I Aalerast.

DESIGN CONSIDERATIONS FOR THE RC 4000 COMPUTER
Per Brinch Hansen and Peter Kraft
A/S Regnecentralen, Copenhagen

March, 1966

Sumnarx:

The RC 4000 computer which will be developed by Regnecentrslen in
1966 1s & low-cost computer oriented towards process comtrol applica-
tions. The present report deals with the choice of data and Instruction
formats, storage addressing, arithmetic, Input-output control, and spe-
cial multiprogramming features.

Ts

Contents:

: System RC hOOO.......................-..........-.....-..o........

Tela Introduction.................,...................,,,.........
1.2. Design ijectives..
1.3+ System Summary...
Data Formats..
2,1+ Storage of Small IntegerS............-..........‘....‘.......
2.2, Arithmetic e e e
2.3+ RC L0OOO Dote FOIMIBLS. veasssesssosssessnnsanssenneossesananses
Instruction FOTMIA T e s s taentesesasnnsoeonososassssosssnnnsacosnsecsss
3¢1. Address Modlficationssseseseesnennerssescrsesrasasocesesssses
3»2. Register B U U . st etessannnnsssorsoosesnesoosesossossasess
3.3+ RC 4000 Instruction FOrmat.esesecsesssscssasavossacosanencnee
Fixed~point Arithmetic..
4,1, Number RePreSentatlon,sesssoesssosssssnsesarsessonosessesasss

4020 Point Locationll.IIOOO.l000.....Ollb.000.0'..5.0.0.!0..0.0.l.

Exception Register..........,.....................................
Input-output Control................................,.............
6.1. I/ ReQUIremEnt Sy s st usesosonnasnoraonnssssnessaososssossosesse
6,2, Low-speed Dats ChaNNEl ey sstsasasecsorecssanosnscoccacesasnses
6.3, I/0 R O e 2
6.4, I/0 COMMANAS 44 44 sesseesesstosseenrennnnsnnsaenosasessssenssss
6.5, High-speed Data Chammnel.sseseseseroasescsassosessosesasonases
Multiprogramming Facilities................q,.....................
Tele Storage PrOteCtionesssssssseneoastosessrsanscansrcesessesnses
Te2e Privileged Instructions.,.......-...................,........
T.3. Program Interruption...
Instruction Set...
8.1. List of NS UC L iONS s e et esnnnnstroesnaseccsssassesancssnses

802| Definltlon of InStruCtions-cnooot:oaoqoacocouooq-oo-ono.cqono

Appendix As PrOjeCt Pulawy,....-...............o......-...........

D 1 3 Oy E W W W

10
11
13
1k
1k
14
15
16
17
19
19
20
21
22
25
25
26

L

1e sttem RC L4o00.

SV S)OS (. QD R L O W 0N W O

11 Introduction.

RC 4000 is = general purpose digltal computer designed and manufac-
tured by Regnecentralen, The basic model is a low-cost computer oriented
towards real-time computation in industrial control applications. An ex-
tended model includes floating-point arithmetic for scientific computa-
tion and high=speed input-output devices for commercisl data processing,

This report is a preliminary description of the programming struc-
ture of the new computer. The rest of section 1 outlines the objectives
that guided the design of system RC 400O. This 1s followed by & short
summary of the system., Sectlons 2 to 7 contain s detailed discussion of
the cholce of word length, storage addressing, fixed-point arithmetic,
input-output control, and speclal multiprograrming features, Section 8
completes the picture of the system with a formal definition of the in-
struction set, ,

The prototype of the RC 4000 is intended for installation in a che=-
mical plant constructed by Haldor Topsge in Pulawy, Poland., Appendix A
gives a brief survey of the mein tasks of the computer in the Pulawy ine
stallation. This 1s included as an example of a typical application of
system RC 4000 in industrial process control,

122, Design Objectives. +)

The structure of system RC L4000 1s based on well-known principles

selected with the followlng objectives in mind:

(1) Efficlent handling of smell integers.

(2) Fixed-point arithmetic with adequate precision for process cone
trol and provisions for fixed=point and floating-point arithme-
tic with double-precision,

(3) Flexible modification of addresses,

(h) Uniform register structure to avoid empty data transfers,

+) The RC L4000 computer may be evaluated in relation to other process
control computers availsble on the market by referring to a recent pa-
per by Edward O. Boutwell: Comparing the Compacts, Detemation, Decem-
ber, 1965,

-4 .

(5) Instruction set which 1s conceptually simple without being inef-
ficient,

(6) General input-cutput control with no restrictions on the kinds
of devices that may be connected,

(7) Protectlon features to ensure absolute monitor control of the
system.

(8) Program interruption system providing a constant monitoring of

exceptional Internal and external conditions,

1.3, System Summary.

—--—— W B S G W . -

Implementation.

- -) S - - -

Integrated circults with propagation times of 15 nanoseconds,

Storages
Megnetic core store with 2 microseconds cycle time, Basic modules of 1 k,
b k, and 8 k words of 24 bits each, No upper limit to expansion., Stan-

dard parity check and protection system,

Typical Instruction times 6 to 8 microseconds,

Addressing Facilitles,
Direct addressing of 12-bit bytes and 24-bit words, Indexing and indirect
addressing facllitate table look-up. Relative addressing simplifies pro=-

gram relocation,

Beglster Structure.
4 directly addresssble registers function both as accumulators snd index
registers. This uniform register structure makes the entire instruction

set avallable for index arithmetic and Inter-register operations,

Arithmetic,
Parallel binary two’s complement arithmetic., Standard integer arithmetic
with 12-bit and 2k-bit operands. Optional floating-point arithmetic with

48-bit operands,

Protcetion 3ystern,

T e AR DN TS A A .

Privileged instructions and read-only protectlion associated with a moni.

tor mede guarantee constant monitor control of the system.

Interrurtlion System,

B R L N e e LR

Program interruption system with up to ol priority levels controlled by

o mask register, o ptienad

v RadlTuRD

Trove-outpat Control,

R e Y Tt Y R e A]

Standerd dinteridace belween Gvba cronanels oad inpubt-cotpad

y

levices simplle
Tics future expansion of the array of inpul-cutput oguipment. Standard
lowwspeed channel with transmission of single words under prograrn cone
troL. Uptional high-speed channel with trensmissiorn of blocks proceeding

similtaneously with progran execution.

"T)

ui L~time Clock,

The cloclk initiates program Interruptions abt preset tine intervals. It is

set and sensed under program cenbtirol,

St;ndard Peripheralso
Console typewriter - 10 characters per second.
Paper tape reader - 100 characters per second.

Paper tape punch - 20 characters per second.

2. Data Formats.

W i o S G I O S A W

2,7 ufo'ﬂﬂe of Bmall Tntegers,

The majority of dota used in process applica*tions rie measured ves
riables delivered by cnalog~to-digital converters. In the Pulawy plant
system RC 4000 supervises sbout 700 process variables of 10 - 12 bits
2ach, In order to handle effectively such wvariables the computer should

De able to 2ddress dirvectly bytes of 10 ©o 12 bits.

2.2, Arithmetic Precision.

0 e W S G G S S S N e A -

In a data logging system the processing of most of the process va~
riables 1s very simple (testing against alarm 1imits, printing of log
sheets), In a closed-loop control system the variables are, however, used
in eleborate analysis of the performence of the plent. These computed va~
riables determine the normal arithmetic precision. It 1s estimated that o
precision of 20 to 24 bits will be adequate for process applications, The
corresponding double precision of 40 to 48 bits should also be satisfac-

tory for most commercial and scientific computations.,

2,3, _RC_L000_Data Formats,

The efficlent storage of analog input data points to a short word
length, In practice the lower bound on the word length is placed by the
formet of instructions and arithmetic operands. As a compromise the fol=-

lowing word structure was chosen:

e - double word >

i word St WOPA oo Sim

Enteger byte integer byte!

b
0 1, 12 23!
| |
|
integer word

0 ,i 03 |

}
I
i

i
!
H
i
i

integer double word
o .' g

exponent frection

-7 -

The baslc arithmetic operand 1s an integer of 24 bits. Small inte-
gers are packed with two bytes per word, The bytes are directly addres-
sable, A speclal instruction LOAD INTEGER BYTE serves to extend a 12-bit
byte towards the left to 24 bits as it is introduced into =a working regl-
ster,

Double words are used to represent integers of double precision (48
bits) and floating-point numbers (12-bit exponent and 36-bit fraction).

b Instrugtion Format.

- - e - U - - -

341+ Address Modification.
The efficiency of computer programs is closely connected with the
handling of address fields inside instructions. The two maln problems to

consider here are program relocation and table lock-up.

2:1ele Progrom Relocation,

The ability to relocate programs in the working store is vital in a
machine where the library of programs is kept on a backing store and only
brought to the working store when they are active. As en example consider
a computer which performs direct control of a plant, In 1dle intervals
the computer may perform other tasks such as translating programs from
the assembly language into machine code. This may at any time be inter-
rupted by an cxception signal from the plant causing the assembler to be
replaced by a process control program. Later the assembler will be
brought back Into the store and resume the translation, Normally it is
not possible to predict the combination of programs and data residing in
core at the time of reloading. The programs therefore cannot expect to be
loaded Into their previous residence areas but must be relocated to sto-
rage areas currently avallable.

Relocation is also desirable In a machine without backing stores,
This allows the machine to be loaded with different sets of programs each
of which can be written independently of the others i.e. as standard rou-

tines,

-8 -

Dynamic relocation can be implemented either as base addressing (im-
Plying an address modification with a register contalning the load ad-
dress of the program), or as relative addressing (implying a modification
with the current instruction address). The latter solution is used in the
RC L4000,

-_-—-n NP o -

The purpose of data processing is to transform e set of data into a
result according to certain rules. In a computer with an addressable
store one of the most general ways of specifying the rules of transforma-
tion 1s to use a set of tables. Each piece of data to be transformed is
converted to an address which is used 1o lock-up 2 table to extract a new
date value or the address of a work action to be performed. The require-
ment that addresses can be modifiled by the values of the data being pro-

cessed 1s met efficiently by the use of index registers.

2:2: Beglster Structure,

The motivations for having registers separated from the main store
are! (1) to provide fast access to frequently used data 1tems, and (2) to
save instruction length by having implied or truncated addresses of ope-
rands. In a single-address computer with cn implicitly addressed accumui-
lator these advantages are to some extent illusory. Since all operations
destroy the p.esvious contents of the accumulator the programmer i1s forced
tc meke a lot of storage operations in order to save and restore the ac-
curulator, Such empty transfers also arise in machines where the index
registers can only be modified by the accumulator via a transport to the
store, An analysis of programs written for the IBM 7090 showed that about
30 percent of the load and store instruetions were such superfluous trans-
fers. The experiment also showed a reduction of more than 90 percent of

these transfers when four accurmlators vere introduced instead of one +).

+) G.M. Amdshl, The Structuve of System/360 - Processing Unit Desien Con-

siderations, IBM Systems Journal 2, no, 2 - 3, 1964,

-9 -

The register structure in the RC 4000 computer consists of four wor-
king registers of 2l bits each. In each instruction one of these regi-
sters can be specified as the accurulator. Likewise one of them can be
selected as the current index register. By extending the number of accu-
mulators to four and by removing the distinction between accurmlators and
index registers the full instruction set becomes available for irmediate
address modification, and empty transfers of registers are reduced consi-
derably. Also the instruction set is simplified since special instruc-
tions for the handling of index registers are no longer needed, To faci-
litate reglster-to-register operations the working registers are addres-

sable as the first four words of the maln store.

word address

0 Ewméﬁwﬁi£ény? working reglster O
1 T working reglster 1
. MMNMWMTWU~,E woriing regioter 2
3 'f working register 3

3.3« RC 4000 Instruction Format.

S A0 AR S O B AN G s S A O T b e -

To allow a flexible manipulation of both the operation part and the
address part the following instruction format was selected:

F WMX D

The instruction word is divided into an operation byte and an address
byte of 12 bits each, The operation byte spccifies 64 basic operations in
the F field of 6 bits, One of the four working reglsters is specifled as
the result register in the W fleld of 2 bits. The current index reglster
is selected by the X field of 2 bits, Only working registers Wi, W2, and
W3 act as index registers (X=0 indicates no indexing).

A truncated address of 12 bits (the D field) specifies a displace=
ment of 4095 bytes inside the program which 1s adequate for the majority
of addresses, It is, however, insufficient for specifylng directly the
entire store. A full address of 24 bits is formed by means of the dis-
Placement in connection with an index regilster (X) and the instruction

counter (R). The formation of an effective address A is controlled by the

- 10 =

address mode fleld M as follows:

M=00 A=X+D
M=01 A=X+R+ D

M=10 A = store[X + D]
M=11 A = store[X + R + D]

In the address calculation the displacement is treated as a 12-bit signed
Integer which 1s extended towards the left to 24 bits before beilng added

to the Index register and the instruction counter. In the final addition

of X, R, and D overflow is ignored,

The last two modes permit indirect addressing in one level., The in-
direct address is assumed to be a full address of 2L bits. A special in-
struction MODIFY NEXT ADDRESS acts as a substitute for multilevel indi-
rect addressing.

In storage access operations the effective address is treated as an
unsigned Integer of 24 bits, Reference to 2 non-existent storage location
will cause a progrem interruption (see section 7.3).

The use of truncated addresses of 12 bits permits a more flexible
instruction format within the given word length of 2L bits. At the same
time the extension of addresses in registers to 24 bits allows practicale
1y unlimited extension of the working store. Comparicon of addresses 1s

also simplified because all effective addresses are positive,

L, Fixed-point Arithmetic,

R o T s b W S G S G T - - -

421 Nunber Representation,

The efficlency of the fixed point arithmetic depends strongly on the
representation of signed numbers. The traditional alternatives are:

(1) Separate sign bit plus absolute value,

(2) ne’s or two’s cormplement.

The representation chosen for the RC 4OOOC computcr is the two’s come
plement, The mailn virtue of the complement notation 1s the 3imple hand-
ling of operands with opposite sign =28 comparcd to the sigr plus magni-
tude representation. In the latter system an addition of two signed num-

bers A + B requires a comparison of both signs and megnitndes to deter-

-~ 11

mine whether the resulting magnitude should be computed as abs(A) +
abs(B), abs(A) - abs(B), or abs(B) =~ abs(4). In the complement arithmetic
the two operands are simply added as 1f they were both unsigned binary
integers of 24 bits, And it 1s only outsidc the arithmetic unit the data
words are Interpreted as signed integers zccording to the following rule:
ﬂ@thgm=£d%mmﬂf%$;1

then + data word else - (2A2b~data word);

The choice: of two’s instead of one’s complement arithmetic was dic-
tated by (1) the unique representation of zero, snd (2) the faster addi-
tion because there i1s no need for an extra cycle to add an end-around
carry,

The complement notation also facilitates the handling of small inte-
gers (byte arithmetic) and large integers (double-precision arithmetic).
A small integer can be extended to the standard form of 24 bits simply by
a duplication of the sign bit towards the left. Convarscly when the high-
order digits of a small integer are elided the leading digit in the trun-
cated integer still reflects the sign properly. In she programming of
double-precision arithmetic all operations cn the low~order fields can be
performed as if they were unsigned integers of 24 bits (provided there is

an indication of a carry from one word to the next).

%22y Polnt Location,

This section is concermed with the choice of flxed-point arithmetlc.
The main decision to be taken is whether the arithmetic unit should In-
terpret data words as (1) pure integers, (2) pure fractions, or as (3)
numbers with an intermediate point location.

We will assume that the arithmetic unit is designed to develop the
same result diglts regardless of where the binnry point is located. For
example, rmltiplication of two date words is assumed to produce a double-
length product, The difference between the threc types of writhmetic lies
in the way the results are aligned to retain the original point location
in subsequent operations, In the case of addition and subiracsticn align-
ment of the result is trivial. This however, is not truc for multiplica~
tion,

- 12 -

In arithmetic with an Intermediate point locatlon a pust-shift is
required to align a product. During this shift significant digits may be
lost even though the unaligned result does not exceced the capacity of the
double-length accumilator. Thils deficiency makes sn intermediate point
location undesirable,

Let us now consider integer and fractional arithmetic., In 2 machine
with double~length multiplication and o uniform register structure the
practical difference between integer and fractional arithmetic is very
small. It is largely a question of whether the programmer chooses 1o se-
lect the low-order or the high-orier part of the product for further conme-
putation, The only functional diffcrencce betweoen ntegers and fractions
nay be described as follows, 4 data word corsists of e sign plus 25 bina-
ry digits, Multiplication therefore produces a double-length product con-
sisting of a sign plvs L6 digite. This leaves o vacant bit-position in a
double~length accumuletor of 48 bits, In iateger arithmetic the vacant
position is logically placed at the extremc left followlng the siga bit,
while In fractional arithmetic 1t wonld be placed at the extireme right of
the accurmlator, This representation of double.lengtly products is shown
by the following figure, The vacant hit position is irdicated by hat-
ching. The diffcrence between Integer ond froectlioral zrithmetic is seen

to be just a matter of shifting double-length oroduete one positicn.

iateger product

A 7 frestioral product

In the GIER computer the vacent position o placed in bit 24 as a ze-
ro, This representation has the deficiency that Integer multiplication
can only produce low-order products with positive sign. Consideration was
also given to a representaticn vhere the sign 75 copied frem bit 0 into
bit 24 after the multiplication, This representation was abandoned be-
cause 1t makes the programming of multlprecision arithmetic very avkward.

The fixed~point arithmetic in the RC 4OCO computer works with inte-
gers of the 1 pe described above, We prefer integers 4o fractions for the

Tollowing reasons:

(1)

(2)

(3)

4,3, Multiple Precision.

T DR (S A NS B D S G A S A e M o -

- 13 -

Most of the variables in process control applications are of ine
teger nature i.e, they are variables with a fixed number of di-
gits to the right of the point and of a magnitude that makes
scallng unnecessary. Examples are measured process variables and
table addresses,

Allpning the numbers to the right reduces the chance of over-
flow, Note that with the integer representation chosen multiplie-
catlon can never lead to overflow,

Fractionael computation can still be performed by shifting and

normalizing instructions.

With the short word length chosen for the RC 4000 computer serious i

consideration must be given to double-precision arithrmetic. In process

applications the need for extending precision is probably too lilmlited to

Justify a complete instruction set for this purpose. We will therefore

concentrate on providing a few basic facilities for the programming of
multi-precision routines.

Consider first the addition of two double~precision numbers, a and

b, composed of double words (al, a2) and (b1, b2):

a+b=(al +bl) Xe+ a2+ o2
where e 1s the scaling factor 2A24. The low-order parts (a2 + b2) and the
high~order parts (al + bl) are added separately as shown by the following

figure:

The main problem is to detect a carry from one component word to the
next, It is therefore suggested that single-word addition and subtraction
glve an indication of this lost-carry situation. (Note that lost-carry is

0 25 2b b7
+ b1 1 bR i
= | c] | Y
carry

-1&-—

different fro . overflow, Overflow indicates that the data word interpre-
ted as a signed Integer excecds 2A25 - 1. Lest carry on the other hand
signifies that the data word interpreted as an unsigned integer exceeds
Aol . 1),

The second basic requirement of multi-precision arithmetic is that |
rultiplication of two single words produces a double-length product to re- g

taln all result digits,]

5. kxcentlioin Register.
erithmetic Instructions and input-oulput instructions indieate an
cxeeptional outeome by setting a 2-bit exception register. This register

can be tested by a single dnstructicn SKIP IF NO EXCEPTICS, The eXCepm

tion register is set in the following situations:

Integer Arithmetic. After a normal result both exception bits are %
et to zero, An overflow will set the left erception bit to one and Pro=- %
oke g program interreption as definzd In section T.3. 4 lost carry sets ;

the right exception blt to one without cansing interruption,
Plonting~polne Arithmetic. A noxmal result elears both cxception ﬁ
bits to zero. iIxponent overflow or underflow is registered by the left ;
and right exception bits respectively snd is followed by a program inter-
Laptilon.
Input-ocutput. An input-output instruction may be rejected if a peri-

rheral device 1s disconnected or busy as :scribed in section 6. The i

[

cause of rejectlon is regilstered in the cxcepbion bits.

All other Irstructions leave the exception register uncha mzed,

6, Inputeoutput Control,

B 0 Y e v e e ue,.r L I T

0,1, I/0 Requirements,

"nﬂtiﬁ-a".“v«‘—nu1.--An. - -y

The design of the /O control 1s badced un the following principles:
(1) Therc should be no vestrictions on Uhe kinde oo devices tnat may
be comnected *o the computer,
g2) Program execution should continne vhil- /b operations are in

progress,

- 15 =

(5) I/O exceptions must be under complete program control and may

never cause a machine ston,

The I/O equipment In a typical process control installation consists
of typewriters, paper tape devices, A/D and D/A converters, and a real-
time clock as described in appendix A. Future installations will certain-
ly include other types of devices such as magnetic tapes, disk, or drum,
To allow such expansion of the system the connection cf I/0 devices must
be standardized in such a way that the computer is unaware of the types
of devices attached t» 1t, This requires that I/0 instructions identify
devices by addresses only, and that all deta charmnels have a standard
width,

In real-time applications 1t is unacceptable %o halt computation
while a data transfer 1s In progress, To avoid this a device must release
the computer as soon as an I/O operation has been initiated. The computer
will then continue the program while the device completes its operation
independently.

When the computer attempts to initiate an I/O operation the device
may answer by & rejection indicating that it is occupied with another
operaticn, This information rust be avallable to the program to allow the
cholce of an alternative course, When an operation is completed the de-
vice must also deliver information asbout exceptional conditions which oc-
curred during the execution, This is necessary because a real-time system

cannot rely on the operator tc discover and react on such emergencies,

6,2, Low~speed Data Channel.

O W L B G S O e A A .

The I/0 wevices in industrial control applications are often slow

character-oriented devices of the following types:
& =

device: bits/character characters/second
typewriter 6 10
paper tape reader T 100
paper tape punch T 20
analog input 13 20

- 16 -

These devices are connected to a simple data channel consisting of an ex-
ternal buffer regilster connected to one of the internal working reglsters
by 2k transmission lines. The data channel may be shared by several devi-
ces, Fach device has a separate buffer register of 24 bits, The operation

of this low-speed data channel will now be discussed in detail,

€:3: 1[0 Instruction,

The computer recognizes only one I/0 instruction, INPUT CUTPUT,
which has the standard format of instructions (defined in section 3.3).
Here the W fleld selects the interval working register which will be cone
nected tc the data channel. The effective address of the instruction is

interpreted in the following way:

é ~ notused | comand .channel !device

5 S ,qiéM, wfshi6 M‘m&éﬂéom. 25

The device is identified by a channel address and a device address of 4
blts each. The instruction format sets a limit of 16 data channels for
the system., To each channel a maximum of 16 devices may be connected. The
channel can only sustain data transfers from one device at a time. Opera-
tions which do not invelve data transfers to working registers may, howe-
ver, be in progress on several devices on the same channel,

The I/0 operation desired 1s defined by a command code of 4 bits. An
I/O operetion 1s initiated by the computer in two stages:

Selection Phase, The control unit of the ccmputer attempts to esta-
blish a connection with the device by means of the channel/device ad-
dress, The success of this selection depends on whether the device is:

(1) free '

(2) busy or

(3) disconnected,
The device i1s consldered disconnected if no device responds to the selec-
tion. This is elther because the channel/device address designates a non-
existent channel or device in the installation, or it may be due to power
being switched off from the device, The device responds to the selection
with a busy=-signal 1f 1t 1s in the process of executing a previous I/O

operation, In the busy and disconnected states the I/O operation is re-

- 17 -

Jected and the computer immedistely proceeds to the next instruction, The
cause of rejection is made available to the program in the exception re-
gister.

Command Phase, Only 1f the device responds to the selection with a
free-signal is 1t ready to accept the cormand, The commend code is then

ransferred to the device un separate signal lines. The device may now

respond with a signal demanding an irmedinte data transfer from the wor-
king register to the external buffer register or vice versa. Finally when

the operation is initisted the computer proceeds to the next instruction.

The cormand codes are specific for each type of device, They are,
however, all modifilcations of four basic commands: READ, SENSE, WRITE,
and CCNTROL,

?@E_EE??_S?@T?Q@ directs the device to start 2 transfer of the next
character from the external data medium Into Ite buffer rcgister. The
corputer is released a2s soon 2s the operation is initiated (or rejected).
The cormend specifiles whether the device must terminate its operation by
means of a program interruption,

?§§_§§§§§.39@@§§§ is a request to the device to transfer a2 status and
data word to the working register. The right.iwcst bits of this status
word contain the last character received in the buffer register, while
the left-most blts indicate an exceptional outcome of the last I/0 opera-
tion such as:

(1) cormand invalid
(2) intervention required
(3) data invalid

(h) data lost

An invalid ccrmand is a command code which cannot be executed by the par-
ticular device., Intervention is required if a card stacker is full, if a
peper tape device runs out of paper, or if the door of a tape station is
open, €tC,s Data Invalid signifles an attempt to read or write a bit com-
bination which does not belong to the character set of the device, an
analog input slgnal which is out~of-range, or 2 parity error from a mag-
netic tape. Data may be lust if the operator fails to respend to a type-

vriter request within a certain time interval. These conditions cause the

- 18 <

device to terminate the operatlion immediately. The status word can cnly
be sensed if the device 1s free, If the device is busy or disccnnected
the cormand 1s rejected as described previously. The sense command may
therefore be used in connection with the exception reglster to test whe=
ther a device 1s busy or not,

TE?-YE%E?-SQ@??Q@ Instructs the device to transfer the contents of
the working register to i1ts buffer register and start outputting it on
the external medium. The computer is released as soon as the operation
has been initiated (cr rejected)., The command code may or may not specify
an end of operation interruption,

?@g_gggfgg}_gfggggg causes a transfer of the working register to an
external buffer register followed by a control cperation of the correw-
sponding deviece., The contents of the working register 1s interpreted
either as a selection address (of a multiplexer terminal, or a track on a
drum or a disk) or as a control code (specifying upspacing of a line
printer, rewinding of a magnetlc tape, etc.). The computer proceeds to
the next instruction as soon as the control operation has been initiated
(or rejected). The cormend code may specify nn end of operation interrup-
tion.,

The oper-tlon of the low-speed data channel may now be surmarized as
fellows. The execution of an I/O instruction will always result in the
exception register belng set to indicate whether the operation specified
by the command code was initiated or rejected by the device. The computer
will in any case immediately proceed to the next instruction. A succesful
input operation from a device 1s performed by two instructions, The first
instruction (read) directs the device to start reading the next character
Into its buffer register., As soon as this operation has been initiated
progran eXecution continues, When the data value is available in the buf-
fer reglster it may be transferred to a working register by a second Iln-
struction (sense). This is done immediately under program control. The
data word also contains status bits which indiecate whether the input ope-
ration was completed succesfully.

An output operation 1s initinted by a write commend which transfers
the contents of a working reglsiter to an external buffer register and di-
rects the device to start writing it cut. The computer is released imme=-
diately and is not concerned with the device until the operation has been
completed, The ocutcome of the output operation is tested by a sense cone

mand which transfers a status word to a working register,

-19 -

The end ©f an I/O operation may elther be signalled directly by the
device as a program Interruption, or it moy be interrogated by the pro-

gram by means of a sense command,

6222 High-speed Data Channcl,

The use of the working registers in the data path is adequate for
slow character-criented peripheral equipment, This type of channel is far
cheagper to implement than =2 channel which perfoms buffered I/O directly
to or from the maln store on 2 cycle-stealing basis, Such channels are,
however, necessery to handle devices like disks, drums, magnetic tapes,
punch cards, and line printers which transmit large data volumes st high
rates. This problem is consldered in detail in appendix B, Suffice 1t
here to say that such operations are implemented as control cormands with
the working register holding the start address of the buffer area while

the first location of this area defines the buffer length,

T. Multiprogramming Facilities,

At the Pulawy plant the computer must type out a log of 211 process
variables every hour, This takes 6 - 12 minutes. It is essential that the
scanning of points for alarm 1s repeated every 5 minutes., Concurrently
with these two tasks a number of digitel registers must be sampled every
second, Finally the operstor mey wish to alter an alarm level from the
control typewriter, and this must be interlaced with the scanning cycles,

In process applications the computer thus has a number of concurrent
tasks to perform, and these tasks must be repeated at regular intervals
1f real-time control of the plant 1s tu be sustained. In such a multipro-
gramming system it is vital that erroncous progrems are prevented from
interfering destructively with other programs, The different tasks must
therefore be coordinated by a monitor program which has complete control
of the system, In the following we consider three hardwsre Tacilities
which are desirsble (if not Imperative) in order to zuarantee ccnstant
nonitor control: (1) storage pretection, (2) privileged instructions, and

(3) progrom interruption,

- 20

Te1. Storage Protection,

S - .

An erroneous task program may attempt to destroy important process
constants or parts of the monitor program. This indicates that some kind
of read-only protection of the store iz desirable. Some of the posselble
techniques are:

(1) M1 storage references are made indirect through tebles main-
tained by the monitor, These lists make availoble to a task program only
those storage areas assigned +o that program,

(2) The store 1s dlvided into blocks of equal size. Assoclated with
each block 1is a key reglster set by the monitor. To each task program a
specific key value is assigned, and storing operations are only accepted
1f the program key matches the storage key,

These ambitlous solutions provide a completely safe system whereby
a large number of programs are prevented from interfering destructively
with each other. They were, however, considered tuo expensive to include
in the RC LOOO compiter, We will therefore concentrate on solutions where
a number of task programs are prevented from destroying a common area
(the monitor) while everything cubside this area can be destroyed (inclu-
ding the task progrars themselves). This limited protection 1s adequate
if the task programs sre debuzged systcmatically; each task program must
be debugged with all .other task programs residing passive and protected
in the store. When tie debuvgping 1s completed protection should be limi-
ted to the supervisory progran only,

(3) One solution is to define the nonitor area by two boundary regi-
sters which all effective addresses are cimparcd against, This solution
was rejected as being tno expensive and “oo slow in implementation,

(k) The solution chosen for +ae PT LOOO consists of extending each
storage word with an additional bit. This orotection bit does not enter
the working registers in the data opevotionc. 3% is cnly used by the con-
trol unit to test whether +the storase word is protected agalnst writing,
Attempts to viclate the protection is brought to the attention of the mo-
notor by a program inbterrupticn. This is adnlttedly a rather rigld solu-
tion, but 1t is cheap to implement and acceptable from a prograrming
point of view. In this protection syotem the monitor ares consists of all
storage words in which the protection biv is set, This area 1s protected

against writing from task progrems residing in unprotected areas, It is

essentlal, however, that instructions inside the monitor are allowed to

-21 -

modify themselves and to assign new values to local varisbles. The pPro=
tection rule must therefore be modified in the following way:

A§ A protected word may be changed by a protected instruction but not
by an unprotected instruction.

19 An unprotected word may always be changed.
Read-only protection 1s not enough to ensure survival of the monitor. It
mst also be protected against erronecus calls i.e. Jumps which enter the
monitor at arbitrary points, This problem is solved by the following con-
ventlon:

3) Attempts to execute a protected instruction following an unprotected
instruction will cause a program Interruption,
A normal cell of the monitor is made by provoking a program interruption
with information about the desired entry loaded in a working register,
The program Interruption trensfers control to a fixed point In the moni«
tor which then decides whether the entry is correct.

12, Privileged Instructions,

It is highly desirable that the extension of the protected area can
be program controlled by the monitor, This can be achieved by two ine
structions SET and CLEAR PROTECTION BIT which can only be executed inside
the monitor i,e. 1f they are protected themselves., This concept cf pri-
vileged Instructions must be extended further to prevent that task pro-
grams accldently seize control from the menitcr, First task programs may
not change the status of the interrupt system (for example by disabling
i1t permanently). Secondly it must not be possible for a task program to
monopolize an I/O device that is needed by other programs as well (for
example the control typewriter). The following classes of instructions
should therefore be executable inside the monitor only:

storage protection control

SET PROTECTICN BIT

CLEAR PRUTECTICN BIT
program interruption control

LOAD MASK REGISTER

JUMP WITH INTERRUPT ENABLED

JUMP WITH INTERRUPT DISABLED
input output control

INPUT OUTPUT

—22-

The protection system may be surmarizedl as Tcllows:

A program interruption scts the control unit in the monitor mode
vwhere all instructions can be executed as long as they are protected. The
control unit returns to the task mode when the first unprotected instruc-
tion 1s executed. In the task mode program interruption results if the
following is attempted:

(1) Storing into a protected location,
(2) Jumping tc e protected location (by explicit brenching or
by sequential program execution),

(3) Executing a privileged instruction.

Ta3s _Program Interruptic

T - -w—-.—--—n—-n-

T:2:1. Geperel Discussion,

The program interrupt sysiem pemits an automatic switchlng from the
current sequence of instructions to another sequence in immediste re-
sponse to exceptional events. The interrupt system is desirable in a
real=time computer for the following reasons:

(1) Monitor Control. The monitor is in danger of loosing control if
a task program goes intc an endless loop. The minimum requirement here is
a real-time cluck that reiturns corntrol to the monitor by means of a pro-
gram Interruption after a preset time interval,

(2) Programming Efficiency, The interrupt syctem permits an automa-
tic monitoring of hardware malfunction and cxceptional conditions Zenerae=
ted by the program (such as violation of *he storage protection or an
arithmetic overflow). Frequen® program testing of such rare events is
clearly uneconomical, Efficiency also dicintes the uge of Interrupt sig-
nals from I/O devlces, In a multiprogramming sys+tem 1t 1s undesirsble to
remain In & given task program walting for the completion of an I/O ope=
ration. The waiting time may be used %o switch to another task program,
When the I/O operation is completed the device signals its avallability
to the monitor by means of a program interruption. Control can then be

returned to the program wiich initiated ‘the operation.

- 9% -

num — - —u-—-..--p-u-o.-—

An interrupt system rmst perform the fcllowing functions: (1) Col=
lection of interrupt signals, (2) Interrogation of interrupt signals, (3)
Selection among competing interrupt requests, (4) Saving of return infore
mation, and (5) Switching to the interrupt service routine. These automa-
tic functiocns should be restricted to a minimum in order to meke the ine
Plementation cheap and to maintain the programming flexibility.

The RC 4000 computer can collect up to 24 interrupt levels in en in-
terrupt register, The monitor has selective control over these interrupt
lines by means of a mask register., This program controlled register de-
fines for each of the 2l interrupt lines whether an interrupt request
will be honoured or ignored. The Interrupt register is interrogated once
in every instruction cycle. If any of the masked Interrupt bits are set
the contents of the instruction counter will be stored in = fixed locae
tion before branching to an address kept in another fixed location. The
problem of simultaneous interrupt signals is handled by selecting the
left-most signal for first treatment., This is done by turning the inter-
rupt bit off and storing its regicter position as an integer (0 - 23) in
a third fixed location. The interrupt routine uses this interrupt number
to branch to a specific service routine.

(nly the instruction counter is stored as return information about
the interrupted program. The interrupt service routine is responsible for
saving and restoring the contents of all working registers,

The entlre interrupt system may be disabled for short intervals
where an interruption would be awkward (for example when the base address
of the interrupt switech table is changed). When the system is disabled
interrupt signals are only collected but not interrogated, The system is
automatically disabled when the interrupt routine is entered, It may be
enabled again (or disabled) by the moniltor by the privileged instructions
JUMP WITH INTERRUPT ENABLED (or DISABLED),

Z-é-BL“EnfﬁfrEEtion Conditions,

The interruption signals may be classified according to priority as
follows: (0) Machine interruption, (1) Instruction interruption, (2) In-
teger interruption, (3) Floating-point interruption, and (4) - (23) Ex-

ternal interruption.

- 24

In the event of power being turned off, or when hardware malfunction
is detected a machine interruption is initisted, This interruption has
the highest priority and is the only interruption signal which cannot be
masked off cr disabled. The interruption is performed in the following
way?: when the machine exception i1s detected the instruction counter is
saved in a fixed lcocation and the machine is stopped after activetion of
an alarm signal for the operator. When the stars key on the console is
depressed the Interruption is completed by storing the interrupt number
as zerc and Jumping to the interruption service routine. The contents of
all registers (except the instruction counter) are lost, and any task
program interrupted by a machine exception must therefore be completely
restarted,

The execution of an unassigned operation code leads to an instruce
tion interruption. This interruptlicn can =lso be provoked by a storage
operaticn with an undefined address, by cxecution of & privileged instruct-
tion in the task mode, or by violation of the stocrage protection., The in-
terrupt number is set to one befure switching o the dInterruption roue
tine,

An integer Interrupticn 1s created by overflow occurring in integer
arithmetic, The Interrupt number is sci 4o twe.

A fleating-point interruption with interrupt number three is created
by exponent overflow or underilow cccurring in floatinge-point arithmetic,

The remaining 20 bits in the interiunt resister are ascigned to exe-
ternal signals, Through these interruptions the computer responds to ate

tention signals from the real-time clock. the console interrupt key, and

the stendard input-output devices. Up o 2L peripneral davices nmay be

s

connected to each interrupt bit. Associnced with cach pricrity level is

an external register of 24 bits., Eo-h dovice comnected o the same intere
&

guer, These digital reglsters

rupt level has a bit position in this rozd
which can be read and cleared by the compuser permls identification of ine

dividual external signals.

8. Instructlon set,

-——uuunn-—q- ———————

8s1. List of Instructions,

BASIC INSTRUCTICN SET

DATA TRANSFER
load regilster
store register
load half register
store half register
exchange register and store
INTEGER ARITHMETIC
load address
load address complemented
add integer word
subtract integer word
miltiply integer word
divide Integer word
load integer byte
add Integer byte
subtract integer byte
LOGICAL OPERATICNS
logical and
logical or
exclusive or
shift single arithmetically
shift double arithmetically
shift single cyclically
shift double cyclically
normalize single

nomalize double

EXTENDED INSTRUCTICN SET

load double register
store double reglster
convert integer to floating

convert floating to Integer

SEQUENCING
modify next address
execute single instruction
Jump with register link
skip if register high
skip 1f register low
skip 1if reglster equal
skip 1f register not equal
skip 1f register blts one
skip 1f reglster bits zerc
skip 1f no exceptions
skip 1f no protection
MONITOR CONTROL
lond exceptlion register
store exception register
load mosk reglster
store mask reglster
store interrupt reglster
Jump with interrupt enabled
Jump with interrupt disabled
clear interrupt bits
set protection bit
clear protection bit

input output

add floating
subtract floating
multiply fleating
divide floating

- 26 -

8.2, Definition of Instructions.,

s 905 08 ST 0 Ot D o S M D SN U cn v A 5 R e ik SR e e G U b T e S

8+2:1s Notation,

The following 1s a formal definition of the instruction logice. The
basic instruetion cycle and all operations are described in pseudo-algol
wlth the following notatlon:

(1) Declarations. A register declaration consists of an identifier
followed by a bilt size enclosed in parantheses, For example, register
A(24), is a declaration of an address register A of 24 bits,

(2) Algorithms. Reference to a subfield inside s register is defined
in the fcllowing way: the register bits are numbered 0, 1, 2, etc., from
left to right. Bit number i in the register A is denoted A(i). The regi-
ster field from bit 1 to bit J is descrived as A(i, J). Storage referen-
ces to bytes and words are denoted byte[A] and word[A] respectively., In
storage operations the effective address A 1s always a byte address, In
word operations A is interpreted as a word address by lgnoring the right-
most bit.

Yor each cperation code the nurmal execution is described, Also 1i-
sted are the setting of the exception register and the conditions that

will cause a program interruption,

Be242¢ Declarations,

P Y G . . - - O

register A(2k4) s

Ceo Lo L

comment the effective address part of the current instruction;

reglster byte operand(12)

comment temporary anonymous reglster, Also called: shifts, selected;
register dlsabled(1)

corment defines the disabled/enabled status of the interruption system;

........

register exception(2)

comment the exception register;

-27 -
register instruction(2k)
corment the current instruction. Subfields are referred to as: F field, W
field, M field (= R bit + I bit), and D field as defined in section 3.3}
register instruction counter(2l)
comment the address of the current instruction;
register mask register(al)
compent the interrupt mask register;

register monitor mode(1)
comment defines the monitor/task node status of the protection system;

register operand(2l)
P I -
comment temporary anonymous register. Alsc called: last A, requests, eXe

change, selected bits;

register prefixed address(1)
e e I
ccorment Boclean set by the operation Modify Next Address;

........

register W(2k)

comment the working register selected by the current instruction;
regzister W last(2l)

B T S

corment the working regilster preceding the W register i.e. with address =
W field - 1;

register W pair(L8)

comment the reglster palr W last and W considered as a double~length re-
glster, The four working reglisters are connected cyclically as double-
length registers i.e., WO - W1, W1 - W2, W2 - W3, and W5 - WO;

........

register X(24)

corment the index register selected by the current instruction;

switch operation:= Load Reglster, Store Reglster, etc...;

.....

comment a fixed address defining the storage capacity;

constant interrupt nurber, return address, service address
SOnST
corment fixed addresses of storage locations used by the interruption sy=-

Stem;

8:2:2: Baslc Instruction Cyele,

Next Instruction:

SiFodnstruction counterts Inotruction oounter + g

Fetch Instruction:

Interruption Service; Test Address}

rionitor modet= monitor mode A protection[Al;

Test Protecticn; Instruction:= word[al;
Decode Instruction:

A(12, 23):= D fleld; N

for 1:= 0 step 1 until 11 do A(1):= 4(12);

1f prefixed address then

EE&EE A= A + last Aj prefixed address:= false EEQ;
if X field = O then A= A + X;

iﬁ R bit = 1 then A:= A + instruction counter;.
1f I bit =1 then A:= word[A];

goto operation[F field];

3.4, Interruption Service.

O s g T P O O G Ry S S D O D W S WO o VD B S R . o

.......

grocedure Interruption Services
begin if disabled V prefixed address then gotﬂ Exit;

requests:= Interrupt register A mask register;
1f requests = 0 then goto Exit;

for i:= 0 step 1 until requests(i) = 1

do selected:i= 1;
interrupt reglster(selected):= 0;
word[interrupt numberl:= selected;
word[return address]:= instruction counter;
A:= Instruction counter:= word[service address];
monitor modet= disabled:= true}
Exits

end;

3:222: Start_end Stop.
gﬁgssggss Power onj; o
begin wait: if -, start key then goto walt;
word[interrupt number]:= 0;
:= instruction counter:= word[service address];
monitor mode:= disgbled:= true;
prefixed address:= EEEES:
§2§3 Fetch Instruction;

procedure Machine Exception;

LT e

begin word[return address]:= instruction counter;
Power On;

end}

8.3.6, Exception Routines,

-QA-_----_ ———————— - - - -

procedure Instructlon Exceptlon; _
OCE S
begin Interrupt register(1):= 1; goto Next Instruction;
end}
procedure Test Mode;
. ; _
begin 1f -, monitor mode then Instruction Exception;

ends

procedure Test Protection;
2¢

begin if -, monitor mode A protection[A]
then Instruction Exception;

end}

procedure Test Address;

e -

begin 1f A <0 V A > storage capacity
then Instruction Exception}

grocedure Test Integer Result;

begin exception(0):= overflow; exception(1):= lost carry;
. 1f overflow then interrupt register(2):= 1;

endj

8.3.7. Instruction Execution.

S SRR G5 OV AR 00 R A R G e G) T e e e SR GO L S W S W G e

Load Reglster:
Load the W reglster with the storage word addressed. The storage word re-
malns unchanged.

Test Address; Wi= word[Al;

goto Next Instruction;

Exception: unchanged.

Interruption: (1) undefined address.

Note: When A < 8 the operation is equivalent to a register to register
transport.

Store Reglster:
Store the W reglster in the storage word addressed, The register remains
unchanged.

Test Address; Test Protection; word[A]:= W;

goto Next Instruction;

Exception: unchanged.

Interruption: (1) undefined address or protection viclation.

Note: When A < & the operation 1s equivalent to a reglster to register
transport.

Load Half Reglster:
Insert the storage byte addressed in the right-most 12 blts of the W re-
glster without changing the left-most 12 bits, The storage byte remains
unchanged.,

Test Address; W(12, 23):= byte[A];

goto Next Instruction;
Exception: unchanged,
Interruption: (1) undefined address,
Note: When A < 8 the operation is equivalent to moving 12 bits from the

left or right slde of one reglster to the right side of another register,

Store Half Reglster:
Store the right-most 12 bilts of the W register in the storage byte ad-
dressed., The regilster remalns unchanged,

Test Address; Test Protection}

bytelal:= w(12, 23);

goto Next Instruction;

- 31 -

Exception: unchanged.

Interruption: (1) undefined address or protection violatlion.

Note: When A < 8 the operation 1s equivalent to moving 12 bits from the
right side of one reglster to the left or the right side of another regl-

ster,

Exchange Reglster snd Store:
The W register 1s stored in the storage word addressed and the previous
contents of the storage word is loaded into the register,
Test Address; Test Protection;
exchange := word[A]; word[A]l:= W; W:i= exchange;
5232 Next Instruction;
Exception: unchanged.
Interruption: (1) undefined address or protection violation,
Note: When A < 8 the operation is equlvalent to exchanging the contents

of two registers.

Lood Address:
Load the W register with the effective address,
Wi= A; goto Next Instruction;
Exception: unchanged.
Interruption: none,
Note: When the same reglster 1s specified by the W and X fields the ope~
ration is equlvalent to incrementing the register by the value of the D

fleld,

Load fddress Complemented:

Load the W register with the two’s complement of the effective address,
Wi= =4A; ggﬁg Next Instruction}

Exception: unchanged,

Interruption: none.

Note: When the same reglster 1s specified by the W and X filelds and the

D field is zero the cperation is equivalent to changing the sign of the

register,

- 32 .

£dd_Integer Mord:
The storage word addressed 1s added to the W regilster, and the sum 1s
placed in the register, The storage word remasins unchanged.,
Test Address; Wi= W + word[a];
Test Integer Result;
§8§8 Next Instruction;
Exception: integer overflow and lost carry.
Interruption: (1) undefined address, (2) integer overflow,
Note: When A < 8 the cperation is equivalent to a reglster to register

addition,

Subtract Integer Word:
The storage word addressed 1s subtracted from the W register and the dif-
ference is placed in the register., The storage word remains unchanged,
Test Address; Wi= W - word[Al;
Test Integer Result;
goto Next Instruction;
Exception: integer overflow and lost carry.
Interruption: (1) undefined address, (2) integer overflow,
Note: When A < 8 the cperation is equivalent to a register from reglster

subtraction,

Multiply Integer Word:
The W register 1s multiplied by the storage word addressed. The L4B8-bit
signed product is placed In the reglster pair W - 1 and W, Overflow can-
not occur,

Test Address; Wpalr:i= W X word[Al;

goto Next Instructions

Exceptiont: unchanged.

Interruption: (1) undefined address.

Note: When A < 8 the operation 1s equivalent to a register by register
multiplication,

Plyide Integer Word:

The register palir W - 1 and W 1s divided by the storage word addressed,
The 2b-bit signed qoutlent 1s placed in the W reglster, while the remain-
der 1s placed in the preceding register., The remainder has the same sign
as the dividend except when zero. An overflow is reglstered if the divi-
sor is zero or if the qoutlent exceeds 24 bits. In this case the result

is unpredictable,

- 33

Test Address;

W:= sign(Wpair/word[A]) x entler(abs(Wpair/word[Al));
W last:= W pair - W x word[A];

Test Integer Result;

goto Next Instruction;

Exception: integer overflow.

Interruption: (1) undefined address, (2) integer overflow,

Note: When A < 8 the operation 1s equivalent to a reglster by reglster
divislon,

Load Integer Byte:
Insert the storage byte addressed in the right-most 12 bits of the W re-
glster and extend the sign blt towards the extreme left., The storage byte
remains unchanged.

Test Address; W(12, 23):= byte[Al;

for 1:= 0 step 1 until 11 do W(1):= w(12);

goto Next Instruction;

Exception: unchanged,

Interruption: (1) undefined address,

Note: When A < 8 the operation 1s equivalent to moving 12 bits from the
left or right side of one register to the right side of another reglster
followed by an extension to 24 bits,

Add Integer Byte:
The storage byte addressed 1s extended towards the left to 24 bits and
added to the W regilster, The sum 1s placed in the register. The storage
byte remains unchanged,

Test Address; operand(12, 23):= byte[Al;

for 1:= 0 step 1 until 11 do operand(1) := operand(12);

Wi= W + operand; Test Integer Result;
§2§2 Next Instruction}
Exception: iInteger overflow and lost carry.
Interruption: (1) undefined address, (2) integer overflow.
Note: When A < 8 the operation is equivalent to adding 12 bits from the
left or right side of cne reglster tc 24 bits in another register,

- 3 .

Subtract Integer Byte:

A o -

The storage byte addressed is extended towards the left to 24 bits and
subtracted from the W reglster, The difference is placed in the register.

The storage byte remalns unchanged.
Test Address; operand(12, 23):= byte[A];
for 1t= 0 step 1 until 11 do operand(i):= operand(12);

Wi= W -~ operand; Test Integer Result;
%232 Next Instruction;
Exception: integer overflow and lost carry,
Interruption: (1) undefined address, (2) integer overflow,
Note: When A < 8 the operation 1s equivalent to subtracting 12 blts from
the left or right side of one reglster from 24 bits in another register,

Logical And:
The W register is combined with the storage werd addressed by a logleal
AND cperstion. The result is placed in the register. The storage word re-
mains unchanged,
Test Address; Wi= W A word[A];
§2§2 Next Instruction;
Exception: unchanged.
Interruption: (1) undefined address,
Note: When A < 8 the operation is equivalent to an AND combination of two

registers,

Logieal Or:
The W register is combined with the storage word addressed by a logleal
OR operation. The result is placed in the register., The storage word re=
mains unchanged.
Test Address; Wie= W V word[Al;
5oto Next Instruction;
Exceptlion: unchanged,
Interruption: (1) undefined address,
Note: When A < 3 the operaticn 1s equivalent to an OR combination of two

registers.

- 35 -

Exclusive Or:
The W register 1s comblned with the storage word addressed by a logleal
EXCLUSIVE OR operation, and the result 1s placed in the register. The
storaze word remains unchanged.

Test Address; W:= W # word[Al;

goto Next Instructilon; ﬁ

Exception: unchanged.
Interruption: (1) undefined address, |
Note: When A < 8 the operation is equivalent to an EXCLUSIVE OR combina-
tlon of two registers. When all blts in the word addressed are ones the

operatlon 1s equlvalent to a loglecal negatlion of the register.

Shift Single Arithmetically:
Shift the contents of the W register the number of places specified by
the effectlve address A, If A 1s negative then shift right with sign ex-
tension in the upper bits, otherwlse shift left wlith zero extension in
the lower bits, Uverflow is tested for each single shift.,
overflowi= false;
if abs(A) > 4B then A:= sign(a) x LB;
if A <0 then _ .
begin for i:= 1 step 1 until -A do W(1, 23):= w(0, 22);
end else D
begin for 1:= 1 step 7 until A ao
begin lost:= W(0);
w(0, 22):= W(1, 23); w(23):= 0;
overflow:= overflow V lost ¥ W(0);

end;

P

end;

Test Integer Result; goto Next Instruction;
Exception: integer overflow,

Interruption: (2) integer overflow.

Shift Double Arithmetically:

- By VR SIS AR R W U Wk S WP ONR 6 NN G M WD PIP M GUY MM WS M BAb i

Same as Shift Single Arithmetlcally performed with the register pair W -
1 and W,

- 3 . i

- QR Y S S S S S e u-u_-.————--

Shift the contents of the W reglster cyclically the number of places spe-
cified by the effective address A, If A is negative then rotate right,

otherwise rotate left. If abs(A) > 4B the cperation is suppressed and a
program Interruption occurs.,

if abs(A) > 48 then Instruction Exception;
1f A < 0O then

begin for ii=1 step T until -A dq
begin arcund:i= W(23); Ww(1, 23):= w(0, 22);
W(0) 1= around;

cend

end else . ‘ .
begin for l:=1 step 1 until A do
tegln around:= W(0); W(0O, 22) Ww(1, 23);

W(232) := arcund;

end

end;

zoto Next Instruction;

Exception: unchanged,

Interruption: (1) shift specification,

Shift Double Cyclically

UCH T T €7 B A W v 0 e G e

Szme s Shift Single Cyclically performed with the reglster peir W - 1
and W,

Normelize Single:

. e 13 0 S e B S i ot S S

Shift the contents of the W register left with zerc insertion until bit O
is different from bit 1. The number of shifts performed ls stored as e
negative Integer in the storage byte addressed, If W = O the number of
shifts 15 set to =2A11.
Test Address; Test Protection;
1f W = O then shifts:= 2411
else begin for shifts:i= 0, shifts - 1
while W(0) = w(1) do o
begin W(0, 22):= W(1, 23); W(23):= 0 end;

end
byte[A]'~ shifts} goto Next Instruction;
Exception: unchanged.

Interruption: (1) undefined address or protection violation.

- 37 -

Normalize Double:

- T S G D AP S T A0 40 O 55 0 W .

Same as Normalize Single performed with the reglster pair W - 1 and W,

Modify Next Address:

Use the effectlve address as an Increment to the displacement 1n the next
Instruction. The operation changes only the effective address of the next
Instruction whose D field remains unchanged,

last A:= Aj prefixed address:= true}

§233 Next Instruction;
Exception: unchanged.
Interruption: dissbled untlil the next instructlion has been executed,
Note: A sequence of modify next instructions lilke the following:
modify next (word address)
modify next (0)
modify next (0)
etcoas

is equlvalent to multilevel Indirect addressing.

Execute Single Instruction:
Fetch the dnstruction specified by the effective address and execute 1t
as 1f 1t had been located where the EXECUTE instruction is,.

Test Address; goto Fetceh Instruction;
Exception: unchanged,
Interruption: (1) undefined address, protection viclation, or privileged
instruction.
Note: When the instruction fetched has relative addressing specified the
effective address will be iInterpreted relatively to the location of the
execute Instruction. There are no restrictions on the type of instruction
fetched (except those imposed by the protection system). It may be ano-
ther execute Instruction, or it may be a jump Instruction preventing the

program from continuing with the following instruction.,

Junmp w1th Register Link:

0 B 0 G o W 665 O 5T SR B 0N N M S W A e B

If the W field + 0 the instruction counter is stored in the W register,
Following this a jump is made to the effective address.

- 38 -

Test Address; Test Protection;

if W fleld § O then W:= instruction counter;

goto Fetch Instruction;
Exception: unchanged,
Interruption: (1) undefined address or protection violation.
Note: When the W fleld = O the operation is equivalent to a simple uncon-
ditional jump which leaves all working reglsters unchanged. When the W
fleld # 0, the operation is & subroutine jump which leaves the return ad-
dress in the W register. A return jump is performed as a simple jump with
the same reglster specified in the X field.

S 0 Wb T T - - - -

Compare the W reglster and the effective address as signed integers. If
the reglster 1s greater than the address then skip the following instruc-
tion, The reglster remains unchanged.,

if W > A then

instruction counter:= Instruction counter + 1;

goto Next Instruction;

Exceptlon: unchanged.

Interruption: none,

Skip if Reglster Low:
Compare the W register and the effective address as signed integers, If
the register is less than the address then skip the following instruc-
tion, The register remains unchanged,

if W < A then

instruction counter:= iInstruction counter + 1;

goto Next Instruction;
Exception: unchanged,

Interruption: none.

Skip 1f Register Equal:
Compare the W register and the effective address as signed integers. If
the register equals the address then skip the following instruction, The
register remains unchanged.

ii W = A then

Instruction counter:= Instruction counter + 13

goto Next Instruction;

-39 -

Exception: unchanged,

Interruption: none.,

Skip If _Register Not Egqual:
Compsre the W register and the effective address as signed integers. If
the register is unequal to the address then skip the following instruc-
tion, The register remains unchanged,

if W F A then

instruction counter:= instruction counter + 13

goto Next Instruction;
Exceptlon: unchanged.

Interruption: none,

Skip if Beglster Bits One:
Use the effective address as a mask tc test selected bits in the W regi-
ster, If all the selected bits are one then skip the following instruc-
tions The register remains unchanged.

selected bits:i= -, WA A;

ii selected bits = 0 then

Instruction counter:= instruction counter + 1;

goto Next Instruction,
Exception: unchanged,
Interruption: none.

Skip 1f Reglster Bits Zero:
Use the effective address as a mask to test selected bits in the W regi-
sters If all the selected bits are zero then skip the following instruc-
tlon. The reglster remains unchanged,

selected bitsi= W A Aj;

iﬁ selected bilts = O then

Instruction counter:= instruction counter + 1j

goto Next Instruction;
Exception: unchanged,

Interruptiont none.

- 40 -

Skip if No Exceptions:
Use the right-most two bits of the effective address as a mask to test
the exception reglster, If the selected exception bits are zero then skip
the following instruction. The exception register remains uncheanged,
selected blts:= exception A A(22, 23);
if selected bits = 0 then

instruction counter:= instruction counter + 1;

gote Next Instruction;
Exceptlon: unchanged.

Interruption: none,

Skip If No Protection:
Interrogate the protection bit of the storage word addressed. If it 1is
zero then skip the following instruction.

Test Address;

if -, protection[A] then

instruction counter:= instruction counter + 1;
§2§2 Next Instruction;

Exception: unchanged.

Interruption: (1) undefined address.

Load Exception Reglster:
Insert the right-most two bits of the storage byte addressed into the
exception register. This 1s = privileged instruction.
Test Mode; Test Address;
byte operand:= byte[A];
exception:= byte operand(10, 11);
gotyu Next Instruction;
Exception: Set as defined above,

Interruption: (1) undefined address or privileged instruction,

_— - - u—m-n-.—mn-uu-——

Store the exception register in the right-most two bits of the storage
byte addressed., The left-most ten bits of the storage byte are set to ze-

IO,

- 41 -

Test Address; Test Protection}
byte operand(0, 9):= 0;

byte operand(10, 11):= exception;
byte[Al:= byte operand;

goto Next Instruction;

Exceptiont unchanged.,

Interruption: (1) undefined address or protection violation.

Lod Magl Reglster:
Insert the storsge word addressed in the interrupt mask regilster., Bit O
of the mask register is always set to one. This is a privileged instruc-
tion.

Test Mode; Test Address;

mask reglster:= word[Al;

mask reglster(0):= 1;

goto Next Instruction;

Exception: unchanged.

Interruption: (1) undefined address or privileged instruction.

Store Mask Reglster:
Store the interrupt mask register in the storage word addressed. The
mask register remains unchanged.
Test Address; Test Protection;
word{A]:= mask register;
goto Next Instruction;
Exception: unchanged.

Interruption: (1) undefined address or protection violation.

Sggfg_lntersgpt Begistgfi
Store the interrupt signal register in the storage word addressed. The
interrupt register remains unchanged,

Test Address; Test Protection;

word[A):= interrupt register;
5233 Next Instruction;
Exceptiont unchanged.
Interruption: (1) undefined address or protection violation.

- b2 -

- TSI T 0 ar 0 K G S T

Same as Jump with Register Link except that the interruption system is
engbled first. This is a privileged instruction,

Test Mode; Test Address; disabled:= 22&33;

if W field $ O then W:= instruction counter;

5232 Fetch Instruction;
Exception: unchanged.

Interruption: (1) undefined address or privileged instruction.

Jump with Interrupt Dissbled:
Same as Jump with Reglster Link except that the interruption system 1is
disabled first. This 1s a privileged instruction.

Test Mode; Test Address; disabled:= true;

if W field $ O then W:= iInstruction counter;

goto Fetch Instructlon;

Exception: unchanged,
Interruption: (1) undefined address or privileged instruction.

Cleer Interrupt Bits:
Use the effectlve address as a mask to clear selected interruption sig-
nals, This 1s a privileged instruction,
Test Mode;
interrupt register:= interrupt register A -, Aj
§g§3 Next Instruction;
Exceptiont: unchanged.

Interruption: (1) privileged instruction.

St Protection Bit:
The protection blt of the storage word addressed 1s set. This is a pri-
vileged Instruction,

Test Mode; Test Address;

protection[A]:= true;
%SES Next Instruction;
Exceptiont: unchanged,
Interruption: (1) undefined address or privileged instruction.

- b3 .

Clear Protection Bit:
The protection bit of the storage word addressed is cleared. This is a
privileged Instruction,

Test Mode; Test Address;

protection[A]:= false;

gote Next Instruction;

Exception: unchanged.,
Interruption: (1) undefined address or privileged instruction.

Ioput_Qutput:
Executed as described in section 6.3, This is = privileged instruction.
Exceptiont device disconnected and device busy.

Interruption: (1) privileged instruction.

R

Appendix A'-Prgject Pulawy.

- - - o S R S A R T

Al, Process Control Tasks,

The prototype of the RC 4000 computer is intended for installation
in a chemical plant constructed by Haldor Topsge in Pulawy, Poland. The
plant 1s composed of 13 wide-spread units: 3 gas preparation units, 3 ame
monia units, 4 nitric acid units, and 3 armonia nitrate units. The end
product consists of bags with smmonia nitrate., The plant 1s operated ma-
nually by operators under supervision of the computer. The maln tasks of
system RC LOOO as defined by Haldor Topsge are: +)

(1) Alarm Moniltoring,

Every 5 mlnutes about 350 process variables will be scanned and
checked against prescribed alarm-limits, Alarm conditions are brought to
the attentlion of the operators by audible and visible alarm signals fol=-
lowed by a print-out of the process varisbles to be corrected., Under
alarm-free condltlons the varlebles will be scanned at the rate of 10 =
20 points per second, and the complete scan thus lasts 17 - 35 seconds,
In case of alarms the scanning rate drops to 1 point per second limited
by the alarm strip printer.

(2) Data Logging.

Every hour a record of about 700 process varilables 1is typed out at a
rate of 1 - 2 polnts per second, The entire scan therefore lasts 6 - 12
minutes,

(3) Process Evaluatlon,
An Important function of the computer is to perform the guarantee
test of the entire plant by providing mansgement with regulsr information

about production and consumption figures,

+) For a more detalled deseription please refer to: John Saletz, Z.A. Pu-
lawy I1I, Preliminary Description of the Data-logger Installation, Haldor
Topsge, File 580 K, June, 1965.

3
2
i
o3
!
%

- b5 o

(L) Self-checking.

From the above 1t 1s clear that the RC L4000 exercises supervisory
rasher than direct control of the plant since all process corrections are
nade manually by operators, In the event of hardware malfunction or Dpro=-
gramuing errors the plant can st1ll be controlled manually while the come
puter system 1s repaired. The minimum safety demand is that the computer
is able to detect and report such malfunction, In idle intervals the come
puter will therefore perform self-checking of basic hardware functions
such as the instruction logic, the core store, and all addresssble devi-
ces and reglsters,

A2, System Confilguration.

- SN Y T DO SN S D S N SN G0 R P M R N e R e

The following figure shows the configuration of peripheral devices
as defined by Haldor Topsge:

§ e alarm
i strip printers

650 """"""""""""""""""""" 2 log sheet §
analog B i typewriters :
Inputs !
29 5 ? 11 control :
digital ! typewriter g
inputs ;

H

1
real=time
clock

computer - 1 paper tape i
N reader i

=1 paper tape :
N punch |

(1) Analog Inputs,
An analog-to-digltal converter is connected to about 650 input slge=

nals derived from such sources as thermocouples, resistance thermometers,

PH analyzers, and flow transducers, The selection of an input point is

- L6 -

performed by a relay rultiplexer with a switching rate of 10 « 20 points

per second,

(2) Dpigital Inputs.

Discrete events such as the number of bags with end product and the
kilowatthours consumed are counted in 1-blt registers. These reglsters
must be read and cleared by the computer every second., The on~off status
of various contacts such as alarm indicators and operator switches will

also be registered snd sensed by the program.

(3) Real=time Clock.
The real-time clock provides a time statement for the printed re-
cords and Initliate task programs at various preset Intervals,

(k) Alarm Printers.
Two strip printers (1 line per second) are provided for the printing

of alarm values.,

(5) Typewriters.
Two typewriters (10 characters per second) print out the log sheets,

A third typewriter 1s used for communication with the operator,

(6) Paper Tape I/0.
Programs and process constants are Input from a paper tape reader
(100 characters per second) and output on a paper tape punch (20 charac-

ters per second),

	System RC 4000
	Introduction
	Design Objectives
	System Summary

	Data Formats
	Storage of Small Integers
	Arithmetic Precision
	RC 4000 Data Formats

	Instruction Format
	Address Modification
	Register Structure
	RC 4000 Instruction Format

	Fixed-point Arithmetic
	Number Representation
	Point Location
	Multiple Precision

	Exception Register
	Input-output Control
	I/O Requirements
	Low-speed Data Channel
	I/O Instruction
	I/O Commands
	High-speed Data Channel

	Multiprogramming Facilities
	Storage Protection
	Privileged Instructions
	Program Interruption

	Instruction Set
	List of Instructions
	Definition of Instructions

	Project Pulawy

