
oO

G8

Oo

"ED

VU

OS

O

Q

O

UniFLEX*
Utilities

Package |

COPYRIGHT © 1982 by |

Technical Systems Consultants, Inc.

111. Providence Road

Chapel Hill, North Carolina 27514

All Rights Reserved

®UniFLEX Registered in U.S. Patent and Trademark Office

‘MANUAL REVISION HISTORY

Revision Date Change

A 7/82 Original Release :

B 9/85 Revised for release of Version 2.03

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment. of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Ince, and reproduction, in
whole or in part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which. Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as

possible, Technical Systems Consultants, Inc. will not assume responsibility for any

damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

add-info |
addusr

assert

bcompare
broadcast
checksum

compare
continue

copy-dir
cview
delusr

dump
filetype
find

flex-copy
head
indent

Limit
loadsize
lockterm

Is
news

nice

nobs
noff ©
pcomm

- plabels
remove

sl
search

set_printer:
sleep
split
status.
tail
tee

time
touch
translate

update_all :

usage
validate

verify
words

\

Summary Listing of UniFLEX®Utilities PackageI

add information to the info field of a binary file

add a new user onto the system |
evaluate assertions for shell script programs

compare binary files and report differences
send message(s) to all users on the system

get the checksum of a file(s)
compare two text files and find differences

permits conditional interruption of shell scripts
copy directory structures or individual files

prints a file in readable form :

delete a user from the system
gives a hexadcimal and ASCII listing of a file |
reports on the type of a file

finds lines in a text file containing a specified string

allows user to copy a UniFLEX file to FLEX diskette

prints characters from the beginning of a text file

indents standard input before writing to standard output
limits line length of standard output from standard input

calculates amount of memory needed to load a binary file

ignores all input from a terminal for 15 minutes

display directory contents or information about a file

used to get news from the news directory

lowers the priority of the command that follows it~

removes backspace and following character
removes form feeds

prints all comment lines in assembler source file(s)

prints label lines from assembler source file(s)

removes files and directories from system

dumps a binary file in Motorola S1/S9 record. format

searches for file(s) based on file name and/or attributes

set options on the qume or nec printers

puts terminal to sleep for a given number of seconds
creates a new file from a portion of an existing file

lists status about programs running on the system

prints characters from the end of a text file

copies standard input to standard output and file(s)
times execution of a UniFLEX command

sets last update time of file to current time and date

maps characters from standard input to standard output

performs a desired function on a series of files

lists file usage on a disk by user

validates a backup made by "copy-dir”
checks specified files or devices for read errors

finds number of words and lines in file or standard input

INTRODUCTION

The UniFLEX® Utility Package I contains several additional utility

commands for use under the UniFLEX Operating System. These utilities

range from such functions as word counting to file comparisons to a

system status report. The manual contains a complete description of

each command and the disk contains UniFLEX "help" files for each

command.

This manual may be taken apart and the pages added to the "UniFLEX

Utility Commands" section of the "UniFLEX® Operating System" manual.

The utilities are listed alphabetically and the pages are one-sided for

easy insertion into the UniFLEX manual.

The standard procedure for copying the utilities is to use the "insert"

command, which automatically copies all files to the system disk. If a

user. does not want all these utilities on the system disk, the

recommended procedure is to still use the "insert" command, and then

selectively delete those files not needed.

add-info

The add-info utility adds information to the info field of a binary

file.
:

SYNTAX|

add-info file one

DESCRIPTION

This utility allows the user to add information to the info field of a

binary file. The add-info utility reads standard input until a standard

end-of-file (control D) is encountered. Each line separated by a

carriage return is stored in the info field as an individual line.

If more than one file is in the argument list then the information to go

into the first file must be terminated by an end-of-file before the

information for the next file is entered. .

This utility cannot be used to add information to a file which. already

has an information field. If a file already has an info field then a

message will be printed to standard output indicating that fact.

A few example calling lines of add-info follow:

add-info filel

add-info file2 file3
x

In the first example, standard input is read until an end-of-file is

encountered and then the information is stored in the info field. of

'filel'. The second example also reads standard input. When an

end-of-file is encountered it will store the first set of information

into the info field of ‘'file2' and continue to read standard input.

When another end-of-file is encountered it will store the information

into the info field of 'file3'.

SEE ALSO

info, asmb

addusr

Add a new user onto the system.

SYNTAX

addusr <"username">

DESCRIPTION

This utility is used to add a new user onto the system... The specified
user name must be unique, unused and between 1 and 8 lower case

characters. Only the system manager may use this utility.

The new user name is added to the bottom of the "/etc/log/password" file

and a new user id number is assigned. The new user's directory

"/usr/username" is created with the permissions 'rwxr-x' and a ‘.mail'

file is automatically inserted.

The system manager or the new user should use the password utility to

ensure protection of the newuser's personal files.

SEE ALSO

perms, password, mail, delusr

assert

Evaluate assertions for shell script programs.

SYNTAX

assert [options]

DESCRIPTION

The assert program evaluates the truth value of the given options. For

example, if a program should only be run by the system manager, i.e. a

back up program, “assert u=system", would prevent any other user from

executing that program. Assert is used to interrupt or abort shell

scripts.

Options Available:

k=<string> - Display string and wait for input.
m

-

= Check for multi-user mode.

s - Check for single user mode.

u<number> - Check for current user number.

u=<name> - Check for current user name.

If the k option is used, the entire option must be enclosed in single or

double quotes (see example below).

EXAMPLE

assert u=system "k=Insert root structure disk in FDL"

In the above example, assert will make sure the user is "system" and

echo to the screen "Insert root structure disk in FDI", then wait for

the user to type RETURN. If the user is not "system", assert will cause

the program to abort and return to shell.

SEE ALSO

continue

broadcast

The broadcast utility will send a message to all users logged on the

system.

SYNTAX

broadcast [file ...]

DESCRIPTION

This utility allows the user to directly communicate with all users

logged on the system who have not locked out messages. Only the system

manager may broadcast messages to users who have. locked out messages.

This. command will send. the contents of the file(s) to each user. If

multiple files are specified, they will be listed one following the

other, as if they were one file. Broadcast without a file name will

take its input from standard input until and end of file is encountered.

If a file name argument is encountered whichconsists of a single plus
sign ('t'), the standard input will also be read. The following are

some examples of the broadcast command:

broadcast messagel
broadcast messagel messagez
broadcast messagel message2 + message3

The first example will send 'messagel' to all users on the system who do

not have messages disabled. The second example will send. messagel and

message2. The last example will send messagel and message2, will then

read standard input until an end of file is encountered and then will

send message3.

SEE ALSO

message, send

bcompare

Compare binary files and report differences to standard output.

SYNTAX

bcompare <filel> <file2>

DESCRIPTION

The bcompare utility is used to compare two binary files. Bcompare

reports the block numbers and bytes that differ between the two files.

Differences are output in the form:

file offset> --> <left byte> : <right byte>

where "file offset" is the position in the file where the difference

occured, "left byte" is the contents at this. position in filel and

"right byte" is the contents at this position in file.

Note that the file offset is the offset from the beginning as the file

is stored -- it is not the actual offset from the start of data since

some UniFLEX type files have header information before the data begins.

While this is used mainly for comparing binary files, it actually can be

used to compare any type of file since the comparison is done byte by

byte. Therefore, this utility could be used to compare text files.
However, for that purpose, it is recommended that the "compare" utility

be used.

If a series of bytes is deleted, and bytes which follow are changed, the

rest of the entire file will be reported as changed. :

Example:

4+ bcompare file.b file.b.old

SEE ALSO

compare

compare

The compare command is used to compare two text files to see how. they
are different.

SYNTAX

compare filel file2 [+window size]

DESCRIPTION

This utility compares two text files and indicates how they are

different. The information provided is sufficient in most cases to

change 'filel' into 'file2'. The optional ‘window size’ indicates how

many consecutive lines must match in order to consider the file

positions synchronized. The default is 3 and this is a decimal number

option.

The compare utility will report on sets of. lines which have been

deleted, inserted or changed. If a set of lines have been deleted and

the line which follows was changed, all JTines will be reported as

changed.

Compare can handle any size files, but will only handle up to 300 lines

per change. A few example calling lines for compare follow:

compare old-file new-file +5

compare tree tree.bak

The first example will compare ‘old-file' to 'new-file’. At least five

consecutive lines must match in order to synchronize the file positions.
The second example compares 'tree' file to its backup file, ‘tree.bak’.

In this case only the default of three consecutive lines must match for

file positions to be synchronized.

checksum

The checksum utility writes the checksum of a file to standard output.

SYNTAX

checksum[file coe]

DESCRIPTION

This utility will write the checksum of a file to standard output.
Checksum is very useful when checking the accuracy of a transmitted or

copied file.

If no file is given as an argument, checksum will get its input from

standard input. It will terminate reading standard input when given the

standard end-of-file (control D) from the user's terminal.

If more than one file is listed in the arguments then the utility will

print the checksum of each file on a seperate line following the order

of input (left to right).

The checksum is calculated as a simple adding up of the integer values

of the characters in the file.

Some examples of checksum follow:

checksum
checksum filel

checksum filel file2

The first example will read standard input until an end-of-file is

reached and will then report the checksum. In the second example,
"filel" will have its checksum reported to standard output. The third

example will print the checksum of "filel" on one line, and on the next

line will print the checksum of "file2".

continue

The continue command is useful for displaying diagnostic messages to the

terminal and interrupting long shell scripts..

SYNTAX

continue [+hex] [argument]

DESCRIPTION

This utility will echo (display) the command arguments on standard

output and input a one character response from standard input. If the

response is a ‘Y' or '‘y', or end-of-file, continue will set a

termination code of zero and allow the remainder of the shell script to ©

be executed. A 'N' or 'n' response will set a termination code of 255,

abnormally. terminate the shell script, and return the termination code

to the shell. If any other response is made the command will simply

display the arguments again.

There are several options available under this command.If the argument

starts with a plus sign ('+'), it is not echoed. If the value following

the plus sign is a hexadecimal number (maximum of hex 7f), the

equivalent byte will be output. This is useful for producing special
control character sequences.

Continue will display all the arguments, and then will accept the one

character from standard input. A few example calling lines of continue

follow:

continue +7 Continue processing?
continue "Insert a new disk. Type ‘y' when ready”

~

continue td +a Ready to start?

The first example will output a bell character (7) and the message, and

then accept a one character response from the terminal. The message in

the second example contains a characterwhich the shell interprets a

special character (namely '), thus making it necessary to enclose the

entire message in double quotes ("). The last example will output a

carriage return (d), and a line feed (a) before issuing the message and

processing the response.

SEE ALSO

echo, shell

copy-dir

The copy-dir command copiesdirectory structures or individual files to

the destination directory.

SYNTAX

copy-dir [file or directory woe] dest-directory [+dbncotBp1LD]

DESCRIPTION

This utility allows the user to copy directory structures or files. to

another directory. The destination-directory must be completely

specified. If no source file or directory is specified then the current

working directory is copied to the destination-directory. Which file(s)

and/or directory(s) are copied can be altered by using any of the

following options:

+d Copy entire directory structure for all named directories.

+b Do not copy a file unless it already exists in destination.

+n Copy a file if it is newer than the one at the destination.

If no file exists, the copy will be performed.
+C Do not copy file if it already exists at the destination.

This option may not be used in conjunction with +n.

+0 Retain original file ownership. This option may only be

used by the System Manager. :

+t Do not create top level directories at the destination.

Lower level directories may be created, if other options
allow. In other words, if there are three top Tevel

directories in the source and only one of those directories

exists in the destination, then only the one that already

exists will be copied when the +t option is in effect. This

is useful when the user wants to copy files to a floppy disk

and each top level directory has a lot of lower level

directories and files.

+B Do not copy any files which end in "bak".

+p Prompt the user to see if he really wants each file copied.

+] List file names as they are copied.
+L. Don't unlink the destination file. Useful. when. updating

linked files.
- +D Implicitly specify the high level directory names. When

this option is given, source files which are directory names

will have that name appended to the destination directory
~

name before the process starts. Example:
++ copy-dir bin /usr2 +D

copies "bin" to "/usr2/bin".
+P Preserve the modification time of the source file. This

allows the user to give the destination file the same

modification time as the source file.

With all the optionsa user has a lot of flexibility in what to actually

copy with copy-dir. A few examples of copy-dir follow:

copy-dir /usr/bin
copy-dir filel file2 /usr/bin +n

copy-dir /usr/bin +B

copy-dir /usr/gen /usr/bin +1

copy-dir /usr /usr2 +d

copy-dir /usr/all /usr2/usr/all +td_

copy-dir gen /usr2 +D

The first example copies all the files in the current working directory

to "/usr/bin".
©

The second example will copy "filel" and "file2" to

directory "/usr/bin" only if the two files don't already exist in

"/usr/bin" or if they are newer than the files that do exist there.
The third example will copy all files in the current working directory

except those ending in ".bak" to the directory "“Jusr/bin". The next

example will copy all the files from directory “/usr/gen" to directory

"/usr/bin" and list the file names as they are being copied. The

following example will copy all files and all directories including all

lower level directories and their files from "/usr" to “/usr2". For the

next example we assume that the only directory in "Jusr/all". that also

exists in "/usr2/usr/all" is "dira". The files of "/usr/all/dira" will

be copied to "/usr2/usr/all/dira". All lower level directories of

"dira" will also be copied because of the +d option. The final example
will copy directory "gen" to "/usr2/gen". One thing about this option

is that you cannot use it to create directories with very complicated

path names. If instead of “gen" the user wanted to copy "gen/all/files"
to "/usr2", then the directory path "/usr2/gen/all/files" would have

already had to exist. If it did not then the copying would not be done.

The other example works even if "“/usr2/gen" did not exist because

copy-dir can be used to create simple path names.

SEE ALSO

copy

cview

The cview utility prints.a file in readable form.

SYNTAX

cview file

DESCRIPTION

This utility removes the parity bit from all characters in the file. If

the resulting ASCII character is printable, it is written to standard

output.

Control characters (00 to 1f) are. printed as "x" where x is the

appropriate printable character (corresponding ASCIT character). For

example:

carriage return, OD, is printed as “M.

A maximum of 72 characters (including the
"*"

for control characters)

are printed per line.

A few example cview calling lines follow:

cview filel

cview file.b >readable

In the first examplefile "filel" is printed to standard output. The
second example has "file.b" (a binary file) being stored in "readable"

in a readable format (the ">" means send standard output to the file

following).

delusr

Delete a user from the system.

SYNTAX

delusr <"username"”>

DESCRIPTION

This utility is used to removea new user from the. system. The

specified user name muse be between 1 and 8 lower case characters and

currently in use on the system. Only the system manager may use this

utility.

The specifieduser name will be removed from the. "/etc/log/password"
file and the user's directory(s) and file(s) will be DESTROYED.

WARNING

Use extreme caution when using this utility. It can and will

recursively descend the user's directory tree and delete all files

within it.

SEE ALSO

addusr

dump

The dump utility gives a hexadecimal and ASCII listing of a file.

SYNTAX

dump file [+i]

DESCRIPTION

This utility will print the hexadecimal and ASCII listing of a file

side-by-side to standard output. Nonprintable characters are replaced
by a period ('.') in the ASCII listing.

If the '+i' option is used then dump will enter an interactive mode and

prompt for the address or addresses to display. The addresses are

relative to the first byte of the file, and must be entered in

hexadecimal. Ifa single address is specified, 16 bytes will be

displayed beginning at that address. It is also possible to display a

range of addresses by specifying a starting address followed by a hyphen
followed by an ending address. For example, the following would display
256 bytes starting at byte 0 of the file: "O000-O0FF".

To end the interactive mode just type a return and the UniFLEX prompt

will appear.

Following are some examples of dump:

dump filel

dump file2 +i

The first example will cause a side-by-side hexadecimal and ASCII
listing of "filel" to standard output. In the second example, dump will

request an address and when it receives one will print the hexadecimal

and ASCII lising of that line to standard output.

filetype

The filetype utility reports to standard output the type of a file.

SYNTAX

filetype file ...

DESCRIPTION

This utility allows the user to determine the type of a file. If more

than one file is input as arguments, then the messages about the files

will be listed on seperate lines with each message corresponding to the
files in the order of input (left to right). .

The filetype utility will attempt to recognize a file, but will not

always be successful, .and may in fact give the wrong type. The
following list of files are the types of files that filetype will

attempt to recognize:

text processor text

Pascal text

C text

BASIC text

BASIC precompiler text

assembler text

original BASIC compiled
current BASIC compiled
standard Pascal binary
system Pascal binary
sort/merge parameter
relocatable binary
shared binary text

segmented, no text binary
common block binary
standard binary

A few examples of filetype follow:

filetype filel

filetype filel file2

In the first example the type of "filel" is determined and reported to

standard output. The second example also. determines the types of

"filel" and “file2". "Filel" will be reported on the first line and

"file2" will be the second message.

find

Search for text pattern in a file or standard input.

SYNTAX

find [+options] "pattern" file ...

DESCRIPTION

The find utility matches the specified pattern. Each matching line

found and its line number is copied to standard output.

By default, lower case letters match only lower case letters. and upper

case letters match only upper case letters.

Options Available:

+u All lower case letters in the pattern will -match both upper

and lower case letters in the file being searched.

+¢ The output of matching lines will be suppressedand a count

of the matching lines found will be reported.

Pattern:

A group of characters have been assigned special meanings, these

characters are matching characters. The backslash (\). character

preceding a matching character "turns off" the special meaning of that

character. Care should be taken when using matching characters in the

pattern as they are also meaningful to the shell... Therefore, the

pattern must be enclosed in single or double quotes (for example,

"pattern" or ‘'pattern').

Matching characters

\ - The backslash character, when used before a matching character,

removes the special meaning from the character.

2 = The question mark matches any character except a newline.

< - The less than character matches at the beginning of lines. It is

special only if it is used as the first character in the pattern

string.
—

> - The greater than character matches at the end of lines. It is

special only if it is used as the last character in the pattern

string. -

& = The and character matches only if the subpattern before it and the

subpattern following it are both in the line being searched.

(str | str) - The vertical bar matches if either subpattern is in the

line being searched.

Character Classes

A character class is a text pattern that matches any single character

from the bracketed list of characters. Character classes. consist of

‘ranges. such as “A-Z", "b-f" or "9-8", and may also contain lists of

characters or combinations of both.

The negation (!) of a character class will match any character not
contained in the character class.

‘The syntax for character class is as follows:
-

[list or range of characters]

while the syntax for the negation of character class is:

[! list or range of characters]

flex-copy

The flex-copy command allows the user to copy a UniFLEX file to FLEX

diskette.
.

.

SYNTAX

flex-copy source-file dest-file [drive-spec] [+bi]

DESCRIPTION

This utility copies the source-file to the dest-file on a FLEX diskette.

Destination file specifications may contain filename extensions and if

the file already exists on the diskette, it will automatically be

deleted. The dest-file name will automatically be mapped to upper case.

The FLEX disk may be single or double sided but may not be double

density.

There are several options which can be specified for’this command. They

are as follows:
a

+b Copy an absolute binary program in’ a format which can be

executed by FLEX. This is very useful. for developing

programs on UniFLEX and then running them on FLEX. If you”

use this option, the source file must be an absolute binary

file.
+] Copy the file with no modifications (make an image copy).

This is useful for copying absolute data files.

If the file is a text file there is no need to specify any option.

Normally, the copy is done to drive 1, but drive 0 can also be used by

using a command similar to:

++ flex-copy source dest 0

This is a very powerful utility. A few examples. follow showing how

flex-copy is used:

flex-copy letter letter

flex-copy file.b file.b +b

flex-copy text text 0 +i

The first example will copy file ‘letter’ to ‘letter’ on the FLEX

diskette. The second example will copy the file 'file.b' to file

'file.b' in an absolute binary format that FLEX can execute. The final

example will copy file ‘text’ to file ‘text’ on drive 0 in an image copy

format.

head

The head utility will print a given number of characters from the

beginning of a text file.

SYNTAX

head file [n]

DESCRIPTION

This utility will print the first "n" characters of a text file. If "n"

is not specified, the default of 250 characters is used. If "n"

characters from the beginning of the file happens to fall in the middle

of a line, the last line printed will be succeeded by "2." to indicate

that only a portion of the line is being printed. All other lines will

be printed as they appear in the file.

If "n" is greater than the number of characters in the file, the -entire

file is printed.

Special characters, including carriage returns, should be included in

the count "n" otherwise not as much of the file may be printed out as is

desired. A few examples of head follow:

head testl

head filel 150

The first example will print out the first 250 characters of the file

'‘testl'. The second example will print out the first 150 characters of

the file 'filel'.

SEE ALSO

tail

indent

The indent utility will indent every line of standard input a given

number of blanks before writing to standard output.

SYNTAX

indent..n

DESCRIPTION

Indent must be given a value of "n", where "n" is an integer greater
a

than zero. Only integer numbers are allowed in “n’.

A common use of this utility would be to indent output that is going to.

be routed to a hard-copy printer. This utility is a very useful filter

for that purpose.

A few calling lines of indent follow:

indent 5

page report
~ indent 5 ~

spr

The first example will indent 5 blanks before writing standard input to

standard output. The second example will have the page utility work on

the file ‘report’, then filter that through indent and indent the entire

file 5 spaces, and finally pipe the output to the spooler ‘spr' for

hard-copy printout.

limit

The limit utility will read standard input but limit the line length
before writing the line to standard output.

:

SYNTAX

limit Cn][+t]

DESCRIPTION

This utility will read standard input and limit the line length to "n

characters. If "n" is not specified the default line length is 72

characters. The one option for this utility follows:

+t Truncates any characters exceeding "n" rather than. wrapping
the excess characters to a new line.

A few examples of limit follow:

limit

Timit +t

limit 50 +t

Timit +t <infile

The first example will limit the line length to 72 characters. For

lines longer than 72 characters, the 73rd character will start anew

line. The second example will also limit the line length to 72

characters. However, lines longer than 72 characters will be truncated.

The third example sets the line length to 50, and truncation will occur

on lines longer than 50 characters. The last example will use as input
"infile" and will truncate all lines longer than 72 and print the file

to standard output
—

loadsize

The loadsize utility calculates the amount of memory required to load a

binary file.

SYNTAX

loadsize [file ...]

DESCRIPTION

In addition to the loadsize, the size of the segments in a shared text

file are also given. If a."segmentation size" is reported, it is. the

number of bytes which needs to be reserved after the text segment in

order that the data segment starts on a 4K boundary. For absolute

files, only the load size is printed to standard output.

The sizes printed will not reflect additional memory which may be

requested during the execution of the program. A few example calling

lines for loadsize follow:

loadsize testl
loadsize test1 test2

The first example will print out the loadsize of file ‘testl'. For the

second example, if file 'test2' is a shared text file, the segmentation
size of file 'test2' will be printed to standard output in addition to

the loadsizes of both files.

lockterm

The lockterm utility will lock a terminal (ignore all input) for 15

minutes. ae
:

SYNTAX
lockterm

DESCRIPTION

Lockterm will prompt the user for a password. This password must. be

reproduced in order to unlock the terminal before the specified
time limit is expended. All characters typed on the keyboard will be

ignored except a Control C. When Control C is typed, lockterm will

prompt. the user for the password. If the passwords do not. match,

lockterm will continue to lock the terminal for the remainder of the

time limit. If the passwords match, lockterm will unlock the terminal
and terminate. —

A reason for using this might be if you are in a multi-user environment

and you will be away from a terminal for a moment and you wish. to

prevent someone else from taking over your terminal. a

Is

The 1s command is used to list the contents of directories, or to give a

long directory listing of a single file.

SYNTAX

Is [file or directory wee][+abdfIrstS]

DESCRIPTION

The Is command will list the content(s) of the specified file(s) and/or

directory(s). If no file or directory is named as a command argument,
the contents of the current working directory will be displayed by file

name only, alphabetically sorted, and several names per display line.

If a file name is specified, the name can use matching characters as in

shell. In this way a series of files with the same root name can be

displayed. If a file name is given, a long listing will always be

displayed.

There are several options available to change the standard display for

file(s) or directory(s). The options are as follows:

+a List all files. Normally files which begin with '.' are not

listed.
+b List file sizes in bytes. This implies +1.

+d If a listed file is a directory, also list its contents.

This allows the entire directory structure to be listed.

+f List the FDN number for each file. This implies +1.

+] Print detailed information about each file.

+r Reverse the sense of any sorts.

+5 List files in one name per line format. This is useful for

creating a file which has the names of files in it.

+t Sort files by last modification time. The most recently
modified files are listed first.

+S Print summary information after all files have been listed.

Ls will normally not display file names which start with a period ('.').
The +a option will. allow those files to be displayed as well. The +1

option provides great detail about each file name in the directory. The

files are listed one per line with the file name appearing first on the

line, unless the +f option is used in which case the FDN number of the
file appears first. Following the name is the file size in blocks, or

bytes if the +b option is specified.

The next field specifies the file type as defined by the following:

b block special file (device)
c character special file (device)
d directory
blank regular type file

The majority of files will be regular files and therefore have this

field blank.

The: next field contains the permissions associated with the file. The

permission field has six columns, the first three represent the user's

permissions (owner), the second three represent all others’ permissions.
The columns are in the order 'rwx' which are described below:

read permission granted.
write permission granted.
execute permission granted.
the permission for this field is denied.!ix=zs

The next field “is the link count and specifies how many directory
entries are linked to this file. Followingthat is the file owner. An

owner's name is the same as his (her) login name. The final information

provided is the time and date of the last modification made to the file.

An example of a tong Is listing might be:

5145 1s 3558 =rw-rw- 1 system 15:53 Apr 28,1982
5230 macros 105) sorw-rw- 1 system 14:47 Apr 28,1982

The FDN number for file 'Is' is 5145 (+f option) and the number of bytes

in the file is 3558 (+b option). For file ‘macro’ the FDN number is

5230 and there are 105 bytes in the file. Both files are regular files,

allow the owner and others read and write permission, and have a Tink

count of 1. The files’ owner is ‘system’. ‘Is' was last modified was

15:53 on 28 April 1982.

wees continued on next page «es.

A few example calling lines for 1s follow:

Is
Is +1t

Is +1 +t

1s +d

Is +5

ls / /usr +1

ls file* +B

The first line will display all file names in the current working

directory (with the exception of those starting with '.').. The next two

examples will give a long listing of the working directory with the
files sorted by modification time. These two commands are functional ly
equivalent. The fourth example will display all files in the current .
directory, and if any of those files are directories themselves they

will also have their contents displayed. The fifth example will display

all files in the current directory and then print out summary

information about them. The next line will display the contents of

directory '/' (the root) and the directory ‘fusr'. Both listings will

be in the long format. The last example will give a‘long listing of all

files which start with ‘file’ except those files wiich end in. '.bak'.

Note that the options may be anywhere on the command ine.

SEE ALSO

dir

news

The news command is used to get news from the news directory.

SYNTAX

news [file ...]

DESCRIPTION

If called with no arguments, a directory of "/usr/news" is printed and a

prompt issued. A carriage return typed in response to the prompt
terminates the news. session.

If called with arguments, they are assumed to be the names of files. in

the news directory, and their contents are printed. If there is no file

corresponding to the argument file, then a message to that effect is

printed to standard output.

News files are created and edited by the system manager or any other

user who wants to make some information available to all of the other
users on the system. To create and/or edit a news file just change

directories to "/usr/news".

New information should be added to news files at the beginning of the

file so that the user does not have to wait for the old news to be

printed.

A few examples of how the news utility is used follow:

news

news mine

news mine yours

The first example will display the directory of "/usr/news" and prompt

the user about which file should have its contents displayed on standard
output. The second example will assume that the file 'mine' is in the

directory of "/usr/news" and will display its contents. The third

example will assumethat both files ‘mine’ and ‘yours' is in directory

"/usr/news" and will display the contents of both files.

nice

The nice utility lowers the priority of the command that follows it.

SYNTAX

nice "UniFLEX command"

DESCRIPTION

This utility is used to lower the priority of the UniFLEX command that

follows it. A good use of the nice command would be when the user has

to run a very long compilation and there is no urgency. By using the

nice command the priority of the task would be lowered. That would

allow jobs to run which need to be executed immediately, but the task

would still be compiling when nothing else was running.

Some examples of nice follow:

nice Is
nice pascal testl.p :

.

The first example will lower the priority of the command "Is". The

second example will lower the priority of the running of the pascal job.

nobs

Remove backspace and following character from an output stream.

SYNTAX:

eee

7

nobs

DESCRIPTION

The nobs utility removes the backspace and the following character from

an output stream possibly containing backspace characters. Characters

removed are “thrown away". This filter is for use on the Centronix or

other printers that do not support backspaces.

This utility reads standard input and writes to standard output and is.

most likely to be used as a pipe which gets its input from some UniFLEX

command and sends its output to a spooler or printer.

noff

Remove form feeds from an output stream.

SYNTAX

eee

“e

noff

DESCRIPTION

The noff utility takes an output stream possibly containing form feeds

and removes them. The filter is used for printers that do not support
form feeds. The form feeds removed are "thrown away".

This utility reads standard input and writes to standardoutput. It is

useful. as a pipe which gets input from a UniFLEX command and sends the

output to a spooler or printer through another pipe.

pcomm

The pcomm utility prints to standard output all. comment lines in = an

assembler source file.

SYNTAX

pcomm file ...

DESCRIPTION
-

This utility will search an assembler file and print out all the comment

lines (those lines which have an asterisk jn column one) to standard

output.

The following are some examples to illustrate the pcomm utility:

pcomm testl

pcomm test] test2

The first example will print out all of the comments from assembler

source file 'testl'. The second example will print out all. of the

comments of both files ‘'testl' and ‘test2'.

SEE ALSO

plabels

plabels

The plabels will print to standard output all lines in an assembler
source file which contain a label.

SYNTAX

plabel file ...

DESCRIPTION

This utility is used to print all lines from an assembler source file

which contain a label in column one to standard output. The line is

preceded by its line number. Lines with local labels (labels beginning

with a numeric digit) in column one will be ignored.

The following examples will illustrate the plabels utility:

plabels testl

plabels testl test2

The first example will print to standard output all of the lines which

have labels in them from file 'testl'. The second example will, do the

same but for both files ‘test1' and ‘test2'.

SEE ALSO

pcomm

remove

Remove files and directories from the system.

SYNTAX

remove <file or directory---> Ltoptions]

DESCRIPTION

The remove utility removes the specified files or directories from the

file system. If a file has no write permissions, it will not be deleted

unless the "+w" option is specified. Directories will only be deleted

when the "+d" option is specified and the directories are empty, or if

the "+k" option is specified.

Options Available:

+p - Prompt about each file individual ly.
+] - List the files as they are deleted.

+w - Ask about files that have write permission.
+d - Delete directory if empty. -

+k - Delete directory and all files in that directory.

EXAMPLE
|

.

++ remove fool +1lw

In the example, remove will delete all the files contained in the

directory "fool". Remove will list each file deleted ("+1") and will

ask about files that don't have write permission ("4w'). Remove will

delete files that don't have write permission only if the prompt is

answeredwith "y".
.

SEE ALSO

kill

sl

The sl utility will dump a binary file in Motorola S1/S9 record format.

SYNTAX

sl file ...

DESCRIPTION

This utility is useful for down loading. binary programs to other

machines or transferring binary files across a serial line.

If more than one file is included both files will. be listed to standard
output together.

The following is an ASCII hex record of the standard Motorola format:

S1BBAAAADDDDDD.... .DDDDCC

where

S1 is a record start marker

BB is a byte count which includes all bytes in the record past

the byte count itself

AAAA is the load address of the first data byte
DD is the actual data

CC is a checksum equivalent to. the one's compliment of the modulo

256 sum of all bytes preceding the checksum (except $1)

A few examples of sl calling lines follow:

sl filel
sl file2 file3

The first example will print the sl dump to standard output of "filel".
The second example will do the same for files "File2" and "file3" and

they will be printed out one right after the other without a break.

search

Search for file(s) based on a file name and/or a series of attributes.

SYNTAX

search [filename] [attributes]

DESCRIPTION
The search utility is used to search through a directory or a series of

directories for a file or set of files. The utility starts searching in

the user's current directory (or a specified directory given by the p

option) and searches through that directory and all directories within

-

that directory. The utility continues until all. subdirectories have

been searched. As output, the search utility will print out in

alphabetical order the name of any file(s). which match the given

filename or specified attributes. If the file is a directory, then it

will again have its name printed out when the utility searches through

it to try and match more files. The output can be changed by several of

the options.

The search is based either on a filename, a set of attributes, or both.

However, either a filename or an option must be given or an error will

occur. If matching characters are used in the filename, then the

bak")
must be enclosed in double or single quotes (for example -

"% bak
'

e

The options can be preceded by either a '+' which indicates an "and"

condition or by a '~' which indicates an "or" condition. If no filename
is given the first option must be preceded by a '+', Different options
must be separated by blanks and each new option must be preceded by

either a 't' or '='. The general form of an option follows:

_ (+ or -)letter(operator) operand

where letter is any valid option, operator jis any valid operator as

described below, and the operand is dependent on the option. The

parenthesis in the above expression are included for readability and

must not be used in the utility command line.
,

The valid options aren, p, f, t, u, S; d, 1 and x and they are

described on the following page. The valid operators are the equals

("=") operator, the not equals ('#') operator, the greater than (‘>’)

operator and the less than ('<') operator.

For several of the options (n, p, f and x) it does not matter whether a

'4' or a '=' ts used, subject to the constraint that the first option

must be a '+' if no filename is used. For these four options a "+" and

a '~' are treated identically.

A description of the possible options is as follows:

n No listing is produced. This option does not require an

operator or operand.

f Print the full path name of the file. This option also does
not require an operator or operand.

p The pathname that is given is used instead of the current

directory. The only operator allowed is the equal operator.
Other operators will assume an equal operator.

t Only files which match the given file type are processed.
Valid types are f (regular), d (directory), b (block) or c

(character) files.

u Only those files belonging to the user specified will be

processed. If the user name is not a valid user name (the
user name cannot be found in "/etc/log/password") then it
will cause an error. The maximum number of user names that

may be used during a search is four for each condition (four
for the "and" condition and four for the “or" condition).

S The files with the specified size in blocks will be

processed. If this option is specified, block and character
files will be ignored.

d The files with the specified time in days (since the last

modification) will be processed.

] The files having the specified link count will be processed.
x This will cause the utility to execute the command(s)

following the equals operator. The equals operator is the

only valid operator. Other operators will produce an error.

Only one x option is allowed, and the entire option must be

enclosed in double or single quotes ("+x=echo &" for

example). If the user wishes to execute more than one

command, then it may be done by using the standard multiple
statements per line separater (‘;') within. the operand of
the x option. An '&' may be used in the command line in

place of the normal file specification. It will be replaced
by any filename(s) produced by the search.

For both the t and u options only the equal and not equal operators are

valid. Otheroperators will assume an equal operator.

If both a greater than operator and a less than operator are used for

the same option (s, d or 1 options only), then the lower limit must be
less than the upper limit or an error will result. The s, d= and 1

options also will only take one equals or one not equals operator. If

more than one is included then an error will occur.

A few example calling lines for search follow:

search filename +p=/usr +t=f +f

search +n +s>20 +1#2 "+x=Is & +1"

search +d>2 +d<10 -s>30

search "*.bak" +p=/ tu=system "+x=kill &"

The first example will search for the file ‘filename’ in the directory

/usr and all of /usr's subdirectories. If it finds a file called

'filename' and the file is a regular file (t option), then the full path
name of the file will be printed (f option). The second example starts

in the user's current directory and looks for all files where the size

of the file is greater than 20 blocksand the file's link count is not

two. If it finds such a file then it will print the long listing of the

file by executing 'Is'. In the third example all files will be printed
that are greater‘than two days old and less than ten days old, or all

files that are greater than 30 blocks in size. The last example starts

searching in the root for all files that end in '.bak' and that are

owned by ‘system’. Any files that are found will be killed.

set_printer

Set options on the QUMEor NEC printers.

SYNTAX

set_printer <printer> [+ <options>]

DESCRIPTION

The set printer utility enables the user to set options on the Qume or

NEC daisy wheel printers. Note that set_printer cannot change options
—

while the printer is in use.

The options consist of an optionletter, followed by a decimal value.

Some values have optional fractional parts as shown by the ".nn" in the

option table.

Upon the execution of set_printer, all values are reported.

Options Available

set depth(number of lines per inch)d=nn --

f=nn.nn -- set form length value in inches .

(zero indicates infinite form length)
m=nn.nn -- set left margin value in inches

p=nn
-- set pitch (number of characters per inch)

w=nn.nn -- set form width value in inches

(zero disables form width checking)

This utility will only work with a Southwest Technical Products

interfacing board for the qume or nec printers. Set_printer won't work

if the device is connected to a standard serial board.

EXAMPLE

++ set_printer
Depth - 6 Ipi (lines per inch)

Pitch - 12 cpi (characters per inch)

Left Margin - 1"

Form Width - 14"

Form Length - 11“

If no options are specified,set_printer returns the present values of

the parameters.

sleep

The sleep utility puts the user's terminal to sleep for a given number

of seconds.

SYNTAX

sleep [n]

DESCRIPTION

This utility is used by giving a value for on. The terminal will not

accept any more input for "n" seconds. This means that anything the

user types in. during the sleep time will be ignored until “n" seconds

have past. At the end of "n" seconds a UniFLEX prompt ('++') will be

displayed and the user may again use the terminal. If the user has

typed something in during the sleep period of time then the shell will

attempt to execute those commands.

If no "n" is given then a UniFLEX prompt will appear immediately.

A few example calling lines of sleep follow:

sleep 10

sleep 45

The first example will-put the terminal to sleep for 10 seconds and the

second example will put it to sleep for 45 seconds.

split

The split. utility is used to create a new file from a portion of an

existing file.
-

SYNTAX|

split source-file [destination-file 1ine-number-range coed

DESCRIPTION

The line-number-range indicates which lines from the source file are

to be extracted and copied to the destination file. A

line-number-range is a pair of line— numbers separated by a hyphen
—

(starting line-ending line). If the “starting line" is not

specified, the beginning of the file is assumed. If the “ending line"

is not specified, the end of the file is assumed.

split big-file small-file 1-10

split prog-library program 158-792.

split letter body -75 salutation 76-

The first example will copy the first 10 lines from big-file into

small-file. The second example will copy lines 158 through 792

inclusive from prog-library into program. The last example will copy

the first 75 lines of letter into body, and from line 76 to the end of

the file into salutation.

status

The status command will list status about programs running on the

system.

SYNTAX

status [+alxw]

DESCRIPTION

This utility determines what tasks are running on the system,but is not

always accurate due to the dynamic nature of the system. Following are

some options giving the user control over which tasks are listed:

+a List all tasks, not just those belonging to the user.

+] Produce a long, detailed list for each task listed.

+X List every task in the system. Normally, only "interesting"
tasks (anything but shell, "System" or "init") are listed.

+W Wait after listing (for about 30 seconds) and then produce
another listing. This action continues about 100 times.

Normally the status command simply prints out the Task-id, Mode, tty,

Prio (priority), Time and Command. Those fields are:

Task-id
This is the number given to the task by the operating system.

Mode
The "c" status means the task is in core (memory) and "s"

means it is swapped out to the disk.

tty
This indicates which terminal the task originated from. If

there is an "xx" in the field it means no terminal.

Prio
If the priority is a number, then the number indicates the

priority of the task. Higher numbers indicate higher priorities.
Other possible priorities are:

sIp the task is sleeping (not executing)
wait the task is waiting for some other task to complete
out task is waiting for output to terminal to complete
in the task is waiting for input from the terminal

pipe task is waiting for pipe data (usually input)
buf

—

the task is waiting for a system buffer

disk task is waiting for some disk activity

file the task is waiting for some file activity (rare)
upd task is updating FDN

sys this is the highest possible priority available

swap the task is being swapped out to the disk

Time

This is the total user and system time. The time for "System"
is the amount of unused CPU time.

Command

The command field indicates the command which originated the

task. This only will print out the first 35 characters of the
command with any additional characters truncated. If the +1 option
is used, then the field is only 18 characters with the remaining
characters truncated. The "System" seen in this field is the

operating system and "“etc/init" runs the Jogin program.

When the +1 option is used several other fields are included:

Status
The possible values of status are as follows:

run the task is running
sleep the task is waiting for something to happen
term the task has terminated

User
The user who originated the task.

Parent

If the task was a fork, this field gives the task-id of the

parent task.

Size

This indicates the amount of memory that the task is using.
This is always reported in 4K amounts.

Res

This indicates the amount of time a task has been resident in
core or has been swapped out to the disk. Each unit indicates 4

seconds. The maximum this will ever display will be 255. When a

task changes status this number will go to zero.

The following are a few status call lines:

status

status ta

status +axl

The first example simply gives the short listing of the user's tasks in

the system when status is run. The second example lists all of the jobs
in the system, including shell, system and init tasks. The third

example does the same thing as the second example but gives the long,
detailed list for each task listed.

tail

The tail utility will print a given amount of characters from the end of

a text file.

SYNTAX

tail file [n]

DESCRIPTION

This utility will print the last "n" characters of a text file. If "“n"

is not specified then the default of 250 characters will be used. If

"n" characters from the end of the file happens to fall in the middle of

a line, the line will be preceded by "..." to indicate that only a

portion of the line is being printed. All other lines are printed as

they appear in the file. re
,

If "n" is greater than the number of characters in the file then the

entire file will be printed.

Special characters, including carriage returns, should be included in

the count "n" or else not as many characters from the end of the file

will be printed as desired.

Here are some examples which demonstrate the tail utility:

tail testl

tail test2 150

The first example will print the last 250 characters from the file

‘testl', provided that 'testl' contains more than 250 characters. The

second example will print the last 150 characters from the file 'test2'.

SEE ALSO

head

tee

The tee command is used to read standard input and write to

standard output and to the file(s) specified.

SYNTAX

tee [file ...]

DESCRIPTION.

The tee command with no file(s) specified reads standard input and

writes standard output. With file(s) specified, data read from

standard input is duplicated to each of the file(s) in addition to

standard output. A few examples will demonstrate the use of tee.

tee
tee testl
tee testl test2

The first example will read standard input and then write the data

to standard output. The second: example will input from standard

input and output to both standard output and testl. The last. example
will copy standard input into testl and test2 as well as output the

data to standard output.

time

The time utility prints the amount of time it takes to execute a UniFLEX
command. to standard output. .

SYNTAX

time "UniFLEX command"

DESCRIPTION

This utility will determine the actual time spent processing the given
UniFLEX command, the user CPU time and the system CPU time, and will
then print those times to standard output after any output generated by
the UniFLEX command has been printed.

A few example time calling lines follow:

time Ts
time asmb asmb.test +s]

The first example will return the information about how long it took to
execute the command "Is". The second example will return the same type
of information (although the times reported will generally be longer)
about how long it took to execute the command “asmb".

touch

The touch utility is used to set the last update time of a file to the

current date and time.

SYNTAX

touch file...

DESCRIPTION

This utility sets the last modification field of a file to the current

time and date. For example, touch is useful if it is necessary to have

an assembly language source file's modification date more current than

its binary file so it can be reassembled using “update_all".

A few example calling lines of touch follow:

touch filel

touch file2 file3

The first example sets the last update of "filel" to the current time

and date. The second example performs the same function, but for both

files "file2" and "file3".

translate

The translate utility is used to map (translate) characters from

standard input to standard output.

SYNTAX

translate map-file

DESCRIPTION

The mapping function of translate is specified by means of a map-file.
Each mapping specification line of the map file specifies the domain

(source) character and the range (target) string and has the following

form:

domain-char delimiter range-char-string delimiter cr

where domain-char is the character from the input string which is to be

replaced by range-char~string. Delimiter is any single character that

does not appear in range-char-string. Each mapping specification must

be terminated with a carriage return (cr). As many. mapping

specifications may be included in a map-file as are necessary.

The following is an example of how the translate utility mightbe used:

translate mapfile

where mapfile contains:

B/b/<cr>
O0&zero&<cr>
<cr>. <cr><1f>.<cr>

If the input stream is:

Because we need an example, this is it.<cr>
But, only a 0 won't echo as the input character.<cr>

will result in the following being written to standard output:

because we need an example, this is it.<cr><If>

but, only a zero won't echo as the input character. <cr><1f>

update_all-1

update_all

Process a set of files, performing the specified operation on each file
if it is newer than the file it is compared to.

-

SYNTAX

update_all [<make_file_name>] [+q]
update_all <make file_name> [<arg_list>] [+q]

DESCRIPTION

The "update_all" command reads the specified "makefile", which must

conform to a special format, and conditionally performs the command or

commands in that file. By default, "“update_all" sends informative

messages to standard output telling the user what it is doing. The

command is most often used to recompile programs whose sources have been

updated.

Arguments

<make_file_name> The name of the file to read for

instructions. This file must be in a

special format (see Format of the

“makefile"). If no other arguments are

present, the default is the file "makefile"
in the working directory... If other

arguments are present, the user must

specify the name of the "makefile".

<arg_list> A list of strings to substitute for any

string designators that appear in the

"makefile" (see Format of the “makefile).
If this argument is used, the user must

specify the name of the "makefile".

Format of the "makefile"

The "“makefile" is composed of modules, each of which is terminated with

a percent sign, “2%, in column 1. A module itself is composed of up to

two parts. The first part specifies the process that “update_all" is to

perform. The format for this first part is as follows:

[<item-one>::[$]<item_two>;]<command_sequence>

where <item_one> and <item_two> are the names of files; "::" is the "is

newer than" operator; the dollar sign, “$”, changes the interpretation
of the "is newer than" operator if <item_one> exists but <item_two> does

not; and the semicolon, “;“, separates the names of the files from the

(continued)

update_all~+2.

command sequence.

The command sequence is composed of one or more UniFLEX commands. The

"update_all" command replaces any sequence of more than one space

character with a single space. Multiple commands are separated by

additional semicolons. If the commands do not fit on one line, the user

must begin and end the sequence with an exclamation point, “1°, which

serves to delimit the entire command sequence. If the first portion of

the module uses more than one line, the second exclamation point marks
the boundary between the first and second portions of the module. The

command sequence is executed if <item_one> is newer than <item_two>.
:

The user may substitute an ampersand, “&°, for any character or sequence

of characters in <item_one>, <item_two>, or the commandsequence. In

such a case the “update_all" command substitutes for all ampersands the

strings specified in the second portion of the module. If the second

portion of the file is absent, no command sequence is performed. This

portion consists of one or more lines, each of which contains a single
string to substitute for the ampersands. The “update_all" command

replaces each occurrence of an ampersand with the string on the first

line of the second portion of the module and performs the command

sequence if <item_one> is newer than <item_two>. It then replaces all

ampersands with the string from the second line, continuing in this

fashion wntil it reaches the end of the second portion of the module
(marked by a percent sign in column 1).

The user may substitute a string designator (a pound sign, “#°,

followed by a digit from “1° through “9° inclusive) for any character or

sequence of characters in <item_one>, <item_two>, or the command

sequence. In such a case, the "update_all" command substitutes for each

pound sign and its digit the corresponding element of <arg_list>. If

the number represented by a digit is greater than the number of elements

in <arg_list>, the sequence of the pound sign and digit remains intact.

If the file represented by <item_one> exists but the file represented by

<item_two> does not, and if the "is newer than" operator is not followed

by a dollar sign, “update_all" considers <item_one> newer than

<item_two>. Under the same circumstances, if the “is newer than"

operator is followed by a dollar sign, “update_all" does not consider

<item_one> newer than <item_two>. In any case, if the file represented

by <item_one> does not exist, or if neither the file represented by

<item_one> nor <item_two> exists, <item_one? is not considered newer

than <item_two>.

For instance, consider the following command:

update_all makefile sl y

and the accompanying "makefile":

(continued)

update _all-3

&:&bjasmb & +#1#2#3

file 1
file 2

file_n
Z

This “"update_all" command makes the following translation of the

“nakefile”:

If “file_l" is newer than "file_1.b", execute the command —

"aemb file_1 +sly".

If "£ile 2" is newer than "file_2.b", execute the command

"asmb file_2 +sly".

It continues in this fashion until "file_n" is processed. The

percent sign in column 1 marks the end of the module, and

because it is the only module in the file, the "“update_ali"
command terminates.

More than one set of commands can be processed with a single "makefile"

if the user includes more than one modulein the file.

Note that the use of the pound signs allows the same makefile to be used

for another version of the “asmb" command. However, if the user does

not specify three arguments on the command line, "update_all" cannot

perform all the substitutions and the operating system cannot recognize

the resulting form of the "asmb" command because it contains one or

more string designators.

Options Available

q Do not send informative messages to standard. output.

NOTES

. The "chd" command has no effect in a "makefile".

. In order to remove the special meaning from either of the

characters “#° or °&°, the user must precede it with a backslash
character, °\”. Similarly, to remove this special connotation from

a backslash, the user must use two backslashes in a row.

(continued)

update_al1l-4

ERROR MESSAGES

*kk Can’t access Makefile "<file_name>" —- aborted!

The operating system returned an error when “update_all" tried to

open <file_name> for reading. Most probably, the file specification
is incorrect, the file does not exist, or the user does not have

read permission for the file.

**xkError: Command too complicated.
<command_sequence>

After substitution for the ampersands has taken place, the command

sequence is too long (the limit is 1,024 characters).

k Error: Pattern too complicated.
<command:_sequence>

The pattern for the command sequence (before substitution for.

ampersands takes place) is too long (the limit is 1,024 characters).

Makefile syntax error ~- aborted
:

The "“update_all" command was unable to interpret the "makefile".

Syntax: update_all [<make_file_name>] [+q]
update_all <make_file_name> [<arg_list>] [+q] ;

The “update_all" command requires exactly one argument. This

message indicates that the argument count is wrong.

Unknown option: <char>
;

The option specified by <char> is not a valid option to the

"update_all" command.

SEE ALSO

touch

usage

The usage utility lists file usage on a disk by user.

SYNTAX

usage [+n] [device-name]

DESCRIPTION

This utility counts the number of files, directories and blocks used by

each user on a disk, and then lists that information to standard output.

Also, some summary information is generated and listed as well.

There is only one option to use with this utility:

+n sort the results by name rather than by usage. Normally the

list is sorted by usage in blocks in ascending order.

If no device is given, the default device is "/dev/fd0". Some example

calling lines of usage follow:

usage

usage /dev/fdl
usage +n /dev/fd0

The first example lists the file usage on "/dev/fdO" by user. —The

second example lists the file usage on "/dev/fd1" by user. The final

example sorts the results and lists by name the files on "/dev/fd0".

All three examples will print some summary information.

validate

‘Thevalidate command is used to validate a backup made by “copy-dir".

SYNTAX

validate <source> ... <dest> [+options]

DESCRIPTION

This utility allows the user to ensure that a copy made by "“copy-dir"
was done properly. The program performs a file-wise comparison of the

files from the source with the files on the backup. Any files which to

do not match or are not present in the backup are reported.

The options available for this utility area subsetof the options
available for "copy-dir". They are:

+d Perform a depth-first directory search.

+D Imply top-most directories. “

+B Ignore files which end in ".bak"..

+] List file names as they are being validated.
+t Ignore directories at the top-most level which exist in the

source directory but not in the destination directory.

If options are used making a backup with “copy-dir", the same options ©
should be used with validate to ensure that the backup is good.

A few examples of validate follow:

validate bin /usr/bin +B

validate /usr /usr2 +d

validate /usr/all /usr2/usr/all +td

validate gen /usr2 +D

validate /usr/gen /usr/bin +1

The first example ensures that all files in ‘bin’ except those ending in
" bak" are also in '/usr/bin'. The second example validates that all

files in ‘/usr' are also in ‘/usr2'. In the next example validate

checks '/usr/all' against '/usr2/usr/all', ignoringany directories in

"fusr/all' that do not exist in '/usr2/usr/all’. The fourth example
validates 'gen' against '/usr2/gen'. In the final example, validate

checks '/usr/gen' against '/usr/bin' and lists the name of each file as

it is validated. This is the only example that will print anything
unless a file is found that does not match or is not present in the

backup.

SEE ALSO

copy-dir

verify

The verify command checks specified files or devices for read errors.

SYNTAX

verify <file or device ...> [+options]

DESCRIPTION

This utility reads every file or device specified and checks for read

errors (and seek errors on devices). If an error occurs, a message will

be printed telling at what block the read (or seek) error occured, and

will continue reading. No message is printed if an error is not found.

Two options are available to change verify's procedureor output:

+] List the file or device names as they are being verified.
If this option is specified, the numberof bytes in the file

or the number of blocks of the device will also be out puted.
+d If the file is a directory, a tree search of that directory

will be performed, and all files in that directory and its

subdirectories will also be read and verified. This option
has no effect if a device is being verified.

If the '‘td' option is used and a read error occurs while verifying a

directory file, the files in the directory will not be verified.

This utility will stop reading if a seek or read error occurs while

obtaining device information from a device. If any other file or device

is specified, verify will resume verification of them.

Verify can only handle block, regular and directory type files. If a

character file is encountered a message will be printed saying the file

can not be handled and verify will resume verification of any other

files or devices.

If while verifying a set of files, a file is encountered that is a block

type file, for example, device "/dev/fdl", and there is a disk located
in that device, then the device will be open and verified. This small

side effect, while not a major problem, could cause a lot of unnecessary

disk activity. One small caution should be exercised when using verify.

If the user is verifying all of the files on a hard disk, do not also

verify the directory '/dev'. If ‘/dev' is also verified, the check will

be done twice when the hard disk is verified by reading the device

'/dev/hd0'.

A few calling lines for verify follow:

verify file +1

verify dir +d

verify /dev/fdl +1

The first example will read ‘file’ and if no read errors are found, will

print 'file’ and the number of bytes in ite In the second example,

‘dir’ will be read, and thenall of the files. contained in ‘dir’ will be

read if there was no error in ‘dir' itself. There will be no output

unless a read error is found. The final example will read '/dev/fdl'

and will print the number of blocks of the device if no error is found.

SEE ALSO

check, devcheck

words

The words utility determines the number of words and number of lines in

a file and prints those values to standard output.

SYNTAX

words [file ...]

DESCRIPTION

This utility will determine the number of words and the number of lines

fron a file and will print those values to standard output. If more

than one file is included then each set of values will be printed on two
different lines following the order of input (left to right) of the file

names.

A word is any series of characters (including a single character) except

the blank (" ") which is used to separate words. Aline is any series

of words followed by a carriage return.

If no files are given then the utility reads from standard input until

the standard end-of-file (control D) is encountered. A few example
words calling lines follow:

words
words filel

words filel file2

The first example will read standard input until an end-of-file is

reached and will then print out the number of lines and number of words.

The second example will print out the same information, but for

"filel". In the the third example "filel" will have the information

printed out, then following that will be the information from "file2".

