A/S Regnecentralen
Copenhagen

Februory 1968

THY CTRUCTURE 07 THE RC 4000 MOMITOR
Per Brinch Hangen

Abstract

A miltiprogramming ry.tem for the RC 4000 is described, Tt allows
par:llel exccution of rpro_r mg on a non-swapping basis. Programs may
inilicte olher prozroms in & hierarchal marner. Comrminicotion between
internal end external procestes is handled uniformly. The eystem allows
for console converselion, interprogram communication, and file

storase.

Contento:

Introduction o o o ¢ o ¢ o ¢ o o o o o
Objectiver o o o o o o o o o o ¢ o o @
RC ACOD ¢ o o o o o o o« o ¢ ¢ o o o o
ProcesifS o o o o o o ¢ ¢ o 8 o s o o
Process Communication o o o o « o o
Interns]l Procesi®s o o o o o o o o o

Sequentiol Input/Cutput o o o o o o

- O W 1 O WU NN -

Backing SLOTe o « o o ¢ o o o o o o o 1
Console Communication o « o o ¢ o o o 1
Rerl-time Synchroniz tion o« « o« ¢ ¢ o 12
Conclusion 4 ¢ o o o o o o ¢ o o ¢ o o 12
AcknowledGZements o« o o o ¢ o ¢ o o ¢ o 13



Introduction

This report gives a brief description of a general-purpose
multiprogramming sycstem which is being developed by Regnecentralen for
the RC 4000 computer.

The RC 4000 is 2 24 bit, binary computer with typical operation
times of 4 microseconds. It allows practically unlimited expansion of
the core store and a ctendardized connection of all kinds of peripheral
devices, Multiprogramming is assisted by concurrency of program
execution and input/output operations, program intefruption, and storoge
protection [1].

Cur first experience with multiprogramming was a process control
ayatem implemented on the RC 4000 in 1967, This system performs time-
sharing among wel]-b@ha%ed programs which remain permanently in the
irternal store [2]. » .

At the same time, Regnecentralen completed the Algol 4 compiler for
the GIFR computer. This uniprogramming system introduced standard
procedures for the handling of comrion data files on various kinds of
backing storoge [5].

With this background we started the development of the present
system, Our aim is to make time-sharing feasible on a machine with a
minimum internal store of 16 k words backed by a fast drum or diska.
Programs may be ﬁritten in any of the available progromming
lincnages and may contein programming errors. The cooperation of
programs iz regulated by a monitor program with complete control over
input/output, storage protection, and program interruption. The
mot:itor provides the user programs withvfunctions for the initiation
ani removal of programs, and for the communication between programs
and periphernl devices,

Programs may comrunicate simultaneously with independent users
through typewriter consoles. Programs may also communicate with one
another, The community of programs share a set of data files on drum
or disk.

The system has no built-in assumptions about program scheduling and

resource allocation; it allows any program to initiate other programs in

a hierarchal manner. Thus, the system provides a general frame for
different scheduling strategies, such as batch processing, multiple

console conversation, real-time scheduling, etc,



Objectives

The primary goal is to share a central processor and its peripheral
devices among a number of programs loaded in the internal store.
Automatic swapping of programs in and out of the internal store is not
attempted, This means that the user will get immediate access to the
machine provided there is room in the store and available peripheral
devices,

We do not wish to impose any restrictions on individual programs
with respect to their demand for storage, run time, and peripheral
devices, Accordingly, it is tzken for granted that certain programs
will need most of the system resources for several hours., Such large
programs\must not, however, prevent other users from getting immediate
access to the machine in order to execute more urgent programs of short
duration., Thus, it is vital that the system permits temporary removal
of a program in order to make its storage area and peripheral devices
available for other programs,.

Temporary removal only makes sense if it is possible to restart =
progranm at a later stage. This requires reloading of the program into
the store, as well as mounting and repositioning external documents,
The need for repositioning also arises during program execution
vhenever the operator interferes with the operation of a peripheral
device (by a mistake or in order to move a document to a more reliable
device). Consequently, each input/output operation should be considered
a potential restart candidate in the sense that is must be established
that a document is still mounted in the,corfeot position,

In order to minimize the manual handling of documents on paper tape
or punched cards, the user should be able to retain files on drum or
dick. The user should not be concerned with the actuel location of a
file on backing storages thus, a file should be identified by means of
a symbolic name. The user should have means of protecting his files
against unintentional modification.

The system should support a conversational mode of operation which
satisfies the following needs: any program should be able to open a
conversation with any console and vice versaj; a program should be able
to receive messages simultaneously from a number of consoles; a console

should be able to receive messages simultaneously from several programs,



At any moment several independent processes may be in progress in a“
multiprogramming systems. ThiS‘environmént definitely discourages a mode
of operation in which a main operator or a monitor program has to make
all decisions about program scheduling and resource allocation. Thus, we
consider it essential for the organization of the system, that the
operator is able to delegate responsibility to other programs. This
implies among other things that a program should be able to initiate
other programs and communicate with these.

The design objectives may be summarized as follows:

1+ The system will allow the parallel ihitiation, execution, and
removal of programs in the internal store.
2. The system will allow the allocation of peripheral devices
and the identification of documents mounted on them.
%3, The system will allow the communication between programs,
peripheral devices, and operators.
4. The system will allow the creation, updating, and removal of
common data files,
5. The system will allow a hiera%bal control of the above mentioned [.rc

scheduling and allocation functions,

to stress that monitor functions are kept to a minimum to provide the

most general frame for future operating systems. For example, if a

program wants to remove another program temporarily, it calls a monitor
function which stops the program and all its peripheral devices, The

actual unloading of the program, howigr, mist be performed by the Z5V
requesting program. Another example is that the monitor will inform a

program when a peripheral device needs repositioning, but the actual

repositioning is left to the program itself,



RC 4000

.

Multiprogramming is only feasible in a machine which allows the
relocation, protection, and interruption of programs.

In the RC 4000, address modification includeslindexing, indirect
addressing, and relative addressing. This allows the initial loading of
programs into any available storage area. How{gr, once started, a [ev
program will generate absolute addresses. This deficiency makes the
segmentation and dyramic relocation of programs impractical.

The interruption system registers up to 24 signals which can be
enabled and disabled individually. An enabled inrterrupt causes an
imnediate branching to a fived monitor program with all interrupts
disabled.

Utorage protection 1= achieved by means of three additional bits in

%)

store into 8 distinet areans, The rules of protection within a running

each storage word « This protection key allows a division of the

procram in defined by a protection recister of 8 bits, In store and
Jump operations, the protection key of the addressed word is used as
an index to select a bit within the protection register, This blt
determines whether the storage word is protected against the ourront
program, Attempts to viol to ctorage protection cause program
interruption,

This system enables the monitor to change the protection situation
when control is transferred from one program to another simply by
loading the protection register, Another important consequence of this

scheme is the possibility of establishing a hierarchy of protection
among programss that is, a program loaded with one protection key may
be granted access to programs with other keys, and still be protected

arainaet these.

x) This is an extension of the original protection system

desczibed in refs, 1.



—— o - S - - - -

only be executed within the monitor. These instructions include control
of input/output, storage protection, and program interruption. ‘

The protection system can be summarized as follows: a program
interruption sets the machine in the monitor mode and starts a monitor
prooram. In the monitor mode all instructions can be executed as long
as they are protected. The machine leaves the moritor mode when the
first unprotected instruction is executed. Program interruption will
now result is the following is attempted: storing or Jumping to a

protected location, execution of a privileged instruction.

Processes

A distinction should be made between the names of programs and internal
processes.. An internal process may invoke a sequence of programs as in
batch-processing. A situation may also exist in which several copies of
the same prograzm are executed in parallel, To allow identification of
these independent processes they must be initiated with unique process

NEMes .

—— - -

is a specific roll of paper tape, a deck of punched cards, a printer

form, a reel of magnetic tape, or a data area on backing storage. From

the point of view of the internal processes, the name of an input/output
process refers to the acti}ties of a given document rather than to the [iV
identity of the device on which it is mounted (the identity of the

device may in fact change if the operator decides to move the document

to another device of the same kind).



The time-sharing and communication between internal and externali
processes is coordinated by a fixed program called the 99?3395‘ The
monitor contains descriptions of all processes. It also contains
procedures which perform privileged operations in an uninterruptable
mode. We do not rocard the monitor as an independent process, but
rather as the implementation of indivisible operations which the
internal and externul processes con invoke by means of interruptse This

point will be illustrated in the sequel.

Process Communication

The parallel procescses are cooperating in the sense that they can
cend nessages to one arother, This implies a mechanism for synchronizing
two processes during tho transfer of informatione. The requirement for
synchronization is stated explicitly by the execution of a wait operation,
This causes a delay of the process until another process executes a send~
operation,

Messoges are transvitted in Eg§§ﬁ§§_?9§f§£§ within the monitor.
Buffors are assizmed to processes upon recuest. They belong to the
processes until they arc released explicitly or the processes are
removeds ‘

The monitor administers a message_queue for each process., Messages
are ndded to this queue when they arrive from other procesces. A process
will serve its queue on a first-come first-servel basis. After the
processing of & message, the receiver returns an answer to the sender’in
the same buffer,

The internal processes use the following monitor procedures to

comrunicate with other processes:

wait mesasge(buffer, sender)
send message(buffer, message, receiver)
wait answer(buffer, result)

send answer(buffer, answer)



The procedure wait message delays the requesting process until a

message arrives in its queue, When the process is allowed to proceed it
is supplied with the address of the message buffer and the identity of
the sender.

delivers it in the quene of a named receiver, The receiver is started if
it is waiting for a message.

The procedure wait answer delays the requesting process until an
answer has been delivered in a given buffer, The result of the procedure
specifien whether a normal or a dummy answer was received. A normal
answer ig delivered by a process in response to a received message, A
dumty answer is generated by the monitor when a messaze is addresced to
a non-existent process or to a process protected agninst messages from
the =sender,

The procedurelgggg_gggygg copies an answer into a buffer in which a

mensage has been received, The sender of the message will be started if

it ig waiting for the answer,

Internal Procesces

The internal store ic divided between the monitor and the internal
processes. An internal process occupies a contiguous storage area. It is

4

either running (executing instructions, or ready to do so) or waiting
(for an event outside the process). Scheduling among running processes
is done on a round-robin basis,

Among the internal processes, the so-called permanent process has a
> P ]

o e e

Fe

epeeinl statue, It remswins in the store at all times. Its primery
function is the creation and removal of other processes on request,
After initial system loading, the internal store contains only the
menitor and the permanent process. The operator may now demand the
creation, loading, end start of a parallel internal process by sending
a message to the permanent process from a console, The operator
supplies the process with a name, a storage size, a protection key,

and a protection register,



Processes created by the operator may in turn spawn other processes.
within their own storage area, A family tree of processes and the

corresponding storage allocation may look like the following picture

(the integers illustrate a possible assignment of protection keys):

=
o]
WO =

/
N

console — A

e
N

=1

>

:%
[CYRE N

Wach process is characterized by having a parent and a number of

descendants. A parent has complete jurisdiction over its childrens The

harent may create, start, sto and rcmove them by means of the following
9 9 H &

functions implemented in the permanent process:

create(process, storage area, protection key, protection register)
start(process)
stop(prooess)

remove (proces

Tho :r:jzc funetion initinlizes a process d 'occrintion, The otoragzge
aron assiesned to the procese must be within the parent s area. Also, the
protection key and regsister mist be a subset of those assigned to the
paront. After creation, the process is in the waiting state, The loading
of a program intc the storage area can now be performed by the parent,

The start function sets the protection key of a process and changes
its state to rumning. Also ctarted are those deccendants of the child
which has been stopped previously by the parent,

The stop function places a process in the waiting state and waits
for the completion of its input/output operations. The protection key

is et back to its original value (i.e. the parent's key). Also stopped

are those demcendants of the child which are still running.



9

The Egggyg function terminates the existence of a process and all ifs
descendants., The message queues of the processes are emptied and dummy
answers are returned to the senders. All peripheral devices assigned to
the processes are releared, Finally, the process names are removed from
the system.

According to our philosophy, processes should have complete freedom
to choose their own strategy for tempcratry removal and restart of their
descendants, The system only supplies essential, pfimitive functions for
starting and stopping of processes. Howtgr, at the operator's level one
cannot avoid introducing specific means for loading, temporary removal,

and restart of processes in order to get the system off the ground.

From the point of view of the internal proéesses, a sequential »
input/output process i: created when the operator mounts a magnetic tape,
a papfer tape, a deck of punched cards, or a printer form on a peripheral
device. ' v _

Magnetic tapes with stendard labels are identified by the permanent
process as soon as they are mounted on any available device,

All other kinds of documents are named by the operator from a
console, This can also be done indipectly as follows: an internal
process may ask the monitor for the assignment of an available device
of a riven kind. As answer the monitor deiivers the present name of an-
available device. The internal process now tells the operator to mount
a given document on the device without naming it.

Internal processes must be guaranteed exclusive access to sequential
documents. Consequently, the system requires the explicit reservation
of sequential documents.

An internal process initiates input/output-by sending a message to
an external process. The message defines a device operation and a
storage area to be used as a data buffer, The monitor checks the validity
of the call and connects the message to the queue of the device, If the
device is idle, the monitor initiates the operation before returning to

the requesting process.

| 44



10

The device signals the end of the operation by an interrupt. This
cauges the monitor to deliver a status word as an answer to the sender,

and initiate the nexl operntion in the queue,

Backing Store

The backing store i either a drum or a disk file, It is organized
as a collection of named data areas. Bach data area occupies a

congecutive number of semments. A fixed part of the backing store is set

aride for a catnlog describing the names and locations ol date arecas.

l

Data areas are treatsd as external processes by the internal processess
input/output is initialed by sending a message to the data area sprcifying
an input or outputl oper tion, a storuge buffer, and a segment number
within the arean.

The identificstion of a data area requires a catalog searche. The
asyntem tries to rveduce the nwiber of searchen by creating internal process
deseriptions of aetive nreas, When an internal process refers to a data
area for the first time, the internal process is delayed while the
permanent process performs a catalog search and creates a description
of the area within the monitor. '

The monitor has only room for a fixed number of area descriptions.

When there are no more unused descriptions, old descriptions are
overwritten by new descriptions. The victims will be those which have
been left unused for the longest time, Internal area descriptions are
also removed when the corresponding catalog entry is cancelled.

The syctem employs a protection scheme which is similar to the
storage protection: each catalog entry is supplied with a protection
key; the rules of protection within an internsl process is defined by
a simlated protection register set by the parent of the internal

DProcesse.



11

An internal process creates a data area by~sending a command of the

following form to the permanent process:
new entry(name, size, protection key, parameters)

This causes the reservation of an area with the given name and size to
be made and put into the cntaloge The description may include a number
of user=defined parcmeters.

In order to prevent the backing store from being filled withkobsolete
information, the concept of temporary areas are introduced. All arees
are created as temporary areas, This impliés two thingst: the creating
process is guaranteed exclusive access to the area while it is processeds
the rrea is automatically deleted when the internal process is removed,
The deletion can be prevented by sending another command to the internal
process.,

Commands also exigt for searching, locking, unlocking, changing, and

removing $¥ the description of an area. f?45

An operator opens a conversation from a console by depressing an
interrupt key. This canses the monitor to select a nessage buffer and
connect it to the console. The operator must now identify the internal
process to which his message is addressed (after the first identification
of ~ series of messages to the same process, he may just type an empty
name consisting of a new-line character). Folloﬁing this he can input a
mesc.ge consisting of one line which is delivered in the queue of the
receiving process, 1If the operator depresses the interrupt key during
input, the console responds with output of a new-line character in- order
that the operator may repeat the input,

The answer from an internal process to a console message merely has
the functibn of releasing the message buffer,

An internal process opens a conversation with a console by sending a
mescage to it. The mescage is connected to the console queue, and output
is initiated if the console is idle, Before printing the message, the

console identifies the internal process to the operator (this is suppressed



12

after the first identification of a series of messages from the same
process ). The console completes the oufput independently by means of
interrupts and delivers a status word as an answer to the internal
processe It then proceeds to output the next messnge in the queue,

An internal process may also request that an output message is
followed by an immediate answer from the operator. The answer consists
of one line which ic delivered in the original messcge buffer, If the
operator delays the typing more than 10 seconds,~dn empty answer is
delivered to make the console aveilable for other messages,

trese that o conrole is not assigned exclusively to a single
internnl process. Any intcrnel process may communicate with any
congole and vice versa (provided the sender knows the name of the
woeiver). An over tor muy change the name of a corsole by sending a

messace from the consol: to the Hnbexned| process,. — Penmamfwt'

Real=-time Synchronizeation

Internnl processes comrunicote with a real-time clock by sending
megsases to it. After the elapsing of a time interval specified in the
mesrage, the clock returns an answer to the requesting process,

A similar comrunication is possible with interrupt keyes; in this
case, the interval ic connidered elapsed when the operator depressses

the keye.

Conclucion

A realistic evaluation of the system presented here can only be made
after it has been used for some time, However, at the present stoge
certain conclusions can bhe drawn. |

The uniform treatment of internal and external processes and the
hierarchy of internal processes appear to be very general concepts.

A major weakness seems to be the inability of the monitor to delegate
the responsibility for input/output operations. Thus, it is not only
burdened with the ascismment of devices, but also with checking the

validity of all input/output operations. As a consequence, the machine



13

will spend a large portion of its time in the uninterruptable mode
vhere it is insensitive to external requests.

An effective solution to this problem would rejuire a hardware
protection of peripheral devices similar to the present storage

protection.

Acknowledgement

The system presented here represents the thoughts and efforts of

Jern Jensen, Peter Kraft, Seren Lauesen, and the author,

References:

1. P. Brinch Hansen, The Logical Structure of the RC 4000
Computer, Bit 7 (1967), 191 - 199, ’

2. P, Princh Hansen, The RC 4000 Real-time Control System
at Pulawy, Bit 7 (1967), 279 - 288,

3 Po Naur, Features of the Gier Algol 4 System,
A/S Re_necentralen, Copenhagen, 1947,



