
BIT 7 (1967), 279-288

THE R,C 4OOO R,EAL-TIME CONTR,OL SYSTEM

AT PULAWY*

PER BRINCH HANSEN

Abstract.

This paper describes a real-time control system implemented on the Rc 4000

cornputer *ith u,tt internal store of 4096 words. The system permits a nurnber of

independent programs to be executed periodically on a time-sharing basis. The

first vorsion of the system performs supervisory control of the ammoniurr nitrate

plant Pulawy II in Poland.
After a description of the Pulawy system, the choice of a time-sharing scheme

and tho handling of sharecl facilities are discussed. This is followed by an evalua-

tion of the sizo and performance of the system.

Introduction.

The multiprogra,mming system described in this paper was developed

by Regnecentralen on contract .with the Danish engineering company

I{aldor Topsoe. In connection with this project, Regnecentralen also

developed a medium-sized computer, the RC 4000, which is specially

suited for real-time control applications (Ref. 1).

The system is implemented on the RC 4000 computer with an internal

store of 4096 words (backing stora,ge is not used). It permits a number of

independent programs to be executed periodically under the real-time

control of a monitor. For each program, the operator can select the start

time of its first execution and the time interval between its subsequent

executions. The programs are executed in a simple time-sharing scheme'

in which each program in turn is allotted a small quantum of computing

time. A critical feature of any multiprogramming system is the handling

of shared facilities. we have adopted the technique of binary sem&-

phores suggested by E. W. Dijkstra (Ref. 2).

The first version of the system will be installed in 1967 in the &mmo-

nium nitrate plant, Pulawy II, constructed by Haldor Topsoe in Poland.

Here, the RC 4000 will perform regular alarm scanning' data logging,

and evaluation of production and consumption figures.

In the following, we describe the supervision of the Pulawy plant in

order to illustrate the requirements of a real-time control system and

* Prosented at the NordSAM 6? Conference, Oslo, 12-14 June' 1967'

280 PER tsRINCI{ I{ANSEN

the difficulties of implementation. This is follorved by a discrrssion of

the time-sharing approach.

The RC 4000 computer.

The RC 4000 is a single-address, binary computer with typical instruc-

tion execution times of from 2.5 to 5.5 microseconds. The following

characteristics apply to the basic model used in the Pulawy plant.

Store: The internal store has a capacity of 4096 v'ords. Each word
contains 24 information bits, I parity bit, and I protection bit.

Registers: There are four working registers of 24 bits each. Three of

these also function as index registers. The registers &re addressable as

the first four words of the internal store.
Add,ressing: Words of 24 bits and half-words of 12 bits are directly

addressable. Address modification includes indexing, indirect addressing,
and rclative addressing.

Ari,thmeti,c: Integer arithmetic with operands of 12 ancl 24 bits is

standard.
Inputloutpuf : The standard. data channel performs transfers of single

words between low-speed devices and working registers under program

control. Program execution continues while input/output operations are

in progress.
Program Protecti,on: In the RC 4000, the monitor program consists of

all storage words in which the protection bits are set. A program stored

in an unprotected area can neither alter nor jump to a protected area.

All input/output operations as well as control of the interruption system

and storage protection are handled by privileged instructions, which

oan only be executed within the monitor. Attempts to violate the pro-

tection system cause program interruption.
Program Interruption: The interruption system can register up to 24

signals simultaneously. These can be enabled and disabled individually.

The interrupts are examined after each instruction; an enabled inter-

rupt will transfer control from the current program to the monitor. All

interrupts are disabled when the monitor is entered; they can be enabled

again by a privileged. instruction.

The Pulawy Installation.

The Pulawy II plant consists of three units for the production of

ammonia, nitric acid, and ammonium nitrate, respectiYely. The plant is

operated manually under the supervision of the computer. This section

describes the conliguration of peripheral equipment at Pulawy.

TIIE RC 4OOO Ii]'AL-TIME CONTROL SYSTI']}I A1' PULAWY 2 8 1

The operator controls the operation of the system by means of a con-

trol typewriter. A paper tape reader and punch are provided for the

assembly and loading of programs.

Real-time operation is controlled by two interval timers, which gene-

rate interrupts every 2.5 milliseconds and every I second, respectively.

The computer receives measurements from the plant in the form of

543 analog inputs and I27 digital inputs. The analog inputs are prima-

rily measurements of temperatures, pressures, and flows expressed as

voltages. The voltages &re converted to decimal numbers by an analog/

digital converter. The selection of input points is performed try a relay

multiplexer with a switching rate of 30 points per second.

Digital inputs are discrete events registered as single bits in external

registers: one type of digital input defines the status of alarm contacts

in the plant I another collects single counting pulses from kilo'watt-hour

meters and bag-filling devices.

A digital output register controls a display panel that shows the operator

in which part of the plant alarm conditions exist.

Regular alarm reports and log reports are printed on two strip printers

and two typewriters.

Process control tasks.

The computer exarnines the analog and digital inputs at regular inter"

vals and produces balance evaluation reports, log reports, and alarur

reports.
Balance Eualuation: Every 8 hours, a report on 135 material balances

is printed orr one of the log typewriters. This report shows the consump-

tion of electricity and production of anamonium nitrate during the period.

It also includes an evaluation of the total inflorry and outflow of mate-

rials such as natural gas, steam, ammonia, and nitric acid. The informa-

tion for this report is measured as follows: the digital pulses are input

eyery second and accumulated in a table in the internal store; the analog

flow values &re measured every 5 minutes and accumulated in another'

table.
Data Loggi,ng; Every hour, two reports, each on approximat,ely 275

analog values and 35 pulse counts, are printed simultaneously on the log

t5ryewriters. The log reports can be regarded as a snapshot of the operating

state of the plant: the first report contains all data from the a,mmonia

unit; the second covers the nitric acid and a,mmonium nitrate units'

Alarm Scanning: Every 5 minutes, the computer examines the state of

6l alarm contacts; at the same time, 188 analog variables are sc&'''ned

282 PER BRINCII HANSEN

and checked against alarm limits stored in a table. The operator is warned

of alarm conditions by visible lamps and the printing of alarm messages

on the strip printers.

Trend, Logging: The operator c&n at, any time request regular trend

logging of a single analog variable on the strip printers.

Setf-Cheatd,ng: In the event of computer malfunction, the plant can

still be controlled manually while the system is being repaired. The

computer must however be able to detect and report such malfunction;

accordingly, in idle intervals the computer performs checking of the

instruction logic, the registers, the adder, and the analog/digital con-

verter.
Operator Control: The operator can at any time type a command to

the system on the control typewriter. The main options available to the

operator are: selection of the start, time and period of each process con-

trol task; exclusion of analog and digital inputs from one or more pro-

duction lines; changing of scale {actors and alarm limits of analog inputs;

and selection of alternative output devices for the printing of balance

and log reports.

Multipro$rammin$ aPProach.

The table belorv summarizes the control tasks at Pulau'y and their

real-time requirements :

Task Normal Period Completion Tirrre

Operator Control - infinite
Pulse Integration I second 2 milliseconds

tr-low Integration 5 minutes l0 seconds

,Balanco ltrvaluation 8 horxs 2.5 minutes

Data Logging t I hour 2.0 minutes

Data Logging 2 I hour 1.5 minutes

Alarrn Scamring 5 minutes 15 seconds

Trendlogging - lsecond

Self-Checl<ing - infinite

In the following discussion, it is important to note that, several of the

tasks use the same peripheral equipment: the analog/digital converter

is used in aII tasks except operator control and pulse integration; the

log typewriters are shared in balance evaluation and data logging; the

strip printers are used in both alarm scanning and trend logging.

From this description of the supervision of the Pulawy plant, we can

draw a number of conclusions about the implementation of the real-time

control system. we have a single computer that must perform a number

T}II' RC 4OOO REAL.TIIIE CONTIiOL SYSTEM AT PUI,A\VY 283

of independ.ent tasks, each with its orvn real-time requirements. The

tasks are executed cyclically in periods determined by the operator.

We have chosen to implement the tasks as separate programs, because
they have individual and variable periods of execution. It is obvious,
however, that we cannot fulfill the real-time requirements by executing
one task program at a time: two task programs may v-ell demand to be
started at the same time; the time required for a single execution of a
bask program may also be longer than the time interval between suc-
cessive executions of other task programs. Thus v'e are forced to in-
troduce a multiprogramming scheme in which the computer performs
rapid time-multiplexing among the task programs.

Ease of implementation requires that a task program can be program-

med in as straightforward a manner as in purely sequential programming;

accordingly, time-sharing among task programs must be handled auto-
maticaliy by a monitor program activated regularly by interrupts from
a clock.

For the sake of generality and simplicity, the individual task programs

must be regarded as being independent of one another. In particular.

we do not wish to impose any restrictions on the relative timing of pro-
grams. The operator must have complete freedorn to change the frequenc5r
of task executions individually. He must' even be able to stop one or more
tasks completely for a period of tirne. The main problem introduced by
this freedom is to find a general way to avoid conflicts about facilities
shared among the task programs.

The solution to these nroblems is considered in the followinE sections.

Real-time scheduling

The choice of a multiprogramming sheme must be based on the knorvl-
edge of the computing capacity required in worst-case situations. In a
heavily loaded system, it may be necessary to establish a system of
priorities among the task programs to ensure that the most urgent tasks
are completed first. A simple estimate of the system load at Pulawy
convinced us that a priority scheme would place unnecessary restrictions
on the system. First, we have no backing store to slow down the execu-
tion of programs. Second, the majority of the tasks are limited by low-
speed devices with input/output times of from 35 milliseconds (analog
input) to 70 milliseconds (typewriter output). The programs use less
than I millisecond each to process an input word or produce an output
word; that is to say, a task program uses only 'Lotot|"uof the computing

284 PEII R[{INC}I HANSIIN

time. with only nine task programs, the load is so light that, r,r'e carr

afford to serve all programs on equal t'erms.

The real-time operation of the monitor is controlled by an interval

timer, which causes a program interruption every second. The monitor

increments a clock counter by one, and examines a table defining the

start time and period of each task proglam. If real-time exceeds the

scheduled, start time of a program, a flag bit is set and the start time is

increased by the value of the period. when the scan of the time table

is completed, the interruptecl task program is resumed.

Time-sharing among active task programs is controlled by another'

interval tjmer as follows: every 2.5 milliseconds, tire current task pro-

grarn is interrupted and the contents of the'working registers and instruc-

tiorr counter are stored in a drunp table. 'Ihe monitor scans the flag bits

cyclically untj.l it finds another active task prograur, which is then

started. After another 2.5 milliseconds, control is transferred to a third

program, ancl so on.

when a task program is finished, it calls the monitor asking it to tunr

its flag bit off , after which the program does not, receive computing time

until the next scheduled run.

switching from one task program to another is also performed, when-

ever & program must wait for the completion of an input/output opera-

tion or whenever a common facility is occupied by another progra,m.

Here, the restart adclress iD the dump table is adjusted to make the task

program repeat the call of the input/output procedure or the reservation

procedure the next time it receives a time quantum. Thus the rnonitor

is relie.i,ecl of having to keep track of queues of shared facilities.

The selection of a time quantum w&s influenced by the following

consiclerations. The quantum had to be at, least as great as the avelage

response time required by a task progra,m for a single input/output

operation. At Pulawy this was about I millisecond. The upper limit was

determined by the number of programs using the whole time quantum

for computing. Too large a quantum would slolv dowl] the task progl,ams,

limited by input/output, and thus degrade the performance of the low-

speed. devices. At Pulawy, the sel{-checking program was the only one

of this type. Experiments showed that a time quantum between 2-3

milliseconds resulted in the shortest completion times for all task pro-

grams.

Shared facilities.

we shail now consider the problem of the mutual exclusion that, arises'

whenever two or more independent programs demand access to a com-

TEE IiO 4OOO REAL.TII\TE CONTROI, SYSTEM AT PUI,AWY 285

mon facility. our understanding of this problem has been profoundly

influencecl by the monograph of E. w. Dijkstra cooperati,ng sequential'

Processes (Ref. 2). In the folloiving u,-e discuss his technique of binary

semaphores as applied to our system.
'Ihe task programs at Pulawy can be regardec as independent programs,

in as much as they d.o not depend on explicit, knowledge of one another's

structures and speed ratios. The programs comrnunicate rvith one an-

other only for short intervais to ensule mutual exclusion from shared

facilities. This communication implies inspection of and assignment to

common Booleans, called binary semaphores. Ilach semaphore is asso-

ciated with a shared facility. It has the value zeto if the facility is avail-

able, and one if it is busY'

when a, program wishes to reserve a facility, it must inspect the cor-

responding semaphore. If the facility is available, the program will

immediately occupy it by assigning the value one to the semaphore;

otherwise the program must wait until the facility has been released.

In the RC 4000 computer, this reservation can be made by the following

sequence of instructions:

RESEI{,VE: LOAD, SEI{APHORE

SKIP IX' EQUAL TO, O

JUMP TO, RESER,VE
LOAD ADDR,ESS, 1
STORtr, SEMAPHORE

consider now the case where progra,m .4 is inspecting a semaphore.
It may happen that the program is interrupted after the loading of the

semaphore, but before inspection and assignment, to it. The working

register containing the value of the semaphore is then stored in the dump

table within the monitor, and program B is started. B may load the same

semaphore and find that the facility is available. Accordingly, B assigns

the value one to the semaphore and starts using the facility. After a

while B is interrupted, and al, some later time -4 is restarted with the

original contents of the working registers reestablished from the dump

table. Program A continues the inspection of the original value of the

semaphore and concludes erroneously that the facility is available.

This conflict arises because the task programs have no control over the

interrupt system. The only indivisible opera,tions available to the task

programs are single instructions such as load, compare, and store. The

reservation sequence can, however, be made an indivisible entity by

incorporating it in the monitor program. The monitor is protected in

the store and can only be called by a task program by provoking a

t 86 PER BRINCH HANSEN

program interruption (for example by executing a privileged instruction).

This will transfer control to the monitor, with the interrupt system dis-

abled. The monitor is norv able to perform any sequence of instructions

as an indivisible entity, before it reenables the interrupt system.

In our system, all semaphores are implemented as bits in a single

storage word. The monitor can perform two primitive operations on the

semaphores. The reservation procedure (called P by Dijkstra) examines

a number of semaphores, selected by a mask, in parallel. If they are all

zero, their values are changed to one, and a return is made to the calling

program. If some of them ate ones, the current task program is inter-

rupted and another task program is started. When the interrupted

progra,m receives a nelv quantum of computing time, it repeats the call

of the P procedure.
The releasing procedure (called Z) sets a number of semaphores to

zero, and starts another task program. The transfer of control is neces-

sary to prevent a task program from monopolizing a facility. l\{ost of the

programs perform cyclic reservations of the same facility in the follorving

way:

Program ,4 : P(semaphore) ;
critical section;
comment: common facility reserved by A;

7(semaphore);
remainder of cycle;
goto Program .4;

At Pularvy, the probability of program -4 being interrupted in the

remainder of the cycle before the next reservation is roughly equal to

the execution time of about 100 instructions divided by the time quan-

tum, i.e.500 usec/2.5 msec:I/5. Thus progra,m switching on the 7

function is vital for ensuring that the programs receive access to com-

mon facilities on equal terms.

In our system 13 semaphores are associated with common data tables,

procedures, and input/output devices.

Two semaphores prevent the pulse and florv integration programs from

updating the tables of integrated data, while they are used by the bal-

ance evaluation program.

To avoid a duplication of code, a number of procedures a,re shared by

all task programs. They perform the control typewriter input/output

and the input and conversion of analog values to proper engineering

units. A shared procedure executes a normal P function on entry, and a

THE RC 4OOO REAL-TII{E CONTROI, SYSTE]\[AT PUI,AWY 287

modified Z function on exit. This Z function ensures that the release

of the procedure and the return jump are made an indivisible entity.

The remainder of the semaphores are associated with the log t5.pe-

writers, the strip printers, and the paper tape punch.

Size and performance.

The tirne-sharing rnonitor and the process control programs for Pulawy

were designed, programmed, and tested in 18 man-months. The size of

the programs and the data tables are as follows:

Worcls

Monitor 410
Cornrnon Procedures 940
Operator Control Program 400
Pulsc Integration Prograrn 45
Flow Integration Program 45
Balance Evaluation Program 415
Log Program f 55
Log Program 2 55
Alarm Scan Program ll0
Trend Log Program 25
Self-Check Program 215
Data Description Tables 1000
I)ata Integration Tables 300

Total System 40r5

The real-time performance of the multiprogramming system has been

evaluated. by measuring the execution times obtained by sequential and

time-shared execution of the task programs. fn the sequential run-mode,

the computer executes one task program at a time. In the time-sharing
mode, all tash programs were executed simultaneously to obtain worst-
case figures.

Sequential Time-Shared
Execution Execution

(soconds) (seconds)

PulselntegrationProgram <1 <l
Flow Integration Program I 2l
Alarm Scan Program 13 32
Log Program 2 S4 105
Log Program I 120 128
Balance Evaluation Program 741 153
Operator Control Program infinite infinite
Self-Check Prosrarn infinite infinite

288 PER BIiINCH EANSEN

The log and balance evaluation programs are mainly limi1,ed by the

speed of the typervriters. The multiprogramming system makes it pos-

sible to run these at 90-96 percent of their maximum speed'

The bottleneck in the system is the analog/digital converter. At pre-

sent, this device is shared in a sequential manner among the flolr" alarm,

and log progr&ms. The scanning rate of flows and alarms thus drops to

4f-43 percent of the rnaximum speed.

In a system with a biggcr internal store, this could havc been improved

by introducing another task program that would scan the analog vari-

ables and store them in a table, say e]rery five minutes. The other task

programs v.ould then reference this table instead of repeating the analog

rneasurements.

Acknowled$ernents.

The d.esign of tJre time-sharing monitor for Pulawy is t'he u'ork of

Peter Kraft and the author. Later we were joined by Karoly Simonyi'

Jr., who contributed valuable ideas to the project and did the program-

ming along with Peter Kraft. we are indepted to John Saietz of llaldor

Topsoe for his continuous support in the specification of the process

control tasks.

l .

T i E F E R E N C E S

per Brinch Hansen, I'he Log,ical stntcture o! the RC 4000 computer, NordsAM 67' oslo'

June, 1967.

E.W.Di jkstra,Cooperat ingSequent ia lProceases,Mathemat icalDepa'r tmont 'Toch-

nological University, Eindhoven, Septembor, 1965'

A/S REGNECENTBALEN
COPENIIAGEN
DENMARK

