A MANUAL
OF
GIER PROGRAMMING

VOLUME |
by

Chr. Andersen and Chr. Gram
(translated by Jytte Sgllested and George Alan Lake)

DANISH INSTITUTE OF COMPUTING MACHINERY

Copenhagen, October 1963

FOREWORD

In August 1961 the first Danish GIER manual ("Lere-
bog i Kodning for GIER") was published. The third revised
edition (again in Danish) was published in September 1962.
This manual is a translation of the third edition, with
only a few minor corrections.

As can be seen from the list of contents, this volume
contains a general outline of the features of computers,

a description of the structure of GIER, the instruction
format, the list of operations; and a section with examples
and exercises.

Very little has been said in this wvolume about peri-
pheral equipment and input-output routines, but these
topics will be covered in a forthcoming volume II. This
will be a translation of the firast (Danish) edition of
volume II, published in October 1963, and a.o. contain a full
description of the programming language SLIP, which allows
the use of symbolic addresses, and of HELP, the system of
administrative programs.

We would like to express our indebtedness to the many
pecople who have given us much valuable help in the prepa-
ration of this book. First of all, our thanks are due to
Mr. BJ. Svejgaard and Mr. T. Krarup, of the Royal Danish
Geodetic Institute, who have willingly answered a great
many questions.

Acknowledgement is also due to Mr. H. Isaksson, Mr. L.
Hansson, and Mr. P, Mondrup, who have participated in many
discussions and have suggested many improvements.

Finally, we would like to thank Mrs. Jytte Sellested
and Mr. George Alan Lake for their patient work with
translation of the Danish edition. Mra. Sellested has
translated and prepared the whole of the manuscript; and
Mr. Lake has read, critized, and corrected the English

manuscript,

Chr. Andersen Christian Gram

TABLE OF CONTENTS

FOREWORD
1. DIGITAL COMPUTERS.

1.1
1.2
1.3
1.4
1.5

2.6
2.7
2.8
THE
3.1
3.2
3.3

3.4

3.5
3.6
3.7
2.8

Introductlon.

Structure.

Application. A Simple Example of Coding.
Application. Subroutines.

The Binary System.

1.5.1 Fixed-point Numbers.
1.5.2 Floating-point Numbers.

STRUCTURE OF GIER.
Introduction,
Ferrite Core Store,
Drum Store.
Arithmetic Unit.
The Arithmetic.

2.5.1 Fixed-point Additicn and Subtraction.

2.5.2 Fixed=-point Multiplication.
2.5.35 Fixed-point Division.
2,5.4 Floating-point Qperations.

Control Unit.
Peripheral Units.
Control Fanel.

GIER INSTRUCTION I.
Introduction.

The Basle Instruction.
Basic Operations.
Address.

3.4.1 Absolute Address.

3,4.2 Indexed Address.

3.4,3% Relative Address.

3.4.4 Subroutine-indexed Address.

Indirect Addressing.

Modified Address.

S-Modification of the Basic Operation.
F-Modification of the Basic Operation.

10
15

2k
25

a7

29

HRAS

page

O U oo

10

19
19
19
23
2k
2h

32
33

YRR V¥Y

E§% 8 X

page

4, THE GIER INSTRUCTION II. 42
4.1 Intreduction. 42
4,2 The Increment 42
4.3 X-Modification of the Basic Operation. 45

4 4 V-Modification of the Basic Operation. 45
k.9 D-Modification of the Baslc Operation. 46
4.6 Instructions with Indicator-Instructions. 47

4,6.1 Indicator Register. 48
4.6.2 Indicator-Instruction. 48
4.6.3 Indicator Operation. 49
4.6.4 Indicator Address. 49

4,7 Internal Instruction Format. 50

4,7.1 Conversion from the External Instruction to

the Internal Instruction Format. 50
4,7.2 One Full-Word Instruction. 50
4.7.3 Two Half-Word Instructions. 53

5. OPERATION LIST. 25

5.1 Introduction. 55
5.2 Execution of the Instruction. 55
5.3 Explanation of the Operation List. 58

ADDITION. 64

SUBTRACTION. 65

MULTIPLICATION. 66

DIVISION. 67

NORMALIZATION. 68

NUMBER SHIFT. 69

CYCLIC SHIFT. 70

BOOLEAN OPERATIONS, 71

TRANSFERS TO REGISTERS. 5

ADDRESS AND INCREMENT TRANSFERS. 74
STORING. 75

STORING OF ADDRESS AND INCREMENT. 76
STORING OF REGISTERS. 77
SUBSTITUTION INSTRUCTIONS. 78
CONDITIONALIZING INSTRUCTIONS. 80
CONDITIONALIZING COINCIDENCE INSTRUCTICNS. 81
JUMP INSTRUCTIONS. 83

DRUM INSTRUCTIONS. 8s

PERTPHERAL UNITS. 86

AUXTLIARY INSTRUCTIONS 87

EXECUTIVE INSTRUCTIONS. 88
6. INDICATOR INSTRUCTICNS. 90
Registration of Cverflow . 91
Registration of Zero Situation . 9l
Registration of Sign. 92
Registraticn of Marking. 92
Exchange of p-Register and Indicator. 92
Marking. 93

7.

Register~Jondit

ional Instructions.

Overflow-Conditional.

Zero-Conditional.
Sign-Conditional.
Mark-Conditional.
K-Conditional.

EXAMPLES AND EXERCISES.
7.1 Introduction

7.2 Instructions without Indicator Instructions.
Addition, Subtraction, Storage, and

7.2.1 Examples of

Use of Stop
7T.2.2 Examples of

M-register.
T7.2.3 Examples of
T.2.4 Application
7.2.5 Examples of
7.2.6 Examples of
T.2.7 Conditional
7.2.8 Examples of
T.2.9 Examples of

Instructions.

Multiplication and Division, Placing in the

Normalization and Number Shift.
of Boclean Operations.

Placing and Storing Operations.
Substitution Instructions.

Instructions.
Jump Instructions.

Drum Instructions and Administration cof

Peripheral Units.

7.3.1 Examples of Placement and Storage.
T.3.2 Examples of Instructions with Indicator Instruections.

Instructions Using the Indicator.

7.4 Examples of Programs.

8.
8.
B.

a8

i
2
2

? The PFlexowritar Punched Tape Code.

i

. TABLES,

INDEX.

The Numerical Equivalents of the Basic Operations.

Indicator Operations ete.

Numerleczl Representation of the Typographical Symbols.

97

100
104
105
108

111

116
118

120

123
12k

page

97

123

128
1kg
150
151
152
153
154

1. DIGITAL COMPUTERS

1.1 Tntroduction

Before we discuss the electronic computer GIER we
have thought it reasonable tec give a survey of certain

characteristics common to electronic digital computersl).

Furthermore we will describe different aspects of these
computers.

The survey given in this chapter is by no means
complete. There is for instance little reference to the
technical aspects, but we hope that the reference given
to each item will be sufficient to ensure that readers
without advanced knowledge of digital computers neverthe-
less will be in a positien to study for themselves the
remaining contents of this manual.

Chapter 2 describes the construction and function
of GIER, while chapter 3 and the following chapters are
devoted to the information which the user (programmer)
must have at his disposal to be able to write programs

for GIER.

l) The big family of analogue computers will not be

mentioned in this manual at all.

1.2 Structure

By far the most electronic computers existing today
have the same basic, logical structure. Each computer

has an arithmetic unit, a storage unit, a control unit,

and certain peripheral units.

The arithmetic unit has certain characteristics in

common with the meodern desk calculating machine i.e. it
carries out the four basic arithmetic operations and
has space for recording a few numbers; these storing
spaces in the arithmetic unit are called registers. On
a desk calculating machine one can suffice with a few
registers as interim results can be written down on pa-
per and replaced in the machine later on. Such a proce-
dure necessitates that the machine stands idle several
seconds between each calculation, and bearing in mind
that electronic computers are very expensive this proce-~
dure is completely useless.

Therefore the electronic computer is provided with a
store, in which it can store the interim results (the
store thus replaces the paper). The time needed for the
computer "tc write a number" in the store or "to read a
number" from same is approximately 10_1l seconds, and
calculations in the arithmetic unit are carried out with
the same speed. Due to this high speed it is very econo-
mic to have extensive calculations carried out on elec-

tronic computers.

The store is divided into areas or drawers called
cells. A cell consists of a series of physical elements
each having a number of "stable states". In most com-
puters ecach element only has two states, and in that
case the elements are called binary (and the computer
in question is said to work in binary mode). Very often
each cell consists oﬁ 40 binary elements and in that

0

case there will be 2 different possibilities for
"the contents" of the cell.

Such contents we may call a digital pattern,which corresponds

to the contents of each element being called a digit or a
bit (binary digit). The two possible values are called O
and 1 (see chapter 1.5). The computer will often regard a
digital pattern as a (real) number, and each cell is thus
able to hold one number. Each cell has a number, an address,
and the computer is constructed in such a way that it is
able a.o. to perform operations such as "store this number
in cell so and so" and "read the number in cell so and so

and send it to the arithmetic unit".
In order to be able to carry out large calculations,

the computer needs a big store with space for many numbers;
a big store, however, that is "as fast as" the arithmetic
unit is very expensive. For economic reasons many computers
are therefore provided with a smaller, but fast working
store and a very big store, which is considerably slower

to write to and to read from. It is then necessary to con-
duct the calculations in such a way that the numbers used
most often are contained in the fast store while numbers
used only infrequently during the calculations are stored
in the slower store.

The control unit controls the course of calculations

in accordance with predetermined instructions, and the

control unit needs detailed information as to what is to

be done and in which order things are to be done. The

computer cannot invent new operations or methods; under
certain circumstances it may be able to choose between
different possibilities, but all possibilities must be
thoroughly considered and planned in advance by the insti-
gator.

The peripheral units are the computer's contact with

the surroundings, and it is through these units that the
computer receives information and delivers results. The
efficiency of this equipment varies very much from com-

puter to computer, and only little can generally be said.

However, only very few of the computers existing at present
are able to read hand- or typewritten numbers or letters.
The general principle is that all information for the com-
puter has to be transferred to punched card or paper tape
(this is done by means of specia' typewriters), after which
the input unit of the computer reads the cards or the tape
respectively.

A punched card is a rectangular piece of cardboard divi—

ded into a number of columns (usually 80), and each column
has 10 rows numbered 0, 1,...., 9, and two extra rows used
for control punching. A hole in a row represents the corre-
sponding number, i.e. the number 15 may be written with a
hole in row no. 1 in column no. 1 and a hole in.row no. 5
in column no. 2. Tn addition a combination of 2 holes in
the same column may be used to represent letters.

The principles for the use of punched paper tape are

similar to the above: Patterns of holes are made in rows

across the length of the tape, each pattern representing

a certain symbol (number or letter or possibly a typogra-
phical sign).

Punched card or paper tape is read by allowing the
medium to pass a feading head which is able to sense these
patterns of holes and send electric impulses, corresponding
to what is sensed, to -the computer itself. Reading from
peripheral units is often referred to as input. The convey-
ance of information to the peripheral units is known as
output.

Information may be output by means of an electric type-
writer which is directly connected to the computer. An ordi-
nary typewriter operates, however, very slowly compared to
electronic computers, and very fast printers (which write a
whole line at a time) are very expensive. By far the most
computers are provided with output units, which punch cards
or paper tape, as such equipment has a reasonable price and

is 10 times faster than an ordinary typewriter. Another not

inessential advantage is that in this way results written on
punched cards or paper tape can be read into the computer
again if they are to be used for other calculations.

If output is made on punched cards or paper tape it
is necessary to use paper-tape-controlled typewriters or
the like to translate the results into legible form after-
wards. These remedies, however, are considerably cheaper

in use than the computer itself.

1.3 Applications. A simple example of coding

To make full use of the high operating speed of the
electronic computer it is essential that it works more or
less automatically. In other words, a computer must receive
information in advance concerning everything which is going
to happen during a calculation. The cbmputer must have a
series of instructions, and these are then performed in the
order, in which they are written. The computer can only per-
form very elementary operations such as addition, subtrac-
tion, multiplication, or division of two numbers, transfers
(as mentioned above) and certain other administrative opera-
tions. Therefore, any problem, which is to be solved by an
electronic computer, must be thoroughly analysed and then

redefined in terms of elementary operations, which have to

be performed in a predetermined order. Programming is the

name given to this conversion of a given operation into a
series of elementary operations, which the computer can
perform.

For instance a computer cannot immediately perform the

following operation:
(1) Solve the equation: 22x + 32 = 479

because it requires exact information on how to handle the
matter. It helps considerably if the operation is formula-

ted as follows:

(2) calculate: x = 31235—23

It will not, however, be ready for machine processing
until we can imagine the numbers 22, 32, and 479 placed
in the store, for instance in cell no. 101, 102, and 103,
and after this give the computer the following series of

instructions (the following program):

"read the number in cell 103; send it to the arithmetic

unit"

*"read the number in cell 102, subtract it from that in

the arithmetic unit"

(3)"read the number in cell 10l; divide it into that in the

varithmetic unit"

"write on typewriter the number in the arithmetic unit"l)

"stop"
These instructions must be stored in advance in the above or-
der and for this purpose the same store is used as for storing
numbers. Many computers are constructed in such a way that
each cell is able to store either a number or an instruction.
It is convenient to use the same store for both things,
firstly because it makes the computer more flexible in use -
for some operations much storage space is used for numbers
and only very little for instructions and vice versa, and
secondly it means that the computer is able to modify its
own instructions, i.e. the computer can itself change the
method of calculation during sclution of a problem. However,
this can only be done in accordance with a plan fixed by the

programmer.

1) While the other instructions correspond with real facts,
this way of writing the output is a serious simplification
of the truth. In fact, at this stage of the program there
should have been a whole series of instructions which

should control the number of digits and decimals etc.

As we are going to show in the following, each cell
in the store can only store digital patterns, and if the
contents of a cell are sent to the arithmetic unit this
will be understood and treated as a number; but if the
contents of the same cell are sent to the control unit,
it will be understood as an instruction, which will then
be executed. The computer itself can in other words not
distinguish between a number or an instruction, and there-
fore the programmer has to decide and then keep track of
which parts of the store are used for numbers and which
parts are used for instructions.

The procedure necessary for the computer to solve the
above-mentioned problems is now as follows:

l) At first the necessary 5 instructions and 3 numbers
are punched either on paper tape or on cards. We might for
instance punch the exact digital patterms that represent
the instructions of (3) in the store; but as many electro-
nic computers use the binary system it will mean that each
instruction and each normal decimal number at first must be
translated or converted into a series of zeroes and ones
(and apart from the inconvenience herewith it would be
nearly impossible to do it correctly and to proof-read it).
Therefore, nearly all computers have a special input program
(which is placed in the computer at first), which reads

paper tapes or punched cards punched with more convenient
conventions (for instance a number is written in decimal
form), and this input program fhen translates the informa-
tion on the paper tape (or punched cards) into the internal
language of the computer. As to what is to be punched instea
of for instance the instructions in (3) can be found in the

operation list of the computer; the operation list first

describes which operations the computer is able to perform
and secondly gives information of what is to be punched for
each single instruction.

In this case one.may find that the instructions (3) must

be punched as

MOVE 103
SUB 102

() DIV 101
WRITE
STOP

as far-reaching mnemotechnical viewpoints must be taken into
consideration when choosing the "external" language, after
which an input program can be constructed in accordance here-
with.

Besides the instructions the numbers 22, 32, and 479
must be punched (as decimal numbers) and then read in by
means of the input program, which converts the numbers into
the number system of the computer (if this is not the deci-
mal system).

2) When the instructions have been read in, for instance
to cell no, 1, 2,, 5 and the numbers to cell no. 101,
102, and 103, the computer is started. Hereby the control
unit at first reads the contents of cell no. 1, interprets
it as an instruction and executes this (in this case the
number in cell 103 is read to the arithmetic unit); then
the control unit reads cell no. 2, interprets the contents
as an instruction, executes this etc. until the control
unit interprets the contents in cell no. 5 as a stop in-
struction and stops the computer.

It is a typical feature in by far the most electronic
computers that the instructions are automatically executed
in the order, in which they are placed in the store. However,
it is often of interest to let the computer repeat a calcu-
lation many times (for instance with new data each tiﬁe),
in other words to let the computer return to one of the
instructions already executed. For this purpose - and gene-
rally to break the natural order of instructions - the

so-called jump instructions are used. These instructions

are purely administrative, as execution of a jump instruc-
tion does not cause any calculation, but only that the next
instruction is taken from a new, further specified place in

the store.

Example 1.1

As an illustration of the use of jump instructions
let us take the above program (4). In this program the
instruction WRITE is a serious modification of the
truth, as no computer can do with one instruction only
(in the case of output of a numbef), because in some
way or another it is necessary to state how many deci-
mals must be included, how the sign must be written,
where the decimal point should be placed and s0 on
(and further, if the computer works internally in the
binary system it must make convertion into decimal
representation). As, however, the writing of results
is a function which is repeated in nearly all opera-
tions, a program for this special purpose is coded
once and for all and stored at a certain place in the
store, for instance from cell 1000 and onwards. If it
is desired as in program 4 to write out a result, the
WRITE-instruction is replaced by a jump instruction

as for instance
JUMP 1000

This instruction has the effect that after the instruc-
tion DIV 101 has been executed the computer carries on
with the instructions in cell 1000, 1001, , until
the final result has been written on the typewriter.
This fixed writing program will often be followed by
another jump instruction, which makes the computer
return to the place where it left off, and thus con-
tinues with the STOP instruction in cell no. 5, i.e.

the computer stops.

1.4.Applications. Subroutines

The writing program mentioned in example 1.1 is a sub-
routine, i.e. a program which is permanent (and tested)
and which is able to perform some frequently recurring

problems.

10

The most important subroutines for any computer are:

an input program, which - as mentioned in 1.3 - is able to

translate from our external instruction language and from
our decimal language to the internal representation of the

computer, and an output program for writing out results.

These routines are used so frequently that they will often
have a fixed place in the store.

As other illustrations of subroutines can be mentioned
a routine which can evaluate the square root of a given
number, a routine which calculates the cosine of a given
angle, a routine which can sort a set of numbers in the
store into order etc.etc.

All these routines cannot be permanently stored in
the computer due to the limited storage capacity, but it
is important that there is a good description of the exact
function of the subroutines and that there is easy access
to the actual code. If it is desired to use the square

root routine, the user has only to copy the routine al-
ready written into a suitable place in his own program.

Note: One of the characteristics of a good computing
centre is that many well written and easy accessible sub-
routines are available. It makes programming much easier
if many standard operations can be performed by means of

subroutines.

1.5 The Binary System

Since many computers use the binary system internally
because it is easier from an electronic point of view
(many electronic components are bistable, i.e. they have
two stable states), we will explore in this chapter the
peculiarities of the binary system and study the repre-

sentation of numbers in this system.

1.5.1 Fixed-Point Numbers

Any positive real number can be written as a

finite or infinite binary fraction, i.e. as a sum of

positive and negative powers of 2, each power having

the coefficient of 0O or 1. The binary point is used

11

in exactly the same way as the decimal point, and binary
fractions are written so that they look like decimal frac-

tions except that only the digits 0 and 1 are used.

Example 1.2

In the following examples of the representation
of real numbers in the decimal system and the binary
system the decimal form is written in the left-hand

column and the binary in the right-hand column:

0 0

1 1

2 10

3 11

-4 -100

7 -111

8 1000
11.5 1011.1

1.75 1.11

0.4 0.01100110...

Very simple rules can be created for conversion of one

representation to the other and vice versa.

In example 1.2 the negative numbers are represented
by their absolute value preceded by a minus; the same system
might be used in an electronic computer if a special bit was
reserved only to show the sign. However, certain parts of
the binary arithmetic become simpler if a negative number
is represented by a complement, i.e. the positive number
which is obtained by adding a fixed power of two to the given
negative number (a power big enough to ensure positive repre-
sentation for all the negative numbers considered).

In many computers the range of numbers, which the com-
puter has been constructed to handle, is from -1 to +1. All
numbers in the computer are represented by a fixed number
of binary digits - for instance Lo as in GIER - and the built
in arithmetic operations of the computer treat these numbers
so that the first digit of the number is treated as a digit
before the point and all other digits are treated as digits

after the point developed as a binarv fraction.

A number with the first digit equal to 1 is regarded by the

computer as a negative number whose value is obtained by

subfracting 2 from the whole binary fraction.

Example 1.3

Let us consider a computer whose cells have a capacity
of 4o digits with the representation of numbers as men-

tioned above.

If the contents . they will be treated as
of a cell are

(binary no.) (decimal no.)

O111..... eee.11 0.11......1 = 1-2777 21
0110...c0vuns 00 0.110.....0 = 0.75
0100.........00 0.100.....0 = 0.5
00010...4....00 0.0010....0 = 0.125
0000.........01 0.000....01 - 2739 & 1.82.1071%2
000...ervua..00 0.00.,....0 = 0

111....00-0..11 1.1le.en..l =10 = -2737 = ~1.82-10" 71
11110........00 ' 1.1110....0 -10 = -0.125

1100 ¢vevee .00 1.,100...,.0 =10 = -0.5
10100..4444..00 - 1.010.....0 =10 = -0.75
100.460eees..01 1.000....01 -10 = -1 + 2739
1000.v00e0...00 1.000.....0 -10 = -1

The computer will thus be able to handle all numbers with
39 binary digits after the point within the range -1 g x < 1.

The reason for choosing just this way of point placing and
this representation for negative numbers is that it simplifies
parts of the arithmetic.

For instance the same process will have to be carried out
for addition, no matter whether the numbers added are negative
or positive.

Multiplication will likewise become very simple since the

product of two machine numbers (i.e. fixed point numbers in

the range -1 g x € 1) also gives a machine number unless both

factors are equal to -~-1.

13

No matter what representation is chosen addition and
subtraction may overload the capacity of the computer, i.e.

give a result outside the permitted range.

Example 1.4

If we let the machine mentioned in 1.3 add the num-
bers 0.75 and 0.75 it will do the following calculation:

01100.-4:0e...0
+ 01100....:...,..,0

11000..:404...0

and will interpret the result as the number -0.5.

Addition of the numbers -0.75 and -0.5 runs as follows:

10100..+++...0
+ 11000..'.'.'.0

Olloo.l...'l.o’

in other words the result 0.75 = -1.25 + 2. Carry is trans-
ferred automatically, the carry from the most significant digit
disappearing into thin air. This results in the computer

calculating modulo 2, i.e. that results outside the range

<
-1 = x< 1 are restored to this range by the addition or

subtraction of 2.

As seen from example 1.4 there is the risk that the computer
presents a wrong result, if its capacity is exceeded. One can
naturally (and in many cases ought to) plan the computations
in such a way that it does not happen, but many computers are,
however, provided with a facility which makes it easy to save
the situation in cases like the above mentioned:

Like desk calculators electronic computers have a bigger
capacity of digits in the computing registers than in the rest
of the computer. There is in these registers space for two
digits before the point (and the usual number of digits after
the point). If, however, the first digit is equal to O the

14

contents of the register are treated as a positive number
with the wvalue of the binary fraction. If, however, the

first digit is equal to 1, the contents are treated as a
negative number, whose value is obtained by subtracting 4

from the value of the binary fraction.

Example 1.5

Let a computer have a computing register with 41 posi-

tions in which the representation of numbers is as above.

If the contents of they will be treated by the computer
the register are as the number

(binary number) (decimal number)
01110.......0 1.11 = 1.75
01100..... .0 1.1 = 1.5
01000..... ..0 1 = 1
06110.......0 0.11 = 0.75
000010......0 0.001 = 0.125
111110......0 11.111 -100 = -0.125
11010.......0 11,01 -100 = -0.75
11000...4...0 11 -100 = -1
10100.......0 ic.1 -100 = -1.5
10010.......0 10,01 -100 = -1.75
106000.......0 10 -100 = -2

The range of values will thus be -2 S x < 2.
If we are now going to perform the same additions as in

example 1.4, but with two digits before the point we get

binary decimal binary decimal
00.1100...0 = 0.75 11.010..,.0 = =0.75
+ 00,1100...0 = 0.75 + 11.100,.,..0 = -0G.5

01.1000...0 1.5 10.110...0

-1.25

in other words the correct results.

It is apparent from example 1.5 (and it can, by the way,
easily be proved) that the machine numbers, i.e., the numbers

in the range -1 g x < 1, are those numbers which have the

15

digits 00 or 11 before the point in the computing register;
if the digits before the point are 01, then the number is
in the range 1 é x € 2, and if the digits before the point
are 10, the number is in the range -2 g x < -1,

If the computer is going to add two numbers taken from
the store (with 1 digit before the point) the sign digits
of the two numbers must thus be respectively duplicated. Ad-
dition is then performed with two digits before the point.

It can easily be ascertained whether the result is a
machine number or not: If the two digits before the point
are like, the result is again a machine number, and if they
are unlike, the result lies outside the range -1 § x<1 (in
such a case we say that overflow has occurred).

If the result is a machine number it can be stored in a
cell for later use, and it will be apparenit from the above
that it is sufficient to store one digit before the point
and all digits after the point; the extra digit before the

point in the computing register is then forgotten.

Example 1.6

It must be noted that if we add more digits before
the point so that the numbers are written with for
instance h digits before the point, the range can be
extended correspondingly. With the provision that num-
bers whose first digits equal O are regarded positive,
while numbers whose first digits egqual 1 are regarded
negative, with a value as that of the binary fraction

-1 < -
minus 2h, then the range will be -2h 12 x < 2h l. Num-
<
bers in the basic range -1 = x ¢ 1 are here alsc charac-
terized by the digits before the point being all zeroes

for positive numbers and all ones for negative numbers,

1.5.2 Floating-point Numbers

In many of the computations presented to electronic com-
puters, it is possible, by sensible planning, to keep within
a range of numbers as described in the previous section, by

using suitable scale factors on the data. In order to use

16

such methods it is very pertinent that the largest and
smallest absolute values do not deviate more from each
other than the digital capacity of the computer can bear.
If, for instance, a computer can store numbers with bo
binary digits the difference between the largest absolute
value and the smallest significant absclute value (other

39

than 0) must not exceed 2 as otherwise either the lar-
gest numbers will come outside the range or the smallest
numbers will be treated as zeroes.

If it is desired to solve a problem where this require-
ment cannot be fulfilled by the data, it will be convenient
to let the computer interpret each number as consisting of
a mantissa and an exponent. Once again let the cells in a
computer contain 4o bits. The computer may, for instance,
be constructed in such a way that it (with certain instruc-
tions) reads the first 3o bits &as a mantissa, and
the last lo bits as a binary exponent so that the contents
of a cell are treated as a number, the value of which is
the numerical value of the first 30 bits multiplied by a
power of 2 (exponent), The exponent is the value of the
last lo positions.

A frequently used representation of the mantissa and
the exponent is as follows:

a) The 30 bits reserved for the mantissa are regarded a
positive or negative binary fraction in exactly the same
way as described in 1.5 with the point between the first
and the second digit.

b) The 10 bits reserved for the exponent are regarded as
an integer (written in the binary system); if the first
digit is equal to zero, the exponent is regarded as positive;
if the first digit is equal to 1, the exponent is regarded
as a negative integer whose value is obtained by subtrac-
ting 210 _ 1024,

Let the mantissa be z and the exponent v. The contents

of the cell are treated as the number

17

and we say that the number is written in floating point

form or as a floating point number,

Considering the absolute values only the range thus

available is

y =0

2729, 275128 Ly . RS
which is an enormous increase in relation to the one men-
tioned in 1.5.1. On the other hand the accuracy is decreased
in the respect that each number can only be stored with 3o
significant digits against the usual 4o digits, but this
price is often paid to have the range extended.

If a larger range is required, it can be obtained at
the expense of the accuracy, as 11 digits may be reserved for
the exponent and only 29 digits for the mantissa. The range
will then be, approximately,

2-1024< y< 21023

and, in general, if x digits have been reserved for the ex-
ponent, the range (considering absolutes values) will essen-
tially be

x—-1 x-1

To make full use of the 30 bits in the mantissa it may be
necessary to normalize the mantissa, i.e. the exponent must
be chosen in such a way that the absolute value of the man-
tissa is between 0.5 and 1. This can be done for all num-
bers except zero, since by separation of suitable powers of
two all mantissas (or rather absolute values) can be moulded

to a certain binade, i.e, a certain range of the form

a < < _a+l
= Z

2 = 2

With only a fairly small decrease in the range it is
thus possible to arrange that all 3o positions of the‘mantiss
contain significant digits. In this respect it should be men-
tioned that most of the computers which are able to deal with

18

floating point numbers automatically normalize the result
of an arithmetic operation (and adapt the exponent accor-

dingly) before it is presented.

19

2. The Structure of GIER

2.1 Introduction

With regard to later reference we have in this chapter
collected information about structure and arithmetic of
the GIER-computer. The following will be heavy reading
znd can partly be skipped to begin with, but should be

returned to later as the need arises,

2,2 Ferrite Core Store

The working store of GIER is a ferrite core store
with 1024 cells, and each cell consists of 42 bits, which
are numbered from O to 41 incl.; the first 40 bits, nos.

0-39 can be used for storing numbers in two different

ways:

1) In fixed-point arithmetic the built-in arithmetic

operations work as if the point has been placed between
position O and position 1; numbers with O in position O
are numbers in the range 0 g x€ 1, while numbers with 1
in position 0 are regarded as numbers in the range -1 é x< 0,
i.e. as the value of the binary fraction (a number between

1 and 2) minus 2. This representation can be characterized
by the fact that the computer computes modulo 2 in the

range -1 £ x< 1 with 39 binary digits after the point.

2) In floating-point arithmetic any number y is

imagined to be written in the form:

20

Yy =z - 2"
where either 1 = z¢ 2
or = 0
or -2 § z ¢ -ll)

z being a binary fraction while v is an integer. The built-in
operations work in such a way that the first 10 bits, pos.
0-~9, are treated as the exponent v and the rest of the cell
as the mantissa z. If bit no. 0 is 0 the exponent is treated
as a positive integer, i.e. O § v é 511, and if we have 1
in pos. 0, as a negative integer in the range -512 g v €0.
In the mantissa the point is placed between pos. 11 and 12,
while pos. 10 indicates the sign. According to the defini-
tion of z pos. 10 and 11 will nearly always be unlike: If
the mantissa z is positive we have 0l in pos. 10-11, and if
z is negative we have 10; only the mantissa 0 has 0 in both
positions.

The mantissa is stored in pos. 10-39 and has thus 28
binary digits after the point.

The range that can be handled in GIER's floating-point

arithmetic is as follows:

oL 2511 S % (1, 2728y | o512
y =0
1. 27912 &y g L o728y L RS

or in the usual decimal notation

1) It is always possible to choose z in such a way, and
consequently the exponent v is defined uniquely except

in the case where z = O.

21

c. 7.458 . 107133¢< abs (y)< e. 1.341 - 1015h .1)
The two extra bits in each cell are used for marking
the numbers in the store. Most of the numbers need not
be marked, i.e. pos. 40 and 41 are cleared, but any

number may either be
a-marked by placing 10 in pos. 40-41,
b-marked by placing 01 in pos. 40-41 or

c-marked by placing 11 in pos. 40-41.

Example 2.1

If a cell contains the bit pattern

0123 9 10 11 12 13 39 4o 41
b11o 0 0O 0O 0 O 010 1

it will in fixed-point arithmetic be read as the number
0.75 and in floating-point arithmetic as zero, in both

cases b-marked.

1) Note: In GIER's floating-point arithmetic the number O
can be treated in two ways: Either always with the man-
tissa and the exponent part equal to O or with the man-
tissa O and the exponent generated during the calcula-
tion; in the latter case the addition

2300 2225

0] + 1.5 .

will, for instance, give the result 0 . 2300. Whether

the built-in floating-peint operations work in one or
the other of the two modes depends on a switch in GIER

so that the user can choose between these two modes.

22

Example 2.2

If a cell contains the bit pattern

01 3 9 10 11 12 13 39 4o 41

2
il 11 1 0 1 1 0 o]l o 0]

it will in fixed-point arithmetic be read as the number

_(2-10 + —12)

2 = -0.00122

and in floating-point arithmetic as
-1
1.5 - 2 = 0-75 y

both without any marking,

Example 2.3

If a cell contains the bit pattern

01213 9 10 11 12 13 39 4o 41
poo0Oo 0O 0O 0O 0 O o 1] 1 1]

it will in fixed-point arithmetic be read as the c-marked
number

2732 £ 1,82 . 10712
while in floating-point arithmetic it is meaningless
because the mantissa does not belong to the permitted

set of numbers.

In practice the first or the last number in a group
of numbers (possibly both) will often be marked. See the
examples in chapter 7,

Instead of a number, a full-word instruction or two half-
word instructions can be stored in each cell; one marker-bit
is used for distinguishing between these two cases, while
the other marker-bit indicates whether the arithmetic basic
operations work in the fixed-point or floating-point mode.
The method of representation of instructions in the cell

are referred to in 4.9.

23

2.3 Drum Store

Besides the ferrite core store GIER has a magnetic
drum store with 320 tracks each of 4o cells built like
the cells in the core store. Transfer of data to and
from the drum takes place one track (of 40 cells) at a
time. As, however, transfer takes place independent of
the arithmetic unit,calculations can be made simulta-
neously with the transfer. It is, however, a prerequi-
site that during transfer from the drum to core store
none of the 40 ferrite cells read to are affected by or
used in the simultaneous calculation. Drum transfer
takes place in the following manner: Using a select-

instruction (a VK-instruction) the number of the actual

drum track is chosen (and placed in a special register,

the tk-register. Using a read-instruction, a so-called

LK-instruction, transfer is started from the chosen
track to a section of 40 consecutive cells in the core
store (speéified by the address in the LK-instruction).
The drum rotates with constant speed, and reading from
the track starts immediately, no matter which cell in
the track is on level with the reading device. GIER
computes automatically that cell of the section of the
core store to which the data shall be transferred and
continues thus until the whole track has been read%)At
the same time execution of the instructions that follow
after the LK~instruction continues. Transfer in the

other direction takes place in exactly the same manner.

1) In many computers transfer is not started until cell
no. 1 in the selected drum track is on level with
the reading device, in which case there is the possi-
bility that the drum must rotate twice before reading

is completed.

24

2.4 Arithmetic Unit
The central part of the arithmetic unit is the adder

with the adjacent, controlling L4l-bits-registers, O-regi-
ster, and H-register. The H-register is of the most inter-
est since the result of an arithmetic operation (and by
the way also of an address calculation) is stored here
before it circulates in the computer. The H-register
(and O-register) differ from the storage cells in that
way that they have no marker-bits, but an extra pre-fixed
position no. 00. It is thus possible to perform operations
with two digits before the point (see 2.5).

The H-register and several other registers in the arith-
metic unit are, however, not "available" to the programmer ;

the programmer uses the accumulator R and the multiplier

register M, R consists of 41 positions like the H-register
and has besides space for two marker-bits, like the storage
cells. The multiplier register M has ko bit positions like
the storage cells, but no marker-bits. The use of these

registers will be explained in detail in the next chapter.

| O-register i

1+ + + + adder + + |
1 H-register |
00 0 1 2 38 39 4o 41 0 1 2 39
| R-register] L M-register |

2.5 Arithmetic
2.5.1 Fixed-point Addition and Subtraction

Before addition and subtraction one of the operands
must be placed in the R-register. The sign of the operand
is herewith duplicated, as pos. 0 and 00 in R acquire the
same value. When the other operand is taken from the
store the sign of this one is also duplicated and the
operation is performed with 2 digits before the point
(and 39 digits after the point).

25

This takes place in the H-register after which the result
will be transferred to the R-register. As both operands
are in the range -1 é x< 1, the result will be in the
range -2 i z< 2, and therefore placed correctly in R
with 2 digits before the point, taken modulo 4 within

the range -2 g z< 2 (see chapter 1 concerning the binary

system). If the result is in the interval -1 %

z<1l, bits
no. 00 and O will be like (11 for negative numbers and
otherwise 00), while they are unlike if the result falls
outside this range (01 for results Z 1 and 10 for results

<{-1); in the latter case we refer to overflow, because
the result cannot be stored in a cell without further
“treatment.

Information on overflow is stored in a special re-
gister (see 2.6). The overflow situation is, however,
under control, since there is a GIER operation (a shift)
which moves all bits in R one position to the right (at
the same time keeping pos. 00 and rounding off pos. 39).

If this operation is performed after an addition or
a subtraction pos. 0-39 in R will always (no matter if
there was overflow or not) contain half the sum or dif-
ference (except possible rounding-off errors), and this
number can be stored and treated in the usual way. We
note that the M-register is not used in fixed-point ad-

dition and subtraction.

2.5.2 Fixed-point Multiplication

The exact result of a multiplication of two numbers
with 39 digits after the point is a number with 78 digits
after the point, and as the user now and then needs all
78 digits,but often only the first 39, GIER has twe built-

in multiplication operations: short multiplication and

long multiplication.

For both types of operation one factor must be placed
in the M-register in advance. The multiplication opera-
tion itself takes the other factor from a cell. The two

types of operation will now be treated separately.

In short multiplication the product is calculated

and then rounded-up to 39 binary digits after the point
(if bit no. 40 of the product is equal to 1); afterwards
the contents of the R-register are added to the rounded
productl). This operation is known as accumulating multi-

plication.

The result is placed in the R-register, while the

first factor remains in the M-register. If both factors
are not equal to -1, the product will again be a number
in the range -1 i z <1, but in the final addition over-
flow may occur in exactly the same way as described in
section 2.5.1.

If both factors are equal to -1, the multiplication
gives the binary number 01.00.....0, which is then added
to the contents of the R-register, If the latter contains
a negative number (between -1 and 0), the addition gives
the correct answer without overflow. On the other hand,
if the number in the R-register is in the range O g z<1,
the addition gives the correct answer in the R-register
(with two bits before the point), with overflow, however.
In other words the result itself cannot be stored in a ceill.

The rules for short multiplication are thus:

As long as no overflow occurs in the R-register before
the multiplication, the R-register will on completion of
the operation contain the correct result - possibly with
ocverflow - in which case the situation can be regulated
by means of a right-shift as with ordinary addition or

subtraction.

1) If the product itself is required the R-register can

be cleared previously,

27

In long multiplication the product is calculated

with 2 digits before and 78 digits after the point; to
this are added the contents of the R-register multiplied
by 2_39 (i.e. shifted 39 places to the right). The result,
with 2 digits hefore the point and the first 39 digits
after the point,is placed in the R-register, and with the
39 last digits in pos. 1-39 in the M-register. At the
same time pos. O in M is cleared. In this case the result
will always be correct, and unless there is overflow in

R before the operation, overflow can only occur if both

factors are equal to -1.

Example 2.4

Let the R-register contain the number 0.5 and the
M-register the number +1 - 2_39'
R M

bio 1 0 o0 o | | b 1 1 1 1

In short multiplication by the number +0.5, the result
will be +1 due to the round-off, and R and M look like
this:
R M
bT1 0 o© o [b 1 1 1 1)

If we instead use long multiplication by +0.5, the
result will be +0.5.

R M
pTo 1 o o 0 [} P 0o o 0 0l

since the actual multiplication gives 0.5 - 2~

after which is added 0.5 . 2~ 3 2'“0.

2.5.3 Fixed-point Division

GIER has a short and a long division corresponding to

the two forms of multiplication: In long division the con-

tents in the long register consisting of R and pos. 1-39

in M are used as the dividend, and in short division the

28

contents of R (or rather the contents of R followed by
39 zeroes) are used as the dividend. The two forms of
division work, otherwise, in the same manner. The divi-
dend must be placed in the register (the long register
R,M and the short R) in advance, after which the divisor
is taken from the store in the actual division operation.

Provided that the quotient g is in the range -2 é qg <2,

the division is performed as follows:
1) Positive divisor d: The computer calculates the
quotient that gives a remainder r in the range O é r<d . 2—39.
2) Negative divisor d: The computer calculates the quo-
tient that gives a remainder r in the range d . 2-39 i r< 0.
In other words the division is made in such a way that
the remainder always has the same sign as the divisor.
Then the quotient is placed in the R-register, and the

39 is placed in the

appropriate remainder multiplied by 2
M-register.

If the quotient in fixed-point division would fall
outside the range -2 é q< 2, the division operations will
be performed, but the results that appear in the computer
will not be the quotient and the remainder. It must be
regarded a serious error to use fixed-point division, if
the user is not absolutely sure that the quotient will

fall between -2 and 2.

Example 2.5

Unless there is overflow after a division the
quotient q is in the range -1 i qf<1,

If there is overflow and the user is assured that
the division is "legal" the quotient will fall between
-2 and -1 or between 1 and 2. By means of a right-
shift in the R~register it will be possible to go on
with half the quotient,

Example 2.6

If the divisor is negative, the remainder must
always be< 0 and, in the rare case where the dividend

is exactly divisible, the remainder in M must also be

29

equal to the divisor (i.e.< 0), and the quotient
adapted accordingly. Whereas, if the divisor is

positive the correct quotient is always obtained.
For example let the dividend 9 -2_78

in the long register. If this is divided by 3 - 2_39

be placed

by means of long division the quotient 3 . 2737 i1
be put in R and the remainder O in the M-register.
On the other hand, if -9 - 2778 is divided by -3 .
the quotient in R will be 2 . 2'39, and in M will be

-3 . 2=39 {which corresponds to a remainder in the
-’78
2

long register of -3 - . It may therefore some-

times be unwise to use negative divisors.

2.5.4 Floating-point Operations

The built-in floating-point operations use the R- and
M-registers as one register. The mantissa z of a floating-
point number is always placed in pos. 10-39 in R, and at
the same time bits nos. 00-9 are made equal to bit no. 10
so that the sign of the mantissa can be read in pos, 00,
The exponent v of a floating-point number is placed in
pos. 0-9 of the M-register corresponding to its location
in pos. 0-9 of a storage cell.

The R-register supplemented with pos. 0-9 in the M-
register is called the floating-point accumulator RF, and

it is the only arithmetic register accessible to the pro-
grammer when using floating-point arithmetic. The remain-
der of the M-register is used internally during every
floating-point operation.

In all four basic arithmetic operations one operand
must be placed in RF in advance. During the actual opera-
tion the other operand is taken from the store, and the
result is placed in RF.

Furthermore, when adding or subtracting, pos. 10-19
of M are used for storing information about possible loss

of significant digits.
In addition or subtraction of two floating-point

numbers with the same exponent, there is the possibility

that the resulting mantissa has a very small absolute value.

30

As, however, the mantissa and the exponent are adjusted
in such a way that the absolute value cof the mantissa
falls between 1 and 2, the mantissa is sufficed with a
string of unsignificant zeroes (to fill out pos. 10-39);
the amount of these (or in other words, the amount of
left-shifts necegssary to normalize the resulting man-
tissa) is placed in pos. 10-19 in the M-register as an
integer with unity in pos. 191).

In case of overflow after a floating-point operation,
j.e. 1f the result is outside the floating-point range
(see 2.2), GIER gives up and jumps to cell O, where
a stop instruction or a jump to a control program must

be placed.

2.6 Control Unit

In the control unit there is a large number of registers,

but it is not necessary to know all about them to under-
stand the function of GIER or use GIER; we are here going

to mention the most important registers.

The Instruction Register F is a 42 bit register, which

contains in pos. 10-41 the current instruction excluding
the address. After a normal stop (programmed or push-button

controlled) F contains, however, the next instruction

10-41
to be executed.

1) In division the absolute value of the quotient of the
mantissa must fall between 0.5 and 2. This means that
at the most one binary digit will be lost, and neither
here nor in multiplication will information be stored
about this, but since pos. 10-39 are cleared before any
floating-point operation, information about loss of
digits must be stored or used immediately after the
operation, in which the loss of digits occurs.

31

Pos. 0-9 makes up the so-called p-register or index-register.

The contents of this are determined by the programmer through
special operations, and are used in the calculation of in-
dexed addresses. A number of 10-bit registers are gathered
around I’ for use in determination of addresses:

Control Counter rl - contains during execution of an

instruction and at normal stop the address of the next in-
struction to be executed.

Address Register r2 - contains the address of the cell

in the ferrite core store, on which the control unit is
operating. (It is the contents of this register that are
used in the relative addressing mentioned in 3.4.3).

Subroutine Register sl - contains normally the address,

from which the last subroutine jump has been performed (see
operation list): this address is used in determining subrou-
tine-indexed (s-modified) addresses (see 3.4.4). The register
may be used for other purposes by the programmer since it is
both possible to store its contents and to replace its con-
tents. Another register s2 is used as an auxilary register
for determining addresses, a.o. when s-modification is used
together with indirect addressing (determination of addresses
is referred to in 3.4-3.6 and 4.2).

Drum Track Register tk - contains the number of the track,

to which the ferrite store is connected and thus controls, on
which track writing (and reading) takes place. The contents
of tk can be changed by a VK-instruction, which selects a

new track.

Drum Address Register ta - is used during drum transfers

to hold the addresses of cells in the appropriate section
of the ferrite core store where transfer is taking place
(see 2.3), but has otherwise no interest for the programmer.

Indicator Register in - is a collection of 12 1l-bit

registers, which can be used independent of each other for
storing information about overflow, zero results, sign, and
marking for later use. The use of this important register

will be explained in detail in 4.6 and after.

32

Overflow Register 0 - is a 1l-bit register which is set

equal to 1, when overflow occurs in an arithmetic operation,
otherwise 0. The contents of 0 can by means of an indicator
operation (see chapter 5) be stored in the indicator for
later use, but remains unchanged until the next arithmetic
operation (including number shift and cyclic shift in R).
Notice that the O-register corresponds to the overflow
situation in the H-register, not in the R-register; how-
ever, it only makes difference in the case of two opera-
tions (i.e. addition to and subtraction from the storage

cells, the AC~ and SC-instructions, where the overflow situa-
tion for the result will be registered).

A 10-bits peripheral unit register by contains the

identification numbers of the peripheral units connected.
This register controls which units (see 2.7) will be ac-
tivated by a standard input/output instruction (LY/SY).
The contents in by can be changed using a VY-operation,

which selects a new peripheral unit.

2.7 Peripheral Units

For input GIER has a dielectric 8-channel paper tape
reader, which reads one character at a time to a cell and
to the R-register, with a speed of about 1000 chars./sec,
In addition there is a typewriter from which one charac-
ter can be read in at a time,

For output GIER has an 8-channel paper tape punch,

which punches one character at a time with a speed of
about 150 chars./sec. The same typewriter as mentioned
above can alsc be used for output, and the speed here
is about 8 chars./sec.

Furthermore, GIER can be equipped with a punched

card reader and a high speed printer, see volume II.

33

2.8 Control Panel

A photo at the back of volume IT illustrates GIER's
control panel, which consists of two rows of display
iamps with corresponding push-buttons, ignition key, two
sets of start-stop switches, and a volume control for
the loud-speaker. The significance and effect of the
different lamps and switches are referred to in a later

chapter concerning general "operating instructions".

Another photo illustrates the little panel with
error lamps and with the HP-button for activating an

interrupt function (see volume II).

34

3. THE GIER INSTRUCTION I

3.1 Introduction

In this chapter we start considering the external
instruction code, by which we understand the program
code, which is to be written down by the GIER user. The
notation is depending on the input program used; the
notation used in the following is in accordance with the
conventions for the input program SLIP, although the
rules here are stricter than actually necesséry for SLIP
(see volume II). In the first place we will refer solely
to the structure of the basic instruction, and reference
is limited to the simplest type of instruction, namely

the half-word instruction.

3.2 The Basic Instruction

An instruction always contains information on the

basic operation to be performed and an address.

In the simplest case the instruction does not contain
any more elements. As mentioned in chapter 2, the instruc-
tions are to be placed in cells in the store, and we are

therefore going to refer to the address part of an in-

struction and a cell, as being that part of the instruc-

tion or cell which contains the address.

3.3 Basic Operations

Corresponding to the 57 basic operations performed
by GIER, 57 pairs of letters have been chosen. If per-

formance of a specific basic operation is required the

35

corresponding pair of letters is written as the first part
of the instruction. In chapter 5, there is a list con-
taining all 57 basic operations and the pair of letters
which must be used as codes for the various operations.
For instance, the operation "subtract from a cell" is
written as SC.

We note by the way that the description "subtract
from a cell" is not very precise. In chapter 5 we consi-
der the 57 basic operations and for each operation is

thoroughly explained,what happens in GIER.

3.4 Address

The address of an instruction can be specified in

several different ways, namely as absolute address,

indexed address, relative address, and subroutine-indexed

address respectively.

3.4.1 Absolute Address

An absolute address is specified by an arbitrary
integer h, and the effect is, in most operations, that
h - taken modulo lo24 - is regarded as the address of

the operand. h is called the address constant.

Example 3.1
The address 714 in the instruction AR 714 will cause
the number in cell 714 to be added to the contents of

the accumulator.

Example 3.2
The address -15 in the instruction MK -15 will cause
the number in cell -15+1024, i.e. the number in cell 1009

to be multiplied by the contents of the multiplier register

after which the contents of the accumulator are added to

the product.

36

3.4.2 Indexed Address

An indexed address is written by means of the letter
p followed by an arbitrary integer h. The effect of in-

dexing is, in most operations, that the sum of the con-

tents of the index register and the address constant h

- taken modulo 1024-is regarded as the address of the
operand. The contents of the index register are al-
ways an integer in the range 0 g P S 1023.

Example 3.3

Let the contents of the index register be 2, Conse-

quently the address p+24 in the instruction SR p+2h
will cause the number in cell 66 to be subtracted from

the contents of the accumulator,

Example 3.4
Let the contents of the index register be 127. The

instruction SC p-212 will first cause 127 - 212 + 1024
to be regarded as the address of the operand, after
which the contents of the accumulator are subtracted

from the contents of cell 939.

3.4.3 Relative Address

A relative address is written by means of the letter

r followed by an arbitrary integer h. Let n be the num-

ber of the cell which contains the instruction with the

relative address. The effect of the relative address
will normally be that the sum n + h, taken modulo 102k,

is regarded as the address of the operand.

Example 3.5

Let the current instruction be AR r - 7, and let
this instruction be located in cell no., 72. 72 - 7 = 65
will then be regarded as the address of the operand, i.e.

that the number in cell 65 is added to the accumulator.

3.5

37

Example 3.6
In cell 973 the instruction AC r + 566 is placed.
In this instruction 973 + 566 - 1024 = 515 will be

regarded as the address of the operand, i.e. that
the number in cell 515 is added to the number in

the accumulator.

3.4.4 Subroutine-indexed Address

A subroutine-indexed address is written by means
of the letter s followed by an arbitrary integer h.
The effect of a subroutine-indexed address is

that the contents of the subroutine index register

are added to the number h, after which the sum,

taken module 1024, is regarded as the address of

the operandl). The contents of the subroutine index
register are always an integer in the range

ots S 1023, The use and utility of this way of ad-

dressing will be mentioned later on.

Indirect Addressing

In practice the address of the cell that contains

the desired operand will often be in the address part

of
of

another cell. It is, in fact, possible to get hold

such an operand, very simply by writing a bracket

round the address part of an instruction. The procedure

can be illustrated by means of the following examples.

Example 3.7
Let the desired operand be in cell 715, and let
the number 715 be the value of the address part of

cell no. 43. If we now write an instruction with the
address part (43), the bracket will indicate that the

number 43 is not regarded as the address of the operand,

1)

If the address of the desired operand is equal to the contents
of the subroutine index register one may write either s or

s + 0, which will have the same effect. For relative and in-

dexed addresses the same is the case.

but that the address of the operand is found in the
address part of cell 43, The address (43) will in

this case have the same effect as the address 715.

Example 3.8

Let the instruction SR (r - 6) be in cell 862.
At first the address 862 - 6 = 856 is formed, and
due to the bracket the number 856 the number 856 is
regarded as the address of the cell, in which the
address of the operand is stored. If the address
part of cell 856 is 14, the operand will be taken
from cell 14,

Example 3.0
Let the contents of the index register p be 38,

and let an instruction have the form of MK (p +10).
At first the address 38 + 10 = 48 is formed, and
due to the bracket it is regarded as the address of
the cell containing the address of the operand. If
the address part of cell 48 is r + 2, the operand
will be taken from cell 50.

Example 3.1l0

Indirect addressing is recursive, i.e. if the
address found through an indirect address is indirect
itself, yet another link will be involved before the
resulting address is determined. In that case we talk

about a chain of brackets or indirect addresses.

Let the address part of the current instruction be
(139), and let the address part of cell 139 be (20).
Finally, let us assume that the address part of cell
20 is 888. In this case the original address part (139)

will cause the operand to be taken from cell 888,

N.B, If such a chain of brackets is closed, i.e. if it
indirectly refers to itself, the instruction will
never be fulfilled because GIER will go on looking

for the final address.

39

3.6 Modified Address

Example 3.9 shows that when indirect addressing is
used the ultimate address is calculated on the basis of
a completely new address part using the r-value corre-
sponding to the location of the new address part. The
number thus determined is called the modified address
(in chapter 4 it will turn up that it does not need to
be the final address):

The modified address is defined as that integer

h in the range 0 g h é 1023, which is determined

by GIER on the basis of the elements of the address part
in the last link of the chain of brackets. For all in-
structions mentioned in this chapter the modified address

is the same as the final address, i.e. the number that

shows from which cell the operand must be taken.

Example 3.11
Let the instruction AR r - 48 be in cell 20. The
final address is then 20 - 48 + 1024k = 996.

Example 3.12

Let the contents of the index register p be 900,
and let the contents of cell 276 be AR 27, The in-
struction MK (p + 400) has thus the final address 27
(found in cell 276).

3.7 S=-Modification of the Basic Operation

After the two letters used for specification of a

basic operation the letter S may be added. In this case

the accumulator will be cleared before the basic opera-

1)

tion is performed™ ‘.

l) i.e. that pos. 00-39 in the Re-register are cleared,
while the marker-bits (nos., 40-41) remain unchanged.

Lo

3.8

Example 3.173

The instruction ARS 439 will cause the accumulator to
cleared, after which the contents of cell 439 are ad-
ded to the accumulator. The effect of the instruction
can in short be described as a transfer of the con-

tents of cell 439 to the accumulator.

F-Modification of the Basic Operation

After the two letters used for specification of a

basic operation the letter F may be added. This is, how-

ever, only of importance for the arithmetic operations,

which are performed in floating-point mode, when F-modi-

fied. Other operations are not changed by F-modification.

taneously and here the S-modification causes

Example 3.14
The instruction SRF 45 will cause that the con-

ten*s of cell 45 are subtracted from the contents of
the accumulator, both regarded as floating-point num-

bers.

F-modification and S-modification may be used simul-
the whole

1
floating-point accumulator RF to be cleared). The order

in which S and F are written is unimportant.

Example 3.15
The instruction ARSF 137 will cause that the num-

ber in cell 137 regarded as a floating-point number

will be tranferred to the floating-point accumulator

RF.

1)

RF consists of the accumulator R, excluding marker-

bits, and pos. 0-9 of the M-register.

L1

In conclusion the diagram below shows the possible

elements of a half-word instruction:

Operation Code S F Address]
Always two letters. S or F or S as Always an address.

57 different pos- well as F may 8 different possi-
sibilities all be excluded bilities: h, p+h,
mentioned in chap- r+h, s+h, (h), (p+h),
ter 5. (r+h) or (s+h), where

h stands for an arbi-
trary integer, while
the letters p, r, =
must be written as
such.

A half-word instruction can be stored so that it fills
only half a cell in the store., Two half-word instructions
can be stored in the same full-cell. TIf this way of storing
is used, a special condition must be mentioned, namely that
the F-modification of a half-word instruction also causes
the other half-word instruction in the same cell to be
F-modified.

L2

4. THE GIER INSTRUCTION II.

4.1 Introduction

There is nothing to prevent programs being written
using half-word instructions, but it will normally be
advantageous to use the possibility of extending half-

word instructions to full-word instructions. This exten-
sion can be done in several ways, namely by addition of

an increment or by means of X-modification, V-modification

or D-modification. Several of these (or all) possibilities

may be used at the same time,.
Besides these extensions of the instruction there is
a further possibility of extension, i.e, by inclusion of

an indicator part. This will be mentioned as the last

point,.

4.2 The Increment

The increment in an instruction is specified by means

of an arbitrary integer. The increment must be noted at

the end of the instruction and may be separated from the

address part by the letter t. If the increment is written
with sign, the separating t is superfluous (see also
volume ITI, chapter 11). The effect of the increment is
that it is added (mod 1024) to the modified address be-

fore execution of the instrﬁction. It is emphasized that

as long as the address is not indirect, the actual in-

struction is altered, as its address constant will be the

sum of the increment and the former address constant.

43

If the address is indirect the alteration occurs in the
instruction containing the last link .of the chain of
brackets (it is the address part of precisely this in-
struction that is used in determining the modified ad-

dress). We refer by the way to the following examples.

Example 4.1

The instruction AR 814 t 2 will prior to execu-
tion be altered to AR 816 t 2, after which the con-
tents of cell 816 are added to the contents of the
accumulator. In practice instructions with incre-
ments are normally used only when these instruc-
tions are to be run through several times. With the
next execution of the instruction mentioned it will
be changed to AR 818 t 2, after which the contents
of cell B1l8 are added to the contents of the accu-
mulator. It may occur that a single instruction
with increment - by repeated use - can be made to

sum a whole series of numbers.

Example 4.2

Let the instruction SRF r+50 t-1 be in cell 124.
When the instruction is executed for the first time
it will be changed to SRF r + 49 t-1, and the number
in cell 173 is subtracted from the contents of the
accumulator, Due to the F-modification the arithme-
tic is in the floating-point mode. When the instruc-
tion is executed for the second time it will be al-
tered to SRF r + 48 t-1, and the number in cell 172
is subtracted from the contents of the accumulator

etc. etc.

Example 4.3
Let the address part of cell 289 be 837. The in-
struction MK (289) + 1 will, when first executed,

cause the address part in cell 289 to be increased

by

by 1 to 838, after which the contents of cell 838

is regarded as the multiplicand. (In the case of

two half-word instructdions being in cell 289 there
will be two address parts in this cell. If so, then
the address in the first half-word instruction only
will be altered)lWith the next execution of the in-
struction the address part in cell 289 is increased
again (to 839) and so on. Note that the actual in-
struction MK (289) + 1 will not be affected, but

the alteration takes place in the address part of
cell 289, Furthermecre note that in case of the ad-
dress in 289 again being indirect, incrementing will
not take place until an address part without brackets
is found. In other words, the increment alters only
the address constant in the last link of a chain of

bracketed addresses.

Example 4.4

LLet the contents of the index register p be 72.
The instruction AR (p + 7) + 2 will then - before
performance of the basic operation - cause the ad-
dress of cell 79 to be increased by 2 each time the
instruction AR (p + 7) + 2 is executed (provided

that the address of cell 79 is not indirect).

Example 4.5

Let cell 3% and 35 contain the instructions:

34: AR (35) +1
35: SC 218 -2

The first instruction is executed as AR 219, and
at the same time the second instruction is altered
to SC 219 -2. The second instruction is then execu-
ted as SC 217, at the same time being altered to
sC 217 -2.

hs

It should be noted that the workings of certain special

half-word instructions depend upon the fact that GIER

always gives a half-word instruction the increment num-

ber O (see operation list in chapter 5).

4.3

X-Modification of the Basic Operation

has

the

After the address the letter X can be added. This

the effect that the contents of the accumulator and

multiplier register are exchanged after performance

of the basic operation. This means that the contents in

pos.

0-39 in the two registers are exchanged,after which

bit no. 00 of R is put equal to (the new) bit no. 0.

L4

Example 4.6

The instruction SR 445 X will cause the contents
of cell 445 to be subtracted from the contents of
the accumulator, after which the contents of the accu-

mulator and multiplier register change places.

V-Modification of the Basic Operation

After the address the letter V can be added. V-modifi-

cation does not affect the instruction itself, but, instead,

causes the next whole cell, that would otherwise be regarded

as an instruction, to be skipped.

Example 4.7
Let the instruction ARS 705 V be in cell 212, After

execution of this instruction GIER continues with the
instruction in cell 214. The inter jacent cell 213 may,

for instance, be used for storing interim results.

Example 4,8

A V-modified instruction must always be placed in a
whole cell, and the next whole cell is skipped no matter
whether it contains a full-word instruction or two half-

word instructions (or a number).

L6

4,5 D-Modification of the Basic Operation

After the address the letter D can be added. The
effect of the D-modification depends on the actual basic
operation., In the operation list the D-modification for
each operation is described separately. In general, the

final address of a D-modified instruction will be used

as_the operand in arithmetic operations (contrary to the

normal case, where the address indicates where to find

the operand).

Example 4.9

The instruction AR 309 D causes the number 309
itself to be regarded as an operand so that 309
will be added to the address constant of the accumu-
lator (positions 00-9), while the positions 10-39

of the accumulator remain unchanged.

Example 4.10

If the address in a D-modified instruction is
indirect, the address refers to that cell, the ad-
dress part of which will be regarded as an operand.
Let the instruction in cell 444 have the address part
615. The instruction AR (444) D+7 will then cause the
number 622 to be added to the address constant of the
accumulator (moreover the address constant of cell Lih
will become 622), because the increment is first
added in the usual way, after whichthe D-modified

operation is performed.

X-, V-, and D-modifications can be used simultaneously
(in other words, any two or three of these modifications
can be used in the same instruction). The order, in which

the letters X, V, and D are written, is of no importance.

Example 4.11
We imagine the instruction ARS 42 XVD +1 stored in

cell 100. Execution of the instruction will cause the

W7

following things to happen:

1) The instruction is altered to ARS 43 XVD +1
2) The accumulator is cleared

3) The number 43 is added to the address constant of

the accumulator (which is zero)

4) The accumulator and the multiplier register are

interchanged

5) Next instruction is taken from cell 102,

The following diagram shows the different possibi-

lities for writing an instruction. The indicator-instruc-

tion is mentioned in the following pages.

L s | & |x|vipl l |

Basic operation Can be ex- Address Indicator Incre-
cluded part instruc- ment

Always two letters « tion)

o

Can be completely or

partly excluded; if even

one of these components

is present, the instruc-
tion must be stored in a

full-cell.

S and F are interchangeable., X, V, and D can be written

in any order,

4,6 Instructions with Indicator-Instructions

The last type of component of an instruction is an

indicator-instruction. Before we examine the many diffe-

rent - and often very useful - applications of the indi-
cator, we must, however, point out that in many cases
excellent programs can be made without use of the indi-

cator.

L8

Therefore, it is recommended that the reader goes
through the operation list very carefully and works
out the first examples from chapter 7 before studying
the list of indicator-instructions and their effect

in chapter 6. Before we describe an indicator-instruc-
tion we must remind the reader of the so-called indi-

cator register.

4,6.1 Indicator Register

The indicator register which is part of GIER's

control unit (see chapter 2) consists of 12 i-bit
registers, each of which can be used for storing

information about a certain state or a certain

result for later use in the administration of a pro-

gram.

KA : KB |

overflow ¢ s8ign a- and b-marking

{0OA (OB |TA ;. TB | PA : PB | QA : QB | RA ! RB |
i
or zZero , :
in R :)
: :

can only
be set
from the
control
panel

The above diagram shows the names of each register, and

the text indicates which kind of information can be stored

in the wvarious parts.

4,6,2 Indicator-Instruction

The indicator-instruction consists of an indica-

tor operation and an indicator addressl). Both compo-

nents are specified by means of capital l:tters. The

indicator-instruction must (together with X, V, and D-

modifications) be written after the address part and

before a possible increment.

An instruction can at the most contain one

indicator-instruction.

1) 4in a particular case no indicator address is written

(see the list of indicator-instructions chapter 6).

ho

4,6.3 Indicator Operation

The indicator operation which is placed first
in the indicator-instruction is written with one of
the four letters I, M, N, and L.

I causes a bit of information to be stored in

the indicator for later use. The indicator address

decides which kind of information to be indicated
(see next chapter).

M causes (in some of the basic operations) a
certain marking of the operand cell, i.e. that
cell in the store, to which the final address refers.
The indicator address declides the kind of marking.

N and L. cause the actual instruction to be

conditional, i.e. the basic operation is only per-

formed if a certain condition (either in the indi-
cator or in the arithmetic unit) is fulfilled. Again,

the indicator address indicates the condition.

4,6.4 Indicator Address

The indicator address is written as one or two
letters immediately after the indicator operation.
As indicator address may be used the names of the twelve
registers in the indicator 0OA,, KB, and each of
these indicator addresses refer to the corresponding
register. The indicator addresses 0OC, TC,, KC
refer to both 0A and 0B register, both TA and TB re-
gister etc. etc. in the indicator, respectively. Final-
ly the indicator addresses A, B, and C alone refer to
one or two marker-bits in the operand cell or in the

R-register.

The detailed effect of all possible indicator-
instructions are described in the list of indicator-

instructions, section 6.1.

4.7 Internal Instruction Format

A full-word instruction or two half-word instructions

may - as mentioned - be placed in a cell in the store.

Occasionally it is important to the user of GIER to know

how the different components of the instruction(s) are
distributed over the 42 bits that form a cell. Further-

more, it may be necessary for the programmer to know the

value of the 42 bits corresponding to a certain instruc-

tion. Therefore, we finish these chapters about the struc-

ture of the instructions by giving a survey of the inter-

nal instruction format.

4.7.1 Conversion from the External Instruction to the

Internal Instruction Format

During input of an instruction written in accor-
dance with the above-mentioned conventions the instruc-
tion is converted before it is stored as a combination
of ones and zeroes in the 42 positions of a cell. This
conversion is performed by means of the input program
SLIP, which has been stored in the computer in advance.
The input program treats the single components of an
instruction separately. The following diagram shows

the bits used for storing the separate parts of a

full-word instruction .

4.7.2 One Full-Word Instruction

0..9[10.,19] 20..25|26[27] 28 29|30 |31]|39 33 34|35 36 37|38 39 |ho| k]
] . s{()r, s |X]v]D KZOT ABCJO}F
§ « and p PQR

f4
© + [[P
» g &) indicator
2., E P address —_
“ R @ o o® [+]

L] & - g - N H.
o L 2 a3 g o °
Al A 0 5 & -

51

Each bit is occupied in accordance with the following

rules:

Pos. 0-9 contain the address constant written as an
integer in the binary system.

Pos. 10-19 contain the increment written as an integer
in the binary system.

Pos. 20-25 are used to indicate the baisc operation
contained in the instruction. The six bits
permit, in fact, the use of 26= 64 diffe-
rent operations. As mentioned only 57 of these
possibilities are utilized in the standard
GIER computer, A survey of the relationship
between the basic operations and the bit-

patterns can be found in chapter 8.

Pos. 26 has the value 1, when the instruction is
S-modified, otherwise the value 0.
Pos. 27 has the value 1, when the instruction is

indirect, otherwise the value 0.
Pos. 28 and 29 are utilized as follows:

address contents of
pos. 28-29
absolute o O
relative 1 O
indexed 1 1
subroutine~indexed o 1

Pos., 30 has the value 1, when the instruction is
X-modified, otherwise the wvalue O.

Pos. 31 has the value 1, when the instruction is
V-modified, otherwise the value O.

Pos. 32 has the value 1, when the instruction is

D-modified, otherwise the value 0.

52

Pos.

Pos.

indicator address as follows:

Pos.

Pos.

33 and 34 are utilized to indicate the indicator

35,

operation as follows:

Indicator QOperation Contents of
pos. 33-3h
No indicator operation
0O O
or I
M 1
N
L 1

36, 37, 38, and 39 are used to represent the

First part of the indi-

cator address

Contents of

pos. 35"36_37

no address

K

W o "8 O N

H H B O O O O
H O O R H O O
H O R O r O+ O

Second part of the indi'

- Contents of

cator address pos. 38-139
no address 0O O

A 1 0

B 0 1

C 1 1

40

Li

For full-word instruction this bit must have

the value 0O

has the value 1,

when the instruction is

fied, otherwise the wvalue O.

F-moddi-

53

4,7.3 Two Half-Word Instructions

0...9{10..19{20..25}26|27[28 2930..35[36]37]|38 39| 40|41
5186 5 |5
“ - - | m o |- 1]|F
- o R 0 R
e - o}l o 0 3]
B A [l o = o = a g a o =] £
g3 a0 SIR) t “|] w0 oo H 4| woO
S s - e | e o - ®» L] o
@ o S P | o » - P " L] £
¢ o g0 ® O =B oo @ s lRE] RO
on c 5 B LAl B o H o3 A 1
O H TR D K T O N o &
+ » B + + oo o o] o] It
0w 0 o c o 7] 0 o 0 om = = o n
n o w £ £ el = g Y Y] g
O g QA - Q =
0 bt - 6 | " - | 0
g P = o o P o] o] + n g Q [s] T
= o g [-0 (ol =] L=
@~ o ot ol 92} :: o L0 N (05} :: - N

One can see from the above diagram how each position
is occupied. Special attention is drawn to the fact
that pos. pos. 40 must have the value 1 in the case
of two half-word instructions stored in the cell. As
mentioned earlier an F-modification of either of the
two instructions will affect both instructions.

The examples below will illustrate how important
it is that the user of GIER is familiar with the in-

ternal format of instructions,.

Example 4.12

At a certain stage of a calculation the user

wants to change the address of a certain instruc-
tion. This can be done by means of another in-
struction with the basic operation GA (store ad-
dress constant). However, it is decisive to know
here whether this will affect possible indirect
addressing, relative addressing etc.etc. Further-

more, the operation will only have the desired

effect when used on a full-word instruction or

on the first of two half-word instructions.

54

Example 4.13
If it is desired to X-modify an instruction

of a cell this can be done by placing 1 in pos. 30
in the cell concerned. The basic operation AB

(add Boolean) is very suitable for this purpose.

Finally we point out that the internal instruction

format is characteristic for the computer, as its cir-
cuits have been built with respect to this format. The
external instruction code can be selected in many dif-
ferent ways as long as a special input program is made

for each selection,

55

5. OPERATION LIST

5.1 Introduction

In the last section of this chapter we consider
the 57 basic operations in GIER one by one and in 5.3
there is a direction for the coperation list; first of
all, however, we will consider the execution of a com-
plicated GIER-instruction; additionally some of the
approximate operation times are mentioned.

In chapter 6 there is a complete list of the pos-

sible indicator-instructions and their effects.

5.2 Execution of the Instruction

A GIER~instruction may have many elements (the
complicated instruction SCS (r-18) XV IOA +4 is a good
illustration). The diagram below specifies the order
in which these elements are processed and the time
necessary to process them {the basic unit of time is

1 microsecond = 10-6seconds).

56

Step Duration

1l Search for conditional indicator operations

(N or L)
Condition not satisfied:

Next instruction is begun after 15 ns
Condition satisfied or no N or L operation no extra time

2 Determination of final address incl.
relative, indexed, subroutine-indexed addres-
ses, excl. increment and indirect addressing |27 ns

increment # O : additional time + 9 ps
indirect addressing,
without s-indexing - - per link + 12 nus
Indirect addressing,
with s-indexing - - - - + 26 ps
3 Execution of S-modification no extra time

4 performance of basic operation (or F- and D- |dependant on
modification) incl. the necessary marking of |the basic ope-
overflow ration

5 Execution of indicator operations I or M
and V-modification no extra time

6 Execution of X-modification
additional time + 4 ns

7 Execution of IK indicator operation
additional time + 6 ns

The time necessary to perform the actual basic operation can,
in many cases, only be stated as the average since the numbers
themselves affect the operation time: It is faster to multiply
with the digit O than with the digit 1, and the total operation
time for a multiplication is dependant on the amount of ones
and zeroes in the multiplicator. Thus the D-modification of an
cperation may in some cases be faster than the basic operation.
With these reservations we give in the below diagram a survey
of the time (point 4) necessary to perform the different basic

operations.

57

Basic Operation F-modification
L8 ns

QQ
PS-PP c. 2
VK
GR-GM-GA-GT-GP-GS-GI-GK only GR t ¢c. 9
PM-PA-PT
BS~-BT-UD-XR c. 9
LK-SK (see below)
HV-HH-HX
IS-IT-NS~-NT-PI
MB c.l6
HS-VY
AR-AC-AN-SR-SC-SN c.66
MT-CA-NC c.22 +2.2+-exponent diff.
HR-LY +2.2+no of loat digits
AB-CM c.27
TK~-TL-NK-NL-CK 2.2 per shift
CL 0'20+h.h per shift c.30+2.2 per shift
MK-ML c.155 (average) c.140 (average)
DK~DL c¢.240 (average) c.190 (average)
SY c.31

It will take 20 millisec. before the 1K and SK operations
are completed, but after 9 microsec. GIER can execute other
instructions simultaneously with the drum transfer; however,
execution of these other instructions is delayed by 1 milli-
sec. altogether during the drum transfer.

An ordinary addition or subtraction without indirect ad-
dressing or increment takes about 50 ps. An ordinary multi-
plication takes on the average 180 ps, and an ordinary divi-
sion takes on the average 270 mpus. Floating-point multiplica-
tion or division is a little faster than the corresponding
operations with fixed point, and floating-point addition or
subtraction is about twice as slow as the corresponding

fixed-point operations.

58

5.3 Explanation of the Operation List

On the following pages the effect of each basic opera-
tion is described in detail. Expressions similar to those
used in ALGOL are used in the descriptions, and the meaning
of the used names will be established in the following:

c means the final address, determined from

an address and possible modification by
means of index, s-index, relative and indi-
rect addressing and increment. The cell which

¢ refers to is called the operand cell. c,

when referring to a storage cell, is regarded
as a number in the range O i c i 1023, but in
many other cases as an integer in the range

-512 $et 511 (e.g. when the number ¢ itself

is used as the operand).

cell [c] signifies the contents of cell c, excl. pos.
40-41, regarded as a machine number, i.e. a

fixed-point number in the range -1 < cell[c]<1.

float cell(c] signifies the contents of cell ¢ regarded as
a floating-point number.

address constant ¢ and incr ¢ s8ignify the contents of
pos. 0-9 and pos. 10-19, respectively, of

cell ¢ regarded as integers.

oper ¢, LHoper ¢, and RHoper ¢ signify the contents of
that part of cell c¢ which contains the
operation in respectively a full-word,
left-hand half-word, and a right-hand half-

word.

pos 1i,c signifies the contents of pos. i of cell ¢

1).

regarded as a Boolean variable

1) The digits O and 1 are interpreted here, and in the

following, as false and true, respectively.

RF

RM

59

signifies the contenta of the accumulator

(pos. 00-39) regarded as a fixed-point num-

ber. In certain circumstances, it refers only
to pos. 0-39, but in these cases it will be
indicated. In the accompanying text R is

sometimes used for the accumulator itself,

signifies the contents of the floating-point

register, i.e. pos. 00-39 of the accumulator
together with pos. 0-9 of the M-register re-

garded as a floating-point number.

signifies the contents of the long accumu-

lator consisting of the accumulator and pos.
1-39 of the M-register, regarded as a machine

number.

Raddr and Rincr signify the contents of respectively the

address part (pos. 0-9) and the increment

part (pos. 10-19) of the accumulator.

ROO and Rpos[i]signify the contents of a particular position

in the accumulator regarded as a Boolean

variable.

M, Maddr, Mincr, and Mpos{i]lare the corresponding designa-

sl

rl

tions for the contents of certain Earts of

the M-register. Similar designations are

also used, when necessary, for the contents

of the H-register and the F-register.

signifies the contents of the subroutine

register-

signifies the contents of the control counter

(this register is increased by 1 during the
initial determination of addresses for full-
word instructions and right-hand half-word

instructions).

p

indicator

indie [j]

signifies the address of the cell containing

the current instruction.

signifies the contents of the index register.

signifies the contents of the indicator re-

gister excl. KA and KB.

signifies the contents of a particular position
in the indicator regarded as a Boolean variable.
For j = 0,..., 9, 10, and 11 the registers indi-
cated are respectively, 0OA,..., RB, KA, and KB.

Besides the final address ¢, the following address

designations are used:

D-address or Daddr means the address of that cell which

contains the last link of a chain of indi-
rect addresses, i.e. contains the (direct)
address which is used in determining the

final address.

The modified address is the value of the address before

the increment is added. For non-adjustable
operations the final and modified addresses

are (by definition) the same.

Non-adjustable means that the increment is not used in

determining the final address for the basic
operation in question. However, most opera-
tions are adjustable, which means that the
increment is used in determining the ad-
dress, as described in chapter 4, and this
is not mentioned explicitly in the opera-

tion list.

a '+' in the column marked'Registration M'means that marker-

bits are registered, i.e. the contents of

pos. 40-41 of cell ¢ (the operand cell) are
transferred to Rho,hl' If the column is emp-
ty, Rho,hl remains unchanged.

a

a

61

'y' in the column marked 'Registration 0' means that

overflow is registered, i.e. the over-

flow register 0 is set to 1 in case of
overflow in H, otherwise to 0. If this
column is empty, the O-register remains

unchanged.

'+' in the column marked Marking means that if the
instruction is supplemented with an M-
indicator operation, the marker-bits (the
contents of pos. 40-41) of cell ¢ can be
changed. If the column is empty the cell-
markings cannot be changed (but an abso-
lute marker-operation will clear Rho,hl’

anyway, see chapter 6, below).

a '+' in the column marked 'Registration Stmeans that if

the instruction is supplemented with an

IT indicator operation, the sign of the
result in the H-register will be stored

in the appropriate indicator register. If
the column is empty the IT indicator ope-
ration will still register the 'sign' of the
H-register's contents which, however, will
not be the result, but the final address

or some other peculiar wvalue.

The different modifications of the basic operations

(F, S, D, and V) are referred to, in the operation list,

in the following manner;

1.

F-modifications are referred to only where the modifica-
tion is relevant. As long as the F-modification is not
mentioned, it is unimportant whether the modification

is present or not.

S- and V-modifications are not mentioned as they always

affect the operations in exactly the way described in

chapters 3 and 4. The X-modification is only mentioned

T

62

in the few cases where the effect is not quite the same

as the usual interchange of R and M.

3. The D-modification is referred to in all the operations

where the address is relevant.

The means by which addresses are determined before the
execution of each instruction can be written as the fol-
lowing ALGOL-like algorithms (without, however, all the pro-

per declarations).

STOP;; comment GIER stops here both after a 2Q (halt) in-
struction and after the NORMAL STOP button has been
pressed. Incidentally, this is also the stage where
activation of the HP button will interrupt the pro-

gram:

NEW INSTR: r2:= rl;
s2:= sl;

ii halfword then begin

if -+ RH halfword then begin FLHoper:= LHoper [r2] ;
Haddr:=address co [r2];
relative:=pos [28,r2 |;
subindex::pos[29,r2];
indirect::pos[27,r2];
RH halfword:=true
end LH halfword

else begin FLHoper:=RHoper [r2];
Haddr:=incr [(r2];
relative:=pos [38,r2}
subindex::pos[39,r2]
indirect:=pos [37,r2]
RH halfword:=false;
ri;=rl+l

end RH halfword;

Fincr:=0
end halfword

else begin Foper:=oper[r2] ;
Haddr :=address co [r2];
Finer:=incr [r2];
relative:=pos [28,r2];
subindex:=pos [29.r2];
indirect:=pos [27,r2];
rl:=rl4+l;
RH halfword:=false;
if conditional indicator operation

not satisfied then
g0 to NEW INSTR
end fullword;

63

DETERMINE ADDRESS:

if dindirect vVnon adjustable operation then go to MODIFY;
address co[r2]:=Haddr:=Haddr + Finer; -

MODIFY:
if -« relativen subindex then

begin Haddr:=Haddr + s2;
s2:=incr [s2]
end subroutine indexed addr;

if relative A 4 subindex then Haddr:=Haddr + r2
if relative s subindex then Haddr:=Haddr + p
if

indirect then begin r2:=Haddr;
Haddr:=address co[r2] ; |
relative:= pos([28,r2];]
subindex:= pos[29,r2] ;
indirect:= pos([27,r2j ;
g0 to DETERMINE ADDRESS

end indirect;
if -~ Dmodification then r2:=Haddr;

After this, performance of the operation itself begins.

For instructions without D-modification, the final address

is ¢ = r2 = Haddr; for instructions with D-modification the
final address is ¢ = Haddr, and the D-address is Daddr = r2.

For arithmetic operations in the D-mode, ¢ is thus cal-
culated using the 11 bits HOO—9 (with the possibility of
overfliw) all of which take part in the operation.

If the increment is used during performance of a basic

operation, its value is taken from the increment part of

the F-register, Fincr.

ADDITION

oL
Specifi~ Effect Registration |Mark- Special Remarks
cation ing
M 0 S

AR cell[e] is added to R and the re- + + +
sult is placed in R:

R:=R+celllc];

AR D c.2™%1s added to R and the result + |+ ¢ is regarded as en injeger
is placed in R: in the range -512 £ ¢ 2 511,
R:=R+cxeM(-9);

AR F float cellle] is added to RF and + + The D-modification must not
the result is placed in RF, while be used. Overflow causes a
the increment part of M is set equal Jump to cell O with the ad-
to the number of shifts that were dress of next instruetion in
necessary to normalize the result. Raddr. (If the current in-
RF:=RF+float celllc]; struction is a left half
Mincr:=number of shifts; word instruction the Jump 1s

g to the RH half of cell 0; if
the actual instruection 1s a
RH half word instruction the
Jump is to the LH half of
cell O; in both cases
Raddr = rl),

AN The absolute value of cell{e] is ad-{ + + + The operand -1 is treated
ded to R and the result is placed in correctly, i.e. the absolute
R: value of -1 is +1 (with
R:=R+abs(cell[c]); overflow).

AN D The absolute value of c-2_9is added + + ¢ 1s regarded as a2 integer
to R and the result is placed in R: in the range -512 = ¢ £ 511.
R:=R+abs(cx2h(-9));

AN F The absolute value of float cellle] + + The D-modification must not
is added to RF and the result is be used. '
placed in RF, while the increment Overflow has the same
part of M is set equal to the num- effect as with ARF.
ber of shifts that were necessary '
to normalize the result.

RF:=-RF+abs(float cell(e]);
Miner:=number of shifts;

AC R is added to cell[c] and the result| + + + + | The accumuiator remains un-

is placed in cell c: altered.
We note that ACF has the
s=H:= +R;
celllc]:=H:=cell[c]+R; same effect as AC, i,e, the
floating-polnt numbers are
not added correctly.

AC D Raddr is added to the inerement, if + +
any, of the instruction, and this
sum is added to the address con-
stant in Daddr:
address cof Daddr] :=Haddr:=¢+Raddr;

|

SUBTRACTION 65

Specifi- Effect Reglstration |Markd Speclal Remarks

cation ing
M 0]

SR celllc] is subtracted from R and the| + + + The operand -1 is treated

result is placed in R: correctly, i.e. subtractlion
of -1 1s treated as addition
Ri:=R-cell[c]; of +1.

SR D c.2-9is subtracted from R and the + + ¢ is regarded as aQ inzeger
result is placed in R: in the range -512 = ¢ = 511.
R:=R-ex2A(-9);

SR F. float cell{e] is subtracted from RF + + The D-modification must not
and the result is placed in RF, be used.
while the increment part of M is set Overflow causes a jump to
equal to the no. of shifts that were cell O as with ARF.
necessary to normalize the result.

RF:=RF-float cellic];
Miner:=number of shifts;

SN The absolute value of cellfe] is + + + The operand -1 is treated
subtracted from R and the result is correctly, l.e. the absolute
placed in R: value of -1 is +1 (with
R:=R-abs(celllc]); overflow).

SN D The absolute value of c-2_9is sub- + + ¢ 1s regarded as ag ingeger
tracted from R and the result is in the range -512 = ¢ 2 511,
placed in R:

R:=R-abs(cx2h(-9));

SN F The absolute value of float cellle] + + The D-modification must not
is subtracted from RF and the result be used.
is placed in RF, while the increment Overflow causes a Jjump to
part of M is set equal to the num- cell O as with ARF,
ber of shifts that were necessary
to normalize the result.

RF:=RF-abs(float celle]);
Miner:=number of shifts;
SC R is subtracted from ceil(c[and the| + + + + | The accumulator remains un-
result is placed in cell c: altered.
~ . We note that SCF has the
celllc]:=Hi=cell[c]-R; same effect as SC, i.e. the
floating-point numbers are
not subtracted correctly.

SC D Raddr is subtracted from the address + +
constant in Daddr. The increment, if
any, of the instruction is added to
the result:
address co[Daddr] :=Haddr:=c-Raddr;

66

MULTIPLICATION

Specifi- Effect Registration |[Mark Special Remarks

cation ing
M O S

MK M i1s »ultiplied by cell{c} and the + + + The multiplication is said
product is added to R, The result is to be accumilative, The re-
placed in R: sult 1s rounded off. The

. . contents of M remain unal-
R:=R+Mxcell[c]+2M(-40); tered.

MK D M is multiplied by c-2_9and the pro- + + As with MK,
duct is added to R, The result is ¢ will be regarded as an
placed in R: integgr 12 the range
R:=R+Mxex2N -9)+2A(-40); 512 = ¢ 2 5ll.

MK F RF is multiplied by float cellfe] + + The D-modification must not
and the product is placed in RF: be used.

. . The multiplication is not
RE :=RF»xfloat cellfe]; acounulative. _—
Overflow causes a Jump to

cell O as with ARF,

ML and M is multiplied by celllc] and the + + + Multiplication is performed

ML F ‘'product is added to R.2™2 . The re- without rounding off. The
sult is placed in RM. result has 78 binary digits.
RM:=Rx2\(-39)+Mxcell[c];

Mpos| 0] :=0;

ML D M is multiplied by c-%wgand the pro- + + The result has 78 binary
duct is added to R-2° 9. The result digits,
is placed in RM:

RM: =R2f - 39) +Mxex2h(-9) 5
Mpos{ 01 :=0;

MT R is multiplied by +1 or by -1 + + + If the number in ¢ is a
whether pos{0,e} is O or 1. The re- fixed-point number, R is
sult is placed in R: multiplied by the sign of

s _ R . the number.
fi:=1f pos[0,c]=1 then -R else R; If the number in ¢ is a
floating-point number, R is
multiplied by the sign of
the numberts exponent.

MI D 02 g regarded as a fixed-point + +
nurber and R is multiplied by the
sign of c:

R:= if HOO=1 then -R else R;

DIVISION 67

Specifi- Effect Registration Mark- Special Remarks
catloen ing
M 0 S
K R is divided by cell[c]; the re- + + + {Should only be used if
sult is placed in R and the remain- abszR5<2xabszcelllc|5. Iir
der - multiplied by 239 - is placed abs{R)>abs{celllc]) half the
in M. If abs(R)>abs(cell{e]) over- gquotlent in R can be obtained
flow is registered: by means of a right shift,
if abs(R)<{&xabs(celllc]) then T?e remalnge? always has the
berin — sign of te divisor. After over-
—_E?:entier(R/cell[c]x2b39)x Tlow the contents of R and M
oh(-39); are useless. O/% gives the
M:=(R-qxcell[c])x2h39; ﬁefuét Roo™ © 1-39 L, and
Ri=g; =0. 7
if cellle]<O A R/celll o] xoh3o= See section 2.5.5
entier(R/celllc]x2N\39)
then begin
R:=q-2/(-39);
Mi=celllc] end
end
else overflow:= true;
DK D R is divided by 0-2_9; the result + + Should ocornly be used if
is placed in R and the remainder - abs(R)<{2xabs(c-2-7).
multiplied by 229 - is placed in M: ¢ is regarded as zn igteger
5 - in the range -512=2 ¢ = 511.
ig_?bs(R)<2xabs(cx2$(9)) then Besldes, see note to DK,
begin
qr=entier(R/cx2Mi8)xah(-39);
M:=(R-gxex2h(-9))x2A39;
Ri=q;
if e<OMR/ex2MNiB=entier(R/ex2hu8)
then bhegin
R3=Q*2f(-39);
M:=ex2A(-9) end
end
else overflow:= true;
DK F RF is divided by float celllel; the| + + The D-modification must not
result is placed in RF; the re- be used.
mainder 1is lost: Overflow causes a Jjump to
RF:=FF/float cellle]; cell O as with ARF,
DL BM is divided by cell{e]; the re- + + + Should only be used if
sult is placed in R and the re- abs(RM){2xabs{cell{c]).
mainder - multiplied by 239- is Besides, see remark
placed in M, If abs(RM)>abs(cell[ec]) to DK.
overflow is registered:
The ALGOL description as for DK
with RM instead of R except in the
2 statements R:=q and R:=g-2/\(-39).
DL D RM is divided by c.2°, apart from + |+ Should only be used if
this as DK D with RM instead of R. abs (RM){2xabs{c+2-7),
¢ 1s regarded as an
integer in the range
-512 S ¢ S 511.
Besides, see remark
to DK.

68

NORMALIZATION

Specifi-
cation

Effect

Registration

M 0 5

Mark-
ing

Special Remarks

NK D

R is normalized, i.e. is shifted
until it contains a number, N,
satisfying: -1 S N < -0.5 or

N =0 or 0.5 $N < 1. The nor-
lization exponent (number of shifts
with reverse sign) is placed as ad-
dress constant in cell c:

exponent:=0;
if R O then
begin if ROO F Rpos[C] then
begin for 1:=39 step -1 until 1
do Rpos[i]:=Rpos{i-1];
Rpos[0] :=R00;
exponent:=1 end
else
E: if Rpos[O]-Rpos{1] then
begin
R:=2xR;
exponent :=exponent -1;
g0 to E end
end;
address cof ¢]:=exponent;

As NK with the change that the nor-
malization exponent is placed in
the cell, the address of which is
the D-address.

The normalization exponent
is only positive (+1) if
there 1s overflow in R
before execution of the
operation. The right shift
is performed without round-
ing off.

NK F

At first R is normalized, then the
normalized number is shifted 10
places to the right. The normaliza-
tion exponent minus 1 is added to ¢
and the sum is placed in Maddr.
(see remark).

ALGOL-description: As for NK except
that the last statement is replaced
by:

for i:= 39 step -1 until 10 do
Rpos[i]:=Rpos[i-10};

for i:= 1 step 1 until S do
Rpos[1] :=Rpos[0]

Maddr:=c+exponent -1;

The D-modification must not
be used.

The instruction NK F O will
have the effeci that a
fixed-point number in R is
transformed to a floating-
point number in RF.

No rounding off. If R = 0,
NKF ¢ will have the effect
that Maddr:=c.

NL D

RM is normalized; Mois not included
in the shifts: Mpos [0]:=0. Other-
wise as for NK.

As NL, however, the normalization
exponent is placed in the cell, the
address of which is the D-address.

NUMBER SHIFT 69

Specifi- Effect Registration Mark- Special Remarks
ration M 0 g ing
TK R is shifted ¢ places to the left + + Irf 5-26 is in the range
if ¢ > 0 and -c places to the right -2 2 x <2, R will contain
if ¢ < 0O this number after the opera-
. > tion.
if ¢ = O then . A right shift is completed
for k=1 step 1 until ¢ do)
begin ROO:-fpos[0]; by rounding off.
L P After the shift operation
for 1:-0 step 1 wntil 33 do 1tself overflow is
Rpos| i]:-Rpos[i+1]; s? N oed
Rpos| 39] 1 20 registered.
end
else
begin g:=Rpos| 40+c];
for k:=1 step 1 until -c¢ do
begin
for i:=39 step -1 until 1 do
Rpos[i]:=Bpos[i-1];
Rpos[0] :=R0C
end
Ri-R+qx2h(-39) end;
TK D R is shifted as many places to the + + Normally of no interest.
left (or to the right) as indicated
by Daddr. Otherwise as TK.
TK F R is shifted (c+Maddr+l) places to The D-modification must not
the left if (c+Maddr+l) 2 O, and be used.
-(c+Maddr+1) places to the right if The instruction TK F 10 will
(c+Maddr+l) < O. have the effect that a "ﬂ
floating-point number in RF
will be transformed to a
fixed-point number in R (if
the number is between -2
and 2).
After the shift operation
itself overflow is re-
glstered. Rounding off may
take place.
TL RM is shifted; Mp is, however, not + +
included: Mpos[0]:=0. Otherwise as
TK, but without rounding off at
right shift.
TL D AS TK D, but with RM instead of R. + + Nermally of no interest.

CYCLIC SHIFT

Specifi
cation

Effect

Registration
M 0 S

Mark-
ing

Special Remarks

CK

CKD

R 1s shifted cyclically ¢ places
to the left if ¢ > 0 and -c places
to the right if ¢ < O:
ROO:=0:
if ¢ 2 O then
for k:=1 step 1 until ¢ do
_—Eégin a:=Rpos[0]; -
for 1:=0 step 1 until 38 do
Rpos[i]:=Rpos[i+l];
Rpos[39]:=a end
else -
for k:=1 step 1 until -c do
'_Begin a:=Rpos[39]; -
for 1:=39 step ~1 until 1 do
Rpos[i]:=Rpos[i-1];
Rpos[0]t=
end

R is shifted cyclically as many
places to the left{ or to the
right) as indicated by Daddr.
Otherwise as CK.

Pos. 00 in the R-register
is not ineluded in the
shift, but is cleared.

Normally of no interest.

CL

CL D

RM is shifted cyclically ¢ places
to the left if ¢ > 0 and ~c places
to the right if ¢ < 0. Mg is not
included: Mpeos[0]:=0. Otherwise as
CK.

As CK D, but with BRM instead of R.

Pos. 00 in the R-register
and pos. O in the M-register
are not included in the
shift, but are cleared.

Normally of no interest.

BOOLEAN CPERATIONS T1

Specifi-
cation

Effect

Reglstration

M

0

S

Mark-
ing

Special Remarks

AB D

cell{c] 1s Boolean added to R and
the sum 1s placed in R:

for 1:=0 step 1 until 39 do
Rpos[1]:=Rpos[{] Vv pos[1,c];
ROC:=ROC v pos[0,cl;

¢ is Boolean added to R and the sum
is placed in R:

for 1:=0 step 1 until 9 do

Rpos[1i]:=Rpos[1] v Hposl1];
RO0O:=R0O0O v HOOQ;

The X-modification has a
speclal effectin this and
the following instruection
and 1is described separately.

AB X

AB DX

After execution of AB, R is placed
in the M-register and 1R in the R-
register:

for 1:=0 step 1 until 39 do

begin Mposlii::Rpos|i] Vv pos(1,c];
Rpos[1]:= -Mpos{1] end;

ROO :=-(ROO Vv pos[0,c¢]);

After execution of AB D, R is
placed in the M-register and -R
in the R-register:

for 1:=0 step 1 until 9 do

Rpos[1]:=Rpos{1] v Hposl1];
for 1:=0 step 1 until 39 do
begin Mpos| 1]:= pos|[1i];
Rpos{1]:=- Rpos[1] end;
ROO:=-(ROO \ HOO);

T2

BOOLEAN OPERATTIONS

Specifi-
cation

Effect

Registration

M

0

S

Mark-|
ing

Speclal Remarks

MB D

cellle] is Boolean multiplied by
R and the product is placed in R:

for i:= 0 step 1 until 29 do
Rpos[i]:=Rpos{1] A pos[i,c];
ROO:=R0O0 A pos[0,c];

¢ is Boolean multiplied by R and
the product is placed in R:

for 1:=0 step 1 until 9 do
Rpos[1] :=Rpos{1] ~ Hpos|i];

RO0:=R0O0 ~ HOO;

for 1:=10 step 1 until 39 do
Rpos[1]:=0;

The X-modification has a
special effect in this and
the following instruction
and is described separately.

MB X

MB XD

After execution of MB, R is placed
in the M-register and the nonequi-
valence of original R and ¢ is
placed in the R-register:

for i:=0 step 1 until 39 do

begin Mpos ii:: posli] A pos[i,el;
Rpos[1]:=+(Rpos[i] = pos{i,c])

end;

ROO:=5(RO0 = pos[0,cl);

After execution of MB D, R is
placed in the M-reglister, and the
nonequivalence of ariginal R and ¢ is
placed in the R-register:

for 1:=0 step 1 until 9 do

begin Mpos[i]:=Rpos[i] A Hpos[i];
Rpos[i]:=-{Rpos[1] = Hpos[1])

end;

R0OO:=4(ROO = HOO);

for i:=10 step 1 until 39 do
Mpos{ i]:=0;

Pos. 10-39 of R remain
unaltered after the opera-
tion.

TRANSFERS TO REGISTERS 73

Specifi-j Effect Registration Mark- Speclal Remarks
eation M 0 g [ing
PM The contents of cellle] 1s placed + +
in M, i.e.
M:=cell[e];
PM D 002_913 placed in M _o While the +
remainder of M is c?egred, i.e.
Mi-cx2f(-9);
PI The modified address is placed in The instruction is non-
the indicator (except KA and KB) ad justable.
with the increment of the instruc- If PI is a half-word in-
tion as mask; those positions of struction the increment is
the indicator that are specified regarded as zero, i.e. the
by ones in the increment of the whole modified address is
instruction (binary) are not transferred to the indicaton
changed :
for 1:=0 step 1 until 9 do
indic[i]::iindic 1] A Finer[i])
v (Hpos[i] A - Finer[i]);
PI D As above, the D-address replacing The instruection is non-
the modified address, ad Justable.
Normally of no interest.
PP ¢ is placed in the p-register:
pi=c;
FP D The D-address is placed in the p- Normally of no interest.
register:
:=Daddr;
PS ¢ is placed 1in the subroutine re-
gister:
sli=c;
PS D The D-address i1s placed in the sub- Normally of no interest
routine register:
51 :=Daddr;

- ADDRESS AND INCREMENT TRANSFERS
Specifi- Effect Registration Mark- Special Remarks
ti
cation M 0 3 ing
PA The increment of the instruction The instruction 1s non-
is placed in pos. 0-9 of cell c, ad justable. If the PA-
while the remainder of the cell instruction is a half-word
remains unaltered: instruction, it has the
address col ¢]:=Finer; same effect as a full-word
T ’ instruction with the incre-
ment O.
PA D The increment of the instruction The instruction is non-
is placed in pos. 0-9 of the cell ad justable.
specified by the D-address: -
address co[Daddr]:=Fincr;
PT [The increment of the instruction The instruction is non-
is placed in pos. 10-19 of cell c, ad justable. If the PT-
while the remainder of the cell TnstructIon is a half-word
remains unaltered: instruction, it has the
inor| ¢] :=Finer; same effect as a full-word
tT ’ instruction with the incre-
PT D The increment of the instruction ment 0.

is placed in pos. 10-19 of the cell
specified by the D-address:

iner{Daddr] :=Finecr;

The instruction is non-

ad justable.

STORING 75

Specifi- Effect Registratio Mark- Special Remarks
cation M 0 3 ing
GR R 1s stored in cell c: + ROO irrelevant. In absoiute
cellc]:=R; marking R, . and R,. are set
' to one (oéﬁ%rwise %%altered).
GR D The address constant and the incre-
ment of R are stored in the corre-
sponding positions in the cell
specified by the D-address, while
the remainder of the cell remains
unaltered:
address col[Daddr]:=Raddr;
incr[Daddr):=Riner;
GR F RF is stored in cell c: + ROO-9-1S irrelevant. In ab-
solute marking Ryp and Ryj
float celllc]:=RF; are set to one{otherwise un-
altered).
The D-moedification must not
be used.
GM M is stored in cell c: + In absolute marking Ryp and
Ry, are set to one (other-
cellic]=M; 41
(o]e=M; wise unaltered).
GM D The address constant and the incre-

ment of M are stored In the corre-
sponding positions of the cell
specified by the D-address, while
the remainder of the cell remains
unal tered;

address co[Daddr] :=Maddr;
incr|[Daddr] :=Mincr;

STORING OF ADDRESS AND INCREMENT

Registration Lark—

Specifi- Effect Special Remarks

cation M 0 g pre

GA The address constant of R is J + ROO is irrelevant. In abso-
stored in pos. 0-9 of cell ¢, whil lute marking Ry, and Ry
the remainder of cell ¢ remains are set to one ?otherwise
unaltered: unaltered).
address co[c¢]:=Raddr;

GA D The address constant of R is stored + ROO 1s irrelevant. In abso-
in pos. 0-9 of the cell specified lute marking Ry, and Ry
by the D-address, while the re- are set to one (otherwise
mainder of this cell remains unal- unaltered).
tered:
address co[Daddr]:=Raddr;

GT The increment of R is stored in + In absolute marking Ryg and
pos. 10-19 of cell ¢, while the R, are set to one {other-
remalnder of the cell remalns unal- wise unaltered).
tered:
iner[ec]:=Rincr;

GT D The increment of R is stored in + In absolute marking R)y and

pos. 10-19 of the cell specified
by the D«address, while the re-
mainder of thils cell remains unal-
tered:

incr{Daddr]:=Rincr;

Ry are set to one(other-
wise unaltered).

-

STORING OF REGISTERS 77

Specifi- Effect Registration K- Speclal Remarks
cation 1
Mm o | s [T

Gp The contents of the p-reglster are + In absolute marking R40 and
stored in pos.0-9 of cell ¢, while Ry; are set to one (other-
the remainder of the cell remains wise unaltered).
unaltered:
address cof[c]:=p;

GF D The contents of the p-register are + | In absolute marking Ryp and
stored in pos. 0-9 of the cell spe- Ry are set to one (other-
cified by the D-address, while the wise unaltered).
remalinder of the cell remains unal-
tered:
address colDaddr]:=p;

G3 The contents of the subroutine re- + In absolute marking RhO and
glster are stored in pos,0-9 of cell Ry] are set to one (other-
¢, while the remainder of the cell wise unaltered).
remains unaltered:
address colc]i=s1;

GS D The contents of the subroutine re- + | In absoclute marking Ryp and
gister are stored in pos. 0-9 of the Rhl are set to one (other-
cell specified by the D-address, wise unchanged).
while the remainder of the cell re-
mains unaltered:
address co[Daddr):=sl;

GI The contents of the indicator (ex- + In absolute marking RMO and
cept KA and KB) are stored in pos. R] are set to one {(other-
0-9 of cell ¢, while the remainder wise unaltered).
of the cell remains unaltered:
address colc]:=indicator;

GI D The contents of the indicator (ex- + In absolute marking R 0 and
cept KA and KB) are stored in pos. Rhl are set to one (o%her—
0-9 of the cell specified by the D- wise unaltered).
address, while the remainder of this
cell remains unaltered:
address cofDaddr]:=indicator;

GK The contents of the by-register and + In absolute marking R4 and
the track register are stored in the R are set to one (other-
address and Increment positions of wiSe unaltered).
cell ¢, while the remainder of this
cell remains unaltered:
address co[¢]:=by;
iner{c]:=tk;

GK D As above, with storage in the cell +

specified by the D-address:

address co[Daddr]:=by;
iner{Daddr]:=tk;

In absolute marking Ryp and
R); are set to cne (other-
wise unaltered).

78 SUBSTITUTION INSTRUCTIONS
Specifi- Effect Registration LMmk- Special Remarks
cation ing
M 0]
IS The IS-instruction is only effec- The instruction immediately
tive the first time s is included following should (out of
(if at all) in the address calcu- regard to the tracer-pro-
lation for the instruction imme- grams) not be a jump instruo.
diately following. The effect will tion or a V-modification.
thus be that the final address of I-indicator-operation has
the IS~-instruction is used as the no effect. X- and V-modifi-
s-value in the following instruc- cation in an IS-instruction
tion regardless of the present have no effect.
contents of the subroutine registex
{and this remains unaltered after
the operation):
s2:1=0C3
comment: This statement replaces
the statement
s2:=s51
in the address calculation for the
instruction immediately following;
IS D The D-address of the instruction 1 See above.
used as the s-value in the instrucj
tion immediately following. Other~
wise as the IS-instruction.
NS The final address with reverse sign See above.
1s used as s-value in the instruec-
tion immediately following. Other-
wise as the IS-instruction.
s2:=-C3;
comment: This statement replaces
the statement
s2:=sl
in the address calculation for the
instruction immediately following;
NS D See above.

‘The D-address with reverse sign is
used as s-value in the instruction
immediately following. Otherwise
as the NS-instruction.

SUBSTTITUTION INSTRUCTIONS 79

Specifi- Effect Registration |Mark- Special Remarks
cation M 0 s |ine
IT The final address of the instruc- The instruction immediately
tion is used as increment in the following should (out of
instruction 1lmmediately following regard to the tracer-pro-
regardless of the increment, if grams) not be a jump in-
any, of this instruction (the struction or a V-modifica-
increment remains unaltered after tion.
the operation): X~ and V-modification in
Finer:=c; the IT-instruction have no
comment: This statement replaces effect. I-indicator-opera-
Ihe statements tion has no effect,
Finer:=0 and If the IT-instruction is
a IH half-word instruction
Finer:=increment|[r2]
in the address calculation for the the corresponding RH half-
instruction immediately following; word instruction should be
be non-adjustable or have
an indirect address; in
other cases the address
constant of the IT-instruc-
ITD The D-address of the instruction tion 1s changed.
is used ds increment in the in- See above.
struction immediately following.
Otherwise as the IT-instruction.
NT The final address with reverse See above.
sign 1s used as increment in
the instruction immediately
following. Otherwise as the
IT-instructiont
Finer:=-c;
comment: This statement replaces
the statements
Finer:=0 and
Finer:=increment[r2]
in the address calculation for the
instruction immediately following;
NT D The D-address with reverse sign See above.

1s used as increment in the in-
struction lmmediately following.
Otherwise as the NT-instruction.

CONDITTONALIZING INSTRUCTIONS

Specifi- Effect Registration Mark- Special Remarks
cation M 0 3 ing
BT The instruction (orinstructions) upto For a half-word instruction
and including the following RH half- the increment t equals O.
cell 1s only executed if ¢ > %, the If the BT-instruetion is V-
final address ¢ and the Increment t modified the described effec&
of the instruction both being re- applies to the instruction
garded as numbers in the range (instructions) in cell r+2,
-512 Ssx S 511. Otherwise this in- the cell immediately after
struction (or these instructions) the BT-instruction always
is skipped: being skipped.
if ¢ £ Finer then
begin RH halfword:= false;
rl:=rl+l end;
BT D The instruction has a conditionali- V-modification: As with BT.
zing effect exactly as BT, with
the exception that the D-address is
compared with the increment:
if Daddr < Finer then R
begin RH halfword:= false;
rl:=rl+l end;
BS The instruction (or instructions) upg The instruction is non-
and including the following RH half- adjustable. -
cell is only executed if m > t, the For a half-word instruction
modified address m and the incre- the inerement t equals O.
ment t of the iristruction both V-medification. As with BT.
being regarded as numbers in the
range -512 S x S 511. Otherwilse
this instruction (or these instruec-
tions) is skipped:
if ¢ £ Finer then
begin RH halfword:= false;
rl:=rl+l end;
BS D The instruction has a conditiona- The instruetion 1is non-

lizing effect exactly as BS, with
the exception that the D-address is
compared with the increment:

if Daddr < Finer then
begin RH halfword:= false;
rl:=rl+l end;

adjustable.
V-modiflcation: As with BT.

B

CONDITIONALIZING COINCIDENCE INSTRUCTIONS 81

Speciti- Effmot Registration Mark— Special Remarks
cat oy M 0 g ing
CA The instruction {(or the instruc- ¢ 1s caleculated with 11
tions) up to and including the bits in pos. 00-9 of the
following RH half-cell is only H-register, and then the
executed 1if the final address is contents of pos. 0-9 are
equal to the address constant in R. compared with the corre-
Otherwise the instruction (or the sponding bits of R.
instructions) is skipped: V-modification: As with BT.
if c 4 Raddr then
begin RH halfword:= false;
rl:=rl+l end;
Ca D Same effect as CA, with the excep- V-medification: As with BT.
tion that the D-address 1ls compared
with the address constant in R:
if Daddr 4 Raddr then
begin RH halfword:= false;
rl:=rl+l end;
NC The instruction {or the instruc- ¢ 1s calculated as in the
tions)} up to and inecluding the CA-instruction.
following RH half-cell is only V-modification: As with BT.
executed if the final address is
different from the address constant
in R. Otherwise this instruction ig
skipped:
if ¢ = Raddr then
begin RH halfword:= false;
rl:=rl+l end;
NC D Same effect as NC with the excep- V-modification: As with BT.

tion that the D-address is com-
pared with the address constant in
H:

if Daddr =Raddr then

Sggin RH halfword:= rfaise;
rl:=ri+l end;

CONDITIONALIZING COINCIDENCE INSTRUCTIONS

Specifi- Effect Registration |Mark- Special Remarks
cation ing
M -0 S
CM The instruction (or the instruc- + ROO is not included in the
tions) up to and including the fol- coincidence examination.
lowing RH half-cell 1s only execu- V-mcdlfication: As with BT.
ted if the contents of cell ¢ are
not identical with R in those po-
sitions where the copresponding
positions in M ## contaln ones:
coinc:= true;
O |for 1:-=0 step 1 until 39 do
coine:=coine ~
{pos[i,c]~Mpos[i]
= Rpos[i] AMpos[1]);
if coine then
begin RH halfword:= false;
rl:=ri+l end;
CMD Same effect as CM with the excep- ROO 1s not included in the

tion that the final address ¢ 1t-
self followed by 30 zeroes is com~
pared with R {(with M as mask).

coinclidence examination.
V-modification: As with BT.

JUMP INSTRUCTIONS 83

Specifi Effect Registration Mark- Special Remarks
catlon ing
M 0 S

HV Next instruction is taken from If the instruction is a
cell c; if cell ¢ contains two V-modification, next Iin-
half-word instructions, the left struction is taken from
one is executed first: cell c+l.

RH nalfword:= false;
rl:=o;

HV D Next instruction is taken from the
cell specified by the D-address.
Otherwise as the HV-instruction.

HH Next instruction is taken from cell If the instruction is a
c; if cell ¢ contains two half-word V-modification, next in-
instructions only the right one is struction is taken from
executed: cell c+l,

RH halfword:= true;
rl:=c;
HH D INext instruction 1s taken from the

cell specified by the D-address.
Otherwise as the HH-instruction,

84 JUMP INSTRUCTIONS
Specifi- Effect Registration Mark- Special Remarks
cation ing

M 0 3

HS Next instruction is taken from the The instruction is non-
cell specified by the modified ad- ad justable. If the lnstrue-
dress ¢; if this cell contains two tion is a V modification the
half-word instructions the left one next instruction is taken
is executed first. The address of from cell c+l. If several
the HS-instruction is stored in the subroutines are nested the
subroutine reglster, and for a full- HS-instructions ought to be
word HS-instruction the previous full-word instructions ex-
contents of the subroutine register cept in the outer bloc¢k.
are stored in the increment part of
the full -word instruction:
if -~ halfword then

increment[r]:=s1;

sl:=r;
RH halfword:= false;
rl:=c;

HS D The same effect as for HS, except The instruction is non-
that the next instruction is taken ad Justable,
from the cell specified by the D- -
laddress.

HR Next instruction is taken from cell If the instruction is a
c. If this cell contains two half- V-modification next instruec-
word instructions the left one is tion 1s taken from cell c+l.
executed first. Also the increment If several subroutines are
of cell s is transferred to the sub- nested 1t 1s necessary to
routine register: use one HR-jump correspond-
51 :=increment[sl]; ing to each HS~ju@p i? the
RH halfword:- false; subroutine mechanism is to

—_— work correctly.

rl:=c;

HR D The same effect as for HR, except
that the next instruction is taken
from the cell specified by the D-
address.

HK If no drum transfer takes place the The instruction is non-
instruction has the same effect as ad justable.
H3. Otherwise the instruction is
plank (however, a S-modification, if
any, is always executed).

HK D Tf no drum transfer takes place the The instruetion is non-

[instruction has the same effect as
HS D. Otherwise the instruction is
blank(however, a S-modification, if
lbny, is always executed).

ad justable.

DRUM INSTRUCTIONS 85

Specifi- Effect Registration |Mark- Special Remarks

cation M 0 3 ing

VK The drum track specified by the The VK-instruection is not
final address is connected to the executed until an eventual
ferrite core store (but no drum running drum transport 1is
transfer takes place): completed.
tki=c;

VK D The drum track specified by the D- As above,
address is connected to the ferrite
core store (but no drum transfer
takes place).

IK The drum track connected in advance The ILK-instruction is not
1s transferred to the ferrite core executed until an eventual
store in 40 consecutive cells so running drum transport is
that the first word of the track is completed.
stored in cell ¢. R and M are not
affected.

IKD Same effect as LK with the excep- As above.
tion that the D-address replaces
the final address c.

SK The contents of 40 consecutive The SK-instruetion is not
cells from the ferrite core store executed until an eventual
are stored on the drum track con- running drum transport is
nected in advance; the first of completed.
these cells is cell ¢, which 1s Certain tracks are locked
stored as the first word on the for writing (see volume II).
drun track. R and M are not affec- A SK-instruction referring
ted. to one of these tracks is

neglected.

SK D Same effect as SK with the excep- As above.

tion that the D-address replaces
the final address c.

836 PERIPHERAL UNITS
Specifi~ Effect Registration Mark- Special Remarks
cation M 0 3 ing
VY The modified address is placed in The instruction 1s non-
the by-register with the increment adjusteble. If the VY-
of the instruction as mask; the instruction is & half-word
positions specified by ones in the instruction, the increment
inerement of the instruction (bi- is regarded as zero, i.e.
nary)} are not changed: the whole modified address
for 1:=0 step 1 until 9 do is :r:“iferred to the by-
by[i]:=ibyii]/\ Finer[1]) reglster.
v (Hpos[i] A - Finer(i];
LY A symbol is read from a peripheral When the code is read in
unit to the address positions of R from the typewriter, the
and cell ¢ in such a way that the symbol is transferred di-
bit pattern of the symbol (except rectly from the typewriter
of the parity-bit) is placed in to the cell and to R.
pos. 3-9. Pos. 0-2 (and ROQ) are When the code is read from
cleared and pos. 10-39 remain unal- punched tape, LY has the
tered. effect that a symbol is
Pos. 7-9 of the by-register deter- transferred from the buffer
mine from which peripheral unit to register bl to the cell and
be read: to R, and the next symbol is
then read from the punched
by7.g = 000: tape reader tape o bl; if there is er-
by7.9 = 001l: typewriter ror in the parity-check GIER
stops, and 1t is then pos-
by7.9 = 010: punched card reader sible to make corrections in
- h
In tape input blank tape is skipped th? R-register and in the
cell. The parity-bit is
and tall holest are read as the laced in pos. 2 of the bl-
value 127 (without error in the Se ister pos.
parity check) g ’
SY The last 7 digits of the final ad- The sum of the bit pattern

dress ¢ (pos. 3-3) are written in
accordance with the flexowriter
code (disregarding the parity-bit).
When the code 1s punched on tape
the parity-~bit is put in the right
place, The last 7 digits of ¢ are
shifted 10 places to the right and
are added to the contents of cell
1023 in pos. 0-19. Pos. 4-5 of the
by-register determine the periphe-
ral units, from which output is to
be made:

by (5]
byl 4]

1: typewriter
= 1: tape punch

of =all symbols is accumu-
lated in cell 1023 pos. 0-19
and the contents of this may
thus be used as an output
check sum.

The output units can be con-
nected independent of each
other and of the input units

AUXILIARY INSTRUCTIONS 87

comment: excluding ROO;

changed (ROO 1s not included):

H::M;
M:=R;

R:=H;

Specifi- Effect Registration pMark- Special Remarks
cation Hing
M 0 3

QQ No basic operation, but all modi- The value of QQ being O,
fications wanted (address calcula- the instruction QQ O causes
tion, X-modification etc.) are clearing of a cell (or a
executed. ' half-cell) during input.

The address 1s irrelevant
for execution of the in-
struction.

ZQ Having performed all modifications When GIER has stopped, the
GIER stops. However, an eventual ZQ~instruction has been
running drum transport 1s termina- completed.
ted before the stop.
By pressing the NORMAL START button The address of the ZQ-in-
GIER continues with the next struction is irrelevant.
instruction {or the following
if the ZQ-instruction is pro-
vided with a V),

XR The contents of R and M are ex- + The address of the XR-in-

before the operation.

struction is irrelevant. The
sign to be registered is the
final sign of R, 1.e. the
sign of the contents of R

88

EXECUTIVE INSTRUCTIONS

—

Specifi-
cation

Effect

Registration

M 0 S

Mark-
ing

Special Remarks

uD

One of the instructions placed
in cell ¢ 1s executed with the
current r-value and (if the
s-mechanism is used correctly)
with the current s-value.

The diagram below illustrates
the effects of the interplay
between placing of the UD-in-
struction and the instruction
(or instructions) of cell c.

If the instruction of cell ¢ is
a substitution instruction (IS,
NS, IT or NT) the whole substi-
tution chain, i.e. the substi-
tution instruction(s) and the
instruction affected by the
last substitution instruction,
is executed. At the same time
r is increased correspondingly.
If the last instruetion of the
substitution chain 1s a Jump
instruction, this is executed.

X~ and V-modifications
of the UD=-instruction
have no effect.

UuDp D

The same effect as UD, ¢ every-
where beilng replaced by the D-
address.

Normally of no interest.
X- and V-modifications of
the UD-Instruction have
no effect.

EXECUTIVE INSTRUCTIONS 89

In cell ¢

The UD-instruction of cell r 1s a

full-word

IH half-word

RH half-word

Twe half-words

No Jjump instructions|

Jump instruction in
LH half-word

Jump instruction in
RH half-word

RH half-word of cell c is
performed, and then the
instruction of cell r+l.

RH half-word of cell c is
performed, and then the
instruction of cell r+l

Final address of Jjump
instruction is stored as
address constant 1in cell

r. Then ILH or RH half-
word of cell r-1 is per-
formed depending on the
Jump instruction being
HV (HS, HR, HK) or HH.

IH half-word of celle
is performed, and
then RH half-word of
cell r.

Final address of Jump 1n-
struction 1s stored as
as address constant
in cell r. Then IH
or RH half-word of
cell r-1 is performed
depending on the Jump
instruction being HV
(HS, HR, HK) or HH.

As when no jump in-
structions are placed
in cell eo.

RH half-word of cell ¢
is performed, and then
the instruction of
cell r+l.

As when no jump in-
structions are placed
in cell c.

Final address of Jump-~
instruction is stored
as address constant

of cell r. Then LH

or RH half-word of
cell r-1 is performed
depending on the jump
instruction being HV
(HS, HR, HK) or HH.

One full-word

No jump instruction
without V

No Jump instruction,
with V

Jump instruction

The instruction of cell ¢ is executed, and then the inétruction of

cell r+l.

The instruction of cell ¢ is executed, and then the instruction of

cell r+2.

Final address of the instruction ¢f cell ¢ is stored as address constant
in cell r. Then LH or RH half-word of cell r-1 is performed depending
on the jump instruction being HV (HS, HR, HK) or HH.

90

6. INDICATOR INSTRUCTIONS

On the following pages can be found a list of indicator instructions
and their effect. In the column 'Special remarkst we have noted certain

conditions, to which special attention must be paid.

Regilstration of Qverflow 91

Specifica- Effect Special remarks
tion
TOA The register 1)OA gets the same contents as the Overflow 1s registered by
overflow register after performance of the basic the arithmetic basie opera-
operation: tions iincluding the shift
. . operations) and their modi-
OA:= if overflow then 1 else 0; fications except the F-modi-
ICB The register (B gets the same contents as the O- fication, 1.e. the overflow
register after performance of the basic operationj register 0 is set to one 1f
g pe 1 there 1s overflow in the
OB:= 1f overflow then 1 else O; result of the H-register,
: otherwise it is cleared.
I0C The registers OA and OB both get the same con- In all other basic operatiory
and their modifications the
tents as the O-reglster after performance of the
O-register remains wmaltered
basic operation:
OA:=0B:= if overflow then 1 else O;
IZA The register OA is set to one if the contents of | ROO 1s included here.
the R-register is 0 after performance of the Registration of the zero
basic operation. Otherwise QA 1s cleared: situation in the R-register
- _ . can take place in connection
OAs= if R0 then 1 else O; with any operation. Registra-
tion takes place before
IZB The register OB is set to one if the contents of performance of a V-modifica-
the R-register is O after performance of the tion, if any.
basic operation. Otherwise 0B is cleared:
OB:= if R=0 then 1 else O;
IZ¢C The registers OA and OB are both set to one 1if

the contents of the R-register is O after per-
formance of the basic operation. Otherwise QA
and OB are cleared:

OA:=0B:= 1f R=0 then 1 else O;

1) The specification tregistert is in this chapter used a.c. about a single position of the
indicator containing 12 positions (12 flip-flops}.

92 Registration of Sign
Registration of Marking
Exchange of p-Register and Indicator
Specifica-~ Effect Special remarks
tion
ITA The TA-reglster 1s set to one if the contents of In the arithmetic basic
the H-register 1s negative after performance of operations {and the shift
the baslc operation. Otherwise TA is cleared: operations and a few more)
A : ~HOO: the sign of the H-register
T is equal to the sign of the
ITB The TB-register is set to one if the contents of sign of the result, and it
is thus the sign of the
the H-register 1s negative after performance of sult that is registered
the basic operation. Otherwise TB is cleared: re g .
It is necessary to register
TB:=H00; the sign in the instruction
where 1t tarisest, since
IIC The registers TA and TB are set to one if the con- thhﬂ;regiz::: is used in
tents ¢f the H-register is negative after per- Tge sipz is re;d in 5.00
formance of the baslc operation. Otherwise TA and g pos.
TB are cleared: and 1s thus correct even if
- overflow occurs.
Note besides the difference
TA :=TB=HOO0; from ‘the indicator instruc-
tions LT and NT where the
sign is examined in the R-
register.
IPA The PA-register gets the same contents as Ryg Marking of the operand cell
after performance of the basic operation: is registered, 1.e. trans-
ferred to Ryo,41 in the
PA:=R H
pos{40] following bus{c operations:
IPB The PB-reglster gets the same contents as Ry1 ﬁi’ ag’ gg’ gg’ ig’ ﬁg’ gﬁ'
after perf f the basi tion: ’ ’ ’ ’ ! ’ ’
r performance o e basic operation CM, and their S-, F-, X-,
PB:=Rpos[4l]; and V-modifications, but
not D-modifications.
IPC The registers PA and FB get the same contents as
Ry and Rul after performance of the basic opera-
tion:
PA:=Rpos[40}; PB:=Rpos[4l];
IQA, IQB, have the corresponding effects for the Q- and R-
.., IRC reglsters.
IK, IKA, Have all the same effect, i.e. the contents of The contents of KA and KB
IKB, IKC the p-register and the indicator are exchanged are not included in the ex-

after performance of the basic operatiocn.

change and remain unaltered

Marking 93

Specifica- Effect Special Remarks

tion

M The marker-bits of the operand cell are both Is normally used only in
cleared. The marker-bits of the R-register are connection with the basic
both set to one: operations AC, SC, GR, GM,

GA, GT, GI, GP, (S, OGK, NK,
pos[40,c]:=pos[il,e]:=0; and NL, and their modifica-
Rpos[40]:=Rpos[41]:=1; tions (not GRD and GMD).

In connection with the other

-MA The marker-bits of the cperand cell are set to 10. basic operations the marker-
The marker-bits of the R-reglister are both set to bits of the operand cell
one: will remaln unaltered; how-

ever, the marker-bits of the
pos[40,c):=1; pos[ll,e]:=0; R-register are still set to
Rpos{40] :=Rpos[41]:=1; one.

M, MA, MB, and MC are called

MB The marker-bits of the operand cell are set to Ol. absolute marking operations.
The marker-bits of the R-reglster are both set to
one:
pos[40,c]:=0; pos[l4l,c]):=1;

Rpos[40] :=Rpos[41]:=1;

MC The marker-bits of the operand cell are set to 11.
The marker-bits of the R-reglster are both set to
one:
pos[40,c]:=pos[4l,e]:=1;

Rpos{40] :=Rpos[41]:=1;

MOA Pos.40 of the operand cell gets the same contents | The other registers in the
as OA, while pos.4l is cleared. The marker-bits indicator including KA and
of the R-register remain unaltered: KB can be used in marking of

. . . a cell in exactly the same
pos[40,c]:=0A; posijl,c]:=0; way as OA and OB.

The marker-bits of the R-

MOB Pos.41 of the operand cell gets the same contents | register always remain wunal-
as OB, while pos.40 is cleared. The marker-bits tered.
of the R-register remaln unaltered: Note besides the remarks

under M.
pos[40,¢]:=0; pos(kl,c]:=0B; MOA, MOB, MOC, MTA, ...,

MKC are called indicator-

MoC Pos.4C-41 of the operand cell get the same con- dependent marking operations.

tents as OA and (B, respectively. The marker-bits
of the R-register remain unaltered:

pos[40,c]:=0A; pos[ll,c]:=0B;

Q4

Register-Conditional Instructions
Overflow-Conditional
Zero-Conditional
Sign-Conditional

tion

Specifica-

Effect

Special Remarks

Lo (NO)

The current

instruction is only executed if

ROO L RO (or ROO = RO).

Independent of the contents
of the 1indicator.

LOA (NOA)
LOB (NOB)

LOC (NOC)

The current
contents of

The current
contents of

The current
contents of

instruction 1s only executed if the
OA are equal to 1 (or 0).

instruction 1s only executed if the
OB are equal to 1 {(or 0).

instruetion 1s only executed if the

both OA and OB are equal to 1 (or 0).

LZ (NZ)

The current
contents of

Instruction 1s only executed 1f the
R are equal to O (different from 0).

ROO is included here. Inde-
pendent of the contents of
the indicator.

LZA, LZB,
Lz¢

NZA, NZB,
NZC

Same effect

Same effect

as LOA, LOB, and LOC, respectively.

as NOA, NOB, and NOC, respectively.

LT (NT)

The current

instruction is only executed if

ROO=1 (or ROO=0}.

Note the difference from
registration of sign where
the sign is taken from HOO,.
Independent of the contents
of the indicator.

LTA (NTA)

LTB (NIB)

LTC (NTC)

The current

instruction is only executed if

TA=1 (or TA<0).

The c?rrent

The current
TA-TB-1 (or

instruotion is only executed if

Instruction is only executed if
TA=TB=0).

Reglstration of Overflow EZ
Reglstration of Zero Situation

Specifica- Effect Special Remarks

tion

LA (NA) The current instruction is only executed if Independent of the contents
Ryo=1 (or Ry0=0). of the indicator.

LE (NB) The current instruction is only executed if
Ru]_:l (OI‘ R41=0).

1C (NC) The current instruction is only executed if
Ryo=Ry1=1(or R, ,=R);=0).

LPA (NPA) The current instruction is only executed if
PA-1 (or PA=0).

LPB (NPB) The current Instruction is only executed if
PB=1 (or PB=0),

LPC (NPC) The current instruction is only executed if
PA-PB=1 {or PA=PB-0).

LQA, NQA, have the corresponding effects , depending on

..» NRC the Q- and R-bits.

LKA (NKA) The current instructlon is only executed 1f The contents of KA and KB

KA=1 (or KA=0). can only be changed by means
of push buttons on the con-

LKB(NKB) The current instruction is only executed if trol panel (see volume 2).
KB=1 (or KB=0).

LKC (NKC) The current instruction is only executed if

KA=KB=1 (or KA=-KB=0).

96

7. EXAMPLES AND EXERCISES

7.1 Introduction

This chapter consists of a series of examples showing

the effect of each instruction, and some examples of how

different types of problems are programmed, and accompanying

exercises.

In section 7.2 instructions without indicator instruc-
tions are considered, and in section 7.3 the main conside-
ration is for instructions with indicator instructions.
Section 7.4 contains some examples of programs dealing
with both large and small problems, and some exercises.

In each section the arrangement is as follows: At first
the problem to be considered is described, and then the
solution of the problem is demonstrated by the statement
of a program. These programs normally contain only few
or no comments at all, since the purpose of the examples
is to make the reader familiar with the operation list,
The instruction UD is not considered in this chapter as
it is rather particular.

Incidentally, the reader's attention is drawn to the
fact that the problems demonstrated may frequently be
solved in many other ways than those described in this

manual,

97

7.2 Instructions without Indicator Instructions

7.2.1 Examples of Addition, Subtraction, Storage, and

Use of Stop Instructions

Example 7.1

The machine numbers x, y, z, v are stored in
cell no. 100, 101, 102, and 103 respectively. It
is assumed that the sum 8 = x + y + Z2 + Vv is a
machine number. 8 is reguired to be stored in
cell no. 104, after which the computer should
stop.

Program:

[m+0] ARS 100, AR 101
[m+1] AR 102, AR 103
[m+2] GR 104, ZQ@ O

Exercise 7.2

In what way should the program in example 7.1
be changed if the numbers x, y, z, and v are

floating-point numbers?

Exercise 7.3

Will the result in example 7.1 be correct if
x =0,75, y = 0,75, z = -0,50, and v = -0,257
(If so, the interim result x + y is not a machine

number).

Exercise 7.4

A program is required to form|x| + |y|+ Izl + |v|
in cell 105. (The same storage as in example 7.1
with the assumption again that the result is a

machine number).

Exercise 7.5

As in exercise 7.4, except that we assume that

the numbers are now floating-point numbers.

98

Exercise 7.6

x - Iyl - z + lv'is to be stored in cell 106,

(Storage as before).

Example 7.7

Let us imagine that the integers al, a2, and a3j
are placed in cell no. 201, 202, and 203, respectively,
with units in pos. 9 (i.e. the numbers are placed in
the addreas positions).

The number al - a2 + a3 + 13 is to be stored with
the units in pos. 9 of cell 200.

Program:

[m+0] ARs 201, sr 202
[m+1] AR 203

(m+2] AR 13 D

{m+3] GR 200, ZQ@ O

Exercise 7.8

What condition must be fulfilled to obtain the
desired result in example 7.7?

Exercise 7.9

Write a program that forms -|a1|+ |a2| - |a3| - 32.
(conditions as in example 7.7).

Exercise 7.10

Write a program that stores the numbers 1, 2, 3,
4, and 5 in cells nos. 901, 902, 903, 904, and 905.
The numbers must be stored with the units in pos. 9.

‘Example 7.11

Full-word instructions with address constants
al a2, and a3 are placed in cells nos. 201-203.
None of the instructions have relative or indirect

99

addressing, or are indexed. The number al - a2 + a3 + 13

is to be stored with the units in pos. 9 of cell 200.

Program:

[m+0] ARS (201) D
[fm+1] SR (202) D
[m+2] AR (203) D
[m+3] AR 13 D
[m+4] GrR 200, 2Q O

If only one of the instructions in cell 201-203 has
indirect addressing the above mentioned program will
not function correctly. (Why?) The actual solution
of this problem will, in fact, require application

of operations not yet examined.

Example 7.12

The machine numbers a and b are placed in R and
cell 444 respectively. The sum a + b is to be formed
in cell hWikh,

{m+0] AC 4l4, 2q 0O

Example 7.13

The floating-point numbers a and b are placed in
RF and in cell 44} respectively. Their sum is to be
formed in cell Ubh;
[(m+0] ARF 44k, GR 444 [Why not just ACF 4uk, zqQ 07]
(m+1] 2@ o

Exercise 7.14

The numbers a and b are placed as in example 7.12.
Form

1) a - b in cell Li44

2) b - a in cell ULk,

100

7.2.2 Examples of Multiplication and Division. Placing

in the M-register.

Example 7.15

The machine numbers x, y, z, and v are placed
in cells 300, 301, 302, and 303, respectively. The

quantity a = xy(z + v) is to be calculated and
stored in cell 304,

Program 1:

[m+0] ARS 302, AR 303
[(m+1] GR 304, PM 304
[m+2] MKS 301, GR 304
[m+3] PM 304, MKS 300
[m+4]) GR 304, Zzq 0

By the use of the X-modification the Job can be

done with fewer instructions.

Program 2:

[m+0] ARS 302

[m+1l] AR 303 X
[m+2] MKS 301 X

[m+3] MKS 300, GR 304
[m+d] zq o]

Note, however, that this program takes up just as
much space as the first program. The job can also

be done using a somewhat shorter program:

ProEram 3

[m+0] ARS 302, aR 303
[m+1] xR 0, MKS 301
[m+2] xR 0, MKS 300
(m+3] GR 304, 1zq o}

But, in fact, program 2 is performed in shorter time
than the other ones,.

101

Our reason for demonstrating different solutions
is purely that we would like to illustrate different
types of instructions. We will, however, not encourage
the reader to change the programs to save a couple of
cells. It requires a great deal of time to program

with the least possible number of instructions.

Exercise 7.16

Same problem as in example 7.15, but with floating-

point numbers instead of machine numbers.

Exercise 7.17

What will the contents of cell 304, in example 7.15,
be after program no. 1 is completed, if the S-modifica-

tions in [m+2) and [m+3]are excluded.

Exercise 7.18

With the same condition of storage as in example
7.15 the quantity a = (x - y)(v - z) is to be formed
and stored in cell no. 304.

Example 7.19

Let the machine numbers a and b be placed in M and
R respectively. The instruction MK ¢ D will thus cause
acx 2 7+ b to be placed in R if -512 e < 511.

Exercise 7.20

Let a and b in example 7.19 be 0.3 and 0.2 respec-
tively. What 1s the effect of the instruction MK 896 D?

Example 7.21

The integers a, b, and ¢ are placed in cell no. 400,

401, and 402 respectively with the units in pos. 39, We

239

assume that O i ab+c < . ab+c dids8 to be stored in cell

102

403 with the units in pos. 39.

Program:

f mso] PM 400, ARS Lo2
[m+l] ML 401, GM Lo3
{m+2] zqQ 0

Exercise 7.22

Why will the program in example 7.21 not work pro-
perly if the condition O $ aba+c (239 18 not fulfilled?

Example 7.23

The floating-point numbers a, b, and ¢ are placed
in cell no. 400, 401, and 402, respectively. The quan-
tity ab+c is to be stored in cell 403.

Program:

[m+0] ARSF 400, MKF 401
[m+1] ARF U402, GRF 403
[m+2] 2zq 0

Note, that one F in each of the cells { m+0] and [m+1]
would be sufficient.

Example 7.24

The machine numbers a, b, and ¢ are placed in cell

12, 13, and 14, respectively. The quantity ac/b is to
be stored in cell 11.

Program 1:
[m+0] PM 12, MKS 14
[m+1] DK 13, GR 11 [request: [axc| < |b]]

[m+2] 2q@ o©

103

Program 2:

[m+0] ARS 12, DK 13 [request: lal < | ®il
[m+l] XR 0, MKS 14

[m+2] GR 11, Zq (o]

Exercise 7.25

Due to the round-off errors the computer does not
calculate exactly. Write a program that calculates
more accurately than the two mentioned above (use

long operations).

Exercise 7.26

Same problem as in example 7.24, but with floating-

point numbers instead of machine numbers.

Exercise 7.27

Same problem as in example 7.24, but with integersa
(stored with the units in pos. 39) instead of machine

numbers.

Example 7.28

The machine numbers a and b are placed in cell 100
and 101, respectively, and sign(a)x b is to be stored

in cell 102. (sign(a) = 1 for a 2 0 and -1 for a 0).

Program:
[m+0] ARS 101, MT 100
[m+1] GR 102, 2Q O

In the following exercises we assume that the num-
bers x, y, z, and v are placed in cell 32, 33, 3k,and
35, respectively.

Exercise 7.29

The quantity (x + y)/(z + v) is to be stored in cell

31. (x, y, z, and v machine numbers).

10k

Exercise 7.30

The guantity
cell 30. (x, vy,

X pa z' Ivl . .
— - + —— is to be stored in
2t 3 iE 5

z, and v machine numbers).

Exercise 7.31

Exercise 7.29 with floating-point numbers.

Exercise 7.132

Exercise 7.30 with floating-point numbers, and with
the floating-point numbers 2, 3, 4, and 5 stored in

some cells.

7.2.3 Examples of Normalization and Number Shift

Example 7.33

We require the machine number a in cell 42 to be

normalized. The normalizing exponent must be stored
in cell 43, and the normalized number must be stored
in cell 4k,

Program:

{(m+0] ARS 42, NK 43
[m+1] GR 44, Zq@ O

Example 7.34

The machine number x placed in cell 1000 is to be trans-
formed to floating-point number and replaced in cell

1000.
Program:
[m+e0] ARS 1000
[m+1] NKF 0, GRF 1000
[m+e2] 2zq 0

Exercise 7.35

Why is it not possible to pack the instructions in
example 7.34 in such a way that they only occupy two whole
cells? '

105

Exercise 7.36

How will the program in example 7.34 be affected
if 1) the first F in cell [m+1] is excluded? 2) if
the second F is excluded? 3) if both are excluded?

Example 7.37

The machine number a is placed in cell 702. We
assume that 23K51 is a machine number, too. This num-

ber must be placed in cell 701.

Program:
[m+0] ARS 702, TK 3
[m+l] GR 701, ZqQ ©

Example 7.38

We assume that the floating-point number b,placed
in cell 98,1s in the range -1 & b< 1. The number is to

be transformed to a machine number and stored in cell 99.

Program;

[m+0] ARFS 98, TKF 10
[m+1] GR 99, Zq@ O

Exercise 7.739

The machine numbers a and b are placed in cell 100
and 101, respectively. The quotient % is to be calcu-
lated in the form c X 2d, where ¢ i1s a normalized num-
ber and d an integer. ¢ and d are to be stored in cell

102 and 103, respectively.

Examples of cyclic shift can be found in section 7.4.

7.2.4 Application of Boolean Operations

Example 7.40

The instruction AB 27 will cause the contents of

106

cell 27 to be added Boolean to the contents of R.

Let the contents before performance of the operations

be

0 39
cell 27{1 0 . . 101011}
R ploo. T 001710 o]

After execution of the instruction is obtained

00 39
R pi{l1 o . . 101111}

since ones will appear in those positions where there

is a one in at least one of the operands (R and cell).

Example 7.41

The instruction MB 27 causes the contents of cell

27 to be Boolean multiplied by the contents of R.
Let the contents in R and in cell 27 be

0 39
cell 27| 1 0 . . 1 0101 1]
R ltjloo . . 10110 0]

After execution of the instruction is obtained

00 39
R L]0 0 . . 101000]

as ones only will appear in those positions where there

is a one in both operands (R and cell).

Example 7.42

The effect of X-modification on the instructions AB
or MB deviates from the usual interchange of R and M.

Let the contents of R and cell 27 be as follows:

107

0 39
cell 27 lLo. .101014
R [opJoo . . 001 100Q

After the instruction AB 27 X the contents of R and M
will be as follows:

00 39
R [ofo 1 . . 010004
M Fo. .10111]

The contents of M are the Boolean sum of the operands, and

the new contents of R are ones where the contents of M
are zeroes and vice versa. After the instruction MB 27 X

R and M will have the following contents:

00 39
R 1 o. . 100111
M bo..oo0lo00(

The contents of M are the Boolean product of the operands.
The new contents of R are ones in those positions where

the original contents of R and of cell 27 differ, and

zeroes in the other positions.

We point out that the logical operations are performed on

k1 positions with R as one operand and the contents of

00-39
the cell with duplicated sign as the other operand.

Exercise 7.43
Let R have ones in the positions 00, 1, 3,, 39,

and zeroes in the positions O, 2, 4,, 38. Further-
more, let cell 100 have ones in the positions 0, 2, 4,
cessey 38, and zeroes in the positions 1, 3, 5,, 39.
What are the contents of R and M after performance of

the operations:

1) AB 100
2) MB 100
3) AB 100 X
L) MB 100 X

108

Exercise 7.4b

Let R have the same contents as in exercise 7.43.
What are the contents of R after performance of the

operations:

1) AB 5D
2) MB 5D
3) AB 5 DX
4) MB 5 DX

7.2.5 Examples of Placing and Storing Operations

Example 7.45

Using the instruction PM 307 D the number 307 1is
placed in M with the units in pos. 9. The remainder
of M 1s cleared.

Example 7.46

Using the instruction PP 47 the number 47 is placed

in the p-register.

Example 7.47

Using the instruction PS 133 the number 133 is placed

in the s-register.

Example 7.48

The instruction PA 36 + 14 causes the increment +i4i4
to be placed in cell 36 with the units in pos. 9, i.e.

as an address constant in cell 36.

Example 7.49

The instruction PT 236 + 44 causes the increment + 44
to be placed in cell 236 with the units in pos. 19, i.e. as

an increment in cell 236.

Exercise 7.50

109

Write a program which places the numbers 7, 9, and

13 in pos.

register, respectively.

Exercise 7.51

0-9 of the M-register,

p-register, and s-

Write a program which places the numbers 22 and -22

with the units in pos.
tively.

Example 7.52

9 and pos.

19 of cell 7, respec-

Let us imagine the instruction PA r+42 D +17 to be
placed in cell 278. The instruction will be adjusted to

PA r+l17 D+17.

Examgle 2.22

The instruction PA (r+42) D +17 which is imagined
placed in cell 278 causes the number 17 to be placed

in cell 320 with the units in pos.

i.e. as an address

9,

constant in cell 320. (Which assumption is made?).

Exercise 7.54

PT r+1 D -48, PT (r+1) D
in the cells 25,26, and 27,
contents of the three cells

gram?

Example 7.55

Let the address constant

7 and 20, respectively. The

GR p+408 D +12

will thus be adjusted to GR

-86, and ZQ O are placed
respectively. What are the

after execution of the pro-

and the increment of R be

instruction

p+7 D +20, after execution.

110

Exercise 7.56

The instruction in example 7.55 is changed to
GR (p+408) D +12. The number 1012 is placed in the
p~-register. What is the effect of the instruction now?

Example 7.57

LLet the address constant and the increment of M be

207 and -413, respectively. The instruction
GM s+4 D 411

will thus be adjusted to GM s+207 D -L413, after execution.

Exercise 7.58

What is the effect of the following program:

{m+0] PM r+7 -6
[m+1] GM (r-1) D -49
[m+2] zqQ O

Example 7.59

Let the address constant and the increment of R be

39 and 93, respectively. The instruction

GA r+4 D -17

will then adjust itself to GA r+39 D -17. The instruction
GT p-411 D -373 will adjust itself to GT p-411 D +93.

Exercise 7.60

what is the effect of the following program:

[m+0] ARS r-k +7
[m+l] GA (r+1) D
[m+2] GT (r+2) D

[m+3] PP (r+l1) +32
[m+d] Z2Q B 45

111

Example 7.61

Let the contents of thes-register be 378. The instruc-
tion GP p+3 will then cause the number 378 to be stored
in pos. 0-9 in cell 381l. The instruction GP p+3 D will
adjust itself to

GP p+378 D.

Example 7.62

Let the contents of the s-register be 788. The instruc-
tion GS 47 will then cause the number 788 to be stored in
pos. 0-9 in cell 47. The instruction GS 47 D will then ad-
just itself to GS 788 D.

Exercise 7.63

What is the effect of the following program:

[m+0] PP 42, Ps -21
[m+1] GP s+l, GS p+7
[m+2] GS 42 D

[m+3] GP 19 D

[med] GS (r-3) D
[m+5] GP (r-2) D
([ms6] ZQ ©

Examples of coperations involving the indicator are dealt with
in section 7.3 below.

7.2.6 Examples of Substitution Instructions

Example 7.6M4

Let the s-register contain the number 25. We consider

the following programs:

Program 1: Program 2:
[m+0] IS 20, ARS 842 [m+0] IS 20, ARS 400

{msel] AR bLOO, ZQ 0 [mel] AR 842,2Q 0

112

In program 1 the IS-instruction is immediately followed
by an s-indexed instruction. The effect of program 1 will
be that the sum of the numbers in the cells 22 and 400 is
obtained in the accumulator. In program 2 the IS-instruc-
tion has no effect. The s-register remains unchanged in

both cases.

Exercise 7.65

What is the effect of the following program, 1f the

contents of the s-register are 200 ;

[m+0] IS 50, ARS 8+10
[m+1l] AR s+10, 2Q o]

Exercise 7.66

What is the effect of the following program stored in
cells 10-12;

[L0] Ps 2, 1Is 11
[11] ARS (s+1)
{12] AR s+l, 2Q O

Example 7.67

The instruction NS r+82 D +167 is placed in cell 37.
The instruction will cause the number -37 to be used as
the s-value in the instruction (the first instruction)
in cell 38.(And the instruction itself is adjusted to
NS r+249 D +167).

Example 7.68 The IT-instruction

We consider the following program:

[m+0] IT L +3
{m+1] ARS 100 20
fm+2] zZQ 0

The final address in the IT-instruction is 7, which is
used as increment in the following instruction. The program

will cause the contents of cell 107 to be transferred to R.

113

Exercise 7.69

What are the contents of the cells [m+0], [m+1] ,and

[m+2]in example 7.68 after execution of the program?

Example 7.70

The instruction NT s-14% D -77 is placed in cell 888.
The instruction will cause the number -888 to be used
as increment in the instruction (the first instruction)
in cell 889.

Exercise 7.71

What is the effect of the following program placed

in cell 100 and onwards:

[10 IT r+1 D +20
[10] 1T r-1 +ho
f102) SRS r-2 +60

Example 7.72

The operation IT should only be used in a left-hand
half-word instruction, if the right-hand half-word
instruction is non—adjustablel)because otherwise the
effect is destructive: The increment (i.e. the address
ad justment) occurs in the address of the IT-instruction

itself (in pos. 0-9 of the cell). If, for instance,
we write the instructions

1) A half-word instruction containing an operation for
which the increment is active (i.e.it can adjust the
modified address), is only adjusted if the preceeding
instruction is an IT-instruction, otherwise the incre-

ment is automatically set equal to O.

114

IT 4, AR r+17

they will be executed as AR r+2l1l, but after execution

of the instructions are changed to

IT 21, AR r+17

It will be even worse if the IT-instruction has an

indirect address: The instructions

[m+0] GR 3 X
[m+l] IT (r-1), AR r+b

will be executed as GR 3 X followed by AR r+7, dbut in
the process the instructions will have been changed to

{m+0] GR 3 X
[m+l] IT (r+7), AR r+lb

because the increment in the addition instruction is
always made in the address positions 0-9 of this full-
cell, i.e. in the address of the IT-instruction.

If, on the contrary, the addition instruction is
indexed the increment takes place in the normal way in
the final address constant; for instance the instruc-

tions below

[m+0] GR 3 X
[m+1] IT (r-1), AR (r+l)
[m+2] MK 35

will be executed as GR 3 X, then AR 8 and finally MK 8,
as increment takes place in this last instruction.

If the IT-operation is placed in a right-hand
half-word instruction or in a full-word instruction,
it will affect the execution of the instruction (or the
left half-word instruction)in the next cell in a more
normal way, as increment now takes place in the address
positions 0-9 of the cell, which positions just contain

the address constant of the instruction.

115

Finally, if there is a non-adjustable instruction after

the IT-instruction, no problems of the placing arises, because

no modification takes place in the instruction cell.

Example 7.73 The IS-instruction

As pointed out in the operation list the IS-instruc-
tion only influences the address of the instruction
that follows immediately after the IS-instruction. How-
ever, it also influences the final address in a chain of

brackets. For instance the instructions .

[m+0] IS 13, AR (r+l)
[m+1] ZQ s-1 ‘

are executed as AR 12 independent of the contents of the
s-register. On the other hand the IS-instruction works

only with the first s-indexing in a chain of brackets.

Thus the instructions

[14] SRS s-2, AR r+25
[15] IS 13, AR (s+l1)

will cause the effective address in the last instructions
to be evaluated from the first address constant in cell
14, i.e. s-2, and here the increment constant in cell 13
replaces s, since the address of the last instruction
containing both s and brackets, starts the subroutine
mechanism (see address calculation page 63 and IS-instruc-

tion page 78).

Note that the IS-instruction substitutes the contents of

the auxilary subroutine index register s2 with its final
address whereas s2 is normally set equal to sl, the main
subroutine index register. s2 is thereafter used exclusively
in the address calculations and each time it is used its
contents are subsequently set equal to pos.10-19 of the

cell whose address is contained in s2.

116

7.2.7 Conditional Instructions

Example 7.74

The effect of the instruction BT p+37 +19 is that
the instruction(s) stored in the following cell will
only be executed if the contents of p are such that
P+37+19> 19 (the value of p+37+19 is regarded as a
number within the range -512 < X i 511. Furthermore,
the BT-instruction is changed to BT p+56+19.

Exercise 7.75

Examine the effect of the instruction in example

7.74 for the different possible values of p.

Example 7.76

The effect of the instruction BS p+37+19 is that

the instruction(s) stored in the following cell will
only be executed if the contents of p are such that
p+37> 19 (the value of p+37 is regarded as a number
within the range -512 g X i 511.

Exercise 7.77

Examine the effect of the instruction in example

7.76 for the different possible values of p.

Example 7.78

The instruction BS s-37 D +50 has no effect unless

it is placed in a cell, the address of which is lar-

ger than 50.

Exercise 7.79

The instruction in example 7.78 is changed by
writing a bracket round s-37. In which cases will

the instruction be effective now?

117

Example 7.80

The effect of the instruction CA 42 +28 is that
the instruction(s) stored in the following cell
will only be executed when the address constant
in R is 70. Besides, the CA-instruction is changed
to CA 70 +28.

Exercise 7.81

Let the address constant of R be 70. When is the
instruction CA 42 D +28 effective?

Example 7.82

The instruction NC r-19 +39 is only effective when
the address constant of R is exactly r+20. (However,
under all circumstances the address constant of the NC-

instruction will be changed),)

Exercise 7.83

What is the effect of the following program:

[m+0] ARS r+l1 V

[m+1] ARS (s+37) D +1ilh
[m+2] €A -19 X +56
[m+3] MKS 37 D

[m+4] 2Zq o©

Exercise 7.84

Let the address constant of R be 403. When is the
instruction NC p+42 DVX-413 effective.

Example 7.85

Let the contents of pos. 10-19 of the M-register be
ones, and otherwise zeroes. The effect of the instruc-
tion

CM 708

118

is then that the contents of pos. 10-19 (the increment)
of cell 708 are compared with the contents of the cor-
responding positions of the R-register. If they are
identical the instruction(s) stored in cells up to and
including the following right-hand half-cell will be
skipped.

7.2.8 Examples of Jump Instructions

Example 7.86

The following fragment of program

[m+0] AR 100, GR 100
[m+l] HV r-1

will cause the addition instruction and the storage
instruction to be repeated over and over again until

GIER is stopped manually. On the other hand

[m+0] AR 100, GR 100
[m+1] HH r-1

will only cause the storage instruction to be repeated
again and again until GIER is steopped. An efficient

stop-lock can be made by means of the two instructions
ZQ 0, HV r

and GIER will stop again as soon as NORMAL START-button
is pressed. (This will prevent inadvertent running of
a program which is placed immediately after a stop

instruction).

Example 7.87

If four machine numbers of cells 100-103 are to be
added together and the sum stored in cell 104 this can
be done by means of the following program (provided

that R is cleared in advance):

[m+0]
[m+1]
[m+2]
[m+3]

119

AR 99 +1

BT 3 -1 [next instruction is only executed 3 times]
HV r-2 [jump back to the addition instruction]

GR 104, ZQ O

In this case where the full-word instruction is contained

in the cell to which the jump is performed we could Jjust

as well have used a HH-instruction. The program

Am+0]
[m+l]
f[m+2]
[m+3]

AR 99 +1
BT 3 =1
HH r-2

GR 104, Z2Q O

will have the same effect (see also example 122

that shows many other way:s of programming such a calcula-

tion).

Example 7.88

Let the instruction HS r+l2 be placed in cell 440 and

let the contents of the s-register be 67. The instruction

will then cause the next instruction to be taken from

cell 452. Furthermore, the contents of the s-register,

i.e.

67, are stored as the increment constant of the

instruction {this only occurs when the HS-instruction

is a full-word instruction). Finally, the location of the

HS-instruction, i.e. 440, is placed in the s-register.

After execution, the instruction is thus HS r+l12 +67.

Example 7.89

LLet us consider the instruction IIR s+1 in relation

to the previous example. Since the s-register contains

the number 440, the final address becomes 441. The in-

struction will then cause the next instruction to be

taken from cell 441, and besides the increment, i.e. 67,

is transferred to the s-register.

120

Exercise 7.90

What is the effect of the following program which we
can assume to be stored from cell 20 and onwards, if

the s-register contains the number 2:

20] HS r+3

[

[20] HS r+2

[22] HR r+2

[23] HR r-3 +1
[241 za 0

Example 7.91

A HK-instruction has the same effect as the correspon-
ding HS-instruction provided that no drum transfer is
being made. Otherwise the HK-instruction has no effect.

(However, a HKS-instruction will always clear the R-register).

Example 7.92

It is desired that GIER shall jump to cell 100 from
an instruction in cell 42, This cell contains a full-word
instruction without indirect addressing. No drum transfer
is being made. How many of the following instructions

could be used in cell 4227

HV 100 HV 100 D HV (100) D
HH 100 HH 100 D HH (100) D
HS 100 HS 100 D HS (100) D
HR 100 HR 100 D HR (100) D
HK 100 HK 100 D HK (100) D

7.2.9 Examples of Drum Instructions and Administration of

Peripheral Units.

Example 7.93

We consider the following program:

121

[m+o] VK 17, LK 4ko
[m+1] VK 18, LK 480
[m+2) VK 19, SK 4ho
[m+3] VK 20, SK 480
[m+d] 2 o0

The effect of the program will be that the contents of
track no. 17 (i.e. the contents of the 40 cells on the

track) are transferred to track no. 19, and the contents

of track no. 18 are transferred to track no. 20.

Example 7.9%4

If we want the sum of the first element of track 200
and the first element of track no. 201 to be stored in
cell 1015 (as floating-point numbers) the code can be

made as follows:

[m+0] VK 200, LXK 974 [track 200 is read to cell 974-1013]
[m+el] VK 201, LK 975[track 201 is read to cell 975-1014]
[m+2] VK 0, ARSF 974

[m+3] ARF 975, GR 1015[addition and storage]

[m+d] 20 0

Here the VK O instruction ensures that drum transfer is
completed before treatment (addition) of the elements is

started, and this is a necessary condition.

Exercise 7.95

The number a is placed in cell 12 on track 42 and
the number b in cell 27 on track 45. The number c¢ :!al—lbl
is to be stored in cell 5 on track 71. (We assume that the
numbers a and b are machine numbers. Calculation of ¢ must

not start during drum transfer).

122

Example 7.96

Before input to the computer or output from the com-

puter take place, the peripheral units to be used must

be selected. The diagram below illustrates 8 possibi-

lities for assignment of the apparatus (a + means connected,

otherwise not connected):

Input Output Can be
achieved
Tape Type- Tape Type- using the
reader writer punch writer instruct.

+ VY

+ vy 1

+ + VY 16

+ + vY 17

+ + VY 32

+ + vy 33

+ + + VY 46

+ + + vY 49

The VY-instructions mentioned in the diagram determine
assignment of the input/output units completely, but it is
also possible to select a certain input unit inde-

pendent of the output and without changing the output situa-
tion and vice versa by means of a VY-instruction with an

increment as mask. The instruction

VY O +48

will, for instance, select the tape reader without
influencing the assignment of the output units. The

instruction

VY 32 +7

similarly connects the tape punch to the output channel
without influencing the assignment of the input units.
(The instructions are unaltered after execution because

VY is a non-adjustable operation)

123

Example 7.97

A primitive program to copy a tape might, in its
essence, look like this:

[me0] VY 32, LY r+l
{m+1] SsY 0, HH r-1

(however, the program ought to be furnished with some

sort of administration to start and stop in a reasonable

way).

Further reference to LY and SY is made in volume II, in

connection with the standard input and output programs.

7.3 Instructions Using the Indicator

In sections 7.3 and 7.4 several of the operations not
used in the previous chapters are reviewed with reference

to the indicator.

7.3.1 Examples of Placement and Storage

Example 7.98

Let us consider the instruction PI 20 +3 and re-write
the modified address, here 20, and the increment, here
3, in the binary system. The numbers are to be written

with the units in pos. 9.

pos. 0O 1 2 3 4 5 6 7 8 9
20 = 0O 0 0 0 01 0 1 0 ©
3 = 0O 0 0 0 0 0 0 0 1 1

The effect of the instruction will thus be that bit no.
8 and 9 in the indicator are not changed (since the
number 3 has ones in the corresponding positions), while

bits nos. 0-7 acquire the wvalue of 00000101,

124

7.3,

Example 7.99

The instruction GI 37 +88 will cause the contents
of the indicator (except KA and KB) to be stored in
pos. 0-9 of cell 125.

Exercise 7.100

Finhd the effect of the following program stored in
cell 37-39. The s-register contains the number 900.

[37] PI s+179 +33
[38] GI s+179 D +33
[39] za o

2 Examples of Instructions with Indicator Instructions

Example 7.101 Example of Indication of Overflow

The effect of the instruction AR 37 IOB will be,
primarily, that the number in cell 37 is added to the
contents of the R-register. If the sum, s, is outside
the range -1 < x< 1, overflow will be registered in
OB (i.e. 0B:= 1) on account of the indicator instruc-
tion. Overflow will also occur in the R-register, and
the correct half sum can be formed in R by means of
the instruction TK -1.

The effect of the instruction AC 37 I0B will be,
primarily, that the sum s = cell[37] + R is formed in
the H-register, from which bits nos. 0-39 are trans-
ferred to cell 37. If s is in the range 1 = s < 1, the
effect of the indicator instruction will be that 0B:=0;
otherwise 0OB:=1, and the contents of cell 37 will be
spoilt, It is very difficult to save the situation
because the original contents of cell 37 are lost.

The instruction HV 10 IOB will primarily cause a
jump to the first half-word instruction (or full-word

instruction) in cell 10. Whether overflow will be

125

registered or not depends on the result of the pre-

ceding arithmetic operation.

Example 7.102 Example of Indication of the Zero Situation

The effect of the instruction SNS 682 IZC +2 will be,

primarily, that the absolute value of the number in cell

684 is transferred with negative sign to the R-register.
Then, if R is equal to 0, OA:= OB:= 1, and if R is dif-
ferent from O, QA:= OB:= O.

Example 7.103 Example of Indication of the Zero Situation

Let M = 0.125. The effect of the iunstruction GRS
37 X IZA will be, primarily, that R:= cell{37]:= 0; the
zero situation is then registered so that OA:=1. Finally

R and M are interchanged.

Example 7.104 Example of Indication of Sign

The effect of the instruction MK 10 ITA will be, pri-
marily, that Mxcell[10] is added to R and placed in R.
Then the sign of the result is registered. If the result
is negative, TA:=1, otherwise TA:=0. This happens no mat-
ter whether there is overflow or not.

The effect of the instruction ARS 10 X ITA will be,
primarily, that cell 10 is transferred to the R-register;
the sign of this number is then registered. Finally the

number is transferred to M (and the contents of M to R).

Exercise 7.105

Describe the effect of the instruction XR 10 ITC +2.

Example 7.106 Example of Indication of Marking

The effect of the instruction SR 11 IRB will be, pri-
marily, that cell 11 is subtracted from R and that marking
of cell 11 is registered, i.e. is transferred to the

marker-bits in R, after which the indicator instruction

IRB causes the b-marking to be registered, in other
words that RB:=Rpos[41] := pos[b1,11].

The effect of the instruction SR 11 D IRB will
be, primarily, that the number 11 - 2—9 is subtracted
from the number in R; the marker-bits of R are thereby
not changed, and the indicator instruction IRB will -
as above - cause Rhl to be transferred to RB (irrespec-

tive of the marking in cell 11),

Example 7.107 Example of Marking

The effect of the instruction GR 12 MB+1l is that
the number in R is stored in cell 13 and that bits nos.
4Lo-41 in cell 13 are put equal to Oland in R equal to 11.
The effect of the instruction GR 12 D MB+1 is that
the contents of R0-19 are stored in the corresponding
positions of the cell, in which the instruction is placed.
Furthermore, Ryg_p1i= 11, Let the contents of RO-9 be 16
and let the contents of RlO—l9 be =2; the instruction will
then be changed to GR 16 D MB -2, because marking in

the cell is not performed by the operation GRD.

Exercise 7.108

Describe the effect of the instruction GT r+3 D MA+l.

Example 7.109

The effect of the instruction GR 12 MTA will be that
the number in R is stored in cell 12 and that bit no. 40
in the cell is put equal to TA, while bit no. 41 is

cleared. RhO and Rhl remain unchanged.

Example 7.110

The effect of the instruction AC 100 MQC will be,
primarily, that the contents of cell 100 are increased

by the number in the R-register, and that the marking

127

in cell 100 is registered; in other words, is trans-
ferred to the marker-bits of R. The effect of the indi-
cator instruction MQC will be that the two marker-bits
in cell 100 acquire the same value as QA, QB. During
this marking operation the marker-bits in R are not
affected so that they - when the complete instruction
has been executed - will contain the original value of

the marker-bits in cell 100.

Example 7.111 Example of Conditional Jump

Let the current instruction be HV r-1 LT. If the
sign in the R-register is negative, i.e. if bit no. 00
is equal to 1, the jump instruction is executed, and
- GIER starts executing the first half-word instruction
or full-word instruction in the preceding cell. If
thé sign is positive the instruction is dummy, and

GIER executes the following instruction.

Example 7.112 Example of Conditional Instruction

Let the current instruction be GR p+98 NZB -1. If
OB = O the contents of the R-register are stored in
cell p+97, and the address constant of the instruction
is changed to p+97. If OB = 1 the instruction is dummy,

and neither storage nor change of address take prlace.

Example 7.113 Example of Conditional Stop

Let the current instruction be ZQ 0 LKA. If the
operator has previously put KA equal to 1, GIER stops
(when NORMAL START is pressed it carries on with the
next instruction independent of the address). Other-

wise GIER will perform the next instruction at once.

Example 7.114 Example of Conditional Jump

Let the current instruction be HH 17 V NPB +2. If
PB = 0, GIER will jump to the right-hand half-cell no.20

and start executing the second half-word instruction or

full-word instruction; the jump instruction is further-
more changed to HH 19 V NPB +2.

If PB = 1 the instruction remains unchanged, and
GIER starts executing the instruction in the immediately
following cell (the V-modification is not effective

either).

Exercise 7.115

Describe the effect of the instruction HV s-3 D LRC -3.

Examples of Programs

Example 7.116 Example of Interchange

The numbers in cell 102 and 103 are required to be

interchanged. This can be done as follows:

[m+0] ARS 102, PM 103 [R:= x, M:= y]
[m¢el] GR 103, GM 102 [storage]
[me2] 2Q o) [stop]

Note that this program functions equally well no matter
whether the numbers are machine numbers or floating-point
numbers (or in any other form of representation). The
marker-bits of the cells are not changed by the above

instructions.

Exercise 7.117

a) The machine numbers x, y, z, and v are stored in
cells 800, 801, 802, and 803. Compute (x+y)(z-v) and
store the result in cell 799. In cases of overflow in
the interim results or in the product, a jump to cell O
should be made. b) The same computation is to be made

with x, v, 2z, and v as floating-point numbers,

Exercise 7.118

a) Let a, b, and ¢ be three machine numbers stored

129

in cells 50, 51, and 52, and we assume that cZ 0 and
abs(a) $ abs(c); ab/c is to be stored in the cell
situated just before the cell containing the first
instruction of the program.

b) Let three machine numbers al, bl, and cl be
stored as above. If al Xbl/cl is a machine number
this is to be stored as before; if not, jump to cell
0 if cl # 0, and jump to cell 10 if cl = O.

c) Same problem as in b), al, bl, and cl being

floating-point numbers.,

Exercise 7.119

Let the integers x and y be stored in cell 47 and
48 with the units in pos. 39. The same cells aire to
be used for storage: the integer quotient x/y is to
be stored in cell 47 and the appropriate remainder

in cell 48; the remainder must be 3 0.

Example 7.120 Example of Address Calculation

The integers N and J are placed as the address con-
stants of cells 859 and 865. It is desired to place NJ-1

as address constant of the cell s+2.

[m+0] PM (859) D

[m+1] MKS(865) D [NxJ is placed with the units in
pos. 18 of R]

[m+2] TK 9 [NXJ with the units in pos. 9 of R]

[m+3]srR 1 D [NxJ -1 in R,_;]

[m+s] GA s+2, ZQ 0 [NXJ -1 is stored in cell s+2]

Note that D-modification has been used in the instructions
which refer to the address constants in cells 859 and 865
in order to avoid that possible contents of the other
positions in these cells should influence the address cal-
culation. If it is known that pos. 10-18 of the two cells
are cleared (if, for instance, the increments are 0) the

two first instructions in the above can be replaced by

130

two half-word instructions

PM 859, MKS 865

because the remaining contents (pos. 19-39) of the two
cells cannot spoil the significant result of the multi-

plications of the address constants.

Exercise 7.121

a) The integers A, B, and C are placed as the ad-
dress constants of the instructions in cell s-3,
s-2, and s-1, A program is required (concluded by
a stop instruction) to place A+4B-C as an address
constant in the full-cell immediately after the
stop instruction.

b) The same problem is to be solved with the

increments in cell s-3, s-2, s-1 equal to 0.

Example 7.122 Example of Program Loops

In many programs certain parts of the program are
repeated many times, since the same operations are to
be performed for many numbers. In order to use the same
part of the program it is only necessary to change
the addresses in some of the instructions for each ite-
ration, and this can be done by means of increments.

In addition the program must contain a device which
controls the number of times the part of the program
(loop) has been run through, and in GIER this can be
done in many ways.

Finally, the start of a program should contain a
number of instructions that reset (initialize) those
parts of the instructions which have been changed during
a complete cycle. The reason is that the whole program
often is to be used several times after each other (for
instance with different sets of data).

For instance, let 50 machine numbers be stored in
cell 200 and succeeding cells. The sum of the absolute

values of these numbers is to be placed in the M-register.

131

Draft program no. 1:

[m+0] PAS r+1 +199 [reset the address constant 199]
[m+1] AN 199 +1 [add the absolute values
[

[m+2] BS (r-1) +248 the next two instructions are

not executed until 199+j > 248]
[m+3] XR 0, HH r+1l [exchange R and M, jump to stop]
[m+k] HV r-3, ZQ O [jump back the first 49 times, stop]
Hv

[m+5] r-5 { by pressing NORMAL START the whole)}
program is executed once more

The following program occupies less storage, but the
time used for calculation is nearly the same. Addition

of the numbers takes place in reverse order.

Draft program no. 2:

[m+0] PAS r+l:250 [reset the address constant 250]
[m+l] AN 250-1 [add the numbers absolutely]

[m+2] BS (r-1) X+200 [next instruction is performed as
long as 250-j> 200]

[m+3] HV r-2 X [jump back the first 49 times]

[m+4] 2q 0, HV r-4 [stop, start once again by pressing
NORMAL START]

The two cases of X-modification are superfluous the first
%49 times, where the running total is simply moved to M
and back again, but the 50th time the first X-modifica-

tion only is performed, whereby‘the final sum is placed
in M.

Draft program no. 3:

[m+0] PA r+3

[mel] PAS r+l1 +199
[m#+2] AN 199 +1
m¢3] IT 0 +1
[m+4] BS 50, HV r-2
[m+e5] XR 0, 2@ ©
[m+6] HV r-6

132

For all three drafts the calculation time is nearly
the same, since the central part of the program, namely
the loop, which is to be run through 50 times, is almost
like in the three cases.

By using marking in connection with an indicator
instruction a loop of only two instructions can, however,
be formed; assuming that only the last number in the

group of numbers is a-marked, we get
Draft program no. k4:
[m+0] PAS r+l +199 [reset the address constant 199]

Plmel] AN 199 +1 [add the numbers absolutely.
L Marking is registered]

[m+2] r-1 NA { jump back while no a-marking]
[m+3] XR 0, 2Q O move the sum to M, stop]
(m+d] BV -4 { repeat the whole program by

pressing NORMAL START]

Note: While the three first drafts only work correctly
if the array consists of exactly 50 numbers, the fourth
draft can be used to sum an array of arbitrary length
(provided that it is stored from cell 200 and onwards
and that only the last number is a-marked).

A useful tallying device can be formed by using the

p-register as follows:

Draft program no. 5:

[m¢e0] PPS 0, AN p+200
[m+1] PP p+l, IT p

[m+2] BS 50, HH r-2
[m+3] XR 0, 2@ O
[mels] HV -4

Merely to demonstrate the mainfold possibilities of
the GIER instruction let us show yet another two methods

of solving the same problem.

133

Draft program no. 6:

m+0] PAS r+l +199
m+l] AN 199 X+1
m+2] ARS r-1, NC 249
m+3] HV r-2 X

m+l4] zq 0, HV r-U4

Draft program no. 7:

[m+0] PA r+3 +49

[m+l] PAS r+l1 +199
[m+2] AN 199 X+1

[m+3] BT 49 -1

[m+d4] HV r-2 X
[m+5] 2Q 0, HV r-5

The last-mentioned method, where tallying occurs in the
BT-instruction, has proved very useful. This method can
easily be generalized. For instance, a program loop
consisting of 20 cells which are to be run through K+l
times looks like this:

PA r+20 +K

Exercise 7.123

a) N machine numbers are stored in cells 300, 301, ...
Write a program, which places the biggest of these numbers

in R, where N is stored as the address constant of cell 299.

134

b) The same problem when it is known that only the
last number is c-marked. The test for this should be
made using the indicator instruction LPC, not NPC (or

the like) Why?

Example 7.124

The machine numbers x are stored

o' Xpo e ' X150
in cells 100-200. Only cell 200 is a-marked. Zai is to
be formed in cell 250.

Let us solve the problem by converting the machine
numbers to floating-point numbers using floating-point

addition to form the sum.

[m+0] PAS r+l +99

[m+1] ARS 99 +1 [machine number in R]

[m+2] NKF O, GRF (r-1) [replace with floating-point
number]

[(m+3] HV r-2 NA [211 numbers are now floating-

point numbers]
fm+4] PAS r+l +99
m+5] ARF 99 +1 { program summation]
dm+6] HV r-1 NA
(me7] GRF 250, ZQ O

Exercise 7.125

Same problem as in 7.124, but in this case only one

loop is to be used.

Exercise 7.126

In the cells 100 to 150, 51 floating-point numbers
are stored. Only cell 150 ig b-marked. Themmbers which
can be converted to machine numbers must be converted
and stored in their original cells, which are to be a-

marked.

Example 7.127 Example of Sorting

The machine numbers a,, a are placed

0 1t ey

135

in the cells 200, 201,, 300, and only cell 300
is a-marked. The address of the biggest of these num-

bers must be placed as address constant in cell L40O:

[m+0] PA r+5 +200 [reset the address constant of

the SR-instruction]
fm+1] ARS 200, GR r+2 {place a, in a working cell]
[m+2] PA 400 VvV +200 [place meanwhile the address
constant 200 in cell 400]
[m+3] QQ © [working cell]
— [m+4] ARS r-1 [R:= working cell]
(m+5] SR 200 IPA +1 [R:= working cell - a,,
a«marker-bit in indicator]
m+6] HV r+3 NT [jump forward if R z 0]
[m+7] ARS (r-2), GR r-4 [place new a, in working cell]
[m+8] ARS r-3, GA hoo [place address of a; in cell Lo0]
| m+9] HV r-5 NPA [repeat until first a-marking)

[m+10] 2ZQ O

Example 7.128 Example of Drum Operations

The drum tracks 37 and 38 contain the machine numbers

and b b respectively

ao, By sy a39 o’ ot .y b39,

while the machine numbers CO’ Clr cevevney 039 are stored

from cell 50 and cnwards; only cell 89 is a-marked. The
numbers d_. = a_b_ + c¢ d, = a.b. + ¢

0 00 o' 1 171
must be stored on track 39

1 e 39= 339b39

+ 039

[m+0] VK 37, LK 90

[m+1} VK 38, LX 130 [the two trakcs are transferred
to the store |

[m+2] VK 39, PP 0 [drum transfer is completed and
tallying is initialized]
m+3] PP p+l1l, PM p+89 [tallying in the p-register, M:= ai]
[m+4] ARS p+49 1IQA [R:= C;,» a-marking is stored]
[m+5] MK p+129, GR p+89 [d, is stored in cells nos. 90,
91,]
m+6] HV r-3 NQa [repeat until first a-mark]

{m+7] SK 90, ZQ O [di is moved to track 139]

136

Note that the location of the instruction VK 39,
before the cells 130-169 incl. are used, is very

decisive.

Exercise 7.129

Same problem as in 7.128 with the difference that
neither the p-register nor marking of the cells are

to be used.

Example 7.130 Square Root Calculation

With a jump to cell[m+0] of the following program
the square root of the contents of R, regarded as a
machine number, will be calculated, as long as the
number is positive or zero. At exit the square root
is placed in R. With a jump to cell [m+12] the square
root of the contents of RF, regarded as a floating-
point number, will be calculated, as long as the num-
ber is positive or zero. The result is placed in
RF before exit from cell [m+19] .

Calculation of the square root y of the non-negative
machine number x is accomplished using iteration after

the formula

$(y

n+l

X
nty)

u
Yo = X 2

where u is selected so that

3L 22v

The floating-point number can be written p - 29, 1f q is
even,v_g . 2%(q+2) is evaluated, and if q is odd'v-g . 2%(Q+1)

is evaluated.

137

Machine numbers —[m+0] PA r+8 +i4
[m+1l] GR r+9, NK r+l
[m+2] SRS O D
[m+3) TK -11, GT r+l
[m+4] ARS r+6, TK O
m+5] GR r+6, ARS T4+5
[m+6] DK r+5, AR r+5
fm+7] TK -1, IT -1
m+8] BT 4, HV r-3 [iteration is performed

5 times]
[m+9] HR s+1 [exit for machine number]
(m+10) QQ ©
[m+11] QQ ©

Floating-~point
numbers — [m+12) GR r-2 X

[m+13] AR 2 D

[m+14] TK -1, GA r+5
[m+15) TK 10, CK ~-19
[m+16] GT r+1, ARS r-6
[m+17] TK 9, TK 1
[m+18 HS r-18

[m+19) NKF 0, HR s+l [exit for floating-
point number]

Exercise 7.131

Write comments to the instructions in example 7.130

Exercise 7.132

The program in example 7.130 is to be changed so
that a jump to cell s+1 is performed if the given num-
ber is negative, otherwise a jump to cell s+2. If the
given number is equal to O the jump must be performed

at once.

Exercise 7.133

Make a program especially adapted to calculate the

square root of floating-point numbers.

138

Example 7.134 Calculation of n!

The following program calculates n! =1 - 2 . 3. .,.,..'n
as a floating-point number in cell s+1, when n is placed

in the address part of cell s-1.

Program:

[m+0] ARS (s-1) DV +1

[m+1] QQ 0 +256 [1 as floating-point number]
[m#2] ARSF r-1, GRF s+l

[m+3] ARS (s-1) D - 1

[m+4] HR s+2 LZ

[m+5] NKF 9, MKF s+1

{ m+6] HH r-b

Exercise 7.135

Write comments to the instructions in example 7.134.

Example 7.136 Application of Subroutines

Programs, which are able to solve problems that occur
frequently, are normally prepared as subroutines. For an
illustration of such subroutines one can refer to example
7.130 (square root) and example 7.134 (n!). For such sub-
routines two main requirements should be fulfilled:

1) The subroutine should be able to work at any place

of the store. 2) The user should be able to jump to the
subroutine from anywhere in his program, and the subrou-
tines should automatically ensure that the correct return
jump is made. The first requirement is fulfilled by

using relative addressing in the subroutine, and the

second by using HS- and HR- jump.

Let us illustrate the intercourse between the HS~ and

HR-jump, respectively, in the main program, i.e. the

user's own program and the subroutine, which may, for
instance, be the subroutine for n!. Let us assume that

the programmer in his program needs 12!

Main program,

stored from 100

[117] PA O D +12
[118] HS 800

139

Subroutine,

stored from 800

[800]

[80L4] HR s4+2 LZ

[119] Qq O
{120]

The effect of the instruction in cell [118] is

1) The contents of the s-register are placed as the incre-
ment in 118.
2) The contents of the s-register will then become 118,

3) The next instruction is taken from cell 800.

The effect of the subroutine is now that 12! is cal-
culated and stored in cell s+1, i.e.in cell 119, and the

effect of the instruction in cell 804 is then:

1) The next instruction is taken from cell s+2, i.e. cell
120.
2} The increment in cell s, i.e. cell 118, is transferred

to the s-register, which has now its "old" contents.

Exercise 7.137

A main program requires v13! . Place the square root
subroutine from 700, and the n!-subroutine from 725.
Sketch part of the main program and examine the different

Jjump instructions necessary.

Exercise 7.138

The number 0.05 1is stored in cell 799 (as a machine

number), and in cell 850 is stored a subroutine that

i40

calculates the square root of a number placed in the
R-register; the subroutine ends {(with the required
square root in the R-register) with the instruction

HR s+l. Write a program which stores
sqrt (0), sqrt (0.05), sqrt (0.1),, sart {0.95)

in cells nos. 800, 801,

Exercise 7.139

Write two programs which evaluate the quantity
n\ n(n-1) ... (n-r+1)
(r)_ 1.2 -....'T
in cell s+l1, when n and r are placed in the address

as a floating-point number

parts of cell 8-2 and cell s-1, respectively:

a) by using the program from example 7.134 as a subroutine

b) by performing the calculation in the following order

’g , n-=1 , n-r+l
IR SRR L

When using the first method the number range of the
computer will be exceeded even for moderate values of n,
whereas the second method can be used for considerably

larger wvalues.

Exercise 7.140

A number between 1 and 5 is placed in the address

positions of R. Write a program that causes a jump to

cell 100 if Raddr is 1

- 120 - - -2
- ko - - -3
- 160 - - -4
- 180 - - -5

Exercise 7.141

Four integers a,b,c, and d are placed in cell 100
with the units in pos. 9, 19, 29, and 39, respectively.

141

The numbers are to be placed in cell 101, 102, 103,
and 104, respectively with the units in pos. 39.

Exercise 7.142

Data are stored as in exercise 7.141. Form ac + bd

in R with the units in pos. 39.

Exercise 7.143

A hundred machine numbers are stored from cell 100.
Mark each cell that contains a positive number with an

a, and each cells containing zeroc with a b.

Exercise 7.14k

Place the largest of the numbers A and B in cell 5,
where A is the smallest of the numbers in cell 1 and
cell 2, and B is the smallest of those in cell 3 and 4.

Exercise 7.145

The machine numbers a and b are stored in the cells
100 and 101. Form -|a | /(|a] +|b|) in R. The product must
be normalized, and the exponent of normalization must
be placed in MO-9°

Exercise 7.146

Same problem as in exercise 7.145. The product is

now required in floating-point form.

Exercise 7.147

Two floating-point numbers x and y are stored in cells
nos. 20 and 21. Ix])iyl. Form % as machine number in cell
22.

Exercise 7.148

A set of machine numbers are stored with the first
number in cell 200. Some of the numbers are a-marked.
The last number is b-marked (and possibly also a-marked).

Form the sum of the a-marked numbers in cell 199.

142

Exercise 7.149

A set of machine numbers are stored from cell 100.
Only the last one is b-marked. The numbers must be
treated as follows: Negative numbers are halved and
positive numbers are doubled up. It is assumed that

overflow will not occur.

Exercise 7.150

The same problem as in exercise 7.149, but with

floating~point numbers.

Exercise 7.151

Place 1 in each bit of the R-register without the
use of stored constants. (It can be done by means of

a program that fills two whole-~cells incl. stop).

Example 7.152

The machine numbers ao, bo, 1 bl’ ceesveay B, bn

are stored from cell L40O. Only b is a-marked. 2 a;b, is

a

to be formed in R.

Program:

[m+0] PAS r+1 4399
[m+1] PM O +1
fm+2] MK (r-1) +1
fm+3] HV r-2 NA
[m+4)] ZQ O

Exercise 7.153

The same problem as in example 7.152, but with floating-

peint numbers.

Exercise 7.154

The same problem as in example 7.152, but the product

]

143

is to be stored unabridged in R,M.

Exercise 7.155

The same problem as in example 7.152. Formf‘,(bi)2
in cell 399 andi}(ai)z in cell 1398.

Exercise 7.156

The same problem as in exercise 7.155, but with floating-

point numbers.

Exercise 7.157

The machine numbers a a_ are stored

0' By By e
from cell 100. a_ is b-marked. The number x is placed in

xn—l
n-1

R =a _x" a
T Y = a4 1
in cell 99. Use the algorithm y = (...((anx + an_l)x oot ao).

+ seeeet+ ALX + ao is to be stored

Example 7.158

ILet the contents of R be

00 0 39
R=[|1]2 010 . . 110 1]

The effect of the instruction CK 3 will be that the con-~
tents of R becocme

00 0 30
R=[0f0. . . 110110T1]

Exercise 7.159

Let the contents of RM be

00 © R 38 39 01 1 38 39
. . 1 1

fojJo1 o . . . 10] fi]Jo]

What are the contents of R,M after execution of the

instruction CL =17

144

Example 7.160 Example of Simple Input

For each input/output symbol (i.e. letters, digits,
or sign) there is a corresponding integer. And contrary,
for each integer in the range O $ x L 64 there are two
corresponding symbols, namely one in lower case and one
in upper case. The symbol which is represented by a
particular integer, at any given time, is defined by

the case symbol last used.

The numbers 49, 50, and 51 correspond to: In the lower
case, a, b, and c, respectively; and, in'the upper case,
A, B, and C, respectively.

Let us now read a symbol from the tape reader into
GIER. If it is an A (or a), a B (or b), a € (or c) a
jump must be made to cell 100, cell 120, and cell 140,
respectively. Otherwise a new symbol is to be read in and:

treated in the same way etc.

Program:

[m+0] vy o

[m+1] LYs oo [a symbol is read to R and to this cell]
(m+2] cA 49, HV 100

[me3] ca 50, BV 120

(mes] ca 51, HV 1ko

[m+5] HV »r-4

Example 7.161 Example of Output

A program is required which will direct the typewriter
to begin a new line, "write" SPACE 10 times and finally
write 377 1960.

145

Program:

[ms0] vy 16, sY 64 [64 is the value of the symbol for
CR (carriage return) in both
upper and lower case |

{m+l] PA r+l1l +10
[m+2] BT 10 -1

[m+3] SY 0, HV r-1 [0 is the value of the symbol for
SPACE in both upper and lower case]

[m¢s] sy 58, sy [lower case, write the digit 3]
[m+5] sy 60, SY
[m+6] sy 58, sy
[m+7] sY 0, sY
[m+8] sY 9, sy

[m+9]) sy 16, zq

[upper case, write /]

S O WwW

[16 is the value of the symbol for 0]

Exercise 7.162

Read 20 symbols (1etters or digits) from the tape into
GIER and write out the symbols on the typewriter in re-
verse order with SPACE between each symbol. It is assumed

that all symbols are in the same case.

Exercise 7.163

The same problem as in exercise 7.162, but there may

be case shifts between the symbols corresponding to

the occurrence of capital and small letters.

Example 7.164 Example of Overflow

The machine numbers Ags By ceerie a,50 2re stored
from cell 100 to 200. Only cell 200 is a-marked. The
sum s =2, a, is to be formed in cell 201; if overflow
ocecurs during the addition the necessary right-hand

shifts are to be performed.

146

Program:

[m+0] PA r+4 + O

[m+l] PAS r+2 +99
?[m+2] GR 201
[m+3] ARS O IPA +1
[mes] TK O, AR 201
[m+5] Q@ (r-1) LO -1
[m+6] TK -1 LO
—[m+7] HV 1-5 NPA

[m#8] GR 201, 2Q O

If overflow occurs during the calculation, the program
will shift the partial sum as well as the following ad-
dends to the right. The final result given by the pro-
gram will thus not be s, but s - 2”9, where the expo-

nent -q will be the address constant in cell [m+h].

Exercise 7.165 Exercise with Drum Operations and Boolean

OEerations.

2000 growths are examined for the existence of 40 kinds
of plants. The different kinds are numbered from O to 39,
and if the existence of a particular kind is denoted by
a one, and non-existence by a zero, a storage cell can
exactly hold the information about one growth. A collec-
tion of information is stored in 2000 cells on the drum
on 50 consecutive tracks beginning with track no. 60.
Only the last cell on the last track is b-marked. A pro-

gram is required to:

a) Place in the positions of cell 400 a zero corresponding
to each kind of plant which does not exist at all among the
2000 growths; in the remaining positions a one 1is to be placed

b) Place in the positions of cell 401 a one corresponding to
each kind of plant that exists in all 2000 growths, and zero

in the remaining positions.

g —

1h7

c) Store in cell 402 the number of growths,for which
at least the plant-kinds nos. 0, 1, 2,, 10 exist;
the number is to be stored as an integer with the units

in pos. 739.

Exercise 7.166

The same problem as in the previous exercise, but

without the use of a- or b-marking.

8. TABLES

149

150

8.1 The Numerical Equivalents of the Basic Operations

In the diagram below the basic operations are
arranged according to their decimal values, i.e. the
contents of pos. 20-25 (30-35, respectively) regarded

as an integer.

Value Operation Value Operation
0 QQ 32 PA
1 ZQ 33 PT
2 AR 34 HK
3 SR 15 PT
L AN 16 Is
5 SN 37 iT
6 AC 38 CM
7 s¢C 39 BT
8 MB ko NS
9 AB 4 NT

10 MT b2 GP
11 MK k3 NC
12 ML Ly

13 DK 45

14 DL L6

15 NK Ly

16 NL 48

17 HR Lo BS
18 TL 50 HS
19 CK 51 vY
20 CL 52 LK
21 GR 53 SK
22 GA 54 GK
23 GT 55 VK
24 TK 56 HV
25 CA 57

26 GM 58 SY
27 PM 59 LY
28 XR 60 HH
29 GI 61 GS
30 PS 62 .

31 PP 63 UD

As can be seen from the diagram 7 out of 64 possible
combinations are not utilized in the standard GIER.

151

8.2 Indicator Operations etc.

Overflow is registered in the overflow register after

the operations:

AR
SR
MK
DK
TK

AN
SN
ML
DL
TL

- AC
- SC
- MT

- CK -~ CL

>

s

incl. all modifications except
F-modifications

Sign may be registered in the indicator after the operations

AR
SR
MK
DK
NK
XR

AN
SN
ML
DL
NL

- AC - AB
- SC
- MT -~ MB

TK - TL

(

/

incl. all modifications

Any operation can be furnished with ITA, ITB or ITC,

but only in the above operations the sign for the arithmetic

result is registered.

is registered in Rho-hl in the operations:

Marking
AR -~ AN
SR - SN
MK - ML
DK - DL
PM

CM

- AC - AB)

- SC
- MT - MB

7

incl. the S-, Fe, X-, and V-modifica-
tions

The marker-bits of R remain unchanged in the D-modification

of above-mentioned operations, and in all other operations.

A cell can be marked in the operations:

AC - SC
GR - GM - GA - GT - GP - GS - GI - GK incl. all
NK - NL modifications

In any absolute marking operation RHO L1%= 11, as well, whereas,
1]

if the marking is dependant on the indicator, R40 L1 remain un-
]

changed. Cells cannot be marked in the operations GRD and GMD.

152

8.3 The Flexowriter Punched Tape Code

Symbol Code Symbol Code
Lower Upper Lower Upper
Case Case Case Case
a A , 0O , O, w \ s, ©O .00 ,
b B , OO . 0, X X , 00 ,000,
c Cc , 000 , 00, y Y s ooo. ,
d D y 0O .+ 0 , Z z , o o. o,
e E , 000 .0 O, & A y 00O .)
f F y 000 .00 , o 14} , O 00. 00,
g G y OO . 000, 0 N , o . ’
h H , 00 O. 1 vV , . o,
i I , 0000, 0, 2 x , . 0,
N J 'y 0 0 . O, 3 / . ¢ . oo,
k K ;s O O . O , L = ’ o ’
1 L y O . 0O, 5 H , c .0 0O,
m M , 00 .0 , 6 [. o .00 ,
n N , O .0 0, 7] . .000,
o 0 , © .00 , 8 (, 0. ,
p P , 0 0O .000, 9)) co. o,
q Q sy, O OO. N ’ » . 000. 0O,
r R s O O, o, . H , ©0 0. 0O,
) S , 00 . O , - + s O '
t T , ©O . oo0, < > , 00 . 0,
u U s 00 .0 ’ - ’ o.,00 ,
v Vv , o] +0 Oy

The following hole combinations correspond to the same

‘typographical' symbel in both lower case and upper case.

Typographical| Code Typographical Code

Symbol Symbol

Car. Return , O . y Stop Code ’ 0. 00,
Space ’ o . ' Punch Off , ©O 0.000,
TAB ’ 000.00 , Punch On , O 0.0 ’

LC s O00OO, O ,

uc y QGOOO.0 , Punch Address |,o0 . ,
Tape Feed , 0000.000, Aux Code N 0.0
The key for ; and does not advance the carriage. Punch

Address and Aux Code only insert thelr respective codes

when pressed simultaneously with any other key.

153

8.4 Numerical Representation of the Typographical Symbols

In the following table the characters have been
arranged according to the numerical equivalent of the
hole combinations {after removal of the parity check hole).
The table shows for each symbol its numerical equivalent
which a) is placed in pos. 3-9 of R and the cell, when it
is read into GIER by a LY-instruction ; and b) is to be
used as the address constant in an SY instruction when the
symbol is to be printed (compare operation list, periphe-

ral units).

Value Symbol Value Symbol
Lower Upper Lower Upper
Case Case Case Case
0 Space 32 - +
1 1 v 33 J J
2 2 x 34 k K
3 3 / 35 1 L
5 5 § 37 n N
6 6 [18 o 0
7 7 } 39 P P
8 8 (ho q Q
9 9) b1 r R
10 not used 42 not used
11 Stop code %) a %]
12 not used I Punch On
13 a A 45 not used
14 L6 not used
15 not used L7 not used
16 o] N 48 ® E
17 < > Lo a A
18 s S 50 b B
19 t T 51 c Cc
20 u U 52 d D
21 v v 53 e E
22 w W 54 f P
23 x X 55 g G
24 Y Y 56 h H
25 z Z 57 i I
26 not used 58 Lower Case
27 ’] 59 . :
28 not used 60 Upper Case
29 red ribbon 61 not used
30 Tab. 62 black ribbon
31 Punch Off 63 Tape Feed
64 Car, Return

The symbols &, A, red ribbon, black ribbon exist only on the
on-line typewriter and not on the flexowriter, and thus the
instructions SY 13, SY 29, and SY 62 are only effective
when output is to the typewriter.

154

INDEX

(Op) refers to the descriptions in the operation list

Absclute address 35
Accumulating multiplication 26
Accumulator R 24, 59
Accumulator RF, floating-point 29, Lo, 59
Adder 24
Addition 24, 29

- (Op) a4
Address 3, 34, 35

- s absolute 35

- , final ¢ 39, 58, 63

- , indexed 35, 36

- , indirect o7

- ,» modified 39, §2

-, relative 25, 26

- s subroutine-indexed 55 37
Address (Op) 76

- calculation, ex. 129

- constant 22

- constant[c] 58

- determination (Algorithm) 63

- register r2 31, 63
Arithmetic unit 2, 24
Auxiliary instructions (Op) a7
Basic operation 34

- - » humber 3L
Binade 17
Binary 2

- fraction lo

- system lo
Bistable components lo

Bit 3

Boolean addition (Op) 71
- miltiplication (Op) 72
- variable 58

Brackets, chain 38

by-register 32

e 58

Cell 2

Cellle) 58

Chailn of brackets 38

Coding 5

Complement 11

Conditional instruction 49

Conditionalizing colncidence instructions

- instructions (Op)

Control counter rl 31
Control panel 33
Control unit 2, 3o,
Cyclic shift (Op) 70

D-address, Daddr 6o, 63
Division 29, 3o
- (op) 67

D-modification 46, 62
Drum address register ta 31
Drum instructions (Op) 85

- store 23

- track 23

- register tk 1

Elementary operation 5
Examples 96

155

156

Exchange of p-register and indicator (Op) g2
Execution of operation, step 56

Executive instructions (Op) 88

Exercises 96

Exponent, floating-point number 16, 20

External instruction format 50

false 58
Ferrite core store 19
Final address, c 39, 38, 63

Fixed-point number 1lo, 19

- - , range 19

Flexowriter punched tape code 152
Float celil[c] 58
Floating-point 15, 19
- - accumulator RF 29, 40, 59
- - arithmetic 29, ko
- - exponent 16, 20
- - number 15, 17, 19
- - - , range 17, 20
F-modification Lo, 61
F-register 20, 59
Full-word instruction 42
- - - , elements 50
Function register F 20, 59
Half-word instruction 4, 53
- - - , elements 4
- - - , increment 45
H-register 24, 59
iner{e] 58
Increment 42

Index, range 36

Indexed address 35, 26
Index register 31, 36
indic[J] 60

Indicator 6o
I-indicator cperation 49
Indicator address 48

- instruction 48

- operation 48

- register in 31, 48
Indirect addressing o7

- - , recursive 38
Input 4,

-, ex. 144

- program 1, lo
in-register 31, 48
Instruction 5

- , conditional Jie]

- , register-conditional (Op)
Internal instruction format 50
Jump instruction 8

- - (op) 83

K-conditional instructions (Op) 95

L-indicator operation 49
LHoper 58
Long division 27
- multiplication 27
Loss of digits 29
Maddr 59
Machine number 12
Main program 138

M-indicator operation 49

o4

157

158

Mantissa 16, 2o
Mark-conditional instructions {Op) 95
Marking 21, 61, 151
Mincr 59
Modified address 39, ©o
Mpos| 1] 59
M-register 24, 59
Multiplication 26, 27
- , accumilating 26
- (Op) 66
Multiplicator register M 24, 59

n! 138
N-indicator operation 49
Non-ad justable instruction 6o
Normalization 17
- (0p) 68
Number shift (Op) 69
Numerical equivalence, basic operation 150

- representation, typographical symbois

Operand cell 58
Operation list 7, 64
- time 56
O-register 28, 32
Output L
-, ex. 144
- program lo
Cverflow, fixed-point arithmetic 15, 22
- » floating-point arithmetic 30
Overflow-conditional instruction (Op) 94

Overflow register O 23, 22

P 00

Paper tape 4

Paper tape punch, 8-channel 32
- - reader, 8-channel 32

152

Peripheral unit 2, 3, 32

- - , diagram 122

- - (Op) 86

- - register by
Pos{i,c] 58
p-register 31
Programming 5
Program loops, ex. 130, 134
Punched card 4

- tape 4

Quotient, fixed-point division

T 6o

rl-register 2L, 59
r2-register A

Raddr 59

Range, address constant 22

- , fixed-point number 19

- 4 floating-point number

-, increment 42

- , index register 36

- , subroutine register
Register 2

159

32

28

17, 20

37

Register-conditional instructions (Op) 94

Registration of marking 32,

- - - (op)

- - - (0p)
sign (Op)
zero (Op)
Relative address r 35, 36
RF-register 29, Lo, 59
RHoper{ c] 58

Riner 59

RM-~-register 59

1

61
92

overflow 32, 61

91
92
g1

ROO o9
Rpos{1i] 59
R-register 24, 59
sl-register 21, 59
s2-register 31
Scale factor 15
Short division 27
- mltiplication 26
Sign 11
Sign-conditional instructions (Op)
SLIP U
S-modification 39, 61
Sorting, ex. 134
Square root calculation 136
Store 2, 6
Storing {Op) 75
- , register (Op) 77
Subroutine 9
- , €X. 138
Subroutine indexed address 3%, 9
- reglster 37
- - sl 31, 59
Substitution instructions (Op) 78
Subtraction 24, 29
- (op) 65
ta-register 31
Ten-bits register 2
tk-register 21
Track 24
Transfers to registers (Op) 73
true 58
Typewriter oz
V-modification 45, 61
X-modification 45, 61

Zero-conditional instructions (Op)
Zero, floating-point 20

ol

T

ol

	A manual of Gier programming I
	Foreword
	Table of contents
	Digital computers
	Introduction
	Structure
	Application. A simple example of coding
	Application. Subroutines
	The binary system
	Fixed-point numbers
	Floating-point numbers

	The structure of Gier
	Introduction
	Ferrite core store
	Drum store
	Arithmetic unit
	The arithmetic
	Fixed-point addition and subtraction
	Fixed-point multiplication
	Fixed-point division
	Floating-point operations

	Control unit
	Peripheral units
	Control panel

	The Gier instruction I
	Introduction
	The basic instruction
	Basic operations
	Address
	Absolute address
	Indexed address
	Relative address
	Subroutine-indexed address

	Indirect addressing
	Modified address
	S-modification of the basic operation
	F-modification of the basic operation

	The Gier instruction II
	Introduction
	The increment
	X-modification of the basic operation
	V-modification of the basic operation
	D-modification of the basic operation
	Instructions with indicator-instructions
	Indicator register
	Indicator-instruction
	Indicator operation
	Indicator address

	Internal instruction format
	Conversion from external instruction to the internal instruction format
	One full-word instruction
	Two half-word instructions

	Operation list
	Introduction
	Execution of the instruction
	Explanation of the operation list
	Addition
	Subtraction
	Multiplication
	Division
	Normalization
	Number shift
	Cyclic shift
	Boolean operations
	Transfers to registers
	Address and increment transfers
	Storing
	Storing of address and increment
	Storing of registers
	Substitution instructions
	Conditionalizing instructions
	Conditionalizing coincidence instructions
	Jump instructions
	Drum instructions
	Peripheral units
	Auxiliary instructions
	Executive instructions

	Indicator instructions
	Registration of overflow
	Registration of zero condition
	Registration of sign
	Registration of marking
	Exchange p-register and indicator
	Marking
	Register-conditional instructions
	Overflow-conditional
	Zero-conditional
	Sign-conditional
	Mark-conditional
	K-conditional

	Examples and exercises
	Introduction
	Instructions without indicator instructions
	Examples of addition, subtraction, storage, and use of stop instructions
	Examples of multiplication and division, placing in the M-register
	Examples of normalization and number shift
	Application of Boolean operations
	Examples of placing and storing operations
	Examples of substitution instructions
	Conditional instructions
	Examples of jump instructions
	Examples of drum instructions and administration of peripheral units

	Instructions using the indicator
	Examples of placement and storage
	Examples of instructions with indicator instructions

	Examples of programs

	Tables
	The numerical equivalents of the basic operations
	Indicator operations etc.
	The flexowriter punched tape code
	Numerical representation of the typegraphical symbols

	Index

