m@uﬂ@@ﬂ@]@@uom

m&@ﬂﬂ

'=B0)30)

ATy

Introduction

About Musil

The Constant Section
The Type Section

The Variable Section
The Main Program
Handling Exceptions
Special Words

Tables

Operation Mode Table
Musil Error Messages
Musil Program Example

Introduction

MUSIL is a programming language that was
designed for the specific purpose of facilitating
input/output information processing. Therefore, it
is primarily concerned with data in its aspect as
text, rather than in its aspect as numerical values.
MUSIL is, thus, not designed for computational
purposes.

-MUSIL is, secondly, designed to facilitate com-
munications between the programmed operation
and the machine operator. This means that it is
designed to satisfy realtime programming needs.

Finally,MUSIL is suitable for data communicat-
ions. Its instruction set includes a considerable
repertory of error-handling instructions.

The purpose of this booklet is to introduce the
reader to MUSIL programming. {t assumes that the
reader is already familiar with some other pro-
gramming language, whether a language of the
-assembly type or of the higher level type. The
booklet does not, therefore, describe all the pos-
sible MUSIL instructions, and it does not discuss
the interaction of MUSIL with the underlying MUS
operational system. For advanced MUSIL program-
ming, the reader should refer to the MUSIL refe-
rence manual and to the MUS manuals.

There is a text editor program that can be
used by the programmer to change or correct his
programs sitting at the console device of the RC
3600 machine. The use of this program for such
purposes is described in the RC 3600 MUSIL Text
Editor Manual.

About Musil

MUSIL is a language that can operate both on
whole files and on individual characters within
files. Thus, it shares some of the characteristics of
assembly languages and also of higher-lever lan-
guages. The programmer with previons experien-
ce with I/0 programming in an assembler langua-
ge should be able to learn MUSIL in a day or two.
The programmer whose previous experience has
beenwithlanguages such as FORTRAN or ALGOL
may find it advisable initially to writeprogramsthat
handle whole files, and then progress to the full
set of MUSILinstructions.

Whatever the level of knowledge of the pro-
grammer, certain programming conventions
should be followed when using MUSIL,so that pro-
grammers other than a program’s original author
will find it easy to understand, up-date, modify,
and/or correct the original program. This is a very
important point to remember, as it is estimated
that up to fifty percent of programmer time at any
programming installation is occupied with work
on old programs. Following correct programming
conventions will also help you to write error-free
programs more quickly.

The first principle of good programming tech-
nique is that programs should be written in mo-
dular fashion. MUSIL provides facilities to help you
follow this principle easily. A MUSIL program is
written in sections. The first section is the con-
stant section. This is followed by the type section,
the variable section, and the main section. Within
the main section procedures are first defined. In
the final part of the main section there should be

-— as far as is practical —- only calls to procedu-
res. Programs written this way are easy to read,
modify, and document.

The second principle of good programming
technique is full, clear, and adequate documen-
tation. Each program should begin with a com-
iment section which describes the purpose and
operation of the program. Each procedure should
be proceded by a comment section that describ-
es the purpose of the procedure and the condi-
tions under which it will be called. Each line of the
main program (and of very long procedures too)
should be explained by comments.

In MUSIL comments are written within two ex-
clamation signs:

! THIS IS A COMMENT !

Thus the overall structure of a MUSIL program
should ressemble this model:

! comments describing program
o
[]
°

constant section
type section
variable section

! description of first procedure !
first procedure
! description of second procedure !
second procedure

[]

[]

[]
! description of last procedure !
last procedure

main program ! comments to main program !

The third principle of good programming prac-
tice is readability. That is, many different people
may have to read your program, or you may have
to read it long after you have written it (and for-
gotten it). Thus, it is advisable to write the main
program in such a way that only one instruction.
or two closely related instructions, appears on
each line, with the remainder of the line being
used for comments. Longer procedures should be
written in this way also.

Modularity, documentation, and readability
will not only make your programs more usefull.
They will also help you to write better programs
faster, and they will allow you to achieve a maxi-
mum of error-free coding. They are well worth the
time they take.

The Constant Section

The first part of a MUSIL program is the Constant
Section. In it several different sorts of constants
can be defined. The simplest is the definition of a
simple numerical value:

ALPHA = 45,

" is such an example. This statement assignes the

value decimal 45 to the world ALPHA.ALPHASvalue
could have been set in octal or in binary, as well
as in decimal, but at any rate, the value of ALPHA
must not exceed 16 bits. That is, ALPHAmust be a
value between decimal —32768 and +32767. The
name of the value, in this case ALPHAcan be as
long as you like. The system will identify it by its
first seven characters and the total number of
characters in it. The name of the value must, fur-
thermore, begin with a letter and include no sym-
bols other than letters and numbers. Notice that
each assignment in the Constant Section must
close with a comma, and that the system will ig-
nore spaces.

Some other examples of numerical values
might be:

NUM123 = 2'011001,

NUMS555 = -8'775,

ACT88B = + 23005,

l'a binary number!!
! an octal number !
I a decimal number !

Decimal points cannot be used.

The Constant Section begins with the key-
word ‘

CONST

not followed by any puctuation. As stated above,
every definition is followed by a comma:

ALPHA = 45,
BETA1 = 67,

and the last entry in the section is followed by a
semicolon:

CONST
ALPHA = 45,
BETA1 = -8'377,

GAMMA = +2'0011;

Though the system will ignore spaces that oc-
cur between parts of a statement, blanks must not
occur within the name of the value or within the
numerical value itself. The following statements
are not allowed:

GA MMA = +2'0011, Yerrorin name !

BETA = - 8'377, !error after sign!

PHI = -200 11, l'errorin value !

Besides integers, other sorts of constants can
be defined in this section. The most common one
is the string of characters representing an ascii
text. For example,

ALPHA2 = 'THIS IS ALPHA2',

which gives the name ALPHA2 to the text THIS IS
ALPHA2. Such a text cannot, obviously, be operat-
ed on numerically, but it can later on be assigned
to a variable as its current value. It can also be
used in text comparisons. And it can be output
on the operator’s console.

Strings can be enclosed within either single
or double quotes, and no error occurs if the single
and double quotes are mixed. Thus, it is all right
to write

ALPHA3 = “THIS IS ALPHAS SECOND VALUE",
ALPHA4 = “THIS IS OK’,

ALPHAS ="THIS IS OK TOO",

String constants defined in this section are
stored in their locations left-justified and with a
binary zero at the end of the text. When they are
read out to another location, or to an output de-
vice, the binary zero is stripped off. Therefore, it
is important to remember that this terminal zero
will not be carried with the text when it is later on
assigned to a variable and then output to the con-
sole. The absence of this binary zero will cause
the console device to keep on printing after the
output text has been completed. To avoid such a
situation, you sihiculd place a binary zero after
each text that will be assigned to a variable and
then output from that variable. This is done in the
following way:

ALPH = 'THIS WILL BE OUTPUT <0>’,

Strange things can happen if the above me- -
thod is not employed. Say, | have in ALPHA20 the
text THIS MESSAGE IS WRONG. If somewhere in
my program, | move into ALPHA20 the text THIS
IS ALPHA, then on outputting ALPHA20 | would
get

THIS IS ALPHAIS WRONG

The use of the final zero will eliminate such
situations. Of course, string constants that will
not be moved around in the program need not
have the binary zero put after them, for the com-
piler will do this automatically in the execution of
the Constant Section.

Text strings may be defined for strings of ASCII
values. If we write

ALPHA = '<45>’,

we have a text string, and though we cannot per-
form arithmetic on it, it can be assigned to a
variable, compared with another text string, or
output to a device. For this sort of statement the
binary value 45 goes into the location. Since the
ASCI| code for decimal 45 is a minus sign, a mi-
nus sign is put into ALPHA. If we write

BETA = '<8' 26>’

then the ASCII code for V goes into BETA (left-
l justified). Similarly, we can define ASCII repre-
sentations for carriage return, end of text, or
whatever. This is the only way to include control
characters in a text.
' Using this method any symbol can be output,
including “Bell”,’, and ".
‘ An ASCII code table follows for your reference.
l S S I B I S B
ES S &8 | Es ¢ s|Es ¢ 8
&8 3 & |8 3 &8 3 3
I 0 000 NUL | 43 053 +| 86 126 V
1 001 SOH | 44 054 87 127 W
2 002 STX | 45 055 - 88 130 X
l o 3 003 ETX | 46 056 . | 89 131 Y
4 004 EOT | 47 057 / 90 132 Z
5 005 ENQ |48 060 O | 91 133 [
6 006 ACK | 49 061 1 92 134
I 7 007 BEL | 50 062 2 93 1353
8 010 BS |51 063 3 | 94 136 ¢
9 011 HT |52 064 4 | 95 137 <
410 012 LF 53 065 5 96 140 -
I *11 013 VT 54 066 6 97 141 a
12 014 FF 55 067 7 98 142 b
13 015 CR 56 070 8 99 143 ¢
14 016 SO 57 071 9 | 100 144 d
I 15 017 Sl 58 072 : | 101 145 e
16 020 DLE | 59 073 ; | 102 146 f
17 021 DC1 | 60 074 < |[103 147 g
18 022 DC2 | 61 075 =104 150 h
l 19 023 DC3 | 62 076 > | 105 151 i
20 024 DC4 | 63 077 ? | 106 152 |
21 025 NAK | 64 100 @ | 107 153 k
22 026 SYN | 65 101 A | 108 154 |
l 23 027 ETB | 66 102 B | 109 155 m
24 030 CAN| 67 103 C | 110 156 n
. 25 031 EM 68 104 D | 111 157 o
26 032 SuB | 69 105 E | 112 160 p
l 27 033 ESC| 70 106 F | 113 161 g
28 034 FS 71 107 G| 114 162 r
29 035 GS 72 110 H | 115 163 s
30 036 RS 73 111 | 116 164 t
l 31 037 US 74 112 J | 117 165 u
32 040 SP 75 113 K | 118 166 v
33 041 ! 76 114 L | 119 167 w
34 042 " 77 115 M| 120 170 x
35 043 ¢ | 78 116 N | 121 171 y
36 044 $ 79 117 O} 122 172 2z
37 045 % 80 120 P {123 173 {
38 046 & 81 121 Q| 124 174 |
39 047 82 122 R |[125 175 %
40 050 (83 123 S | 126 176 ~v
41 051) 84 124 T | 127 177 DEL
‘ 42 052 ° 85 125 U

You can also write strings of ASCI| characters:
ALPHA31 = <45><0><10 >,
which sets into ALPHA31 the string meaning

minus sign NUL Line feed

One can also define tables of constants in the
Constant Section. These constants are also text,
that is string constants, and the items in the table
cannot be operated on arithmetically. A constant
table might be set up in this way:

LPTABLE = <14 0 64 89 56 8377 0 65#,

Notice that the punctuation used between the
elements of a table is the blank. Note also the two
following statements are equivalent

ALPHA = #45#, and ALPHA ='<45>",

The numerical sign is a shorthand notation that
allows the programmer to avoid cumbersome
forms such as

LPTABLE = <14><.0><64><89> <56><8'377><0>
65 ',

Finally, constants useful in error routines can
be defined, for example,

STATUS = 'DISCONNECTED <10><0>
OFFLINE<10>(0><0Q <0O>
<0> <0><0><0><0>EOF
<10><0> B8 0><0> PARITY
<10><0> EM «1 0><Q><0><0>
<0>< 0>,

which will, when used with certain instructions,
display the appropriate messages on the opera-
tor's console. -

The Type Section

The second section that might appear in a
musil program is the Type Section, but this is not,
strictly speaking, a necessary part of a MUSIL pro-
gram. The Type Section in fact is only a place
where a kind of shorthand notation is provided
for defining variable types, or categories, so that
several variables that have the same structure can
later on be defined more easily in the third section
of the program, the Variable Section. There this
is done by referring to the type definition that ap-
plies to all of them. In this section, then, variables
are not defined, but categories of variables are
defined for later reference in the next section.

Variable types are defined in the Type Section
by identifying them, e.g., by specifying that they
are to be integers, files, or records, etc., by as-
sociating them with an identifier and by describ-
ing their structure, if any. In the last case an ex-
ample might be a situation in which we describe
the structure of a file by saying how many records
it contains and what the records look like. Many
examples will be found below.

The Type Section begins with the word
TYPE

not followed by any punctuation.

We may define scalar types. These may be in-
tegers or strings. Such an integer type definition
might look like this:

| = INTEGER;

which sets up a category, called I, whose mem-
bers will all be 16-bit signed binary integers.

Each statement in the Type Section is termi-
nated by a semicolon.

We may define string types here, viz.,
LINE = STRING (20);

This defines the category called LINE and spe-

cifies that it shall have as members strings consi-
sting of twenty 8-bit bytes.

Besides scalar types, we may also define re-
cord types here.

TYPE
PLINE = RECORD
L1: STRING (20);
L2: STRING (15);
L3: STRING (45)
END;

defines a record type, to be called PLINE, which
consists of strings of 20, 15, and 45 bytes in se-
quence, and called respectively, L1, L2, and L3.
We might have written this definition in an equi-
valent way:

TYPE
LINE1 = STRING (20);
LINE2 = STRING (15);
LINE3 = STRING (45)
PLINE = RECORD
L1: LINET1;
L2: LINE2;
L3: LINE3
END;

or we might have used a mixture of the two equi-
valent forms: '

PLINE = RECORD
L1: LINE1;
L2: STRING (15);
L3: STRING (45)
END;

Note that punctuation cannot come before an
END.

Such record definitions are useful in situations
in which control characters will be used.

TYPE

S = STRING (1);

.INREC = RECORD
CCw:S;
TEST: S;

LINE: STRING (132);
STOPF: STRING (2) FROM 1
END;

sets up a record type definition for a record whose
first two characters are text strings of one charac-
ter each and called, respectively, CCW and TEST.
These are followed by a string of 132 characters.
We furthermore define a name for the first two
characters taken together. We call them STOPF.
One may also write

CCW, TEST: S;

Finally, we can define file types in the Type
Section. The coding

IN = FILE :
'MTO’, 14, 1,600, F
OF PLINE;

sets up a file of records with the record structure
previously defined when we described PLINE
above. (In this coding we might have replaced
PLINE by its definition.) The coding further tells
us that the device is call MTO. This name must
have been defined in the device’s driver program.

One is permitted to use single (" ') or double
(* ") quotes around the device name, which can
be up to six characters in length.

Following the device name, appears the de-
cimal representation for the binary code that tells
the central unit what to expect from the device
and its operation. At present the following kind
bits are defined:
bit 16 char is set if the device transfers
information character-by-
character;
is set if full blocks are
transfered as units;
is set if positioning is
effectual on the device;
is set if an operation can
be repeated.

bit 14 blocked
bit 13 positionable

bit 12 repeatable

For example, binary 1110 equals decimal 14, so
that our MTO is not character-oriented, but is
block-oriented and positionable, and can also re-
peat I/0 operations.

Further examples might be
0001 line printer 0001
0011 line printer 0001
0010 card reader- 0001

teletype
paper tape punch
paper tape reader

In our example, MTO is, obviously, a magnetic
tape station.

Following the kind definition, we find the de-
cimal representation for the number of buffers.
The maximum that can be used is 64. One deter-
mines the number of buffers for the device by
trading off execution time against space in core.
You will probably want to try a number of possibi-
lities for each of the programs you write, as the
determination of this number can influence se-
verely the speed with which your programmed
operation proceeds.

Our example, then, uses one buffer for the
device MTO.

Next comes the blockiength in number of byt-
es. In our example there are 600 characters per
block. This number is limited by core size.

The next slot is filled by a character or by two
characters. These represent the record format.
The possibilities for this slot are

UB undefined. blocked

U undefined

F fixed

FB fixed, blocked

Y variable (IBM format)

VB variable, blocked (IBM format)

That takes care of our example, but two more
file type definers are possible.

Consider the example

LPT =FILE
'LPT’, 1,2, 50, U;
GIVEUP LPTERRORS, 2'1100001111111111;
CONV LPTTABLE
OF STRING (50);

Files of the type called LPT, then, operate on
the device named LPT. (As defined in the device's
driver program.) Two buffers are set up for it
Block length is 50 characters, and it is unblocked.
Furthermore, there will be a procedure, called
LPTERRORS and defined later on in the program,
that will specify some action to be taken by the
operator and/or the machine if there is an error,
an end of file, or any other special situation. What
the machine will do is definéd by the binary mask,
which is described in the device’s driver program.

If there is a conversion table related to the
file, then it is called here LPTTABLE, and it was
defined previously in the constant section, or it
will be defined in the Variable Section.

If we had previously defined something like

ZLINE = STRING (50);

then the last line of the LPT definition could have
been written

OF ZLINE;

Note that OF is not preceeded by punctuation.

Conversion is provided for in the Type (and in
the Variable) Section, because doing the convers-
ions outside the main program saves execution
time and programmer’s time.

When conversion is done, it procedes in the
following way: Say we have paper tape input and
line printer output. Then if we did no conversion,
then whenever an ASCII character came in that
was unknown to the line printer, it would be print-
ed out as a space. For example, if a lower case
letter was read in, then it would be printed out as
a space. If we have a conversion table, then when
the machine receives a character, it looks it up in
the table and outputs the character it finds there.

Example. If a lower case a is read in. This
symbol has the ASCII representation decimal 97.
Therefore, the driver program looks for the 97th
entry in the table. It prints what it finds in this
location. Say that the 97th entry in the table was
65. This is the ASCII decimal representation for
capital A. Therefore, a capital A is printed out.

Suppose in the Constant Section we had had

0" LPTTABLE= % 0 0 O 0 O
16t o 0 0 0 o
33rd 33 34 35 36 37
45t 45 46 47 48 49
60t" 60 61 62 63 64
75t 7% 76 77 78 79
90t 80 91 92 93 94

106t 74 75 76 77 78
122nd 90 00 00 00 00

0
0
40
52
67

65
81
00

0]

4
53
68
83
66
82
#,

10

43
55
70
85
68
84

Refer now to your ASCII table. Comparing the
ASCII table with this conversion table, we can see
that we must not ignore the character for zero in
any case. If a NUL is input, then we look it up in
the first place in the table. That is, in counting
table entries, start with zero.

Continuing, we have the following examples for
ourtable:

input output
NUL blank
SOH blank

$ $

a A

b B
A A

B B
m 00

Input for which no entries appear in the con-
version table will be output as blanks.

The Type Section interacts with the other sec-
tions of the program. For example, if in the Type
Section we have

I = INTEGER,;

then later on in the variable section we can make
A, B, and C integer variables by setting

A B C:I;

Similarly, we can take a file type defined in
the Type Section and use it in a kind of shorthand
notation to set up any number of files of similar
types. For example, we have defined the file type
IN above. If we want to have several files of this
type, then in the Variable Section, we might say

INFILE1, INFILE2 : IN;

This gives the structure of IN to both INFILE1
and INFILE2.

We have defined INREC above. Let us now
define

OUTREC = RECORD
CCW:S;
LINE: STRING (132)
END;

Later on in the main program we can put the
contents of the first character of INREC into the
first character of OUTREC, for example, if we have
first set up variable of the corresponding types.
We would do this in the Variable Section, for ex-
ample

VAR

IN: INREC;
OUT: OUTREC;

main program
OuUTt.CCW: = INf.CCW;

Two final cautions: Where in the example abo-
ve we used the FROM expression, if we have

then n cannot be greater than 255.
Aiso, if you have a line of coding

....STRING. . .FROM. ..
then later on you cannot have something like
AB, CD : STRING. . .FROM. ..

because then you will have defined the string
twice.

The Variable Section

The third part of a MUSILprogram is the Vari-
able Section. Here variables are defined and spa-
ce is set aside for them in core. If the Variable
Section has been proceeded by a Type Section,
then the process of setting up file variables can
be much simplified in the Variable Section. If not,
then all the structuring discussed above must be
done here, in the Variable Section.

The Variable Section begins with the keyword
VAR

not followed by any punctuation.
We may define integer variables:
D: INTEGER;

This sets up a location called D, which can
accomodate 16-bit signed binary integers.

We may define text string variables:
TEXT1: STRING(20);

sets up a location called TEXT1, which can ac-
commodate 20 bytes.

We can define and structure record variables:
PRINTLINE: RECORD
HEAD: STRING(4);

TAIL: STRING(4)
END;

which sets up an eight-character record called
PRINTLINE in which the first four characters have
the name HEAD and the last four have the name
TAIL.

We can define and structure a maximum of
eight file variables:

LPT: FILE
'LPT,1,2,50,U;
GIVEUP procedure name, mask
OF STRING (50);

where the meaning of this example was explain-
ed in the previous section.

Or records within files can be structured with-
in the file definition:

MTO : FILE
'MTO’, 14, 48, 1000, FB;
GIVEUP procedure name, mask
OF RECORD
COL1: STRING(1);
COL10: STRING(9)
END;

Some notes on the above examples: After a
variable has been defined, you cannot operate on
any part of that variable, unless you have given
that part a name. Thus, if we have

TEXT1: STRING(20);

we cannot later perform operations on individual
characters within TEXT1.

Similarly, in our example PRINTLINE above,
we can operate on the part of PRINTLINE called
HEAD, but we cannot operate on parts of HEAD.
Similarly, we cannot operate on parts of records
of LPT, but we can operate on those parts of
MTO called COL1 and COL10.

Secondly, when a block size has been assign-
ed to a file, then output to that file, and assign-
ments to it, must be in blocks of corresponding
size. For example, input to, and output from, LPT
must be in blocks of 50 characters.

Third, it is most convenient to write mask de-
scriptions in binary, but this is not prerequisite.
They may be written in octal or in decimal.

Iin the Variable Section variables of the same
sort can be defined together:

D, E, F, G, H: INTEGER;
TEXT1, TEXT2, TEXT3: STRING(40);

defines D, E, F, G, and H as integers and TEXTT,
TEXT2, and TEXT3 as strings of 40 characters
each.

Finally, we had an example in the Type Section
of how that section can interact with the Variable
Section.

When we later get to the main program, we will
want to do certain things with our previously-de-
fined variables. Some of them we might want to
do arithmetic with, others we might want to use
to compare with the contents of other variables.
We will want to make assignments to others. Look-
ing again at the examples given above, we have
the following:

Variables defined as INTEGER can be used
for arithmetic, comparison, or assignment.
Variables defined as STRING or RECORD can
be used for comparison or assignment.
Variables defined as FILE can be used only
for 1/0 procedures. You cannot use them for
comparison or assignment (or obviously arith-
metic) directly.

Comparison and assignment, with respect to
record and file variables, that will be performed in
the main program is done with respect to the fol-
lowing facts:

When a file is set up in core, room is reserved
for a zone descriptor, which contains 1/0 infor-
mation, for information about operator communi-
cations, and for the actual data that will be com-
ing into, and going out of, this location. To refer
to any particular part of the data in a file, we use
an arrow, thus:

mMToT.coL1

refers to the current contents of COL1 in MTO. If
we have no arrow, we are referring to a part of the
zone descriptor, for example

MTO.ZREM

which is something that will be explained later,
when we are discussing I/0 procedures.

When structuring records and files, it is pos-
sible to give the same name to parts of different
records or files. The computer will not get con-

fused, for example, if you refer to

mToT.coL1 and CDR?T.COL1
as long as these elements have been previously
defined.

The Main Program

The Main Program section is divided into two
parts. The first part contains the coding for the
various procedures that will be used during pro-
gram execution. The second part contains the
coding that will call these various procedures and
inter-relate them with respect to the operation
that the program was written to perform. There
is no difference between the instruction set that
may be used in procedures and the instruction
set that may be used in the body of the main pro-
gram.

In MUSIL procedures are defined first. The
structure of a procedure is as follows:

PROCEDURE name of procedure;
BEGIN

END;

Note that every statement except the one be-
fore an END is terminated by a semicolon. That
is, everything between BEGIN and END is a state-
ment. In fact the entire main program section can
be looked at as one compound statement. After
a procedure has been defined, it can be referred
to by its name, for example by a statement

procedure name;

It can be seen, then, that procedures in MUSIL are
the analogy of subroutines in source language
programming.

We shall now define the MUSIL instructions that
the beginning MUSILprogrammer should know.

OPMESS(string variable name)

This instruction outputs the string text con-
tained in the string variable specified in the in-
struction to the operator’'s console. That is, it out-
puts the string text until a <0> is reached. At
most 80 bytes will be output, and if there is no
final binary zero in the string, then the output will
go on for the full 80 bytes anyway, outputting
whatever is in core following the text. Of course,
the output will be in ASCII text.

OPIN(string variable name)

This instruction allows the operator to input a
text string of up to 80 bytes into the string variable
specified. This instruction should always be fol-
lowed by

OPWAIT(LENGTH)

which makes the system wait for the operator in-
put. The number of characters input will be plac-
ed automatically into the system-defined variable
LENGTH. The use of the instruction OPIN will de-
termine the value of a system-defined function
variable

OPTEST

If OPIN has been called and if a text has in fact
been input, then this function will take a non-zero
value. Otherwise, its value will be zero.

The RC 3600 system operates in binary. There-
fore, all input that is not in binary must be con-
verted to binary before it can be operated on
arithmetically. Similarly, all output which is not to
be in binary must be converted before it is output.
The conversion instructions, which follow, should
be used close enough to the corresponding 1/0
statements to take it easy for the reader of the
program to see what is happening.

BINDEC(binary vatlue name, decimal value name);

takes the binary number found in the first variable
and puts its decimal value into the second vari-
able of the instruction. The decimal value variable
must be previously defined as a string with a mi-
nimum of 6 bytes. It will have no sign. If a sign is
to be output, then it must be defined separately.
The binary value contained in the binary value
variable will be converted to 5 decimal digits. The
opposite instruction is

DECBIN(decimal variable name,binary variable name);

Here too, the decimal value being converted
should have no sign. The decimal value will be
converted into a 16-bit binary number. Note that
there is no check for overflow. The conversion
process will stop at the first non-numeric symbol,
for example, a plus or minus sign.

If we wish to construct a compound statement,
we can do so by using the instruction pair BEGIN
and END:

BEGIN

END;

Note that there is no semicolon after BEGIN or
before END.

GOTO label;

This is the ordinary jump instruction found in
many programming languages, but inMUSIL cer-
tain peculiarities should be observed. If we say,
for example, GOTO 31, then there must be a line of
code labeled thus:

31: .

Note the colon after the statement label. There
are certain logical restrictions on the GOTO sta-
tement. You may not GOTO a location inside a
procedure, if you are not already inside that pro-
.cedure, but you can GOTO a location in the main
program from within a procedure. The use of the
GOTO in combination with the BEGIN/END com-
pound statement usage is as follows:

GOTO may be used to jump outside a com-
pound statement, but it may not be used to jump
into a compound statement. If the GOTO is used
to jump to an END statement, then the END state-
ment must be preceded by a semicolon:

GOTO 60;

. ! note semicolon !
60:END;

Assignment instructions move the contents of
one location into another location, or move a num-
erical constant into an appropriate location. In
MUSILyou cannot move text strings into a location
unless the text string has been defined previously.
Thus, you can have

INT1: = 5;

if INT1 was previously defined as an integer vari-
able, but you cannot have

TEXT3: = 'THIS IS THE END’;
even if TEXT3 had been previously defined as a
string variable. Instead you must in the Constant
Section have something like
T3 = 'THIS IS THE END’,
and then in the main program you can have

TEXT3: = T3;

You can assign the contents of one location
to a location of the same type:

TEXT1: = TEXT2,
but you may not do the following
INT1: = TEXT1; or TEXT1: = INT1;
where INT1 is an integer variable and TEXT1 is
a text variable.
You may also not make multiple assignments

in one statement. The following are not allowed:

INT1, INT2: = 0; orINT1: = INT2: = 0;

10

When text strings are moved, the number of
characters that are moved is equal to the mini-
mum of characters in the two values. Thus, if
TEXT1 has 10 characters and TEXT2 has 20 cha-
racters, then

TEXT1: = TEXT2; or TEXT2: = TEXTH1,;

will move only the first 10 characters of TEXT2
in the first case, and in the second case TEXT1
will be moved into the 10 left-most positions of
TEXT2, leaving the remainder of TEXT2 unchang-
ed.

MUSIL has the usual IF statement THEN state-
ment construction. For example,

IF TEXT1 = TEXT2 THEN GOTO 35;

The IF may be followed by any relational ex-
pression, and the THEN may be followed by any
statement, including compound statements. If the
relational expression is not true, then the. pro-
gram skips to the next executable statement, and
the THEN statement is ignored.

ration as long as the WHILE statement remains
true. E.g.,

WHILE X>Y DO
BEGIN

END;

If X is never greater than Y, then the DO state-
ment will never be executed.

REPEAT. . .UNTIL. ..

The REPEAT statement may be any statement,
including compound statements. The UNTIL sta-
tement is any relational expression. For example,

REPEAT
BEGIN
END
UNTILX = Y;
Note that there is no semicolon after the END.

If X is in fact equal to Y when END is reached,
then the statement will be executed once. ‘

Relational Symbols. The allowed symbols are

X=Y The contents of X and Y are
equal.

THe contents of X are greater than
the contents of Y. (For texts the
comparison is done byte by byte,
starting from the left, and the
comparison is lexicographic.)
The contents of X are smaller
than the contents of Y. Compari-
son of texts is as above.

The contents of X and Y are not
the same.

The contents of X are less than
or equal to the contents of Y.
Ccmparison as above.

The contents of X are greater
than or equal to the contents of
Y. Comparison as above.

X>Y

O X<Y

X<>Y

X<=Y

X>=Y

Arithmetic. MUSIL uses these arithmetical operat-
ions:

() parentheses

+ addition

- subtraction

* multiplication
/ division

AND masking

SHIFT logical shift left

EXTRACT bit extraction from the right
MUSIL executes arithmetic operations from left
to right, with operations of the same precedence
level being executed together. The precedence
sequence is
monadic operators
multiplying operators
adding operators
relational operators.
The programmer is encouraged, however, to
make good use of parentheses to avoid error and
enhance program readability.

Operators. There are two monadic operators.
After they have operated on something, the result
is an integer, and this result can then be used as
any other integer can.

BYTE, followed by a text, yields the integer
value of the first character of that text. Example,

BYTE TXT
where TXT was previously defined in the program.
WORD, followed by a text, yields the integer
value of the firstand second characters of thattext,
where these two characters are taken together.
Thus, if TXT is
1001000111110011

then
BYTE TXT

yields the integer value of 10010001, and

) WORD TXT
yields the integer value of 1001000111110011.

The multiplying operators are multiplication
and division.

The adding operators are plus, minus, and the
three logical operators SHIFT, EXTRACT, and
AND.

SHIFT

A SHIFT 2
shifts A two places to the left, filling the empty
righthand positions of A with zeros.

A SHIFT -2
shifts A two places to the right, filling the empty
left-hand positions with zeros. SHIFT is not a
wrap-around operation. Bits shifted out of the
word are lost.

EXTRACT allows the programmer to take a
part of the current contents of an integer variable
and make that part into an integer.

VAR2: = VAR1 EXTRACT 8;

takes the last eight bits of the variable VAR1 con-
tents and places them in VAR2. VAR1 EXTRACT
8 can also be used by itself as an integer.

AND is the logical ’and’.

VAR1 AND VAR2
yields the integer value of the logical 'and’ operat-
ion, as performed on the current contents of the
previously defined integer variables VAR1 and
VAR2.

The programmer should note that division by
zero, or the division of zero by zero, will NOT
give an error message.

When text strings are compared, the compa-
rison takes place only on the number of characters
that is minimum for the pair of strings. That is, in
the comparison

IF ALPHA > BETATHEN.
where ALPHA is occupied by
TR
and BETA is occupied by
TRANS
the comparison will consider only the first two

characters of BETA, so that in this example AL-
PHA and BETA are equal.

The programmer should note that the following
is NOT allowed:)
IF'THIS ISTHEEND’ = 'THISISIT' THEN....

Comparisons can compare on variable names
only.

11

1/0 Handling

I/0 operations are performed on files and on
parts of those files. In order to identify the file
being operated upon, as well as the part of the file
that is currently being used, a place is reserved
for file descriptors. This description is called the
‘zone descriptor'. In the zone descriptor we find

Document name The name of the driver process,
e.g., MTO.

Kind Information on the type of device.
See the Kind Table.

Operation Defined in the OPEN file instruct-
ion. See Operation Mode Table.
GIVEUP mask This is defined in the file decla-

and address ration.

Blockcount and The current block and file
File count number.

Used Share and Tells what the current share is
Sharelength and the length of the buffer.
Record Format

and Length

First Byte, Top Contains pointers to the first
Byte, Remaining byte of the current record,

Bytes the first byte after the current
record, the rest of the bytes of
the share.

Conversion The conversion table address.

Table

In addition to the Zone Descriptor, the Zone
contains Share Descriptors, and a Buffer Area.
The Share descriptors contain information about
the current activities in the buffers which they de-
scribe, and the Buffer Area contains the descript-
ors and the associated buffers. Certain symbols
are provided for operating on the Zone Descript-
or. By chosing integers to set into these areas, one
can assume total control over 1/0 operations. The
way this is done is described in the MUS manual,
which the programmer should read before attempt-
ing to use these expressions, which are to be
considered as items available only in advanced
MUSIL programming.

The contents of the Zone Descriptor which can
be reset by the programmer are

filename . ZMODE gives the mode of operation,

see Operation Mode Table.
is the giveup mask for
device errors

is used differently for
different devices, see MUS
manual

may be the current block
or the number of blocks
done, see MUS manual

is the byte address of the
first byte of the current
record

points to the first byte after
the current record
filename . ZLENGTH is the length in bytes of the
current record

is the length in bytes of the
remaining part of the current
block

can occur only inside a
GIVEUP procedure, where
it tells which errors got you
into the procedure

filename . ZMASK

filename . ZFILE
filename . ZBLOCK
filename . ZFIRST

filename . ZTOP

filename . ZREM

filename . 20

The beginningMUSILprogrammer will use only
these last three.

In sum, then, the documents that we input to,
or output from, our job are described inside the
zone descriptor by the document name (which is
the process name of the driver that controls the
device the document will be on), the operation
code that is sent to the driver (telling whether we
are operating with input or output, etc., as defined
in the Operation Code Table), and device kind
(which tells if the device is character or block
oriented, if position or repetition are possible, see
Kind Table).

Handling Exceptions

In the 1/0 procedures, the programmer can
choose to determine what should be done at End
of Tape, End of File, when parity errors occur,
etc. Or the programmer can let the system handle
exceptions in its standard way. If it is not desired
to let the system do this, then the programmer
must write a GIVEUP procedure. In the absence
of a GIVEUP procedure, the STATUS word that
determines exception handling will be set up in
the following way automatically by the system:

12

bit event action

0 deviced disconnected hard error

1 device off-line hard error

2 device busy operation is repeated
3 device mode 1 ignored, defined in
Operation Mode Table
ignored, defined in
Operation Mode Table
ignored, defined in
Operation Mode Table

4 device mode 2

5 device mode 3

6 illegal instr. hard error
7 EOF hard error
8 block length hard error
error if kind bit 12 is 1, then
9 data late the operation is repeated,

otherwise, hard error
same as for bit9

error is hard, except for
certain conditions that
the MUSIL beginner
should not take into

10 parity error
11 end medium

account
12 position error hard error
13 rejected hard error
14 timer hard error
15 repeat error hard error

When a hard errors occurs, processing stops
and the error number and unit name are display-
ed on the operator’s console. If the operation is
repeated when an error occurs, then there will
be a maximum of five repititions, after which time,
the error becomes a Repeat Error, and is hard.

In error handling, tne system will perform the
treatments described for bits 0 through 11, plus
bit 14 first. Then it will look to see if there are 1
bits in the GIVEUP procedure. If there are, then
control will be given to the GIVEUP procedure. If
not, then a hard error will occur.

The GIVEUP procedures are arranged in a
hierarchy of instructions, as follows: For example,
the programmer may use an instruction to make
space for a record in an output buffer. When the
programmer issues this command, which happens
to be PUTREC, described below, then the follow-
ing hierarchy of commands (also described be-
low) becomes involved automatically

PUTLREC
OUTBLOCK: '
N \
TRANSFER WAITTRANSFER
GIVEUP procedure, if
specified

Here, it should be noted that in MUSIL cer-
tain of the 1/0 instructions can be redefined by
the programmer. The instructions TRANSFER and
WAITTRANSFER are used in this way. For the be-
‘ginning MUSILprogrammer, in the example above
‘the operations specified by TRANSFER and WAIT-
TRANSFER can be left to the system to perform
automatically.

If the programmer wishes to have the operator
informed of what is in the STATUS word, or in
part of it, then the use of the OPSTATUS com-
mand is recemmended.

Assuming that there is in the Constant Sect-
ion an definition of what is to be displayed, the
instruction is

OPSTATUS(IN.ZO,ERRORS);

where we have previously defined, for example

ERRORS = 'DISCONNECT<10><0>
OFFLINE<10><0>

TIMER <10><0>
BIT 15 ?? <10>’

IN.ZO is the system-defined expression that
contains the STATUS word for the file called IN.
For this example, if IN.Z0 contains 1000000000000
000, then DISCONNECT will be printed on the
operator’'s console, along with skipping to a new
line. If IN.ZO contains 1000000000000010, then

DISCONNECT
TIMER

will be output to the console, along with skipping
to a new line, etc.

1/0 Instructions

OPEN (filename, mode)

The file name should have been defined in the
VARIABLE Section, and the mode can be defined
by reference to the Operation Mode Table, for it
will be different for different devices.

This instruction opens the file and sets various .
pointers. If in the body of the program we wish to
identify or change the mode, then we can access *

it by
filename . ZMODE

CLOSE (filename, release)
If release is not equal to zero, then the device

will be released to another program. If, for examp-

le, we are working with magnetic tapes then the
tape will first be rewound and set off-line.

If we do not want the tape to be rewound, then
we set release to 0. This results in a file mark
being written. The exact sequence of events for
other devices can be found in the MUS manual.

13

—

WAITZONE (filename)

This command allows one to interrupt |/0 pro-
cessing in an orderly way. The information needed
for continuing with the processing later on is
stored, so that one can resume processing wher-
ever one wants. Suppose we have

IF operator action THEN
BEGIN
WAITZONE (filename);
interrogate operator
END;

The WAITZONE lets the communication take
place in such a way that processing can be resum-
ed in an orderly way after the communication.

SETPOSITION (filename, file number, block
number)

This instruction automatically calls WAITZONE.
Then it positions the 1/0 medium, such as MTO
for example, and finds the number of the fite and
block within it that processing will start on. For
example,

SETPOSITION (MTO, 3, 8)

positions processing to the 8th block of the 3rd
file within MTO.

GETREC (filename, variable name)
Example: GETREC(INFILE, SIZE);

The events that this instruction cause depend
on the record format:

For undefined (in file definition) format and
unblocked. This instruction gets the next
physical block. It is much used for reading
cards, for in this case it reads the next
card. When used, say, with paper tape, it
would read as much of the tape as there
is room for in the buffer. At call time SIZE
is irrelevant. At execution time the system
will put the size of the block read into
SIZE.

For undefined and unblocked.

The number of characters equal to SIZE
will be read. This means that you can
read, say, the first byte of a magnetic
tape block. This can be done thus:

SIZE=1; -
GETREC(MTO, SIZE); .
|
If during read-in the GETREC command is/
used with SIZE greater than the remain-
ing part of the block, then the system will
begin to read the next block. If we write

SIZE: = 1;

GETREC(MTO,SIZE);

IF RYTE MTO = binary code THEN
BEGIN
SIZE: = MTO.ZREM;
GETREC(MTO,SIZE);

processing of block
END;

Then what we have done is, first, inspect-
the first byte of the tape block to see what
sort of block it is, then, read in the re-
mainder of the block (ZREM) and process-
ed it.

Fo

=

fixed length and unblocked.

In this case the record has previously been
defined. GETREC causes the next physical
block to be read, taking as many bytes
as were specified in the record definition
and skipping the remaining bytes in the
block. The system will put into SIZE the
number of bytes read in.

For fixed length and blocked.
The system looks to see if the current
block contains the next record. If so, it
reads it. If not, it goes to the next block.
(Throughout, it should be kept in mind
that 'unblocked’ means that the block is
not divided into records.)

For variable length and unblocked.
The next block is read. The first four bytes,
containing the block length, are decoded.
The next four bytes, containing the record
length, are decoded. The record length
is put into SIZE: For all practical purpos-
es, we are here talking about IBM V for-
mat magnetic tapes.

For variable and blocked. IBM VB format.

The next record from the current block is

read by decoding the first four bytes. If

there is no record left in the current block,

the first record of the next block is read.

-

PUTREC (filename, name or number or expression)
The events cause by this command depend on
record structure.
For undefined and unblocked.
The previous block is output. If we say
PUTREC(FILENAME,SIZE), then space is
reserved in core for SIZE bytes of the next
block to be output the next time PUTREC
is called.

For undefined and blocked.
The system looks to see if the current
physical block in core can contain yet
another record of SIZE bytes. If so, it
makes room for that additional record. If
not, it outputs the current block.

For fixed and unblocked.
The current block is output and space is
reserved for the next record. SIZE is ir-
relevant, as it was given in the record
definition.

For fixed and blocked.
Events are as in unformatted and block-
ed, except that SIZE is irrelevant, having
been given in the record definition.
For variable and unblocked.
reserved for the next record. The four-
byte block size and the fourbyte record
size are computed and put into the block.
This allows such output to be read later
on by a GETREC in V format.

=

For variable and blocked.

The system checks to see if there is room
for the next record, as determined by SIZE.
If so, it makes a four-byte record descript-
or word and puts it on the record. Then
data can be put in. Finally, the block de-
scriptor word is up-dated. If not, the block
is output.

If the file is undefined and unblocked, then the
following two instructions can be used.

INCHAR(filename, integer variable name)

puts the next byte from the file into the integer
variable name. If there are no bytes left in the
current block, the first byte to the next block is
used.

OUTCHAR(filename, constant)

checks to see if there is room for a byte in the
current block. If so, it puts a byte into the block.
If not, it puts the byte into the next block. The byte
that is put into the block is whatever is in the first
byte of the constant. The constant may be a num-
ber, the current contents of a variable, or the con-
tents of an expression:

OUTCHAR(OFILE,54);
OUTCHAR(UFILE,VAL);
OUTCHAR(FL,X+Y);

OUTTEXT(filename, string variable name)

outputs the string contained in the string variable
until a final binary zero is reached,which means
that the string must contain such a binary zero.

MOVE(string name, from n+ 1t byte,to string name,
from n+ 1™ byte, for number of bytes)

Example
MOVE(INT, 1, OUTA,0, LENGTH);

This example takes the current input record,
starting with the second byte, and moves it into
the current output record, starting with the first
byte. The number of bytes moved is equal to the
number in LENGTH. Note that if LENGTH is too
big, there will be no error message. Finally, MOVE
cannot be used to move bytes around within the
same string.

CONVERT(string name, string name, table name,
length)

This instruction is used to convert between
media, such as between magnetic tape and tele-
type, 7- and 9-track magnetic tape, etc.

Example:
CONVERT(MTOt,0UT?, TABLE1,0UT:ZLENGTH);

This example takes the current record of MTO
and converts it according to TABLE1, and puts
the result into the current record of OUT. It does
this for as many bytes of the record as is the nu-
merical value of length, which in this case is the
length of the current OUT record. Length could
be an expression, a number, or a variable.

TRANSLATE (byte name, byte name, table name)
This instruction converts the first byte, using
the table, and puts the result into the second byte.

Example:
TRANSLATE(INM,CCW,OUTA,CCW,ANSITABLE);
which converts a byte of file IN and places the
result in the appropriate byte of file OUT. If the
system cannot find an argument in the table, then
it will put out the default value. The table should
have been organized thus:

CONST

ANSITABLE = #arg1 valuel
arg2 value2

0 0
0 default value#
Note the three zeros which preceed the default
value. They are required. Note also that it is good

programming practice to put each argument/value
pair on a separate line for easy reading.

INSERT (byte name, record name, place)

Example:
INSERT(SP SHIFT5-1,0UT ,OUT.ZLENGTH -1);

This instruction takes the 8 least significant
bits of the first-named byte and puts them into the
place specified in the second-named record.To put
the byte into the first place of the record, write
something like

INSERT(A,B,0);

REPEATSHARE (filename)

This instruction is used only within a GIVEUP
procedure. In case of error, it will repeat the ope-
ration that gave rise to the error message. Ob-

-viously, its use can accidentally give rise to an

unending operation, if the programmer is not

‘careful. The following example iltustrates its use.

15

PROCEDURE GENERALGIVEUP
BEGIN
OPMESS(SOMETHING WRONG);
message to operator console
OPIN(OPSTRING);
operator perform action
OPWAIT(OPSTRING);
wait for operator action
REPEATSHARE (filename)
END;
We have now completed the description of
the MUSIL commands that the beginning MUSIL
programmer should be familar with.

In addition to the commands described so far,
there are additional commands that can be used
by the experiencedMUSILprogrammer. A complete
description of the effects of these commands can
be found in the MUSIL reference manual. Before
attempting to use these commands, however, the
programmer should familiarize himself with the
MUS operating system and its instruction set. For
completeness’ sake, we shall now mention four of
the most common advancedMUSILcommands.

INBLOCK (filename)

This instruction is used for coding one’s own
GETREC or INCHAR. It is not meant for the be-
ginner. The instruction GETs a block.

OUTBLOCK (filename)

This instruction is used to code one’s own
PUTREC or OUTCHAR. It is not meant for the be-
ginner .1t readies a buffer for output.

TRANSFER (filename, length, operation)

This instruction should not be used by the be-
ginner. It is used for coding one’s own INBLOCK
and OUTBLOCK operations. “Length” is the maxi-
mum number of bytes to be input or output.
“Operation” is a 16-bit code (found in the MUS
manual) telling the driver what to do.

WAITTRANSFER (filename)

This instruction is used with the above. it
should not be used by beginning MUSILprogram-
mers.

SPECIAL WORDS
The following words have special meanings in

'MUSILThey should not be used by the programmer

for naming variables, constants, tables, or proce-
dures, even though in many cases no harm would

16

be done.

AND LENGTH TRANSLATE
BEGIN MOVE TYPE
BINDEC MUSIL §]

BYTE OF UB

CLOSE OPEN UNTIL
CONST OPIN \Y;

CONV OPMESS VAR
CONVERT OPSTATUS VB
DECBIN OPTEST WAITTRANSFER
END OPWAIT WAITZONE
EXTRACT OUTBLOCK WHILE

F OUTCHAR WORD

FB OUTTEXT ZBLOCK
FILE PROCEDURE ZFILE
FROM PUTREC ZFIRST
GETREC RECORD ZLENGTH
GIVEUP REPEAT ZMASK
GOTO REPEATSHARE ZMODE

IF SETPOSITION ZREM
INBLOCK SHIFT ZTOP
INCHAR STRING z0

INSERT THEN

INTEGER TRANSFER

RELEASE TABLE
QO driver is not released for another program
1 driveris released

KIND TABLE

bit 15 set if device is character-oriented
14 set if full blocks should be transferred
13 set if positioning has any effect
12 set if an operation may be repeated

Examples:

1110 Magnetic tape station
0001 Line printer

0011 Line printer

0010 Card reader

0001 Teletype

0001 Paper tape punch
0001 Paper tape reader

Operation Code
The operation code is the 2 least significant
bits of the operation mode.

Operation Mode Table
Paper tape reader driver
1 binary, the input character is delivered
5 odd parity, the most significant bit is
removed
9 even parity, the most significant bit is
removed

Paper tape punch driver
3 binary, the converted character is output
7 odd parity, the converted character is
augmented by the complement of its pa-
rity in the most significant position
11 even parity

Line printer driver :
3 the converted characters are output
7 the first byte of output is interpreted as a
carriage control word

Magnetic tape driver
1 read packed, byte limit = 18
5 read packed, byte limit = 0
9 read unpacked, byte limit = 18
13 read unpacked, byte limit = 0
3 write

Card reader driver
5 read binary punched cards
21 read decimal punched cards
33 read decimal punched cards and skip
trailing blank columns (a minimum of ten
columns are read)

The operation mode designators for the other
available RC 3600 1/0 devices can be found in the
MUSIL reference manual. The above devices are
the only ones that the beginning MUSIL program-
mer should concern himself with.

17

. &

Error Messages

MUSIL provides the programmer with a variety of error
messages, indicated by error numbers on the compilation

_ printout. The significance of those error numbers is as

follows:

020202 Number overflow, a numeric constant exceeds 65535,
or 16 bits.

020301 lllegal character in input.

030102 < appearing within a string is not followed by a
numeric literal.

030202 The construct < number is not followed by a >.

030302 The number between<and»exceeds an 8-bit byte value.

030403 Core overflow, produced code exceeds available space.

030503 Core overflow, code contains too many relocation bits.

040105 Name conflict in Constant Section.

040205 Name conflict in Type Section.

040302 Syntax in Type Section, no = following an ident.

040405 Name conflict in Variable Section.

040506 File variable with 0 buffers.

040602 Procedure head not followed by ,

040702 Procedure without legal identifier or with name conflict.

050102 Type is no identifier.

050202 (is missing after string.

050302 Length undefined for string.

050402 String with length 255 declared.

050502) is missing after string.

050604 Undefined type identifier. Note that no forward
declarations are allowed.

050702 Improper termination of type specification.

051002 Field of type different from string.

051102 Incorrect use of FROM.

051205 Name conflict in GIVEUP procedure.

051304 Conversion table undeclared.

051406 Conversion table type error.

060206 Double defined label.

060302 Variable is no identifier. Or undeclared.

060402 . is not followed by identifier or by undeclared field.

060504 Identifier undeclared.

060606 Type error with BYTE or WORD.

060702 Relational operator missing.

061002 Procedure statement with missing)

061102 Type error in procedure parameter.

061306 lllegal number of parameters.

061406 Type error with operator.

061506 Overflow of work registers. Expression too complex.

Error Messages which cause skipping of program parts
000040 Syntax in section delimiter.

000041 Syntax in constant declaration.

000042 Syntax in table declaration.

000043 Type specification incorrectly terminated.
000044 Variable declaration incorrectly terminated.
000045

000046

000051 Syntax in field list.

000052 Syntax in file declaration.

000063 Incomprehensible statement.

000064 Incorrect label declaration.

000065 Incomprehensible expression.

18

MUSIL COMPILER/]

poo: " Musil Program Example

0002 The following program should help you to see
6003 how the various MUSIL instructions can be put
0004 together to form a complete program.

0005
. 0006
0007
. 0008
0009
I 0010
0011
0012
ll 0013
0014
0015
Il 0016
0017
0018

019
II 020
0021
0022
l 0023
0024
0025
0026
l 002/
0028
0029 PROGRAM RC36=00001,00
J oo
0031 MUS PRINT IMAGE
0032
I 0033
0034
0035
N036
l 0037
038
039
J oo
004l
no4u2
l 0043
004y
0045
0046
l 0047
0048
0049 KEYWORDS: MUSTL,CONVERSTON,MTA,LPT,LISTING
0050
I 0051 ABSTRACT: TH1S PROGRAM HANDLES NU LABEL TAPES WITH A
0052 MAXIMUM BLOCK SIZE OF 1340 BYTES, EACH BLOCK
0053 CONSISTING OF FIXED LENGTH RECORDS WITh CCw
I 0054 CONTROL CHARACTERS AND EBCOIC COUE DATA,
0055 QUTPUT ONn RC3600 SERIES PRINTERS WITH o4
0056 CHARACTER ASCII DRUM,
'.057 THE PRUGRAM MAyYy BE OPERATED FROM FITHER OCP UR T1Y,
0058
0059 RCSL 43=5L103: ASCII SOURCE TAPE l
0060

0061
0062

lg:::
0064

0065
l 0066
0067
0068
l 0069
0070
- 0071
0072
l 0073
0074
0075
l 0076
0077
6078
l nN079
0080
0081
"0082
l 0083
0084
0085
l 0086
00R7
0088
l 0089
0090
0091
0092
] o
0094
0095
I 0096
0097
0098
0099
ll 0100
9101
0102
| i
0104
0105
0106
0107
0108
0109
0110
0111
0112
0115
0114
0115
N11e
0117
0118
0119
@20
0121

0122
01253

|

RC36=00001

MUS PRINT [MAGE,

PROGRAM HANDLES NO LABEL
BLOCK SIZE OF 1340 ByTeS,

TAPES WITH A MAXIMUM
EACH BLOCK CUNSISTING UF

FIXED LENGIH RECURDS WITH CCW CONTROL CHARACTEKS

AND EBCDIC CODE DATA,

QUTPUT ON RC3600 SERIES PRIN=

TERS WITH 64 CHARACTER ASCILII DRUM,
THE PRUGRAM MAY BE OPERATED FRUM EITHEK UCP UR TIY,

Y674 BYTES,
JULY 29TH 1974,

IITL.E

ARSTRACT: THIS

SIZE:

DATE:

RUNTIME PARAMETERS:
BLOCK NO ® 00001
FILE NU ¢ 00001
REWIND : +
MARGIN : 00000
SELFCT 2 00999
RECSIZE ¢ 00133

UTHEKR QUTPUT MESSAGES:
CONTSTATE® +/-
PROG NO |
RUNNING
SUSPENDED
MOUNT DATA TAPE
MT ERROR 00022
MT ERRUQR 00023
MT ERROR 00026
MY FERROR 00028
MT ERROR 00029
MT ERRQOR 00030
MT ERRUR 00034
LP ERRQR 00021
LP FRRUR 00026
LP ERRQUR 00028
LP ERROR 00029
LP ERRQR 00030
LP ERRQOR 00051
LP ERRQOR 00034
N JOB

INPUT MESSAGES:

STO
SUS
INT

p
PEND

STATE

"V A

LUE"

NTEXTw=uwVALUEM

CONT

STA

RT

SPECIAL REGUIREMENTS:

NEXT BLOCK TO BE ReAD FRUM CURKRENT FILE,
THE FILE FROM wHICH THE BLUCK 1S READ,
INDICATES IF REwIND UF TAPE AT EUF,
SPACES TO THE LEFT OF THE PRINT LINE,
DEFAULT CCw SWITCH, SELECT MODE/VALUE.,
LENGTH OF INPUT RECOKD,

STATE OF CUNTINUE SWITCH (TTY UNLY).
PRUGRAM EXECUTION IS STOPPED,

PROGRAM EXECUTION [S STAKTED,

DRIVERS RELEASED, PRUGRAM EXECUTION IS
MT=UNIT [S NUT On=LINE,
MT=UNI1 IS REWINDING,
NOISE RECQKD,

MT DRIVER RESERVED,

BLUCK LENGTH ERROR,

DATA LATE,

PARITY ERROR,

TIME OUT AT WAITINTERRUPT,
LP IS OFF=LINE,

LP DRIVER RESEKRVED,

BLUCK ERROR, PAPER FAULT,
UATA LATE,

CCw PARITY ERROR,

PAPER LOW,

TIME OQUT AT wWALTINTEKRUPT,
PROGRAM EXECUTION IS TERMINAJTEUD,

PAPER RUN AWAY,

STUPS EXECUTION WRITING PRUG NU ¢ 1.
STUPS EXECUTION KELEASING DRIVERS (TTY ONLY).
NEXT PARAMETER IS DISPLAYED

(ESCAPE BUTTON DN TTY HAS SAME EFFECT),

ALL PARAMETERS ARE DISPLAYED (TTY OUNLY),.
CURRENTLY DISPLAYEYD PARAMETER 1S CHANGED

TO "VALUE",

THE PARAMETER IDENTIFIED By
CHANGED TO "vALUE",

STATE OF CONTINUE SWITCH IS INVERTED,
PROGRAM EXECUTION 1S STARTED,

NOTE: AFTER MT ERRUR START MEANS ACCEPTING
THE ERRONEOUS INPUT, AFTER LP ERROK START
MEANS REPEATING THE PRINI OPERATION,

"TexXin IS

NONE

STQPPLED,

0124
' 125

126

0127
I 0128

0129
0130
0131
0132
0133
0134
0135
0130
0137
0138
0139
0140
0141
Nide
0143
@
l 0145
N1deé
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
Q162

CONST
NOQ=
OPTXTS=

r<1d><6>
<10>PROG

<10>LUCK NO
<10>FILE NO
<10>REWIND
<10>SELECT
<1 O>MARGIN
<{0>RECSIZE

START=
STOP=
SUSPEND=
CONT=
INT=
STATE=
MINUIS=
PlL.US=
FIVE=
FIFTEFN=
NL=

NEXTPARAM=

SP1A=
ENDI INE=
RETUKN=

RUNTXT=
MTTX1=
LPTXT=
EQJTXT=
SUSTXT=

MTMOUNTTAPE=
CONTSTATE=

@ o0 20 es 8 8 s

74

1<0>
<0>
<0>
<0>
<0>
<0>
<0>1,

'START?!,
'STOP!',
'SUSPENDTY,
1CONTY,
IINTI'
'STATE!,

141,
’<5><0>',
1<15><y>t,
l(lQ)l,
l<27)!'
l<9>|’
1<13><)>!,
'<13>!1,

1<E8><U><LO>RUNNING<13><0> ",

'<7><10>MT ERRUR 'y
1<7><10>LP EKRQR ',

'<14><7><10>END JOB<13><0>",

1<7><10>SUSPENDED<13><0>",

! RC36=00001 PAGE 01

'<14><7><LO>MNUNT DATA TAPE<13><0>!',

1<10>CUNTSTATE: <0>!,

l

0163 | RC36=00001 PAGE 02 !

0164 LPTABLE= | EBCDIC TO 64 CHARACTER ASCI1 DRUM
ll 0165 o t 2 3 4 S5 & 71
0166 #
0167 | 0 | 255 255 255 255 255 255 255 255
I 0168 | 8 | 255 355 255 255 255 255 255 255
0169 | 16 | 255 255 255 255 255 255 255 255
0170 | 24 | 255 255 255 255 255 255 255 255
0171 | 32 | 255 255 255 255 255 255 255 255
0172 1| 40 | 255 255 255 255 255 255 255 255
0175 1 48 | 255 255 255 255 255 255 255 255
0174 | Se6 | 255 255 255 255 255 255 255 255
0175 | 64 | 255 255 255 255 255 255 255 255
0176 | 72 1 255 255 91 46 60 40 43 92
0177 § B0 | 38 255 255 255 255 255 255 255
l 0178 | BB | 255 255 33 36 42 41 59 93
0179 1 96 ! 45 47 255 255 255 255 255 255
0180 | 104 | 255 255 255 44 37 94 62 63
I 0181 ! 112 | 255 255 255 255 255 255 255 255
0182 | 120 | 255 255 5B 35 64 39 61 34
0183 | 128 | 255 65 66 67 68 69 70 71
@01°¢ ! 136 1 72 73 255 255 255 255 255 255
' 0185 | 144 | 255 74 75 76 77 78 79 80
0186 | 152 | B1 82 255 255 255 255 255 255
0187 | 160 | 255 255 83 &4 85 86 87 88
l 0186 | 168 | B9 90 255 255 255 255 255 255
0189 1| 176 | 255 255 255 255 255 255 255 255
0190 | 184 | 255 255 255 255 255 255 255 255
l 0191 | 192 | 255 65 66 67 68 69 70 71
0192 | 200 | 72 73 255 255 255 255 255 255
0193 | 208 § 255 74 75 76 77 78 19 80
0194 | 216 | 81 82 255 255 255 255 255 255
l 0195 | 224 | 255 255 83 &84 85 86 B7 88
0196 | 232 | 89 90 255 255 255 255 255 255
0197 | 240 | 48 49 50 5§ 52 53 54 55
0198 | 248 | 56 57 255 255 255 255 255 255
0199 #; |
0200
II"’
leo

VAR

OPDUMMY ¢
PRUGNO

BLOCKNU:

FILENO:
REWNIND
SELECT:
MARGING
RECSIZE:

PDPTEXT:
UPSTRING:
OPDFC:

OPCONT:
NEXTCONT
GLCONT:
CUR7{Z:
SELX:
SELY:
SEL7/7:

VATAINDEX:
SELECTINDEX:

ERRORNQ:
MASK:
TOM:
SIGN:

0

PAR:®
LENGTH:

RECLENGTH?S

LPLENGTH:

LPOATALENGTH:

Pis
P23
P3:
St
$23
NEXTLP:

STRING(2)?

INTEGER?
INTEGERS
INTEGENRS
INTEGERS
INTEGER?
INTEGER;
INTEGER?

STRING(20);
STRING(20):
STRING(10)

STRING(2)
STRING(1)
STRING(1)
STRING(1)
INTEGER?
INTEGER?
INTEGER?
INTEGER?
INTEGERS
INTEGER?
INTEGEK?
INTEGER?
INTEGER?
INTEGFR;
INTEGER?
INTEGER?
INTEGER;
INTEGEK?
INTEGER?
INTEGER?
INTEGER?
INTEGER?
STRING(2)
STRING(2)
INTEGER

!

l

! RC36=00001 PAGE 03 !

RUNTIME PARAMETERS !

COMMUNICATION AREA !

INTERNAL VARIABLES |

0243
0244
245
0246
0247
0248
0249
0250
0251
0252
0255
0254
0255
0250
0257
0258
0259
0260
neel
0262
0265
@
0245
0266
0267
0268
0269
027V
0271
0272
0273
0274
0275
0276
D77
0N27s
0279
0280
NeRl
0282
@®:::
0284
0285

ouTs

FILE
tMTO !,
14,

1,
1340,
FR;

GIVEUP
MTINERROR,

= G o P

|
2'0110001111011011 !
1
!

uF RECURD
CCw:
SELECT1:
NDATA:
SeELeCTi2:
END 3

FILE
'LPTY,
2

8
135,
U?

GTVEUP
LPERROR,

STRING(1)
STRING (1)
STRING (1)
STRING(1)

S B B G

2'1100001011110010; !

CONV
LPTABLE

OF RECORD
CCwWze
DATA:

ENU 3

| CONVERSTIUN TABLE

I
STRING(1)
STRING (1)

.
14

.
’

INPUT FILE DESCRIPTION
NAME OF INPyUT URIVER
KIND= REPEATABLE,

! RC36=00001 PAGE 04

l

POSITIONABLE,

BLOCKED.

BUFFERS |
SHARESIZE |

FIXED

MT ERROR PROCEDURE

BLOCKED !

GIVE UpP MASK |
ALL REPEATABLE BITS UFF
AND BIT 15 OnN |

RECORD STRUCTUKE

VUTPUT FILE DESCRIPTION
NAME OF QUTPUT DRIVER

KIND=

FRUM 1;
FRUM 1;
FRUM 2

BLOCKED

BUFFERS |
SHARESIZE |
UNDEFINED !

LP ERRUR PROCEULURE
GIvVeE UP

RECORD STRUCTURE

MASK |

l

!

!

!

l

!

.

!

!

0286

0287

Ililkeaa
0289
l 0290
0291
0292
02935
l 0294
0295
0296
0297
0298
0299
0300
0501
0302
0303
' 0304
0305
0306
1307
0308
0309
0310
0311
0312
0313

| RC56-00001 PAGE

PRUCEDURE INITPOSTTION;

BEGIN
IF IN,ZMODE=0 THEN OPEN(CIN,1):
IF OUT,ZMODE=0 THEN OPEN(OUT,7):
SETPOSITIONCIN,FILENO,BILUCKNQO);
SETPOSITIONCOUT»MARGIN,0)
IN,ZLENGTHe=RECS1ZE;
SELXs=SELECT/10000
SELY:=(SELECT=SELX%x10000)/1000;
SELZZZ:=(SELECT=SELX*10000)=SELY*1000;
DATAINDEX:=1=SELX?

IF StLz7z<256 THEN DATAINDEX:=DATAINDEX+1;

SELELTINDEX:=DATAINDEX=1;
LPLENGTHs=RECSIZE=DATAINDEX+L

IF LPLENGTH+MARGIN>133 THEN LPLENGTH:=133=MARGIN;

LPDATALENGIHS=LPLENGTH=1;
END?

PRUCEDURE CONTINUE?;
dEGIN
GLCONTs=UPCONT;
OPCONTs=NEXTCONT;
NEXTCONT e=GLCONT;
UPMESS(OPCUNT)Y;
eND;

05

03514 1 RC36=00001 PAGE 06
. 0315
®:: PRUCEDURE DIRECTUPDATE;
0317 BEGIN
I 0313 P1:=0: { INDEX IN INPUT STRING |
0319 P2:=03 | INDEX IN CONSTANT STRKING |
0320 P3s=13 | PARAMETER NUMBER IN CONSTANT SIRING |
0321 REPEAT REGIN
I 0322 MOVE (OPTEXT,P1,S1,0,1)7
0323 MOVE (OPTXTS,P2,52,0,1)3
0324 . WHILE BYTE S1 <> BYTE 82 DO
I 0325 BEGIN
0320 IF BYTE S2 = 0 THEN P3:=P3+1;
0327 P2:=P2+1s
' 0328 MOVE (OPTXTS,P2,S82,0,1)7
0329 IF P3>NOJ THEN S2:=S13
0330 END;
0331 IF Ps<=NUN THEN
I 033¢ BEGIN
0333 WHILE BYTE S1 = BYTE S2 DO
0334 BEGIN
I h 535 PLi=P1+1;
0336 P2:zP2+1;
0337 MOVE (DPTEXT,P1,S51,0,1)3
l 0338 ; MOVE (OPTXTS,P2,52,0,1);
0339 I[F BYTE 51 = 61 THEN
0340 BEGIN
N34l MOVE(OPTEXT,P1+1,0PTEXT,0,10)7
l 0342 LENGTH:=LENGTH=P1=13
0343 Ne=P33
0344 MOVE(DPDU-‘4MY,G*Z,OPDUMMY,O,Z)?
l 0345 PAR:= WORD OPDUMMY;
0346 , P3:=NONS
0347 ENDS
0348 END 3
0349 P2i=P2=Pl+1;
0350 P12=07
0351 END
l 0352 ENU UNTIL F3>=N0G;
35% END3
454

1ouds
10103

10163
10202

1040:

10502

1060¢

10703

! RC36=00001 PAGE 07

PROCEDURE QPCOM?

BEGIN
Ws=07
REPEAT BEGIN

END?

IF OPTEXT=STATE THEN

BEGIN W2=1; OPMESS(CUNTSTATE); IF UPCONT=FIVE THEN
UPMESS(PLUS); IF OPCUNT=FIFTEEN THEN
UPMESS(MINUS)® GOTO 10407

ENDS

W=+t

OPSTATUS(1 SHIFT(16=Q),0PTXTS5); IF Q<>1 THEN BEGIN

MOVE (NPDUMMY, Qx2, 0PDUMMY, 0,2)

PARs= A0ORD OPDUMMY;

[F PAR = =1 [HEN OPMESS(PLUS);

IF PAR = =2 THEN NPMESS(MINUS);

IF PAR >= (0 THEN

BEGIN BINDEC (PAR,ORDEC)3 OPMESS(UPDECL); ENU; END;

IF OPTEXT=STATE THEN GUTU 1060;

UPMESS(ENDLINE)?

OPWALIT(LENGTH);

OPTEXT3=0PSTRING;

UPIN(OPSTRING);

IF DPTEXT=STATE THEN REGIN Q:=us; GUTU 10157 ENO;
IF LENGTH > 6 THEN DIRECTUPDATES

IF LENGTH > 6 THEN GUTO 10207

IF OPTEXT = START THEN GUTO 10703
1F OPTEXT = S3TQP THEN GUTO 10007
IF NPTEXT = SUSPEND THEN GUTO 93

IF OPTEXT = CONT THEN

BEGTIN CONTINUE; GLOTO 10403 END;

IF APTEXT = INT THEN GUTU 1060;

IF OPTEXT = NEXTPARAM THEN GUTU 10607
IF OpPTEXT = NLL THEN GOTO 10207

1F ORTEXT = ENDLINE THEN GOTO 10203
IF OFTEXT = RETURN THEN GOTO 10207
SIGN:=0?

IF DPTEXT = MINUS THEN SIGN:==13

IF OPTeXT = PLUS THEN SIuNi=41;

IF SIGN <> 0 THEN INSERT(48,uPTEXT,0):

DECBIN(COPTEXT, T0OM);

IF PAR < 0 THEN

BEGIn IF SIGN=Q THEN GOTO 1020; PARt==23
LF SIGN=] THEN PAR:==1; (GOTO 10507

END?

IF SIGN=(THEN

BEGIN SIGN:=1: PAR:;=0; ENDj;

PAR:=PAR+TUMKSIGN;

IF PAR<O THEN GOTO 10207

INSERT(PAR SHIFT(=8),0PDUMMY,0)?

INSERT(PAR, QPODUMMY,1);

MOVE (DOPDUMMY, 0, 0PDUMMY ,Q%x2,2)

1F OPTEST <> 0 THEN GOTO 10407

GOTD 10207

IF OPTEXT=STATE THEN IF w<nQuw THEN GUTOU 1015;

END UNTIL w>=NOQ; GOTO 10007
OPMESS (RUNTXTY

l . R

0414 1 RC36=00001 PAGE 08

' 0415 PROCEDURE OPSTUP;
.)alo BEGIN
0417 OPWAIT(LENGTH);
0418 OPTEXT:=0OPSTRING;
l 0419 OPIN(OPSTRING);
0420 IF OPTEXT=CONT THEN CONTINUE;
0421 IF OPTEXT=STOP THEN GOTO 1;
l 0422 ' IF OPTEXT=SUSPEND THEN GOTO 93
0423 END}
0424
I 0425 PROCENDURE SHUWERROR3}
0426 BEGIN
0427 ERRORNO3=203
0428 WHILE MASK>0 DU
I 0429 ' BEGIN
0430 MASK:=MASK SHIFT 1;
0431 ERKORNO:=ERRURNO+1
I 0432 END?
0433 BINDEC (ERRURNO, OPTEXT);
0434 GPMESS(NPTEXT); OPMESS(ENDLINE)?
l.)uss END;
0436
0437 PROCEDURE MTINERROR;:
0438 BEGIN
I 0439 IF IN.ZO AND 256 <> 0 THEN 1EOF] GOTOQ 93
0440 IF IN,Z0 <> 8'001000 THEN BLUCKNU$=IN,ZBLOCK;
0441 IF IN.Z0 SHIFT 1 < 0 THEN OPMESS(MTMUUNTTAPE);
I 0442 IF IN.Z0 SHIFT 1 >= 0 THEN
0aud BEGIN
04dd OPMESS (MTTXT);
l 0445 MASK$=IN,Z0?
04db SHUWERROR
o4ua’ END S
0448 REPEAT OPSTOP UNTIL OPIEXT=START;
l 0449 OPMESS (RUNTXTY;
0450 END;
0451 ,
l 0452 PROCEDURE LPERROR;
0453 BEGIN
@ .. NEXTLP:= OUT,Z0 AND 8'000020;
0455 UUT,Z03= DUT,Z0 = NEXTLP; _
' 0456 IF OUT,Zo SHIFT 1 < 0 THEN OUT,Z0%= OUT,20 AND 810413423
0457 IF OUT,Z0 = 8'040000 THEN IF NEXTLP <> 0 THEN
0458 0T L0s=NEXTLP;
l 0459 IF 0UT.Z0 AND 81001342 <> 0 THEN
0460 OUT.Z0:= OUT.ZO0 AND 8'001342;
0461 IF QUT.Z0 <> 0 THEN
l 0462 BEGIN
0463 OPMESS (LPTXT)3
0464 BLOCKNO:=IN,ZBLOCK;
0465 MASK:=0OUT.Z03
' 0466 SHOWERROR;
0467 NEXTLP:=03
0468 REPEAT OPSTOP UNTIL OPTEXT=START;
I 0469 OPMESS(RUNTXT) 3
0470 IF OUT.Z0 AND 8'141342 <> 0 THEN
0471 REPEATSHARE (QUT) 3
l davz _ END;
473 END
0474

0475

l 0476
477
0478
0479

l 0489
0481
0482
04R3
0484
0485
0dRb
N487
0488
0489
0490
0491
049¢
04935
0u94
0495
ll‘.ﬁqu
0497
nNyg9g
0499
05990
0501
0502
0503
0504
0505
05006
0507
0504
0509
05190
0o11
051¢
n513
0514
@
0516
0517
ns518
0519
05290
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
SI]7k

102

02857

| RC36=00001 PAGE
BEGIN
IN.7BLOCK:=1; BLOCKNOt=1; FILEND:=1; REWIND:==17
SELECT:=999; MARGLIN:=0; RECSIZE:=133; NEXTLP:=07
OPCONT:=FIFTEEN; NEXTCONT:=FIVE; OPIN(UPSTRING) S
uPCOM;
INITPOSITIQGN; L1F OPTEST<>0 THEN OPSTOP;

REPEAT BEGIN
GETREC(IN,RECLENGLTH);
IF SELZZZ<256 THEN
BEGIN
MOVE (IN®T.DATA,SELECTINVEX,CURZZZ,0,1)7
1F SELY=g THEN

BEGLIN
IF BYTE CURZZZ<>SEL7ZZ THEN GOTO 53:
LOTO 3;
ENDJ
IF RYTE CURZZZ AND SELZZZ=0 THEN GOTO 57
END?

PUTREC(AUT,LPLENGTH)Y;
IF SELX=0 THEN
BEGIN
OQUTT ., CCWes=INt LCW?
GOTO 4;
ENU;
QUT*,CCHWe=5P1A;
MﬂVE(INT.DATA:DATAINDEX'UUIT.DATA.O;LPUATALENGTH);
END UNTIL INGZREM<RECSIZE?
BLOCKNO:=IN.ZBLOCK;
1F OPTEST=0 [HEN GOTO 27
WALTZORE(OUT) S
OPSTOUP; 60OTO 27

CLUSECOUT, 1)
[F OPTEXT=SUSPEND THEN.
BEGIN
CLOSE(IN, 1)
OPMESS(SUSIXT);
GOTO 107
END?
BLOCKNO:=1; FILENOs=FILENO+1;
IF DPCUNT = FIVE THEN
BEGIN
CLOSECIN,1)7
FILEND:=1?
OPMESS(MIMUUNTTAPE)
END?
IF OPCUNT = FIFTEEN THEN
BFEGIN
CLOSECIN,REWIND+2);
IF REWIND=w] THEN FILENOZ=];
UPMESS(EQJITXT)Y:
END S
REPEAT OPSTOP UNTIL OPTEXT=START;
INITPOSITION; OQPMESS(RUNTXT); GOTO

N
-

END?

09

