COMPUTER METHODS IN

LINEAR AND QUADRATIC MODELS

Jargen Kjer

Haldor Topsge, Vedbzk, Dermark

1970

~Da

©

Copyright 1970

Haldor Topsge, Chemical Engineers

Vedbzk, Demmark

Production:
Akademisk Forlag
ISBN 87 500 1072 7

Printing Zano Print
Denmark

PREFACE

The practical use of a digital computer for calculations creates a
demand for literature which describes the Programs and how to use them,.
The standard for program mamsls varies considerably from one computer
installation to another, and it is often found that a very useful pro-
gram has no manual at all, whereas other Programs with magnificent manu-
als are not popular among the users,

At the Haldor Topsge computer installation, where the first calcula-
tions were made in 1958, the writing of manuals for programs and subrou-
tines soon attained a standard level which at that time was considered a
falrly happy compromise, giving the necessary information to the user of
the program, whereas details of interest to the Programmers were placed
in appendices, However, when an IBM 360/44 computer was introduced in
1968 in addition to the GIER computers, s revision of the documentation
standard was required.

The possibility of having two sets of Programs: AILGOL programs for
the GIER computer and FORTRAN programs for the IRM computer led us to
divide the documents into three classes:

1. User Manuals. These refer to a particular Program 1in whatever
language 1t may be written, and contain the information strictly neces-
sary for a program user in order to run calculations on the Program. The
minimum is a discussion of input and output, a set of input specifica-
tions, and a typical output report.

2. Method Descriptions, This type of document describes the details
of a mathematical, chemical, or other type of computer caleulation, In
the ideal case the method description explains the matter in normal
language without the use of AIGCL, FORTRAN, or other Programming langu-
age. In moat cases, however, it 1s practical to illustrate the method in
question by means of a small procedure in AIGOL or a subroutine in FOR-
TRAN, In the present book, all examples of this type are given in ALGOL,
which is generally accepted as a good language for communucation of cal-
culation methods. It should be noted, that these ALGOL pProcedures are
normally different from those actually used in running programs, because

T

they have been stripped of all special features concerning input/output,
data check, matters concerning the computer or operating system used in
the implementation, etc. From this it will be understood that the method
description does not distinguish between programs and procedures (or
programs and subroutines), both aspects are covered by the same docu-
ment.,

3. Program and Subprogram Descriptions. These documents are written
for the FURTRAN programs and subprograms, They contain a list of all va-
riables used, source listings, and flow charts. Any difference between
the method description and the actual implementation is also explained,
All this information 1s of interest to the programmers, not to the pro-
gram users. These descriptions are stored and maintained on wmagnetic

tape,

The present book is a slightly shortened version of the internally
used Method Descriptions covering the subjects: Solution of linear and
non-linear equations, generation of linear and quadratic models, and op-
timization of such models. Additional books on other methods are planned
for later publication. The purpose of the book is +to present a handy
collection of these methods, mainly for internal work but also for those
outside the firm who may bhe interested 1in studylng such methods that
have passed the trial of many years test in the computer. The greater
part of the book can be read with only a high school knowledge of mathe-
matics., Illustrating examples have been given whenever possible..

Vedbek, September 1970

Jergen Kjer

Ta
2

CONEENTS

INTRODUCTION
SULUTION OF LINEAR EQUATIONS

2.10
2.2,

2. 30
2.’4.

General on linear Equations and Matrix Inversion
Solution Method

2.2:1. FEguilibration

2,2.2, Gaussian Elimination

2.2.3. Back Substitution

The Procedure LEQ1

Matrix Inversion

2.4.1. Matrix Inversion with LEQ!

2.4.2. Direct Solution Versus Inversion

LINEAR AND QUADRATIC MODELS

el
3424
3430
LR

3-5-
3464

Basic Model Principle

Nomenclature

Model Structure

Model Generation

3elte1e General Procedure, GENMOD1
3.4.2. Simplified Procedure, GENMODIA
Model Evaluation

Use of Models

SOLUTION OF NON-LINEAR EQUATIONS

4.1,
L,2,

4,3,

Basic Principles

Quadratic and Cubic Equations

4.2.1. Quadratic Equations, Procedure QUAREQ@
4.2.2, Cubic Equations, Procedure CUBEQY
Iterative Methods for a Single Unknown

4.3.1. Newton-Raphson Method

4.3.2. The Procedure ROQTS

L,3.,3. The Procedure ROOTS

L.3.k. Bisection Method for Difficult Functions
4,3,5. The Procedure RUOT7

Page

11
11
12
15
17
21

21

21

23
23
2k
25
26
29
32
38
41
b3
43
k5
45
b7
52
23
27
60
67
69

De

6e
Te

Lok,

L.5.

OPTIMIZATION

Dete
5426

503
50“0

SeDe

b

Several Non-Linear Equations

k.h..‘ L

bh.2,

Series

k5.1,

The Procedure NOLEQS

L.h,1.1. Parameters

4.,4.1.2. Model Generation

4,L4.1,3. Solution

L.h.1.,4, Examples

Separation of Model Generation and Solution
of Roots

The Procedure ROOTH

Basic Principles
Quadratic Optimization

5¢.2s10
5e2e2e
5e2430
5e2.l,

5¢2454

The Procedure OPTQUA1

Check for Minimum-Maximum

Example 1. Optimization of Quadratic Function
Example 2. Optimization with Iagrange Multiplier
Example 3, Optimization with Elimination

Method of Steepest Descents
Direct Method for Single Variable

S5.4.1,
S5elt2,
S5ek.3,
Direct
DeSeta
5e5.24
565030
5e5elte

505454
545064

5.5070

References
Alphabetic Index

Strategy in the Procedure OPT1B
Declaration of OPT1B

Examples

Search - Pattern Search

Direct Search

Pattern Search

Step Reduction

The Procedure DIRSEARCH

5.5.4e1., Example with Quadratic Function
Optimization with Model Generation
Use of Penalties for Side Conditions
5e5¢6.1. Calculation Example

Survey of Control Parameters

5

75
78
80
81

90
91
91
96
96

98
102
103
109
113
117
118
118
119
128
132
133
135
137
139
kL2
W7
150
154
161
162
163

-7-
1« INTRODUCTION

The present. book describes a collection of computer methods within
the field of lineur and quadratic algebra and a few numerical methods of
u related nature that are conveniently described in the same context.

Chapter 2 deals with solution of linear equations., The elementary
nature of this problem is easily understood from the following consider-
ations. In the baslc arithmetic operation:

(1.1) X = u/B

where X i8 calculated as A divided by B, we can also say that X is the

solution to the equation:
(102) BxX = A

X must be calculated as the number which multiplied by B yields A,
If we have two equations to satisfy, Instead of a single equation:

(1.3) BxX1 + CxX2
(1.4) DxX1 + ExX2

it

H
|

the problem is now to find the two unknowns, X1 and X2, so that the equ-
ations are satisfied. Solution of several equations in several unknowns
is thus a generalisation of the division problem, and it is used as a
basic building block in some of the other methods described in later
chapters.

In Chapter 3 we describe how to generate linear or quadratic models
a8 approximations to more complicated functions. A model with N coeffi-
clents is made so that 1t exactly fits the original function at N points
(apart from rounding errors)., The advantage of linear or quadratic func-
tion models is that they are easy to evaluate and to differentiate. Many
types of function analyses can be carried out on models, as described in
the following chapters.

Chapter 4 describes the problem of finding where a function becomes
zero. It may be a function of a single variable:

-8-
(1.5) F(X) =0

or several functions of several variables:

M{Xt, X2, X3) =0
(1.6) F2(X1, X2, X3) = 0
F5(X1, X2, X3) = 0

in which we must find X1, X2, and X3 so that all three functions become
Zero.

Finally, Chapter 5 deals with optimization: How to find the maximum
(or minimm) value of a function. Two different approaches are consid-
ered: An apalytic method in which the derivatives are calculated from
the quadratic model and put equal to zero, and a more direct method that
Performs & simple function evaluation without complicated mathematical
treatment, The latter method 1is essentially the Direct Search method
known from the literature,

-9-

2. SOLUTION OF LINEAR EQUATIUNS

2+1s General on Linear Equations and Matrix Inversion.

AS & basic introduction to those not familiar with linear equations
we first give a very elementury example of & problem that can be formu-
lated and solved as a set of linear equations.

We make three purchises in a shop. We first buy 3 apples, 4 bananas,
and 5 cocomits and pay kr. 4.19 for this. We then buy 6 apples, 2 bana-
ms, and 3 coconuts for & total price of kr., 4.13, Finally, we buy 1
apple, 7 bananas, and b coconuts for kr. 4.17. We have now sufficient
information to calculate the price of one apple, of one banana, and of
one coconut, provided of course that these prices were the same in all
three purchases, If we call the unknown prices A, B, and C, we may for-
mulate the problem as three equations:

(2.1) 3xA + bxB + 5xC = 4,19
(2.2) 6xA + 2xB + 3xC = 4,13
(2.3) CIxA + TxB + 4xC = 4,17

We muy also write the three unknowns as x[1], x{2], and x[3], i.e.
a8 the array x[1:3]. Similarly, the numerical coefficients and the

prices on the right hand side may be written as another array, A, of the
dimensions: A[1:3,1:4]. The three equations then become:

(2.4) Al1,1]xx[1] + a[1,2]xx[2] + a[1,3]xx[3] = a[1,4]
(2.5) a[2y1]xx[1] + n[2,2]xx[2] + a[2,3]xx[3] = a[2,4]
(2.6) A3 1 x{1] + al3,2)xx[2] + a[3,53]xx[3] = A[3,4]

let us now assume, that we make this series of purchases at many
different shops, but always with the same three combinations: first 3
apples, 4 bananas, and 5 coconuts, then 6 apples, etc, We can then see
that the array a{1:3,1:3] will be the same for all sets of purchases,
whereas the right hand sides will probably vary from one shop to the

next., It is now more convenient to operate with the two arrays 4a[1:3,
1:3] and B[1:3]. The three equations may now be written:

~-10-

(2.7) Al 1]xx[1] + a[1,2)x[2] + a[1,5]xx[3] = B[1]
(2.8) af2,1]xx[1] + a[2,2]xx{2] + a[2,3}xx[3] = B[2]
(2.9) a[3,1x[1] + a[3,21xx[2] + a[3,3]xx[3] = B[3]

The equations must be solved for a fixed array a{1:3,1:3] and for
different values of the elements in the array B.

The array A[1:3,1:3] is called a square matrix, and it mey be shown,
that it is normally possible to transform the given watrix A into an-
other matrix, C[1:3,1:3], which is called the inverse matrix correspond-
ing to A, and so that the solutions may now be calculated from:

(2.10) x[1] := ¢[1,1}xB[1] + c[1,2]xB[2] + c[1,3]xB[3]
(2.11) x[2] := c[2,1]xB{1] + c[e,2)xBl2] + ¢[2,3]xB[3]
(2.12) x[3] = c[3,1x8{1] + c[3,2]xB[2] + C[3,3]xB[3]

We see that the element C[r,c] i1s a measure of how big a part of the
solution x[r] comes from the element B[c]. We may also say that the
vector x[1:3] i8 calculated by a matrix mmltiplication of the matrix
c{1:3,1:3] by the other vector B[1:3]. |

The problem may thus be formulated in two different ways:

1, Solve the equation system defined by the non-square matrix
A[1:3,1:4] directly.

2. Invert the square matrix A[1:3,1:3] to give C[1:3,1:3]
and multiply by B.

From & mathematical point of view the two methods should yield the
same results and this is normally also the case, However, from a purely
numerical point of view the matrix inversion involves much more calcu-
lation than the direct solution, and there is therefore a greater risk
of accumulation of errors. In certain cases i1t 1s actually found that
the matrix inversion gives completely wrong results, whereas the direct
solution works satisfactorily.

Whenever possible, the direct solution method should be used. For
such problems which are formulated with use of matrix inversion it 1is
strongly recommended to reformulate the problem so that the inversion is
avolded, if possible. A further discussion of matrix inversion is given

in section 2.4.2.

-11-

2.2. Solution Method,

Gaussian eliminstion is the clussical solution method for Ilinear
equations. It is described in many books on numerical analysis. See for
instance Lapidus (1962). The variant considered here is copied directly
from the procedure:

Det Gauss

published by Regnecentralen (Zachariassen(1963)). Calculation of the de-
terminant has been deleted.

The method involves three phuses which are described below: Equili-
bration, the elimination proper, and the back substitution.

2.2,1. Fquilibration. As an illustration of the calculation method
we consider the three equations (2.1) to (2.3) above. The 3xk matrix is:

340000 L ,0000 5. 0000 L,1900
6.0000 2,0000 3.0000 44,1300
1.0000 T.0000 4., 0000 4,1700

It is always possible to multiply an equation by an arbitrary factor
(different from zero). The equation is still valid. We can also multi-
ply un equation by a factor (30) and add 1t to one of the other equa-
tions., The principle used in the Gaussian elimination method 1is to
transform the original matrix into another matrix with zeroes below the

diagonal:

3 L 5 k.19
0 D E F
0 G H

Here, D, E, F, G, and H are new elements cbtained during the calcu-
lations.,

As the elimination calculations are made with a finite accuracy, it
is important to arrange the calculation flow in such a way that the
rounding errors are reduced as much as possible. Various tricks can be

used for this purpose, One of these tricks is the so-called equilibra-

-10a

tion which is carried out before the elimination is started. Each equa-
tion is multiplied by a power of two so that the sum of the squares of
the elements in that row lies in the range from 0.25 to 1.

The effect of this equilibration is to avoid elements of strongly
varying order of magnitude. No element will be lurger than 1, but there
may be very small elements. We have selected a scuale factor which is =
power of 2, because the scaling can then be carried out without any kind
of rounding error. The sum of the squares in a row (the norm of the row)
is calculated for the square matrix only, but the scaling is, of course,
extended to the right hand side.

In the example above we get the norms:

342 + b2 + 542 = 50
ée + 242 + 342 = L3
1+2 + 7+2 + h+2 66

1]

which give the scale factors:

2A(-3) = 1/8 {
20(~3) = 1/8
g&(-&) = 1/16

When these factors are applied, the equations become:
(2.13) 0.3750 0, 5000 0.6250 0.5237
(2.14) 0.7500 0,2500 0.3750 0.5162
(2.15) 0.0625 0.4375 0.2500 0.2606

The elements are here given with four decimsls only.

2.2.2, Gaussian Elimination., The strategy involved in the elimina-

tion is to create zeros below the diagonal:

0,3750 0.5000 U, 6250 0.5237

0] KAXHKKK KO XAXIOEX
0 0 XXXXXX 20000XK

-13.

This is carried out in steps dealing with one column &t a time. The
first step is to create @ zero in the first column of the second row,

i.e. where the element 0.7500 is placed now:

(2.16) 0.5750 0.5000 0. 6250 0.5237
(2.17) 0.7500 042500 0.2750 0.5162

This is carried out by multiplying equation 1 (2.16} by the factor
0.7500/0.3750 = 2 and subtracting this from the second row. The first
row is unchanged:

0.3750 0.5000 0.6250 0.5237 Row 1
0.7500 0,2500 0.3750 0,5162 Row 2
0.7500 1,0000 1.2500 1.0475 2xRow 1
0 -0,7500 -0.8750 -0.5313 Row 2 - 2xRow 1

We can then proceed by creating & zero in the first column of the
third row by multiplication of row no. 1 by the factor 0,0625/0,3750 and
subtracting this from the third row.

Before we go on with these calculations we must make certain that
these operations do not spoil the accuracy of thé calculations. When we
multiply a row by a factor (here 2 in the first case) and subtract the
result from another row, the original information in this other row will

be lost completely, if the factor is very large. The factors are calcu-
lated as:

0.7500/0.5750 for row 2
0.0625/0.5750 for row 3

The divisor, 0.3750, is the so-called pivot element which 1s an ele-
ment on the diagomul of the matrix. If the factor must be small, the
pivot element must be large, and this can be accomplished by performing
what is known as complete pivoting, i.e. the rowse and columns are ex-
changed in such a way that the largest possible element 1is always used

a8 o pivot element. This complete pivoting is included in +the present
method.

We must now go back to eguations (2.13 - 2.15) and find the largest
element in the squure matrix. This is the nmumber 0.7500 in row no. 2

-1l

and column no, 1. In order to move this element to the place of the
element A[1,1] we must exchange rows 1 and 2. This gives:

(2.18) 0,7500 0.2500 0.3750 0.5162
(2.19) 0.3750 0,5000 0,6250 0,5237
(2.,20) 0,0625 0.4375 0.2500 0.2606

The fuctors now become:

0, 3750/0.7500
0,0625/0.7500

0.5 for row 2
0,0833 for row 3

The elimination can now be carried cut by multiplying each element

in row no. 1 by the factor 0.5 and subtracting it from the corresponding
element in row no. 2. Similarly, euach element in row no. 1 is multi-

plied by the factor 0.0833 and subtracted from the corresponding element

in row no. 3. 'The result becomes:

(2.21) 0.7500 0,2500 0, 3750 0.5162

(2.22) O 0.3750 0.4375 0,2656
(2.23) 0 04167 0.2188 0.2176

We can now continue the elimination to get &a 2zero instead of the

element O.4167. Before this is done we must search for the maximum ele-
ment in the 2x2 matrix:

0,3750 0.4375
0.4167 0.2188

The mmerically largest element is 0,4375, and this must then be
moved to the place A[2,2] by an exchange of columns 2 and 3. The com~
Plete matrix then becomes:

(2.24) 0,7500 0,3750 0,2500 0.5162
(2s25) © 04375 0.3750 0.2656
(2.,26) 0 0.2188 0.4167 0.,2176

-15-

The exchunge of two rows can be made without further administration,
because this is just an exchange of two equations. An exchange of two
columns, however, corresponds to an exchunge of two variables, here x[e]
and x[3], and this exchange must be recorded and taken care of. We do
this by means of an integer array, p[1:3], in which we put p[2] equal to
3 to indicate the exchange of columns 2 and 3. During the first elimi-
ration, p[1] was set to 1 to indicate that no column exchange was made

here,

The last elimination requires the factor:

0,2188/0.4375 = 0,5000

and we multiply each element in row 2 by this factor and subtract the

result from the corresponding element in row 3. The elements which are
zero already are not treated, This gives:

(2.27) 0.7500 0. 3750 0.2500 0,5162

(2.28) 0 0.,4375 0, 3750 0.2656
(2.29) 0 0 0,2292 0.,0848

2.2.35. Back-Substitution, After the elimination we come to the last

Phase: Back-substitution, The significance of equations (2,27 - 2.29) is
the following:

(2,30) 0.7500xx[1] + 0.3750xx[3] + 0,2500xx[2] = 0.5162
(2.31) O.b375xx[3] + 0.3750xx{2] = 0.2656
(2.32) 0.2292xx[2] = 0,0848

Note, how x{2] and x[3] are exchanged because of the column exchange
carried out above for columns 2 and 3. From equation (2.32) we can f£ind
x[2] immediately:

(2.33) x[2] = 0.0848/0.,2292 = 0,3700

It is convenient to store this value instead of the element ©,08u3:

-16-
(2.34) 0.7500 0,3750 0.2500 0,5162
(2.35) 04375 0.3750 0.2656
(2.36) 0.2292 0, 3700

We can then insert x[2] into equation (2.31) and calculste x[3]:

(2.37) 0.4375xx[3] = 0.2656 - 0,3750x0,3700 = 0.1269
(2.38) x[3] = 0.1269/0.4375 = 0.2900

This value is stored instead of 0,2656:

(2.59) 0. 7500 0, 5750 0. 2500 U,5162
(2.40) 0.4375 0, 3750 0.2900
(2.41) 0.2292 0, 3700

Finally, x[1] is found from equation (2.30) by insertion of x[2] and
x[3]:

(2.52) 0.7500xx[1] = 0.5162 = 0.3750x0.2900 -0.2500x0,3700 = 0.3150
(2.43) x[1] = 0.3150/0.7500 = 0,4200

This value is also inserted on the right hand side:
(2.44) 0,7500 0.3750 0,2500 0.4200
(2.45) 0.4375 0,3750 0.2900

(2.46) 0.2092 0.3700

The original right hand side column has now been replaced by the so-
lution:

x[1] 0.4200
x[3] 0.2900
x[2] 0.3700

In order to rearrange this arrey in the correct order we must make
use of the p-array introduced above. It contains the values:

p[1] p[e] p3]
1 3 3

-17-

The value of p[3] will always be % because no elimination is made
for the last row. The p-list is scanned backwards and whenever we find
an element for which p{i] % 1, the columns p[i] and 1 will be exchanged
dagain. This gives the final solution:

x{1] 0,4200
x[2] 0.3700
x| 3] 0.2900

2.5, The Procedure LEQ1.

The procedure L&Q1 performs the solution of N linear equations in N
unknowns after the method outlined in the previous section. It has four

formal parameters:

integer N: The number of unknowns., In the example above: N = 3.

integer M: The number of right hand sides. For the example above
we have M = 1. The extension from M = 1 to higher values is quite easy
and is explained below.

array A[1:N,1:N+M]., This is the array defining the set of equations.
In the example above we used A[1:3,1:4]. after the call of the proce-
dure the original A-matrix 1is completely destroyed, and the solutions
are found in the last M columns: A[1:N,N+1:N+M].

real eps: It was shown above that it 1s important to use pivot ele-
ments which are as large as possible. If a pivot element becomes zero,
the cdlculations cannot be carried through because we get division by O.
Very small pivot elements will give numerical troubles. The paranmeter
eps is compared to each pivot element selected, and i1if the procedure
finds a pivot element with an absolute value less than eps, the calcula-
tion ls interrupted,

integer 1LEQ1: The procedure is of the type integer. After the cal-
culatlion, LEQ1 will have either of the two values:

O: Solution OK.
1: Pivot trouble, No solution found hecause the absolute val-

ue of one of the pivot elements has become less than eps,

-18-
The procedure has the declaration:

integer procedure LEQ1(N, M, A, eps);

value N, M, eps;

integer N, M;

aIT4Y Aj

real eps;

begin
integer 1, j, k, 11, 413
real max, f2, factor;

integer array p[1:N];

M= N +M;
LEQ1 := U;
for & := 1 step 1 until N do
begin
max := O;

for J := 1 step 1 until N do
max := max + A[1,JUe;
if max > 1 v max € 0.25 then
begin
£2 := 2h(-entier(in(max)/1.3863 + 1));
for § = 1 step 1 until M do
al1,3] = al1,3x£2;
end 1f max;
end for i: equilibration;
for k := 1 step 1 until N do

begin
max =

(]

for 1 := k step 1 until N do
for j := k step 1 until N do
begin
factor := abs(A[1,3]);
if max ¢ factor then

begin
max := factor;
i1 = 1i;
J1 = J;

end if larger;

~19-

end for I and j: pivot seurch;

if max < eps then

begin
gl o= 1
go_to EX;

end error exit; -.
max = A[11,31];
if 17 % k then
for j := k step 1 until M do
begin
factor := alk,d];
alk,g] = al113)
a[11,3] := factor;

end for j: row interchunge;

plk] := k;
if j1 # k then
begin

plk] := 315
for 1 := 1 step 1 untll N do
begin
factor := a[i,k];
afiyk] = ali31];
ali,J1] = factor;

end for i;

end interchange of columns;
for i :=k + 1 step 1 until N do
begin
factor := A[i,k]/max;
for J := k + 1 step 1 until M do
al1,3] = af2,3] - alk,J Ixfactor;

end for i: reduction;

end for k;
for k := N+ 1 step 1 until M do
for i := N step -1 until 1 do
begin
factor := A[i,k];
for j =1 + 1 step 1 until N do
factor := factor - Afi,3]xald,k];
Ali,k] := factor/a[i,i];
end solving;

It

=20~

if M 4 N then
for 1 := N - 1 step -1 until 1 do
begin
i1 := pli];
if 11 4 1 then
for k := N+ 1 step 1 until M do
begin
factor := a[i,k];
Al1,k] = af11,k];
af11,k] := factor;
end for K;
end for i and solution interchunge;
EX:end LEQ1;

A few additional explanations may be required to understand the pro-
cedure,

The first for-statement counts 1 from 1 to N and performs the equi-
libration by multiplying rows haviﬁg & norm, max, outside the range from
0.25 to 1 by the factor:

(2.47) 2f(-entier(In{max)/1.3863 + 1))

The mumerical factor, 1.3963, is ln(4).

The elimination is controlled by a large for-statement counting in k
from 1 to N, The pivot search is controlled by the double for-statement
counting i and j from k to N. The subscripts of the numerically largest
element are assigned to i1 and j1. If the largest element is not placed
as Alk,k], exchange of rows and/or columns will be carried out,

After the possible exchange the elimination with the pivot element
alk,k] 1s controlled by the for-statement counting 1 from k+1 to N. For
each value of 1 the factor is calculanted as the first element in row no.
i %o be treated (that below the pivot element) divided by the pivot. The
pivot row times the factor is then subtracted from the elements in row
no, 1i.

The back substitution is controlled by the for-statement counting in
k from N+1 to NM, Note, that M 1s internally changed into N+M. One
right hand side is treated for each value of k, and it 1s carried out by

another for-statement counting i from N to 1.

01

Finally, the for-statement counting i from N-1 to 1 performs the re-
exchange of the columns,

The physical exchange of rows and columns carried out here can be
svoided by use of another integer srray, ql1:Nj, indicating which rows
have been exchinged, This requires more space uand subscript handling,
but should give u fuster procedure.

2.4, Matrix Inversion.

2.4.1. Matrix Inversion with LEQ1., If it is required to calculate

the inverse A[1:N,1:N] to a given square mastrix: P[1:N,1:N], this can be
mide after the LEQ]-method as follows. Let us assume that N = 4., The

original P-matrix is augmented by four right hand sides which make up a
unit matrix:

P[1,1] P[1,2] P[1,3] P[1,4] 1 0 0 0
p{2,1] p[e,2]} P[2,3] Pla,] © 1 0 0
r{3,1] P[3,2] P{3,3] P[3,4] © 0 1 0
plbyr] Pl+,2) Piboo] plM] O Y 0 1

When this matrix is treated by the LEQ1-method using N =54 and M = 4

the inverse matrix will appear instead of the unit matrix:

- - - - Q1,11 al1,2] Q1,31 ql1,4]
- - - - Q[2,1]1 q[2,2] q[2,3] qlo,4]
- - - - al3,1] al3,2] qQ[3,3] ql3.4]
- - - - albi1] q4,2] Qb,3] Q4]

or, more correctly, the element Q[i,j] of the inverse matrix appears as
the element P{i,N+j] in the array P[1:4,1:8]. The elements of the left

part of P are destroyed.

2.4.2. Direct Solution Versus Inversion. It was stated 1in section

2.1 that for numerical reasons it is preferable to solve a set of linear
equations directly instead of inverting the matrix and then multiplying
by the right hand side. In order to illustrate this fact we have used a

-0

Program which generates a large nunber of %x3 matrices with random ele-
ments. For each matrix & corresponding right hand side was calculated

by adding the elements in euch row. This corresponds to the assumption:

il
ey

x[1] = x[2] = x[3]

The system was then solved in two different ways: First by direct
solution of the 3xi matrix and then by inversion of the 3x3 matrix and
multiplication by the right hund side, The two sets of solutions found
were compared with the theoretical values: 1, 1, 1. The sum of the

squares of the deviations was calculated for either methods and whenever
a poorer solution was found, the data for that mautrix were printed out.

The worst example found was:

6.07500895,,5 1.03401437,2 L.0823711248 4.0884LT1643
9.99162505457 1.1945606k491 2,30505231+ 9.99393127457
6.45568033,46 1.06064020 1. 5704014853 6.45T7251TT b

The calculated solutions were:

Direct Inversion and
Solution Multiplication

x[1] 1.00000001 1.00000003

x{2] 0.9527992k 0.68750000
x{3] 1.00000001 1., 00000007

Clearly the value of x[2] found by inversion and multiplication is
not acceptable, Iess horrible examples are avallable, but they are all

in favor of the direct solution,

-2%_

3. LINEAR AND QUADRATIC MODELS

5.1« Basic Model Principle.

In the discussion of linear and guadratic models we consider one or

more functions of one or more variables. We use the notation:

VaR: Number of independent variables.
FUNC: Number of dependent functions.

The basic idea behind the use of linear and quadratic models is the
following., The functions we are dealing with are normelly neither line-
ar nor quadratic. The values of the functions corresponding to an
actual set, xact[1:VAR], of the independent variables are obtained by
calculating on a piece of camputer program. We assume, that we know
nothing about this piece of program, 2nd no mathematical analysis can,
therefore, be made a priori on the original functions. If, however, we
calculate the original functions in a certain number of points and from
these values calculate the coefficients in the model by solution of a
set of linear equations, we can then use the model generated in this way
for further analysis instead of analysing the original functions. Many
types of analyses are very easy to carry out on the linear or guadratic
models: differentiation, root determination, optimization, etec. Even
use of Monte Carlo methods can be made on the models because they are
much faster to evaluate than the original functions.

In the present method it is assumed that the original functions are
calculated in exactly as many points as are necessary to solve the
linear equations giving the unknown coefficients in the model. The
methods involving more points than are strictly necessary will be dealt
with in a later book on approximation methods (also including the case
of models of higher order than the second degree).

ol

5.2. HNomenclature.

The following notation is used for the variables and arrays:

integer VAR: Number of independent variasbles.

integer FUNC: Number of dependent functions.

integer UBS: Number of observations, i.e, the number of points at
which the originzl functions must be calculated by the main program (or
made wvailable as input, ete.).

array xstart[1:VaR]: A set of start values of the independent vari-
ables used as basls point for the model generation.

array delOx[1:VaR]: Increments in the independent variables, The

exploration of the function space is carried out in points such as:

xstart[1] + delOx[1i]
xstart[i] - delOx[1i]

etc., according to a fixed pattern.

array xact[1:VaR]: This is an actual set of the independent vari-
ables as generated during the function exploration.

array yact[1:FUNC]: This is an actual set of the dependent func-
tions. The main program must deliver the values here to be processed
by the method.

array MOD[1:0BS, 1:FUNC]: This array will contain the model gene-
rated by the method. The model of each function is stored as & column
with UBS elements. We could also have stored the models row-wise:

MOD[1:FUNC, 1:0BS]

but as the most interesting use of the model is for an advanced optimi-
zation 1in which the model of all functions must be evaluated simultane-
ously, there is not much difference in the two storage methods.

Some simplification could have been obtained by restricting the
number of functions to 1. But as the treatment of several functions is

important, this is not recommended.

s

D.2s, Model Structure.

A linear model of a function of VaR variables consists of a constant

term and VaR coefficients. For VAR = 5 and FUNC = 1 we have:
(5.1) yact{1] = L{0] + L[1 Ixxact[1] + L{2]xxact[2] + L[3]xxact[3]
The necessary number of cbservations is then V4R + 1.

The quadratic model of & single function of VAR variables consists
of 4 types of terms:

Type Number of terms
Constant term 1
Linear terms VAR
Square terms VAR
Mixed terms VARx (VAR=1):2

The total number of terms is:

(VAR+2)x (VaR+1):2

This is also the walue of UB5 for the quadratic case. sa Small table
of this function is given below:

VAR (VAR+2)x (VAR+1)32

—
N

10
15
21
28
36
L5
2o
66

© 0 @ -2 v Fow

-—

26

The quadratic model for VAR = 3 and FUNC = 1 contains a total of 10

coefficients:

(3.2) yact{1] = Q[0] +
QL1 xxact[1] + q2lxxmet[2] + Q[3]xxact[3] +
Q4 Ixect[1 Y2 + Q[5Jxxact[2 o + Q[6Jxxact{s 2 +
QL7 rxact[1 xxact{2] +
Q[8 Ixxact[1 Ixxact[3] +
Q[9 Jxxact[2 Jxxact[3]

Instead of considering the two different models:
L{0:3] and Q[0:9]
it 1s more convenient to use the same array:
MOD[1:0BS, 1:FUNC]
for storage of both models. The linear model is then obtained for 0BS =

I and the quadratic model for OBS = 10, In order to make it easier to
translate the model handling from ALGUL to FORTRAN, the lower subscript

pound has been raised from O to 1.

5.4, Model Generation,

The model generation consists of two phases:

1. Systematic variation of the independent variables and col-
lection of the corresponding function values from the main

Program,
2. Calculation of the coefficients.

The second part can be made either in a general way by setting up a
set of linear equations and solving them, or in a simplified way without
solution of the equations. In the following we flrst discuss the general

method.

-27-

The procedure 1s first called UBS times. 1In each call the procedure
must generate a new set of Xact-values according to a certain pattern.
We then return to the mein program for calculation of the corresponding
function values: yact{1:FUNC]. These will then be stored by the proce-
dure in the next call. It is convenient to have a counter, COUNT, which
should be set to zero before the first call and whiech is increused by 1
in each call. AS an example of the variation pattern we consider the
case of VAR 3, FUNC = 1, and UBS = 10 (quadratic model). To save
space we write xstart[1] as x1 and delOx[1] as di, and similarly for the

other Yariables. The variation pattern then becomes:

COUNT Values of the variables after the call COUNT
before after
call xact[1] xact[2] xact[3] call
0 X1 X2 x3 1
1 x1 + a1 X2 x3 2
2 x1 x2 + d2 x5 >
3 x1 x2 x3 + d3 b
by x1 - a1 x2 x3 2
5 x1 x2 - d2 x3 6
6 x1 x2 X5 - add 7
7 x1 + di X2 + d2 x3 8
3 x1 + d x2 x3 + dZ 9
9 x1 x2 + d2 X3 + d3 10

The generation of this variation pattern requires & fairly simple
algorithm, but it is not necessarily the best method from & mathematical
point of view. If we consider the case of VAR=2, we get the pattern:

s e

in which only one out of the 6 points gives information about the inter-
action between X1 and xX2. A more regular pattern in this case is a

pentagon:

but this is more complicated to generate and impossible to use for VaR >
2.
The storage of the x-values and the y-values requires a wmdatrix of

the dimension:
MaT[1:0BS, 1: UBS+FUNC]

In the case VaR = 3, UBS = 10, and FUNC = 1, the content of the
matrix will be the following:

T x1 x2 x3 x142 x2f2 x32 x1xx2 xixx3 x2xx3 y1
1 x1 x2 x3 x142 x2fe x> X1xx2 X1xx% x2xx3 y1
1 x1 x2 x3 x12 x2f2 x32 xI1xx2 xIxx3 x2xx3 y1
1 x1 X2 X3 X2 x2f2 x5 x1xx2 xIxx3 x2xx3 y1
1 X1 x2 x3 x1f2 x2f2 xB2 xIxx2 xIxx3 x2xx3 ¥l
1 %1 x2 x3 x142 x2p2 x32 x1xx2 x1xx3 x2xx3 y1
T x1 x2 x3 x1§2 x2f2 x3p2 x1xx2 x1xx3 x2xx3 yi
T x1 X2 x3 x4 x2p2 x5 x1xx2 X1xX3 x2xx3 yi
1 x1 x2 x3 x2 x2f2 x32 xIxx2 x1xx3 x2xx3 yi
1 x1 x2 x3 x12 x242 x32 x1xx2 xIxx3 x2xx3 yi

Here, we have written x1, x2, x3, and y) instead of xact[1],
xact[2], xact[3], and yact[1]. These values differ, of course, from
one line to the next.

-29-

Each of these UBS lines expresses the linear equation which must be

fulfilled:

Q[1 Ixxact[1] + Ql2]xxact{2] + QU3]xxact[3]

b Ixact[1 e + ql5lxxact{a o + Q6 Jxxact{3 Yo

Q7 Jxxact[1 Jxxact{2]+q[8 Jxxact[1 Jxxuct [3 J+q[9 xxact[2 xxact[3]
yact[1]

afu]

+

+

+

i

or, written with the complete MUD-array:

MOD[1,1] + MuD{2,1]xxact[1] + MOD[3,1]xxact[2] + MUD[L,1]xxact{3]
+ MOD[5;1 }xxact[1p2 + MOD[6,1 jxxact{2 42 + MOD[7,1 Jxxact[3 2
+ MOD[8,1]xxact[1]xxact[2] + MOD[9,1 Jxxact[1 Jxxact[3]
+ MOD[10,1]xxact[2 xxact{3] = yact[1]

The matrix MaT[1:0BS, 1: UBS+FUNC] contains the UBS linear equations
after the usual convention that the right-hand sides are stored as addi-
tional columns in the matrix.

The linear equations 4re now solved, If the solution is made
according to the principles in the procedure LEQ1, the results will be

found in the last column(s) of the originul matrix:
MaT[1:0BS, UBS+1: UBS+FUNC]
and must be trdansferred to the MUD-array.

3.4,1, General Procedure, GENMMOD1. This ALGOL procedure performs the

model generation as explained above. It has the declaration:

integer procedure GEMMOD1(count, VAR, FUNC, UBS, xstart, delOx,

XaCt, yact, eps, MaT, MuD);
value VAR, FUNC, UBS, eps;
integer count, VAR, FUNC, UBS;

real eps;

-30-

aryay xstart, delOx, xact, yact, MaT, MUD;
begin
integer c¢1, 1, Jj, k;
real Rj
GENMOD1 := c¢1 := 0;
if count > U then
begin
el := 1 + ({count - 1) mod UBS);
MaT{ct, 1] = 1;
for i := 1 step 1 until VAR do MaT[c1, 1+1] := xact[i];
if UBS > VaR + 1 then
begin
for i := 1 step 1 until VAR do MaT{ec1,1+VaR+1i] := xact[i}2;
k = 1 + 2xVAR;

for j := 1 step 1 until V4R - 1 do
begin

R := xact[j];
for i := J + 1 step 7 until VAR do
begin

k 1=k + 1;

Mai'{et, k] := Rxxact{i];

end for i;

end for j;

end if quadratic;

for i := 1 step 1 until FUNC do MAT[c1, OBS+l] := yact[i];
end if count > O;
for 1 i= 1 step 1 until VAR do xact[1] := xstart[1];
if e1 = UBS then
begin

GEMMOD1 := 1 - 2xLEQ1(0BS, FUNC, MaT, eps);

for 1 := 1 step 1 until UBS do

Lor § := 1 step 1 until FUNC do
MOD[1, 3] := MaT[1, OBS+j];
end solution
else

if c1 > O then
begin

-31-

k = 1 + {c1 - 1):VAaR;

if k> 5 then k := 3;

1 :=1 + (c1 - 1) mod VaR;

case k of

begin
xact[1] := xact{i] + delOx[i];
xact[1] := xact[i] - delOx[1];

begin

k := 2xVAR;
for 1 := 1 step 1 until VAR - 1 do
for j := 1 + 1 step 1 until VAR do
begin

k =k + 13

if k = ¢1 then

begin

xact[1] := xact[1] + delox[1i];
xact[j] := xaet[j] + delOx[j];
g0 %o L1;
end if k = ci;
end for i, j;
end case 3;
end case;
L1: end if c1 > 0;
count := count + 1

end GENMUDI ;

The procedure GEIMODY is for illustration purpose only. It operates
on core-stored variables. The system of linear equations is stored in
the array MaT[1: OBS, 1:0BS+FUNC]. The solution is made with LEQ' and
the result is transferred to the array MOD[1: UBS, 1: FUNC].

It 1s assumed that UBS has either the value VAR+1 (linear case) or
(VaR+1)x(VaR+2):2 (quadratic case). Intermediate values are not per-
mitted.

Note, that the storage of the x-values Iin MAT is not made immedi-
ately after generation of a new set of x-values, but in the next call of
GENMUD1. This means that the y-values are stored simultaneously with the
corresponding x-values, «nd the main program is permitted to change the

-32.

X-values, if required. This change may become necessary if the range of
the x-values is restricted, and could, of course, also have been includ-
ed in the procedure. If changes are made, the general pattern of the
variation must be retained, otherwise the matrix may become ill-condi-

tioned and the equations cannot be solved.

3.4.2, Simplified Procedure, GENMMOD1A. As mentioned above, 1t is

Possible to avoid the solution of the 0BS linear equations. This gives a
fuster and smaller program and a greater accuracy. The price for this is
that the variation pattern must be strictly adhered to, and it is not
even permitted to change the size of the increments in some of the furc-
tion evéluations.

The AlGUL procedure, GENMUD14, operates after the simplified method.
The parameters eps and MAT are now omitted from the parameter list as
they are not required. The variation of the x-values is made in exuctly
the same way a4s in GENMOD?. In each call the incoming y-values are trea-
ted as much as possible and are stored in the MUD-array. The treatment
can be divided into the following five phases:

Phase 1: For count = 1 the y-values for the base point of the model

dare stored as the constant term in the model;

yact[1]
yact [2]

(3.3) MUD[1,1]
MuD[1,2]

aes0e

o s

MOD[1,FUNC] = yuct{FUNC]
In the following we assume that FUNC = 1 and consider only column 1
in the MOD-array, _
Phase 2: 1In the next ViR calls, one of the variables has been given
& positive increment, If this is variable no. N, we have:
(3.4) count = 1 + N

and the corresponding linear coefficient is preliminarily calculated as:

(3.5) MUD[1+N,1] = yuct[1] - MOD[1,1]

-3%_

The linear part of the model including the constant term now have
values that assume that the x-values are measured relative to the base
point, They 4are further corrected in phuse 3 and phase 5., GENMODIA is
constructed to generate quadratic models only, not linear models, so we
proceed with:

Phase 3: In the next VAR calls, one of the variables has been given
a4 negative increment. Let this be variable no. N, so that we have:

(3.6) count = 1 + VAR + N

If we consider only the linear and the quadratic terms in the model,

we have for variable no, N:
(3.7) Y = BaSE + ...LIN[N]}ooct[N]... + ...QUa[N]xxact[N}A2...

When the variable is measured relative to the base point, we can
write it as delOx[N], and we get 3 equations for the determination of
BaSE, LIN[N], and QUA[N]:

{5.8) YBaS
YLIN
YQUA

BASE
Basli + LIN[N JxdelOx[N] + QUa[N¥]xdelOx[N]2
BaSE - LIN[N]xdelOx[N] + qQUa[N]xdelOx[N}j2

From this we find:
(2.9) QUA[N] = ((YLIN-YBAS)+(YQUA-YBaS))/(2xdelox[N}p2)

For function no. 1, the ALGOL statement corresponding to this takes

the form:
(3.10) Mob{count,1] := (MOD[k,1 J+yact[1]-MOD[1,1])/(2xdelrox[jx h2)

in which k = 1 + N and jx = N. Note, that MOD[k,1] contains YLIN - YBAS
according to (3.5). The improved value of LIN[N] alias MOD{k,1] becomes:

(3.11) LIN[N] = ((YLIN-YBaS)-(YQUA-YBAS))/ (2xdel0x[N])

and the correct form of this is:

(3.12) MOD[k,1] := (MOD[k,1]-(yact[1]-M0D[1,1]))/(2xdelox[jx])

Phase 4: In the remaining calls of the procedure, the variables no.
ix and no. jx have_been given a positive increment and the others are at
their base value. When the variables are measured relative 1o the base
point, the equation determining the mixed coefficient takes the form:

(3.13) YMIX = BASE + LIN[ix IxdelOx[ix] + LIN[jx]xdelOx[Jjx] +
QUa[ixJxdelOx[ix 2 + QUA[jxIxderox[jx Yo +
MIX[count JxdelOx[1x }xdelOx[jx]

When this equation is solved with respect to MIX{count] and the now
known values for LIN and QUa &re inserted, we finally get the expres-

sion:

(3.14) MuD[count,1] := {ysct[1]-MOD{1,1]-
(MOD[1+ix,1 J+MOD[1 +VaR+1x,1 JxdelOx[1x])xdelOx[ix |-
(MOD[1+jx, 1]+MOD[1 +VaR+3x, 1 JxdelOx{ jx])=xdel0x[jx])
/ (de10x{1x JxdelOx[jx]);

Phase §: This 18 the final transformation so that the x-wvalues are
absolute instead of relative to the base point. For the relative x-val-
ues, delOx[N], the lindar und quadratic part of the model for vuriable
no, N has the form:

(3.15) Y = BASE + .o LIN[N]xdelOx[N]e..+. . .QUa[N]xdelOx[N Y. ..
Insertion of xuct[Nl-xstart[N] instead of delOx{N] gives:

(3.16) Y = BASE +.0.LIN[N]x (xact{N]-xstart[N])ecctee.
QUA[N Ix (xact [N]-xstart[N])f2. ..

From this we see, that when xact[N] is to be used in the model in-
stead of delOx{N], the constant term, BaSE, must be corrected by sub-
traction of LIN{N]xxstart[N] and addition of QUA[NJxxstart[N}j2. o cor-

rection is necessary in the quadratic coefficient, but because of the

-35-
double product:
(3.17) -2xQUA[N Jxxact {N Jxxstart|[N]

we must subtract 2xQUA[N Jxxstart[N] from LIN[X]. The correction of BASE
and LIN for function no. J is made as follows:

k = 2;
for i := 1 step 1 until VAR do
begin

MOD[1,3] := MOD[1,J]-(MOD[k,J J-xstart[i]xMUD[k+VAR, j])xxstart[1];
MOD[k,j] := MOD[k,J]-2xMOD[k+VAR, j Jxxstart[i];
k i= k+1;

end for i;
For the mixed terms:

(3.18) MIX[count JxdelOx[ix JxdelOx[jx]

insertion of xact[N] - xstart[N] gives:

(3.19) MIX[count]x(xact[1ix]-xstart[1x])x (xact[jx]-xstart[jx])
From this we can see that it is neceasary to add:

(3.20) MIX{count |xxstart [1x Jxxstart{jx]

to the constant term, and to subtract:

MIX[count |xxstart[jx] from LIN[ix] and
MIX[count xxstart[ix] from LIN[jx]

These are the final corrections required, and their exact form can

be found in the declaration of GENMOD1A which is reproduced here:

-36-

integer procedure GEMMUD1A(count, VAR, WUNC, UBS, xstart, delOx,

xact, yact, MOD);
value VAR, FUNC, UBS;
integer count, VAR, FUNC, UBS;
array xstart, delUx, Xact, yact, MOD;
begin
integer J, ix, Jjx, K, state;
GENMODIA := O
Jx = count-1;
for ix := 1 step 1 until VAR do xact[ix] := xstart{ix];
if count > O then
begin
state := if count = 1 then 1 else 2 +{count-2):ViR;

if state = 3 then jx := jXx - VAR glse
if state = 4 then

begin

-f

1= 2xVAR + 2;
for := 1 step 1 until VAR -1 do

for jx := ix + 1 step 1 until VAR do

begin
if k = count then go to L1;
k := Kk + 13

end for ix, Jjx;

L1: end if state = k4;

k i= count - VaR;
for j i= 1 s¥ep 1 until FUNC do

case state of
begin
MOD[1,3] := yact[J];
MOD[count ,j] := yact[j] - MOD[1,j];
begin
MOD[count,j] := (MOD[k,J J+yact[j]-MoD[1,3])/ (exdel0x[5x f2);
MOD[k,j] := (MOD[k,J J~yact[3#MOD[1,3])/ (2xaelox[jx]);
end state = 3;
MoD[count,j] := (yact[j]-MOD[1,j]- (MOD[ix+1,J J#MOD[1x+VAR+1,]x
del0x[1x])xdel0x[1x J- (MOD{3x+1,J J*MOD[Jx+VAR+1 ,j JxdelOx[jx])x
del0x[jx 1)/ (qe10x[1x Jxdel0x[3x]);

end case and for;

-57=

JX = Jx + 1
if state > 1 then state := state -1;
if jx > VAR then

case state of

I

Jx = 1;
end transfer to state 2;
begin
if VaR
state = 3;
ix 1= 1;
Jx = 2;
end transfer to state 3;

begin

ix = 1x + 1;

11

1 then go to 12;

Jx 1= 1ix + 1;
if jx > VAR then go to L2;
end new ix in state 3;
end case;
if state = 2 then
xact{jx] := xstart{jx] - delOx[jx] else
xact[jx] = xstart[jx] + delOx[jx];
if state = 5 then
xact[ix] := xstart[ix] + delOx[ix];
£0 o L3;
for § := 1 step 1 until FUNC do
begin
k = 2;
for i := 1 step 1 until VAR do
begin
MOD[1,5] = MoD{1,J]- (MOD[k,j]-xstart[1 JxMOD[k+VAR, j])xxstart[i];
MOD[k,j] := MOD[k,J]-2xMOD[{k+VaR, j Jxxstart[1];
k ==k +1;
end for i;
k := k + VAR;

for ix := 1 step 1 until VAR -1 do
for jx := ix + 1 step 1 until VAR do

beglin

-38-

MOD[1,3] := MOD[1,j] + MOD{k,J]xxstart[1x Jxxstart[jx];
MOD{ix+1,J] := MOD[1x+1,j]-MOD[k,j Jxxstart[jx];
MOD[jx+1,3] := MOD[Jx+1,J]-MOD[k,J Jxxstart{ix];
k =k +1;
end for ix, Jjx;

end for Jj;
GENMODMA := 1
end if count > O;
L3:count := count + 1;
end GENMUD1A;

2- zl MOdEl Evaluation-

The evaluatlon of the wvalue of the linear or quadratic model,
MoD[1: OBS, 1: FUNC], for a given set of x-values, xact[1: VAR], re-
quires a very simple algorithm. The result is delivered as the array,
yact[1: FUNC]. If the model is quadratic, it should be possible to
evaluate the mode)l also for the linear case simply by using the smaller
value of (UBS.

It can be convenient to include differentiation of the model in the
evaluation procedure. For VAR = 3, 0BS = 10, and FUNC = 1, we can cal-
culate the three derivatives:

dyact[1]/ax[1]
dyact[1]/ax[2]
dyact1]/ax[3]

The evaluation procedire can be fitted with a formal parameter, n,
vhich for n = O gives the normal y-value and for n > 0 gives the deriva-
tive with respect to the independent variable no. n. When the normal
y-value is found from:

yact[1] :=

Mop[1,1] + MOD[2,1)xxact[1] + MOD[3,1}xxact[2] + MOD[4,1 Jxxact[5]
+ MOD[5,1 Jxxact[1p2 + MOD[6,1]xxact[2]j2 + MOD[T,1 Jxxact{3 Yo
+ MOD[8,1 Jxmct[1 Jxxact{2] + MOD[9,1 Jxxact[1 Jxxact[3]
+ MDD[10,1]xxa.ct[2]xxa.ct[5];

-%9.
the formulas for the three derivatives become:

dyact[1]/ax[1] =
MuD[2,1 J+2xMUD{5,1 [xxact[1 J+MOD[8,1 Jxxact[2 J+MOD{9,1 Jxxact[3]

dyact[1 J/ax[2] =
MOD[%,1J+MODI8,1 Jxxact[1 [+2xMOD| 6,1 Jxxact[2 J+MUD{10,1 Jxxact|3]

dy'd.ct[1]/dx[5] =
MOD[4 1 J+MUD[9,1 Jxxact{1]+MOD{10,1 Jxxact[2]+2xMOD[7,1 Jxxact[3]

The AIGOL procedure, MUDVAL1, shown helow performs the model evalua-
tion or differentiation. It operates directly on the MOD-array stored

in the core.

real procedure MODVAL1(VAR, FUNC, UBS, n, MOD, xact, yact);
yalue VAR, FUNC, OBS, nj
integer VAR, FUNC, (BS, n;
array MOD, xact, yact;
begin
boolean quad;
integer i, j, k, m;
real R1, R2;
quad := 0BS > VAR + 1;
for j := 1 step 1 until FUNC do
yact[J] := MOD[1+n, JJ;
if n = O then

begin
for 1 := 1 step 1 until VAR do

begin
R1 := xact[i];
for j :i= 1 step 1 until FUNC do
yact{j] = yact[j] + MUD[1+1, J]xR1;

end for 1i;

if quad then
begin
for i := 1 step 1 until VAR do

begin
R1 := xact{i f2;

=40~

for J := 1 step 1 until FUNC do
vact[j] := yact[j] + MOD[1+VAR+L, Jj]xRi;
end for i;
end if quad;
end if n = O glse
if quad then
begin
R1 := 2xxact|n];
for J := 1 step 1 until VAR do
yact[§] := yact{J] + MOD[1+VAR+n, jIxR1;
if quad and n > 0O;

end
if

if quad then

R1 := xact{m];
for k :=m + 1 step 1 until VAR do
begin
R2 := xact[k];
for 3 := 1 step 1 until FUNC do
begin
if n = O then
yact[j] := yact[J] + MOD[1, jJxR1xR2 else

ifm =nv k = n then

yact[J] := yact[j]+MOD[1, jlx(1f m=n then R2 else R1);

end for j; -
i:=1+1;
end for X;
end for m;
end if quad;
MODVAL1 := yact[1];
end MODVAL1;

T

%.6, Use of Models,

Examples of the use of quadratic models are given in Chapter 5 for
quadratic optimization, i.e., determination of the waximum or minimum of
a function. The models can also be used to find & point where a set of
functions becomes zero. This is further discussed in Chapter 4 which de-
scribes a general procedure, NOLEQS, which generates a linear model of
a set of functions and finds the zero point, If a linear model is avail-
able already, the zero point determination (root determination) can be
made immediately with only very little extra work.

For root determination we will normally have as many functions as
there are independent variables (VAR = FUNC). The linear model of the
ViR functions then has the size:

MOD[1:VaR+1, 1:VAR]
For VAR = 3 we have MOD[1: 4, 1: 3] and the model is evaluated as:

yact[1] := MOD[{1,1]+MOD[2,1 Jxxact[1]+MUD[3,1 Jxxact[2 +MOD[4 ,1 Jxxact[3]
yact[2] := MOD[1,2]+M0OD[2,2 Jxxact[1]+M0D[%,2 Jxxact[2]+MOD[4 ,2 Jxxact[3]
yact{3] := MOD[1,3]+M0D[2,3 Jxxact[1 +MOD[3, 3 Jxxact[2]#40OD[k4, 5 Jxxact[3]

The point where all three functions become zero 1s determined from
the three linear equations:

MOD[1,1]+MOD[2,1 Jxxact[1]#*MOD[3,1 Jxxact [2]+MOD[4,1 Jxxact[3] = ©
MOD[1,2]+MOD([2,2 [xxact [1]+MOD[3,2 Jxxact[2]+MOD[4 ,2 Ixxact[3] = O
MOD[1,% J+MOD[2,3 Jxxact {1 +MUD[3,3 Jxxact[2]+MOD[L ,3 Jxxact[3] = O

If we wish to write this after the conventions for LEQ1, the equa-

tions become:

MOD[2,1 Jxxact[1 J+MOD[3,1 Ixxact[2]+MOD[4,1 Jxxact[3] = -MOD[1,1]
MOD[2,2 Jxxact[1]+MOD{3,2 Jxxact[2]+MOD[4 ,2 Jxxact[3] = -MOD[1,2]
MOD[2, 3 Jxxact[1]+MOD[3,3 Jxxact [2 J+MOD[k4 , 3 Jxxact[3] = -MOD[1,3]

~hoo
The augmented matrix defining the system of equations has the slze:
MAT[1:VAR, 1: VAR+1]

or MAT[1:5, 1:4] for VAR = 3, If we compare MOD and MAT we see, that
it 1s necessary to transpose MOD and to move the columns cyclically so
that the column number is reduced by one and the first column becomes
the last column with change of sign. The change from MOD to MAT can be
mide with the algorithm:

for 1 := 1 step 1 until VAR do
begin
for j := 1 step 1 until VAR do
MAT[1, j] := MOD[3+1, 1];
MaT[1, 1+1] := -MOD[1, 1];
end for 1;

Solution of the set of equations gives the required set of roots,
wet[1: VAR].

If a quadratic model is available, we can carry out the root deter-
mination in one of the following ways:

1. Approximate the quadratic model with a linear model and proceed
as above,

2. Use Newton-Raphson method with calculation of the derivatives
from the quadratic model.

3. Direct elimimation with removal of one of the equations at a
time by solution of the corresponding second order degree eguations.

L3

L. SOLUTION OF NUN-LINEAR EQUATIONS

4,1, Basic Principles.

A very frequent practical mumerical problem consists In finding out
when a given function assumes the value zero, If we have a function of a
single variable, Y = F(X), we may wish to know for which value or values
of X we get:

(4.1) F(X) = 0

wWhen such a value of X has been found, we say that we have found =a

-

root in the equation F(X) = O,
We my also ave several simultaneous equatlons with as many unknown

X-values:
F(X1, X2, X3) =
(4o.2) G(X1, X2, X3) =
H(X1, X2, X3) =

Here, we must find a set of numbers: X1, X2, X3, so that the three
functions: F, G, and H &«ll become zero., If the three functions are lin-
ear expressions in the independent wvariables:

F = A0 + A1xX1 + A2xX2 + A3X3
(4.3) G = BU + B1xX1 + B2xX2 + B3xX3
H=C0 + C1xX1 + (2xX2 + C3xX3

we have three linear equations in three unknowns, and we may solve them
as described in Chapter 2., However, if the functions are not linear,

Coet
(Loh) F=10 + A1xX1+2 + a2xsin(X2) + A3xX1xX3

and similar complicated forms for F and G, we say that we have a set of

non-linear equations that must be solved.
In the following sections we first discuss functions of a single

variable (section 4.2 and 4,3) and then several functions 1in several

variables (section L,u).

~Ll

In very speciul cases it is possible to give an wnalytical solution

to a non-linear equation., This applies to quadratic equatlons:
(4,5) AXXA2 + BxX + C =0

and to cublec equations:
CNY AxXA3 + BxXA2 + CxX + D = 0

The analytical solutions to these equations are given in section 4.2
below. Quartic equations cun also be solved in this way, but the formula
system is very complicated,

In most practical cases the solution of non-linear equations can
only be carried through by use of iteration. An initial guess on the so-
lution is made, <the functions are explored in the vicinity of the first
guess, and from this informuition the solution can be improved. Section
L.3 contains examples of iterative procedures for a single unknown and
section 4,4 a procedure for solution of several simultaneous non-linear
equations.

AS an example of the occurrence of a set of non-linear equations in
the field of chemical engineering we can consider the case of an adia-
‘batic reformer used for production of synthesis gas., The three unknowns
in equation (4.2) above could then hive the significance:

X1: aAmount of hydrocarbon

(4,7) X2: asmount of air
X3: amount of enriched oxygen

The three function values could be:

F: Error in heat balance
(4.8) G: Error in hydrogen-nitrogen ratio

H: Error in amount of produced gas

If we assume a set of start values of X1, X2, and X3, and have avai-

lable a suitable program for calculation of F, G, and H, the iterative
calculation then consists in the systematic variation of X1, X2, and X3

until F, G, and H become zero within a given tolerance.

-5,

L,2. Quadratic and Cubic Eguations,

4.2,1. Quadratic Equations, Procedure QUAREQ2, The quadratic equa-
tion has the form:

(%.9) AXA2 + BxXX +C =0

The solution method caun be found in elementary mathematical text-
books, etc., See Hodgman (1956), p. 295. The formula for the roots is:

(4.10) x1,x2 = (-B + sqru(BA2 - bxaxC))/(2x4a)

The formula can only he used for A + 0, If we have A = 0, the quad-
ratic equation has degenerated into a linear equation:

(4a11) BxX + C =0
For B * 0 this has the solution:
(h.12) X = -U/B

For B = O, however, no solution of X can be found. In the genersl
case of A + O, the formula (4,10) can only be evaluated if the discrimi-

nant D:
(4.13) D = B2 - LxiaxC

is non-negative. For D ¢ O, the two roots are complex.

The procedure QUAREQZ has the following parameters:

real A, B, and C. These are the coefficients in equation (%.9).

real x1 and x2. These are the two roots calculated by the procedure.
If A =0and B 4 0, the X-value calculated from equation (4.12) is as-
signed to both x1 and X2.

integer QUAREQ2. The procedure is of type integer and takes the
value O, if there are two real roots, x1 and x2 (they may be identical).
QUAREQ? = 1 indicates the complex case. No values are then assigned to

x1 and x2.
The declaration of QUAREQZ is shown on the next page.

Y.

integer procedure QUAREQ2(A, B, C, x1, x2);

real A, B, C, x1, x2;

begin
real D;
QUAREQR := O;
. if A = 0 then
begin
Af B = O then QUAREQ2 := 1 else
x1 = x2 1= -C/B;
end A = 0 else
begin
D:=B+2-'+><A><C;
1f D < O then QUAREQ2 := 1 else

begin
X1 :=1f B < O then -1 else 1;

x1 (-B - x1xsqr‘t(D))/2/A;
x2 = C/a/x1;
end D > 0;
end A t 0;
end QUAREQ?;

W

The calculation follows the explanation given above as regards the
zero check of A and B and the sign check of D, Note, that only one of
the roots 1s found from equation (4.10), namely the root for which -B
has the same sign as +sqrt... In this way we avoid the loss in accuracy
that would occur, when -B and :sért... are of equal magnitude but op-
poslte sign. In the example:

(4.14) A =0,001, B=1, C = 0,001
we must calculate:
-1 £ sqrt (1 - 4x0.001x0,001) = -1 + sqrt(0.999996)

Use of the plus sign here will give low accuracy. Only the minus
8ign 18 used, and we find the second root from the known root product:

(4.15) x2 := Cfafx1

47

4,0,2. Cubic Bguations, Procedure CUBEQi. In a cubic equation:

(k.16) AxX3 + BxXA2 + CxX + D = U

there will always be three roots. Une of these will always be reul and

the remaining two roots will be either real or complex. As a special
case, two or three of the real roots may be identical,

An analytic solution method for cubic equations can also be found in
many mabthematical books. The following explanation is twken from Hodgman
(1956}, p. 295. Division by a gives the form:

(14'017))q\3 + px)(+2 + X +r =0
We then transform the equation into:

(J"'a18) x+3 + axx + b =0

by substituting for X the value: x - p/3, The two coefficients, a and b,
become:

(4,19) a
(4.20) b

q - pfe/3

(2xp3 - 9xpxq + 27xr)/27

It

The further actions depend on‘the value of the discriminant:
(4.21) DD = vAe/k + afs/27

Three cases are considered:

DD > O0: OUne real root and two complex roots,
DD = 0: Three real roots of which two at leust are equal.

DD ¢ U: Three real and unequal roots,.

In the first case we can calculate the single real root by perform-
ing the calculations:

(4,22) SQ = sqrt{DD)
(%.23) An = cubrt(-b/2 + KQ)
(b,24) BB = cubrt(-b/2 - Q)

-48-

cubrt(x) is the cube root of x (with sign). The root in equation
(k.18) becomes AA+BB and in the original equation (4.17) or (4.16):

k,25) X1 = AA + BB - p/3

In the second case (DD = 0) we calculste the two remaining real and

equal roots as:
(4,26) (x2,x3) = -AA-p3
(AA and BB are equal),
In the third case (DD ¢ 0) the three real roots are found by first
calculatirg an angle, fi, having a cosine given by:

(4.27) cosfi = -b/2/sqrt(-ad3/27)

Note, +that a (0, When cosfi is known, we can calculate i itself via
the standard arctan function:

(+,28) fi = arctan(sqrt(1-cosfif2)/cosf1)

For cosfi = O this formula gives division by zero. We must then use

the correction:
(4.29) f£1 = if cosfi = O then pi/2 else arctan.....
An additional correction 1s neccesary, because arctan will deliver

an angle in the range from -pi/2 to +pi/2, whereas we require fi to be
in the range from O to pi. This can be corrected by:

(4430) 1f cosfi < O then fi := f1 + pi
Performed after calculation of £y, We also need one third of fi:
(#.31) £13 = £1/3

The three roots can then be written as:

Lg-

x1 = facxcos(fi3) - p3
(L4,22) x2 = facxcos(fi3 + 2xpi/3) - p3
x3 = facxcos(fi3 + Lxpi/3) - p3

in which the factor, fac, is:
(4.33) fac = 2xsqrt(-a/3)

The declaration of the procedure CUBEQ! performing these calculsa-

tion 18 shown below:

procedure CUBEQ1(4, B, C, D, x1, x2, x3, comp);
value 4, B, C, D;
real 4, B, C, D, x1, x2, x3;
boolean comp;
begin
real a, b, Aa, BB, DD, p, q, r, SQ, cosfi, fac, fi3, p3;

real procedure cubrt (X);

yalue x;

real x;

cubrt := sign(x)x(abs(x))pn(1/3);
P = BfA;

b = (2xpA3 - 9xpxq + 27xr)/27;
DD := bA2/k + af3/27;

camp := DD > O

£ DD 2 O then

begin
5Q := sqrt(DD);
AA := cubrt(-b/2 + R);
BB := cubrt(-b/2 - 5Q);
X1 = AA + BB - p3;

Aif -, comp then x2 := x3 := -an - p3;
end

_else

-50-

begin
cosfi := -b/2/sqrt(-af3/27);
fi3 := if cosfi = O then 0,52359878 else
arctan(sqrt (1-cosfif2)/cosf1)/3;
if cosfi ¢ O then fi3 := £13 + 1.04719755;
fac := 2xsqrt(-a/3};
x1 := facxcos(fi3) - p3;
X2 1= facxcos(fi3 + 2,0943%951) - p3;
x3 1= facxcos(fi3 + 4,1887902) - p3;

end

end CUBEQ1;

The formal parameters are the four coefficients: a, B, C, and D, the
three required roots: x1, x2, and x3, and the boolean: comp. If there
are three real roots, they will be calculated and delivered as x1, x2,
and x3. If there is only one real root, it will be calculated and stored
as x1, and comp is set to true. With three real roots, comp is set to
false,

No special precautions have been made to secure good numerical accu-
racy in CUBEQ1 in a similar way as was done for QUAREQ2.

A simple way of making a rough test on a subroutine is to generate
random values of its parameters and perform the calculations so that the
calculation resulis can be compared with the known exact solution. This
was used for CUBEQ1. A series of 1000 calls of CUBEQ1 were made. For
each call the first coefficient, A, was generated randomly in the range
from 1 to 10, and three random roots were generated in the range from
-10 to +10, The three other constants, B, C, and D, were calculated from
the rocts and A,

CUBEQ1 was then called, and the calculated roots were compared to

the known roots, A print-out waus made as soon as a deviation was larger
| than the previous maximum deviation. The following results were found:

-5 -

Call Deviation

TiC.

1 0, 0000003
14 0. 0000004
30 0, 0000004
38 0.0000018
L3 0, 0000033
67 0.0000490

284 0.0000919
922 0.000529%

A further inspection of these examples showed that the large devi-
ations occurred when two or three of the roots were very nearly equal.

The roots in call no, 922 were:

Root 1 Root, 2 Root 3

Original: To0969418 7.1177271 7.4167755
Calculated: 7.0974364% T7.1171978 T.4168102
Deviation: -0,0004946 0.000529% -0,0000347

The origin of these inaccuracies is to be found in equation (4.28).
When f1 is close to O or pl, cosfi will be close to +1, and digits are
lost in the ewvaluation of sqrt(1-cosfif2). The values fi = O and pi give
fi3 = 0 and pi/3 for which two of the angles:

£13, £i3 + 2xpi/3, f13 + bxpi/3

will have cos-values thut are equal. Hence the trouble for nearly equal
roots,

The accuracy cén be improved, if one of the roots is calculated from
the known sum of the roots (-B). This is used in the example given by
Kallin (1969), p. 130,

The test of procedures with random numbers can often reveal errors

of different kinds, but it is, of cource, not an exhaustive test.

-52-

4.3, Iterative Methods for & Single Unknowrn.

The procedures given in section 4.2 for solution of quadratic equa-
tions and cubic equations have the advantage that no iteration is neces-
sary. We always get an answer after using the formulas just once. On the
other haﬁd, the formulas are not quite simple, especially for cubic
equations.

It is alsoc possible to give a set of formulas for the solution of
equations of the fourth degree without iteration, but these are still
more complicated., Another drawback in these formulas is the risk of nu-
merical troubles. A thorough programming of the formulas so that this
risk is reduced can be a very complicated job. In this situation the use
of iterative methods is much to be preferred.

As a further illustration of the two possible approaches to the de-

termination of roots:

1. Complicated analytic methods
2. Simple iterative methods

we consider a typical calculation problem from chemical engineering. The
heat content (enthalpy) of a gas in the ideal state can be approximated
as a temperature polynomial., Fourth order polynomials in the absolute
temperature (deg. K) have proved efficient in most cases. The enthalpy
of formation of methane can be written as the polynomial:

(ha34) H(T) = 665,17 + 3.36xT + 8,50:-3xTA2-T 4 1110 TxTA3-2. 551~ 10x T

(Not all significant digits are reproduced here}. When T is known, the
enthalpy, H(T), can be calculated from this formula. The inverse problem
of finding T when H is known, is often encountered in practice. When a
gas is heated in a reactor, the enthalpy increase is found from a heat
balance, and the corresponding temperature must then be found by a root

determination in formula (4.34). This has the form:
(4.35) Y = F(X) = A0 + ATxX + A2xXJ2 + ABxXA3 + AlxXN

We wish to calculate the temperature, X, corresponding to a given
enthalpy, YO0. We must find X so that:

~5%_
(k.36) F(X) = YO
Or, X must be found as a root in the equation:
L.37) PO - Y0 =0

When F(X) is & polynomial of the fourth degree in X and YO has a
known value, we must solve an equation of fourth degree. As an example

we can take:
YO = 16580 (kcal/kgmole)

which corresponds to a temperature about 1270 deg. K. Insertion of this

value in the formulas gives:
(4.38) -205510-10><X+1$-7.1110—7><X/+\5+895010-5x)0f\2+5.56x)(-15914-55 = 0

A fourth degree equation may have up to four real roots, and this is

actually the case here, The four roots are:

~7066,86 <

-1530,67 -
1273.35 «
4533 47 ¢

One of these roots (1273.35) is the one we are interested in., The
three other roots are very far from the range for which the Polynomial
was calculated (300 - 1500 deg. K), und they are of no interest to us
here. It would have been uneconomical to use a method for s complete so-
lution of a fourth degree equation giving all four roots and then dis-
card the three wrong roots, Here, the iterative method is much to be

preferred,

L.3.1. Newton-Raphson Method. The basic principle in most of the it-

erative methods for root determination is the so-called Newton-Raphson

method which 1s illustrated on figure 1, page 54. See also Frgberg, page
19 (1966).

~5h-

(X1 Y1
(X2, Y2)
X >x
X3 X2 X1

Figure 1

Newton-Raphson Method

-55-

Figure 1 shows & function, Y = F(X), and a point (X1,Y1) on the
curve, We want to find the root, 1i.e. the point where the curve inter-
sects the X-axis. In the Newton-Raphson method we use the tangent in the
point (X1,Y1) as an approximation to F(X). If we denote the derivative
in this point alfa:

(4,39) alfa = aF/aX
the equation for the tangent becomes:
(4.40) Y = Y1 + alfax(X-X1)

We put ¥ = O and find X from the equation. This gives the next ap-
broxjmation, X2, to the required root:

(b.b1) X2 = X1 - Y1/alfa

We may also express the result as the increment, DEIX, which must be
added to X1 to gilve X2:

(b.h2) DEIX = -Y1/alfa
In the point X2 we must then calculate the function value:
(hb3) Y2 = FP(X2)

and the new value of alfa in X2, Y2 und the new alfa are inserted in
(4.42), giving a new DEIX which is added to X2, etc. The iteration is
continued until DELX becomes sufficiently small.

In this version of the method we must for each new X-value calculate
the function value, Y, and the derivative, dY/dX. It is easy to calcu-
late the derivative if the function is & polynomial, but if F{(X) is =a
very complicated expression, maybe a large procedure or a piece of pro-
gram, we can only find dY/dX by means of a complicated numerical method.

As it 1is not necessary to calculate the derivative with a great
accuracy, it may be sufficient to calculate the difference quotient:

(4,bL) DIFG = (Y2-Y1)/(X2-X1)

~56.

(X1, YD
(X2, ¥2)
X X
| i
X3 X2 X1

Flgure 2

Regula falsi Method

-57-

When DIFQ is used as an approximation to alfa, the method is called
that of regula falsi and is illustrated in figure 2, page 56. As we do
not calculate the difference gquotient in the point X1, it becomes neces-
sary to select the point X2 in an arbitrary way in order to get started.
The increment, DELX, in X from X2 to X3 is then calculated as:

(4,u5) DEIX = -Y2/alfu
in which we insert DIF) from equation (4.44) instead of alfe and get:
(4,46) DELX = -Y2/(Y2-Y1)x(X2-X1)
As X2-X1 is the previous value of DELX, we may also write:
(4.47) DELX = DEIXxYNEW/(YOLD-YNEW)

Here, YNEW is the last calculated Y-value (Y2) and YOLD is the pre-
viously calculated Y-value (Y1).

In general, the convergence of the regula falsi method will be some-
what slower than that of the Newton-Raphson method. The reason for this
is that two function values are required before the iteration can start,
and the difference quotient is less accurate than the derivative, On the
other hand, the Newton-Raphson method requires the evaluation of two ex-
pressions in each step (function and derilvative) where the regula falsi
method evaluates the function only. In most practical cases the regula
falsi method ms a satisfactory convergence speed.

L,%.2, The Procedure ROOT5, This procedure wuses the regula falsi
calculation method, It has four formal parameters:

real y. The functlion expression for which we require the root., This
has normally the form of a real procedure.

real xX. The independent variable. The main program must have Iinsert-
ed a start value here before the call of ROUTS5. After the call, it con-
talns the root, The two parameters, y and x, are both called by name.

real delOx, First increment in X. The two first function evaluations
are made for x=x and x=x+delOx. Must be specified by the user.

real eps. The required accuracy in y. The root search 1is stopped,
when abs(y){eps.

-58-
The declaration of ROQTS is:

Procedure ROOTS(y, x, delOx, eps);
Jalue delOx, eps;
real y, x, dellx, eps;
begin
real yold, ynew, delx;
ynew = y;
yold := 2xynew;
delx := dellx;
L: if eps - abs(ynew) > O then go to EX;
delx := delxxynew/(yold - ynew);
= X + delx;
yold := ynew;
ynew 1= y;

go to L;
EX: '

end ROOTS;

The procedure ROOTS works as follows. The function, y, is ewaluated
and assigned to the local variable, ynew. Another local variable, yold,
is put equal to twice this value. The trick behind this is explained be-
low. The local variable, delx, is then put equal to the first increment,
delOx.

At the label, L, we then enter the iteration cycle. If abs(ynew) is
less than or equal to eps, the iteration is stopped, and the calculation
is finished. Utherwise, a new increment is calculated from equation
(4.47) written as:

(4,48) delx = delxxynew/(yold-ynew)

As yold was first put equal to 2xynew, and delx was set to delOx,
the first value of delx becomes delOx after this formula, We then add
delx to x, store ynew as yold, and calculate ynew again from the func-
tion, y. A Jump 1s then made to label L for exit or a new iteration

cycle.
Note, that we stay in the procedure until the root is found (except

for the indirect function evaluations).

-59-

» test of RUUTS (and some of the later procedures) was made by means

of & small procedure, YPUL, which has the declaration:

real procedure YPUL;
begin
real Z;
Zi= (((-2.54867724=10xX = T.11264161-T)xX + 8.49590534-3xX +
3,359595 }xX + 665.17485 - YO;
writecr;
write({-ddddd.dddd00}, X, 2);
YPOL := Z;
end YPQL;

The procedure calculates the enthalpy of formation, H, of methane
minus a target value, YO, for a given temperature, X. &quation (La3h)
on page 52 is used, but with full accuracy in the coefficients. X and YO
are global variasbles, and YPUL assumes the value: H - YO. The procedure
prints a new line with the value of X and YPOL. The program d~391 tests
ROOTS with YPOL:

Program d-391,., Test of RUUTS.
begin

real X, YO;

copy ROUTS<

copy YPULK

select(8);

writetext (§<
Output d-391

X Yb);
X = 10003
YO := 16580;
RUOTS (YPOL, X, 10, 0.01);
writecr;

end;

The program gave the output:

=60~

Output d-491

X Y
1000, 00000 -5025.L5685
1010,00000 -4852.99390
1291.3934 1 351. 671265
1272. 38008 -18.845520
1273.34715 -0.057007
1273435009 0. 000000

The convergence of the root determination is quite fust, but this is
not surprising because the YPOL-function is nearly linear in the narrow

range considered,

L,3,3. The Procedure RUUT3, The procedure RUOTS is very short and

efficient. In a few cases, however, it will not work satisfactorily. If,
for some reason, yold and ynew become equal, we will get division by
zero, 4and the calculation is interrupted. If yold and ynew become very
nearly equsal, the difference guotient will not be very accurate, which
may cause trouble. A check for these possibilities will make the proce-
dure larger and slower, but there will be cases in practice where one is
wllling to pay this price in order to get an extremely reliable method,

When we want to construct a very reliable root finding procedure,
there are a number of poihts concerning strategy, safety measures, etc,
that must be setiled. These points are discussed in the following, &and
we finish with the declaration of & procedure, ROUT8, mede according to
these principles,

1. Tteration principle, The regula falsi method is preferred instead -
of the Newton-Raphson method, because the latter requires explicite cal-
culation of the derivative, and this can only be done in rare cuses,
There exists a third method, the bisection method, which is still safer
(and slower) than the regula falsi method. It works by marrowing down
the interval In which the root is located through bisection of the in-
terval in such & way that the function values at the two end points of
the interval always have opposite sign. The procedure RUUT7 (see page
69) is made according to this principle and with additional safeguards.

ROUTS uses regula falsi,

-61-

In order to avoid division by zero and poor accuracy we take care

that we only use the difference quotient:
(k. bg) alfa = (YNEW-YOLD)/DEIX

if 1t is numerically reliable. The value of YNEW-YOLD must not be very
small compared with YOLD, In the procedure RUOOT8 a new value of alfa is
only calculated if the absolute value of YNEW-YOLD 1s greater than
0,0001 times the absolute value of YOLD.

2« Range of definition. 1In some cases it is very important that the
independent variable, X, stays within a given range (from XMIN to XMAX),
but in other cases this is of no Importance. In order not to use too

many parsmeters for this purpose, we use only a single parameter:
boolean autside

If this control is not required, we write the actual parameter as
false. If we must check, that XMIN < X { XMAX, we may write an expres-

slon or declare a special procedure:

boolean procedure outside;

outside := X ¢ XMIN v X > XMaX;

When the iteration procedure has found a rew X-value from:
X = X + DELX;

it makes a call of outside (which is called by name) for control. This
method has also been found useful in other iterative procedures, e.g.
for optimization. In this way we can easily introduce other conditionms,
such as that another function of X must lie in & given interval,

53« Increment control. It may be useful to put an upper limit to the
increment, DEIX, especially when dealing with difficult functions. For
this we introduce « real type parameter, mexf, so that the maximum in-
crement is maxfxdelOx, where delOx is the start increment.

If we come outside the range of definition or maxf is surpassed, the
value of the actual increment, DELX, is halved until accordance.

—EP-

L, Criterion of convergence. In ROOTS the criterion that the root
was found was that the Y-value became less than & specified tolerance,
eps. We could also have used the criterion that DELX must become less
than a given tolerance. As a tolerance on X may always be converted into
a tolerance on Y by multiplication by alfa, it is not important which of
the two methods we select. The experience in use of procedures for root
determination and optimization has shown that it is completely satisfac-
tory to use the tolerance on X (which is also more natural from a mathe-
mtical point of view), and to assume that the root is found when the
absclute value of DELX becomes less than the tolerance, The latter 1is
not quite satisfactory from a mathematlcal point of view, because we may
risk to converge towards an X-value which 1is not a root, but a local
minimum., A rational solution of this problem also depends upon the
treatment of the next point:

5. Criterion of error. Some functions can be so difficult to handle
that it will be fair to permit that the root procedure gives up and goes
to an error label. We must then have a clear definition of the set of
functions the procedure must be able to handle, and for which functions
it may fail.

Naur (1964) has given un example of an automatic grading of a series
of root determination procedures prepared by a class of students., The
problem was defined so that F(X) was given in the closed interval aX{b.
It was assumed that F(a) and F(b) have opposite signs, and if this was
not the case, the procedure must conclude that there was no root.

In this situation we have a continuous function defined in a closed
interval and with opposite signs at the two =nd pecints. There will al-
ways be at least one root. The question is now, whether this is a real-
istic way of stating the problem. The experience shows that in practical
problems we can very often give u rough estimate of the position of the
root, but it may be quite difficult to specify a closed interval inside
which the root can be found with certainty, and where there are opposite
signs at the two end points. Instead of starting the investigation at
the two end points with a calculation of F(a) and F(b) uand then narrow
down the interval inside which the root must be located, it is more re-

alistic to start the search at a single point:
X = XSPARY

and then try a neighbor polnt:

X = XSTART + DELOX

and use the regula fulsi method from these points., If F(a) and F(b) are
to be included in the investigation, we run the risk that a and b are so
far from the root, that the function cannot be calculated, because it
assumes extreme and unrealistic wvalues.

If we select the strategy to start with XSTART and XSTART+DELOX, 1t
is reasonable to assume that the function is monotonously increasing or
decreasing around these points, With this assumption we will always find
the root with the regula falsi method. If the assumption is not correct,
i.e. we have local minima or maxima, we may risk to converge towards one
of these extremal point. In the procedure ROUTO we store the sign of the
first calculated difference quotient and perform the error exlt if we at
a later time get o difference quotient with opposite sign. The error
exit is also used, if the absolute value of the best (smallest) Y-value
is many times (100) larger than the absolute value of alfaxDELX, because
we must then have converged to an extremal point, not to a root.

6. Other safeguards. In ROOT8 we have the additional security, that
the procedure always stores +the Y-value having the smallest absolute
value, and the corresponding X-value. The latter is always delivered as
the requested root. If we are afraid that the procedure does not con-
verge within a reasonable time, we may build in a counting In the Y-pro-
cedure and go to the error label, 1f the number of Y-calls becomes too
high.

The declaration of ROOT8 is:

procedure ROOT8(y, x, delOx, eps, outsi, maxf, ERROR);
value delOx, eps, maxf;
boolean outsi;
real y, X, delUx, eps, mauxf;
Label ERRUR;
begin
boolean first, up, error;
real xold, xbest, ybest, yold, ynew, delx, A, diff;
xbest := Xold := x;
ybest := ynew := ¥;
yold := 2xynew;
delx := -delOxxsign(ymew);

first = true;

error := false;

for diff := ynew - yold while

abs(delx) > eps A yold # O A -, error do

begin
if first v abs{diff) > 1j-4xabs(yold) then A := Aiff/delx;

if -, first A (A < 0 = up) then error := true;

delx := -ynew/A;

for x := xold + delx while outsi v abs(delx} > abs(maxfxdellx) do
delx := 0,5xdelx;

Xold = X;

yold := ynew;

ynew := yj
if first then
begin

up := (ynew-yold)/delx > 0;
first := false
end 1if first;
if abs(ynew) abs(ybest) then
begin
ybest = ynew;
Xbest := xold;
end if better
end for diff;
X = Xbest;
1f error Vv abs(ybest) > 100xabs(Axdelx) then go to ERRCR
end ROOTS;

The following parameters are used in ROOTS:

real y, X, delOx, These are the same as in ROUTS (see page 57).
real eps. The permissible error in x. The iteration is continued as

long as the increment is larger than eps.

boolean outsi, This parameter is called by name and is normlly a
boolean procedure. Whenever ROOT8 has assigned a new value 1o X, it will
call outsi, which must then yield the value true, if x is outside a per-

missible range, otherwise false,
real maxf, If the increment becomes larger than maxfxdelOx, the in-

crement is halved until the condition is satisfied.
label ERROR. An exit to this label is made, 1if the sign of the

-65-

difference quotient chunges during the calculation, or if the y-value
corresponding to the calculated root is more than 100 times larger +than
the product of the difference quotient «nd the last increment in x (all
taken as absolute values).

The initial operations in ROUTS are the same as in RCOT5. The sign
of the first increment is adjusted to correspond to an increasing func-
tion. If the function is known to be decreasing, delOx may be inserted
with a negative value.

The main part of the procedure 1s a for-statement:
for aiff := ynew - yold while

The for-statement continues as long as the increment is larger than eps,
and yold is not zero, and no error has been detected. A new value of
alfa (a) is calculated, except if abs(ynew-yold) > 0.0001xabs(yold), as
explained above. A local boolean, error, is set to true, if alfa has
changed sign.

The increment, delx, 1s then calculated as -ynew/alfa., The double
check for x being outside the permitted range or the increment larger
than maxfxdelOx is then made. A new y-value is then calculated, and in
the first cycle the sign of the difference quotient is stored as the
local boolean, up. The best set of X and y is checked in each iteration
and stored as xbest and ybest.

When the maln for-statement is finished, x is assigned from xbest,
and the ERRUR-exit conditions are checked, as explained above.

The procedure was tested on the program d-392. It finds the root in
11 different functions of which the 9 first are taken from Naur(196L) in
the students grading program mentioned above., The two last functions are
y = Xf2 - 0,5 and the YPOL function. The program is:

Program d-%92., Test of R0OOTS.

begin
integer 1, §;
real X;
copy ROUT8<
procedure P(xmin, xmax, xstart, eps, root, function);
ig&gg xmin, xwax, xstart, eps, root;
real xmin, xmax, xstart, eps, root, function;

-66-

begin
boolean procedure outside;

outside := x € xmin VvV X > XmaX;

real procedure Y;
begin
Y := function;
Ji=J +1
end Y3
1 :=1+1;
J =0

writecr;

write(k-ddi, i);

X 1= xstart;

ROOTS(Y, x; 0.01x (xmax-xmin), eps, outside, 10, ERROR);
writetext ({< });

go to F;
ERROR :writetext (K< E });

P: write(f-ddddd}, J); _
write(f -d.dddddddy-dd}, root, x, Y);
end P;
1 = 0
select(8);
writetext({<
Output d-392

No Iteration Root, true Root, calc. Yy
});
P(0, 2, 0.05, 19-6, 0.1, if x<0.1 then 10xx - 1 else 14-20);
P(-2, 0, =1, 146, 0, =14x);
P(S, 6y 545y 199-64 54 5'x);
P(~-1T, -13, =15, 196, -13, x+13);
P(0, 20, 10, 144, 0.95, (x+0.05)40.1-1);
P(0,001, 99.9, 0.5, 1¢~5, 0.01, x+1/x-100,01);
P(2, 12, T, 146, 10, x/10-x4p6/118-0.99);
P(-5, 10, 3, 16, 1.324718, xp3-1-x);
P(-3.2, 20, ~1, 1=5, -Oul4, sin(x)+x/L+0.489418);

-67-

PO, 1, 0.5, 14-5, sqrt{0.5), ¥/2-0.5);

P(0, 2000, 1000, 14-2, 1273.35, 665.17T485+xx(3.359595+xx (8,4959053,5-%
+Xx (=T 112641 65p-T-xx2.548677245-10)))-16580) ;

wrltecr;

end program;
The program gave the following output:

Jutput d-392

No Iteration Root, true Root, calc. ¥y
1 b 1.0000000 4=1 1.0000000 15-1 -3,7252903 -9
2 K 16 0. 0000000 -6.3137652 47 -1.0000006
3 10 5. 0000000 5. 0000000 0. 0000000
L 10 =1.3000000 45 1 -1.3000000 4 1 0.0000000
5 12 9.5000000 15-1 9.4999994 -1 -7.4505806 -9
6 13 10000000 44=2 9.9999986 -3 1,3828278 -5
T 9 1.0000000 4 1 9.9999999 -5.7252903 14~9
8 11 1.3247180 1.3247180 ~3.7252903 1=9
9 T -L.0000000 4g-1 ~%+9999971 15-1 0.0000000
10 8 T.OT10678 441 T.0710678 40-1 0. 0000000
11 7 1.2733500 4 3 1.2733501 o 3 0. 0000000

The program writes the function number, the number of iterations,
the known root (which is not used), the calculated root, and the corres-
ponding y-value, Function no. 2 has given the error exit, because x-1
has no root in the range from -2 to O, The procedure yields x=0 as the
value giving the lowest absolute value of y. The average number of iter-
ations in the other functions is 9.

h.3.,4. Bisection Method for Difficult Functions. The procedure ROOTT
explained below has been designed to take care of a speclal kind of dirf-
ficult root determinations océurring in connection with the solution of
two-point boundary conditions for diffusion in catalyst particles, The
situation is illustrated on figure 5,

Mgure 3

Integration and Root Determination

in a Catalyst Pellet

<69~

The problem is to integrate a function starting with the value A at
the pellet surface and ending with the value zero 4t the pellet center,
If the start-A is not selected properly, the center value will not be
zero a8 it should. Thus, we have a root determination problem: The inde-
pendent X-wvalue 18 the sturt-aA, and the Y-function is the function value
at the center that must be reduced to zero,

If A is selected too far from the correct value {point B or C)y it
may happen that the integration cannot be carried through to the partic-
le center, but must be stopped before (point S or T). The stop in the
integration is normally caused by some of the mole fractions becoming
negative, 80 that the reaction rates, etc. cannot be calculated.

When the integration 1s stopped before the end point is reached, we
must use the function value at the pseudo-end-point as an approximation
to the true end-point function value., We must also collect information
on how far the integration could be carried out, 1.e. the abscissa of
the points 5 and T. When two function evaluations are compared, the one
having the lower penetration 1s simply disregarded.

The procedure RUUTT described below uses bisection, not the regula
falsi method. The reason for this is that the approximation of the dif-
ference gquotient calculated via regula falsi is not likely to be very
reliable because of the varying penetration., In the bisection method,
the interval inside which X must be located is gradually narrowed down
by halving. The interval halving is not started until the procedure has
located two X-values giving function values of opposite sign at the end
point of the integration, This is further explained in the next section.

b,3.,5, The Procedure RUOUTY. The declaration is:

procedure RUUTT(y, x, delVUx, xmin, xmax, delmax, eps, cfirst, clast,
cact, trouble);

Yalue delUx, xmin, xmax, delmax, eps, cfirst, clast;

boglean trouble;

integer cfirst, clast, cact;

real y, x, delOx, xmin, xmax, delmax, eps;

begin

integer type, clow, chigh, cnew;
real delx; ynew, yoldl, yoldh;

-70-

yoldl := -14100;
yoldh := -yoldl;
type := 03

trouble := false;
clow := chigh := cfirst;
ynew = y;
cnew = cact;
if ynew < O then
begin
if abs(enew-clast) < abs{clow - clast)
v cnew = clow A ynew > yoldl then
begin |
clow := cnew;
yoldl i= ynew;
xmin = X;
end if improvement;
type := if type K 1 then 1 else 3;
end if negative
else
begin
if abs(cnew-clast) < abs(chigh-clust)
v enew = chigh A ynew < yoldh then

begin
chigh := cnew;
yoldh := ynew;

xamax = Xj

end if improvement;

type := if type = O v type = 2 then 2 else 3;
end if positive;
delx := if type = 3 then 0.5x amx+xmin) - x else
if type = 1 then delOx else - delOx;
- if type = 3 A xmax - xmin < eps then go to EX;
if abs(delx) > delmax then delx := sign{delx)xdelmax;
if x + delx > xmax vV x + delx { xmin then
begin |

if type < 3 then trouble := true;

delx := 0.5x(xmax + xmin) - Xx;
end if out of range;

-7 -

X = x + delx;
£0 %o LL;
EX:

end ROOTT;

The formal parameters in ROUTT are:

real y, x, delOx, The same as in ROCTS and ROOTS (see page 57).

real xmin, xmax, Initial lower and upper bounds on X. Are used in-
ternally to narrow down the range, but as they are called by value, <the
new limits are not available outside the procedure.

real delmax. The maximum value of the change in x.

real eps., The permissible error in x (as in ROOTS).

integer cfirst, clast, cact. These numbers define the degree of pe-
netration of the integration. Example:

efirst = 0 (no penetration)
clast = 10 (full penetration)

Whenever the procedure y is called for an actual value of x, the
procedure must also deliver a value of cact, defining the actual degree
of penetration: cfirst (cact { clast.

boolean trouble. The procedure sets this to false at the start and
changes it to true, if y has the same sign for all trials in the initial
search,

The procedure operates as follows:

The best negative y-value is stored as the local variable, yoldl,
and the best positive y-value as yoldh. These are first set +to very
large negative and positive numbers (+1,5100),

The best values of cact are stored in clow (negative y) and chigh
(positive y) and these are both set to cfirst in the start,

A local counter, type, 1is used to indicate the progress of the cal-
culation:

type = 0 Start phase, no y-values found yet
type = Only negative y-values met so far
type = 2 Only positive y-values met so far
type = 3 Both negative and positive y-values met.

-T2~

The iteration cycle starts at the label: LL. The procedure, y, is
called, and its value is assigned to ynew. The corresponding value of
cact 1s assigned to cnev.

If ynew is negative, we have Improved the solution, if either of the
two possibilities is fulfillied:

1. cnew is better than the previously best value (clow), i1.e. cnew
is closer to clast.

2. cnew 18 equal to clow, but the y-value is improved (ynewd>yoldl).

We then assign cnew to clow and ynew to yoldl. The lower limit of x,
xmin, is put equal to X,

If ynew is positive, & similar updating is made for chigh; yoldh,
and Xmax,

The value of type 1s updated, if possible.

A8 long a8 the procedure has seen y-values of only one sign (type =
1 or 2), x is changed in fixed steps, delUx, for y negative and -delOx
for y positive., We assume that y 1s an increasing function {use negative
de10x for a decreasing function). As soon as it has found an interval
with opposite sign of the y-values at the two end points, the next value
of x is found by bisection of this interval, and the iteration is con-
tinued, until xmax-xmin < eps.

The program d-393 shown below makes a simple test of ROOT7 on the
function:

(bo50) Y = Xf2 - 0.5

The root is X = 0.,707107, and we simulate the integration penetra-
tion troubles by assigning a value of cact which is 10 close to the root

and decreases quickly when we move away from the root:
(4.51) cact = 10 - 20xabs{X - 0.7)

The declaration is:
Program d-393. Test of ROOTT.

begin

boolean trouble;

integer cact, Ii;

-73-

real X, Z;
copy RUOTT <
real procedure Y;

begin
72 =

X2 - 0.5;
:= 10 - 20xabs(X - 0.7);
writecr;
write ({-dddd}, 1, cact);
write (f-ddd.ddddddd}, X, 2);
Y = Z;
i = 1+1;
end Y3
select (8);
writetext ({<
Jutput d-393:

cact

i cact X Y
)
i = 1;
X = 0.2;
ROUTT (Y, X, 0.1, 0, 1, 0.2, 15, =10, 10, cact, trouble);
1f trouble then writetext({<Error});
writecr;
end;

The program gives the output:

Cutput d-3%93%:

1 cact X Y

1 C 0.,2000000 -0.4L600000
2 2 0,3000000 -0.4100000
3 L 0,4000000 -0.3400000
L 6 0.5000000 -0,2500000
5 8 0, 6000000 -0.1400000
6 10 0, 7000000 -0.0100000
T 8 0.8000000 0. 1400000

8 9 0,7500000 0,0625000
9 10 0,7250000 0,0256250
10 10 0,7125000 0,0076562
11 10 0,7062500 -0.0012109
12 10 0,7093750 0.0032129
13 10 0.,7078125 0.0009985
14 10 0.7070312 -0.0001068
15 10 0.,7074219 0,0004457
16 10 0,7072266 0.0001694
17 10 0,7071289 0,0000313
18 10 0,7070801 -0.0000378
19 10 0,7071045 -0,00000%2
20 10 0,7071167 0.0000140
21 10 0,7071106 0,0000054%

7l -

The rather slow operation of RUUT7 is due to the bisection method,
which actually finds only a single bit of X in each iteration.

An interesting root determination procedure has been published by
Schreiner Andersen (1970). It uses a weighted combination of regula fal-
si and bisection with adaptive improvement of the weight factor.

For the sake of good order it should be noted here, that the numeri-
cal difficulties
connected with the two-point boundary condition inhererent in the cata-
when the differential equations are

in the problem illustrated in figure 3 (page 63) are

lyst effectiveness calculation.
solved by means of the Runge-Kutte method,
boundary conditions may become quite difficult. If, however, global so-
lution methods are used instead of the Runge-Kutta method, the solution
may become much easier. Villadsen (1970) treats this problem in consid-
erable detail by means of the orthogonal collocation method. The adap-
tion of this method or similar methods may remove the necessity of hev-
ing & procedure like ROOT7, but the general approach in ROOT7 could be
useful in other connections.

the correct solution of +the

~75-

4,h, Several Non-lLinear Equations.

4,4,1. The Procedure NULEQRS. This standard procedure performs the

solution of several non-linear equations after the Newton-Raphson method
or its approximation by difference gquotients (regula falsi in the one-
dimensional case),

The calculation of the difference quotients 1s equivalent to the ge-
neration of a linear model of the functions (see Chapter %), and the
model generation may, therefore, be carried out by GENMOD! or a similar
procedure, after which the non-linear equations are solved as explained
on page 41, In other cases 1t is convenient to have the generation and
the solution combined into a single procedure, and this is done in
NulLQd. The declaration is:

integer procedure NOLEQS (var, count, cyc, cmax, cymax, outsi,

first, epsy, new, d, xstart, delOx, delx, xact, epsx, yact, y0, yold,
€ps, ma-xf)i

value var, cmax, cymaX, epsy, new, eps, maxf;

integer var, count, cyc, CmaX, CYymax;

boolean outsi, first, epsy, new, d;

real eps, maxf;

array xstart, delOx, delx, xact, epsx, yact, ¥0, yold;

begin
boolean found;

integer ¢, i, J, error;
real R, 5;

ROLEQS := O;

c = count - 1;

found := false;

for 1 := 1 step 1 until var do xact[i] := xstart[i];

if count = O then
begin
count := count + 1;
Af new then d := false;

go to 15
end if count = O;

“76-

if count = 1 v -, first then
begin

found :

epsy;
1 step 1 until var do

It

for 1 :

begin
R := -yact[i];
1if epsy then

begin
if abs(R) > epsx[1] then found := false

end if epsy;
yU[i] := R
end for i;
if found then
begin

NOLEQB := 1;
for 1 := 1 step 1 until var do xstart{i] := xact[1];

g0 to 13
end if found;
end if count = 1 or not first;
if first then

begin
if count > 1 then

for i := 1 step 1 until var do
begin
yold[i,c] := if new then yact[i]
glse (yact[i] + yo[1])/delx[c];
end for i and if count > 1;
if count { var then

begin
if new then

begin
d := true;

J =13
L1: delx{count] := delOx{count]/J;
xact[count] := xstart[count] + delx[count];

T

if outsi then
begin
3 1= 2xd;
g0 to L
end if outside;
end if count var

else

begin
for 1 := 1 step 1 until var do
for j := 1 step 1 until var do

yold[i, var+j] := if 1 = J then 1 else O;
error := NOLEQS := -IEQ1(var, var, yold, eps);
1 error < O then go to L3;

for 1 := 1 step 1 until var do

for J := 1 step 1 until var do
yold[i, j] := yold[i, var+]];
first := false;

count := O;
cyc = cyc + 1;
if new then d := false
end inversion
end if first;
if -, first then

begin
found := -, epsy;
:= 0
for 1 := 1 step 1 until var do
begin

= O
for j := 1 step 1 until var do
R = R + yold[1, 3Jxy0[4];
delx(1] := R;
R := abs(R/delOx[1]);
if R > S then S := R
if -, epsy then
begin
if abs(delx[1]) > epsx[1] then found := false
end if not epsy

end for i;

-78-

S := if S > maxf then maxf/S else 1;
I2: for i := 1 step 1 until var do
xact[i] := xstart[i] + delx[i xS;
if outsi then
begin
S 1= 0.5x5;

£0 to 12
end if outsi;
for i := 1 step 1 until var do xstart{i] := xact[i]
end if not first;
if found then NULEQS := count := 1
else

if cyc > cymax then NOLEQS := -1

else

begin

count := count + 1;
if count » cmax A -, first then
begin

count := 1;

first := true

end
end normal exit;
L3:
end NULEQS;

L,4,1,1, Parameters, The procedure has 20 formal parameters which

are explained below.
integer var, The number of non-linear equations (= the number of

UNKnowns)«

integer count. An iteration counter which must be set to 2zero be-
fore the first call, The procedure increases count by one at each exit
during build-up of the linear model and resets it to zero when the mo-
del is finished.

integer cyc. The number of cycles carried out., Must be set to zero

before the first call., Is increased by the procedure.
integer cmax. The maximum number of iterations before a new linear

model 18 generated.
integer cymax. The maximum number of cycles,

-79-

boolean ocutsi. This will normally be & bhoolean procedure. It is
called (by nzme) by NULEQS every time a new set of actual x-values,
xact{1:var], is calculated, It must yield the value true, if the actual
set of x is outside the permitted range, otherwise false.

boolean first. Must be put to false, if the old linear model should
be used, otherwise true,

boolean epsy. True: epsx refers to y, false: epsx refers to x.

boolean new, True gives Newton-Raphson calculation method using the
derivatives. Fulse gives the approximate calculation method using 4if-
ference quotients only.

boolean d. When new is true, the procedure will vary the value of d.
For d true the main program must deliver the derivatives in yact and for
d false the main program must deliver the function values in yact., For
new false, d is not used,

array xstart[1:var]. Start values of x,

array delOx{1:var]. Start increments in x.

array delx[1:var]. The actual increments in x.

array xact[1:var]. Actual values of x.

array epsx[1:var]. Permissible errors in x (or iny, 1f epsy is
true).

array yact[1:var]. Actual y-values (or derivative values, if new
and 4 are true).

array yO[1:var]. Used for storage of the y-values (with opposite
sign) corresponding to xstart.

array yold[1:war,1:2xvar]. Used by the procedure for storage of
derivatives or difference quotlients during generation of the Ilinear
model, and for the complete linear model.

real eps: Minimum pivot accepted by LEQ1. If any of the pivots
becomes less than eps, the calculation is stopped.

real maxf: The procedure checks that the change in variable no, 1
does not exceed maxfxdelUx[i] for all values of 1., If the change is
to0 large, all increments will be reduced proportionally.

The procedure is of the open type: We leave the procedure when a new
set of x-values has been assigned and the main program must then find
corresponding y-values, and NOLEQS is called again. The control of these
calls is made by the counter, count, and the overall state of the cal-
culation is stored in NOLEQS itself, which is of type integer. The fol-

lowing values are possible:

-80-

NOIEQS = O: Normel exit., The main program must calculate new values
of yact.

NOLEQB = 1: The solution is found and contained in xact,

_NULEQS = -1: Calculation impossible. Either inversion trouble or cyc
> cymax.

The non-local procedure 1EQRT must be available to the procedure.

b.h.o1.2. Model Generation. When NOLEQS is used with difference quo-

tients, not derivatives, the first part of the calculation is taken up
by the generation of the linear models of the functions that are to be
reduced to zero. A detailed description is given for three equations in

three unknowns. We can write the equations as:

#
C

M{x1, x2, x3)
(4,52) Fe(xt, x2, x3)
F53(x1, x2, x3)

l

and we must find the set of numbers, x1, x2, and x3, S0 that the three
expressions: Ft, F2, and F5 become zero within a given tolerance,

The calculation is started at a specified point:
xstart[1], xstart[2], xstart{3]

and the three functions are calculated in this point and in certain
neighbor points. We then express the three functions as linear func-

tions of three variables, we put these equal to zero, and solve +the
set of linear equations obtained in this way. The solution found will
be correct, if the original functions were linear, Otherwlise, the cal-
culation is repeated around the new point.

At the first call'(count = 0} of NOLEQB, it simply inserts the start

values of xact:

for i := 1 step 1 until var do xact[i] := xstart[i];

The main program must then calculate the corresponding y-values.
In the next call (count = 1), the yact-values are stored in yO (with
opposite sign):

for i1 := 1 step 1 until var do yO[i] := -yact[i];

-81-

The procedure then inserts the new values of xact:

xact[1] := xstart{1] + delox[1];
xact[2] := xstart[e];
xact{3] := xstart[5]i

The main program must then calculate the corresponding yact-values.
In the next call (count = 2), the procedure stores the yact-values
in the first column of the yold-matrix:

for i := 1 step 1 until var do
yold{i,1] := (yact[i] + yo[1])/deix[1];

They are the difference quotients of the three functions with re-
spect to the first variable.

Now the new x-values are set:

xact[1] := xstart{1];
xact[2] = xstart[2] + delox[2];
xact[3] := xstart[3];

and after exit and & new call (count = 3), the new difference quotients
are stored as the second column of yold.
Finally, for count = 4 we store the difference quotients for the x-

values:
xact[1] 1= xstart[1];
xact[2] := xstars[2];

Xact{3] := xstart{3] + de10x[3];

@8 the third column of yold. The element yold[i,j] 18 then the diffe-
rence quotient of function no. i with respect to the variable no. j,

4.h,1.3. Solution., We have now collected the necessary material to

find the solution. To save space we write the difference quotients as:

a[1,4] = yora[1,3];

-8z~

The required solution, x[1:3], is expressed by means of the start
value, xstart[1:3], and a correction, delx1:3]:

x[1] :
x[2] :
x[3]

xstart[1] + delx[1];
xstart[2] + delx[2];
xstart[3] + delx[3];

]

il

In order to find the values of delx, we express the three functions
as linear approximations:

F[1] = a[1,1 x[1 Jra[1,2x[2Jwa1,3]xx[3]+k[1];
F[2] := a[2,1]xx[1]+a[2,2]xx[2]+al2,3 xx[3 }+k([2];
F{3] := al3,1]x[1]+a[3,2xx[2]+a[3,3Ixx[3]+k[3];

In matrix form this may be written:
(L.53) F=ax+k

We put the vector x equal to xstart + delx and get:
(b,54) F = a(xstart + delx) + k

For xstart we have F = -y0:
(4.55) ~-y0 = xstart + k
and for x = xstart + delx we have F = O:
(4.56) 0 = a(xstart + delx) + k

We can now eliminate xstart and k and f£ind:
(4.57) & delx = yO
or, written out in detail:

a[1,1]xdelx[1J+a[1,2 Ixdelx[2]+a[1,3 Ixae1x[3] = yo[1]

(4.58) a[2,1]xdelx[1 J+a[2,2]xde1x[2]+a[2,3]xdelx[3] = yO[2]
a[3,1Jxdelx[1]+a[3,2]xde1x[2]+a[3,3 xae1x[3] = yO[3]

-83%-

This is a simple system of linear equations. We could solve it di-
rectly on LEQ1, but as we sometimes wish to use the linear model several
times without recalculation, it is more convenient to perform a matrix
inversion. This 1s also done be means of 1LEQt, but before this we must
insert the unit matrix in the second half of the yold-matrix:

yold[1,d]:

i=1 1 0 0
i=2 Q 1 O
1 =3 0 0 1

When LEQ1 is culled with var unknowns and var right-hand sides, this
unit matrix is replaced by the inverse of the a-matrix. It is then moved
back to the first half of yold and multiplied by yO. This gives the re-
quired delx-vector.,

Before the delx-vector is added to the xstart-vector, various small
tests are made. If epsy is false, the procedure tests if all delx-ele-
ments are less than or equal to the corresponding epsx-element. If this
in the case, the solution hae been found, and the procedure is finished.
If not, we find the maximum value of:

abs (delx[i]/del0x[1])

for all varisbles, If the maximum value, S, is greater than maxf, all
increments will be rmultiplied by maxf/S before the addition,

The procedure then calls the parameter (procedure) outsi, and it
this is true, new x-values are calculated with half of the Previous in-
Crements, outsi is called again, etc. The halving 18 repeated as long as
outsi is true. When outsi becomes false, xstart is also put equal to
xact, :

We then leave the procedure, and the main program must calculate
the new yact.values, which are then stored as yO (with opposite sign),
and we start again with a new cycle.,

-8~

hobi,t.b. Examples, Two calculation examples are given to illustrate

the use of NULEQB8. The first example uses an ammonia converter test pol-
ynomial, POL, which calculates two functions of two variables. It is a
model of the performance of an ammonia converter of the quench type. It
is only used as an illustration, not for design purpose.

The two independent variables in the PUL-procedure are:

tinlet: Inlet temperature to the first catalyst bed (deg. C).
ginlet: The relative gas flow (in per cent of the total flow) en-
tering the first catalyst bed.

The two functions calculated by the POL-procedure are:

PROD: The ammonia production (metr. t/2Lh).
LNEC: The necessary height of the lower exchanger (meter).

We wish to calculate a set of tinlet and ginlet for which:

PROD = 71,5
INEC = 2

This is done by calculating the yact-values as:

yact[1] := POL(1, xact[1], xact[2]) -T1.5;
yact[2] := POL(2, xact[1], xact[2]) - 2;

xact[1] 1s tinlet and xact[2] is ginlet. The program is:

Program d-327. Test of NOLEQS

begin
boolean fin, first, deriv;
integer 1, cyc, count, J;
real PRUD, LNEC;
array xstart, delOx, xact, delx, epsx, yact, yO[1:2], yold[1:2,1:4];
copy 1EQ1 <
copy NOLEQS <
copy POL <

-85-

for j i= 1, 2, 3 do

begin
xstart[1] := kLo
xstart[2] := 68;

del0x[1] := 5;
delOx[2] := 2;
epsx{1] := 1;
epsx[2] := 0.2
count = cyc = U;
select(8);
writetext ({<
t-inlet g-inlet PROD INEC

});
fin := false;
first := true;

Hi: 1 := NOLEQB(2, count, cyc, j, 50, false, first, false, false,
deriv, xstart, delOx, delx, xact, epsx, yact, y0, yold, 1,-8, 4);
fin = 1 + 0;
if fin then
begin

writecr;
writetext(if 1 > O then {KFUUND} else {<ERROR});
end if fin;
wriltecr;
if (count - 1) mod 3 = O then writecr;
write(K-dddd.dddd}, xact[1], xact{2]);
PROD := PUL(1, xact{1], xact{2]);
yact{1] := PROD - 71.5;
LNEC := POL(2, xact[1], xact[2]);
yact[2] := LNEC - 2;
write ({-dddd,ddddov}, PRUD, LNEC);
if -, fin then go to H1;
writecr;
gxd for J;
end;

—r

The program gave the following output:

t-inlet

40, 0000
Lys,0000
L4440, 0000

420, 0000
425.0000
420,0000

L11,0457
L16,0457
411,0457

406.2680

411,2680

406,2680
FQUND

406,3359
t-inlet

4.0, 0000
ks, 0000
440, 0000

420,0000

k12,2756

417.2756
412.2756

405,7259
FOUND

406.5205

g-inlet

68,0000
68,0000
70,0000

68.1038
68,1038
70.1038

70,5275
7045275
T2.5275

T1.4713

71,4713
T3.4713%

T1.4511
g-inlet
68,0000
68,0000
70,0000
68,1038
70.6618
T0.6618

T2.6618

T1.4874

T1.4504

PRUD

72.538228
T2. 669139
72.855762

71.29867h
71.759268
T2, 145485

71.587530
Te. 014k
72.266506

71500424
71.969902
T2.175319

PROD

72.53%8228
T2, 669139
T2.955762

T1.298674
71.757206
T2. 149467

72.378906

71.449183

71.518405

-86-

LNEC

2.599180

2,669936
2.h11905

2,348836
2.428249
2.178332

2,092726
2.123248
1.958033

1.998335

2.030972
1.877078

2.000093

INEC

2,599180

2.669936

2.411905

2.348836

2.092342
2,120371
1.957585

1.993049

2.001573

-87-

t-inlet g-inlet PROD LNEC

L40,0000 68,0000 72,5%8228 2.599180
Lh5,0000 68,0000 72,669139 2.669936
L40,0000 70,0000 72.853762 2.,411905
420,0000 68,1038 71.298674 2.348836
412,2756 70,6618 T1.757206 2,092342
LOL,0239 70,4010 70.722371 2.021311
09,0239 70,4010 T71.324718 2.083419
LOL,0239 72,4010 71.6%6650 1.928161
406,%692 T1.4840 T1.516311 1998341

FOUND
4L06.3690 Ti.bLB4 T71,501646 2.000520

The solution is found to tinlet = 406 and ginlet = 71.5. The program

illustrates the simple use of the difference quotient method. In this
example the solution is found three times, for three different values of

cmax, The total number of iterations are:

CIMX Iterations
1 13
9
3 10

This clearly shows the advantage of using the linear model a few
times (but not too many), before a new model is generated.

The second example gives a comparison between the difference quo-
tient method and the derivative (Newton-Raphson) method. We wish to

solve the two non-linear equations:

X142+ xep2 -2
1/X142 + x2f2 - 2

(4.59)
(4.60)

-833-

They have the solution X1 = X2 = 1 for positive values of X1 and X2.
The progrom is:

Program d-402, Second test of NULEYS
begin
boolean fin, first, deriv, new;
integer 1, cyec, count, cmax, type, eval;
array xstart, delOx, xact, delx, epsx, yact, yO[t:2],
yold[1:2,1:4];
copy LER1 <
copy NOLEQS <
select(3);
writetext(k(
Output d-LoO2

type eval
emax X1 x2 ¥ ye
+);
for type := 1, 2 do
for cmax := 1 step 1 until b do
begin
writecr;
xstart[1] := 2;
xstart[2] := 33
delUx[1] := delOx[2] := 0.5;
epsx[1] := epsx[2] = 14-3;
count := cye = eval := U;

fin := false;

first := true;
new := type = 2;
deriv := false;

H1: 1 := NOLEQB(2, count, cyc, cmax, 50,
xset[1] { 0 v xact[2] ¢ 0, first, false, new, deriv,
Xstart, delUx, delx, xact, epsx, yact, yU, yold, 14-8, 4);
fin = 1 # 0;

eval = eval + 1;

-89-

yact[1] = if deriv then 2xxact[count-1] else

xact[1}fe + xact[2 e -2;

yact[2] := if deriv then >
(gggg count -1 of(-2/xact[1h3, 2xxact[2])else

1/xact[1 Y2 + xact[2]po -2;

if -, fin then go to H1;

write({addd}, type, cmax, eval);

write(f -d.dddddd-ddp, xact[1], xact[2], yact[1], yact[2]);
end for type and cmax;

writecr;

end;
Output from the program is:
Output d-kog

type eval

CmAx x1 x2 1 ye
11 22 1,000000 1.000145 2,910048 -4 2,905726 U
T2 17 1.000000 1.000126 2.515198 -4 2.51181h -4
1 3 16 1,000000 1,000093 1.856461 o=t 1.856163 -k
T b 17 1.000000 1. 000062 1.245812 bt 1.245812 -k
2 1 16 1,000000 1. G00000 0. 000000 0. 000000
2 2 13 1,000000 1.,00000% 6.273389 =6 6.260839 -6
2 3 15 1,000000 1.,000000 0. 000000 0, 000000
2 & 13 1,000000 1,000031 6.211549 =5 6,212294 45

The program contains the two for-statements:

for type := 1, 2 do

for cmax := 1 step 71 until 4 do

Calculations for type = 1 use the difference quotients, in which
only the two functions:

yact[1] = xact[1 Y2 + xact[2 Y2 - 2;
vact{2] = 1/xact[1 Y2 + xact[2 Yo - 2;

-90-

are evaluated. For type = 2 the Newton-Raphson method is used. The func-
tion evaluation then depends upon the value of the parameter: deriv,
If deriv is false, the y-functions are calculated as above, but if it is
true, we must calculate the partial derivatives:

count = 2 edbunt = 3

yact[1] axxact[1] 2xxact|2]
yact{2] -2/xmact[1 Y5 2axxact|2]

Variation of the parameter, cmax, i1llustrates the effect of using
the linear model more than once. The number of iterations required are:

Iterations

CHAX type = 1 type = 2

1 22 16
2 17 13
3 16 15
b 17 13

This clearly shows the advantage of the Newton-Raphson method. Note,
however, that this method requires programming of expressions for the
derivatives,

b,4.2, Separation of Model Generation and Solution, As mentioned in’
sections 3.6 and 4.4,1, the action of the NOLEQB procedure can be sep-
arated into two parts: Model generation and solution of the linear equa-
tions., It should also be mentioned here, +that the optimization method
described in Chapter 5 in which side conditlions are taken care of by
means of penalties, can also be used on problems which involve only non-
linear equations and no optimization as such,

-91-

4,5, Series of Roots,

In some cases we wish to calculate the root of a function for sever-
al different values of a parameter occurring in the function expression.
As an example we take the function:

(4,61) Y = X6 + PxXf5 - 20xX - 1

For P = 20 we have a root at X = 1. We now wish to calculate this
root. for P = 20, 21, 22, etc. up to 30, If calculations of this type are
to be made by hand, we will gradually build up a table of the roots and
the differences:

P Root Deltal Delta2 Delta3
20 1,00000

-0,01130
21 0.,98870 +0,00061

-0.01069 -0,00005
22 0,97801 +0,00056

-0,01013
25 0,96788

If we at this point try to predict the root for P = 24 by extrapo-
lation from the differences, we find:

0,96788 + (-0,01013 + (+0,00056 + (-0.,00005))) = 0,95826
Insertion shows that this is very close to the correct root.
4,5.1. The Procedure ROOT:. This extrapolation to the next root in a

series of roots by means of the differences may be carried out with the
Procedure ROOT4, for which the declaration is shown on the next page.

-92-

procedure ROOTY (g, n, x0, delOx, xmin, xmax, eps, epsy, dx, X, y);
value n, x0, delOx, xmin, xmax, eps, epsy;
integer q, n;
boolean epsy;
real x0, delOx, xmin, xmax, eps, X, ¥;
array dx;
begin
integer J;

boolean first;

real delx, yold, ynew, A;
procedure iner(z);

real z;

begin

A = zZ;

L1: if -, epsy then
begin
if eps - abs(A)) O A -, first then go to Lk
end;
1f x + A (xmin Vv x + 4 > xmax then

begin
A 1= 0.5xA;
£0 to L1
end;
delx := A;
X := x + delx
end incr;

x = if gq=0 then x0 else ax[0];
Af <1 then go to L3;
delx := O;
for J:=2 step 1 until q do
delx := delx + dx[j§-1];
incr(delx);
L5:yold := ynew;
ynew = ¥y;
if epsyneps - abs(ynew)>0 then go to Ih;

-93-

if first then
begin
incr (delOx);
first := false;
go to 15
end first;
delx := if yold # ynew then delxxynew/(yold-ynew) else -0,5xdelx;
incr(delx);
go to L3;
L:1f =0 then go to L5;
A = X
for j:=1 step 1 until q do
A= ax{3-1] = 4 - ax[j-1];
if q<n then dx[q] := ax[g-1];
if q=1 then go to 15;
for j:=q-1 step -1 until 1 do
ax[J] := ax[3-1];
L5:dx[0] := x;

The parameters in ROOT4 are:

integer q. A counter which must be set to zero before the first call
of ROUT4. The procedure adds 1 here after each call, until it reaches n.

integer n, The required order of the difference table.

real x0, Start value of X.

real delOx, First increment in X,

real xmin, xmax. Lower and upper limits of x.

real eps. The permissible error in x or y.

boolean epsy. Is specified as true, if eps refers to y, and as false
if it refers to x.

array dx[0O:n]. Used by the procedure for storage of the differences.

real x, The independent variable. Contains the root at the exit.

real y, The given function (expression) for which we must find the
root.

The program d-394 shows the application of ROOT4 for the calculation
of the root for the 11 values of P in the example above. The program is
shown on the next page.

Program d-394, Test of ROOT4.

begin
integer P, Q, J;
real X;
array diffx[0:h];
copy ROOTH <
real procedure Y;
begin
Y = X6 + PxXXA5 - 20xX - 1;
Ji=J + 1;
- end Y;
Q := 0
select(8);
writetext (£<
Output d-39%4:

P Iteration X Y

}P;

for P := 20 step 1 until 30 do
begin

writecr;
write (k-dd}, P);
J 1= 0
ROOT4(Q, 4, 0.9, 0.025, -100, 100, 1y-5, false, diffx, X,
write ({-ddddd}, J);
write(f -d.ddddddady-dd}, X, Y);
end for P;
writecr;

end;

The output is shown on the next page.

Y);

-95-

Output d-394:

P JIteration X Y

20 6 1 . 0000040 34344196 -k
21 5 9,8869904 4-1 1. 7404556 -5
22 b 9.7800693 -1 -1,9073486 y=lt
23 3 9.6737753 1¢~1 2,8550625 -l
2k 3 9,5824559 -1 8. 6784363 -5
25 3 9.4907493 45~1 -1.6885996 y -4
26 3 9.4033272 -1 -1,9788742 -5
27 3 943197938 =1 3.9458275 -5
28 3 9.2398415 41 -5.2630901 -5
29 3 9.1632312 -1 U4, 166364T -5
30 3 9.08971LT 45-1 5.5432320 46

The essential part of the program is a for-statement controlled by
P, For each value of P ROOT4 is called once, and we write a line with
the mumber of iterations, the value of X, and the value of Y. We have
put n = 4, and we see how the number of iterations decreases from 6 to 3
when the difference table is bullt up.

ROOTU operates as follows. There is & local procedure, iner(z),
which increases x by z. If we then come outside the range from xmin to
xmax, z 18 halved until the condition is satisfied.

AS the start value in the root determination we first use x0O, In the
next trials, the start velue 18 extrapolated from the difference table,
The iteration within a single call of ROOT4 uses the normal regula falsi

expression:
(b.62) delx = delxxynew/(yold-ynew)

In order to avoid division by zero, we use halving of the previous
interval; if yold=ynew.

When the root has been found, the new differences are calculated be-
fore the exit.

The extrapolation principle in ROOTY can be extended to functions of
several variables.

-96-

5. UPTIMIZATION

5.1. Basic Prineciples,

L3

A very important practical computer problem for which efficient
methods are required, is to find a maximum value of a function, 1l.e, to
find & point where the function value is greater than or equal to the
function wvalues in all other points in the interval of definition.

If we have a function of, say 3 variables:

(5.1) Y = F(X1, X2, X3)

we have seen in Chapter 3 how to generate a quadratic model which i1s an

approximation to the original function near the basic point around which
the model was generated. If we assume, that the maximum is actually sit-

uated in this region and not on some boundary curve of the definition
region, the necessary condition for the maximum point is, that the three

derivatives are all zero:

dy /dX1
(5.2) dy/dxe
dY /dX3

]

For a quadratic model the derivatives will be linear expressions,
and we can solve the three linear equations in the three urknowns: the
coordinates of the maximum point. This approach is used by the procedure
OPTQUA1 described in section 5.2,

The solution of equations (5.2) can yleld a maximum, a minimum, or a
saddle point. Section 5.2 explains how to dislinguish between these pos-
sibilities. Examples are also given of the use of OPTQUAT.

If the originul function is approximated by a linear model, the op-
timization calculation can be made by the method of steepest descents,
described in section 5.3. This method 1s not so efficient as the gquadra-
tic method,

It is possible to use methods which do not require a detailed alge-
bralc treatment of the functions or their models., Two methods of +this
type are described here:

-97-

The procedure UPT1B explores & function of a single variable in di -
screte points with a fixed distance. A secondary function is tested at
the same time, and the procedure finds the maximum of the first function
with the side condition that the secondary function is non-negative., The
procedure can also be used for functions of several variables, if one
variable is treated at a time.

The second procedure, DIRSEARCH, is the direct search or pattern
search method described in the literature, It finds the optimum of &
funetion of several variables by simple upward and downward moves of the
variables. Successful patterns of moves in all the variables are applied
at appropriate places of the sedarch.

In the present context DIRSEARCH works on a single function only. an
extended use of the procedure can be obtained by combining it with gene-
ration of quadratic models from the true functions available, and the
inclusion of side conditions (equalities or inequalities)., The latter
are handled by means of penalties, i.e. the object function is reduced
by 4n amount which increases as the non-fulfilment of the side conditi-
ons become larger. The direct search optimization is ecarried out in
cycles using increasing penalty coefficients. The adaption of the method
10 take care of side conditions was made by Mr. E, Balslev. The method
is described in section 5.5,

The classical method of linear programming is not discussed here., It
is described in many different books. The basic Principle is the optimi-
zation of a linear function with a large number of simultaneous, linear

side conditions,

5.2+ Quadratic Optimization.

When a quadratic model is available for a function of VAR varia-
bles, it is very easy to find a true optimum of the function, i.e., a
point where all the derivatives are zero, A further check will then
reveal whether this point is a minimum, a maximum, or a saddle point.

If we take the example VAR = 3, the quadratic medel 1is shown on
page 41 together with the corresponding three first-order derivates.
If we put these derivatives equal to 2zero, we get the three linear
equations:

-98-

2xMOD[5,1 Jxxact[1] + MOD[8,1 Jxxact[2] + MOD[9,1]xxact[3] = -MOD[2,1]
MOD[8,1 Jxxact [1 1+2xM0D[6,1 Jxxact[2] + MOD[10,1 Jxxact[3] = -MOD[3,1]
MOD[9,1 Jxxact[1] + MOD[10,1 Jxxact[2 J+2xMOD[7,1 Jxxact (3] -MOD[&,1]

]

I

A simple optimization procedure can now be made as follows. The
procedure generates the VARx(VAR+1) matrix defining the linear equa-
tions and solves these by means of LEQ!1 or & similar procedure. The

solution defines the optimum point,

5.2.1. The Procedure OPTQUal. This procedure works after this method
and has the declaration:

integer procedure OPTQUA1(cycount, cymax, VAR, FUNC, MOD, MAT, out,
maxf, eps, xstart, delx, delOx, xact, epsx, yact, yweigh);
value cymax, VAR, FUNC, maxf, eps;

boolean out;
integer cycount, cymax, VAR, FUNC;
real maxf, eps;
array MOD, MAT, xstart, delx, delOx, xact, epsx, yact, ywelgh;
begin
boolean good;
integer 1, j, k, m;
real R, 5;
procedure SCaN(base);

value base;
integer bhase;

begin
R = O

for m := 1 step 1 until FUNC do
R := R + MOD[base, mlxyweigh[m];
end SCaN;
kK 1= 1 + 2xVAR;
for 1 := 1 step 1 until VAR do
begin
SCAN(1 + 1);
MAT[1, VaR+1] := -R;
SCaN(1 + VAR

if 1 < VAR then
for § =1 + 1 step 1 until VAR do
begin
k :=k + 13
SCAN(k);
MAT[L, 3] := MaT[J, 1] := R;
end for j and if 1
end for 1;
OPTQUAY := i := - LEQ1(VAR, 1, MAT, eps);
if 1 =0 then
begin
good = true;
S 1= 0

for 1 := 1 step 1 until VAR do

begin
xact[1] := MAT[1, VAR+1];
delx{1] := xact[i] - xstart[i];
if ebs(deix[i]) > abs(epsx[i]) then good := false;
R := abs(delx[1]/delox{1]);
if R > S then S := R

end for i;

if S > maxf then

begin
for 1 := 1 step 1 until VAR do
begin

delx[1] := delx[1]/Swmaxs;
xact[1] := xstart[i] + delx[1];
end for 1;
end if large;
S 1= 13
for S := Sx0.5 while out do
begin
for i :=1 step 1 until VAR do

begin
delx[1] := O.5xdelx[i];
xact(i] := xstart[i] + delx[1];
end for 1;
end for S;

if good then OPTQUA1 := 1 else

begin
cycount := cycount + 1;
if cycount > cymax then OPTQUA1 := -2;
end not good;

for i := 1 step 1 until VAR do xstart{i] := xact[i];
MODVAL1 (VAR, FUNC, (VAR+1)x(VAR+2):2, O, MOD, xact, yact);
end if not pivot trouble;
end OPTQUAT;

The procedure uses only variables and arrays stored in the core.
The parameters are:

integer cycount. A counter increased by 1 in each call of the pro-
cedure. No initlal resetting is required.

integer cymax. A maximum value of cycount.

integer VAR, The number of independent variables,

integer FUNC. The number of functions included in the model. As
we assume that the model 1s quadratic, OBS is not a formal parameter
(0BS = (VAR+1)x(VAR+2):2).

array MOD[1: OBS, 1: FUNC]. The quadratic model. Must be available
before the call of the procedure.

array MAT(1: VAR, 1: VAR+1]. This auxiliary array is used by the
procedure for storage of the matrix and solution of the equations.

boolean out. This global procedure must yield the value true, if
the calculated optimum point, xact[1: VAR], 18 outside a permitted
range, otherwise false,

real maxf. The procedure checks that the range in variable no. i
does not exceed maxfxdelOx[1i] for all 1. If the change is too large,
all changes are reduced accordingly.

real eps. Minimum permissible pivot in LEQ1.

array xstart [1: VAR]. Basis point of the independent variables.
Must be awallable before the call. The optimum x-values are also
assigned to xstart at the end of the call.

array delx[1: VAR]. Contains the actual change in the x-values
after the call,

array delOx[t: VAR], Increments in the independent variables.

-101-

array epsx[1: VAR]. The permissible error in calculation of the
maximum point. When the calculated change in xact[i] is 1less than
epsx[i] for all variables, the value of OPTQUA1 1S set to 1, The two
arrays, delOx and epsx, are not changed by the procedure.

array yact[1: FUNC]. The procedure calculates the function values
in the optimum point by & call of MODVAL! and stores them in yact.

array yweigh{1: FUNC]. This is a set of weights to be applied to
the y-values. The procedure operates on the model of FUNC functions,
but it can only optimize a single of these, or a linear combination of

them, If we have FUNC = 3 and want to optimize function no. 2, we must
assign:

yweigh[1] := ©;
ywelgh[2] := 1;
ywelgh[3] := 0

The procedure multiplies all coefficlients extracted from the qua-
dratic model by the corresponding value of yweigh.
integer OPTQUA1. After the call, this will have one of the values:

OPTQUAT = -2: cycount > cymax.
OPTQUAT = -1: piveot trouble in LEQ1.
OPTQUAT = O: 0K, go on,

UPTQUA1 1: Solution found,

The global procedure, LEQ1, must be available to the procedure.

The procedure contains a local procedure, SCAN, which forms the pro-
duct sum of one set of coefficients and yweigh,

The procedure first generates the matrix, MAT, and then calls LEQ1,
If there 1s no pivot trouble, the values of xact are extracted from the
last column in MAT. Then delx is calculated as:

(5.3) delx{i] := xact{1i] - xstart[1];

and the maximum value, S, of abs(delx[i]/del0x[1]) is found. If S >
maxf, all increments are reduced accordingly. The procedure, out, is
called, and if it is true, all increments are halved, This is repeated
until out becomes false.

-102-

Finally, xstart is put equal to xact, and yact at the optimum point
is found by a call of MODVALl. The weights are not used in this evalua-

tion.

5.2.2. Check for Minimum-Maximum. The OPTQUA1 procedure described

above finde the point where the first-order derivatives of the quadratic
model, are zero, It 18 not checked whether this point corresponds to a
maximum, a minimum, or a saddle point., We shall now see, how this can
be done,

Consider first the case of a function of a 8ingle varaible. The
quadratic model 1s:
(5.4) MOD[1,1]+MoD[2,1 Jxxmct[1 +MOD[3,1 Ixxact[1 Yo
and the derivative:
(5.5) MoD[2,1 J+2xM0D[3, 1 Jxxact{1]

The derivative 1s zero in the point:
(5.6) x[1] := -MoD[2,1]/(2x0D(3,1])

If we introduce a new coordinate:

(5.7) xact[1] - x[1]

!

with origin in the point where the derivative 1is zero, the quadratic
model may be written:

(5.8) k := MOD[3,1 Jxxnewj2

This is a parabola which clearly has & maximum, if MOD[3,1] < O and
& minimm, if MOD[3,1] > O. The special case of MOD[3,1] = O corres-
ponds to a stz;aight line.

The situation is more complicated when VAR > 1, It is normally pos-
sible to perform a transformation of the coordinate system, so that the
quadratic model can be written with the quadratic terms only. For VAR

= 3 we can get:

~103-

(5.9) k + MNEW[1 Jxxnew[1 Jf2MNEW[2 Jxxnew{2 Yo-MNEW([3 Jxxnew[3 Yo

If the three coefficients MNEW[1: 3] are all positive, we have a
minimum, and if they are all negative, we have a maximum. If there are
positive and negative coefficients, we have & saddle point.

It may be shown (see Korn and Korn (1961), p. 316 and 372) that
the test for maximum or minimum is equivalent to a test for negative or
positive definiteness of the quadratic form made up from the square
terms in the model. For VAR = 3 we must consider the matrix (see page

98):

2xMOD[5,1] MOD(8,1] MOD[9,1]
(5.10) MOD[8,1] 2xMoD[6,1] MOD[10,1]
MOD[9,1] MOD[10,1] 2xMoD{7,1]

The test for negative or positive definiteness of this symmetric
matrix is equivalent to a test for negativeness or positiveness of the
eigenvalues of the matrix. Special procedures are available for deter-
mination of eigenvalues of matrices. If may be shown, that the elgen-

value determination is equivalent to a transformation of the coordinate
system which transforms the matrix above into a diagonal matrix:

MNEW[1] 0 0
(5.11) 0 MNEW([2] 0
0 0 MNEW[3]

The eigenvalues are then the three diagonal terms, MNEW[1:3], for
vhich we must investigate the sign. The eigenvalue problem can also be
formulated as a polynomial of degree VAR, having the elgenvalues as the
roots. In any case we are up to a falrly complicated calculation, except
for small values of VAR,

Tese difficulties are avoided in the direct optimization methods.

2:203, Example 1, Optimization of Quadratic Function. This example
illustrates the simple case of a purely quadratic function. We first

choose a function of the form:

104 -

(5.12) y =10 -x[1he - x[2}e

This function has & maximum in (0,0) and the contour lines are circ-
les around this point. If we change the function into:

(5.13) y = 10 - x[1 Yo - bxx[2}Ye

the contour lines become ellipses, but the maximum is still at (0,0). If

we want the maximum in another point, say in (5,5), we must write:
(5.14) y =10 - (x[1] - 5)42 - bx(x[2] - 5)42

The axes of the contour ellipses are parallel to0 the coordinate
axes. Rotatlon of the coordimate system can be made by applying the
normel formulas for this transformation. If the system is rotated the
angle alfa around the origin (0,0) the relations between the new and the
old coordinates become:

(5.15) x0ld1 = xnewlxcos(ulfa) - xnew2xsin(alfa)
xo0ld2 = xnewixsin(alfa) + xnewPxcos(alfs)

Therefore, 1f we replace the coordinates:

x[1] -5
x[2] - 5

(5.16) u

]

by the new coordinates:

0.8xu - 0, 6xv
O.6xu + 0.8xv

(5¢17) xnew1

Xnew2

]

we have rotated the coordinate system an angle -alfa around the point
(545), in which alfa is determined from:

(5.18) cos(alfa) = 0.8

The final expression for the function we want to investigate then

becomes:

-105-
(5.19) ¥ = 10-(0.8x (xact[1]-5)-0. 6x (xact[2]-5))j2
- bx (0. 6x (xact[1]-5)+0.8x (xact[2]-5))42
Program d-354 finds the maximum of this function. The program is:

Program d-354. Test of (PTQUA1 with simple maximum.
begin
integer count, cycount, state, i;
array xstart, delOx, delx, xact, epsx[1:2],
yact, yweigh[1:1], MAT{1:6,1:7], MOD[1:6,1:1];
copy GENMODY <
copy LEQ1 ¢
copy MuDWIL? ¢
copy OPTQUA1 <
xstart[1] := 1;
xstart{2] = 2;
de10x[1] := delox[2] := O.5;
epsx[1] := epsx[2] := 0.0001;
yweigh[1] = 1;
count := cycount := O;
select(8);
writetext (<
Qutput d-354

x[1] x[2] g

P
H: state := GEMMUD1(count, 2, 1, 6, xstart, delOx, xact,
yact, 112, MAT, MOD);
yact[1] := 10-(0.8x (xact[1]-5)-0.6x (xact[2]-5))42
-bx (0.6x (xact[1]-5)+0.8x (xact[2]-5))42;
Af state = O then
begin
writecr;
write({-dddd.dddddd}, xact{1], xact[2], yact[1]);
£o to H;
end if state = O;
writecr;

-106-

state := (OPTQUA1(cycount, 6, 2, 1, MOD, MAT,)
false, 7, 1¢-12, xstart, delx, delOx, xact, epsx, yact, yweigh);

writecr;

if state > O then

begin
write ({-dddd.ddddda}, xact[1], xact[2], yact[1]);
writecr;

count :i= O;

if state = O then go to H;
end 1f state;
writecr;
for 1 := 1 step 1 until 6 do

begin
writecr;

write({~d.ddddddy-dd}, MOD[1,1]);
end for i;
writecr;

end;

Output from the program is:

Output d-354

x[1] x[2] Y

1.000000 2.000000 -8k,120000
1,500000 2,000000 -72,000000
1.000000 2.500000 -70.330000
0,500000 2.000000 -97.280000
1.000000 1.500000 -99,370000
1,500000 2,500000 -58,930000
4,500000 4,625001 8.529375

=107~

4. 500000 L, 625001 8.5293578
5,000000 4,625001 9.5893T77
l, 500000 5125001 9.61L376
4 ,000000 b, 625001 6.429379
4, 500000 . 125001 5.984380
5.000000 5.125001 9.95437h
5. 000000 5. 000000 9.999999
5, 000000 5.000000 10,000000
5.500000 5. 000000 9.L80000
5.000000 5« 500000 9,270000
4 ,500000 5. 000000 9,480000
5. 000000 4 , 500000 g,270000
5« 500000 5« 500000 8.030000
5, 000000 5. 000000 9.999999

-1.869999 2

3.519997 o 1

4,360000 o 1

-2.079997

-2,920000

-2,880000

The program starts by assigning start values to xstart and setting
We then enter a cycle in which GENMOD1 is8 called six
times for generation of a quadratic model. The values of x1, x2, and
the function are written out. After the six calls of GENMOD1, the model
has been generated and stored in MOD[1:6,1:1]. We then call the proce-
dure COPTQUA1 for determimation of the optimum point. The calculated
Point 1s printed. We first get:

the increments.

X1 = L'-.sl X2 = L".625

-108-

The reason why we do not get the true maximum (5,5) at once is that
we have used maxf = 7. AsS the move from X1 = 1 to x1 = 5 is 8 times the
value of delOx{1] the procedure reduces this to 7 times delCx or 5450
The calls of GENMUD1 are then repeated with generation of & new model
around the point (4.5, L2625). A new call of OPTQUA1 then takes us to
the point (5,5). Finally, the calls of GENMUD1 and OPTQUA1 sre repeated
to bring the increments in x below the specified tolerance, 0.0001,

At the end of the calculation the program prints the six coeffici-

ents in the model:
Y = =187 + 35.2xx1 + U3.6xx2 - 2.08xx142 - 2.92xx242 - 2.88xx1xx2

This expression is, of course, identical to what is obtained if we
rearrange the expression for yact[1] used in the program., As an example
of the eigenvalue concept, let us verify that we have a true maximum. We

must then consider the quadratic form {see page 103):

2xMuD[L 1] MOD[6,1]
MOD[6,1] 2xMOD[5,1]

Insertion of the numerical values gives:

-14'-16 -2.88
-2.88 -5.84

If this symmetric matrix is run on an eigenvalue Program, we Tind

the two eigenvalues to:
-2 and -8
and the corresponding eigenvectors:

(1) 0.8 -0,6
(&) 0.6 0.8

As the eigenvalues are both negative we have a true maximum accord-
ing to this theory. Furthermore, we recognize the two elgenvectors as

those defining the rotation we made on the coocrdimate system,

-109-

5.2.4. Example 2. Optimization with Lagrange Multiplier. This calcu-

lation simulates the optimization of an ammonia converter by means of
the test procedure, PUL, described on page 84. We wish to calculate the
ammonia production:

(5.20) PROD := POL(1, tinlet, ginlet);

as a function of the inlet temperature, tinlet, to the first bed and the
relative gas flow, ginlet, in the same bed. PROD must be a maximum with
the simultaneous condition, that the necessary height of the lower ex-

changer is exactly 2 meters, The second function:
{(5.21) EXCESS := PUL(2, tinlet, ginlet) - 2;

must then be 2zero. Uptimization of a function with the simultaneous
constraint that one or more other functions of the same variables must
be zero, may be solved by the use of the so-called Lagrange multipliers.
Instead of the two functions, PROD and EXCESS, we make a 8Single new
function:

(5.22) yact[1] := PROD + lambdaxEXCESS;

The new variable, lambda, is the undetermined Iagrange multiplier,
which must satisfy the condition:

It
C

(5.23) dyact[1]/dlambda

We also have:

H

(5.24) dyact[1]/datinlet
(5.25) dyact[1]/dginlet

and we can then solve the problem by stralghtforward use of OPTQUA1 wilth
a4 model based upon the three variables: tinlet, ginlet, and lambda, We
utilize that OPTQUA1 does not search for & true optimum, but simply a

point where the derivatives are zero.
If there are further functions which must also be zero, they must be

included in yact after multiplication by lambda2, lambda3?, etec.
~ The program is:

-110-

Program d-355. Optimization with lLagrange Multiplier.
begin
integer 1, count, cycount, state;
array xstart, delOx, delx, xact, epsx, yact, yweigh[1:3],
MAT[1:10, 1:11], MOD[1:10, 1:1];
copy LEQT £
copy POL <
copy GENMOD1?¢
copy MODVALI(
copy OPTQUA1C
for i := 1 step 1 until 3 do
begin
xstart[1] := case 1 of (430, 70, -1);
delOx[1] := case i of (10, 2, 0.1);
epsx[1] := case 1 of (1, 0.1, 0.01);
end for 1i;
yweigh[1] := 1;
count = cycount := O;
select(8);
writetext ({<
Output d-355
x{1] x[2] x[3] yact[1] PRUD EXCESS
tinlet ginlet lambda
});
H: state := GENMOD1(count, 3, 1, 10, xstart, delOx, xact, yact, 1412,
MAT, MOD);
yact[2] := POL{1, xact[1], xact[2]);
yact[3] := POL(2, xact[1], xact[2]) - 2;
yact[1] := yact[2] + xaet[3]xyact[3];
if state = O then
begin
writecr;
for 1 :=1 step 1 until 3 do write(f-dddd.dddd}, xact{1]);
for 1 := 1 step 1 until 3 do write(f-dddd.ddddoo}, yact[i]);
g0 to Hj
end 1f state = O;

writecr;

-111-

state := OPTQUA1(cycount, 6, %, 1, MOD, MAT, false, 4, 1-12,
xstart, delx, delOx, xact, epsx, yact, yweigh);
if state > O then

begin
for 1 := 1 step 1 until 3 do write({-dddd.ddadd}, xact[1]);

write ({-dddd.dddd0C}, yact[1]});

writecr;

count := 0;

if state = O then go to H;
end 1f state;
writecr;

for 1 := 1 step 1 until 10 do

begin
writecr;
write({-d.dddddddy-ad}, MoD[1, 1]);

end for 1;

writecr;

end;

The output is:

Output d-355

x[1] x[2] x[3] yact[1] PROD EXCESS
tinlet ginlet lambda
430,0000 70,0000 -1.0000 72.363989 72.636263 0.27227h4
440,0000 70,0000 -1.0000 72.,441857 T2.853762 0,411905
430,0000 72,0000 -1,0000 72.694273 72.844715 0,1504k42
430,0000 T0.0000 -0.9000 72,391216 T2.636263 0.2722T4
420.0000 70,0000 -1.0000 71.922982 72.109606 0.186624
430,0000 68,0000 -1.0000 71.579330 72.082275 0,502946
430,0000 70,0000 -1.1000 72.336761 T2.636263 0,272274
40,0000 72,0000 -1.,0000 72.426437 T2,719479 0.293042
40,0000 70,0000 -0.9000 72.4830k7 T72.853762 0.411905
430,0000 72,0000 =0,9000 72.709317 72.844715 0.150442
bol TTTS T2.T43T -0.6000 72,776750

bl , 7773
L3k, 7773
Lok, 7773
Lol 7773
Lk 77753
ol , 7773
Lok 7773
L3k, T7773
L3k, 7773
Lah 7773
422,2666

L22.2666
k32,2666
Lp2,2666
k22,2666
L12.2666
b22,2666
Lp2,2666
h32,2666
432.2666
k22,2666
k22,3182

L22,3182
L32,3182
L22,3182
422,3182
L12,3182
k22,3182
k22,3182
432,3182
k32,3182
h22,3182
h22,3012

T2, 7437
T2, T437
Tho T4 5T
72,7437
7247437
TOLTU3T
T2. 7437
T4 7437
T2, 7437
T Th37
73,7190

15,7190
73.7190
757190
73.7190
137190
T1.7190
13,7190
75.7190
73,7190
15.7190
T3.T476

5. 7476
T3.THT76
75.T476
T3.7476
T3.T476
T1. 7476
T3.T476
T5.T476
T3.T476
T5.T476
737339

-0, 6000
-0. 6000
-0. 6000
-0,5000
-0, 6000
~0. 6000
-0,7000
-0, 6000
-0.5000
-0,5000
~0.6234

-0.6234
-0, 6234
-0, 6234
-0.5234
-0, 6234
-0, 6254
-0.,7234
-0. 6234
-0.5234
-0.5234
-0.4211

-0.4211
-0.4211
-0.4211
-0.3211
-0.4211
-0.4211
-0,5211
-0,b211
-0,3211
-0.321%
-0.4196

-112-

T2.793084
72.639308
72. 714877
T2.799304
72.552L436
72.483194
72.786865
T2.274788
724657706
T2. 714613
72.815140

72.818766
72.602960
T2.655633
72.618786
72.638873
72.619359
72.818746
72.161292
72.614837
72.649963
72.818863

72.818596
72.620635
72637805
72.818578
T2.626126
724643439
T2.818614
T72.162719
T2.632491
T2.632122
72.818600

72.830400
T72. 749701
72.713295
72.830400
72.534840
72.581715
72.830400
72.348102
72. 749701
T2.713295

72.818893
72. 677007
72. 620283
72.818893
72.578391
72. 672112
72.818893
72.201301
72, 677007
72. 620283

72.818519
72.670565
72.613873
72.818519
72.584933
72. 678607
72.818519
T72.189762
72.670565
72.613873

0.062192
0.183989
-0,002637
0.062192
-0.0293%26
0.164202
0.062192
0.122190
0.183989
-0,002637

0.000203%
0.118777
-0,056705
0.000203
-0.097019
0.084620
0.000203
0.064176
0.118777
-0,056705

-0,000184
0.118562
~-0.056827
-0,000184
-0,097814
0.083510
-0,000184
0.06421%
0.118562
-0.056827

-113-

-9.4990113 4 2
2., 6754309
1.,2401000 4 1

-2,926311k4

-1.9521338 -3

-4 .bhozTaT -2
7.9626490 47

-1.3856203 -2
1.187LL 6T -2

-2.8321968 -2

The program contains the normal sections: Setting of start values,
generation of model with GENMOD1, and the call of O0PTQUA1. The calcu-
lated maximum production occurs for tinlet = 422 deg. C and ginlet =
3.7 per cent. Four cycles each with 10 function evaluations are requi-

red here.

It 1s a drawback in this use of a Ilagrange multiplier that a start
value of lambda must be available, having the correct order of magnitude
and sign. This may be difficult to obtain in practice,

2:2:0, Hxample 3, Optimization with Elimination. This is exactly the
same problem as example 2, but now we use elimination instead of the Ia-
grange multiplier, A model of PRUD and EXCESS is generated with the two
variables, tinlet and ginlet:

MOD1[1:6,1:2]

From this model we generate & simpler model having only one variable
written as xact2[1}. This is actually tinlet. The model is smaller:

MOD2[1:3,1:1]

because there 1s only one variable and one function. For each value of
xact2[1] a loeal procedure, ELIM, is called which eliminates ginlet by a
call of NOLEQS (solution of non-linear equations). This elimination
uses values calculated from MUD1 by means of MODVALI1.

-11k-

When MOD2 has been generated we call OPTQUA1 to determine the opti-
mum of the latter function,
The program is:

Program d-356. Optimization with elimination,
begin
boolean first, deriv;
integer countl, count2, count3, cyc3, cych,
statel, state2, state3, statel, i;
array xstarti, xstart2, xstart3, delOx, epsx, ywelgh, xactl, neps,
xact2, xact3, yacti, yact2, yact3, delx, yO[1:2], yold[1:1, 1:2],
MAT1[1:6, 1:8], MaT2[1:3, 1:4], MOD1{1:6, 1:2], MoD2[1:3, 1:1];
copy GENMOD1<
copy LEQ1<
copy MODVAL1S
copy NOLEQB(
copy OPTQUA1<

copy POL{
procedure ELIM;

begin
count? := cyc3 := O;
first = true;
xstart3[1] := xstart1{2];

At state? := NOLEQB(1, count3, eye3, 1, 10, false, first, false,
false, deriv, xstart3, delOx, delx, xact3, neps, yact3, y0, yold,
119-20, 4);

xacti[2] := xact3[1];
MODVAL1 (2, 2, 6, 0, MOD1, xactl, yactl);
yact3[1] := yaet1[2];
if state> = O then go to Aj
end ELIM;
procedure PRINT;
begin
writecr;
write(f-dddd.dadd}, xecti[1], xact1[2]);
write(f-dddd.dddd00}, yact1[1], yact1[2]);
end PRINT;

115~

select(8);
writetext (<
Output d-356
x[1] x[2] yl1] v[2]
tinlet ginlet PROD EXCESS
});
xstart1{1] :
xstarti[2] := 72;
delOx[1] := delOx[2] := 2;
epsx[1] = 0.1;
epsx[2] := 0,01;
neps[1] := 0,001;
yweigh[1] := yweigh[2] := 1;
count] := eyeh := O;
B: statel := GEMMOD1{countl, 2, 2, 6,
xstart1, delOx, xactl, yactl, 14-20, MAT1, MOD1);
yact1[1] := POL(1, xact1[1], xact1({2]);
yacti[2] := POL(2, xact1[1], xmct1[2]) - 2;
if statel = O then

begin
PRINT;

go to B;
end if statel = 0;

11

L20;

writecr;
count2 := O;
xstart2{1] := xstart1[1];
C: state2 := GENMOD1(count2, 1, 1, 3,
xstars2, delOx, xact2, yact2, 14~20, MAT2, MOD2);
if state2 = 0 then
begin
Xact1[1] :
ELIM;
yact2[1] :
£0 %o C;
end if state? = 03 .
statel := OPTQUA1(cyck, 6, 1, 1, MOD2, MAT2,
false, b, 1y-12, xstart2, delx, delOx, xacti, epsx, yact1, yweigh);

xact2[1];

L}

yact1[1];

-116-

writecr;

ELIM;

PRINT;

xstart1[1] := xstart2[1];
xstart1[2] := xact1{2];
countl = U;

)

if statel = O then go to B;

writecr;

end;

The output is:

Qutput d-356

x[1]

tinlet

420,0000
422,0000
420,0000
418,0000
L 20,0000
422,0000

k22,9529
L22.9529
L2k 9529
k22,9529
L20,9529
k22,9529
k2l ,9529

L22,1802
L22,1802
Lol ,1802
L22,1802
420,1802
k22,1802

Lok, 1802

Lo2,1723

x{2]

ginlet

72,0000
72,0000
T4 , 0000
72,0000
70,0000
Th , 0000

73,9651
73.9651
73.9651
75,9651
73.9651
T1.9651
7549651

7347045
T34 7045
T3.7045
7547045
T3.TO45
71.T045

T5.T0k5

T3, 6945

y(1]

PROD

T2. 635492
72.706796
72.801409
72, 548644
72.109606
72,810282

72.810839
72.810956
72,798600
724553741
72.808248
T2.730827
72,480859

72.817314
72.818756
72,8204 61

72.625135
72.801550
T2.666651

72.564250

72.818811

yla]

EXCESS

0.051393
0.067741
-0.0337T4
0.036520
0.18662k4
-0.011943

-0.000108
-0. 000174
0.022667
-0.055020
-0.022335
0.077809
-0.032747

0.000003
-0,000263
0.022071
-0.057292
-0,021818
0.084 60k

-0, 035254

0.000005

-117-

The result shows that we now need only 3x6 = 18 function evaluations
instead of 40 with the lagrange multiplier. The internal elimination of
one of the variables takes some time, but as the elimirnation is made on
the model, not the original functions, this is not significant. Troubles
may occur, of course, if we are far from the desired point and the eli-

mination becomes impossible,

5.3, Method of Stespest Descents.

This optimization method does not use a quadratic model, but only a
linear model. It does not immediately yield the maximm or minimum of
the function, but tells us in what direction to move in order to get the.
highest increase (or decrease) in the function, The necessary calcula-

tions are very simple. For VAR = 5 the linear model has the form:

(5.26) MOD[1,1]#MOD[2,1 Jxxact[1]+MOD[3,1 Jxxact[2]+MOD[L,1 Jxxact[3]
We calculate the sum of the squares of the derivatives:

(5.27) sSQ := MUD[2,1 Ya+M0OD[3,1 Jp2-MoDh,1 Yo

The directional cosines of the desired line are:
(5.28) MOD[2,1]/sqrt(SSq), MOD[3,1])/sqrt(5SQ), MOD[4,1]/sqrt(Ssq)
If we move from the basis point:

xstart[1], xstart[2], xstart[3]

with increments proportional to the directional cosines, we will move
along the fastest increase. The question is then how far to move in
that direction. This can be done in different ways. We can either
make a number of equidistant steps and stop as soon as the original
function starts to decreamse, or we can make two steps, calculate the'
original function in these points, fit a parabola to the three known
bpoints, and finally go to the maximum of the parabola. When the new

bagis point has been found from either of the two methods, & new model
mst he generated around this point.

-118-

The method of steepest descent 1is excellent for investigation of a
function far from the maximum. As soon as we approach the maximm, a
quadratic optimlzation is better, because it gives a better definition
of the end point of the search. Another possibility 18 to use the direct
methods described in the following sections.

5.4, Direct Method for Single Variable,

A direct optimization method is a method which explores +the unknown
function after a certaln strategy and only performs simple comparisons
of the function wvalues thus obtained. No use is made of derivatives or
other amalytic features. A procedure of this type has been in use for
many years at the Haldor Topsge computer installation and represents a
good compromise bhetween simplicity and efficiency. The original version
of the procedure {in GIER machine language) was called OPT1 and a later
ALGOL version: UPT1A. The latest version, OPTMB, in GIER ALGOL 4 is ex-
plained in the following. As the majJor part of the procedure 1s taken up
by administration, not arithmetic, a detailed description is first given
of the strategy used in 0PT1B.

5.4,1. Strategy in-the Procedure OPT1B, The procedure first of all
finds the maximum of a function of a single variable:

(5.29) Y1 =F{X)

by variation of X in steps of a fixed size, DELIX:

X

(5.30) X + DEIX
X + 2xDEIX
X + 3xDELX

etc.

The increase in X is continued as long as the Y1-values also Iin-
crease, When they start to decrease, the last but one X-value 1is select-
ed as the optimal one. This may appear too simple to warrant a special
procedure, and UPT1B, therefore, contains some further features.

-119-

If the optimum value is lower than the start value of X, we get the
following order of the X-values:

+ DEIX
- DEIX
- 2xDELX
- SxDELX
etc,

(5.31)

E o T T

A permissible range from XMIN to XMAX must be specified. The proce-
dure will not permit X %o grow outside this interval, but selects the
optimum value,

The procedure will also teke into account a second function of the

same variable:
(5.32) Y2 = Fe(X)

It 1s required that the value of Y2 must be non-negative (Y2 > 0).
The procedure varies X upwards or downwards until it finds the X-.value
glving the highest value of Y1 and for which at the same time Y2 > O, If
the search for maximum Y1 ylelds negative Y2-values, the corresponding
X-values are not considered, We assume that the two functions, Fi(X) and
F2(X), have not more than one maximum and no minimum inside the given
interval., With this assumption the procedure can make its way out of a
forbidden interval (Y2 < 0) by selecting the direction which makes Y2
increase, The essential part of the procedure is a table permitting the
procedure to make the proper decision with the available knowledge of
the values and signs of the last three sets of X, Y1, and Y2. Older sets

are not considered,

5.4,2. Declaration of UPT1B, This is shown on the following pages.

-120-

integer procedure UPT1B(COUNT, X, Y1, Y2, XMIN, XMAX,
DELX, XOLD, Yi10OLD, Y20LD, XOPT, Y10PT, Y20PT);

integer CUUNT;
real X, Yt, Y2, XMIN, XMaX, DEIX, XUPT, Y1(UPT, Y2UPT;
array XOLD, Y10LD, Y20LD;
begin
integer ROW, COL, I, R;
integer array T2[1:4], T3{1:16];
switch TABLE2 := UP, DN, S1, 82, ER;
switch TABLE3 := S%, S2, S3, D1, U3, DE, UE, ER;
integer procedure NEG(z);

yalue z;

real z;

NEG := if z ¢ O then 1 else O;
procedure MOVE(N, M);

value N, M;

integer N, M;

begin
XOLD[M] := XOLD[N];

Y10LD[M] := Y10LD[KN];
Y20LD[M] := YRULD[N];
end MOVE;
OPT1B := 0;
2{1] := 2252;
T2[a] = 2541,
5] = 1352;
2[l] = 15115
3(1] := LLBLBBBE;
T3[2] := 88888888;
T3[3] L14882288;
5[4] := 28882837;
T3[5] := T3[6] := T3[7] :~ T3[8] := 85338888;
T3[9] := 22818886;
T3[10] := 88858368;
T3[11] := 22882288;
T3[12] := 28882837;
T3[13] := 52818886;

.y
it

Up:
end COUNT = Q else
if COUNT = 1 then

begin

DN:

51

-121-

T3[14] := 88888383;
T3(15] = 52085200;
T3[16] := 5888585T;

XOLD{1] := X;
Y10LD[1] := Y1
Y2uLD[1] := Y2;
if COUNT = O then

begin

MOVE(1, 2);
DELX := abs(DELX);
X := X + DELX;

MOVE(1, 3);

ROW := 1 + NBG(Y20LD[2 }-Y20LD[5]) + 2xNEG(Y10LD[2]-Y10LD[3]);
COL := 1 + NEG(Y20LD[3]) + 2xNEG{Y20LD[2]};
I := T2[ROW];

R := 104(k-COL);

g0 to TABLE2[(I:R) mod 10];

OPTMB := -1;

£0 to EX;

MOVE(3,4);

Muve(2,3);

R := 1f COUNT = 1 then 2 else 3xsign(DELX);
DELX := -abs(DELX);

if R < O then go to UP;

X := X - Rxabs(DEIX);

end if COUNT = 1 else
begin

MOVE(1, 3 + sign(DEIX));

ROW := 1 + NEG(Y20LD{3]-Y2ULD{4]) + 2xNEG(Y20LD{2]-Y20LD[3])
+4xNEG (Y10LD[3]-Y10LD(4]) + 8xMG(¥10LD[2]-Y10LD[3]);

COL := 1 + NEG(Y20LD[4]) + 2xNEG(Y20LD[3]) + bxNEG(Y20LD[2]);
I := T3[ROW];

R := 104(8-COL);

&0 to TABILE3[(I:R) mod 10];

B9 to ER;

I = 2;

£O to Sk;

=122~

523 H ¥
go to Sk;
83: I := Ly

Sh: OPMB := 1
XOPT := XULD[I];
Y10PT := Y10LD[I];«
Y20PT := Y20LD[I];
£0 %o EX;
D1: go to if XOLD[2] - abs (DELX) > XMIN then DN else S1;
DE: go to if XOLD[2] - sba(DELX) > XMIN then DN else ER;
U3: go to if DELX < O then ER else if XOLD[4] + DELXQMAX
then L1 else 53;
UE: 1if DEIX < O then go to ER;
if XOLD(4] + DELX > XMAX then go to ER;
L1: MOVE(3,2);
MOVE(L"r})i
£0_ %o UP;
end COUNT > 1;
EX:COUNT := COUNT + 1;
end UPT1B;

The formal parumeters are:

integer COUNT: A counter which the user must set to zero before the
first call. The procedure adds 1 here at the end of each call,

real X: The actual value of the independent variable. The start val-
ue must have been inserted here before the first call., The procedure in-
serts a new value in each call,

real Y1, Y2: The two function values corresponding to X. Before the
first call the main program must have inserted the two values correspon-
ding to the start wvelue of X, After each call the main program must also
calculate the new Y-values for the new value of X.

real XMIN, XMAX: Lower and upper limits of X.

real DELX: The fixed increment (step length) in X. As the procedure
inserts -abs(DELX), if X must be decreased, the actual parameter should
be a variable, not a number,

array XOLD, Y10LD, Y20LD[1:4]: Used by the procedure for storage of
old sets of X, Y1, and Y2. A new set is first stored as element no. 1
and later moved to one of the next elements. Only three old sets are
stored.

-123-

real XOPT, Y10PT, Y20PT: The procedure delivers the optimum set of
X, Y1, and Y2 here when it is finished.
integer OPT1B: The procedure 18 of type integer and can assume the

three values:

OTP1B = -1: Optimum cannot be found. This happens, if Y2 1is
negative for all X, or if the condition of only
cne maximum and no minimum is not satisfied.

OTP1B = 0: Calculation OK, find next set of Y1 and Y2.

UPMB = +1: Optimum found.

Two local procedures are used: NEG(z) = 1 for z { O, otherwise O,

and MOVE{N,M) which moves the old data set no. N to set no. M.
The procedure operates as follows.

The two decision tables, T2[1:4] and T5[1:16], are first given the
proper (fixed) content., In FURTRAN this would have been written as a
date initialization statement, but that is not available in ALGOL. The
tables are further explained below.

The new set of X, Y1, and Y2 is stored in XOLD[1], Y10LD[1], and
Y20LD[1],

In the first call (COUNT = O), the new set of X, Y1, and Y2 is moved
to XULD[E], etec, The sign of DEIX is set to plus, and X is increased:

(5.33) X = X + DEIX

The main program must then calculate new values of Y1 and Y2.
In the next call (COUNT = 1), the new data set is stored in XOLD[3],
etc. The progrem must then study the six numbers in the two sets:

(5.34) xowp[z2], Y10Lb[2], YeuLD[2]
XoLb[3], Ytorp[3], Y20LD[3]

and make a choice between the five possibilities:

UP: X is further increased.
DN: X is decreased,
(5.35) S1: Select first set as the optimum,

S2: Select second set as the optimum.
ER: Error exit, inconsistent data.

-12k-

The decision is made according to the following table:

| | | |
| | | | Sign of Y2 |
I l | |
I LI R - |
| | | e
l l | |
| | l—l v 2 3 u
| l o |
down	down	1	DN DN ER DN
!			
dom	wp	2	DFN ER S w
I	I		
w	dom [3]	UP SI ER DN	
l l .			
	P ER UP UP		

The four rows in the table correspond to the Ffour combinations of
increasing or decreasing values of Y1 and Y2 as indicated by the words
to the left. The four columns in the table correspond te the four sign
combinations of the two Y2-vulues: ++, +-, -+, and --. The procedure
calculates the row number as:

(5.36) ROW = 1+NEG(Y20LD[2]-Y20LD[3])+2xNEG(Y10LD{2]-Y10LD[3])
and the column number:
(5.37) COL = 1+NEG(Y20LD{3])+2xNEG(Y201D[2]})

When the row number and the column number have been found, we must

Pick out the proper label in the table and make a Jump, The program con-
tailns & switch:

(5.38) switch TABLES := UP, DN, S1, S2, ER;

with the five different labels in the table, We could have extended the

-125-

switch to contain 16 labels, but this is not economical. This point of
view becomes especiully important when we use the big decision table,
based upon three data sets, and containing 128 labels of which only 8
are different. The economical programming of this can be made in the

following way:
We give each label s number:

(5.39) Up: 1
DN: 2
S1: 3
se: &
ER: 5

The table of labels:

(5.40) DN DN ER DN
DN ER 82 UP
U S1 ER DN
U ER UP UP

is then written as:
(5.41) 2 2 5 2
5 L 1
5 5 2
1 5 1 1

and we condense this into the four numbers:

(5.42) T2[1] = 2252
Tefa] = a5i1
T2[3] = 1392
T[] = 151

We then pick out the correct label be means of the statements:

I := T2[ROW];

R := 104(k-COL);
go to TABLE2[(I:R) mod 10];

-126-

If we arrive to the third or later calls (COUNT > 2), the new set of
data will be stored in X0LD[2], etc., if X is decreasing or in XOLD[4],
etc, 1If X is increasing. The decision table based upon the three old
data sets is shown on the opposite page.

Here, we must declde between 8 different possibilities:

S1: Select first set as the optimum.
82 - second - - - - o
S5: - third - - - - .
(5.43) D1: Decrease X or select first set,
Uj: Increase X - - third - &
DE: Decrease X or go to error exit,

UE: Increase X - -~ - - - .
ER: Error exit, inconsistent data.

In the two cases D1 and U3 the selection of set 1 or 3 is used, if a

further change in X brings us outside the interval from XMIN to XMAX.
The same applies to the error possibility in the two cases DE and UE.

The row rnumber in the decision table is selected from the 16 sign
combinations of:

Y10LD{2]-¥10LD[3], Y10LD[3]-Y10LD[4]
Y20LD[2 J-Y20LD[3], Y20LD[3 J-Y20LD[4]

and the column number is determined from the 8 possible sign combina-

tions of:
Y201D[2], Y201D{3], Y20LD{4]

The sign combinations are written over the 8 columns as iy -,

etc, For the rows in the table we use the words:
down, min, max, up

to indicate the relative values of Y10LD and Y20LD: decreasing, having a
minimum, having a maximum, or increasing. The minimum situation is not
in accordance with the assumptions and gives selection of the error
label in the table, The same applies to column 3.

-127-

i o4 ® ® 8 § & H & & &® & 8 ® & & 8
V- y B B ® 5 & & & % 85 B % & & & S
t s B o ® 5 & &5 & B5 &5 o 8§ &5 #85 o B
Mﬁsmm@@mmmmmm&&mmwm
S) i <5 &5 85 B 5 & & & % § & & & & & &
P~ 5 5 &5 &5 & & & & ® H 8 & & & 8§
{ o5 ¥ 85 B &% & & 5 # § o § o4 H #4 8
I -5 & =5 9 & &5 H &5 & ®§ o o S H B 0B
: § 5 1 ¢ § 3§ 4 ¢ §F 34 ®* § §1 °®

-128-

The table look-up is made in the same way as for the small decision
table.,

S5.b4.3, Examples. Two.calculation examples of the use of OPTIB are
given here. The ammonia converter test polynomial, PUL, is used in both

examples (see page d4). In the Ffirst case we vary the inlet temperature,
tinlet, in steps of 10 deg, C in order to find the maximum ammonia pro-
duction. At the same time, the excess height of the lower exchanger must
be positive., For an actual (physical) exchanger height of 2.1 meter, the
excess helght is calculated as:

(5.44) 2.1 - POL{2, inlet, ginlet)

The calculation is made for three different values of ginlet: 70,
T4, and T8 per cent, but without any comnection between the three calcu-
lation parts. The program is:

Program d-403., Test of UPTMB with a single variable.
begin

integer COUNT, STATE;

real X, Y1, Y2, ginlet, DEIX;

array XOLD, Y10LD, Y20LD[1:4];

copy POL ¢

copy UPTMB

select(8);

writetext (§<
Output 4-403

tinlet ginlet PROD EXCESS
};
for ginlet := 70, T4, 78 do
begin
COUNT := O;
X 1= 400
DEIX :
AA: writecr;
Y1 := POL(1, X, ginlet);
Y2 := 2.1 - POL(2, X, ginlet);

H
10;

-129-

write(fdddddd}, X, ginlet);
write(f-ddd.dd}, Y1, Y2);
SLaTe := UPTIB(CUUNY, X, ¥1, Y2, 300, 500, DELX, XOLD,
Y10LD, Y20LD, X, Y1, Y2);
Af STATE = O then go to Aa;
writecr;
write ({dddddd}, X, ginlet);
write(f-ddd.dd}, Y1, Y2);
writecr;
end for ginlet;

end;

The following output was obtained:

Output d-L03%
tinlet ginlet PROD EXCESS

Loo T0 69,89 0,16
410 T0 T1.24 -0,01
Loo 70 69,89 0.16

400 v 71.835 0.26
k10 74 7T2.52 0,23
4b20 Th 72.00 0,13
430 ™ 72,70 0,02
k20 TH 72,80 0,13

400 78 T2.54 040
410 78 72.54 0,32
390 78 72.21 0,45
400 78 T2.54 0.40

In the second exumple ginlet is varied in an inner loop and tinlet
In an outer loop, both using UPTiB, The program is:

-130-

Program d-404, Test of UPT1B with two varlables,
begin
integer COUNT1, COUNT2, EVAL, STATE1, STATE2;
real tinlet, ginlet, Y1, Y2, delt, delg;
array XOLD1, XOLD2, Y10LDt, Y10LD2, Y20LD1, yaorpe[1:k];
copy POL {
copy OPT1B <
procedure PRINT;
begin
writecr;
write(fdddddd}, EVAL, tinlet, ginlet);
writetext (k< });
write({-ddd.dda}, Y1, ¥Y2);
end PRINT;
select(8);
writetext (<
Cutput d-4OL

eval tinlet ginlet PROD EXCESS
};
EVAL := 0O;
COUNT1 := O3
tinlet := 400;
delt := 10;
ginlet := T0;
A1:COUNT2 := O;
delg := 2;
A2:EVAL := EVAL + 1;
Y1 := POL(1, tinlet, ginlet);
Y2 := 2.1 - POL(2, tinlet, ginlet);
PRINT;
SPATEZ := OPT1B(COUNT2, ginlet, Y1, Y2, 66, 80, delg,
XOLD2, Y10LD2, Y20LD2, ginlet, Y1, Y2);
Af STATE2 = O then go to A2;
STATE1 := OPT1B(COUNT1, tinlet, Y1, Y2, 380, 460, delt,
XOLD1, Y10LD1, Y20LD1, tinlet, Y1, Y2);

[}

-131-

if STATE! = O then

begin
ginlet := ginlet - 2;

g0 to Al;
end STATEI;

wriltecr;
PRINT;

end;

The output was:

Output d-4OL

eval tinlet ginlet PROD EXCESS

1 koo 70 69.89 0,16
2 LOO T2 71,01 0.18
3 L4oo T4 71,83 0.26
L Lo 76 72.351 0.36
S Lou T 72,54 ULU
6 L0O 80 72,42 043
7 10 76 72,71 0.28
8 41w 78 T2.54 0,32
9 410 4 T72.52 (.23

10 L20 7h 72,80 0.13
11 Lao 76 72.63 0,19
12 k2o 72 Ta.6k 0,05
13 L300 72 72,84 -0.05
1 430 T4 72,70 0,02

1 Lo Th 72.80 0.13

This use of OPT1B on a problem in two variasbles is not much differ-
ent from the direct search method described in the next section, but it
is not so elegant, because UPT1B is written for a single variable only,

and has no automatic step size reduction.

-132-

5.5, Direct Search - Pattern Search.

The method described in this section I1is normally designated as:
DIRECT SEARCH or PATTERN SEARCH. It was first published by Hooke and
Jeeves (1961). See also the book by Wilde (1964), pag. 145-150. The pre-
sent version is essentially based on algorithms published in Communica-
tions of the Association for Computlng Machinery.

The direct search method has the basic principle that only very ele-
mentary operations are carried out on the functions and variables, This
excludes the use of time- and space consuming wmatrix inversions, etc.
Each variable is varied one at a time by a move upwards or downwards and
the response in the cbjective function is observed. It is only checked
whether the function becomes better or worse, no further numerical in-
formation is collected.

The term pattern search is a slight refinement of the direct search
technique. When all variables have been moved up or down, the procedure
stores a list of these moves (a pattern). It will then wmake a single
move in which «ll varlables are moved according to the pattern, but with
scaled-up step lengths. The direct search is then repeated from the new
Point.

The pattern search is initiated whenever a direct. search move of at
least one of the wvariables has improved the objective function. If no
improvement is obtained, all step lengths are reduced by a certain fac-
tor, and the direct search is started again with due generation of a new
pattern. The calculation is finished when a lower limit of the step size
has been reached. A maXimum number of function evalulations is also in-
cluded,

The direct search is normully applied to quadratic models generated
from the original functions as described in section 3. The use of penal-
ties for handling of side restrictions is described in section 5.5,6.

Kaupe (1963) has published an algorithm in CACM for direct search,
A number of remarks +to this algorithm has been published later in CACM
by M. Bell and M. P. Pike, R. de Vogelaere, F. K. Tomlin and L.B. Smith.
The procedure given in the present book corresponds approximately to the
latest version from CACM with a few corrections made by E, Balslev, who
has also written a FURTRAN version of it in the Haldor Topsge GIPS
Sy stem.

=133-

Unfortunately, the names of the wvariables selected by Hocke and
Jeeves and used by the algorithm authors are not very descriptive. We
have, therefore, changed the names., A list of the original names and the

present names is given here:

Original Present Significance

name name
K VAR Number of independent variables.

psi XaCT Actual set of independent variables.

DELTA DELSTART Start value of increment in all variables.

rho REDFAC Reduction factor applied on DELSTART,

S FUNC Real procedure calculating the objective function.
Spsi FaCT Function value for XACT.

phi XNEW New set of X-values.

Sphi FNEW Function value for XNEW.

53 MMIN Best function value.

theta work Intermediate variable.

s DELACT Pattern, i.e. actual set of increments.

A further description of the parameters is given in the following

sections,

2:5.1. Direct Search. The basic principle of direct search can be

explained in a few words.
let us assume that we have reached a point where the best set of

X-values is available as the array:
XNEW[1:VaR]
We also assume that we have a set of increments:
DELACT{ 1 : VaR]

to be applied to the variables. At the start of the procedure all ele-
ments in DELACT have been set equal to DELSTART. At a later stage they
may have been reduced by the factor, REDFAC, bossibly several times, It
is also possible that the sign may have been changed of one or more of

the elements, Uf course, none of the elements must be zero.

-134-

A for-statement is then carried out:

for 1 := 1 step 1 until VAR do

For each value of i we first add the increment to the variable:
XNEW[1] := XNEW[1] + DELACT[1];

The object function is then evaluated, and if its value has been im-
proved, we let XNEW[i] keep its changed value. If the object function is
worse, we do the following:

DELACT[1] := -DELACT[i];
XNEW[1] := XMEW[1] + 2xDELACT[1 };

i.e. the sign of DEL&CT[1] is changed, and we add twice the new value to
XNEW[1]. This is the same as moving XNEW[i] in the opposite direction of
the first move. The object function is then evaluated again. If it is
improved, we leave XNEW{i] and DELACT[i] at their new values, if not, we
subtract DELACT[1] from XNEW[i] again, i.e. XNEW[i] has now a value cor-
responding to the originmal wvalue.

The result of the test can be sumarized as follows:

1. OUriginal DELACT[1] > O:
XNEW([1] DELACT{1] Function
A: Increased Unchanged Improved
B: Decreased Negative Improved
C: Unchanged Negative Worse
2. Original DELACT[i] < O:

XHEW{i] DELACT[i] Function

A: Decreased Unchanged Improved
B: Increased Positive Improved
C: Unchanged Positive Worse

-135-

The original version of the algorithm is designed to find the mini-
mm value of a function. In the present version we use an &additional
formal parameter, signfactor, for multiplication of the function value
whenever the function value has been calculated. By setting signfactor
equal to -1, the procedure can be used to find the maximum value of =&
function. Internally the search is for a minimum.

The test for function improvement shown in the scheme above is made
by comparing the new function value, FMEW, with the previous best value,
FMIN. Whenever FNEW becomes less than FMIN, we put PMIN equal to the in-

proved value:

1f FNEW < FMIN then PMIN := FNEW else

When all variables have been treated according to the scheme above,
we end up with two possibilities:

1, FMIN has decreased and one or more elements of XNEW are changed.
2, MMIN and all elements of XNEW are unchanged.

Case 1 is continued with a pattern search, whereas case 2 indicates

a new direct search with reduced step lengths.,

5.5.,2. Pattern Search. The pattern search is alweys made immediately
after a direct search. Before the direct search we have stored the best

set of the independent variables in the array (the base point):
XACT[1:VAR]

and the corresponding function value in FACT. Neither XACT nor FACT are

changed during the direct search, which operates on XNEW[1:VAR] and

FMIN, respectively, as explained above. If the direct search ylelds:
MMIN < FalT

the pattern search is started. We have again a for-statement:

for 1 := 1 step 1 until VAR do

For each value of i the following operations are made:

~-136-

1. Check sign of DELACT[i]. From the scheme on page 134 we can see,
that the sign of DELACT[i] may not always correspond to the actual dif-
ference between XNEW[1] and XACT[1]. This is corrected by the statement:

AL XNEW[1] > XaCT[1] = DELACT[1] ¢ O then DELACT[1] := -DELACT[i];

vhich will make the sign of DEIACT[i] equal to <the sign of XNEW[i] -
XACT[4].
2, Store the old X-value, XACT[1], in a work cell:

work := XACT[1];
3. Move the new X-value from the direct search, XNEW[1], to XACT[i]:
XacT[1] := XnEW[1];

We remember, that the result of the direct search was that the set
XNEW was definitely better than the set XaCT, 8o that we do not really
need XACT any more.

4. Finally, the pattern move is made after the formula:

XNEW[1] := 2xXNEW[1] - work;

As the work cell contains the original value of XACT[i], before this
was replaced by XNEW[1i1, we can also write the pattern move as:

XNEW[i] := XNEW[1] + (aEW[1] - xacT[1]);

i.e. XNEW[1] is increased by an amount which is equal to the difference
between XNEW[1] and XACT[1]. This is the kernel of the pattern search,
& single move is made with the same increments as just found in the di-
rect search.

We must then find out whether the pattern move was a success or not.
The previously best function value is stored in FACT, and the function

is evaluated and stored in PMIN and FNEW. We could now compare FACT and
FMIN immediately, but it 1s more realistic to add a direct search around
the new point found by the pattern search. If this additional direct

-1%7-

search is successful, it will make IMIN still smaller. If FMIN > FACT,
the combined effect of pattern move and direct search was a complete
failure, and we can give up this pattern and start again with the simple
direct search.

If PMIN < FaCT, the pattern move and direct search was a success. We
must then find out if it might pay to make a new pattern move, The move

is made as long as we have for at least one of the variables:
abs (XNEW[1] - XacT[1]) > 0.5xabs(DELACT[1])

The condition is given this form to avoid rounding errors. It says,
that at least one of the variables has been changed with success,

If the condition is not fulfilled for any of the variables, we con-
tinue with the step reduction.

2:5.7. Step Reduction, We arrive at this point in the method, when
no improvement can be obtained by direct search or pattern search. All
increments are reduced by multiplication by a factor, REDFAC, less than
unity. A new direct search is then started. The step reduction 1s stop-
ped, when the original step size, DELSTART, has been reduced below a
given tolerance, eps. When this point is reached, the optimization is
considered finished. A further check on the calculation is made by hav-
ing a maximum mmber of function evaluations. If this number is exceeded
the calculation is stopped, and an alarm boolean is set,

A simplified flow sheet of the optimization method is shown in fig-
ure 4 on the next page.

-138-

START

DIRECT
SEARCH

REDUCE
STEPS

Figure 4

Direct Search and Pattern Search

-139-

5.5.4. The Procedure DIRSEARCH. This procedure operates after the

principles described above, The declaration is shown on page 140 -~ 141,
The following formal parameters are used:

integer VAR: The number of independent variables.

array XaCT[1:VaR]: The set of independent variables. Must contain
the start values at the entry to the procedure and will contain the opt-
imal values at the exit.

real DELSTART: Must contain the initial value of the increment for
the independent variables. The same value is used for all variables.
Contains the last used value at the exit.

real eps: Minimum permissible step length. DELSTART is scaled down
as long as it 1s not less than eps.

real REDFAC: DELSTART is multiplied by this reduction factor in each
step length reduction.

real procedure FUNC: An external procedure which must calculate the
value of the objective function for a set of the independent variables
given as a parameter: FUNC(XACT) or FUNC (XNEW),

integer signfactor: Must be specified as -1 for determimation of a

maximum and +1 for a minimum.

real FaCT: Contains the optimum function value (multiplied by sign-
factor) at the exit.

integer maxev: The maximum permissible mumber of function evalua-
tions with the FUNC-procedure.

boolean conv: The procedure normally sets this to true at the exit,

except when maxev has been exceeded, when it is set to false,

It may be practical to replace the formal parameter, eps, by an in-
teger: MAXRED indicating how many times the increment DELSTART may be
reduced by multiplication by REDFAC. It may also be convenient to have
the actual number of functions as a parameter.

The declaration of DIRSEARCH is:

=140~

procedure DIRSEARCH(VAR, XACT, DELSTART, eps, REDFAC, FUNC,
signfactor, FACT, maxev, conv);

yalue VAR, signfactor;

boolean conv;

integer VAR, signfactor, maxev;

real DELSTART, eps, REDFAC, FACT;

real procedure FUNC;

arrey XaCT;

begin

integer i, eval;
real FNEW, FPMIN, work;

array XNEW, DELACT[1:VAR];

procedure E;
for 1 := 1 step 1 until VAR do

begin
XNEW[i] := XNEW[1] + DELACT[1];
test eval;
FNEW := FUNC(XNEW)xsignfuctor;
if FNEW { PMIN then FMIN := FNEW else
begin
DEIACT{1] := -DELACT[1];
XNEW[1] := XNEW[i] + 2xDELACT[1];
test eval;
FNEW := FUNC(XNEW)xsignfactor;
if FNEW < FMIN then FMIN := FNEW else
XNEW[1] := XNEW[1] - DELACT[1];
&nd;
£nd E;
procedure test eval;
1f eval < mexev then eval := eval + 1 else

begin
conv := false;

£0 %o EXIT;
end test eval;
for 1 := 1 step 1 until VAR do DELACT{i] := DELSTART;
FACT := FUNC(XACT)xsignfactor;
eval := 1;

conv = true;

-l -

L1:writetext{k<
DIRECT:});
FMIN := FACT;
for i := 1 step 1 until VAR do XNEW[1] := XaCT{1];
Bj
Af FPMIN < FaCT then
begin
12 writetext(k(
PATTERN: });
for 1 := 1 step 1 until VAR do
begin
if XMew[i] > XacT[1] = DELACT{1] < O then
DELACT{1] := -DELACT[1];
work := XACT[1];
XACT[1] = XNEW[i];
XNEW[i] := 2xXNEW[1] - work;
end for i;
FACT := FMIN;
test eval;
PMIN := FNEW := FUNC({XNEW)xsignfactor;
B;
if FMIN > FACT then go to Li;
for 4 :=1 step 1 until VAR do
Af abs(xNEW[1]-XacT[1]) > 0.5xabs(DEIACT(1]) then go to I2;
end;
L3: writetext (k<
REDUCE: });
1f DELSTART > eps then
begin
DELSTART := REDFACxDELSTART;
for i := 1 step 1 until VAR do DELACT[i] := REDFACxDELACT{i];
&0 to Li;
end if;
EXIT: maxev := eval;
end DIRSEARCH;

-14h2-
The following local vuriables and procedures are used:

integer i: Counter in for-statements.

integer eval: Counter of function evaluations,.

real FNEW: Used for ewctual function value generated during the
direct search.

real FMIN: Used for best function value during direct search.

real work: Work cell.

array XNEW[1:VAR]: New set of X-values generated during direct and
pattern search.

array DELACT{1:VAR]: The actual set of increments in the variables.
Initially, the procedure puts all these equal to DELSTART, They are
scaled down together with DELST4RT during the calculation by multipli-
cation by REDFAC, The signs of DELACT are also changed.

procedure E: This procedure performs the direct search as explained
on page 134, It may change the items in XNEW and the sign of the ele-
ments in DELACT. It updates MMIN to contain the best function value.

Procedure test eval: This procedure is called immediately before
each call of FUNC. If eval { maxev it adds 1 to ewval, otherwise it sets
conv to false and terminates the calculation,

The calculations performed by DIRSEARCH correspond closely to the
flow sheet on page 138 and the explamations on the previous pages. In
order to illustrate the calculations the procedure has been fitted with
printing of the three text strings:

DIRECT:
PATTERN:
REDUCE:

at the three labels where these operations are started. The direct
search always following immediately after the pattern search is not in-
dicated in this way.

S5e0.4.1. Example with Quadratic Function. The following example il-
lustrates the use of DIRSEARCH on the quadratic function given in equa-

tion (5.19), page 105:

Y = 10 ~(0.8x(X1-5)-0. 6x (X2-5) JA2-4x (0. 6x (X1-5)+0.8x (X2-5) A2

=143

The function has its maximum at (5,5) and the contours are ellipses
around this point. The test program for this example has the form:

Program d-388. Test of DIRSEARCH.
begin
boolean conv;
real DELSTART, REDFAC, FACT, Y;
array X[1:2];
copy DIRSEARCH(
real procedure FUNC(X);
array X;
begin
FUNC := Y := 10 - (0.8x(X[1]-5) - 0.6x(x[2]-5))A2
Lx (0,6x(X[1]-5) + 0.8x(x[2]-5))42;
writecr;
write (k-dddd.adadadd, x[1], x[2], ¥);
end FUNC;
select(8);
writechar(72);
writetext (£
Output d-388.
X[1] X[2] Y
});
X[1] = 1;
x[2] := 2;
REDFAC := 0.5;
DELSTART := 0.5;
DIRSEARCH(2, X, DELSTART, 14-2, REDFAC, FUNC,
-1, FACT, 400, conv);

it

It

writecr;
writetext (1f conv then {<conv} else {<not conv});
writecr;

end;

The output from the program is shown on the following pages:

Output d-5880

x[1]

1. 000000
DIRECT:
1500000
1. 500000
PATTERN:
2.000000
2.500000
2, 500000
PATTERN:
3.500000
L4, 000000
4,000000
PATTERN:
5500000
6,000000
5. 000000
5. 000000
5. 000000
DIRECT:
3.500000
4,500000
4. 500000
4, 500000
PATTERN:
5, 000000
5. 500000
4, 500000
5.000000
5.000000
PATTERN:
5. 500000
6, 000000
5000000
5. 000000
5. 000000

X[(2]
2.000000

2.000000
2,500000

3, 000000
3,000000
3.,500000

4 ,500000
4,500000
5, 000000

6500000
6. 500000
6. 500000
7 . 000000
6.000000

5., 000000
5. 000000
4. 500000
5.500000

5. 000000
5. 000000
5. 000000
L, 500000
5. 500000

5, 000000
5,000000
5,000000
4.500000
5.500000

RTING

-84.,120000

-"72.,000000
-58.930000

-37.680000
-29, 080000
~20. 370000

2,430000
5750000
7.920000

0.750000
-2,970000
3.430000
-1.680000
7.080000

5. 320000
9.480000
8.030000
9.470000

40, 000000
9.480000
9.480000
9.270000
9.270000

9.480000
T.920000
10. 000000
9.270000
3.270000

DIRECT:
4, 500000
5,500000
5.000000
5. 000000
REDUCE:
DIRECT:
5.250000
b 7750000
5. 000000
5. 000000
REDUCE:
DIRECT:
4,.875000
5,125000
5. 000000
5. 000000
REDUCE:
DIRECT:
5.062500
4.937500
5, 000000
5,000000
REDUCE:
DIRECT:
L,968750
5.031250
5. 000000
5, 000000
REDUCE:
DIRECT:
54015625
b 984375
5 . 000000
5, 000000

5. 000000
5., 000000
5. 500000
L . 500000

5. 000000
5, 000000
L. 750000
5,250000

5, 000000
5, 000000

5. 125000
L ,875000

5, 000000
5,000000

4.937500
5.062500

5. 000000
5« 000000
5.0%1250
4 ,968750

5, 000000
5., 000000
L,9B4375
5.015625

-145-

9,L80000
9.480000
9,270000
9.270000

9,870000
9,870000
9,817500
9.817500

9.967500
9.967500
9.954 375
9.954375

9.991875
9.991875
9.988594
9.988594

9.997969
9.997969
9.997148
9.997148

9.999492
9.995492
9.999287
9.9992087

=146~

REDUCK :

DIRECT:
4 ,992187 5. 000000 9.999873
5,007812 5,000000 9,999873%
5,000000 5.,007812 9,999822
5, 000000 b ,992187 9.999822

REDUCE:

conv

The search is started in the base point: (1,2) with incrementsA of
the size 0.5. The first direct search takes us (1.5,2.5)
with an increase in both variables. The pattern is now (0.5,0.5) and the
Additional direct search leads to

to the point

first pattern move takes us to (2,3).
the point (2.5,3.5).

The second pattern move gives (3.5,4.5),
direct search to (4,5).
immediately one after another gives a doubling of the steps in each move
(although DELACT is unchanged).

The third pattern move to (5.5,6.5) is a failure, and the additional
direct search which tukes us to the point (5,6) with the function value
7.08 is not better than the old base (4,5) with the value 7.92.

We then start a fresh direct search taking us from (4,5) to the
point (4.5,5.5) with the function value 9.47. From there, a pattern move
takes us to the optimum point (5,5) with the value 10,
move is attempted but without success,

which is improved by the

Note, how a series of successful pattern moves

A second pdattern

The rest of the calculation consists of direct search and step size
reduction. Pattern moves are not tried, because no improvement 1s ob-
tained from the direct search., The optimum is obtained with the required
accuracy.

The practical experience with the use of the direct search - pattern
search has indicated that the actual benefit in use

It could be an advantage to eliminate this

of the pattern fea-
ture is not very pronounced.
feature from the procedure.

~th7-

5:5.5. Uptimization with Model Generation. When the direct search

optimization is to be included in a routine program for optimlzation of
any kind of data generated by a computer program, various features must
be included in addition to the direct search itself,

As the basic strategy in the direct search method is the use of a
large number of function evaluations and a minimum amount of algebraic
treatment of the data, it will nearly always be necessury to operate on
& simplified model which can be evaluated very quickly. The program must
then have a flow sheet of the form:

CALCULATE
SIMPLE &> TRUE
MODEL MODEL

The generation of the simple model (e.g. & quadratic model) from the
true model requires certain criteria for how often and under which cir-
cumstances the simple model must be recalculated from the true model.
The control parameters used in this strategy are explained in the fol-
lowing pages,

In view of the fust operation of the direct search method when work-
ing on a simple model, it is possible to solve the problem of simulta-
neous side conditions (equalities or inequalities) in a fairly efficient
way by means of pernalties. If we are looking for the maximum value of
the object function with side conditions, we perform the optimization
not on the object function itself but on a modified function in which a
Certain penalty is subtracted from the object function. The penalty is
zero when the side condition is satisfied and positive when it is not.
The penalty is made to increase quadratically with the distance from the
target value, More details are given in section 5.5,6. below.

-148-

The generation of a simple (quadratic) model from a true, complex

model involves two problems:

1. Generation of a single model,
2. Strategy for repeated model generation,

In order to calculate a single model, we must have a set of start
values of the independent variables (a base point) and a set of incre-
ments, The mathematics involved in the model generation is fully explai-
ned in section 3. The actual way in which the control of the calculation
18 transferred from the part of the program performing the optimization
to the part of the program evaluating the true model depends on the pro-
gram administration system used. In the Haldor Topsge GIPS System, the
generation of a model requires access to a job list performing the cal-
culation of the true model.

The necessity of repeating the model calculation comes from the fact
that a simple quadratic model will not be identical to the +true wmodel,
except in the case when this is also quadratic. This Is 1illustrated by
the figure:

MODEL1

T MODEL2

= 5 . MOIEL>

N

We start by generating the quadratic MODEL1 from the true model in
the range around the point 1. The optimum point of MODEL1 1s calculated
to be, say point 2, As this point is far away from point 1, it is neces-
sary to generate a new quadratic model, MODEL2, around point 2, When
this model is optimized, we may arrive at point 3, etc,

It is evident that it 18 necessary to generate a new model when the
predicted optimum is far outside the range covered by the previous model

-149-

generation. But it is not sufficient that the points 1, 2, 3, etc. con-
verge to a single point, 1t is also necessary to reduce the increments
used for the variables in the successive model generations, because of
the error introduced when the true model is approximated by & quadratic
model, This error is reduced when the increments are reduced. On the
other hand, the increments must not be reduced too much as this may give
rise to poor mumerical accuracy.

The following paremeters are adequate for the control of the model
generation:

real MXSTP: The maximum step factor for & new model., This is a gene-
ral safety against having a new model generated at a point very far from
the center of the old model. Example:

Base point of old model: X1 =7, X2 = 17,
Origiral increments: IX1 = 2, X2 = 3,
MXSTP: &4,

MXSIP is measured relative to the original increments. If the center
of the new model is found to: XINEW = 13, X2NEW = 29, the relative dist-
ance between the two models becomes:

DIST

sqrt (((X1NEW-X1)/DX1)42 + ((X2NEW-X2)/DX2)A2)
sart (((13-7)/2)42 + ((29-17)/3)42) = 5

A8 DIST = 5 1is higher than the permitted value MXSTP = 4, the new
center must be moved closer to the old, so that DIST = &,

integer MAXGEN: The maximum permissible number of model generations.
If the number of variables is high and the calculation time on the true
model is long, MAXGEN should not be selected too high.

real RANGE: Model range. This is the radius of the region around the
model center inside which the model 1s assumed to be reliable. The RANGE
is in units of the actual model size, 1.e, measured relatively to the
last used increments for the model generation. The RANGE criterion is
only used to determine whether the increments should be reduced in a new
model generation., If the new model center is inside RANGE, the model in-
crements will be reduced. RANGE = 1.5 is normally a reasonable value,

real ACC: Required accuracy of the optimization. ACC is measured in
units of the original increments used in the model generation. The opti-
Wization i8 considered successfully finished when the latest model

-150-

differs less than ACC from the previous center. ACC = 0,1 is a +typical

value. The conditions:

ACC < RANGE < MXSTP

must, of course, be adhered to.

real REDGEN: Factor for reduction of Ilncrements in model generation.
When the increments are to be reduced, all increments are multiplied by
this factor. It must lie in the range: 0 { REDGEN { 1.

5.5.6. Use of Penalties for Side Restrictions. The methods and con-
ventions for handling side conditions in the GIPS program, OPTI, devel-
oped by E. Balslev are described in the following. When side conditions

are to be included in an optimization, we must have more than one func-
tion to operate upon. The total number of functlons considered 1in the

calculation is denoted: FUNTOT. For each of these functlons we must in-

dicate its type by means of & ccde:
YCODE([1 : FUNTOT]

YCODE is an integer type indicator:

YCUDE = 0: (bjective function to be optimized.

YCODE = 1: Equality constraint.

YCODE = 2: Inequality constraint.

YCODE = 3:; Other function not included iIn optimization or con-

straint.

Only one of the functions can be the objective function. In some
cases It can be convenient to operate with an objective function which
is a linear function of all the available functions:

YOBJS = CMIX[1]x¥[1] + eMIX[2]x¥[2] + ... + CMIX[FUNTOT]xY[FUNTOT]

Some of the mixing coefficients, CMIX{1:FUNTOT], may be =zero., If
this feature is used, YCODL should not be zero for any of the functions,
otherwise YCUDE must be zero for Jjust one of the functions., In the
latter case, +the program will set CMIX to 1 for this funetion and to O
for the other functions.

-151-

When side conditions are used, we must define the required target
values, YTARG[1:FUNTUT], of the conditions. For equalities, YTARG is the
required value of the function., For inequalities, we assume that they

are of the form:
Y[o] > YTarG[J]

i.e., YTARG defines the lower limit of the function. For YCUODE = O and 3
YTARG should be given as zero.

In order to calculate the penalties which are to be subtracted from
the objective function when we are searching a maximum (and added for a

minimum), we must introduce a set of peralty coefficients:
CPEN{1: FUNTUT]
The total penalty is then calculated as:

PENALTY = CPEN[1]x(¥[1]-YTaRG[1]{exsignfuctor
+CPEN[2]« (Y[2]-YTarG[2] Jfexsignfactor
+eonee

+CPEN[FUNTUT }x (Y [FUNTOT }-YTARG [FUNTOT] Jf2xsignfactor

The value of signfactor is -1 for maximum and 1 for minimum. For the
variable having YCODE = O, the corresponding term is omitted (or CPEN
set to zero from the beginning). For YCODE = 2 (inequalities) the term
is only included, if Y < YTARG. The term is also omitted for YCODE = 3,

It now remalns to calculate good values for the pemalty coefficients
CPEN, for YCODE = 1 and 2, The basic strategy is to find an acceptable
start value of CPEN and to repeat the optimization several times with
increasing values of CPEN, until the target values are satisfied within
& certain error. This iteration is done for each model., The total flow
sheet for the model generation, optimization, and side conditions then
takes the form as shown in figure 5 on the next page.

A reasonable start value of the penalty coefficients, CPEN, can be
cbtained as follows. From the model generation we have accumulated in-
formation on the variation of the funetions caleculated, This information
is stored together with the model as the array:

YRANGE([1 : FUNTOT, 1:2]

-152-

CALCULATE

> SIMPLE B TRUE

MODEL MODEL

+

SET START
PENALTIES

Y

OPTIMIZE
SIMPLE
MODEL

INCREASE
PENALITIES |

REDUCE

—— MODEL
SIZE

END

Figure 5

Optimization Flow Sheet

-153-

Here, column 1 is the lower limit, YLOW[1:FUNTOT], and column 2 the
upper limit, YHIGH[1:FUNTUT]. In other words, the values of function no,
J were in the range:

YLOW[J] < Y{J] £ YHIGH{J]

during the model generation., As the peralty is something to be subtrac-
ted from the object function, it may be a reasonable start guess to let
the start value of the pemalty be a certain fraction, say 10 per cent,
of the variation of Y in the model range:

PENALTY = O.1x (YHIGH[0OBJ] - YLow[C0BJ])

UBJ is the subscript of the object function. If a mixed object func-
tion is used, we must insert the weighted differences using MIX:

PENALTY = O.1x (CMIX[1 Jx(YHIGH[1] - YLOW[1]) +
oMIX[2]« (YHIGH[2] - YLOW[2]) + ete.)

After the equation on page 151, the pemalty arising from function
no. I has the form:

PENALTY[I] = CPEN[I]x(¥[I] - YTaRG[I])2
This gives the approximate formula:

CPEN[X Jx (¥[1]-¥YPARG[I])42 = 0.1x (YHIGH[0BJ] - YLOW[OBJ])

CPEN[I] = 0,1x(YBIGH[(BJ J~yLow[aBT])/ (¥[1]-YTARG[I] M

It then remains to find a good value of Y[I] to insert in this for-
mula, At the time when the penalty coefficients are calculated, we have
only access to YLUW[I] and YHIGH[I] from the model generation., It is im-
Portant to avoid that the denominator becomes zero or nearly zero. One
way of avolding this is to insert YHIGH{I]-YLOW[I] instead of ¥{I] -
YTARG[I], but this may not be satisfactory, i1f YTARG[I] is fur outside

 the range from YLOW[I] to YHIGH[I]. The figure 6 on the next page shows
how the denominator is calculated at present in the program OPTI.

-154 -

YTARG=YLOW YTARG=YMEAN
EQUALITY YHIGH-YLOW
YTARG-YLOW
INEQUALITY | YMEAN-YTARG YHIGH~-YLOW
Figure 6

Calculation of DEN in O.1x(YHIGH[OBJ]-YLOW[OBJ])/DENf2
YMEAN is the mean value of YLOW[I] and YHIGH[I].

When the start values of the penalty coefficients have been calcu-
lated in this way, we need only a few more parameters in order to cone
trol the iterations required in the flow sheet on page 152:

integer MaX(PT: A maximum number of optimization cycles in which the
penalty coefficients are increased by a certain factor and the optimi-
zation repeated.

array ACCYT[1:FUNTUT]: The required accuracy in satisfying the side
conditions. The optimization cycles with peralty coefficient increase
are stopped as soon as Y[1] differs less than ACCYT[I] from YT4RG[I] for
all the side condition functions. ACCYT is only used for YCUDE = 1 or 2.

Finally, we need the factor by which to increase the penalty coeffi-
¢ients between each new optimization. In the program OPTI this factor is
bullt into the program as the fixed values: 3.0 for equalities and 10.0
for inequalities. It may be more practical to let these factors and the
coefficient 0.1 used in the calculation of the start values of CPEN be-
come input data to the program.

2:2s6.1. Calculation Example. The program d-387 shown on the follow-

ing pages performs an optimization of a function of two variables with a
simultaneous equality condition for & second function., The Problem is

the same as treated on page 109 with a Iagrange multiplier and on page
113 with elimination of one of the variables.
The program has the declaration:

155

Program d-337. Uptimization with DIRSEARCH.
begin
boolean conv, first;
integer count, si, cye, state, LINE, i, j, count2;
real PENAL, DELSTART, DEN, x1, x2, REDFAC, FACT, R;
array xstart, delOx, xact, yact, XACT, delx[1:2],
MaT[1:6,1:8], Mop{1:6,1:2], YR[1:2, 1:2];
copy DIRSEARCH(
copy GENMOD1{
copy LEQI<
copy MUDVAL1{
copy POLK
procedure PRINT;

begin
writecr;

write(fddd}, LINE);
write({-dddd.dddd}, xact[1], xact[2]);
write (f-dddd.ddddoo}, yact[1], yact[2]);
end PRINT;
real procedure FUNC(x);
array X;
begin
for si := 1, 2 do
xact[si] := xstart[si] + x{si]xdelx[s1];
MODVaL1(2, 2, 6, O, MUD, xact, yact);
FUNC := R := yact[1] - PENaLxyact[2}Ye;
PRINT;
write (f-dadd.ddddoo}, R);
if LINE mod 40 = O then writechar(72);
LINE := LINE+1;
end FUNC;
procedure Q;

begin
writecr;

for 1 := 1 step 1 until 6 do
write (fdddaddddda}, 390+10xi);

writecr;

for j := 1 step 1 until 8 do
begin

writecr;

X2 1= xact[z] :
write({dd}, x2)

«156=

= 64 + 2xJ;
)

1 until 6 do

for 1 := 1 8tep
begin
x1 := xact[1

] 1= 390 + 10xi;

if first then

begin
yact[1] :
yact[E] :

end else

POL(1, x1, x2);
POL(2, x1, x2);

MODVAL1 (2, 2, 6, O, MOD, xact, yact);
vrite ({-dddd.ddda}, yact[1]-PENALxyact[2p2);

end for i;
end for J;
end Q;
select(8);
writechar(72);
writetext (k<

Output d-387.

})

x[2]
ginlet

x[1]
tinlet

?

xstart[1] := 430;
xstart{2] := 70;
del0x[1] := 10;
delox[2] := 2;
REDFAC := 0.5;

v(2] y[1]-pEMaLcy[2 Y

EXCESS

y[1]

PROD

1= GENMOD? (count, 2, 2, 6, xstart, delOx,

eyc := 0
PENAL := Oy
first (= true;
H
Tirst := false;
count := LINE := O;
Btate
xact, yact, 14-20, MAT, MOD);

D:

-157-

yact{1] := POL{1, xact[1], xact[2]);
yact[2] := PUL(2, xact[1], xact[2]) - 2;
if count = 1 then

for si :=1, 2 do

YR[s1, 1] := YR[si, 2] := yact[si];

for 81 =1, 2 do

begin
if yact[si] < YR[si, 1] then YR[s1, 1] := yact[si];
if yact[s1] > YR[si, 2] then YR[si, 2] := yact[s1];

end for si;

if state = O then

begin
PRINT;

£0 to B;
end if state = O
cyc := cyc + 1;
DEN := if abs(¥R[2,2]) < sbs (YR[2,1]) then
YR[2,2]-¥R[2,1] else YR[2,2];
PENAL := 0.1x(YR[1,2]-YR[1,1])/DEN2;
count2 := 1;
if cye < 3 then
begin

writecr;

write(f-dddd.dddda}, PENAL);

Q3

writecr;

XacT[1] := XacP[2] := O

delx[1] := aelox[1];

delx[2] := delOx{2];

DELSTART := 1;

LINE := O

DIRSEARCH{2, XACT, DELSTART, 0,032, REDFAC, FUNC, -1,
FACT, 400, conv);

writecr;

writetext (1f conv then {<conv} else f<not conv});
for si :=1, 2 do

xstart[si] := xstart[si] + XACT[si]xdelx[s1];
writechar (72);

count2 := count2 + 1;

-158-

PENAL := 3xPENaL;

£O o if count2 < 8 A abs(yact[2]) > 0.02 then D glse &;
end if cyc;
writecr;

end;

The program uses the procedure DIRSEARCH already explained, and the
two procedures GENMUD1 and MODVAL1 for generation and evaluation of the
models. The program has three local procedures:

PRINT: Prints a line with actual values of X and Y.

FUNC: The function ewvaluation procedure used by DIRSEARCH. Calcu-
lates the Y-values corresponding to the actual values of the twe wvalues
of X. The value of the object function is calculated as:

yact{1] - PeNaLxyact[2]

where PENAL is the penalty coefficient, CPEN. The target value of the
second function is zero.

Q: This function prints a small table of the obJject function in or-
der to show how the function varies when CPEN is inecreased,

The program contains the following parts:

Setting of start wvalues.

Generation of the quadratic models. Starts at the label A, The two
independent variables are the catalyst inlet temperature, x[1], and the
relative gas flow, x[2], in the first catalyst bed. By means of the pro-
cedure PUL we calculate the two functions:

y[1]: Ammonia production.
y[2]: Necessary height of the lower exchanger.

The problem is to vary x[1] and x[2] so that y[1] attains its maxi-
mum and y[2] becomes equal to 2. 1In the program we have subtracted 2
from y[2] before the model is generated, so that the target value of
v[2] becomes zero.

During the model generation we also calculate the start value of the
Penalty coefficient.

Uptimization cycle. This is a number of calls of DIRSEARCH with in-
Creasing values of the peralty coefficient., The cycle is stopped when

¥

159

yv[2] becomes less than 0,02 or the cycle counter becomes higher than 7.
After the first optimization cycle, a new model is generated and op-
timized again,
The complete output from the program is too big to be reproduced
here. A sumary is given in the following table:

Optimi- Pemalty Number x[1] x[2] ¥[1] vy[2] Object
zation coef- of function
cycle ficient calls

1 0.305 99 391.88 79.19 73.08 0.52 73.00
0.915 72 402.5C T77.19 T2.97 0.32 72.93
2.7k 6+ L0906 T5.94 72,92 0.09 T2.90
8.23 59 Ub12,50 75.19 72.89 0.05 72,87

24,7 71 bik,69 Th.s56 F2.87 0.063 72.84
Tha1 55 W1L,06 74,31 T2.85 0.02 72.80
222 63 413,13 Th.06 T2.80 0,02 T2.75

2 2,65 76 L2b,69 73.13 T2.84 0,06 72,83

7.95 63 k23,13 73,50 T72.8% 0.02 72.82
23,8 L1 422,50 T2.63 72.82 0,01 72.82

Result found by use of UPTQUA1 with elimination (page 116):

422,17 73.69 72.81 0,00

This example illustrates the basic principle of direct search opti-
mization with use of peralties for the side conditions. The required
number of function evaluations is much higher than in the OPTQUA1 method
but this should normally be acceptable when the gquadratic models are
evaluated directly in the core.

The effect of the penalty coefficient on the model optimization can
be illustrated by copying some of the tables printed by the Q-procedure
in the program d-387. Two tables of the object function are shown here,
one for CPEN = 0,505 and the other for CPEN = 222, 1i.e. for the lowest
and the highest value used:

-160-
CPEN = 0,305

x1: 400 k10 L20 430 L40 L50
x2:

66 66.44 68,28 69.79 70.97 71.80 72.27
68 68.49 69.99 T1.16 72,01 7T2.52 T2.68
70 T70.12 T1.27 72.10 72,61 T2.80 72.65
T2 T71.36 72,17 T72.66 T72.84% 72.69 T72.21
T4 72,26 T2.72 72.87 72,70 T72.22 T1.39
76 72,80 72,92 72.72 T2.20 T1.37 70.19
T8 72.97 T72.75 72.21 T1.3+ 70.1h 68,59
80 72.74 72.18 T1.28 T0.05 68.48 66,54

CPEN = 222

x1: 40O k10 Log 430 Lho 450
x2:

66 -63.59 =52,32 -59.38 -86.62-139,77-228.47
68 29.91 35,94 31,94 15,84 -18.32 -80.37
70 63.14 65.94 64.37 56.15 35.13 -8.76
72 70.88 72,00 T71.81 67.81 53.63 18.98
Th 72,12 T2.70 72.40 68.51 54,43 19,69
76 70.03 70.78 68.45 60,12 38.99 -5.63
78 52.00 53.18 L6,47 28,75 -7.02 -71.73
80 -10,41 -8,96 -22.82 -55,35-113,77-209,22

The last table clearly shows how the origimal function is completely
distorted so that it has normal values only in a narrow range where the
Becond function is close to zero.

-161-

5.5.7s Survey of Control Parameters., A summary is given here of the

control parameters used in the three parts of the complete optimization:

Model Generation:

MXSTEP
MaXGEN
RANGE

ACC
REDGEN

Maximum step factor for new model.

Maximum number of models.

Model range., If the new model is inside the range,
the inerements are reduced.

Required accuracy of the optimization.

Factor for reduction of increments.

Penalty Handling:

MaXOpT
ACCYT

Maximum number of penalty coefficient increases,
Required accuracy in satisfying the side conditions,

Direct Search Optimization:

eps
REDFAC

maxev

Minimum permissible step length.

Factor for reduction of increments in the optimiza-
tion.

Maximum number of function evaluations,

-162-
6. REFERENCES

Frgberg, C.-£.: Introduction to Numerical Analysis, Addison-Wesley Publ.
Co. (1966).

Hodgman, C. D. et al.: Handbook of Chemistry and Physics, Edition 38,
Chemical Rubber Publ., Co. (1956),

Hooke, R. and Jeeves, T.A.: J. Ass, Comp. Mach., 8, 212-229 (1961),

Kallin, S.: Lerobok i FORTRAN, Studentlitteratur (1969).

Kaupe, A. F., Jr.: Algorithm no. 178, CACM, 6, 313 (1963).

Korn, G. A. and Korn, T, M.: Mathematical Handbook Ffor Scientists and
Engineers, McGraw-Hill Book Co., pag. 316 and 372 (1961).

lapidus, L.: Digital Computation for Chemical Engineers, McGraw-Hill
Book Co., (1962),

Naur, P.: Automatic grading of students ALGOL programming, BIT, 4, 177 -
188 (196k4),

Schreiner Andersen, N.: RCSL No. 53-M1, ALGOL 5 procedure zerol, Regne-
centralen (1970).

Villadsen, J.: Selected Approximation Methods for Chemical Engineering
Problems (1970),

Wilde, D. J.: Optimum Seeking Methods, Prentice Hall, pag. 145 (1964).

Zachariassen, J,: GIER System Library Order No. 162, Regnecentralen
(1963).

back substitution, 15
bisection, 60, A7

convergence, 62
CUBEQ1, W7
cubic equations, L7

decision table, 124,
127

differentiation, 39

direct optimization,
118, 132

direct search, 132,
133, 138

direct solution, 21

DIRSEARCH, 139, 143,
155

eigenvalues, 103, 108

elimination, 113

enthalpy, 52, 59

equations, linear, 9

equations, non-linear,
b3

equilibration, 11

Gaussian elimination,
11, 12

GENMOD1, 29, 107, 113,
158

GEMMOD14, 32

GIPS, 150

inversion, see matrix

inversion

iteration, 52, 60

-16%5-

Te AIPHABETIC INDEX

[agrange multiplier,
109, 117, 154
LEQ1, 17, 79, 98, 101

matrix inversion, 10,
21, 83
maximum, 102, 135
minimum, 102, 135
model evaluation, 38
model generation, 26
80, 90, 147
models, 23
models, linear, 25
models, quadratic, 25
model use, 41
MODVAL1, 39, 113, 158

Newton-Raphson method,
53, 87
NOLEQS, 75, 84

UPT1B, 118, 128

QPTI, 150

optimization, 96

OPTQUAt, 98, 103, 109,
11k

pattern search, 132,
135, 138

penalty, 150

pivot, 13, 17

POL, 84, 109, 128, 158

quadratic equations, 45
quadratic optimization,

97

QUAREQ2, b5

random testing, 50

regula falsi method, 57,
60

ROOT4, 91

ROOTS, 57

ROOT7, 60, 69

RGOT8, 60, 63

root determination, 43

root series, 91

side conditions, 119,
150, 154
steepest descents, 117

step reduction, 137

YPOL, 59

	Computer Methods in Linear and Quadratic Models
	Preface
	Contents
	Introduction
	Solution of Linear Equations and Matrix Inversion
	General on Linear Equations and Matrix Inversion
	Solution Method
	The Procedure LEQ1
	Matrix Inversion

	Linear and Quadratic Models
	Basic Model Principle
	Nomenclature
	Model Structure
	Model Generation
	Model Evaluation
	Use of Models

	Solution of Non-Linear Equations
	Basic Principles
	Quadratic and Cubic Equations
	Iterative Methods for a Single Unknown
	Several Non-Linear Equations
	Series of Roots

	Optimization
	Basic Principles
	Quadratic Optimization
	Method of Steepest Descents
	Direct Method for Single Variable
	Direct Search - Pattern Search

	References
	Alphabetic Index

