Zilog

'BASIC Interpreter -

PreliminaryUserSManual

Copyright© 1977 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

ZI1ILOG
BASIC INTERPRETER

PRELIMINARY
USER'S MANUAL

Sections I - IX from 77348
X - App J " 78116

SECTION

SECTION II:
2.

2.
2.
2.
2.

— el Sy
* o o o .
TE W -

-_ = \O 00~ O

_— e el ey
. . L]
- O

I:

B M Qe Y

1

2
3
m
5

2.
2.

TABLE OF CONTENTS

INTRODUCTION TO BASIC

SPECIAL KEYS .

PROMPT CHARACTERS . . .

STARTING AND STOPPING A BASIC SESSION
CORRECTING TYPOGRAPHICAL ERRORS .
BASIC COMMANDS AND STATEMENTS

5.1 COMMANDS .

.5.2 STATEMENTS . .

.5.3 ERROR MESSAGES .

.5.4 CHANGING OR DELETING A STATEMENT

BASIC PROGRAMS
USER'S WORK AREA

LISTING A PROGRAM
RUNNING A PROGRAM
DELETING A PROGRAM
DOCUMENTING A PROGRAM . . .

EXPRESSIONS
.CONSTANTS
1.1 NUMERIC CONSTANTS
1.2 LITERAL STRINGS
VARIABLES . c e e e e e e e e
FUNCTIONS
OPERATORS C e e e e
EVALUATING EXPRESSIONS e e e e e

SECTION III: STATEMENTS

W W Ww W
.
SN OO EWN —

ASSIGNMENT STATEMENT: LET .
END/STOP STATEMENTS
LOOPING STATEMENTS: FOR...NEXT
GOTO/ON...GOTO STATEMENTS
GOSUB...RETURN STATEMENTS
CONDITIONAL STATEMENTS: IF...THEN .
INPUT STATEMENT . e e e .

—

WA O O ~NJ OvOn ANV W

— i —

14
15

15
16

17
19

20
22

24

25
27
29
33
35
38

43

.8

3.
3.
3.
3.
3.

SECTION

—_et e =\
wN) = O

4.1

b,

3

3.
3.1

IV:

g

01.

Fo =g g e -
DN NN

ErErEEEE e
. . o . o e e .

PRINT STATEMENT

.8.1 TAB FUNCTION

READ/DATA/RESTORE STATEMENTS .
COMMENTS: REM STATEMENT AND "\" . .
RANDOMIZE STATEMENT

SYSTEM STATEMENT
TRAP STATEMENT

13.1 ERR FUNCTION
3.2 ESC FUNCTION

COMMANDS
PROGRAM EXECUTION COMMANDS

RUN .

XEQ
RESUMING PROGRAM EXFCUTION:
CONTINUE, STEP, RUN .

-
o o
= W) =

QUIT
EDITING COMMANDS

LIST

NEW . .
DELETTE
RENUMBER
SIZE
CLEAR

oM EWN —

DISK RELATED COMMANDS .

3.1 SAVE

3.2 ASAVE .

3.3 RSAVE

3.4 GET .

3.5 XEQ .

3.6 APPEND

3.7 OBTAINING A LIST OF BASIC PROGRAMS
3.8 DELETING FILES o e e e .

L5
46

48
51

52
53
56

56
56

64

70

SECTION V: KEYBOARD EXECUTABLE STATEMENTS 72

SECTION VI: NUMERIC TYPES & & « & ¢ o « o o o « o« « . Th
6.1 TYPE SPECIFICATION . . . v « ¢ « . 75
6.2 NUMERIC CONSTANT FORMS . 76

6.2.1 INTEGER FORM 76
6.2.2 FLOATING POINT FORM . . . 76
6.3 NUMERIC EXPRESSIONS . . . 79
6.4 CONDITIONAL NUMERIC EXPRESSIONS . 80
6.5 NUMERIC ASSIGNMENT . v v v v v ¢ « o « « . . 81
6.6 INPUTTING NUMERIC DATA . .« +v « « « « « « « . 82
6.7 OUTPUTTING NUMERIC DATA +. « « « « . . 83
6.8 NUMERIC FUNCTIONS B85
6.8.1 ABS e e e e e . 84
6.8.2 ATN . . . 84
6.8.3 COS . v v v v v e o w o u 84
6.8.4 EXP v v v . . 84
6.8.5 INT . . 84
6.8.6 LOG . 85
6.8.7 RND 85
6.8.8 SGN 85
6.8.9 SIN . v v v v 4w v e e e e 85
6.8.10 SQR + v v v v vt e e e e e e e e 85
6.8.11 TAN . & v v v v e e e e e e e e e 85

SECTION VII: ARRAYS . . & & v v v 4 4 o « o o« « « « . 86
7.1 DIM STATEMENTS e e e e e 4 e . . . 88
7.2 STORING DATA IN ARRAYS & . » o o v 90
7.3 PRINTING DATA FROM ARRAYS « + v « . . 91

SECTION VIII: STRINGS . . . + v v v & « o o & o « « « 92

LITERAL STRINGS ¢« « ¢ « « ¢« « « « « « 93
STRING VARIABLES . . . e e e e e v e . 95
DIM STATEMENT WITH STRINGS c e e e e e o« . . 98
STRING EXPRESSIONS . . . « + +« « « « « «. . . 100

oo 00 0o o
EZEWN o

8.

Co Co0o Colo o

5

— O O~ O\
- O

STRING-RELATED FUNCTIONS
8.5.1 CHR$ FUNCTION
8.5.2 ASC FUNCTION . o
8.5.3 LEN FUNCTION
8.5.4 POS FUNCTION
8.5.5 VAL FUNCTION
8.5.6 STR$ FUNCTION .
8.5.7 LEFT$ FUNCTION
8.5.8 RIGHT$ FUNCTION
8.5.9 SEG$ FUNCTION
COMPARING STRINGS
STRING ASSIGNMENT . .
STRING INPUT STATEMENT
STRING LINPUT STATEMENT
STRING PRINT STATEMENT . .
STRING READ/DATA/RESTORE STATEMENT

SECTION IX: USER-DEFINED FUNCTIONS

9.
9.
9.

1
2
3

ONE-LINE FUNCTIONS
MULTI-LINE FUNCTIONS .
CALLING A USER-DEFINED FUNCTION

SECTION X: FILES

10.

10.

10.
10.

10.
10.

10.

1

~N OWUl =W

FILE TYPES AND ATTRIBUTES

10.1.1 ASCII FILES

10.1.2 BINARY FILES

10.1.3 FILE NAMES . .

10.1.4 FILE ATTRIBUTES AND STRUCTURE

OPENING FILES: FILE STATEMENT
CLOSING FILES: CLOSE STATEMENT
DELETING FILES: ERASE STATEMENT
TRUNCATE STATEMENT

SPACE STATEMENT

FILE ACCESS

10.7.1 SEQUENTIAL FILE READ, INPUT

AND LINPUT . .
SEQUENTIAL FILE PRINT AND WRITE
FILE RESTORE STATEMENT

10.7.
10.7.
10.7.
10.7.

(92 BE UV V)

RANDOM FILE PRINT AND WRITE .

RANDOM FILE READ, INPUT, AND LINPUT .

102

102
102

102
103
103
103

104
104

PR QT S G QY
P = OO
W O U

114

122

—
N
w

—_ ey
[ASZASIRACE V]
W W)

B T W N Y

Wi WW N
Ui O ou

[T Y
= W W
OO Co~3 Ul

10.8
10.8.1

SECTION XI:

EOF FUNCTION

FILE RELATED FUNCTIONS

. o

FORMATTED OUTPUT . .

11.1 PRINT USING STATEMENT .

11.2 FORMAT STRINGS

SECTION XII:

12.1 TRAP
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6

12.2 TRAP
12.2.1
12.2.2
12.2.3
12.2.4
SECTION XIII:

13.1

TRAPPING
STATEMENT

KEYS
EXT .
ESC .
ERR .
EOF .

ENVIRONMENTS AND T

.
.
.
.

. L) . .

L] L] . .

RELATED FUNCTIONS

TRP .
ESC .
KEYSS
ERR .

. . ¢ o

CHAIN STATEMENT

13.2 COM STATEMENT .

SECTION XIV:

14.1 CALL STATEMENT

SEGMENTATION

COMMUNICATION

» . s 8
.
. . e o

L]
.
.

R

L] . . .

APS

] . * o

WITH NON-BASIC PROGRAMS

. . .

L3

142

142

143

144
145

148

149

150
151
151
152
152
152

154

154
154
154
154
155

156
158

159

160

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX

A
B:
C-
D:
E:
F:

ASCII CHARACTER SET

SUMMARY OF ZILOG BASIC STATEMENTS
SUMMARY OF ZILOG BASIC COMMANDS

BUILT-IN FUNCTIONS

ERROR MESSAGES

BASIC, PLZ AND ASSEMBLY LANGUAGE LINKAGE

EXAMPLE: ASSEMBLY LANGUAGE CALL-SYSTEM STATEMENT
PROCESSORS

EXAMPLE: A USER PROCEDURE CALL

A PROCEDURE FOR PRINTING TO A PRINTER

EXTERNAL INTERRUPT LINKAGE

161l
164

168

170
173

180

191

195

204

205

SECTION I

INTRODUCTION TO BASIC

Zilog BASIC is a programming language designed for use
at a keyboard terminal. It consists of statements for
writing programs and commands for controlling program
operation.

There are two versions of Zilog BASIC. The difference
between them is the math package. BINBASIC includes a
binary math package with seven significant bits of
precision. BASIC includes a BCD math package with 13
significant digits. Section 6.2.2 describes the two
floating point representations. The examples shown in
this user's manual will primarily reflect the BASIC BCD
math package. The use of the word BASIC in this manual
will refer to both BASIC and BINBASIC.

This section describes how to begin and end a BASIC
session, how to enter commands and statements and make
corrections. A few simple programs are used for
illustration. The actual programming language 1is
described in following sections.

This manual assumes that the user knows how to connect
his terminal, and is familiar with his terminal keyboard.
Special keys with particular functions in Zilog BASIC are
described in this section.

1.1 SPECIAL KEYS

RETURN Must be pressed after every command and
statement. It terminates the line and
causes the cursor to return to the first
print position.

LINEFEED Causes insertion of a space in the text
and moves the cursor to the beginning
of the next line.

CTRL When pressed simultaneously with another
key, converts the key to a control
character that is usually non-printing.

CTRL-H Deletes the previous character in a line.
The cursor is moved back one position for
each character deleted. (See RIO manual.)

RUBOUT (DEL) Cancels the line currently being typed.

ESCAPE (ESC) Cancels the current line if typed during
command or statement input; stops the
currently executing program if typed
during run mode. (May not work on a ZDS
system because there is no hardware
Universal Asynchronous Receiver Transmitter
(UART)).

? Causes output to pause and.continue if
typed while terminal is outputting
information. (May not work on a ZDS
system because there is no hardware UART).

1.2 PROMPT CHARACTERS

Zilog BASIC uses a set of prompting characters to
signal to the user that certain input is expected
or that certain actions are completed.

> The prompt character for the Zilog BASIC
Interpreter; a BASIC command or statement is

expected.

% The prompt character for the RIO Operating
System; RIO commands such as CAT or BASIC are
expected.

? User input is expected during execution of an
INPUT statement.

1.3 STARTING AND STOPPING A BASIC SESSION

STARTING A SESSION

Once the terminal is connected and ready, the user
presses the carriage return. RIO responds with a
percent sign (%) at the beginning of the line. The
user may now begin.

ENTERING BASIC

The RIO Operating
System signals it is
ready for the next

command by printing: %

To enter BASIC, type: ZBASIC

BASIC signals that ZILOG BASIC

it has control by version date
printing: BCD ARITHMETIC
followed by the prompt

character: >

To enter BINBASIC, type: %BINBASIC
BINBASIC signals that it ZILOG BASIC

has control by printing: version date

BINARY ARITHMETIC

followed by the prompt
character: >

BASIC commands and statements can now be entered.
Each command or statement is prompted by the
greater-than-sign at the start of a new line.

ENDING A BASIC SESSION

When the user is through, he or she returns control
to RIO with the QUIT command.

To leave BASIC, type: >QUIT
RIO signals that it

has resumed control by
printing: %

1.4 CORRECTING TYPOGRAPHICAL ERRORS

Corrections can be made while the line is being
entered if the error is noticed before RETURN is
pressed. The control character CTRL-H can be
used to correct a few characters just typed, or
the character RUBOUT (DEL) can be used to cancel
the line and start fresh.

Suppose the user misspells

the command, RUN >RUM
CTRL-H will delete the last >RU (Note: CTRL-H was
character pressed once)

The user retypes the

character correctly and

finishes the line. When

RETURN is pressed, the

line is entered correctly. >RUN

If several characters have been typed after the
error, CTRL-H must be typed for each character to
be deleted.

>10 PXINT
>10 P (Note: CTRL-H was pressed 4 times)
>10 PRINT

In this case four characters were deleted.
Another method is to use RUBOUT (DEL) to cancel

the line. RUBOUT (DEL) must be typed before
return is pressed.

~To cancel the line, type >10 PRXNT
RUBOUT (DEL). The user > (Note: RUBOUT (DEL)
retypes the line was pressed)

>10 PRINT

1.5 BASIC COMMANDS AND STATEMENTS

1.5.1 Commands

Zilog BASIC commands instruct the Zilog BASIC
Interpreter to perform certain control functions.
Commands differ from the statements used to write

a program in the Zilog BASIC language. A command
instructs the interpreter to perform some action
immediately, while a statement is an instruction
that normally performs an action only when a program
is run. Similar to commands, some statements can be
executed immediately.

Any Zilog BASIC command can be entered following
the BASIC prompt character ">"., Each command is a
single word. If misspelled, the computer will give
an error message. Some commands have parameters to
further define command operation.

For instance, QUIT is a command that signals
completion of a BASIC programming session and return
to the operating system. It has no parameters.
Another command, LIST, prints the program currently
being entered. It may have parameters to specify
that only part of the program is to be listed.

1.5.2 Statements

Statements are used to write a Zilog BASIC program
that will subsequently be executed. Each statement
performs a particular function. Every statement
entered becomes part of the current program and is
kept until explicitly deleted or the user exits from
BASIC with QUIT.

A statement in a BASIC program is always preceded by
a statement number. This number is an integer between
1 and 9999. The statement number indicates the order
in which the statements will be executed. Statements
are ordered by BASIC from the lowest to the highest
statement number. Since this order is maintained by
the interpreter, it is not necessary for the user to
enter statements in execution order as long as the
numbers are in that order.

Following each statement, RETURN must be pressed to
inform the interpreter that the statement is complete.
The interpreter generates a LINEFEED and prints the
prompt character ">" on the next line to signal that
the statement is accepted. If the entered statement
is in error, the computer prints an error message.

Zilog BASIC statements have a free format. This means
that blanks are ignored.

For instance, all these >20 LET B7=25
statements are equivalent. >20LETB7=25
>0 LETBT =25
>20 LET B7 = 25

1.5.3 Error Messages

If an error is made in a line and the line is entered
with RETURN, the interpreter types a message. The
message consists of the word ERR followed by a number
indicating the nature of the error. See Appendix E
for a list of the error and warning numbers and their
meaning.

1.5.4 Changing or Deleting a Statement

If an error is made before RETURN is pressed, the
error can be corrected with CTRL-H or the line may
be cancelled with RUBOUT (DEL), (See section 1.4).
After RETURN is pressed, the error can be corrected
by deleting or changing the statement.

To change a statement, simply type the statement
number followed by the correct statement.

To change this statement: >20 LET B7=25
retype it as: >20 LET B7=37

A change such as this can be made any time before
the program is run.

To delete a statement, type the statement number
followed by return.

Statement 20 is deleted: >20

The DELETE command, described in section 4.2.3 is
useful to delete a group of statements.

1.6 BASIC PROGRAMS

Any statement or group of statements that can be executed
constitutes a progranm.

A program can have as few as one statement.
This is an example of
a program with only >100 PRINT "5 *¥ 10 = ";5%10 «

one statement.

100 is the statement number. PRINT is the key word or

instruction that tells the interpreter the kind of -
action to perform. In this case, it prints the string
expression "5 + 10 =" and the result of the expression

that follows. ©5%¥10 is an arithmetic expression that is
evaluated by the interpreter. When the program is
run, the result is printed.

The statement 100 PRINT "5 ¥ 10 = ";5%10 is a complete
program since it can run with no other statements and
produce a result. Usually a program contains more than

one statement.

These four statements >10 INPUT A,B
are a program: >20 LET C=A+B
>30 PRINT
>40 PRINT A;"™ +";B;" =";C

This program, which calculates the sum of two numbers,
is shown in the order of its execution. It could be
entered in any order if the statement numbers assigned
to each statement were not changed.

This program runs >20 LET C=A+B
exactly like the >10 INPUT A,B
program above. >30 PRINT
>40 PRINT A;" +";B;" =";C

It is generally a'good idea to number statements in
increments of 10. This allows room to intersperse
additional statements as needed.

1.7 USER'S WORK AREA

When statements are typed at the terminal, they
become part of the user's work area. All statements
in the user's work area constitute the current
program.

Any statement in the user's work area can be edited
or corrected; the resulting statement will then
replace the previous version in the user's work area.

When the user exits from BASIC with the QUIT command,
the work area is cleared.

1.8 LISTING A PROGRAM

At any time while a program is being entered, the LIST
command can be used to produce a listing of the
statements that have been accepted by the computer.
LIST causes the computer to print a listing of the
current program at the terminal.

After deleting or changing a line, LIST can be used
to check that the deletion or correction has been
made.

>10 INPUT A,B
>20 LET C=A+G

A correction is made >20 LET C=A+B

while entering a >30 PRINT

program: >40 PRINT A;"™ +";B;" =";C
>LIST

10 INPUT A,B

To check the 20 LET C=A+B

correction, list 30 PRINT

the program: 4O PRINT A;" +";B;" =";C
>

Note that the greater-than sign prompt character is
not printed in the listing, but is printed when the
list is complete to signal that BASIC is ready for
the next command or statement.

Should the statements have been entered out of order,
the LIST command will cause them to be printed in
ascending order by statement number.

>40 PRINT A;"™ +";B;" =";C

For instance, the >20 LET C=A+B

program is entered >30 PRINT

in this order: >10 INPUT A,B
>LIST

The list is in correct 10 INPUT A,B

numeric statement order 20 LET C=A+B

for execution: 30 PRINT

' 4O PRINT A;" +";B;" =";C

>

10

1.9 RUNNING A PROGRAM

After the program is entered and, if desired, checked
with LIST, it can be executed with the RUN command.
RUN will be illustrated with two sample programs.

The first program has

one line >100 PRINT "5 * 10 =";5%10
When run, the result of >RUN
the expression 5%10 is 5 % 10 = 50
printed:
READY
>

Because the program contains a PRINT statement, the
result is printed when the program is run.

The second sample

program adds two >10 INPUT A,B

numbers. The numbers >20 LET C=A+B

must be input by the >30 PRINT

user: >40 PRINT A;" +";B;" =";C

The two letters following the word INPUT and separated
by a comma name variables that will contain a value
input by the user from the terminal. When the program
is run, the interpreter signals that input is expected
by printing a question mark. The user enters the
values following the question mark. They are entered
with a comma between each successive value.

The statement LET C=A+B assigns the value of the
expression to the right of the equal sign to the
variable C on the left of the equal sign. The
expression adds the values of variables A and B
together. The result is the value of C.

When the program is run,

the user enters input >RUN

values and the computer ?1078,5.3

prints the result 1078 + 5.3 = 1083.3
>

11

1.10 DELETING A PROGRAM

If a program that has been entered and run is no
longer needed, it can be deleted with the NEW command.
Typing NEW deletes whatever program has been entered
by the user during the current session.

The first program entered was 100 PRINT "5 ¥ 10 =";5%10,

After it has been run, it should be deleted before
entering the next program. Otherwise both programs
will run when RUN is typed. They will run in the
order of their statement numbers. For instance, if
both programs are currently in the user's work area,
the program with numbers 10 through 40 executes before
line 100.

>100 PRINT "5 ¥ 10 =";5%10
>10 INPUT A,B
>20 LET C=A+B
>30 PRINT
Both programs will run >H0 PRINT A;"™ +";B;" =";C
when RUN is typed >RUN
?21078,5.3
1078 + 5.

3 = 1083.3
5 ¥ 10 = 50

To avoid confusing results, a program that has been
entered and run can be deleted with NEW:

>100 PRINT "5 * 10 =";5%10

After entering and >RUN
and running: BB % 10 = 50
the program is deleted: >NEW

The user's work area is now cleared and another
program can be entered.

>10 INPUT A,B
>20 LET C=A+B

The second program >30 PRINT A;" +";B;" =";C
is entered: >RUN
?343,275

343 + 275 = 618

Unless this program is to be run again, it can now be
deleted and a third program entered.

12

1.11 DOCUMENTING A PROGRAM

Remarks that explain or comment can be inserted in a
program with the REM statement. Any remarks typed
after REM will be printed in the program listing

but will not affect program execution. As many REM
statements can be entered as are needed.

The sample program > 5 REM...THIS PROGRAM ADDS

to add 2 numbers can > 7 REM 2 NUMBERS

be documented with >15 REM...2 VALUES MUST BE INPUT
several remarks: >35 REM C CONTAINS THE SUM

The statement numbers determine the position of the
remarks within the existing program. A list will
show them in order:

SLIST
5 REM...THIS PROGRAM ADDS
7 REM...2 NUMBERS
10 INPUT A,B

List of sample 15 REM...2 VALUES MUST BE INPUT:
program including 20 LET C=A+B
remarks: 30 PRINT

35 REM...C CONTAINS THE SUM

4O PRINT A" +m";B;" =";C

When run, the program will execute exactly as it did
before the remarks were entered.

Comments may also appear on the same line as a
statement. This is done by preceding the comment
with the character "\" (backslash). Characters after
the backslash are not processed as part of the
statement but are stored along with the program
statement. .

Comments that follow a statement in this manner cannot
be used on the same line as a DATA statement (Section 3.9).

Sample program with >10 INPUT A,B \INPUT 2 NUMBERS

comments following >20 LET C=A+B \FIND SUM OF A AND B

statements: >30 PRINT \CARRIAGE RETURN AND LINE FEED
>40 PRINT A;" +";B;" =";C \PRINT SUM,

13

SECTION II

EXPRESSIONS

An expression combines constants, variables, or functions

with operators in an ordered sequence. When evaluated, an
expression must result in a value. For example, an expression
that, when evaluated, is converted to an integer, is called an
integer expression. Constants, variables, and functions
represent values; operators tell the computer the type of .
operation to perform on these values. Sections VI and VII

describe numeric and string types in detail.

Some examples of expressions are:

(A%¥3)-(B+10) A and B are variables that must have
been previously assigned a value.
3 and 10 are constants.
Parentheses group those portions
of the expression evaluated first.

If A=6 wand B=4, it is an integer
expression with the value 4.

(X*(Y-2))+2Z X, Y, and Z must all have been
assigned values. ¥, + and - are
the multiply, add and subtract
operators. The innermost
parentheses enclose the part
evaluated first.

If X=7, Y=4, and Z=3, the value
of the integer expression is 17.

14

2.1 CONSTANTS

A constant is either numeric or it is a literal string.

2.1.1 NUMERIC CONSTANTS

A numeric constant is a positive or negative decimal

number including zero. When using BINBASIC (binary math
package), a numeric constant consists of seven significant
digits. When using BASIC (BCD math package), a numeric
constant consists of 13 significant digits. It may be

written as an integer, a fixed point number, or a floating
point number. See Section 6.2.2 for a description of floating
point representation for each BASIC.

Integers are a series of digits with no decimal point.

BINBASIC Integers BASIC (BCD) Integers
1234567 1234567890123
-7321465 -1234567890123
0 0
60 -56789

Floating point numbers are a number followed by the

letter E and an optionally signed integer. In the floating
point notation, the number preceding E is a magnitude that
is multiplied by some power of 10. The integer after E is
the exponent; that is, it is the power of 10 by which the
magnitude is multipled.

The exponent of a floating point number is used to position
the decimal point. Without this notation, describing a
very large or very small number would be cumbersome:

1E+35

"

100000000000000000000000000000000000

1E-35 .00000000000000000000000000000000001

Examples of Floating Point Numbers:

1E+23 = 1 x 1023 = 100000000000000000000000
1.0E23 (same as above)
.001E26 (same as above)
7
1.02E+7 = 1.02 x 10 =10200000
1.02E-7 = .000000102

15

Within the computer, all these constants are represented as

floating point real numbers whose size is between 1E-128
and 1E+127. The precision is determined by the type of
BASIC math package.

BINBASIC BASIC (BCD)
floating point numbers floating point numbers
123.4567E+35 123456.789012E+20 *
123456 7E-36 -123U4567890123E+5
-.012E+20 123456.0789E-5

2.1.2 LITERAL STRINGS

A literal string consists of a sequence of characters

in the ASCII character set enclosed within quotes. The
quote itself and the character "<" are the only characters
excluded from the character string. Blank spaces are
significant within a string.

"ABC"
"VIWHAT A DAY!!I"®

"XY Z "

" (a null, empty, or zero length string)

v (a string with two blanks)

16

2.2 VARIABLES

A variable is a name to which a value is assigned. This
value may be changed during program execution. A
reference to the variable acts as a reference to its
current value. Variables have either numeric or string
values.

Real variables are a single letter (from A to Z) or a
letter immediately followed by a digit (from 0 to 9).

A AO
P P5
X X9

A variable of this type always contains a numeric value
that is represented in the computer by a real floating
point number.

Variables can also hold values internally represented
as 16-bit integers. Names of such variables are similar
to those above except that their names have’a suffix of

ngm.
A% B5%
X% X3%

Variables may also contain a string of characters. This
type of variable is identified by a variable name
similar to those above except that their names have a
suffix of "g$":

A$ AO$
P$ P5%

‘The value of a string variable is always a string of
characters, possibly null or zero length. String
variables cannot be used without being declared with a
DIM statement (see Section 8.3).

If a variable names an array (see Arrays, Section VII),
it may be subscripted. When a variable is subscripted,
the variable name is followed by one or two subscript
values enclosed in parentheses. If there are two

17

subscripts, they are separated by a comma. A subscript
may be an integer constant, a variable, or any expression
which is rounded to an integer value:

ACT) AO(N%,M%)
P(1,1) P5%(Q5,N/2)
X(N+1) X9(10,10)

A simple numeric variable and a subscripted numeric
variable may have the same name with no implied relation
between the two. The variable A is totally distinct
from variable A(1,1).

Simple numeric variables can be used without being
declared. Subscripted numeric variables must be
declared with a DIM statement (see Section 7.1) if the
array dimensions are greater than 10 rows, or 10 rows
and 10 columns. The first subscript is always the row
number, the second the column number. The rounded
subscript expressions must result in a value between

1 and the maximum number of rows and columns.

String arrays differ from numeric arrays in that they
have only one dimension, and hence only one subscript.
Also, the name of a string array and a simple string
variable may not be the same (see String Arrays in
Section VIII). Examples of subscripted string array
names are:

A$(1) AO$(N) B5%$(Z%)

18

2.3 FUNCTIONS

A function names an operation that is performed using
one or more parameter values to produce a single value
result. A numeric function is identified by a multi-
letter name (or a multi-letter name followed by a %)
followed by one or more formal parameters enclosed in
parentheses. If there is more than one parameter, they
are separated by commas. The number and type of the
parameters depends on the particular function. The
formal parameters in the function definition are
replaced by actual parameters when the function is used.

Since a function results in a single value, it can be
used anywhere in an expression where a constant or
variable can be used. To use a function, the function
name followed by actual parameters in parentheses
(known as a function call) is placed in an expression.
The resulting value is used in the evaluation of the
expression.

Examples of common functions:

INT(X) where X is a numeric expression.
When called, it returns the largest
integer less than or equal to X.
For instance, INT(8.35)=8.

SGN(X) where X is a numeric expression.
When called, it returns 1 for X>O0,
0 for X=0 and 1 for X<0. For instance,
SGN(L*-3)==1.

Zilog BASIC provides many built-in functions that perform
common operations such as finding the sine, taking the
square root, or finding the absolute value of a number.
The available numeric functions are listed in Appendix D
and described in Section 6.8. In addition, the user may
define and name functions if there is a need to repeat a
particular operation. How to write functions is described
in Section IX, User-Defined Functions.

The functions described so far are numeric functions that
result in a numeric value. Functions resulting in string
values are also available. These are identified by a
multi-letter name followed by a "$". String functions are
described with user-defined functions in Section IX.
Available built-in string functions are listed in Appendix D
and described in Section 8.6.

19

2.4 OPERATORS

An operator performs a mathematical or logical operation
on one or two values resulting in a single value.
Generally, an operator is placed between two values, but
there are unary operators that precede a single value.
For instance, the minus sign in A - B is a binary
operator that results in subtraction of the values; the
minus sign in -A is a unary operator indicating that A
is to be negated.

The combination of one or two operands with an operator
forms an expression. The operands that appear in an
expression can be constants, variables, functions, or
other expressions.

Operators may be divided into two types depending on
the kind of operation performed. The main types are
arithmetic, relational, and logical (or Boolean)
operators.

The arithmetic operators are:

+ Add (or if unary, positive) A + B or +A
- Subtract (or if unary, negative) A - B or -A
* Multiply A x B
/ Divide A/ B
- Exponentiate A" B

In an expression, the arithmetic operators cause an
arithmetic operation resulting in a single numeric value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to - A<=B
>= Greater than or equal to A>=B
<> Not equal A<>B

20

When relational operators are evaluated in an expression
they return the value 1 if the relation is found to be
true, or the value 0 if the relation is false. For
instance, A=B is evaluated as 1 if A and B are equal in
value, as 0 if they are unequal.

Logical or Boolean operators are:

& ' Logical "and" A&B
! Logical "or" A!B
- Logical complement ~A

Like the relational operators, the evaluation of an
expression using logical operators results in the
value of 1 if the expression is true, or the value of
0 if the expression is false.

Logical operators are evaluated as follows:

A&B = 1 (true) if A<>0 and B<>0
0 (false) if A=0 or B=0
A'B = 1 (true) if A<>0 or B<K>0
0 (false) if A=0 and B=0
“A = 1 (true) if A=0

0 (false) if A<>O0

A string operator is available for combining two string
expressions into one:

+ Concatenation A$+B$

The values of A$ and B$ are joined to form a single
string; the characters in B$ immediately follow the
last character in A$. If A$ contains "ABC" and B$
contains "DEF", then A$+B$="ABCDEF" (see Strings,
Section VIII).

21

2.5 EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with

its value, evaluating any function calls, and performing the
operations indicated by the operators.
operations are performed is determined by the hierarchy of

operators:
Highest

unary +, unary -,

* ./

binary +, binary -
Relational (=, <, >, <=, >=,

& !

Lowest

The order in which

The operator at the highest level is performed first
followed by any other operators in the hierarchy shown
above. If operators are at the same level, the order

is from left to right. Parentheses can be used to
override this order. Operations enclosed in parentheses
are performed before any operations outside the
parentheses. When parentheses are nested, operations
within the innermost pair are performed first.

For instance: 5+6*%7 is evaluated as 5+(6%¥7)=47

7/14%2/5 is evaluated as ((7/14)%2)/5=.2

If A=1, B=2, C=3, D=3.14, E=0

then: A+B¥*C is evaluated
A*¥B+C is evaluated
A+B-C is evaluated

(A+B)¥*¥C is evaluated

22

as

as

as

as

A+ (B¥*C)=7
(A*B)+C:5
(A+B)-C=0

(A+B)*¥C=9

In a relation, the relational operator determines whether
the relation is equal to 1 (true) or 0 (false). If A, B
and C have the values given above:

(A*B)<(A-C/3) is evaluated as 0 (false) since
A¥B=2 is not less than A-C/3=0.

In a logical expression, other operators are evaluated
first for values of zero (false) or non-zero (true).
The logical operators determine whether the entire
expression is equal to 0 (false) or 1 (true). If A,
B, C, D and E have the values given above:

E&A-C/3 is evaluated as O (false) since both terms
in the expression are equal to zero (false).

A+B&A*B is evaluated as 1 (true) since both terms
in the expression are non-zero (true).

A=B!1C=SIN(D) is evaluated as 0 (false) since both
expressions are false (0).

AVE is evaluated as 1 (true) since one term of
the expression (A) is not equal to zero.

~E is evaluated as 1 (true) since E=0.

For rules governing the evaluation of expressions using
strings, see Comparing Strings in Section 8.7.

23

SECTION III

STATEMENTS

Statements essential to writing a program in BASIC are
described here. A general description of statements is
given in Section 1.5.2. It should be recalled that all
statements in a program must be preceded by a statement
number and are terminated by pressing the RETURN key.
These statements are not executed until the program is
executed with a RUN command. Some statements may also be
executed immediately and are useful for debugging (see
Section V).

24

3.1 ASSIGNMENT STATEMENT

This statement assigns a value to one or more variables.
The value may be in the form of an expression, a constant,
a string, or another variable of the same type.

Format

When the value of the expression is assigned to a single
variable, the forms are:

variablezexpresson
LET variablezexpression
Several assignments can be made in one statement if they
are separated by commas:
variable=zexpression,...,variablezexpression
LET variablezexpression,...,variable=expression

Note that the word LET is an optional part of the
assignment statement.

Description

In this statement, the equal sign is an assignment
operator. It does not indicate equality, but is a
signal that the value on the right of the assignment
operator be assigned to the variable on the left.
When a variable to be assigned a value contains
subscripts, these are evaluated first from left to
right, then the expression is evaluated and the
resulting value moved to the variable.

Examples:

10 LET Z1=34.567
20 Z1:34;567

The variable Z1 is £SSigned the value 34.567. Statements
10 and 20 have the same result.

AN
N\,

25

50 N=0
60 LET N=N+1
70 LET A(N)=N

Statements 50 through 70 set the array element A(1) to 1.
By repeating statements 60 and 70, each array element can
be set to the value of its subscript.

80 A=10.5,B=7.5
90 B$="ABC",C$=B$
100 D%=5,E1%=10

The real variable A is set to 10.5, then B is set to 7.5.
The string variable B$ is assigned the value ABC, then C$ is
assigned the value of B¢ (or ABC). The integer variable D%
is assigned the value 5, then E1% is assigned the value 10.
Strings and string assignments are described in Section VIII.

26

3.2 END/STOP STATEMENTS

The END and STOP statements are used to terminate execution
of a program. Either may be used, neither is required.

An END is assumed following the last line entered in the
current program.

Format
END
STOP

The END statement consists of the word END; the STOP statement
consists of the word STOP.

Description

Both END and STOP terminate program execution. END has a
different function from STOP in that END causes all files
to be closed and the message "READY" to be printed. STOP
causes the message "STOP AT nnnn" to be printed where
nnnn is the statement label of the STOP statement. After
a STOP, program execution can be resumed (see

Section 4.1.3).

Examples
These three programs are effectively the same:

10 DIM A$([5], B$[15], C$[15]
20 LET A$="HELLO", B$"THERE"
30 C$=A%$+" "+B$
40 PRINT C$

>RUN

HELLOC THERE

READY
>

10 DIM A$[57, B$[15], C$[15]
20 LET A$="HELLO", B$="THERE"
30 C$=A$+" "+B$
40 PRINT C$
50 END

>RUN

HELLO THERE

READY
>

27

10
20
30
10
50
>RUN

DIM A$[15], B$[15], C$[15]
LET A$="HELLO", B$="THERE"
C$=A$+" "4B$

PRINT C$

STOP

HELLO THERE

STOP
>

When sequen

AT 50

ce is direct and the last statement in the

current program is the last statement to be executed,

END or STOP
as with END
STOP have a
~and the 1las

are optional. The message "READY" prints
, but open files will remain open. END and
use, however, when sequence is not direct
t statement in the program is not the last

statement to be executed:

100
110
120
130
140
150
160
>RUN
?7-356
X <=

The subrout

INPUT X
PRINT

GOSUB 140
END

IF X>0 THEN PRINT "X > O"
ELSE PRINT "X <60>= O"
RETURN

0

ine at line 140 follows the END statement.

28

3.3 LOOPING STATEMENTS: FOR...NEXT

The looping statements FOR and NEXT allow repetition

of a group of statements. The FOR statement precedes
the statements to be repeated, and the NEXT statement
directly follows them. The number of times the
statements are repeated is determined by the value of a
simple numeric variable specified in the FOR statement.

Format
FOR variablezexpression TO expression

FOR variablezexpression TO expression STEP expression

The variable may be either a real or integer variable.

It is initially set to the value resulting from the
expression after the equal sign. When the value of the
variable passes the value of the expression following TO,
the looping stops. If STEP is specified, the variable is
incremented by the value resulting from the STEP expression
each time the group of statements is repeated. This value
can be positive or negative, but should not be zero. If

a STEP expression is not specified, the variable is
incremented by 1.

The NEXT statement terminates the loop:
NEXT variable

The variable following NEXT must be the same as the variable
following the corresponding FOR.

Description

When FOR is executed, the variable is assigned an initial
value resulting from the expression after the equal sign,
and the final value and any step value are evaluated.
‘Then the following steps will occur:

1. The value of the FOR variable is compared to the final
value; if it is greater than the final value (or is
less than the final value when the STEP value is
negative), control skips to the statement following
NEXT. Otherwise, processing continues with the
statement immediately following the FOR statement.

29

2. All statements between the FOR statement and the NEXT
statement are executed.

3. The FOR variable is then incremented by 1, or, if
specified, by the STEP value.

4., Return to step 1.

Each time a FOR loop is begun, BASIC checks to see if
there are already any active FOR loops with the same
FOR variable. If so, all active loops within and
including the duplicated entry are deactivated and
processing proceeds as described above.

The user should not execute statements in a FOR loop
except through a FOR statement. Transferring control
into the middle of a loop can produce unpredictable
results.

FOR loops can be nested if one FOR loop is completely
contained within another. They must not overlap.

Examples

Each time the FOR statement executes, a smaller fraction
is printed.

>10 FOR A=1 TO 16
>20 PRINT 1/(107A)
>30 NEXT A
>RUN

.1
.01
.001
.0001
.00001
.000001
.0000001
.00000001
.000000001
.0000000001
.00000000001
.000000000001
.0000000000001
1.000000000000E-014
1.000000000000E-015
1.000000000000E-016

30

The following FOR loop executes six times, decreasing the

. value of X by 1 each time:
10 FOR X=0 TO -5 STEP -1
20 PRINT X
30 NEXT X
>RUN
0
. -1
-2
-3
-4
- -5

The first X elements of the array P(N) are assigned
values. When N=X, the loop terminates. 1In this case,
the value of X is input as:

>10 INPUT X

>20 PRINT

>30 FOR N=1 TO X
>40 LET P(N)=N¥*¥10
>50 PRINT P(N)
>60 NEXT N

>RUN

26
| 19
20
30
10

50
60

The examples below show legal ahd illegal nesting.
A diagnostic is printed when an attempt is made to
run the second example:

10 REM..THIS EXAMPLE IS LEGAL
20 DIM Y[7,16]
30 FOR A=1 TO 7 STEP 2

. 40 FOR B=1 TO 16 STEP 2
50 LET Y(A,B)=-1
60 NEXT B
70 NEXT A

.

31

10 REM..THIS EXAMPLE IS ILLEGAL

20 DIM Y[7,16]
30 FOR A=1 TO 7 STEP 2
40 FOR B=1 TO 16 STEP 2

50 LET Y(A,B)=-1

60 NEXT A
70 NEXT B
>RUN
s

ERR:60 AT 70

32

3.4 GOTO/ON...GOTO STATEMENTS
GOTO and ON...GOTO override the normal sequehtial order of
statement execution by transferring control to a specified

statement. The statement to which control transfers must
be an existing statement in the current program.

Format

GOTO statement label

ON integer expression GOTO statement label, statement label..

GOTO may have a single statement label, while ON...GOTO may
be multi-branched with more than one statement label.

If the multi-branch ON...GOTO is used, the value of the
integer expression determines the label in the list to
which control transfers.

Description

If the GOTO transfers to a statement that cannot be
executed (such as REM), control passes to the next
sequential statement after that statement. GOTO
cannot transfer into or out of a function definition
(see Section IX). If it should transfer to the DEF
statement, control passes to the line following the
function definition. (The function would be redefined
in this case -- see DEF statement, Section IX.)

The labels in a multi-branch ON...GOTO are selected

by numbering them sequentially starting with 1, such
that the first label is selected if the value of the
expression is 1, the second label if the expression
equals 2, and so forth. If the value of the expression
is less than 1 or greater than the number of labels in
the list, then the GOTO is ignored and control transfers
to the statement immediately following ON.

If the expression is not an integer, it is rounded

to the nearest integer and that value is used to
select a label.

33

Examples

The example below shows a simple GOTO in lines 45,
a multi-branch GOTO in line 30.

and 65 and

10
20
30
4o
45
50
55
60
65
70
75

>RUN

LET I=0
LET I=I+1
ON I GO TO
PRINT "THE
GOTO 20
PRINT "THE
GOTO 20
PRINT "THE
GOTO 20
PRINT "THE
END

THE VALUE OF I
THE VALUE OF I
THE VALUE OF I
THE VALUE OF I

40,50,60,70
VALUE OF I IS 1"

VALUE OF I IS 2"
VALUE OF I IS 3"
VALUE OF I IS 4un»

55,

When run, the program prints the value of I for each

ON...GOTO.

34

3.5 GOSUB...RETURN STATEMENTS

GOSUB transfers control to the beginning of a simple
subroutine. A subroutine consists of a collection of
statements that may be performed from more than one
location in the program. In a simple subroutine,
there is no explicit indication in the program as to
which statements constitute the subroutine. A RETURN
statement in the subroutine returns control to the
Statement following the GOSUB statement.

Format
GOSUB statement label
ON integer expression GOSUB statement label, statement label,...

RETURN

GOSUB may have a single statement label, while ON...GOSUB
may be multi-branched with more than one statement label.
In a multi-branch ON...GOSUB, the particular label to which
control transfers is determined by the value of the integer
expression. The RETURN statement consists simply of

the word RETURN.

Description

A single branch GOSUB transfers control to the statement
indicated by the label. A multi-branch ON...GOSUB transfers
to the statement label determined by the value of the
integer expression. As in a multi-branch ON...GOTO, if the
value of the expression is less than 1 or greater than

the length of the list, no transfer takes place. A GOSUB
must not transfer into or out of a function definition

(see Section IX).

When the sequence of control within the subroutine
reaches a RETURN statement, control returns to the
statement following the GOSUB statement.

Within a subroutine, another subroutine can be called.
This is known as nesting. When a RETURN is executed,

control transfers back to the statement following the

last GOSUB executed.

If the expression in an ON...GOSUB statement is not

an integer then it is rounded to the nearest integer
and that value is used to select a label.

35

Examples

In the first example, line 20 contains a simple GOSUB
statement; the subroutine is in lines 50 through 70,
with RETURN in line 70.

10 LET B=70
20 GO3UB 50
30 PRINT "SINE OF B IS ";A *
40 GOTO 80
50 REM: THIS IS THE START OF THE SUBROUTINE
60 LET A=SIN(B)
70 RETURN
80 REM: PROGRAM CONTINUES WITH NEXT STATEMENT
>RUN
SINE OF B IS .7738906815526

The GOSUB statement can follow the subroutine to whiech it
transfers as in the example below.

10 LET B=70
20 GOTO 100
30 REM: THIS IS THE START OF THE SUBROUTINE
40 LET A=SIN(B)
50 RETURN
60 REM: OTHER STATEMENTS CAN APPEAR HERE
70 REM: THEY WILL NOT BE EXECUTED
80 LET A=24, B=50
90 PRINT "A= ";A,"B= ";B
100 GOSUB 30
110 PRINT "THE SINE OF B IS ";A
120 REM: A SHOULD EQUAL SIN(B)
130 PRINT "B=";B
140 REM: B SHOULD EQUAL 7O
>RUN
THE SINE OF B IS .77389068155526
B= 70

36

This example shows a multi-branch GOSUB in line 20. The
third subroutine executed has a nested subroutine.

10 FOR A=1 TO 3

20 ON A GOSUB 50,80,110

30 NEXT A

40 END

50 REM: FIRST SUBROUTINE IN MULTIBRANCH GOSUB

60 PRINT "FIRST SUBROUTINE CALL"

70 RETURN '

80 REM: SECOND SUBROUTINE IN MULTIBRANCH GOSUB

90 PRINT "SECOND SUBROUTINE CALL"

100 RETURN

110 REM: THIRD SUBROUTINE IN MULTIBRANCH GOSUB

120 REM: IT CONTAINS A NESTED SUBROUTINE

130 PRINT "THIRD SUBROUTINE CALL"

140 GOSUB 170

145 PRINT "END THIRD SUBROUTINE CALL"

150 RETURN

160 REM: STATEMENT 150 RETURNS CONTROL TO STATEMENT 30
170 REM: FIRST STATEMENT IN NESTED SUBROUTINE CALL

180 PRINT " NESTED SUBROUTINE CALL"™

190 RETURN :

200 REM: STATEMENT 190 RETURNS CONTROL TO STATEMENT 150
>RUN

FIRST SUBROUTINE CALL
SECOND SUBROUTINE CALL
THIRD SUBROUTINE CALL
NESTED SUBROUTINE CALL
END THIRD SUBROUTINE CALL

37

3.6 CONDITIONAL STATEMENTS: IF...THEN

Conditional statements are used to test for specific
conditions and specify program action depending on

the test result. The condition tested is a numeric
expression that is considered true if the value is not
zero, false if the value is zero. Conditional
statements are always introduced by an IF statement;

an ELSE statement may follow the IF statement. Both IF
and ELSE statements may be followed by a series of
statements enclosed by DO and DOEND.

Format
IF expression THEN 1label
IF expression THEN statement

IF expression THEN DO

statement

.

DOEND

An IF...THEN statement can be followed by an ELSE
statement to specify action in case the value of the
expression is false. Like IF, ELSE can be followed by
a statement, a statement label, or a series of
statements enclosed by DO...DOEND.

ELSE 1label
ELSE statement
ELSE DO

statement

DOEND

ELSE STATEMENTS never appear in a program unless
preceded immediately by an IF...THEN or an

IF...THEN DO...DOEND statement. DO...DOEND statements
may follow only an IF...THEN or an ELSE statement.

38

The four diagrams below show all possible combinations
of conditional statements. Items enclosed by []

are optional; one of the items enclosed by { 1}

must be chosen. Statements immediately following

THEN and ELSE are not labelled; all other statements
must be labeled.

1) label
label IF expression THEN
statement
I ™\
i label
label ELSE
statement
2) label IF expression THEN DO
label statement
label DOEND
label
label ELSE
statement
3) { 1abel ?
label IF expression THEN
statement

label ELSE DO

label statement

label DOEND

4) label IF expression THEN DO

label statement
label DOEND

label ELSE DO

label statement

label DOEND

39

Description

If the expression following IF is true when evaluated,
the program transfers control to the label following
THEN or executes the statement following THEN. An
expression is considered true if it is numeric and non-
zero or string and non-null. If DO follows THEN, the
program executes the series of labeled statements
terminated by DOEND. The program then continues. If
the expression is false, control transfers immediately
to the next statement or to the statement following
DOEND if THEN DO was specified.

When an ELSE statement follows the IF...THEN statement,
it determines the specific action should the IF
expression be false. When the expression is true, the
ELSE statement or the group of ELSE statements enclosed
by DO...DOEND is skipped, and the program continues with
the next statement after ELSE or DOEND.

A FOR statement can be specified in a DO...DOEND group;
if so, the corresponding NEXT must be within the same
DOC...DOEND group (see FOR...NEXT statement, Section 3.3).

IF statements are nested when an IF statement occurs
within the DO...DOEND group of another IF statement. 1In
such a case, each ELSE is matched with the closest
preceding IF that is not itself part of another DO...DOEND
group.

Examples

The various types of IF statements are illustrated with the
following examples:

10 IF E=F THEN 30
20 LET E=F*¥*5
30 PRINT E,F

If E equals F, the program skips to line 30, otherwise it

sets E equal F*¥5 in line 20 and continues. In either
case, line 30 is executed.

10 IF X<Y THEN PRINT X
20 ELSE PRINT Y

If X is less than Y, the value of X is printed, otherwise
the value of Y is printed. The program then continues.

10 IF A<B THEN 100
20 ELSE 200

40

Program control transfers to 100 if A is less than B, to
line 200 if A is not less than B.

10 IF K<L THEN LET K=K+1
20 ELSE DO

30 LET L=L/3

40 LET K=L*K

50 DOEND

60 PRINT K,L

If K is less than L, then K is increased by 1 and control
skips to line 60. When K is greater than or equal to L,
L is equal to L/3, K is set equal to L¥K and control
passes to line 60.

5 INPUT A
10 IF A<100 THEN DO
20 LET A=zA+1
30 GOTO 110
40 DOEND
50 ELSE DO
60 GOSUB 130
70 LET A=0
80 DOEND
90 PRINT "A>=100"
100 END
110 PRINT "A=";A
120 END
130 REM...BEGINNING OF SUBROUTINE
140 PRINT "A=";A
150 RETURN

If A is less than 100, it is increased by 1 and control
goes to line 110. If A is egual to or greater than 100,
the subroutine at line 130 is executed. The subroutine
returns control to line 70, still within the DO...DOEND.

If a value less than 100 is input for A, it is
incremented by one, line 110 is executed and the
program ends:

>RUN
?75
A= 76

If a value greater than 100 is input for A, the subroutine
is executed, then line 100 is executed and the program
terminates:

>RUN
?150
A= 150
A>=100

41

The examples below illustrate nested IF...THEN statements. .

10 INPUT P,Q,R
15 PRINT

20 IF (P+10)=(Q+5) THEN DO
30 LET P=Q

40 IF P>R THEN LET P=P-R
50 ELSE LET P=P+R

60 DOEND

70 PRINT P,Q,R
>RUN
220,25,40 »
20 25 40

10 INPUT A,B,C
15 PRINT

20 IF A>B THEN DO
30 IF B>C THEN DO

40 IF C=10 THEN DO
50 LET A=A+1

60 GOTO 200

70 DOEND

80 ELSE GOTO 220
90 DOEND

100 ELSE DO

110 IF C=10 THEN LET B=C+A
120 ELSE LET C=B-A
130 GOTO 180

140 DOEND

150 DOEND

160 PRINT "A<60>B,A=";A

170 GOTO 230

180 PRINT "A>B,B<60>C,B=";B
190 GOTO 230

200 PRINT "A>B>C,C=10"

210 GOTO 230

220 PRINT "A>B>C,C<60>>10,C=";C
230 END
>RUN
?10,15,20
A<B,A=10

SRUN
215,5,10
A>B,B<C,B= 25 *

>RUN
220,15,5
A>B>C,C<>10,C= 5

So that nested IF statements may be easier to follow, the
LIST command indents them as shown in the above examples.

42

3.7 INPUT STATEMENT

The INPUT statement allows the user to input data to
the program from the terminal. INPUT has options that
allow the user to print prompting strings before input.

Format
INPUT item list
INPUT string constant, item list

The items in the item list must be variables, optionally
preceded by a string constant. Items are separated by
commas.,

Description

When an INPUT statement is executed, a question mark
(?) is printed at the terminal and the program waits
for the user to type the input. The input is in the
form of constants separated by commas. If an
insufficient number of constants is typed, the program
responds with a message requesting retyping of the
input. The type of data item, numeric or string, must
match the type of variable it is destined for.

Numeric Constants. Numeric constants aways begin
with the first non-blank character preceding the
comma or the end of the line.

String Constants. A string may be quoted or
unquoted. If unquoted, any leading or trailing
blanks are removed and the input item terminates
on a comma or the end of line.

The INPUT statement can be requested to print a string
constant instead of a question mark by placing the
string constant before the input list. When the value
for the variable is needed, the string is printed
instead of the usual question mark.

43

Examples

10 DIM C$[25]
20 INPUT A,B,C$

25 PRINT

30 X=z=A¥*B"2

40 PRINT C$;X
>RUN

?4,7,"X=A TIMES B SQUARED, X="

X=A TIMES B SQUARED, X

10 INPUT "INPUT VALUE OF RADIUS

20 X=3.14%R"2

30 PRINT "AREA OF X =",X

>RUN
INPUT VALUE OF RADIUS
AREA OF X = 1962.5

25

44

"’R

3.8 PRINT STATEMENT AND ":"

PRINT causes data output at the terminal. The data
to be output is specified in a print list following
PRINT.

Format

PRINT

PRINT print 1list
print list

The print 1list consists of items separated by commas
or semicolons. The list may be followed by a comma
or a semicolon. If the list is omitted, PRINT causes
a skip to the next line. Items in the list may be
numeric or string expressions or the special print
function for tabbing. The character ":" may be used
in place of the keyword PRINT.

Description

The contents of the print list is printed. If there is
more than one item in the print list, commas or
semicolons must separate each item. The choice of

a comma or semicolon affects the output format.

The output line is divided into five consecutive fields:
each of 14 characters for a total of 70 characters.¥
When a comma separates items, each item is printed
starting at the beginning of a field. When a semicolon
separates items, each item is printed immediately
following the preceding item. In either case, if

there is not enough room left in the line to print

the entire item, printing of the item begins on the
next line.

A carriage return and linefeed are output after PRINT
has executed, unless the output list is terminated by
a comma or a semicolon. In this case, the next PRINT
statement begins on the same line.

If an expression appears in the print list, it is
evaluated and the result is printed. Any variable
must have been assigned a value before it is printed.
Fach character between quotes in a string constant is
printed.

¥NOTE: The default output line length may be changed
by a SYSTEM "LINELEN" call (see Section 3.12)

45

Numeric values are left justified in a field whose
width is determined by the magnitude of the number.
The width includes a position at the left of the
number for a possible sign. (Thus, a blank will
print in the first position if the number is non-
negative.)

Examples

In the example below, the first PRINT statement evaluates

and then prints three expressions. The second PRINT skips .
a line. The third and fourth PRINT statements combine a

string constant with a numeric expression. No fields are

used in the print line for string constants unless a comma

appears as a separator. The fourth PRINT statement prints

output on the same line as the third because the third

statement is terminated by a comma.

10 LET A=1,B=2,C=3,D=4,E=5
20 PRINT A,C*D,E-B*B
30 PRINT
40 PRINT "A/(B=-C)=";A/(B-C)
50 PRINT "E+D=";E+D
>RUN
1 12 1

A/(B-C)=z-1 E+D= 9

3.8.1 TAB FUNCTION
TAB (n)

TAB moves the cursor to column n MOD (70). If the
current cursor position is greater than n MOD (70),
the cursor will move to column n MOD (70) on the
next line.

Note: If the default line length has been changed
using SYSTEM "LINELEN" (Section 3.12), the TAB will *
be relative to n MOD (line length).

46

Example

10 PRINT "123456789"; TAB(4);"ABCD"
>RUN
123456789
ABCD

The cursor position is greater than four, therefore the
cursor is moved to position four on the next line. The
string "ABCD" begins in position five.

47

3.9 READ/DATA/RESTORE STATEMENTS

Together, the READ, DATA, and RESTORE statements provide
a means to input data to a Zilog BASIC program. The READ
statement reads data specified in DATA statements into
variables specified in the READ statement. RESTORE
allows the same data to be read again.

Format
READ item list

The items in the item list are variables. Items are
separated by commas.

DATA constant,constant

The constants are either numeric or string. Constants
in the DATA statement are assigned to variables in the
READ statement according to their order: the first
constant to the first variable, the second to the second
and so forth. A comment (Section 3.10) may NOT be
placed on a DATA statement line.

RESTORE
RESTORE 1label
ON integer-value RESTORE label,label,...,label

The label identifies a DATA statement.

Description

When a READ statement is executed, each variable is
assigned a new value from the constant list in a DATA
statement. RESTORE allows the first constant to be
assigned again when READ is next executed or, if a
label is specified, the first constant in the specified
DATA statement.

More than one DATA statement can be specified. All the
constants in the combined DATA statement comprise a data
list. The list starts with the DATA statement having the
lowest statement label and continues to the statement with
the highest label. DATA statements can be anywhere in the
program; they need not precede the READ statement, nor need
they be consecutive.

48

If a variable is numeric, the next item in the data list
must be numeric,; it a variable is a string, the next item
in the data list can be of any form.

A pointer is kept in the data list showing which constant
is the next to be assigned to a variable. This pointer
begins with the first DATA statement and is advanced
consecutively through the data list as constants are
assigned. The RESTORE statement can be used to access
data constants in a non-serial manner by specifying a
particular DATA statement to which the pointer is to be
moved.

When the RESTORE statement specifies a label, the pointer
is moved to the first following DATA statement. When no
label is specified, the pointer is restored to the first
constant of the first DATA statement in the program.

One of many labels can be selected by the ON...RESTORE
statement. The expression is rounded to the nearest
integer and a label selected as described previously
under the ON...GOTO statement (Section 3.4). The
pointer is moved to the first DATA statement following
the specified statement. If the expression could

not select a label from the list, the pointer is not
moved.

The data in statement 10 is read in statement 20 and
printed in statement 30:

10 DATA 3,5,7
20 READ A,B,C
30 PRINT A,B,C

>RUN

3 5 7

49

O

Note the use of RESTORE in this example. It permits the
READ to read the same data into a second set of variables:

5 DIM A$[3]1,C$(31,D$[31,E$(3]1,Bs$(3]
10 DATA 3,5,7
20 READ A,B,C
30 READ A$,B$
40 DATA ABC,DEF *
50 RESTORE 30
60 READ C$,D$
70 RESTORE
80 READ D,E,F,E$
90 PRINT A,B,C
100 PRINT A$+B$,C$+D$
110 PRINT D,F,F,E$

>RUN
3 5 7
ABCDEF ABCDEF
3 5 7 ABC

An ON...RESTORE is used in the following example,
combined with an ON...GOTO.

10 DIM A$(10),B$(10),C$(10),D$(10)

20 DATA 1111

30 DATA 2222

40 DATA 3333

50 DATA 4uny

60 LET I=0

70 IF I=4 THEN END

90 PRINT

100 ON I RESTORE 30,40,50

110 ON I GOTO 130,140,150

120 READ A3

125 PRINT A$;

130 READ B$

135 PRINT B$;

140 READ C$

145 PRINT C$;

150 READ D$ 2

155 PRINT D$;

160 LET I=I+1

165 GOTO 70
>RUN
11112222333344uL
22223333444y
3333444y
qauy

50

3.10 COMMENTS: REM STATEMENT AND "™\"

The REM statement allows the insertion of a line of remarks
in the listing of the program. The remarks do not affect
program execution.

Format
REM any characters
Like other statements, REM must be preceded by a statement

number.

Description

The remarks introduced by REM are saved as part of the BASIC
program, and printed when the program is listed. They are,
however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a
punctuation mark as shown in the examples.

Comments may also be placed after any statement by putting
backslash "\" between the statement and the comment.
A comment may NOT be put on a DATA statement (Section 3.9).

Examples

10 REM: THIS IS AN EXAMPLE
20 REM OF REM STATEMENTS
30 REM -~ ANY CHARACTERS MAY FOLLOW REM: "//%*¥11&&&,ETC.
40 REM...REM STATEMENTS ARE NOT EXECUTED

50 PRINT A+B \ HERE IS A COMMENT FOLLOWING A PRINT

51

3.11 RANDOMIZE STATEMENT

The RANDOMIZE statement is used to change the seed used
by the function RND (Section 6.8.7) to generate a pseudo-
random number.

Format

RANDOMIZE

Description

There are 128 possible seeds. The RANDOMIZE statement
may be placed anywhere in a program. It will restart
the RND function with a new seed each time it is
executed.

52

3.12 SYSTEM STATEMENT

The SYSTEM statement is used to perform miscellaneous
functions not appropriate for machine-independent BASIC.
For example, these operations might include
manipulating operating system parameters and terminal
characteristics.

Format

SYSTEM operation-name[,parameter-list][;return-parameter-list]

Operation-name is a string expression whose value is one
of the system operations listed below. The parameter
lists are structured like those of the CALL statement
(Section 13.1)

Description

The available operations control warning message output,
listing indentation, ASAVE file line indentation, output
line length, and automatic carriage return. The default
value of each operation is:

warning message output is ON

list indentation is ON

ASAVE file line indentation is OFF
~output line length is 70

automatic carriage return is ON

The allowed operations and the parameters that they require
are listed below. '

Operation: "WARNOFKFF"

Parameters: None

Function: Suppress the output of any warning
messages generated during a BASIC
session.

Example: SYSTEM "WARNOFF"

Operation "WARNON"

Parameters: None

Function: Enable the printing of warning

messages.

Example: SYSTEM "WARNON"

53

Operation:
Parameters:
Function:

Example:

Operation:
Parameters:
Function:

Example:

Operation:
Parameters:
Function:

Example:

Operation:
Parameters:
Function:

Example:

Operation:

. Parameters:
Function:

Example:

"INDENTOFF"

None

Turn off the identation normally
performed during a LIST of a
program.

SYSTEM "INDENTOFF"

"INDENTON"

None

Turn on indentation feature of
LIST.

SYSTEM "INDENTON"

"ASINOFF"

None

Turn off ASAVE file line
indentation

SYSTEM "ASINOFF"

WASINON"®

None

Turn on ASAVE file line
indentation

SYSTEM "ASINON"

"LINELEN"

line-length (integer: 1 to 255)

Set the line length of the terminal
device. Print items that do not
fit between the current cursor
position and the end of the line
are output on the next line. The
default line length is 70.

SYSTEM "LINELEN",132

The line length is set for
132-character wide paper.

54

Operation: "AUTOCROFF"

Parameters: None

Function: Turn off the automatic begin-new-line
feature of terminal output.

Example: SYSTEM "AUTOCROFF"

Operation: "AUTOCRON"

Parameters: None

Function: Turn the automatic begin-new-line

feature on.

Example: SYSTEM "AUTOCRONY

55

3.13 TRAP STATEMENT
(TO BE SUPPLIED LATER.)

3.13.1 ERR Function
A

ERR(x)

(TO BE SUPPLIED LATER.)

3.13.2 ESC Function
ESC(0)

(TO BE SUPPLIED LATER.)

56

SECTION IV
COMMANDS

So far we have used the LIST, RUN and NEW commands for
simple program manipulation. Both LIST and RUN have
parameters and functions other than were illustrated.
The full capability of commands used to run a program,
edit a program, and to save a program on the disk are:

RUN
STEP
CONTINUE

The Editing Commands:

LIST

NEW
DELETE
RENUMBER
SIZE
CLEAR

Disk-Related Commands:

SAVE
RSAVE
ASAVE
GET
XEQ
APPEND
KILL
CAT

A general description of commands is given in Section T.
It should be recalled here that commands do not have
labels: they are entered directly after the ">" prompt
character and are executed immediately. All commands
may be abbreviated by their first three letters.

57

Certain conventions are used in the command description:

UPPER-CASE Key words that must be spelled correctly
lower-case Words defined by the user

[] Enclose optional items

{1} Enclose required items

i Separates alternatives, one of which must
be chosen

ces Indicate the preceding item may be repeated

58

4.1 PROGRAM EXECUTION COMMANDS

The program execution commands facilitate the debugging

of a program. Execution of the program can be interrupted
either manually or under program 2ontrol. Variables can
be examined and/or altered, parts of the program may be
displayed or changed, and execution can be resumed.

4.1.1 RUN

The RUN command executes a Zilog BASIC program; the format
is

RUN[-1label]

Tf a label is not specified, execution begins with Lhe
first executable statement. If a STOP (Section 3.2) or
ESCape is executed within tLhe program, the program may

be continued by inputting CONTINUE (Section 4.1.3).

If a RUN-label is specified, execution starts at the first
executable statement at or after the label number. The

starting statement must not be within a function definition.

4,1.2 XEQ
The XEQ command loads and runs a Zilog BASIC program.

It is equivalent to a GET (Section 4.3.4) followed by
RUN.

XEQ-programname
The program programname.BP is loaded into the user's
workingspace and run. (See Section 4.3 for a
description of filename conventions.)
Example

>XEQ-BAGELS

The program BAGELS.BP is loaded into the user's working
space and run.

59

4.1.3 RESUMING PROGRAM EXECUTION: CONTINUE, STEP, RUN

Once a program has been interrupted by a STOP or ESC’
(Section 3.2), the Zilog BASIC user can cause execution
to continue in one of several ways.

Format
CONTINUE
STEP
RUN-statement number

Each of these commands causes program execution to continue
without alteration of any program variables.

Description

The CONTINUE command causes execution to continue with the
next statement to be executed (based on when the program
stopped). This command can be issued anytime the program
is in a stopped state.

The STEP command causes execution to proceed to the
beginning of the next outer level statement (i.e., one

not part of a multi-line function). This command can be
used to step through the program one line at a time
executing entire statements at the outer level and not
stepping through multi-line functions. STEP can be issued
anytime the program is in a stopped state.

"RUN-statement number" causes execution to resume starting
with the specified statement. This command cannot cause
execution to begin in the middle of a multi-line function
or a new DO-DOEND block without undesirable side-effects.

When a program is stopped, the following commands can be
executed without preventing resumption of the program:

Any keyboard executable statement (see Section V)
LIST
SAVE
ASAVE
RSAVE
SIZE

60

Program execution cannot be resumed after any of the
following: ;

Alteration of the program
RENUMBER

NEW

QUIT

GET

XEQ

CLEAR

4.1.4 QUIT

The QUIT command is used to exit BASIC. All open files
are closed and the user work area is cleared. Control
returns to RIO.

QUIT

61

4.2 EDITING COMMANDS

The editing commands always affect the current program;
that is, the program that is currently being entered at the
terminal.

4.2.1 LIST

The LIST com~and lists all or part of the current
program; the form is ‘ ¥

LIST[-range]

where range specifies the range of statements to be
listed. 1If no range is specified, the entire program
is listed. The format and effect of a range is as

follows:

LIS-n only statement n is listed

LIS-n, statements n to the end of the
program are listed

LIS-,n the first statement and statements up
to n (inclusive) are listed

LIS-n,m statements n through m (inclusive) are
listed ‘

Examples

>LIST

The entire current program is listed at the terminal.

>LIST-1,100

Statements 1 through 100 of the current program are
listed.

Note that a listing can be stopped by pressing the ESCape
key. The user is returned to BASIC control. The listing e
can also be stopped by pressing the "?" key. Pressing the
"?" again will continue the listing.

62

h.2.2 NEW

The NEW command deletes the entire current program;
the form is:

NEW
NEW-~#buffers

If the number of buffers (0-15) to be allocated is not
specified, two buffers are allocated. A buffer is
required for each open file. Each buffer consists of
512 bytes. One buffer is required for file commands.

Example
>NEW-T7

The current program is deleted, seven buffers are
allocated, and a new current program can be entered in
the user's work area. The SIZ command (Section 4.2.5)
shows the number of available/allocated buffers.

>SIZ: AVAIL=9213 PROG=0 VAR=0 BUF=7/7

4.2.3 DELETE

The DELETE command deletes one or more specified
statements; the form is

DELETE-range

where range is described below; the statements specified
by the parameters are deleted from the program. The
range specifies a range of statements which are to be
deleted.

DEL-n deletes line n
DEL-,n deletes all lines from the beginning

of the program up to line n (inclusive)
DEL-n, deletes lines n to the end of the program
DEL-n,m deletes lines n through m (inclusive)
Example

>DEL-37, 43

All statements from 37 through 43 inclusive are deleted
from the user's current progranm.

63

4,2.4 RENUMBER

The RENUMBER command allows the user to renumber any
of the statements in the current program; the form is

RENUMBER-[newfirst[,deltal,oldfirst[,oldlast]]]]

oldfirst and oldlast specify the range of original
statements to be renumbered (defaults are 1,9999).

If only oldfirst is specified, the default for oldlast
is 9999. The first of these statements is assigned the
number newfirst (default is 10) and each of the
remainder is assigned a statement number delta greater
than its predecessor (default for delta is 10). Any
statement in the program which references a renumbered
statement is changed as required for consistency.

2

Example
>RENUMBER

The statements in the current program are renumbered in
increments of 10 starting with statement number 10.

>REN-377,50,250

The old statement numbers 50 through 250 are renumbered
starting with 3 and increasing by 7.

4.2.5 SIZE

The SIZE command reports the status of the current program.

Format

SIZE

Example *
>SIZ: AVAIL=9460 PROG=36 VAR=24 BUF=0/2

AVAIL indicates the number of available bytes. PROG
indicates the number of bytes occupied by the program.
VAR indicates the number of bytes occupied by program
variables. BUF indicates the number of available
buffers/number of allocated buffers (see NEW,

Section 4.2.2, for an explanation of buffers).

64

4.,2.6 CLEAR COMMAND

The CLFAR command causes all variables to become
undefined (the space they occupied being deallocated).
All function calls, GOSUB's and FOR's are also reset,
and all files are closed. The form is:

CLEAR

CLEAR frees all space allocated during the execution of
a program. A CLEAR is automatically performed when the
RUN command is issued.

Example

>SIZ: AVAIL=9460 PROG=36 VAR=24 BUF=1/2
SCLEAR
>STZ: AVAIL=9520 PROG=0 VAR=0 BUF=2/2

Examples Using Editing Commands

The user inputs a program; a mistake is made in
line 30, so the line is re-entered.

>10 INPUGNT A,B,C,D,E

>20 REM..INPUT 5 VALUES

>30 LET F=(A+B)/5

>40 REM..S=AVERAGE OF 5 INPUT VALUES
>50 PRINT S

>30 LET S=(A+B+C+D+E)/5

LIST correctly lists the program:

SLIST
10 INPUT A,B,C,D,E
20 REM INPUT 5 VALUES
30 LET S=(A+B+C+D+F)/5
40 REM..S=AVERAGE OF 5 INPUT VALUES
50 PRINT S

SIZE gives the length in bytes:

>SIZ: AVAIL=11648 PROG=125 VAR=0 BUF=2/2

65

The remark lines are deleted and the program is listed:

>DELETE-20, 40

>LIST
10 INPUT A,B,C,D,E
30 LET S=(A+B+C+D+E) /5
50 PRINT S

>SIZ: AVAIL=11710 PROG=63 VAR=0 BUF=2/2

Next, the program is renumbered and listed again:

>RENUMBER

>LIST
10 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E)/5
30 PRINT S

The program is deleted. When LIST is now specified,
there is no current program; the computer returns a ">"
to prompt for further entries:

>NEW

>LIST
>

66

4.3 DISK-RELATED COMMANDS

When a current program is complete, and is to be used
again, it should be saved on the disk. A copy of the
current program is not affected; it remains the current
program until the user ends the BASIC session or until
it is deleted with the NEW command.

When a program is saved, it must be given a name with
the SAVE or ASAVE command. The program name is used
to get, to append, or to kill a program from the disk.
The name must be unique among names on a particular
disk, but it may be duplicated on other disks. A
catalog of the programs and files contained in the
user's library may be requested with the RIO CAT
command .

All program files created using BASIC are appended
with the suffix ".BP". The suffix is not used when
manipulating program files within BASIC. The suffix
must be used when manipulating program files outside
of BASIC.

SAVed files created by BINBASIC are tagged with
SUBTYPE=2. SAVed files created by BASIC are tagged
with SUBTYPE=3. The files are not compatible. ASAVed
files are compatible.

4.3.1 SAVE

The SAVE command stores a copy of the current program
on the user's disk; the form is

SAVE-programname

If there is no file with the same name on the user's disk,
a new file is created and a copy of the current program
stored on it. 1If a file with the same name already
exists on the disk, the SAVE command is rejected.

The file created contains a copy of the BASIC program
in "compiled" form. This form is more compact than
the ASCII source form and is faster to retrieve than
the source form. It can, however, only be read
meaningfully by BASIC as a program. The ASAVE command
(Section U4.3.2) produces a saved form of the BASIC
program in ASCII source form. This form may be edited
with the RIO Editor and processed by other subsystems
which deal with ASCII files.

NOTE: The suffix ".BP" is appended to the programname.

67

Example
>SAVE-PROGX

The name PROGX.BP is assigned to the copy of the
current program that is saved on the user's disk.

4.3.2 ASAVE

The ASAVE command stores a copy of the current program
on the user's disk. The form of the file is an ASCII
source representation of the program (that is, the
characters and lines of the program itself). This
file may be edited with the RIO editor and processed
by other subsystems that deal with ASCII files.

ASAVE-programname
NOTE: The suffix ".BP" is appended to the programname.
If there is no file with the same name on the user's disk,
a new file is created and a copy of the current program
stored on it. If a file with the same name already
exists on the disk, the ASAVE command is rejected.
The program is normally ASAVed with line indentation off.
A SYSTEM "ASINON" call (Section 3.12) will cause the
program to be ASAVed with line indentation.
Example

>ASA-MY.NEW.PROGRAM

The name MY.NEW.PROGRAM.BP is assigned to the copy of
the current program that is saved on the user's disk.

4.3.3 RSAVE

The RSAVE command is similar to SAVE except that the
specified program name must already exist. The current
program is written to the file.

RSA-programname

68

If there is no file with the name programname.BP _
an error is given and the command rejected. Otherwise,
the current program is copied to that file. The form
[SAVE or ASAVE] is the same as the file's current contents.
Example
>RSA-PROGX

The current program is copied to existing file PROGX.BP.

4,3.4 GET

The GET command loads a specific Zilog BASIC program
into the user's working space; the form is

GET-programname

where programname.BP is the name of a program to replace
the current program.

Example
>GET-SEARCH
SEARCH.BP is a program saved on the disk. It is now also

available in the user's work area replacing any previous
program in that area.

4.3.5 XEQ
The XEQ command loads and runs a Zilog BASIC program.

It is equivalent to the sequence GET followed by RUN.
See Section 4.1.2 for details.

4,3.6 APPEND

The APPEND command appends a specified program to the
user's current program; the form is

APPEND-programname
The program programname.BP is appended to the end of the

current program. Only programs which have been ASAVed
(Section 4.3.2) may be appended. Programs which have

69

been saved in pseudo-compiled form (see SAVE command,
Section 4.3.1) may not be appended. Line numbers that
already exist in the workspace will be replaced by
duplicate line numbers from the APPEND file.
Example

>APPEND-PROGX

PROGX.BP is a program ASAVed on the disk. It is appended
to the program currently in the user's work area.

4.3.7 OBTAINING A LIST OF BASIC PROGRAMS

A list of BASIC programs may be obtained using the RIO
CAT command, specifying all files ending in ".BP".

NOTE: BASIC must be exited using a QUIT command for
RIO commands to be recognized.
Example

%CAT * _BP

4,3.8 DELETING FILES

All files, including Zilog BASIC programs (filenames
ending in ".BP") may be deleted by using the RIO DELETE
command or the BASIC ERASE statement (Section 10.4).

Examples Using Disk Commands

A program is input and saved on the disk. The program is
then deleted.

>100 INPUT A,B,C,D,E

>120 LET S=(A+B+C+D+E)/5
>130 PRINT S

>ASAV-AVERAGE
>NEW

70

A second program is entered and saved. The first program is

then appended to this program to make a third program. It too
is saved:

>10 INPUT R
>20 P=3.14

>30 A=z=P¥R"2
>40 PRINT A
>SAVE-AREA
>APPEND-AVERAGE
>SAVE-CALC

Any of these programs may now be brought back as the current
program with GET. To illustrate, each is retrieved and then
listed:

>GET-AVERAGE

>LIST
100 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E)/5
130 PRINT S

>GET-AREA
>LIST
10 INPUT

20 LET P=3.14
30 LET AzP¥R"2

40 PRINT A
>GET-CALC
>LIST

10 INPUT R

20 LET P=3.14

30 LET AzP¥*R"2

4o PRINT

100 INPUT A,B,C,D,E

120 LET S=(A+B+C+D+E) /5
130 PRINT S

To determine whether a particular program is on the
user's disk, he can use the RIO CAT command followed
by the program name (with .BP appended to the
programname). If there are not too many files on

the disk, he can simply type CAT or CAT ¥*,BP (to RIO)
to get a list of all the files currently saved.

71

SECTION V

KEYBOARD EXECUTABLE STATEMENTS

In general, all statements must be preceded by a
statement number and can only be executed as part of
a program, some statements however, can be executed
directly from the terminal keyboard. This mode of
operation can be very useful for debugging or for
performing simple calculations (e.g., values of
variables or expressions can be printed). The
following statements can be executed directly from
the keyboard:

STATEMENT REFERENCE

CALL 13.1

DIM 7.1, 8.3

REM 3.10

PRINT 3.8, 7.3, 8.10
READ 3.9, 8.11, 10.7.1, 10.7.4
WRITE 10.7.2, 10.7.5
RESTORE 3.9, 8.11, 10.7.3
FILE 10.2

RANDOMIZE 3.11

LET 3.1, 6.5, 8.7
ERASE 10. 4

SYSTEM 3.12

Description

When one of the above statements is typed without a
preceding statement number, the statement is executed
immediately. If the statement is a PRINT statement,
the output is printed at the terminal.

If program execution was stopped by pressing ESCape

or by a STOP statement, values of variables printed
will reflect the current value of the variable in the
context in which program execution ceased. This means
that if the program is stopped while in a multi-line v
function, the formal parameter variables will have
values as used in the function even if there is a
global variable with the same name.

Traps (Section 3.13) are disabled during keyboard
statement execution.

72

Example

>10 LET A=1
>20 STOP
>30 PRINT A
>RUN

STOP AT 20
PRINT A

1
>LET A=l
>CONTINUE
4

READY
>

73

SECTION VI

NUMERIC VARIABLE TYPES

Zilog BASIC allows floating point real and integer numeric
types. These types apply to variables, arrays, constants,
expressions, assignments, and functions.

74

6.1 TYPE SPECIFICATION

Numeric variables and arrays have a specific data type.
A suffix character appended to the variable name
determines this type. Variables with the same name but
different types are distinct from each other.

Description
Variables with no suffix character are of type REAL.
See Section 6.2.2 for a description of the representation

of floating point numbers in BASIC and BINBASIC.

Variables with a suffix character "%" are of type INTEGER.
The range of integers is -32768 to 32767.

Variables with the suffix character "$" are used to hold
strings (see Section VIII).

75

6.2 NUMERIC CONSTANT FORMS

When constants are used in an expression, DATA statement,
or during execution of an INPUT statement, they are
represented in one of three forms: integer, fixed=-point
or floating point. Fixed and floating-point numbers

are type REAL.

6.2.1 INTEGER FORM

An integer is a series of digits without a decimal point.
Examples of the integer form:

10 LET A%=47,B%=-375,C%=607,D%=0

20 PRINT A%,B%,C%,D%
>RUN

47 -375 607 0

An unsigned integer constant less than 256 is represented
internally as type INTEGER. All other numeric constants
are represented as type REAL.

When arithmetic operations are performed on expressions
containing only integer constants or variables, the
results are integers. However, when any operand is
type REAL, the result is type REAL.

6.2.2 FLOATING POINT FORM

A floating point number is a number that is stored in the

computer as a fraction (called the mantissa) and a power

of either 2 or 10 (called the exponent). For example,
.3E-11 equals .3%¥107(-11).

The floating point representation of binary and decimal
numbers follows.

76

BINARY FLOATING POINT REPRESENTATION:

24 bit sign-magnitude normalized* fraction

8 bit excess-128%% exponent (base 2)

sign bit replaces most significant fraction bit (implied "1")
exponent field of zero implies value is zero

WBYTE 1 | BYTE 2 | BYTE 3 | BYTE U4 |
{\\\\,,IJ—”“”"*\\v/’““~~\ﬁﬂ,/”"’”“V“\~J
Sign bit MANTISSA EXPONENT
O=+ (NORMALIZED) (EXCESS 128)
1=- (23 BITS)
7F FF FF FF = 16777215/16777216%¥2°127 = 1.7014117%10738
00 00 00 81 = 1/2%¥2/71 = 1.0000000
00 00 00 01 = 1/2%¥2(-127) = 2.9387359%10°(-39)
XX XX XX 00 = 0O

FF FF FF FF -16777215/16777216%¥2~127 = -1.7014117%10738

all results are rounded to 23 bit fractions

DECIMAL FLOATING POINT REPRESENTATION:

13 BCD digit sign-magnitude normalized¥* fraction
8 bit excess-128%% exponent (base 10)

sign bit is most significant digit

exponent field of zero implies value is zero

BYTE 1 |BYTE 2 |BYTE 3 | BYTE 4| BYTE 5 |BYTE 6| BYTE 7 | BYTE 8
4000, |
' TN\ ,,//\-fw“w~/
SIGN BIT
0=+ MANTISSA (NORMALIZED) EXPONENT
1=- (13 BCD DIGITS) (EXCESS 128)

09 99 99 99 99 99 99 FF -99999 99999 999 * 107127

01 00 00 00 00 00 00 81 = 1.0
01 00 00 00 00 00 00 01 = .1 * 10°(-127)
XX XX XX XX XX XX XX 00 = O

89 99 99 99 99 99 99 FF -.99999 99999 99 * 107127
all results are truncated to 13 digit fractions
¥Normalized means that the exponent is adjusted such
that the most significant digit of the mantissa is
non-zero or the mantissa is zero.

¥%¥Excess 128 means that the power to raise the base
is equal to the exponent field minus 128.

77

This example assigns values to and prints two real
variables.

10 LET 1=2795348.6,J=2.79E-3
20 PRINT I,J
>RUN

2795348.6 .00279

78

6.3 NUMERIC EXPRESSIONS

Variables of all data types and numbers of all data
forms can be used in numeric expressions. Zilog BASIC
provides the arithmetic operations for both data types
as well as automatic conversion when two operands are
not of the same type. The following table summarizes
the results of combining arithmetic elements with any
operator (except &, !, =, /, ~, and relationals):

TABLE 6-1

Second Element Data Type

INTEGER REAL
First INTEGER INTEGER REAL
Element
Data Type REAL REAL REAL
When the operators &, ', =, =, <, >, <=, >=, and <>

are used the result is always type REAL (0 for false,
1 for true). When the operators / and " are used,
the result is always type REAL.

Examples

An integer combined with a real type in an expression
results in a real number; two integers result in an
integer:

10 LET I1%=25,11%=50,R=2.75
20 PRINT I%+I1%

30 PRINT I%+R
>RUN

75

27.75

79

6.4 CONDITIONAL NUMERIC EXPRESSIONS

The numeric expression used to make a branching decision
in a conditional statement (Section 3.6) can contain

any numeric data type. The result will be type REAL.
The expression is considered false if equal to 0, true
otherwise.

80

6.5 NUMERIC ASSIGNMENT

When the result of a numeric expression is assigned to a
variable, it is converted to the type of that variable

The method of conversion used in assigning values to
variables of differing data types is summarized in this
table:

TABLE 6-2
Variable Type Value Type Conversion Method
INTEGER REAL Round
REAL INTEGER Float

Note that this table applies wherever values are assigned
to variables (INPUT, READ, etc.).

81

6.6 INPUTTING NUMERIC DATA

Constants of all data forms can be entered using READ
and INPUT statements. Once entered they are converted
to the type of the receiving variable according to
Table 6-2.

"

82

6.7 OUTPUTTING NUMERIC DATA

Numbers of all data types can be output with controlled
format with the PRINT USING statement (see Section XI).
Numbers of all data types can also be written onto

mass storage data files. This process is described
fully in Section X.

83

6.8 NUMERIC FUNCTIONS

Most built-in functions which return numeric results
return values of type REAL. (User-defined numeric
functions are described in Section IX.) These values,
when used in expressions or assignments are converted
as described in Table 6-2.
Numeric arguments to functions may be of either type REAL
or INTEGER and are converted to the type required by the
function according to Table 6-2.
6.8.1 ABS FUNCTION

ABS (expression)

ABS returns the absolute value of the expression.

6.8.2 ATN FUNCTION
ATN(expression)

ATN returns the arctangent of the expression. The result
is in radians. The range is -pi/2 to pi/2.

6.8.3 COS FUNCTION
COS(radians)

COS returns the cosine of radians MOD 2pi.

6.8.4 EXP FUNCTION
EXP(expression)

EXP returns e"expression, where e is the Napierian
constant, 2.718281828.

6.8.5 INT FUNCTION
INT(expression)

INT returns the largest integer less than or equal
to the expression.

84

6.8.6 LOG FUNCTION
LOG(expression)

LOG returns the natural logarithm of the expression.
The expression must be greater than zero.

6.8.7 RND FUNCTION

RND
RND returns a pseudo-random number greater than or
equal to zero and less than one. The seed for the RND

function may be ¢hanged by the RANDOMIZE statement
(Section 3.11).

6.8.8 SGN FUNCTION
SGN (expression)
SGN returns the sign of the expression. If expression>O0,

SGN returns 1. If expression=0, SGN returns 0. If
expression<0, SGN returns -1.

6.8.9 SIN FUNCTION
SIN(radians)

SIN returns the sine of radians MOD 2pi.

6.8.10 SQR FUNCTION
SQR (expression)

SQR returns the square root of the expression. The
expression must be greater than or equal to zero.

6.8.11 TAN FUNCTION
TAN(radians)

TAN returns the tangent of radians MOD 2pi.

85

SECTION VII

ARRAYS

An array (or matrix) is a set of variables which is
known by one name. The individual elements of an array
are specified by the addition of a subscript to the
array name: for example, A[7] is the seventh element
of array A.

Arrays have either one or two dimensions. A one-
dimensional array consists of a single column of many
rows. The elements are specified by a single subscript,
indicating the row desired. Rows and columns are
numbered starting with 1. A two-dimensional array
consists of a specified number of rows and a specified
number of columns organized into a table. For example,
an array A of four rows and three columns can be
represented as follows:

Columns
1 2 3
1 Al1,1] Al1,2] Al[1,3]
2 Al2,1] A[2,2] Al2,3]
Rows
3 Al3,1] Al3,2] Al3,3]
4 Afu,1] Al4,2] Al4,3]

Each element of the array is specified by a pair of
subscripts separated by commas; the first indicates the
row and the second indicates the column.

86

Every array in a Zilog BASIC program is defined in one
of two ways:

Through a DIM statement that specifies the
array name, and the number of rows and columns.

Through usage - numeric arrays that are used
but are not explicitly defined in a DIM or
type statement have 10 rows if one-dimensional
or 10 rows and 10 columns if two-dimensional.

The physical size of an array is the total number of
elements originally allocated to it; the logical size

is the current number of rows times the current number
of columns. The physical size of an array cannot be
changed during execution, but the logical size (that is,
the number of rows and columns) can be changed with a
DIM statement so long as the physical size is not
exceeded.

Zilog BASIC permits arrays of all numeric data types
as well as one-dimensional string arrays. Remarks in
this section refer to numeric arrays, unless otherwise
noted. String arrays are described in Section VIII.
This section describes DIM as used for numeric arrays.

Parentheses and square brackets ('[' ']') are equivalent
when used for specifying subscripts on array variables.

87

7.1 DIM STATEMENT

The DIM statement is used to reserve storage for arrays
and to set upper bounds on the number of elements in
arrays. DIM statements may also be used with strings
(see Section VIII). This section only refers to
numeric arrays.

Format
DIM variablel[integer],variable[integer],...

where the variable is the array name, and the integer
specifies the number of rows in a one-dimensional array.

DIM variable[integer,integer],variablelinteger,integer],...

where the variable names a two-dimensional array,
the first integer specifies the number of rows in the
array, and the second integer the number of columns.

Rows and columns are numbered starting with 1. The
overall size is the number of elements. In a one-
dimensional array it is identical to the number of rows;
in a two-dimensional array it is the product of the rows
and columns.

Both one- and two-dimensional numerical arrays and string
variables can be named in the same DIM statement; they
are separated by commas. Each element in the numeric
arrays is set to zero.

Description

The elements of an array are specified by subscripted
variables. The values of the elements are zero after
the DIM statement is executed. The number of elements
in the array is defined by a DIM statement or by usage.
The DIM statement can appear anywhere in a program and
is executed. Thus, the DIM statement must be executed
before the array is referenced.

Example

10 DIM A[171,A7(6,8],B[2,5]

20 REM A HAS 17 ROWS, ONE COLUMN

30 REM A7 AND B ARE TWO-DIMENSIONAL ARRAYS

40 REM A7 HAS 6 ROWS, 8 COLUMNS;B HAS 2 ROWS, 5 COLUMNS

50 DIM Cc[51,C1[5,1]1,c2[1,5]

60 REM C AND C1 HAVE THE SAME DIMENSIONS: 5 ROWS, 1 COLUMN
70 REM C2 HAS 1 ROW, 5 COLUMNS

88

Note that the DIM statement for C1 in line 50 would be
different if it included C1[5] since array elements must
be referenced with the same number of subscripts as in
the DIM statement.

The DIM statement can be used to change the number of
rows and columns in an existing array.

When using DIM to redimension an array, the number of
rows and columns can be changed as desired provided
these three conditions are met:

1) The number of dimensions must not be changed

2) The total number of elements (rows times
columns) must not be increased beyond the
physical size (original dimensions) of the
array.

3) The array is numeric. String arrays may not
be redimensioned.

NOTE: Any data in the array is lost as the array is
initialized to zero when redimensioned.

89

7.2 STORING DATA IN ARRAYS

There are several methods of assigning values to arrays.
Individual elements can be assigned using the assignment
statement:

10 LET A[5]=26
20 AT[1,6]1=N*4.5 R

In addition, individual elements can appear in INPUT and
READ statements: e

1,A[2],A[3]
2]

10 INPUT A[1
20 READ ATI[3

FOR loops can be used to fill entire arrays element by
element:

10 DIM A[171,A7[6,8]
20 FOR N=1 TO 17

30 INPUT A[N]

40 NEXT N

50 FOR N=1 TO 6

60 FOR M=1 TO 8

70 READ BIN,M]
80 NEXT M
90 NEXT N

90

7.3 PRINTING DATA FROM ARRAYS

The mechanisms for printing data from arrays are parallel
to those used for filling arrays. Individual elements
can be printed using PRINT:

100 PRINT A[1],A[2],A[3]

FOR loops can be used to print entire arrays element by
element:

90 DIM A[171,AT[6,8]
100 FOR N=1 TO 17

110 PRINT A[N]

120 NEXT N

130 FOR N=1 TO 6

140 FOR M=1 TO 8

150 PRINT B[N,M]
160 NEXT M
170 NEXT N

91

SECTION VIII

STRINGS

Zilog BASIC allows the programmer to manipulate character
strings through the use of string literals, variables,
arrays, functions, operators, assignment, statements, and
input/output statements. Many of the uses of strings are
enhancements to statements that have already been described,
such as READ and PRINT.

92

8.1 LITERAL STRINGS

A literal string is a sequence of up to 255 characters.
Each character is represented internally by a number
between zero and 255 as defined in the standard ASCII
character set (see Appendix A). Some of these characters
have graphic representations (they can be printed -
A,B,d,%), while others do not (they are nonprinting -
return, linefeed). Both types of characters can be
included in a literal string, but each is handled
differently. ‘

Format

A literal string consists of a series of graphic
characters surrounded by quote marks:

"character string"

The quote mark (") and the left angle bracket (<) cannot
be included as a character in the character string.

The quote mark, left angle bracket, and nonprinting
characters can, however, be included in a literal
string by using the integer numeric equivalent of the
character enclosed in angle brackets.

{integer>

The integer is the ASCII code of the desired character
and may be in the range 0-255, but it is good practice
to restrict this form to nonprinting characters, the
quote mark (34) and the left angle bracket (60).
Nonprinting characters can be combined with quoted
strings in a literal string.

Description

Literal strings can include both upper case and lower case
letters. When a literal string is printed, each character
value is printed literally on the output device. However,
when a program is listed, literal strings are listed with
graphic characters (except the quote mark and left angle
bracket) in quotes and non-graphic characters represented
in the angle bracket form. Characters represented in a
literal string graphically have their higher order bit
equal to zero, i.e., they are all represented by ASCII
values less than 128.

93

Examples

"nn

"BASIC"

" B n

"<13><10>"

"LINE 1<13><10>LINE 2"
"AL124>B"

"<3u>"

A null string (a string of zero length)

Carriage return, line feed
The literal prints on two lines
The literal is A vertical line B

The quote mark

94

8.2 STRING VARIABLES

A string variable (simple or subscripted) is used to
hold a series of ASCII characters. The declared size
of a string variable is called its physical length.
The maximum length of any string variable is 32767
characters. String variables are further constrained
in that they must fit inside available main memory.

During execution, each string variable contains strings
whose length cannot exceed the variable's physical size.
This dynamic length is called the logical length of the
variable and is initialized to zero ({.e., the null
string) at the beginning of program execution.

Simple and subscripted string variables must be
dimensioned in a DIM statement (section 8.3).
Format
A simple string variable is referenced by its name and
an optional substring designator in parentheses or
brackets.

string name

string name[first character]

string name[first character,last character]

The string name is a letter followed by a "$" or a letter
and a digit followed by a "$".

The substring designator consists of one or two numeric
expressions, separated by a comma. The first expression
always specifies the first character position of the
substring. The second expression specifies the last
character position. If there is only one expression,
the ending character position is the last character of
the string.

A string array variable is referenced by the string name

followed, in parentheses or brackets, by a subscript and

an optional substring designator separated by a comma.
string namelsubscript]

string name[subscript,first character]

string namelsubscript,first character,last character]

95

The subscript is an integer expression that specifies the
element of the array to be selected. Since a string array
may have only one dimension, there may be only one subscript
value.

The substring designator and the string name are spgcified
in the same way for string array variables as for simple
string variables.

NOTE: Unlike numeric array variables, a string array

variable must not have the same name as a simple string
variable.

Description

Any string variable, simple or subscripted, can be
qualified by a substring designator, which is used to
select a part of the string to be extracted.

If the substring is specified by a single expression, the
substring equals the rest of the string taken from the
position indicated by the expression.

If two expressions are separated by a comma, the substring
consists of the characters from the position specified

by the first expression to the position specified by the
second expression. (Note: the second expression can be
less than the first; this specifies the null string.)

If A$ is a simple variable:

A$(3,5) is the 3rd through 5th character of the
string

A$(3,2) is the null string

A$ every character in the string is selected

If B$ is an array variable:

B$(3) is the entire 3rd string in the string
array

B$(2,3,5) is the 3rd through 5th characters in the
; second string of the string array

A string array variable must always be subscripted.

96

The subscript and substring designator expressions may be

. any integer expressions. Suppose the variables I and J
are used, with I equal to 5 and J equal to 10:

C$(I) is the 5th character to the end of the
string if C$ is a simple string variable;
it is the entire 5th string element if
C$ is a string array variable.

- C$(I,d) is the 5th through 10th character if C$
is a simple string variable; it is the
10th character to the end of the string
of the 5th string if C$ is a string array
variable.

If a substring extends beyond the logical length of a
string variable, only the characters that exist in the
string are returned and a warning message is issued.

Examples

10 DIM A$[10]

20 A$="ABCDEFGHIJ"

30 PRINT "STRING A$=";A$

40 PRINT "SUBSTRING A$(3)=";A$(3)

50 PRINT "SUBSTRING A$(L,7)=";A$(4,7)

‘ 601 PRINT "A$(7,5)";A$(7,5);"=NULL STRING"

>RUN
STRING A$=ABCDEFGHIJ
SUBSTRING A$(3)=CDEFGHIJ
SUBSTRING A$(L,7)=DEFG
A$(7,5)=NULL STRING

97

8.3 DIM STATEMENT WITH STRINGS

Literal strings can be contained in string variables,
simple or subscripted. Simple string variables -and
array string variables must be dimensioned in a DIM
statement. The purpose of the DIM statement is to
reserve storage for strings and arrays and to establish
their names and maximum size.

Format

The DIM statement consists of the word DIM followed by
a list of variable and array definitions separated by
commas.

DIM variable(string size],variablel[string sizel,...

where variable is the name of a simple string variable
specified as a letter followed by a "$" or a letter and a
digit followed by a "$". The string size is an integer
expression that specifies the maximum number of characters
the string can contain.

DIM variablelarray size,string size],variablel[array size,
string sizel,...

The array size specifies the total number of elements in
the array; the string size specifies the maximum number of
characters in each element. Only one-dimensional string
arrays are allowed. Both array size and string size are
integer expressions.

If more than one variable is included in a single DIM)
statement, they must be separated by commas. Simple string
variables, subscripted string variables and numeric arrays
(Section 7.1) may be dimensioned in the same DIM statement.

Description

String arrays must be declared in DIM; there is no implicit
size for string arrays as there is for numeric arrays.
String variables and elements of string arrays are
initialized to the null string.

NOTE: String variables and arrays may not be redimensioned.

98

Example

‘ 10 DIM A$[20],B$[5,351,C$[5,3]
20 LET A$="TITLE OF SECTION IS "
) 30 FOR K=1 TO 5
40 READ B$([K]
50 NEXT K

60 FOR K=1 TO 5
70 READ C$[K]
- 80 NEXT K
90 DATA "INTRODUCTION TO BASIC","EXPRESSIONS","STATEMENTS"
100 DATA "COMMANDS","KEYBOARD EXECUTABLE STATEMENTS"
110 DATA » I, IIn, wIIIn, " Tyn myn
120 FOR K=1 TO 5
130 PRINT A$[1,17];C$[K]1;A$[17,20];B$[K]
140 NEXT K
>RUN

TITLE OF SECTION I IS INTRODUCTION TO BASIC

TITLE OF SECTION II IS EXPRESSIONS

TITLE OF SECTION III IS STATEMENTS

TITLE OF SECTION IV IS COMMANDS

TITLE OF SECTION V IS KEYBOARD EXECUTABLE STATEMENTS

A substring of A$ is printed, followed by the kth element

of C$, another substring of A$, and the kth element of BS$.
This example lists the titles of the first five sections

. of this manual.

99

8.4 STRING EXPRESSIONS

String expressions consist of one or more source strings

(literal strings, string variables, string valued

functions) combined from left to right with the

concatenate operator (+) to form a single new string

value. String expressions can be assigned to string

variables or compared with other string expressions to

form a numeric expression. ~

Format
The format is a list of source strings separated by "+"
string
string + string...
Each source string can be either a literal string, a string
variable, or a string function.
Description
A source string is any entity from which a str@ng value
is extracted. The value of the source string is as
defined under "String Literals", "String Variables", and
"String Functions". An example of a literal string 1is

"BASIC" or "<10>"; of a string variable is A$, C5$(2),
B$(2,3), or A1$(5,3,10); of a string function is CHR$(208).

The "+" character, when used between two source listings,
is the concatenate operator. The concatenation of twq
strings produces a temporary string whose characters are
those of the first string immediately followed by those
of the second. This temporary string can be used in
further concatenation operations, in string comparisons,
or it can be assigned to a string variable.

The maximum length of any temporary string is 32767

characters. The original operands are unaffected by

concatenation. *

Legal string expressions:
A$+B$(2)+"<10><13>ABCD"+C$(3,1,2)
"BASIC"+C5%$(2)
"BASIC"

C5%(2)

100

Example

10 DIM A$[51,B$[10,10]

20 LET A$="CON",B$[1]="CATENATION"
30 PRINT A$+B$[1,1,7]1+B$[1,4,4]
S>RUN
CONCATENATE

101

8.5 STRING-RELATED FUNCTIONS

There are a number of predefined functions in Zilog BASIC
that accept string values as parameters and/or return a
string value as their result. (User-defined string
functions are described in Section IX.)

8.5.1 CHR$ Function
CHR$(integer expression)

where integer expression results in a value in the range
0 to 255 inclusive. The value of CHR$ is the string
character that corresponds to the value of the expression
in the standard character set (see Appendix A). For
example,

10 PRINT CHR$(65)
>RUN
A

8.5.2 ASC FUNCTION
ASC(string expression)

ASC returns the numeric value of the first character of
the string in the expression according to the standard
character code in Appendix A. For example,

10 PRINT ASC("A™)
>RUN
65

8.5.3 LEN Function

LEN returns the logical length of the string expression.
For example,

10 DIM A$[20]

20 LET A$="ABCDEFG$"
30 PRINT LEN(A$)
>RUN

8

102

8.5.4 POS FUNCTION
POS(stringA,stringB)

where stringhA and stringB are any string expressions.
POS returns the smallest integer that represents the
starting position of a substring in stringA that
exactly equals stringB. If stringB is not a
substring of stringA, then POS equals zero. If
stringB is null, then POS equals one. For example,

10 PRINT POS("™12ABC34","C3")
>RUN
5

8.5.5 VAL FUNCTION
VAL(string expression)

VAL returns the numeric value represented by the
characters in the string expression. An error occurs
if no legal number is found at the beginning of the
string expression. The number is considered to begin
at the first character of the string expression and

end on the first character that is not legal in a
number. Blanks are ignored and E-notation may be used.
For example,

10 DIM A$[30]

20 LET A$="123XUEZ"

30 PRINT VAL(A$)

40 PRINT VAL(A$[5,61+"9")
>RUN

123

4000000000

8.5.6 STR$ FUNCTION

STR¢(numeric expression)
The STR$ function returns a string representing its
single numeric argument. The string is in the form that

would be produced by the PRINT statement except that all
blanks are removed. For example,

103

10 DIM A$[4761]

20 LET A$=STR$(2.36%4)
30 PRINT A$

40 PRINT VAL(A$)

50 PRINT STR$(VAL(A$))
>RUN
9. 44

9.4y
9.44

8.5.7 LEFT$ FUNCTION
LEFT$(string expression,integer expression)

LEFT$ returns the n leftmost characters of the string
expression. The integer expression gives the position
of the last character to be returned. For example,

10 PRINT LEFT$("ABCDE",3)
>RUN
ABC

8.5.8 RIGHT$ FUNCTION
RIGHT$(string expression,integer expression)

RIGHT$ returns the rightmost characters of the string
expression, from the nth character to the end. The
nth character is indicated by the integer expression.
For example,

10 PRINT RIGHT$("ABCDEFGHIJ",64)

>RUN
DEFGHIJ

8.5.9 SEG$ FUNCTION

SEG$(string expression,integer expression,integer expression)

SEG$ returns the substring of characters of the string
expression from the character specified by the first
integer expression to the character specified by the
second integer expression. For example,

10 PRINT SEG$("ABCDEFG",3,6)
>RUN
CDEF

104

¥

8.6 COMPARING STRINGS

String expressions can be compared with relational operators
to produce a result of true (numeric 1) if the relation holds
or false (numeric 0) if the relation does not hold. The
relational operators are:

= Equal

<> Not Equal

< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

Two strings are equal only if they have the same logical
length and each character matches. A string is less than
another if its first character that does not match the other
is numerically less (according to the standard character
code in Appendix A) or it is an initial proper subset of

the other (e.g., "AB"<"ABC" but "BA>"ABC").

A string comparison can appear within a numeric expression,
since the result is a number. The string relational operators
have the same position in the hierarchy of operators as do
the numeric relations. For example, these are string
comparisons:

A$=B$

A$=B$!1C$>=D$

(A$<>"BOB") +5

See Section 2.5 for the meaning and hierarchy of
relational operators.

A common use of string comparisons is in IF statements.

105

Examples

10
15
20

30
4o

50

60

70

80

90
100
>RUN
ABC<A
ABC<B
ABC=A
c>

DIM A$[10],B$[10]
FOR K=1 TO 4

READ A$,B$

IF A$<B$ THEN PRINT A$;"<60>";B$
ELSE DO

IF A$=B$ THEN PRINT A$;"=";B¢
ELSE PRINT A$;">";B$

DOEND

NEXT K

DATA "ABC" , "ABCD" y "ABC" , llB"
DATA "ABCH , "ABC" , "C" R nn

BCD
BC

106

8.7 STRING ASSIGNMENT

The assignment operator (=) can be used to assign a
string value (defined by a string expression) to one
or more string variables (or substrings of string
variables). Several different assignments can appear
in one LET statement.

Format
The formats of LET are
LET variable=zexpression
LET variablezexpression,variable=zexpression,...

The word LET is entirely optional and can be left out.
The variable is an entire string variable (simple or
subscripted) or part of a string variable (indicated
by a substring designator) into which a string value
is to be copied. Numeric assignments as described in
Section 3.1 can be mixed with string assignments in
the same LET statement.

Description

The execution of a LET statement proceeds as follows.
The subscripts of variables to be assigned values are
evaluated from left to right. The expression is then
evaluated and assigned to the variable. The manner 1n
which each assignment occurs depends upon the number
of substring subscripts specified for the destination
variable.

If there is no substring designator, the entire variable
is replaced by the string value. If the new value will
fit entirely into the variable, the logical length of
the variable is set to the length of the new value.

If the variable is too small, a warning message is
printed, the value is truncated on the right and the
logical length of the string is made equal to the
physical length.

107

If there is one substring subscript, it specifies the
starting position for the assignment. The entire
String value is copied into the variable starting with
the indicated position and continuing to the physical
end of the variable or the end of the string value,
whichever comes first. The part of the variable
preceding the subscript is unchanged. The starting
subscript must be no more than one greater than the
current logical length of the variable (i.e., there can
be no undefined character positions in the middle of a
string variable). If the variable is too small, the
value is truncated on the right and a warning message
is printed.

If two substring subscripts are specified, they define

a field within the variable into which the string value
is stored. If necessary, the value will be truncated

on the right and a warning message printed, or padded out
with blanks to fit exactly the substring specified. The
substring for the destination must not extend beyond the
physical length of the string variable and all previously
mentioned rules must be followed also. The new logical
length of the variable is the larger of the old logical
length or the last position of the substring. Any
characters from the old value to the left or right of

the substring are unchanged.

Example

10 DIM A$[10]
20 LET A$="1234567890"
30 PRINT A%
40 LET A$[5]="ABCDEF"
50 PRINT A$
60 LET A$[7,9]1="1234"
70 PRINT Ag$
80 LET A$[6,8]="X"
90 PRINT A$
100 LET A$=A$[1,41+"567890"
110 PRINT A$
>RUN
1234567890
1234ABCDEF

WARNING 146 AT 60
1234AB123F
1234AX 3F
1234567890

Note that the literal "1234" in line 60 is truncated
to fit in substring A$(7,9).

108

In line 80, substring A$(6,8) is blank filled since
"X" is only one character. The final value of A$ is
the same as its original value assigned in line 20.

The example below illustrates variations on assignments
to substrings of array elements:

10 DIM A$[3,5]

20 A$[1]1="ABCDE",A$[2]1="ABCDE",A$[3]="ABCDE"
30 LET A$[1,3]=A$£§]

40 PRINT A$[11,A$F2],A8[3])

50 LET A$[2,4,51=A%[3]

60 PRINT A$[1],A$[2],A$[3]

70 LET A$[2]=A$[1,1,11,A4[3,2,31=A801,1,1]
80 PRINT A$[11,A$[2],A8$[3]

>RUN

WARNING 146 AT 30

ABABC ABCDE ABCDE
WARNING 146 AT 50

ABABC ABCAB ABCDE
ABABC A AA DE

109

8.8 STRING INPUT STATEMENT

The INPUT statement can be used tq assign string constants
to string variables from the terminal.

Strings may be quoted or unquoted. If unquoteq, leading

and trailing blanks are removed and the input item ends

on a comma (,) or return. P
The rules used to assign the value to the variable are

those described under "String Assignment" (Section 8.7).

Examples

10 DIM A$[16]1,B$[2,51,C$[40]
20 INPUT A$,B$[11,B$[2]1,C$

25 PRINT
30 PRINT A$;B$[11;B$[2];C$
>RUN
?"THE VALUE OF B$=","1234 " w 2X5 n wxX5-pARC™

THE VALUE OF B$=1234 2X5 X5=ABC

110

8.9 STRING LINPUT STATEMENT

The LINPUT statement accepts all the characters that
a user types in at the terminal and assigns them as a
string to a specified string variable.

Format
LINPUT string variable
LINPUT string 1itera1,string variable

where the string variable is the destination of the
input. The variable may be simple or subscripted.
In the second form, the string literal replaces the
standard question mark prompt.

Description

All characters are accepted including quotes, commas
and blanks. Input is terminated by a carriage return.

Example

10 DIM A$[20]

20 PRINT "TYPE 20 CHARACTERS:"

30 LINPUT """, A$

35 PRINT

40 PRINT A$

50 LINPUT "TYPE 5 CHARACTERS:";A$

55 PRINT
60 PRINT A$
>RUN

TYPE 20 CHARACTERS:
"ANY CHARACTERS" O0.K.
"ANY CHARACTERS" 0.K
TYPE 5 CHARACTERS:E"4+"#
En+"*

Because more than 20 characters (the size of A$) were
input by the user, the final period in the first input
is truncated. 1In the second input, quotes are entered
as part of the string.

111

8.10 STRING PRINT STATEMENT

Any string expression can be output to the list device
(e.g., the terminal) using the PRINT statement. The
size of the output field is the number of printed
characters in the string value. If the string
expression is preceded by a comma, it is printed
starting in the next division. Each print line 1is
divided into five divisions, each with a width of 14
characters (see PRINT statement, Section 3.8). If the
String expression is preceded by a semicolon, it is
printed immediately following the preceding output.

Strings can be output to the terminal with special
formats through the PRINT USING statement (see
Section XI, Formatted Output). Strings can be output
to files as described in Section X. .

Example

10 DIM C$[101,N5$[3,5]
20 LET C$="XK9-753-20",A=2.5,B=1E~19,N5$[1]1="ABCDE"
30 PRINT A,B,C$
40 PRINT "BOB"4+C$,N5$[1]

50 PRINT C$+"BOB";N5$[1]
60 PRINT "<10><34>LINEC34><10><13>=1"

>RUN
2.5 1.00000E-19 XK9-753-20

BOBXK9-753-20 ABCDE :

XK9-753-20BOBABCDE

"LINE"
-1

In line 60, the <10> (linefeed) causes a linefeed and
the <13> (carriage return) causes a carriage return
when the line is printed. The <34> (quote) causes a
quote to be printed. The actual quote (") before and
after the string LINE in the PRINT statement is not
printed.

112

8.11 STRING READ/DATA/RESTORE STATEMENTS

The READ, DATA, and RESTORE statements can be used with
string variables that are simple or subscripted, with
or without substrings. The string variable is listed
in the READ statement and a corresponding string
constant must appear in the DATA statement. A RESTORE
statement can be used if the DATA statement is to be
read again by a subsequent READ statement. For a full
description of READ/DATA/RESTORE statements, see
Section 3.9.

String variables can be mixed with numeric variables in
READ, but the corresponding constant for each numeric
variable must be a numeric value. The string constant
is assigned to the variable according to the rules
defined in String Assignment, this section. Either
numeric or string data elements can be read into string
variables. The character representation as it appears
in the DATA statement is used in either case.

Strings can also be read from files as described in
Section X.

Example

10 DIM A$[20],B$[20]

20 DATA "BOB","<10>JONES"
30 READ A$[1,3]

40 READ A$[4,9]

50 LET B¢$="HI"

60 PRINT B$,A$

HI BOB
JONES

When the PRINT statement is executed, the character for
linefeed <10> is printed and causes a linefeed.

113

SECTION IX

USER-DEFINED FUNCTIONS

A user-defined function is one that is defined within

the user program and is called within that program in

the same way that a built-in function is called. i
Function names consist of the letters "FN" followed by
a single letter or letter-digit pair followed by an
optional type character ("$" or "%"). If no type
character is specified, then the function returns a
REAL value, otherwise, it returns a value of the
specified type: "&" for integer, "$" for string.

A function is called within an expression by referring
to its name and an optional list of parameter values
enclosed in parentheses. The value returned by the
function takes its place in the expression.

There are two levels of complexity in the definition
of a Zilog BASIC function. At the simple level, a
one-line function simply relates a function name and
list of parameters to any expression which may use the
parameters to calculate the result value. The multi-
line function is a more complex entity; it can consist
of many statements. It returns its result value with
a RETURN statement.

For a discussion of Zilog BASIC built-in functions,
see Functions in Section 2.3. A complete list of the
built-in functions available to the Zilog BASIC user
is contained in Appendix D.

114

9.1 ONE-LINE FUNCTION

A one-line function is defined completely in one line,
using the function DEF statement; its result is
calculated by an expression.

Format

The formats for one-line function definitions are:
DEF function-name(formal parameter list)=expression
DEF function-namezexpression

DEF string-function-name(formal parameter list)=string
expression

DEF string-function-name=string expression

The optional formal parameter list includes
Real parameters (i.e., no type suffix)

Typed parameters (i.e., variable name with a
type suffix)

The expression can be any legal numeric or string
expression, and can make use of both parameters and
program variables.

Description

The parameters in a function definition are formal
parameters; when the function is called, they are
replaced by the actual parameters which are passed to
the function. All variables used as formal parameters
are local to the function; that is, they are unrelated
to any program variables having the same name. The
formal and actual parameters are matched according to
their position in the list.

The DEF statement is executable although the function

it defines can be entered only by referring to the
function name within an expression. The DEF statement
defining a function must be executed prior to a reference
to the function itself.

Subsequent DEF statements with the same function name

redefine that function. The previous definition is
forgotten.

115

Examples
10 DEF FNZ(C,D)=C*(D+10)-6

The function FNZ is type real. The formal parameters
C and D are also type real. When called, the actual
parameters will give values to C and D, then the
expression C¥(D+10)-6 will be evaluated, and the
result will replace the function name where it appears
in an expression.

20 DEF FNG$(K$,L$)=K$+L$+K$

The function FNG$ is a string function. The formal
parameters K$ and L$ are string variables that will
be assigned values according to the matching actual
parameters in the function call. When called, the
literal string resulting from the concatenation of
the values K$, L$, and K$ will replace the function
name in the expression where it appears.

30 DEF FNB%(A%,X2%)=A%*X2%+(A%+X2%)

The function FNB% is an integer function that results
in an integer value when called. The computations will

be performed in integer arithmetic because both A% and X2%

are integers.

116

9.2 MULTI-LINE FUNCTIONS

A multi-line function is written as several contiguous
statements beginning with a DEF statement and ending with
an FNEND statement. Execution of the function ends when
a function RETURN statement is encountered; this sends
the result value back to the place of call.

Format

A multi-line function definition has three parts; the
function head, the function body, and the function end.

The function head appears as
DEF function-name(formal parameter list)
DEF function-name

All parts of these function definitions are the same as
described for one-line functions.

The function body consists of a sequence of statements,
including at least one function RETURN statement:

RETURN expression

The expression is numeric or string depending on whether
the function is numeric or string. For numeric functions,
the RETURN expression is converted to the type of the
function.

The function end consists of a one-word statement;
FNEND

This statement must always be the last statement in the

function definition.

Description

The body of a function can contain any Zilog BASIC
statements with the following restrictions:

1) A function definition cannot appear within a function
body, but function calls are allowed, including calls
to the same function.

2) The function body must be self-contained; FOR loops

and DO-blocks must be completed within the body and
branches must not occur into or out of the body.

117

The formal parameters in a multi-line function head are
specified in the same way as those in the one-line
function definition. The formal parameters may be altered
in the body of the function. The value of the actual

parameter, however, is never affected by the change to
the formal parameter.

The following multi-line function returns a string value;
its formal parameter is a string variable:

10 DEF FNR$(A$)

20 REM..FNR$ RETURNS THE REVERSE OF A$
30 IF LEN(A$)<=1 THEN RETURN A$

4o RETURN FNR$(A$[2])+A$[1,1]

50 FNEND

118

9.3 CALLING A USER-DEFINED FUNCTION

A user-defined function is called by referring within
an expression to the function name followed by a list
of actual parameters in parentheses. The function call
is replaced by the value returned by the function.

Format

A function call has the form:
function-name(actual parameter list)
function-name

The optional parameter list contains one or more
actual parameters separated by commas. An actual
parameter may be a numeric expression or a string
expression.

Description

Actual parameters may be used to pass only single Yalues
to a function, usually to be used within the function
although this is not required.

The number of actual parameters in the function call
must be the same as the number of formal parameters 1n
the function definition. The names of corresponding
parameters need not be the same. Actual and formal
parameters correspond according to their positions in
the two lists. For instance, the third actual
parameter in a function call corresponds to the third
formal parameter in a DEF statement.

If the formal parameter is a simple numeric value (V)
then the actual parameter can be a numeric expression
resulting in a single value, or a simple or subscripted
numeric variable (2%V,V,5%7,V(5)). If the variables are.
different types or the actual parameter is an expression,
any necessary conversion is performed as described in
Section 6.5, Numeric Assignment.

If the formal parameter is a simple string variable, the

corresponding actual parameter must be a string
expression.

119

Examples

To call the one-line function:
10 DEF FNZ(C,D)=C*(D+10)-6

the actual parameters are numeric variables of the same
type:

500 LET C=5,D=2

510 PRINT FNZ(C,D)

>RUN
54

The actual parameters might also be numeric expressions:

520 PRINT FNZ(5,2)
>RUN
54

To call the string function:
20 DEF FNG$(K$,L$)=K$+L$+K$

The actual parameters can be string variables:
530 K$="ABC",L$="123"
540 PRINT FNG$(K$,L$)

>RUN
ABC123ABC

or string expressions:
550 PRINT FNG$ ("ABC","123")

>RUN
ABC123ABC

To call the function FNB returning an integer value:
30 DEF FNB%(A%,X2%)=A%%X2%+(A%+X2%)

the actual parameters can be variables:
500 LET X%=U4,Y%=2
510 PRINT FNB%(X%,Y%)

>RUN
14

120

or numeric expressions:

520 PRINT FNB%(4,2)
>RUN
14

Each of the above examples is a one-line function for
which a single value is returned. The formal parameters
are not affected by execution of the function. In a
multi-line function, the formal parameters may be
altered in the body of the function. The value of the
actual parameter, however, is never affected by the
change to the formal parameter.

The multi-line function below returns a §tring value
that is the reverse of the string value input as the
actual parameter:

10 DEF FNR$(A$)

20 REM..FNR$ RETURNS THE REVERSE OF A%
30 IF LEN(A$)<=1 THEN RETURN A$

4o RETURN FNR$(A$[21)+A$[1,1]

50 FNEND

To call this function, the actual parameter may be a
string literal:

70 PRINT FNR$("ABCDE")
>RUN
EDCBA

The actual parameter may also be a string variable:

60 DIM X$[5]

70 X$="12345"

80 PRINT "FNR$ RETURNS:";FNR$(X$)
SRUN
FNR$ RETURNS:54321

121

SECTION X
FILES

For problems that require permanent data storage external
to a particular program, Zilog BASIC provides a data file
capability. This capability allows flexible, direct
manipulation of large volumes of data stored on files.

&

122

10.1 FILE TYPES AND ATTRIBUTES

There are two types of files used in Zilog BASIC: binary
files and ASCII files.

A catalog of BASIC ASCII and binary files, as well as any
other non-BASIC files on the disk, can be requested with the
RIO CAT command (see Commands, Section 4.3).

10.1.1 ASCII FILES

ASCII files are created either through the RIO operating
system or by the BASIC interpreter itself and are treated by
Zilog BASIC as terminal-like devices. They can be actual
terminals. Output to them is formatted according to the
rules for the PRINT statement (see Section 3.8). Input

from ASCII files is analyzed according to the rules of the
INPUT statement (Section 3.7).

10.1.2 BINARY FILES

Binary files are unformatted files created through the
RIO Operating System or by BASIC. Data items are stored
in binary files as binary words without type informeation.
When data is read from a binary file, it is assumed to be
the type of the variable into which it is being read.

'10.1.3 FILE NAMES

When any file is created, whether it is ASCII or binary,

it is assigned a file name by the user who creates the file.
The file name may contain up to 32 alphanumeric characters,
the first of which must be a letter. The file name may be
fully qualified as described in the RIO manual.

10.1.4 FILE ATTRIBUTES AND STRUCTURE

A file consists logically of a contiguous string of 8-bit
bytes. The file also has a name and set of attributes.

BASIC files are also divided into fixed-size logical groups
of bytes called logical records. This division has no effect
on file access or structure except in its use with random
access. The first record on the file is called record 0.

123

When a file is accessed, BASIC maintains a cursor or pointer
into the file which specifies the next byte to be read or

written. The cursor is advanced through the file as
sequential input or output transfers are performed.
bytes are never inserted intoc the middle of a file;

New

it is

only lengthened or shortened by appending or removing bytes

at the end of the file.

A write to a file, performed when

the file cursor is in the middle of the file, overwrites

whatever information was previously there.

‘data are unaffected.

Surrounding

Files are created automatically when first accessed in a

BASIC program. They are, however, only deleted by an

explicit command (see Section 10.4).

The following table summarizes the statements that are

used to access files.
Function

Creating and Cpening
files

Closing files

ASCII input from files
Binary itnput from files
ASCII output to files
Binary output to files
Rewinding files

Moving the file cursor

Random access

Shortening files
Deleting files

Detecting the end-of-file

Statement(s) Used

FILE

CLOSE, END
INPUT, LINPUT
READ

PRINT

WRITE

RESTORE

SPACE
RESTORE, INPUT,
LINPUT, READ,
PRINT, WRITE
TRUNCATE

ERASE

- EOF Function

124

Section

10.2

10.3
10.7.1
10.7.1
10.7.2
10.7.2
10.7.3
10.6
10.7.3,
10.7.4
10.7.5
10.5
10.4

10.8

10.2 OPENING FILES: FILE STATEMENT

In order for a program to access a file, the file must

be open. A buffer is required for each open file.

The NEW command (Section 4.2.2) is used to allocate

512 byte blocks for buffers. The NEW command may allocate
from 0 to 15 blocks. By default, NEW allocates two blocks.
Each open file requires one buffer. The buffer size is
determined by the record length of the file. The default
record size is 128 bytes. For every file that is to be
opened, an association is established between the file
number used in access statements and the file name.

The file number is an integer between 1 and 15.

The linkage between file name and file number is ’
accomplished by the FILE statement. FILE causes a file

number to be assigned to a file name. If another file
was associated with the file number, that file is closed.

Format
The formats for FILE are
FILE #filenumber;name options string
FILE #filenumber;name options string,return variable

The filenumber is a number between 1 and 15. The name
options string is a string expression. It includes a
filename (see Section 10.1.3) followed by optional
parameters, all delimited by semicolons. The options
(ACC, RL, REC) are described in Table 10-1. The

second form of FILE includes a numeric return variable.
It is used to return the status of the FILE statement's
execution (see Table 10-2). '

Description

The file name is associated with the file number. The

file is then created (if necessary) and opened. Subsequent
accesses to the specified file number affect the named
file. The FILE statement allows many options tc be listed
in the name options string. They and their effects are
described in Table 10-1.

125

TABLE 10-1
FILE OPTIONS PARAMETERS

Parameter Effect

REC=constant Set the logical record
size of the file to the

specified constant which
must be between 1 and 32767 "
inclusive. (Default: REC=128)

RL=constant For a new file only. Set
the physical record length -

to the specified constant.

See the RIO manual feor a
discussion of acceptable
values and their implications.
(Default: RL=128)

ACC=option Option must be one of:
IN File must already exist

ouT FILE may exlist but
is emptied of data

NEW FILE must not already
exist

UPD Pointer placed at
beginning of file
(default)

An error message is issued if
the restrictions on the file's
existence are not met. If there
are no restrictions, the file is
created Lif nonexistent.

126

If the numeric return variable is not present, any errors
encountered during processing are handled in the normal
manner by printing a message on the user's terminal (or
trapping to a selected line if an appropriate TRAP state-
ment, Section XII, has been executed). If the variable is
present, no errors are generated and the variable is set
to a value indicating the success or cause of failure of
the FILE statement. These values are given in Table 10-2.

TABLE 10-2
RETURN STATUS OF FILE EXECUTION

Return
Value Status
0 Everything is O.K.
1 The file already exists and
"ACC=NEW" was specified
2 The file does not exist and
"ACC=IN" was specified
3 The file name was Lllegal
4 An option was encountered which
was illegal
5 The record size specified by
"RL=" or "REC=" was illegal’
6 There was insufficient memory

for buffers

127

Examples .

FILE #1;"AFILE;ACC=IN"

FILE #2;"BFILE;ACC=NEW",C

FILE #3;"CFILE"

FILE #12;"SCRATCH;ACC=NEW;RL=1024"

AFILE 1s opened and must exist. BFILE is opened, must not have
existed previously and C contains the FILE execution return status.
CFILE is opened with the pointer at the beginning of the file. If
CFILE does not exist, it is created. In the fourth example, a
file, SCRATCH, is created (it must not already exist) with

a physical record size of 1024 bytes.

FILE #K+l;"XXX.BP;ACC=IN;REC=1",R%

In this example, the file XXXX.BP (which must already exist)
is opened. The logical record (used for random access) LS
set to 1. This allows randem access to particular single
bytes in the file. The integer variable R% is set to
indicate the status of the open.

—
[\®)
0

10.3 CLOSING FILES: CLOSE STATEMENT

All files are closed automatically upon program
termination. A file may be closed during program
execution with the CLOSE statement. This should be
done wherever practical to release buffer space for
other files.

The CLOSE statement breaks the name-file number linkage

established by the file statement and releases resources
that were needed to access the file.

Format
CLOSE $file number
CLOSE #file number,#file number,...

CLOSE

The specified file numbers are closed.

Description

If a file number was not associated with a file by a
previous FILE statement, no action is taken and no error
1ls lssued.

In the third form, all files are closed.

Examples

105 CLOSE #4
1210 CLOSE #1,#2,#3,#4,%#5
1401 CLOSE #2*K+6
7090 CLOSE

129

10.4 DELETING FILES: ERASE STATEMENT
A file can be deleted from the system with an ERASE
statement.
Format
The formats for the ERASE statement are
ERASE file name
ERASE file name,return variable
The file name is a string expression. The return variable

will contain a result following execution of the ERASE
statement.

NOTE: The complete filename must be specified as it would
appear in a RIO CAT list. Thus, iLf a BASIC program file is
to be deleted, ".BP" must be appended.

Description

The file specified in the statement is deleted and is not
recoverable.

The numeric variable in the statement returns a result or
status of the ERASE operation:

0 successful delete

file is being accessed and cannot be deleted

N

user is not permitted to delete this file

w

there is no such file

Examples

10 ERASE "BFILE",N
20 PRINT N

>RUN

0

130

.

An ERASE statement is used to delete BFILE. The result
of deleting BFILE is printed. Since it was a successful
deletion, the result is zero.

10 DIM AS(96)

20 INPUT "PROGRAM TO DELETE",AS
30 ERASE A§+".BP"

The above example deletes a BASIC program file, appending
the ".BP" suffix to the programname.

131

10.5 TRUNCATE STATEMENT

The TRUNCATE statement is used to specify that bytes
beyond the current file cursor of a specified file
are to be removed from the file and the disk space
they occupied freed for reuse.

Format

TRUNCATE #filenumber

Description

Any bytes beyond the current cursor position are
removed from the file. The byte before the cursor
becomes the last byte in the file.

Example
709 TRUNCATE #2

132

10.6 SPACE STATEMENT

The SPACE statement is used to alter the position
of the cursor in a file. The cursor can be moved
forward or backwards (toward the beginning of the
file) by a specified number of bytes or until a
specified character is encountered.

Format
SPACE #filenumber ,movecount
SPACE #filenumber;movecount,delim-string
SPACE #filenumber;movecount,delim-string,
return variable
Description

In the first form, the cursor for the file specified
by filenumber is moved by the number of bytes
specified by movecount. If movecount is positive,
the cursor is moved toward the end of the file; if
negative, toward the beginning of the file; and if
zero, the statement has no effect. The movement

of the cursor proceeds until the cursor has been moved
by the given number or until the end of the file

(or beginning of the file if movecount is negative)
is encountered. The EOF function indicates whether
or not the end-of-file was encountered.

In the second form, the cursor movement proceeds toward the
end of the file in a manner described above with the addition
that the movement stops if the byte specified by delim-string
is encountered. Delim-string must be a string expression of
length one. The cursor movement stops after movecount bytes
have been passed, regardless of whether the delim-string was
encountered.

The third form operates in the same manner as the second form,
toward the end of the file. The return variable, which must
be a simple or subscripted variable, is given the value of the
number of bytes that the cursor was actually moved.

Note: SPACEing toward the beginning of the file may not be done
using the second and third forms described above.

133

Examples

100

>ASA
>RON
FILE
NUMB

SPACE Lis us
lines in fi

10
20
30
40
50
60
70
80
9@
100
110
120
130
140
150
155
160
170
180
190

DIM AS$(96)

INPUT *FILE:",AS

FILE #1;AS+";ACC=IN"
C3=0

SPACE #1;32767,"<13>"
IF "EOF(l) THEN DO

Cy=C3+1 .
GOTO 50

DOEND

PRINT "<13><10>NUMBER OF LINES IN ";AS;" IS ";C%

-COUNT.LINES »

: COUNT.LINES.BP
ER OF LINES IN COUNT.LINES.BP IS 10

ed in the above example to count the number of
le COUNT.LINES.BP.

FILE #1;"TESTFILE"

DIM AS(30)

PRINT #1;"0123456789ABCDEF"

RESTORE #1 \ MOVE POINTER TO BEGINNING

LINPUT #1;A$ \ READ AND PRINT THE LINPUT STRING

PRINT A$.
RESTORE #1 \MOVE POINTER TO BEGINNING

SPACE #1;5 \MOVE POINTER FORWARD S5 BYTES

LET A$=" "

READ #1;A$(1l,6) \READ AND PRINT THE NEXT 6 BYTES
PRINT AS$

SPACE #1:;50,"D",C \ MOVE CURSOR PAST THE NEXT "D"
LINPUT #1;A$

PRINT A$,C \PRINT STRING AND RETURN VARIABLE

SPACE #1;-10 \MOVE CURSOR BACK 10 BYTES(FROM END)

REM RECALL THAT THE CR COUNTS AS 1 OF THE 10 CHARACTERS
LINPUT #1;AS

PRINT A$

CLOSE #1

ERASE "TESTFILE"

>RON

0l23
5678
EF

456789ABCDEF
9A
3 »

789ABCDEF

134

10.7 FILE ACCESS

There are two types of access to a file: sequential and
random. For sequential access, the items read or written
immediately follow the previous access. A pointer associated
with each open file always points to the next item in the
file to be accessed.

For random access, a particular record is specified at
which the access begins. In this case, the pointer 1s
first moved to the beginning of this record.

In Zilog BASIC files, random and sequential access can be
combined in the same file. It is possible, for instance,
to position the pointer to the beginning of a record with
an appropriate statement, and then to access the file
sequentially from that point.

Files may be accessed randomly only if they are disk files
under 2ZDOS/RIO. Otherwise sequential access must be used.

10.7.1 SEQUENTIAL FILE READ, INPUT AND LINPUT

The Sequential File READ, INPUT and LINPUT statements
read items from a file specified by file number into
numeric or string variables. The first item read i1s the
item following the current position of the pointer, that
is, immediately following the last item accessed. As
with sequential PRINT (Section 10.7.2), record boundaries
are ignored and the list of read items can start in the
middle of one record and end in the middle of another.

Format

The format of Sequential File Reads are:

INPUT #file number;read item list

LINPUT #$file number;string variable

READ #file number;read item list

The read item list is a series of variables separated by

commas. The rules governing this list are the same as
those described for the READ statement in Section 3.9.

135

Description

The Seguential File Input statement reads ASCII data from
a file in much the same manner that the INPUT statement
reads ASCII data from the terminal.

Each item in the specified file is read into a variable
in the read item list, the first item irto the first
variable, the second into the second, and so forth.

The destination for a string value must be a string
variable; the destination for a numeric value must be a
numeric variable. Otherwise, an error occurs. If the
numeric value is not the same data type as the variable,

conversion .s performed as described in Section 6.5,
Table 6-2.

LINPUT # reads into a string variable up to a carriage
return character. Items read with an INPUT # statement
must be separated by commas.

The sequential file READ statement transfers binary data
from the specified file to variables in the read item
list. The number of bytes transferred is exactly that
required to f£ill each input variable. No conversion or
type checking is performed. The number of bytes
transferred is shown in Table 10-3.

When an EOPF condition occurs, the variables remain
unchanged and the EOF function (Section 10.8.1l) becomes
true.

Reading Strings

When a string is read from a binary file, the number of
characters read depends on the form of the variable. For
instance, if A$ is a simple string variable:

READ#1;AS reads the physical length of AS

READ#1;AS (I) reads the physical length of the substring
starting at I

READ #1;AS(I,J) reads J-I+1 characters into the

substring starting at I
When INPUTting strings, Lf the string variable is not large

enough to hold the entire item, the extra characters are
discarded.

136

TABLE 10-3

Data Type Number of Bytes on File
INTEGER 2

REAL (Binary) 4

REAL (BCD) 8

STRING | actual number of characters

supplied: logical* size of
string if unsubscripted or
specified size if
subscripted

*physical size L1f READ

10.7.2 SEQUENTIAL FILE PRINT AND WRITE
The Sequential File PRINT and WRITE statements write

data items on a file, starting at the current position

of the pointer. The items may be numeric or string
expressions.

Format

The forms of a Sequential File Print statement are:
PRINT #file number;print list
PRINT #file number
WRITE #file number;print list
The print list is a series of numeric and/or string
expressions. The rules for specifying the list are the

same as those described for the PRINT statement in
Section 3.8.

If the print list is omitted, the statement is ignored
unless the file is an ASCII file, in which case a line 1is

skipped as in a PRINT statement (i.e., a return is written
to the file).

137

Description

Each item in the print list is written on the file in the
order it appears in the Sequential File Print statement.

The items are written starting at the position where the
pointer currently appears, overlaying whatever data may be

in that position in the file. Record boundaries are ignored;
a sequential Print can start in the middle of one record and
end in the middle of another.

The data written by PRINT are exactly those ASCII characters
that would appear on the terminal if an eguivalent PRINT
statement had been executed. It should be noted that a

File INPUT statement cannot read back the equivalent data
produced by a PRINT statement unless commas are interspersed
between print items and quote marks surround string items as
needed.

A sequential FILE WRITE statement transfers binary data

from items in the print list to the specified file. The
amount of data written (in bytes) depends on the size of

the data item (see Table 10-3). No conversion is performed
and it is not possible to determine the structure or type of
data on the file using information on the file alone. Data
SO written are read using the file READ statement.

10.7.3 FILE RESTORE STATEMENT
The File RESTORE statement repositions the file pointer
to the start of the file. The statement can be used
for any file. The random file RESTORE statement
positions the file pointer to the beginning of any
particular record.
Format

RESTORE #file number

RESTORE #file number,record number

The file number identifies a £ile that is currently open.

In the second form, record number specifies the record at
which the file pointer is to point.

138

Description

When File RESTORE is executed, the file pointer is set to
point to the beginning of the first record in the file.

When a random File RESTORE is executed, the pointer is set
to point to the beginning of the specified record.

Example

5 FILE #1;"AFILE"
10 FILE #2;"BFILE"
20 PRINT #1;123.4
30 WRITE #2;567.8
40 RESTORE #2
S0 RESTORE #1
60 INPUT #1;C
70 READ #2:D
80 PRINT C,D

>RUN
123.4 567.8

When the File RESTORE statements are executed, the
pointer in file number 2 is moved back to the start
of that file. Then the pointer in file number 1 is
moved to the start of that file. File number 1 is
accessed as an ASCII file using INPUT and PRINT
statements. File number 2 is accessed as a binary
file using READ and WRITE statements.

10.7.4 RANDOM FILE READ, INPUT, AND LINPUT
The Random File READ, INPUT, and LINPUT statements read

data values starting at a specified record of a specified
file and assign them to variables.

Format

The forms of the Random File READ, INPUT, and LINPUT
statements are:

READ #file number,record number;read item list
INPUT #file number,record number;read item list

LINPUT #file number,record number;string variable

139

The file number and record number are integer expressions.
The read item list is the same form as in a READ statement
(section 3.9).

Description

Data values are read from the specified record and .
assigned to the variables in the item list. If a record

number is specified outside the range of the file, an

end-of-file condition occurs. ,

To move the file pointer to the beginning of a specified
record, but not read any data, use the Random File
RESTORE statement (section 10.7.3).

10.7.5 RANDOM FILE PRINT AND WRITE

The Random File PRINT and WRITE statements write a list
of data items onto the specified file. Printing begins
at a particular record specified in the PRINT statement.
Data that precedes or follows the specified area is not
changed.

Format
The forms of a Random File PRINT and WRITE are:

PRINT #file number,record number;print list
WRITE #file number,record number;print list

Both the file number and record number are integer
expressions. The print list has the same format as
a8 Sequential File PRINT. It is not, however, optional.

Description d

The Random File PRINT and WRITE statements position the
pointer at the beginning of the specified record and then
write the contents of the print list.

The first record of the file is record number 0.

Sequential and Random PRINT statements can be used to write

on the same file as can Sequential and Random WRITE

statements. A sequential PRINT following a random PRINT .
will write its data items immediately following the previous

items.

140

Example Program Using Random Files

The following program uses the random access feature of
BASIC files. Two files are created and written into.
Lines of each file are then swapped into the other file,
causing a "jumbled" file. The original files are then
recreated and compared. A "successful" message is output
if the files are equal. The two files are then closed and
deleted.

10 FILE #1;"RANDCM.TEST.1l"
20 FILE #2;"RANDOM.TEST.2"
30 FOR I=1 TO 100

40 PRINT #1;I,I,I

60 NEXT I

70 DIM A$(128),B$(128)

72 FOR I=0 TO 24

74 READ #1,I;AS

76 WRITE #2;AS

78 NEXT I

80 FOR I=1 TO 2

90 FOR J=0 TOC 10

100 READ #1,10-J:;:AS

110 READ #1,10+J;BS

120 WRITE #1,10-J;BS$
130 WRITE #1,10+J;AS
140 NEXT J

160 NEXT I

165 RESTORE #1

170 FILE #1;"RANDOM.TEST.1"
180 FILE #2;"RANDOM.TEST.2"
190 FOR J=20 TO 0 STEP -1
200 READ #1,J;AS

210 READ #2,J;:BS$

220 IF A$<>BS THEN 400
230 NEXT J

240 PRINT "TEST SUCCESSFUL"
250 GOTO 410

400 PRINT "TEST FAILED"

410 CLOSE #1

420 CLOSE #2

430 ERASE "RANDOM.TEST.l"
440 ERASE "RANDOM.TEST.2"

141

10.8 FILE RELATED FUNCTIONS

The following function may be used in conjunction with files.

10.8.1 EOF PFunction
EOF (x)

EQOF indicates whether an end-of-file condition exists with

file number x. The function returns a "1" Lf EOF=true and <
a "0" if EOF=false. The file number is a number between

1l and 15.

142

SECTION XI

FORMATTED OQUTPUT

The USING clause can be included in the print list of a
PRINT statement to control the format of numbers output.
The number of digits to appear to the left and right of
the decimal point can be specified. The exact position
of the sign can be controlled. Asterisk-fill or a
floating dollar sign can be specified.

Formatting is controlled by specifying a prototype
"picture" of what the number output should look like.

The prototype is specified as a string where each
character in the string corresponds to a single character
in the final ocutput. Characters in the format string
must be from a set of legal characters. In this set

are characters to specify the number of digits to be
printed, the position of sign and decimal point, the
nature and content of any "£ill" characters, and the
position of commas.

No formatting facility is supplied for strings as
sufficient string handling functions are available in
BASIC to make such formatting redundant. Also, no
provision is made in general to mix alphabetic data
with numbers as it is possible to do this using
combinations of existing BASIC constructs.

143

1l1.1 PRINT STATEMENT WITH FORMAT CONTROL

The PRINT statement with one or more USING clausgs,
allows the user to output a list of items according
to a customized format.

Format

The form of PRINT with USING is:
PRINT print using list

The print using list is a list of expressions and
functions from which items are printed. The clause
"USING string expression"” may be interspersed with other
print items. 1In other respects, the print using list is
like a print list (see PRINT statement, Section 3.8).

The string expression following "USING" evaluates to a

format string which controls the output of subseguent
print items.

Description

A format string describes the form in which items in the
print using list are to be printed. The full description

of format strings is contained under Format Strings,
Section 11.2.

When' a USING clause is encountered, the format string is
evaluated. Several formats, each for a single number,

may be included in the format string if they are separated
by one or more blanks. One blank is printed following
each number except the last. Any strings or calls to the
TAB function (Section 3.8.1) in the print list are

printed directly without any format control intervention.

The USING clause remains in control until the last format
string has been used to format a number. Then, subsequent
print items are printed using the normal formatting rules.
A USING clause also ceases to affect PRINT output when the
last print item of the current statement LS output or
another USING clause is encountered. While output is under
USING format control, any commas separating print items

serve as separators only. They do not affect spacing as
they normally do.

If the number to be printed fails to fit within the format
supplied, the entire format field is filled with asterisks
and a warning message is issued.

144

11.2 FORMAT STRINGS

The following are the legal format characters and their

function:

Char Prints Comments

digit or blank if in leading or trailing zero position;

blank or "-" "-" sign counts as one if number is negative

D digit prints as zero if in leading or trailing
zero position

+ "+" or "-" sign

- "-" or blank blank if number is non-negative

$ "$" or digit prints " " if in leading or trailing
zero position except for leftmost $
in leading or trailing digit position
which prints "$" (acts as floating §$).
Otherwise, digits are substituted for
the format "$"s.

* "*" or digit prints "*" in leading or trailing zero
position; prints as a digit otherwise.

P " also defines the decimal point position
of the number

. “." or blank prints "." if number is non-integer,
blank otherwise; the number is con-
sidered non-integer only if there
are digits printed to the right of
the decimal point. Also defines the
decimal point position of the number

"," or blank prints blank if only non=digits were

printed to the left, otherwise prints ","

sens Esdd where s is "+" or "-" and dd are digits.
Causes number to be printed in exponential
form.

"°°°° Esddd Same as "“"""" but there is room for
a three digit exponent

Notes:

1) Only one occurrence of "P" and "." is allowed. .

2) f::*may not appear to the right of a "P" or "," or "T".

3) and """"" can appear only at the right of a format string.

4) If "+" or "-" appear, "#" will never be used for a sign.

5) If no "+" or "-" appear, then one "#" may be used as a sign.

6) If no "P" or "." appear, the decimal unit position iLs assumed

to be the right-most "#" or "D". 145

Field

Format String Size Number Qutput
t#d.4% 6 123 1123 |
123.5 1123.5 |
123.526 1123.53]
-12 |=12 |
###.DD 6 123 1123.00]
5.6 | S5.60]
##DD.D 6 124 | 123.0]
4 | 04.0}
+E3%% S 3 |+ 3
1234 |+12341
-2 | - 21
23.6 [+ 24|
-$#4% S 4 | 4|
-71 |- 71}
0 | 0l
##- 3 0 | 0 |
-4 | 4-|
-23 |23=]
##%.0DD+ 6 Q | 0.00+]|
12.34 112.34+]
$3#P## 6 123 [123. |
S###.DD 7 4.2 |$ 4.20]
123.45 |$123.45]
.5 IS .50
$$S$.DD 7 1.267 | $§1.27]|
234 |$234.00]
9876.5 19876.50|
****.DD 7 4.2 I***4.20'
123.45 |*#123.45]
.5 | #%%xx 5Q |
#3%,%3%,4%%.D 12 1234 | 1,234.0]
1000000 | 1,000,000.01
POFTTLLLE 9 1 11 E+00|
234.5 |2.345E+02/|
$%.pp°"""" 10 0 | .O0QE+Q00
1 |10.00E-Q01|
3456 |34.56E+002/|
-5E+123 |=-5.00E+123]

444 %4 ,DDD.DDS 15 1 , | 001.00S$|

12345 | 12,,345.008!

. .003 | 000.0031
DD##, ##+$=-—=++# 13 1 o0 , <+ ++1 |
-34 |00 , =3--==4|

147

SECTION XII
TRAPPING

Trapping is a handy tool for recognizing abno:mal.cgnditions
during the execution of BASIC programs. The conditions for

trapping are:
ESCape
'ERR
EOF

KEYS

EXT

entered from console
a runtime error
an end-of-file error

depression of a conscle key other than
ESC

a user defined external condition

148

12.1 TRAP STATEMENT

The TRAP statement is used to enable and disable trap con-
ditions. When a condition is enabled, a line number is
specified to which control will transfer when the trapped
condition occurs.

Format

TRAP condition TO label
TRAP condition OFF
TRAP ESC

Condition is one of ESC, ERR, EOF, KEYS, or EXT. Label is
a statement label in the current program.

In the first form, a trap for the specified condition

is established so that control will go to the specified
label if the condition occurs. If a trap for that condition
was already in effect, the destination label is changed to
the one given in the new TRAP statement.

The second form disables any trap established for the specified
condition.

The third form establishes no trap, but instead disables the
normal function of the ESCape key (and disables the ESC trap
if it was active). ESC will then not terminate the
execution of a2 program. The ESC function can then be used
to check if the ESC key has been depressed. The user is
cautioned against using this feature since there is no way
to exit an infinite loop (other than restarting the system)
once "TRAP ESC" has been executed. Execution of TRAP ESC
OFF will cause the ESCape key to function normally again.

Description

The TRAP feature of ZILOG BASIC allows the user program to
handle five exceptional conditions. When one of these
conditions occurs and the corresponding trap has been
enabled by use of the TRAP statement, control branches

to a specified line number instead of the next sequen-
tial statement as is the usual case. The line number

of the last statement executed before the trap occurred is
available to the programmer by use of the TRP function.
Additional information about the condition that caused

the trap is available through other functions described
below.

149

The five conditions that can be trapped are:

ESC Escape (from the console keyboard)
ERR a runtime error (optionally including warnings)
EOF the End-of-File error
REYS depression of console keys other
than ESC
EXT a user defined external condition

When a program is run, all traps are disabled. At any
point in the program, a trap for any of the above
conditions can be established by use of the TRAP
statement. In the TRAP statement, a line number is
specified to which control will transfer should the .
selected condition occur.

Traps are only initiated between the completion of one
statement and the execution of the next. Occurrence

of the ERR or EOF condition causes the termination of
the execution of the current statement. If a trap is
enabled for one of these conditions, the trap will then
be initiated.

When a trap is initiated the following events occur.
First the trap is disabled. Another "TRAP condition TO
label" statement must be executed for another trap

with the same condition to occur. (If this was an ESC trap,
the ESC key will still not interrupt the program even
though the trap is disabled. The only way to enable
the function of the ESC key is to execute a

"TRAP ESC OFF" statement). The line number of the last
line executed is saved and can be determined by the
user program by use of the TRP function. Control is
then transferred to the line specified for processing
whichever condition caused the trap.

A discussion of each of the trap conditions and their
characteristics and use follows.

12.1.1 KE¥S

Keys pressed on the console terminal when the program is

not waiting for input can be read by referencing the

REYSS function (regardless of whether the KEYS trap »
is enabled). When a key is pressed, it is held in a

buffer until the buffer is read using the REYSS (Section

12.2.3) function. Only the most recently pressed key is saved

in the buffer.

150

If the KEYS trap is enabled and the buffer contains a
character, then the KEYS trap is initiated as described
above. Note that the KEYS function must be referenced
before the trap is reenabled. 1If not, the trap

would be re-initiated immediately as the buffer would
still contain a character.

12.1.2 EXT

This trap is initiated when an external (to BASIC)
program sets a flag within BASIC. The protocol for how
an external user program does this is described in
Appendix J.

When the trap is initiated, the flag is cleared. The
BASIC user program can use the CALL statement to fulfill
any necessary interface requirements.

12.1.3 ESC

Both the "TRAP ESC" and the "TRAP ESC TO label" statement
disable the ESCape key; however, only the latter

establishes a trap. The ESC trap works as the KEYS trap.

After the execution of each statement, BASIC checks to see

if the ESC key has been pressed. The function ESC (Section
12.2.2) has the value zero if the ESC key has not been pressed,
and the value one if it has been pressed. Similar to KEYSS,
ESC returns the value one at most once for each time the

ESC key is pressed.

Normally, depression of the ESC key stops the BASIC
program. When a "TRAP ESC" statement is executed, the
ESC key no longer does this. If a "TRAP ESC TO label"
statement is executed, a trap is initiated when the

ESC key is pressed in the manner described above.

Again, similar to KEYS, the ESC function must be
referenced before the ESC trap is reenabled. Otherwise,
the trap would be reinitiated immediately since the
buffer would still contain the ESCape.

151

12.1.4 ERR

Run-time program execution errors can be trapped by use

of the ERR trap. When the trap is invoked, the

error number of the error that caused the trap is returned
by the ERR function (Section 12.2.4). The line number of the
line that caused the error is returned by the TRP function.
Any error after the trap is initiated (but before another
"TRAP ERR TO label" statement is executed) will cause
termination of the program with a normal error message.

The effect of error traps on the run-time environment

(of multi-line function calls) is significant and is
described below in "Environments and Traps”.

12.1.5 EOF

Normally, when a READ, INPUT, or LINPUT statement encounters
an End-of-File condition, the statement's variable list is

not processed and the EOF(n) function (Section 10.8.1) becomes
true (non-zero value) for the particular file number n. A
subsequent READ, INPUT, or LINPUT statement for the same file
number causes an error. When a "TRAP EOF TO label" statement
has established an EOF trap, the execution of the first file
input statement that detects the EOF condition (the time the
EOF (n) function first becomes non-zero) will cause a trap to
the specified label.

12.1.6 Environments and Traps

Each time a multi-line function is invoked, a new "environment"
is created. Each environment can have its own "local" traps.
They are local in the sense that traps can be established or
deactivated within the environment and they do not affect

traps established in other environments. Traps can be
established, triggered and processed, or disabled within an
environment, without affecting other environments.

An occurrence of an ERR or EOF condition when a trap does
not exist in the current environment but is

established in another active environment, does affect
execution. In this case, environments are discarded in

the reverse order that they were created until an environ-
ment is found that has an active trap for the ERR or EOF
that occurred. In this environment, the trap is invoked.
The line number returned by the TRP function identifies the
statement that invoked the multi-line function that ulti-
mately caused the ERR or EOF condition.

152

Entry to a new environment when a previous one had a
TRAP ESC trap (or ESC disabled) affects execution similarly.
In this case, the function of the ESC key is still
disabled and a record is kept if it is depressed. When
control returns to an environment with an active ESC trap,
the trap is then invoked. The KEYS condition is similarly
preserved and the trap invoked if control returns to an
environment with a KEYS trap enabled.

153

12.2 TRAP RELATED FUNCTIONS

12.2.1

12. 2.2

12.2.3

12.2.4

TRP

ESC

KEYSS

ERR

Returns an integer value representing the
label of the last line executed before a
trap occurred.

Has the integer value one LIf the ESC key was

pressed, and zero otherwise. An interlock

1s associated with ESC so that it returns

the value one at most once for each time ‘the

ESC key is pressed. Used in conjunction with
the TRAP ESC statement.

Returns a string containing the character
(other than ESC) typed during program execution
(but not during an INPUT statement). If no
keys were pressed, returns the null string. An
interlock is associated with KEYSS so that
characters typed can be returned at most once.

Returns an integer whose value is the error
number of the error that caused the last ERR
trap. Used in conjunction with the TRAP ERR
statement.

154

L)

SECTION XIII

SEGMENTATION

Because the maximum size of a Zilog BASIC program iS
necessarily limited by memory resources, Zilog BASIC
provides language facilities for segmenting programs
into units that can call each other. Each unit must be
saved on the disk; from there it may be called by the
currently executing program into the user's work area.

The CHAIN statement is used for interprogram transfer.

The COM statement allows variables to be used in common
by several programs.

155

13.1 CBAIN STATEMENT

The CHAIN statement terminates the current program and
begins execution of another program.

Format
The format of CHAIN is:
CHAIN string expression

The string expression, when evaluated, is the name of a
2ilog BASIC program that is on the user's disk. This
may be a fully qualified file name (see Section X,
Files). Execution begins at the first executable
statement in the called program.

Description

CHAIN calls the program identified by the string
expression, and it replaces the current program. When
the program called by CHAIN finishes execution, it
terminates and does not automatically return to the
calling program. The called program may call another
program, including the original calling program, with
another CHAIN statement.

Only variables declared in a COM statement in both programs
are saved during a CHAIN operation. All variables and
arrays of the current program that were not declared in COM
are lost when the new program begins execution.

All files opened in the current program remain open.

156

Examples

>10 PRINT "HI FRED"
>20 CHAIN "FRED"

>ASA-MA
>NEW

>10 PRINT "HI MA"

>ASA-FRED
>NEW
>XEQ-MA
HI FRED

HI MA

The main program, MA, calls program FRED with a CHAIN
Execution of FRED begins and

statement in line 20.

execution terminates with the last line of FRED.

None

of the variable values from MA are saved following the
execution of CHAIN "FRED".

157

13.2 COM STATEMENT

The COM statement is used to pass data values between
program segments. Variables specified in a COM
statement are placed in a common area so that wvalues
assigned to these variables in one program will be
retained when transferring to another program with
CHBAIN.

COM statements must precede all other statements in a
program except for REM statements. All dimensioning of
variables is done within the COM statement, and any
variables that appear in a COM statement must not simultan-
eously appear in a DIM statement in the same program.

Format
The format of the COM statement Lis:
COM com item list

The com item list consists of a list of variable
declarations. Simple variables are indicated by the
variable name; arrays are indicated by the array name
and a bounds indicator. The bounds indicator is
equivalent to the dimension specification used in a
DIM statement.

The type of items in the com item list is assumed to be
real unless the variable name contains a "$" suffix to

indicate a string variable, or a "%" suffix to indicate
an integer.

Arrays and simple variables declared in a COM statement
are initialized to zero. Strings declared in a COM
statement are set to null. Such common variables must
not also be declared in a DIM statement.

COM item lists need NOT be identical in variable name
ORDER from program to program. However, variables that
are common between programs must be identically named
and dimensioned.

158

SECTION XIV
COMMUNICATION WITH NON-BASIC PROGRAMS

A Zilog BASIC user can access a Z2ilog PLZ system language
procedure or an assembly language subprogram from a BASIC
program with the CALL statement.

159

14.1 CALL STATEMENT

The CALL statement is used to access procedures written in
Values of BASIC variables and
expressions can be passed to the user procedure and the user
procedure can pass values (real, integer, and string) back
to BASIC to be assigned to BASIC variables.

assembly language or PLZ.

Format

CALL procedure-name(,BASIC-procedure-p-list]

[;procedure-BASIC-p-list]

Procedure-name is a string expression whose value is the name

of the user procedure to be called.

BASIC-procedure-p-list is

a list of expressions (separated by commas Lif there are more
than one) whose values are to be passed to the user procedure.
Procedure-BASIC-p-list is a list of simple or subscripted
variables (separated by commas if there are more than one) to

receive values from the user procedure.

Description

The expressions (if any)

and their values are passed to the named procedure.

Each list is optional.

in the BASIC-procedure-p-list are evaluated

The techniques

for establishing a user procedure are described in Appendix F.
When the user procedure returns to BASIC, it can supply values
which are assigned to the variables in the procedure-BASIC-p-list.

Examples

10
107
325
500
650

CALL
CALL
CALL
CALL
CALL

"INITIALIZE.TESTER"
"AND" ,X%,7;Y%
"TIME";A$(2,10)
"SET.TIME","3:27"

B$+"X",CS;DS§

160

APPENDIX

A

ASCII CHARACTER SET

Decimal

Graphic val

—
owvwo~-loanmbdWwWwpPpHO

[ol ol
[S I)

e
3O U bW

SIS N
HO W

[SESH SE SN SH SR SN S
oo aonne WN

ue

Comments

Null

Start of heading
Start of text

End of text

End of transmission
Engquiry

Acknowledge

Bell

Backspace
Horizontal tabulation
Line feed

Vertical tabulation
Form feed

Carriage return
Shift out

shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block
Cancel

End of medium
Substitute

Escape

File separator
Group separator
Record separator
Unit separator
Space

Exclamation point
Quotation mark

Decimal

Graphic Value Comments

35 Number sign

$ 36 Dollar sign

$ 37 Percent sign

& 38 Ampersand

' 39 Apostrophe

(40 Opening parenthesis

) 41 Closing parenthesis v

* 42 Asterisk

+ 43 Plus
44 Comma .
45 Hyphen (minus)

. 46 Period (decimal point)

/ 47 Slant

0 48 Zero

1 49 One

2 50 Two

3 51 Three

4 52 Four

5 53 Five

6 54 Six

7 55 Seven

8 56 Eight

9 57 Nine

: 58 Colon

H 59 Semicolon

< 60 Less than

= 61 Equals

> 62 Greater than

? 63 Question mark

] 64 Commercial at

A 65 - Uppercase A

B 66 Uppercase B

o 67 Uppercase C

D 68 Uppercase D

E 69 Uppercase E

F 70 Uppercase F

G 71 Uppercase G

g 72 Uppercase H

I 73 Uppercase I >

J 74 Uppercase J

K 75 7 Uppercase K

L 76 Uppercase L 'S

M 77 Uppercase M

N 78 Uppercase N

0 79 , Uppercase O

P 80 Uppercase P

Q 81 Uppercase Q

R 82 Uppercase R

162

Decimal

. Graphic Value Comments
S 83 Uppercase S
T 84 Uppercase T
U 85 Uppercase U
v 86 Uppercase V
W 87 Uppercase W
v X 88 Uppercase X
Y 89 Uppercase Y
Z 90 Uppercase 12
[91 Opening bracket
. \ 92 Reverse slant
] 93 Closing bracket
- 94 Circumflex
- 95 Underscore
96 Grave accent
a 97 Lowercase a
b 98 Lowercase b
c 99 Lowercase ¢
d 100 Lowercase d
e 101 Lowercase e
£ 102 Lowercase £
g 103 Lowercase g
h 104 Lowercase h
i 105 Lowercase 1
. b 106 Lowercase jJ
k 107 Lowercase k
1 108 Lowercase 1
m 109 Lowercase m
n 110 Lowercase n
o 111 Lowercase o
P 112 Lowercase p
of 113 Lowercase g
14 114 Lowercase r
s 115 Lowercase s
t 116 Lowercase t
u 117 Lowercase u
v 118 Lowercase V
w 119 Lowercase w
X 120 Lowercase X
- Y 121 Lowercase Yy
z 122 Lowercase 2
{ 123 Opening (left) brace
I 124 Vertical line
} 125 Closing (right) brace
- 126 Tilde
127 Delete

163

APPENDIX B

SUMMARY OF ZILOG BASIC STATEMENTS

This summary of Zilog BASIC statements provides the statement

names in alphabetic order with a brief description and a

reference to the section or sections containing a complete .
statement description.

Statement Description Reference d

CALL Calls for execution of a procedure 14.1
stored in memory, optionally passing
parameters to the procedure.

CHAIN Terminates the current program and 13.1
calls for execution of the BASIC

program named 1n the CHAIN statement.
Variables are shared between programs

Lf named in COM statements.

CLOSE Close all specified files, freeing 10.3
access resources and breaking the

association between file numbers
and files.

coM Declares the specified variables to S 13.2
be common toc more than one program.

Effective when one program calls
another with CHAIN.

DATA Provides data to be read by READ 3.9, 8.11
statements.

DEF Introduces a function definition. 9.1, 9.2

DIM Reserves storage for arrays and sets 7.1, 8.3
the upper bounds on the number of -

elements. Also redimensions arrays.

DO...DOEND Used only after IF...THEN or ELSE, 3.6
they enclose statements to be

executed when an IF or ELSE condition
is satisfied. (See IF...THEN).

ELSE Used only in conjunction with IF... 3.6
THEN, it introduces a statement to be

executed when the IF condition is
false. (See IF...THEN).

l64

Statement

END

ERASE

FILE

FNEND

FOR...NEXT

GOTO

GOSUB

IF...THEN

INPUT

Description

Terminates execution of the current
program; may be omitted since last
line of program provides an implicit
END. ;

Deletes a specified file from the
system.

Assigns a file name to a file
number and creates and opens the
named file. Closes any file
previously associated with the
specified number.

Terminates a multi-line function
definition.

Allows repetition of a group of
statements between FOR and NEXT.
The number of repetitions is
determined by the initial and final
values of a FOR variable and by an
optional step specification.

Transfers control to a .specified
statement label.

Causes execution of a subroutine
beginning at a specified statement
label. Following a RETURN statement
in the subroutine, control returns
to the statement following GOSUB.

Evaluates a conditional expression
and specifies action to be taken

if condition is true. If the
conditional expression is a numeric
expression it is considered true

if its value is nonzero, false if

its value is zero. The action may
be transferred to a statement label,

a single executable statement, or a
DO...DOEND group.

Requests user to enter one or more
variables by printing a "?" and
accepts string or numeric data from
the terminal.

165

Reference

3.2

10.4

10.2

3‘3

3.4

Statement

INPUT 3

LET

LINPUT

LINPUT #

NEXT

ON. . .GOSUB

ON...GOTO

ON...RESTCRE

PRINT

PRINT #

PRINT USING

Description

Accepts string or numeric data from
a file as input, similar to a
terminal input.

Introduces assignment statement that
assigns one or more values to a
variable or array element. The word
LET may be omitted.

Requests a line of input from the
terminal, all of which is assigned
to a single string variable.

Accepts data from a file as input
to a string variable. Data up to
a return Ls read. '

Terminates a loop introduced by a
FOR statement. Specifies a variable
that must match the FOR variable.

Multi-branch GCSUB executes one of a
list of subroutines depending on

the value of an integer expression.

Multi-branch GOTO transfers control
to one of a list of statement labels

depending on the value of an integer
expression.

Multi-case RESTORE sets the data
pointer to a label containing a DATA

statement, based on the wvalue of an
integer expression.

Prints the contents of a list of
numeric or string expressions on the
list device.

Qutputs the contents of a list of
numeric or string variables to the
specified file in ASCII.

Prints the contents of a list of
numer.ic or string variables with
format controlled by format
specifications included in the

PRINT USING statement.

166

Reference

10.7.1,
10.7.4

3.1, 6.5,

8.9

3.5

3.9

» 8.10,

) 00

10.7.2,
10.7.5

11.1

Statement

RANDOMIZE

READ

READ #

REM

RESTORE

RESTORE #

RETURN

SPACE

STOP

SYSTEM

TRAP

TRUNCATE

Description

Selects a seed for the pseudo
random number generator function
RND. RND normally produces the
same seqguence each time a
program is run.

Assigns constants and string literals

from one or more DATA statements to
the variables specified in READ.

Treats contents of all DATA statements

as a single data list.

Reads one or more items from a binary

file into specified variables.

Introduces remarks and comments in
the program listing.

Resets the data pointer to the
beginning of the program or to the

first DATA statement following a
specified label.

Repositions the file pointer to
the start of the file or to a
specified record.

Returns control from a GOSUB
subroutine to the statement
following the last GOSUB.

Moves the cursor in a file forward
or backward.

Terminates execution of the run.

Controls the following system
dependent functions: warning
message output; warning message.
trap; list ?ndéntatxon: ASAVE line
indentation; output line length;
automatic carriage return.

Establishes or disables a trap for
any of the five conditions: ESCape,

terminal KEYs, ERRors, EOF conditions,

or EXTernal interrupt.

Sets the End-of-file of a2 file.

Reference

3.11

3.9, 8.11

10.7.1,
10.7.4

3.10

3.9, 8.11

10.7.3

10.6

3.2
3.12

12.1

10.5

WRITE # 10.7.2,

10.7.5

Qutputs the unconverted binary
contents of a list of numeric
and string variables to a

7
specified file. 16

APPENDIX C

COMMAND SUMMARY

Each command is listed by name in alphabetical order followed

by a brief description and reference to the section or sections
containing a complete description of the command. All commands .
may be abbreviated by their first three letters.

Command Description Reference >

APPEND Appends a specified program (which 4.3.6
must be in ASCII form) to the
current program.

ASAVE Stores a copy of the current 4.3.1
program on the user's disk in
ASCII form.

CLEAR Deallocates all variable space, 4.2.6

closes files and resets function
and subroutine calls. Frees space
to save a program Lf there Ls not
enough available.

CONTINUE Resumes program execution after 4.1.3
an interruption by ESCape or a
STOP statement.

DELETE Deletes one or a range of more than 4.2.3
one statament from current program.

GET Gets the specifieé Zilog BASIC 4.3.4
program from the user's library,
replacing the current program.

LIST Lists all or part of the current 4.2.1
program at the terminal. .
NEW Deletes entire current program. 4.2.2
QUIT Terminates the current Zilog BASIC 4.1.4 4
session.

168

Command

RENUMBER

RUN

RSAV

SAV

STEP

SIZE

XEQ

Description

Renumbers any group of statements
in the current program, optionally
from a new first line number with

a specified increment. By default,
renumbering starts at 10 with
increments of 10.

Executes the current program.

Stores a copy of the current
program in a file that already
exists.

Stores a copy of the current
program on the user's disk in
compiled form.

Resumes execution, completes an
outer level statement (not part of

a function) and then stops. Can
be used to step through a program

one line at a time.

Gives status of: space available
(bytes); program size (bytes):
variable storage size (bytes);
number of 512 byte reserved blocks.

Gets and runs the specified program.

169

Reference

4.2.4

4.1.1, 4
4.3.3

4.3.2

4.1.3

4.2.5

4.1.2,

1.3

4.3.5

APPENDIX D

BUILT-IN FUNCTIONS

A set of built-in (or predefined) functions are included in

Z2ilog BASIC.

order.

These functions are listed below in alphabetic

Note that an argument for a trigonometric function must be
expressed in radians with 1 radian equal to 180/pi or 57.1958

degrees.
Name and
Parameters
ABS (x)

ASC(s)

ATN (x)

CHRS (x)

COS (x)

EOF (x)

ERR

ESC

Meaning

Absolute wvalue of x.

ASCII code for first character
of string expressions.

Arctangent of x; result is in
radians.

Generates a one-character ASCII
string; x is in the range 0-255.

Cosine of x; x must be expressed
in radians.

Indicates whether EOF condition
has been encountered in £file
number x. If so, has value 1;
if not, has value 0.

Returns an integer whose value

is the error number of the error
that caused the last ERR trap.
Used in conjunction with the TRAP
ERR statement.

Returns a string containing the
character (other than ESC) typed
during program execution (but not
during an INPUT statement). If no
keys were pressed, the null string
is returned. An interlock is
associated with KEYSS so that
characters typed can be returned at
most once.

170

Reference
6.8.1
8.5.2

6.8.2

8.5.1

6.8.3

10.8.1

12.2.4

12.2.2

Name and

Parameters Meaning Reference
EXP (X) e”x 6.8.4
INT (x) Largest integer less than or 6.8.5

equal to x.

REYSS Has the integer value one if the 12.2.3
ESC key was pressed, and zero
otherwise. An interlock is
associated with ESC so that it
returns the value one only once
for each time the ESC key is pressed.
Used in conjunction with the TRAP
EOF statement.

LEFTS (s,n) Leftmost n characters of the 8.5.8
string s. LEFT(A$,n) is
equivalent to A$([l,n].

LEN (s) Logical length of string s. 8.5.3

LOG (x) Natural logarithm of x; 6.8.6
X must be greater than zero.

POS (sl1,s2) Smallest integer representing 8.5.4
starting position in sl of
substring identical to s2. If
no such substring, then equals
zero.

RIGHTS (s,n) Rightmost n characters of the 8.5.9
string s, from the nth character
to the end. RIGHT(AS,n) is
equivalent to AS$(n].

RND Pseudo-random number between 6.8.7
0 and 1 but not egual to 1l.

SEGS (s,n,m) Segment of string s from the nth 8.5.10
through mth characters.
SEGS$ (AS,n,m) is equivalent to

A$[n,m].

SGN (x) | Sign function; equals 1 for x>0, 6.8.8
0 for x=0, and -1 for x<0.

SIN(x) Sine x; x must be expressed in 6.8.9
radians.

171

Name and
Parameters
STRS (x)
SQR(x)

TAB (x)

TAN (x)

TRP

VAL (s)

Meaning

String of characters representing
the value x.

Square root of x; x must be >=Q.

Tab to print position x MOD
LINELENGTH (next print value will
begin at position x+l).

Tangent x; x must be expressed
in radians.

Returns an integer value repre-
senting the last line executed
before a trap occurred.

Has the value which the string s

represents as a number. VAL
converts from string to numeric.

172

Reference

8.5.7

6.8.10
3.8.1

6.8.11

12.2.1

8.5.5

APPENDIX E

LIST OF ERROR NUMBERS AND EXPLANATIONS

GROUP I: COMPILE TIME ERRORS
ERROR # EXPLANATION

1 Bad statement number

2 Unrecognizable input

3 Unbalanced parentheses

4 Literal too long

5 Statement illegal in second clause
6 Expression too complex

7 Illegal expression element

8 Missing close gquote

9 Illegal user function name

10 Characters after statement's end
11 Missing "#"

12 Illegal file designator expression
13 Missing ";"

14 Missing or illegal file name string
15 Illegal return variable

16 Illegal record number expression
17 Missing or illegal statement number
18 Illegal selector expression

19 Illegal function word

20 Illegal THEN, ELSE clause

21 Illegal assignment object

22 Missing assignment operator

23 Illegal expression

24 Illegal reference variable

25 Illegal list element

26 Illegal formal parameter

27 Non-simple variable used as FOR/NEXT index
28 Illegal "USING" string

29 LINPUT variable must be string

30 Missing "="

31 Missing or illegal initial value
32 Missing "TO"

33 Missing or illegal limit value

34 Missing or illegal STEP value

35 Parse failed

36 Missing "THEN"

37 Illegal function DEFinition

38 Cannot execute in keyboard mode

39 Illegal trap object

40 Command not allowed from file

41 Compiled file in illegal context
42 Dead environment, can't continue
43 Non-BASIC file

44 Illegal parameter

173

GROUP II:
ERROR #
50

GROUP III:

ERROR #

80
8l
82
83
84
835
86
87
88

PROGRAM STRUCTURE ERRORS

EXPLANATION

Reference to undefined vari.able, or

undimensioned array

Reference toc nonexistent line number

Reference to undefined function

Reference to undeclared file number

Nested DEF's are illegal
Illegal number of buffers
Illegal file number
Unbalanced DO/DQEND's
RETURN without prior GOSUB
FNEND without RETURN

NEXT without FOR

NEXT mismatch (Illegal nesting of FOR/NEXT)

NEXT not in same block with FOR

INPUT/READ cannot invoke functions ‘ '
Unbalanced user function calls at termination

Type mismatch
Dimension too large
String may not be redimensioned

Improper number of arguments/subscripts
Improper number of CALL/SYSTEM parameters

Reference to undefined procedure
Illegal delimiter string

Illegal TAB usage

Illegal TRAP situation

SYSTEM LIMITS AND FAILURES

EXPLANATION

Symbol table full

Too many files open

Qut of storage

Runtime stack overflow

DO's nested too deep
Insufficient RIO resources
Feature not implemented
Interpreter error (impossible)
RIO interface error (impossible)

174

GROUP IV: BOUNDS, ARRAYS, STRINGS

. ERRCR # EXPLANATION

100 Argument out of range

101 Illegal substring designator

102 Subscript out of range

103 Second string subscript out of range
. 104 Attempt to increase dimension

105 Missing subscript (dimension)

GROUP V: I/O ERRORS

ERROR # EXPLANATION
120 ' File does not exist
121 File already exists
122 Attempt to space past beglnnlng-of -file
123 Attempt to access past end-of-file
124 Qut of DATA
125 Illegal file name
126 Illegal file type
127 File protection error
128 File already open
. 129 Unassigned I/0
130 File not open
131 Scratch file created (impossible)
132 Disk error
133 Disk not ready
134 Disk full
135 Invalid operation
136 Input numeric conversion error
137 Insufficient input
138 File structure error

GROUP VI: WARNINGS

g ERROR # EXPLANATION

140 Illegal number
- 141 Overflow

142 ‘ Underflow - Warning

143 Division by zero

144 Square root of negative number

145 LOG of negative or 0

146 String truncated during assignment
. 147 Format too small to contain number

175

GROUP VII:

ERROR #

160
161
162
163

PRINT USING ERRORS
EXPLANATION
Illegal format character
Illegal exponent field

Zero field width (no digit positions)
Null format string

176

NOTES ON BASIC ERROR MESSAGES

Error
Number Comments

5 Only certain statements may be in the
THEN or ELSE clause of an IF or ELSE
statement. You have used one that
is not (e.g., COM, DATA, NEXT, FOR,
ELSE).

12 A file designator expression is the
"#n,m;" or "#n;" part that follows an
INPUT, LINPUT, READ, WRITE, or PRINT
statement word.

15 The return variable follows the name
in an ERASE or FILE statement.

21 The "assignment object" is that part
to the left of an "=". It must be a
simple or subscripted variable.

22 The "=" in an assignment statement is
missing. This message is often given
when garbage is typed, since the first
letter is assumed to be a variable name
and the error given is that the "="
following the variable is missing.

35 Some syntax error occurred. There might
be a control character in an expression.

38 You have used a statement that may NOT be
executed directly Prom the keyboard
(Section V).

40 This line was ignored. Cnly BASIC
statements may appear in ASCII files
that are used with the GET or APP
commands or with the CHAIN statement.

42 Execution of a program cannot be
resumed after the program has been
modified. It must also be started with
the RUN (or XEQ) command initially.

177

43

50

54

58

59

62

63

64

68

70

The file referred to in a GET or XEQ
{(or CHAIN) command is binary but not
the correct subtype. BASIC and BINBASIC
SAVed files are NOT compatible. This

error is issued if an attempt is made to
use a SAVed file from the other BASIC.

A varisble that has not been previously
assigned a value has been used in an
expression. Also, strings must be
dimensioned before they are used.

There cannot be a DEF inside a
multi-line function.

More RETURN's were executed than
GOSUBs.

The FNEND of a function definition
was executed. Control must return to
the function caller via a "RETURN
<expression>" statement.

In the search for the NEXT of a FOR,
a DOEND was encountered. The NEXT
must be in the same block as the FOR.

The subscript expressions in variables
in an INPUT or READ statement cannot
invoke functions. This is an
implementation restriction.

An END (or the physical end of the
program) was encountered while a

function was still active. The
program should terminate at the outer
level (all functions having terminated).

Too many or too few arguments to a
function call appeared in a function
reference, or too many or too few
subscripts appeared in a variable
reference.

The procedure name in a CALL or SYSTEM

statement was not in the Procedure
Name Table.

178

80 Only 300 variable and function names
are allowed and this limit had been
reached.

82 Storage may run out in several ways.
There may be insufficient space for

variables, arrays, program statements,
and file buffers. The SIZ command and
the statement number of the error are
helpful in determining why the error
occurred.

83 Functions, FOR/NEXT loops, or GOSUB's
have been nested too deep.

85 RIO returned the errors ASSIGN BUFFER
FULL or LOGICAL UNIT TABLE FULL.

87 An "impossible" internal condition has
happened; please send Zilog enough
information to reproduce the error.

88 RIO returned the error INVALID UNIT,

MEMORY PROTECT, MISSING OR INVALID
OPERANDS, SYSTEM ERROR, NON-EXISTENT
COMMAND, PROGRAM ABORT, MISSING OR
INVALID PROPERTIES, I/0 ERROR, (4DH),
DIRECTORY FORMAT ERROR, ATTRIBUTES
TRUNCATED, UNIT ALREADY OPEN, INVALID
ATTRIBUTE, OR INVALID RENAME.

129 A multi-line function called from an 1I/0
statement has altered the I/0 environment
(e.g., closed a file) so that the I/O
statement cannot be completed.

131 An "impossible" internal condition has
happened; please send Zilog enough
information to reproduce the error.

132 RIO returned the error SEEK ERROR, DATA
TRANSFER ERRCOR, SECTOR ADDRESS ERROR,
or DISK ID ERRCR.

138 RIQO returned the error POINTER ERROR.

146 An assignment was made where the
destination string length was shorter
than the source string length. The
source string is truncated on the
right.

179

APPENDIX F

BASIC, PLZ, AND ASSEMBLY LANGUAGE LINKAGE

There are two points of interface between BASIC and user
procedures. One is the Procedure-Name Interface and

the other is the Call-Time Interface. The Call-Time
parameter passing sequence is compatible with PLZ
procedures. The Procedure-Name Interface is established
when BASIC and the user procedures are loaded.

In this appendix, the two points of interface are discussed
and then the procedure for linking a set of user procedures
with BASIC is described.

180

F.1l PROCEDURE-NAME INTERFACE

Two tables establish the procedure-name interface: the
Procedure Name Table (PNT) and the Procedure Pointer Table
(PPT). The PNT contains a list of names of user procedures
and the PPT contains pointers to the Procedure Descriptor
(PD) for each procedure. The correspondence between names
and procedures is established by relative positions in the
two tables.

The Procedure Name Table (PNT) consists of a series of

names terminated by a -1 byte. Each name is a series of
characters with the high order bit of the last one set

(one) and the high order bit of all others reset (zero).
Appendix G shows the source for a SYSTEM call (Section 3.12),
including a macro for constructing name entries. The SYSTEM
"LINELEN" call passes one parameter to the procedure.
appendix H includes macros for interfacing with non-BASIC
procedures and an example using them. The following figure
shows a Procedure Name Table. The macro WORD in Appendix G
can be used to create the PNT.

WORD S,T,0,R,E
DEFB -1

181

PROCEDURE NAME TABLE

ls'

lTl

Iol

'Rl

'E'+80H

ILI

1 o.l

'A!

'D'+80H

-1

First
Procedure
Name

Second
Procedure
Name

} End of Table indicator

182

Y Y

The Procedure Pointer Table (PPT) is a list of pointers to
the Procedure Descriptor for each procedure. The first
pointer in the list goes with the first name, and so on.
BASIC searches the PNT for the string given in the CALL

statement and chooses the corresponding pointer from
the PPT.

The Procedure Descriptor (PD) gives the entry point of the
procedure and Parameter Descriptor Bytes (PDBs) for each
parameter of the procedure. The entry point is simply the
address of the first word to be executed. The PDBs are
separated into two groups, each of which is optional.

The first group describes parameters which are passed

from BASIC to the user procedure. The second group
describes those parameters returned by the procedure back
to BASIC.

183

PROCEDURE POINTER TABLE

PROCEDURE DESCRIPTOR

————= Entry point
— of 'STORE'
0f0f1]0... POB's for
BASIC-procedure
0101 1)0... parameters
-1 } End of PD

NOTE: No Procedure-BASIC parameters
PROCEDURE DESCRIPTOR

— Entry point

i of 'LOAD'

BASIC-procedure
parameters

1{ol1]0... g Procedure-8ASIC

parameters
End of PD

184

Structurally, the PD consists of the entry point address
followed by the BASIC-to-procedure PDBs, followed by the
procedure-to-BASIC PDBs, followed by a -1 byte. The first
procedure-to-BASIC PDB (if any) must have its high order bit
set (one) and all other PDBs must have their high order bits
reset (zero). This is done so that BASIC can distinguish the
two groups of PDBs.

Each PDB indicates the data type of a parameter passed to or

from BASIC. The bit patterns used to indicate Real, Integer,
and String types are indicated in the table below.

Parameter Descriptor Byte Format

s=0,i=1 INTEGER

s=1,i=0 STRING

s=0,1i=0 REAL

s=1,i=1 illegal

x=1 for first procedure-to-BASIC PDB
x=0 for all other PDBs

F.2 CALL-TIME INTERFACE

Parameters are passed to user procedures using a PLZ
compatible protocol. Prior to executing a CALL
instruction, BASIC pushes 3 16-bit quantities on the
stack. The first two must be set by the user

procedure prior to a RETURN to BASIC. The top-most
word pushed by BASIC is a pointer to a table which
contains pointers to all BASIC-to-procedure parameters.
The two words the user procedure must set are: n

l. a pointer to a table containing pointers to
values that are to be assigned to RETURN
parameters in the CALL statement)

2. an error number which, if nonzero, will be
issued (as a standard error message) when
the user procedure returns to BASIC

If the error number is non-zero, no assignment of return
values will take place. Additionally, no assignment of
return values will take place if the pointer described
in (1) above is zero.

Each pointer in the BASIC-to-procedure Parameter Polinter
‘Table points to a value of the type indicated by the
corresponding Parameter Descriptor Byte (PDB) in the

first group of PDBs in the Procedure Descriptor (PD).
Likewise, BASIC requires that each pointer in the procedure-
to-BASIC Parameter Pointer Table point to a value of the type
indicated by the corresponding PDB in the second group of
PDBs in the PD.

The proper structure of each data type is shown in the
table below. A pictorial diagram of the passing
structure is also given.

186

STACK
(on entry to
user procedure)

Return Parameter

Tatle Pointer

Error #

BASIC-Procedure

Parameter Pointer

Table

Value of

Sp —®

Return Address

STACK
(just before

returning to BASIC)

—

0
(if no errors)

~——

Return Address

SP

T~

Py

First Parameter

Procedure-BASIC
Parameter pointer
Table

*:

/’{

Value of
] Fourth Parameter

‘Yalue to Return to
First Return-Parameter

BASIC-Procedure
Parameter Pointer
Table

=L
\
=
—>{__

\b{

J Value to Return to
Third Return-Parameter

Value of
First Parameter

|

]

] Value of

Fourth Parameter

[HNTEGER

1ow
high
REAL-8INARY .
REAL-BCD See next
page
/
STRING

Tow
high Leng‘th

Tow ~::> (two copies)
high

Iy
First character

Length s

NANNNMANL !

188

Binary Floating Point Representation:

24 bit sign-magnitude normalized* fraction

. 8 bit excess-128** exponent (base 2)
sign bit replaces most significant fraction bit (implied "1")
exponent field of zero implies value is zero

h:anz 1 ! BYTE 2 | BYTE 3 } BYTE 4
< Sign bit MANTISSA EXPONENT
0=+ (NORMALIZED) (EXCESS 128)
l=- (23 BITS)
) 7F FF FF FF = 16777215/16777216*27127 = 1.7014117*10738
00 00 00 81 = 1/2%*2/°1 = 1.0000000
00 00 00 01 = 1/2*2(-127) = 2.9387359*10" (-39)
XX XX XX 00 = 0)
FF FF FF FF = -16777215/16777216%2°127 = -1.7014117*10738"

all results are rounded to 23 bit fractions

Decimal Floating Point Representation:

13 BCD digit sign-magnitude normalized* fraction
8 bit excess-128** exponent (base 10)

. sign bit is most significant digit
exponent field of zero implies value is zero

BYTE 1 | BYTE 2| BYTE 3| BYTE 4| BYTE 5 | BYTE 6 | BYTE 7 | BYTE 8
$000
_/——\v\—/k—w
SIGN BIT
0=+ MANTISSA (NORMALIZED) EXPONENT
l=~- Zeroces (13 BCD DIGITS) (EXCESS 128)
09 99 99 99 99 99 99 FF = .99999 99999 999 * 107127
01 00 00 00 00 00 00 81 = 1.0
01 00 00 00 00 00 00 01 = .1 * 107 (-127)
o XX XX XX XX XX XX XX 00 =0
‘ 89 99 99 99 99 99 99 FF = =-.99999 99999 99 * 107127

all results are truncated to 13 digit fractionms
*Normalized means that the exponent is adjusted such

that the most significant digit of the mantissa is
non-zero or the mantissa is zero.

**Excess 128 means that the power to raise the base
. is equal to the exponent field minus 128.

189

F.3 LINKING USER PROCEDURES WITH BASIC

BASIC is informed of the existence of a PNT and PPT at
start-up time by entering BASIC at the entry point BSTART,
with

BL = address of the PNT
DE = address of the PPT

Control doces not return as this entry point starts the
BASIC interpreter. The stack must be in the same state
as when RIO begins a user program, hence the transfer
to BSTART should be a JUMP, not a CALL. The current
values of BSTART are 4406H and 4006H for the MCZ-1

and ZDS systems, respectively.

The user procedures must be linked at the top of memory.
A command sequence to create a BASIC environment including
user procedures (in a 48K system) is:

3USERPROCEDURES, load user code linked at
C000Q0, don't execute

%$BASIC,X C0Q0 load BASIC,start user code

The code at B600 (the first few bytes of the USERPROCEDURES
module) :

BSTART EQU 4406 +MCZ version
LD HL ,nametable
LD DE,pntrtablel
JP BSTART

When a user procedure is entered, the stack pointer specifies

the internal BASIC stack, The maximum guaranteed size of this

stack is 30 bytes. Thus, if more extensive stack usage is
required, the user procedure must change to its own stack.
However, the BASIC stack MUST be restored prior to return.

190

APPENDIX G

EXAMPLE: ASSEMBLY LANGUAGE CALL - SYSTEM STATEMENT PROCESSOR

The following example shows the SYSTEM Statement Assembly
program. The macro WORD constructs procedure name
entries in the PNT. The PPT entries point to the
Procedure Descriptors (PDs) for each type of SYSTEM call
(Section 3.12). The SYSTEM "LINELEN" call has one
BASIC-to-procedure parameter.

Parameter interface for SYSTEM operations

e

; Procedure name table (PNT).

SYSNT:

PTEUT:

.o o

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
DEFB

LEEEEEanE
nuaPprHIZz2aGaac
IR NI
ZEEERMBROD
50boE==E 0D

mZzmEpHa 0N

Parameter Pointer Table (PPT)
- Points to Procedure Descriptors (PDs)

SYSPT: DEFW ACROF
DEFW ACRON
DEFW INDOF
DEFW INDON
DEFW LINSET
DEFW WAROF
DEFW WARON
DEFW ASON
DEFW ASQFF

; Individual Procedure Descriptors (PDs)

; Auto CR OFF

ACROF: DEFW
DEFB

;s Auto CR ON
ACRON: DEFW
DEFB

; Indent OFF
INDOF: DEFW
DEFB

; Indent ON
INDON: DEFW
DEFB

RACROF

RINDOF
-1

RINDON
-1

; Set line length.

LINSET: DEFW
DEFB
DEFB

; Warnings OFF

WAROF: DEFW
DEFB

; Warnings ON

WARON: DEFW
DEFB

;7 ASAVE line indent ON

ASON: DEFW
DEFB

; ASAVE line indent OFF
RASCFF

ASOFF: DEFW
DEFB

RLINS
20H
-1

RWAROF
-1

RWARCN
-1

RASON
-1

-1

e weo

*

-> entry point
no parameters

single integer parameter

no parameters

192

; Now,

RACROF :

RACRON:

RINDOF:

RINDON:

RLINS:

; HL =>

RWAROF :

RWARON:

RASON:

RASOFF:

the code for each.

LD HL ,FLAGS
SET FLACR, (EL)
RET

LD HL ,FLAGS
RES FLACR, (HL)
RET

LD HL ,FLAGS
SET FLIND, (HL)
RET

LD HL ,FLAGS
RES FLIND, (HL)
RET

POP BC

POP HL

PUSH HL

PUSH BC

IN parameter vector
LD E, (HL)

INC HL

LD D, (HL)

EX DE,HL

LD A, (HL)

LD (LINELN) ,A
RET

LD HL ,FLAGS
SET FLWRN, (HL)
RET

LD HL ,FLAGS
RES FLWRN, (HL)
RET

LD HL ,FLAGS
SET FLASI, (HL)
RET

LD BL,FLAGS
RES FLASTI, (HL)
RET

= ret v
-> parm vector

-~ NO

; pardon the intrusion.

DE -> first parm

~-e

A = new line len

-e

that's all...

~e

no warning messages

-e

193

; MACROS FCR BASIC AND ETC.

14

; WORD TABLE ENTRY
WORD MACRO #C1,#C2,#C3,#C4,#CS5,#C6,#C7,#C8,2C9

COND '#C2!

DEFB '#Cl’

WORD #C2,3C3,#C4,#C5,#C6,#C7,#C8,#CI

ENDC

COND '$#C2'=0

DEFB ‘#Cl'+80H ; SET BIT IN LAST BYTE N
ENDC

ENDM

194

APPENDIX H

EXAMPLE: A USER PROCEDURE CALL

This appendix provides some macros for the BASIC-Assembly
Language CALL linkage. Two macros are for use in the
Procedure-Name Interface: WORD and PD. Four macros are

for use in the Call-Time Interface: BPENTR, BPEXIT, GETP,
and PUTP.

The format and explanation of the macro calls are given,
followed by an example that uses the macros.

195

B.l PROCEDURE-NAME INTERFACE MACRO CALLS

The Procedure-Name Interface is established with two tables:
the Procedure Name Table (PNT) and the Procedure Pointer
Table (PPT). The macro WORD is used to set up a procedure
name in the PNT. The PPT consists of pointers to Procedure
Descriptors. The macro PD sets up a Procedure Descriptor.

[label] WORD procname

Procname is the name of a user procedure. Each character of
procname i1s separated by a blank. WORD puts each character
of procname into the PNT.

The following example sets up a PNT for two assembly language
procedures called "LOAD" and "STORE". The address of the

PNT is NAMTAB. Note the commas between the characters of the
procedure names. The PNT is terminated by a -1 byte.

NAMETAB:
WORD L,0,A,D
WORD S,T,Q,R,E
DEFB -1

The PPT contains pointers to the procedure descriptors for
each procedure. A PPT with address PTRTAB may be set up as
as follows:

PTRTAB:
DEFW PDl
DEFW PD2

PD1l and PD2 point to the Procedure Descriptors for LOAD and
STORE. The Procedure Descriptors can be defined using the
macro PD.

[label] PD addr [dil di2 ...din] [! dol do2 ...don]

Addr is the entry point address for a user procedure. The
parameters dil, d4i2,...din define the data types of the
BASIC-Procedure input parameters. The parameters

dol, do2,...don define the data types of the Procedure-BASIC
output parameters. The possible data types are IN (integer),
ST (string), and RE (real). The character "!" is used to
separate the BASIC-Procedure and Procedure-BASIC parameters.

The following example sets up a Procedure Descriptor whose
starting address is defined by the label LOAD. The
procedure accepts three parameters from BASIC, two Lintegers
and a string. The procedure returns two parameters,

both integers.

PD1 PD LOAD IN IN ST ! IN IN

196

H.2 CALL-TIME INTERFACE MACROS

The Call-Time Interface macros use the IY and IX registers
to point to the BASIC-Procedure and Procedure-BASIC
Parameter Pointer Tables, respectively. The index
registers are set up at the entry of the assembly language
procedure by the BPENTR macro. The BPEXIT macro sets up
+the return error code if specified. It must be used

to exit a procedure that was initiated with the BPENTR
macro. The PUTP and GETP macros are provided to move

data between the Parameter Pointer tables and the HL
register pair.

[label] BPENTR ({outaddr]

The BPENTR macro sets the IY and IX registers to point to
the BASIC-Procedure and Procedure-BASIC Parameter Pointer
Tables. The parameter outaddr must be included if there
are any Procedure-BASIC parameters. Outaddr is the
pointer to the Procedure-BASIC Parameter Pointer Table.
The pointer to the BASIC-Procedure Parameter Pointer
Table is in the stack when the assembly language

program is entered. BPENTR places the pointer

(outaddr) to the Procedure-BASIC Parameter Pointer

Table in the stack.

(label] BPEXIT [anychar]

The BPEXIT macro is used to put the return error code
on the stack. The parameter anychar is any character.
If anychar is present, an error code is present in the
BL register pair. If anychar is not present, an

error code of 0 is returned to the BASIC program.
BPEXIT balances the stack and does the return.

B

[label] GETP parmno P
B

(label] PUTP parmno P
The GETP macro dgets the pointer to a parameter from a
Parameter Pointer Table using the index parmno and
places it in the HL register pair. The PUTP macro takes
the pointer to a parameter from the HL register pair and
places it in the appropriate Parameter Pointer Table
index parmno. The optional parameter in PUTP and GETP
indicates which Parameter Pointer Table to use. The
BASIC-Procedure Parameter Pointer Table is indicated
by a "B". The Procedure-BASIC Parameter Pointer Table
is indicated by a "P". GETP assumes "B" as its
default value. PUTP uses "P" as its default value.

197

Continuing with the example procedure "LOAD":

LOAD:
BPENTER RETTAB

GETP 1

JR Z,0K
LD HL,ERCODE
BPEXIT *

OK:

LD EHL,PARM
PUTP 1

BPEXIT

RETTAB DEFS 4

NOTE:
BASIC

BASIC Parameter Pointer Table.

sentry for LOAD proc
; called from BASIC

;set up index registers
; and return table address

et the first parameter pointer
and put it in HL reg pair

efaults to BASIC-Procedure
Parameter Pointer Table

a

e Ne wp “a

;jump if no error
;set error code

;the parameter indicates that
; HL=error code

;put pointe: to return value in
; Procedure-BASIC parameter
: Pointer Table

;N0 parameter on macro call
; indicates no error

sallow room for two parameter
: pointers

The PUTP macro need not be used if the Procedure-
parameter pointers are assembled into the Procedure-

198

Example:

RETTAB

PRM1

PRM2

DEFW PRM1
DEFW PRM2

DEFS 2

DEFS 2

;storage for an integer

H.3 AN EXAMPLE

The following example procedure takes one integer parameter
from BASIC and returns two integers containing the lower
and upper byte of the input parameter.

-
14

*L QFF

asm procedure to split an integer into two bytes

*I BASIC_IF.M

*L ON

~e W8 N0 wp

SPLIT

RETTAB

rpl
rpl

namtab

ptrtab

PD1

from BASIC do

CALL "SPLIT",Pl;P2%,P3%

the integer Pl is split into two bytes,
P2 is lsbyte, P3 is msbyte

1d hl, namtab
14 de, ptrtab
ijp 4006H ; initialization entry into BASIC

BPENTR RETTAB

GETP 1

1d e, (hl)
inc hl

14 d, (hl) ; retrieve the integer
14 hl,rcpl
14 (hl) ,e
14 hl,rp2
14 (hl) ,d
BPEXIT

defw rpl

defw rp2

defw O

defw 0

WORD S,P,L,I,T
defb -1

defw PD1

PD SPLIT IN ! IN IN

200

H.4 THE MACROS

; a macro to set up Procedure Name Table entries

; WORD TABLE ENTRY
WORD MACRO #C1,#C2,#C3,#C4,#C%,#C6,#C7,#C8,#C9

COND '#C2'
DEFB '$C1l!
WORD 4#C2,#C3,#C4,#C5,4%C6,#C7,#C8,#C9
ENDC
COND '§C2'=0
DEFB '$Cl'+80H ; SET BIT IN LAST BYTE
ENDC
ENDM
H macro to set up parameter specs
H for Procedure Descriptors

PD macro #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

defw #0
defprm #1 #2 #3 #4 #5 #6 #7 #8 #9
defb -1

endm

defprm macro #1 #2 #3 #4 #5 #6 #7 #8 #9

cond '#l'='}"?
fooxxx defl 80h
setxxx #2

defprm #3 #4 #5 #6 #7 #8 #9
endc

cond \(('#1'=0)"('"#1'="'1"))
fooxxx defl 0
setxxx #1

defprm #2 #3 #4 #5 #6 #7 #8 #9
endc

endm

201

setxxx macro $#1 #2

cond '#l'='IN'
defb 20h+fooxxx
endc

cond '#l'='sT’
defb 40h+fooxxx
endc

cond '#l'='RE’
defb fooxxx
endc ¢

endm

macros to field calls from basic (or PLZ?)

registers
a pointer to the TOS at entry is pushed onto the stack
ix=Basic to Procedure Parameter Pointer Table
iy=Procedure to Basic PPT

we NS Wy o

¢ BPENTR § *s

-

set up iy BtoP
set up ix PtoB
parameter is PtoB PPT

e =9 ~o

BPENTR macro #1

push ix

14 ix,0
add ix,sp
1d@ h, (ix+3)
1d 1,(ix+2)

push hl ’
pop iy

cond '$#1° '
1d hl,#l

1d (ix+7),h
1d (ix+6),1
push hl

pop ix
endc

endm

202

; Lf param then hl=error number
BPEXIT macro #1
o Pop ix
cond '#1'=0
1d hl1,0
endc

1d (ix+5),h
1d (ix+4),1
ret

endm

«
-e

*$"% GETUP &% $ get parameter

GP #parameter #BorP

BorP ::=B | P ; which parameter list
Basic or Procedures

s “o we

; GET defaults to BASIC-Procedure Parameter Pointer Table

GETP macro #1 #2
cond ('#2'=0)"('B'='#2")
getreg iy #1
endc
cond 'P'='$2"

getreg ix #1
. endc
endm

getreg macro #r #0
1@ h, (#r+2*(#0-1)+1)
1d 1, (#r+2*(%o0-1))
endm

; $#7&% P U TP &"%&"%$ put parameter |
: W PUTP defaults to Procedure -BASIC Parameter Pointer Table

PUTP macro #1 #2
cond ('#2'=Q) " ('#2'='P")
putreg ix #1

. endc

cond '#2'='B'
putreg iy #1

endc

endm

putreg macro #r #0
138 (#r+2*($0~-1)+1),h

1d (#r+2*(#o0-1)),1
. endm

203

APPENDIX I

A PROCEDURE FOR INTERFACING WITHE A PRINTER

Activate the printer driver (PRINTER) before entering BASIC.
$ACTIVATE S$PRINTER
$BASIC
To print from a program to PRINTER:
>10 FILE #1;"SPRINTER"
>20 PRINT #1;"HELLO"
>30 STOP
>RUN

STOP AT 30

To print from a keyboard executable statement to PRINTER:
>FILE #1;"PRINTER"
>PRINT #1;"HELLO THERE"

To list the current program in the workspace on PRINTER:

>ASA-SPRINTER/xx

NOTE: An error will occur after the list is done. This
will not affect the listing.

204

APPENDIX J

. EXTERNAL INTERRUPT LINKAGE

When the external interrupt flag is set, a trap can be
invoked by the BASIC interpreter. The trap is
established by the "TRAP EXT TO label" statement.

¢ Then, an external user program can cause the trap to be
invoked by setting the external interrupt flag to a non-

zero value. The flag will be reset to zero when the trap
1s Llnvoked.

The flag may be accessed as shown in the following diagram:

BSTART | l
| mmm————e |
| !
e !
BSTART+2 | L | >
| mm—————— [> ====> External Interrupt
I BH > Flag

Thus, at location BSTART+2, there is a pointer to the byte
that is the External Interrupt Flag.

205

+

Zilog (U.K.) Limited
Nicholson House
Maidenhead

Berks.

Telephone: 0628 36131
Twx: 848 609

¢

B Plri‘nted in UK

