on the micro-stack and restored from the micro-stack, Just.
as in the above example.

3. A subprogram call that uses the condition latch, but
shouldn't destroy its value can also restore the condition.

NOTE: Many SUbprograms will not want to restore the condition latch
upon return. If a subprogram latches a condition (and doesn't restore
the latch), it actually returns a boolean to the caller.

2.9. Field Number Checker

The microsequencer has two comparators for checking field numbers
during the execution of the field ops. Each cause the same micro
event; field number error. The variant field check compares bits
(80:88) of the sequencer bus to bits (7:15) of the current
instruction. The fixed field check compares bits (81:88) of the
sequencer bus to bits (8:15) of the current instruction. In either
case an unequal comparison generates the micro event.

2.10. Instruction Decoder

The instruction decode unit on the microsequencer outputs 23 bits of
information about the instruction in the IBUFF (instruction buffer),
pointed to by the macro pc. This information is divided into the
following five fields:

1. MEMORY_REF A 3 bit field that indicates the dispatch of
this instruction may need to start one of seven possible
memory references. (The memory references that may be
started are enumerated in dispatch section. )

2. CSA_VALID A 3 bit field that indicates the number of
entries, from 0 to 7, that must be present in the CSA
before the instruction can successfully execute. (If the
CSA does not have at least that many entries valid a macro
event wi 11 oc cur-. See th e macro_event sec t ion. )

3. CSA_FREE A 2 bit field that indicates the number of
locations in the CSA, from 0 to 3, that must be free before
the instruction can successfully execute. (If the CSA does
not have at least that many free locations a macro event
will occur. See the macro_event section. )
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4. MICRO_ADDR A 14 bit -Held which is the starting micro-
address Tor the microcode that executes the decoding macro-
instruction.

5. IBUFF_FILL A 1 bit Tield which indicates iT current
instruction does not need a IBUFF_empty macro event to
occur iT the macro_pc mod 8, is 7. (For examp Ie: cal L
exit, unconditional Jump, etc.) (A minor optimization used
by the IBUFF _empty macro event hardware. )

HARDWARE NOTE: The decocie rams are organized into two banks. The top
bank oT rams (lK x 23) address Trom the top ten bits oT the decoding
instruction. The bottom bank oT rams (lK x 23) address from the
bottom ten bits of the decoding instruction. IT the top six bits of
the instruction are zero the bottom bank's output is enabled otherwise
the top bank is enabled.

Information is also decoded about the currently executing instruction.
Another set of decode rams examines the currently executing
instruction and decodes its break class. The output is 4 bits of
break_class information. The instruction can belong to one (and only

,one) of 15 break_classes or it can belong to no break_class. (If the
\~ instruction belongs to a break_class and the break class is currently
~ enabled, or the all break is enabled, a break class macro. will occur

~ .-!uring a dispatch. ~ - ~-.-.l1c.f'...L II'\., ~~ -G'f.~~ ~ -=I>~~

0?l( ~ t\ cu.v.- {tA. ~~ <A.)J\~ V\l-~J 2.11. RI000 Processor conditions l.'t. . () ....A ••• _ ,t-
/ ~/ ~~ \."-l<.. ~aJ(.,L, \'''' '\K ,~~,

~ ~ The RI000 hardware has 128 testable conditions on the processor. Thes : conditions come from all of the boards in the processor, except for
1(f.;J the memory boards. During each cycle, the hardware selects on of the
~; ~ ~ 128 conditions for testing. This condition can be latched on the
, ) Amicrosequencer and/or used to resolve a conditional branch or

~ ~~conditional memory start. (IT some conditions are selected they will
,../~also clear the corresponding micro event. This is true oT only a few

'-t- <J conditions. See the condition section oT each spec for details.) The
~ ~ microsequencer contains a 7 bit microcode field which selects the~ 1~ condition during each cycle.
~6~ Each board in the RI000 produces some multiple oT 8 conditions. The

~~ ~ 128 conditions are divided between the hardware as shown in the-:!- .following table.

~~ j~ ~he Combo conditions are special combinations between the value board
~ s(~nd the type board. Combo condition XXX is equal to the logical NAND~ l'-/" of c ond iti on OOOOXXX and 0011 XXX.

~ rJThe conditions can be divided into three groups; L - late, ML - medium
I'i '!5.~"'late,and E - early. The early conditons can be used as conditions

\(' ,,-'Y -:; 7- Tor con d it ion a 1 bra n ch types, and don' t r equi rea h in t. The me diu m
.~ late and late conditions require hints if used with conditional branch

(S' t su,;-'7'
,':'l' ,,"
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BOARD CONDITION
NUMBER

Value OOOOXXX
0001XXX
0010XXX

Type 0011XXX
0100XXX
0101XXX
0110XXX
0111XXX

Microsequencer 1000XXX
1001XXX
1010XXX

Fiu (&Mem_M) 1011XXX
1100XXX

Sysbus 1101XXX
1110XXX

Combos 1111XXX

Tab Le 2-5: R1000 Condition Partioning

tYpes. On Iy the ear 1y
conditions Tor conditional
every condition can be
latch.

or medium late conditions can be used as
memory references. And believe it or not,
latched in the microsequencer's condition

3. Some Timing Examples

This section illustrates some timing examples Tor branch types and
events. (Instructions that do not complete are equivalent to a null
micro-instruction. Machine cycles that the hardware inserts, but no
micro-instruction is executed are indicated as nulls. )

Each microcycle the micro sequencer decides the Tlow OT control based
on the following priorities (highest to lowest): .

1. IT the last instruction was a hint (and there were no macro
or micro events), check for correctness. If the hint was
wrong stop actions started by the wrong hint (such as
dispatch memory starts), stop the current instruction from
continuing, and calculate the new micro-address. (NOTE:
Bad hints only stop memory operations if the branch type
wa sad ispa t ch. )

2. If the last instruction was a bad hint and there were macro
events, micro events, or both, stop actions started by the
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3.

hint (such as memory starts). Execute a null micro-
instruction and calculate the correct address (forgetting
the events). Then follow the appropriate set of rules that
follow for the comb ination of events that occurred. ~ V'#'-~.

~\tW\~d dJ.;.Al" ~oUoj ~~~.)-
If there are any early micro events, stop the instruction ~ •
from completing, and push the current micro-address onto
the stack. During the next cycle execute a null and
calculate the micro address of the micro event handler.
The next micro-instruction is the first instruction of the
handler.

4. If the instruction is a dispatch and there are both
micro events and early macro events, complete
instruction without starting the dispatch. During the
cycle execute a null, push the macro handler address
the stack and calculate the micro address of the
event handler. The next micro-instruction is the
instruction of the micro event handler.

late
the

next
onto

micro
first

5. If the instruction is a dispatch and there are both late
micro events and only lat~ macro events, complete the
instruction without starting the dispatch. If the macro
event needs a memory operation, start it (only on the
IBUFF_empty macro event). During the next cycle execute a
null micro-instruction and calculate the address of the
macro event handler. During the following cycle execute a
null, push the address of the macro event handler onto the
stack, and calculate the address of the micro event
handler. The following micro-instruction is the first
micro-instruction of the micro event handler.

6. If there are only late micro events, complete the current
micro-instruction (including a dispatch if part of the
instruction). During the next cycle execute a null and
push the "current micro-address" (the micro-address that
would be executing if no event had occured) onto the stack.
The next micro-instruction is the first instruction of the
micro event handler.

7. If the instruction is a dispatch and there are any early
macro events, the next micro-instruction will be the first
micro-instruction of the macro event handler.

8. If the instruction is a dispatch and there are only late
macro events, the next instruction is a null. The
following micro-instruction will be the first instruction
of the macro event handler.

9. If the instruction does not fall into one of the above
categories it has the best chance of working properly, and
probably does Just what you expect.
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Example 1: "A bad hint on a usually return"

usually
return nu 11I-------:-------~-------:

I
I

V
uPC+l -

V
push item
back onto stack

v
pop stack
bad hint
uPC

Example 2: "A late micro and a early macro"

dispatch null
micro
handler

macro
return handler :---------:--

I
I

:--------:--------:--------:

19

dispatch
.(same):-------:-------:

V
First micro-instruction
of the micro handler.

V
Push the micro address of
the macro event handler
onto the stack.

V
A late micro and an early macro event occur.
The dispatch doesn't start because of the late
(T his mea n s the ma crap c doe sn 't chan 9 e. )
If the macro event requires a memory operation

Rational Machines proprietary document

V
The dispatch
-Finally occurs.

V
First instruction
of the macro
event handler.

macro event.

it will start.
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Example 3: "A incorrect hint of rarely dispatch (no events)"

rarely
dispatch null:--------:--------1-------1

V
First micro-instruction of the dispatched macro.

V
Dispatch (ie., inc macro pc, maybe start memory)
Next micro-address is the output of the decode rams.

V
The hint is wrong (the dispatch is not done yet).
(No events occur)

Example 4: "Two persistant micro events occur at once"

IO
cache_miss

null handler
sys_msg

return null handler return IO:------ :------1-------1 ...
V

First instr.
of the cache
mi ss hand Ier.

1------:------:-------:
I I
I I

I
I

::------:---:

V
Hardware calculates
the micro-address
of the event handler.
Push IO on the stack.

V
First instr.
of the sys_
msg_received
event handler.

V
Hardware calculates
the micro-address of
the event handler.

V
Micro-instruction 10, starts
execution, a cache_miss event
(early) and a sys_msg_received
event (late) both occur.
The instruction does not
complete.

V
The sys_msg_rec.
hand Ier returns.

V
The cache_miss
handler returns.
(Micro events are
disabled. )

V
The original in-
terrupted micro-
instructon starts
execution again.
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Example 5:
"A incorrect hint of rarely dispatch with a late macro event"

rarely
dispatch null null

macro
handler dispatch:--------:

I
I

I
I

I
I

I
I

I
I

I
I

:--------:--------:--------:--------:
First micro-
instruction of
the macro
handler.

V
Hardware calculates
the micro-address of
the macro handler.

V
Return from the macro
handler by dispatching.

V
Bad hint detected. Since there is a macro event,
dispatch doesn't occur. (Depending on the macro,
operation may start.

the
a memory

V
The rarely dispatch is bad.
(The microcode branches. )

4. Microword Specifications

BRANCH ADDRESS (14 bits)

14 bits The value of this field is the absolute branch
address.

LATCH (1 bit)
The microsequencer contains a one bit latch whose input is the

currently selected condition. During each micro-instruction a new
value can be latched or the currently latched condition can be

.remembered.

o
1

Latch the selected condition.
Don't change the value of the condition latch.
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BRANCH TYPE (4 bits)

brt
brf
br
cont
callt
calIf
call
returnt
returnf
return
dispt
dispf
disp
case

push

BRANCH TIMING (2 bits)

22

conditional branch (branch if true)
conditional branch (branch if false)
unconditional branch
continue (PC + 1)
conditional call (call if true)
conditional call (call if false)
unconditional call
conditional return (return if true)
conditional return (return if false)
unconditional return
conditional dispatch (dispatch if true)
conditional dispatch (dispatch if false)
unconditional dispatch
Jump to the branch address plus the 14 lsb
bits of the FlU_DATA from the last cycle
same as the case, except PC + 1 is pushed
onto the stack
push the branch address onto the stack

If a conditional branch type is selected, this field indicates
which condition is used as test condition. (The translator default
should be early condition. )

EARLY CONDITION
condition.

Test the currently selected early

LATCHED CONDITION -- Use the output of the latch.

HINT USUALLY -- Take the requested conditional branch.
During the next cycle the hardware will test
the outcome of the previous test condition
and "undo" the branch type if incorrect.

HINT RARELY -- Do not take the requested conditional
branch. During the next cycle the hardware
will test the outcome of the previous test
condition and take the branch type if
incorrect.
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PROCESSOR_CONDITIONS (7 bits)

XXXXXXX This field selects the currently tested processor condition.

(See the function description oT conditions for a detailed
description of how conditions work. See the condition
section in microcode considerations Tor the sequencer
generated conditions. )

LEX LEVEL VALIDITY CONTROL (2 bits)

During any microcycle the validity bits for the resolve circuitry
can be set or cleared in the following manner. (The lex_level used
is specified in the LEX LEVEL ADDRESS field. )

CLEAR_LL -- Clear the specified lex level.

SET_LL -- Set the specified lex level.

CLEAR> LL -- Clear all lex levels greater than the
specified lex level.

NOP -- Don't change any of the validity bits.

LEX LEVEL ADDRESS (3 bits)

This field selects the address that is used to address the resolve
ram.

CURRENT_LEX -- Use the current lex level.

INCOMING_LEX -- Use the value on bits (124: 127) of the
sequencer bus minus one.

LOOP_COUNTER -- Use the 4 lsb of the loop counter.

o Address the import Trame.

1 Address the outer frame.
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MICRO EVENT CONTROL (1 bit)

When a micro-instruction disables micro events. no micro events can
occur between the previous instruction and the currently executing
instruction. (This disabling includes the page_crossing event. )
(See the micro event section. )

NOP

MACRO EVENT CONTROL (2 bit)

When a micro-instruction disables macro events. no macro event can
occur between th previous instruction and the currently executing
instruction.

???????

???????

NOP -- Allow all macro events that aren't masked.

INTERNAL SEGUENCER READS (3 bits)

This field determines what data is driven onto the sequencer bus.
(The bit format. and the number o~ bits per field are indicated
inth e rig h t ma r gin. for so m e 0 f the in tern a 1 rea ds. )

VAL_TYPE BUS -- Read the val and type busses.
should be the assembler de~ault. )

(This

RESOLVE_OUTPUT
resolve -~rame.number 0 23 24
resolve_frame. proc 24 31 8
*** 32 36 5
resolve -offset 37 56 20
*** 57 63 7
*** 64 71 8
macro-pc. segment 72 95 24
*** 96 108 13
macro-pc. offset 109 120 12
ma cr0-p c. in de x 121 123 3
current -lex level 124 127 4
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CONTROL_PRED
current_name. number
current_name. proc
***control_pred
******macro_pc. segment
***
macroJc. offset
ma cr 0 _p c. i n d e x
current_lex_level

CONTROL_TOP
current name. number
current_name. proc
***control_top
******macro_pc. segment
***
macroJc. offset
ma c r 0J c. in de x
current_lex_level

NEW_TOP
current_name. number
current_name. proc
***new_top
***
***
macroJc. segment
***macro_pc. offset
ma cr 0J c. in de x
current_lex_level

o
24
32
37
57
64
72
96

109
121
124

o
24
32
37
57
64
72
96

109
121
124

o
24
32
37
57
64
72
96

109
121
124

CURRENT_INSTRUCTION
macro_mask
micro_mask
break_mask
number _in_CSA
number_in_micro stack
current_instruction 112

Rational Machines proprietary document Draft 2

23
31
36
56
63
71
95

108
120
123
127

23
31
36
56
63
71
95

108
120
123
127

23
31
36
56
63
71
95

108
120
123
127

127

25

24
8
5

20
7
8

24
13
12
3
4

24
8
5

20
7
8

24
13
12
3
4

24
8
5

20
7
8

24
13
12
3
4

16
4

16
4
4

16
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DECODING_INSTRUCTION
macro_mas k
mi cro_mas k
break_mask
number _in_CSA
number_in_micro stack
decoding_instruction 112 127

16
4

16
4
4

16

TOP_OF_MICRO_STACK
macro_mas k
micro_mask
break_mask
number _in_CSA
number_in_micro stack
top_of_micro_stack 112 127

16
4

16
4
4

16

RANDOM FIELD (7 bits)
The random field controls the following specified sequencer

operations. The sequencer hardware will allow 128 combinations of
these operations to be programmed into a prom.

ADDR - control _pred
AD DR - resolve output
AD DR - control _top
AD DR - macro _pc
ADDR - return _pc

macro_pc := value on sequencer bus
write return_pc
macro-pc := return_pc
Conditional (load IBUFF & macro_PC ADDR )

in c ma cr 0 -p c
dec macro_pc

loop_counter := fiu_bus(60:63)
clear loop_counter
inc loop_counter
dec loop_counter

write break_mask
write micro_mask
write macro_mask

control_top := resolve_output
control_top := sequencer_bus (37: 56)
control_pred resolve_output
control_pred := fiu_bus (37: 56)
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write current_name
write current_instruction

push micro_stack (with FIU(48:63»
pop micro_stack
clear micro_stack

fiu_data
fiu_data

top_of_micro_stack
current_instruction

restartable @PC
restartable @(PC-l)
not_restartable

write resolve circuit, name half
write resolve circuit, offset half
validate_TOS_optimizer
load_IBUFF
invalidate_all_lex_levels
take micro event

interrupt diagnostic processor

check fixed field number
check variant rield number

TOTAL NUMBER OF MICROBITS = 47.

5. Mi croc od e Cons iderat ions

The following subsections detail microcode constraints and
restrictions that are necessary for proper hardware operation.
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5.1. Conditions

28

The following conditions are selectable on the microsequencer:

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111

1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111

1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111

macro_restartable
restartable_@(PC-1)
valid_lex(loop_counter)
loop_counter_zero
TOS_LATCH_valid
saved_Iatched_cond
previously_latched_cond
*_entries_in_stack_zero

(E)
(E)

(E)
(E)

(L)
(E)
(E)
(E)

ME_CSA_underflow
ME_CSA_over f Iow
ME_reso Ive_ref
ME_TOS_opt_error
ME_dispatch
ME_break_class
ME_ibufr_empty
uE_field_number_error

(L)

(L)

(L)

(L)

(L)

(L)

(L)

(ML)

spare
spare
spare
spare
spare
spare
spare
spare

macro_restartable
This condition
instruction can
starting PCL

is true if the
be restarted (See next

current macro
condition for

restartable_@(PC-l)
If "macro_restartable" is true, this condition is true
if the task should be restarted after the macro pc has
been decremented. (If false the task should be
restarted without changing the macro pc. )

valid_lex(loop_counter)
This condition is true if the lex level speciried by
the least signiricant rour bits or the loop counter,
is valid.

loop_counter_zero
This condition is true ir the value Or the loop
counter is zero.
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TOS_LATCH_valid This condition is true if the tos_latch is valid, or
is currently being validated.

saved latched_cond
This condition is true if the "saved latched bit" on
the micros stack is currently one.

previously_latched_cond
This condition is true if the previously latched
condition is true.

#_entries_in_stack_zero
This condition is true if the micro stack is empty.

ME CSA_underflow
This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a CSA_underflow macro event.

ME_CSA_overflow This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a CSA_overflow macro event.

ME_resolve_ref This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a resolve_ref macro event.

ME_TOS_opt_error
This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a TOS_opt_error macro event.

ME_dispatch This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a dispatch macro event.

ME_break_class This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a break_class macro event.

ME_ibuff_empty This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a ibuff_empty macro event.

uE_field_number_error
This condition is true if the dispatching of the
decoding instruction, with the macro mask enabled,
would cause a field_number_error macro event.
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5.2. Context Switch

5.3. Microcode Restrictions

There are certain combinations of microcoqe fields that are illegal or
at a minimum produce unexpected side effects.

5. 3. 1. Branc hes

Because a dispatch may start
decoding macro-instruction), the
requests and branches are illegal:

a memory reference (depending on the
following combinations of memory

1. An unc ond itiona 1 d ispatc h and any memory referenc e.

2. A conditional dispatch on any early condition and any
memory reference.

3. A conditional dispatch with a "usually" hint, and any
memory reference.

4. A conditional dispatch, with a "rarely" hint,
unconditional memory reference.

.and a

The above restrictions should allow
conditional memory reference and
microcode:

only a single combination of
conditional dispatch as legal

1. A conditional dispatch, with a "rarely" hint,
conditional memory reference.

and a

NOTE: A usually dispatch may start memory. IT the hint is wrong the
memory cycle will be aborted, and the contents oT the MAR and the RDR
are destroyed.

The case and case_call branch types use the previous value on the
FlU_DATA bus as part oT the branch address. The microcoder must
disable all events (macro and micro) during the micro-instruction that
uses these branch types to ensure that the branch address is correct.

o __ ~__ • oC-..!" ~-.. tl"'!:--;Jt,:~r'V--:.t~~:"" .:.::._...;'(~ ... :,.;.:,:.~.: "J:<><'-': •.: .•. ..,~ ..••... :<f>~•. '~" .j' ;;;. : • "' ....•..

'.~urin_ '••X~~_~frns-"';-Trom'~~event··-h-a"'n(fl,e:..~,events (both' micro ·and~macr.o) "
,.··should ·be--disabled .to .allow the ·:stack to remain at·a reasonablesize ....,.1.,
~ .' ~ 'co r.> ";" .r'\('.~.;)~ ...;~ ..~;'i}{•..; ... "$'~.:.;~~

5.3.2. Sequencer Address Enab les

If the microsequencer is driving the address bus with control_pred,
resolve_output, or control_top the internal sequencer read micro field
should be reading the same register iT any are read. (ie., the
combination SEGUENCER_BUS := CONTROL_PRED and AD DR := CONTROL_TOP is
illegal),
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5.3.3. CYA

Th e are a few oth er comb inat ions, that are not listed here, that
produce undesired side effects. The reader is warned not to use them.
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1

1. Summary

The R1QOO me~ory system consists of from two to four memory
beards and c~ntralized control logic called th~ memory monitor. each
me~ory boar~ has a ~apacity of t~o megabytes, implemented as four
a s s o c i a t i ve "s·~ts" of 512 ;)ar;'2s. =ach board consists of a set
associa~iva ta; st~re portion (where associative address tran~lation
anj oCC?S3 control information is stored) and a parallel data array
(~nar~ data is stcred).

(4 boards ~ 4 sats * 512 pages * 1k Sytes = 8 Mbyte maximum storage)

T~e memory boards contain all the ne=essary logic to access,
update, and meintain up to 5ixteen associative sets in parallel. The
control !ogic which need not be duplicated on each memory board is
im;lemented by the memory m~nitor. This logic resides on the FlU
board except for th·? ::~C': Checker/generator and the "du"lmy" ~ead Data
~e;i5ter which are imp12ment~d on the $ysbus Interface board.

The mem0ry monitor con~2ins the ~icrocode rams for t~9 ma~ory
cJntrol f1~lds, C~P12S Of v2ri~u3 memory ~tat? registers (eliminating
tna neej for e2ch m9mory b02rd te drive them out duri~; state save),
and t~~ memory system control logic. The memory monitor also contains
circuitry ~hich t?5!5 ~ll Control Stack Ad~resses to determine whether
thay point in~o t~e Control Stack ~cce12rator. If such a "CSA hit"
occurs, the memory o~eration is redirected to the CS~ (on the Value
ana Type boards). =in3l1y, there is another address monitoring
m ec h e n i s ,n c e Ll sc the "5cavenger mo n i t o r "> urh i c r, tests all collection
addresses ana tr3Cs if the addressed segm~nt is potentially being
;ar~a~e collected.

2. ~unction3l Descriptlon

The functi~nal description of the memory monitor begins by
descriDing its role in managing the three registers defined in the
mamory interface: the Memory Address Register, the Read Data
Re;ister, and the Write D2ta Register. This section then describes
the memory system·s basic operations, followed by an overview of the
memory man;ement operations. This functional description concludes
with a discussion of the address monitoring circuits: the Control
Stack ~ccelerator Monitor and the Scavenger Monitor.

2.1. Address Bus

The ADJ~~SS BUS is 9 unidirectional bus for routing address
information. It is split into two portions, the least significant 64
bits tr2n5~2r the lo~i:31 bit address :uhile the most significant 3
b1tS transfer th~ S~2ce specification. Th~ two portion5 are
CJntrolled s~p3r3tely.
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Memory Monitor Specification Functional Description 2

The logical bit address portion is identical to the least
signific3nt 54 bits of the MAR (see the desriptions of those fields in
the next section).

The driver of the address bus is determined by the memory monitor
using the A2DRESS_3US_SOURC~ ~icrooraer of the FlU boardJ and the
MAR_CONTROL ~icrocrder of the ~e~ory monitor. When the
AJJR~SS_BJS_SOURC~ specifies S~QU~NC~~, both portions of the AOOq~SS
3US ara driven by the sequencer board. Otherwise, the space portion
~s driven by the ~emory monitJr, while the address pcrtion is driven
by the selected source.

When the MA~_CONT~OL ~icroorder specifies RESTaRE_M~R or
RESTOR~_MAR W1T~ ~~~R~Srl, the the space portion is sourced from the
least si~nificant 3 bits cf the TYPE bus (along with the state flags).
The S~~U~NC~R must not be soecif1ed 2S ADDRESS BUS source while
RESTa~E_MAR or RESTOQE_M~R_W1TH_REFRES~ is specified. Also, in
general, the TY~~ 3~S must be specifi~d as T1 BUS source on the FlU
coard.

For LJAJ_M~~ xxx CJ~T~2L mir~crd2rs, the space portion is sourced
fr~~ tn? s~~c~ lit2~31 c~ the memory monitor. FQr I~C M~?, the
pc~tion is drivan fr:~ the currant co~t?nt5 o~ ~AR.
MA~ :)NT~JL ~i:roorjers, tha SJurce o~ the S02ce cortion

SP~C2
~o~ other

of the
AJ0R~SS 3J3 is undefinaa.

2.2. ~em~~y ~ddr2S3 Re;istar

The m~~ory mcnitor contains the only complete copy of the MAR.
Th~5 c~py of the M~~ is the source of the Value and Type busses during
a R~~J_MA? o~eration.

~acn memory beard contains 3 copy of the word address portion of
the M~R, but these can only be read by the diagnostic processor. The
fields of the complete MAR are enumerated below. The least
si~~ificant 67 bits comprise the actual logical address, and are
always loaded fro~ the Address bus. The individual fields on the
Address bus have separate parity bits. The most significant 61 bits
contain sever21 fields, admittably thrown together for the sake of
state save efficiency. These bits are loaded from the TI_BUS on a
R~STORc MAR micro order (The MAR.SPACE field of the ADDRESS bus is
driven from TYP~_5US(61:63) during a RESTORE_MAR by the monitor).

The low order 67 bits of the MAR are al~2Ys loaded from the
address bus. When the rIU is selected as source for the address bus,
the lo~ order 67 bits of the MAK are driven over the address bus to
the memory boards.

If a microevent aborts the cycl~ in which the M~R is loaded, the
MARs on the mem~ry boards ara l02ded, but not the MlR on the monitor.
This inconsistency mus: be resolved by loading the MAR before memory
is st2rted.

R3tio~al ~achines ~r~pri2t3~y doc~ment DR~FT 3 Oece~ber 13, 1982



Memory Monitor S?~cification Function3l Description 3

MEMORY AJD~ESS REG:STEQ
(format for KEA~_MA~ and R~STCRE_MAR microorders)

on the Tl/TY?E bus:+--------------t--------------+-------+--+----------+-------+-----+
R2frsh I~tvl I Refrsh Windw I State I IFlU lengthl spare ISpacel

I (16) * I (16) * I (9) '**' (6) I (12) I (3) It--------------t--------------+-------+--·----------t-------+-----+
I.J 15 16 31 32 39 40 43 48 49 60 61 63

on the VI/V~LU~ bus and le2st si;nificant 64 bits of the ADDRESS bus:+---------------------+-------t---------------t---------+---------+
S?~m9nt Nu~b2r V~i~ Page Number Word Bit

j (24) I (3) I (19) I (6) I en I+---------------------t-------t---------------+---------+---------+
I] ? - ? I-) _ .. 31 32 50 51 S6 57 63

~ - Specified o~:y fer R~STOQE_M~R_WITH_QEF~ESrl.
r?turn?d by Q~~J_M~~, i~nored by RESTJRE_MlR.

~* - S~2r~, mus~ be !?ro.

T~? ~~~ in th~ ~2~ory monitor contains a nine-bit STATE field.
Th~se Di:3 are 52ved and res~or2d ~3in] T!_3US(32:4Q); som~ of these
bits 3re set by h3rdw2re and :!e3r2d as a side-effect of test{ng them.
~l: 2re leaded from tne TI bus by the RESTORE_MAR and
~~STC~~_MA~_~:7H_~~=~:Srl microordars. 5riefly, the state flags are:

SC~VE~~~~_T~J? (T:_BUS<32»
~n address has been referenced which is specified to
b? tr2pp~d by the scaven]er monitor. SCAVENGER_TRAP
15 testable in the second cycle followin~ loading of
the ~A~ (until then, the old value remains is
returned). This bit is set in tha MAR during cycle 2
of a mem~ry reference ~h2n the test condition is true,
and ~ill cause a memory exception microevent. The MAR
bit (and the memory exception) is cleared by testing
this bit, but the test condition is only cleared by
reloading the MAR or the scavenger ram contents.
NOTe: if scavenger trap occurs during a write, data is
writte~ to memory. The RDR contains the original
contents of the location; the handler may undo the
write using the contents of the RJR.

CJ~TR~L_AJC~~SS_OUTOF_RAN3E (TI BUS<33»
A Control Stack Address that is greater than the
current Too of Control Stack was referenced. This bit
is ~v?i13ble 3S 3 medium late test condition during
the second cycle followin] the loading of MAR or
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Memory Monitor Specificati~n Functional Description 4

CONTROL TO? (until then, the old value is returned).
Thg value of the ou~of range condition is stored in
the co~resoonding MAR flag bit during cycle 2 of a
memory operation. It will generate a microevent
during cycle 2 of 3 memory operation if the test
c0ndi~i0n is true, or the MAR flag bit ~es already
sst. If t~e start was a write, da.ta are written
unless CQCH~ MISS is also set. The MAR bit (and the
micro~vsnt) 15 cl~ared by testing, but the test
condition is cleared only when MAR or CONTROL TOP is
loaded with an address that is in range.

PA~~_C~OSSINS (TI_BUS<34»
Indicates that an INCREMENT_MAR operation incremented
the word offset portion across a half-page boundary.
This will cause a microevent, whose handler must add
4J96 to th? MAR (4C9~ is 32 words times 128 bits per
word). This bit is set in the cycle follo~ing the
INC_M~R, and cle2r~d when tested.

:::AC ~i::_ /·1I S S (T: 3 U S < :3 5 > )
Th2 ta; o~r~io~ of a lo;ical address did not match
dur~n; 2 l~~ical ~u?ry, no invalid pages exist during
an ?v~i!3b12 query, no pages match the specified st3ck
n?me Jurin; a name query or a lo~ical write was
a~t~~pt0d :0 3 R~lJ_C~LY pa~e or any ~2fer3nce was
att~~~ted to a LO~)!N~ p3;~. The CQCY~_MISS condition
is derivad combinatorially from the last comolated
memory reference. Curing cycle 2 of a memory
ocerati=n tM2 con~ition is updated and latched in the
~~Q (un:il then, the r~sult of the last memory
o?er3tion is re~urn?d). Latching a true value into
th2 C4CH=_M:SS MAR flag will cause a memory exception
~icroevent to occur as soon as microevents are
anabled. T?sting the CACHE_MISS condition clears the
corresponding M~R flag, but the condition is only
chang?d by completing another memory operation
(CACH=_MISS will. only cause a memory exception event
whe~ the MAR flag i3 set).

FILL_MODE (TI_8US<36»
The F!U selected fill mode value is returned in this
bit position. The latched fill mode value is always
returned by READ_M~R. When RESTORE_MAR is specified,
the microcode must explicitly latch the fill mode bit
from the TI bus (see the FlU spec).

<T:_3US<37»
Saves wh?ther th~ last memory start
r~f~r2~C? or a logical reference. This
~~CC error 2vent handler for error
d2t2rminin~ which type of reference

w~s a physical
is used by the

logging and
to use when
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Mamory Monitor Spec~ficati~n Functional Description 5

~riting back the corrected data. Set during cycle 2
of zny START microorder which expects a frame address
in the MAR; cleared during cycle 2 of all other START
microorders.

WRIT= LAST (TI 6US<33»
Saves ~heth~r the last memory start was a read or a
write; this bit turns the START_lAST_COMMAND and
STA~7_!F_!NCOMPlETE microorders into START_READ or
START_WRITE for lo~ical or physical memory query (see
PHYS!CAL_LAST and INCOMPLETE_MEMORY_CYCLE). Set
follo~~ng a ST~~T microorder for logical or physical
~rit?, physical ta; write, name query and LRU query.
Cle2red by a START mi~roorder fer logical or physical
r2ad, physical tag re~d, available query and tag
query. Unmodified by IDLE, CONTINUE,
STAQT_LAST_COMMANJ or ST~RT_IF_INCOMPLETE microorder.
~~IT= L~ST is set or cleared during cycle 1 of a
mamory start, 2nd is testable as a conditions and
r2a~able in the M~R during cycle 2 of the memory
star:.

~~~_MC]:FI=J (TI_3US<39»
In~icat~5 t~at a microev~nt cccurred the cycle
foll~~in; 2~ rNCREM~NT_MAR cperation. Note the MA~
~ill be ~odified during a conditional cont.inue even if
the c~ntinu2 does not occur. This bit must b~ queried
by any event handler which needs to determine the
address which caused the event (such as E~CC or page
faul~). This bit is set only on a microevent, and
cleared when tested.

:N:OMCL=T~_M~MCRY_CYCL~ (TI_3US<40»
:ndi:at85 that a micro?vent has aborted cycle 1 of a
memory cycle; if this bit is set, it turns the
micro~v2nt return micro order (START_IF_INCOMPLETE)
into a START_~EAD or a START_W~ITE for logical or
physical query, depending on the WRITE_LAST and
PHYSICAL_LAST bits. If INCOM?LETc_MEMORY_CYCLE is
set, and a memory cycle is in progress~ a
START_IF_INCOM?LETE is turned into a CONTINUE (this
combinztion will occur when a page fault event occurs
during a CONTINU~). The INCREMENT_MAR_IF_INCOMPLETE
microorder must be specified in the same
microinstruction for the CONTINUE to be properly
initiated. This bit is cleared when a
START_IF_!NCOM?LET= micro order is specified.

spare (T:_5US<41 •• 42>,<49 ••60» these bit is currently not used.

ME~ORY_~XC~?TION
An exce~tion occ~rred during a memory operation. This
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M~mory Monitor Specification Functional Description 6

~ill cause a micrcevent if not masked. This event is
c3used by SCAVENGER_TRAP, CONTROl_ADDRESS_OUTOF_RANGE
or CAC~=_MISS MAR flags being set or becoming set.
The M~MORY_~XCE?TION event handler will query these
bits to distinguish tne type of fault •. This bit does
not ~xist separately and is not returned by the memory
monitor; it is simply the Ox of these MAR flags. It
is testable by the microcode, ~ut is reset only when
all =o~ponant MA~ f1ag5 are not true. Note that, if
the MA~ is restored such that one or more of the
memory excaotion co~ponents becomes set, a memory
exception micro event will result, even though the
testable conditions corre3Ponding to these flags are
not true. As always, testin~ the condition will clear
the MAR flag.

~~MORY_~XCEOT!ON and its components are testable as
mediu~ l3te conditions. MEMORY_EXCEPTION generates a
microevent in cycle 2 of the memory operation which
causej the condition (sa9 the discussion on Memory
0pa~ation5)' or in the cyla following the RESTORE_MAR
~~:~~ caus~d the M~K fl~~ bit(s) to becom~ set. The
component 112;5 are only set in the M~R when MEMORY
~X:~~Tr)N condition is true, and ar? visible in the
MA~ durin; the cycle followin~ that in whic~ MEMORY
EXC~~T:J~ becomes tru? (i.e., the third cycle
following the ~emory start or the third cycle
fcllowin~ the !NC_MA~ which caused the
C~NT~OL_~JS~=SS_OUTCF_R~NGc).

Testir.; a M~MO~Y_=XC~PT:JN component during cycle 2 of
a ~emory operation prev?nts that condition from being
l2tc~ed in th2 MAR, 2nd prevents the MEMORY_EXCEPTION
micr02vant.

2.2.2. Fill Mode (~M) and Length (FlU length) Fields

Th~se fialds are used to save and restore the fill mode (FM) and
operand len;th state of the FlU using TI 3US(36),(43:48),
respectively. The F!U can also load thse fields from micro literals
or from ty~e descriptors. The only memory functions which will change
these field are the RESTORE_MAR microorders (see FlU spec for details
of field use). The fill mode and length registers returned by
REAO_M~R regardless of what might be selected by the current
microinstruction. To pro~erly restore FlU st3te from a saved MAR, the
FIU must ba in5truct~c to latch fill mode and length from the TYP BUS
(TI 3US) in th~ sam~ microinstruction that specifies RESTORE_MAR or
Rc5TO~c_MA~_wITH_R=FK=SH.
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2.2.3. R2fresh Counts

Th~ dynamic R~M's in the R1000's main memory are refr~shed by
microcode. This is accomplished by using two counters:
~~FR~SH_INT~~V~L and ~EF~ESH_WINDOW, which ar~ read and written using
T:_3USCO:13),C16:31), respectively. REF~ESH_WINDOW is set to be
greater than the !on;est m3cro event latency for the current ~ev of
~n2 machin2. ~~F~E3H_INTERV~L is set to be the required 2 millisecond
refresh period minus the REF~~SH_W:NDOW.

~2F~~SH_INTERVAl counts by one every machine cycle. When
~~F~ESH_I~TERV~l equals the REFRESH_INT~RVAL preset by microcode (by
the ~ESTO~E_MA~_Wlr~_REFRESH microorder from TI_8US<O:1S», the
R~FKCSrl macro event is posted and R=FRESH_W!NDOW starts counting by
one each machine cycle. If t~e ACK_R~FRESH microorder is issued (by
the refresh m3cro event handler) before REFRESrl_~INCOW eauals the
R~F~~SH_WINJOW preset by microcode (in the last
RESTORE_M~R_WIT~_~~FRESH ~icroorder from TI_BUS <16:31», the
RE~RE5rl_INTERVAL and R~F~ESH_W!NCOW counters are reset and the
FORCE ~E:~ESH machine :ne~k event is avoided. The ~EFRES~ INT~RVAL
counter ~s rest~rte~ by 2n ~C<_RE~RESY.

:f the AC~_~E~RESH mlcroorder is not issued before REF~ESH_WINOCW
reaches the prs5at value, a FO;CE_REFRES~ machine check occurs, the
machine is frozen oy the dia;nostic system, and the memory boards
refresh themselves 2t tne m2ximum clock rate.

REFRESH :NrEqVA~ and RE~R2SH W:NJOW are specified only in the
R~ST0~2_M~R_WITri_RE:RESH ~icroord?r. TI_BUSCO:31) are ignored for
R~STJ~E_MA~. The preset REFR~SH_INTERVAL and REFR~SH_W!N80W values
are always returned by R2AD_MA~. READ ~AR must be specified when t e
ACK_R~FRESH MEM_STJ~T microorder is issued.

2.2.4. Memory Space Field

The memory space is restored using the TYPE BUS<61:63>, and
selects one .from the following list:

1 - CONTROL S?~C: cG bit word displacement

2 - TYPE SPACE 20 bit word displacement

3 - QUE~E SPACE 22 bit word displacement

4 - ~ATA SPACE 25 bit word displacement

5 - IMPO~T SPACE 20 bit word displac?ment
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Memory Monitor S~ecific2tion functional Description 8

6 - COD~ SPACE 20 bit ~ord displ~cem~nt

7 - SYST~M SPACE 2G bit ~ord displacement

The memo~y sp;ce field is usually loaded from a microliteral during
the LJA8_~A~ micro order. The micro sequencer drives this field
directly fr~m the disoatch ~AM's durin~ a dispatch. au~ing one of the
R~STC~E_~A~ micrcorjers, the memory monitor drives TYPE_BUS(61:63)
onto the space portion of th~ AODR=SS bus (see the AOO~=SS BUS
de5cri~tion).

Th? memory
displacem~nts in
the address to
bits, zero fil~ed

monitDr olaces no restrictions of the size of
addresses: it is the responsibility of the source of

drive the proper number of significant displacement
in the high order bits, onto the address bus.

~astrictions on th~ sizes of code 2nd import SJaces are now
enforced by microcoda and soft~3r? ~olicy, rather t~an hardware. Note
tha~ ar~hite~~ur31 d2ta stru~turas li~it the range of location
~ddress2b~a usin; i~str~ctio~ fi?lds or stack d2scri~tors. In such
cases, th2 prJ~2r nu~b?r ~f lead in; z~ros must be driven on the
~JC~~3S_3US ~o fill the wor~ di5~12c2ment to 25 bits.

bits of
Trese

tn? space field participate in
must ~e sat to zero .for physical~n2 cache h2~~ f~~ctiJn.

m?mory referenC2S.

) / -- .- .). (Se;ment Nu~ber, VPid)

The stack name field is actually t~o fields: the
Numoer and the a-bit Virtual PrJc?ssor 10 (VPid).
saved using V:_3U3C0:31) and 2re always loaded frJm the
The least si;nificant elevan bits of the Se;ment Number
tha h2sn function.

24-bit Segment
These bits are

ADDRESS bus.
participate in

Thesa nine bits are also used to select the LINE_NUMBER during
Physical Ta; Store or Physical Memory operations. The most
significant four bits of the VIRTUAL_PROCESSOR_IO select the
SET_~UM3~~ durin~ t~ese Physical operations.

2.2.6. Word displacement field (Page Nu~ber, Word)

Since 1K byte pages are used, and a word is 128 bits, this field
is split by the memory manager into two fields: Page Number
(V: 3US<32:5J> and ~ord (VI_6US<51:56». The least significant nine
bits of ?a;e Numb~r participate in the hash function, and must be zero
durin] a Physical operation. These bits are saved using
VAL_3U$(3?:56) and are a:ways loaded fr0m the AOQRESS bus.
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2.2.7. Bit Offset Field

The bit offset field is mai~tained by the FIU as the latched
offsat field, ratr.er than by the memory monitor (the memory system
always deals with word addresses). During READ_MAR operations, the
last offset field latch~d by the FlU is returned as the bit offset
portion of the MA~ (least significant 7 bits of the logical ~ddress.
Curin] ~=STCR=_MA~ operations, the 12ast significant 7 bits of the
addrai5 bus are latched into the FlU offset latch.

The 7-bit 5it Offsat Field is net used by the memory boards. The
most si;nificant three bits of this field in the Program Counter (CODE
space only) select one of the eight, 16-bit macroinstructions stored
in the I3UFF.

2.2.3. Address ~rithmetic

The memory moni~or ~akes no provision for detectin9 arithmetic
2xce~tion conditions when arith~?tic is performed on displacements.
In general, the oper3tio~s allo~ dis~12cemants to wrap around some
nu~jer of sigific2nt bits Cs~e th~ S~3C2 encodin] definitions for the
num~er of si]nif1ca~t disol~c2~ent bits in each of the m2~ory spaces).
This wrap arJunj is 2ff2ct?~ ~y drivin; the appropriate nu~ber of
le2d1ng zeros in o:3ca of t~e axtran2~US hi;~ order result bits.

M~MJ~Y_~XC~?T!ON event handlers and the CO~~ECTA3lE_ERROR handler
must detarmine the address that caused the event. The PAGE CROSSING
and Ml~_MJQI~:~J conditions indicate if an INCR~MENT_MAR occurred
before t~e event. If ?l~E_C~OSSING is set, then 4096 ~ust be added to
the MAR to co~pensate for the wraparo~nd and RESTORE_MAR issued,
thereby effective!y handling the ?lGE_C~OSSING event. (The addition
should not allow carries to propagat~ into the stack name field.> The
event-causin; condition is cleared as a side-effect of testing it.

If ~~R_MOD!fI=D is true (always true on PAGE_CROSSING) then 128
must be subtracted from the MAR to determine the faulting address.' If
both MAR_MOOIFI=D and PAG=_CROSSING are true, both conditions must be
handled in order to properly compute the exceptional memory address.

2~3. Read Data Register

There are actually t~n potenti3l sources of data when a READ_RDR
micrv order is specified! There are two R~ad Data Registers on each
of four me~ory boards (one for each plane). The memory monitor
rame~bers ~hich plane hit 12st and normally selects the corresponding
~c~. Since each me~ory b~~rd does not contain a path to load its
~J~'s fro~ a bus, (it leads th2m frem its RAM's) a "dummy" RDR is
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Memory Monitor Specification Functional Description 10

provided (on t~e Sys~us Interface board) for state restoring.
Whenever a RcSTa~E_RJK micro order is executed, the data is loaded
into the dummy, and the monitor sources subsequent READ_RDR operations
(until th~ next lOAO_MA~) from the dummy. The tenth source is the
Control St~ck ~c:elerator.

Kaad data is specified as the source for the VAL and TYP buses by
a c~mbination of bus source microordars on the FIU board (see the FlU
Functional Specific3tion).

The memory monitor determines ~hicn source of read data is valid
(memory board, dummy ~DR on the SYS3US board or CSA), and causes the
appro~riata source to drive the VAL and TY? buses. The memory boards
a~d dummy RJ~ are driven directly ~nto the V~l and TY? buses, while
t~e CSA drives the32 buses via the a-port of the VAL and TY? register
fila (respectively). Data from a memory board includes EQCC bits,
~hich are checked by the SYS3US bo?rd and may cause an ERCC event.
Cat? fr~m the dummy RJR or CSA are parity checked only. See the
discussio~ of C54 i~ a later s~c~icn.

Wnen RD~ 15 3~ecified as t~? TY=_vtl bus source, if the dummy RDR
is va:id, it is driven regardless of ~hat ~ther possible sources may
~? valid. If th2 au~~y is not v21id, but the CSl is hitting, the CS~
is driven onte th~ TY~ 2nd V~l ~US?s. !f there is no CS~ hit, which
?ve~ ma~ory board is hittin; is chosen t~ drive the b~ses. If no
m?,~~r1 D03~d is hitting, then n~ona drives t~e TY? and V~L buses, and
3 p3rity arror machine cnack or spuri~us ERCC event may occur unless
the C~C~~ ~:SS ~icrcevent is eneb:ed. If micraevents are disabled,
snd this situation arises, the CA~HE ~:SS condition must be tested in
th~ cycle in which ~DR is bein] read, and, if CACH~ MISS is true, the
data read must be discarded. Tasting CACHE MISS in this situation
prevents TY~ and Vll bus parity error machine checks and spurious ERCC
events.

The validity of read data is maintained from cycle 2 of the last
memory read until the MAR is reloaded (except for page mode memory
operations, where the the MAR is reloaded in a reversible way). If
the ~AR is reloaded before read data is accessed, error correction is
impcssi~le (since th~ source ?ddress is lost) and results are
unpredictable. For page mode operetions, the memory monitor maintains
state (MA~_MODIFIED, PAG~_CROSSING and INCOMPLETE_MEMORY_CYCLE flags)
for the E~CC and MEMORY_EXCEPTION tr3p handlers to reconstruct the
erroneous memory address.

2.3.1. Error Checkin9

In the usual case, ~hen date is sourced by the memory boards, the
9-bit CH~CK_3!T fi~ld is also driven. The ERCC checker on the sysbus
i~terface board checks for errors. If a multiple bit error is
det?cted, the MULTI_aIT_ERRC~ machine check event occurs. If a single
bit error is detected, an ERec micro event is posted. The event

R~tional Machines pra~ri2~ary document C~AFT 3 Dece~ber 13, 1932
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handl~r corrects ~he data, restores it into the Dummy RDR (with byte
parity), writes the correct~d data pack, then logs the error.

The correction is done based on the 7-bit BAD_BIT_IO field and
the Crl~CK_arT_~~RC~ c~ndition generated by the ERCC checker. First
CHECK_8IT_E~ROR is tested to determine if the error is in the check
bits. If true, no d~t3 correction i5 necessary since the ch~~k bits
~ill be r2;enerated durin~ the ~rite back. If false, then SAD_BIT_IDO
is tested to determine if the error is in the VALUE half or the TYPE
h21.f. A c on s t an t "1" is then rotated by the F!U, selected by
3AO_a:T_:J(1:o) and is XJR·ed with the data on the selected board.

:n all cases of correctable errors, the corrected data is written
back to memory by mi:rococe. The PHYSICAL_LAST monitor state bit must
oe t~s!2d to deter~ine if the addr~ss in the MQR is logical or
~hys~cal. The error is logged by storing the MAR on the error log
list in the scr2tchC3d 2nd increm~nting the error count. If this
count exceeds a threshold, a microcode initiated machine check occurs.
The r2frg~h ~vent ~sndler maintains a count w~ich causes periodic
flwshe~ o~ this error lo~ list to the diagnostic processor, using the
SVS3US. As 2 sid~ effect of checking for correctable errors, the
SYSbu5 In~erface joard ~2n~r3t2s byte parity on Dath the V~LU~ and
TY?~ n2lv~s of th2 ra?d data, and drives it on the parity lines.
T~erefor2' a1: ussrs of the r?ad data can check parity.

~ LJ~O ~S~ micrcorder loads data from the VAL and TYP buses into
the w~!T~ :AT~ ~~G:S~~~ oi all memory boards and the copy of WOR on
the V~L and TV? boards (V~L 3nd rye boards maintain their respective
halves of t~e ~~~). S~nc2 th2 VALU= and TYPE boards contain a copy of
t~e ~r~te Oats Re;ister, a dummy WJ~ is not necessary on the memory
~oni:cr. A ~~~O_~J~ state-savin; operation is performed locally on
these boards. (The VALU~ and TY?E board copies of the WCR are saved
in tna re;ister file by selecting the register file C-mux source
a~propri3t?ly.) (see th~ VALUE and TYP board Functional
Sp~cifications).

On a LO~O_WJR, the ~~CC circuit generates the check bits 'and
drives them to the memory boards. A3 a side effect of generating
these check bits, it checks parity on the VALUE and TYP5 busses. The
local VALUE and TYD= board copies of the WDR contain byte parity, not
check bits.

If a microevent aborts the cycle in which LOAD W~R is specified,
the ~JR5 on the me~ory boards are loaded, but not the copy on the VAL
and TV? boards. This inconsistency must be resolved by loading WDR
befor~ any start write me~ory operations are issued.

Ratio~al Machines ~ro~riet3ry documant 'JR~FT 3 December 18, 1982
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2.5. Memory Oparztions

All memory oper3tions involv~ three microcycles. Cycle 0 of a
memory cp~ration is defined to be the microcycle which i~sued a memory
start micro order. The MAR must be loaded no later than-cycle O.

Cycie 1 follows, ~nd is the cy~le in w~ich the memory operation
actually tzkes ~12ce. If a micro event aborts cycle 1, the
INCOM?l~T~ M~~J~Y_CY:L~ condition is sat, and the event return micro
ord~r ST~RT_Ir_INCC~?L=T~ ~ill restart the operation. During a memory
~rite op~ration, the LOAD_~DR must occur no later than cycle 1. The
Tag Store query implied by the particular memory start is performed in
cycle 1. If memory is interrupted during cycle 1, the operation is
ter~inated and LRU is not ucdated. No dat2 is transferred to or from
~emory. ~Q~ is destroy~d.

,.. , 2 ~5 the final cycla. ~t this time the read data is'~yc ....,3

aV3i:'aole f r om the R C' ~ and can be usad by issuing a R=,l~ - RDR micro
order. If r s a u i r e c » the L~U ".; + ,... ar"'? updated durin; cycle 2...••.••... .:>

If 2 M~~C~Y_~XC~P!~~ is rai3ed during the oper2tion, it causes an
2~r11 micro eV2nt in cycle 2, if en3~1?d. No ta; store state is
~~d3tea and ~o dat3 is written to memory, althou;h the contents of the
~D~ ~re lost. The event LS cersistant and hi;hast priority.
Therefore it ~ill occur on the first cycle it is en2bled until the
event ~s t~ke~ or t~e c~usin; conditions are tested.

Tne K)~ rG~2ins va:i~ unt~l t~? next LO~D ~AR. After 3 lOAJ_MAR
is executed, t~2 ME~C~Y_EXC~~TrDN znd CORRECTA3LE_E~ROR handler will
nJt ~e 2jle to determine which address caused th~ event.

Over12pping ~e~ory operations are allowed. Cycle 2 of one memory
operation can bE cycle 0 of the next. In the CONTI~U= operation the
pipe linin] is dou~ly over12cped: cycle 2 of the first operation
co~ncides with cycle 1 of the second operation and cycle 0 of the
third. This can only be done to consecutive address (refer below to a
more detailed exclan3tion of CONTINUE).

This se=tion jiscu~ses the standard
Logical, Write Logi=al, and Continue.
conditional memory reference mechanism.

memory
It also

operations: Read
describes the

2.5.1. R~ad Logical

Data ~hose address is in MAR ara accessed. During cycle 2 of the
memory opera~ion, data is available via the R=AD_DATA microorder.
Normally, the memory monitor transfers data from the proper read data
re]ister. If the accessed data resides in the CSA, data is accessed
there, and the memory dat3 is ignored (the CSA always contains the
~ost u~ to date copy of d2ta, sinc~ the CSA is not a write-through
acceleration mechanism). Choice of ROR or CSA data is nade by the
memory monitor transparently to re~uesting microcode.

CRAFT 3 Oecenber 13, 1982
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If the specified logical address is not encached by the memory
system, a MEMORY_=XC:PTION micro event is posted, and the CACHE_MISS
condition is set. The RDR is destroyed. If the specified logical
address is encached, but the PAGE_STATE is set to LOADING, a
M2Ma~y ~XCE?TrCN micro avent is posted, arid the CACHE MISS condition
is set. The RDR is destroyed.

2.5.2. Write Logic2l

The contents of the WJR are written into the memory
lo;ic31 address is in the MA~. If the specified logical
not encached by the memory system, a M2MORY_EXCEPTION micro
p05tec, and the CACHe M1SS condition is set. The RDR is
~ut no cach2 location is ~rit~en.

word whose
address is

event is
destroyad,

If tha czche p?ge being written is in either the
ONLY st?ta, a CAC~~_MISS condition is generated. The
event is raised as a cycle 2 event. The handler must
store and c~eck ~a]3 stat? to differentiate these

LOADING or R:AD-
MEMORY_cXCE?TION

query the tag
st::ltas fr::>1TItrue

I~ is lmportant to nct~ that, althou1h the previous contents of
tha written lccaticn is p!3:ad in ~Jq ~urin; a LOG:CAL WQIT=, the
mi=~~cod~ should ~ot ~ead_~JR. This ccu!d cause 3n ~RCC error which
~ill writs ~3ck tha cQr~ect2d, ori;inal contents and th.sretore undo
t~e ~rlt2. 7nis feature is i~pla~?ntad for diagnostic purposes.

Co n t i n ue

For extremely hi;h 5P~2~ transfers (- 80 Me;abytes per second !)
tc or from con32cutiv3 ~ord5 in me~ory, the page mode feature of the
aynamic RAM's is exploited. This faature is enabled by specifying
CONTINUE in the cycle i~~2diately following a memory start. The
INCREME~T ~AR micro order ~ust also be issued. A CONTINUE can
immedi::lta!y follcw another CONTINUE, thereby allowing entire blocks of
data to be transferred at this clip.

INC~EMENT_MA~ microorder increments the MAR by 128. If the MAR
displacement mod 4096 becomes zero as a result of this increment, the
PA~=_C~OSSING event is posted. The PAGE CROSSING microevent occurs
after the MAK has been incremented (i.e., the MAR contains an address
which is 4096 less than the proper address). PAGE CROSSING is an
e~rly microevent in the cycle following the INCREMENT_MAR microorder.

A CONTrNU~ microorder (~ith its INCREMENT_MAR) must be issued
during cycle 1 of a pr~ce~ding START or CONTINUE memory operation
(th~r2 must be no idle m2~ory cycles between the START of a page mode
tr3nsfer, and any of t~~ CONT:NUE operations).

Th2 reason that 3 half-cage boundary crossing triggers the event

Kation31 M3chines proprietary ~ccum~nt Dece~ber 13, 1982
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is dicatated by a low-level constraint from the dynamic RAM·s
themselves. T~ey must be "precharged" every 10 microseconds. By
trapping at le3st every 32 cycles, this constraint is met. The time
penalty for the event is only 4 cyclesCtwo dead cycles because it·s
an early event plus the one microinstruction handler). Another
consideration is that, since pa;es are 64 words in length,. each time a
64 ~ord paJe boundary is crossed by a page mode access, the tag store
must be queried again to obtain a new logical to physical association.

Wnen INC~~~=NT_~AR is issued, tne MA~ is incremented and driven
OV2r the address bus. The incremented version of M~R is loaded back
into the MAR from the address bus. CSee the description of
MA~_MOJIFT=D state bit). Note that, ~hen INCREMENT_MAR is selected as
tne M~R_CONTRCL micro order, the FlU board must be selected as source
for the address bus.

2.5.4. Conditional Memory References

Co~dition~l me~ory starts are supported. These can be based on
e ; the r p OJ 13 rit yo" 3 n e 2 r 1y 0 r a "m ediu m-l ate" con c i t ion. 1ft hoe
co~diti~n 13 not taken, another memory st3rt may immediately follow.
:f tn~ corditlon is taken, only a CaNTINU~ or NC_~E~ORY_CPERATION may
fo:lo~. Ine I~Cq~~=~T M~~ is a15~ re~uired during conditional
:JNT:~U~·s, but is uncondition21. If the condition is not taken, the
~AR is still modified, an~ the ?AG~_CRCSSI~G event can s~~ll occur.

otrer t~o condition21
to reconstruct the memory

melT'ory starts
cycle pipeline.

are used by event

Q:l events handlers must iS3u~ a STJ~T I~_INCOMPLETE in the cycle
it returns. (Conditional returns are not allowed from event
handlers.) If the event aborted cycle 1 of a memory operation, th~t
operation is rest2rted by this command. If the event aborted cycle 0
of an operaticn, then the handler will return there and the microcode
will start the memory command. C3y definition, cycle 0 is the cycle
which issues the start command.) If the event aborted cycle 2 of an
operation, the operation is not restarted since the operation was
completed before the ev~nt. (Cycle 2 is defined as the first cycle
that ~EAO_OATA can be used following a START_READ, and the first cycle
that a MEMORY_EXC~PTION will occur. The oper~tion is considered
complete after cycle 1.)

MEMORY_EXCEPTION handlers must issue 3 START_LAST_COMMAND in the
microcycle immediately befora it returns. This will restart the
command that caused the exception. The last microcycle of these
handlers Cas recuired of all micro event hzndlers) will issue the
STA~T_I~_INCOH?LcTc command. If there was a CONTINUE in cycle 1 of
the m?mory operation that caused the exception, this event return
action will restart the CONTINU~. This is t~e only circumstance in
~hich a ST~RT_Ir_INCOMPL=TE will resolve to z CONTINUE. The MAR must
b2 incre~ented to correctly force a continue. Therefore the

Rational ~achines propri~tary document DRAfT 3 December 18, 1982
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INC_~AR_If_rNCOM?lET= micr~ order must be issued on MEMORY_EXCEPTION
handl~r returns. ~henever INC_MAR_IF_INCOMPLETE is issued,
INCOMPL~TE_~=~aRY_CYCLE must be selected as test condition.

2.6. Memory Ma~a;em~nt Operations

Each memory board mana;es f~ur sets of Tag Stores used for
cssociativ2 co~p2risons and memory management. Instead of four
parallel sets of ~~M's and comparators, the Ta; Store is implemented
with t~o banks of 1K X 4 Static RAM·s and c~n be clocked at the double
frequency rate. Sets 0 and 1 are always referenced in the first half
of a cyc:e, sets 2 and 4 are referenced during the second half.

2.6.1. Tag Value format

The contents of t~e Ta; Store RAM's can be read and written over
the VALU~_3US ~y a combination of bus control microorders (see the
SfS3U5 specifi~aticn) and memory commands.

A ta; v~lu2 is latch2d as the result of any memory operation.
The 5TA~T_PHYSrCAL_TlG_Q~lC ooeration latches the tag value associated
with a parti:ular 3et wih~ut cth2r~is~ accessing memory. Th~ tag
v2:ue may be read durin~ cycle ~wo or later (it must not be read
un:ess memory is idle). l SETU?_TAG ~~~C microorder must be issued
one cycle prior to reading the ta; value, and must not be issued
earlier than cycle 1 of tne op?ration which latches the tag value.
The tag v3!ue is returned over ~he V~l bus.

The tag store is written using the STA~T_PHYSICAL TAG_WRITE
~icroorder. STA~T PHYS:CAL TAG_W~Ii~ is a three cycle operation
(cycleO::y~le2). The new ta; value to be written must be loaded in
the value side of the WOR no later than cycle 1. Memory must remain
idle during cy~le 2 (i.e., no memory start may be issued until after
cycle 2).

When 3 tag value is written, all fields are written, including
LRU. Therefore, care must be taken to make sure all sets on a
particular line have unique LRU value3 between zero and the MRU 'set
number. Note also that, following power up, all tags on each line of
the cache must be prooerly initialized before any memory operations
are issued, or parity errors or unpredictable behavior may result.

2.6.2. Tag Store Addressing

The tag Store is addressed with a frame address which is composed
of a nine-bit lrN~_NJM3~~ field and a four-bit SET_NUMa~R field.

The LINE_NUMSER is d~termined by a hash function operating on the
two least si~nificant space bits, the eleven least significant segment

~ational MaChines proprietary document ~R~FT 3 December 18, 1982
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TAG_VALUE:

+--------------------+-------+---------------+-+----+---+---+---+
Segment Number VPid Page Number 101 LRU\ST Ires)Spcl

1 (24) 1 (8) I (19) 111 (4)1(2)l(3)1(3)1~--------------------+-------+---------------+-+----+---+---+---+
J 2£. 32 S2 S6 58 61

23 31 50 51 S5 57 60 63

name bits and th~ nins least significant page bits, producing an
elevent bit line address. On the memory monitor, line address bits 0,
9 3nd 1~ are comcutsd combinatorially, while line address bits 1 •• 8
are obt~inad fro~ 2 RAM:

1in 2 addrs.5s 0 := p-:l;;e2ddress <1 c> x-or segment name <1 3>
1i.n e a d d r ess 9 : = sp 3 C '2 <1 > x-or Se;'TL?n-+:n em e <22>
1. in2 zc d r as s 1J : = 3 P 2C :? <2> x-or se~m(?nt n ams <23>

:in2 addr?S3 <1 •• 4> := ;lM addressed ~y
~a;2 2ddres5<14 •• 13> and segment name <14 •• 18>

line address <5 .• 3> := R~~ address?d by
~2£~ ?ddress<10 •• 15> and se~~ent name <13 •• 21>

The RJ~ is orogrammed to produce tne sa~e hash function as the 2
M3 memory ~card, namely the bit-~ise exclusive-or of Segment<15:23>
(least significant 9 segment bits) as one component, and Page<18:12>
concat3nated on t~? right with Sp3ce<1:2> (least significant 7 page
di5~lac?menc bits, wit~ the bit significance reversed, concatenated
with the least significant t~o space bits) as the other component.
This pairs Segmant<15> with Page<13>, S~gment<16> with Page<17>, and
so forth, until Segment<23> is paired with Space<2>. The most
si;nificant 2 bits of the line address are set to zero.

Wh~n the hash function needs to be bypassed because a particular
LINc_NUM3EQ wants to be addressed (such as in a
STAqT_PHYSICAL_TAG_W~ITE), the desired LINE_NUMBER is placed in the
1. s. nine bits of the SEGMENT_NUM3E~, and O-s are placed in the rest
of the bits participating in the hash function.

Ta; comparisons are implemented on two portions of the tag value:
the stack name and the full page logical address. The stack name
consists of the segment number (bits 0:23) and the VPid (bits 24:31).
The paga logical addr2ss consists of the stack name, plus the page
numjer (bits 32:50) ~nd the Space (Spc, bits 61:63).

The S~T NU~3~R is determined by the particular query mode implied

~ational ~achines pro~ri2tary document GRAFT 3 December 18, 1932
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by the m~mory start. On physical Tag references the SET_NUMBER is
specified by the most significant 4 bits of the VIRTUAL_PROCeSSOR_IDe
On Logical Tag queries, the set that contains the matching logical
page address is the selected set. The Least_RecentlY_Used set is
seiected by a STA~T_LRU_~U=RY. The first available (invalid) set is
se~ect~d by a START_~V4IlA8LE_QUERY. In a START_NAME_CUERY, ~nly the
stack na~e portion of the tag is compared. In this query, and' 'in the
available query, mu:tiola set could hit. This is resolved arbitrarily
by tne memory h2rdware. (Actually, the lowest set number will win
out, but no code should be written that re~ies on this.)

Tne remainin; ta; value bits describe the state of the page. The
o ~it is set whenever the page is written to via a logical query (it
is not set for ~hysic31 queries or maintenan:e or random operations).
The LRU is described later in this document. The reserved bits are
available for usa by microcode and 2re not inter~reted by hardware.

The ca~a state (3T) field controls the kinds of access
page of the memory d2ta array:

to each

Loadin~ (JO) T~i5 pa;e is not yet ready to be accessed (data is
bei~g tr3nsf~rred to or fro~ this page). Logical and
n:me ouerias will match this entry, but the
L~~=!NG_~~0LT state bit will be sat, and a
M:: ,\\J H _ ~ X:::: "I::: .J N e v I? n t UJ i Ii 0 c cur (i fen a b.I e d),.

~ead-)nly (01) This p2~e may be raad, but not written. Logical and
nams queries will match this entry, but logical writes
~ill set the W~ITE_F4ULT state bit, and a
M~MJ~Y_EXC:?TrON event will occur (if enabled). Note
that data is written even though the page is Read-
Only~ See the description of Logical Write •

.-<sad-Write (1C)
This page may be read or written. Logical and name
queries will match this entry. If a match occurs, no
tag store related state bits will be set (CACHE_MISS,
LOADING_FA~LT, WRIT~_~AULT).

Invalid (11) T~is page is not assigned any logical page; no logical
or name query will match this entry.

2.6.3. frame Addres3

A frame address is latched by the memory late in cycle 2 of each
memory O~2ration. This may be read after cycle two. Unlika the tag
value, frama 6ddresses may be read without any preceeding SETUP. The
frJm? addr2Ss C3n be read by a combination of VI bus control
microordars (see t~e F!U soecification).

Rational Machines proprietary document DRAFT 3 Cecember 19, 1982
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All physical m2mory and tag stvre accesses require a frame
address in the least significant 64 bits of the MA~. Further, all
fields except line numbar and set number must be cleared to zero prior
to loadin] into MA~. When read, t~e Frame Address returns the line
numoer to which th2 logical address in the MAR hashes, and the last
set nu~b2r which hit (if no memory board is presently hitting, all
ones are return~d as set numjer: the frame address may be read to
convert a 10;ic2: address to a line number ~ithout cycli~g memory).

+------+----+--------+---+---+----------------------------------+
ISCVN'::;RI O'sl Line NolSetp'1RUI O's
I (3) I (5) I (11) I (4) I (4) I (2{.)+------+----+--------+---+---+----------------------------------+
J ? 3 12 13 23 24 31 63

1< S C V N':' ~
rs t c r n a c ,
r-1 ~ ~.

bits <C •• ?> the cont~nt3
~u5t j? Z?~~ ~M2~ loading 3

of the sC3venger ram are
~r3mE address into the

bits <13 •• ~3> t~2 line numbar to which the current
M~~ h23h~s is r?turned; the p~ysi:al line.nu~ber to
is :caded prior to startin; a physical memory qu~ry.

11: LIN~ NO

k S~T - ~i~s <24 •• 27> the set number which hit last is returned, or
all on~3 of no s~t is hittin~; contains the physical set number
to ba accessed by th~ next physical me~ory Query. When loading a
physical frame address, tne set number must be less than or equal
to MRU (tne highest valid set number), or results will be
unpredictab:'e.

* MRU bits <23 31> th~ highest valid set nu~ber is co~puted and
latched durin; INrTIALIl=_~RU, and is returned as part of the
frame address. These bits must be cleared to zero prior when
loading a fra~e address into the MAR.

The line number portion of frame address is computed
combinatorially, using the hash function logic. The set number
portion is derived from the result of the specific query mode. The
MRU set number is latched at memory initialization time, and always
returned with the frame address. Finally, the scavenger ram contents
are read using the address in the MA~, and returned 2S part of the
frame address. The sczvenger ram contents appear combinatorial in
that they are derived based on the current contents of the MAR, and do
not de~end upon the last query mode. Note that scavenger ram contents
must oe initi:lized after cower up before any frame addresses are
re~d, or a s~avar.;er parity error may r2sult.
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2.6.4. LRU Managemant

Each tag valua contains a four-bit lRU field.
line contain a u,iQue value in these four bits.

All the sets in a

The !NIT:AL:Z~ MRU microorder determines the highest im~lemented
S~T NUM3~~, which i3 defined as the Most_RecentlY_Used (MRU) value.
M~J is re:urned as part of F~~Mc_AODR=SS. Note that INITIALIZc_MRU
does not initi21iz2 ~ny tzg fields; these must be initiali~ed
exolic~~ly by microcode.

when a particu13r s~t hits, and the query defines U?DATE_lRU as a
side-effect, that set·s original LRU value is broadcast, and replaced
~ith the M~U value. All sets whose L~U value is greater than this
0roadsastgd v~lue will decrement their LRU value. All sets whose lRU
value is less than this value will remain unch2nged. Therefore the
Least_Recently_Used set will have a value = O. Note that the LRU
value is updated en all sets including inv31id sets, 2lso the lRU
va:ue i~ uncnan~a~ ~y 2 t3; store write o~eration.

2.7. :ont0! S~ack ~c:el~r3tor ~onitor

The VlLJ~ ~nd TY?~ bc~r~3 C3n ancacha as many as fifteen
loc3t:on3 en the t:~ ~f th~ ~urrantly executin; Control Stack.
Microcode t~2: rafer~nce3 th~ CSJ directly uses the the Qe.;istar File
~jdr2s3 fia:ds tc s~ecify locations ra13tive to TOS (the top of the
Contr:l Stack Accelar3tor) or to CS~_3)TTCM (the botto~ of the Control
Stac~ Acce:erator). Thesa lOC2tions ?re ~uaranteed to ba in the CSA
cy the CSl undarflo~ 3nd oV2rflo~ m3cro avents.

~ny other address to t~a Co~trol Stack must be monitored to
determine if the mos~ recent version of that address resides in the
CSA. Tne address is 2130 monitored for illeg~l references beyond
CONT~JL_TJ?

During exit operations, sevaral locations are wiped off the stack
in one ?OP_DOWN_TO operation. After? POP DOWN TO, the CSA monitor
must determine ho~ many valid entries remain in the CSA, and
communicate this to the VALU~ and TY?E boards.

2.7.1. Control Stack Accelerator Hits

~hen M~R is loaded, the new M~R stack name is co~pared with the
st3ck name of the current control stack. If they match, the 20 hit
MAR displacement is subtracted from the disp13cement of the top of the
currant control stack (CONTR9L_TOP). If this result is negative, the
reference is beyond the top of the control stack, and the
CJNT~~l_~JD~~SS_CUT~~_RANSE condition becomes true in the sacond cycle
followin~ l02din; of the MAR. Under these circumstances, if a STlRT
microorder is issuad, CONT~Ol_AODR~SS_OUTOF_RANGE is set in cycle 2,
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~osting the ME~ORV_EXCE?T!ON event and aborting memory. If memory is
not start~d/ tnis condition is not set and MEMORY EXCEPTION is not
posted. Since this is a cycle 2 event/ if the memory operation was a
write, data ~s actually writan beyond the top of stack.

If the ~A~ is incre~ent~d beyond the current CONT~Ol TOP, the out
of ran;e conditio~ is set in the second cycle following the INC_MAR,
memory LS abort?d (late a~ort) and M~MC~Y EXC~PT:ON is posted.
MA~_MCOIF!EO wil: be set. !f other memory exceptions are also
asserted (e.g., (ACrlE_M:SS), the addrass in the MAR must be unwound to
deter~ine the address responsible.

:f the result of the subtraction is not negative, then the
differenc~ plus one is subtracted from the number of valid entries
currently in the CS~. If t~is result is negative, the reference falls
0e:o~ t~e (SA, 2nd is directed to memory. If the result is not
ne;2tive, ~ha reference falls ~ithi~ ~h9 current contents of the CSA
on the V~L 3~d TY? b~~rds, an~ the CSA_H:T condition exists. This
ra5ui~in; diffe~ence is callad the ~IT_JFFS~T, 2nd is relative to
CS'_3JT. T~2 ~~mcry ~onitJr oroadcasts both CSQ_~IT and CSl_0FFS~T to
th2 VAL 3na TY? bo~rds each =ycle. V~L and TV? latch them for
ae=?ss~n~ the CS~ during t~? D2!! cycle. CSA_HIT AND HIT_OFFSET are
latc~ed eV2ry cy~:e, ~~?t~ar or net that cycle is being aborted due to
a b2d ~int Jr an event. whan cy~le 1 of a ~rite operation is not
oei~~ ajJrt?d, t~2 m?~ory monitor brJadc2sts a write signal to the VAL
a~d TV? jJards, ~hich is a1sJ al~aY3 latched, an~ used in the next
cjc:a (cy=l? 2) tJ ;3te data frJm their copies of the WDR into the
CS~. ~h2n ~]P. ~s specified 2S the source of t~e TVo and VAL buses,
tn~ S/S~U5 board 3sserts 3 re3d_~O~ signal to the TV? and VAL boards
in the same cye:? that the ~DR is ba~ng re3d. These boards use this
sig~al, alon; ~it~ tha CSA_HIT and HIT_OFFS~T values latched the
previous cycle, tc re?d tha d2ta from ths CSA.

~hile CSA_~:T is T~0~, m2~ory 5~arts ara handled as usual: read
operat1ons aCC2SS memJry and load the RJR while writes write data to
~emory. C2cne hits ~r2 suppr2ssed when CSA_HIT is true. entering
cycle 1 (effectively, me~ory is not started, memory state is Note that
the timing of CSA hits is identical to the timin~ of any other memory
operation.

During cycle 1 of a write operation, data are loaded into to the
VJL and TY? board copy of tha WDR from the VAL and TYP buses (as
alw3Ys). The memory monitor informs the VAL and TYP boards that a
me~ory write cycle 2 is occuring. VAL and TYP use the CSA_OFFSET
latched in the previous cycle to gate their local copy of WDR into the
reJister file via the C-mux a~d C-port (see the VAL board spec for
reQuired (-mux and (-port microorders during cycle 2 of a write
o~eration).
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2.7.2. LOAC CONT~OL TOP, PUSH/POD and INC/DEC BOT

Th~ mamory monitor maintains th? number of valid CSA entries
(NUM V!L:J). All CS~ references from the memory monitor to the VAL
and TY? boards are relativ? to CSA_BOT (whiih is maintained by the VAL
a •.1d T Y D boa r d s con cur r e n t 1 y wit h the me m 0 r y man it 0 ran d se ,ou en c e r
copias). The monitor infor~s the other boards of changes in the
status of tha CS~ via the HIT_OFrSET and three additional wires:
PO? DC~N, LOAD TOS and LC~O_60T. Normally, these latter three wires
are not asserted. When they are asserted, the CSA is being modified,
and th? mcnitor suppresses CSA_HIT. None of the CSA modification
micro?rders should be specified during cycle 1 of a write which should
b~ directed to the CSA, nor in the cycle prior to reading the RDR if
the CSA may contain the valid co~y of data (these restrictions really
a~ply to any CJNT~OL access, or any memory ~ccess whcse memory SPACE
is not kno~n). In these casas, the RDR must not be read until a full
memory ra3d cycle has cJmpleted.

~ LO~~ CJNT?CL_T8? ~i:r~ord~r loads the address
aus into C0NT~Jl TJ~, and cla3rs NUM VALID to zero. A
br~3dcast as ~IT_cc~S~T t~ t~e TYP and V~L boards,
PJ?_D~W~ si~nal. ~:7_C=~S:T is adoed ~o 80T by the
b03rds, an~ stcr?d in ros, invalidating the CS~.

on the AJDR::SS
minus
alon;;

TYO
one is

wit~ the
and V~L

FUSn and ?JP micro?rj?rs broadcast olus one and minus one,
r2s~~ctively, as ~:T_JF~S~T, al?ng wit~ LOAD_TOS. The T,YPand VJL
boards add H:T_OFFSET to 3DT, storin£ the result in rOSe These
microorders add or subtr3~t an entry from the top of the current CSA.

:NC a~d J=C 80T microorders shrink or grows the CSA from the
bottJm (r~s~?ctiv21y) by adding one to or subtracting one fro~ the BOT
r2;ister on the TV? and V4L boards. Plus or minus one is broadcast as
~!T_OFFSE~ by the mJnitor, along ~ith LOAD_3DT.

POP_DOWN_TO
off5.?t portion
CC,'HRJL TOP, and
not c Le are d ,

is a t~o cycle operation. START POP DOwN latches the
of the ne~ CONTROL_TOP from the ADDRESS_BUS into
saves the old CONTROL TOP offset. The NUM VALID' is

During F:NrSH POP DOWN, the new NUMBER_VALID is computed by
subtracting the CONT~OL_TO? new offset from the saved offset. This
result is than subtracted from the number of valid entries in the CSA,
and a negative result is set to zero. A NUMB~R VALID of zero
indicates that the entire CSA has been invalidated. NUMBER_VALID
~inus on~ is broadcast to the V~LUE and TYPE boards during cycle 1 in
p:ace of HIT_OF~S~T, along with POP_DOWN. (If NUMBER_VALID is
n2;3tive, a minus 1 is broadcast to the VAL and TYP boards, which
invalidates the entir~ C5A contents).
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Ev~nts must be disabled between issuing START POP DOWN and
completing FINISH POP DOWN. The ExCC event handler must take case not
to modify the state of the CS~, since if CONTROL TOP is modified, the
5av~d top offset required by FINISH POP DOWN may be lost. Since
F!;JIS~ pap DOWN uses HIT_OFFS~T and suppresses CSA_HIT, memory writes
must not ~e started in the cycle which issues FINISH .POP DOWN if
there's any chance that the data should gQ to the CSA. Similarly, the
~JR mus~ not b2 read in the cycle following a FINISH POP DOWN if the
valid CO~i of c3ta is in the CSA. These memory restrictions apply to
continues as well as starts.

2.8. Scavenger Monitor

Tha ma~ory monitor contai~s a circuit that monitors all logical
memory rafgrences and can trap on certain patterns. As a bar? minimum
this circuit ~ust support the curre~t aoproach to garbage collection
which dictates t~?t each collection (collections are identified by the
M38 c~ t~e S~GM~~T_NU~3E~ = 1) be solit into ei;ht parts. At any
time, t~ree ~f t~ese collection octants C2n be in the midst of garbage
collecti~~ 2nc could contain f~rw3rdin; zddresses instead of 2ctual
d2ta. ~2f2ren~23 to th?se 2ctlve ~~rja;e collection octants must be
tia~~2d.

If m3xi~u~ f~exi~iliti i3 to be m2intained for garbage
collec!icn, and ot~er potenti21 requirements to trap on certain
~ddr33s cstterns, thi~ circ~it can be implemented to perform a much
mere ;e~?ra: pat~ern m3tch than the eight bits required for the
curren: a~pr~ac~ tc garbage collection.

The scavan;er is ajdre3sed usin; the most si;nificant nine bits
of t~e ~l~ sa;ment number and a bit derived similarly to the
~~:T~_LAST memory monitor state fla;. These address bits are derived
combir.atori2l1y using the state of the memory monitor at the time a
STA~T or ~E~J_F~AM~_AOJRESS microorder is issued. The 8 bit contents
of the addressed scavenger lo~ation i3 returned as part of the frame
address.

Wnen a STA~T microorder is issued for a logical read or write, a
scav~nger :ocation is read, and the space specification of the MAR
address is used to select a bit within that location. If the selected
bit ~s one, the SCAV~NG=R TR~P monitor flag is set, and a
M~MORY_~XCEPT!ON event is posted during cycle 2 of the memory
operation. Memory is cycled and writes complete even when SCAVENGER
memory exception is taken. The original contents of a written
location are saved in the RDR. The SCAVENGER TRAP handler must undo
writes using the data in the RDR.

The scaven~er ram is not accessed during physical data
or d~rin~ ani t2g stora maintenance or r3ndom operations.

accesses,

On11 firs~ 7 5cav~nger bits are actually used to trap
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referencas. The eighth bit, which would hav~ traced references to
system sp3ces, i3 used to store byte parity. This precludes using the
scavenger to tr3ce references to system address spaces.

The scavenger monitor ram is written over the VAL bu~ (least
signific~nt a bits) usin] the WRIT=_SCAVENGER_MONITOR microorder. The
MAR must have been loaded with a logical address prior to issu{~g this
microord~r, and the oro per $caven]er monitor address must be computed
Dy perfor~irg a NAM= ;UE~Y (write access tra~ping) or an AVAILABLE
~~E~Y (read 3cc2ssin; trapping). The rasults of these operations may
be ignored: they ar~ only used to set the internal state of the
s~aven;er monitor address data path.

The S ~it5 transferred over the VAL bus must include parity in
bit 7, and 2 one bit in each of the preceeding ? bit positions
c0rraspondin~ to t~2 s~a:a ~hich should be trapped (i.e., one in bit 1
will tr3~ access?s to control segments whose high order 9 segment bits
corrasp~nd to tnose currantly in the M~~). The ~icrocode must compute
corr2ct parity.

3. Micro~or~ Specii~:at~~n

3.1. ~ield ~~2cifi~?tion5

All of the following microord~rs expect a logical address to be
loaded i~to M~~, 2xceot those whose names specify "PHYSICAL".
?HYSICAL starts require 2 frame addr2ss in the least significant 64
bits of the M~R, with all fi2lds cleared to zero except the
LIN~_NUM5~~ 2nd S~T_~UM3eq.

Tne follo~in; are
the memory data array:

Data Query microorders, which access data in

* CONTINUE

Rational Machin25 propriet2ry document aR~FT 3 December 18, 1982



Memory M0nitor Specification Microword Specification

Th? follo~in~ ar2 t~g store maintanance and random microorders.
These m3nioulate the t3g store and control structures of the memory
~onitcr, and sat up d~t3 pa:hs for stat~ transfers:

3.1.2. MAR_CONTROL field - 4 bits

• LCA~_MA~ xxx (spa~e ~icro litsral driven on ADDRESS. SPACE)
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3.1.4. CS~_CONT~Ol field - 3 bits

Tha centrali:ed con~rol cf the source of t~e Least Significant 64
bits of tne Logical addr2Ss is contained in the m?mory ~onitor. The
indivijual s?urcas are rasponsible for ~onitoring ADDRESS. SPACE and
zeroing out t~a appro~ri2te Most Si~nificant bits of ADa~ESS.PAGE.
This control has moved to the sysbus board.

4. Conditions

Refer to tha following table for an enumeration of
monitor conditions.

the memory

5.' Memory Control Codes

The followin~ table describes the control modes direc~ed by the
memory monitor to the memory boards, and their side affects:
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Condition
When
set Event

When
cleared

26

active
hi/lo--------------------------------------------------------------------

MA~_NE~R-TC?O~PAGE
RcF:~E3 ..,
W~IT.=_l:lST
?rlYS:C;\L_l:"ST

ML, L~AD_MAK ':1
,:, C1
=, mem start CZ
::;,me'11 start C2

:NCOM~L::;T~_M~MCqY_(Y:LE
~, event (1
E, event (1
E, "L0J: MAR C1

M~.~_''''OOIFIED
?t.G::_CR03SING
M':MO~Y_EXCEPTIJN

CAC.'1C_MISS *
(test condition) ML, mem start C2
(~l~ stat~ cit) ML, mem s~art C2

SCAVENGE~ TF~~ *
(t2St condition)
( t ' :. R s t 2 t '2 ~ it)

=, LJA:; (n,;;: C2
"IL, ":laM start C2

(t~st conji~ion) =,
( !~A~ s t :I t e bit)

:0Nr~CL_~JJ~.:ss_aU~J=_;;:l~~.: *
L ) <4J _ .\1 A r1 C?
'Tl2'11 st2rt C2

:'S:'_;1:::T
:O~~~:T:'3l': .:q?O~~
Cr-::CK'3:::T C:;(RCR ~
3;4~_S:::T_I'JQ ::

:,I!..., L Jl C_ \1~~ (1

-u . R':A!J_RJ~ (C
t:» R:40_;(CR :1
:, R::;\D_;<:J.~ C1

no
early macro
no
no

no
no
early micro
early micro

no
component

no
compon'?nt

no
COl1PJn?nt

no
?3rly
no
no

micro

LOAD_MAR
ACK REFR!:SH
mem start
me:1l s:art

START_IF_INC
by testing
by testing
by component

mem start
by tes:in~

loa d ~Ito K
by t?sting

load !"1.lK

by t e s t t nc

LO.lJ_"1.lR
by testin:;
RE.lO_r1:JR
r1:AD_RJR

L
H
H
L

H
H
L
L

L
l

L
L

L
l

H
H
H
H

These ref?r to the eycl? during which the set v?lue o~ the c~ndition
is availao:e for testin] or ~v2nt posting:

E = ~arly condition, ML = m'?dium late condition, L - Late condition

C: = the cycle of the microcrder causing the condition,
C1 = tne cycle follo~in; the one in which the condition was caused
C2 = the second cycle following the one in ~hich the condition was

caL;sed.

Active Hi/lo: H = a True value indicates the condition is asserted.
l = a Fals? value indicates the condition is asserted.

* Thes?
11 - on

condi~ions are components
$ysbus interface Soard

of the MEMORY EXCEPTION condition

6. ~1crocod2 ~estrictions
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Q?Ei<ATION LRU
WRIT:: LASTI

MODIFIED PHY5 LAST

PHYSICAL M~MORY w~IT: J PHYSICAL PASS PASS 1 1
P HY SIC AL M~MORY REA o 1 °l-iYSICAL P..!SS PASS 0 1!...OGI::'L i'''EMO~YWR IT: 2 LQG~CAL UPOATE SET 1 0
!...OG::AL ,"'::MO~Y R:"J 3 LOGICAL U?DATE PASS 0 0

COpy ,"'\ TO 1 4 DIAG P:lSS PASS 1 0J -S CA ~J_ c 5 DrAG ** ** 0 0
COPY_ 1-TO - C) 6 JIAG PASS PASS 1 0
SC~N_ 1 7 DrAG "'* ** 0 0

PHYSICAL_ TAG - W~:T : 3 PHYSICAL WRIT:: WRITE 1 1
P .-iY SIC A L_ T A;:; - K:Ai) i ?HYSICAL PASS PASS 0 1
iNIT_ r1~ U .4 CLEAR -- undefined -- 1 0
iAG_'JUeRY 3 LOGICAL PASS PASS 0 0

N ,l,'., e_ I::: u :;< Y C NAW;: PASS PASS 1 0
A'n:i..A2L~ :l'JE~Y ""\ :'V~::L P~SS PASS 0 0J

L~u ~J::;( '( c L=lU UOO~;: PASS 1 0
T ""\, = h.Jl::io,...~vicus state --•• ...,IL _

~* du~in] 3C3n ~p2r2ti~~5, T3g Store 1 is use~ to sav? the read data,
:h~rafor2 the L~U anj m~d~fied bit fields ~f tag store 1 are written
~~th the :~rre3Po~cin; data.

1. Tha ~AR, ~S~, and W~~ ~ust be saved by the memory monitor.

3. LO~J_',JD~
anything

must ne no later than one cycle
th2t resolves to a START_wRIT2).

after START_WRIT~ (or

4. 50th the LOlD_MlR an~ ST~~T_R2A~ microorders
whenever 2 O:3?ATCH or USUALLY_DISPATCH
S3quencer must be soecified as source of the
sequencer will abort the start, if it isn-t
destroyed.

must be specified
is specified. The
ADDRESS BUS. The
needed, but MAR is

5. FIU must be specified as source of ADDRESS bus
IN':=<E.M=NT_MAKa

during

6. PHYSICAL_TAG_WRITes for entire line must follow INITIALIZE MRU.

7. The reserved_for_future_use Memory space should never be
r-eferenced.

8. Micro events should be disabled ~hen playing with tha Tag
Store.

9. A R2QJ ~D~ s~culd no~ be iS3ued followin~ a START WRITE

DRAFT 3
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10. ST4~T_lAST_COMMAN2 and INC_MAR_IF_INCOMPlETE should only be
used by M=MORY_EXCEPTION handlers. INCOMPlETE_MEMORY_CYClE
mU3t be t~sted in the cycle that issues the START_IF_INCOMPlETE
or INC_M~R_IF_:NCOMPlETE in order to select that condition.
Testing also clears the condition.

11. No M2nory 3t3rt co~mands can be issued when a RESTORE_MAR is
dona. Eve~ts ~ust be disabled ~hen doing a RESTORE_MAR; memory
must be idle. The space portion of the AJDRESS BUS is driven
f~om TYD= 3US <50 •• 53>. If the new MAR Kandom bits are
ori;inatin~ on the TY? board, they must be routed over the TYPE
bus to the TI bus (specify TY? ad TI source on the FlU board).
When reading the MAR, the TI and VI buses must be routed to the
TY~ and VAL buses (respectiv?ly)~ The random bits may be both
read and loaded at the sama time by specifying MAR_MAR as TI_VI
source, 3nd RESTO~=_MA~, which driva3 the random bits onto the
T:, and lO~ds the~ from there.

12. An ~ven~ Handler s~ould n~v~r r~~urn using a conditional
r2turn.

15. STA~T c~Y5:CA~ Tl~ ~Q:T~ 1S 2 thr~e cycle operation. The na~
ta; va!u? must be written to th? ~2~ no :3t?r than cycle 1.
Clcl~ 2 m~st be 2n idl~ me~ori cycle. The cycl9 follo~ing
eyei? 2 i3 t~e first one in which 3 m~mory operation may be
s~?cified. ~u2nts ~U3t be dis3bled during this opera.tion.

14. A c~ndition21 st2r~
be fo:lo~ed by a

or c~nditional
co~tinue or

continue that fails m~st not
a conditional continue that

15. Control r?ferences to memory must not be started during START
PCP Da~N. The ~S~ must not be read in the cycle follo~ing
~:NISH PCP DOWN if t~2re's any chance the valid data is in the
CSA until the next full me~ory read com~letes (i.e., cycle 2 of
the next st3rt read). Memory may be started during FINISH POP
~CW~. No CSA microorder other than NO CSA CONTROL (NOP) may be
issued bet~een START POP DOWN and FINISH PO? DOWN.

16. lOAO_CONTKCl_TOP must only be specified when memory is either
idle or in cycle 2. Following a LOAD_CONTROl_TOP, RDR must not
~e read until a full memory read cycle completes (i.e., cycle 2
of the next start read).

17. Microevents which abort loadin~ of MAR or WDR leave these
re;isters in 2n inconsistent state (i.e., memory board copy is
loaded, while the processor copy is not). These must be made
consistent by successfully loading the MAR or WOR before memory
is start9d. This is easily don~ by handlers alw~ys loading MAR
~efore issuin~ ~a~ory starts or reading RDR (which might result
in ?n E~:: 2ven:). As long 23 the proper timing of
ST~~T_IF_I~COM?L~T~ and RETU~N 3re observed, an i~terrupted
LOAJ_WJ~ s~culd be re2xecu~2d correctly.
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13. The m~mory m~nitQr
monitor conditions
negative aS3~rtad.

conditions table indicates which memory
are positive asserted, and which are

1;. If a scavenger tr2D or out of range memory exception occurs
whil~ writing to memory, data 3re written even thou~h the
memory ex cs p t i o n a ven t is tai<en. In the latter case (o'u'tof
ran;~), t~? writ? may be ignored, since no valid data, exists
b2y~nd the ~op of th~ control stack for a running task. In the
f~rmar case (sc3ven;er trap), the handler must undo the write,
if it chooses to, by readin~ the ROR on the memory board (which
contains the old contents of memory), and writing it to the
offending 10c2tion. Since the DUMMY_KDR is enabled following a
WR!T~, the handl?r must issue DISA3LE_DUMMY_NEXT MAR_CONTROL
rzndom in the cycle prior to reading RJR, to get the old
eont2nts from th~ mamory board. This may cause EQCC events.
The ~JR is net loaded d~rin; page ~ode writes, so the RD~ will
maintain the eont~nts of the first location written during ~age
mod.:? ~rit?s.

2]. OUT J= RlNGE condition is testable in th? second eyel::
folls~in; l~adin; of ~r2 MAR or the CONTROL TC~.

21. If Y0U ~art th2 =R~~~ lJJR~SS on the VAL bus you ~ust specify
~~e ~:~ 23 V~L ~us s~urce. F~~ME ADQR~SS can't be read until
CY:L~3 or la:?r ~f 3 m~~ory cyc12. It must n2ver be read
duri,; cycla 2 o~ 2 m~Mory eycl?

22. Th~ Scaven]er ~3m is accessed using a bit derived similarly to
~R:T~_LlST. In order to read or ~rite the scavenger ram, this
bit rr.us~ be set orooerly, using NAME_QUERY to set it to on::
(~~:T=_lAST) or AVA:LA8LE_~U=RY to set it to z~ro (REAC_LAST).
N~ither of these miercorders will modify LRU or any other TAG
state. Nota: tne sC3venger ram parity cannot be initialized
under microcode control without disabling parity checking for
both the memory ~oard tag stores and the scavenger rams
thel1selves.

23. Testing a MEMORY EXCE?TION component or PAGE_CROSSING condition
during CYCLE2 of a memory reference will Cause the
corresponding MA~ state bit to get cleared. If events are
enabled, an event will occur in CYCLE2, but the MAR state bit
will be cleared, destroying evidence of why the event occurred.
Thus, events must be disabled when testing MEMORY EXCEPTION
compon~nt conditions or PAGE CROSSING. Note that
MEMORY_EXC~?T~ON may b~ tested without side affects.

24. MEMO~Y EXCEPTION components are cleared in the MAR when tested,
~hic~ clears the event, but the test condition is not cleared
until th~ prop~r registers are reloaded, or (for CACHE_MISS) a
ful: memory operation eo~plet2s.
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25. A M~MOKY_EXCEPTIO~ is posted during cycle 2 of a memory
operation in which one of these components is becoming set
(C~CHc_M:SS) or is already set (possibly OUTOF RANGE or
SCAV~NG~R TKAP), or in the cycle following the one in which a
~ESTO~~_MA~ sets one of these MAR flag bits.

In the latter case, the MAR flag bit may be set while the test
condition is not true. In such cases, testin~ the condition
wil: yi~ld a false, and clear the MAR flag bit, which may not
be ~~at you want. The three memory exception MAR flags, and
tne page crossing fla~, are testable from the TYPc_BUS (they
fa:1 i~ ~its 32••35) independent of the c~rrent value of their
res~e~tive memory monitor test conditions.

R~AO_M~~ must be
ACK_~~FR~SH MEMC~Y

specified (MAR_MAR in TI VI SRC)
START microorder is issued.

~hen the

27. Ahen tMe TY?~ board is selected to drive the space part of the
address bus (~hich happe~s whenever either the TY~~ or VAL
j82rds 2re sel?ctej to drive the 2ddress bus), t~2 least
si~nific~n~ 3 bits of 3_Address data are driven onto the space
~~rt af the address bus, u~less the c~rrent MA~_CONTROL
~icr8~raer is L8~C_M~~_xxx, in ~Mich cases the liter2l xxx is
~rivan. When ~~S7J~~_MA~ is tha M~R_CONTRCL microorder,
whetaver is selected as TY~ 3_Addr determi~es the data loaded
in:o the M~~ S~3ce portion (this is normally t~e same. source as
dSt3 driven vi~ the TYP Bus to the r: 3us to be loaded into the
~~NJ~~ eits). When I~CR~M~NT_M~R is issued as MAR CONTROL
micrJorder, but the FlU is not selected as address bus source,
the ~2~ory monitor execute a LO~J_M~R on whatever is driven on
the ad~ress and space ~ortions of the address bus. Using this
feat~re, ~A~ fla;s ~2Y be cleared and the address portion of
the M~R mcdifiad in a single cycle:

Read MAR, -- handle page crossin£ microevent
Ty~ { ALJ_BUS := Pass_Be TY?_BUS ) },
Va: { AJCR~SS_BUS := 4096 plus VAL_BUS },
Address_Bus_Src := TYPE_BOARD, Increment_MAR,
Select_Condition FIU (Page_Crossing), return;

7. EV2nt Timing and Aborted Operations

The memory board pi~elines op2ration directives, meaning that the
me~ory board does not act on a directive (such as a start or an abort)
until tne cycle after the microinstruction in which the directive is
issued. Thus, when a start microorder is i3sued in cycle zero, it is
lat~hed ~y the memory bJard 2t the end of cycle zero and examined and
aX2c~t?d durin; cycle one. Memory state chan;es are committed during
cy~12~. Thus, an operation must be aborted in cycle zero in order
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for the memory state m3chine to be stopped. Later than cycle zero,
the state ~acn~ne must run for its entire cycle before it is available
to accept na~ co~~znds. An g~rl~ §~grl suppressas the memory finite
state machine such that a new operation may be started immediately.
An 9ar!y abort is issuej to the me~ory bo~rd during cycle a and
latched. :urin; cycle 1, t~e board exa~ines both early abori and the
marn o r y c c n t r o l code a n d ; if the operation is not aborted, in'itiates
th~ r2q~ested oper2tion. Note that the memory control code must be
hald sta~12 durin; both cycle 0 and cycle 1, or the memory board will
get confused.

Even though the s~at2 machine·s timing can1t be altered, state
cha~;2s dur to 3 me~ory ope~ation may be suppressed during cycle 1.
Such 2n opgration is called a l~lg ~b~cl' and turns the current
operation into a r?ad, sup~ressas writing data to the ram array, and
suporasses updatin] the ta; store. Late abort is issued to the memory
board during cycle 1 and latched. The memory board only commits state
Chan]2S it the latch2~ late abort v31ue allows, although the ~OR is
los~ even ~nen the ooeration is late aoorted. R~R is preserved if the
an operaticn is 2arly aborted.

S~nc? ~~mcry ~5 pipelinej, uo to three operations may be active
at onca: an operation may be ccm~letin~ (in cycle 2), another ~ay be
in ~rO~r?3S (in ~yc:e 1) and a thir~ may je starting (in cycle 0).
Early 2nd late ab=~t ac~:y to the 002ration in the appropriate stage
of the pio?lin2. ~or ex?mc12, asserting early abort will abort the
operaticn in cy::e 0, ~~~ no~ affect operations in cycle 1 or cycle 2.
5imilsrly, :ate abort affects the ooeration in cycle 1, but not
O~2r3~ions in cycle : or cycle 2. There is no way to abort an
operation in cycla 2.

When a c~ndition21 memory start is issued, the memory monitor
iS5ues the memory st3rt 23 it would for an unconditional start, and
ass?rts early abort is the co~dition proves false:

microcode: resulting action:

if FOa tn?n
STA~T_R~AC

end if;
==>

STlRT_ME~ORY_REAO;
if not FOa then

~A~LY_A3CRT;
end if;

When a micro event occurs, both early and late abort are asserted:
in general, memory can't b~ star tee until the second cycle of the
handler if the event was 2n e3rly event, since the memory may still be
DUSY·

'tJh·'?n3 O:SP..1TCH
LO~) M~~, and the
logic~: address and

is issu.?d, the
s,?qtJ'?:1c~r must

space portions.

microcode must specify START_READ,
be the AODR~SS_8US_SOURC~ for both

The sequencer supplies the memory

~ation3l ~2chine5 ~rJprietary document
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address from
the sequencer
was issued.

th2 dispatch ram. If no memory operation is reQuired,
aS5er~s EARLY_ABORT in the cycle in which the dispatch

A USUAllY_DISPATCrl is handled similarly, except that, when the
Mint prov~s fa132, the s?quencer asserts LATE_ABORT and stops the
c 1 c c k for a c y c 1 e • The n ext se que n ti a :1 m ic rei n s true t {o·n may s tar t
memory, sinc2 it is delayed in ti~e one clock, allc~ing the memory
finit~ state machine to r~n its full (aborted) cycle.

~ational ~2chinas propri9tary document ORA;:T 3 Dece~ber 18, 1982
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1. Summary

This
Field
0i th
p:3rts

document is a functional and physical specification of the Ri000
Isolation Unit (FIU). It is assumed that the reader is familiar
the R1000 architecture and has access to documentation on other
of the hardware.

Section 2 of this document describes the functionality of the FlU and
lncludes a description of each major block of the FlU block diagram.
Section 3 describes the microword. and provides detailed information
about the hardware that must be considered when writing microcode for
the FlU. Section 4 includes some examples of how to use the FlU.
S2ctioT1 5 discusses diagnostic capabilities provided by the hardwa~2
and section 6 iS3 p h q s i c a I specification of the FlU board.

2. Functional Overview

7h2 b3sic operations of the FlU are ins2r~ing a field 0; 0 to 64 bIts
i nt o aTHj p os i b i o n of a 128 bit I..UGrd, and extr:1,:tlng:1 fi.:>ld 0+ 0 to tA
b:r.;=-.. -From a 122 b i t, JliJ~l'd. The ext:acted data is light -aligned on th-=:o
value half of the FlU output and can be sign extended or zero fil12d
'Ii>? fields being in s e rb e d or extracted can be defined bl.i their i::)ff-:;e'f;
:3'1 dIe n 9 t h . For ins e r t • 0 f f set ref e r s tot rl e bit p o 5 i t i on w he T' e t; h e
in D .::;t 5 i 9 n 1 'r- 1 can t bit 0 f the sou r c e d a t a I:; t 0 b e ins e,' t e din t G the
result. For extr3ct. offset is the bit position of the most
significant bit of the field in the source data. In both cases length
i5 the length of t:'2 fi~ld being manipulated. The bit numbering
convention is MSB=O and LSB=127. Inserting a field of zero length
does not modify the destination word. and extracting a field of zero
length returns all zeroes. The FlU will also be used for Block Copy
and Ap p e n d operations. which can be accomplished with a series o·F
insert and extract operations.

2.1. Rotator

The rotator is used for positioning bit fields for insert or extract
operations. When extracting a field it also outputs the most
significant bit of the field being extracted for sign extending. The

,128 bit input to the rotator can be rotated by any amount and the
app,'opriate 64 bit slice of the result is output. The bits to be
output and the rotate amount are determined by whether you are doing
an insert or extract. and by the field offset and length. If the
operation is extract. the rotate amount is -(offset+length) right
[(affset+length) leftJ. and th? sign bit is determined by offset. If
the operation is ins~rt. the th~ rotate amount is (offset+length).
The he r d ura r e selecting the appropriate 64 bit5lice to be o u t p u t
as s urne s . on insert op e r a t i o n s . t ha t the tlJpe and vs l u e halves of the
rotator input are the same. If the insertion does not cross the
GtJpe/\;al.ue b o u n da r-q or a uro r d b o un d e rq then the data need onl'J be
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Functional Overview 2

input to the side of the rotator corresponding to the side into which
the data will be inserted.

2.2. Merge Data Register

The Merge Data Register (MDR) is used for storing the rotated data to
be inserted into another 128 bit word, or for holding an intermediate
result to be stored in the register file on either the VALUE or TYPE
board. This register can be loaded and read by the diagnostic
processor for testing the entire FlU data path.

;;:~.3. Mer 9 e VmlJ x

Ine Merge VmlJx selects one of four sources of data to
~he rotator output on the Value half of th9 merger.
:::0 thi·:, ,11UX are the .'lDR, t h s rotator sign bit o o t pc t .
+;h2 FlU bus.

be
The

tHe"!'g ed

'-,)I bus, and

;;::.4.f1erg2r

Th.= me r q e r- 1S a 128 bit 2 to 1 multiplexor whi.:h rne r q e s data from 1;f12

Dutput of the rotator (ROTDATA) with data coming from the T_ bus, on
the type half, and the merge vmux on the value half. A merge mask is
generated to control the select lines of the merger using the offset,
length. and operation parameters. These parameters are used to
c31culate a start bit and end bit which mark the beginning and end of
~he field where the ROTDATA will be selected on the merger outputs.

operation start bit end bit
----------------+-----------------------+------------------------

extract 128 --length 127 .
insert first offset 127
word

insert last 0 offset+length--l
,word

i ns e r t offset offset+length-l

In the examples of section 4. the merger inputs are referred to as the
r 0 !:; ate din put s, '.l) h i chi s t had a t; a fro li1 the ROT DA TAb U::· I an d the
unrotated inputs: which is the data +ro m t h e TI b us and MergE' __t,,'mux.

Rational Machines proprietary document DRAFT 2 ,)u I y i .-,.Lc:., 1'7'8~2



Functional Overview 3

2.5. Type Assembly Register and Value Assembly Register

The TAR and VAR are used for storing intermediate results. and are
also used when the timing does not allow the results to be written
back out into the register file. The only data path r?st~icted by
timina in this way is data being driven from the register file.
through the FlU data path. and out to the register file on the FlU
bus.

2.6. Bus interfaces

The FlU interfaces to the TYPE_DATA. VALUE_DATA. and FlU_DATA busses.
The sources of these busses are selected by two field; in the
microcode: VAL.UE_AND_TYPE __BUS_EN:3nd FIU_BUS_EN. l..!lhichare in the F--IU
pa r t of the mi c r owo r d. These b u s s e s include byte parii.:'~ checking and
generation. and a machine check is generated if a parity er~or IS

detected on a bus from which th2 FlU will be receiving data.

2.7 Conditions

1-h e F-- lUg en e r- a t ~t s· t!..1J 0 can d i t i oJ n s : C T" Q S S _'JJ Q;' d Pie 1 d J and D r of o=- e t bit c·
T h >2 C r- 0 S .; _'.lJ 0 I' d _ f i >? 1d con d i t i on res u 1 ts IJ.i hen a fie 1d i r, :; E' 1"';; i Gn iJ T'

extraction crOS3es a word boundary. The offset_bitO condition is
tested mainly for determining whether the BADBITID generated Dy the
ERCC hardware is in the upper or lower half of the 128 bit word.

3. Microword Specification

3. 1. Microword Format

OFFSET (7 bits) - specify a literal for the offset parameter. The
microcode should specify offset~ in this field.

xxxxxxx = offset~

OFFSET_REG_CONTROL (2 bits) sp e c i Pu the load control for the off·:;et
r e 9 is t er

1 x

Load offset register with Address Bus (7 LSB's)
Load offset register with OFFSET literal
No Load

00

Rational Machines proprietary document DR,L\FT 2 ~July 12,1982



Microword Specification 4

OFFSET_SOURCE (1 bit) - specifies the source of the offset parameter

o offset = offset register
offset = micra literal

LENGTH AND FILL MODE (7 bits) - speCl~Y a literal for the length and
fill mode parameters. The most significant bit of this field is the
fill mode literal and the least significant 6 bits are a literal that
specify length-1. A length of 64 is differentiated from a length of
o by defining the fill mode bit for 64 to be 0 (which will ihdicate
sign extend) and the fill mode bit for 0 to be 1 (which will indicate
z e r o fill>.

'111111 = fillmoG2111ength-l

0 ~ s i 9 nT -- =..,:'
== 1 - -e,

: Z 121 0-'

s x te n d
·fi 11

U:'.NGTH__AND_FILL __REG_CONTFOL (2 o i ts ) Sp2.:ify the load co n t r o l for the
length and -till mode r e q is t e r-.

length pa r t f i 11 rnod e part

00
01
10
11

- 7.
L03d VI (25: 31)
Load 1i t e r al

u 1 " L I (Load TI (37: 42) I ,,(J
no load .- .

Load T1 (36) Y 0
Load litt:T'al
Load TI· (36) t-ic)
no load

FILL._MODE_SOURCE (1 b i t ) specifies the s o v r c e of the fill mode
parameter

o
1

fill mode = fill mode register
fill mode = micro literal

LE.NGTH_SOURCE (1 bit) specifies the source of the length parameter

o,
1

length = length register
length = micro literal

Rational Machines proprietary document DRAFT 2 ·)u 11:J i .-,
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Microword Specification 5

VI_AND_TI_BUS_SOURCES (4 bits) specify the source of the TI and v I
busses

TI bus SOUT'ce VI bus source

OO()O
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
110Ci

TAR
TAR
TAR
FLU
FLU
FLU
TYPE BUS
TYPE_BUS
TYPE_BUS
Mt~R
TAr~:
TYPE._BUS
FlU
s par e
';P,:1T'E.'

s p a r e

VAR
VALUE BUS
FLU_BUS
VAR
VALUE_BUS
FLU
VAR
Vt-'\LUE_BUS
FLU
MAR
FRAME ADDf':ESS
FRAME_ADDRESS
FRAf1E_,C.DDRESS

1110
1. 111

LOAD.~DR (1 bit) specifies whether OT' not to load the Merge'Data
Rf·gister

o don't
1

OPERATION_SELECT (2 bits) s p ec i Pu the FlU o p era c i on . mod 128 o f the
results for start bit, end bit, and r o t a t a amount are used by the
h a r dware,

op merge mask
start bit end bit

rotate amount

00 extract
01 insert last
10 insert first
11 insert

128-length
o
offset
offset

127
offset+length-1
127
offset+length-l

-(offset+length)
offset+length
offset+lengtb
offset+length

MERGE INPUT (1 bit) specifies the SQUT'ce of data to the meT'geI'

1
rotator output
merge data register

Rational Machines proprietary document DFt~FT 2 ,)uly 12, 1982



Microword Specification 6

MERGE_VMVX_SELECT (2 bits) specify the output of the merge_vmur.

00
01

11

merge data register
fill value
VI
FlU BUS

LO(J,D-TAR ( 1 bit) specifies

0 don't
1 do

LOAD _VAR ( 1 bit) specifies
r, don" t,-'

" d o

whether or not to load the TAR with TO

whether or not to load the VAR with va

01
iO
i i

FlU board
',,'ALUEboard
TYPE board
MlCROSEQUENCER board

VAU.JE_AND_TYPE_BUS_SOURCES (4 bits) specify the source of the value
and tt1pe busses

1010
1011
1100
1101
1110
1111

TYPE board
TYPE board
FlU board
FlU board
~EMOR¥-~\2~~
SYSBUS board
t1ICROSEGUENCER
TYPE board
FlU board
s p e r e
spare
spare
spare
spare

VALUE board
FlU b o ar- d
VALUE board
FlU b oard _D~A-
"'1El'lel~Y ~ ~S=,~~D_RD~)
SYSBUS board

board tV.fo-RETSEGUENCER board
~MORY ..bo;e!!'f;t/ It-' (READ_T'.,'R)

~~'( e~:;:::>;-tREAD_TVR)

spare
all b os r d s c t ss b l ed from driving the TYPE, ')ALUE,

FlU b u ss e s
and

Rational Machines proprietary document DRAFT 2 ,July 12, 1982



Microword Specification 7

3.2. Microcode Considerations

3.2.1. Offset, Length, and Fill Mode Parameters

The seven least significant bits of the ADDRESS bus are latched in the
FlU board when loading or restoring the MAR, or when the SYSBUS board
drives the BADBITID onto these lines as a result of an ERCC event.
This register can also be loaded with the literal specified in the
OFFSET field. This latched value or a literal can be selected as a
source for the offset parameter. If the latched value is selected, the
data must have been loaded into the register at least one cycle
previous to starting any FlU operations; however, a literal can be
specified and an operation using that literal can be performed in the
same cycle. The source of data to the length parameter register is
selected by microcode to be from the VI bus bits (25:31). from the
literal specified in the LENGTH field. or from the TI bus bits
(37:42). When restoring the MAR the microcode must select the TI bus
source to this register. This latched value or a literal can be
specified as the source for the length parameter. If the latched value
15 se lec t ed the data must have been loaded into the registel':3t 1e';:;"31:;
one cycle previous to starting any FlU operations using this value;
however, a literal can be specified and an operation started using
that literal can be performed in the same cycle. The sou~ce of data
to the fill mode parameter register is selected by microcode to be
from the TI bus bit (36) or from the literal specified in the
FILL_MODE field. If the latched value is selected, the ca t ..3 must helve
been loaded into the register at least one cycle prior to starting any
FlU operations using this value; however a literal can be specified
and an operation started using that literal can be performed in th2
same cycle. When reading the MAR for saving state, the offset
register is returned on the seven LSB's of the VALUE bus, the
f i ll_m 0 del' e 9 is ter i s r e turned on bit 36 0 f the TYPE bus , and t h .~
length register is returned on bits 37:42 of the TYPE bus.

3.2.2. Condition timing

If the data being loaded into the offset and length registers in cycle
Ji e;ult in the value (o'ffset+length) being greater than 128, then ,~
croJs_word_field condition will be generated which is an early

dition and will be valid during cycle N+l. This condition will
'change only when new data is loaded into either of these registers.
This condition only indicates that the values in the offset and length
registers will result in a cross_word_field, unlatched literals will
not affect this condition.

Rational Machines proprietary document DRAFT 2 ..July 12, 1982
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3. 2. 3. Saved state

When an early event stops occurs the clocks to some registers are
stopped so that they can be saved and restored by the event handler.
The 0 f f set I Len 9 t h 1 and F ill _M 0 d ere g i s t e T' s are the 0 n 1:4 reg i s t e r- sin
the FIU that are clock in this manner.

3.2.4. Miscellaneous microcode restrictions

When using the FLU bus as a SOUrce to the Merge_Vmuxl
also be selected as a source to the TI bus so that
z h e c k e d .
4. FlU Examples

the FlU bus rnus t
parity can De

.:1. 1. Insert

~YCLE 1 - The offset and length par3meters are deteT'min~d from a
lLt2ral specified in this cycle OT' from a value latched in some
or e vi o ua c q c l e (it is p oss i b l e to "=,pe,:i-?!:! a Li t e r-a I 'rOT' one ana.3
previously latched value for the other). The 1 to 64 bit field is
sent from the register file on the TYPE or VALUE board. ove~ the
FlU_SUB and driven onto both the TI and VI busses. These bits are
rotated right by (offset+length), and th9 result is stored in the MDR

d.~ta s ource
+--------+----------------.
!garbage field
+--------+----------------+

destination
offset;--+

V
+-----------------+----------------+----------------+

field
~-----------------+----------------+----------------+

rotator input
+--------+----------------+--------+----------------+
:garbage field 19arbage field
+--------+----------------+--------+----------------+

-,,

rotator output (loaded into MDR)

~--------+--------+-------+
:aId :garbage fi:
+--------+--------+-------+

Rationed Ma,:hines proprietary document DRAFT 2 JulLj 12, 1982



FlU Examples 9

CYCLE 2 The output of the MDR is input to the rotator part of the
merger on both the value and type halves. The word into which the
field is inserted. is being driven onto the TI and VI busses. The
TI bus drives the unrotated of the merger input on the TYPE half.
and the VI bus is selected as the MERGE_VMUX output to d-:-ivethe
unrotated part of the merger input on the VALUE half. The
merge mask start bit is (offset) and the endbit is (offset+length-l).
The output of the merger is loaded into the TAR and VAR.

merger input
(i' 0 tat ed par t )
+--------+--------+-------+--------+--------+-------+
!eld :garbage : fi:eld :garbage : fi:
+--------+--------+-------+--------+--------+-------+

merger input
(unrotated part)+-------------------------+-------------------------+

TI VI~--------------------------+-------------------------+
mel'g? mask

-------------
merger o ut pu t+-----------------+----------------+----------------+

TI field+-----------------+----------------+----------------+

f(..:'1 t j CJna 1.l'la chi n 25 pro P r- i eta l' iJ doc umen t July 12. 1982
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11.2. C1'OSS W01'd Insert

CYCLEi - The offset and length specified have resulted in a cross word
field condition. In this cycle the data to be inserted lS driven over
the FlU bus and onto both the TI and VI busses, then rotated left by
(offset+length) and stored in the MDR.

data source
:<- length ->:

+--------+----------------+
:9aroage field
+--------+----------------+ offset ---+

V
+---------------------------------------+----+

uro r d l C . i'( 1 I

+---------------------------------------+----+
+------------+-------------------------------+
-l--'- - --- -- - _ ...- -~--.:- .•- _.- -- .- --- - .-~-- - -- - -_ ...- --- - -.- .- -.- -- -- - - -- +

l'otat01' +--------+----------------+--------+----------------+
input :garbage field :ga1'bage ;ield+--------+----------------+--------+----------------+
rotator output (loaded into MDR)

+--------+--------+-------+
:210 :garbage fi:+--------+--------+-------+

CYCLE 2 - Wordl i5 driven onto the TI and VI busses and merged with
the MDR. The insert fir·5t W01'd mask is used, the type half of wordi is
sto1'ed in the register file on the TYPE board, and the result of the
insert is driven onto the FlU bus and stored in the register file on
the VALUE board. ~

merger input
(rotated part)

+--------+--------+-------+--------+---------+-------+
leld :garbage fi:eld :ga1'bage fi:+--------+--------+-------+--------+--------+-------+

merge1' input
(LJnrotated part)

+-------------------------+-------------------------+
word1 TI VI

+-------------------------+-------------------------+
inse1't first
word mas k ._. .

Rational Machines proprietary document DRAFT 2 ·July 12, lS'82
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CYCLE 3 - Word2 is driven onto the TI and VI busses and merged with
the MDR. The insert second word mask is used and the result is stored
in the TAR and VAR.
merger input
(rotated part)+--------+--------+-------+--------+--------+-------+

!eld :garbage fileld 19arbage fi:+--------+--------+-------+--------+--------+-------+
merger input
(unrotated part)+--------------------------+-------------------------+
word2 TI VI+-------------------------+-------------------------+
s e co n d uror d
mask

C{ C l..E 4 -- The res u 1t oJ f the fiT's t; i ns er top l? rat ion noIjJ S t o l' '"don thE'
register file are written back to wordl.

CYCL.E 5 - The result of the s e c o n d insert o p e ra t t on now s to r e o In the
TAR and VAR are written back to word two.

Rational Machines proprietary document DRAFT 2
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4.3. Extract

CYCLE 1 - The offset. length. and fill mode parameters are specified
as literals or selected from previously latched values. The source
word is driven onto the TI and VI busses and rotated left by
(offset+length) to right Justify the field being extracted. The sign
bit is is selected to be output from the MERGE_VMUX so that the
ext "act e d fie I d and the si 9 n bit can be IIIerg e d and eithe r d r-i ve n 0 u t
the FlU bus into the register file or stored in the VAR.

source word offset--+
V

rotator +-----------------+----------------+--------------.--+
input field

+-----------------+----------------+----------------+
:.(- Jength -. !~ \

+--------+----------------+
output ~garbage field

-~--~-------+---- ---------------..;;
mer-ger input
(rot3ted part)

+--------+----------------+--------+----------------+
:g.:3rbage field field
+--------+----------------+--------+----------------+

fnE.'T'gerinput
(unrotated part)

+-------------------------+-------------------------+
TI fill bits

+-------------------------+-------------------------+
o?~tract
ma s k

If fill mode = zero fill then the fill bits will be all zero's. and if
the fill mode = sign extend then the fill bits will be the MSB of the
extracted field.

Rational Machines proprietary docum@nt DRAFT 2
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4.4. Cross Word Extract

CYCLE 1 - The offset and length parameters have generated the cross
word field condition. The first source word is input to the rotator on
the TI -3nd VI busses and the VALUE half of the word is extracted and
stored in the VAR. This is done by specifying -3 literal offset of 64.
and a literal length of 64.

offset ----+
source word 1 V

rotator input
+-------------------------------------------+-------+

fi:+-------------------------------------------+-------+
T'Qtator output +-----------------+-------+

+-----------------+-------+
merger i np u b
(ro:.t -,a t ed par t i

+-----------------+-------+-----------------+-------+
fi:+-----------------+-------+-----------------+-------+

merger input
( :.1 nrot ate d par t )

+-------------------------+-------------------------+
TI XXXXXXXXX+-------------------------+-------------------------+

,;:xtract
(il,':,'::; k

Rational Machines proprietary document DRAFT 2 ,)u lLJ
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CYCLE 2 - The type half of the second source
TI bus and the VAR is driven onto the VI bus.
length, and fill mode parameters are selected
The result can be stored in the VAR or driven
stored in the register file.

word is driven onto the
The latched offset,
and an extract is done.
onto the FlU bus and

rotator input +--------+----------------+-----------------+-------+
:eld fi:+--------+----------------+-----------------+-------+

rotator
output

+--------+----------------+
:garbage field+--------+----------------+

merger input
(rotated part)

+--------+----------------+--------+----------------+
:9arbage field :garbage fleld+--------+----------------+-------------------------+

me r q e r input
(I..mrot3ted p e r t :

+--------+----------------+--------------------------+
:eld fill bit~+--------+----------------+---------------.-~--------+

e xb r a c t
mas!<

Rational Machines proprietary document ~'!lJly 12, i982
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4.5. Using the FlU as a General Purpose Shifter

The following examples show how to use the FlU as a general purpose
shifter to shift data on the Value part of the rotator input. The FlU
operation and parameters selected will depend on the direction of the
shift and whether the field being shifted is left or right aligned.

4.5.1. Right Aligned data, Right Shift bf~ n bits

This is really a normal extract operation!

f~otator Input
o

128-length--+
63 64 V+-----------------------+--------+----------------+xxx xxx+-----------------------+--------+----------------+

Oparai;i'-.m
Oi~-rs'?t
L_2l'lgtn

::::extract
::::i28-1'?ngth

::::length-n

Rotator output
64-1eng+;h-n --+

o n--1 63+-----+-------+---------+
:data :XXXXXX?: unsh i fted :+-----+-------+---------+

Merge Mask Start Bit
Merge Mas~ End Bit

::;128-1ength+n
= 127

Rational Machines proprietary document
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LL 5.2. Left Aligned Data, Shift Right n bits

r~otator input
64+1ength-1 ---+

o 63 64 V 127+-----------------------+----------------+--------+
XXXXXXXXXXXXX unshifted data : ?????? :

+-----------------------+----------------+--------+
Operation
Offset
Length

= Extract
= 64
= 64-n

Rotator Output

o
n+Le nq t h-v t ---+

n (,;

+----+----------------+--+
; .-,.-: ,
i ;' :' !

+----~----------------+--+
Merge Mask Start Bit - 128-(64-n) = 64~n
Me~ge Mas~ End Bit = 1~7

R.3i;ional Machines p r o p r-Ls t.s r q document DRAFT 2 July i 98~.~
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4.5.3. Right Aligned Data. Shift Left n Bits

Rotator Input 128-1ength--+
o 63 64 v 127
+-----------------------+--------+----------------+

xxxxxx
+-----------------------+--------+----------------+

Operation = Insert
Offset = 128-1ength-n *** Offset must be greater than 63 or the

hardware selecting the participating tits
will not work properly ***

Length = Length

63-n ---+
«
+---+----------------+--+
+----;._-------_._---------+--+

Marge Mask Start Bit = 128-1enQth-n
M~rge Mask End Bit = 127-n

None of the FIU operations will generate the correct rotata amount and
merge mask to accomplish this shift in one cycle. The rotated data
would have to be stored in the MDR during the first cycle. and the
of·t-:,et and length IJJould have to be changed to generate the COT':'2Ct

merge mask during the second cycle.

Rational Machines proprietary document DRAFT 2
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4.5.4. Left Aligned Data, Shift Left n Bits

Rotator input
64+1ength-l ---+

o 63 64 V 127
+-----------------------+----------------+--------+xxxxxxxxxxxxx : unshifted data: ?????? :
+-----------------------+----------------+--------+

Op2ration
Offset
Length

== Insert
== 64
- 64-n

Rot.3tOT' Output

1eng t h-n --+ +---- 64'j.-n

o l.j V 63
+------------+-----+----+

+------------+-----+----+

Merge Mask Start Bit - 64
M~rge Mas~ End Bit = 127-n

5. Diagnostics

6. Physical Specification

Rational Machines proprietary document DRAFT 2
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