Y

Title:

‘ SOFTWARE PRODUCTION for IML701.

U: 8REGNECENTRALEN RCsL No: 43-cL7966
E o Edition: Oktober 1978
Author:: Dan Andersen

RC SYSTEM LIBRARY: FALKONERALLE 1 ~DK-2000 COPENHAGEN F

W p

Keywords:

RC3600, Autoload, Image load, IML701, F102,
software production description.

Abstract: = '
This manual is a description of how to generate

stand alone programs or RC3600 systems for the
IML701 (F102).

Users of this manual are cautioned that the specifications

. contained herein are subject to change by RC at any time
COPYflght A/S Regnecentralen, 1978 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which ‘may appear in this manual

Printed by A/S Regnecentralen, COperlhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

CONTENTS PAGE
1 GENERAL . e et teeeeennneacasesessoceacscncsoassssaacasssonsanss 1
2. AUTOLOAD . ¢ ¢t veeeneensasneasecsssessseosaescssassscasoososnnas 2
3. CORE IMAGE GENERATION...:eevevaseans tecsnsenne seescecencanas 3
4 STAND ALONE PROGRAMS ... vteteesssncsscessassscssacsasceanssons 5
5. RC3600 MUS SYSTEMS. . ceesenesenecsosacososonssacassoasasnsnss 6

APPENDIX A

APPENDIX B

APPENDIX C

Page 1

CENERAL. 1.

The IML701 consist of a EPROM memory expandible in 2K 16 bits
increments to 32K 16 bits words, which can be transferred to

the RC3600 main memory at autoloade time.

An erased EPROM memory may also be programmed with the contents
of the RC3600 main memory by applying external power and activa-
tion of the PROGRAM button.

This manual deals with the preparation of software, which is
going to be programmed into the EPROM's from a core-image gene—
rated in the RC3600 main memory.

AUTOLOAD.

When the IML7071 is requested, by the autoload program, to trans—
fer data from the EPROM memory to the main memory with an I/O-START
pulse, the data is transferred word by word through the data channel.

The transfer is started at main memory address 4008, and continued
to the maximum address defined by switch setting on the controller
board. After this transfer, the page zero is filled from address

0 to 3778 (see fig 2-1).

ADDR ADDR
0 0 :
A . ,’1
!
EPROM MATN 1
MEMORY MEMORY I‘
!
!
§
i
n 2Kbeme o | e e e e e e o D e e m e - L4
MAX

Fig 2-1: Transfer of EPROM memory to main memory from address 400
and on, and then from address 0 to 377

8
g8*

Programs designed for autoload via DMA channel can then be used with-
out modification, if only the device busy flag is tested in the de-
lay loop, which delays the transfer of program control until the whole

core image is read into the memory.

As word 3778 is the last word written in the IML data transfer the
transfer of program control is delayed by keeping the CPU busy, exe-
cuting JMP 377 in location 3778, until the last data word defines a

new instruction in word 3778.

Page 3

CORE IMAGE GENERATTICN 3.

Before the programming of the EPROM's is started, a core image of
the actual system/program must be created in the RC3600 main mamory.

The core image is created from an absolute binary file which is the
resulting output from an absolute assembler, a linkage editor or a
~ relocatable loader.

- As transfer of program control to the resulting system is not wan-
ted before EPROM programming, the absolute binary output must be
produced with a startblock which tells the core image generator
(binary loader) not to transfer control to the loaded system.

The system programmed into the EPROM's must contain an instruction
in address 3778, which transfer program control to the system/pro-
gram entry.

When the absolute binary file is generated the core image can be
created in the main memory in two ways:

1) load of a papertape containing the system in absolute bi-
nary format, with the RC3600 Binary loader.

When the loader halts after input of the tape the CPU must be run-
ning in a dummy loop, as the data channel can not function if the
CPU halts.

This can be done by insert of a dummy instruction JMP .40 (4008) in
any unused memory location, and start of the CPU in this address

by means of the technical panel.

Programming can then be started (Appendix B)

2) Abs. binary load of the system from a DOMUS disc file
by means of the command BOOT <filename”.

In this case the maximum size of the system allowed is
approximately 600008 words, and if greater a size error
is returned by the DOMUS absolute binary loader.

When the DOMUS system halts after the load the CPU must be running
executing the dumy instruction JMP .10 (4008) in any unused me-
mory word, as the data channel can not function if the CPU halts.

This can be done by means of the technical panel before programming
is started. (Appendix B)

Page 5

STAND ALONE PROGRAMS. 4.

If the stand alone program is designed for DMA load, and fulfils

the specifications given in section 3, the core image can be crea-

ted as described.

If, however, word 3778 in the program is not used as entry point
some modifications must be carried out before use of the IML is
possible.

The modifications can be done on the loaded core image by means of
the technical panel, or on source level, but in this case must the
absolute binary file be created from scratch.

The modifications necessary are shown in example 4-1.

2ADDRESS (oct)

376 PIP ; Address of new entry point
377 IMPE -1

; unused words:

PIP: IDA 3 ORG1; new entry point

STA 3 376, restore memory word

ILDA 3 ORG2; 376 and 377

STA 3 377;

JMP entry; Jump to original entry
ORGl: XXX .+ original content

ORG2: YYY s of word 376 and 377

RC3600 MUS SYSTEMS.

The MUS system consist basically of a number of seperate relocatable
binary files, which can be transformed to a single absolute binary
file by means of a linkage editor program (fig 5-1)

REL.BIN
MODULE
1
REL.BIN
MODULE
9 . \
LINKAGE EDITOR
- ——— I . | > ABS.BIN
! i < SYSTEM
! ’
! P -
i ‘/
!
) |
- __
REL.BIN l
MODULE
M IOG FILE
(printer)

Fig. 5-1: Linkage Editing of rel. binary files creating a absolute
binary file and same log information.

In the RC3600 DOMUS system the utility program LINK can do the creation
of absolute binary files. The LINK program can furthermore place

same system information in the resulting core image, which is used

by the MUS-system initialization in the startup fase after autoload
(IML image load).

Page 7

- The information is primarily the start addresses of all process
descriptions in the resulting system, which are defined in the
rel. binary files by the binary startblocks. The start addresses
are placed in the system from memory address 402
nated by the value 177777

8 and on, termi-

g*

When the MUS-system is created by the Linkage Editor the modules
to link must be given in a right sequence, which is:

1) The MUS-Monitor module MUMXX

2) All non-process modules (I/0O Procedures)

3) All process modules (drivers, application, etc).
4) The Operating system S, if present

5) The MUS-System Initialization module MUIXX

The format parameter FORM. must be set to N ie. creation of a
absolute binary MUS-Basic system, which is not autostarting.

The log output fram the Linkage Editor contains an information
necessary for documentation of the created system f. ex. the
titles of all linked modules.

The following is two examples of Linkage Editor calls in the
- DOMUS-system:

1) MUS-System with TTY and MT:

LINK ABS LOG.SLPT CHECK.NO FORM.N IN.MUMXX MUUXX!
| MUBXX MUCXX MURXX INTXX TTXXX MIXXX !/

P ssxxx MUTXX

2) MUS-System with support of TTY and PTR. No MUSIL
interpreter is included and an application pro-
gram with driver AMX are included.

LINK ABS1 LOG.$SP CHECK.NO FORM.N IN.MUMXX MUUXX!
IMUBXX MUCXX MURXX TTXXX PRXXX APC AMX SSXXX!

!

s MUIXX

The modules given as parameters in the examples are the mnemonic
names of the MUS system modules. The XX is the version number.

Appendix A contains a description of the MUS?Systern modules.

Before programming of the IML is performed the resulting system
should be tested. This can be done by use of the DOMUS command
BOOT, and start of the system in address 3778.
Remember to reload the system before programming, and start the
CPU in a dummy instruction.

In the MUS-system memory word 0 is 0, and the CPU can then just
be started in address 0. '

APPENDIX A, MUS-System modules

All MUS-System modules are given a unique name defined by the
.TITL directive to the assembler. The title is transferred to the
rel.binary title block in the memory file.

The titles are two or three letters with a trailing version num-~
ber. The version number is replaced by XX or XXX in the following
description.

Before the modules are linked be sure that the newest versions
are used. '

MIMXX * MUS-System Monitor

MUUXX * MUS-System Utility Procedures
MUBXX * MUS-System Basic I/O Procedures
MUCXX * MUS-System Character I/0 Procedures
MURXX * MUS-System Record I/0 Procedures
MUIXX * MUS-System Initialization module

INTXX MUSIL Interpreter

TTXRXX Operator console driver (TTY)

MIXXX Magnetic tape driver (MTO)

CRXXX Cardreader driver

PRXXX Papertape reader driver

FDXXX Flexible disc driver (RC3650)

FLXXX Flexible disc driver (RC3751)

FMXXX Preprocess module to the flexible disc driver (RC3751)

SSXXX Operating. System S

SSAXX Operating System S, which has automatic interpretation
of file SSYSI after autolcoad.

The modules marked with "*" must always be present in the system.

If the Operating System is included an operator console driver and
an input driver must be present too.

The Operating System performs an automatic initialization before

start, and must be the last module in the system (highest core address)
before the MUS~-Initialization module.

It is recommended to use the above given sequence of the MUS-System

modules because debugging is eased considerately in this case.

‘ APPENDIX B IML701 PROGRAMMING

The programming of the Image Load is made in the following way:

1. Supply the Image Load IML701 with the correct numbers of
un-programmed EPROM's of the type Intel 2716 (RC number EPROM
ROM490) . Set the switches on the IML701 to show the size
of the Image Load used. Connect the 4 plugs from IML 701 to
IDR 701 and conmnect IDR 701 to the RC3600 BUS.

Pos 71 and 72 1010 to pos. 52

Time 1,2 and 3

and device No.

1020 to pos.

IS

2

1030 to pos. 32

Pos. 22 and 21

Jdentif ication No.

F102 Baby Print

. (ML 701)

F100 controller board
(IDR 701)

Switches showing

Image lcad size

2. Comnect 28 Volt +1V fram a lab power supply or from
Erasure Box EEB701 to the jack connectiors on the front panel.
Max. current consumption fram the power supply is 0.25 AMP.
(Without this power supply programming is impossible).

3. Load the program, which is wanted in the Image Load, into the
main memory of the RC3600, and start the CPU in a unused me-
mory address executing the dummy instruction JMP .+0 (4008)

4. Push the PROGRAM button on the front panel and the programming

of the EPROM's starts from location zero, and ends in case of

no errors, when the size selected with the switches on IML 701,

is reached. Under programming the PROGRAM light is on.

5. Under programming the indicators IDENTIFIER (0-15) shows the
address being programmed or tested. After a successfull pro-
gramming the IDENTIFIER (0:15) shows the top address, which
has been programmed. The program identicator stays on and no
of the error indicators are turned on. Programming takes about
1 minute for each 1 K word, so 32 K words takes about % hour.

The microcamputer inside the unit checks the programming, and
tries to reprogram in case of failures. If the programming fails
in any way, the program light stays on and one or bothe of the
Error lights turn on. These indicaters, together with the IDEN-
TIFIER indicators, show which EPROM fails. This is described in
details in the Technical Manual.

When the micro-camputer stops the failed EPROM is found the follo-

wing way:
0 1 4 5 15
T 1 T T l | B T | I
X n X X X X X X X X X X
F TDENTIFIER —
Failed EPROM = (2 n) - (2 n+ 2)

Example: The programming stops and n = 1010 and HIGH ERROR Light

is on.

Failed EPROM = (2 x 10) = (2 x 10 + 2) = 20 - 22 K word, and the
EPROM marked 20 - 22 and High is found using the Assembly Drawing
on next page.

(G136 419) o4Aq jupdiyiubis yspe| subsw moT

o *(8:0 419) ®4Aq 4updijiubis ysow suosw ybiy
A . “plom M ZE ©f piom Y Of wouy Alowsw syj soxpw axow suonisod siyy Ul WOYdI Yl %
]
© e MO1 MO MO MO MO MO MO M0
2 - 7= 8i- oL 2z-02 0z-8 z-0 -2 82-97 Ze-0€
Laje o® *
~_|® ~ L] ~ [] ~ L] A ® ~_]® ~ [] ~ L)
—
~ HOIH HOIK HOIH HOIH HOIH HOIH HOIH HOIK
[S) - .
- -2l 8-l 20z 0z-8! z-0 -2 8Z-92 2€-0€
#1008 *
ocC Lals
j28¢ PNl bd ~|® A a l® ~ J® n_J® I o_j®
200
e}
oG ﬁ]
[{eYo1
- w MO MO M0 MO M0 M0 MO MOl
Q L
- 8- 0i- 8 zi-o 8-§ 7z 92-72 0€-82 si-i
-] ~le
- o_j® ~_® ~_J* o f* ~_1* Pl A o j® o e

@
.
o
?

2
o

[

9

[]

.

°

.

D

.

D

.

HOIH HOIH HOIH HOIH HOIH HOIH HOIH HOIH
9-v 0i-8% -0t 8-9 7z 8Z-7C 0E-82 Si-9l

IC3
1040
0000000

0000000

‘(|pwioap) 8zis Asowaw ul
$161p jupoiyiubis ysped

*(|pwioep) 8z)s Asowsw uj

’ . . 4181p 4upoyiubis ysopy — . .

Appendix C References.

1]
[2]
2]

DOMUS User's Guide, Part I
Philippe Gauguin, July 1976.

DOMUS Linkage Editor, Revision 01
Marie Louise Mgller, October 1977.

RC3600 Binary Loader
Jens Falkenberg Andersen, November 1972.

General Information for F100, F101, F102 and F103
Mogens V. Petersen, October 1978.

