

RC 3600 Data Entry
Format Language Cuide

Release 2

SR : L . First Edition
A/S REGNECENTRALEN R : September 1976
Marketing Department B - - RCSL 42 - i 0395

SN s el

Authors:
Text Editor:

- KEY WORDS:

ABSTRACT:

Aino Andersen, Lis Clement, Peter J¢rgensen, Bodil Larsen
Lis Clement ‘

MUS, Data Entry System, batch translation, format language,
definitions, coding sheets, execution, examples.

This manual contains a description of the format language, and
instructions on the writing, translation and execution of format
programs.

Users of this manuval are cautioned that the specifications
contained herein are subject to change by RC at any time -
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and ' shall not be responsible for any domages caused by
reliance on any of the materials presented.

Copyright ® A/S Regnecentralen, 1976

Printed by A/S Regnecentralen, Copenhagen

How‘ to Use this Guide

The purpose of this manual is to enable the programmer to acquire a reliable
working knowledge of the Format Language. It is believed that a careful
study of the six chapters and the appendices will equip him with all the in-
sight required to write and successfully operate Data Eniry format programs.

The subjects dealt with in the various chapters and sections are listed in the
‘Table of Contents. For the novice, especially, the following order of study
is considered preferable: ‘

Introduction -

‘The Format Language

Definitions .

Format - Image - Subprogram - Table Coding Sheets
Executioh of Format Programs

Entering New Formats, Subprograms, and Tables

o BN - WO

6 Programming Hints
Appendices | - VII

Append-ix VIl Definitions of Terms and IX ‘Index should be consulted any
time the user of this manual feels the need to orientate himself about the ter-

minology.

Table of Contents

0 iNmooucnoN | et ~ page 0-1
1 DEFIN!TIONS ' e 1=1
1.1 Definition of Bafch Record - Fleld ‘ 1=
1.1.1 Batch | . e A
1.1.2 Record ; ‘ ' 1-1
1.1.3 Field e 1-1
1.2 Definition of Format, Subformaf and Field Descnphon : 1-3
1.2.1 Format , o 1-3
1.2.2 Subformat | B -~ 1-3
1.2.3 Field Description : : , - 1-3
1.2.4 Field Definition - Field Program 1-3
1.3 Definition of Subprogram - Table | : : 1-5
1.3.1 Subprogram o ‘ : 1-5
1.3.2 Table 1-5
1.3.3 Argument - Function : 1-5
1.4 Definition of Register ~ o : 1-5
1.5 Definition of Fill- In-the-Blanks and Format Image 1-6
1.5.1 Fill-In-the-Blanks ; - 1-6
1.5.2 Format Image - Subformat Image L 1-6
'1.5.3 Image Page - Fill-In-the-Blanks Mask 1-6
2 FORMAT - IMAGE - SUBPROGRAM - TABLE CODING 2-1
SHEETS ' ;
2.1 Format Coding Sheet and Image Coding Sheet | 2-1
2.1.1 Format Coding Sheet ; : 2-1
© 2.1.1.1 Subformat Head | 2-1
2.1.1.2 Field Description S 2-3
2.1.2 Image Coding Sheet | . 2=10
2.1.2.1 Subformat Head | ‘ 2-10
2.1.2.2 Tag Description 2-10
2.2 Subprogram Coding Sheet , . : 2-14
2.2.1 Subprogram Head ' : | B 2-14

2.2.2 Subprogram Part ' 2 : 2-14

2,3 Table Codmg Sheets e : : page 2 - 17

2.3.1 Single Entry Table Codmg Sheets | e 2-17
2.3.1.1 Table Head With Argument Descnphon ~ 2-17

- 2.3.1.2 Argument Part 2-77

2,3.2 Double Entry Table Coding Sheet - 2=-19

2.3.2.1 Table Head With Argument Description 2-19

and Function Description

N
i
N
o

2.3.2.2 Argument and Function

3 THE FORMAT LANGUAGE
3.1 On Programming
3.1.1 What Is a Program?

3.1.2 The Elements of a Program
3.1.3 The Elements of the Format Language

3.1.4 Examples In the Format Language
3.2 Character Set
3.2.1 Names

WO W W W W W W W
t
O OO W o () et et s

3.2,2 Arithmetic Operators -12
3.2.3 Relational Operators 3-12
'3.2.4 Logical Operators , S 3-12
~ 3.2.5 Punctuation Symbols ' | - 3-12
3.3 Operands | . 3-13
3.3.1 Constants FL R 3-13
3.3.2 Registers ~ ~ S , 3-14
3.3.3 Fields | L - 3-16
3.3.4 Subscripts ' ‘ = 3-18
3.4 Notation : ' , 3-19
3.5 Arithmetic Expressions B , ’ . 3-20
3.6 Conditions | 3-22
3.6.1 Relation g | . 3-22
3.6.1.1 Comparison of Numeric Operands - ' 3-24
3.6.1.2 Comparison of Nonnumerlc Opercmds S 3-24
3.6.2 Table Condition = . S , 3-26
3.6.3 Validity Condition . - 3-26

3.6.4 Compound Conditions o S 3-27

3.7 Format Language Statements
3.7.1 Unconditional Statements
3.7.1.1 ALARM Statement
3.7.1.2 ALLOW and DISALLOW Statements
3.7.1.3 COMPUTE Statement
3.7.1.4 CONNECT Statement
3.7.1.5 DEFINE Statement
3.7.1.6 DISPLAY Statement -
3.7.1.7 END Statement
3.7.1.8 END SUBFORMAT Statement
3.7.1.92.GOTO Statement
3.7.1.10 LIMIT Statement
- 3.7.1.11 MOVE Statement
3.7.1.12 NOTE Statement
3.7.1.13 PERFORM Statement
3.7.1.14 SEARCH Statement
3.7.1.15 SELECT Statement
3.7.1.16 SET Statement
3.7.1.17 SKIP Statement
- 3.7.2 Conditional Statements
~ 3.7.2.1 IF Statement
3.8 Subprograms -
3.8.1 Statements In Subprograms
3.8.2 Operands In Subprograms

EXECUTION OF FORMAT PROGRAMS
4.1 Selecting Subformat ;
4.2 Terminating a Format Program
4.3 Execution of Subformats
4.4 Execution of a Field Description
4.4.1 Keyed Fields
4.4.2 Automatic Fields
4.4.2.1 Duplicate Fields
4.4.2.2 Constant Fields
-4.4,2.3 Increment Fields
4.4.3 Not Keyed Fields
4.4.4 Fields Skipped By SKIP
4.4.5 Fields Skipped By ENTER

B O O G O G O G G
[]
SoP P WW NN MNDN

" 4.4.6 Fields Skipped By RECORD RELEASE

4.4.6.1 Fields With Kind KEYED, DUPLICATE,

CONSTANT, INCREMENT
4.4.6.2 Fields With Kind NOT KEYED
4.4.7 Fields Skipped By BYPASS
4.4.8 Execution of a Field Program
4.5 Field Flags |
4.5.1 Validity Flag
4.5.2 Skipped Flag
4.5.3 Flags For REKEY
4.5.4 Flags For EDIT
4.6 Registers
4.7 Replay
4.8 Execution of IMAGE

ENTERING NEW FORMATS, SUBPROGRAMS, AND TABLES

5.1 New Formats

5.2 New Subprograms

5.3 New Tables
5.3.1 New Core Tables
5.3.2 Disc Tables

PROGRAMMING HINTS
6.1 Screen Processing

6.1.1 Screen Processing Assigned To the System

6.1.2 Establishing Keying Positions
6.1.3 Defining Tags
6.2 Réformaﬁing
6.3 Automatic Insertion
6.3.1 Not Keyed Fields
6.3.2 Constant Fields
6.4 Automatic Duplication
6.5 Automatic Incrementation -
6.6 The Use of Tables
6.7 Partial Rekeying

2
|
&~
N

1 | 8 | B |

P G G O RN S G NS
]
0N NNOOO L O

b O»n
[3 1
— —

(84}
]
0

5-1
S5-11

(5.}

1
C —
E-N

LIRS | 1]

N OO0 OO O
]
O 0 00 U N et et

-10
6-11
6-13

6-14

6-16

APPENDIX | Required Space In Core. For Formors
~ Subprograms and Tables

APPENDIX Il -Required Space On Disc For Batches
APPENDIX 11l Examples

APPENDIX IV Standard Formats FORM, IMAGE, SUBPR,
and TABLE e

APPENDIX V. Format Language Syntax
(APPENDIX VI Limitations

APPENDIX VIl Error Messages From TRANS -
 APPENDIX VIl Definitions of Terms
APPENDIX IX Index

Introduction

The RC 3600 Data Entry System is a software package operai'mg under the
RC 3600 Multiprogramming Uhhty System.

It is an input dota preparation key-to-disc system, receiving data from local
or remote CRT stations under format program control, and storing datu on disc
files. Whenever a data batch is completed, it may be dumped on tape or
transmitted for rémote processing. New format programs can be created and
the formats are .available to all key stations simultaneously. |

The system offers a gredf variety of data manipulation possibilities during data
entering, including: validity checking, rekeying, editing, skipping, dupli-
cation, arithmetic operations, batch accumulating, etc.

“Supervisor functions include: format program generation, data batch trans-

mission, etc.

The keying of new format programs is done under control of a standard format
and the resulting format text is stored on the disc as a normal data batch. Now
the supervisor may translate it to a format program and add it to the format

library.

This manual contains a description of the format language, and instructions
on the writing and translation of format programs. |

As to the practical use of the RC 3600 Data Entry System, see User's Manual
and Operating Guide.

1.1

1.1.1

1.1.2

1.1.3

Definitions

Definition of Batch - Record - Field . .; 1.1

' Batch - | . | R T8 I

A batch is the area on a disc (a disc file), where the processed data are

stored. The batch is output area for the processed document.

Record R i a2
A batch consists of a number of records. These ;'et:ords describe the logical
structure of the processed document(s).

Field | " R | 1.1.3

A record contains a number of fields. A field is an element in the document
that is processed as a single unit (e.g., a customer number, a name, an ad-

dress).

Example 1
See Figure 1.1.3.

Here the document is an invoice and the corresponding batch may conslst of
a number of documents structured in the same way as this invoice.

Loglcally, the document may be divided into the followmg three parts:

A heod containing: ,
customer name, date, terms of payment, customer number, payment

to, invoice number
~An article line, containing:

article name, quantity, unit price, and final price
A total, containing:

total price

Each part. corresponds to a record in the batch,

FRUIT MARKET Inc.

- 56, Orchard Road

APPLEVILLE
Phone: 076-33 44 11
Cables: fruitmark
Customer/Kunde:) : Delivered to/Leveret tif:
Invoice date/Faktura dato: Terms of payment/Betalingsbet.: Date shipped/Forsend. dato: Shipped by/Sendt med:
Your ref./Deres ref.: Our ref./Vor ref.: ; Shipped from/Sendt fra: Shipped to/Sendt til:
Customers no./ Serial no./ Department no./} Account Area Flight no./Fly nr: . A.W.B. no./Fragtbrev nr.:
Kunde nr. Lobe nr. Afdelings nr.: type/ no./ .
Konto art: {Omr.nr.J
Payment to/Betaling til: Gross weight/Brutto vaegt: Net weight/ Netto vaegt:
Colli: Country of origin/Oprindeisesland:

INVOICE NO./FAKTURA NR. 0019908 | ORIGINAL

Quantity/ S e S ol it prices Amount/Beleb:
Antal: i S R Stk. pris: o

1.2

1.2.1

1.2,2

1.2.3

1.2.4

The individual columns in the document are viewed as separate elements, and

each such element corresponds to a field in the batch.

Definition of Format, Subformat, and Field Description v ~ 1.2

Format : ’ L2,

A format is a program for the Data Entry system. This program guides the key-
ing of one or several given documents, and writes the formatted information

~ to a batch on the disc.

Subformat o 1.2.2

Each format is divided into a number of separate subformats. Each subformat
controls the keying of one part of the document, possibly the whole document,

and writes out the data, in formatted form, on the disc as one record.

Records produced with the same subformat have the same length, while rec-
ords produced with different subformats may have different lengths.

Field Description 4 ' N 1.2.3

Each subformat consists of a number of field descriptions Which describe the

individual elements of a document.

Each field description controls the keying of one such element; calculating,

reformatting, and writing it out as a field in a record.

Field Definition - Field Program ' 1.2.4

A field description consists of a field definition and a number of program
statements which are referred to collectively as a field program.

If we return to the previous example (Figure 1.1.3), then a format for the

keying of such a document could look like this:

FORMAT INVOI

SUBFORMAT 1:
customer field description
date field description

terms of payment field description

customer no. field description
payment to field description
~ invoice no. field description
SUBFORMAT 2:
article name field description
quantity field description
unit price field description
final price field description
- SUBFORMAT 3:
| total price ~ field description
Now, if one uses i
SUBFORMAT 1 once
SUBFORMAT 2 as many times as there are article lines in the document

| SUBFORMAT 3 once

- then all filled=in columns in a document of this kind can be read and pro-

cessed as fields in a batch.

1.3

1.3.1

1.3.2

1.3.3

1.4

Definition of Subprogram - Table ‘ 1.3

Special items in the format language are subprograms and tables. These are

programmed and translated independently. They can be referenced by name

from a format program or a subprogram.

Subprogram . - 1301
A subprogram is a collection of program statements, which are executed when

_the subprogram is called (from a format program or a subprogram).

Table o 1.3.2

A table is a collection of structured data which are referenced.as one unit

from a format program or a subprogram.

Argument - Function ’ 1.3.3

A table is either single-entried or double-entried.

. The 1st column is called argument;

The 2nd column is called function.

~ Table data must be so structured that all columns are identical as to length

and type. Emmpfes on the use of tables are given in Section 6.6. '

Definition of Register 1.4

Each format program can command a number of registers (X01-X99).

They can be used to transfer information from one subformat to another, or as' -

* working locations, or when transferring data to and from subprograms. The

contents of a register can always be changed by a field program.

Registers may be of different iength.

1.5

1.5.1

1.5.2

1.5.3

Definition of Fill-In~the-Blanks and Format Image : - 1.5

The image, or fill-in-the-blanks, facility is another special item contained

in the system.

Fill-In-the-Blanks ’ 1.5.1

Fill-in-the-blanks guidance assists while keying by displaying prompting mess-
ages on the screen. Let us look at example 1 again: a good guidance for key-
ing subformat 2 will be the shown printouts. The place of the cursor will indi-

cate the element to be keyed.

article name: A quantity:
unit price: final price:
. — —/ . A% ~— J
blanks ‘ blanks for

keying final price

Such printouts appear as fill-in-the-blanks (tags) on the screen. This means

that there are blank spaces between the printouts and the specific columns

are keyed in these blank spaces.

Format Image - Subformat Image 1.5.2 .

A format may have a format image attached. A format image is a program by
which the fill-in-the=blanks are written to the operator during keying. The

image is sectioned so that each subformat has its subformat image.

Image Page - Fill-In-the-Blanks ‘Mask

A subformat image may be further divided into several image pages, each of
which structures a fill-in-the-blanks mask, i.e., a screen image.

2.1

2.1.1.1

Format - Image - Subprogram = Table Coding Sheets . \

New formats, images, subprograms, and tables are coded on special coding
sheets (documents), and the entering of these documents into the Data Entry
system (by keying) is performed under format control, as with all other data.
Batches created in this way are translated by calling the TRANS supervisor
program. After a correct translation the new format, subprogram or fable will

be available for use in the system.

In the following the coding sheets will be presented column by column, with
those columns that require keying marked with an asterisk (*).

Format Coding Sheet and Image Coding Sheet _ 2.1

Format Coding Sheet | | 2.1.1
The format coding sheet consists of two parts: |

subformat head, and

field descriptions.
See Figure 2.1.1 |

Subformat Head | | 2.1

Column 1*: Format name _ Min. 1 character, max. 5 characters. The
1st character must be a letter, the following
may be either letters or digits.

The format name identifies the current for-
mat in the system, and must differ from all
existing names of formats, subprograms,
tables, etc.

Column 2*: Subformat name 1 character, letter or digit.

' \ The subformat name must be unique within
the format. The subformat name identifies
the current subformat, meaning the subse-
quent row of field descriptions.

® ® ® e

36 0)C) [FORMAT CODING SHEET |~ ~TeAGE oF

INITIALS: DATE: FORMAT:
Data Erury System
s | P | commenT
i - Al .
I d e d L 4 1 L A 1. 1 1 A A 1 1 L 1 1 1 1 L " L L il 1 1 1 1 L L A 4 H L 1 A 1 1 e ' L L 1 1 1 1 L 1 i 1 L A 1 1 i) L i L 1 e " i Il i 1 L " L I i L
RS .
AL
S/)5/ Js8 /) [S [E
s S/ /Y w /S G/ ©
S) [5)S/L)SSE SIS &
S ST R EE SIS/ &/ PROGRAM STATEMENTS
2 3 4 5 6 7 8 9 |10} 1112113} 14 15 -
1 1 L A A i i 1. YR WD VI A0 WO WS WO N WU TN W WY NN SN U NN VAN WS WOV GNUN GHNN NN WA NN SN VU WD SN NS VNS DSV NN URUY N SN S N S | PN SO0 W WO ONF WU A T TN WOD U WU TN U (VIO WNE NN NN NN NN (NN WO WU SN SN0F SO S SN TR NN NN SN NUUY SUUS W SIS S N 1
1 1 L 1 1 A 1 i FYON G NS W U W TR U WS W WU N VAU U U WU WY WY SN NND NN TN SN WU U WS WU SO NN NN S SN S S N W U U S U S [U N N W W WG WO0 WS N GO U S SN WD WA NNY U0 WU U W NN S AN S SN GHN NN WU NN S N N B S
1. i i A A 1 i _~ 1 FYE SN S WA W R N W50 G0 N U U W U W U W G N N SN U NN G SO N U WUV SN U SN NN SN U N W WY U A N N PN U U NN UN U0 WA WP W00 WV T S T SR U U T WOV JUNNN SN WA WU (N T SN NN SN NGNS WU S W SO N W |
1 1 i Iy 1 A 1 1 [N N TN U U U WS VAN YOS YOO GO G NN N N VRN NN NEEE G NN SR VOO VHD WA SNV UHNS (N T WHA UNN NS SUN N N U U0 VNN S S VG NN S U S NN WY USRS S S I S - W U WS WS WD WS U0 W UONE SN DN NN W WU WUV SVUF SUNE VN SN SN N W SR S X
A L A H 1 1 1 1 FEN0 N SN U U G N WA U0 U WO SO0 WUNY UUNE FUUN WU NN AT SENV (NS NS WU SO WUV UUU (N0 U WA SNV NN N NN W U W SN S G U VU VOO D S U DR W N A | TV U N TN WS NN NS NS WU WIS SO WY S AU N NN W NN N U SN N T SO0 U S S SO S
i 1 A - - — I I} hal | i -/— P WO N0 WO WY U U TS (N W W WS WY UNNY VN TN WO WU SO (NN NUNY NN U WAT W A SUNY UURY WY VAN S SN NS S N N S W [WE S5 WS U0 NV WO U WA U WY SEEE SN WS UONE VN O NN WO SN SN VNN N NN GUN U0 S S S SN T N N S0 S S
-t 1 1 1 1 " i A1 M I3 FUNS W WD WY WA WS WS Y U N U N G S SO S WY WY NN S WA N U G U U0 UNU S0 W ST S W S S SN S N N S S W | JFUN SN WA O WHE U S U G T U0V WS YO W SRV SN G NN WY G NNV NS WNU SNV U WS S NN UUN S SN U G NS S S
1 1 e 1 i A 1 1 FYE0 SEE U0 WS U U W U U W AR VO WV W T AU WO (N W NN W SN NN SN WIS NN WUR SO N S SN U NN W U NN U W Y N SO S T - FUNE WA W WA TR0 U VN U0 SN T TN NN NN NN WS Y WONU N0 WO T UUU SN N W N SN WD W0 SN G P M N |
i i A 1 1 L 1 1 RS SR T THE NN T U UV SN G GO VIOV WO TUN0 WU NN GNNY SN TN U WS UU SN U W SN NN S SO S S N S SN N N S TN N U S S T S - FURE VR YO W0 W WA N SN N G S (NN U VWY UL NUNY WU SV UK (U U U S N S SN N WY DN NN S S
A 1 1 1 4 1 1 1 A [N SN NS W WS WU WA WU WA S N NS A U SO0 S0 WU U U AU W SN U SN NN S5 N WS GNY SN AU U S S S SN SN N S N SR S WO N S N S N NN B SN N N W GUN NN SNOU S G NN N NN S SN S N P. U T U U N W S 1
L i 1 i A L 1 1 A FUNE ST NN S U0 NN WE S W0 NN N N N W W U0 W0 U U SUN (N SN GNNS SNNY UNNY NNV NN WU SUNY SN0 AU WU W WY NN N D RN SR S VDY SN R UHO N N S S S TR N U W O U GRS SO NN W UV SN SN ANV SEN U W WY WOU SN D S S B S S S Y
A 1 "l i 1 A . A NS TS S SN UH U0 WU WIS S GO 1000 VRSN SN TN WD AR NNV (N UV NN WO GHY (VR (N U SN SN NN SN SN U WO S SN SN U U N N N W . FUN WO WO U O TN IV WD WY U U SN SN G TN SN NN S U SN NN U NN N U S SN SN U RO N N S A | i
. 1 1 1 A Il i 1 1 TR0 IS NS TN SNV N TEE W N TN U N S G VAN O U HD WU WU SN NN U WD NN G NN N N N W SN ST SN N S S U DU G W S W N TR R U T N T W U W VAU G WS N S N N U U U U N S WUV U N S N R G N R S
1 A L L 1 1 4 . 1 FYD U TN NN U WA W WA (N SO0 WOOU WO WU WAV NN AN U U AU WA YOUU SN U I SN SANS VN SN NN NN S AN SIS WU N VD S U NN N S S N FUE U0 WIS N 0 W0 WU YR Y SO NS NN U SN0 W SN VAN WU U TN SN U NN SNND NN NN U U U G S R S
L 1 . 1 1 i hov | 1 i PN N TN LI T W U0 U 0 WO SN0 U N WA S U Y WY W OO WU WS S0 SHUC WY NN NN SN SN (N SN W (0 W U NN WY UM NN W N S S N TN W U U S U TN NEE WS WD WS WY UG DU NN SN SN G U WEN N SN N NN U SUNY S N S N 1
1 1 1 A 1 4 1 1 i FUNE W W% TR W U U0 W T U YU VU WU TN TUOK SN VN W SN NN W WY VD WAUS VU UONE WA R DU U S S B U N N SN S SN S G S S F RS LI NS U0 WA WO0% VU5 WU VRN WU NN G WU SN S U N GH T NN I AN N GH N NS N SN SO TN SRS SR W S
1 i A L 1 i i i i F NS U T W U N T B W 1 —- [V BT S NN S0 YO VOO A YU S W WENE SN NN N VNV N YT UUUF VIOV TNU VO NN RN WD SN N U WU NNV G (U0 WU WH U DY SN U U N NN WSS N AR WY GRS SO WA N - PN SH S U U SN N S (N TUU0 T RN W S S |
1 I i 1 L i i ' i L ' i FRNET W LR TN SN GDN TR VN SN VN CHOU WO S (UG NN S SUNY WS VNN VRN NN VU SN U SR U WA VNS G NS G DR SR S R 1 - PV W W NV UVNS WIS S W N UNNY UL T JUNN UORD SR SUNY W ST WY R § ;- § W S T . P., N T N N N T S W T S S -‘ Sencdniond
7. TYPE=N, SN, SS, AN, A - 10, FILL=,4,»,0 - 13, KIND= &,N,C, D,}, K , . RCSL 42-i 0379

Column 3: Protected

Column 4: Comment

2.1.1.2 Field Description

Indicates whether the current subformat is

protected against manual selection or not.

N = no protection, i.e., the subformat
can be selected manually.

Y = protection, i.e., the subformat can
only be selected by the format (through
a SELECT statement).

If this column is empty, then N is under-

stood.

Min. 0 characters, max. 74 characters.
A comment can be used, for example, to
describe the format/subformat.

2.1.1.2

Columns 1-14 constitute the field definition, while column 15 is a field pro-

gram part.

Column 1: Field name

Min. O characters, max. 5 characters.

If field name is specified, the first charac~
ter must be a letter and the following either
letters or digits.

The field name identifies a field within the
current subformat, and must be unique on

subformat level.

The 2nd, 3rd, and 4th columns describe the current field's posiﬁdn on the
screen (by indicating first field position). '

Column 2: Page

Max. 1 digit; min. value =1, max. valuve
=8,

Used to divide a record into a number of -
parts (pages), each of which consists of a
number of fields which together make up the
screen image. -
The pages are numbered from 1 up. When

page is indicated, its value must be either

equal to or greater than that of last indicated

page number, and it must furthermore be ac- .
companied by the indication of line and po-

sition (i.e., columns 3 and 4).

Column 3: Line Max. 2 digits; min. value =1, max. value
= number of data lines on screen.
Indicates on which data line the field is to
be entered on the current page. When line
is indicated, page and position must also be
stated (= 2nd and 4th columns).

Column 4: Position Max. 2 digits; min. value =1, max. value
= number of characters on screen line.
Indicates position of first character of the .
field on current line, counting from left.
The position number is limited so as to allow
the whole field to fit into the remainder of
the scréen line.
When position is indicated, page and line
(= 2nd and 3rd columns) must also be stated.

If columns 2-4 are not keyed, one of the following will occur:

- If there is sufficient space left on current line: the field is placed after the

~ preceding field, leaving a blank position in between.

- If there is not sufficient space left on current line: the field is placed on

the next line, starting from the left-most position.

- If there is not sufficient space left on the current screen image: the field is
placed on the 1st data line of the next page, starting in the left-most

screen position.

- If the current field is the first field in the subformat: the field is placed on

the 1st data line of the first page, starting in the left-most screen position.

Column 5(*): Length

Column &(*): Min. length

Column 7(*): Type

Max. 2 digits; min. value = 0, max. value
= 80. ,

When length is greater than 0, the field
length will be "length" = number of charac-,
ters. ;

When length'= 0, only the program part (col-
umn 15) of a field description can be stated.
When using a format, no field input is re-
quired, but the program part of such a field
will be executed. ,

When length is left bldnk, no other columns
but the program part (= column 15) of the
field can be stated, in which case this pro-
gram part is treated as a continuation of the
program part of the preceding field descrip-

tion.

Max. 2 digits; min. value =0, max. value
= length (see 5th column) of current field
description.

Indicates minimal number of characters to
be keyed to the field; if min. length = 0,
the field may be skipped. Indicated when-
ever length (column 5) > 0.

Describes field type, i.e., which charac-
ters should be keyed to the field.
N = unsigned numeric.
Allowable characters:
1. Digits O through 9.
2. Fill characters.
The field will be _trebted as a posi-
tive expressioh.
SN =signed numeric.
| Allowable characters:
| 1. Digits 0 thrbugh?.
2. Minus sign (preceding first digit).
3. Fill choracters.

Column 8 (*): Output position

‘When the minus sign is keyed, the
field will be computed as a negative
ekpression, otherwise as a positive.

A minus sign is stored in its keyed po-
sition, and occupies thus a field po-
sition that would be free if no minus

sign were keyed.

SS =signed numeric.
Allowable characters:
1. Digits 0 through 9.
2. Fill characters.
When the field is terminated by the
-ENTER key, it is treated as a nega-
tive expression; when the ENTER key
is used, the field is assigned a posi-
tive value.
The negating operator is stored as an
overpunch of the right-most charac-
ter in the field (0 becomes a ~, 1 be-
comesa J, 2a K, 3an L, etc.).

AN = alphanumeric.

Allowable characters: all non-control

characters.

A = alphabetic.
Allowable characters:
1. Letters A through Z.
2, .,-
3. Fill characters.

The field is indicated when Iength" (col. 5)
> 0.

Max. 3 digits; min. value =0, max. value
= 255,

The position of the field in the output rec-
ords is indicated by a field number, which

permits reformatting the field sequence

from input.

Fields with output position = 0 (no-transfer
fields}-are always placed after the last field
in the output record. Such fields, though
still stored in the output record (for possible
rekeying) are not fransferred by dump~ or
transfer programs. ‘

The first field in the output record has out-
~put position =1,

Only fields with a length (column 5) > 0
are counted, '
Fields with length (column 5) =0 are al-
ways placed after the last field in the out-
put record.

Indication of output posmon is required if
length (column 5) > 0.

Column 9: /1 Indicates justification:
R =right-justified
L = left-justified
If the number of keyed characters is less
than field length (col. 5), the keyed char-
acters are placed either in the right-most or
in the left-most part of the field. Remain-
ing positions are filled with fill charccfers

 (see next column specification!).

No mdlcuhon = automatic rlghf-gushf:cahon.

Column 10: Fill characters - Specifies fill characters to fill hot keyed
- positions in the field:
A =space
0 =zero
* = asterisk
If fill character is not indicated, spaces
are understood. :
Column 11: Rekey Indicates rekeying of a field:
Y =rekey field.
N = do not rekey field.
No indication implies rekeying.

Column 12: Display

Column 13: Kind

Indicates whether an edited field shall be
displayed on the screen or not. 'Editing' in-
cludes, among other things, justification
and insertion of fill characters.

N = do not display edited field.

Y =display edited field (contents of out-
put record field) justified and filled
with fill characters.

Example: Display =Y may be used to show

input of a not keyed field. '

No indication of display implies N.

Indicates field kind, that is: |

= keyed field. Field may be keyed.

N = not keyed field. No operator action
required; the field contents may be
computed by the field program.

C = constant field. Field contains either
the contents of.the register specified
in column 14, or currently keyed field
input. ' ,

D =duplication field. Either the field con-

* tains the value of the register speci-
fied in column 14, or one keys in the
current value when the field is en-
countered. In the latter case the re-
gister is changed to the keyed value.

| = incrementation field. As for duplica-
tion field, except that - if no data are
keyed in - the register valve + 1 is en-
tered to both field and register.

When kind = C, D, or I, indication of re-

gister (= column 14) is requiréd.

No indication of kind implies that kind = K.

Column 14: Re‘gistér Max. 2 digits; min. value =1, max. valve
=99.
Specifies which register should be used to
hold the field contents if field kind = C, D,
orl.
- Register may only be specified for fields -
with kind (column 13) =C, D, orl.

Column 15 Progro,m,sfctements Min. Ovcharccters,’ max. 80 characters.
Contains a part of a field program.
A field program consists of a number of
these columns, which together form none,
one, or several statements (see Section 3.7).
These statements are used when, for in-
stance, submitting current field to closer
control than what is épeciﬁed in columns 5
through 14. If a statement is to include a
reference to a field, the corresponding
field name (os specified in its 1st column)
must be indicated. |
If there is not enough space in a column to
include the whole field program, the field
program may be continued in the next col-
umn 15, provided the preceding columns 1
through 14 are left empty. | |
A field program is considered to be con-
cluded if a filled-in field description (col-
umns 1 through 14) or a new subformat is
encouhtered, or if the format is concluded.

If the format coding sheet is not large enough
to hold the whole subformat, continue on a
new format coding sheet, but leave the sub-
- format head empty. "

2,1.2

2.1.2.1

2,1.2.2

2-10

Image Coding Shect

2.1.2

The image coding sheet consists of two parts:

subformat head, and
tag descriptions.

See Figure 2.1.2.

Subformat Head

Column 1*: Format name

v

Column 2*: Subformat name

Column 3: Comment

Tag description

Min. 1 character, max. 5 characters.
Format name must be identical to the name
of the format where the current format

image is used.

1 character. '

The subformat name must correspond to the
name of a subformat within the format that
uses those tags which are listed up to the
appearance of the next subformat head or
the end of the tag description.

Min. 0 characters, max. 74 characters.
Comments are used to describe e.g. the

screen layout.

2.1.2.2

Together, the 1st, 2nd, and 3rd columns describe the screen position of the

current tag (by indicating 1st text position). -

Column 1*: Page

Max. 1 digit; min. value =1, max. value
=8.

The tags of one subformat are hereby divided
into a number of parts (pages). Each page
contains as many tags as together create

one screen image. |

The pages are numbered from 1 up. Tag de-
scriptions belonging to the same page must

appear in one sequence.

Ty
T
LIS
T
¥] ¥
R R |
T T 7
Y7
LB B

14 1] 1] L] 1 L] ¥ 1 L] T L] ¥

T L L] L L) L ¥ 1 1] T]ﬂ

L T T T T T T T T ¥ T 2-

L L] L] L] 1 L ¥ ¥ ¥ ¥ 3 T
L] 1 L} ¥] L] L} 1] 1 1 ki T

¥ T ¥ T k] ¥ T 1 Ll 1 T ¥

1] ¥ L] T T] T T T T 1] T
RIS 1 + L L) L] Ay L T T T

T T k] L] T 1] 1 4 1 1] ¥ 4 ¥

T 7 T ¥ T T T T T T T T

1 T T T 1 L T L L T T T

T 1 L T T T T T ¥ T L) T

T 1 L} L] L] Ll L IR B 1 L} 1 Ll
T T T T 1] 1] T L p 4 L ¥ 1

T ¥ T ¥ L ¥ T L T T T T

T T T T T L] ¥ i i) T T T

+ T L Ll L] T T T T T T T

vl e z s

LR
T ¥ i
T
T T ¥
T T 1
LR
Ty

’
T .1

1xaL INWAY,
@ov » /9
~% /
1 T T Al ¥ 1] 1] A] LB ¥ L3 +
€ I i
ININWOD | § hwnuw 4

a'1°¢ [Nold

*AVINHOL

40 3ovd

‘S3LON

‘3Lva ‘SIVLLING

133HS DNIJOJ FOVINI

wiaasAg A eleq) R

Column 2*: Line

Column 3*: Position

Column 4*: Text

The page numbers are printed in unbroken,

non-decreasing, sequence.

Max. 2 digits; min. value =1, max. value
= number of data lines on the screen.
Indicates on which data line the actual text

is to start (on current page).

Max. 2 dAigits', min. value =1, max. valve
= number of characters on one screen line.
Indicates position of the first character of
current text on the current screen line.
The position may not fill more than to al-
low the rest of the screen line to hold the

whole text.

Min. 1 character, max. 80 characters.

~ This contains the tag which is to be used by
“the current subformat in the screen position

specified by page, line, and position (that

- is, the 1st, 2nd, and 3rd columns).

The following spaces (i.e., superfluous
spaces to the right of the text) are not in-

cluded in the image.

2-13

2.2 Subprogram Coding Sheet

2.2

The subprogram coding sheet consists of two parts:

subprogram head, and
subprogram parts.

See Figure 2.2,

2.2.1 Subprogram Head

Column 1*: Subprogram name

Column 2: Comment

2,2.2 Subprogram Part

Column 1: Program statement

2-14

2.2.1

Min. 1 cheracter, max. 5 characters.

1st character must be a letter, the follow-
ing characters either letters or digits.

A subprogram's name serves as its identifi-
cation in the system and must differ from all

existing formats, subprograms, tables, etc.

Min. O characters, max. 74 characters.
Comments may be used when, for instance,

describing the subprogram.

2.2.2

Min. 1 character, max. 80 characters.
Contains a part of a subprogram. A subpro-
gram consists of a number. of such col-
umns, which together form one or more
statements. (See Sections 3.7 and 3.8!)

LLED 1-TY

10d

g

T

D
LM AN SN CHN SR N S B AN R NN |
—
 §
YT T T YTy
T T e

.
L S |
T F 1
v L L]
¥ L) ¥

L I I |
7 7
Tt 7
R AL
L BN e
} N
LIRS M £
L B
T 1
T 7 T
T 1 1
v v ¥
L

L) 1 k]] ¥ v L3 L 1 k] L] Ll L]
z L
s INVN
N
ANGWROD 1 gouaans

z'z [NOI4

SAVHOOUdENsS

40

39vd

L] L) L
T
™17
™TT
L —
T
| B
L L
T
T
T T
T T
LB
T
] T L}
Lo
LA
| S
™
‘93LON

131va

'SIVILINI

Em.um\»,m Auaug edeq) BE

ge=

133HS DNIGOD NVHOOHdENS

.,«

9LE0 i-C¥ ’a

LR L
¥ ¥ v
LIS St |
¥ 1 ¥
1 1
LA | L]
¥ L} ¥
.
T 7T
LARBLIRL]
T 1 7
L L L]
T 1 1
T 1 1
LI |
T 1 T
v T T
) 1 1
T T L]
LA
LI A |

"

T T T T
T T
T T
T Y LI B I |
T T T
T T
T T
T T T T
Y YT T
T Y YT
Y | EN R e M B M |
T Y T T
Y T : =TT
Y 1 T T
T T T
T T T
T T =TT
T T
T L N (TR S S B
SIN3IWNNOYY |
T T
S
€ |e 3
3dAl 1 JAVN
-v 378Vl

:37avL

40

39vd

‘S3LON

:3iva

‘STVILINI

(3T1ONIS) LIFHS HDNIAOD F19V.L

2-16

2,3

2.3.1

2.3.1.1

2.3.1.2

Table Coding Sheets 2.3
Single Entry Table Coding Sheets '" 2.3.1
A single entry table coding sheet consists of: |
table head with orgumen‘t description, and
argument part.

- See Figure 2.3.1.
Table Head With Argument Description 2,3.1.1

Column 1*: Table name

Column 2*: Type

Column 3*: A-type

Column 4*: A-lgth

Arﬂmenf Part

Column 1*: Argument

Min. 1 character; max. 5 characters.

The first character must be a letter, the fol-

lowing either letters or digits. The table's
name serves as its identification in the sys-
tem, and must differ from all existing for-

mats, subprograms, tables, etc.

=S, for §_ingfe entry table,

This describes the argument type, thus:

N = unsigned numeric
AN = alphanumeric

 Max. 2 digits; min. valve =1, max. valuve

= 80. _
Gives the argument length.
All arguments have the same length.

2,3.1.2

Min. 1 characfer; max. A-~Igth characters.
If A-type = | 3 |
N: Right=-justify the argument and fill not
 keyed positions to the left of the argu-
ment with zeroes.
AN: Left-justify the argument and fill not

1 2-17

SLEQ

vz @

T T

LSMEN M &
T T
Ty
LA
L L
LN)
LI I

T 1 1
LR
) L] T
Y1 1
T v T
L
T
LRI}
1 1
L L §
T
T T T

SNOILONNS ¥ SINIWNOHY 2 % 4

A T ¥] Al T 1 T
a
9 S 14 € |e 3
'HLDY 3dALIHLOY 3dAL L INYN
4] -4 |-V -V 3ave

2°¢'Z nold

3avi

40

30vd

‘§310N

‘31va

*STVILING

waIsAG A ereq

(3719n0Aq) L33HS DNIAOD F1avL

2-18

2,3.2

2.3.2.1

Double Entry Table Coding Sheet

keyed positions to the right of the ar-
gument with blanks ().
An argument may not stretch over more than

" one line.

2.3.2

A double entry table coding sheet consists of

See Figure 2.3.2.

‘argument part and function part.

" table head with argument description and function description, and

Table Head With Argumenf Description and Function Description 2.'3.2.] ,

Column 2*:

Column 3*:

Column 4*

Column _5"':

Column 1*: Table name

A-type

: A-lgth

F-type

Min, 1 character, max. 5 characters.

The first character must be a lettei', and the
following ﬁny be either letters or digits.
The table name serves os its identification
in the system and must differ from all exist-
ing names of formats, subprograms, tables,

etc.
=D, for Double entry table.

Describes the argument type, thus:
N = unsigned numeric '
AN = alphanumeric

Max. 2 digits; min. value =1, max. value
= 80.

Indicates the length of argument.

All arguments have the sa:bn’e‘ length.

Describes the function type, thus:

- N =unsigned numeric

AN = alphanumeric

-

ES 2-19

Column 6*: F-Igth

2.3.2.2 _A_rgumenf and Function

Column 1*: Argument

Column 2*: Function

-

Max. 2 digits; min. value =1, max. value

=80. : ‘

Indicates the length of function.

" All functions have the same length.

2.3.2.2

Min. 1 character, max. A-lgth characters.
If A-type =
N: Right-justify the argument and fill not
keyed positions to the left of the argu-
ment with zeroes.
AN: Left-justify the argument and fill not
keyed positions to the right of the argu- _
ment with blanks (A). - .
An argument may not stretch over more than

one line.

Min. 1 character, max. F-lgth characters.
If F-type = |
N: Right-justify the function and fill not
~ keyed positions to the left of the func-
tion with zeroes.
AN: Left-justify the function and fill not
keyed positions to the righf of the func-
tion with blanks (4).
A function may not stretch over more than .

one line.

3.1

3.1.1

The Format Language -

On Programming 3.1
What Is A Program? | _ ' 3.1.1

A program can be viewed as the exact description of

the procedure whereby you solve a specific problem.

Consider, for example, the problem of crossing a street without being overrun
by a car. In a case like this it is not enough to know that you must "watch out
before you cross the street", if you have not been confronted with precisely

the same problem before.

Therefore, the problem must be analyzed, which means that one must try to
survey the parameters contained in the problem, and to assess their different
roles therein.

In order to be able to cross the street you must therefore know that a car might
come, that it might come from left or right, and that it might prevent your
getting across the street.

Thus, ¢ program must be a step by step description of
how the parameters (operands) contained in a problem
should be handled so as to arrive at the desired final

stage from a given starting point.

In the example of crossing a street one may choose as a starting point the situ-
ation where the program ignores the events leading up to that situation. As
the final stage one selects the arrival at the opposité sidewalk. Written in or-
dinary language, such a program might look something like this:

Example 3.1.1a

9.

. Look to the left.

. Do you see a car?

Yes: Go to point 3.

No: Clear, go to point 5.

Is the car less than 200 meters away?
Yes: Go to point 4. |
No: Clear, go to point 3.

Is the car parked ?

Yes: Clear, go to point 5.

No: Go to point 1.

Look to the right.

. Do you see a car?

Yes: Go to point 7.

No: Clear, go to point 9.

Is the car less than 200 meters away ?
Yes: Go to point 8.

No: Clear, go to point 9.

Is the car parked?

Yes: Clear, go to point 9.

No: Go to point 1.

Walk to the opposite sidewalk.

As suggested above, one could use another, preceding, program to describe
how to reach the specific street that one is to cross, and a following program

to specify what actions to take once one has crossed the street.

Therefore, the starting situation could be altered a little. Let us say that,

1. You are standing at the curbline, and
2. You know that the street has two-way traffic or, if not, that it is a one-
way street (with traffic from left or from right). ‘

The source of your information may be a previously executed program (its final

stage), and in rewriting the program given in the example above (3.1.1a) you

can insert the information under 2., so as to be able to decide which way to

look:

3.1.2

~ Example 3.1.1b |

1. Does the street have two-way traffic?
Yes: Go fo point 1b.
No: Go to point la. .
la. Does the street have one-way traffic from the left?
Yes: Go to point 1b.
“No: One-way, from the right: Go to point 5a.
1b. Look to the left.

D = o o
.

Does the street have one=way traffic only?
Yes: Clear from the left, go to point 9.
No: Go to point 5a.

5a, Look to the right.

-

We could further extend the example's program. It could, for example, count
all cars passing from the right, it could register how many times one had
looked to the left before the street was safe to cross, and so on. This mfor-

mation could be fed into a following program, e.g., for statistical use.

All information that is available for a program in the starting situation is

~ called input parameters, which, together with the program's own ¢alculations,

may influence the execution of the program. Information derived from a pro-
gram is called output parameters.

The Elements of a Program ' ' 3.1.2

A program consists of a number of statements. Every single sfdtenient's execu-
tion marks a step on the way from the program's starting situation to its final

~stage. The statements are written in a programming language, that is charac-
. I'erized by the firm rules that guide the formulation of a statement.

In the examples 3.1.1a and 3.1.1b every step can be viewed as a program
statement.

3.1.3

The statements operate on a set of parameters'(ope‘r-

ands) that can be read and changed.

In Example 3.1.1b point 1 can be viewed as the read-out of the input para-

.meter, stating the direction of traffic. If the example had been extended also
to register the number of passing cars, this number would be a parameter that
would be changed during the course of the program, from zero at the starting

situation to the actual number of cars at the final stage.

The execution of the program begins with the execution of its first statement.
This done, the next statement is executed, and so forth, until the program's

last statement has been reached.

As can be seen from the examples above, the statements of a program are not
executed in unbroken order; some statements are skipped as a result of the

answers that are given to the questions presented.

The Elements of the Format Language 3.1.3

There are two types of programs in the Format Language: field programs and

subprograms. A field program consists of those program statements that belong
to a field description. A subprogram is a labelled collection of program state-
ments, which are executed when referenced from a program. Subprograms are
used if the repeating of the same sequence of statements in several brogmms is
to be avoided.

The operands for a program are called variables and constants.

A variable is a place for storing information that can later be called upon
and may be subject to change. In the Format Language, the
variables are fields and registers; A variable is referenced from
a program statement by calling it by name. A field is referenced by using the
name of a field description, by which the program is made capable of proces-
sing a keyed unit of a specific part of a document. Fields cannot be referenced

from subprograms.

A register is referenced by putting an "X" before its number. Registers in a
given format are used to transfer information between programs, and to store

intermediate results within programs.

3.1.4

Variables may contain different kinds of values, e.g., numerical or alpha-
betical.

A constant contains information that cannot be changed by the
program, but is entered into calculations together with variables. Like vari-
ables, constants may contain different kinds of values. In the Format Language
several constants may be assembled into a specified table, and can thus be'ref-
erenced collectively from the program. |

Example In the Format Languuge - 3.4
Problem: | ‘ ' . ‘

A document contains, among other things, the following elements:

DATE OF PURCHASE [TTT]DATE OF PAYMENTTTT] AMOUNT: [TTT]

The two dates are specified by year and month (format YYMM). Date of pur-
chase may not come later than date of payment. If purchase date coincides
with date of payment, the program calculates a discount.

Problem analysis, program planning:

- The first field program controls the date of purchase, and uses as input para-

meter a field with a keyed four digit number (specified in the field program's .
definition section). '

The second field program controls the date of payment in the same manner as
the first field program; it further compares the two dates. Thus the date of .
purchase will be one of the program's input parameters.

Since these dates are identically checked, one can use a subprogram, with
the date itself as the input parameter and a correct/not correct indication as
the output parameter. Month and year are separately checked; the year must
be within the 70-80 (inclusive) interval, which is used as a constant.

As for the amounts, these are not subject to special verification, and a cor-
responding field description therefore involves only the definition section.

Calculation of discounts is performed by the field program of a "not-—keyed

field' (meaning a field which receives its value solely from the calculating
done by the program). As input parameters the program uses the two dates and -
the amount, and the resulting discount amount will appear in the field as the

output parameter. The discount percentage is a constant.

Example 3.1.4a shows how to write field descriptions, and in Example 3.1 .‘4b

you will find the subprogram that checks the date.

The program statements will be discussed later in this manual. Here only the

following information is given:

- 'DEFINE XO01 4' defines a register of length 4.

- 'COMPUTE X01 = KDATE' transfers the contents of a field to a register.

- '"PERFORM DCHEK' causes the subprogram DCHEK to be executed, after
which the program continues with the next statement. ' ‘

- 'ALARM 'DATE OF PURCHASE WRONG" causes the writing of an error
message, whereupon the information must be keyed anew, and the field
program is again executed from the beginning.

- 'IF KDATE > BDATE', > means 'IF GREATER THAN'.

- 'DISCOUNT = AMOUNT/100*3' places the result of an arithmetical ex-

 pression in a field. The discount rate is 3 percenf of the amount.

K

6LE0 1-Z¥ 1S

M'GON'V =aNDH'EL - 0'*' V' =TT '0L - ¥ 'NV 'SS*

4__<~..._._4-<J<<<~¢-<<<--_--4-——_-.-_.q._.d\-<¢--u_-v¢-_-—_--..44.4#ﬂ4<4 L LN | A T Ll L v
duu__.q.u-_.-,_—d_-aqna._-11-d-—<..--<~q.~__—-.dd«-qaqqqq__<_4_¢a\dﬂ-_41_l;<ﬂ44- T L i T L] 1 1 Bl
; ‘ _ N
--,-_-...qﬂ«--ﬂﬁdi\ddqqu¢«--c_-h---_---<-u-.~«a---.-<<dﬁ-d<—-14\44.w-4 v T F B ¥ L] + U .
1~.~4-.-d-q«—-_-uqn--.._—.-;-...-.-.1~q<-<.q~_-~_..Tdaﬁda-a.-u.«.--.-_-qdq L] LR) T L) 1] L] 3
-____-..d-wqu_\.dqddqdu‘-d-—q_—~—q.--—-uu—‘_.-__dud_-_-.—._-_.-44.-41-__-¢¢4+4 q LI 1 T ¥ 1]
ﬂ---uq-<-qqqﬂ-d~qqq-u.-_u,v_-.4‘_—.4J-¢.1—q-_--_.-_--_‘-\q-d_‘qq-q--_ﬁﬂd-‘-q—d T v T ¥ \] L T
rTT 1T vyt u,q TfrTlTtitTi1lt7Tryrryyrrryrrryrryrrrrrrrr77yryoryaowvy _Nq R HN{D.Q—“W—\—QA -.w-k.\ﬂ-\w{@”ud W-ﬁ-ﬂ% Rl L. i T 1] L] 1 + T T L) LSS
-
Ti1J1T1 lTryrrrrrJrryryryrrrryvyryrmrroorryrorryyyryyYyvyaeavnogy Tt o U U T F LT T T 1 1 L T T o latial oV L7 Dy 0 4 o ! V2 Jdonts st 27 L T ¥ L) 1 L] L] A L L L L
€001 /INNOWY "= INMOISTq ILNINOD NIHL
T T T T T T T T T T T YT Y T T T T T T T ad T rrrrrr v T rrrrrrrrryr e rrragr.d T T T Vgt)l Tag 1 77 ¥ L ¥ T A L) dugdmv
JIVAg & JiVaeN I/ M IV 6 6 oPXWN]
._-<‘-4414<4-‘<4.<q-q—-<_..__--.-ﬁ444.-—.-ui-Aq<a-a-_---_-‘-.-«._IW+_-‘-._-. 1] _Q N.-\q z- N-. O-N T ¥ {b-Q.zqq«
T T Vol j o o LA P A WLIGINE AL AR Ay gt g To 7 Tyl 4 1y g1 Ta ole o L L R PO g T T Vg -, ¥ 1 v L LA] ¥ .
T UNINAYS SO TLVA NYHL ¥TLVIND FSYHOINS 40 TLVA, WIYTY NIHL FLvdg < Fivay JI7 | T _ . _
-.---«-a\d\A\qquqq.a--q-_-_-_ndﬁd.«u-a__<—_-.___4aJx LR AP MR I T T T 1, ---,_4444 L L T LI Rl LE T T 1 rr
< ONOYM INIWAVYS 10 F1VA, WIVTV NIHL O = 10X 71 R
LR BRI AR LB AL -uﬂ.—««-u-_ Tryrytrryrryyyrrrrory ey VY vy yYVroEw T1T 11T 1T 1T 1T 1T 7T 17T 7 ¥V 0V 70 -N¥N¥<U¢- rwuw%m-% 1 T L] T T T ¥ 1] L] L] ¥ BE
1 ..- R T S T L I O O L D L L e e — TVrJTt1rTrtrrrrryrryryrorervrtrrrvyy o yioyirayy -N-NK.(-QG— A\“q NG.*-, wKSN§°<U- T \-Nv- z- Q- B mq 1 L N«k-(.Q-Q
T 11771 B B e RPr) T T T T 0T T Teg! gts ot oyt 1 U A0 1, D DUt DN B S I B S IR RN PR BN IS Y) T T T T ¥ T T v L LA
-,—..___._. LR BB AR L LA -Q-\WQQY} wwqx\ux\‘qq (.Q Nk(Q\ t«‘-ﬂ{ <w§k ° = NO* k\)
Y rrrrrreerrrrrorrrrrrTrrrrrJirirryrrryrryryrryrryrrrrrrryryrrryzyyxryrryrvrrrrvrvuTTy -NV\W_*U.Q. {Q.quw-kq T T ¥) ¥ T T A T 1] L] 1
TryrrrrrrrryvyvryrqrryryrrryrrovieroyT qﬂq TITlIrTryrryrrrrryrrrrrrry7rvyuoryuoroTy -Q.NN%Q{ q“« —N-O.*~ V. Vﬂt¥s¢u4 L O_N- tﬂ %« *q T A] N.k-‘_Q-x
Triri1tT Tl tlrrrrrrvyyryryJryryrrrrryryrrrryyeryrrrrrrrryrrryra vy e v _N—N- qoixq wg\ww-q -“_Q- -N.Q_k- ‘-%Fq\w.w¢< ¥ L) T T T 0— - T T LB ¥ T T
. st - | vt letjajufo] s 2|9}t s v {c¢c |z '
SININILYLS WVHOOUD B LETATA TR ~ ~ /> »
ST £/ 3/ S/ F/ S/ £E
) & .v% /765/3/ S %/)
g/ /5 $ &/ /8 ‘_
&
T L} L) T A} L] T ¥ T L] L} L} L] L t L] L) 1] L] L} ¥ L L) T L ¥ 1 43 L) L3 L] L] L} 1 L) L T T T L L] ¥ Al L) L] 1 ¥ T ¥ T T L] I} 1 A L 1 L T ki L T Ll L] T T Al Ll L 1 L
v tlz .
INIWWNOD 14§ S hw”uuu

op*1°¢ TWVX3

‘LVINHOS

40

39vd

‘34va

SIVILINI

wiaisAg Auug el i

‘S3LON

1SE

133HS DNIJOJ LVWHOA

N

uso v-or 14 | ¢ o ‘ C .

LU R S) | U S SIS BNSNE SIS SR SN UM RN S MRS MRS SMUNS SURSE SUENE RENEE BRNN NN SN SNNNE SNNN BNNV SN SNNN SENNE BENNE BR KN NN BEN MNNE SCCHR NN BRENR SESES RENNL SN BN SUNEL BNNNE N

™ T T T T e r—r—~—Tr—-r—m r—1r ‘1 1+ 1 1rrr 1 r -+ 777y o o s s oy vy o v T T

,q.-..--;«_.-q_q.q--_-...._441_«--.._-....,....1..—-.-.q_u..-._._.-q-.._.._.

r-reesTrrrrreeerr~~—r—rTrYrvr T v o T rrrrrrrr oy e o Ty

i ¥ T T T - TT LA S LA 7T ¥ ¥ ¥ ¥ L T L] T L ¥] ' ¥ v)) | AU BN B 2) LI L} L T T T T L L] \J] ¥ ¥ LN A I AL A | F t ! ¥ L) ¥) T LI Tr i T T T LR 1

_\—Qz‘w- 1 1 T
T T T LB LI 2 L T T) L T 1 L) T T T T 1] T 1§ T ¥ 1 ¥ T L] T L L] T 1 ¥ T L) 1 Ll L] ¥ ¥] 1 1 v T) LR} T L ¥ L A} Al ¥ T 1] ¥ 1 ¥ 1 L ¥ L} T T T T 1 ¥ 1 T 1 _Qq —O- _m
, | 701

«ﬂqq-a-«-___-44_.-_.«....._.qda-.q.-<-_..._...____Ad.«qq.a«qa‘-q___d-a_<«~4a4__

T ¥] T ¥ L} ¥ L] ¥ T T LI § T T T T T T L] ¥ L) L L] 1) L] L] I 1 U ¥ i L] 1 L T v T L ¥ T T 1 L] ¥ L ¥ L] ¥ |l v) L) L) 1 T ¥ Ll T L ¥ T ¥ L] vt 1 T LN |

T T T aat Tl 2Tl 31 i mTem?. T T 1
= JOX FLNIWOD
qJ«-ﬂ.uuq-u_-_qu-.-..<-_...__.dq-qq-_._._..«.._.-.....<<444<-_~u-4--_c¥.0.k-o_2

. Py A

PSR, SN B N HNN BN B B INONS AR SN AN ISR D S BN AR AN HNNN SN CRIND NS BN S SN SN SN NN S U A S IR S A AN AU SN RERD S SN NN SR VR AL BN RN N BNNE N SR RN A I S AL RS A N SN AL AL AV AL R A A L AL L A L L L R

T T T T T T T T T T T T T T T T 0’ 040D T T T
T = LOX FLINdWOD
T T T T T T T T T T T T T T T D 7YY 00§ 4V T FHL FLON T
"CXOLON 010D NFHL (Z1 < 20X) ¥0 (L > ToxX) I/
TYOLON 0L0D NIHL (08 < JOX) ¥o (0fF > fox) 4/
AR = JOX FLON ¢ 0017 J [OX = 10X FINJWOD
T T T T T T T T T T T =T §0X FLON CO07 GON [OX = @OX FLAIWOT T

T T Ty« T T T o Yy vyt T oy T e T T

SLINIWALYLS WVHOOH

Y7257 57Y DN IY YoM S7 Z0X CTIvd BNOYM NIAM = 10X dOLS WWAA = 10X 1¥vIS WITHIJ

4]

INGAWOD | FWYN
DONJ'ENS

. ar’1'€ IdWVX3

waisAs Aug eteg |
S

AVHOOHJENS ‘31va *SIVILING

10 35vd | ... | 133HS DNIOD WYHHOHdENS | o

3.2 Character Set - : | 3.2

The character set for the format language consists of 50 characters. These

characters and their corresponding meanings are:

Character Meaning

0,1,2,3,4,5,6,7,8,9 Digit
A,B,C,D,E,F,G,H,I,J,K,
L,M,N,O,P,Q,R,S,T,U,
VW, X,Y,Z Letter
A o . Space
+ | Plus sign
- ~ Minus sign or hyphen
* Asterisk
/ Stroke
= Equal
P : Comma
- Semicolon
Quotation
(Left parenthesis
) Right parenthesis
- > Greater than
< Less than
: Colon

The basic elements of the language are:

names, arithmetic operators, relational operators, logical operators, and
punctuation symbols.

The elements are explained in the following sections.

3.2.1 Names BRI ~ 3.2.1

A name is composed of a combination of characters. Allowable characters are:

Letters: . A through Z
. Digits: 0 through 9

A name must begin with a letter. Only the five leading characters are signifi-
cant. Thus PERFORM is equivalent to PERFO, for example, and PERFO is
equivalent to PERFORMANCE; but IN is not equivalent fo INCORRECT.

There are 6 types of names: reserved names, user-defined field names, user-
defined label names, user-defined subprogram names, user-defined table

names, and user~defined subformat names.

Reserved names have a special predefined meaning to the system; therefore,

these must never be used as user-defined names. Reserved names are listed in
Table 3.2.1-1.

Some of the reserved names are verbs. Verbs identify statements in the format
language and are used in field programs and subprograms. The verbs allowed

in each of the two programs are listed in Table 3.2.1-2.

Table 3.2.1-1. List of Reserved Names

GOTO

ALARM SET
ALLOW IF SKIP
AND CIN SUBFORMAT
AT INVALID THEN
COMPUTE LIMIT TO
CONNECT MOD VALID
 DEFINE MOVE ~ X00
DISALLOW NOT " X0l
DISC NOTE X02
DISPLAY OR -
ELSE PERFORM -
END SEARCH -
FIELD SELECT X99

GIVING

Table 3.2.1-2, List of Reserved Verbs

B : may be used in:
Verb : - Field Program Subprogram
ALARM - x x
ALLOW , x x
COMPUTE , | x | X
CONNECT | x x
'DEFINE ‘ x : x
"DISALLOW x . x
DISPLAY X X
END | o x x
END SUBFORMAT ‘ x
GOTO | x x
IF , . x x
LIMIT | X » X
MOVE | o x x
.NOTE | X x
PERFORM | : x X
SEARCH X ’ _ x
SELECT SUBFORMAT x
SET | x
SKIP x x

3-11

3.2.2

3.2.3

3.2.4

3.2.5

3-12

Arithmetic Operators

3.2.2

The arithmetic operators are used to perform specific arithmetic operations.

The used symbols and their operation are:

+

*

/-
MOD

Relational Operators

Addition

Subtraction

~ Multiplication

Division

Modulo

3.2.3

Relational operators specify the type of comparisons to be made between two

operands in relational conditions. These symbols and their meaning are:

Logical Operators

Greater than

Greater than or equal to
Equal to

Less than

Less than or equal to
Not equal to

3.2.4

Logical operators are reserved names that define a connection between oper-

ands. The reserved names and their use are:

AND
OR
NOT

Punctuation Symbols

Logical 'and'
Logical 'or!

Logical 'not’

3.2.5

The punctuation symbols used in the program statement section of a format

program, and their names, are:

A

r

.
*

Space
Comma

- Semicolon

Colon

Left parenthesis
Right parenthesis
Quotation mark

3.3

3.3.1

Operands k ' . 3.3

The operands used in the format language are described in the following para-
graphs. The operands are:

Constants

‘Registers
Fields

Registers and fields may be used with subscripts; this feature is described in
section 3.3.4. |

Operands may be used as destination or as source, except constants which only
may be used as source. Source means that the operand is 'input parameter’ to
a statement. Destination means that the operand is 'output parameter' from a

statement.

Operands may be numeric or nonnumeric. A numeric operand contains a nu-

meric value. A nonnumeric operand contains a string of characters.

Constants o 3.3.1

Constants are strings of characters which represent a specific value. There are
two types of constants: numeric and nonnumeric.

A numeric constant is composed of digits, and must contain at least one digit
but not more than 80 digits. The value of a numeric constant is always posi-
tive. Negative values are obtained in the statements, where it is allowed, by

preceding the numeric constant by a minus.

Examples of valid numeric constants are:

198
50
091

3-13

3.3.2

3-14

Examples of invalid numeric constants are:

-198 Sign is not allowed
1.5 Cannot contain a decimal point

9,85 No comma allowed

A nonnumeric constant can contain any characters including those not in the
format language character set, except quotation marks. The constant must be
enclosed in quotation marks. A nonnumeric constant can be from 0 to 78 char-

acters.

Examples of valid nonnumeric constants:

'"MONTH IS GREATER THAN 12'
119876 |
'TYPE N FOR NO, Y FOR YES'

Example of invalid nonnumeric constant:

'TYPE 'N' FOR NO' Cannot contain quotation marks

A nonnumeric constant may look like a numeric constant, but the two are not
identical. They are both stored as characters, but a numeric constant is inter-
preted as a numeric value. Thus the numeric constant 00190 is equivalent to
the numeric constant 190, but the nonnumeric constant '00190" is not equival-

ent to the nonnumeric constant '190' or 'AA190".

Registers R 3.3.2

Registers have been added to extend the possibilities of the langﬁage. Regis-
ters are normally used in three connections. They are used for transferring data
from one record to another, for transferring data to and from a subprogram and
for computations. Registers are defined by the DEFINE statement, see Section
3.7.1.5.

The letter X followed by any number from 01 to 99.is used to name a register.
As many registers as needed can be used in a format program. The numbers
used need not be sequential, but should be sequential starting with 01 to con-

serve storage.

Examples of valid register names:

XO01
X11
X99

Examples of invalid register names:

X00 Digits not 01 to 99
X1 Too few digits
X010 Too many digits

A register contains either numeric or nonnumeric data. The type of data is de-
pendent of the program statement, which had the register as destination last
time (e.g., the MOVE statement makes the register nonnumeric, the COM-~
PUTE statement numeric). Data are always stored as characters in the register.
The length of a register is declared by a DEFINE statement and is the number
of character positions in the register. The DEFINE statement must be executed
before any other statement referring to that register. The DEFINE statement
gives no type to the register; the type is given first when the register is used
as destination in a statement. It is allowed to change the type
of a register during execution of the format program.

If nonnumeric data are stored in a register, and the number of characters in

the data is smaller than the register length, data are stored from left to right
and the remaining positions in the register are filled with spaces. If the num-
ber of characters in the data is greater than the register length the right-most

characters are truncated.
Numeric data are right-justified in the register, and remaining positions are

filled with zeroes. If the number of significant digits in the data is greater
than the register length, a runtime error will occur.

3-15

3.3.3

3-16

Fields | ' 3.3.3

Fields are numeric or nonnumeric depending on their type as specified in the . .

field definition:

Field Definition Type ~ Operand Type
N numeric

SN ‘ numeric

SS numeric

AN nonnumeric
A ‘ nonnumeric

Current field is the field which field description contains the field program.

Any field before (in the same subformat) and including current field is allowed

as source operand in a field program. No field, except current field, is al- ' ‘
lowed as destination operand and current field is only allowed as destination

if it is not keyed (i.e., kind=N). |

The following rules apply to not keyed fields used as destination operands:

1. It is only allowed to store nonnumeric data in fields of type A or AN, and

numeric data in fields of type N, SN, or SS.

2. When nonnumeric data are stored and the number of characters in the data -
is smaller than the field length, the data are left- or right-justified depend~
ing on the specification in the field definition, and the remaining positions
are filled with the fill character specified in the field definition.

If the number of characters in the data is greater than the field length, the .
right-most characters are truncated. Then it is checked whether the field
contents correspond with the type assigned in the field definition, other-

wise a runtime error will occur (only applies for type = A).

Examples of storing nonnumeric data:

Fie!d, Justi=-

length Type Fill fication Source Field contents
6 A A L TABCAAA' 'ABCAAA'

4 A A L 'ADDRESS' 'ADDR!

5 A A L 'ABC' ABCAAA' -

6 A A R 'ABC' 'AMABC!

6 A A L 1123 runtime error

3 AN A R JANUARY' 'JAN'

10 AN A R 'JANUARY' 'AAAJANUARY"
6 AN A L 123" 1123p00"

. When numeric data are stored and the number of significant digits (leading

zeroes are ignored) is smaller than the field length, the data are left- or

right-justified depending on the specification in the field definition, and

the remaining positions are filled with the fill character specified in the

field definition.

If the number of significant digits is greater than the field length a runtime

error will occur. It is then checked whether the field contents correspond

with the assigned type in the field definition, otherwise a runtime error will

occur (only applies for type = N).

- Examples of storing numeric data: |

Field ' Justifi-

length Type Fill " cation Source Field contents
5 N 0 R 155 00155
5 N 0 R -50 runtime error
5 N 0 R 555555 runtime error
) SN A R -50 A-50
5 SN A R -50000 runtime error
5 SN 0 L -50 -5000
5 sS 0 R 59 00059
5 SS 0 R -~55555 5555n

5 '$S (] R =51 0005]

3-17

3.3.4

3-18

Subscripts ' 3.3.4

Subscripts are used to refer to individual characters in a register or a field. A ' ,

subscript is a numeric constant. Subscripts should be in the range 1 to the

length of the register or the field, where 1 is the left-most subscript.

 Examples of subscripting are:

COMPUTE MONTH = DATE (3) * 10 + DATE (4),
COMPUTE X01(5) =9,
MOVE 'A' TO X02(1),’

If at run-time, the value of the subscript exceeds the size of the register or the

field being subscripted, a runtime error will occur.

When destination operands are supplied with subscripts, please notice the fol- '

lowing rules:

1. Only the contents of the character position specified by the subscript is ’
changed. The justification and filling described in the preceding sections }

are not executed,

2. A negative value cannot be assigned to a subscripted numeric operand.

- 3. A register must be initialized before it is used as destination with subscript.

The initialization may be performed by any statement which has the regis- ‘
ter as destination. The initialization is necessary because when registers
are used as destination with subscript, it is required that the type of the

source and the type of the register concur.

Example: If a register is used nonnumerically it may be initialized with a
MOVE statement. ’

MOVE '' TO X01

and then used with subscript, e.g.,

MOVE 'A' TO X01(1),
MOVE 'Z' TO X01(10),

If a register is used numerically it may be initialized with a COMPUTE

statement:

3.4

* COMPUTE X02 =0
and then used with subscript, e.g.,

COMPUTE X02(1) =5,
COMPUTE X02(3) =9,

It is not necessary to initialize a field before it is used as destination, be-
cause a not keyed field is always filled with the specified fill character
before a field program is executed.

. After a field is used as destination with subscript, the contents of the field

are checked against the type of the field (only applies to type A), and a
runtime error will occur if the contents and the type do not correspond.

Notation _ | 3.4

The notation used in the remainder of this section is described in the following

paragraphs:

1.

All words printed in capital letters belong to the language. They are re-
ferred to as 'reserved names’.

. Variable entries which are to be supplied by the format programmer are

printed in lower case letters.

When punctuation or other special characters are printed, they are re-

quired.

Braces { } enclosing vertically listed items indicate that one and only
one of the items is required.

Brackets [] are used to enclose a portion which is optional.

The ellipsis ... indicates that the preceding entity can occur one or more

times in succession.

3-19

3.5

Arithmetic Ex_pressions , ‘ 3.5

Arithmetic expressions (or shortly: expressions) are used in certain program
statements (the IF and COMPUTE statements, see Section 3.7). An arithmetic
expression is composed of numeric operands, parentheses and arithmetic oper—
ators according to certain rules which make an expression written almost as in

the mathematical literature.

A simple example of a statement containing an arithmetic expression is:
COMPUTE X01 = X01+X02,

where 'X01+X02' is the expression. The evaluation of an arithmetic expression
results in a numeric value. In the example the result of the evaluation is the

sum of the values of register X01 and register X02.

The arithmetic operators allowed are:

Operator Meaning

+ addition called adding
- subtraction operators

*

multiplication
/ " division
MOD modulo ‘ operafors

called multiplying

The most simple arithmetic expression consists of merely one numeric operand.

More complex arithmetic expressions may be composed b)ﬁ ‘

1. separating two or more operands by one of the arithmetic operators;
2. preceding one operand with one of the adding operators (e.g., COM-
PUTE X01 =+5, COMPUTE X01 =-X01); ‘
‘3. Subexpressions, enclosed in parentheses, may be used as an operand.

The rules for composing arithmetic expressions are:

’ field name : ‘ 2 3 rfield name]

field name (num. const.) ¥ field name (num. const.)
{+}) register |} * [4 registélf ?
- register (num. const.) / register (num. const.)

numeric constant MOD| | numeric constant
(expression) - 7 | (expression)

\ . 7 . 7

L _

Examples of arithmetic expressions are:

X01

FLD1

59

+X02(1)

-59

XO01*FLD :

X01(1)+X01(2) + X01(3)

(X01+X02)/2

'FLD1 MOD 10 + FLD2 MOD 10

(FLD1(1)*2+FLD1(2)*3)/ (FLD(1)+ FLD(2))
~ ((A+B) * (C+D) + (A+B)/2) MOD 10

An arithmetic expression is evaluated in the following order:

1 (first): . Su’be‘xpression in parentheses
2 : Multiplying operators (*, /, and MOD)
3 (last): Adding operators (+ and ~)

When a sequence of operators has.the same priority, the operators are exe-

cuted in order of their occurrence from left to right.

.An example of evaluating an arithmetic expression:
Consider the expression:

-(A+B) * (C-D) /2

3.6

3.6.1

First the subexpressions in parentheses are cvaluated. A is added to B giving

a temporary result, namely R1, and D is subtracted from C gfving another tem- ‘

porary result R2, The expression may now be shown as:
-R1*R2 /2
Now the multiplying operators are executed in order of their occurrence from

left to right, therefore R1 is multiplied to R2 giving the temporary result R3,

and the expression may be shown as:
-R3 /2

The second multiplying operator is executed: R3 is divided by 2 giving R4.
Finally, R4 is negated, and the evaluation is completed.

Conditions ‘ 3.6 .

Conditions are used in the so-called conditional statements (the IF statement,
see Section 3.7). A condition causes the path of control to be altered depend-
ing upon whether the condition is true or false. A simple example is the fol-

lowing statement:
IF TOTAL < X01 THEN COMPUTE X02 = X02 + 1,

The condition is 'TOTAL < X01'. If TOTAL is less than X01, the condition:is
true and the new value of X02 is computed. If TOTAL is not less than X01, the
condition is false and control is transferred to the next statement following the

IF statement.

In the format language the following types of conditions are allowed: ' ‘

relations, validity conditions, and table conditions.

A condition may be either simple or compound. A simple condition is a relation,
a validity condition or a table condition. A compound condition is composed

of conditions, parantheses, and logical operators.

Relation |) 3.6.1

A relation is a comparison of two operands, either of which can be a field
name, a register, a constant, or an arithmetic expression. The operands are

separated by a relational operator which specifies the type of comparison to

be made between the two operands. The allowable relational operators and

their corresponding meanings are:

Relational operator Meaning

> : greater than

>= | greater than or equal to
. = , equal to

<= less than or equal to
< ~less than

<> [T not equal to

The syntax of a relation is:

” ~ _ 4 - h'
field name ‘ field name
field name (num. const.) field name (num. const.)

i register [relational op.) register
register (num. const.) register (num. const.)
constant constant
arithmetic expression) arithmetic expression

“ ~ o

The following rules apply to relational conditions:
1. A numeric operand can only be compared with another numeric operand.

2. A nonnumeric operand can only be compared with another nonnumeric
opérand. '

3. Comparisons of numeric and nonnumeric operands are not allowed.

E-xamples of relations:

X01 »=0
X01 = X02
 XO01 * 2 - A<= X02 |
D = 'JENSEN' :
(A+B)>3
X05 = 'TEXT'
X03(1) * 2 >= 10
" (A(1) + A(2)) MOD 10=0

3.6.1.1

3.6.1.2

Comparison of Numeric Operands - 3.6.1.1

If the operands are numeric the respective values of the operands are com- ‘
pared.
Comparison of Nonnumeric Operands] 3.6.1.2

The characters used in nonnumeric operands are ordered according fo their po-
sition in a sequence of (all) characters. The relation between two characters
is determined by their positions in the sequence of characters. The character

sequence in ascending order is:

(fpace) :
[

S
$ | ‘

%

0 through 9 ‘
. ®

nA e

through Z

L - >0 wV

When nonnumeric operands are of equal iengfﬁ (i.e., they contain the same

number of character positions), characters in corresponding positions of the

two operands are compared starting with the left-most position and proceed-

ing to the right=-most position. If all the characters are the same through the

last position, the operands are considered equal. If a pair of unequal charac~

ters is encountered, the position in the character sequence is determined for

each character. The operand containing the highest character position is con-

‘sidered to be the greatest of the two operands. See the examples below!

 When nonnumeric operands are of unequal length (i.e., they do not contain

the same humber of character positions), the longest operand is treated as if

the right-most characters were truncated, to make it the same length as the
other operand. The comparison is then made as though they were the same

length.

Examples of comparing two nonnumeric operands A and B:

A

B

TRUE
RELATION

EXPLANATION

' JENSEN

'HANSEN'

A>B

 Characters are compared from

Operands are of equal length.

left to right. J comes after H

in the character sequence.

'FIELD’

'FIELDS'

The right-most character is
truncated in B.

l29l

l]99l

A>B

The right-most character is
truncated in B, and 2 follows
1 in the character sequence.

|A39|

'029'

-‘A<B

0 comes after space in the

character sequence.

'HANSEN"

- '"HANSON!

A<B

character sequence.

Characters are compared from
left to right, the first pair of
unequal characters is E and O,
and E is preceding O in the

3.6.2

3.6.3

Table Condition | . 3.6.2

A table condition is used to search a table for a specific argument. The syn-

tax of a table condition is:

4 3
field name

field name (num. constant)

-

.)
register IN table name

register (num. constant)

constant
\

The table name identifies the table in the library of tables used. The table
may be either a single-entried or a double-entried core table, but not a
DISC table (see Section 5.3). '

The arguments in the table, specified by table name, are searched for a
match against the operand preceding the word IN. If a match is found the

condition is true, otherwise the condition is false.

The operand preceding IN and the arguments in the fable must be of the
same type (i.e., either numeric or nonnumeric). The methods for comparing
operands as described in Sections 3.6.1.1 and 3.6.1.2 are also used when

evaluating a table condition.

Examples of table conditions:

X01 IN TABL1
FLD IN CTABL
FLD(1) IN CTABL

Validity Condition | : 3.6.3

The validity condition determines whether a field is valid or invalid. The

syntax of a validity condition is:

INVALID

field name { VALID }

9

3.6.4

Every field has an associated validity flag, which can be explicitly set to

valid or invalid by the SET statement (see Section 3.7.1.16). Unless changed

by a SET statement, the validity flag of a field is invalid if an error has been:

detected and not corrected, otherwise the validity flag is valid.

Compound Conditions

3.6.4

Conditions, parentheses, and logical operators may be combined to form a

compound condition.

The logical operators and their meanings are:

Logical Operator

Meaning

OR
AND
NOT

logical disjunction

logical conjunction

legical negation

- The syntax of a c’ompound condition using the AND or OR operator is:

| (condition) AND (condition) AND (condition) | ...
' OR ; OR- ’

The syntax of a compound condition using the NOT operator is:

NOT

(condition)

The results of the relationships between two conditions A and B are:

A B NOT (A) | (A)AND (B)| (A) OR (B)
true true false true true
true false false false true
false true true false true
false false true faise false

Additional pairs of parentheses, enclosiﬁg subconditions, may be used to speci-

fy the order in which the compound conditions are to be evaluated.

The compound conditions are evaluated in the following order:

1 (first): Arithmetic expressions

2 : Relational operators / table operator
3 : Subconditions in parentheses

4 : Logical NOT operator

5 : Logical OR operator

6 (last): Logical AND operator

When a sequence of operators has the same order, the operators are executed

in order of their occurrence from left to right.

Examples of compound conditions and their evaluation:
NOT (A > B)

First the relational condition A > B is evaluated, then the result is negated.

(X01 = X02) AND (A IN TAB1)

First the relational condition preceding the word AND is evaluated, then the
table condition following AND, and finally the AND operator is executed.

NOT ((X01> A) OR (X01< B))

First the relational conditions preceding and following the word OR are evalu-
ated, then the OR operator and finally the NOT operator.

NOT (X01 > A) OR (X01 < B)

First the relational condition following the word NOT is evaluated, and the
result is negated, then the relational condition following the word OR is

evaluated, and finally the OR operator is executed.

¢

3.7

3.7.1
3.7.1.1

~

Format Language Statements ' 3.7

A statement is the basic unit of a field program or a subprogram. Each state-

ment begins with a verb and describes some action to be taken. Normally this

is an action which could not be specified in the checkbox part of the format

coding sheet.

The statements are separated by commas, and a program is terminated by a

comma,

A field program consists of none, one or more statements.

In the format language there are two categories of statements: conditional
statements and unconditional statements. A conditional statement is one which
contains some conditions that are tested to determine the path to be taken in
the field program (the IF statement). An unconditional statement is one which

specifies an unconditional action to be taken.

Unconditional Statements : 3.7.1

ALARM Statement

The ALARM statement is used to display error messages on the message part of
the keystation screen. The syntax of the ALARM statement is:

nonnumeric constant
register

ALARM < register (num. constant)
field name

~

field name (num. constant)
/

The ALARM statement displays the contents of the operand on the second line
(the message part) of the keystation screen. Statements following the ALARM
statement are not executed, and the operator must either correct or bypass the

field.

Examples of the ALARM statement:
ALARM 'FINAL PRICE NOT OK!,

CONNECT 'BATCH OUT OF BALANCE, DIFF=' TO X01 GIVING
X02,
ALARM X02,

3.7.1.2 ALLOW and DISALLOW Statements

The ALLOW and DISALLOW statements check current field for specific values.
the ALLOW statement specifies allowable values, and the DISALLOW state-

ment specifies incorrect values. The syntax for these statements is either:

ALLOW [{ f}] ‘numeric constant] {{ f}] numeric constant

DISALLOW nonnumeric constant nonnumeric constant
or:

ALLOW [DISC] table name

DISALLOW

In the second form of the ALLOW/DISALLOW statement table name is a name
which. identifies the table in the library of core tables (the DISC option is not
used) or in the library of DISC tables (the DISC option is used). The table
may be either single or double entried. Current field is checked against the

table arguments.

The type of the constants following the word ALLOW or DISALLOW, or the
type of table arguments must correspond with the type of current field. The

methods for comparing numeric and nonnumeric operands are described in Sec-

tions 3.6.1.1 and 3.6.1.2.

In the ALLOW statement, if the contents of the current field are not one of

the specified values, the statements following the ALLOW statement are not

‘executed, and the operator must correct or bypass the field.

,.‘

o

In the DISALLOW statement, if the confents of the current field are one of
. : the specified values, the statements following the DISALLOW statement are

not executed, and the operator must correct or bypass the field.

‘Examples of the ALLOW and DISALLOW statements:

ALLOW 'HANSEN' 'JENSEN',
ALLOW 0 125 512,
- ALLOW CTABL,
where CTABL is the name of a CORE table
ALLOW 'A' 'ST' 'XYZ', |
DISALLOW DISC TABOI1,
where TABO1 is the name of aDISC table
DISALLOW -2 -1 0 +1 +2,

3.7.1.3 COMPUTE Statement A 3.7.1.3

The COMPUTE statement is used for arithmetic calculohons The syntax of the
COMPUTE statement is:

. current field name

. COMPUTE W current field name (num. c§nsfonf) = arithmetic expression

register

register (num. constant)

. The expressioalt» is evaluated (see Section 3.5) and the result is stored in the
' operand preceding the equal sign. The current field is allowed as destination -

only if it isa not keyed field and numeric in type.

 Examples of the COMPUTE statement:

~ COMPUTE Al =0,
COMPUTE X01 = X01 + PRICE,
‘ ~ COMPUTE MONTH = DATE(3) * 10 + DATE(4),
 COMPUTE X01(1) = F1, |
COMPUTE X01(2) = X04(5),
'COMPUTE FLD =FLD + 1,

3.7.1.4

Notice: The second example of the COMPUTE statement shows how you can
make a total of a field (named PRICE) in a register. Each time PRICE is keyed

the statement shown is executed and at the end of the registration it will hold

the total.

CONNECT Statement 3.7.1.4

The CONNECT statement is used to connect two items and to store the result-
ing character string. The syntax of the CONNECT statement is:

r N 4 N

field name A field name)
field name (num. const.) field name (num. const:) current field
CONNECT { register y TO < register : > GIVING < name 9
register (num. const.) register (num. const.) register
constant constant
\ P . . Py A J

The operands preceding and following the word TO are concatenated in left-
to-right order. The resulting character string is stored in the operand following
the word GIVING. Current field is only allowed as destination if it is a not
keyed field and nonnumeric in type. The source operands can be either nu-
meric or nonnumeric; if an operand is numeric it is interpreted as a nonnumer-

ic character string.

Examples of CONNECT statements:

~CONNECT A TO B GIVING X01,
where A='ABC' and B='DEF' causes X01="ABCDEF',
CONNECT 'AMOUNT=" TO Al GIVING X01, ;
where Al= 512 causes X01="AMOUNT= 512",
CONNECT FLD TO '' GIVING X01,
where the lengths of FLD and X01 are equivalent, causes
X01 = contents of FLD. If FLD is numeric in type this
construction may be used to convert the contents of FLD
from numeric to nonnumeric type.
CONNECT 'p' TO X01 GIVING X01,
This construction will shift the contents of XO] one po~
sition to the right and a space will be stored in the first

position of X01.

3.7.1.5 DEFINE Statement - 3.7.1.5

The DEFINE statement is used to define the length of a register in character
positions. The syntax of the DEFINE statement is:

DEFINE register numeric constant

The numeric constant defines the register length in character positions. The
upper limit for the register length is 255 character positions, but to conserve .
storage the register size should be as small as possible. The length of a regis-
ter must be defined by a DEFINE statement before the register is used in any
other statement, or before the register is used in connection with automatic
duplication, insertion or incrementation (i.e., kind =D, C, or 1). Itis only
allowed to redefine a register, if it is equivalent in length to the first defi-

nition.

Ekomple of the DEFINE statement:
DEFINE X01 1,

3.7.1.6 DISPLAY Statement

' The DISPLAY statement is used to display operator information on the message
part of the keystation screen. The syntax of the DISPLAY statement is:

.) 3
nonnumeric constant

register .
DISPLAY < register (num. constant)
field name

v

field name (num. constant)
~ 7

The DISPLAY statement displays the contents of the operand on the second
line (message part) of the keystation screen, and it will be displayed until
some other message to the second line occurs. The display‘stutement can be

used for simple fill-in-the-blanks keying and for debugging format programs
by displaying register contents.

L

3.7.1.7

3.7.1.8

3.7.1.9

Examples of the DISPLAY statement:

DISPLAY 'KEY YOUR INITIALS',
DISPLAY XO1,

END Statement 3.7.1.7

The END statement is used to terminate a format or a subprogram. It must physi-
cally be the last statement of the format or the subprogram. The syntax of the
END statement is: '

END

END SUBFORMAT Statement . 3.7.1.8

The END SUBFORMAT statement is used to terminate any subformat except the

' last subformat, which is terminated by the END statement. When required, the

END SUBFORMAT statement must physically be the last statement in the sub-
format. The syntax of the END SUBFORMAT statement is:

END SUBFORMAT

GOTO Statement | ‘ 3.7.1.9

The GOTO statement is used to transfer control from one part of the program
(that is, a field program or a subprogram) to another statement in the same pro-

gram. The syntax of the GOTO statement is:

GOTO label

A statement huy be labeled by assigning it a name followed by a colon (addi-
tional labels are allowed). The label is used in a GOTO statement to pass
control to the statement after the label. | '

Labels must be defined within the program that contains the reference to the

label, and a GOTO statement cannot reference a label in another program.

Examples of labels and the GOTO statement:
IF X01 <0 THEN GOTO ERROR,

ERROR: ALARM 'BATCH OUT OF BALANCE',

AGAIN: IF X01=0 THEN GOTO NEXT,
COMPUTE X01 = X01 - 1,

GOTO AGAIN,

NE XT:

3.7.1.10 LIMIT Statement | o 3.7.1.10

The LIMIT statement is used to check current field against a range of values.
_ The syntax of the LIMIT statement is:

LIMIT [{f” numeric constant [{f}} numeric constant

The LIMIT statement is only allowed if current field is numeric in type.

The second value must be greater than or equal to the first value. The range

includes the smallest and the largest value.

If the check falls, the statements following the LIMIT statement are not exe-
cuted; and the operator must either correct or bypass the field.

Examples of the LIMIT statement:

LIMIT 1000 5000,
LIMIT =500 999,
LIMIT =510 -509,
LIMIT -1 11,
LIMIT ©0 0,

3.7.1.11

3.7.1.12

MOVE Statement . - 3.7.1.11

The MOVE statement is used for moving nonnumeric data from one place to an- ‘

other, such as from one field to another. The syntax of the MOVE statement

“ise
field) ()
ield name current field name
field name (num. const.) current field name (num, const.)
MOVE { nonnumeric constant > TO <

register

register register (num. const.)

register (num. const.)

The operand preceding the word TO is moved to the operand following the word
TO. Both operands must be nonnumeric in type. Current field name is only al- ‘
lowed as destination if it is a not keyed field.

Examples of the MOVE statement:

MOVE 'TEXT' TO X02,
MOVE X01(1) TO FLD1(3),
“MOVE X03 TO FLD4,
MOVE FLD(1) TO FLD(2),

NOTE Statement 7 3.7.1.12

The NOTE statement is used to write a commentary which is shown on the ‘
source listing but is not used in the system. The syntax of the NOTE statement ‘

is:

NOTE character string

The system ignores the character string following the word NOTE up to the first

comma or semicolon.

Observe the following rules about the NOTE statement:

1. The character string may contain any characters including those not in the

format language character set.

2. The character string may proceed through more than one line.

. 3. If quotation marks are used in the character string they must occur in pairs

on a line,

4, The NOTE statement must not be the last statement before ELSE (because
“there is no comma or semicolon before ELSE, see Section 3.7.2.1 about
the IF statement). '

5. The character string may contain any reserved name.

6. The character string may be empty.

~ Examples of the NOTE statement:

NOTE CHECK DATE,
NOTE THIS FIELD CONTAINS THE SALES PRICE,
NOTE IF X01 <> 0 THEN FIELD 1 IS INCORRECT,
NOTE 'JENSEN' IS AN INVALID NAME,
NOTE 'JENSEN' IS AN INVALID NAME,

BUT 'HANSEN' IS OK;
NOTE ,

Notice: A field program must not end with a label, because'labels are pre-

- ceding statements. If a label is wanted at the end of a field program, a NOTE

3.7.1.13

statement with an empty character string may be used as last statement.

PERFORM Statement ' O 3.7.1.13

A PERFORM statement is used to pass control from a field program to a sub-

program, or from one subprogram to another subprogram. The syntax of the .
PERFORM statement is: | |

PERFORM subprogram name

The subprogram name must be in the Subprogram library (see Section 5.2). Re-

_ turn from the subprogram is made to the statement following the PERFORM

statement.

3-37

3.7.1.14

The PERFORM staiement may occur as the lasi statement in a field program,

in which case further statements are not required.

See further in Section 3.8 about subprograms.

An example of a PERFORM statement is:
PERFORM CHE10,

SEARCH Statement 3.7.1.14

The SEARCH statement is used to search a table for a specified argument and
if the search is successful, to store the function of the drgument, otherwise if
the search is unsuccessful, to perform a specific action. The syntax of the
SEARCH statement is: |

’field name

field name (num. const.)
SEARCH < register y IN [DISC] table name
register (num. const.)

constant
\ J

.
current field name

GIVING {J current field name (num. const.) ?

register

| register (num. const.)

AT END unconditional statement

Table name identifies the table in the library of core tables (the DISC option
is not used) or in the librory' of DISC tables (the DISC option is used). The

table must be double-entried.

Using the operand following the word SEARCH the table is searched for a match

against the arguments of the table.

If the search is successful, the function of the argument which matched is
stored in‘the operand following the word GIVING, and the unconditional

- statement following AT END is not executed.

If the search is unsuccessful, control is transferred to the unconditional state~
ment following the words AT END, and the operand after the word GIVING
is not changed.

The source operand must be of the same type as the table arguments. Current
field is only allowed as destination if it is a not keyed field, and if it is of

 the same type as the table functions.

3.7.1.15.

Examples of the SEARCH statement: .

SEARCH CUSNO IN CTABL GIVING X01
AT END ALARM 'CUSTOMER NUMBER NOT KNOWN!,

SEARCH FLD1 IN ATABL GIVING FLD4
AT END GOTO ERROR,

SEARCH FLD(1) IN ATABL GIVING X01
AT END COMPUTE X01 =0,

Notice: If the search is unsuccessful no value is stored in the destination

operand.

SELECT Statement : 3.7.1.15

The SELECT statement is used to change subformat under program control. The
syntax of the SELECT statement is:

SELECT SUBFORMAT subformat name

The SELECT statement may appear only in the last field program in a subfor-
‘mat. The statements following the SELECT statement are not executed, and -

the subformat change is made.

Examples of the SELECT statement:

SELECT SUBFORMAT 2,
IF X01 =0 THEN SELECT SUBFORMAT E,

3.7.1.16

3.7.1.17

3.7.2
3.7.2.1

SET Statement | 1 3.7.1.16

The SET statement is used to set the field status to valid or invalid. The syn-

tax of the SET statement is:

SET field name VALID
INVALID

The validity flag of the s.pecified field is set valid or invalid, based upon the

selected option.

Examples of the SET statement:

SET FLD1 VALID,
IF TOTAL <> X01 THEN SET A INVALID,

SKIP Statement | 3.7.1.17

The SKIP statement is used to make an automatic skip to a forward field. The

syntax of the SKIP statement is:

SKIP numeric constant FIELDS

The numeric constant defines the number of fields to be skipped, which must

be greater than 0. If the number of fields reference to a field beyond the rec- |

ord a runtime error will occur, otherwise the statements following the SKIP

statement are not executed and the skip action is performed. The skipped fields

are filled with fill characters and their field programs are not executed.

Examples of the SKIP statement:

SKIP 1 FIELD,
IF FLD > 10 THEN SKIP 2 FIELDS,

Conditional Statements ' 3.7.2

IF Statement ' | 3.7.2.1

The IF statement is a conditional statement. It is used to make a path through

the field program, depending on the result of the evaluation of the specified

condition. The syn‘th of the IF statement is:

IF condition THEN sentence [ELSE sentence]

The condition following the word IF is evaluated. If the condition is true, the
sentence following the word THEN is executed. Control is then passed to the
next statement after the IF statement, unless the sentence contains a GOTO

statement, in which case control is passed to the GOTO label.

'lf the condition is false, the sentence following THEN is skipped and the
sentence following the word ELSE is executed, or, if the ELSE option is omit-

ted, the next statement after the IF statement is executed.

The IF statement may occur as last statement in a field program, in which

case no following statement is required.

A sentence contains one or more statements, separated by a semicolon, and

terminated with a comma or the word ELSE.

- A sentence following the word THEN may contain any statement except a con-
ditional statement. A sentence following the word ELSE may contain any

statement including a conditional statement.

Notice:

" 1. Neither comma nor semicolon is allowed immediately before the word"
ELSE.

2. A sentence following the word THEN is terminated when the word ELSE
or a comma is encountered.

3. A sentence following the word ELSE is terminated when the first comma

is encountered.

Examples of the IF statement:
. IF NOT (TOTAL = XO4) THEN 'ALARM TOTAL PRICE NOT OK!
ELSE DISPLAY 'END OK!, :

. IF X01> 0 THEN COMPUTE X02 = X02 + A;
'COMPUTE X01 = X01 -1,

3.8

3.8.1

IF X01 < X02 THEN COMPUTE X02 = X062 - A
ELSE COMPUTE X02 = X02 + A; COMPUTE X023 = X03 - 1,

IF A> B THEN GOTO C,

Subprograms

3.8

A subprogram is a program that is called from another program, by using the
PERFORM statement. Control is transferred to the first statement in the sub-

program, and returned to the calling program by the END statement in the

subprogram,

Statements In Subprograms

«

3.8.1

The statements allowed in subprograms are:

Notice:

ALARM -
ALLOW
COMPUTE
CONNECT
DEFINE
DISALLOW
DISPLAY
END -
GOTO

IF

LIMIT
MOVE
NOTE
PERFORM
SEARCH
SKIP

(field name not allowed as operand)
(the DISC table option is not allowed)
(field names not allowed as operands)

(field names not allowed as operands)

(the DISC table option is not allowed)

(field name not-allowed as operand)

(validity condition and field names as operands

are not allowed)

(field names not allowed as operands)

(the DISC table option is not allowed)

1. A subprogram must end with an END statement.

2. A subprogram cannot call itself in a PERFORM statement.

3.8.2

Operands In Subprograms

3.8.2

Only registers and constants are allowed as operands in statements in subproé

grams. The register names refer to the same registers as in the field programs,

and a register may be used both in field programs and in subprograms.’

Registers are used for transferring data to and from subprograms, as the for-

mat language contains no possibilities of defining subprograms with para-

meters.

Example:

Consider a problem, where you want a check-digit control in a numeric

field. You program the check in a subprogram, for example:

SUB.PROG.

NAME COMMENT

1 5 2

C 000 1CHECK- ,D/G/T CONTROL, = XOI=CUSTOMER NUMBER .

PROGRAM STATEMENTS

I(IXIOI7I(III)I*I5I | T S N Led .4 ']

1 i 1 1 i -1 i i L 1 1 ‘i § S i L 1 ' 1

-Q+IX|OI 7.{[2‘)t*|41 i L 1 l‘ A | -] i 1 5

A XO1.(3)*3 . . .

1 1 1 1 3 1.3 1L 1 1 1 1 ' 1 1 1 1 1 i

AXOLCA)*2, e

A XO01,(5)%1), MOb, 1.1, K2, O THEN .\ o\

AL ARMK ! INCORRECT CUSTOMER NUMBER',

£IMDllllll!lllllllllIllllllllllllltillllI

S R TS W SN (NS TN SUIS WU SR UNRT DU W SRR NURS U NNV SU WU N S S SNNS S S WTRN S NN SUN S N WS WS WSS VNS N " " |

The corresponding field program may look as fo’llows:

FORMAT ,
ORnA s |p | comment
1 2|3 4
L 1 L L e . i -l Ik 1 1 1 1 1. L I' 1 i 1 L i 1 1 1. 1 1 L L 1 L 1 L L L 1 J i i
s & ¢
9 2 /& A5 £N &
9 S /5SS [EF oo/ £
&S S &[S/ /8/ /58 NS &
&I S)L)Y/)RS [SL/YSSS) & / procram STATEMENTS
1 2l 3]l alslse] s 8 |olwofifie]ia] 14 | s ' ,
lClU‘S]N]O! i i l5 IONJ 1 l'1 1 ‘CLOIMPIUITIEI lxlolfjs|C|UJsM01’] PR WIE IO S G0 U WS N BN S SN N S o
A1 1 i I} il i A 1 1) 1 L A LPIE;RKFIQM lclolqol’l’l § U - -l i 4.t 2 b a1 4 4 1 & i 1
| I T . 1 L l A i 1) N— 1 i llll‘]llj]“lll‘ll‘ll‘ll'lll]lll]l

3-43

4.1

4.2

4.3

Execution of Format Programs

Selecting Subformat 4.1
After invoking a format the system is set ready to execute the:: first subformat,
The sdme subformat is run through cyclically until a new subformat is selected.
A éubforﬁof can be selected manually by using the SUBFORMAT cc‘mtrol key,

or it can be program-selected by execution of a SELECT SUBFORMAT state-

ment.

Terminating a Format Program 4.2

A format program is terminated by executing an END statement.

Execution of Subformats) 4.3

The field descriptions in a subformat are executed sequentially. After the in-
itial sequential execution of all field descriptions in a subformat follows a
cyclical repetition starting with the subformat's first field description, and

SO on.

This sequential process can be interrupted by a SKIP statement, or by using
the RECORD RELEASE or the FIELD BACK control key.

By using the SKIP statement the execution of one or seVem! subsequent field

descriptions in a subformat con be skippéd.

Pressing the RECORD RELEASE control key will cause the remaining field de~

T scriptions of a subformat to be skipped, provided this is allowed - see Section

4.4,6.

Pressing the FIELD BACK control key will cause a backward step in the field
sequence of a subformat - though not beyond the current record.

4.4

4.4.1

4.4.2

4,4.2.1

Execution of a Ficld Description . 4.4

The execution of a field description is dependent on the field definition, the
field input and previous skip instructions. There is a number of possible al-

ternatives:

The field is a KEYED field.

The field is an AUTOMATIC field.

The field is a NOT KEYED field (including O-length fields).

The field has been skipped by a SKIP statement.

The field hos been skipped by the ENTER key, i.e., no data input.
The field has been skipped by the RECORD RELEASE key.

The field has been skipped by the BYPASS key.

*

»

%

L]

*

%

*»

Keyed Fields | | 4440
If a field is keyed (i.e. kind = K), the following steps wiHi be executed in the

named order:

*

Right/left justification and insertion of fill characters.

Length check.

*

*

Minimum length check.

*

Type check.

*

Execution of the field program.

Auromatic Fields | ‘ ' - 4.4.2

There are three kinds of automatic fields: .

DUPLICATE fields (i.e. kind = D),
CONSTANT fields (i.e. kind = C),
INCREMENT fields (i.e. kind =1).

Duplicate Fields'. Two possibilities are open: 4.4.2.1

" 1. Keying the field,

2. Duplicating the field.

Keyed fields are executed as specified in 4.4.1,

4.4,2.2

4.4.2.3

Subsequently,
* the field's contents are transferred to the register defined in the field defi-

nition.

Pressing the DUPLICATE control key will cause the following to happen:

* The contents of the register specified in the field description are trans-
ferred to the field. o

* Right/left justification and insertion of fill characters.

* A typecheck is performed.

* Execution of the field program.

Constant Fields. There are two possi\bilities: - 4.4.2.2

.

1

1. Keying the field;
2. Duplicating the field.

Keyed fields are executed as spec'ified in4.4.1.

Pressing the DUPLICATE control key will result in the field being executed as
a DUPLICATE field, cf. 4.4.2.1.

Increment Fields. There are two possibilities: 4.4,2.3

1. Keying the field;
2. Duplicating the field.

Keyed fields are executed as specified in 4.4.1.
Subsequently,
* the field's contents are transferred to the register defined in the field defi-

nition.

Pressing the DUPLICATE control key will have the following result: |

. * The contents of the regfs_ier specified in the field definition are transferred

to the field. }
The field is incremented by 1.

*

Right/left justification and insertion of fill characters.

*»

A typecheck is performed.

*

Execution of the field program,

The contents of the field are transferred to the corresponding register.

4-3

4,4.3

444

4.4.5

4.4.6

4,4.6.1

Not Keyed Fields ' 4.4.3

NOT KEVED fields are fields with kind = N or length = 0. Such fields will

have no input during registration.

The following is performed:

* Insertion of fill characters.

* Execution of the field program.

Fields Skipped by SKIP | 4.4.4 |

If a field is skipped by using the SKIP statement, the following will occur:

* Jnsertion of fill characters.

* No execution of the field program.

* Registers corresponding to duplicate or increment fields will not be updated.

Fields Skipped by ENTER ' 4.4.5

If a field is bypassed by simply pressing the ENTER key, the following will

occur:

* Minimum length check, i.e. if minimum length is greater than zero, an

error message appears and the field has to be keyed.

Otherwise, the following is performed:

* |nsertion of fill characters.

* No execution of the field program,

* Registers corresponding to duplicate or increment fields will not be updated.

Fields Skipped by RECORD RELEASE . 4.4.6

 Fields skipped by pressing the RECORD RELEASE key will be executed in ac-

' cordance with the field's definition.

Fields with Kind KEYED, DUPLICATE, CONSTANT, INCREMENT. Fields

with kind KEYED, DUPLICATE, CONSTANT, INCREMENT are executed as
fields skipped with ENTER (see Section 4.4.5). |

4.4.6.2

4.4.7
®

4.4.8
®

4.5

*If the minimum length of the field is not zero, an error message oppeors,}
and the field must be keyed. Subsequently, RECORD RELEASE ‘s stopped,
and normal execution is resumed in KEY, REKEY, or EDIT mode.

Fields with Kind NOT KEYED. If the skipped field is of the NOT KEYED

- kind the following will happen:

* Insertion of fill characters.

* Execution of the field program.

Fields Skipped by BYPASS - 4.4.7

-The BYPASS control key is used fo bypass fields that one has given up keying

correctly.

* The field will retain the contents it had before activating the BYPASS key,
if the field has been keyed.

* The field program is not executed.

* Registers corresponding to duplicate and increment fields are not updated.

Execution of a Field Program ‘ - 4.4.8

The statements in a field program are executed sequentially.

The whole field program is executed. However, any error detected through
ALLOW, DISALLOW, or LIMIT, os well as execution of an ALARM, SKIP,
or SELECT statement will cause the field program to be interrupted after such

a statement.

The sec}uential processing of a field progfc:m can be interrupted by a GOTO |

statement,

. Field Flags | » 4.5

During execution of a field description the field is assigned two flags, which

are independent of each other. They are:

Validity flag

Skipped flag.

4.5.1

4,5.2

Validity Flag 4.5.1
This flag has two values: , . :

VALID
INVALID

An INVALID flag is assigned to a field which

* is skipped by the BYPASS key, or
* is set INVALID by a SET statement, or
* is a "NOT KEYED' field 'confoining an error, or

* is a keyed field containing an error, that has not yet been corrected.

In other cases the field gets a VALID flag.

If a field in a record has an INVALID flag, the record will also get an IN- .
VALID flag. ‘

You may ask for a field's validity flag in an IF statement.

Skipped Flag 4.5.2

This flag has three values:

NOT SKIPPED
SKIPPED
SKIPPED BY STATEMENT

A SKIPPED flag is given to a field which ' | .

* is skipped by the ENTER key, or
* is skipped by the BYPASS key, or
* is skipped by the RECORD RELEASE key.

A SKIPPED BY STATEMENT flag is given to a field which

- * is skipped by the SKIP statement,

Otherwise, the field gets a NOT SKIPPED flag. We say the field is skipped
if it has a SKIPPED flag or a SKIPPED BY STATEMENT flag and the field pro-

gram is not executed,

4,53
®
o
4.5.4
®
4.6

Flags for REKEY ' 4.5.3

For fields specified as 'REKEY YES' the flags in REKEY mode are set as for
KEY mode when the fields are rekeyed. A field specified as 'REKEY NO'

gefs normally the same flags as the corresponding old field. But depending
on the old field flags for ‘REKEY NO' fields some special actions occur:

If the old field validity flag is INVALID, the old field is not used as field
input but an error message appears and the field must be keyed as if it were
specified as 'REKEY YES'.

If the old field skipped flag is S'KIPPED BY STATEMENT and the field will

‘not again be skipped by the SKIP statement, an error message appears and
the field must be keyed as if it were specified as 'REKEY YES'.

Flags for EDIT I 4.5.4

When fields are keyed in EDIT mode the flags are set as for KEY mode. When - |

~ searching in EDIT mode the ﬁeld; are normally given the same flags as the

corresponding old fields. But depending on the old field flags some special

actions occur:

If the old field validity flag is ‘INVALID, »the old field is not used as input,

but the searching stops with an error message.

If the old field skipped flag is SKIPPED BY STATEMENT and the field will
not again be skipped by the SKIP statement, the old field is not used as input,
but the searching is stopped with an error message.

Registers . ‘k ! 4.6

Registers may be assigned directly in the field program, or indirectly when

- used for automatic fields (kind: duplicate or increment). In the latter case

the field is not transferred to the register until after execution of the field

program,

4,7

4.8

Replay : ‘ 4.7

'When the format program is executed during keying, the format is said to be

'playing' the batch. The format execution sequence and the contents of the
registers may be dependent on what is keyed. Therefore, a register of which
the contents are affected by what is keyed must be changed whenever the

field affecting it is changed. To revise the register contents and bring them

_up to date, the entire batch must be 'replayed' from start up to the point where

the change is made. To save time during replay pictures of the registers are

frequently saved in the batch, and the replay is actually performed from the

nearest preceding register picture.

" Replay occurs:

* when the RECORD BACK key is used.
* when the FIELD BACK key is used.
* when the CLEAR key is used.

- * when the SUBFORM key is used.

* when the RECORD key is used.

when an error is detected during format program execution and a register
has been changed in the format program. '

when keying or rekeying is reopened after the ESCAPE kay has been used.

Execution of Format Image | , / 4.8

The execution of the format image belonging to a given format is given by

the execution of the format itself.

In selecting subformat the corresponding subformat image is automatically k

used.

If a subformat image consists of only one page, the fill-in-the-blanks mask of

_ this page is written on the screen on selection of the subformat, and remains

there during the repeated registration of this subformat.

If a subformat image consists of several pdges, the corresponding fill-in-the-
blanks mask will be replaced during the run of the subformat. This replace-

ment occurs as each new page is specified in the field definitions.

5.1

Entering New Formats, Subprograms, and Tables

. The keying of new formats, subprograms, or tables is controlled by a standard

format. The result is a batch, which can be edited, saved, listed, etc., in
the same way as with all other batches in the Data Entry system.
Before entering new formats or subprograms in the system all referenced sub-

programs and tables must have been entered.

The entering of formats, subprograms, and fables is guided by the supervisor
program TRANS, with the exception of DISC tables which are treated separ-

“ately.

TRANS controls if the source batch is correctly structured and, if so, trans-
lates it into internal form. The name of the translated file is then included in
the current library, after which the new format, or subformat, or table, can

be referenced by its name.

New Formats ‘ 5.1

The format text of the coding sheets is keyed under the control of the standard -

format FORM,

The keying of tags written on complementary coding sheets is conkfro”ed by
the standard format IMAGE. /

The FORM standard format contains 3 subformats (see Appendix [V):

H - reads subformat head belonging to the new format;
F - reads field description belonging to the new format;
E - terminates the batch (format text).

The format coding sheets are interpreted by FORM in the following way:

1st subformat

FORMAT |g
NAME

o
o
o]
k<
z
m

Zz

]

read by H

)
44,,6
Q&) N

“U,
2,
IS

automatic
selection
PROGRAM STATEMENTS Of F

)
56, o
L4

14 15

- read by F

, - read by F

PR S0 W TUN TN SN ST VO T TS SN N N W T A W {

L YN WO SR WY S T W WOV WG T WY S0 NS O A O W N 1

o SUBFORMAT. , ... - read by F

automatic

FORMAT: [
__NAME_ K

)

COMMENT

selection

of H

1 2§3 4

ok . oy

- read by H .

Q&
\lé
&F A

auvtomatic

&
AN [3
o/ £ selection
g ;

PROGRAM STATEMENTS of F

- read by F

1 T N W NV SN T D TR W T U 00 O N S T § _readbyF

Il PRRTENS SN S T TSN UG S Y A N S T W S)

ENQ:. - read b)’ F

FUE WO TN TN SN SO0 W AT S S S e |

automatic-
ally termin-
ated by E

Such automatic selection of subformats is performed only if this statement

is indicated exactly as above, meaning that the statement must begin in ‘ .
the 1st position in columin 15, that there must be one, and only one, space

between END and SUBFORMAT, and that the words SUBFORMAT and END

must be immediately followed by a comma, :

Subformat H contains 5 field descriptions, which check the fdllowing:

1.” FORMAT NAME (AN)

2, SUBFORMAT NAME (AN)

The first character of the FORMAT
NAME must be a letter from 'A' - 'Z*,

must be a letter from 'A' = 'Z' or a
digit.

3. PROTECTED (A). N, or A

4. COMMENT (AN) No check.
5. Field description No check; automatic selection of sub-
(not keyed field) ' . format F.

- Subformat F contains 16 field descriptions, with the first 15 receiving input
from the columns of the format coding sheets, while the 16th is a not keyed
(0-length) field for consistency checks of the first 15 field descriptions. The
following checks are performed.

1. FIELDNAME (AN) : The first character of FIELDNAME must
be a letter from 'A' - 'Z', or FIELD-
NAME ='AAAAA".

2. PAGE (N) When PAGE is keyed as SPACE ENTER
two field descriptions are automatic-
ally skipped (that is, neither PAGE nor
LINE or POSITION are specified);
else the following checks are made:
PAGE must be a number from 1 to 8,
and must, furthermore, be greater than
or equal to the last defined PAGE of

the current subformat.

3. LINE (N) LINE is a number from 1 to 21.

4. POSITION(N) . POSITION is a number from 1 to 80.
5. LENGTH (N) When LENGTH is defined as 0 (zero)

or as SPACE ENTER, an automatic skip-
ping occurs to the 15th field descrip-
tion (PROGRAM STATEMENTS); else
the following check is made: '
LENG TH must be a number from 1 to 80.

6. MIN.LENGTH (N) MINLENGTH must be less than or
‘ ' ’ equal to LENGTH, and has to be a
number from 0 to 80.

7. TYPE (A) 'NA', 'SN, 'SS', 'AN’, or 'AA".

13.

14,
15.
16.

. OUTPUT POSITION (N)

. R/L (A)
10.
1.
12.

FILL (AN)
REKEY (A)
DISPLAY (A)
KIND (A)

REGISTER (N)
PROGRAM STATEMENTS (AN)

Field description
(not keyed field)

OUTPUT POSITION is a number from
0 to 255. '

lLl' 'R', or |A!

|A|, lo" or 1kt

|Y|’ IN', or 'Al

IN’, 'YI, or lA'k

', 'D','C, ', 'N or 'K';" further-
more, TYPE must be either 'NA’', 'SN',
or 'SS', if KIND ="',

REGISTER is a number from 1 to 99.
No checks.

If LENGTH ="'AA", or LENGTH =0:
only PROGRAM STATEMENTS may be
specified.

The following applies if LENGTH > 0:
- Either PAGE, LINE, and POSITION
are all specified, or none of them.

- MIN.LENGTH, TYPE, and OUT-
PUT POSITION are specified.

- If REGISTER is not specified, then
KIND is either 'N*, 'K’, or 'A".

- If REGISTER is specified, then KIND
is either 'C', 'D', or 'I'.

When PROGRAM STATEMENTS start

with 'END SUBFORMAT,', subformat

H is automatically selected.

When PROGRAM STATEMENTS start

with 'END, ', subformat E is automatic-

ally selected.

Subformat E consists of one field description, with a field definition describ-

ing a not keyed (0-length) field, and the field program is solely an END

stafement.

In addition to normal error messages (length, type, limit, etc.), the follow-

ing alarm texts may appear when using the standard format FORM:

From sbbformat. Column

CURRENT PAGENO LESS THAN PREVIOUS PAGENO F.2
ERROR IN CHECKBOX CONTENTS F.16
ILLEGAL FIELDNAME | F.1
ILLEGAL FORMATNAME H.1

" ILLEGAL SUBFORMAT NAME H.2
KIND "I" ONLY ALLOWED IF TYPE ="N" - "SN" OR "SS" F.13

MIN.LENGTH GREATER THAN FIELDLENGTH F.6

«

The standard format IMAGE contains 3 subformats (see Appendix V).

H - reads subformat head belonging to the new format image;

F - reads tag description;

E - terminates batch (format image text).

The format image coding sheets are interpreted by IMAGE in the following

way:

FORMAT
NAME

COMMENT

YR VRN WO DU S

i 1 A 1

i 1 1 ' 1 1 L i L i 1 3 |
1 1 1 1 1 ' L 1 1 1 1 1 1 i
]
]
]
1 1 i L 1 i i i 1 1 L 1 1 1
FORMAT
NAME s | COMMENT
1 2 3
1 1 1 i 1 e 1 L 1 i 1
/¢°e
ey
) S/ </ rext
1] 2] 3|4
1 1 1 1 i 3 1 i i L i 1 | -
i i i 1 1 1 L i L 1 ' 1 1 1
I3 1 i 1 1 1 1 1 1 1 1 .

Ist subformat
is H

- read by H

automatic
selection of F

- read by F
- read by F

- read by F

manual selec-
tion of H

- read by H

auvtomatic
selection of F

read by F
read by F

read by F

manual selec-
tion of E ter-
minates the
batch

Subformat H contains 4 field descriptions, where the following checks are

made:
1. FORMATNAME (AN) The first character of the FORMAT-
NAME must be a letter from 'A' to 'Z".
2. SUBFORMAT NAME (AN) is a letter from 'A' to 'Z', or a digit.
3. COMMENT (AN) No check.
4, Field description No check; automatic selection of sub~
(not keyed field) format F.

Subformat F contains 4 field descriptions, where the following checks are

made:

1. PAGE (N) PAGE must be a number from 1 to 8,
and must, furthermore, be greater than
or equal to the last defined PAGE of

4 the current subformat. _

2. LINE (N) LINE is a number from 1 to 21,

3. POSITION (N) POSITION is a number from 1 to 80.

4. TEXT (AN) No check.

Subformat E consists of one field description, with a field definition describ-
ing a not keyed (0-length) field, and the field program is solely an END
statement, ’ ‘

In addition to normal error messages (length, type, limit, etc.), the follow-
ing alarm texts may appear when using the standard format IMAGE:

From subformat.Column

CURRENT PAGENO LESS THAN PREVIOUS PAGENO ~ F.1
ILLEGAL FORMATNAME | H.1

ILLEGAL SUBFORMATNAME _ H.2

When the created batches are considered tc be correct, translation of the
format is initiated by activating the supervisor program TRANS (see User's .
Manual): ‘

TRANS FORM form-batch [image-batch]

Remember that all referenced subprograms and tables must be known to the

system before starting the format translation. Once the format is translated

they are no longer needed.

When the format has been correctly translated, the format name is included

in the format library.

5.2

New Subprograms | , N 5.2

The subprogram text of the coding sheets is keyed under the control of the
standard format SUBPR.

The SUBPR standard format contains 3 subformats (see Appendix IV):

H - reads subprogram head;
P - reads a part of a subprogram;
E - terminates the batch (subprogram text).

The subprogram coding sheets are interpreted by SUBPR in the 'follbwing way:

1st subformat

is H
SUB.PROG.
NAME COMMENT
1 2 .
- read by H
L 4 L 1 4 1 i A ' L. L L A 1 1 L L 1 i 1. 1 1 1 i L L L i L
automatic

selection of P
PROGRAM STATEMENTS

, ., -read by P
- read by P

1 1 i TN U S e | i i 1 | 3 1 1 1 AL

U I |

1 e I3 J | 1 L L 1 L

1 11 i | S S 3 1 L 1 L. 1 1 1 i | i 'l 1 '3] ' 1 1). 1 i 1 § S b 3 b Sl

[T WS SN WU MU TN WY WS NNNNY NUU SONN NN WIS SN RO S N NN SN S N S |

. .
I_EINA-DI,lllllllLllll!lllllllll]llill

j-readby'P ‘

automatically
terminated by

* Automatic selection of subformats is ackomplished only if this statement
is indicated exactly as above. That is, the statement should start in the
Ist position, and the word END should be immediately followed by a

comma,

- 5-10

Subformat H contains 3 field descriptions, with the following checks to be
made: .

1. SUBPROGRAMNAME (AN) The first character of the SUBPROGRAM-
NAME must be a letter from 'A' to 'Z".

2. COMMENT (AN) No check.
3. Field description No check; subformat P is automatical-

(not keyed field) ly selected.

Subformat P consists of one field description, with the following operation:

1. PROGRAM STATEMENTS (AN) No check; subformat E is automatical-
ly selected if PROGRAM STATE-
MENTS start with 'END,'.

Subformat E consists of one field description, with a field definition describing
a nof keyed (0-length) field, and the field program being solely an END

statement.

In addition to normal error messages (length, type, limit, etc.) the following

alarm text may appear when using the standard format SUBPR:

From subformat.Column

ILLEGAL SUBPROGRAMNAME H.1

When the created batch is considered to be correct, translation of the sub~
program is initiated by activating the supervisor program TRANS (see User's .
Manual):

TRANS SUBPR subpr - batch

Remember that all referenced subprograms and tables must be known to the
system before starting translation of the subprogram. Once the translation is

finished they are no longer needed.

When the subprogram has been correctly translated, it is included in the sub-

program library.

5.3

5.3.1

New_N Tables , " 5.3

New Core chles 5.3.1

The keying of the table text from the codmg sheets is confrolled by the ston-
dard format TABLE.

The TABLE standard format contains 8 subformats (see Appendix IV):

H - reads tqble head;

1 = reads table element, single entry table, A-type = N;
- reads table element, single entry table, A-type = AN;
- reads table elements, double entry table, A-fype =N, F—type =N;

2

3

4 - reads table elements, double entry table, A-fype =N, F-type =AN;

5 - reads table elements, double entry table, A~type = AN, F-type = N;
6 - reads table elements, double eni'ry table, A-type = AN, F-type = AN;
E - terminates batch (table text),

The table coding sheets are interpreted by TABLE in one of the following two
ways (see Appendix IV):

1. Single entry table

* 1Ist subformat
is H

o TaBLE . | |A- | A-
NAME TYPE LGTH.

S 1 U/ | - read by H

automatic se-
lection of sub-
+ ARGUMENTS ~ format 1 or 2

-read by 1 or 2

[WUE W TN SN TOUNE WU ARG NN TUUN SUN WY NS NS SO SN SUN SN NI NS SN S N S N S - U T T T |

- read by 1 or 2

Sl wm el

- read by 1 or 2

Manual selec-
tion of E ter=-
minates batch.

5.1

5-12

2. Double entry table

TABLE T A- A-| F- | F-
NAME TYPE LGTH | TYPE |LGTH]

1st subformat
is H

- read by H

automatic se-
lection of sub-
format 3, 4,

5,oré

- read by 3,4,

PSSR SO N G TN S X
; 2 Lo PR TR U VUG TS TH T O B | 5,0r6
llllllllllllllllllllllll [URRIE NI DN T NN B S N
11 1 X 1.1 L II(!IIIIIlllll4—reodby3’4’
2 ‘ 5 o0ré
lllllllllllllllllllllllllllll .
1» 1 5 L1 1 1 1 I 1 L
i
t
J
!
'
[}
'
1
2] ¢
lllllll IIlllIlllIlllllllIIlllll N
1 , - read by 3,4,
PY TS T WS N T |
; 1 S TN WY WA SN WK NN WS NN N S N S0 W N W W R 5,0]'6
) U SRS W N - TSN W S T S S | 1 I [T SN DS R S I | —

Manual selec-
tion of E ter-
minates batch.

Subformat H contains 7 field descriptions, with the following checks to be

made:

1. TABLENAME (AN)

2. TYPE (A)

3. ARGUMENTTYPE (A)
(A-TYPE)

4. ARGUMENTLENGTH (N)
(A-LGTH) ‘

The first character in TABLENAME
must be a letter from 'A' to 'Z'.
1St or 'D!

'NA' or 'AN!

ARGUMENTLENGTH must be a num-
" ber from 1 to 80.
If TYPE ='S' the next two field de-
" scriptions are skipped.

5. FUNCTIONTYPE (A) 'NA' or 'AN!

(F-TYPE)
6. FUNCTIONLENGTH (N) FUNCTIONLENGTH must be a num-
(F-LGTH) ber from 1 to 80.
7. Field description ; ‘No check; depending on ARGUMENT-
(not keyed field) TYPE and FUNCTIONTYPE a subformat

from 1 through 6 is automatically se-
lected.

Subformats 1 and 2 contain one field description each, with field type being
N and AN, respectively - otherwise no check performed.,

Subformats 3, 4, 5, and 6 contain 2 field descriptions each, with field types
being N/N, N/AN, AN/N, and AN/AN, respectively - otherwise no check
is performed. ' ’

Subformat E consists of one field description, with a field définitidn describ-
ing a not keyed (0-length) field, and the field program is solely an END

statement.

In addition to normal error messages (length, type, limit, etc.) the following
alarm text might appear when using the standard format TABLE:

From subformat. Co.!umﬁ

" ILLEGAL TABLENAME | . H.1

When the created batch is considered to be correcvt, translation of the table

is initiated by activating the supervisor program TRANS (see User's Manual):
| TRANS TABLE table-batch

When the table has been correctly translated, the table name is included in
the table library. ‘

5-13

5.3.2

5-14

Disc Tables ' ' 5.3.2

When using a table with many table elements, it is sometimes necessary fo set

up the table as a disc table.

The entering of such a disc table is ackomplished with the help of the super-
visor program DISCT. This prograrﬁ checks if the table text is correctly struc-
tured, and, if so, translates the table into internal form, after which the
table name is included in the disc-table library. This procedure allows the

table to be referenced as an ordinary table.

Translating means that a hash-organized register, based on the table text, is
generated on the disc. This generating (translating) is usuﬁlly a time-consum=
ing process, but it will, on the other hand, enable quick checks to be made
on the existence of certain elements, even in cases involving very large
tables.

At a later point in time it will be possible to insert, or to delete, elements

in the translated table, so as to avoid repeating the translation procedure.

The table text is either keyed to a batch under the control of the standard -
format TABLE (see Section 5.3.1), or it may be stored on a magnetic tape
generated by another computer.

If the table text is stored on magnetic tape, this must have the following for-

mat:

The first block should contain information ‘on thé disc table that is to be cre-
ated: (All information should be given in character form - 8 bit ASCIL,)

Byte Contents.

1-6 Name of disc table. Only the first 5 characters are used for table

identification. Fill characters: space.

7-9 Argument length + function length. 3 digits. If defined length is
less than 3 digits, the preceding empty spaces are zero-filled.

10-11 Argument length. 2 digits, right-justified, zero-fill.

12-16 Number of table elements. 5 digits, right-justified, iero-—ﬁ”.

Byte Contents

17 Table type = single 'S’, or doublye 'D'.

18-19 Argument type: 'NA' or 'AN'.,

20-21 Function type: 'NA' or 'AN; defined only if table type = 'D',
22-26 The word 'RCTAB'. R
27-512 Nof used.

Each of the following blocks must contain a complete number of table elements,

as mony as possible in each block.

- When the table text is considered correct, the table is translated by activating
the supervisor program DISCT through one of the two calls below: (See User's
- Manwal.)

DISCT MTO‘ (if the table text is stored on magnetic tape)
DISCT table-batch (if the table text is keyed under the control
of the TABLE format)

When the table has been correctly translated, the table name is included in
the disc-table library.

5-15

6.1

6.1.1

Programming Hints

This section describes the special facilities of the system, how they are pro-
grammed, and how they work when the finished format is used for keying.

Screen Processing , 6.1

Screen processing is understood as covering all infor-
mation given by the format program on the .utilization
of the screen's data area. The first lines on the screen are always

reserved for the system.
As an aid to registration it is possible to specify tags, and it is likewise pos-

sible to specify the keying position of the single units on the screen. Screen
processing, can, however, also be entirely left to the system. ’

Screen Processing Assigned To the System | 6.1.1

In case one chooses to leave screen processing entirely to the system, the

columns PAGE, LINE, and POSITION in the definition sections of all field

descriptions are left unkeyed.

The system will then utilize the screen ?n,such a way that LENGTH in the
definition sections of the field descriptions assigns the number of screen po-

~ sitions that are set aside for keying to the field.

- The first field of the subformat is keyed in the left most position of the
first data line on the screen. This field is defined as the first field on the
subformat's first page.

- If there is sufficient space on the current line, one proceeds to key the
next field on this line, leaving one blank position before the field.

- If there is not enough space left on the current line, the next field is
keyed on the following line, starting with the left most position.

6.1.2

- If there are no more lines available, the next field is keyed from the left

most position on the first data line of the screen, which then makes this

field the first field on the subformot's next page. Previous to keying this

field the screen's input section is blanked.

Example 6.1.1

A subformat starts with the following field descriptions:

N

N
S & > s
s/ /& &S €S &
o 3 &/6 /Y SE YIS
~ (NN ENE T LSS STS) &
&S IS /L) 8/)&)P [SLSEYS/S) & / procra
1 2 3 4 5 6 7 8 g liof11{12{13} 14 15
FlLLDlll i L 110 '1. .l. .l.l. : : ° ° ° ‘l. | S S
Fil‘nonzL L i 115.1- T el Bl Bl el s .L. [
Flllblal 1 1 lq .l. .l. .!‘l. ° - ° ‘ °* .l. S . | 1:[
FJ-.D.IL) 2R B RS P B K 3 1 I O
FLL lblsj 1 L 15 -l‘ ‘l‘ .1.1. s M ‘ - M -l' 1 1t 11

" Keying positions on the screen will subsequently appear as follows:

STATUS L/NE
MESSAGE LINE

FLOT | | ALO 2 | |FLo3
FLD %

Establishing Keying Positions , 6.1.2
In order to specify where on the screen every single unit of a subformat is to
be keyed, the operator fills in: PAGE, LINE, and POSITION in the defi-

nition section of the field descriptions. The system will process this informa-

tion in the following way:

- A subformat's first field will be keye& from the screen position specified
- under LINE and POSITION in the first field description (PAGE is here, as
a rule, specified as 1). This field is the first field on the subformat's first

poge.

- If PAGE has the same value in the next field description as in the preced-
ing one, the next field is keyed from the screen position specified under
LINE and POSITION.

- If PAGE has a higher value in the next field description than in the pre-
ceding one, the screen is blanked, and the next field is keyed starting in
the screen position specified under LINE and POSITION. This field is then
the first field of the subformat's next page. ' v

When planning the keying positions the programmer uses a screen layout form
on which he marks out the keying positions and from which the LINE and
POSITION values can be read and used when completing the definition sec-

tions of the field descriptions.

Example 6.1.2a

Screen layout:

POSITION —

- LINE

< USTOMER | | DATE

AR ACLE|

QUA/
9 7/ 1TY]
UNy T
PRICE 1>
AMOUNT

1=

1] 2 3] | 5] 6] 7] e s|10]11]12]33)14]15]16[17|18]10]e0l21|eeededes2d e 2s2d 01313230134

Field descriptions:

N
> O > <
s/ /& &9 A& S &
o (&/SS)5 SL (/ST
S A o/ 8/ /&/L5 / o8/ 6
&S S/)8 /S) L)€ LIS/ & / procram star
1 2t 3|l a}lste |7 8 |olof1]i2}13] 14 15
CLUISITN l 12 1/' (5 .J. .l. ‘l.l‘ ° M ° ° .L- L4 4t ot 3 % 3
A;A‘;ITLEI 7' 12 17 I6.1. .1. .l.l ° ° ° ° .l. N WS T NS S B S N
ﬁ;klﬁ/ﬂ f‘ 14‘ I~9 16 .l. 'I. .I.l. ° ‘ ° ° ° .l. 1.t i & 1 1 1 % 1
QI)’.; 715 .[14.1. b 11...... B A S)
”Lplﬁllcf" I6‘e JL9 16 .l. .l. .l.l. * ° * ° . .l. PR S S T NS SO SN N
AMOUM 1| 7% I O Y O Y S S Y O
;

-

Within the same subformat it is possible to combine field descriptions with
PAGE, LINE, and POSITION filled out, with not completed field descrip-~

tions. ' , .

Thus, if the system encounters a field description where no information is
given, the keying positions will be calculated according to the formula pre-
sented in Section 6.1.1. Such field descriptions must therefore be adapted to
programmer-selected keying positions, bearing in mind that these might cause

the system to shift page. The system does not permit overlapping.

Example 6.1.2b

The field descriptions below will give the same result as the field descriptions
presented in Example 6.2.2a (now, PAGE, LINE, and POSITION are not
filled out in the DATE column).

s & .

S/2 /5 68 o [&
Q.{llsgéo chgl\él ‘ZO($ \‘f’eé\ §Y ki{‘/ (Ssszoé\ Q‘V‘Z‘Q/fi)\‘g\iec Qg(;? PROGRAM STATH

1 2 3 4 5 6 7 8 9 |10t 12 134 14 15
lcusrmil 21 11 Sl--teedesielototedede ooy
DATE, N B N2 R Rl R4 R B2 12 Kd Bd R4 IR
ART/MIL 4l 9| 6l° <l= =l eleledelo]oisl i iinnias
(e X0 A A I A4 N O 3 R 3 3 1 3 L) N
UPRILCII 61 9] 6l <]s === clededodod=ds ol i viiann
AMOUN | Fl FlL 8l lo ol tele]edodode v o cans

6.1.3

Defining Tags | o © 6.1.3

Tags are normally specified only in connection with those formats where the
keying positions are defined by the programmer himself (see above). Therefore,
tags must be coordinated with keying positions, not only as far as the screen
positions are concerned, but also with a view fo'possible page=shifts in the

subformat. Every individual tag within a subformat will then be ‘characterized
by PAGE, LINE, and POSITION (see IMAGE Coding Sheet, Section 2.1.2).

The system utilizes the tag information in the following way:

- On selection of a new subformat-or a new page within a subformat the
screen is blanked and gﬂ tags belonging to the new page in the subformat
are laid out in their specified screen positions before keying is started to
the first field of the page.

- When the first field of a subformat is going to be keyed, the keying positions
but not the tags will be blanked if last used tags are the same as those be-

~ longing to the first page of the subformat. This is, for instance, the case
with subformats which contain only one page and are repeatedly executed.

When devising tags and establishing their position in relation to the keying

positions, the programmer uses the screen layout form.

Example 6.1.3a

Extending Example 6.1.2a to include tags gives the following screen layout:

JART/ICLE | i .

POSITION —
2 WUMBER| DATE

C USJ'OM[R ATE

L ARTY/|CLE| EHort
euAnTI Ay | KS7
APRICIE| | | eiprice+>
JAHOUNT e

1R i

Tag specifications:
S

é‘,éb q§ TEXT

71 2 IWuMBER . DATE. .. .,
1l 4 1 ,
1| 5| JQUANTITY o\ .. .
7| 6| 1lPRICE J

7| 7 JAMOUNT,

||||||||

||||||||||||

llllll

' Example 6.1.3b

This example shows how a format, at the start of registration, can display a

" screen image which serves as a keying instruction to the operator.

The format's first subformat might look as follows:

FORMAT :
NAME S | P | COMMENT
1 213 4

nnnnn

EXAMPUIW 7HE SUBFORMAT /S. USED _AS. A GU/IDE

. éz‘
s /& A3 £ ,53'
Q& S /5 /) JES) LSS F .
& Q‘? S)E8)G /) E)SE SSSISSS & [onocram siarevents
1 2 3] 4 5 6 7 8 9 |10§11[12}13} 14 15
A1 A4 1 1\116 I1 l/ KOAIN 101 I lllklll‘lllJllllLllJJIJJ;
1 1 1 i i 1 1 I A 1 A 1 SIEALALEICIZ ‘SJMQEOIRLMATI le’l | .
.2 &t 1 A A1 i 1 1 | — LENA"SJUJaFIOI&MZILIIIIIJJ
Matching tags:
Fgﬁméf s | coument
1 2 3 - .
XAMPI\ GUIDE R
S
Q‘é"b Qé’ TEXT
1 21]3ts] .
1A 1 FORMAT, EXAMP. .\ oo, T S S
3 ‘1 THE FORMAT /S USED FOR KEYING //V.'I(OI,CES
1 5| 1| SUBFORMAT, 1.:, SHONWS THIS GUIDE | \ \ s v sovv ivtissiieevi e a e
1 K I | B (MAY BE ACTIVATED DURING KEYING,, 700)..
1| 7] 1| SUBFORMAT, 2: HEAD OF [NVO/CE; SELECTED BY THE OPERATOR
L 8L AT, THE START OF A NEW INVO/CE.,
71 91 1| SUBFORMAT 3: LINES OF INVOICE, AUTOMATICALLY.: .S,E,I.LE,CI[o
"o fl . A,Ff.ﬁ& SUBFORMAT, 2., et .
11111 1 SUBFORMAT, 4.:, .A:Mo, OF BATCH,, l.s,s,z.ﬁ‘c‘r,go, ,a,r, THE, ‘qm:k,a TOR
] !.2 A, AAAAAAAAAAAAA AAFL’A‘ERI IZAASITI l/leVIOA/ACIEI.I U TS 0 UL S SO W W B 3 RO N AN SO S SN Y S S W | .
1174 1| PRESS, THE ENTER KEY WHEN YOU NANT. .TO START KEYING.- e
11151 1] (THE, ./(.E.Y,//\(G. WILL, ,s.er, LN _SUBFORMAT, 2.1, AUTOMATY, CALLY). . .

6.2

A document contains, among others, the following information:

The record that the operator creates when pressing the ENTER key contains
only one field, a so-called no-transfer field (OUTPUT POSITION = 0). Such .

a field will be skipped when the batch is transferred to a main computer.

The following final notes on the subject of tags should be added:

1. No tags are attached to a format until the format is entered info the sys-
“ tem by activating the supervisor program TRANS (see Chapter 5). When
using this format later on, the operator may, however, at the start of re-
gistration, command the registration to be executed without tags. (See
User's Manual on Control Comma'ndsl)
2. When dealing with subformats that entirely rely on system-established
keying positions, the available space for tags is limited to what might be .
left of the lower section of the screen. With such subformats, one may '

use, for example, DISPLAY statements as a primitive form of tags.
Reformatting ' | | ' 6.2
Reformatting means storing the units of a document in a dif-
ferent order than the keying order. Reformatting is done by

specifying suitable values for "OUTPUT POSITION' in the definition section
of the field descriptions.

Example 6.2

date: [_] customer no.: [__| article no: | quantity:]

The information is typed from left to right, but the preférred storing sequence

on the record might be the following:
Field 1 Field 2 Field 3 Field 4

article no. | customer no. | date quantity

The field descriptions are therefore filled out as follows:

53
& &, /\\oe ’;b \lf’eo $§ Q‘,\\};\ ‘;\Q?
kgf? Qé, 5& QO‘O\ 3/%0 § . /:8 QI § Qg} Q‘V«‘:’I Q‘i Q\a‘} § f PROGRAM STATEMENTS.
1 243 4 5 6 7 8 9 [wo]11h2j13f 14 15
LY. A3 N B N N B R A N N
CUSTM L s Lot 2 el e b e
ART /M| | sl 1 i M N e
oA A 0 KN B B A A i b A e e
I R B "l 1 1 1 i j — 1 3. & 1.2 3 % 1 ¢ 3 3 2 1
i 3.1 3 1 1 1 i 1 1 1 'S S N N U S S TS S W D
S S —— 1 1 i 1 1 i T - i F I U WON O W TS W N N W e .
§ W R . | 1 1 1 i L IIA 1 lllll_llllljJL

The programmer should be careful when specifying output position in order to
avoid "gaps" in the subformat (leaving, for example, output position 2 empty,
while defining output positions 1 and 3).

6.3 Automatic Insertion , B ' 6.3

6.3.1_ Not Keyed Fields ‘ 6.3.1

A not keyed field does not require keying, but is assigned its value solely by
the program part of the field description.

Such fields can be used to insert, for example, constant values, or results of

calculations, or the contents of a register, as values in the record.

6.3.2

6-10

Example 6.3.1

I
s £ s A &
/)8 58 /%, &
Q& 2 VAW SL A &
S o/ & /S S/ & /L& Y ATLYETER
&F S)L))&) SRS S/S/ & / procRAM STATEMENTS
1 NEREERERE s |ojo|mfizfa] 14 | 15
DETI YlPIE I3 L 12 12 lA 1 1] N i ﬂQV‘[i 2 ,IAA ’l ‘TAQ lo‘kzyl,iE’l TS O G S S

L ;NQZE 17:y|ﬁ£ LOLFI AQC;U;”[/VI‘:AA

[S S T L 1 1 1 1 - 1

S U S 1 1 4 X 1 | - 1 FUE T TN YOO W WO TN UNE TN 1S VN DA I U WG TS O TO0 N O W S SN W Y

-
I S S] 1 1 1 1 11 X § U0 DS WA NN T T S S T IS SN U TS TN DU WA U UK WO NN S N S T

7OTALL | .| 1010l M 72| |0l | W . | COMPUTE TOTAL =\ \iooo
NPT N S SO E AU O | JOTAL * AMOUNT

"4 o4 I i 1 A 1 11 Il O S WU S WO S WO O S N IS NS T WD HN0 W [OO T A W D S N

..

DATE || .| . | 6] 6 N .17 V| . | COMPUTE, DATE = X05s... gy

| U R S L i L R Il Aod 1 PR WO TS N N0 N NS (S JA N SN T S50 N N O S A TN N Y S O WS o 3

S S T 1 1 1] i 1 1 4 1 FUE T S 0 TN TS S0 TS U LN S T T SO S S N S N R S N S s W 1

Note especially the field description "DATE". The register X05 may have

been assigned a value at the outset of registration of a specific sequence (typic-
ally a subformat that is only used once in a sequence). The keyed date is there-
by made available to all subformats during registration. One should take care
to control that the register is not used for other programs, for instance, appear-
ing in '"REGISTER' in the definition section of a field description.

Constant Fields ' . 6.3.2

A constant field is assigned the value of a register

when the operator activates the DUPlicate key. The
contents of the register are initialized by the program

part of a field description.

When a constant field is executed the first time, it is essential that the regis-
ter specified in the definition section of the field description be assigned

a value prior to execution, or it will not be possible for the operator to press
the DUP key. This is frequently done at the start of the registration of a spe-
cific sequence in subformats that are executed only once within the sequence.
Where the contents of the register are preserved fhroughout the registration of

asequence, they may not be used for other purposes.

lf'fhé operator does not use the DUP key for a constant field, the keying
. takes place as normal. Such keying does not change the contents

of the register.

Example 6.3.2

Subformat 1:

2
5 o S &
S/2/5 / $.0 & N
o% [y /)50 JOE Ao/ 2
o~ o/ & (2] S > & &g AL § <
& S S)L)8/))OE [RSES/S/ € / procram STATEMENTS
2l alalstel] 8 |olofu|2s] 14 | 1s

bATE 1. |l. |6l 6l M. .1 | comPuTE X02 = VATE,. .
: MOVE.S . . 2 TQ X03. .

Subformat 2:

- - - ~ ~ . w D rugIIc o) 14 "w

DxAx]lE A 1 16 16 LA/ |712 Cotz Loi g 3t @ & v 3t & & 4 3 2 P 1 3 2 1 3
B . .

.

| S U T | 1 Il I i 1 LA 1 UK WISE Y N O N U N VO U A T U N S Y S e

W T T T L 1 1 1 1 .| ' I IR TN TN TN V0 Y N TN TN WS Y T I S0 WA U N T T A X

CODE || .| .| 4 1AN| 1.7 o3l i

The value of the DATE field in Subformat 2 will be the value regi;trcited in

Subformat 1, and the CODE field is filled with spaces when pressing the DUP
key at these two fields. '

6.4 Avutomatic Duplication ' ‘ 6.4
. Duplication means asé’igning a certain field the same
value as for the corresponding field in the preceding
record. ‘

Duplication is ackomplished by utilizing duplication fields.
A duplication field is one that is assigned the value of a register when the
operator presses the DUP key. If, by contrast, the operator uses normal key-

ing routines, the keyed data will be input to both field and register.

The DUP key cannot be used with duplication fields, if the spéciﬁed register
has not yet been assigned any value; this is the normal case when first exe-

6-11.

cuting a duplication field, and the oper'ator must therefore key the field in-

put, which by this action also will be stored in the register.

The use of a register should be limited to one duplication field in a subformat;

the register should not be changed by program statements.

ExamEle 6.4

A document is filled out as follows:

. CUSTOMER NO - ARTICLE NO QUANTITY
5002 30 12
5002 992 1
3111 992 97 : .
3111 992 33
4001 30 14
-~ The matching subformat:
FORMAT Is|p|comument
1 213 4
EXAMPIZ, |
2
S/ /3 &5 YA &
o g SVETA S A)8
((37 es Qé‘/\é‘l QO‘O \‘f’éj § ‘ /:8 “ ()ssqoQ Q'VQ\VV Q"S—"Q\QQ § Qgs, J PROGRAM STATEMENTS .
1 2 3 4 5 6 7 8 9 110§11]12|13] 14 15
CIUISITN 14 lq KN 1 7l A Oli llllllll S T 1k
ART LN 3l 2] N 2 D02 i .
ALMO.U;N |5 11 N ;3 3 O ANDI SIUI&FKOKRIMA|7:}1 18

The effect of DUP on the fourth line, first field, will be the input of 3111 as

customer number in the record, if this number is keyed in the corresponding

position in the third record.

6-12

6.5 Automatic Incrementation ' 6.5

" Avutomatic incrementation means that a field is assigned

the value of some previously keyed value increased by 1.

Automatic incrementation uses increment fields. An increment field has the
same function as a duplication field (see Section 6.4), except that the cor-
responding register is increased by 1 by activating the DUP key. The keying

of an increment field causes also the corresponding register to be changed.

Example 6.5

A document is filled out as follows:

TYPE INFORMATION 1 INFORMATION 2
1 1250 | 20
2 900 1992
3
4 1 77

The matching subformat:

FORMAT
NAME s|p | commenT
1 2]3 a ,
IXKALMJPZ H X [T S T SR SHNS SH T SN GRS S SIS U SN WS SN SH -] l‘l i t i H 5. s i L. -
él‘
> > 5o
S/ 2/& &9 £N &
o <, $/6/ SE Y E3
NAY o/ & & > “ /R /8/9/ &)
EF fIs/)8/6/5/8/8 LSS & PROGRAM STATEMENTS
1 2l 3| 4 5 | 6| 7 8 |9ofwo]n}2{13] 14 15
7:ZP|£I l‘! 11 11 NLJ’ 1011 llllllllllllllllL.L.
/]NF.I7I i i ‘14 Af XNIIZ L TR Ul 0 TR T U NUD VAN DA NU JNW DU DU S B N S
/NF2) i A 14‘ 17 xN 1 '13 1 !ﬂp rSUBFpWTJ 44 1

On the first line of the field TYPE '1" i is keyed on the next DUP, the thlrd
line is left empty, and on the fourth '4' is keyed

6-13

6.6

6-14

The Use of Tables ‘ _ 6.6

Tables are used in programs during calculations when an operand may con-
tain one out of so many values that a comparison of the current value with
every single possible value, by program statements, would be an insurmount-
able task (as, for instance, using IF and ALLOW/DISALLOW with constants

representing allowed/disallowed values).

Therefore, the values are gathered together in a table and can thus be refer-

enced collectively by a single program statement.

The use of tables ensures another advantage in that they. can be utilized by

different programs.

There are two types of tables:

1. If one only wants to find out if a certain value exists, a single-entried

table is used, listing all possible values.

2. If the operation not only involves establishing the existence of a certain
value (argument), but also the access to an associated value (function), -
a double-entried table is used, which contains all possible arguments to-

gether with their assigned values.

When used for registration, a format is taken from the disc and placed in the

internal core together with the referenced tables. In the case of very long

tablés, it is therefore recommended to create so-called DISC tables, in order .
to save space in the computer. A DISC table will always be stored on the

disc only. See Chdpfer 5 for further details:

ExamEle 6.6

A document contains, among other things, the following units:

MONTH: [] DAY: [} DATE: [)

Corresponding field descriptions:

: R y
o A AL S/ /LS SE
S 5 AN L& L,/ &/ s ¢
‘t{a s Qv‘? Qé‘l Q& § § ‘:él/ 00 Qo V«\V Q‘; éa § Q‘é’ PROGRAM STATEMENTS
B 2 3 4 5 6 7 8 g (10| 11]12]13) 1 5
MONTH, 9| 1AM _1.0IL | LE NOT_ (MONTH_IN MTABL).
e o A THEN ALARM "MONTH /S _WRONG’s._
DAY, R 91 1AM f.1)L LE NOT_ COAY AN DTABL) o\,
R N P I N THEN ALARM 2 DAY, 1S, WRONG s, . .
DATE, 20 1 N 12 NIELPATE & i
N N L THEN ALARM IDATE 1S WRONGs. . .
N 1F MONTH VALID THEN .\ ... s
o SEARCH MONTH /N MTABL
. L GIVING XOT i
N L AT END ALARM 'SYSTEM ERROR ., .
e ELSE COMPUTE YOI = 31s .\,
N ' . JEDATE > XOT \ v .
N . L THEN ALARM 2DATE /S WRONG s, |
Two tables are referenced:
one single-entried and one double-entried
1At [|A- | A- 1% TABLE | 1A- [A-|F-]F-
NAME TYPE LGTH NAME TYPE LGTH|TYPE [LGTH.
1 2l 3 | 4 %//“ %, 1 2l ala]ls|s
‘ N
\orasLl=uM 97/ rABLPlaM ol M 2
1 chems 1 & 2 ARGUMENTS. & FUNCTIONS
LOINLDAIYI PR W WU SN W W SN U lj(ZnA-NnUA(nyx RN S S S N W
7-IUIEISADAIYI i 1 i)3 i 1 A z 3;1! 1 1 ' 4 i 'l‘ 1 L 1 L l: d.
#E:DINLEISIDIAI YI ik - S ! EEIBkklULAAR|Y'A bk 1 Lt .L"
TAHIUIRJSIDIAEYI | A1 1 1 . 2 2l9l EN i L i 1 L 1 1 l L § B
'F|R|I|D|A|Y| YIS W WS W BS SRR S B 1MIAtRlClHl FUNEE N U WY WA SN YL G
SIAIT.iulk!DIAle VD SIS S NUE DU)iélii [N YL TN W T WIS WO SUUD W S U
SIUJNIDAIYI [V WO SN SR TN S N |
' lol KEMBIEIKI i 'l i 'l .

2300 0 o
DECEMBER v

l!l)lllllllllll

-

Note that MTABLE in 'MONTH' actually serves as a single~eniried table.

6-15

6.7

6-16

Partial Rekeying ‘ 67

In order to save time when rekeying it might often be appropriate to rekey

only certain units of certain documents.

This procedure is controlled by the column 'REKEY" in the definition sections
of the field descriptions. If the REKEY column is keyed N (for No), the cor-
responding field is skipped when rekeying. ‘ 4

As a rule, fields containing important information will always be rekeyed, if

the information can not be thoroughly checked at the initial keying stage by

the use of tables, LIMIT statements, or the like. Take, for example, amounts
included in a sum total: if the total turns out to be false, one does not know.

if the keying error occurred when the total was keyed or is hidden among the .

amounts added up.

APPENDIX |

Required Space In Core for Formats, Subprograms and Tables

The following sizes are all defined in bytes. In some cases length is defined

as an interval (lower limit - upper limit); a definition section may, for in-

stance, at best fill 15 bytes and at worst 16 bytes.

format head

subformat head
definition section

image head

image subformat head

image page

Program part

field reference
register reference

constant

subscript

table (not DISC table) |
(1st reference of table)

table (not DISC table)
(subsequent references)

DISC table

label reference

subformat reference

translated subprogram

translated table (not DISC table)

16
+ 4 * number of subformats

8
15-16

4
+ 4 * number of subformats

4 ,
+ 2 * number of pages

1
+ 5 * number of texts -
+ length of texts

constant length

- NN W

1-2
+ table length

3

34-35

3-4

2

as for normal program part

6
+ number of arguments

* (length of one argument + length of

one function)

Al-1

Al-2

+, -, *, /, MOD, <>, =, <,>,<=>=
AND, OR, NOT, VALID, INVALID, IN

COMPUTE - =

MOVE - TO

CONNECT - TO - GIVING
SEARCH - GIVING - AT END
LIMIT

ALLOW

DISALLOW

CGOTO

SELECT SUBFORMAT

DISPLAY

ALARM

DEFINE - length

END

END SUBFORMAT

NOTE

PERFORM (1st reference of subprogram)

PERFORM (subsequent references)
SKIP - FIELDS

IF - THEN
IF - THEN - ELSE
SET

Study the example on the opposite page.

9-11

1-3
1-3

—t el ot

Qo -~ W

0

9-12
+ subprogram length

4-5
3
4-5
8-10

FORMAT

SAME s | P] comment
1 23 4
EXPL Tl | REQUIRED. SPACE -~ 1. R
s & . .
S/ /& &0 >)&
o %, /&5 SL N/ IS
N Jof & 2 S > QQ/ K2 STLEVEIE .
&S IS /8)8/) &) SIS/ & / erocram sTATEMENTS
1 2l 3 ajs |6}z g lalwoli|i2}13] 14 15 »
E /] 1 i 3 1 11 lo IN 4) l/ i DJEK.;IIK”LEI Ka’l l’l,L ICOXMPIU/J-E Xlalflafl‘,l)l i
‘ 1 L 4 A 1 1 i L A 1 l fl[lkfloﬁﬂ JCI”IEJC.IKI,I I N S T U S | lllvlJ l‘Li
I W S S | L I i ' il i IllllIJlllllllll;llllllllJlljl
A 1 i L A IO 1 1 I 1 i‘ SIE‘LIELCIII 5[Ul5£oxmlrl 21’[L0t 4 4.3 4 % £ 2 %
PR W I 1 ' 1 1 1 PR 1 EINDI ISIUtBLFAOLRMz,I PR SN W U TR SO0 TN S W0 NS U B Y i1
1 2] 3 4 . .
EXPL 12| | REQUIRED SPACE - 2 e e
> & >
/2 /3 &3) [&
& @, é\ A - NI LAY 2
NS S 9w /S /S /& /LS Ao &
&8 LIS/)5))&/ LSSIS/S/ & / procram statements
. 2] 3 4 5 6 7 8 g ho|11]12{13] 14 15
X 1 ’l i 1 L (0 - | L 1 A 1 DlllslplelYl Aolfl)‘ i b a t. 4 1% & 8 % 1 & 3 0 R 1 L.}
T SO T 3 A L. L L 1 A4 1 llll]lllllllllllllllljli(lll[l
F7, .. N A A I .| B . KCOMPUTE XQ1=F11 PERFORM CHECK), .
) T . 1 1 1 i 1 1 A1 RN SIS TS S V0 THS N SO NHE S AU TN SN NN RN U DU WS UNU NN NN NN S NS N N S e
A1 8 1 il L lol A - lEﬂbl,lllllllllllilllllllllllllll

Translated, this format requires the following number of bytes:

format head ,(16\ +4*2)
subformat 1:
subformat head
Ist field description:
definition section
DEFINE - 1
XO01 (register reference)
- COMPUTE -
- X01
-F1 (field reference)

—

24

15-16

N = N W

3

PERFORM CHECK*) (95 12+ 50) 59-62 85-89

*) The subprogram CHECK is assumed to require 50 bytes. -

Al-3

2nd field description:

definition section 15-16 ' .
SELECT SUBFORMAT 1
2 (subformat reference) 2
END SUBFORMAT 0 18-19 111-116
subformat 2:

subformat head 8

Ist field description: |
definition section 15-16
DISPLAY ; 1
X01 2 18-19

2nd field descriptioﬁ: .
definition section 15-16
COMPUTE - = 1
X01 2 .
F1 -3
PERFORM CHECK 4-5 25-27

3rd field description:
definition section 15-16
END 1 16-17 67-71

Total number of bytes: 202-211

In other words, the translated format will require something between 202 and |
211 bytes.

Al-4

APPENDIX II

Required Space On Disc For Batches

The control command SET (see User's Manual for further information) reserves

o number of disc segments for a batch. Each segment holds 512 bytes.

During the keying operation three kinds of data are stored in the batch:

1. Batch description,
2. Data records,

3. Register records.

The following describes how to calculate required space for records that are

i

entered with a given format, (All sizes in bytes.)

1. Batch Description

Fixed length of 1 segment = 512 bytes.

2, Data Records
Gross record length calculated as:

the sum of defined field lengths

+ 2 * number of fields in the subformat (including not keyed and
 O-length fields) '

+13

3. Register Records

In-order to facilitate replay a picture of the registers - a register record - is
frequently kept.in the batch. '
The length of the register record is calculated as follows:

the sum of defined register lengths
+ 4 * largest defined register index
+ 17

All-1

All-2

One register record is stored for each 10 data recoras.

Example

Consider a format with only one subformat which contains 10 fields and has

a net field length of 60 characters.
Gross record length = 60 + 2 * 10+ 13 = 93 characters.

If the format uses X01-X03 with a total length of 20 characters, then the

register record will hold

20+4* 3+17 = 49 characte-rs

«

If 500 documents of this type are to be registered, the batch will require the
following disc space: . ‘

512 4+ 500 * 93 + (500/10) * 49 = 49462 characters = 97 segments.

"~ APPENDIX I
A Format Example

As an example of a format with image, see the invoice from a greengrocer on

page A il - 2,

The invoice consists of three parts:

1) The head of the invoice with fields concerning the cus_fomefs.
2) The body with one line for each sort of vegetables the customer has bought.
3) The end of the invoice with the total price.

The format consists of four subformats:

H - defines the i-egisfers used.
1= controls input of the head of the invoice,
2 - controls input of one line in the body of the invoice.

3 - controls input of the end of the invoice.

Alll -1

1. Customer number

Discout percentage ™

2. Customer name

§ 3. Customer address

4. Postal code

5. City

1. Article no.

2. Article name

3.Quantity

4. Unit price

Discount

5. Final price

1. Total price

08£0 -2¥ 1SD¥

XX XXX XXX NXX XXX X XXX
ALZl7P 700D [T7ILSOd
XXX XX XX XXX XXX X X XXX XXX XX XXX XX XXX XXX XXX XX XXX XXX XXX X
SISTaA EWOLLSDY
XX XX XXX X XX XXX XX XXX XXX | T 1T T T IO XXX |
T [EWYM YFWOSD T T T RIEEWAN SEHOZSION ;-
08 Mb_mb hi&h CLive nhﬁmb T4L{0LB98B9LI99C9PS nm;_mw 19 ow_mn BS hOTO 1T 4] ﬂDTn «0.001#1' LYQYSYivY hJNe tyjoveeBELEQEQEYE nnwun ejoceegeLegekeiys 0N~NN e ow stisr|ctlotfar|vsleriar|ttjotle |8 {4 |9 ¢ Owl MOM_,WMK ‘.3
\. 30Vd : | N ‘LYNHO4ENS \O\— \<‘\ ‘LAVINHOA mlo mo wh ‘3iva qq\ ISIVILIN
€40 / 39vd F2H/0MNI 40 AVIH .| 1NOAV1N3THOS

s e e 'Y

08¢€o !-Zv _.vx

] 04SN/ 15|/] [70/]0AM/] 1F0) 1Aaad |34 INTHM | g |1 P INRERESE
XXX XXX XIXXXXIXT | XXX XX XIXXXIXIX] | XDXIXIX XXX XXX XXX | XXXEXXXIXIXX X
FI7d [TV T INRODIS T | 17078\ d 1L 7NA T AL TZNVAD TN |77 71Z8Y | TGN L)
08B LIBLILLOLGL Qbﬁb_Nb TL|0L681BIL999 K YSEIRIIOI09BEBCILSRCKCIYCICCIRG|TIC oDT«Ova R drad OQ_NQ tyjoreEBEILEBEIGE 1nnan e oo_am 8 bNTNnN v e GNTN 12(02(61{81{LT|9T|ST{YT|CTI2T|TT{0T|6 |8 (4 |9 |G l.\.lho.w_mnwn_ .
\ . ‘3OVd N :LVAHO48NS \0\~>\\ *LVNHO4 MIO omo .@N ‘3iva V\T *STIVLILING
€ 40 < 3ovd| IFI/OANI 40 AGOF NI INIT INO_ LNOAVY1N334OS

3N —

08£0 !-Z¥ 15D

11 SN TAE HST/W T O TZWVI [AlolA] A7 oW AT
} 707007 MIW v WO (Z3viZ(S o] TZWvM ol 1A/ [Sia] AT
"
ey
E
Is
| ig
XX XX XXX XX XXX X :
T Eo7 ¥ VIO . T
08B LBL bb_WF CLIWLIELR2LIVTLIOLESBY bwTw colys mwTw 19 owmnwn LEBCKC .sn,ﬂnwnu 1c onmvTM b%;»mw Sriry ﬂﬂ_mw 134 oan w,n annTn yeigei2e|ic|oc mNTN bw—mmﬂm ye mNTN 12i02|61({8T|LT|9T ,nn yicr{2iiitjotrie (8 |4 |9 S |¥Y |€ |2 «,. "
, -— zo_,:monA_,”_.”.
\ :39vd £ :LVINHO48NS | 10AN/ {LVWHO £0°6092 ‘31va 44 ‘SIVILING Emum.,)m Adauz eae0 B

€40 £ dovd TN O INT e 1NOAV1N3380s| OO 9D E =

@ o @ ‘ o
: s

6L£0 1-2¥ mm e . ‘;

WHQ'ON'Y =AN'EL 0"V = TUS 0L -V ‘NS ‘N 3dAl ‘L

T T Y T T T T T TeYTTYTT T T rrrrrrr ey e et rrltlrrrrrrrrrrrr vy errray 1 T L) T T T Ll ¥ T -.< Al

S S SR S TR SR 0 B S (o i SR S CEX R S L M A s St e e A S BN S e S e e S B SN S S FHAR A SN0 SN NN S S AN BN N A (N OO N S AN N A N N I N N M B L B L B A A B T T T T T T T BELIL L B
SO0 B BSGR T fane e A A Su [S EO H G S S N S MR G SN S SO R NAS Nt S SR N (N A B S e S B M AN B SN SN N MR AN BN E U N S (N N A A AN N N AR EH N N L A A SO S B R AL B AL L B B T N T T T T T T T
SUS 0 A 100 s S I T S S o S M St ae SIS N MO A R S B BN S AU N D S D AN N A (ANt B A S N S B N M MO N R SN) B N IR A L L O A A B S L L O O AL AL RO L LI B T 7 T T T T Y T 7
D S S G S SN St A S S S S e B S S B i SRS Sy S S S SN S G Dy B S D S B S B B B S S N N B N B B PR I L R S B N L R N LA L B B L A AL A L L LA ¥ T T T T T T T
B A RS S0 S Shn S aeme S o e L S o S S S SN B S S B S A S A N SN S SR TN SN NN SRR NS BN RN N N N B B SR AN TR B N SO S PN L I T L L R O B L B B L B B B T T T T T T T =TT
S S E R S S s e e S S oo St 2 d S S S e R S S S S S SO S S B I SN U S R SN N N R B A R I B S S S I S S S L L T ML N LI L L AL S S BB B I B B T LI T T T T ¥ T T T
LA A B S S S e e s e e Sk M S S S My S S SN S NS NN N N SN N SN S SN SN NN S N I N D SN S S BN N B S A NN SN N N N A A I N A AL A A AL AL L AL DL B BB B T T T T T T T T
SRS H A S S SO O E S S T e e S S e S S e B S H 2 S S e S S A S 2% U TN SR N U B N N NS SN B B R N R U N N L B N O N L L B ML B AL A AL B L AL LB T T T T T T T T T
o S S s san S T S e s e S e e T S na S S S B T S S S S S N S N S M 1M B SN R N I SN SN SN A AN A B R NN B S S L N A S B O A B LA AL RIS L R LB L T T T T T T ..4_.
S At A TR S S S B S S S S S S S S S S M S G R S W B M e S I N MR N N S S M SR SN A SN N S N B N A L L L L BEL L AL AL T LI — T T T ¥ LEN B |

_.__.._4_.q_._.__q—~_..._q.,_v___..qu..._..+4-.<_._m_.....ﬂqqq_4.44~xuNW\tV\QH\W34m~_QEWJT T T Y T Y T LI S S
.:..._.:i_.:_.:._______::__.:.::,,.1::_.:::_:_:_G_wvtw_ow_%ﬁkquww4 R
T T T T T TSI ONTHIYY IS YO §746/938 T 710N 04 50X IN/FTY| RN T
T T T T T T T T T T T T T TGSy VL0 T TLON ST BOX AN AR
T T T Y T T Y T T T T T T T T T TGS 1YN IS L0V 01 €0X INTF30) IR T
T T T T e T T T T T T T T WIN 7707497 40N Y07 20X INTHTA T R
T T B NG 09 3d INAOJSTT T FLON € 10X FN/439| T

St vl feijeijiijoLie 8 L 9 S 14 € |2 3
SINZWILVLS WVaO0Hd /' 2 [9/0/2/fY) S /5 / & Mw/ S/ &/ Ny
AT IR TETOINEIETEY. $&
/ST) SS) S E)E)S ?
3 < i $
¥

T Cy7.5/D7Y 40 NOTLINTIIT - H LVWYOSGNSKHIOAN/

14 elc 3
IN3IWWOD [d]S »mﬁum.w

10AN/ €060 9 vy Lo/ A oG

‘LYWEOZ . ‘31va SSIVILINI

9 40 / 3ovd| | | 1I3IHS DNIAOD LVYWHOAS O &=

64E0 =& 1SDY NGO N Y =ANIEL 0% T TS 08 - ¥ NV °SS NS ‘N 3dAL ‘L

T rrrrrerreryYrrrrrrrrrrrrrrryrrrrrrrrrrrrryrrrrryrrrryryryryrrerrrerrryrrryy ey ¥ T Y T ¥ T T LS B S |

LA A R e e i A M A B S A B N S S UR G A A AN BN N AN S DU AN S SN SN N S AN S S SN S0 G SO U A I SN AR AN SO SN S N BN A S AU B S S0 A S B B O B A AN AN 0 J A AN N IO N NN AN ¥ LA | Al T T M T LI

‘J.-*«-4<q44-4.-q..--«-qd-‘-<—-—-4<«<-——--qq-——«-__-.-_--4q-q<-ﬁxkq\uq.-qw‘wgdwﬂkc§. l‘Wq« J<\4 MA\Q-NQA N glqlh_\-uﬁwm,.

LA i S S S0 ARt S A S (S S A B Bt B S B S N TN S SR D SN I S S5 I B S T B B N SR S B JN S B R O S R 2 D Bt SN N S SR AN MM B NG M S IS AN B NN S L N I R M BN SO N AN 20 NN SN | T LR T T T v T T 1 ¢ 1

TUARICBNLEUNLENE J0 SN SN SN RN NN B SN N SO NN J SN SN AN ANE MG SN SR JN 20 M

4\.0_0_Q.m_ = W_Q-O.U(~‘_v_ _QG_O.\. WK.\E_\..N. ﬂwkqoa .Ngoﬁ. UU«QAN# HK-\?.\-“ . T ¥ T ;~ | T T LIMPLENL |
m;ﬂ_--__--«-ﬂ-ddqd-d-—-ﬂu-uﬂ-w<4«u—d«u—a—.-.«-.__‘ﬂl_\ﬂl—wq—ﬁwqqgu—_q_t-lh_w_ouk-da(qu-wwdgu m..- -&%- v~ N-‘ mu \NAQ_OﬂU,_Q

™ T 3T T T T T I r T T T T i T T i T rrr r vy rrrir iy T rrrrrrryrryryrrrqrrryyrrrrrryyrryyrrryvyr ey Ty T R LA] 1 T s T T Y. 1 U T

4--..—-4..—xﬁ_‘i-—-_yq-_-_-—_uqdudqhu-—d-c—._-.q-—-_d\Aa\d_ﬂuq_‘-<---44.-<qq-4<-< 1] LI T ¥ Ll Ll 1

44.__-—u-u__qddnqq-ﬂ-~u<<u_—aq-.-—_m._-—«4%44-dd_14d«—~d-_“.WWW%«Q<Q<~Q-QWQﬂWHNqa4 qw-zﬂQNﬂ _O«‘“\- hlﬂ N ﬂQAQ«Q~ﬂ

~ﬁ<ﬂuﬁq4.-ﬁ-‘.qqq--<q-a~«_.-—-.._-...___-1-.~_4—._—<<-.<.-N.N¥.‘§.Q<_w.%4qkq4\<4\ QA—WJ <Q\< o.hodﬂ.;wq\NJms_‘ﬂ%

L S S I SR SN SN0 S SN SN B SN U SN NI NN SIS N S SN B R AN SR SN SN N0 NN I SIS N BN I SN NN N SN S BN BRSO SN SR S SR SN DN SR AN BN SN S SO AN A SR SN SN RO S AU N A A A A A A AN S AR B S A N N A v ™7 T A2 T T Al T

.Q« .I.N_Q.K WKNME_Q-U. wwqﬂwq N-OX. -“.-.NUW«\-Q- _mkswzgu< E@Y\K- .Q_V.TS- G§WSU~ w..\ T - LB ._. .v T . T T T _; T a
Trvr7rJ7y1ryyrirrrrrrryrrrvyyvvT q_-.._..ﬂlaq.«N—Qaq_ov.m«% —§<_ W.W«‘kﬂzwwgwm. K.&\.\N.O..V_W._\.Q. HN%NW?.\.-N.RGE T 2 N., Y 420u mc T T k.u.wq\uq

~rrrrTrrrTrrrTrrT T T T T T T T T T T T T T T T T VT Ty v r v ey T Trrrryrrirrryryrrr oy rrryy e T T T e T T T T LEENE S] R L S N B |

T T T T T T T Ty v Ty T Ty rrrrryrrry vy .h.& -}\?‘QE{ “N.Q{ YwW§U.2. thvww_\wua& T ry.qw_.ﬂ.‘ TT1T v 11 T T T . T T T T Y L B NS N £ B
LA N L A U U L S O S SN L B L N L L L AL ML ML L L L B L L LA B L q.k«l% K.‘ NGX. _Qfﬂ\xq\w_ y\\. sz._\ﬂu_ V*UQ{N_W ¥ T ¥ T | T T T T LI R R §]
LN SR B R N B L AL AL L L L B B L L B AL L B B LAMRUAE S NN B O IR N B I <NHNq\« dkt_\wq_ .Q.Eq wwg\fwuwwv& ..ANN_Q.OQWQQ 7Y ¥ LN ¥ T T T L LN B B

TN TN Y0S F19YL YINOLSAY NTTHOYYIS =T YIGWIN YIW0LSTT TYIY T FLON 714 T WVg [g41 |€ \OS\wSQ

si | v lea]u]ofs| e tlolsivrv]cele t
SINIWILVIS WVeoodd [/ (/SRS 28 [& /8 /3 /S [N
LTI SV EFVINIE VETEFNS) $&
SIS) SS) S ESESs) S) 7
& Y < & &
¥

T T T T T T T TN TN TN g /0ANTT J0 OVIH - L LVWYOSENS| (|1 OANT]

R ele b
INYN
INIWWNOD {d S LVNHOd

Ty %05 =

t1ViANO4 . ‘3lva ‘SIVILINI

Si0 zaova 1] 133HS DNIGOD LVINHOS = |

6480 -T¥ ’k«

4qa..._._._..___.....4__._.__4..__4.._——_4_ T

N1'Q'0 NV =aNpiEL o'

NS 0LV

rtTTTTTT o e T Ty L] 1 L] L Ll L Al L 1 T L] Al ¥
A0 A A (i S B A Sar S S AR B I Bk A AN N PR B BN B T LU0 SO IO N 5 S N AN S T S At AU S R M RO S A N A RN SN B ICO R B N B A BN B N B B N A T ELEERS T T L] ¥ T Tt 1T
T T T TV YT LA I P S | T | B S S M St Zn N H SN SO SN SN DU N S U S M S A S SN BNR N B SR BN BN A AR NN HR SN IR 2N SN B IO AN B A T T L B T T T T
LANE Ih S SH S A B N A S S M M B T T T T LIt 1N I B L A A N L L L S B B L L L L L UL ML B S B B L T T T Y T ¥ Y LN S B
TT T T T T T T rTrTTTY T T T X 280 S0 SO0 M I S B S N S N B S N A U B N BN N B BN BN N N A I B N G A A M A R M B I Y T T T ¥ T T LI N S
T T T T YT T T T T | S N S S S S S N S 0 MR AN N S A B B N U U N R N B SN SR N S A MR M AR D R BN S LI HRLI § T T Y T T T T =TT
L2082 /N0 R S N N O I B BN B R ¢ T T T L E N S CA N S A A S S N SN BN BN NN S N A S SN B B R N B NN B B O AL A D I B B B O SR L A BN T T T T T T T T Y
T YT T T T T T LIS S S S G ¢ T B B SO SN B SR SO S S B N B B S AN N I AN N N NS B MO SR SN NN R N N IR B N SN A N N L L R T TT T T T T T T 7T
LS SN B S A N SRR A N S T B SR A § TTTTTTY T | SN D SN R S T GG S SRS SN SN N (NN S NNt N RN N S S SRR SR MR SN0 SN SN SR U BNE SN SN SN IR MR BNAR B NN U B BN A T T T T T T T T Y
LA L JNE S NS S SNt S B S M B | ..__;.- T B J00 D N NN SR HD NN S H O AN N SR SN SN SN B S NN RN SR SN AR I S S R N U A S N N B R SR AN B S S IR T T T T T T T T
| S N T S A S N SN S B B SR A S A R A | T S /800 S0 S S S S S SN S Mt M BN SN RN BN SN NN NN S N AN IR N S S A BN SR R A AN IR SN U N BN B L R A B T T T T T ¥ T T T
LA e Sl N S 2NN AR N N R S B L R A U S SRR SN N BN T) S [S B B N S B A S M NNt NN S SR N IR B SN NN SN S AU A N B N D SR A N S A N DN R BN U N B B T T T T T T T LI S S |
1R S B B S S B R I B S S A A N A A B B B T | AN NS S B S S S B SN SN SN N NN NI D BN B U (i SN BN SN N N N AU N AN M N S N S AN B S TN A B Y T T T T T T T T 7T
| S 0 N N N S N A R S D S S I S B NN BN S MR | T | SHN S I A) S R SN S SN N R N S RN SRR A AN U M BN B N RO N SR NNR NN N BN S S S BN S R A B N BN B T L T T Y T T T
T T T T T T T T T T T T LS T T U M S S N SR B NN SN S B Mt B SR S BN N J R e N BN B B Y 2 B T STAT T T T T T T T T T T T
L YWYDZENS INT

L[N B B B AN M SRS SN SN N SR SRR SR BN BN S A S N T L A% AR N N B B A N A S A B A A S B A R S A _n.N K.ww‘\kQ.h_Q_\ﬂQ “N_U..N_ﬂ.mw T T T T T T T LA SN e ¢
LA SN S St S R S N I A S A N S R N N A O SR T L IS0 5 100 AN AN N B N N AR R U AN B EA D B B SN BN M B S S AN A .NG_ _“_§_0y\ wwq\th\QU T T T T T T T T
L S IR S S S A B S B A S SN B B S B A R A AR R Y Y ~N.QWKW._Q..NQ GE\UN“N.N_.WWQ _Q.Q._\. -Q_Vw.\w. Xt}\hq T w“N_QS\ T T T T 0. T T LS B B |

) St vl jEijeL|joi] 6 8 L 9 S 14 € |2 3

SININWILVLS NVHOOHd \wv 3/ &v 7/d nv Od nmu JV Ky awr > o .rd .VN/J

S ISIEEST T S5 /) S)5)/) /8 $L

/ST) SS) S E)E) S &
3 < 5 s
INJ\

RS T] 1 | T T 1) T Al ¥ T] ¥ L T 1 T T T Ll T v L L) Ll 1 T T T) T T R Ll ¥] ¥ 1) 1 ¥ T Ll + 1] LR Al | T T 1] v T T L) L) v v L L ¥ T l T
v elz (S
INIWWNOD |d | S »wﬁMMm

/OAN/

{LVINHOd

2 40

€ 39Vvd

€0609£

‘ALva

44

‘STIVILINI

WansAs Al eaeq

. o | LIFHS ONIAOD LVINHOL

mnmo - Nv 180 H''Q'D NV =aNIM ‘gl - o =TI 0L - Y z< ‘SS ‘NS ‘N=3dAL ‘L

T T rTYyrrrrrrrrrirrrrrrrrrrrrrrrrrrryrrryrrrrrryryyryyrryrrryrr oy T L T T T T
T YTV T T T YT T r T T T Ty rr T T T T r T Ty r Ty rrr vy Ty Ty Yy T Ty y v vr Uy T LI} T T T Y T T T
TTTryYT vy rTyYY Yy rrT rrreorrrryrryryyryrryrrrryrrrrrrrrrryrryryrvrrrryrryrrrryyyvyrryryyrTrreyvyeyTod T T T T LI T T L «.,...mn,
Y T T YT T YT T T YT YT T T T T T T T Ay T Ay v rr Ty rrrrrrryrrrerr rrrrr T u\wu_\ﬁw “‘\.\\EQ 643 T “wuv.z T g v_ T _z Nu 014<N mqv N. N Y “.\.z«\v—
285G S0 U SED [N M UG R SN S SN AR SN BN SN (N SRS AN SN BN MR SNt NN BN BN BN SN AN N N SN NN SO N M SN S0 M SR NI U S SN AN AR RN A AU DED N JRD NRE SN B N A A SR N SN R BN BN NN L BN I D AR St AN A AN A AL AL I) T T T T ¥ ¥ T T L SN N § B

T T T Ry I G5y 90N S I VAR R A EAR T I X
T T TSIV 2O O SWYW Oy a3z W T T L
T e T T T T SR ONZYY ST SO% 77 S A I T IR A I IR
T T T T WY LN SN 579715V WY T A I DA IR A B Y I
:_::_::::::::::::::::,_.%u.%woxgssiéxbé_wﬁzmu%%ﬁ T T T T T T
T T TGN U Y TR NASPITE NOTIoTeT R P IR TR I I I AN
Ty TRV L F797L9V NI HISVIS < SWVN G79715Y 0v3Y " SION e WY[T[OZET[E /] TNVH
T T T T TG T Y A7 WAL O = oMLYV T AR IR I A I TR I AR
e G Y WO ¥d NSV =EOX FIW0D SR B EE DA R N ERRE
e e Ty S TGOR Y NOTIVO I TaTA | AR E N TN N R I A
T T T T T T TR TG Y95 WY05 3 INY. SIGWIN F15719Y TV3Y T TI0N [NOTPT[[& [FloNITVY

St vi {E€L{2ijiL|oLy 6

SININILVIS WVHDOUd o3 STL TS > - o :
® RS YT /SIS S &L
3 /7 NS 7 2) > y WO
/IS) SS) S ”
)/ N, %) N
¥

F570ANT 70 K90 W7 INTT INO - € IvWIOTENS] [§70ANT

v clz -
IN3WWOD | d|s nyN

LVWHOS

IOAN/ €O 609 YV Wia3sAs Anug eeq

‘LYINHOS . :31va

510 4 3ovd| | 1FTHS ONIQOD LVINEO4 DOSEE
Py , ° I X s

R -) .
e | ;
6L£0 _-Nv@z , . %'1'Q'0'N'V uoz_x.n,,.‘o....,‘..u._.._h_.e;<’w.zm.z«mmt.~
Al T <4-4ﬂ<,qq<<-—-<-<.-,—_-—._1—_—«_<——_—_-_uq—‘<--__u-----_cg-_-<—__.-jﬁd T L] 1 T 1 1 L Al L 1 A T
[3EE S TN Int S T o s tene S Gk ol e ane S (e I SN SO I S ety U NN SR R A B M S NS MO SR AR NN MO A AN AR N NN SRS M A A M M AR AR S NN AR NAE M N BN NN S I R A L DO RN A R SR S AN R ANR SR N RN BN B A A T T T T « T T T L2 R |
EE% (55 A S0 s 20 i T S S S N A i M A (N S A S e N W N S0 N SN SN S SN AN N B A SN A S BN A A R M S S A I SN A R B N N I I N BN 0 D R A M A P B AL L AL N B S ML B B A B T T T ¥ T T T T
D FN IR o £t m e chn S S S S S s ey U AU SRS S S B S S N RN SO B S S AR NN SR DR S A A SR SN N IR A SN NN NN SRR S U (ML M B B AR N B R A N N R L R N U S E R B Ot A L B B L L B L B T T T T T T T Ty
) 0 S0 [0 S R N U S St e Sun S o S St RO S0 S 100) U A SIS B B S NS S N S0 SN BN R SRR NN I RN AN Rt N B S SR NN B SN R S N T M L BN N A I AR I EN L R R R A S B BT AL B AL T T T T T T T T
B N S S S S S S fn S S S S S S SO M S D M [N B M S SN SN N S S SRS NN SN N B M i M N SN SRR N IO B AR AN SR SRR B SN BN BN AR NN Uk R ML A S B A AN R S N A L B B LR S T T T T T T T LI I A
SN S S S St) St S S T S S A S S A AN S S SN St U S S B D B A N M N B N S B S S L L L A O L AL L B L BB B L B B T T T T T T T T T
1«441<4-.«.._....-_<._...qq__.-_...ud.._..__.__‘.a_...d-...__<__4__._ad,d..,_ﬂ T T T T T T T T

S5 100 SR Sa0 Nun AU U S BN Sun S ne S SN SN (N S NN SR SR S N ENN NN GRS BN NN BN A S AN A M AN SR BN BN B B A A N N R N N N O P R AL A AL B D LI

<

CIYWyo/9ns IN3| R o
TTCIYNTS ¥ BOX =H0X FUNdWOT Tl A
TTVFIYS TVLOL FIVOSA T FLOM T T R
U NO LON FITYS TN WIYTY T T R B D I I T
T NFHL LISTT S E0X T TYNIS | AR B DA R DR B I
TSI YL CILIIWOT ISNTVDY YOTHI UNV FI7¥d TYNTS Tv3y * FLOM O" T | N|IT |0¢]69(8 |L|TVN /S

*-u.,.-...-qd_...idda.d__.<4.___._~4..~_.___..<____«-.—~__.4-_.__._<_ﬂ___._~__. T B L} T T T T T LA S R |

T T T T T T T T YT T T T T T T YT T r r r T r Ty ryrrrrrr ey T TTT

£ Z0 SN S EU AN BN S N NS AR SRS NN SN SIS HAN NN N N SN SN SN SN GRS SN B SN SR SN A S TR N BN BN SRR SN AL N N AN AN R AR R B B A M L

T YT T T T T T T T YT T T v T Ty rrrrrrrrey ey

.

T T T T T T T T T T T rrrrrrrrrrrrrrrrrrrrrryrrrTrd

.
.
-

rrrrrvYyry Ty r rrrrr rrr vy _N-Q.ON_ \.\. _MJ-O_X« _*_ .N.Ox A“HNUW-_Q_ _NH_\Nqﬂ\Nﬂ_QU~ .N.QN.\E«\N- .*._ XHN_O_ _"_M.GK WHN_\NNY_OAU T PLE T T T T T ™7 ,4; |
LIRS N N N BN I B RN R 4 ‘N_QQ_QUMQ. -{-_ “N«walx_\. _Qzﬂi KE.\VUUW.\«Q— WKSQ§QW~ T T T T T U —T T LI T T 7 _,,q,,” |
Ty rryrrTr .. LS i BN SN SN SN B SRR D N AN R A B N _|_ k__ Q{§.§. .QE_‘ wu.\v!k. w--\.bww\cwudwq w-_\q_z T 2% m— T T 0_ Q.\ N.h N~ \ N-U.w.\ _Q

St vi |eifz|ujorfs] 8 tfejs|r] e |e t
SINIWILVLS WVYHOOHd \w»u %4 S/O v«v \Ud 7/.0 Od 00 % /W \vﬁ Ov Wh/ .Vd .Vh» %
WTATLIAS e/ R/ /5/8/) %/ NS
& &V S ~ 2 N ” » o
>/ /5 S’y 0/ ¥/
& Y $ 5 $
&
T T A T L Al 1 T L 1 T v L L T T ¥ L 1 T L] L} T L} L} 1 T L} L L ¥ L 1 L] + T L} + T L Ll L T T v T L 1 T L 1 L Al L} L T L} 1 Ll T L] T T 1 L T T L T Ll T T 1 ¥ T R
v glz L
N S
IN3WWOD | d s Exmwu

JOAN/ T €06097 v

‘1YWHOd ‘3Lva “w.,“<:..2_

530 < 30vd .| 133HS DNIGOD LVINHOA

223650 () [FORMAT CODING SHEET [™ gz PAGE & OF 6

Dmam Ertry System AA 76.09 03 ; /N VO/

FORMAT
NAME SiP

1 213 4

COMMENT

I NVO/ mﬁ.mox.%\._m.,.tim\ﬁ_bm__%_o\.nm_::::.:._.._._.__i_.__:_:__:::‘__.:

Ny
S $ &
L % &9 > &

NS RS \/%
kg S /1 ES S S ES “Aolo/ £
P o, X @ -~ > Q & 9 oIV E/ S
&F S/)G)T)& RE fIR/YS/S/ & [/ procram STATEMENTS
1 2] 3 4 5 6 7 8 9 o] |12{13] 14 15

NI—QVNL_N- \ »M m,b _.m —Ns{. 1. P\ 1 RDN‘F& i _N_Ml—b— -NQ.N-}_Np P‘.\ﬁ_ﬁnh _L_kb _h\&mﬂh _\»Nﬂ. lm_h_\.kﬂﬂ .N.QPNxR_N,m”D »&m I _h\.gmﬂv_ FIEE W YOO 0N WA WO W TR T WIS SIS0 NN NG (O S S |
,.___— L 1 L. L i LA _\..\..N.\Q.N\A_N..A_v_RQA.“_\KWI}._._.-hb_.._._P__..__hrgr._._phb.._—._»-h___.__._._»»-_..~__

"TOTAL PR NOT. 0K,
T S W 1 4 i 3 1 i1 A [N k_N_L—kk I ~NrQ~N. _N~ .\- _nm” .Q_N —h 19 7Y V0 0N W N N U NN AN S U0 OO NN G U U WA YOI W OO U ST VU NG U TR O N TN IS R 00 SO WY NUOW NS N S Y S W VSO N S T s ¢
B U S S 1 1 s Il L 1l 1 ___.__-h.._»_».-_______-n_._—._...____>h.__~—_b»hr____—___._—~_p-____~nr._____h

ponklrm- \ Mh\ &nb nu .M L» 'R FQF 1 kgﬂm i hh&bh —hbk\-l\kt}”\b\{- P‘P _xm_lmn —'.- —RQVN.M— _NQ -mh_r khxm_b. -‘_ _kQ_ -0- _M-E.b -NQ-ARL—N“_ JUENN NSNS I NN TS U SO IS W W |

ALLON ' YES’, *NO’ , :
TU S T 1) 1 I] Lok i %! .r_.__—..L.M..—_.-»Ly_.-.-b._u_._—_b..—h-_»._.__»._—..__-»h..._.._.._._.-pb-

£ = YES’ THEN |
NN W S 1 e ' 1 1. 1 V. —\—mkgh--—hb'wp_—ﬂ-m» b_-nu—phx—.——.h--——-—-»n._~—-——hhpk~—_—n—~__-‘-»__n__‘-—n_—

[S T W i L " 1 s Jerd i A b Lo} _m/_mﬁpm“hﬁ MQ_%—“.Q%»RAN. .\»m- kgﬂm i »MMNPM“.N _mﬂhb »Dm _\.\&SQ»\>ﬁ.m._ FAE WO U UK TN NE S0 WORN TN SN UUNS WOE N0 TSN 01 VY AN D0 S SN KON SO0 W |

3 3 1 i 1. i A 5 1 A 1 A M>DV——»—~—_-»P»—b_—h_-_-n—nnPP-»-_nrh-._»-»-n—...h»—nhtr\—__h-;——nP\F.-—-»»_‘--b

J WS W T | 1 A 1 i A bl i b_.._h—-b\r_.___-..—._—n....._>.-._....——P..._.-.—.,»._..».-rhm_...-b-_-h._.—.-_»—
1 »vP Il 1 e X 'l 1 A i L _—._-—-h_—-»—bhhb..—-—-»-._.n.hbnkr_-.n.pPP_‘._—_p_nb.._—.bpnh.-».nanb TN W WS T S SN}
L 1 i I3 A e 1 A 1)W 1 ———-—b\.-.-.-._~.-h-—_.__.-—-!.n—»-__nh_rbf.._.n-.r-__—-w»-pbP_.‘——..—p-._.-_ncr
vndedod A i 1 i 1 L1 I [T YIRS VN TAE T UL TN UK NN SR N0 YO VOIN TN WA U W WO VOOC T SO0 TN ST NN (A0 Y WS TN N TN TN SHIE WA WOON WS WS SU6 DRSS WO NN IS U T U WA WO A WU O A SN TS I 1500 JUOE WS S WA W VO WS S WO W1 SNLS W W W S RS B BEE R
IS S T | 1 J. 1 ! i oL 1 PO T ET N0 ST WO YA TA YN N N YOE WA OV VANV WO VO SN0 TN T WA WO VOOT VNS TV AN TN WO T Y 00 WO VN0 Y SO0 YA 00 NN N U VOO U U0 N U U SO WO SO VAN O I W W 00 W WO TS S S [N S S N T VOO U W W B B B R0 B
S VO T | 1 X Il 1 A %k L PR ST U N TON VAR U0V DI U TN YN T UHF WA O VOO0 W WO A NN T WA WY SNAK U0 U SO (EN Y TSN U NN NN TN JUNS 0% (Y WOND UOR SO SN GO WS TN G LA SY YW NVOW IR NN VNN WO TS N TS N CANS WS YOO TS N 00 T N WS G WA Y [NSE WU WO TO% s WS WO R
| S W S | 1 L A . i1 L4 h'—b...».n__hh._._;-_.-—Pp._.._~_.PP_...—»_.bnb....__»npnp—pp_._...».._...phk
U W A) 4. X i 1 bl 1 PO S NN S WO WO YO N SN WA ST T TR WS Y50 WU TONG YU TG00 U VAN SN NN NN EY TANK WY SR WOAN DU WHOK NN WY SN TN UUON VNN WOUW WOUS JUUY W00 SO0 JU AN UK AU SOV S U SO+ SO0 VU0 10 U SO SO WS K VU A O Y UV O U O T Wt VU WOV WP WOV SOV WY W XS S W SO

TR W i A A !

: 1 t 1 A i R S T 'y Sl 14 A S 1 [U I JUN OS WS NS W S | 1] 1 i {1 F . . | S0 S I A | § R A | i [U U S T T | s i [S W GRS N S | Lol Lol i1 Ll i F IR S T S § 1 i o . .
7, TYPE =N, mzqz:»-s. FILL=,..,»,0 - 13, KIND= A,N,C,D,1,K . ‘ ' Q 42-i 0379

o

¢

D

7
o

36!

IMAGE CODING SHEET

NOTES:

PAGE 71

OF 3

INITIALS: DATE: v ‘ FORMAT:
Data Ertry System __AA 76.09.03 /MAGE 70 HEAD OF /NVOICE INVO/
. FORMET |'s| comment]
i 1 2 3
\} K.Q_\ \ _Rhnm—h _NQ. »km‘b.v_ .0__ n\hkxo_\-nph i i 1 I L 1 1 A] 1 L 1 1 1 i 1 1 I i 1 L 3. 1 1 L 1 A L 1 L 1 1 i 1 1 1 1, L L L 1 i

-

CUSTOMER NUMBER, .

CUSTOMER NAME

CUSTOMER ADDORESS,

A

POSTAL,

COLE,,

O N N ™

1 L i o4

1

CLTY .,

SRR DS SR S W §

X

S

Fl

i

i

TN T SN S W

i

3.

i

TSR SN N W S |

i

i

TR NN DU WU B |

{ U S S S S SUNO WS AN W W ¥

S IR S 3 i H 1 i 4 |

FYUNES THUNN SN UONE! NUURY SRS WD U SO W W

IS URIUE CIESF SN TN N0 WY OO NUNS BORY SO

§ N W SR NUEY UM W TR U NI SR ¥

1 Jowdor b b b

T SN WS NOUAG WS SHCHED WY SO GRS N SN S

Atk
I W |
bk,
T . |
I - |
I I |
o4
b1 1
R |
i y
A 1 i’
b1
P |

.r 42-i 0378

F=273(5 () () IMAGE CODING SHEET |~ T [PAcE 2 oF 5

Ml O Erory Syster A4 76.09.03 | JMAGE TO ONE LINE /N Bopy | 2

FORMAT s
NAME

1 2 3 .

(NYONIMAGE TO ONE LINE /N BODY OF INVO/CE '\

COMMENT

7| A JMRT NUMBER . ARTICLE NAME QUANTITY. UNLT. PRICE . DISCOUNT. . . . FINAL PRICE

\ N»* i \ Mhbnmrm.ﬂ M.t—%.hghkb_ﬂ -m_ L »t—t—hk »Nh.m_ ~m.0—b_x _Q\” i \—R xg\nq.mp H \—fM ~m \h>\— \whnkhb] i L H i L i 1 1 1 1 . 1 1 1 1 1 i 1 i I L 1 4

RN SUUN TR RN TS SR TN TN NN YN YA YOS SR SN A UUNY SUUN SN TN Y RN SN WY SR SN SO SN S S SN S S SUN S SR SO SRR TR TN WOUNN RIUUN SO SOUNN SRNNNN (GO A CANNE SRS SN SASN SRS SN SRS SRS MR AR WS VLM SRS WG AN SUNNE WS TUN S SN S AN TCAT WS WS SN UAPN U S NI U U SN0 S S N1

1 TR S EN WU SUSIES IDILY U RIS U W SN SN W U S NS (S NST SO NN WD UM SH G WUN G NN SN SO SN UUNS U WO SN NUUY FOUNH NNV R0 SUU VU NN SIS SIS SHES S GAUU SN S INSS UN SRS WD TR0 WY YOS TP SUREY VOUUR SUUR SRR SN SISO DU JOUNE] SUNRAE U SUNUN WU S SUNIE NN NRI SR NSSR TAR §

FUREL WS S SN NS WUUN CRUNE VRS WU VNN SRS WOV SO VHNNE AN SUUHS SOV SN SN NN SN W S N SLIN WU U N NI NSNS WIS SN SAN U N SU DU SN UUUSE NIV IUCS SN NUCOL SO MU RN SN U N I | TR S N WAESK (U T NN GUVS WS WU SRS SUN NUND SSNY SN U TN UNEUN SO (SRS S WV WU U MU SN A S {

F SR W S YN SIS IS SESNY NN U Y N NSNS WUUN SUSIS SN SN S S SN NS S SR N SN G N SR R

VU WUNUON N NENUSK RS CINN! DU NUS NSO N NS [N DSOS JCE WS WDIOY WUUDE WS WS SHUSE WU WP Gy JUNIY N S SUUy SRS

1 1
1 1
A N
1)
1L
i 1
1 1
1 "
. 1
L A
| —
i i
L 1
. I 1 1 r 1 il il Il 1 1 1 i 1 1 1 1 | L L BN i J§ i A A 3 1 i A - A den
® | e [) ‘2. 42-i 0378

R

F=E 35 IMAGE CODING SHEET _ |-~ “[pacE 5 oF 3

INITIALS: DATE: FORMAT:

8 oy oo £y Syescem A4 76.09.03 /MAGE TO END OF /NVOICE ver

FORMAT
NAME S | COMMENT

1 2 3

INVOINSIMAGE TO END OF INVOICE |\ o\ vt e e

>
, 9
/5 K %\,//
S S)) texT
1123 la
, \ _ m—§ NQP\»h—b— .b—k__m»m_ i i 4 1 IR B 3 -] 1 i H 1 i 1 1 1 i A A, - A 1 1] 1 1 1 1 i 1 1 J. i 4 J i il 4 deond. 1 1, 3 1. 1 Il 3 i 1 1 1 e i i i 1 1 }) 1 A A 1 X i A4 1 i’
\ N~° L \ Rh_ x -XN—M— _\ _mu A xgtr \FKLPQFH _NQ —m_ NL—&» Nr ~Q~2 —LP khk i \w\x KQF\ »h_h A " L 1 A 1 i ! 1 1 11 1 1 1 i 1 i i A i A i 1 ' — d L 1 i
\ N_ \ L \ Rm_ x §°— h\ -m H XQ_Q. XL_R NI— I NO» »m\nk\bm_l _le_ X\ -E—m- 1 i 1 L X A A Ak LF J L X 4 1. I I 1 d 1 A 4 d A 1 L i dd. 1 1 L., 1 A IS T 1 il il
i A A kY 1 1 1 1 1 1 1 1 i i i i 1 1 i A L i L L -1 N W H 1 i L .. 1 i i L . L A Lt it i 1 3. A 1 1 il 1 1, 1 1 1 1 A — A A L A X 1 H A 1 J. A J 4 dd I\ i 1 i A i).
i A Lk 1 L Sl 1 i 1 1 L i 1 - 1 1 1 1 1 i J X 1. 1 L) i I3 14 1 1 1 X 1 1 i i I i A L A i A S, i i 1 1 1 1 1 1 H 1 1 .4 1 1 i 1 1 i A 1 ' L H J A " 4 i —
~i i i i i 1 1 1 A 5 1 A A e A i A H 1. 1 i 1 4 i 1l 1 1 1 i H A 1 L '} i b L 1 dee L 1 i 1 1 - i H il 1 1 -) i] 1 1 1 J. L 1 1 1 1 AL A J. J 4 1 4. X 1 1 i L. i i 1,
1. H i 1 1 1 I L | WSS U T N S i k1 (] 1 A 5. il il 1 ,- 1 i 1 L i 1 i 'l i 1 1 1 L A A 1 § TN N W | 3 A A | 1 1 ' 1 i i i i 1 1 1 i 1 1 A i | 1 'l d 1 3 A Il A L J. 1.) I i 1 1
s A ¥ S TR 3 F TN R T | A i 1 J i i i i I Il A] i i i i 1 1 [1 1 1 i A 1 A i . 1 L L. 1 i 1 |l 1 i I i I I L 1 l J 44 1 A i 1 L - -1 ¥) 'l 1. A b A b, i Lol il) S i
i L L ' 1 1 1 1 i A A 1 1, . Il i A i L i i i i i 1 1 1 1 L i A 1 i 1 A A A i} il 1) I i 3 1] 1 L il X 1 1 i L 1 lal i i L L L. 1 i 1 1 1. 1 A A 4 A L A b L A 1 § S A
L. .. 1 [N | | S) T S T W | I i i i 1 1 i } IR T —) VNS NOIN RORENY SN WU WU SO ICU SO U W S | A 1 F H -1 1 1 1 S) S NS SN SN WS WA SUNS WU NN UUUNS NS WU W NUTES VN N WU SO S N S R | L | SN WY N W i
i A] 1 il 1 il J. X 1 1 1 1 1 i i Il 1 1 1 J 1 " ' 1 1 i 1 i A 1 3 L 4 L 1 b S — A J] A 2. 1. J. 1 i 1 J, 1 H 1 1 1 1 i 1 | i 1 1 i 1 i i A 1 I 1 i 1 A 5. A A i i i i 1
1 i L 1 |) NSNS S WU IO WGP NS WU WU GSR SO SIS SUU NS SN U SN S N SUIY WU N W —" b P U U W T bl 1 1 1 F NS SR WS WU S | § WO W SRS JULS W N | A | TN S SO SR WU S |) WS WS TS W W | X 1 A A) SR W TS S SR T
A A - A 1 1 H 1 i F - 1 Il 1 § . I 1 1 1 I | T Ll L -;) U S I S | 1 loL § I S S S 1 i L 1] I 1 1, 1 1 H I 1]] 1 1 1 - i 1 i1 1 L i H 1 1 1 L 1 1 F U B B
i 1 1 i 3 i i 1 1] 1 A L L i A i i 1 i i A 1 d Lot 1 - L. 1 L J 4 'l i 1 A b bl bk 1 2, i 1 . L i i i i i 4 1 A 1 1 i 1 L Il 1 i] 1 1 i 1 A i i » A " |
1 i’ 1. I’ ot d, L). L Kl 1 i '3 1 H i H (] 1 1. 4, 1 PEY i 1 i 1 1 i 1 i A L L A 1 i i il J. i L 4 L L A i 1 5 L, A A J. i 3 bl § Sedin k. A L b I T 1 4 i 4 i} A -} 4. A A 1 4. .
4 1 ;. PR WO N VAN WU WS WAL WONE WY WU SN U T U S RN USNN NN SEE: RN SA SN NS SN NN SUNNS SHNNS (RS WU SO SRR VNN AN SHCHY SN SN NUUN R TCENN WY NN SV SNCAN SNCUN SU! [NUURN U NV SRE SRS SN NN S WS NEUE VNS VA SN WL TR SUN RSV SRS NS WIS SHUIE SRUE TSI WY VUNY NN NV SUULD SUULY GRS SO S SO
1 A H L A L L S L & 'l 3 ik 4 il] A y I N § B N i 4 i1 A A Il i A . A 1 1 i} A i Il i I 1. 1, il A 1 1 1 X | 1 Il Fl 1 3] 4 d 3 L ! 1 il 'l il il 1 Il ' i 1 A, L 4, I i, 4 A

e e 9 @ 2w

@ . : A\\ . ﬁ : N

i35 () () | SUBPROGRAM CODING SHEET |* ~ [PAGE 7 OF 7

INITIALS: DA SUBPROGRAM:

Deta Ertry Systern AA " 26.09.03 SUBPROGRAM USED IN INVOICE CUHETO

SUB.PROG.
NAME COMMENT

1 2

|CHE1ASUBPROGRAM ~ CHECK D16G/1T, VERLELCATLON (MODULUS, 10). - XO02. = ARTICLE _NUMBER

PROGRAM STATEMENTS

1

COMPUTE X02= (x02(1)*2 .

1 1 i} I i i L ’h L 1 1 i L 1 X A 1. 1 1 A i i L i 1 1 Iy 1 1 i 1 i 1 i L L L I L L i i L i i 1 L 1 1 1 I} i] 1 1 1 L Az L. A X L L 1 A 1 1 1 1 1 1 1 1 L i 1. L s
] ;. 1 1 1 1 L I3 L L 1 iy ,\— ~+-X.Q-M- \.N.V_ 1 1 I 1 1 1 i i i 1 I i A1 AL A 1. L 1 i A 1 1 L A 1 A 1 N 1 1 1] _; 1 1 | N . | 2 i ’R 1 e L L 1 i3 L i L L 1 1 1 1 1 1 1
i i 1 i i 1 i L L 1 L L —+>X»O-MFﬂhm»vp*-N- 1 1 1 1 1 1 L i ' n; i 1 L A 1 L L i 1 L 5y 4 1 1 1 i 1 1 1 L 1 1 1 1 L L J 1 L AL L J. L 1 A ,. I L 1 i L i L 1 1 A L
1 i 1 A_ 1 1 A 1 1 1 1 1 .+~X»O—N- \.%»Vb 1. i L L 1 1 1 i 1 1 L i i 1 1 1 1 L 1 1 - I 1 I} 1 1 - . I 1 1 1 1 1 1 1 i L i A 1 .. i I i i 1 3 1 1 1 1 1 L L 1 1 A u
1 L 1 1 1 1 L 1 1 1 L i .+.X-O.N_ﬂ.hv_*-“r 1 i A 1 i 1 i 1 i I} 1 1 1 ., 1 1 1 L 1 L] (] | S SR -l L 1 (l 1 i i L 1 1 I3 1 i i 1 1 1 i3 1 1 L . ,h ye 1. A L 1 A -.. | i
1 1 1 i 1 1 L 1 1 i A A _+X-O—M_ \.m.v_ L L L 1 AL i) I B L -r A ' i 1 L 1 1 '] L i 1, 4 1 4 L i i 1 1 1 i t L i, 1 1. 1 -y 1 1 1 L L 1 1 ") L -‘ 1 i L il 1 L ,_ 1 L 1 L
[| 4 i i L i i 1. i A 1 »+;XP0-N»N»”»“ —*—Mn L i 1 1 1 ;_ 1 A i i L L i i L i i .h ;- - ;n 1 . ‘p 1 _. 4— i i 1 1 i — 1 i 1 L 1 1.1 1 i i 1 i 1 1 1 1 L ' 1 1 i Kl L i 1 A
1 ,-, ol 1 i L 1 o 1. i 1 »+X-QM.N-®»V— i > J i -, A 1 i (1 i i L 11 i i i i 1 i 4 bv b; L ;— -,.. ~ — 1 1 1 - -i;- 4 L 1 _; .- 1 1 - .— I 1 1 1 1 ». I i 1 i L i 1 'l _ 1 A
., 1 . 1L u— 1 i 1 1) 4 1. 1 L L .~+_X_O.N—\»wnv h*bM; 1 1 i 1 1 i 1 i 1 i L I} 1 1 A 1 1 1 1 3 1. i -1 1 1 1 1 1 1 i 1 1 1 1 ' L 1 Il 1 1 o1 1 Iy 1 i .- L 1 1 4 i 1 1 " i 1
A » 1 i 1 L 1. 1. 1 i i i —*_X_O-N. \»_0_w -V— R-Q—eb_ -\bQP\»’r A i yy L L J i 1 i 1 i i 1 1 1 L I i 1 1 i i 1 L - A 1 1 1 1 1 1] A - d Y 1 i L 1 L 1 1 1 2 i i I} 4
\ .) .k.gp.w_ rA~V— noh »N\\-N.E— thhhh_kpk 1 “_m_k.h.og,k. .\ _R nh-x- Nln\-hu—h.m_ kgkwnm_k. “- 1 1. I3 1 i ' 1 1 .- 1 i L i L 1 i -3 A 1 1 -_ 1 1] 1 i H 1 i 1 L

Mkb-\— 3 1 A 1 i 1 1 'y 1 i 1 A i i i i i L A 1 i i Il L i ' i L S IO B T L 1 A i i L A A A S) F— L A i 1 1 1 1 1 1. i). 1 1 i | 1.) B N IO S L A i 1 1 1 A ;

HEREE S NLEN USSR NS UL NS W NUNNG DN SINEN CHU N WIS N ST U SN SIS NN W S SN SN S S W SR CHS SN N SN SLNOY SN PR NI S SN SN SN SN WA G NU NI NN SUT SUEY SN SN SN S S S S SIS ST NI NI A S SN SN T N N SN I AR SUNS T SIS SH SN NS SR VU S 1

F VRN ST SR (SSY OIS TN LAY SIS SRR SN NS BUCHS WY WIS UUUDE ST WOUU WU SO SN WY U UN0F FNEIE WA WU T VLA VORNY WA SUCHY U IS VNN SN W GRS S SUNNE SIS SHNN SCI SN SN NURY UHCS SN NS SN WUUE TN NN SN AU SN NN NN NENS DAL S SHEY W SUUUT SUUS SNS SN SN SR GLI FRH UCSNT NS SN SN WS SO0 S W 1

§ HRIDU SSUR NOUUUR WUUAG RUCER UUCIUN WA UDI0 SUDNE UG SIUNCS RURIIN KUNNE MUUNK UK SO WSOV WY LUUUD SIS OIS NONNY SRS WUUUS FUURS SN NI W TONNE SAS SIS NS GHUS NN N SLNNY SHLEY UUNNY TN NN SR WK SO MU FUUUK W NV NS ST U SRR MUK N SN SH SHNY SN S SN S SN SN SN G NU ST WL SUNE W TN RONY SUGE S BN S S N T

.r—F___._-._.......-..\..PP.;..b!Pr»Ph—.-hu.—-.-‘hh_P._-p_»...-...._—pr___b......,

NN JUUION (SRS NSO NRSOU S WU EEUNS SNUNS SN UL WU WU NUUNE SUNUN WAL SN VRS WU NN SUSRN SN SUN NENN SN SN S N ICN S S SN NN W SN NTS WU GNP G S N SI SO SRS SNSRI SINES SUNEE DN WINES SN N VNG SN EENN U W U SN SHNE TEANN N SUURE NN WU VORI SN SN SN NI SN SN SN TR NN ST SR

F EUUE WD WU DRSS UUEE WAL SONNY S NAET SRS DUNEE UM SUINE VI SN SN FOUU WS WY SN N NS SN UISUN SN SN MUURY SNUE W WUUEY S SIS TCH MY WA SIRN NN S TN SACE SN NAS SUNS NN SN WALE N SUN SUN S Nl WU SN UG SN S S (A SUNHE S SR WL SN SR W SUUN T ST S SUVHY S SUY ULINS AU WIS ~ii WO R

_ . 5L 42-i 0377
Py e ® o ,

[T | : o | O

235 () () [TABLE CODING SHEET (DOUBLE) [~ [PAGE 7 OF 7

INITIALS; DATE: TABLE:

Dsta Ertry System AA 76.09.03 ART/CLE TABLE USED IN INVOICE ATABL

TABLE T|A- | A~ F- | F-
NAME TYPE LGTH|TYPE[LGTH

1 21 3 4 5 6

ATABLIPANZOIN |10

1 & 2 ARGUMENTS & FUNCTIONS

m—0_ N‘—Lh NO— 1 i 1 i 1 1 1 i 1 1 Il 1] W | I '8 1 L 1 L 1 ' d 1 1 i 1 1 1 1 i L I3 Jo. 1 L i 1 1 ' 1 1 1 i i 1 1 1 1 1 1 1 Lol i 1 I 1 1 ,» 1 1 1 1 1] —, i i 1 i
N, 0_ 1 1 il il 1 L L L i 1 1 () il L I 1 L. A F I 1 4 L L A L 1. 1 i 1 1 ' '} L 1 i i 1 I3 1 I}] Il ' L A 1 I KN A 1 1 L i1 -. A A 1 i — i i 1 1 A L L 1 L 1 L L i i 1 1 i \P
h —\—N—h _m__ i i 1 L 1] 1 1 | S 1 A iy 1 A 1 1 1 1 i 1 1. 1 _4 1 L 1 Dot i 1 1 1 L i L i i i 1 1 1 1 1 1 1 A g 1 1 ._ 1 1 1 1 i L 1 i 1 1 1 1 1 L 1 1 i E— A 1 L ;n 4
_,0— _Q— \-Q— \-0— \—0— L 1 [} i 1 1 A i 1 2 i1 L L L A A A H L L 1 1 1 1 Al L A 1 1, 1 5 A 1 i L L i 1 L 1 1 L 1 L L i 1 I e 1 L 1 L L. L L L i 1 L 1 1 1 d i 1 1 L 5 .
‘»hh_hp J. i L A 1 1. 1 1. 4 1 i i) i L 1 1 1 L L 1 j I | 1 1 '] 1 i (]) 1 A 3 1 1 1 L.l . 1 i 1 L 1 i) 3 1 1 1 1 1 It). 1 i I N L i 1 i 1 1 L Il 1 - 1. A 1 L ! 5 1
\b \-D \—Q» \»Q“—Q L A 3, A L L 1 S S | L 1 i 1 A A 1. 1 I A i A A L 1 1 1 _; L §) 1 1 1 1 L A A 1 L L I] A 1 1 1 I 1 1 ._ A 1 I 1 F . A 1 H A 1 i 1 b d A 1 L
ON/ O, | | .

3 1 8 i 3 L i L i 1 1. 1 1 i i 1. Il 1 1 i] i 4 . 1 1 3, 1 i » 1 1 L 1 1 L 1 1 1 1 1 L 1 i 1 1 1 1 i 1 1 i i - 1. F— 1. i 1 L L 1 1 1 1 'l i AL L
N M lw Q m m Nm w D) L 1 i 1 L 1 1 L [1 1 Ao 1 1 L A L A A i 1 i 1 1 1 1 1 1 1 e 'y 1 1 L 1 A 1 ' i i i i 1 1 1 1 1 1 1 i L 1 L 1 A s i A 1 Il A 1 1 1 i 3 1 A
ighmm kbb\%\!\ 1 i 1 1 i 1 i 1 1 3 A 1 1 i A 4 A A —; 'l i Fl i ._ 1 i L I i L 1 1 F S N) 1] 1 A 1 L 1 i L A i A h 1. 4.)) O S B R | 1 L L 1 i 1 L 1 P,M r».;
Mnm_é.mm—ﬂw_w-o.m» L 2 1 A 1 4 Lot A 1 —v 1 [S | I} 1 1 1 i . L A i ! 1 1 i 1 1 |) B} i A A I 1 A A A A H i i 1 1 1] L 1 1 A h -; A A b A L L A I ' I 1. F A A

-

-

-

~

N

T

nN

1. A A 1 L A 1 i 'l 4 i 1 L il 1 i A 'y A A X A i A 1 I 1 L L 1 PN A A i L 1 1 ' i 1 A ' 1 i 1 1 1) L. i ' 1 s 158 '} 3 A [l L X 1 A 1. 1 1 5 L A) A 1 1 1 4. 1. i 1
1
U W WUNEY WNEY WY T TUUNS TS S WS WK WU TN WY NN WSS W NN U SN NN S WU WA G S VU NN NS TN SN VU WY S S SN SN SN WA TOU R W NN NN MU NN SUNS SULY NN SN NN SUA MU S SN S RN G AN NN WA YU SUNT T T WA R NEAS WS REIT G NN W NN W SN T T
1 i i 1 Il 3 i 1 S RN N S | 1 A 1 L 1 1 i 1 y 1 4 1 1 ' il i i (] A A i A 'l 1 1 ' i 1] ' 1 4 1 A A 1 i A A 1 1 A] 1 1 1 i A A A A A L L L 1 1 I A I A L) 1 F 1
*
1
1 L L i i S T T s ' i A i i L. A A 1 i A i i j N A i 1 A A I 3 A A i 1 1 A L ‘! A 1. L. 1 1. 1 A 1 i] i | 1 Jt A L L) 3 1 '} 1 A 2 H i A LA A s 1 S N A L. L 1 1
| WY Y RSN VU VN T TR NENES YOO S VN VAN U VU WUy WU VU G V! G S S T VUL S VU VELN VO VU S WU W WSV W RENY N ST SHAY WS WE SUN NSNS SOUE SHN XN SUNN SN TN S SUNY NN SEUN SN YN S SR N S N A S WK NI NN VLI SAUN SHUY NUNY S GHE VK N U0 TUUE SR M G
1
I S VSRS SN TR VAU AN WU TOUUNE WU U WY WU WU LN S ALY U SN W WU SN NSNS WO U N WU RO W WU LS SN AU S SN N VY TS SN NI GG S W WA S NN SN NN SN S NN NUNT SN S SN RN ST SR AN SHAY SN W N RS W SNV SNNY UHN NNAT SN SN RUUN RUNS VUNY T THV U A
A il X 5. I i i A J. I} I3 5 A) 5 1 1 L 1 1 4 1 . 1 i A J L A L I 1 i 1 i A o ! i) 3\ L i A L 1 i 1 L I A L L 1 i\ 1 i 1 A Il 1 i 1 A A A L 1 1 1 1 L 1 A A 1 i i | 1 L
TS NSNS VOUD SRS NN S N EXSIRE SIS SRS NS S SRS FUUIOE SN WSS WU VS VUSRS RS CAUU WY EANMAY PR WY SO N SR CHDUNY VLN WU TCSUY SN ORI SO T S U EANY SN N SO S GO UMD NS SHUUN SN WS WS U ST SHUNY SRS ST SN SN WA SUN TSURE SHUR SRR RN S YU UES00 TN SN UGN TN SR SN VY T ST N S

i L 1 1 1 1] L 3 1 A A i i 1 i i i 1 I3 L 1 L 4 A A L 1 1 L 1 1 1 L 1 L A i s i L i i 1 3 1 L i 'y - A, i 1 I 1 b L A L Il 1 L 3 i [N 1 1 A i L 1 i3 J, 1 L
X . -
. . ;SL 42-i 0375

e

o £ o |

|EEB 36 () | TABLE CODING SHEET (DOUBLE) | ™™ ~ |PAGE 7 OF 7

INITIALS: DATE: TABLE:

Deta Ertry System AA ; 7£.09.0 CUSTOMER TABLE USED IN INVOICE CTABL

CTABLE f | A- | A~ | F- T F-
NAME TYPE LGTH.|TYPE [LGTH
1t 21 31 4 5 6

crasLlPlamrzen | 3

1 & 2 ARGUMENTS & FUNCTIONS

M»mpw_‘h—N_O—‘..___bb.wn......kp......p-.—.-..#hhbb..._.rp___._____—_..—___L_~__.-_...

-

L i 1 1 I} 1 i L 1 L 1 1 1 1 1 1 i 1 i I 1 1 L i L i 1 1 i 1 L 1 i 1 1 1 L i 1] 1 I L 1 1 1 1 .. 1 (] 1 1 I 1 3 4 1 1 i 1 1 i 1 1 1 i L 1 4 Iy ! 1 i L 1 1 1 1 L
11280749-2323 ,

4 ._ L ' L 1 1 £ ¥ 1 1. i 1 1 1 1 1 i 1 L i 1 i 1 i I 1 i 1 L i 1 1 1 L 1 1 1 1 1 i [| 1 n 1 i 1 1 L L »., 1 1 1 1 L L 1 1 L i 1 1 —; 1 1 L L L i 1 1 1 1 1 J. 1 L

_0— 1 i 1 L L i 1 1 i] L Il 1 1 L A ' i’ 1 1 i 1 1 1 1 i 1 1 1 4 1 1] i i 4. A 1 1 A L i 1 i 1 1 1 1 1 1 1 i 1 i 'l i 1 1 1 1 1 i A 1 1 1 1 o 1 4 1 1 [1 L L L

W71.70950-0772 .

J A i 1 1 1 i 1 i 4, 1 1 4 1 1, I i 1) L 1 1 1. 1 i 1 L 1 A i 1 i L L 1 1 1 1. 1 A 1 L 1 t 1 1 i I L L 1 1 1 1 1 1 1 1 L 1 L 1 1 1 - L 1 1 1 1 L i AL 1 1 4 A
2150 : : ;

L 1 1 1 L i i 1 1 L 1 i 1 i 1 il L i1 1 L i 1 1 1 i 1 1 1 1 1 ' 1 i 1 1 i 1 L I 1 1 i 1 1 i 1 A1 j 1 i L 1 4 1 1 i 1 1 1 1 L 1 1 1 (] 1 | A i i I L 1 1 i L

Py

A 1 1
5 - . :
_!QPQPM S 4 \ A Ng— 1 1 1 A i I 1 1 1 1 1 1. L i 1 I ot A A .— 1 i 1 L 1 Jo k. i i A 1 1 i 1 A1 L .. A i i i I H L - A 1 1 1 1 1 L § SUEE S N 1 I 1 1 1 H L 1. 1 1 i 1 i

N—m-p......_.-.-—..ﬂ..»--....?-»b..._.bh--..-....pb_;—._.._-~.-n......rn-u~.

-8.777
u-m“m—u— 1 1 il i A 1 1 i X 1 i 1] i L i1 i] A | i ' '] i 1 1 A 5l 1 i] . A Lt | A b I A i i A 1 L 1 i i A A] 1) _— - i i . A E WS W S | 1 1] b -1 L3 b '

-

mu.‘._....—_—..-..-.».-—-_-hh--_-n..»-u._-...h-.~.-.-.-_..-——..-....»-.._n-.»—_..

DQPQ»Q» 0» Q_VQP 3 i S VU N NS N P i i A A § — 1 3 i i i A L 1ot i — 1 1 i i i (] 1 L [1 1). 1 i’ 1 il 1 i 1 i 1 s 1 1 1 1 L i Lkl I il] § N - | 1 1 | W S 1 L L i

ﬁpm_——nh_.-—.-..P.-.-».-—.»-.n--....n_._—-’—-—.._.._....h.-_.._—_.-—.n...»_n.—

- A
7147680-9221 _ ,
T NEA RN A\ AL VLS. Lol W5 T NOUUN WO TCHS WU U NN TN YN TN JOUUNY NN IEUUN UNS WHUY NN VRN WY SN USRS NN N U SUUNK GRS NS SN WUNN U TOU NS TN S SN SHNN ST SHNY S WS NUN S N YRS NS NS NN MU N S0 WY YO WAON T NNV GHAY NNNN U T YUY NNV ST SR ST T T T Y

QMth»hun—-___bhpnb-.-»hkn-bn»-...,s..-...—..-p_»»....»-—.-.-...n-»»...-._-

-

anFP.FPwr_--PFFFPP-n-P——h—--—-Pbb-—--\‘-bnn-.——-—_-\PF-»P.—-.\PF-—P——_hPP—--Fh

‘_D.D.-—.-...-_.Phnup.-—..hh»hb.nu_—.hrbpb—-—.._._.b-.......uvun_-h....bn-...._..

p-..pnb...~._..—.;—.-».....F?Pup___.___.\ppb_-h—.___-.._._....__..pp__pb_-k.iL'F..

Lot L. L i L 1 i i I Je A 1 L s) L 1 L I3] 1 (] i A i A 1 A " i 1 1 I 1 1, L A i '] 1 i 1 1 L 1 1 s e .» L A i b 1 I 1 1 o "3 L A ' A A 1 4 i A did IS N A l L
i
@ ® @ oo

APPENDIX IV

Standard Formats FORM, IMAGE, SUBPR, and TABLE

L1sT: FORAZT=SOURCE TEXT (BOCSS):

KEC FNAME § P COMMENT
0001 FORM 3 N FORMAT FORMAT = SUBFORMAT HEAD ENTRY -

FLD LIN KEC NAME. P LN PS LG ML TY OUT J F V D K RG PROGRAM STATEMENTS

$
o401 901 5002 NAME 5 1 AN 1t NOTE THE FORMAT NAME IS 1 TO 5 CHARACTERS,
H 001 062 GC03 IF (NAMECIICUAY) OR (NAME(1)>'27) THEN
H 001 N3 yOL4 . ALARM 'ILLEGAL FORMAT NAME',
n 002 001 0005 SUBFN 1 1 AN 2 NOTE THE SUBFORMAT NAME IS 1 CHARACTER,
H 102 002 U006 IF NOTC(C((SUBFN>='Q') AND (SUBFN<='91)) OR
* 302 0C3 0007 C(SUBFN>®*At) AND (SUBFN<='Z'))) THEN
W D12 204 0098 ALARM 'ILLEGAL SUBFORMAT NAME?',
© #0603 061 0009 PROCTY . 1 04 3 NOTE SUBFORMAY PROTECTION AGAINSY MANUAL SELECTION:
003 0¢2 0610 Y = NO MANUAL SELECTION N = (DEFAULT) MANUAL SELECTION IS POSSIBLE,
» 003 903 0011 ' ALLOW TY® EN' 0 b,) >
ON4 CUT 0012 COMM 74 0 AN 4 L . .
W 005 0C1 0013 [NOTE SUBFORMAT KEAD IS FINISHED
% J05 002 0014 « CHANGE SUBFORMAT TO FIELD DESCRIPTION,
005 003 G015 DEFINE X01 16, COMPUTE X01s0, NOTE BLANK MASK,
H 005 004 0016 ’ OEFINE X02 5, MOVE ! * Y0 X02, NOTE CONSTANT = SPACES,
H 005 005 0017 OEFINE X03 1, COMPUTE Xx03 = 0,
H 005 006 2018 NOTE KEEPS TRACK OF PAGENO = LINEND 'AND POSITION.,
H 005 007 0019 .. DEFINE X0& 1, COMPUTE XO4 = 1, NOTE LAST USED PAGE,
H 005 308 0020 : X DEFINE X05 1, NOTE ~USED WHEN PAGE IS CHECKED,)
4 005 009 0021 SELECT SUBFORMATY F,
W 605 010 0022 - END SUBFORMATY,

REC FNAME § P COMMENY
Q023 FORM F N FIELD DESCRIPTION ENTRY

FLD LIN REC NAME P LN PS LG ML TY OUT J F V D K RG PROGRAM STATEMENTS

3
F 001 001 0024 FLONM 5§ 0 AN 1L i NOTE FIELD NAME IS O TO 5 CHARACTERS,
F 001 QU2 0025 . IF (CFLONMC1)<'AT) OR (FLONMC1)>*2%)) AND (FLDNM>X02) THEN
F 001-003 0026 . ALARM 'ILLEGAL FIELDNAME!,

. F 002 001 0C27 PAGE 1 0N 2 NOTE PAGENO IN DISPLAY=LAYOUT =~ FROM 1 TO 8,
F 202 Gu2 0U28 CONNECT PAGE TO '' GIVING XO05.
F 002 003 0029 IF XD5 = ¢ ' THEN SKIP 2 FIELDS) GOTO PEND,
F G2 0G4 0C30 LIMIT 1 8, COMPUTE XD1(2)®1,
F 002 005 D034 1F PAGECX04 THEN ALARM 'CURRENT PAGENO LESS THAN PREVIOUS PAGENO'
F 002 006 0032 ELSE COMPUTE X04 = PAGE,

. F 092 007 0033 PEND: NOTE END PAGENO = PROGRAM,
f 003 GD1 0C34 LINE 2 0N IR NOTE LINENO IN DISPLAY=LAYOUT = FROM 1 TO KO OF LINES ON DISPLAY,
F 003 vg2 0u3s LIMIT 1 21, COMPUTE X01(3)=1,
£ 004 CO1 0036 POS 2 0N 4 R NOTE POSETION IN LINENO DISPLAY=LAYOUT =
F 004 CO2 0037 FROM 1-TO NO OF POSITIONS PER LINE ON DISPLAY,
F 004 UG3 GC38 LIMIT 1 80, COMPUTE X01(4)=1,
£ 005 (01 D039 LENGT 2 ONK 5 R NOTE ~ THE FIELD LENGTH IS FROM O TO 80,
F.005 G02 LG40 1f LENGTH ® 0 THEN SKIP 9 FIELDS ELSE LIMIT O 80,
F 0uS QL3 0C41 : ' COMPUTE X01(S5)=1,
F ND6 001 0042 MINLE 2 ON 6 R NOTE THE MINIMUM LENGTH OF THE KEYED DATA,
F N06 002 G043 IF MINLE>LENGTH THEN .«
F Ous GO3 0Css ALARM YMINLENGTH GREATER THAN FIELD LENGTH®
F Nu6 Che D045 ELSE -
F DGA GRS DC46 : LIMIT O 80,
F D06 006 DOLY COMPUTE X01(6)=1,
F JU7 UUY CO48 TYPE 2 0 7L NOTE THE FIELD TYPE IS NUMERIC - SIGNED NUMERIC
< F Q07 02 0049 SPECIAL SIGNED NUMERIC = ALPHANUMERIC OR ALPHABETIC,

F 207 063 5050 ALLOW 'N ' SSNT YSS' VAN' a9,)
F G0/ 01 0ONS1 OUTPS 3 ON 8 R NKOTE THE FIELD NUMBER OF THE FIELD IN OUTPUT BUFFER,
FoOuUR QL2 ulS2 LIMIT O 255, COMPUTE X01(8)=1,
F 009 GN1 GOS3 JusT 1 0 & 9 NOTE RIGHT OR LEFT JUSTIFICATION IN THE FIELD,
b 009 £U2 D054 ALLOW 'L TRt v Y,
F D10 Cu1 6055 FILL 1 0 AN 10 NOTE FILL CHARACTER FOR NOY USED POSITIONS -IN THE FIELD.
F o219 002 CGSe ALLOW ¢ ¢ Q! xt, ’
FoL11 LY SOST? VERIF 1 6A 11 NOTE VERIFICATION OF THE FIELD IN REKEY=MODE,
F (11 U2 LG58 ALLOW TN® syt v v,
F 412 Gut 0359 DISP 1. 04 12 . NOTE DOISPLAY OF THE KEYED FIELD,
F

312 (e unel ALLOW 'NY tyt 3 0,

L W e e e e s =

CAIV-1

013
0135
213
013
013
013
013
214
D14
015
016
Cie
016
016
016
616
16
016
016
016
016
016
916
016
016
016
016
016
616
016
016
016
016
016
016
016
216
016
nN1é
016
016
016
016
016
n16é
016
016
016
016
016
Q16
016
016
016
016
016

ou1 0061

ue2
603
[\
ces
coe
gu?
Qo
002
G0t
001
G602
cel
({12
co5
006
007
nus
009
€10
011
012
013
014
015
c16
017
G18
019
020
G21
022
G23
024
025
026
027
028
29
C¢30
031
032
033
034

a062
nue3
0064
0065
0066
oue?
0068
0069
0070
0071
0672
5073
0074
0075
0076
0077
ou78
0079
0680
€081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
035 0105
036 0106
037 0107
038 0108
039 €109
040 0110
041 0111
042 0112
643 0113
064 0114
045 0115
046 0116

TV NN M ANATNIA NI ANAMN M TA AV VAAMAVAAE N AAAATI AT IAR TR TN AN AARRNN T

REC
0117

§ FLD LIN REC

E fg1 GU1 0118

LIST

AlV-2

KIND 104 13

REGIS 2 0N 14 R

PROG 80 O AN 15 L
0

FNAME § P COMMENT

FORM E END FORMAT FORMAT

NAME ~ P LN PS LG ML TY OUT 4 F V D K RG

0

NOTE THE KIND IS DUPLICATION = INCREMENT
= CONSTANT = NOT KEYED OR KEVED,
ALLOW YNV 'Ct tpy rpv tgs o0,
I1F ((KIND@'I') AND ((TYPE <> 'N') AND (TYPE <> FSNT) '
AND (TYPE <> 'S5')))} THEN
ALARM YKIND "I" ONLY ALLOWED IF TYPE = “N" = "SN" OR ngsnr,
NOTE REGISTER TO HOLD DUPLICATION OR CONSTANT VALUE,
LIMIT 1 99, COMPUTE x01(142=1,
NOTE PROGRAMSTATEMENTS.,
NOTE CHECK CHECKBOX CONTENTS,
COMPUTE X03 = X01(2) + X01(3) +X01(4),
1F X01(5)s0 THEN GOTO EMPTY; NOTE LENGTH NOT KEYED,
IF LENGTH=Q THEN GOTO CONTINUEZ NOTE LENGTH = O,
NOTE 'NORMAL'=CHECKBOX,
IF ((X03¢>0) AND (x03<>3)) THEN 60TO ERROR;
NOTE ERROR IN PAGENO = LINENO OR POSITION.

IF X01(¢6)=0 THEN GOTO ERROR} NOTE MINKEYET NOT KEYED,
IF TYPE=X02 THEN GOTO ERROR; NOTE ~TYPE HAS NO VALUE,
IF XD1(8)=0 THEN GOTO ERROR; NOTE OUTPOS NOT KEYED,
1F X01(14)=0 THEN GOTO CHE2; NOTE REGISTER NOT KEYED,
NOTE REGISTER KEYED,

1F KIND=X02 THEN GOTO ERROR; NOTE KIND NOT KEYED,

IF KIND='N' THEN GOTO ERROR; NOTE KIND = NOT KEYED,

IF KIND='K' THEN GOTO ERROR; NOTE KIND = KEYED,

6070 0K,

CHE2:

NOTE REGISTER NOT KEYED.,

IF KIND='I' THEN GOTO ERROR; NOTE KIND = INCREMENT,
IF KIND='D' THEN GOTO ERROR; NOTE KIND = DUPLIKATION,

IF KIND='C! THMEN GOTO ERROR; NOTE KIND w CONSTANT, .
GOTO 0K,)
NOTE SEMPTY! /7 'CONTINUATION' CHECKBOX.,

EMPTY: CONTINUE: -
1F FLONM<>XD2 THEN GOTO ERROR? NOTE FIELD NAME KEYED,

IF X03 <> 0 THEN GOTO ERROR;

NOTE ERROR IN PAGENO = LINENO OR POSITION,

X01(6)=1 THEN GOTO ERROR; NOTE MINKEYED KEYED,
TYPEC>X02 THEN GOTO ERROR; NOTE TYPE KEYED,

X01(8)=1 THEN GOTO ERROR; NOTE QUTPOS KEYED,

JUSTCK>X02 THEN GOTO ERROR} NOTE JUSTIFICATION KEYED,
FILLCO>X02 THEN GOTO ERROR; NOTE FILL CHARACTER KEYED,
VERIF<>X02 THREN GOTO ERROR; NOTE VERIFICATION KEYED.

IF DISP<>XOR THEN GOTO ERROR; NOTE DISPLAY KEYED,
IF KIND<>X02 THEN GOTO ERROR; NOTE KIND KEYED,

IF X01¢(14)=1 THEN GOTO ERROR; NOTE REGISTER KEYED,
G0TO0 0K,

NOTE ERROR IN CHECKBOX CONTENTS,

ERROR:

ALARM YERROR IN CHECKBOX CONTENTS',

NOTE CHECKBOX CONTENTS 0K,

0Ks

COMPUTE X01=0,

1f PROGm'END SUBFORMAT,t THEN SELECT SUBFORMAT H,
IF PROG='END,' THEN SELECT SUBFORMAT E.

END SUBFORMAT,

PROGRAM STATEMENTS

END,

nagR e

- LIST: FORMAT=SOURCE TEXY (BOOS2):

FLD
001
001
oz

003

»

XXTXXITX

P 001
P OO

,‘7,.} . /{

-

§ FLO
E 001
END LIST

LIN
901

002

LIN
001

REC FNAME
0901v$UBFﬂ

REC . NAME

0002 NAME
0004 ComM

REC FNAME
0007 suePr

REC NANME
0008 PROG

REC FNAME
0010 SUBPR

REC NAWE

§ P COMMENT : T T
H N SUBPROGRAM FORMAY = HEAD : : ;

P LN PS LG ML TY QUT J F V D K RG PROGRAM STATEMENTS . A

s 1 AN 1L IF (NAMECTICIAT) OR (NAME(1)>921) THEN
. ALARN 'ILLEGAL SUBPROGRAM NAMEY,

T6 O AN 2L
0 X SELECT SUBFORMAT P,
) END SUBFORMAT,

J

§ P COMMENT
PN SUIPRDGI!R FORMAT = PROGRAMPARTS FS

—

P LN PS LG ML TY QUT J F V D K RG PROGRAM STAT!HINfI i RS
80 148 1L IF PROG = 'END,® THEN t:Ltcr SUBFORMAT N
: END SUBFORMAT, R :
§ P COMMENT
€ N SUBPROGRAM FORMAT « END

P LN PS LG ML TY OUT J F.¥ D K RG PROGRAM STATEMENTS

0 . END,
S N
e : SN

~r

R - AlV-3

LIST: FCRMAT-SOURCE TEXT (BOOS4):

REC FNAME S P COMMENT .
: CO01 IMAGE H N IMAGE FORMAT « SUBFORMAT HEAD ENTRY
S FLD LIN REC NAME P LN PS LG ML TY OUT J F V D K RG PROGRAM STATEMENTS
H 001 001 0002 NAME 5 1 AN 1L NOTE THE FORMAT NAME IS 1 TO 5 CHARACTERS.,
001 002 0003 . . IF (NAMEC1)C*AY) OR (NAME(1)>'21) THEN
001 003 0004 ALARM *ILLEGAL FORMAT NAME',
H 002 001 0005 SUBFN 1 1 AN 2 NOTE THE SUBFORMAT NAME IS 1 CHARACTER,
#H 002 002 G006 ’ IF NOT (C((SUBEN>='Q') AND (SUBFN<='9')) OR
W 002 003 0007 ((SUBFN>®'A') AND (SUBFN«®'29))) THREN
K 902 0C4 0008 ALARM 'ILLEGAL SUBFORMAT NAME',
® 903 001 0009 ComM 74 0 AN 3L
H 004 001 0010 0 NOTE SUBFORMAT HEAD IS FINISHED =
H 004 002 0011 CHANGE SUBFORMAT YO TEXT DESCRIPTION,
® 004 003 0012 DEFINE Xx01 1, COMPUTE X01=1, NOTE LAST USED PAGE,
004 004 0013 SELECT SUBFORMAT F,
W 004 005 0014 END SUBFORMAT,
REC FNAME § P COMMENT
0015 IMAGE F N TEXT DESCRIPTION ENTRY
$ FLD LIn REC NAME P LN PS L6 ML TY . OUT J F V D K RG PROGRAM STATEMENTS
F 001 U01 G016 PAGE 1 1N 1 NOTE PAGENO IN DISPLAY=LAYOUT ~ FROM 1 T0 8,
-F 001 002 0017 LIMIT 1 8,
F J01 003 0018 . IF PAGE < X01 THEN
fF 001 004 0019 ’ . ALARM 'CURRENT PAGENO LESS TNAN fREVIOUS PAGENO!
§£ €01 005 0020 ELSE
F 001 006 0021 COMPUTE X01 = PAGE,
F 002 GO1 0022 LINE 2 1w 2R NOTE LINENO IN ODISPLAY=LAYOUTY = FROM 1 YO NO OF LINES ON DISPLAY,
F 002 002 0023 LIMIT 1 21,
F 303 CCY 0024 POS 2 1N IR NOTE POSETION IN LINENO IN DISPLAY~LAYOUT = FROM 1 10 NO OF
f 003 002 0025 POSITIONS PER LINE ON DISPLAY.,
F 003 003 (026 LIMIT 1780,
F 004 001 0027 TEXT 80 1 AN 4 L NOTE THE DISPLAY TEXT IS 1 TO 80 CHARACTERS.,
F 004 0CG2 0028 END SUBFORMAT,

REC FNAME § P COMMENT
0029 IMAGE E N END IMAGE -

S FLD LIN REC NAME P LN PS LG ML TY OUT J F V D K RG PROGRAM STATEMENTS
E 001 007 0030 0 . END,

ErD LIST

AlV-4

LIST: FORAAT=-SOURCE TEXT (BOOS3):

o»

TXIXTXTLTXTIXILIXTXIXIIXILXIXIXXIXIIXXIIITEIXZL

-

VRV RY] L ”» e e w (P AV RV

rORO w0

END

FLD

001
001
001
002
002
003
003
004
004
904
004
005
005
006
006
007
Q7
007
0q7
007
007
007
007
007
007-
007
007
007
007
007

FLD

001
001

FLD

001
001

FLO
001

1002
.002

FLD
001

002
002

FLD
001

002
002

FLD
001

ng2
002

001
LIST

LIN

001
002
003
Q01
202
001
Jge
001
032
003
004
0C1
002
201
002
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

LIN

001
02

LIN

001
002

LIN
001

ac1
002

LIN
001

001
002

LIN

‘001

001
002

LIN
001

001
uQ2

LIN

001

REC
0001

REC

0002
0003
0004
0005
0006
0007
9008
0009
0010
0011
0012
0013
0014
0015
0016
0047
0018
0019
0020
0021
002z
0023
0024
0025
0026
0027
0028
0029

FNAME
TABLE

NAME P LN PS LG ML TY OUT J F vV D K RE

NAME

TYPE
ARGT
ARGL

FUNCT
FUNCL

0030 -

0031
REC
0032
REC
0033
0034
REC
0035
REC
0036
0037
REC
0038
REC
0039

0040
0041

REC
0042
REC
0043

0044
0045

REC
0046
REC
0047

0048
0049

REC
0050
REC
0051

0052
0053

REC-
0054
REC
0055

FNAME
TABLE

NAME
ARG

FNAME
TABLE

NAME

ARG

FNAME
TABLE

NAME

ARG
FUNC

FNAME

TABLE’

NAME

ARG
FUNC

FNAME
TABLE

NAME

ARG
FUNC

FNAME
TABLE

NAME

ARG
FUNC

FNAME
TABLE

NAME

S P COMMENT
H N TABLE FORMAT = HEAD

5 1 AN 1L
1 1A 2

2 14 3L

2 1N 4RO
2 1A St

2 1N 6RO

o
$ P COMMENT

1 N TABLE FORMAY = SINGLE
P LN PS L6 ML TY OUT J F V
80 1N 1RO

S P COMMENT
2 N TABLE FORMAT = SINGLE

P LN PS LG ML TY OQUT J F V¥
80 1

AN 1L

§ P COMMENT
3 N TABLE FORMAT « DOUBLE

P UN PS LG ML TY OUT 4 F V

80 1N 1R 0
80 1N 2RO
S P COMMENT

4 N TABLE FORMAT = DOUBLE

P LN PS LG ML TY QUT ¥ F v

80 TN 1RO
80 14N 2L
S P COMMENT

5 N TABLE FORMAY = DOUBLE

P LN P§ LG ML TY OUT J F V

80 1 AN 1L
80 1 N 2RO
S P COMMENT

6 N TABLE FORMAT = DOUBLE

P LN PS LG ML TY OUT J F V

80 1 AN 1L
80 1 AN 2L
S P COMMENT

E N TABLE FORMAT = END
P LN PS L6 ML TY OUT J F V
0

PROGRAM STATEMENTS

NOTE TABLENAME IS 1 TO 5 CHARACTERS,
IF (NAME(1)CtAY) OR (NAME(1)>'2%) THEN
ALARM SILLEGAL TABLE NAME',

NOTE TABLETYPE IS EITHER SINGLE OR DOUBLE,
ALLOW S' DY,

NOTE ARGUMENTTYPE I§ NUMERIC OR ALPHANUMERIC,
ALLOW N 1 tANY,

NOTE ARGUMENTLENGHT IS FROM 1 TO 80,

LImIT 1 80,

IF TYPE= 1S*' THEN
SKIP 2 FIELDS, C
1<,

NOTE FUNCTION TYPE IS NUMERIC OR ALPHANUMER
ALLOW N ' 'ANY,

NOTE FUNCTION LENGTR IS FROM 1 YO 80,

LIMIT 1 80,

NOTE SELECT ACTUAL SUBFORMAT,
IF TYPE='D! THEN GOTO LD,
IF ARGT='N ' THEN SELECT SUBFORMAT 4
ELSE SELECT SUBFORMAT 2,
GOTO LEND,
Lo
IF ARGT<>IN ' THEN GOTO LOAN,
IF FUNCTRIN ' THEN SELECT SUBFORMAT 3
ELSE SELECT SUBFORMAT 4,
60TO LEND,
LOAN:
IF FPUNCT®!N ' THEN SELECT SUBFORMAT §
ELSE. SELECT SUBFORMAT 6,
LENDS
END SUBFORMAT,

ENTRY = ARGT=N

0 K RG PROGRAM STATEMENTS

NOTE READ ARGUMENT,
END SUBFORMAT,

ENTRY = ARGT=AN
0 K RG PROGRAM STATEMENTS

NOTE READ ARGUMENT,
END SUBFORMAT,

ENTRY = ARGT=N = FUNCTaN
D K RG PROGRAM STATEMENTS
NOTE READ ARGUMENT,

NOTE . READ FUNCTION,
END SUBFORMAT,

ENTRY = ARGT®=N = FUNCT®AN
D K RG PROGRAM STATEMENTS
NOTE READ ARGUMENT,

NOTE ~READ FUNCTION,
END SUBFORMAT,

ENTRY = ARGTSAN = FUNCTSN
D K RG PROGRAM STATEMENTS
. NOTE READ ARGUMENT,

NOTE . READ FUNCTION,
END SUBFORMAT,

ENTRY = ARGTmAN = FUNCT=AN ’ .
D K RG PROGRAM STATEMENTS
NOTE READ ARGUMENT,

NOTE READ FUNCTION,
END SUBFORMAT,

0 K RG PROGRAM STATEMENTS

END,

AlV-5

APPENDIX V

Format Language Syntax

4

fieldname
fieldname (num. constant)
Operand: { register e

register (num. constant)

L constant

numeric constants

Constant:
nonnumeric constants
4 arithmetic operator
Operator: relational operator
logical operator
. . .
Arithmetic operator: 4 4 >
MOD
. J
3\
B
>=
Relational operator: < < q
L=
<>
\ y,
AND
Logical operator: OR
NOT -

AV-1

Expressions:

field name
register

numeric constant

(expression)
~

field name (num.const.) -

register (num. const.)

/[

field name

field name (num.const.)
register

register (num. const.)

numeric constant

(expression)

N /]

Conditions: |]

Relqtional condifion;

relational condition
table condition
validity condition

compound condition

N

7/

7 ’ \
field name field name
field name (num.const.) field name (num. const.)
) register relational op.) register
register (num. const.) register (num. const.)
constant - constant
arithmetic expression L arithmetic expression
J
Table condition:
¢ . w
field name
field name (num. constant)
{ register IN table name

\

register (num. constant)

constant

AV-2

Validity condition:

field name VALID
INVALID

Compound condition:

’

A,

AND
(condiﬁon){OR } (condition) {

NOT (condiﬁon)

AND
OR

} (;ondiﬁon)

W

AV-3

AV-4

Statements:

ALARM statement:

ALARM

’

< register (num. constant) 3

. J

nonnumeric constant

register

field name

field name (hum. constant

ALLOW and DISALLOW statement:

ALLOW [{f}] numeric constant [{f}:! numeric constant
DISALLOW . ‘
nonnumeric constant nonnumeric constant
or:
ALLOW [D!SCJ table name
 DISALLOW

COMPUTE statement:

COMPUTE

’

.

current field name
current field name (num. const.)

register

¢ = arithmetic expression

register (num. const.)

- CONNECT statement:

CONNECT <

~

field name

field name (num. const.)

(;
field name

field name (num. const.)

register > TO { register

register (num. const.)

constant

J.

GIVING! current field name

register

\

register (num. const.)

constant

DEFINE statement:

'DEFINE

register numeric constant

DISPLAY statement:

DISPLAY ¢

nonnumeric constant -
register

register (num. constant)

field name

field name (num. constant)

J

END statement:

END

END SUBFORMAT statement:

END SUBFORMAT

AV-=-5

GOTO statement:

GOTO label

LIMIT statement:

-numeric constant -numeric constant

LIMIT

numeric constant numeric constant

MOVE statement:

, .
field name A . ' -
field name (num. const.) current field name

MOVE J nonnumeric constant L TO current field name (num.const.) [

register register

register (num. const.) \reglster (num. const.) J

. J

NOTE statement:

NOTE character string

PERFORM statement:

PERFORM subprogram name

AV-6 | - , 5

SEARCH statement:

4
field name

SEARCH ¢ register

_cons tant

field name (num. const.) |
> IN [DISC] table name

register (num . const.)

N

9 / 3
current field name
GIVING <{ current field name (num. const.) ,
' register
§ register (num. const.))
ATEND unconditional statement
SELECT statement:

SELECT SUBFORMAT

subformat name

SET statement:

INVALID

SET field name {VAL'D }

'SKIP statement: -

SKIP numeric constant FIELDS

IF statement:

IF condition THEN sentence [ELSE- sentence]

APPENDIX VI

Limitations

Maximum number of fields in a subformat fvenevenenes 255
Maximum number of elements i an ALLOW/DISALLOW 255
Maximum number of different core tables in one TRANS call .. 10

Maximum number of different DISC tables in one TRANS call .. 20

Maximum number of different subprograms in one TRANS call .. 10
Maximum gross record lengthoviiviniieiniiiieiiiiaas 20,000 bytes
Maximum number of formats sseiesees PP 84
Maximum number of subprograms RO A . 84
Maximum number of tables 84

Please also note that

- nonnumeric constants (i.e., '...") may not stretch over more than one line;

- no screen position may be simultaneously used both for the keying of a field

and for tag specification.

AVE-1

APPENDIX VII

Error Messages From TRANS

*

- All errors are printed on the line printer.

If an error causes a stop in the execution of TRANS it is noted in the following
list by means of STOP; on the other hand, if an error causes a skip in the
batch it is noted by SKIP. The sign - denotes that the error neither STOPs
nor SKIPs. '

The following cases of error printouts contain references to the batch:

- <subf> means the subformatname, which is just now handled by TRANS.

A if translation of subprograms.

<fieldno> ' means the fieldnumber in <subf>; counted from 1; field defi-
' nitions with length = 0 or field definitions with outpos
= 0 are defined by fieldnumber for latest field + relative
field definition number (with length = 0 or outpos = 0).
0 if translation of subprograms.

<lineno> means the linenumber relative within <fieldno>; counted

from 1.

<symbolno> means the symbolnumber relative within <lineno>; counted
from 1 (e.g.: '

a field definition is one symbol; ;

ALARM, THEN, I[N, etc. are one symbol each;

*ONE SYMBOL' are three symbols;

+123 are two symbols; '

- <>, >=, <, =, etc. are one symbol each;

- IF A<> B THEN are five symbols).

1. lllegal batchstatus <batchname > <status > STOP
The status of the batch is invalid or not closed.

AVII-1

2.

4b.

A VIl -2

Illegal format <batchname> <used format>

The used format is wrong, i.e.,
<used format> not 'FORM!' in case of FORMAT-translation,
not 'SUBPR' in case of SUBPR-translation,
not 'TABLE' in case of TABLE-translation,
not 'IMAGE' in case of FORMAT WITH
IMAGE-translation.

lllegal subformat <batchname > <recordno> <used subformai>
The <recordno>"th record in the batch has been created
under control of <used subformat>, which is not allowed at

this point.

Name already exists <name> <result>
The <name > already exists in library (i.e., format-, sub-
program-, or table-library), or the library is full.
<result> =1. <name> already in library,

=2, library is full.

Name already exists <batchname > <recordno> <subf>
The <recordno>'th record in the batch is defining a sub-
format named <subf>, which has been defined already.

File already exists <name > <result>
Disc error in connection with disc-file <name >
<result> <0 : hard error on the disc, please
check if disc is running,
= 4112 : disc-file <name> already exists,
= 4352 : disc-space exhausted,
- =4508 : fatal program error.

Not in use.
Too many fields <recordno> <subf>

The <recordno>'th record in the batch is defining the
255th field in subformat <subf>.

STOP

STOP

STOP

STOP

STOP

STOP

10.

1.

12,

13

14a.

No field <recordno> <subf>

The <recordno>'th record in the batch is the first one
after a subformat - head - record, and contains no check-
box (i.e., the field holding field length is empty).

String not terminated <recordno> <subf> <fieldno>

' The program has observed a text-start~mark with no text-

end-mark in the same line; the error is detected in the

<recordno>'th record in the batch defining the <fieldno>'th -

field in subformat <sqbf>.

Illegal formatname <batchname > <recordno> <formatname>

The <recordno>'th record in the batch is defining a new

“subformat to a format identified by <formatname>.

The batch contains at least two subformats with unlike

formatnames.

lllegal number of records <batchname > <should have been>
<was> | |

The <was>'th record is detected to be the last one (in the
logical order) in the batch, but the batch consists of
<should have been> number of records.

Not in use.

Double defined outpos <subf> <fieldno> <outpos>
<outpos>'th output-field number has been defined twice

in subformat <subf>; the error is detected at the <fieldno>'th

field.

lllegal statement type <subf> <fieldno>
An end-statement is written in fhe last field in subformat

<subf>, but this subformat is not the last one in the format,
“no skip. | ‘

An end-, endsubformat-, or select-statement is detected
in <fieldno>'th field in subformat <subf>, but this field
is not the last one in the subformat, skip.

STOP

STOP

STOP

STOP

SKIP

- /SKIP

AVHIl -3

AVIl -4

14b.

14c.

15.

16.

17.

18.

lilegal statement type ' : -

The program has found a set-statement, an endsubformat-
statement, or a select-statement in a subprogram, or the .

end-statement is missing.

lllegal statement type <subf> <fieldno> <lineno><symbolno> SKIP
TRANS has detected an illegal symbol after an end-state-
ment or an endsubformat-statement; these statements are to

be followed by comma and nothing else.

Fatal program error <where > ; STOP
Fill in an error report for Regnecentralen.
<where> =0 : X01 does not exist as a symbol in
| symtab,
=1 : tpass does not contain an end-sub- , .
format-mark after last field in a
subformat,
=2 : tpass contains more subformats than

counted in subformat head (observed
in connection with new subformat),
=3 : tpass does not contain an end-format-
mark after last subformat,
=4 : tpass contains the wrong number of
subformats (observed in connection

with end format).

Subformat not terminated <subf> . -
Subformat <subf> contains no end-statement and no end- .

subformat-statement.

lllegal number of arguments <should have been> <was> STOP
The program has detected the <was>'th argument to be
the last one (in the logical order), but it was expecting

<should have been> number of arguments.

Format not terminated : -

End-statement is missing in last field in last subformat.

19.

20,

21,

22,

23,

24,

25.

26,

Insert error <name> <result>
An error occurs inserting <name> in hbrary (i.e., format-,
subprogram-, or table-library).
<results> =1 : <name> already in library,
=2 : library is full.

Too many fables <subf> <fieldno> <lineno> <symbolno>
There are references to too many (different) tables. Con~

cerning parameters, see above.

STOP

Double defined <subf> <fieldno> <lineno> <symbolno> STOP/SKIP

Two (or more) identifiers with the same name. Concern-

ing parameters, see above.

Ilegal symbol <subf> <fieldno> <lineno> <symbolno>
Last read symbol not allowed at this point (normally,
syntax error), Concerning parameters, see above.

lllegal terminator <subf> <fieldno> <lineno> <symbolno>
Statement not terminated by comma or label definition not

terminated by colon. Concerning parameters, see above.

Undefined <subf> <fieldno> <lineno> <symbolno>
Item is not defined or does not exist, e.g., table/sub-
program not in library.

Concerning parameters, see above.

lilegal type <subf> <fieldno><lineno> <symbolno>
Item has been detected to be with an invalid type, e.g.,
- a keyed field has been used as destination
(e.g., in a compute-statement),
- expression between if and then is not a-
relation,
- nonnumerrc fnelds (or consfunts) occur
in arithmetic expression.
Concerning parameters, see above.

Stack <subf> <fieldno> <lineno> <symbolno>
There is no room for creating current format, the causes
may be '

SKIP
SKIP

SKIP

SKIP

STOP

AVII<5

27.

28.

29.

30.

31.

32

33.

AVIl-6

- too many fields in one subformat,
~ expression with a structure too compli-
cated (e.g., many brackets). .

You can paraphrase the format to a simpler one (i.e.,

a format, where all expressions are dispersed into simple
ones and all fields (not referred) are identified by field-
name consisting of 5 spaces). If the paraphrasing has no
effect, please fill in an error report for Regnecentralen.

Concerning parameters, see above.

Hlegal expression <subf> <fieldno> <lineno><symbolno> SKIP
The program has observed an expression before 'IN' in a
table condition.

Concesning parameters, see above.

lllegal registerno <subf> <fieldno> <lineno> <symbolno> SKIP
The program has found a reference to register zero.

Concerning parameters, see above.

lllegal index value <subf><fie'|dno><lineno><symbo!no> SKIP
A subscript has to be greater than zero and less than 256.

Concerning parameters, see above.

Too many items <subf> <fieldno><lineno> <symbolno> SKIP

It is not permitted to have more than 255 strings in an

allow- or disallow-statement, to define a register with

more than 255 characters or to skip more than 255 fields. .

Concerning parameters, see above.

lllegal recstatus <batchname > <recordno> <recstatus> STOP
The <recordno>'th record contains an input error.

lllegal format structure <batchname> , STOP
~ The batch is not terminated by a record created by sub~-

format E.

Nanny does not exist STOP

The nanny (data entry) system is gone, please fill in an

error report for Regnecentralen and restart the system. ' . .

34, Remove error <name> <result> ‘ . -
~ Disc error in-connection with disc-file <name> '
<result> < 0 : hard error on the disc, please
' check if disc is running,
='20480: disc-file <nahe> does not exist, :
= 4508: fatal program error, or
disc-file <name > used by an-

other user.

‘35a. lilegal length <recordno> <entryno> -
An argument or a function to a table-definition has a
wrong length (normally too long).
The error has been detected in the <recordno>'th record
in the batch, this record is defining the <entryno>'th
entry in the table.

35b. Illlegal length <subf> <recordlength> -
~ The resulting <recordlength> from <subf> is greater than
than 20,000.
36. lllegal outpos <subf><fieldno> <outpos> SKIP

The checkbox for the <fieldno>'th field in subformat
<subf> is defining an output-position <outpos> greater
than number of fields.

37. ‘Undefined label <subf> <fieldno> <lineno> <symbolno> -
The program has not found a label definition for a label
referred. ; '
Concerning parameters, see above.

38a. No room in current line <subf> <fieldno> <lineno> -
<symbolno> o '
There is not enough space in current screen line for
current field. .

Concerning parameters, see above.

CAVI-7

38b.

3%a.

39%b.

40b.

4la.

- 41b.

“AVII-8

No room in current line <batchname > <subf> <page>

<line> <position>

There is not enough space in current screen line for the
image text given by <subf>, <page>, <line> and
<position>.

Line too large <subf> <fieldno> <lineno> <symbolno>
<line> (field description, column 3) is greater than num-
ber of datalines in the screen.

Concerning parameters, see above.

Line too large <batchname> <subf> <page> <line>
<position>

<line> is greater than number of datalines in the screen.

The parameters describe current image text.

Current page less than previous page <subf> <fieldno>
<lineno> <symbolno> A

The page numbers must occur in a not descending order
inside the subformat.

Concerning parameters, see above.

Current page less than previous page <batchname> <subf>
<page> <line> <position>

The page numbers must occur in a not descending order
inside the image for one subformat.

The parameters describe current image text.

Page too large <subf> <fieldno> <lineno> <symbolno>
<page> (field description, column 2) is greater than 8.

Concerning parameters, see above.

Page too large <batchnames<subf> <page > <line>
<position>
<page is greater than 8.

The parameters describe current image text.

42a. Screen position used more than once <subf> <fieldno> . -
<lineno> <symbolno> ‘ - '
At least one of the screen positions for current field has
been reserved by a previous field.

Concerning parameters, see above.

42b. Screen position used more than once <batchname > <subf> -
<page> <line> <position>
At least one of the screen positions for current text has
been reserved by a previous image text.

The parameters describe current image text.

43. Subformat does not exist <batchname> <recordno> <subf> STOP
The <subf> referred in the «<recordno>'th record of the
image-batch <batchname > has not been defined in the

format,

. 44, Screen position used both by tag and by field -
<subf> <page> <line> <from pos> «<to pos>
At least one of the screen positions in the interval <from pos>
to <to pos> is used both by a tag and by a field. The po-
sitions are allocated to <line>'th line in the <page>'thv |
page of subformat <subf>.

45. Disc tables not allowed in subprograms <subf> <fieldno> SKIP
< lineno> <symbolno> '
- References to DISC tables must not occur in subprograms.

Concerning parameters, see above.

46. Registername <> tablename <subf> <fieldno> <lineno> ~ SKIP
<symbolno> <registername > |
The <registername > stored in the disc-table pointed out
by the first four parameters does not équal the tablename.

Concerning parameters, see above.

47. Too many subprograms <subf> <fieldno> <lineno><symbolno> STOP
There are references to too many (different) tables.
Concerning parameters, see above.

PO

D e

AVIL-9

In case of disc trouble not described above TRANS prints

<name> error < code > .
and aborts its execution.
<name> defines the disc-file in question. < code> may be one of the follow-

ing ones:

1

Code Meaning

001000 The discfile is reserved by another system function. Wait for this
function to complete and reenter the command.

004010 Too many programs using the same discfile simultaneously (should
not occur, software error). A

004020 The program tries to access a disc block outside the file (normally
end of discfile reached during reading).

Or the program is trying fo access a file without being the user of ' .

it (software error).

004400 No more resources (area processes) for communicating with the disc.
Wait for one or more terminals to end keying and reenter the com-
mand. ;

005000 A number of reasons may cause this status:

- An illegal operation is executed due to a software error.

- The program tries to reserve a file already reserved by another
system function. Wait for this function to complete and reenter
the command.

- Too many programs using the same disc file simultaneously (soft-
ware error).

- The program tries to access a disc block outside the file due to a .
software error.

010010 It is not possible to create a file either because the specified file
length is too large or because the disc is full (map full) in which
case batches no longer needed in the system should be deleted.

010020 It is not possible to create a file as a file with the same name al-
ready exists,

010400 No more room on the disc. Batches no longer needed in the system

- should be deleted.

011000 It is not possible to remove or rename a file as it is presently be-

ing used by another system function. Wait for this function to com-

plete and reenter the command.

" AVII-10

The statusword may also mean that the system tries to carry out an
illegal operation due to a software errors/
044000,
050000

The specified name does not exist as a discfile.

104000, Catalog 1/O error because the disc ‘is disconnected, because the
110000 wrong disc has been mounted, or because of disc malfunction.

When TRANS has finished, SUPV will print

ok which means successful translation, the format occurs
‘ ‘ | in library,
cf list which means look for error printouts at the line printer,
printer <results> ~ which means hard error on the line printer,
break <result> which means that TRANS has been aborted by the sys-
tem.

CAVH=11

APPENDIX VIl

Definitions of Terms

For explanation in full of terms used in the RC 3600 Data Entry System, see

the following sections:

! ’ 3.2, 3.2.5
Argument 6.6
Arithmetic ex~ 3.5

pressions

Arithmetic operators 3.2.2

Batch 1.1.1
- translation ‘ 2
Character set 3.2

Compound conditions 3.6
Conditional statement 3.7

Constant 3.1.3
Disc file 1.1.1
' Field 1.1.3
Field flag 4.5
Field program 3.1.3
Fill-in-the-blanks 1.5.1
Format 1.2.1
Format program 1.2.1
Function 6.6
Image 1.5
Input parameter 3.1.1
Logical operators 3.2.4

Multiplying operator 3.5
Nonnumeric operands 3.3

Numeric operands 3.3 ’
" Operands 3.3 :
Operators ' 3.2;2, 3.2.3, 3.2.4

Output parameter 3.1.1
Program 3.1.1

CVHE-T

Record

Register
Relation
Relational operator
Statements
Subformat A
Subformat image
Subprégram
Subscript

Table

Tag

Unconditional state=
ments

Variable

1.1.2
3.3.2
3.6.1
3.2.3
3.7

1.2.2
1.5.2
1.3.1
3.3.4
6.6

1.5.1
3.7

3.1.3

Index

Numbers referring to figures are underlined.

e , 3.4
] A 3.4
{:} 3.4
A » 3.2, 3.2.5
+ ' - 3.2, 3.2.2, 3.5

_ - 3.2, 3.2.2, 3.5
* - 3.2,3.2.2, 3.5
/ 3.2,3.2.2, 3.5
= 3.2, 3.2.3, 3.6.1
' 3.2, 3.2.5
; 3.2,3.2.5
' 3.2, 3.2.5
(| 3.2, 3.2.5, 3.5
) 3.2, 3.2.5, 3.5
> 3.2, 3.2.3, 3.6.1
>= 3.2.3, 3.6.1
< 3.2, 3.2.3, 3.6.1
<= 3.2.3, 3.6.1
: ‘ 3.2, 3.2.5, 3.7.1.9
<> 3.2.3, 3.6.1
A-lgth A 2.3.1.1, 2.3.2.1
A-type 2.3.1.1, 2.3.2.1
Addition 3.2.2

~ Adding operators 3.5
ALARM ' 3.2.1, 3.7.1.1, 3.8.1
ALLOW 3.2.1, 3.7.1.2, 3.8.1
AND 3.2.1, 3.2.4, 3.6.4
Argument 1.3.3, 2.3.1, 2.3.2, 6.6
- description 2.3.1, 2.3.2
Arithmetic ex- 3.5

- pressions

Arithmetic oper- 3.2.2
ators

Asterisk (*)

AT

Automatic dupli-
cation

Automatic fields

Automatic incre-
mentation

Automatic insertion

| Batch

- translation

BYPASS

Character set
Coding sheefs
Colon (:)
Comma (,)
Comment

Compound con-
ditions

COMPUTE
Condition

- compound

relation

simple
table
validity

Conditional state-
ment

CONNECT
Constant
Constant field
Core table

DEFINE

Defining tags
Definition of terms
Digit

DISALLOW

3.2, 3.2.2, 3.5
3.2.1, 3.7.1.14
6.4

4,4.2
6.5

6.3

1.1.1
2
4.4.7

3.2
.
3.2
3.2
2.1.1.1, 2.1.2.1, 2.2.1, 3.2.1, 3.7.1.12, 3.8.1
3.6

3.2.1, 3.7.1.3, 3.8.1

3.6

3.6.1

3.6

3.6.2

3.6.3

3.7, 3.7.2

3.2.1, 3.7.1.4, 3.8.1
3.1.3, 3.3.1

4.4.2.2, 6.3.2

5.3.1

3.2.1, 3.7.1.5, 3.8.1
6.1.3

A Vil o |
3.2, 3.2.1, 3.3.1, 3.3.2
3.2.1, 3.7.1.2, 3.8.1

Disc

- file , 1.1.1
- required space All

= table 5.3.2, 6.6 -
DISC 3.2.1, 3.7.1.2, 3.7.1.14
Display 2.1.1.2, 3.2.1, 3.7.1.6, 3.8.1
Division 3.2.2
Double entry table 2.3.2, 2.3.2
coding sheet —__

Duplicate field 4.4.2.1, 6.4

EDIT - 4.5.4
ELSE A 3.2.1, 3.7.2.1
END 3.2.1, 3.7.1.7, 3.7.1.14, 3.8.1
END SUBFORMAT 3.2.1, 3.7.1.8 ‘
ENTER 4.4.5
Equal fo (=) 3.2, 3.2.3, 3.6.1
Error messages R A |
- ALARM 3.7.1.1
= from TRANS A VI
Examples Alll
Expressions, arith- 3.5
metic
F-Igth o 2,3.2.1
F-type | 2.3.2.1
Fake 3.6
Field 1.1.3, 3.3.3
- alphabetic 2.1.1.2
- alphanumeric 2.1.1.2
- avtomatic 4.4.2
- constant 4.4,2.2, 6.3.2
- definition - 1.2.4, 3.3.3
- duplicate 4.4.2.1
- fill characters 2.1.1.2
- increment =~ 4.4.2.3
- keyed 4.4.1
-kind 2,112
- name 2112

- not keyed 4.4.3, 6.3.1

Field (contd.)

- numeric

- output position

- right/left justi-

fication
- signed numeric

- special signed
numeric

FIELD

Field description
- execution
Field flag

- for EDIT

- for REKEY

- skipped

- validity

Field program

- execution

Fill characters

Fill-in-the-blanks

- mask
Flag, validity

FORM standard
format

Format

- coding sheet
- image

- name

- new formats
Format language
- examples

- statements

- syntax
Format program
- execution

- standard

Function

= description

- length
- type

2.1.1.2
2.1.1.2
2.1.1.2

2.1.1.2
2,1.1.2

3.2.1, 3.7.1.17
1.2.3, 2.1.1.2
4.4

4.5

4.5.4

4.5.3

4,5.2

4.5.1

1.2.4, 3.1.3
4.4.8

2.1.1.2

1.5.1

1.5.3

4,51

51, AV

1.2.1
2.1.1, 2.1.1
1.5.2, 4.8

2.1.1.1, 2.1.2,1

5.1

3.1.3
3.1.4, Alll
3.7 :

AV o
1.2.1, 3, 4,6

4 5
AlV

1.3.3, 2.3.2, 6.6

2.3.2
2.3.2,1 .+ .«
2.3.2.1

GIVING 3.2.1, 3.7.1.4, 3.7.1.14
GOTO ©3.2.1, 3.7.1.9, 3.8.1
Greater than (>) 3.2, 3.6.1

Greater than or 3.2.3, 3.6.1

equal to (>=)

IF - 3.2.1,3.7.2.1
Image 1.5 |

- coding sheet 2.1.2, 2,1.2

- format image 1.5.2, 2.1.2

- page ~1.5.3,2.1.2.2

- subformat image. 1.5.2, 2,1.2.1

- text 2.1.2.2 .
IMAGE, standard 5.1, AlV

format :

IN 3.2.1, 3.7.1.14
Increment field 4.4.2.3, 6.5

Input parameter 3.1.1 .
INVALID 3.2.1, 3.6.3, 3.7.1.16, 4.5.1
Invoice 1.1.3, 1.1.3 |
Keyed field 4.4.1

Keying positions 6.1.2

Kind 2.1.1.2

Left parenthesis (() 3.2, 3.5

Length 2.1.1.2

- minimum 2.1.1.2

Less than (<) 3.2, 3.6.1

Less than or equal ~ 3.2.3, 3.6.1

to (<=) -

Letter ’ 3.2, 3.2.1

LIMIT 3.2.1, 3.7.1.10, 3.8.1
Limitations AVl -

Line 2,1.1.2,2.1.2.2

Logical operators - 3.2.4

Minimom length 2.1.1.2
Minus (-) 3.2, 3.2.2, 3.5

i

1= 6

MOD

Modulo
MOVE
Multiplication

3.2.1, 3.2.2,.3.5
3.2.2 :

3.2.1, 3.7.1.11, 3.8.1
3.2.2 ‘

Multiplying operators 3.5

Names, reserved

New formats

New subprograms -

New tables

3.2.1
5.1
5.2
5.3

Nonnumeric operands 3.3, 3.6.1.2

NOT
Not equal to («>)
Not keyed fields

skipped by

RECORD RELEASE

skipped by SKIP
Notation

NOTE

Numeric operands

Operands

- in subprograms
~ nonnumeric

- numeric
Operators

- arithmetic

- logical

- relational

OR

Output parameter
Output position

Page
Parameter

Partial rekeying

- '3.2.1, 3.2.4, 3.6.4
- 3.2.3, 3.6.1

4,43, 6.3.1

skipped by BYPASS 4.4.7
skipped by ENTER 4.4.5

4'.04.6

4.4.4
3.4
3.2.1, 3.7.1.12, 3.8.1

3.3, 3.6.1.1

3.3

3.8.2

3.3

3.3 |
3.2.2, 3.2.3, 3.2.4
3.2.2, 3.5
3.2.4, 3.6.4
3.2.3, 3.6.1

3.2.1, 3.2.4, 3.6.4
3.1.1

2.1.1.2-

2.1.1.2, 2,1.2,2

3.1.1
6.7

PERFORM

Plus (+)

Position

Program

- elements

- execution

- planning

- statements
Programming hints
Protected
Punctuationsymbols

Quotation (*)

Record

RECORD RELEASE '
Reformatting ‘
Reg?ster :

- REKEY

Relation

Relational operators
Repley
Required space

3.2.1, 3.7.1.13, 3.8.1

3.2, 3.2.2, 3.5
2.1.1.2, 2.1.2.2
3.1.1, 6

3.1.2

4

3.1.4

2.1.1.2, 2.2.2

6
2.1.1.1
3.2.5

3.2, 3.3.1

1.1.2
4.4.6
6.2

1.4, 2.1.1.2, 3.3.2, 4.6
2.1.1.2, 4.5.3

3.6.1
3.2.3
4.7

. = in tronslafed format A |
- on disc for batches A 1l

Reserved names
Reserved verbs

Right/left justifi-
cation

3.2.1
3.2.1
2.1.1.2

Right parenthesis()) 3.2, 3.5

Screen processing

- 6.1

- assigned to system 6.1.1

3.2.1, 3.7.1.14; 381

- SEARCH
SELECT 3.2.1, 3.7.1.15
SELECT SUBFORMAT 3.2.1 '

Semicolon (;)

OSET

3.2 o
3.2.1, 3.7.1.16

Single entry table
coding sheet

SKIP

Skipped flag

Skipped not keyed
field ,

by BYPASS
by ENTER

by RECORD
RELEASE

by SKIP
Space ()
Space, required
Standard formats
Statements

- conditional

- in subprograms
- unconditional
Stroke (/)
Subformat

- execution

- head

- name

selection

termination
SUBFORMAT
Subformat image

SUBPR standard
format

Subprogram

coding sheet
head

name

operands in
statements in
Subscript
Subtraction (~)

2.3.1, 2.3.1
4,5.2

4.4.7
4.4,5
4.4.6

4.4.4
3.2

Al Al

AV

3.7

3.7.2

3.8.1

3.7.1

3.2, 3.2.2, 3.5
1.2.2

4.3

2.1:1.1, 2.1.2.1
2.1.1.1, 2.1.2.1
4.1 o
4.2

3.2.1, 3.7.1:15
1.5.2 |
5.2, AIV

1.3.1, 3.1.3, 3.8
2.2, 2.2
2.2.1
2.2.1
3.8.2
3.8.1
3.3.4
3.2.2

3.2.1, 3.7.1.17, 3.8.1, 4.4.4

Table’

- coding éheef,
single entry-

- coding sheet,
double entry

- condition
- core table
- DISC table

- head, single entry

- head, double
entry

= name

- the use of
= type

TABLE standard .

format

Tag ‘

- defining tags
. = description
Text

THEN

TO

Tone

TRANS

VALID
Validity

- condition
- flag
Variable

1.3.2, 6.6

2.3.1, 2,3.1

2.3.2, 2.3.2

3.6.2
5.3.1
5.3.2, 6.6
2.3.1.1
2.3.2.1

2.3.1.1

6.6

2.3.1.1, 2.3.2.1
5.3, AIV ‘

1.5.1
6.1.3

2.1.2:

2.1.2.2 :
3.2.1,8.7.2.1
3.2:1, 3.7.1.4,3.7.1.11
3.6 . E
5, A VI

3.2.1, 3.6,3, 3.7.1.16, 4.5.1
3.6.3

3.6.3

4.5.1
3103 e .

READER'S COMMENTS Data Entry System
‘ ' RCSL 42 - { 0395

A/S Regnecentralen maintainsa continuous effort to improve the quality and
usefulness of its publications. To do this effectively we need user feedback

- your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization,
usability, and readability: '

Do you find errors in this manual? If so, specify by page.

3

How can this manual be improved?

Other comments?

Please state your position:

Name:

Address:

- Organization: .

Department:

Date:

Thank you!

------------ Do not tear - Fold here and staple ~ = = = 2 = ¢ = = = = = =
Affix
postage
here

A/S REGNECENTRALEN

Marketing Department

Falkoner Allé 1
2000 Copenhagen F

Denmark :

