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SUMMARY

An operating system supporting laboratory automation and interactive use of a computer
has been designed and implemented for the multiprogrammed RC4000 computer. The em-
phasis in the design has been to give the user interactive access to as many system resources
as possible, and to facilitate writing of process control programs in a high-level language,
i.e. ALGOL. The operating system is used to run control and data collection programs for a
variety of experiments in physical chemistry. Laboratory automation programs can be
started and removed dynamically, and may even be restarted automatically after a system
failure. The operating system is a 1500 line ALGOL program. The first version was designed,
implemented and debugged in about 4 person-months. The operating system has been
running day and night for approximately 5 years without errors despite heavy use.

KEY woRDs Operating system 'Time sharing Laboratory automation Multiprogramming
Real-time control On-line access

INTRODUCTION

The purpose of the operating system is to provide experimentalists with a flexible and
convenient too! for the interactive development of laboratory automation programs. This
will encourage experimentalists to use the computer for existing experiments and enable
them to carry out experiments not otherwise feasible. With this aim in mind, this operating
system has to be easy-to-learn, easy-to-use and yet powerful enough to handle most practical
situations.

Rapid development of hardware and software for experiments requires an interactive
mode of working. The experimentalists should have the possibility of using a terminal in the
laboratory for checking the experiment and getting meaningful messages about the be-
haviour of the experiment and the program.

A computer equipped with a disc, lineprinter, floating point hardware, etc. is expensive
even if the central processor is cheap. Expensive and fast peripheral units are needed for
speedy program development, to hold data from experiments, and to analyse and refine
data. It is of economic importance if these peripheral units can be shared between several
users and experiments. In general such a computer will have a surplus of computing power,
even if the number of experiments is fairly high. (This surplus can be conveniently utilized
for ordinary data processing provided the computer configuration has the peripheral units
normally found in a small computing centre and the computer has the necessary software.)
Even large scale computations as found in quantum chemistry may benefit from such a
computer system,! 2 using the normally surplus night and weekend time. ’
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The system described in this paper gives users fully interactive facilities from typewriter
terminals. It minimizes the load on the computer from laboratory automation programs.
Processes running laboratory automation programs and other interactive programs are
created and removed dynamically. Automatic start-up facilities are provided after system
deadstart. The system runs on a 24 hours a day, 7 days a week basis.

Characteristics of the RC4000 computer

The RC4000 computer system at the H. C. Qrsted Institute was funded in 1970 to
provide the departments of chemistry, physics and mathematics with ordinary computer
service to enable experimentalists in chemistry to automate experiments.

The RC4000 configuration has all the peripheral units normally found in an edp-centre
plus a fairly large number of peripheral units for control and data collection from experiments

(see Table I).

Table I. Hardware configuration

Conventional hardware:
24-bit central processor. Instruction time 4 ps; 48-bit floating point
48K words primary store (magnetic core, 15 us)
384K words drum (15 ms access)
9M words disc file (50 ms access)
1 line printer (670 lines/min, full ISO alphabet)
1 card reader (1,500) cards/min)
2 magnetic tape units (800 bpi, 36,000 words/s)
1 paper tape reader (2,000 characters/s)
1 paper tape punch (150 characters/s)
2 Calcomp plotters (200 steps/s, 300 steps/s)
3 storage displays (4,800 baud, 9,600 baud)
18 directly connected typewriter terminals and alphanumeric displays (110 baud-1,200 baud)

Manufacturer designed hardware for process control:
8 digital input units (24 bit)
7 digital output units (24 bit)
3 interrupt expanders (24 bit)
1 stepping motor controller (8 motors)
8 binary counters (12 bit)
2 D/A converters (12 bit)
1 A/D converter (12 bit, 48 channels, 4 gain ranges)

H. C. @rsted Institute designed hardware:
4 programmable pulse generators (24 bit and 12 bit)
1 general purpose DMA input unit (24 bit)
1 controller for a Intel 8080 microcomputer
1 multimicrocomputer unit with 4 microcomputers (2 Motorola M6800, 1 Intel 8080, 1 Zilog Z80)
5 local microcomputer systems connected through the multimicrocomputer system (Motorola

M6800)

It is a multiprogrammed computer where a program, called ‘monitor’,® 4 provides (i)
short-term scheduling of processes, (ii) a set of procedures for controlling processes and
(iii) a set of procedures for communication between processes using message buffers. For
technical reasons the file system and the input-output procedures are part of the monitor.
Input-output procedures and their private variables are called ‘peripheral processes’. This
environment is not regarded as an operating system, but rather as a software extension of
the hardware, which makes it possible to create operating systems in an orderly manner. An
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‘operating system’ is defined here as a program capable of initiating and controlling new
processes on demand and allocating resources between processes. The created processes are
called ‘child processes’, and the operating system is the ‘parent process’. A process has to be
a contiguous fixed area in primary store throughout its lifetime as there are no hardware
base or relocation registers. In this system it is possible to have a number of operating
systems with different strategies active simultaneously, and even to replace an operating
system dynamically by another without interfering with other activities in the computer.
The monitor does not distinguish between operating systems and other programs. An
operating system can be written as any ordinary program in any of the available program-
ming languages, the only difference being the resources it has allocated and the unusual
task it has to perform, The monitor is a monitor in the sense of Hoare.> ¢

The interface between compilers, user programs, other files and the users is handled by a
job control language interpreter, called the “file processor’.” This is executed as a program
in the user area. An important feature of the file processor is that it does not matter which
device (process) supplies the commands (input), nor which process has to receive the
output, that is the interface is standard.

Characteristics of the experiments

Large groups of experiments in physical chemistry are slow compared to a modern
computer’s instruction execution time. Typical response time requirements which an
experiment has to a computer is in the range from seconds to minutes. It is even common
that the experiment can wait until the computer is ready, thus having no response time
requirements at all. Experiments which do have significant response time requirements to a
computer generally only have these for a relatively short time, e.g. less than 10 s. Examples
can be found in chemical kinetics where a transient signal is measured or in modern thermo-
dynamics where stochastic signals are measured. The number of data points required in a
single experiment is typically less than 1,000.

In computer systems for a factory or where a large number of experimental set-ups of the
same kind® have to be serviced by one computer, the usual strategy is to collect data from
every data source periodically (polling technique). The experiments controlled at the
H. C. Orsted Institute have fairly low duty cycles and many will only run for a relatively
short time, e.g. an hour, while others will run day and night but will not need much service,
except for a few short time periods. An event-driven system, where the experiments signal
when they need service, is more appropriate in an environment where the experiments differ
much in behaviour and are completely independent of each other.

Interactive use of a computer

The experimentalist naturally prefers a turnaround time for the collection, refinement and
analysis of data which is only slightly longer than the time for doing the data collection
itself. On-line interaction with the experiment is considered valuable and is used to change
set points or to display results.

Experiments are rarely static in a research environment. Experimentalists have a need to
modify the experiment itself or to add new equipment or to change program strategy. This
requires changes in programs and debugging of the changed programs and experiment
simultaneously. This debugging task is more complicated than for ordinary programs as it is
often difficult to determine whether an error is in the program part or in the experimental
hardware. An extremely valuable tool with undebugged experimental equipment is the
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ability to monitor the program controlling an experiment from another program running
from the same terminal.

REVIEW OF SOME OPERATING SYSTEMS FOR LABORATORY
AUTOMATION

The three operating systems discussed below handle a class of experiments equivalent to that
found at the H. C. @rsted Institute. They are implemented on a medium-size multi-
programmed computer.

Concurrently with the operating system described in this paper, the manufacturer was
developing an operating system BOSS2 for the RC4000° which may be called a remote batch
system. It is basically a batch operating system having two active user programs in primary
store at the same time. Furthermore, it gives a restricted time-sharing access from terminals
as in the Cambridge multiple access system!® although a full on-line access is possible for
one single user, having the program occupying one of the primary store areas permanently
while being on-line. Swopping of process areas in primary store is used to pre-empt pro-
grams and makes it possible to guarantee reasonable turnaround times for batch jobs.!

BOSS2 has been used for process control of experiments at the University of Arhus,
Department of Chemistry, but very little information about this part of the system is found
in the literature.’? In BOSS2! all process control peripheral processes are simulated and a
message to any of these causes a swop. BOSS2 provides the necessary buffer space, if any is
needed, while the input-output operation takes place. This is not a fair strategy against a
process control job which may need to handle a number of peripheral processes in parallel.
However, there is no direct way an operating system can be activated when a child starts to
wait.

The interface for the experiments has to be rather extensive in order to synchronize
experiment and user programs'® and can be characterized as small special purpose computers.
Some experiments have to use a ‘core-lock’ facility preventing swopping until a ‘core-open’
message is sent. The use of the ‘one-line’ and ‘core-lock’ facilities degrades the performance
of the computer drastically. ‘Core-lock’ has to be used even in cases where it ought not to be
necessary.

In the NBS system!* data collection programs are part of a foreground area of
primary store. Programs are initiated and may be removed by pushbutton signals from the
experimental interface in the laboratory. All program input comes from thumbwheels in the
laboratory interface, but output may come on the terminal in the laboratory. The data
collection programs are resident in primary store until the program itself executes a swop
request to the operating system or is terminated. The foreground jobs are not protected
against each other and neither is the operating system, thus they must be error free. The
background area of primary store is used for batch jobs which may be non-debugged data
collection programs. The foreground area is protected against malfunctioning programs in
the background area. The system serves a number of experiments with fairly low data rates
and some giving bursts of data at a high rate. The system lacks inter-user protection, and
there is no real possibility for using a terminal interactively. The foreground jobs will reside
in store even if their duty cycle is low. The data collection programs can for space reasons
only perform very simple data handling on the collected data.

The ARGOS operating system!® is another example employing a much more powerful
hardware configuration. Data collection programs are small assembly language programs
executed as part of a foreground area of primary store. They are resident for long periods of
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time. Usually 10 programs of an average size of 1-5 K, 32-bit words are active at a time.
Each data collection program has a unique priority for interrupt handling. The system gives a
restricted interactive support allowing users to call precompiled programs from terminals,
Batch service is supported using the card reader as the only input-medium and even long-
term computations are now running on this computer.!

DESIGN OF THE OPERATING SYSTEM

The elements which have to be considered are the peripheral processes used for data
collection, the operating system itself and the strategy for handling the terminals.

Peripheral processes for data collection and control

The problems of data collection for certain timescales and the problem of time jitter in
the collected data are handled by the fairly general data collection peripheral processes
(input—output procedures). The peripheral process concept is used to make all process
control devices completely independent and they contribute to the users’ illusion that no
other activities take place in the computer. No specific assumptions about any of the
connected experimental setups have been used in the design of the peripheral processes.®
They appear as solutions to a fairly general class of data collection problems given the hard-
ware characteristics of the peripheral units and the characteristics of the monitor. Data
collection programs cannot execute input/output instructions directly, but send messages to
peripheral processes.

The operating system and programming language

The primary design goal for the operating system described here is to achieve possibilities
to use the computer in a fully interactive mode from terminals, close to what can be obtained
on a monoprogrammed computer with many peripherals, i.e. the user should have access
to all compilers, file handling programs, the editor and precompiled programs. All types of
peripherals should be interactively available, e.g. line printer, plotters, magnetic tape and
process control devices.

With the rather small store of 10 K, 24-bit words available for a process control operating
system and the processes it is going to control (see Figure 1), swopping of processes between
primary store and the drum appears to be a good solution. Figure 1 shows the store layout
of p. The file processor and its input/output buffers (in, out) are only included when a test
output from p is needed. Segments of p contain the code organized as segments of 256
words. Whenever a new segment is needed from the backing store the least recently used
segment is overwritten. Ten segments are enough to hold the central loop, so that only
commands to p, etc. will cause segments to be transferred into primary store. This gives a
worse response time for an input, compute, output sequence by a user program than having
all programs in primary store at the same time. The larger process size which can be
obtained by swopping allows the user to run the editor, all compilers and most of the other
programs interactively from a terminal. Swopping gives cheap interuser protection between
the processes controlled by the operating system, otherwise it would have been necessary for
some of the data collection programs to be error free, as the hardware protection system of
the RC4000 is rather crude.

Division of space in primary store instead of time multiplexing would have forced us to
write all data collection programs in assembly language, as in the ARGOS system. This
approach was tried using the primitive operating systems,® ¢ but the time investment in
developing and especially in debugging the assembly language programs was excessive. The
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Figure 1. Store layout of p

editor cannot run in a small process area nor can the assembler. So either we had to use the
batch system for debugging or we had to get a larger process from the operating system s
when debugging a program.

‘The minimum process size to run the editor, the compilers, user ALGOL!® programs with
around 1K real variables (48 bit) is 6K words, leaving 4K words to the operating system code
and variables out of the available 10K words. Four K words is sufficient to run translated
ALGOL programs having a fair number of variables, provided the job control language
interpreter has been removed (see figure 2); thus it was possible to get enough space in
primary store so that the operating system could be written in ALGOL. Figure 2 shows the
layout of the primary store of the RC4000 computer and a sketch of how p uses the drum.
"The batch operating system has only 13K words in normal working hours, but outside these
the time-sharing operating system t is removed and this gives the batch-operating system
21K words, The file on the drum used for swopping has the name pdumparea. The code
for p is placed on another file prun and segments of code are transferred from prun to the
primary store area for p on demand. In this machine ALGOL programs have software
virtual store for the generated code, organized as segments on the backing store, while the
stack, the own variables and run-time system are store resident.!® So an ALGOL program
may run in a few K words of store, practically independent of the number of statements
written. The software virtual store for ALGOL programs is organized as pieces of re-
entrant code, called segments. Thus there is no need ever to read a segment back to the
backing store. The behaviour of the ALGOL compiler and the run-time system were very
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Figure. 2. Layout of the primary store of the RC4000 computer and a sketch of how p uses the drum

important design factors for this operating system. The FORTRAN compiler behaves in the
same way as the ALGOL compiler, but nearly all programming is done in ALGOL. A
minimum of code corresponding to only 2040 ALGOL lines needs to be in primary store.
This allows us to use most of the process area for variables, As laboratory automation
programs typically make light use of the central processor, while often requiring many
variables, this approach is quite good.

The primary reason for selecting ALGOL as the language for the operating system was to
shorten the implementation time and facilitate maintenance of the system. At the time of
design, ALGOL had been used by the manufacturer to write a batch-operating system.The
standard facilities for communication and calling the monitor in ALGOL required excessive
array handling for setting up parameters. This operating system was later replaced by the
more extensive and sophisticated batch-operating system BOSS2.% 11 We developed a set of
procedures for calling the monitor which are much simpler and a set of procedures to make
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assembly language features available with ALGOL (see Appendix), i.e. procedures using
physical addresses. These procedures are inefficient in the sense that it may take 50 instruc-
tions to execute what is equivalent to a single machine instruction. As an operating system
will only use a small fraction of the available central processor time in any case, this overhead
is only of marginal importance and is far outweighed by the advantages in system develop-
ment.

Scheduling of processes

In foregound-background scheduling,?® background jobs will only get central processor
time if no foregound jobs are active. The foreground jobs may even have priorities, causing
a lower priority job to be pre-empted if a higher priority job needs service. We doubt
whether complex priority schemes are really useful in a time-sharing environment, unless itis
required to press timing requirements for interrupt-driven data collection for a single job to
the limit. A large number of interrupts will dramatically reduce the usefulness of a time-
sharing system, as the terminal users cannot get a reasonable response. In the RC4000 the
system degrades dramatically when a 2 kHz signal is sent into even the lowest priority
interrupt bit. This implies to us that the number of interrupts should be kept at a low level,
as our expensive computer should not waste much time on trivial interrupt handling, and
that priorities should not be used to solve the scheduling of time in primary store between
user processes. An ordering of requests for doing a number of operations within a time
interval should use semaphore operations, where the critical phases are complete time
intervals. Priorities only determine which operation shall fail, as priorities cannot resolve a
conflict between two equal priority jobs trying to be active at the same time.

Operating system p uses a modified round-robin scheduling for the active processes; p
performs only scheduling of time in primary store (medium-term scheduling). The short-
term scheduling of the central processor is performed by monitor on a round-robin basis.
The normal maximum time period in primary store between roll in and roll out is 5 s. This
time period can be changed dynamically by a command to p. The period may be shorter if
the process starts to wait for an event. In normal working hours users should be punished for
running programs which use the central processor heavily under operating system p, as this
degrades the response time for other users. Whenever p detects that a process has used more
than 2 certain fraction of the available central processor time within its 5 s in primary store,
it is removed from the queue of active processes for a certain time interval. This time
interval can be changed by a command to p.

Terminal input/output

The hardware for controlling the terminals uses the instruction-controlled data channel
only. As an input/output machine instruction can only transfer one single character every
character generates an interrupt. This implies that a process can only communicate directly
with a terminal when the process is in primary store to provide the necessary buffer space. To
smooth the terminal input/output, p has a buffer for terminal input/output, for every possibly
active process. For every block of characters transferred from a process to a terminal or vice
versa two messages are sent and waited for. The first one from the child process to p, and
then from p to the terminal process; p has to copy the information between its terminal
buffer and the terminal buffer inside the child process. This is a time consuming and
inelegant way of handling terminal input/output, forced upon us by the primitivity of the
hardware. At present we are building a terminal multiplexer as part of a multi-microcomputer
system.?! Its primary purpose is to relieve the central processor of the RC4000 computer
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from trivial interrupt handling and to avoid having terminal buffers in the operating
systems,

Optimization of the use of primary store

An operating system which uses swopping for store multiplexing has to be very concerned
about the behaviour of the child processes. A child process should be swopped whenever it
starts to wait for some event, which is expected to occur later than the time for rolling a child
process out and a new child process in. An operating system in the RC4000 system performs
a swop by first attempting to stop the child process. A child is at a complete stop when all
pending data transfers using the direct memory access channel (DMA) are finished. Low-
speed data transfers using the instruction-controlled data channel cannot delay a stop. The
rolling out is performed as just another transfer of data from internal store to a file. The next
process is rolled in and started. The complete operation will, using the drum as swop
medium, take about 400 ms. The program’s use of peripheral units like discs or drums
ought not to cause a swop even if there is a queue of requests for access. Input from termi-
nals is the opposite case, as one will always expect this to take a long time. Output from a
process to a terminal should not necessarily cause a swop. If the terminal buffer contains
50 characters a 1,200 baud terminal will output these in time for a swop. Waiting for a
process control device must produce a swop as the waiting time must be considered as
undefined. Waiting for an answer to a message sent to the internal clock, which may be
done with a time resolution worse than 100 ms, is a case for swopping.

Any peripheral process may be simulated by the operation system which makes it easy for
the operating system to check when a message is sent to a peripheral process. This is done in
p for terminals only.

A child process in the RC4000 system has a process description as part of the monitor,
which contains a head of the queue of message buffers, a working register dump, the state of
the process and the instruction counter. p checks every second the state of a running child
process. If it is waiting, the last instruction executed and the content of the dumped
working registers gives all the information needed about the event waited for. If the event
has not yet arrived and may be expected to last a long time this child process is swopped; p
keeps the information about the event, and whenever this child process is a candidate for
rolling in, the message buffer queue of this child process is examined. If an event which will
activate this child process has arrived it is rolled in again and participates in the normal
schedule, otherwise the next process is examined. This regular inspection of the child
process is a form of busy wait, but it is very cheap in resources, as other programs running
under the two other operating systems may use the central processor. It further makes it
possible for a child process to use low-speed devices directly without an unreasonable
degradation in performance, e.g. the 2,000 character/s paper tape reader. This saves buffer
space in the operating system, which otherwise should have simulated the device.

Structure of the ALGOL text for p

Operating system p is organized in three parts: (1) Initialization code, which checks that
the process is created correctly and creates and initializes the arrays used for controlling the
child processes, the terminal buffers and the array where the child process is actually
executed. A message is sent to all terminals giving the time of start up. The processes
described in an initialization file are created. (2) A number of procedures used rather
infrequently, i.e. the interpreter for commands from terminals, the procedure for process
removal, the interpreter for certain messages from child processes called parent messages,
(3) The central loop, which is a set of coroutines taking care of swopping and of terminal
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input/output. There is a single waiting point where it is determined whether the event can
be taken care of by the central loop or some of the slower procedures have to be invoked.

Features of the operating system p

A session using p for a simple task is shown in Figure 3. Other examples may be found
elsewhere.?% 23 Figure 3 shows an example of job session using p for writing a simple
interactive program and executing this. The : in the middle of the figure and what is to the
left are later inserted comments. The log-in scheme is very simple. A BELL character will

att p : getting in contact with p
pass ali . writing 2 command to p (log in)
ali started 21 1276 13 58 28 : a process is started and the
: file processor (FP) loaded
to ali : written by the terminal process
r = algol : FP reads a command to
:  execute ALGOL compiler
begin :  compiler starts reading
real s;
s: = reader(< :value:>);
write (out, < :sinus = :>, sin(s));
end : the final end terminates input
algol end 26 : translation OK
r : FP reads a command to execute r
value = 0.2 : program writes value = and user 0.2
sinus = 0,1987 : execution of write statement
end 17 : termination of ALGOL program
finis : FP reads a command to execute finis
which send a message to p (log-out)
from p :
ali removed 211276 1400 14 : message from p; process is removed
Run time 1.25 s. : central processor time used

Figure 3. Example of job session using p

activate the computer and att is written. The user may get in contact with any operating
system or other process by typing the name of the process. The user then types pass to p
and the password. Following to ali all input is to the child process ali where a job control
language interpreter is running; r = algol loads the ALGOL compiler, which will produce
the binary output in the working file r, and take input from the terminal. The characters
from begin to end are read by the ALGOL compiler. In the line algol end 26, the compiler
signals compilation OK and transfers control back to the file processor; r is executed by
writing its name. The program outputs value = and reads in a real value which is assigned
to s in the program. The write statement is executed and the program terminates writing end
17; finis sends a log-out message to p which then writes the last two lines.

The operating system supports a number of experiments as well as normal program
development. A process control user will be assigned resources after a log-in and will loose
the resources, except for permanent files at a log-out. The only difference between a
computational user and a process control user is that the latter has access to process control
peripheral processes. The dynamic allocation of resources is in general advantageous, but a
user may run into the problem that it is impossible to obtain a process as the total number of
processes is rather limited.
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The plotting system?* has been designed to be used interactively under the two time-
sharing operating systems as well as under the batch system. It makes it easy even for very
inexperienced persons to control the plotter.3

It is easy from a process to create jobfiles for the batch-operating system and to submit
these. It is further possible through the batch-operating system to get files on the backing
store printed on the high-speed line printer.

Any computer system may crash due to failures in the hardware. Development of basic
software and of new peripheral units sometimes requires an upstart of the software system
from scratch. p has an initialization file where commands may be inserted, which has the
same effect as creating a process from a terminal. The process created will read normal job
control language statements from a file, making it possible to execute automatically any
sequence of programs.

The terminal is a limited resource, though this computer has more terminals than
possible active processes. From a terminal one can have a number of processes active at the
same time. This is advantageous in program debugging or when tracking down errors in the
experimental hardware. In one process the usual process control program or a test program
may be executed, and from the other process connected to the same terminal, it is possible to
examine queues, states of peripheral processes, etc. A monitor modification makes it possible
for the user to know to which process input is made and from which process output comes,
though all input/output to terminals is performed by the operating system.

Terminals may break down, and this should not harm a process. It is possible to change
the terminal of a process to another terminal by a command to p. A process may not even
need a terminal at all, but just a file on backing store for input and another for output, and
this is supported by the operating system.

It is possible for a child process to create a new parallel child process. This is useful when
using the plotting system for making drawings which take a long time. It is not really
possible, due to the structure of the plotting system, to run a process control program which
performs a number of parallel actions and plots at the same time.

Facilities for process control

Most of the specific facilities for process control are not part of the operating system, but
have been built into the peripheral processes, which are small pieces of re-entrant code,
about 50 instructions for each type, connected to a process description of typically 15 words
per process. Using peripheral processes, rather than the operating system, has the advantage
that the former may be used under any of the operating systems.

A process exists which can prevent any operating system from stopping a child process
for a period of 15s. This core-lock feature makes it possible to do interrupt-driven data
collection, using the child-process own store area as the buffer area, provided it can be
performed within the 15 s. T'o prevent repeated locking, it is impossible to use the core-lock
process for 15 s following locking. Computational programs cannot utilize the core-lock
mechanism, as a child process cannot use the central processor after initiation of a stop.

Most of the peripheral processes are capable of handling information flow, where all the
information is stored in the small message buffers. Message buffers are part of the monitor
and are thus never swopped. Message buffers are queued by monitor to processes when used.
Thus multibuffering is immediately available. As an example, 15 message buffers, each
capable of storing two data words and the associated times for data collection, can keep
pace with a signal requesting data collection every second. The associated time values,
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which are measured indivisible with the data point, make it easy to check that data collection
was performed within the required time limits.

DEVELOPMENT OF THE OPERATING SYSTEM

The operating system was fully operative and error free on 15 September 1972. The time
invested was around 4 person-months, of which 1 month was for development of the
small assembly language coded procedures and minor changes in the monitor. The small
time invested in developing the operating system may be attributed to several factors: (1)
Only minor changes had to be performed in the monitor, file processor, etc. due to their
modularity, and a clean interface to possible operating systems. (2) No accounting facilities
or scheduling of peripheral devices had to be part of the operating system. Laboratory
automation programs will only use the peripheral processes they need, and no mistakes
have yet taken place as peripheral processes have names and not numbers. (3) Information
secrecy is not of concern at a university. (4) The system was written in a high-level language,
which includes (low-level language features (physical addresses in primary store). To add
features at the machine language level to a high-level language of course partially spoils the
idea of using a high-level language. It was, however, necessary due to the primitive ALGOL
data structures and due to the fact that some of the information needed could only be known
outside the ALGOL level, i.e. by reading the monitor data structures and reading informa-
tion in the controlled process. Moreoever, it is much easier to write an operating system in a
language having both kinds of features than in an assembly language. We do not have to
bother about registers or how far relative addresses can span. We do keep an extensive
syntax check on the major part of the program. At run-time it is possible to use an index
check on array indices. It is easy to insert test output in the program. All these high-level
language features were extremely valuable in the debugging phase of the operating system.
A high-level language approach makes it much easier later to add new features to the
operating system and to examine whether strategy changes will affect the performance. We
would of course have preferred to write the operating system in a more appropriate high-
level language like Concurrent Pascal? or Module,?® but these were not available at the time.

There have been some later minor additions of features to the system and the central loop
has been assembly language coded. This has not caused any essential change in characteris-
tics or performance. The system is practically error free. The very few errors seen could just
as well be attributed to our hardware development effort of new peripherals.

PERFORMANCE

The operating system uses about 4 per cent of the available central processor time. Rewriting
the central loop in assembly language did not change this figure. There is an immediate
response to simple requests, when few users are actively using the operating system editing,
compiling small programs and running small programs. At higher loads there are normally
also high loads on the other operating systems, which gives a queueing of requests to the
disc. It has not been possible to detect queues on the drum due to swopping. The queues
on the drum come from the job control language interpreter which uses a segmentation
scheme similar to a running ALGOL program for its lengthy routines.

An input buffer to a terminal is one line or less than 76 characters. An output buffer is
less than 76 characters. The number of output buffers from a user process is approximately
100 times larger than the number of input buffers, as measured on the RC4000. Users do use
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their terminals for listing of smaller programs (1-2 pages) and for output from running
programs, and this forces the monitor to spend a rather large amount of time in the terminal
peripheral process.

Use of the central processor, the drum and the disc has been monitored by examining
queue lengths using a small program permanently in primary store. The pattern seen is
highly irregular and seems to depend rather critically on the job mix. The job mix varies so
much during the normal working hours that we see the system being bound on any of the
three resources monitored, but hardly ever on more than a single one of the resources at a
time. With three operating systems active, one batch and two time sharing swopping the
load are characteristically about 90 per cent on the central processor, when all systems are
fully occupied. We consider 90 per cent very satisfactory and do not believe it is worth
trying to improve the system software to get more throughout. The only realistic way to
improve matters considerably for the users is to develop a better terminal control peripheral
unit and to purchase more backing store devices and a faster central processor.

DISCUSSION

Time-sharing systems described in the literature seem to avoid direct input to running
programs?”-2® and to optimize the use of the central processor. In our system, where there is
a parallel batch system and another time-sharing operating system, it is to be expected that
the central processor time which cannot be used by a child process in one of the operating
systems will be used by the child processes in the other. These assumptions seem justified
as we see idle times for the central processor of less than 10 per cent during the high-use
period.

The two-level segmentation or paging scheme introduced here is a little unusual. The
ALGOL programs, the compiler and the job control language interpreter all use a software
demand paging scheme internally, and the operating system uses swopping to pre-empt
processes running these programs. However, it restricts thrashing problems compared with a
computer having simple hardware paging. An individual program may in our system
experience thrashing internally, by consecutively loading the ALGOL segments of a too
large loop into primary store. This will not affect other programs very much, neither the ones
running under the same operating system nor under the other. It only increases the queue
lengths to the disc moderately. If several programs thrash simultaneously, each under a
different operating system, the users will experience a slow computer. This is not likely to
happen with a number of completely independent operating systems. Contrary to hardware
paging systems, thrashing basically only depends on the user’s own programs, and not on the
system as a whole. What they have to do is either minimize the amount of code in the
critical loop or get a larger primary store area. Running a program under the batch system
nearly doubles the primary store compared to the time-sharing systems. If the user is willing
to run the program after working hours the store available nearly triples. From a monitoring
process we have examined experimentally the thrashing problem. The results seem to
indicate that the two time-sharing operating systems and their child processes can never
cause thrashing to a degree where the performance of the total system is drastically reduced.
Batch jobs, which in our system are never pre-empted, may cause trouble if they access the
disc causing a large number of head movements.

The idea of minimizing the load on the computer from process control programs may
seem odd for a process control operating system. However, other users gain, including other
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process control users. Further, and not least important, it makes it economically feasible to
automate experiments which otherwise would never have been considered.

The operating system described here and the peripheral processes for data collection
cannot solve response time and synchronization problems to a degree which may be obtained
with a monoprogrammed computer. Very fast data collection is, however, just as well
performed by a multiprogrammed as a monoprogrammed computer. The connection of
microcomputers as slave computers to a multiprogrammed computer, for use as user-
programmable peripheral processes, can solve response time and synchronizing problems
at a low cost.2® This is done without losing the advantages of having a large multiprogrammed
computer with its extensive facilities.

For users who do computations only, it is of course less attractive to have three operating
systems sharing the primary store in fixed partitions than to have one operating system
capable of giving the user nearly the whole store. Outside normal working hours, users of
this RC4000 system will get more space in primary store by removal of the other time-
sharing operating system. Programs with large primary store requirements tend to have
long run times, so the policy is rather fair. Even the busy—wait strategy for examination of
whether child processes are waiting or not does not seem to harm the performance at all,

Not only do experimental set-ups benefit from a timesharing operating system such as p.
A minicomputer is used for long-term computations in statistical mechanics.?® An ALGOL
program running under p acts as an operating system for this slave computer. The automatic
start-up facilities in p make it possible to run the long-term computations without break-
downs, independent of breakdowns of the RC4000.

Comparison with BOSS2

BOSS2 is a much better batch-operating system than the one we are using at present.
BOSS2, however, needs to be the only operating system in the computer mainly due to the
hierarchical administration of the backing store firmly implemented as part of BOSS2. It is
less attractive for this reason to an installation where the primary reason for having a
computer is process control of independent experiments. Operating system p has its force
in process control over BOSS2 for the following reasons: (1) On-line use with direct
terminal input—output to the user process is well supported and does not degrade other uses
of the computer, e.g. batch. (2) Multiple buffering and use of several peripherals in a parallel
fashion is supported, allowing us to use very simple process control peripheral hardware and
simple general input-output driver programs for these peripherals. (3) A time-limited
‘core-lock’ mechanism gives the possibility of using the primary store of the calling process
as a buffer store for semi-fast input—output. (4) Other operating systems may run in parallel
as handling of the backing store resources is done by the monitor instead of the operating
systems. (5) Automatic start-up facilities for process control and other programs after
breakdown.

Transfer of p to other computers

Is it possible to transfer a system like p to another computer with different software ? This
must be answered with a no unless the monitor is transferred too; p has heavy dependence on
the general input-output scheme, and the control mechanisms of the monitor. The imple-
mentation in ALGOL really only depends on the possibility of including small machine-
coded procedures for address handling (see Appendix) and on the possibility of direct
communication with monitor within the language.
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APPENDIX
Assembly language features of the ALGOL system;

integer procedure first_address (var);
comment finds the address of a simple variable or the first address of an array independent
of its type;

procedure redef-array (a, address, bytes);

comment defines the declared array to be placed in store from address and forward.
The store for array a in the stack is inaccessible.

Eventual index check of bounds is still performed;

integer procedure wordload (address);
comment delivers the content of the cell in store having address as physical address;

procedure wordstore (address, content);
comment stores content in the cell in store having address as physical address;

These few procedures make it possible to access all data structures within the running
program and monitor in a primitive way. The procedure redefarray is very useful for access-
ing data structures in the monitor, e.g. a process description without having to copy the
information. In some computers it is possible to access half-words, double-words with a
single machine instruction, and it may be convenient to implement the corresponding
procedures.
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