COMPUTER METHODS IN APPROXIMATION

Jgrgen Kjer

Haldor Topsge, Vedbzk, Demmark

1970

©

Copyright 1970

Haldor Topsge, Chemical Engineers

Vedbzk, Demmark

ISBN 87 500 1088 3
Production Akademisk Forlag

Printing Zano Print

PREFACE

The present book is a contimuation of the just published book on:
Computer Methods in Linear and Quadratic Models, which covered the top-
ics: Solution of linear and non-linear equations, generation of linear
and guadratic models, and optimization. We now consider the two related
fields: Linear regression analysis and approximation of functions by
means of orthogonal polynomials.

An elementary introduction is given to the methods involved 1in the
standard linear regression analysis. Various special features have been
investigated in collaboration with Regnecentralen, A/S, Copenhagen. The
problems considered were: Preliminary centering of +the observations
around the first observation with a later adjustment to centering around
the mean values, and the question of solving the normal equations di-
rectly instead of using matrix inversion.

The use of orthogonal polynomials for approximation of functions at
the Haldor Topspe computer installation was started on the computer
DASK, where we had access to & program of this type for functions of a
single variable, developed in machine language by Mr. P. Mondrup, Regne-
centralen. From 1961 a similar program was made by us for the DaSK com-
puter and later rewritten for the GIER computer.

In 1961 Mr. J. aAdriansen of Haldor Topsge made a method deseription
of the use of orthogonal polynomials in approximation of functions of
two variables. ALGOL programs using this method were made for DASK and
GIER. In 1963 1 extended the method to functions of N variables where N
1s input to the program at run time. These programs were made for GIER.

On the basis of the ALGOL procedures described in this book, similar
FORTRAN subroutines have been written by Mrs. Lissen Knudsen (regression
analysis) and Mr. G. Johansen (polynomial approximation)}. These programs
are now in use in the GIPS system at the Haldor Topsge IBM system 360/uk
computer installation.

Vedbzk, October 1970

Jorgen Kjer

2e

Se

.

CONTENTS

INTRODUCTION

PART 1. LINEAR REGRESSION ANALYSIS

Linear Functions of a Single Variable

2.1. Method of Least Squares

2.2, Normal Equations

2:5. The Procedure FIT1

Linear Functions of Several Variables

3.1. Normal Equations

3.2. The Procedure FIT7

3e3a Simple Test of FITT

Regression Amalysis with Higher Degree Pseudo Varlables
4.1, Use of FITT7 with Pseudo Variables
Investigation of Various Features

5.1. Centering Around First (Observatlon

5.2, The Procedure FIT8

5.%. Linear Equations Versus Matrix Inversion
5.4. Regression Trough First Observation

5.5. Scaling Problems in FURTRAN

PART 2. ORTHOGONAL POLYNOMIAL APPRCXIMATION

Basic on Orthogonal Polynomials

6.1, Urthogonality

6.2, Generation of Orthogonal Polynomials
6.3, Polynomial Coefficients

6.4, The Procedure URPULGEN

Functions of a Single Variable

7.1, Direct Use of URPULGEN

7.2, Improved Method

7.3, The Procedure POLY1

Page

1
12
12
16
19
21
23
26
29
29
56
36
36
b3
L
45

L7

k9
51
Sk
60
62
69
69
h
82

9.

10.

1.

12.

1§0
14,

Furnctions
8.1s The
Functions
G.1. The
Functions
10,1. The
10.2. The
Polynomial
11.1. The
11.2. The
11.5. The

Special approximation Polynomials

of Two Variables

Procedure ~ULYZ22

of Three Variables

Yrocedure PULY23

of Many Variables
Procedure DISP
Procedure POLY24
Evaluation
Procedure POLYVAL2
Procedure POLYVALZ
Procedure PULYVALN

12.1. Calculation Example

References
Alphabetic

Index

85

a7

9l

95
102
102
106
117
117
118
119
122
12k
123
129

~6-

1. INTRODUCTION

The book 1s divided into two parts: Part 1 on linear regression an-
alysis and Part 2 on orthogonal polynomial approximation,

Linear regression analysis is the standurd designation of methods
for approximation of one or more functions of one or more variables by
means of linear functions and using more observations than strictly nec-
essary to give an exact fit in the known points., This is in contrast to
the model generation methods, see Kjer (1970), in which the minimum num-
ber of observations is used.

The basic principle is first lllustrated in Chapter 2 which descri-
bes the i-egression analysis of a function of a single variable. In this
case the calculation is very simple and can be performed in one scanning
of the observations.

Chapter 3 describes the regression analysis of functions of several
variables, The essential part is the establisbment of the normrl equa-
tions and their solution. The standard procedure for +this purpose,
FIT7, is discussed.

Linear regression analysis can be extended to the non-linear -case,
if higher powers of the original variables are included as pseudo vuri-
ables, Examples are given of this method in Chapter U.

Various special features in the regression analysis have been in-
vestigated in collaboration with Regnecentralen, A/S, Copenhagen. Some
of the results obtained are discussed in Chapter 5. The two points con-
sidered are: Preliminary centering of the observations around the first
observation with a later adjustment to centering around the mean values,
and the question of solving the normal equations directly instead of
using matrix Iinversion. The investigation shows that centering around
the first observation can have a favorable - although small - numerical
effect, Matrix inversion can give very poor results and is therefore
not recommended.

The centering around the first observation can be used immediately,
if it is required that the lineur approximation passes exactly through
the first ocbservation.

Certain scaling problems encountered when the ALGOL procedures are
translated into FORTRAN are breifly explained.

The special methods involving step-wise regression analysis are not
discussed here,

-T-

The use of orthogomil polynomials for approximation of functions of
one or more variables has certuin advantages compared to standsrd re-
gression analysis, For functions of a single variable the orthogonal
polynomials give a faster and more accurate calculation., This is also
the case for more variasbles, but we then get the drawback that the funec-
tion values must be availdable in a regular grid. This makes the wmethod
less attractive for general purpose approximation. Normal regression
analysis is completely satisfactory when the number of coefficients is
not too high.

The basic properties of the orthogonal polynomials and their gene-
ration are described in Chapter 6., The practical application of the
polynomials to functions of one, two, and several variables is described
in Chapters 7 to 10, Chapter 11 describes various procedures for evalu-
ation of the pelynomial values,

Chapter 12 explains how to hundle the case when the approximation
polynomial must satisfy certain special conditions, such as passing ex-
actly through one or more points or having specified values of the deri-

vative at certain points,

PART 1. LINEAR REGRESSION ANALYSIS

-11-

2. LINEAR FUNCTIONS OF A SINGLE VARIABLE

The problem at hand is illustrated by Table 1 below and Figure 1. We
have a function:

y = £(x)

given as a table of corresponding values of x and y for a certain num-

ber, 0BS, of cobservations:

X y
300 2413
LOO 3323
500 4365
600 5549
700 6871
800 83%21
900 9837

1000 11560
1100 13320
1200 15170
1300 17100
1400 19090
1500 21130

Table 1, y = £(x).

In this table the independent variable, x, 1is the temperature 1in
degrees Kelvin and y is the enthalpy of methane in keal/kgmole, The 13
observations are shown on Figure 1 (page 13). We shall now calculate a
straight line which according to some criterion gives the best possible
approximation to the given observations. A line of this type is shown in
Figure 1,

It is an essential assumption in this approximation method that the
cbservations are available in a set of discrete points only. We know
nothing about the function values between the observation points, Each

~12-

observation may or may not be erratic, i.e. there may be a measurement

error or a rounding €rror.

2+1. Method of Ieast Squares. In the method of least squares we

require that the sum of the squares of the approximation errors &t the
13 points must attain & minimum. The approximation error (or déviation)
at a point is the difference between the y-value on the straight line
and the given y-value at that point. If we divide the sum of the
squares of the errors by the number of points (minus 1) and take the
square root we get the mean error for all the points. The method of
least squares requires minimum of the mean error.

There is another possible criterion: Minimum of the maximum error
at any point. This is of special interest if it 18 required to repro-
duce an analytical function such as exp(x) or sin(x) within a given
range. The exact function values are then available at any point, anrd
it is a reasonable requirement that the maximum approximation error is a
minimum or less than a specified tolerance at all points. When the
function is only available at discrete points we cannot use the crite-
rion of minimum of the maximum error, and this method is not considered

further here,

2,2, Normal Equations. The analytical expression for the straight

line we wish to usé as the approximation may be written as:
(2.1) Y = A + BxX

We assume that we have (OBS cbservations and that the X-Y-table is

given as the two arrays:
array X, Y[1:0BS];
The approximation error in point no. I can be written as:
(2.2) A+ BxX[1] - ¥[1]
and the square of the error:

(2.3) (a + BxX[1] - Y[IIMe

AY

13-

-’
-

Figure 1

Linear Approximation to 13 Ubservations

-’

-1k

The sum of the squares of the errors (or deviations) becomes:

(2.4) 58D = (A + BxX[1] - Y[1])4e
+ (A + BX[2] -~ Y[2])4e

ceo800

+ (A + Bxx[uBs] - Y[0BS])f2

As the arrays X and Y are given, SSD 1s a function of the two vari-
ables, A and B, only. The condition that SSD 1s a minimum means that
the two partial derivatives of SSD with respect to A and B must be zero.
Calculation of the derivatives gives:

(2.5) dSsSD/dA = 2x(A + BxX[1] - Y[1])x1
+ 2x(a + Bxxfa] - Y[2])x1

(R NN N

+ 2x(a + BxX[0BS] - Y[0BS])x1

(2.6) dssSp/dB = 2x{A + BxX[1] -~ Y[1])xx[1]

+ 2x(A + BxX[2] ~ Y[2])=X[2]

+.'¢0l

+ 2x(A + BxX[0BS] - Y[0BS])»xx[0BS]

We now put the two derivatives equal to zero, divide by two, and
perform the summations, The sums are written as:

(2.7) X = X[1] + X[2] + cee.s + X[BS];

(2.8) x2 = X[1 2 + X[2W2 + eeoes + X[0BSHY2;
(2.9) SY :=Y[1] + Y[2] + ces.. + Y{0OBS];

(2.10) XY := x[1]x¥[1] + Xx[2]x¥[2] + vece. + X[BS]xY[0BS];

1]

L]

The two zero conditions then become:

(2.11) AxOBS + Bx&X - SY =0
(2.12) AxS{ + BxSX2 - Y = 0

-15-
From these we find A and B to:

(2.13) A := (SX2xS8Y - SXxS(Y)/DEN;
(2.14) B := (0BSxSXY - SXxSY)/DEN;

in which the denominator, DEN, is:
(2.15) DEN := 0BSxSX2 - {SX)2;
We can also calculate the value of SSD:

(2.16) SSD :=
(ap2+(Bxx[1])he+Y[1 Ye+exaxBxX[1 J-2xaxy (1]-axBxX[1]x¥[1])
+ (ape+(Bxx{2])pa+Y[2 Ya+exaxBxx[2 J-2xaxy[2 J-axBxX [2]x¥{2])
+ etc.
The sumation gives:
(2.17) SSD := (BSxAN+BARxSX2+SY2+2xAxBx SK-2x Ax SY-2xBx XxSY;

Here, SY2 is the sum of the Y-squares:

(2.18) SY2

(1]
n

Y1 e + Y[2 Y2 + coeee + Y{0BSY2;

Insertion of A and B from equations (2.13) and (2.14) into equation
(2.17) gives:

(2.19) SSD := SY2+(2xSKxSYxSXY-0BSxSXYA2-SX2xSYA2) /DEN;
The mean error is then found as:
(2.20) mean error := sqrt(SSD/(0BS-1));

We must divide by OBS-1 and not by 0BS, because there is one rela.
tion between X and Y,

-16-

2.3, The Procedure FITi. This procedure performs the calculations

described above using the same formulas. The declaration is:

procedure FITt(0BS, mean error, A, By X, Y);
value OBS;
integer OBS;
real mean error, A, Bj
array X, ¥;
begin
integer 1i;
&;1.7(11 yi, X, &2, 5, ¥' SY2, DEN;
S 1= X2 := SY 1= XY := SY2 := 0

begin
xi 1= X[1);
yi = ¥[i];
A 1= K + xi;
K2 = K2 + xi/iQ;
SY := SY + yi;

XY := XY + xixyl;
SY2 = SY2 + ylf2;
end for 1;
DEN := UBSxSX2 - SXf2;
A = (SA2xSY-SKxSXY}/DEN;
B := (OBSxSXY-SXxSY)/DEN;
mean error:=sqrt((SI2+(2xSXxSYxE§(Y-GBSxE§(Y+2-SX2xSY+2) /DEN) /(0BS-1));
end FIT1;

The formal parameters are those explained above. The essential part
of the procedure is a for-statement for calculation of the five sums. At
the end the values of A, B, and the mean error are found.

An example of the use of FIT1 is given below in the program d4-353.
The program reads the table of X and Y shown on page 11 and finds the
linear approximation:

Y := -3573.1155 + 15, TT3462xX;

This line is shown on Figure 1, page 13. The program is:

-7~

Program d-353. Test of FIT1.

begin
integer 1i;
real A, B, mean error, mean2, ycal, error;
array X, Y[1: 13];
copy FIM(
select(17);
writetext ({<
Read input to d-353:3});
lyn;
select(8);
for 1 := 1 step 1 until 13 do
begin
X[1i] := read real;
Y[1] := read real;
end for 1;
FIT™ (13, mean error, A, B, X, Y);
writetext ({<
Output d-353
X YOBS YCAL ERROR

ok
mean? := O;
for 1 := 1 step 1 until 15 do
begin
yeal := A + BxX[1];
error := yeal - Y[1];
writecr;
write(k-adadd}, X[1], Y[1], yeal, error);
mean? = means + erron+2;
end for 1i;
writecr;
writetext(f< A B mean error mean2});
writecr;
write(f-dddd,daddd00}, A, B, mean error, sqrt(mean2/12)});
writecr;
gnd;

-18-

Output from the program is:

Cutput 4-353
X YOBS YCAL ERROR

300 2413 1159 -125h4
KOO 3323 2736 -587
500 4365 U314 =51
600 5549 5891 3h2
700 6871 T4E8 597
800 8321 90ké6 725
900 9887 10623 736
1000 11560 12200 640
1100 13320 13778 U458
1200 15170 15355 185
1300 17100 16932 -168
1400 19090 18510 -580
1500 21130 20087 -1043
A B mean error mean2

-3573.1155 15, TT3462 681,07978 681.07734

The program calculates and prints two mean errors. The first is the
value calculated by FIT1 and the second is calculated directly by summa-
tion of the error squares, The small difference between the two values

i3 due to rounding errors.

-19-
3. LINEAR FUNCTIONS OF SEVERAL VARIABLES

A linear function of several - say, 3 - variables may be written

like this:

(3.1) ¥ 1= y0 + c1xx1 + c2xx2 + ¢3xx3;

The problem 1s now to calculate the coefficients e¢1, c2, and ¢3 as
well as the constant term, y0, from a set of observations., lLet us first
consider an example with two variables with the material from the fol-
Jowing table:

¥y x1 x2

L3,92 410 280
38,18 440 300
33,20 W0 24O
30,57 U460 260
39,68 420 260
38,95 430 280

Here, y is the ammonia equilibrium mole per cent as a function of
the temperature, x1 deg.C, and the pressure, x2 atm.abs. The six values
have been selected at random from the table on page 16 in Kj=r (1963).

The linear expression we must find can be written aas:

(3.2) Y = y0 + clxx1 + c2xx2;

but it appears more practical from s numerical point of view to measure

the variables relative to their mean values., We can then write:
(3.3) ¥y = ymean + c¢ix(x1-xmeanl) + c2x(x2-xmean2);

The following nomenclature is used for the cbservations and the cal-
culation results:

-20-

integer ViR: Mumber of independent variables.

integer OBS: Number of ocbservations.

integer FUNC: Number of dependent functions. In the example above
we have: VAR = 2, OBS = 6, and FUNC = 1. The case of FUNC > 1 is of in-
terest if more than one dependent function has been meusured in each ob-
servation for the same sets of the independent variables.

The cbservation data can be presented either as two arrays:

yobs[1:0BS,1:FUKC]
xobs[1:0BS,1:VAR]

or, as a single array:

yxdata[1:0BS,1:FUNC+VAR |

Here, the first FUK columns contain the y-values and the last VAR
columns the x-values. This representation is more practical for large
amounts of observations stored on a backing store.

The culculation results must be obtained as the arrays:

xmean[1:VﬁR]: The mean values of the independent variables,

coef[1:VAR,1:FUNC]: These are the calculated linear regression co-
efficients represented as FUNC columns, one for each of the dependent
functions, and each column containing the VAR coefficients. In the ex-
ample ubove we have coef[1:2,1:1] with:

el := coef[1,1];
c2 := coef[1,2];

It is also possible to calculate how accurate these coefficients
are., This can be expressed as the array:

coeferror[1:VAR,1:FUNC]. Here, coeferror(i,)] is the standard devi-
ation on the coefficient coef[4,]].

The constant term, ymean, in the linear expression is expunded into
an array:

ymean[1:FUNC]: These are the constant terms for the FUNC functions.

-21-

3,1+ Normal Equations, In the following we first consider the case
of FUNC = 1 and shall write down the VAR normal equations which define
that the sum of the squares of the deviations between the observed wval-

ues of y and those calculated from the linear expressions 1s a minimum
with respect to variation of the coefficients. The calculation method
is tuken from Fisher (1948), pag. 156.

The square of the deviation at observation point no. i can be writ-

ten as:

(3e4) 3D := (ymean +
coef[1]x(xobs[1,1] - xmean[1])
+ coef[2])x(xobs[1,2] - xmean[2])

» 280

+ coef[VARJx(xobs[1,VAR] - xmean[VAR]) - yobs[i])j2

As we are assuming FUNC = 1, we have omitted the subscript 1:FUKRC
from ymean, coef, and yobs.
Sumation of SD over all observations gives 55D which is too long

to be written down here. The normal equation no. j expresses:
(3.5) dssp/deoef[j] = O

If we perform the squaring of the terms in equation (3.4} and in-
sert equation (3.5), the normal equation can be established after re-

arrangements which will not be reproduced here. For the case of VAR = 3
and FUNC = 1 the three linear normal equations become:

(3.6) coef[1]xxx[1,1+coer[2 IxsXX[1,2]+coef[3]xXX[1,3] = SXX[1,4]
(3.7) coef[1]x3xXX[2,1]+coef{2 xxx[2,2 J+coer {3 |xx[2,3] = axxX[2,4]
(548) coef{1]xXX{3,1 J+coef[2]xXX[3,2 J+coef[3 xaxx[3,3] = xx[3,4]

The system of VAR normal equations is defined by the coefficient

matrix:

XX [1:VAR, 1:VAR+1]

-2o.

The element, SXX[j,k], of the square part of the matrix (1¢k{VAR) is

found by summatlion of:
(3.9) (xobs[1,j]-xmean[j]}x(xobs{1i,k]-xmean(k])

for 1 = 1 to 1 = 0BS. The right-hand side of the equation system, which
is written as the column SXX[1:VAR,VAR+1] is found in a similar way Dby
summation of the y-values, The element SXX[31,VAR+1] is found by summa-
tion of:

(3.10) (xdbs[i,j]-xmean[j])x(ydbs[i]-ymean)

from i = 1 to 1 = UBS,

when the normal equations are solved, e.g. after the LEQ1 method, we
obtain the coefficients as a result of the solution. For FUNC > 1, the
number of right-hand sides is increused from 1 to FUNC and the matrix
9OX takes the form: SXX[1:VAR,1:VAR+FUNC]. The number of columns in the
gsolution is then also increased from 1 to FUNC.

The caleulation of the coefficient errors, coeferror(1:VAR,1:FUNC],
requires that we calculate the inverse of the square matrix SXX[1:VAR,
1:VAR]. If we denote this inverse by INV[1:VAR,1:VAR], the formula

is:
(3.11) coeferror[j,k] := meanerror[kJxsqrt(INV[J,J]);

The error in coefficient no. j for function no. k is found by multi-
plication of the meun error for function no. k by the square root of the
diungonal term no. j in the inverse matrix. This is further explained in
the reference cited above., The mean error is found by calculation of
the linear expression for y in the given points: ycalc[1:0BS,1:FUNC] and
performing the summation of:

(3.12) meanerror[k] := meanerror(k]+(ycale[1,k]-yobs[1 k]Me;

for 1 = 1 to i = 0BS. We then take the square root after division by
the mumber of degrees of freedom: (OBS-VAR-1.
In order to find the coefficients themselves it is not necessary %o

perform the matrix inversion. We could then change the method so that

-23.

we always calculate the inverse without consideration of the right-hand
sides, Multiplication of the original right-hand sides: SXX[1:VAR,
VAR+1 :VAR+FUNC | by the inverse matrix would then yield the coefficients.
However, as shown in Chapter 5 the matrix inversion gives poorer accura-
¢y in determination of the coefficients than does the direct solution of
the linear equations according to the LEQ1 method. We have, therefore,
adapted the method of simultaneous direct solution and matrix inversion.
The X-matrix which for VAR = 3 and FUNC = 1 looks like this:

S 3 23 8X
SXX 2XX aX 8X
X X XX XX

is extended to include the unit matrix:

X saXX XX 1 0 0 SXX
X sX XX 0 1 0 aXxX
X XX sXX O ¢ 1 XX

We then perform the direct solution of linear equations on this aug-
mented matrix with VAR+FUNC right-hand sides., The unit matrix 1s +then
replaced by the inverse mutrix and the coefficients appear as the last
FUNC columns:

=== === -== INV INV INV coef
~—e === === INV INV INV coefl
m~= === === INV INV INV coef

This means that the IO matrix used in the method must have the size
SXX[1:VAR,1:2xVAR+FURC]. Otherwise, the calculations are the same as
explained above.

The procedure LEQ! and its use for solution of linear equation and
metrix inversion is described by Kjer (1970).

222, The Procedure FIT]. This procedure uses the calculation stra-
tegy described above and has the declaration:

2l

integer procedure FTT7(VAR, 0OBS, FUNC, yxdata, xmesn, coef,

coeferror, ymean, meanerror, ycalc, eps);
value VAR, UBS, FUNC, eps;
integer VAR, OBS, FUNC;
real eps;
array yxdata, xmean, coef, coeferror, ymean, meanerror, ycalc;
begin
integer 1, J; k;
real XJ;
array SXX[1:VAR, 1:(2xVAR+FUNC)];
for i := 1 step 1 until FUNC do
ymean[i] := meanerror{i] := 0;
for § :=1 step 1 until VAR do
begin
xmean[j] := 0;
for k := 2xVAR+FUNC step -1 until 1 do sx[J,x] ¢
XX [§,3+VAR] = 1; -
end for J;
for 1 := 1 step 1 until OBS do
begin
for k := 1 step 1 until FURC do
ymean[k] := ymean[k] + yxdata[1,k]/0BS;
for § := 1 step 1 until VAR do
xmean[j] := xmean[J] + yxdata[1,FUNC+j]/0BS;
end for i;

L]
o

for 1 := 1 step 1 until OBS do

for J := 1 step 1 until VAR do

begin
xJ = yxdata[1, FUNC+)] - xmean[J);
for k := 1 step 1 until FUNC do
sKx[4, 2xVAR+k] := SxX[4, 2xVAR+k]
+ xIx (yxdata[1,k] - ymean[k]});
for k := j step 1 until VAR do
K[k,] 1= Sx[3ek] = X[k]
+ xJx (yxdata[1,FUNC+k] - meun[k]);

end for J and i;

FIT7 := i := LEQ1(VAR, VAR + FUNC, SXX, eps);

-25=-

if

i
begin
for j := 1 step 1 until VAR do
for 1 := 1 step 1 until FUNC do
coet[j,1] = SX[J, 2xVAR+i |;
for i := 1 step 7 until OBS do
begin
for k := 1 step 1 until FUNC do
yeale[i,k] := ymean[k];
for § := 1 step 1 until VAR do
begin
xJ = yxdata[i,FUNC+]] - xmean[j];
for k := 1 step 1 until FUNC do
yeale[1,k] := yeale[1,k] + xjxcoet[j,k];
end for J;
for k := 1 step 1 until FUNC do
meanerror[k] := meanerror{k] + (ycale[i,k] - yxdata[i,k])42;
end for i;
for k := 1 step 1 until FUNC do
meanerror[k] := sqrt(meanerror(k]/(0OBS-VAR-1));
for j := 1 step 1 until VAR do
1 step 1 until FUNC do
coeferror|j,k] := meanerror[kxsqrt{abs(SXX[j,VAR+J]));
end 1 1 = O;
end FITT;

= 0 then

|}

for k :

All the formil parameters in FITT have heen explained above, eXxcept
the real eps which is the minimum pivot element accepted by 1EQ1. If a
plvot element becomes smaller than eps, FIT7 is set to 1 and the cal-
culation interrupted. Otherwise, FIT7 is set to O.

Further details of the work of the procedure are:

All elements in the arrays ymeun, meanerror|1:FUNC] and xmean[1:VAR]
are set to zero. The elements in the array SXX[1:VAR,1:2xVAR+FUNC] are
als0 set to zero except the diagonal:

D6~

The observations are then scanned for calculation of the mean values
ymean and xmean. The SXX matrix is then generated in a second sScanning
of the observations. For each observation we have a main for-statement
counting j from 1 to VAR, For each value of j the right-hand sides are
calculated and another for-statement in k updates the elements of the
min matrix SXX[1:VAR,1:VAR]. As this part of the matrix is symmetric,
it is only necessary to calculate the upper triangle directly.

A call is then made of IEQ! with VAR equations and VAR+FUNC right-
hand sides. If there is no pivot trouble, the calculation 18 finished
with transfer of the coefficients from the last SXX-columns to the coef-
columns, The observation material is then scanned again for calculation
of yealc[1:0BS,1:FUNC], meanerror[1:FUNC], and coeferror[1:VAR,1:FUNC}
as explained above.

3.3. Simple Test of FIT], The program d-358 shown below reads the
table on page 19, calls FIT7, and finds the linear approximation:

(3.13) ¥y = 116,72 - 0,23451xx1 + 0.08263xx2;
The program is:

Program d-358. Test of FIT7 with 2 variables.

begin
integer 1, j;
array yxdata[1:6, 1:3], xmean[1:2], coef, coeferror[1:2, 1:1],
ymean, meanerror[1:1], ycale[1:6, 1:1];
eopy FITT(
copy LEQ1K
select(17);
writetext ({<
Read input to d-358:});
1ym;
select(8);
for 1 := 1 step 1 until 6 do
for j := 1 step 1 until 3 do
yxdatafi, j] := read real;
FIT7 (2, 6, 1, yxdata, xmean, coef, coeferror,

ymean, meanerror, ycale, 1y¢-12);

27

writetext (£
OQutput d-358
yinput ycale error X1 x2
});
for i := 1 step 1 until 6 do
begin

writecr;
write(f-dddd.dd},
yxdata[i, 1], yeale[d, 1], yeale[i, 1] - yxdata[s, 1]);
write(f-ddaad}, yxdatal[i, 2], yxdata[1, 31);

end for i,

writecr;
writecr;
writetext ({<y0: });
write ({-ddd,ddada},
ymean[1] - xmean[1)xcoef{1,1] - xmean[2]xcoef[2,1]);
for j =1, 2 do
begin
writecr;
writetext(k(c});
write(kd}, S F
writetext (§<: });
write (-ddd.dddddp, coef[j,1]);
writetext (K< +});
write (f-ddd.ddddd}, coeferror{j,1]);
end for j;
writecr;
end;
In this progrom we have corrected the calculated value of ymean by
subtracting:

xmean|1 Jxecoef{ 1,1 J+xmean{2 Jxcoef[2,1]

The independent variables can then be Inserted directly in equation
(3.13). This simplification is not recommended for large values of VAR
or when higher powers of the independent variables are used as pseudo
variables,

-28-
The program gave the following output:

Qutput d-358
¥input yealce error x1 X2

k3,92 43,71 -0.21 k10 280
38,18 38.33 0,15 4h0 300
33,20 33,37 0,17 L40 240
30,57 30,3+ -0,2% k460 260
39.68 39,72 0,04 L20 260
38.95 39.02 0.07 430 280

yO: 116,72552

+ 0,00599
c2: 0.08263 + 0,00500

-29-
4. REGRESSION ANALYSIS WITH HIGHER DEGREE PSEUDO VARIABLES

4,1, Use of FIT] with Pseudo Variables. The procedure FITT can give

us & linear approximation to « given function, e.g.:
(La1) y = y0 + e1xx1 + e2xx2 + ¢Ixx3;

in which we have three independent variables., If we instead of this wish
to find the coefficients in a polynomial of a single variable, but with
higher powers:

(h.2) ¥y 1= YO + c1xx1 + e2xxX1A2 + e3xx143;

this may be done by interpretating the higher powers as other Iindepen-
dent variables:

(B.3) x2 = x142;
(hls) x3 1= x143;

The program d-3%59 shown below gives an example of this use of pseudo
variables., The program reads Table 1 on page 11 and calculates polyno-
mial approximations of increasing degrees:

(4.5) 1= yO+cIxx1;

= yO+etxxd +c2xx1+2;

1= yO+cixxl+e2xx142+c3xx143;

t= yO+e1xxT+2xX1A2+e 3xx 1 pS+clxx 15

1= yO+ctxx1+e2xx142+e 3xx 1 p3+elxx 1 e+e5xx 1455

1= y0+c1xx1+c2xx1+2+cjxx1+5+chix1+h+c5xx1+5+c6xx1+6;

P

For each degree, g, the program prints a table of the measured and
the calculated y-values, the deviations, the coefficients, and their
errors. The mean errors are also printed.

The program is:

-30-

Program 4-359. Use of FITT for one variable and pseudo variables.
begin
integer g, 1, Jj;
array yxdata[1:13, 1:7], xmean{1:6], coef, coeferror{1:6, 1:1],
ymean, meanerror{1:1], yeale[1:15, 1:1];
copy FITT(
copy LEQ1K
select(17);
writetext ({<
Read input to d-359:});
1yn;
select(8);
for i := 1 step 1 until 13 do
begin
yxdata[i, 2] := read real;
yxdata{i, 1] := read real;

end for 1i;
writetext (K<
Qutput 4-359
Degree
X yinput yecale error coefficients errors
})s
for g := 1 step 1 until 6 do
begin
writecr;
vrite (fdddd}, &);
if g > 1 then
for 1 := 1 step 1 until 13 do
yxdata[i, t+g] i= yxdata[i, 2 e;
FIT7(g, 13, 1, yxdata, xmean, coef, coeferror, ymean,

meanerror, ycale, 19-40);
for 1 := 1 step 1 until 13 do
begin
writecr;
write ({dddddddd}, yxdata[i, 2]);
vrite ({-ddddad.dd},
yxdata[1, 1], yeale(1, 1], yee®i7™¥T -yxdatal1, 1]);

-5~

if 1 < g then
begin
write ({adddd}, i);
write({ -d.dddddddy-ddb, coef[i,1], coeferror{i,1]);
end if 1
end for i;
writecr;
writetext ({< Mean error: });
write ({-ddddd.dddd}, meanerror[1jxsqrt(1-g/12));
writecr;
end for g;

end;
The program gave the following output:

Output d-359
Degree

X yinput yeale error coefficients errors

300 24135,00 1153.92 -1254,08 T 15773461 p 1 5.2729666 =1
LOO 3323,00 2736,27 -586.73
500 UL365,00 4313.62 51,38
600 5549,00 5d90,96 341.96
700 6871.00 T468.31 597,31
800 8321.00 945,65 724,65
900 98387.00 10623.00 736,00
1000 11560.00 12200,35 640,35
1100 13320.00 13777.69 L57.69
1200 15170.00 15355,04 185,04
1300 17100,00 1693%2.33 -16T.b2
1400 19090.00 18509,73 -580.27
1500 21130,00 20087.08 -1042,92
Mean error: 681.0773

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

300
400
500
600
700
800
900

2413.00
3323,00
4 365,00
5549,00
6871.00
8321.00
9887.00

231324
3313,43
4k18,55
5628, 62
6943, 62
8363.56
9888.43

11560.00 11518.25
13320,00 13253.00
15170,00 15092.69
17100.00 17037.32
19090.00 19086.89
21130.00 2124140
Mean error:

213,00
3323,00
1436500
5549,00
6871.00
8321.00
9887.00

2420, Th
331343
4359.92
5550443
6375.21
8324 16
9888.43

1000 11560.00 11557.34
1100 13320,00 13321.41
1200 15170.00 15170,88
1300 17100,00 17095.96
1400 19090,00 19086.59
1500 21130,00 21133.89

Mean error:

-32-

-99.76
-9.57
5355
79.62
72.62
42,56

1.43

41,75

~67.00

“T7.51

-62, 68
=3.11

111,40
67,6337

ToT4
-9.57
-5.08

1,43

b 21

3,46

1,43
2,66

1,01

0.88
4,01
3.1

3.89

I, 6746

1
2

]
2
>

6. 3290347
5.2469038 -3

2. 7781902

9°6hh7373 KFB
—1 06288268 10-6

1.6558523 o

3.4925511 -2
1.0227702 -l
3,7615937 »-8

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

300
Lou
500
600
700
800
900
1000
1100
1200
1300
1400
1500

2413,00 2L16.L43
3323.00 3316,31
4365,00 U364,10
5549.00 5552.79
6871.00 68Th.73
8321,00 8321.67
9887.00 9884.77
11560,00 11554.55
13320,00 13320.93
15170.00 15173.23
17100,00 17100,14
19090,00 19089.77
21130.00 21129.58

Mean error:

213,00 2414,57
3325,00 %319,08
4365,00 L365,62
5549,00 5551,87
6871.00 6872.54
8321.00 B8319.99
9887.00 9884,76
11560.00 11556,22
13320,00 13323,11
15170.00 151T4,16
17100,00 17098, 64
19090.00 19087,00
21130,00 2113141

Mean error:

-33-

3443
-6469
-0,90

34719

373

0,67
-2.,23
-5.45

0.93

3.23

0.14
0,23
~0,k2

3.3%20%

1.57
-35.92
0,62
2,87
1,54
-1.01
-2.24
~3.78
3.1
4,16
-1.36
-3,00
1,k1
2.7222

N N

—

Wi F W o

3,3581258

8.4987L85 -3
=T+1349355 =T
-2.5425809,4-10

L, 4495858

5.5209240 =3
3.0348248 -6
=2.458346k -9
4. 89614085,~-13

2.1710716 -1
b,1714220 -k
3.2867213 5=7
9.095T000y-11

6.2678886 -1
1.6690240 43
2.0709615 46
1.,2085363 =9
2, 678883913

300 2413,00 2408.96 -k , Ol 1 1.6310036 ¢ 1 5.0760758
40O 3323.00 3330.85 7.85 2 -3.5062186 -2 1.T265767 ¢-2
500 L4365,00 U365,78 0.78 3 7.2276290 -5 2.9340247 x-5
600 5549,00 5544,05 -4.95 L w6.5117736 -8 2.6491558 48
700 6871.00 6867.1h -3.86 5 2,922884545-11 1.21415224-11
800 8321,00 B8321.96 0.96 6 -5.254961590-15 2.2211710¢~15
900 9887,00 9891,31 L, 31

1000 11560,00 11560.63 0.63
1100 13320,00 13320,86 0.86

1200 15170.00 15167.62 -2.38

1300 17100.00 17096,50 -3.50

1400 19090.00 19094, 67 L.67

1500 21130,00 21128,66 -1.34

Mean error: 3.8747

This calculation shows that the mean error 1s gradually decreased
when the polynomial degree is increased until a certain limit, The error
for a sixth order polynomial is slightly higher than for a fifth order
polynomial. At the same time the coefficient errors have increased to
be of the same order of magnitude as the coefficients, indicating that
we have found the limit beyond which the polynomial approximation method
cannot give better results, at least through the regression analysis
with pseudo variables, Slightly better approximations can be found by
the use of orthogonal polynomials (see Part 2).

The fourth order polynomial approximation of the enthalpy table is
shown in Fgure 2 on page 355.

-35-

AY

Figure 2

Fourth Degree Approximation

36
5. INVESTIGATION OF VARIOUS FEATURES

5¢.1. Centering around First Ubservation., 4 minor dimprovement in
the method used in FIT7 has been suggested by Chr. Gram and P. Mondrup,
Regnecentralen, Af/S. Instead of scanning the observation material twice
to obtain first the mean values of x and y and then to generate the SXX-

matrix, a single scanning is made in which the SXX summation is made re-
lative to the first observation and not relative to the mean value. This

means that the two equations (3.9) and (3.10) are replaced by:

(5.1) (xobs[1,J]-xobs[1,]])x (xobs[1,k]-xobs[1,k])
(5.2) (x0bs[iJ]-xobs[1,j])x(yobs[1 J-yobs[1])

and the scanning is made from 1 = 2 to 1 = UBS.
another feature is that the diagonal elements in SXX can be calcu-

lated in & more direct way as:
(5.3) sxx[y,3] := sM(xobs[1,j) -(SM(xobs{1,§]))42/UBS;

where the sumation is made from i = 1 to 1 = (BS.

When the SXX-matrix has been generated, it must be corrected for the
effect of using the first observation as basis instead of the mean val-
ues. These minor details are explained in the following sections.

The basic 1dea behind the use of the first observation as basls 1is
that this basis has no inherent rounding error whereas the mean values
will contain small rounding errors. Calculations showing this effect

are reported in the next section.

5.2. _The Procedure FIT8, This is the improved version of FITT with
the feature of centering around the first observation. The declaration

is:

integer procedure FITS(VaR, UBS, FUNC, yxdata, xmean, coef,
coeferror, ymean, meanerror, ycalc, eps);

value VAR, OBS, FUNC, eps;

integer VAR, (BS, FUNC;

real eps;

array yxdata, xmean, coef, coeferror, ymedn, mMEAnerror,

ycale;

T

begin
integer 1, i, k;
real xj;
srray SXX[1:VAR, 1:(2xVAR+FUNC)], yone, yi[1:FUNC];
for i := 1 step 1 until FUNC do
begin
yone[i] := yxdata{1, il;
ymean[i] := meanerror[1] := O;
end for 1;
for J := 1 step | until VAR do
begin
coeferror{j, 1] := xmean[Jj] := 0;
yeale[y, 1] := yxdata[1, FUNC+j];
for k := J + 1 step 1 until 2xVAR+FUKC do
sx[3, k] := 05
sxx{dy J+VAR] := 1;
end for J;
for 1 := 2 step 1 until OBS do
begin
for k := 1 step 1 until FUNC do
begin
vi[k] := yxdata{t, k] - yone[k];
ymean[k] := ymean[k] + yi[k];
end for k;
for J := 1 step 1 until VAR do
begin
x) := yxdata[i, FUNC+}] - yeule[J, 1];
xmean[J] := xmean[j] + xJ;
coeferror[j, 1] := coeferror[j, 1] + x}42;
for k := 1 step 1 until FUNC do
SKX[Jy 2xVAR+k] := SXX[J, 2xVAR+k] + yi[k]xxd;
for k := j + 1 step 1 until VAR do
SXx[3, k] := xx[j, k] + (yxdata[1, FUNC+k] -
yeale[k, 1])xxj;
end for J;
end for 1;
for k := 1 step 1 until FUKC do
ymean[k] := ymean[k}/0BS;

for J := 1 step 1 until VAR do
begin
x) := xmean(J];
SXX[3, 3] := coeferror(j, 1] - xjf2/0BS;
for k := 1 Step 1 until FUNC do
SXX[j, 2xVAR+k] := SXX[J, 2xVAR+k] - xjxymean[k];
xj := xJ/0BS;
for k := § + 1 Step 1 until VAR do
Xk, 3] = Xx[J3, k] = sXX[J, k] - xmean{k Jxx};
xmeanfj] := yeale[J, 1] + xJ;
end for Jj
FIT8 := i := LEQ1(VAR, VAR+FUNC, SXX, eps);
if 1 = O then |

begin
for k := 1 step 1 until FUNC do

ymean{k] := yone[k] + ymean[k];

for j := 1 step 1 until VAR do
for 1 := 1 step 1 until FUNC do

coef[§, 1] := xXxX[j, 2xVAR+i];
for 1 := 1 step 1 until OBS do
begin
for k := 1 step 1 until FUNC do
yeale[i, k] := ymean[k];
for § := 1 step 1 until ViR do
begin
xJ = yxdata[1, FUNC+J] - xmean[J];
for k := 1 step 1 until FUNC do
yeale[1, k] := yeale[i, k] + xjxcoef[J, k];

end for J;

for k := 1 step 1 until FUNC do
meanerror[k] := meanerror[k] +
(yeale1, x] - yxdata[1, k])2;

end for i;

for k := 1 step 1 until FUKC do

meanerror{k] := sqrt(meanerror[k]/(0BS-VAR-1));

for j := 1 step 1 until VAR do

for k := 1 step 1 until FUNC do

coeferror{j, k] := meanerror[k]Ixsqrt(abs{SXX[J, VAR+§]));

end if 1 = 0;
end FIT8;

-39-

The following discussion of FITS mainly emphasizes the differences
between FIT7 and FIT8. The two arrays:

yone, yi[1:FUNC]

are used for storage of the y-values in observation no. 1 and the dif-
Perence yobs[i]-yobs[1] as it 1s used during the scanning.

The values of yone[1:FUNC] are inserted at the beginning of the pro-
cedure, We also need two new arrays for storage of the x-values in ob-
servation no., 1 and the sum of the squares of the x-values (measured re-
lative to the first observation). These arrays have the dimension 1:VAR,
but in order to save space we can use ycalc[1:VAR,1] for xobs[i,1:VAR]
and coeferror[1:VAR,1] for the sum of the squares. These arrays are not
used for their original purpose until after the solution of the equa-
tions. The values of ycalc and coeferror are set in the first for-state-
ment counting in j.

Then comes the first scanning in which 1 goes from 2 to 0BS. It hes
first a for-statement counting in k which sums up the mean values of ¥y
relative to observation no. 1 in ymean[1:FUNC]. Then comes a for-state-
ment counting in J from 1 to VAR and which performs five operations:

1. xJ is calculated as xobs[i,3] - xobs[1,j].

2. xj 1s added to xmean[j].

3. The square of xJ is added to coeferror[Jj,1].

4, A for-statement in k going from 1 to FUNC updates row no. j in
the right-hand sides of the equations by addition of yi[k]xxj to column
no. k {this is the term in equation (5.2) for k = 1),

5. A second for-statement in k updates row no., k in the main part
of SXX by adding the term in equation (5.1).

After the main for-statement in i, a small for-statement in k di-
vides the value of ymean by (0BS.

Then comes a for-statement counting j from 1 to VAR which corrects
the SX{.matrix for the rmumber of cbservations and for the fuct that the
centering was made around the first observation instead of around the
mean values. This is made in six operations:

T

1. The previous value of xmean[j] is assigned to xJ.

2, The diagonal element is calculated after equation (4.3).

3« A for-statement in k corrects the right-hand sides by subtract-
ion of SUM(xobs{i,Jj])}xSM(yobs[i,k])/0BS.

L, xj is divided by OBS.

5. The upper llf of the miin part of the SXX-matrix is corrected
by subtraction of SUM(xobs[1,j])xSM(xobs[1,k])/0BS, The lower half of
SXX is assigned symmetrically.

6. xmean is corrected by adding the first observation.

The remaining part of FIT8 is the same as in FIT7, except that the
values of ymean are corrected by adding the first observation. In this
part of the procedure the arrays ycalc and coeferror are used for their
original purpose.

A comparison between FIT7 and FITS is given by the program d-360
shown below. We want to approximate the enthalpy table on page 11 by
polynomials of increasing degree in the same way as did progrum d-3559 on
page 30, A direct comparison of FIT7 and FITO on this material shows
only a small effect, but if we distort the x-values like this:

Ubser- Uriginal Distorted
vation no. x=-value X-value
1 300 333.33333 + delta
2 Loo Lk Llbll + delta
3 500 555055555 + delta
b 600 666. 66666 + delta
ete,

an effect can be observed. The distortion is equivalent to a change in

the temperature scale and is brought about by calculating the x-value of
observation no. 1 from:

(5.4) x[1] := 1000x(1+2)/9 + delta;

The program is run for different values of delta. A print-out of

the progrum 1is:

TR .

Program &-360. Comparison of FIT7 and FITS.
begin
integer 1, Jj, type;
real delta, x;
array yxdata[1:13, 1:7], xmean[1:6], coef, coeferror[t
ymean, mearerror[1:1], yeale[1:13, 1:1]);
copy FITT<
copy FITE
copy LEGi<
select (17);
writetext ({<
Read input to d-360:});
lyn;
select(8);
for 1 := 1 step 1 wntil 13 do
begin
yxdata[i, 2] := read real;
yxdata[1, 1] := read real;
end for 1i;
writetext (£<
Uutput, d-360
delta Meun error

FIT7 FIT8
})s

for delta := 0, 1, 10xdelta while delta { 146 do
begin
writecr;
write({ dyd}, delta);
for 1 := 1 step 1 until 15 do
begin
x := 1000x (i+2)/9 + delta;

for j := 1 step 1 until 6 do
yxdata[i, 1+4§] = xNj;
end for i;

16, 1:11,

o

for type := 1, 2 do
begin
i := case type of
(FIT7(6, 13, 1, yxdata, xmean, coef, coeferror, ymean,
meanerror, ycale, 14-100),
FIT8(6, 13, 1, yxdata, xmean, coef, coeferror, ymean,
meanerror, ycalc, 1¢=100));
if 1 O then writetext(k< ERROR })
else
write (fddd.d00000}, meanerror(1]xsqrt(0.5));
end for type;
end for delta;
writecr;

end;

The program gave the output:

Output d-360
delta Mean error
FITT FIT8
0 11, 1.717
1 12,08 2.161
101 15.43 2,134

102 20305 2.485
195 2.809 2.905
1t 3k 5. 804
165 T0.11 T1.43

For small values of delta FITT gives larger mean errors than FITS.
The reason for this is probably that the infinite decimal fractions in
the x-values give loss of accuracy in FITT when the mean values of x are
calculated. This error is not found in FITS., For large values of delta
the mean error increases again for both procedures. This is very natural
because the high value of delta will mask the smwall differences in the

x=-values,
Conclusion; FITH is better than FIT7 and should be used.

N

S5.3. linear Equations Versus Matrix Inversion. As mentioned on

page 25 the solution of the normal equations in the regression analysis
can be made either by direct solution on the augmented matrix:

SXX XX 2 XX
XX XX 8XX 32X
A XX ;XX X

or by inverting the square matrix:

SXX SXX X
X SXX SXX
;X XX 88X

giving the inverse:

INV INV 1INV
INV INV 1INV
INV 1INV INV

which is then multiplied by the right-hand side:

SXX
axXx
XX

giving the required coefficients. We have performed a comperison of the
two methods by taking the ecalculations carried out by FIT7 in the pro-
gram d-359 (page 30) and running them on a special program (d-363) which
contains a modified version of FIT{, This version generates the 8SXX-
matrix plus the unit matrix:

S XX X 1 0 ¢] SXX
XX SXX s © 1 0 XX
XX XX XX © 0 1 XX

Before the equations are solved, the right-hand side is stored in a
local array, SXY. We then solve the equations by means of LEQ!1 and get

~hl .

the inverse and the coefficients:

=== === === TNV INV 1INV coef
mme === == INV INV INV coef
mme =m= ~w= INV INV INV coef

The calculation of ycale and the mean error is now carried out in
two cycles, the first using the coefficients obtained by multiplication
of the inverse, INV, by the right-hand side, SXY. The second cycle uses
the coefficlents cbtained from the direct solution. The result of the
calculation was:

Degree Calculated Mean Error
Direct Matrix

Solution Inversion

1 631,08 681,08
2 67.63 67463
3 h.67 4,67
4 3432 4 L7
5 2.72 69.29
6 3,07 1056k.25

This clearly shows how dangerous it can be to use wmatrix inversion
instead of direct solution, although the two methods are equivalent from
a mathematical point of view.

5.4, Regression Through First (bservation. It is sometimes required
that the approximation expression generated in a regression analysis has

certain special properties, such as passing exactly through a specified
point. Chapter 12 contains a general discussion of this subject.

If we wish that +the linear regression must pass exactly through a
glven point, this can be obtained in & very simple way when the method
of FITO is used. The specified point is placed as observation no. 1, and
the first part of FITO immediately glves the required approximation. The
second part of the calculation should then be skipped.

-b5.

5,5. Scaling Problems in FORTRAN. When FIT8 is translated into FOR-

TRAN and tested on an IBM 360/b4 computer, troubles occur because this
computer has a smaller range of floating point numbers than has the GIER '
computer. The high powers in the pseudo variables give overflow in the
calculations, This can be avoided by scaling the original x-values be-
fore the regression analysis with proper back transformmtion after the
caleulation. The scale factors should preferably be powers of 16 in or-
der to avoid the introduction of rounding errors.

-7

PART 2. URTHOGONAL POLYNUMIAL APPROXIMATION

-hg.
6. BASIC ON URTHUGUNAL PULYNUMIALS

In Part 1 of this book some examples were given on how to approxi-

mate a function:
(6.1) y = £(x)

by polynomials of various degrees:

(6.2) ¥y = yU+eTxx;
y = y0+(:1xx+c2xx+2;
¥ = yO+elxx+e2xxf2+e3xxh3;
etc,

As lllustration to these methods we used an example of the enthalpy
of methane as a function of the temperature. In order to illustrate the
use of orthogonal polynomials it is more convenient to use a somewhat
smaller table and of a function where it is easy to include more inde-
pendent variables. Table 2 below gives the ammonia mole per cent, Y, in
equilibrium as a function of the pressure, X atm. abs, The table is
valid for a 3:1 hydrogen-nitrogen mixture at 400 deg. C.

X Y

200 38,8210
220 40,927k
2k 42,9013
260 4h,7590
230 46,5139

Table 2

The table can be extended by including the temperature and the inert
contents as further independent wariables,

When we approximate this function by means of polynomials of increa-
sing degrees (either by regression analysis or by the methods described
later) we can get the following results:

-50-

i

(6.3) 19,72+0.09609xx
174140, 16630xx~146350-Mx2xf2;
T o2l 40.21934 xx =30 69Usgeltx X2+ s OG0~ T A3 5

b 081+0.26051xx=60290y=bxxp2+1 . 03510= 6xXp3-T + 561101 Ox x4 5

LR PR A
I fi

H

The coefficients are not written with full accuracy here, but the
numbers show one important feature: When the polynomial degree is in-
creased, all the lower degree coefficients change their numerical value.
This must be so, of course, but we may put the question if it were pos-
sible to perform the generation of the polynomials in such u way that
the addition of the next higher term hid no influence on the values of
the lower degree coefficients calculated already. This is in fuct pos-
sible by the use of orthogonal polynomials. Instead of the conventional
polynomial:

(6.1) ¥ = cO+et xx+c2xxf2+e 3xxq3;
we write the approximation wus:
{6.5) ¥ = aOxPU(x}+a1xP1 (x)+a2xP2 (x)+a35xP3(x);
In this representation the addition of a further term, alixPi(x), has

no influence upon the values of the numerical constants, a0, al, a2, and

w3, The price for this advantage is that the x-powers:
(646) Xy X2, Xp3

are now replaced by polynomials in x:

(6.7) PO(x), P1(x), P2(x), P5(x)

of the degrees O, 1, 2, and 3. PO(x) corresponds to cU. If we want the
coefficients in the conventional polynomial, these can easily be calcu-

lated from the polynomials, PO, P1, etc.

-51-

6.1, Orthogonality. The polynomials PO, P1, P2, etec. introduced
above are the so-called orthogonal polynomials. We shall now see what

this name means and how the polynomials can be used in the approximation
of functions,

In Part 1 of this book the method of linear regression analyszis for
establishment of the normal equations was described on pauge 13, The ex-
planation given there refers to a function of VAR independent variables,
and is somewhat cbscured by the feature of subtracting the mean wvalues
from the x-values when the matrix is generated. The element, SXX[j,k],
of the square part of the XX-matrix is found by summation of:

(6.8) (xobs[41,J J-xmean]j])x (xcbs[1,k]-xmean[k])
for all observations for i = 1 to 1 = (BS.

We now consider the case in which a function of a single variable,
y = £(x), available as a table of 0BS observations:

x, y[1:0Bs]

is to be approximited by a conventional polynomial of degree DEG:
(6.9) cpol(x) = e[0}+e[1 Jxx+c[2]xxf2+.. ., +c[DEG Jxx{DEG;

The deviation in point no, 1 can be written as:
(6.10) D := epol(x[1]) - y[1];

and the square of the deviation:

(6.11) 8D := (epol(x[1]) - y[11)42;

(6.12) 8D := (epol(x[1]))h2 + (y[1]Me - 2xy[1]xepol(x[1]);

Summation of this with i going from 1 to OBS gives the sum of the
squares of the deviations:

-52-

(€6.13) SSD := SM((cpol(x[i]))42) + sM((y[i])}2)
~ex5WM {cpol(x{1i})xy[1]);

The DEG+1 unknown coefficients, c¢{0:DEG], are calculated by setting
up the DEGH1 normal equations. Hquation no. p expresses that the deri-
vative of SSD with respect to ¢[p] is zerc, corresponding to & minimum
of S5D. The normal equations are written as the rows in a matrix, XX,

of the dimension:
35X [0:DEG, O: DEG+1]

Differentiation of equation (6.13) and some rearrangement gives the
result that the element, &XX[j,k], of the square part of XX can be

written as:

(6.1k4) SUM (x[1 N xx[1) 5
the summation being carried out from 1 = 1 to 1 = (UBS. The right-hand

side of the equaticn system is the last column in XX and the element
XX[J,D8G+1] 1n this column is found by a similar summation:

(6.15) sM(ylijxx[1Nj);

We shall now repeat this calculation using the orthogonal polynomi-
als. We filrst write equation (6.5) in a slightly different way:

(6.16) y = al0xP(0,x)+a[1]xP(1,x)+a[2 xF(2,x)+, 4 o +a[DG Jx2 (DBG, x) ;

The unknown coefficients are now: a[U:DEGl. The generation of the
orthogonal polynomials:

(6.17) P(0,x), P(1,x), ete.
is explained in the following section. The numbers O, 1, etc. written

as the first argument in P indicate the degree of the polynomial.

The deviation in point no. i becomes:

-53.

(6.18) D :=d[0]xP(0,x[i])+a.[1]xP(‘I,x[i])+...H[DEG]xP(DEG,x[UBS])
-yli];

Further calculation gives SD and SSD as above. bifferentiation of
S8D gives the normal equations and the element, SXX[J,k], of the Square
part of SXX becomes:

(6.19) SWM(P(gx[1])xP (k,x[1]));
The right-hand side element no. j becomes:

(6.20) sM(y[1]xP(j,x[1]));

We now consider the summation in equation (6.19). The whole point in
the use of the orthogonal polynomials lies in the fact that these poly-
nomials are generated in such a way that the summation becomes zero
for Jj + k:

(6.21) SM(P(J,x[1])xP(k,x[1£])) = 0 for j 4 k.

The mathematical term: Orthogonal refers to this zero condition or,
more correctly, to the similar condition when the summation is replaced
by integration over a given interval,

For J = k the summation gives:

(6.22) smM(P(J,x[1]))h2);

which is different from zero., This means that the elements on the dia-
gonal in 8XX are different from zero and those outside the diagonal are

Zero.

(6.23) XX 0 0 0 0 XX
0 SXxX 0 o0 © AKX
0O 0 =X 0 o SXX
0O 0 0 MW 0 @ SXx
0O 0 0 0 XX =xXx

-5k

In other words, the normal equations can be solved immediately by

division of the right-hand side elements by the corresponding diugonal
element:

(6.24) a[0] := smM(y[1lxe(0,x[1]))/sM((P(0,x[1]))42);
al1] = sm(y[1 P (1, x[1]))/sM((P(1,x[1]))42);
a[2] := sM(y[i e (2,x[1]))/sM((r(2,x[1]))42);

a[DEG]:=SM (y {1]xP (DEG,x[1]) }/SUM((P (DEG,x[1]))42);

It is easy to understand that the use of orthogomnl polynomials will
save much computer time because it is not necessary to generate all the
matrix terms ocutside the diagonal and because there is no solution of a
set of simultaneous equations. Some additional calculation is required,

of course, for the generation and handling of the orthogonil polynomi-
als.

6.2. Generation of Orthogonal Polynomials. We shall now explain

how the orthogonal polynomials can be generated by a4 set of recurrence
formulas., The following is taken from Lapidus (1962).
We start by defining the set of polynomials as:

(6.25) P(-1,x) = 0
P(0,x) =1
P{ 1,x) = (x - alfa[1])xP(0,x) - beta[0]xP(-1,x)
P(2,x) = (x - alfa[2])xP(1,x) - beta[1]xP(U,x)

P(J+1,x)= (x - alfa[j+1])xP(J,x) - betal]=P(3-1,x)
with beta[0] = 0. We must now determine the series =alfa and beta in
such a4 way that the orthogonality criterion (6.21) is fulfilled. We can

start by assuming that:

(6.26) P(0,x), P(1,X), eeevey P(J4x)

are all orthogonal to each other. We then multiply the formula for the

-55-

polynomial P(j+1,x) in equation {6.25) by P(k,x) and perform the summa-
tion from 1 = 1 to 1 = UBS., This gilves:]

(6.27) SM (P (k,x[1])xP(3+1,x[1])) =
SUM(P (kyx[1])x (x[1]-alfal3+1])xP(§,x[1])) -
SM (P (k,x[1])xbeta[j xP(3-1,x[1]))

This is valid for 0 ¢ k (J. Insertion of k = j gives:

(6.28) sm(P(§,x[1])}xP(J+1,x[1])) =
SM(x[1]xP(3,x[1])42) - alfalj+1 1xsM(p (5 x[1])42) -
betalj JxSM P (3, x[1])xP(3-1,x[1]))

The last term on the right-hand side is zero from the orthogonality
of P(j,x) and P(j=1,x). In order to secure the orthogonality of P(J,x)
and P(j+1,x}, we must calculate alfu[j+1] as:

(6.29) alfa[3+1] = sM(x[1]xP(3,x[1])42)/sM(P(5,x[1])42)
Insertion of k = j-1 into equation (6.27) gives:

(6.30) SWM(P(j-1,x[1])xP(3+1,x[1])) =
sM(x[1 }xP(3-1,x[1)xP(3,x[1])) -
alfa[j+1 JxsM(P(3-1,x[1])xP(3,x[1])) -
beta[J IxSM(P(3-1,x[1])42)

Here, the second term on the right-hand side is zero because of the
orthogonality of P(j-1,x) and P(j,x). The orthogonality of P(j+1,x) and
P(j-1,x) is then secured by calculating beta[j] as:

(6.31) vbeta[j] = sM(x[1]xP(3-1,x[1])xP(3,x[1]))/SM(P(3-1,x[1])42)

AS the orthogonality of P(-1,x}, P(0,x), and P(1,x) is easily veri-
fied by direct calculation, we have the material for an induction proof
of the orthogomality of all polynomials generuted in this way using the
equations (6.29) and (6.31) for alfa and beta.

The program d-372 generates the orthogonal polynomials for the 5
x-values in Table 2 on page 49, The program is:

-56-

Program d-572. Generation of Urthogonal Polynomials,
begin
integer 1, t;
real alfa, beta, 0, ULDSQSWM, XPROD;
array X[1:5], ORPOL[-2:hk, 1:5], SSQroL[0:k];
for i := 1 step 1 until 5 do X[1] := 180 + 20xi;
for i :=1 step 1 until 5 do
begin
URPOL[-2,1] := 1;
ORPUL[-1,1] := 0;
end for i;
alfa = O;
beta := OLDSQSUWM = 1;
for t := O step 1 until 4 do
begin
SSQPOL[t] := XPROD := 0;
for 1 := 1 step 1 until 5 do
begin
D := URPOL{t, i] :=
URPOL{t-2,1 |xbeta+ ORPOL[t-1,ix(X[i]+alfa);
D = DA2;
SSQPUL[t] := SSQPUL[t] + 0;
XPROD := XPRUD + DxX[i];

end for i;

beta := -5SQPOL{t |/OLDSQSUM;
OLDSQSUM := SSQPOL[t ;

alfa := ~XPROD/ULLSQSUM;

end for t;
select(8);
writetext (K<
Jutput d-%72:
b);
for 1 := 1 step 1 until 5 do

begin
writecr;

for t := O step 1 until 4 do
write(k -d.ddddy-dd}, CRPUL{t,1]);

end for 1i;

=57 -

writecr;

writecr;

for t := O step 1 until 4 do
write(k -d.ddddy-dd}, SSQPOL{t]);
writecr;

end;

Output from the program looks as follows:

Output 4-372:

1.0000 84,0000 151 3.0000 2 -9.A000 ¢ 3 5.4857 4 b
1.0000 -2.0000 4 1 -4.,0000 2 1.9200 4 -2.1943 4 5
1.0000 0.0000 -3.0000 20,0000 3.2914 o 5
1.,0000 2.0000 51 -4,0000 2 -1.9200 x4 -2,1943 4 5
1.0000 L,0000 1 B,0000 4 2 9.6000 93 5.4857 o b
5. 0000 L0000 153 2.2400 ¢ 6 9.2160 8 2,10654 11

The basic statement in the program is that which calculates P({t,x)
from the values of P{t-1,x) and P(t-2,x). It has the form:

(6.32) ORPUL[t,i] := ORPUL[t-2,1]xbeta+URPUL{t-1,1]x (X[i J+alfa);

This statement corresponds to the last formula in equation (6.25)

when j+1 is replaced by t:
(6433) P(t,x) = {x - alfa[t])xP(t-1,x) - betal[s-1 xP(t-2,x)
The wvalues of the orthogonal polynomials are written as the urray:
ORPOL[-2:DEG,1:UBS |
in which DEG is the highest degree to which we want to calculate the
orthogonal polynomials and UBS is the rnumber of observations. The wvalues

of x must be available as the array:

X[1:0B5]

-53-
The correspondence between P and (URPOL is then:
(634) P(t,X[1]) = ORPOL[t,1]

Comparison of equations (6,32 and 6.33) shows that alfa and beta are
inserted with the opposite sign in equation (6.32). There is no special
reason for this change of sign, except for a historical one which goes
back to the time when these formilas were evaluated in machine language.

The program d-572 starts by assigning start walues to the first
items of the orthogonal polynomials:

(6.35) ORPOL[-2,1i] :=
URPDL[-‘I '1] 1=

This is done for i going from 1 to UBS (here 5). In equation (6.25)
the initial setting was slightly different:

(6.36) P{-1,x)
P(0,x)

13 i
=+ ©

But the result 1s the same. In d-372 the sturt walues of alfa and
beta are set to O and 1, respectively. When the main for-statement in
d-572:

(6.37) for t := O step 1 until 4 do

is carried ocut for t = O, the result of equation (6.52) becomes:
(6.38) ORPOL[Q,1] := ORPOL[-2,1]xbeta + ORPOL[-1,1iJx(X[1]+alfa)
= 1x] + Ox(X[1]+0) = 1

vhich is the required value.

The local array:
SSQPUL[0:DEG]

1s used for storage of the sum of the squares of the orthogonal polyno-

-59-

mials for the degrees U to DEG. This corresponds to the expression
SUM(P(3,x{1]M42) found in equation (6.29)}. For each value of t in the
for-statement (6.37) we must also have access to the sum of the squares
for one degree lower: SUM(P(t-1,x{i])2)}. This is stored as the simple
variable ULDSQSUM. We need this in equation (6.31).

In equation (6.29) we also need the sum: SUM(x[i]xP(j,x[i])42). This
is calculated in the simple variable: XPRUD,

The calculation in d-372 is now clear. After the initial setting of
p(-2,x) and P{-1,x), the start walue of alfa is set to zero and of beta
and OLDSQSUM to 1, Then comes the for-statement in which t is counted
from O to DEG. For each walue of t we set the sum of the squares of the
orthogonal polynomials for the degree t to zero (SSQPOL{t]). The cell

XPROD used for summation of x[i]xP(t,x[i])A2 is also set to zero. We
then start a for-statement in which i is counted from 1 to OBS (here 5).
For each value of i URPUL[t,1] is calculated from equution (6.32) and it
is also assigned to the local simple variable, D. We then square
D and add it to SSQPOL{t]. The product of D and X{i] is added to XPROD.
After the for-statement in 1 we calculate betu from:

(6.39) beta := -SSQPUL[t 1/0LDSQSUM;

The presence of the minus sign in this formula was explained above,

Apart from this, the formula is equivalent to:
(6,40) beta := SM(P(t,x[1])42)/SM(P(t-1,x[i])}42)

This formula is equivalent to equution (6.31), provided we can prove
the identity:

(6.41) sM(x[1]xP(3-1,x[1])»P(3,x[1])) = sM(P(§,x[1])f2)

As shown by Forsythe (1957) this is easily done by multiplying the last
line in equation (6.25) by P(j+1,x):

(6.42) P(J+1,x)4A2 = (x~alfu[j+1])xP(jx)xP(J+1,x)-

betalj JxP(3-1,x)xP(J+1,x)

- 60~

When the summation of the UBS values is carried out, the terms with
alfa and beta as fuctors disappear because of the orthogomslity and the
remainirg terms are identical to those in equation (6.41).

OLDSQSUM 1is then put equal to SSQPOL[t] for use in the next cycle
for t = t+1. Finally, 4lfa is found from:

(6.43) alfa := -XPRUD/ULDSQSUM;

which is identical to equation (6.29), except for the sign change which
was explained above.

The output from program d-372 contains the values of the orthogonal
polynomials arranged as one row for each X-value and one column for each
degree. The extra row below the URPOL-values contains SSQPUL for the
same degree as the URPUL-~columns.

5.3. Polynomial Coefficients, We have now seen how the orthogonal

polynomials can be generated. Evaluation of the regression coefficients
a[0:DEG] is then straightforward after equation (6.24) and is further
explained in Chupter 7.

The regression coefficients, a[0:DEG], correspond to the expansion
in equation {6.16) where «[j] is multiplied by P(J,x). although this ex-
pansion can be used as such, it is more practical to use the conventi-
onal expansion in equation (6.9) in which c[j] is multiplied by xf\j. The
question is then how to calculate the array c[0:DEG] when the array
a[0:DEG] is known.

This 18 very easy to do because the orthogonal polynomials are also
conventional polynomials, i.e. the orthogoral polynomial of degree t can
be defined by the t+1 coefficients to the x-powers:

(64s) P{t,x) = PULC[t,0J+xxPOLC[t 1 J+xf2xPOLC[t,2]+. 0.,
..-a+X/+\txPUm[t,t]

The required polynomial coefficients are calculated und stored as

the array:
(6,45) PULC[0:DEG,0: DEG |

in which POLC{i,J] is the coefficient o x in the power j in the ortho-

-61-

gonal polynomial of degree i. When the array PULC is known, the conven-
tional coefficients are calculated by summing up of terms of the same

order:

(6.46) clu] = a[0}xPOLC{0,0 J+a[1 xPULC| 1,0 J+. . o +a[DEG JxPOLC [DEG, G |
c{1] = a1 jxpoLc{1,1 }+...+a[DEG |xPOLC[DEG, 1]

c[DKG] = a[DEG JxPULC| DEG, DEG]

In order to calculate the array PULC we start from the fundamental
recursion equation (£.25). Replacing j+1 by t and inserting alfu and

beta with opposite sigrns we get:
(6.47) P(t,x} = xxP(t-1,x)+alfaxP(t-1,x)+betaxP{t-2,x)

If we insert the expansion in equation (6.44) into equation (6.47)
and the similar expunsions of P(t=-1,x) and P{t-2,x) znd then collect

equal powers in X, we get the equations:

(Ael3) »uLe[t,t]
PoLe[t,t-1]
POLC{t,t-2]
porc[t,t-3]

I

POLC [t-1,6-1]

POLC[t~1,t~2 J+alfuaxPOLC{t~1,1-1]

PULC[t-1,t=3]+alfaxPOLC{t-1,t-2 [+betaxPCILC[t-2,%~2]
PULC[t-1,t-U J+alfaxPOLC[t-1,t-3 }+betaxPULC[t-2,1-3]

n

¢wova

PULC(t,2] = POLC[t-1,1] +alfuxPUlC[t-1,2] +betaxPOLC{t-2,2]
POLC[t,1] = PULC[t-1,0] +alfexPLLe{t-1,1] +betaxPULC[t-2,1]
PoLc[t,0] = alfaxPOLC[t-1,0] +betaxPOLC[t-2,0]

From this we can easily see, that it is possihle to generate the

polynomial coefficients, POIC[t,0:t] by & for-stutement of the form:

(6.49) for e := t-1 step -1 until O do
bUic[t,e] 1= POLC[t-1,e-1 J+alfaxPULC[t-1 e J+betaxPuLC[t-2,e];

This for-statement must be inserted at a point where ulfa and betu
are avallauble for the corresponding t-value. It is also necessary to

358ign certain start wlues to some of the elements in POLC:

poLc1,4]:

i: J:-1 0 1 2 3 L ... DEG

-1 0

0 0 1t ¢

1 0 1 0

2 0 10

5 0 10
L0

DEG 0 1

The elements POLC[t,t] are set to 1 because the orthogonal polyno-
mial of degree t just generated is the only source of x to the power of
t. For some values of e and % some of the PULC-elements in equation
(6.49) will lie outside the limits of POLC[0:DEG,0:DEG]. This can be
avoided by enlarging the array to: PULC[-1:DEG,-1:DEG] and assigning
zeroes to these elements as shown above, The upper triangle 1is not

used,

6.4, The Procedure URPOLGEN, If the calculation of the POLC-array
is included in the program d-372 after the method described above and we
rearrange the calculations into a procedure with suitable formal pare-

meters we get a procedure with the declaration:

procedure ORPOLGEN(UBS, DEG, X, ORPUL, POLC, SSQPOL);
value UBS, DEG;
integer UBS, DEG;
array X, ORPUL, POLC, SSQPUL;
begin
integer e, k, t;
real alfa, beta, ULDSQSWM, XPRUD, D;
for k := 1 step 1 until UBS do

begin
ORPUL[-2,k] = 1;

URPUL[-1,k] 1= 0;

It

end for k;

~6%-

for t := 0 step 1 until DEG do
begin

POLC[t,t] = 1;

POLC{t-1,t] := POiC[t,-1] := O;
end for t;
alfa := O;
beta = ULDSQSUM := 1;
for t := O step 1 until DEG do
begin

SSQPUL{t] := XPRUD := O;

for k := 1 step 1 until UBS do
begin
D := ORPUL[t,k] :=
ORPUL{t-2,k Jxbeta + URPOL[t-1,k]x (X[k] + alfu);
D := Dp;
SSQPUL[t] := sSqPOL[t] + D;
XPRUD := XPROD + DxX[k];
end for k;
for e := t - 1 step -1 until O do
POLC[t,e] := POLC[t-1,e]xalfa +
POLC[t-2,e]xbeta + PULC[t-1,e-1];
beta = -SSQPOL{t]/0LDSQSWM;
ULDSQSUM 1= SSQPOL[t J;
alfa := -XPROD/OLDSQSUM;
end for t;

end ORPOLGEN;

The formal parameters in URPULGEN are:

UBS integer Number of nbservations,
DEG integer Required polynomial degree,

X array [1:0BS]. The 1ist of x-values,
ORPUL array [-2:DEG,1:0BS]. The calculated set of vulues of the

orthogonal polynomials. ORPUL{t,1] is the value of the orthogonal poly-
nomial of degree t for the x-value no. i.

POLC array [-1:DEG,-1:DEG]. The calculated array of polynomial
coefficients. POLC[1,J] is the coefficient to x in the power j in the
orthogonal polynomial of degree i,

-6l

SSQPUL array - [O:DEG]. The calculated sum of the squures of the
orthogonal polynomiwls. S85QPUL[t] corresponds to the degree t.

All elements in the procedure have been explained on the preceding
pages, The initial setting covers ORPOL{-2,1:0BS], ORPUL[-1,1:0BS], the
diagonal in PULC, the first column in POLC, and the line I1mmediately
sbove the diagonal in PULC. We then have the setting of start values of
alfa, beta, and SSQSUM and the for-statement in t, exactly as in d-372.
The for-statement in e (equation (6.49)) has been added here inside the
t-for-statement.

A simple example of the use of the procedure URPULGEN 1s shown in
the program d-369 below:

Program d-3%69. Test of URPULGEN

begin
integer 1, J, g;
array X[1:5], ORPOL[-2:l,1:5], POLC[-1:h,-1:4], SSQPUL[O:L J;
copy URPULGEN(
for 1 := 1 step 1 until 5 do X[1] := 180+20x1;

select(8);
writetext ({4
Output d-369:
b)s
for g := 0 step 1 until 4 do
begin
URPULGEN(5, &, X, ORPOL, PULC, SSQPOL);
writetext (<
Degree:});
write(fdd}, &g);
writecr;
writetext (£
ORPOL:});
for 1 := 1 step 1 until 5 do
begin
writecr;

for j := U step 1 until g do
write(f -d.ddddg-dd}, URPOL[J,1]);
end for i;

writecr;

-65-

writetext (K<
POLC:});
for i := O step 1 until g do

begin
writecr;

for j := 0 step 1 until 1 do
write({ -d.ddddyg-dd}, POLC[1,j]);

)

end for i;
writecr;
writetext (<

5SQPOL:});
writecr;
for i := O step 1 until g do write({ -d.ddddy~dd}, SSQPOL[i]);
writecr;
if g mod 2 = 1 then writechar(72);

end for &;

end;

The program operates in very nearly the same way as did the program
d-372. A for-statement counts the polynomial degree, g, from O to 4 and
for each value of g a call is made of URPULGEN. The program then prints
the elements in the three arrays: URPUL, POLC, and SSQPOL:

OQutput d-369:
Degree: 0O

ORPOL:
1.0000
1.0000
1.0000
1.0000
1.0000

POLC:
1.0000

S5QPOL:
5.0000

Degree: 1

ORPQOL:
1.0000
1.0000
1.,0000
1.0000
1.0000

POLC:
1.0000
-2,4000 2

SSQPOL:
5.0000

Degree: 2

ORPOL:
1. 0000
1.0000
1.0000
1.0000
1.0000

POLC:
1.0000
-2,4000 o 2
5.6800 , 4

SSQPOL:
5,0000

-k , 0000
-2,0000

-4 ,8000

-4, 0000
-2,0000
0.0000
2.0000 4 1
4,0000 4 1

0 1

o1

1.0000

4.,0000 ¢ 3

01
0 1
0,0000

2.0000 1 1

4,0000 4 1

1.0000
0 2

4,0000 ¢ 3

—66-

8.0000 4 2
<4, 0000 4 2
-8,0000 4 2
4, 0000 4 2
8,0000 4 2

1.0000

2.2L00 4 6

1

-67-

Degree: 5
ORPOL:
1.0000 ~4,0000 5 1 B8.0000 532 -9,6000 y 3
1.0000 -2.0000 4, 1 -4,0000 4 2 1.9200 4 b
1.0000 0,0000 -8.0000 2 0,0000
1.,0000 2,0000 1 -4,0000 12 -1.,9200 4 U
1.0000 L,0000 1 8.0000 g2 9.6000 49 3
POLC:
1.,0000

-2,4000 2 1.0000
5.6300 4 ~L,8000 42 1,0000
~1.3498 p 7 1 T4 4 5 -7.2000 p 2 1.0000

SSQPOL:
5.0000 L,0000 93 2,200 5 6 9,2160 n 8
Degree: 4
ORPOL:
1,0000 -2,0000 4 1 -4,0000 52 1.9200 x4 -2,1943 4 5
1.0000 0,0000 -8.,0000 20,0000 3.,2914 ' 5
1.,0000 2.0000 1 -4.0000 42 -1.9200 4 -2,1943 x5
1.0000 B,0000 u, 1 B.0000 1z 2 9.6000 3 5.,4857 bt
POIC:
1,0000

~2,4000 2 1.0000

5.6800 o 4 -4,8000 52 1.0000

—1.3498 o 7 1.7 5 -7.2000 2 11,0000

3.2161 p 9 ~5.hblé T 3.4383 5 -9.6000 2 1.0000

SSQPOL:
5, 0000 54,0000 3 2.2400 4, 6 9.2160 8 2.10654 11

From this information we can write down how the orthogonal polynoml-
als look like for this data material:

(6.50) P(0,x) = 1
P(1,x) = =240 + x
P(2,x) = 56800 -L80xx + xp2
P(3yx) = -1.3498,g7 + 1.714byBxx -T20xxp2 + XA3
P{l,x) = 3.21610 - ShlbhbgTxx + 3.438305xx42 -960xxh3 + xph

The coefficients ure not given with full accuracy here.

-69-

To FUNCTIONS OF A SINGLE VARIABLE

7.1, Direct Use of URPUOLGEN. When the procedure ORPULGEN is avail-

able the polynomial approximation to a function of a single variable is
very simple. After the call of ORPULGEN we first use equation (6.24) for
calculation of the regression coefficients, a[O:DEG], and then convert
these coefficients into the conventional polynomial coefficients by use
of the array POLC and equation (6.46). The program d-373 shown below has
a procedure PULYA which cperates according to this method. The program
reads the five X-Y-values in Table 2 (page 49) and calculates polynomial
approximations to this function of a degree varying from O to 4. The
procedure POLYA is not intended to be a standard procedure because it is
possible to merge ORPULGEN and POLYA into a single simpler procedure,
This merging 18 explained in section 7.2 and the resulting standard pro-
cedure, PULY?, in section 7.3.

The program is:

Program d-373. Test of PUOLYA.

begin
integer g, i, p;
real ERRQOR, YCALC, DEV;
array X, Y[1:5], COEF[0:4];
copy ORPOLGEN(
procedure POLYA(UBS, DEG, X, 4, CUEF);
value UBS, DEG;
integer 0BS, DEG;
array X, Z, CUEF;
begin
integer h, i, p;
real SIM;
array ORPOL[-2:DEG,1:0BS]}, POLC[-1:DEG,-1:DEG],
SSQPOL, a[0:DEG];
ORPOLGEN(OBS, DEG, X, ORPOL, POLC, SSQPOL);
JTor p := 0 step 1 until DEG do
begin
SUM := O;
for 1 := 1 step 1 until UBS do
SM := SWM + Z[1]xORPOL[p,i];
alp] := SWM/ssqPOL[p];
gnd for p;

-70-

for h := 0 step 1 until DEG do
begin
SUM := O
for p :=h step 1 until DEG do
SMM := SUM + a[pxPOLC[p,h];
COEF[h] := SWM;
end for h;
end POLYA;
for 1 := 1 step 1 until 5 do
begin
X[1] := 180 + 20xi;

Y[1] := cuse 1 of (38.8210, 40,927k, 42,9013, Lk,7590, 46.5139);

1l

end for 1i;
select (8);
writetext (£<
Output d-373:
})s
for g := 0 step 1 until 4 do
begin
writetext (<
Degree:});
write(fdd}, g);
writecr;
POLYA(5, &, Xy Y, CUEF);
writetext (£
X Y, inp. Y, cale, error
1 3F
ERRUR := O;
for i := 1 step 1 until 5 do
begin
writecr;
YCAIL := O

]
for p := g step -1 until O do

YCAIC := YCALCxX[1] + COEF[p];
DEV := YCALC - Y[i];

ERROR := ERRUR + DEVA2;

write ({ddd.dddd}, X[1]);
write{fdddd.dddd}, Y[1], YCALC);

P
.
&
L
r

“T1-

write ({-dd.dddddd}, DEV);
end for i;
writecr;
vritetext (§< Mean });
write({ddd.dddddd}, sqrt(ERROR/L));
writecr;
writetext (f{<deg: COEF});
writecr;
for p := 0 step 1 until g do
begin
writecr;
write (fddd}, p);
write(f -d.ddddddddy-dd}, COEF[p]);
end for p;
writecr;
if g mod 2 = 1 then writechar(72);
end for g;

end;

The procedure POLYA has five formal parameters of which the three
first ones (0BS, DEG, and X) are the same as in ORPOLGEN. The other

parameters are:

Z array [1:0BS]. This is the set of function values correspond-
ing to the set of values of the independent variables, X[1:0BS]. In the
call of POLYA in d-373, Y[1:0BS] is inserted instead of z.

COEF array [0:DEG]. The array of conventional polynomial coeffici-
ents generated by the procedure.

POLYA works as follows: Storage 1is reserved for the usual arrays
required by ORPOLGEN: ORPOL, POLC, and SSQPOL. The array of regression
coefficients, a[0:DEG], for use with the orthogonal polynomials is also
declared. A call is then made of ORPOLGEN, We then have two for-state-
ments of which the first counts p from O to DEG and calculates al[p] as
given by equation (6.24), The value of SWM(Z[1]xP(p,X[1])) is found by
an inner for-statement counting in i. The sum is divided by SSQPOL[p].
The second for-statement counts h from O to DEG and calculates COEF[h]
after equation (6,46) by summation of a[p]xPOLC{p,h] with p going from h
to DEG,

Output from d-373 is:

-72-
Output d-5735:
Degree: O
X Y, inp. Y, calc. error

200,0000 38.8210 L2,7845 3,963520
220,0000 40,927k 42,7845 1.857120
240.0000 k2,9013 UL2,7845 -0.116780
260,0000 UL.7590 42,7845 -1,974480
280.0000 46,5139 42,7845 -3,729380

Meun 3,040513
deg: CUEF

0 L.,27845198 4 1
Degree: 1
X Y, inp. Y, calc, error

200,0000 38.8210 33,9410 0,1200k0
220,0000 L0,9274 L0,3628 -0,064620
24,0000 L2,9013 L2,7845 -0.116780
260,0000 44,7590 ub,T063 -0.0527L0
280,0000 L46.5139 46,6280 0.114100

Mean 0, 109571
deg: COEF

1 9,60869963 42

=1%-
Degree: 2
X Y, inp. Y, calc. error

200.0000 38,9210 38,8240 0.005011
220,0000 40,9274 40,9213 -0,006106
240,0000 42,9013 L2.9015 0.000248
260.0000 44,7590 Lb, 7648 0,0057T7L
230.0000 46,5139 Le6,5110 -0,002929

Mean 0,004 699
deg: COEF

0 1.14146012 5 1
1 1.66300229 41
2 -1.46285902 b

Degree: 3
X Y, inp. Y, cale. error

200,0000 38,8210 33,8210 0,000041
220,0000 40,9274 Lo,9272 -0.000166
240,0000 42,9015 u2.9015 0,000243
260.0000 44,7590 LL,7588 -0.000166
280.0000 46,5139 U6,5139 0,000040

Mean 0,000173
deg: CORF '

0 T7.23386529

1 2,19342L11 -1
2 -3,69031416 -4
5 5.09368769 -7

T

Degree: 4

X Y, inp. Y, calc. error

200,0000 38.8210 38,8210 -0,000001
220.,0000 40,9274 40,9274 -0,000001
240,0000 42,9013 42,9013 -0,000001
260,0000 LbL,7590 L4k, 7590 -0,000001
280,0000 46,5139 46,5139 -0,000002

Mean 0, 000001

deg: COBF
0 4,80720784
1 2.60508787 -1
2 -6,29000026 -b
3 1.03522428 -6
L -7.560994924-10

As would be expected, the fourth-order polynomial fits closely to
the five function values, within the calculation accuracy obtainable in
the GIER computer.

7.2, Improved Method. When the procedures ORPOLGEN and POLYA are
used on large data materials, the storage requirements for +the three
arrays: ORPOL, POLC, and SSQPOL become fairly large:

ORPUL requires UBSx(DEG+3) cells
POLC - (DEG+2 }42 -
SSQPOL - DEG+1 -

fspecially the requirements for the ORPOL array may ©be prohibitive
for use in « small computer., We shall now see how this storage amount
can be reduced.,

In ORPULGEN the main for-stutement counts t from O to DEG. For each
value of t the procedure operates on the three rows in ORPOL:

ORPOL[t,1:0BS], ORPOL[t-1,1:0BS], and ORPOL[t-2,1:0BS]

-75-

In P0L¥s the first for-statement also counts from U to DEG, here in

the variable p, and for each value of p we use the same three rows:
ORPOL[p,1:0UBS], URPOL[p-1,1:0B5]}, and JRPUL[p-2,1:UBS]

It should be possible to merge the two for-statements in ORPULGEN
and PUOLYA into a single for-statement and using only > rows of the URPOL
array. sS the t-for-statement calculutes ORPOL{t,k] from URPOL[t-1,k |
and URPOL[t-2,k], it is actually possible to come through with only two
rows of ORPOL. We denote these rows (RPULt and URPUI2:

ORPUL1[1:0BS] corresponds to URPOL[t-1,1:UBS]
URPUL2[1 :UBS] - - URPOL[t-2,1:0B3]

Whenever a new value of URPOL[t,k] has been calculated, it is stored

in a work cell, wnd we perform the movements:

(To1) ORPUL2 [k] := URPOL1{x];

URPOLY [k] =

[}

It

work cell;

A further study of URPULGEN and POLYs reveals that it is also suffi-
cient o have available only two rows of the PULC-array. These are de-

noted:

POLCT[-1:DEG] corresponds to POLC[t-1,-1:DEG]
POLC2{ -1:DEG] - - PULC[t-2,-1:DEG]

Similerly, SSQPOL[U:DEG] can be replaced by a single variable, also
denoted SSQPUL, and corresponding to SSQPCL{t].

The procedure PJULYB has been prepared by this merging of ORPOUILGEN
and POLYA. The declaration is:

procedure PULYB{UBS, DEG, X, Z, CUEF);

value UBS, DHG;

integer UBS, DEG;

array X, 2, CUEF;

begin
integer e, k, t;
real alfa, beta, D, OLDSQSUM, SSQPOL, XPRUD, ZPRUD;
array URPUL1, URPUL2[1:0B8], PUOLC1, PulC2[-1:DEG];

76

for k := 1 step 1 until UBS do

begin
ORPOL2([k]
ORPOL1[k] :

end for k;

alfa := POLC1[-1] := O;

beta = OLDSQSUM := 1;

for t := O step 1 until DEG do

] 1l
[o QRS

begin
XPROD := ZPROD := SSQPOL := O;
for k := 1 step 1 until OBS do
begin

D := ORPOL2[k |xbeta;
ORPOL2{k] := URPOL1[k];
D := ORPOL1[{k] := D + ORPOL1[k]x(X[k Jtalfu);
ZPROD := ZPROD + Z[kJxD;
D := De;
SSQPOL := SSQPOL + D;
XPROD := XPRUD + DxX[k];
end for k;
COEP{t] := ZPRUOD/SSQPUL;
POLC1[t] := 1;
POLC2{t] := O
for e := t - 1 step -1 until O do
begin
D := PoLC2[e xbeta;
PpLC2[e] := POLC1[e];
PUOLC1 (e} := POLCY1[e]xalfu + D + PUOLC1{e-1];
CCEF[e] := COEF[e] + CUEF[t]xPOLC1[e];
end for e;
beta := -SSQPUL/OLDSQSUM;
OLDSQSUM := SSQPOL;
alfa := - XPROD/OLDSQSUM;
end for t;
end POLYB;

-Ti-

The procedure PULYB contains the rows URPOL1 and ORPOL2 of the ori-
ginal ORPOL array in ORPOLGEN and also the rows POLC1 and POLCZ2 from the
POLC array in ORPOLGEN, POULYB starts with setting of the elements in
ORPOI2 to 1 and the elements in URPOL1 to O, This is equivalent to the
setting of the rows URPOL{-2,k] and ORPOL[-1,k] in ORPOLGEN. Of the in-
itial setting of some of the elements irn PULC in ORPOLGEN we only carry
out the setting of PULC[-1] to zero in PULYB. The remaining settings
are made inside the for-statement. The start wvalues of alfa, beta, and
OLDSQSUM are the same in URPULGEN and POLYB.

The for-statement in t starts by resetting XPRUD and SSQPUL to zero
as in ORPULGEN. SSQPOL is now « simple variable. We also set ZPROD to
zero, This corresponds to the wvariable: SUM in the p-for-statement in
PULY4A. The for-statement counting k from 1 to UBS is the same as in the
procedure ORPOLGEN, except that we now operate on the two actual rows of
URPUL as explained sbove. The summatlion of Z{k]xORPOL[t,k] is also in-
cluded here, after the k-for-statement we calculate the new regression

coefficient as:
(7.2) COEF[t] := ZPROD/SSQPOL;
This corresponds to the statement:
(T¢5) alp] = suM/ssqPoL{p];
in POLYA., It is not necessary to have two separate arrays:
a, CUEF{0:DEG]

because the a-element of highest degree is always equal to the COEF-ele~
ment of highest degree and the recalculation from a to COEF can be mude
in a4 condensed way as shown below.

We then set the values of POLC1[t] and POLC2[t] which were not in-
cluded in the initial setting. Then comes the for-statement which counts
e from t-1 to O, In URPUOLGEN this contained only & single statement:

(7.4) POIC[t,e] := POLC[t-1,e]xalfa +
POLC[t-2,e Jxbeta + POLC[t-1,e-1];

13-

In PULYB the statement is broken down into more stutements, firstly
because we use only two arrays: POLC1, POLC2[-1:DEG] to handle the rows
t, t=1, and t-2 in PULC[-1:DEG,-1:D&G] in ORPOIGEN. But we huve also
included the statement:

(7.5) COEF[e] := CuEF[e] + COEF[t]xPOLC1[e];

which calculates the contribution of the just calculated CUEF[t] = aft]
to the lower degree coefficients. If we compare with the last half of
POLYA:

(7.6) for h := O step 1 until DEG do

begin

SUM := 0Q;
for p := h step 1 until DEG do
SUM := SUM + afp]xPOIC{p,h];

CUEF[h] := SWM;

end for h;

we can see, that equation (7.5} performs that part of this double for-
statement which can be performed with the value of a[p] just calculated.
In this way, no special a-array 1s necessary.

When POLYB is inserted instead of POLYA in program d-373 the calcu-
lation result is exactly the same.

Before we discuss the final version of the polynomial approximation
precedure (POLY1) there is ore small refinement which requires explana-
tion. Un page 50 it was discussed how the expansion in orthogornal poly-

nomials:
(7.7) y = a0xPO(x)+a1xP1 (x)+a2xP2 (x)+a3xP3(x);

has the effect that addition of one more term, here alxPl(x), does not

charge the numerical wvalues of the lower degree coefficients, a0, a1,
and a3, This means, that if we after the calculation of a0 subtract the
value of a0xPO(x[1]) from all the corresponding y[i]-values, this should
have no influence upon a1, a2, etc. When al has been calculated we can
then subtract a1xP1{x[i]) from what remains of the original y[i]-values.
If this gradual reduction of the y-values 1s continued, +the order of

=79~

magnitude of the y-values will become smaller, and we may expect that
the accuracy in the summtions leading to the higher a-values may be im-
proved. There is, of course, = risk that the subtractions may cause nu-
merical errors. This must be found out from experiments.

The procedure POLYC is similar to POLYB, except that it contains the

subtraction explained above., The decluration is:

procedure POLYC(OBS, DEG, X, Z, COEF);
value UBS, DEG;
integer OBS, DEG;
array X, Z, COEF;
begin
integer e, k, t;
real alfa, beta, D, OLDSQSWM, SSQPOL, XPROD, ZPRUD, olda;
array URPUL1, URPQI2, error[1:0BS], PGLC1, POLC2[-1:DEG];
for k := 1 step 1 until UBS do
begin
ORPUL2[k] := 1;
ORPOLt[k] := O
error{k] := 2{k];

end for k;
alfs := olda := POLC1[-1] := O;

beta :

OLDSQSUM := 1

]

for t := 0 step 1 until DEG do
begin
APRUD := ZPRUD := SSQPOL := O

for k := 1 step 1 until GBS do
begin
error[k] := errorfk] - 0ldux0ORPUL1 [k];
D := ORPOL2[k Jvbeta;
ORPUL2[®] := URPUL1 [k];
D := ORPUOL1{k] := D + URPOL1{k Jx (X[k J+alfa);
ZPRUD := ZPRUD + error[k |xD;
D i= DA2;
SSQPUL := SSQPUL + D
XPRUD := XPROD + DxX[k];

end for k;

-80-

COEF[t] := olda := ZPRUD/SSQPUL;
POLCI[t] := 1;
POLC2[t] := 05
for e =t - 1 step -1 until O do
begin
D := POLC2{e Ixbeta;
poLc2{e] := POLC1[e];
POLC1[e] := PULC1[eJxalfu + D + PULCY[e-1];
COEF[e] := COEF[e] + COEF[t]xPULC1[e];
end for e;
beta := -55QPCL/OLDSQSWM;
OLDSQSUM := SSQPOL;
alfa := - XPROD/ULDSQSUM;
end for t;
end POLYC;

When POLYC is inserted in d4-373 instead of POLYA or PULYB we get the
same results as regards the mean errors, but the calculated coefficients
are slightly different:
deg: POLYA,POLYB POLYC

0 4L.27845198 1 L4.27845198 4 1

0 1.97236404 5 1 1,97236400 4 1
9.60869968 -2 9.60869992 =2

0 1.141h46012 1 1.1414A110 o 1

1 1.66304229 -1 1.66304145 -1
2 -1.46285902 -4 -1,46285720 45U
0 7.2%886529 723878550

1 2.19342411 ;=1 2.19343467 -1
2 -3,69031416 g-b -3,69036025 -l
5 3.09363769 =7 3.09375428 47

R

-81-

L .80720764 4,80988443

2,60508787 10-1 2,60463176 41
~6429000026 -4 -6.28709928 -4
1.03522L28 -6 1.03440809 -6
~756099492,-10 -7.5524236055-10

F oo o= o

From these figures we cannot see which of the two methods is the
more accurate. We can check this by taking some data for which the co-
efficients are known exactly. We take a fourth-order polynomial with
the coefif;gggps:

o

¢[0] = 100

c[1] = =141
c(2] = 14
e[3] = 197

c[h] = 1410

If we calculate the value of this polynomial for the x-values we
have used before we get the values:

200 83,360000
220 82,009456
240 80,709%76
260 T9.459376
280 78.259456

When these data are run on program d-373 with the necessary modifi-
cation to compare POLYA and POLYC, we get:

deg: POLYA POLYC

0 9.99943285 4 1 9.99998579 y 1
1 -9.990362U5 -2 -9.99976830 -2
2 9.93889009 -5 9,99858682 y-5
3 -9.82865231 =8 -9.99620147 -8
b 9.8207262090-11 9.996201674~11

-8o-

These coefficients clearly indicate the improved accuracy of the

subtraction feature which is, therefore, included in POLY1.

{«5. The Procedure PULY1. This is the recommended final version of
the - orthogonal polynomial approximation procedure for a single variable.
It contains the additional possibility of weighting the observations.
The declaration of POLY1 is:

procedure POLY1(0BS, DEG, X, Z, W, CUEF, WEIGH);
value UBS, DEG, WEIGH;

integer 0BS, DEG;

boolean WEIGH;

array X, Z, W, COEF;

begin

integer e, k, t;
real alfu, beta, D, ULDSQSUM, SSQPOL, XPROD, ZPROD, olda;

array ORPUL1, URPUL2, error[1:0BS], POLCY, PULC2[-1:DEG];
for k := 1 step 1 until OBS do
begin
ORPOL2{k] 1
ORPOL1 (k] 0;
error(k] := Z[k];
end for k;
alfu := olda := POLCt[-1] :
beta := DLDSQSUM := 1;
for t := O step 1 until DEG do
begin
XPROD := ZPROD := SSQPOL := 0;
for k := 1 step 1 until 0BS do
begin
error{k] i:= error[k] - oldaxORPOL1[k];
D := (RPOL2[k lxbeta;
ORPOL2[k] := ORPOL1[k];
D := QRPOL1{k] := D + ORPOL1[k]x (X[k J+alfu);
if WEIGH then D := DxW[k];
ZPROD := ZPROD + error{k JxD;
D := DxORPOL1[k];
SSQPOL := SSQPOL + Dj

Q-

?

-93-

XPROD := XPROD + DxX[k |;
end for k;
CUEF{t] := olda := ZPROD/SSQPOL;
POLCt [t] :
PoLC2{t] :
\\—.—_—ﬂi‘
for e :=t - 1 step ~1 until C do
begin

D 1= POLCQ'& beeta.;

pPoLc2[e] := PoLCI [e];

POLC1[e] := POLCY[e]xalfa + D + POLCife-1];

CoeFle] := cogF(e] + COEF[t]xPOLCt[e];

end for e;

13
0;

]

beta := -SSQPOL/OLDSQSUM;
OLDSQSWM := SSQPOL;
alfu := - XPROD/OLDSQSUM;
end for t;
end POLY1;

The procedure POLY1 conteins two additional formal parémeters:

W array [1:0BS]. These are the weights to be applied to the
observations.
WEIGH boolean If WEIGH is true, the weights W[1:0BS] will be used,

If WEIGH is false, the weights are not used, We can then save the
storage space for the W-array by inserting X or Z or another array as an
actual parameter instead of W.

The weighting method is partly described by Lapidus (1962), pege
%25, The weight factor, W[i)}, of observation no, i is used in the fol-
lowing three sums:

(7.8) ZPROD
(7.9) XPROD
(7.10) SSQPOL

1

suM(W[1Ixz[1]xP{t ,X[1]))
SM(W[1]x[1]xP (¢, Xx[1])42)
sM(W[1 JxP (¢, X[1])42)

H

Here Z[1] is the function value of observation no. i, or rather its
residual after subtraction of the lower order contributions. POLY1 1is

different from POLYC in that we have added the statement:

~Bu.
if WEIGH then D := DxW{k];

The variable, D, contains P(t,X[k]) before this statement. After
addition of Dxerror[k] to ZPRUOD, PULY1 calculates:

D := DxORPOL1 [k J;

instead of D := DA2 in POLYC. The value of D then becomes P(t,X[k]}j2
if no weights are used and W[k]xP(t,X[k]}42 if weights are used.

The use of PULY1 with weighting has been tested on our stundard ex-
ample, Table 2 on page 49. If we insert the weights 1 for all cbserva-
tions except one, say no. 4, and calculate third order polynomials for

different values of the weight on point no. 4, we get the results:

Calculated deviations
X Y wik1=0 W[k J=1 W[k]=100

200 38.8210 0.000000 0.,000041 0,000053
220 40,9274 0,000000 -0,000166 -0.000215
240 42,9013 -0.000001 0.000248 ©.000321
260 L4,7590 -0,000726 -0,000166 -0,000003
280 b6.5139 -0,000001 0,000041 0.000053

Mean: 0,.0003%63 0.,000173 0,000197

When the weight of point no. 4 is zero we get a close fit to the
other points., For the weight unity we get the same result as wlthout
weights., Finally, a large weight (100) gives u close fit to point no. b
with the errors distributed on the other points., If it is required that
the approximation must pass exactly through one or more of the points or
satisfy other conditions, e.g. concerning the derivatives, 1t is not re-
commended to solve this by use of extreme weights, which could give rise
to numerical errors. Instead of this, the required polynomial should be
written as the sum of two polynomials of which the first satisfies the
conditions. The second polynomial is selected as the product of two po-
lynomials: The first polynomial being zero 1in the special points and
the second being calculated in the usual way. This method is further
discussed in Chapter 12.

-35-
B. FUNCTIUNS OF TWO VARIABLES

The use of orthogonal polynomials in the approximation of functions
of two or more variables is practically restricted to the case when the
function values are available in a4 regulur puttern of +the independent
variables. For two variables we can select « test example which 1is an

extension of Table 2 on puge 49:
X1:

200 220 240 260 280
Xa:
Loo 38.8210 LO.927h L2,9013 LL,7590 L6.5139
LO8 36,8153 38.8940 LO0.84TS L2,6006 LL L357
k16 34,8732 36,918k 38.8u57 40,6688 L2.3990
Lol 32,9982 35.0047 36.9007 38,6987 40,4090

Table 3

The table gives the ammonia equilibrium yield as a function of the
pressure (X1) and the temperature (X2). It 1s not necessary that the
values of X1 and X2 are equidistant as in this table, but all function
values must be available.

When a4 function of two variables is to be approximated by means of
orthogonal polynomials we write the required polynomial as the sum of a

number of terms:

(8.1) z =1[0,0] +T[1,0] +7T[2,0] + ¢eus...+T[DEG1,0]
+T[0,1] + T[1,1] + T[2,1] + eee.oes+T[DEG1,1]
+1[0,2] + P[1,2] + T[2,2] + eeoe.o+T[DEGT,2]

¢ esen LN

+7(0,DEG2 J+T{1,DEG2]+T[2,DEG2 J+¢ + o s o » « #*I[DEG1 , DEG2 |

DEG1 and DEG2 are the meximum degrees in which X1 and X2 should be
Present in the final polynomial. Each term, T, 1s written as:

_86-
(8.2) T[p1,p2] = a[p1,p2]xP1(p1,X1)xP2(p2,X2)

Here, a[p1,p2] is +the regression coefficient corresponding to the
degrees p1 and p2 of X1 and X2, respectively. P1(p1,X1) is the value of
the orthogonal polynomial of degree pt for a given value of Xi. For the
data material in Table 3 the orthogonal polynomizls P1(p1,X1) are exact-
1y identical to the orthogonal polynomials considered in the two previ-
ous chupters. The third factor, P2(p2,X2) is the orthogonal polynomial
of degree p2 and calculated on the basis of the values of the second
variable, X2.

When the OBS1 values of X1 are known (0BS1 = 5 in Table %}, we can
make a call of ORPOLGEN and generate the required values of the orthogo-
nal polynomials, the polynomiul coefficients, and the sum of the squares
of the orthogonal polynomials, The same can be done for the 0BSZ2 values
of X2 (0BS2 = 4 in Table 3).

The regression coefficients, a[p1,p2], can be calculated in the sume
way as was shown on page 51-54 for the one-dimensional case. Because of
the orthogonality all terms outside the diagomal disappear. The formula
for a[p1,p2] 15 very similar to equation (6.24) and becomes:

(8.3) a[p1,p2] = SM(z[11,12]xP1 (P71, X1[11])xP2(p2,X2[12]))/
(SuM(P1(p1,X1[11])42)xsM (P2 (p2,X2[12])42))

The numerator of this formula contains the summation of all the
function values, Z[11,12]. multiplied by the corresponding values of the
two orthogonal polynomials. The summation is made for all the 0BS1xUB32
function values, i1 being counted from 1 to UBS51 and 12 from 1 to UBS2.
The denominator of equation (8.3) contains two factors: The sum of the
squares of the orthogoral polynomials in the first variable and the si-
milar sum of squares for the second variable.

When the orthogonal polynomial regression coefficlents, a[p1,p2],
have been found, they must be transformed into the conventional polyno-
mial coefficients, just as for the one-dimensional case.

The expansion in the conventional polynomial can be written as:

R

-87-

(8.4) Z =
c(0,0] + cl1,0]x1 + cle,0x14 Fovuone
+C [DEG1 , 0 JxX14ADEG
+C[0,1]xx2 + c[1,1 X2 + 2,1 x1dexx2 + seone
+C[DEG1,1 JxX1ADEG1 xX2
wclo2xxehe + cf1,2hxixxede + clzakxifexepe + ...

s s ee ++C[DEGT 2]xX1ADEGT xX242
+. LR N N
+C[0,DEG2 JxX2DEG2+C[1, DEG2 JxX1xX24DEG2+C[2 , DEG2 JxX1f2xX2NDEG2 +6 + o »
o o« o o *C[DEG1 , DEG2 JxX1ADEG1 xX2NDEG2

We have assumed here, that the coefficlents are written as the array
C[0:DEG1,0:DEG2], and that all the (DEG1+1)x(DEG2+1) coefficients are
used. For DEG1 = 3 and DHG? = 2 we get the pattern (note that the first
subscript here gives the column number and the second subscript the row
number) :

The term of highest order contains X143xX242, 1i.e. the highest sum
of the exponents is DEG1+DEG2 = 5. It is possible to restrict this sum
of the exponents to a lower value, We use a parameter, DEGLIM, which 1s

the maximum sum of the exponents. Examples are:

C c C C c
c c
c
DEGLIM = L DEGLIM = 3

8.1, The Procedure PULY22, This procedure analyses a two-dimensi-
onal table as Table 3 on page 85 and calculates the coefficients in the
approximation polynomial. The declaration is:

-88-

procedure POLY22(UBS1, (0BS2, DEG1, DEG2, DEGLIM, X1, X2, Z, COUEF);

value UBS1, UBS2, DEG1, DEG2, DEGLIM;

integer OBS1, 0BS2, DZG1, DEG2, DEGLIM;

array X1, X2, %, COEF;

begin
integer h1, h2, i1, i2, p1, p2;
real suml, sum2;
array ORPOL1[-2:Deu,1:0B81], ORPOL2[-2:DEG2,1:0BS2],
POLC1[-1:DEG1,-1:DEG1], POLC2[~1:DEG2,-1:DEG2],
SSQPUL1{0:DEG1], sSqPOL2[0:DEG2], a[0:DEG1,0:DEGR];
ORPOLGEN(OBS1, DEG1, X1, ORPOL1, POLC1, SSQPOL1);
CRPOLGEN (0BS2, DEG2, X2, ORPOL2, POLC2, SSQPOL2);
for p1 := O step 1 until DEG1 do
for p2 := 0 step 1 until DEG2 do

begin
sum2 = O;
if p1 + p2 DEGLIM then
begin
for 12 := 1 step 1 until 0OBS2 do
begin
suml := O

for 11 := 1 step 1 until UBS1 do
suml1 := suml + Z[11,12]xORPOL1{p1,11];
sum? := sum?® + sumixORPUL2[p2,12];
end for i2;
end if p1 + p2 < DEGLIM;
a[p1,p2] := sum2/SSQPOL1[p1]/SSQPOL2{p2 J;
end for p1 and p2;

for h1 := 0 step 1 until DEG1 do
for h2 := O step 1 until DEG2 do
begin

-89-

if h1 + h2 < DEGLIM then

begin
for p! := hi step 1 until DEG1 do
for p2 := h2 step 1 until DEG2 do
begin

if p1 + p2 ¢ DEGLIM then
sum2 := sum® + a[p1,p2]xPOLC1 [p1,h1 JxPOLC2[p2,h2 ;
end for p1 and p2;
end if h1 + h2 { DEGLIM;
COLF[h1,h2] := sum2;
end for hl and h2;
end PULY22;

The parameters have all been explained above, COEF is the calculated
coefficient array, C. The procedure reserves storage space for the two

sets of arrays and the a-array:

ORPOL1[-2:DBG1,7:0BS1] ORPOL2[-2:DEG2,1:0BS2]
POLC1[-1:DEG1,-1:DEG1] PoLC2[-1:DEG2,~1:DEG2]
SSQPOL1 [0:DEG1] sSqp012{0: DEG2]

a[0:DEG1,0:DEG2]

The procedure URPULGEN 1s called twice, once for each of the two
variables. We then have a double for-statement 1in which p1 and p2 are
counted from O to DEG1 and from O to DEG2, respectlvely. For each set
of p1 and p2 the vwalue of a[p1,p2] is found by s summation &8 given 1in
equation (8.3). If p1+p2>DEGLIM, the summation is skipped, and the value
of a[p1,p2] is set to zero.

A new double for-statement is then started in which h1 1is counted
from O to DEG1 and h2 from O to DEG2. For each set of hl and h2 the
conventional polynominl coefficient, COEF[h1,h2] is calculated by a sum-
mation of the terms:

(8.5) alpt,p2]xPOLCT [p1,ht JxPOLC2[p2,h2]

in another double for-statement where pl is counted from h1 to DEG! and
p2 from h2 to DEGZ2 with due regard to the limit: DEGLIM,

~90-

The program d-375 unalyses the data in Tuble 3 on page 85 by & call
of POLY22. The program is:

Program d-375. Test of POLY22
begin
integer UBS1, UBS2, DEG1, LwG2, DEGLIM;
copy ORPUOLGENS
copy PULY22¢
copy POLYVALZK
select(17);
writetext (£
Read input to d-375:});
lyn;
select (8);
writetext (§<
Output d-375:
});
UBS1 := read integer;
0BS2 := read integer;
DEG1 := read integer;
DEG2 := read integer;
DEGLIM := read integer;
begin comment inner block;
integer i, Jj;
real ERRUR, ¥;
array X1, £{1:0B51]}, x2[1:0B52], Z[1:0BS1, 1:0BS2],
COEF[0:DEG1, 0:DEG2];
for 1 := 1 step 1 until UBS1 do
X1[1] := read real;
for 1 := 1 step 1 until OBS2 do
X2[i] i= read real;
for § := 1 step 1 until UBS2 do
for 1 := 1 step 1 until UBS1 do
z{1,3] := read real;
POLY22(UBS1, 0BS2, DEG1, DEG2, DEGLIM,
X1, X2, 2, CUKF);
ERRUR := 0;

writecr;

-G1-

for 1 := 1 step 1 until UBS1 do

write(f-dddddddd}, X1[1]);

writecr;

for j := 1 step 1 until UBS2 do

begin
writecr;

write({ddddp, x2{j]);

for 1 := 1 step 1 until 0OBS1
write (k-ddd.dada}, z[i,3]);

writecr;
writetext (k< });

for 1 := 1 step 1 until UBS1

begin

y := POLYVAL2(DEG1, DEG2,

write (k-ddd.dddd}, y);
Bf1] =y - 2[1,3);

ERROR := ERROR + E{1 2;

end for 1;
writecr;
writetext(k(});

do

do

x1[1], x2[3], CUEF);

for 1 := 1 step 1 until 0BS1 do

write (k-ddd.ddad}, E{1]);
writecr;

end for J;

writecr;

writetext (fMean error:});

write ({-ddddd.ddddddd}, sqrt(ERRUR/(0UBS1xUBS2-2)});

writecr;
writetext(k(

Coefficients, COEF[i, j]:

});

writecr;

writetext (§<i:});

for 1 := 0 step 1 until DEG1 do

begin
writetext ({< i=});
write(fd}, 1);
writetext (K< });

end for i;

writecr;
for J :=

begin

-02-

U step 1 until DEG2 do

writecr;

write(fadb, J);

for i

:= 0 step 1 until DEG? do

write({ -d.ddddddddyq-dd}, COEF[1i, j1);

end for J;

writecr;

end inner block;

end;

Output from the program was:

Cutput d4=-375:

Loo

Lo3

416

Lok

Mean

200

38.8210

38.8212
0. 0002

36.8153
36.8148
-0.0005

34,8732
34,8737
0.0005

32.9982
32.9980

-0,0002

error:

220

Lo.9274
40,9274
0, 0000

38.8940
38,8932
~0.0008

36,9184
36,9189
0, 0005

35,0047
35. 0044
-0,0003

2k

42,9013
42,9018
0.0005

Lo, 8475
40,8470
-0. 0005

58.8457
38,8466
0. 0009

36.9007

36,9006
-0. 0001

0. 0005585

260

Lk, 7590

bl 7591
0. 0001

k2, 6906

L2,6897
-0.0009

40,6638
L0, 6694
0.0006

38,6967

38.6933
-0, 000k

280

L6,5139
k6,512
0.000%

LYy 4357
L L2349
-0,0008

ko, 4990
b2,3998
0, 0008

40,4090
Lo, 4088
-0,0002

-93~

Coefficients, COEF[i, j]:

gt 1i=0 1=1 1=2 1=3

i

0 1.98720552 5 2 S5.Mh347845 -1 -2.8L282004 -3 3.57351551 =6
1 -80 17635950 10"1 "5 -] 2)"')"'52988 10—14- 90 08899986 10—6 -1) 3014’ 6681 9 10-8
2 8‘01"7357786 10"')4' '? e 20321"280 10'7 "'7 . 260 6972i+ 10-'9 1 e 221 1|-81 3010-*1 1

gach observation point 1s printed as three numbers: The original
point, the value calculated from the polynomial, and the deviation., The
value of the polynomial is calculated by the procedure POLYVAL2, which
is explained in section 11.1.

9.

~Gh-

FUNCTIONS OF THREE VARIABLES

In order to illustrate the polynomial approximation method for func-
tions of three variables we extend our Table 3 on page 85 to include a

third variable, X3, the percentage of inerts
time, we reduce the mumber of values of X1 from 5 to 3.
The table is:

X3 are used,

X3 =

x2:
L0oo
408
k16
Lol

200

38.8210
36,8153
34,8732
32.9982

X3 = 10

X2:
400
408
L16
Lok

200

31.6245
29.9900
28,4074
26,3795

X1
220
Lo,927k
38,8940
36,9184
35,0047
X1:

220

334 3405
31,6841
30,0746
28,5155

Tuble U4

240

42,9013
40,8475
38,8457
36.9007

2kQ

34 OHTT
33.2752
31,6449
30, 06U3

in +the gas,

At the same
Two values

of

The extension of the calculation method to three variables is very

Simple .

In equation (8.3) the following changes are necessary:

Replace a[p1,p2] by a[p1,p2,p3)
Replace Z[11,i2] by Z[11,12,13]

Add the factor P3(p3,X3[13]) in the numerator summation,

Add the factor P3(p3,X3[13])A2 in the dencminator.

Here, P3(p3,X3[13]) is the orthogonal polynomial of degree p3 calcu-

lated on the basis of the UBS3 values of the third variable.

The array

-95-
of function values is written as:
z[1:0BS1,1:0BS2,1:UBS3]

and the summation is extended over all these values. The coefficient

ArTayS are:
a, COEF[0:DEG1,0:DEG2,0:DEG3]

9,1, The Procedure POLY23. This procedure calculutes +the three-

dimensional coefficient array, COEF, on the basis of the function values
of the three variables, X1, X2, and X35. POLY23 is very similar to PULY22
and has the declaration:

procedure POLY23((0BS1, (BS2, (UBS3, DEG1, DEG2, DEG3,
DEGLIM, X1, X2, X3, Z, COEF);
value UBS1, 0OBS2, 0BS3, DEG1, DEG2, DEG3, DEGLIM;
integer 0BS1, UBS2, UBS3, bEG1, DEG2, DEG3, DEGLIM;
array X1, X2, X3, Z, CudF;
begin
integer h1, h2, h3, i1, 12, i3, p1, P2, p3;
real sumi, sum?;
array ORPOL1{-2:DEG1,1:0BS1], ORPOL2[-2:DEG2,1:0BS2],
ORPOL3[-2:DEG3,1:0BS3], POLC1{-1:DEG1,-1:DEG1],
pOLC2[-1:DEG2,-1:DEG2], POLC3[-1:DEG3,~1:DEG3 |,
SSQPOL1[0:DEG1], SSQPOL2[0:DEG2], SSQPOL3[0:DEG3],
a[0:DEG1,0:DEG2,0:DEG3 J;
ORPOLGEN(0BS1, DEG1, X1, URPOL1, POLC1, SSQPOL1);
ORPOLGEN(UBS2, DEG2, X2, ORPOL2, POLC2, SSQPUL2);
ORPOLGEN{0OBS3, DEG3, X3, URPOL3, POLC3, SSQPOL3);
for p1 := O step 1 until DEG1 do
for p2 := U step 1 until DEG2 do
for p3 := 0 step 1 until DEG3 do
begin
sum2 := O;
if pt + p2 + p3 < DEGLIM then
begin

-96-

for 13 := 1 step 1 until OBS3 do
for i2 := 1 step 1 until UBS2 do
begin
suml := O;
for 11 := 1 step 1 until UBS1 do
sumi := sumt + 2[11,12,13]x0RPOL1[p1,11];
sum® := sum? + sumixORPOL2[p2,12]xORPOL3(p3,13];
end for i3 and 12;
end if below DEGLIM;
a[p1,p2,p3] := sum2/SSqPOL1[p1]/ssqpor2[p2]/ssapoL3{p3];
end for p1, p2, P3;
for h1 := U step 1 until DEG1 do
for h2 := 0 step 1 until DEG2 do
for h3 := O step 1 until DEG3 do

begin

sum2 := O;

if h1 + h2 + h3 { DEGLIM then
begin
for p1 := hl Step 1 until DEG1 do
for p2 := h2 step 1 until DEG2 do
for p3 := h3 step 1 until DEG3 do
begin
if p1 + p2 + p3 £ DEGLIM then
sum? := sum? +
a[p1,p2,p3 JxPOLCH [p1 .11 JxPOLC2[p2,h2 IxPOLC3[p3,h3];
end for p1, p2, and p3;
end if h1 + h2 + h3 DEGLIM;
COEF[n1,h2,h3] := sum2;
end for h1, h2, and h3;
end POLY23;

We have now three calls of ORPOLGEN and all the double for-state-
ments in POLY22 have been extended to be run through three times.

Testing of POLY23 on the data in Table 4 hus been made with program
d-376 shown on the next pages,

-97-

Program d-376, Test of PULY23
begin
integer 0BS1, UBS2, 0BS3, DEG1, DEG2, DEG3, DEGLIM;
copy ORPOLGEN(
copy POLY23<
copy POLYVAL3]
select (17);
writetext ({<
Read input to d-376:});
lyn;
select (8);
writetext ({<
Qutput d-376:
¥
UBS1 := read integer;
0UBS2 := read integer;
UB53 := read integer;
DEG1 := read integer;
DEG2 := read integer;
DEG3 := read integer;
DEGLIM := read integer;
begin comment inner block;
integer i, Jj, k;
real ERROR, y;
array X1, E[1:0BS1], X2[1:0Bs2], x3[1:0B83],
Z[1:0BS1, 1:0BS2, 1:0BS3], COEF[0:DEG1, O:DEG2, O:DEG3];
for 1 := 1 step 1 until OBS1 do
X1[1] := read real;
for 1 := 1 step 1 until UBS2 do
X2{1] := read reul;
for 1 := 1 step 1 until UBS3 do
X3[1i] := read real;
for k := 1 step 1 until 0UBS3 do
for J := 1 step 1 until UBS2 do
for 1 := 1 step 1 until OBS1 do
Z[1,J,k] = read real;
POLY23(0BS1, OBS2, 0BS3, DEG1, DEG2, DEG3, DEGLIM,
X1, X2, X3, Z, COEF);

13

-98-

ERROR := O;
writecr;
for k := 1 step 1 until OBS3 do
begin
writecr;

writetext (K3 });
write(f-ad.dd}, X3[k]);

writecr;

writeer;
for i := 1 step 1 until UBS1 do
write(f-ddddddddp, x1{1]);
writecr;
for J := 1 step 1 until 0BS2 do
begin
writecr;
write(fadad}, x2{3]);
for 1 := 1 step 1 until UBS? do
write(f-ddd.dddd}, z[1,J,k]);
writecr;
writetext (K< });
for 1 := 1 step 1 until 0BS1 do
begin
y := POLYVAL3(DEG?, DEG2, DEG3,
X1 [i]t XE[JL X}[k], COEF);
write ({-ddd.dddd}, y);
E(1] =y - 2[1,3k];
ERROR := ERROR + E[1 U2;

end for 1i;

writecr;

writetext(K< });

for 1 := 1 step 1 until UBS1 do
write (f-ddd.dddad}, E[i]);

writecr;

end for j;
end for k;
writecr;

writetext (f{Mean error:});
write ({-ddddd,ddddddd}, sqrt(ERROR/(OBS1xUBS2x0UBS3-3)));

-99-

wriotecr;
writetext (£<
Coefficients, CUEF[1,J,k]:

)s
? for k := O step 1 until DEG3 do
begin
writecr;
writetext (k<x:});
write{kdd}, k);
writecr;
writetext (£<j:});
for 1 := O step 1 until DEG1 do

begin
writetext(k< i=});
write({d*, i);

writetext (k< });

end for 1;
writecr;
for j := O step 1 until DEG2 do
begin
writecr;
write (kdd}p, J);
for 1 := 0 step until DEG1 do
write(f -d.ddddddddy-dd}, COEF[i,J,k]);
end for J;

writecr;
end for k;
writecr;
end inner block;

end:

e ¥

The program gave the following output:

Output d-376:

X3

400

ko3

416

4ok

X35

400

Log

0.00

200

38,8210
33,8433
0.0223

36,8153
36.8356
0.0203%

34,8732

34,8934
0.0202

32,9932
33,0164
00,0182

10,00

200

31.62L45
31,6428
.0,0183

29,9900
30,0067
0,0167

220

40,927k
40,8334
=0, 0440

38,8940
38,8516
0,042

36,9184

36,8797
-0,0387

35,0047
34,9677
-0.0370

220

33,3405
33,304k
~-0,0361

31,6841
31,6492
-0,0349

240

42,9013
h2,9236
0,0223

Lo, 8475
40,8676
0,0201

38.8457
38,8661
0,020k

36,9007
36.9189
0,0182

240

34,9477
34,9660
0.0183

332752
33,2918
0.0166

-100-

-101-
416 28,4074 30,0746 31,6449
28,4240 30,0428 31,6616
0,0166 -0,0318 0.0167
holh 26,8795 28.5155 30,0608
26,0945 28.4351 30,0757
0,0150 0,030k 00,0149
Mean error: 0.0280916
Coefficients, COEF{i,j,k]:

k: O
J: i

0 i=1
0 2.59849150 5 2 =1.865T1907 41

1 -9.78806179 =1 1.5T692078 -3
2 9.38217185 -4 -2.13867054 -6

i

0 i=

0 -b,66532044 2.73890510 -3
1 1.TUT360bL -2 -2.60318059 -5
2 -1.66600943 -5 3,61315906 -8

The values of the generated polynomial are calculated by the proce-
dure POLYVAL3 explained in section 11.2., The printing of the three-di-

mensional tables of Z and COEF requires much programming, but apart from
this the contents of d-376 should be fairly obvious.

-102-
10, FUNCTIUNS UF MaNY VARIABLES

The extension of the previously discussed procedures POLY22 and POLY-
25 to cover the general case of VAR independent variables where VaR is a
formal parameter presents no new mathematical problems. All we have to
do is to perform the analogous changes as when POLY22 wus extended from
VAR = 2 to VAR = 3 in POLY23. The arrays Z, a, and COEF must now have
VAR dimensions und the equation (8.3) for calculation of a must contain
the proper product of all orthogonal polynomials in the numerator and
all the squares in the denominator. Similarly, all the for-statements
mist now have VAR controlling variables.

There is, however, a practical difficulty 1n the fact that neither
ALGOL nor FORTRAN permits the notation of VaR-dimensional arrays where
VAR i85 a variable or a parameter, not a known integer., Similarly, a
VAR-dimensional for-statement or DU-loop cannot he written in ALGUL or
FORTRAN.

This deficiency of the two languages makes it necessary to transform
all VAR-dimensional arrays into one-dimensional arrays and to rewrite
the set of VAR for-statements as 4 single for-statement which internally
displays the VAR controlling variables in each step.

10,1, The Procedure DISP, This procedure can be used for transfor-

mation between o VAR-dimensionul array and « one-dimensional array and
for the simulation of VAR-dimensional for-statements. We can illustrate
the use of DISP by referring to Tuble 4 on page S4. This table contains
the three-dimensional array:

2[1:3,1:k,1:2]

containing a totul of 3xkx2 = 24 elements. We wish to map this arruy

into 4 one-dimensional array:
z1{1:24]

This mapping can be done in different ways, depending on whether the
counting starts in the first subscript or +the last subscript. We have
here selected to start in the first subscript and this gives the corres-

pondence;

~-1U3-

21[1] =z[1,1,1] coEr[0] = cuEr[0,0,0]
z1{2] = 2[2,1,1] CuEM[1] = cusF{1,0,0]
21[3) = 2[3,1,1] COEF1[2] = COEF[0,1,0]
z1[]}] = 2[1,2,1] COEF1[3] = CcoEP[1,1,0]
z1(5] = 2[2,2,1] COEF[4] = COEF[0,2,0]
z1[6] = 2[3,2,1] COEF{S] = COEF[1,2,0]
z1[7] = 2[1,3,1] COEF1[6] = COEF[0,0,1]
z1{8] = z[2,3,1] COEF1[7] = CUEF[1,0,1]
71[9] = z[3,3,1] COEF1{8] = COEF[0,1,1]
z1[10] = 2[1,4,1] COEF1[9] = COEF[1,1,1]
z1{11] = z{2,4,1] COEF1[10] = COEF{0,2,1]
z1[12] = 2[3,4,1] COEF1[11] = COEF[1,2,1]
z1[13] = z[1,1,2]
z1[1] = 2[2,1,2]
zi[15] = 2[3,1,2]
zi[16] = z2[1,2,2]
z1{17] = 2[2,2,2]
Z1 [18] = Z[5r2|2]
z1[19] = z[1,3,2]
z1[20] = z[2,3,2]
z1[21] = 2[3,3,2]
z1[22] = z2[1,4,2]
z1[23] = z[2,4,2]
zi[ah] = 2[3,4,2]

The table also shows the correspondence between s three-dimensional

coefficlent array:
COEF{0:1,0:2,0:1]
and the one-dimensionsl array:
CUEF1[0:11]
DISP solves the problem of finding the subscripts in Z which corres-
pond to 4 given value of the single subscript in Z1 and similarly for

COEF and CUOERM. To do this, we must krow how many possible values there
are for each subscript., This 13 written as the radix-array r{1:3]:

-104 .

Z-21 COEF-CUEM
rf1] =3 r{1} =
r[2] =4 r(ea] =3

r(3]

]
no

r(3]

It

If we wish to find the subscripts of Z corresponding to Zi[15] and
to assign the subscripts to an array, w[1:5], we start by the number 15
and subtract 1 giving 14. This is preliminarily assigned to w[1]:

w[1] = 14,

We then preliminarily calculate w[2] as 1l4:3, the first radix:
wl2] 1= 13 =4

The final value of w[1] is calculated as 14 mod 3 +1 giving:
w[1] := 3

w[3] 1s set to u4:% =1, w[2] is reset to 4 mod 3 +1 = 2, and we at
last add 1 to the last subscript giving w[3] =2, In other words, the
original subscript is divided by r[t], r[2], ete. and repluced by the
remainders, Mathematically speaking, this is nothing but the transfor-
mation from one number system into another, and where a mixed rudix 1is
permitted, such as the transformation of pence into pence, shillings,
and pounds.

DISP has the six formal parameters:

var integer This is the same as VAR, the number of dimensions in
the multi-dimensionsional array.
prod integer This is the subscript of the given element in the

one-dimensional array.

W integer array [1:var]. The subscripts are generated in this
Array.
r integer array [1:var]. The radix array expluined above,

c¢l,c2 1integer These corrections are used to correct for the fact
that the subscripts may start in U or 1.

-105-

In transformation of Z1 into Z we must use c1=U and c2=1 and for the

transformation of CUOERFt into CUEF we must have ci=t

The declaraticn of DISP is:

procedure DISP(var, prod, w, r, c1, c2};

value var, prod, cl, c2;
integer var, prod, cl1, c2;
integer array w, r;
begin
integer j, k;
w[1] := prod - 13

for j := 2 step 1 until war do
begin
kK = ¢t + r[j-1];

wli] = wli-1 Lik;

wli-1] = wl3-1] - wlilxk + c2;

end for j;
wlvar] = wlvar| + c2;

end DISP;

und c2=0,

It is also convenient to have a8 smell procedure which can calculate

the total number of elements in a VAR-dimensional array. This can be

done by the procedure PROD:

integer procedure PROD(VAR, LIST, k);

value VAR, k;

integer VAR, k;
integer array LIST;
begin

integer i, fuctor;

factor = 1;

for 1 := 1 step * until VAR do
factor := fuctorx(LIST[i] + k);
PROD := FACTOR;

end PROD;

The procedure his the formwl parameters:

-106-

VAR integer The number of dimensions in the array.
LIST integer array [71:VAR]. A list of the upper subscript bounds

of the array.

k integer Correction for the lower subscript bound.

The value of k must be inserted us U for the array Z and 1 for CUEF.

10,2, The Procedure PQLY24, This procedure has the declurstion:

procedure POLY24 (VAR, OBSLIST, OBMAX, DEGLIST,
DEGMAX, DEGLIM, X, Z, COEF);
value VAR, OBSMAX, DEGMAX, DEGLIM;
integer VAR, UBMaX, Du@MaX, DEGLIM;
integer array OBSLIST, DEGLIST;
array X, Z;, COEF;
begin
integer NPROD, DEGPROD, i, J, k, deg, obs, out, dprod,
nt, psum, in, nprod, degl, hil, dprod2, p1;
real SWM, FACTOR;
boolean range;
integer array hlist, ilist, plist{1:VaR];
array ORPOL[0:DEGMAX,1:VAR<OUBSMAX],
POLC [0 : DEGMAX , O: (VAR (DEGMAX+1)-1)],
SSQPOL[0:DEGMAX,1:VAR], a[0:(PROD(VAR,DEGLISTF,1)-1)];
DEGPROD := PROD(VAR, DSGLIST, 1);
NPROD := PROD(VAR, OBSLIST, 0);
n1 := OBSLIST[1];
for 1 := 1 step 1 until VAR do
begin
deg := DEGLIST[1]; N
obs := OBSLIST[1];
begin comment inner block;
array XV{1:0bs], URPOLV[-2:deg,*:0bs],
PULCV[-1:deg,~1:deg], SSQPOLV[O:deg];
for j := 1 step 1 until obs do
Xv[3] := X[J+0BMAXx (1~1)];
ORPOLGEN(obs, deg, XV, ORPOLV, POLCV, SSQPOLV);

107~

for }J := O step 1 until deg do

begin
for k := 1 step 1 until obs gg'
ORPOL[J ,k+UBMuXx(1-1)] := ORPOLV[Jj,k];
for k := 0 step 1 until deg do
POLLJ k+ (DECMAX+1)x (1-1)] = POLCV],k];
SSQPOL[1] = SSQPOLV[Y s

end for j;

end inner block;
end for i;
deg := DEGLIST[1};
degl := deg+1;

out = U;
for dprod := 1 step 1 until DEGPROD do
begin

SM := O;

DISP(VAR, dprod, plist, DEGLIST, 1, 0);
psum := O;

for i := 1 step 1 until VAR do

psum := psum + plist{{i };

in = 13

if psum DEGLIM then

for nprod := 1 step n1 until NPROD do

begin
DISP(VAR, nprod, ilist, UBSLIST, O, 1);
FACTUR := 1;

for 1 := 2 step 1 until VAR do
FACTOR := FACTURxORPOL{plist{i], ilist{i J+UBMaXx(1-1)];
for 1 := 1 step 1 until n1 do

begin
SWM := SUM + Z[in]xORPUL[plist{1], 1 JxFACTOR;

in := in + 1;
end for i;
end for nprod;
FuCTUR = 1;
for 1 := 1 step 1 until VAR do ‘
FACTOR := FACTORxSSQPOL[plist[i],1];
alout] := SUM/FACTUR;

-108-

out = out + 1;

end for dprod;

out := QO
for dprod := 1 step degl until DEGPRUD do
begin

DISP(V4R, dprod, hlist, DEGLIST, 1, 0);
for hl := U step 1 until deg do
begin
SM := 0
in := U;
for dprod2 := 1 step degl until DEGPRUD do
begin
DISP(VAR, dprod2, plist, DEGLIST, 1, 0);
FACTOR := 1;
range = Lrue;
for 1 := 2 step 1 until VAR do
if plist{i] < hlist[i] then range := fulse;

if range then
for 1 := 2 step 1 until ViR do
FACTOR := FACTURx
POLC[plist{i], hlist[i]+(DEGMAX+1)x(1-1)];
for pt := 0 step 1 until deg do
begin
if p1 > h1 A runge then
SUM := SIM + FACTURxa[in]xPOLC[p1,h1];

in = in + 1;

end for pi
end for dprod2;
COEF[out] := SUM;
out = out + 1;
end for hi;
end for dprod; .
end POLY2k4,

The procedure has the following formal parameters:

-109-

VAR integer The number of independent vuriables.

OBSLIST integer array [1:VAR]. A list of the number of values of
euch independent wvariable.

UBMAX integer The largest element in (UBSLIST.

DEGLIST integer array [1:VaR]. A 1list of the required polynomial
degrees for each variable.
DEGMAX integer The largest element in DiEGLIST,

DEGLIM integer The maximum sum of exponents in the generated poly-

nomiala.

X array [1:VARxUBMAX]. The values of the independent vur-
lables are packed in this array as explained below.

zZ array [1:PROD(VAR,OBSLIST,0)]., This is the array of func-
tion values,

COEF array [0:PROD(VAR,DEGLIST,1)-1]. This is the array of po-

lynomial coefficients generated by the procedure.

We illustrate the use of POLY24 on the data in Table 4 on page 94,

Here we have:
VAR = 3
OBSLIST[1]

OBSLIST[2]
OBSLIST[3] =

Ik

5
L
2

From this we find that OBMAX = 4, and we can then pack the three
X1-values (200, 220, and 240), the four X2-walues (LOU, 403, 416, und
L24), and the two X3-wvalues (0 and 10) into a single array with 12 ele-

ments:

X[1}=200 x[2] =220 x{3] =240 X{k] Not used
Xx[5]b00 X[6] =b08 X[7] =416 X[8] = hok
X[9]= 0 x[10]= 10 X[11] Not used X[12] Not used

This gives a fairly dense packing, provided that no value of OBSLIST

is much larger than the others.
For the polynomial degrees we select the values:

-110-

DEGLIST[1]
DEGLIST[2]
DEGLIST[3]

H] 1] [}
- ()%} =

This gives DEQMaX = 2. For DEGLIM we select 4., The two aurrays Z
and COEF have the sizes shown for +the one-dimensional arrays 21 and
COEF on page 103, i

The procedure POLY24 internally reserves storage space for four dif-

ferent arrays:

ORPOL[O : DEGMAX , 1 : VARxOBSMAX]
POLC[0:DEGMAX , O (VARx (DEGMAX+1)-1)]
SSQPOL[0: DEGMAX ,1: VAR]
a[0:PROD(VAR,DEGLIST,1)~1]

ORPOL contains all the orthogonal polynomials ordered for the flrst
variable in columns 1 to 0BMaX, for the second vuriable in columns
OBMAX+1 to 2xOBMAX, etec., Just as the arrangement of the X-array. In
a similar way, POLC contains the polynomial coefficients for the first
variable in columns O to DEGMAX, for the second variable 1In columns
DEGMAX+1 to 2xDEGMAX+1, etc., The array SSQPOL contains the sum of the
squares of the orthogonal polynomials for variable no. i as column no.i.
The a-array has the same size as the COEF -array.

The procedure starts with a for-statement counting i from 1 to VAR,
For each value of i a block is entered in which a call of ORPOLGEN 1is
made, In this block arrays of the proper size and dimensions are ex-
tracted from the condensed X-array, and the generated arrays are read
back into the condensed arrays.

The second part of the procedure consists of the for-statement:

for dprod := 1 step 1 until DEGPROD do

which simulates the VAR-tuple for-statement in pi1, p2, p3, ete,, calcu-
lating a[p1,p2,p3,etc. | by summation of the product:

Z[in JxORPOL1 [p1,11 JxORPUL2[p2,12 Jxcec e

~-111-
The variation of p1, p2, etc. is obtained by a call of DISP:
DISP(VAR, dprod, plist, DEGLIST, 1, 0);

displaying the p-values in plist{1:VAR]. The variation of i1, 12, etc.

is controlled by an inner for-statement:

for nprod := 1 step n1 until NPROD do

and a corresponding call of DISP (n1 is OBSLIST[1]):
DISP(VAR, nprod, ilist, OBSLIST, 0, 1);

displaying the i-values in 1list[1:VaR]. In order to economize the cal-
culation time for the long product with Z, the variation of i1 has been

separated 4s a speclal for-statement. The scanning of the Z-elements
and the a-elements 1s controlled by two counters, in and out.
The third part of PULY24 has the for-statement:

for dprod := 1 step degl until DEGFROD do

which simulates the VAR-tuple for-statement in hil1, h2, etc. For each
value of dprod we have the call of DISP:

DISP{VAR, dprod, hlist, DEGLIST, 1, 0);

displaying the h-values in hlist. The variation of hl is separated as a
special for-statement, So that dprod is counted 1n steps of degl =
DEGLIST[1])+1. A similar, inner for-statement counts dprod2 from 1 to
DEGPROD, the corresponding p-wvalues being displayed in plist. The ker-

nel of the inner for-statement performs the summation of:
a[in]xPOLC1 [p1,h1 xPOLC2[p2,h2 Jxeoses

and stores the sum in COEF[out], The counters, in and out, scan the two

arrays: a and COEF.

-112-

The program d-377 performs the same calculation as the Program d-%76
on page 97, but uses POLY2M instead of POLY25. The program is:

Program d-377. Test of PULY2L,
begin
Anteger 1, J, k, VAR, DEGLIM, DEGMAX, UBSMaX, UBS, UBSI;
real ERRUR, y;
integer array ilist, OBSLIST, DEGLIST[1:5];
copy DISPS
copy URPCIGEN
copy POLY2h{
COopYy POLYVALN(
copy PRODK
select(17);
writetext ({<
Read input to d-377:});
1lyn;
select (8);
writetext (k<
Output d-377:34);
VAR := read integer;
DeEMAX = UBIMAX := U;
for i := 1 step 1 until VAR do
begin
UBSLIST[1] := read integer;
Af OBSLIST{1] > UBSMAX then UBSMAX := UBSLIST[1];
DEGLIST{i] := read integer;
if DEGLIST[i] > DEGMAX then DEGMAX := DEGLIST(1 1;
end for i;
DEGLIM := read integer; .
0BSt := OBSLIST[1];
begin comment inner block;
array X[1:VARxOBsMaX], 2[1:PROD(VAR, OBSLIST, 0)],
COEF[0: (PROD(VAR, DEGLIST, 1)-1)], XaCT[1:VAR], E[1:0881];
for i := 1 step 1 until VaR do
for J := 1 step 1 until OBSLIST1] do
X[J+OBMAXx (1-1)] := read real;
OBS := PROD(VAR, UBSLIST, 0);

~113-

for 1 := 1 step 1 until UBS do

z{1] := reaa real;
POLY2l4 (VAR, OBSLIST, UBSMAX, DEGLIST,
DEGMAX, DEGLIM, X, Z, COEF);

ERROR := O;

writecr;

for i := 1 step UBS1 until OBS do
begin

DISP(VAR, 1, ilist, UBSLIST, O, 1);
for k := 2 step 1 until VAR do
Xact{k] := X[11ist{k] + OBMAXx(k-1)];
writecr;

Af VAR > 2 A 11ist{2] = 1 then

begin
for k := 3 step 1 until VAR do

begin
writetext (f<x});
write(fd}p, k);
write({ -dd.ddp, xace{k]);

writecr;

end for k;
writecr;
end if VAR > 2 A 1list[2] = 1;
if VAR > 1 A 1list{2] = 1 then
begin
for k := 1 step 1 until OBSY do
write (f-dddddddd}, X[k]);

writecr;

writeer;
end if VAR > 1 A 1listf2] = 1;
if VAR > 1 then write(fdddd}, XacT[2])
else writetext({< });
for k := 1 step 1 until OBS1 do
write({-ddd.dddd}, z[1+k-1]);
writecr;
writetext ({< });

=11h-

for k := 1 step 1 until UBSt do

begin
xacr{1] := X{kx];
y := POLYVALN(VAR, DEGLIST, XACT, COEF);
write (K-ddd.dadd}, y);
E[k] := y-zli+k-1];
ERROR := ERRCR + E[k Ye;

end for k;

writecr;

writetext (k< });

for k := 1 step 1 until OBSY do
write({-ddd.dddd}, E[k]);

writecr;

end for 1;

writecr;

writetext({Mean error:});
write(f-ddddd,ddddddd}, sqrt(FRROR/(OBS-VAR)));
writetext (£

Coefficients:

});

writecr;
J := PROD(VAR, DEGLIST, 1)-1;
for 1 := U step 1 until j do
begin
writecr;
writetext (K<COEF{});
write(fdd}, 1i);
writetext (k<] = COEF[});
DISP(VAR, 1 + 1, ilist, DEGLIST, 1, 0);
for k := 1 step 1 until VAR do
begin
write (fd}, ilist{k]);
writetext(1f k = VAR then {<]} else <, });
end for k;

write(f -d.ddddddddg-dd}, COEF[1]);

end for i;

writecr;

end inner block;

end;

-115-

The ract that VAR is unknown when the program starts makes it neces-
sary to have an inner block which is entered when VAR has been read and
which contains the necessary arrays. For simplicity, UBSLIST and DEGLIST
have been declared in the outermost block with a maximum size of VAR =
5+ but this can be changed, if required,

The program gave the following output:

Output 4-377:
X3 0.00
200 220 240

LOU 33.0210 40,9274 L2,9013%

38,8433 40,8834 L42,9236
0.0223 -0, 0440 0,022%

408 36.8153 38.8940 40,8475
36,8356 38,8516 L40,8676
0.0203 -0.042k 00,0201

k16 34,8732 36,9184 38,8457
3,893k 36,8797 38,8661
0.0202 -0.0387 0.0204

holh 32,9982 35,0047 36,9007

33,0164 34,9677 36.9189
0.0182 -0,0370 0,0182

X3 10.00

200 220 240

LOO 31,6245 33,3405 34,9477
31.6428 33.30LL 34,9660
0,0183 -0,U361 0,0135

-116-

LO8 29.9900 31,6841 33,2752
30,0067 31,6492 33,2918
0.,0167 -0,0349 0.0166

416 28,4074 30,0746 31,6449
28,4240 30,0428 31,6616
0.0166 -0.0318 00,0167

Lok 26,8795 28.5155 30,0608
26,8945 28,4851 30,0757
0.0150 -0,0304 0,0149

Mean error: 0.0280913%
Coefficlents:

COEF[O] = CcOEF[0, 0, 0] 2.59847985 4 2
COEF[1] = COEF[1, 0, 0] -1.86566859 y-1
Coer[2] = CoEF[O, 1, 0] -9.78800505 ,~1
COEF[3] = COEF[1, 1, 0] 1.57689625 -3
COEF[4] = coEF[0, 2, 0] 9.38210287 -4
COEF{ 5] = CCEF[1, 2, 0] -2.13864074 -6
COEF[6] = COEF[0, 0, 1] -L.66511810

COEF[7] = COEF[1, 0, 1] 2.73791276 -3
COEF[8] = CcOEF[0, 1, 1] 1.74726039 42
COEF[9] = CcogF[1, 1, 1] -2.60269416 -5
COEF[10] = COEP[0, 2, 1] -1.66588699 -5
COEF[11] = COEF[1, 2, 1] 3.61256300 -8

For simplieity, the program prints the subscripts of Cus® in two
different ways: AS a one-dimensional array and a three-dimensional
array. Evaluation of the calculated polynomizl is made by the procedure
PULYVALN deseribed in section 11.3.

~117-
11, POLYNOMIAL EVAIUATION

The evaluation of a polynomial of degree DEG of a single variable is

so simple that a special procedure is normally not required:

P := O;
for § := DEG step -1 until O do
P := PxX + COEF{J];

When the number of variables is higher than 1, the calculation is
more complicated, especially for VAR variables and VAR is a formel para-
meter. Procedures for 2, 3, and VAR wurisbles are described in the fol-
lowing.

The evaluation procedures can be arranged to yield either the normal
polynomial value or a wvalue corresponding to differentiution or integra-
tion with respect to one or more of the wvariables. However, this speci-
al possibility is not considered here, because 1t makes the procedure
very slow and complicated. If differentiations or integrations are re-
quired, it is recommended to use procedures vhich transform the coeffi-

cient lists, and then apply the normal evaluation procedure,

11.1s The Procedure PULYVALZ2. This procedure evaluates a polynomial

in two varilables. The declaratlion is:

real procedure POLYVAL2(DEG1, DEG2, X1, X2, CUEF);
value DEG1, DEG2, X1, X2;
integer DEG1, DEG2;
real X1, X2;
array COEF;
begin
integer 11, i2;

S 1= 0
for i1 := DEG1 step -7 until O do
begin

R = O;

for i2 := D&G2 step -1 until O do.
R := RxX2 + COEF[i1,12];

-118-

B 1= SxX1 + R;

end for i1;
POLYVAL2 := 5;
end POLYVALZ;

The formal parameters are!

DEG1 integer
DEG2 integer

X1 real
X2 real
COEF array

The highest exponent of the first variable.

The highest exponent of the second variuble.

The actual value of the first variable.

The actual value of the second variable.
[0:DEG1,0:DEG2]. The polynomial coefficient array,
e.g. as generated by POLY22,

The procedure consists of a double for-statement performing the mul-

tiplications and the

additions. The maximum sum of degrees, DEGLIM, is

not used as a formal parameter, so that the elements in COEF beyond this

limit must be zero.

This is properly handled by POLY22.

11.2, The Procedure POLYVAL3. This is completely similar to the

procedure POLYVAL2, but for 3 dimensions. The declaration is:

real procedure POLYVAL3{DEG1, DEG2, DEG3, X1, X2, X3, COEF);

value DEG1, DEG2,

DEGE' XT, XE' Xj;

integer DEG1, DEG2, DEG3;

real X1, X2, X3;
array COEF;
begin

integer 11, i2
real R, S, T;

v 13;

step -1 until O do

for i2 := DEG2 step -1 until O do

T := 0
for i1 := DEG1
Degin
S = 0
Degin
R := O;

for i3 := DEG3 step -1 until O do
R 1= RxX3 + COEF[41,12,13];

-119-

S = SxX2 + R
end for 12;
T := TxX1 + 5;
end for 11;
POLYVALS := T
end POLYVAL3;

The formal parameters DEG3 and X3 have been added, and the procedure

contains 3 for-statements inside another.

11.3. The Procedure POLYVALN. This is the general type procedure
vhich evaluates a4 polynomial of VAR variables, The declaration is:

real procedure POLYVAIN(VAR, DEGLIST, X, COEF);
value VAR;

integer VAR;
integer array DEGLIST;

array X, COEF;

begin
integer cell, cycle, degl, i;
real SUMROW, X1;
integer array plist[1:VaR];

array SUM[1:VAR];
celll = 1;
for 1 := 1 step 1 until VAR do
begin
SM{1i] := 0;
plist[1] := DEGLIST[i];
cell := cellx(1+plist[1]);

end for 1i;

degl := plist[1];
X1 = X[1);
for cycle := cell:(degt+1) step -1 until 1 do
begin
SIMROW := O;
for 1 := degl step -1 until O do
begin

cell := cell -1;
SUMROW := SUMRUWxX1 + COEF[cell];
end for i;

-126-

if VAR > 1 then
sM[2] := SUMROW := SIM[2]xX[2] + SUMROW
else go to EX;

plist{2] := plist{e] -1;

for 1 := 2 step 1 until VAR do

begin
if plist{i] < C then
begin

plist{i] := DEGLIST{i];
if i < VAR then

begin
plist[i+1] := plist{i+1] - 1;

SM[1+1] := SUMROW := SWIM[1+1]xX[1+1]+SUIMROW;
SM[i] := O
end if 1 { VAR;
end if plist{i] < 0
end for i;

end for cycle;

EX:

POLYVALN := SUMROW;

end POLYVALN;

The formal parameters in POLYVALN are:

VAR integer The mumber of independent variables,

DEGLIST integer array [1:VaR]. This is the list of polynomial de-
grees as in POLY2L,

X array [1:VAR]. The list of actual values of the indepen-

dent varizbles,
CUEF array [0:PROD(VAR,DEGLIST,1)-1]. The one-dimensional array
of polynomial coefficients as in POLY2k,

The procedure contains a counter, cell, used in the scanning of COEF

and a basic for-statement:

-121-

for 1 := degl step -1 until O do
begin

cell := cell - 1;

SUMROW := SUMROWxX1 + COEF[cell];

end for 1i;

The simple variable, degl, 1is equal to DEGLIST[1], and X1 is equal
to X[1]. If VAR = 1 no further calculation is required, but if VAR > 1,
the nested polynomial evaluation is continued by multiplying the pre-
vious sum by X[2] and adding the new sum. The old sums are stored in the

local array:
SUM[1:VaR]

which is initially set to zero.
Control of the multiplications by the other variables is made by an-

other local array:
plist[1:VaAR]

of type integer, and in which the elements are first set equal to the
elements in DEGLIST. Whenever a multiplication by X{2] has been made,
plist[2] is counted 1 downwards. A check is then made on all the items
in plist (except plist{1] which is not used). If an element, plist{i],
becomes negative, it is reset to DEGLIST{1i], and 1 is subtracted from
the next element, plist[i+1], except when i = VAR. At the same time, the
contents of the sum cell, SM[i+1], is multiplied by X[1+1], and SUMROW
is added to it. SWM[i] is reset to zero.

This calculation method is the generalized Horner scheme, As in the
pProcedures POLYVAI2 and POLYVAL? we assume that any coefficlents that
might have been cut off because of the DEGLIM parameter are actually

present as zero.

-122-
12. SPECIAL APPROXIMATION POLYN(MIALS

The following discussion is mainly concerned with approximation of
functions of a single variszble.

In some cases we require that the polynomial which reproduces a
given set of table values must satisfy specilal conditions. We may wish
that the polynomial passes exactly through one or more points without
any error. Similarly, the derivatives of the polynomiul may huve to us-
sume known values at given points,

As an example we take a function of a single variable:

(12.1) Y = F(X)

which is given as a table. We wish that the polynomial passes exactly
through the two points:

Point 1: (Xa, YA)
Point 2: (XB, YB)

We must then have:

(12.2) Y = Ya for X
(12.3) Y = YB for X

]

XA
XB

In order to solve this, we write the required polynomial, Y, as the

sum of two terms:
(12.4) Y = MODPOL + NODExMAINPOL

Here, MODPOL, NUDs, and MAINPUL are all polynomizls. We then have to
arrange it so that the node polynomial, NODE, is exactly zero at the two
speclal points, XA and XB, and that the modifier polynomial, MODPGL, has
the required values: YA at XA and YB at XB. The conditions ure then Sat-
isfied. It then remains to adjust the polynomial, MaINPOL, to fit the

given table values as accurately as possible,
As NODE must be zZero at X = XA and X = XB, we can write it as:

(12.5) NODE = (X - XA)x(X - XB)

-123-

AS MODPOL must pass exactly through the two points (XA,YA) and
(XB,YB), it must be a straight line, and we can write it as:

(12.6) Y = CO + C1xX

We can then find CU and C1 from the two equations:

(12.7) Ya = CO + C1xXa

(12.8) YB = CO + C1xXB

to:

(12.9) CO = (YBxXa - YAxXB)/(Xa - XB)
(12.10) €1 = (Ya - YB)/(X» - XB)

Insertion of (12.9) and (12.10) into (12.6) and rearrargement gives:
(12.11) MUDPOL = YA + (YA - YB)/(Xa - XB)}x(X - XB)

We now know MODPOL and NODE and may calculate their value in each of
the specified tuble points. If equation (12.4) is solved with respect to
MaINPOL:

(12.12) MAINPOL = (Y - MODPOL)/NODE

we can easily see, that all we have to do is to calculate a new set of

Y-values as:
(12.13) YMNEW = (Y - MUDPUL)/NGDE

«nd then to calculate the coefficients in MAINPUL by means of the pro-
cedure POLY1 using the original X-values together with the Y-wvalues of
YNEW,

When the coefficients in MAINPOL have been found, we can either in-
sert these coefficients into equation (12.4)} together with the coeffici-
ents from NODE and MODPOL, giving « normsl polynomial, oOr we cun retain
the form of equation {12.4), The latter is probably more accurate.

-124-

12.1, Caleulation Example. As a slightly more complicated example we
consider the following approximation problem.

The boiling point, ¥, of o mixture of water und ethunol is a func-
tion of the mole fraction, X, of ethanol in the liquid mixture. Values
of X and Y are shown in Table 5 below.

Mole fraction Boiling point

of ethanol deg.C
X Y
0,01 9741
0.02 95.16
0,04 91.60
0,06 89.17
0,08 87.56
0.10 86.38
0.1k 84,73
0.18 83.62
0.25 82,26
0,35 81.00
0,45 80.03
0.55 79.33
0.65 78.80
0.75 78.36
0.95 78,18
0,95 78,20
Tuble 5

Boiling points of ethanol-water mixtures
The special requirements to the approximation Polynomial are:

1+ The boiling point of pure water must be reproduced exactly, i.e.
for X = 0 we must have Y = 100,00,

2. The boiling point of the azeotropic mixture must also be exact.
This means that for X = 0,80404 we must have Y = 78.15.‘

-125-

5. The boiling point curve must have a horizontal tangent at the

azeotropic point:
(12.14) dY/dX = 0 for X = 0,3940L

We must now use the same expression for Y as in equation (12.4) and
its derivative:

(12.15) Y = MODPOL + NODExMAINPOL
(12.16) dY/dX = AMODPOL/dX + NODExdMAINPUL/AX + MAINPOLxANODE/dX

At the two special points, X = O and 0.89404, the NODE-polynomial is

zero. This gives:

(12.17) dY/dX = dMODPOL/dX + MAINPULxANODE/dX

But as we wish to have a special value of dY/dX ut a special point,
we also arrange dNUDE/dX to be zero at X = 0,89404, This is obtained by

writing NODE as:

(12,18) NODE = (X - XA)x(X - XB)M2

Here, XA = O and XB = 0.89404, The modifying polynomial, MODPOL,
must satisfy the conditions:

(12,19) MODPOL = 100 at X = X4
MODPOL = 78.15 at X = XB
dMODPCL/dX = 0 at X = XB

These conditions require a second order polynomial:

(12,20} MODPOL = CO + C1xX + CaxXf2
dMODPOL/dX = C1 + 2xC2xX

Insertion of the three conditions gives:

-126-

(12.21) 100 = CO
78.15 = CO + C1x0.8940L4 + C2x0.8g40UA2
0 = C1 + 2xC2x0,89404

from which we find:
(12.22) MODPOL = 100 - 48.8792xX + 27.3362xXp2

We now have the necessary expressions for NODE and MODPOL. The old
Y-values, Y, are then replaced by the new Y-values, YNEW, calculated
after eqaution (12.13). When the set of YNEW is treated on POLY1, we get
the final results as shown in Table 6 below,

| No weighing | Automatic weighing
l |
X Ymeas. | Y,calc. error | Y,calc. error weight

0,01 97.1 97.387 -0.023 97.338 -0,072 0,00006
0.02 95.16 95,171 0.011 95,103 -0.057 0.00023
0.0h 91,60 91.712 0.112 91.661 0,061 0.00085
0.06 89,17 89.249 0,079 89.247 0,077 0,0017h
0,08 87.56 87.496 -0.064 87.5k2 -0,018 0,00281
0.10 86,33 86,240 -0,140 86,3517 -~0.U65 0,003%98
C.14 84,73 84.63%1 -0,099 84,708 -0,022 0,00634
0.18 B83.62 83,633 0,013 83,649 0,029 0,00842
0.25 B82.26 82.389 0.129 82,293 0,033 0,01075
0.35 81,00 81,014 0,014 B0.945 -0.055 0.01073.
0.45 80,03 80,028 -0,002 80,064 0,034 0,00787
0.55 T9.33 79.310 -~0,020 79.341 0.011 0,00u24
0.65 78,80 78.762 -0,038 78,759 -0.041 0,00150
0.75 T18.36 78,389 0,029 78.399 0,039 0,0002L
0.85 78.18 78,178 -0.002 78.182 0,002 0,000003
0.95 78.20 78,201 0.001 78.189 -0.011 0.000009

Mean: 0.070 0.046
Table 6. Approximation of

Bolling points of ethanol-water mixtures

-127-

The table gives two columns of calculated Y-values., Both correspond
to a MAINPOL of degree 6, but the first column is calculated without
weights, wheredas the second column of Y,cale is found with the weights
shown in the last column.

The weights are here calculated as the square of the NUDE polynomial
glving very small weights close to the special points, where the main
part of Y comes from MODPOL.

-128-
13 REFERENCES

Ascher, M. and Forsythe, G.E.: Journ. alM, 5, 9-21 (1958).

Cadwell, J. H.: Comp. Journ. 3, 266-269 (1960).

Clenshaw, C. W.: Comp. Journ. 2, 170-173 (1959).

Clenshaw, C. W., and Hayes, J. J.: J.Inst.Maths.Applics., 1, 164-183
(1965).

Fisher, R. A.: Statistical Methods for Research Workers (1948),

Forsythe, G. E.: J. Soc.Indust.Appl.Math., 5, 74-88 (1957).

Fregberg, C.-E.: Introduction to Numerical Analysis, Addison-Wesley Publ.
Co. (1966).

Kantorowitz, E.: Mathematical Definition of Ship Surfaces, Copenhagen
(1967).

Kjer, J.: Calculation of ammonia Converters on an Electronic Digital
Computer (1963).

Kjer, J.: Computer Mcthods in Linear and Quadratic Models (1970).

Iapidus, L.: Digital Computation for Chemical Engineers, McGraw-Hill
Book Co. (1962).

DISP, 102, 111

FIT1, 16
FIT7, 23, 42
FIT8, 36

least squares, 12
LEQ1, 22, 26

matrix inversion, 43
modifier polynomial,
122

node polynomial, 122
normal equations, 12,
21, 5

-129-

14, ALPHABETIC INDEX

URPULGEN, 62, 69, 71, pseudo variables, 29
T, 110

orthogonal polynomiuls, regression coefficients,
50, 51, S4, 86, 94 20

POLY1, 78, 82, 123 weighing, 83
POLY22, 37, 102
POLY23, 95, 102
POLY24, 106

POLYA, 69

PULYB, T5

POLYC, 79
POLYVAL2, 93, 117
POLYVAL3, 101, 118
POLYVALN, 116, 119
PROD, 105

	Computer Methods in Approximation
	Preface
	Contents
	Introduction
	Linear Regression Analysis
	Linear Functions of a Single Variable
	Method of Least Squares
	Normal Equations
	The Procedure FIT1

	Linear Functions of Several Variables
	Normal Equations
	The Procedure FIT7
	Simple Test of FIT7

	Regression Analysis with Higher Degree Pseudo Variables
	Use of FIT7 with Pseudo Variables

	Investigation of Various Features
	Centering Around First Observation
	The Procedure FIT8
	Linear Equations Versus Matrix Multiplication
	Regression Through First Observation
	Scaling Problems in FORTRAN

	Orthogonal Polynomial Approximation
	Basic on Orthogonal Polynomials
	Orthogonality
	Generation of Orthogonal Polynomials
	Polynomial Coefficients
	The Procedure ORPOLGEN

	Functions of a Single Variable
	Direct Use of ORPOLGEN
	Improved Method
	The Procedure POLY1

	Functions of Two Variables
	The Procedure POLY22

	Functions of Three Variables
	The Procedure POLY23

	Functions of Many Variables
	The Procedure DISP
	The Procedure POLY24

	Polynomial Evaluation
	The Procedure POLYVAL2
	The Procedure POLYVAL3
	The Procedure POLYVALN

	Special Approximation Polynomials
	Calculation Example

	References
	Alphabetic Index

