A MANUAL
OF
- GIER PROGRAMMING

VOLUME II

by

Chr. Gram
(translated by Alan George Lake)

A/S REGNECENTRALEN
Copenhagen, May 1964

PREFACE

When the English edition of volume I of the GIER manual was
finished in Cetober 1963 it was decided also to translate volume
II, published in Danish in September 1963. A few chapters are
omitted in the translation, as seen from the list of contents.

The present manual describes HELP, the package of auxiliary
routines and the loading program SLIP, as seen from the point of
view of a programmer.

Furthermore the drum memory, the peripheral units, and the
control panel are described in detail. Besides the standard
peripheral units you find descriptions of the RC 2000 paper tape
reader, the punched card reader, and the line printer. However,
the 4096—words buffer store, the tape units, the real—time input-
output unit, and their connections to GIER are not mentioned here.

You will find many references to volume I, and the chapters
are numbered in continuation of the chapters of volume I3 this
underlines that the two volumes constitute one book.

Acknowledgement is due to all who have assisted me during
writing the book; but first of all I am indebted to Mr. H.Isaks—
son and Mr. P,Mondrup who have commented on various parts of the
manuscript and suggested many improvements. Mr.Isaksson has

contributed to the chapters on GIER's structure while Mr.Mondrup,

who together with Mr. L.Hansson has programmed-all the auxiliary
and the loading routines, has read and criticized the chapters
on HELP and SLIP.

Finally, I wish to thank Mr. Alan George Lake who has care-—
fully translated the whole of the manuscript and, at the same

time, improved it considerably.

Christian Gram

CONTENTS

PREFACE

9. THE DRUM STORE AND PERIPHERAL UNITS
9.1 Introduction
9.2 The drum store

9.2.1 Addresses in the core store

9.2.2 The track address; locked tracks

9.2.3 Simultaneous drum transfersj the check
on reading

9.2.4 Drumfree

9.3 Paper tape reader, paper tape punch
and on—line typewriter

9.3.1 The paper tape reader
9.3.2 The paper tape punch
9.3.3 The on—line typewriter
9.3.4 Operation times

9.4 The anelex line printer

9.4.1 Margin

9.4.2 Carriage Return, Page Change and
Stationary formats

9.4.3 The printer code

9.5 The card reader
9.5.1 The mechanical construction
9.5.2 Input to GIER
9.5.3 Examples of punched card input
10. THE CONSOLE AND REGISTERS
10.1 The main console {control panel)

10.1.1 Lamps and buttons on the main console
10.1.2 Start and Stop button

10.2 Operation of the main console

10.2.1 Computer stop
10.2.2 Start (Re—start)
10.2.3 Execution of single instructions

10.3 The HP button etec.

11
16
17
20

24
24
25

26
31
33

38

42

45
46

rage

1

20

26

38
38

45

50

page

11. SLIP (SYMBOLIC LANGUAGE INPUT PROGRAM) 54
11.1 Introduction 54
11.2 An example of simple loader program (deleted) 55
11.3 The loader program SLIP 55
11.3.4 Intrcduction. Storage allocation £H
11.3.2 Lines of information 56
11.4 Loading of Instructions Using SLIP 59
11.4.1 The Basiec Operation, Modification and
Indicateor Instruction 59
11.4.2 The Address 61
11.4.3 Increment 71
11.5 Input of numbers and text using SLIP T4
11.5.1 Input of Numbers 14
11.5.2 Input of Text 77
11.6 Control Lines and Blocks in SLIP 78
11.6.1 The Serial Address and Serial Track No. 78
11.6.2 Program Blocks 80
11.6.3 Definition Lines and labelled program— :
lines 85 ‘
11.6.4 Drum blocks 89
11.6.5 Control Codes 94
11.6.6 Programs 99
11.7 Entry to and exit from SLIP 101 '
11.7.1 Manually—controlled entry 101
11.7.2 Program—controlled entry 102
11.7.3 Exit from SLIP 103
11,8 Messages and Reports output by SLIP 104 !
11.8.1 Error Messages 104
11.8.2 Reports 106
14.9 Syntax for input to SLIP 108 !
11.9.1 Programs and blocks 108
11.9.2 Lines 108 !
11.9.3 Instruction lines 109 {
14.9.4 Addresses and Increments 109
11.9.5 Constant lines 110
11.9.6 Control lines 119
12. OUTPUT 112
12.1 Introduction 112
12.2 Editing of numbers using the sub-—routine in HELP 113
12.2.1 Function 113
12.2.2 Location of the routine; entry and exit 114
12.2.3 Initialisation parameters 116
12.2.4 Scale facters 123

12.2.5 Examples of layoutsj special facilities 125

. L ‘

12.3 Printing of text using the sub—routine in HELP

12.3.1
12.3.2
12.3.3

Function

Location of the routine; entry and exit
Example of the use of HELP output—
routines

13. UTILITY PROGRAMS; THE HELP SYSTEM
13.1 A system of utility programs
13.2 The HELP administrater

13.2.1
13.2.2
13.2.3
13.2.4

The HP button

Exit

Programmed entry
Floating—point overflow

13.3 Activation of HELP routines

13.3.1
13.3.2

13.3.3
13.3.4

HELP-routine call—line.

Control parameters

Activation of routine from

typewriter or tape

Programmed activation of a HELP-routine
Corrections

13.4 Standard HELP routines

13.4.1
13 4 2

Location of HELP routines

"kontrol" (check) and "start"
"tryk" (output)

"kompud" (condensed dump)

"gem" (preserve), "hent" (retrieve)
and "sam" (compare)

"ret" (correction)

"hp ind" (patch)

"hp ud" (de—patch)

"glip"

10 Incorporation of other HELP routines

13.4.11 Rules for preparation of HELP routines

13.5 Error messages from HELP

13.5.1
13.5.2

13.5.3

Wrong control parameters

"tomt hp" (not in catalogue) and
"sumfe jl" (error in check total)
Errors in the locked tracks

14. LIBRARY ROUTINES (deleted)

15. EXERCISES (deleted)

16. SUMMARIES AND TABLES
16.1 Numerical Representation of the Typographical

. Symbols

16.2 Entries and Layouts when Editing numbers

127
128

129

135
140
141
143

144

144
146
148

150
152
156
165

173
177
180
187
189
190
191

193

194
195

page

127

132
132
134

144

150

193

196
196
197

198
199

page

16.3 Underlined letters in SLIP 200
16.4 Error messages from HELP and SLIP 201
16.5 The effect of HELP routines and types of parameters 202

PHOTOS of consoles

INDEX

9. THE DRUM STORE AND PERIPHERAL UNITS

9.1 Introduction

The paper tape reader, on—line typewriter and paper tape

punch are mentioned in section 2.7 of the Volume 1 of this

Manual. These three unite will be described here in more detail

together with the (Anelex) line printer and the punched card

reader, both of which may be connected to the GIER computer.

We will, however, first discuss the drum store in more

detail (ef. section 2.3).

9.2 The drum store

As mentioned in section 2.3, GIER is equipped with a

magnetic drum store consisting of a number of tracks containing

40 (42-bit) words. Normally, there are 320 tracks but GIER may

be equipped with 260 tracks (i.e. corresponding to 3 drums).

[}
The tracks are numbered from O to 319 (alternatively 959) and
all data is transferred to and from the core store in blocks of

40 cells at a time. Thus 2 instructions are required, the one —

a VK instruction — indicating the track number and the other -

either an LK instruction or an SK instruction — indicating,
firstly, the corresponding part of the core store (40 consec—
utive cells) where transfer is to take place and, secondly, in
which direction data is to be transferred {from drum or to drum).
These two instructions do not necessarily need to be placed

next to each other in the program, since the instruction
VK <c¢>

for instance, serves only to select track no. <c>, i.e. the
track is made ready to send or receive the next data transferred.
The selection thus made remains effective, (the track no. is
held in the drum track register tk), until a further VK instruc—
tion is executed. Every LK (read track) or SK (write track)
instruction will thus refer to the track which was selected by

the last previous VK instruction,

9.2.1 Addresses in the core store

The address in every read or write instruction is always the
address of the first of 40 consecutive cells in the core store
where the drum transfers are to take place. If this address is
between O and 984, the 40 cells constitute a compact block in
the core store whereas, if the address is 2 985, the 40 cells

are made up of the last and some of the first cells in the core

store, the addresses being calculated modulo 1024.

Example 9.1

The piece of coding:

VK 70

SK 1000

LK 860, VK O

will cause the contents (including marker bits) of cells
1000 — 1023 followed by cells 0-15, to be transferred to
track 70. After this, the track is read back into cells
860 — 899 of the core store. The contents of cells 1000 -
1023 and 0 = 15 remain, of c¢ourse, unchanged while their
contents have been copied to cells 860 - 899 (and track 70).
The final instruction VK O has been set there to ensure
that GIER does not go further along the program before the

second drum transfer is complete (cf. section 9.2.3).

9.2.2 The track address; locked tracks.

The address in a VK instruction is the number of the track
which is to be selected: As the VK instruction is executed, the
address in this instruction is transferred to the tk register;
when an SK or IK instruction is to be executed, the contents of
the tk register determines the track to take part in the opera-
tion. Thus a VK instruction will be executed even though the
address is £ 320 (alternatively 2 960); only in the following
read or write instruétion will GIER realize that the track se—
lected does not exist. What happens after this depends on the
number of actual drums connected to GIER since the drum circuits
a;e slightly different when one or three drums are connected.

Similarly the possibilities for locking drum tracks for 1-drum

and 3—drum GIERs are different:

A) GIER with {1 drum, 320 tracks: If the contents of the tk

register are 2 320, the only consequence of an SK instruction is
that GIER will wait until any drum transfer in progress is com—
plete. Apart from this such a "write™ instruction is dummy
(taking, however, approx. 36 us, if the address calculation is
simple).

An LK instruction when the track no. is 2 320 will not cause
a stop, either, but does have the effect that access to the drum
is prochibited and that the TR lamp will be 1it permanently (the
sign that the parity check, which is performed when a track is
read, has failed and the "track" is being read over and over
again). GIER will however come t0 a halt on the next drum in—

gtruction, because the drum circuits are still occupied.

Track O is normally locked and can only be opened by turn—
ing the power for the computer off and removing a contact pin
from one of the printed circuits. Tracks 1—31 may be locked
and unlocked using a switch on the operating panel at the top of
the main GIER cabinet. The effect of "locking" a track is to
prevent the contents of that track from being overwritten, in
such a way that an SK instruction operating on the track will
have no effect (in the same way that an SK instruction to a non-—
existent track is without effect). A read instruction may nat-—
urally operate on a locked track just as well as an unlocked

track.

Example 9.2,

On a 1—drum GIER, in the following piece of coding:
[m] VK -1, SK 120
[m+1] LK 400

[m+17] VK 20

GIER will not be able to execute the VK instruction in cell
m+17, because the reading of "track —1" will never be com—
pleted. The TR lamp will be 1it but GIER will not be halted,
and thus pressing NORMAL START will have no effect; only by
pressing RESET can the drum circuits be relieved and after
this NORMAL START must be pressed before GIER can execute
the instruction VK 20 and continue with the program.

It is also possible to restore the situation by cancel-
ing the parity check {using a switch on the operating panel
at the top of the main GIER cabinet — a red lamp by the side
of the switch lights up when the parity check is switched
off), after which the computer will immediately continue
with the program. (But the contents of cells 400 ~ 439 are
changed.)

B) GIER with 3 drums (960 tracks): If the contents of the

tk register are Z 960, both an SK and an LK instruction will
cause a stop such that

a) GIER halts on the verge of the next instruction without

having performed any transfer.

b) The error lamps TO and TR are 1lit.

¢) The "Klar" lamp is lit.

On pressing NORMAL START, GIER starts running again.

There are, at the foot of the operating panel in GIER's main
cabinet, two push—button registers each with 10 buttons which
can be set to represent, in binary form, any number between O
and 1023, It is thereby possible to lock an arbitrary number of
consecutive tracks by setting the lower register to represent

the address of the first locked track, and the upper register to

represent the address of the last locked track. Track no. O is,
however, locked in the same way as in GIER with 1 drum.

If both registers are set to the same address, only the
track with this address will be locked (apart from track 0), and
if the address in the lower register is greater than that in the
upper register, then only track O will be locked.

A locked track may be read in the usual way, but an 8K in—
struction referring to a locked track will cause GIER to stop
just as if the track did not exist (see above).

In short, if the two push—button registers are set to the
addresses, Kmin and Kmax respectively, the following instruc-
tions will cause GIER to stop (with the effects listed under a),

b) and c) above):

LK instructions where 960 : tk § 1023
SK instructions where tk = 0, 960 é tk : 1023
or Kmin £ tk £ Kmax.

Example 9.3.

In a GIER computer with 3 drums, the effect of the instruc—
tion
VK 1, SK 200

depends on the settings of the push—button registers: if the
lower register is set to O or 1, and the upper register is
set to anything else but O, then track no. 1 will be locked
and GIER will halt after "execution" of the SK instruction
without having written on any track; otherwise, the instruc—-
tion will be executed guite normally, the contents of cells
200 — 239 being copied on to track 1 of the drum.

9.2.3 Simultaneous drum transfers: the check on reading.

Transfer of one track, either to or from the drum usually
takes 20 milliseconds (the time required for 1 revolution of the
drum) but, as soon as transfer has been initiated by an LK or SK
instruction, GIER can continue with succeeding instructions in
the program at the same time as the drum transfer is taking
place. It is only when a further drum instruction — VK, LK or
SK — is met that GIER must wait for the previcus drum transfer
to be completed. The actual SK or LK instruction is executed in
9 us (+ the time necessary for address modification), but the
execution of the succeeding instructions is delayed slightly
because the control unit is occupied for short periods during
the drum transfer, altogether approx. 1 millisecond spread over
the 20 milliseconds which the transfer lasts.

Since the drum transfers commence as soon as GIER meets an
LX or SK instruction, it depends on the instantaneous position
of the constantly rotating drum which cell on the drum track is
the first to send or receive information; GIER must thus calcu—
late the corresponding address in the core store (within the
block of 40 cells defined by the address of the LK/SK instruc-
tion). After this the transfer continues between the drum and
consecutive cells in the block in the core store until the cycle
is complete; it will thus occur quite often that the 40 cells
are not dealt with from first to last but in a cyclically dis-
placed order.

This matter is further complicated by the fact that an auto-
matic parity check is performed when the drum is read: each cell

on the drum has an extra bit which, when the cell in question is

written into, is set equal to 1 or O according to whether the
number of ones in the cell is odd or even.*) When a cell is
read, GIER determines whether the parity check is valid or not
and, if it is not, GIER continues to read the track (cyclically)
until it has read 40 cells in succession without error.

When the parity check fails, the TR lamp on the console is
1it but it is turned off if the error disappears. If there is
a persistent error on reading, one will see the lamp 1it up.

A consequence of this is that, while the execution of an SK
instruction always last 20 milliseconds, an LK instruction may
occupy the drum circuits for a longer time if parity errors
occur. Before one uses data which has been transferred from
the drum to the core store, one should ensure that the transfer
is completely finished. This can be achieved by writing in the
program a (redundant) VK instruction with an arbitrary address,
since the selection of a fresh track can not be performed before
the drum circuits are vacant.

One should also do the same before storing fresh data into a
block in the core store the contents of which have just been
written on to the drum,

In the case of drum errors when the TR lamp remains 1lit,
GIER can be stopped by pressing the RESET button or, alterna—
tively, the track may be caused to be read uncritically by using
the button "Annullering af paritetscheck" on the operating panel

at the top of the main cabinet,

*) In a 3~drum GIER, each cell has 3 extra bits and the parity

check is made modulo 8 instead of modulo 2.

Example 9.4.

In the piece of program:

VK 210, LK 400

VK 0, ARSF 403
the instruction VK O ensures that all reading from the drum
is complete, before the contents of cell 403 are used in the

following calculations. If, however, one were to write

VK 210, LK 400

ARSF 403

it would be impossible to predict whether it was the old or
the new contents of cell 403 that were used in the following

calculations (and this may change from run to run).

Example 9,5,

Let us consider the piece of program:

VK 310, SK 200

GM 200
If one can calculate that it takes GIER more than 20 milli—
seconds to run through the series of instructions between
SK 200 and GM 200 then this last instruction will have no
effect on the contents of track 310 on the drum. But if it
takes less than 20 milliseconds, it is impossible to predict
whether the quantity written on to the first cell of track
310, is the original contents of cell 200 or the contents of
the M register (and this may too be different from run to
run).

One should, to be quite certain, insert a VK instructioen,

€.8.,
VK 310, SK 200

VK 0, GM 200

10

whereby one can ensure that GM 200 is first executed after

the complete drum transfer.

9.2.4 Drumfree jump.

As mentioned above the instructions, VK, SK and LK serve,
among other things as "wait" instructions, which ensure that
GIER does not continue with the program before a drum transfer,
previously initiated, is complete. The purpose of doing this
is usually that during a calculation which takes place simul-
taneously with a drum transfer, one needs to ensure that the
drum transfer is complete before the program uses a part of the
core store taking part in the transfer.

However there is another facility which can be used to let
GIER itself optimise the explcitation of "slack time" during a
drum transfer. This is the HK instruction ("drum free jump",
descrited in Volume 1 of this manual page 87).

The effect of an HK instruction depends on whether a drum
transfer is in progress or not: if this is so, the HK instruec-—
tion is dummy (apart from a possible S-modification), and GIER
continues immediately with the following instruction; if however
the drum ié free, the HK -instruction works exactly like the sub-
routine Jjump i.e. the instruction HS.

This jump can be used, for instance, in the following situa-—
tion: a program loop is to be run through many times and lasts a
congiderable time, i.e., O.1 seconds or more, while one wishes
to transfer the contents of another part of the core store to
the drum at the same time. In such a case one may insert an HK

instruction in the main loop of the program, s¢ that when the

11

drum is free, a jump will be made to a few instructions which
initiate the "next" drum transfer and thereafter Jump back to

the main loop of the program (see the example below),

Example 9.6.

A program loop in cells 101 - 123 are to be run through a
large number of times, and the 7 drum tracks 200 — 206 are
to be read to the core store, cells 540 — 819, at the same
time. Assuming that cells 50— 53 are free, the progranm

could be as follows:

— [100] HK 50 [50] VK 199 +1

-—- [51] 1T (r+4), BS 760
[52] LK 500 +40
(53] HR s+1

— [123] HV r—23 NT

[124] HS 50 [jump in case another drum
transfer is required]

[125] HK r+1, BV r—1 [jump forward, only if drum
transfers are complete]

An HK 50 instruction has been inserted in the main program
loop. This instruction causes a subroutine jump to cell 50,
every time a drum transfer is complete. The instructions in
cells 50 and 52 serve to initiate fresh drum transfers while
the BS instruction in cell 51 makes sure that only 7 tracks
are read in. However, ome must also make certein that all
the tracks are transferred by the time the computer has
finished looping, and, therefore, in cells 124 =125, 3 in-
structions have been put in to ensure that GIER does no con-
tinue with the next part of the program before theylast
track has been read into the core store: only when the drum

has completely finished transferring will the Jump effect of
HK r+1 take place.

The HK instruction is rather treacherous in that the

above program may not necessarily work properly when running

12

9.3

at micro tempo, as every drum transfer will undoubtedly be
complete before the next instruction is executed and the HK
instruction in cell 125 will thus cause a Jjump the first
time it is executed, even though several tracks has not been

read in at this time.

Paper tape reader, paper tape punch and on—line typewriter.

GIER is equipped with an 8—channel paper tape reader and
paper tape punch and also an on—line typewriter for beth input
and output. This section will only deal with the way in which
these units work whereas the construction of input/output pro—
grams is described in later chapters.

Both input and output take place one frame of holes (or one
character) at a time, as an LY instruction causes input, an SY
instruction output, of only one frame of holes (one character).

These peripheral units are connected to GIER via the buffer
register bl consisting of 10 bits, of which only the last 8
(pos.2-9) are used here. In addition, the activation of the
differernt peripheral units is controclled by the by register;
selection of the units to be activated by LY/SY instructions is
performed using a VY instruction which can change the contents
of the by register. Positions 3—6 of this register cover the
selection of output units and positions 7-9 cover the selection

of input units.

9.3.1 The paper tape reader.

GIER is equipped with either the Facit reader or the RC 2000

reader, reading about 1000 and 2000 characters/second respective—

13

1ly. In the sequel we first describe the Facit reader in detail,
and then mention the points where the RC 2000 reader differs
from the other one.

A) The Facit tape reader: After the tape has been placed in

the reader, pressing a button on the reader will cause one frame
of holes to be read into the bl register, but no transfer to
GIER itself will take place.

(A frame with only the little sprocket—hole, Blank tape, is
ignored by the reader which searches for the first frame with a
hole in one of the 8 meaningful channels; the sprocket—hole in
fact only serves to define the presence of a frame).

After this the effect of an LY instruction (assuming that
the paper tape reader has been selected) is that the contents of
pos.3—9 in the bl register are transferred to pos.3—9 in the R
register (accumulator) and to pos.3-9 in the cell indicated by
the final address of the LY instruction; a character is then
read in from the tape to the bl register, so that the parity
sign (the 4th channel from the top) is put into pos.2 of the bl
register while the remaining 7 channels are stored in pos.3-9
of the bl register.

The parity bit is pnot transferred to¢ the accumulator, nei-—
ther is it transferred to the cell in the store but a parity
check is parformed together with the transfer from the bl reg—
ister to the accumulator and the cell: if the number of ones in
the bl register (i.e. the number of holes in a frame) is even,
GIER will stop after the LY instruction — as with the standard

halt instruction — with the corrupt character minus parity bit

in the accumulator and cell and with the next character in the

bl register. At the same time the L lamp on the console is 1it

14

(also "str.les. par.fejl" (tape reader parity error) on the
auxiliary panel); the two lamps will first be switched off when
the next LY instruction is executed or when the button on the
reader is pressed (reading the next character to bl).

An exception to the above is the treatment of a frame with
holes in all 8 channels (A&ll Holes): in spite of the fact that
the number of holes is even, GIER will not stop; pos.2-9 of the
bl register will be filled with ones, and pos.3—9 of the accumu-
lator (and the cell in the store) will also be filled with ones
corresponding to the wvalue 127.

From a comparison of the tables 8.3 and 8.4 in Volume 1
(pages 152—153) one can see that if one ignores the parity chan-
nel (the 4th. from the left), the holes in the tape correspond
exactly to fhe ones in the binary representations of the values
in GIER. This principle is extended in fact also to the punch—
ing codes which can not be punched directly on the Flexowriter;
for instance, the code |oo 00. o| is accepted by GIER and makes
the value 109 in Raddr and in the address positions of the

appropriate cell of the store.

Exanple 9.7.

Since GIER first stops after parity error when the corrupt
symbol has been placed in Raddr and in the address position
of a cell, any tape input program to be fully satisfactory,
ought to deal with the contents of the accumulator ignoring
completely the contents of the cell of the store involved

in the LY instruction. The reason for this is that when

15

GIER is halted after a parity error while reading a tape,
it is easy enough to correct the contents of Raddr by means
of push buttons on the console — on pressing NORMAL START
the input program will deal with the corrected symbol and
thereafter continue reading — whereas it is much more dif-
ficult to correct the contents of a cell as well (operation

of the console is described in detail in chapter 10).

B) The RC 2000 tape reader: This photoelectric reader has

a buffer store with a capacity of 256 characters. This store is
used gquite literally to "buffer" the incoming characters from
the paper tape so that data can be read from the tape at 2000
characters/sec. without fear of "losing" any characters if a
particular program has a processing c¢ycle of less than 2000
characters/sec. The buffer is used as follows: As characters
are read from the tape, they are stored cyclically in the buffer.
Similarly, as LY instructions are executed, characters are taken
cyclically from the buffer beginning with the "oldest" character.
During run the tape speed is controlled so that the buffer is
always about half full: When only 1/4 or less of the buffer is
occupied the tape is read with full speed, but when the buffer
becomes fuller the speed is slowed down and the driving motor
is stopped when about % of the buffer is occupied.

When a tape is placed in the reader (and the reading head
is pressed down), use of the button RESET causes the buffer to
be cleared and 100-200 characters to be read into the buffer

ready for transfer to GIER.

16

1Y instructions now cause the transfer of the first charac—
ters from the buffer to R and to a cell (via the bl register),
and when less than 128 characters are left in the buffer, the
reader starts again. So, when the last input instruction of a
program is performed, the reader has usually read 120 — 200
characters too many.
The effect of the other three buttons on the reader is as
follows:
READ causes reading into the buffer without clearing it.
SKIP causes the tape to be moved forward without reading it.
This is usually the gquickest way to get a tape out of the
reader.

Up lifts the reading head.

9,3,2 The paper tape punch.

The effect of an SY inatruction with the final address c has
the effect (assuming that the punch has been selected) that a
frame of holes is punched, the pattern of holes being an image
of the 7 last bits in the binary representation of the address
cy in addition a parity hole may be punched to make the number
of holes in the frame always odd. At the same time, the 7 bits
are transferred to pos.3—9 of the bs register, the parity bit
being placed in pos.2 of this register. Also, the value of the
7 bits — as an integer — is added to the contents of cell 1023
in pos.0—19; this may be used to form a check total of all
punched symbols.

Even those values of ¢ which do not correspond to Flexo-—

writer symbols will cause a frame of holes to be punched.

17

In these cases also the last 7 bits in the binary representation
of ¢ will be punched with a hole for each one (plus a possible

parity hole).

Example 9.8.

The instruction SY 127 causes the code |ooco 0.000|j the "All
Holes" code can not be produced by GIER.

The instruction SY 128 causes a parity hole alone (the
SPACE symbol) to be punched; in the bs register, pos.2 is
set equal to one while the remaining positions are set to

Zero.

9.3.3 The on—line typewriter.

The typewriter attached to GIER can be used for both input
and outputy ite function will be described, firstly, as an input
medium, and secondly, as an output mediumj finally, some points
which require careful attention when using the typewriter alter-
nately to input and output, are given,

A) Input: When GIER arrives at an LY instruction while the
typewriter is selected, a green lamp on the typewriter lights
up; GIER then waits in the process of executing the LY instruc—
tion until a symbol is typed on the typewriter. The numerical
value of this symbol (cf. Table 16.1 in this volume) is trans-—
ferred to pos.3-9 of the accumulator and of the cell indicated
by address part of the LY instructiony after this GIER continues
with the succeeding instructions and the green lamp is turned
off. Note that in this case there is no buffer register acting
as a go—between, but that the symbol is read directly from the

typewriter to the accumulator and cell.

The typewriter can not be locked in Upper Case (unlike ordi-
nary typewriters and Flexowriters), and if several characters
are to be read in in Upper Case (using a number of LY instruc-
tions), the Upper Case key must be held down while each charac-—
ter is typed; it is true that the wvalue of.the character is the
same in Upper or Lower Case but when the Upper Caée key is re-
leased, a Lower Case symbol (value 58) is read in and may have
a quite undesirable effect on the interpretation of the other

symbols by the program.

Example 9.9.

It can be seen from table 16.1 that when using the type—

writer as input medium it is not possible to put the wvalues
10, 11, 12, 15, 26, 28, 31, 42, 44, 45, 46, 47, 61 and 63

into Raddr as these correspond to symbols which are not on
the typewriter; apart from the above values, however, it is

possible to introduce all other values between O and 64 incl.

B) Output: When GIER arrives at an SY instruction, the last
7 bits of the address are transferred to pos.3—9 of the bs reg—
ister while the parity bit is set in pos.2 of bsy if the type-—

writer has been selected, it types the character corresponding

to the contents of bs i.e. the address in the SY instruction
modulo 128. At the same time a check total of the characters
output is formed in cell 1023; see section 9.3.2 above.

If the address (modulo 128) of the SY instruction does not
correspond to any symbol on the typewriter, the effect of the
instruction is as follows: the address is transferred to the bs
register as described above, and GIER continues with the next

instruction without any visible activation of the typewriter.

o AL

19

(The next SY instruction must wait however for approx. 0.1
second until the typewriter has sent a "ready' signal to GIER).
Lower Case is selected by means of the instruction SY 58,
and all SY instructions that follow will cause typing in Lower
Case until the instruction SY 60 causes all the SY instructions
that follow this to type in Upper Case (until the next SY in-—
struction with an address part = 58). Thus by using these 2
instructions it is possible to "lock" the typewriter in the

relevant Case.

Example 9.10.
The instructions

VY 16 t7 [output to typewriter, input unchanged]
SY 58, SY 32
SY 11, SY 84
SY 129, SY 26

cause the typewriter to write (in Lower Case) a minus sign
and a 1 (SY 129); the remainder of the SY instructions

are dummy.

C) Points for careful attention: If the typewriter is used

for output immediately after it has been used for input, the
symbol (last) read should not be

a) Upper Case or & character in Upper Case

b) Car.Ret., Tab or Space.
The reason for this is that during input GIER does not wait for
these typographical operations to be completed; it continues
with the program as soon as the appropriate value has been in—
troduced into Raddr (and a cell). An output instruction may

therefore make & conflicting situation for the typewriter if it

20

9.4

has not managed to finish the typographical operation activitated
by the last character read. It may well happen that the output
instruction has no effect and that GIER will continue in the pro—

gram.

9.3.4 Operation times.

A single LY instruction will take up GIER's time for approx.
50 ps {including simple address modification), this being the
time necessary for the transfer from the input buffer to the
accumulator and cell; after this GIER continues with the next
instructions in the program, but a fresh LY instruction can only
be executed, when the appropriate peripheral unit is ready again
(in the case of the paper tape reader after 1-2 milliseconds and
for the typewriter after 0.1 seconds).

Correspondingly an SY instruction takes up GIER's time for
as little as 60 us, whereas the punch is active for approx. 8

milliseconds and the typewriter for 0.1 seconds.

The Anelex line printexr

GIER may be equipped with an Anelex line printer, which can
print cutput at the rate of max. 1000 lines/hin., the maximum no.
of characters in each line being 119 (in some cases even 120).

The printer is connected to GIER via 2 "parallel" buffer
registers with room for 120 characters, corresponding to one
line of print, in each registerj while information is being

printed from one register, the other register collects the char-

21

racters coming from GIER. When the printer has finished print-
ing from the one of the registers and the other register has re-
ceived the symbol for CR, the instruction SY 64, the two regis-—
ters exchange rolls: after the paper has been spaced forward to
the next line, the latter register which has just been filled is
printed out while the former register collects the characters
output from GIER, and so on.

The line printer can be activated by SY instructions other-
wise destined for the typewriter or punch, or simultanecusly
with these, or alone by means of the by register together with
a special set of buttons on the auxiliary console containing the

HP button. There are 16 buttons, which are arranged 4 by 4,

by[3] by[4] bvy[5] by[6]

Line printer | [| [1 L __1 L[}
Typewriter —1] 1 [
Punch]]
Reserve L1 CJ []

each of the 4 columns indicating a bit in the by register and
each of the 4 rows indicating an output unit.

If no buttons are depressed, all SY instructions are output
to a non—existent unit i.e. GIER goes through all the motions of
the SY instruction without activating any unit.

If any button is depressed, an SY instruction will cause
output to the unit corresponding to the row in which the button
lies, if the bit of the by register, corresponding to the column

of the button in question, is one. Any number of buttons may be

22

depressed at the same timej; more than one button in the same row
will thus mean that several different bits in the by register
will activate the same output unit, and if more than one button
in one column is depressed one bit in the by register will acti-
vate a number of output units and thereby cause simultaneous
output to several units.

The introduction of these push—buttons nullifies the fixed
effect that by[4] and by[5] have on the standard GIER without
printer; however, it is wise to keep a standard for ease of
operating etc. e.g.

by[4] = 1 activates punch

by[5]

by[6]

This standard should always be chosen when using the HELP rou-

1 activates typewriter

]

1 activates lineprinter

tines.

Example 9. 11.

A program commences with the instruction
VY 16 +7

which set by[S] equal to 1 without changing the input selec—
tion. While the program is being tested all output is to be

written on the typewriter in which case the button marked

by[3] by[4] 1vy[5] bvyl[é]

Line printer D [:] (il

Typewriter] T X
Punch] I

Reserve L |] | J

i

_—

23

with a cross is depressed; for routine runs of the program
all output is to be made both on the line printer and the
tape punch and in this case the two shaded buttons are de—

pressed.

Example 9,12,

In a program 3 kinds of output are required: Check output
(only during testing), punched output (to be used as data
for later runs), and printed output (which is in fact the
object of the run in question). The program is written with

the instruction
VY 32 +7 [set by 4 = 1]

before any check output, and the instruction
VY 16 +7 [set by 5 = 1]

before punched output, and the instruction
VY 8 +7 [set by 6 = 1]

before printed output.

During a program test the 3 buttons marked with crosses
are depressed whereby the check output is written by the
typewriter and the remainder is printeds; during routine runs

the 2 shaded buttons only are depressed:

o

by[3] by[4]

1
Typewriter] X3
1 [
L1 [

y[5] by[6]

Line printer (2%

Punch

Reserve

RN
e

The same effect could in fact be achieved using many other

combinations of the VY instruction and the push—-buttons.

24

9.4.1 Margin.

For output on the printer the margin must be set manually by
means of a control panel on the printer.
The margin may set to any of the first 63 left—hand printing

positions.

9.4.2 Carriage Return, Page Change and Stationery formats.

As mentioned above the instruction 8Y 64 causes one line to
be printed and vertical spacing of the paper. The printer has
also a built—in control of whether a line is filled up or not:
if one of the printer's buffer register has received 119 charac-
ters without a CR among them, the whole line is printed when the
120th character is received, and the paper is spaced vertically
(if the 120th character is the CR symbol, the paper will be
vertically spaced 2 times).

The printer is normally adjusted to change to a new '"page"
of continuous stationery (page change), when one "page" is
filled, In the case of the 3 standard staticnery formats, a
"page" is defined as follows:

A4 vertical: Automatic Page Change after 72 lines (81 print—
ing positions/line)

A4 on side: - - - — 48 lines (111 print-
ing positions/line)

large Size: - - - - 102 lines {120 print—
ing positions/{ine)

Besides this the printer will make a page change on the instruc-
tion SY 42 (42 is one of the unused values on the typewriter and
flexowriter). Note particularly that if one attempts to use

more than the allotted number of printing positions (81 for A4

25

vertical, 111 for A4 on side) the last characters in the line
will not be printed on the vaper and no indication will be given

by the printer that the characters have been lost,

9.4.3 The printer code.

The printer has a wiring pahel, by which it is possible to
express an arbitrarily required correspondance between- the
values in the address in an SY instruction and the symbols on
the print barrel. The symbols on the print barrel are as fol—-
lows:

the digits 0 to 9, the capital letters A—Z and the Danish

letters £, @, A

LA A D B
> < ., y 2

Ir

e

*%'&at#w
The wiring panel is normally wired to a standard code which
resemples very closely the codes for the typewriter and Flexo-
writery there are however the following small divergences:

Letters are always printed as capital letters.

SY with the addresses 10, 12, 28, 45, 46, 47 and 61 produces
a space instead of nothing.

SY with the addresses 29, 62 and 63 has no effect on the
printer.

SY with the addresses 1, 14, 15, 16, 26, 31, 42 and 44 cau-
ses symbols differing from those on the typewriter and
Flexowriter to be printed.

For more detailed information, the reader should refer to table
8.4 in Volume I, page 153 or to the table 16. 1 in the Appendix

of this Volume.

26

9.5

The card reader.

GIER can be equipped with a card reader which can sense both
punched and pencil-marked cards. The unit can also be used as a
sorter, although only a primitive form of sorting (selection of
a particular class of cards) can be controlled by GIER itself;
more complicated forms of sorting can be performed using a plug—
board and a criteria card which 1s read in prior to the sorting
operation. The sorting of cards in this way may be acccmplished
independent of any connection to GIER and the unit can thus be
used as an off—line sorter.

The maximum rate of reading is approx. 12 cards/sec. giving
a cycle time of 80 milliseconds per card. If the reader is run-—
ning at this speed, GIER must be able to process each card with-
in 80 milliseconds and must furthermore be able to read the de—
sired information fields in each card within 72 milliseconds (cf.
section 9.4.2). If this is not possible, the information in the
next card will not be available to GIER at all, and the card
will be deposited in a special stacker indicating that it has
not been processed.

The continuous feed—rate may however be decreased to as
little as 1.5 cards/sec. giving GIER up to 665 milliseconds in
which to process a card (the reading itself must not take longer

than 635 milliseconds).

9.5.1 The mechanical construction,

Cards: The cards used are divided into 80 columns, numbered
from O to 79, each with 12 rows, for punched information, and 27

fields, numbered from 80 to 106, also with 12 rows per column,

27

for pencil-marked information, The 12 rows are identified from
top to bottom by the numbers 12-11~-0-1-2---8-9, rows 12
and 11 being the so—called rows for zone punching; the 12 rows
for pencil marking correspond to the rows for punching and are
numbered in the same way. Each of the fields for pencil marking
is superimposed upon 3 punching columns so that, for instance,
field no.80 occupies the same part of the card as column 0-2.
The last field, no.106 covers columns 78 and 79 and a dummy
column to the right. The fields for marking can, however, quite
conveniently be regarded as columns for programming purposes and
will be referred to as such in the remainder of this section.
The reader: The reading unit includes 2 set of brushes, the
first set being used to sense pencil-marks (3 brushes per column)
while the second set is used to sense holes in the card. The
card is read row by row to a buffer store, the Card Image Buffer
(CIB), which has room for 80 + 27 columns; when a card has passed
both sets of brushes, the CIB contains sa complete picture of the
card (where marks and holes are shown as ones, the rest being
gero). This card image is transferred to another buffer store,
the Exit Buffer and the next card is then read into the Card
Image Buffer®). When the complete image has been transferred
to the Exit Buffer, the information in this buffer is available
while the next card is being read into the Card Image Buffer.
While the card image is being transferred, column by column

from the one buffer to the other, it is subjected to a check,

*) In reality the Card Inage Buffer has 27 extra columns into
which reading of the pencil marks of the next card is com—
menced at the same time as the punched columns of the pre—

vious card are read.

28

Mark—sensing

i

Hole—sensing

|

12 |
11 Card Image:Buffer
0 1
. .
; 80 c¢olumns ' 27 columns iolum?w1se
} for : for ranslers
: punched . mark—sensed
information : information
01 2... ...79 80... ...106
r r
! Criteria
]
Criteria Buffer Plugboard .
' and Signal
\ > Circuits [——> to
Information from a ériteria card c ?or . Sorter
I riteria
: Investigation
'
|
|
Columnwise :
transfers 1
|
|
i
12 T | Possible
1 | Error
11 | | 5 1
0 | | 1gnals
|
— . Exit Buffer ¢ !
. I |
: ! r---
| ! 1
~ 9 4 1 |
a X i
| — |
e | ¢ [:|<-
01 2... ...79 80... ...106 109
Alphabet
“Iconverter
WA i A4 Accumulator
01 10 19 34 39

T

29

which can lead to a possible error marking, as follows:

Certain criteria fer the punching and marking of cards can
be selected prior to a run. According to these criteria, a
criteria plugboard must be wired and a special criteria card
must be read into a store called the Criteria Buffer.

Each column of the image read in can now be checked using
the selected criteria: if the column is not in error, it is sent
on to the Exit Bufferj if there is an error in a column, one of
two error bits are sent from the criteria plugboard, and at the
same time as the column is transferred to the Exit Buffer, an
error bit for that column may also be transferred to one of 2
extra rows available for this purpose in the Exit Buffer. It is
also possible to "hold" the error bit at the plugboard for the
duration of the transfers of cclumns so that the logical sum of
all error bits can be sent to an extra column consisting only of
the 2 error positions, c¢olumn 109 in the Bxit Buffer. It is
thus possible to indicate the types of error for each column.

For further details about the above and also the possibili-
ties of making error—marking dependent on as many as 6 columns
of information, the reader should consult a more technical de-
gcription of the reader, e.g. A Fast Reader for the GIER Com-—
puter by L.Prehl Hansen and B.Scharee Petersen, BIT Vol.3 no.f1,
obtainable as a reprint.

Stacking: When the cards have passed the two sets of
brushes, they are lead past 14 stackers or compartments, called
9-8—-...=-1-0—-11-12-8—-R, where the reject stacker R is
furthest away from the reading brushes.

Using a plugboard and a criteria card one may choose between

different forms of stacker—selection.

30

a) Consecutive stacking: The stackers 9-0 are used for

normal unselected cards which have been run through the reader;
stacking commences in stacker no.9 and when this has been filled
up, stacking is continued in stacker no.8 and so on. When all
the stackers 9-0 are filled up, the reader will stop but if one
of the stackers is emptied, stacking will take place in this
stacker and will continue until all the stackers are full again.

Stacking in compartments 11, 12 and S is directed by the
plugboard wired for logical criteria and these compartments will
thus be used for stacking error cards or cards selected by any
other form of criteria.

The reject compartment R is uged for stacking cards which
GIER is not able to process.

b) Simple selection controlled by GIER: GIER may control

the stacking of selected cards in compartment no.8 as follows:
The reader deposits cards in consecutive stackers as above, but
only in compartment nos. T—0j; the special stackers 11, 12 and S
and the reject stacker R are used as above. However a card

will be deposited in compartment 8 if the instruction LY 120 is

executed by GIER before the next card arrives. Compartment no.9
is not used at all with this form of sorting. The instruction
LY 120 must be executed before 9/10ths of the card cycle (at top
speed 72 milliseconds) has elapsed, and before the instruction
LY 127 has been given, meaning that GIER is ready for the next
card,

c) Off-line sorting: Any other more complicated form of

sorting can only be achieved by manual operation of the sorter,

with selection controlled by the plugboard and a criteria card.

31

9.5.2 Input to GIER.

Information on a card is read into GIER column by column,
from the Exit Buffer on the reader to the accumulator R, using
the LY instruction.

This requires that the card reader is selected as peripheral
unit by placing the bit pattern 010 in the by register pos.7-9
(ef. the 1list of operations in Volume I, page 86); this may be
done with the instruction

VY 18 [input from card, output to typewriter]
or with

BY 2 +120 [input from card, output unchanged]

After this an LY instruction will cause a column to be read to
the accumulator, as follows:

rows 12,11 are read to R pos.0,1

rows 0—9 are read to R pos.10-19

error bits are read to R's marker—bits, positions 40-41.

At the same time, the column's bit pattern (rows 12,11 and 0-9)
is converted to a 6-bit number which is placed in R pos.34-39.
Using a plugboard it is possible to convert an arbitrary punched
card code to any 6—~bit code. It is only possible to read a
column once as reading corrupts the corresponding column in the
Exit Buffer.

The final address ¢ in an LY instruction indicates, mainly,
which column is to be read from the Exit Buffer to R:

0$ecs 79 Card column ¢ is read to R pos.0,1 and 10-19; the

<or< same column is read via the alphabet converter to
80 2c 2106

R pos.34-39; the error bits are read to the marking

The remainder of R is get to zero.

pos.40—41 in R.

32

C

u

109

120

127

107,

108,

The two error bits styled as column 109, are read
to the marking positions 40-41 in R whilst the

remainder of R is set to zero.

This value of ¢ is only used when sorting is con-—
trolled by GIER: the card last read is deposited
in stacker no.8 (while all other cards are depos—

ited in stackers nos. 7-0, 11, 12, S or R).

This value of ¢ is a signal from GIER to the read-—
er that reading is completed: the next time the
Card Image Buffer ig filled up, its contents are
transferred to the Exit Buffer; only when this has
happened, is the reader ready to transmit informa—
tion to GIER which cannot otherwise execute the
next LY iﬁstruction.

If the reader does not receive the "ready"
signal (via LY 127) from GIER, before 9/10ths of
the card cycle has elapsed, the image of the next
card will not be transferred to the Exit Buffer;
in addition the card itself will be deposited in
the reject stacker indicating that GIER has not

been able to process it.

172N

110 £ ¢ £ 119 or 121 £ ¢ £ 126. These values of
¢ are invalid addresses; their use will cause the
readér to stop (because a rarity check, performed
as each column is read by GIER, does not tally)
and GIER will wait at the next LY instruction be-

cause the reader is not ready to transmit to GIER.

33

c 2 128 In this case the value of ¢ will be taken modulo 128,

thus having one of effects described above.

9.5.3 Examples of punched card input.

A program for input and processing of information on cards
will, frequently, have the following structure:

1) An introductory part (initialisation of addresses etc.)
including a VY instruction, selecting the card reader as periph—
eral unit, plus the instruction LY 127, meaning "ready t0 read
the first card".

2) The head of a loop, which is run through once for each
card; the speed of the reader must be selected so that the time
taken to read a card is not less than the time required for one
loop.

3) One or more loops within the main loop. Each loop com-
mences with an instruction of the type LYS a t+1, which reads
the "next" column to an empty accumulator; each loop will thus
read in and process a field from the same card.

4) The tail of the main loop; this part consists of the in-
struction LY 127, a possible final and collective processing of
the card just read and a return jump. The reason for arranging
things in this way is that, as soon as the last column required
has been read, it is desirable to send the "ready" signal LY 127:
1/10th of the card cycle must always elapse after this before a
column from the next card can be read; one should thus attempt
to make use of this time internal for the final processing of
the card.

The actual time required to read one column is approx. 50

34

psec. and if the address part is well-bestowed with brackets and

T

increment it could take up to 75 usec.

Example 9.13.

500 cards are punched with positive integers, with 3 digits
having units in column 10 (tens in col.9 and hundreds in
col.8). These integers are to be read in and totalled, the
result being placed in cell 1022, as an integer.

The alphabet converter is wired so that the values of
the digits 0—9 is formed in the usual binary manner in the
last positions in the accumulator; the program could be as
follows (using the SLIP notation with symbolic addresses
etec.)s

VY 2 t 120 [select card reader]

PM 10 D [set factor 10 x 272 in M]

LY 127, GRS 1022 [ready for 1st card, clear total cell]

PA a3 t 499

—>a5: PA a0 t 7 [the main loop begins here]
GRS a2 [elear work cell a2)]
r>a0: LY 7 t1 [sub—loop: read next col.]

TL -6, TLS 6 [clear first 34 bits of R]

GR al, MKS a2 [store digit from this col, mult. last
value of scaled no. by 10]

AR a1, TK 10 [add digit from this col., scale by

factor 10 x 2—9]
GR a2, IT (a0) [store scaled no.]
L—— BS 10, HV a0 [end of sub—lcop]

LY 127 [ready for next card]

ARS a2, TK -10 [put no. in R pos.39]

AC 1022, IT —1 [total in cell 1022]

BT 499, HV a5 [the main loop ends here]

ZQ O

at: QQ O [work cell: scaled no., units in

. p08.29]
a2: QQ O [work cell: last char. read in]

35

It takes less than 2.5 milliseconds to run through the
main loop (from cell [a5] onwards), which means that each
time GIER has executed the instruction LY 127, it will wait
at the next LY instruction for some time (depending on the

speed of the reader) before processing the next card.

Example 9.14.

In a primitive service routine a print—out of the image of the
pencil-marks on cards is required: the image is to consist

of ones where marks are made and noughts in all other posi—
tions; every row in the column is to be investigated and the
image of each column is to be printed on one line beginning

with column 106 working towards column 80:

b0: VY 34, LY 127 [select card reader and tape punch,

ready for next card]

PA b1 t 107 [initialising]
b2: SY 64, SY 64—
b1: LY 107 t —1 [read next column]
PA b6 t 8 [initialising]
—>b4: GA b3, SR b3 [clear pos.0-9 in R]
TK 1, CA O [investigate next bit in column]
SY 16, HH b5 [write either O]
b5: SY 1, IT —1 [or 1]
-——b6: BT 8, HV b4 [jump back 9 times]
BS (b1) t 80
HH b2 [jump back to next column]
HV b0 [jump to next card)
b3: 0

When this program runs, the contents of the first card will
be punched as required, but since it takes approximately 2
seconds on the tape punch (280 characters must be punched,
it is very possible that several cards will have run thfough
the reader (the number being dependent on the speed of the
reader), before GIER is ready to accept another cardj the
card which happens to be passing the reading brushes at that

36

time will then be printed outj; the preceding cards will not
be printed out but deposited in the reject stacker.

If, however, the line printer is used for the print—out,
the input—output times will be compatible and all the cards

will be printed out and deposited in the normal stacker.

Example 9.15.

A number of cards are to be sorted from a deck of cards de—
pending on the punching in columns 35 and 36, the criteria
for selection is of such a nature that it cannot be wired
on the criteria plugboard but must be programmed in GIER.

The selection instruction LY 120 can be used, for instance,

a8 follows:

VY 2 ¢ 120 [select card reader]
—>a0: LY 127, LY 35 [ready for next card, read col.35]

GROD [store the column just read in pos.0-9
of this cell]

LY 36

GR O D [store column 36 in pos.0-9 of this

cell]

- [the criteria for selection is calcu-

- — - lated and reduced to be indicated by

———— the sign of R]

LY 120 LT [the card just read is deposited in

stacker no.8 if R < 0]

HV a0 [jump to read next card)

Assuming that the speed of the reader can be adjusted so
that the above lcop can be run through in less than 9/10ths
of the card cycle, the selected card will be deposited in
stacker no.8, while the remaining cards will be deposited
successively in stacker nos.,7-0.

If, however, the loop lasts longer, the first card will
be deposited in stacker no.7 irrespective of sorting crite-—
ria (because the selection instruction comes too late); the

next card will be deposited in the reject stacker (because

37

it has not been processed); the third card will be read but
will always be deposited in stacker no.7, the fourth will

always be rejected etc.

38

10. 1

10. THE CONSOLE AND REGISTERS

The main console (control panel).

Although the main console has, with the development of the
HELP system, become more or less redundant for the general user,
the meaning and effect of the various lamps and buttons on the
console will be described here. The aguxiliary console which
contains the HP button will be described in section 10.3.

In the bottom left—hand corner of the console panel there is
s key—hole into which a key is inserted to turn the power for
GIER on or off. The volume control for a loudspeaker which is
connected to ROO and mskes noise whenever ROO changes is situat-

ed in the middle of the lower half of the panel.

10.1.1 Lamps and buttons on the main console.

The photograph at the end of this volume shows GIER's main

console. The left—hand part of the upper row of lamps shows the

contents of the indicator register etc,j the centre part of this
row shows the current situation (mainly for the benefit of serv-
ice engineers) and the right—hand end shows which register the

operator last displayed (usigg push—buttons). The second row of

39

lamps shows, when the computer is stopped the current contents
of the selected registers, the digits 1 and 0 being represented
by, respectively, a lit and unlit lamp. If the operator selects
a 10—bit register (the p register, for instance) it is shown in
the left-hand end of the row of lamps, in the field marked
ADRESSEDEL.

Below is given a detailed list of the particular functions

of the lamps and buttons beginning from the top left-hand corner:

0 shows the contents of the overflow register O
(1 meaning overflow and 0 no overflow),

T shows the contents of pos.00 of the accumulator,
R, which govern the sign of R; this can be
changed using the buttons below T.

OA, OB, .., KB show the contents of the indicator register.

KA and KB can be set or reset using the corre—
sponding buttons.

YE is 1it up when input or output is made to or from
e peripheral unit and also when GIER waits for a
unit, e.g. input from typewriter.

M1, M2, M3, M4 show which status level, GIER is executing: M1 ig
1it during the introductory address determination,
M2 during the execution of the basic operation,
and M3, M4 during the possible concluding modi-
fications,

h is 1lit when GIER executes a left—hand half-word
instruction, and also when GIER is stopped after
execution of a LH half—word instruction. Other—

wise, the lamp is not 1it.

40

KLAR is 1it when GIER is stopped i.e. when the power is on
but the computer is not running.

SF is 1it when the power is not on (e.g. during starting up
or when there is a breakdown).

TO is 1it when the current instruction contains an unde-
fined basic operation (or when there is a breakdown);
GIER stops after the introductory address determination.

TR is 1it when there is a parity error during reading from
the drum.

L is 1lit whén there is a parity error during reading from
the paper tape readery GIER stops ready to execute the

next instruction (cf. section 9.3.1).

The rightmost lamps in the upper row indicate the register
whose contents are being shown in the lower row of lamps, the
operator may select a fresh register using the corresponding

button. The possibilities are as follows:¥)

R The Accumulator {excl. pos.CO which is shown at the left
of the upper row and is called T).

M The Multiplier Register.

0 The Operand Register (one of the registers in the arith-
metic unit).

H The Hold Register where calculations (including address
calculations) take place.

L The Storage Transfer Register which acts as a buffer

between the core store and the arithmetic unit.

*) Some of these registers are described in more detail in

chapter 2 of Volume I.

1

st

r2

82

in

ta

tk

bl

41

The Function Register which containe the current
instruction excluding the address constant: during
execution of a whole-word instruction, pos.20-41 con—
tain the current operation code (plus modifications
ete., while pos.10~19 contain the increment, during
the first micro step, or status level, only. During
execution of a half-word instruction, pos.30-39 are

set to zero. Pos.0-9 of the F register constitute the
index register p.

The Control Counter, which shows the address in the core
store of the current (or next) instruction.

The Subroutine Register, which is used during calcula-
tion of s—modified addresses.

The Address Register, which contains the core store
address.

The Auxiliary Address Register which is used during
address calculations (together with r2),

The Indicator (whose contents are also available at the
left—hand end of the upper row of lamps, but it is only
possible to change the contents by selecting in and
uging the buttons below the lower row of lamps).

The Drum Address Register which contains addresses in
core store during drum transfers.

The Drum Track Register.

The Tape Reader Bufferj bl always contains the next
character to be read (from tape) by an LY instruction.
Immediately after the LY instruction's execution, the
next Eharacter on tape will be transferred to bl (ef.

also section 9.3).

42

bs The Output Buffer; bs alwayé contains the last character
thch has been output to a peripheral unit (ef. also
gsection 9.3).

by The Peripheral Unit Register which contains information
about which peripheral unit has been selected (cf. also

chapter 9).

The text over %he lower row of lamps indicates where the
separate parts of an instruction are placed when the selected
register coﬁtains a whole or half—word instruction. Note,
especially, that:

a) Pos.0-9, which are designated ADRESSEDEL on the console
panel, show only the address constant, while the remainder of
the address — indirect modification, indexing (p or s) or rela—
tive addressing — is shown in pos.27-29.

b) Pos.33—34, designated IO‘show the indicator operation
(I, M, N or L) and poé.35-39, designated IA, I, and I, show
together the indicator address (cf. section 4.9 in Volume I),

When GIER is stopped, one may set the contents of each posi-—
tion separately as desired, using the buttons below the row of
lamps; using the two buftons at the extreme left, it is possible
to £ill the whole of the register with noughts or ones (pos.00
of the accumulator must, however, always be set using the but-

tons below the lamp T).

10.1.2 Start and Stop buttons.

At the base of the console panel, there are two sets of
start and stop buttons designated NORMAL and MIKROTEMPI. Their

function is as follows:

43

NORMAL START may only be used when GIER is stopped (the KLAR
lamp is 1it) #s.a result of:

a) the execution of a Halt instfuotion, or

b) the use of the button NORMAL STOP, or

¢) the use of the button MIKROTEMPI STOP.

When NORMAL START is pressed, GIER will begih executing the in—
struction in the cell whose address is held in r1. If NORMAL
STOP is kept depressed, then each time NORMAL START is pressed,
one instruction will be executed.

If the MIKROTEMPI STOP button has been used, a number of
special conditions come into play (see below).

NORMAL STOP: When this button is pressed, GIER stops when
the‘execution of the current instruction is completed (cf. sec—
tion 10.2). Any drum transfers in progress will also be com—
pleted before the computer stops. (If the instruction iﬁ prog—
ress is a left hand half-word instruction, the lamp h will be
1it after the halt). |

If, on account of a programming error, the computer comes
into a closed chain of brackets {(a loop of indirect addresses,
which "refer to itself") or, if, on account of a machine error,
the computer enters a loop in a micro—program (for instance,
when the "ready" signal from a peripheral unit does not arrive),
GIER will not stop when NORMAL STOP is depressed *). In this

case, it may be necessary to use MIKROTEMPI STOP (see below).

*) GIER "remembers" however that this button has been pressed
and will under all circumstances stop before execution of
the next instruction, if, for instance, & missing ready

signal suddenly arrives.

44

MIKROTEMPI START: Assuming that GIER is stopped, pressing
this button will cause one step in the micro program of the in-
struction in progress to be executed. The microprogram for each
instruction consists of many (i.e. 20-30) micro—-steps which are
gplit up into 4 main levels of operation, and the lamps M1, M2,
M3, M4 in the upper row of lamps show which status level the
machine is in the progress of performing.

MIKROTEMPI STOP or RESET: When this button is pressed, GIER
stops immediately, if necessary in the middle of an instructiong
any drum transfer in progress is also interrupted (before com—
pletion). Since this button will, at the same time, bring into
play a number of other functions (zeroising of certain registers
etc.), it is rather dangerous to use the button as a stop button
during a normal run, it being possible to corrupt the contents
of a cell in the core store in this way. The functions brought
into play are:

a) The control unit prepares to execute a fresh whole—word
instruction or a left—hand half-word instruction: the lamp h is
turned off, if it was 1lit, and the lamp M1 lights up. The next
instruction will be taken from cell [r1] and depending on when
the RESET button is pressed, this will be the current instruc-
tion or the next instruction. (If RESET is pressed during execu—
tion of a LH half-word instruction, this instruction will be
repeated when GIER is re—started).

b) The typewriter is set in Lower Case.

¢) All functions concerning the drum are interrupted (if
there is a persistent error while reading from the drum or if
a non—existent track has been selected, GIER can only be stopped

by use of MIKROTEMPI STOP, see section 9.2.2).

10.

45

d) All functions concerning peripheral units are interrupted
(the "ready" circuits are reset).

e) by[0] is set to zero. {In connection with the HP button).
Thus, if during a run, one wishes to stop GIER, NORMAL STOP must
be used. If, during a run, one wishes to make changes in a pro-
gram, the HP button on the auxiliary console can be used (see

below).

Operation of the main console.

10.2.1 Computer stop.

When programs are run using the HELP-SLIP system, it is
normally not necessary to stop GIER. (When GIER is "idle" it
should always be waiting for typewriter input). However, the
GIER can be stopped in one of two ways:

a) By pressing NORMAL STOP., GIER stops when the instruction
being processed has been completed, on the verge of executing
the next instruction (in technical terms, GIER stops on the
first micro—step of status level M1 of the next instruction).
The instruction just completed will be held in pos.10—41 of the
F register; the register r1 will contain the address of the cell
containing the next instruction.

b) By a programmed stop instruction, GIER stops as above on
the verge cf the next instruction, after the stop instruction
including any modifications has been processed.

In both cases any drum transfers in progress or the activa-
tion of peripheral units will be completed correctly and when

NORMAL START is pressed, GIER will continue with the program.

46

10.2.2 Start (Re—start).

If GIER has been stopped by a programmed halt (or NORMAL
STOP) and one wishes to continue normally, it is only necessary
to press NORMAL START.

If, however, GIER has been stopped in one way or another and
one wishes to transfer control to another part of the program,
it is first necessary to press MIKROTEMPI STOP; r1 should be
selected and set equal to the address of the cell containing the
first (LH half-word or whole—word) instruction to be executeds
when NORMAL START is pressed GIER will begin "from the left" in
the required cell.

It should be noted that, if GIER has been stopped by a LH
half-word stop instruction and one changes the contents of ri
(without using MIKROTEMPI STOP), when NORMAL START is pressed
GIER will begin to execute the right—hand half-word instruction

of the cell indicated in r1.

10.2.3 _Execution of single instructions,

An instruction can be executed manually in two ways, since
it is possible to execute the instruction without placing it in
the store or to place it in the store and at the same time let
it be executed.

In both cases it is necessary that the computer is stopped:

a) An instruction is required to be executed without being

placed in the store:

1. Press MIKROTEMPI STOP,

2. Press MIKROTEMPI START 3 times.

Aa.

4b.

b)

47

Select the L register and put in it the required instruction
bit for bit, either as a whole—word instruction or as a
left—hand half-word instruction.

If NORMAL STOP is held down and NORMAL START is pressed once,
the required instruction will be executed, GIER stopping on
the fringe of the next instruction.

If, however, one wishes to let GIER continue as if the in—
serted instruction had been placed in that cell whose address
is in r1 at the start of the routine, it is only necessary

to press once on NORMAL START.

An instruction is required to be placed in the store and

thereafter executed:

Press MIKROTEMPI STOP,

Select the register r1 and set in it the desired storage
address.

Press MIKROTEMPI START 2 times.

Select the L register, which now contains the selected
cell's previous contents. The desired contents of this
cell must now be set in L.

Press MIKROTEMPI START once. The new contents of the L
register will be placed in the selected cell in the store.
The instruction can now be executed using one of the two

methods described under 4a or 4b ahbove.

It must be emphasized that after MIKROTEMPI STOP, the NORMAL

START button must not be used before MIKROTEMPI START has been

pressed 3 times, since GIER may not otherwise function properly.

c) Step—by-step running: If one holds the NORMAL STOP but-

ton depressed and continually press NORMAL START, it is possibdble

48

to run through a program instruction by instruction. Each time
the start button is pressed, one instruction will be executed
(however, a substitution instruction or a chain of such instruc-—
tions and the following instruction will be executed in one
"step"),

d) Changes in the contents of the core store: This is

achieved by first performing steps 1, 2, 3, 4 andi5 as described
in subsection b above. Step no.6 will instead consist of press-—
ing MIKROTEMPI STOP (after which it is possible to select the
register r1 and change its contents so that GIER will begin at

the required part of the core store).

Example 10.1.

A program consisting of A0 cells and stored on track O on
the drum is required to be placed in the core store in cells
10~-49, after which the program is to be executed beginning
with cell 10.

Assuming that the computer has been stopped, this can be

performed as follows:

t. Press MIKRQTEMPI STOP.

2. Select the register tk and clear it.

3. Press MIKROTEMPI START 3 times.

4. Select the L register; clear the register and set the
address part equal to 10 (1 in positions 6 and 8) and
the operation equal to LK, that is the value 52 (1 in
positions 20, 21 and 23).

5. While NORMAL STOP is depressed, press NORMAL START
once,

6. Press MIKROTEMPI STOP.

7. Select the register r1 and set in it the address 10.

8. When NORMAL START is pressed, GIER will begin to

execute the instructions in cells 10, 11, ...

49

Example 10.2.

One wishes to read in a program tape using a loader (input
program) stored from cell 512 onwards.

Assuming that GIER has been stopped, this can be done

as follows:

1. Put the tape in the reader and press the button which
reads the first character from the tape to the input
buffer b1.

2. Press MIKROTEMPI STOP.

3. Select the register r1 and set it equal to 512.

Press NORMAL START after which loading will commence.

Example 10.3.
GIER has been stopped. The contents of cell 203 are to be

changed sc¢ that the right—hand half-word instruction is
changed to SR p+4. The program is to be re—started at cell
200. This is achieved as follows:

1. Press MIKROTEMPI STOP.

2. Select the register r1 and set it to the address 203.

3. Press MIKROTEMPI START twice.

4. Select the L register; put the address 4 in the
increment (1 in pos.17), the operation SR in the
right—hand operation part (i.e. the value 3 in
pesitions 30-35, namely ones in pos.34 and 35), and
also p indexing in the right—hand half—-word, i.e.
cnes in pos.38 and 39. The left—hand half-word must
not be disturbed. Check that the contents of this
word contain a half-word flag (Lpos[40] = 1) but no
F flag (Lpos[41] =0).

5. Press MIKROTEMPI START once. The whole of the con—
tents of the L register are thereby transferred to
cell 203.

6. Press MIKROTEMPI STOP.

7. Select the register r1 and set it equal to 200.

When NORMAL START is pressed GIER will begin to

execute instructions beginning with cell 200.

50

Example 10.4.

GIER has been stopped and one wishes to re—start the program
at the RH half-word instruction in cell 30. This is
achieved as follows:
1. Press MIKROTEMPI STOP.
2. Select the register r{1 and set it equal to the
address 30.
3., Press MIKROTEMPI START 3 times.
4. Select the L register and set an innocuous instruc—
tion as the LH instructionj it is easiest to put in
the instruction QQ O by clearing pos.0-9 and 20-29.
(The RH half-word contained in the L register is the
required re-start instruction).
5. When NORMAL START is pressed GIER will begin by
executing the instruction QQ O which is dummy, and
continue with the required program. The contents of

cell 30 are not changed by this procedure.

10.3 The HP button etc.

The auxiliary console, situated beside the typewriter, con—
sists of a number of lamps and buttons of which the HP button
is the most important. By using this button it is possible to
interrupt programs at will, in order to influence the program
(for instance, to make corrections or to obtain storage dumps),
and thereafter be able to continue running the program "as if
nothing had happened".

The HP button in itself part of the machine's hardware is,
however, designed to work in conjunction with the HELP—SLIP
softﬁare. The effect of the HP button may thus be cther than

described here if used, for example, in conjunction with ALGOL

51

programs. This manual will only be concerned with programs
which are written using the HELP-SLIP programming system.
An advantage of the use of the HP button is that the "main"
conscle becomes redundant and all operator communication is
achieved using the auxiliary console and the typewriter.
These things will be described in detail in the following
chapters, so it will be sufficient here to mention only the

lamps and buttons which are on the auxiliary console itself:

At the left there are two large buttons:

RESET, which is in fact identical with the MIKROTEMPI STOP
button on the main console, described above.

HP, the interrupt button. When this button is pressed the
following functions are performed: the instruction being
processed is completed, after which an image of the core
store is stored on the last tracks of the drum and a
Jump is made to the input program SLIP which requires
typewriter input in order to continue. (A more detailed
description of this function can be found in section

13.2).

At the right of the conscle there are a number of lamps, which,
taken from the top, are as follows:
”KA'and ”Ké'with their respective push—buttons, which are

identical with the corresponding lamps and buttons on

the main conscle. It is thus possible to ascertain and
determine contents of the registers KA and KB from both
console panels.

"Klar" 1is a copy of the Klar lamp on the main console. It is

1it when GIER has been stopped, which ought not happen

52

when running with the HELP system. GIER can however be
started by pressing the HP button which causes a jump
to the HELP administration (see chapter 13).

"YE" is a copy of the YE lamp on the main console. It is lit
when a peripheral unit is activated.

"str.les. par.fejl" is a copy of the L lamp on the main console.
It is 1lit when GIER has stopped owing to a parity error
on a paper tape; cf. also section 9.3.1.

"Tromlefejl" is a copy of the TR lamp on the main console.

It is 1lit when there occurs parity errors during reading
from the drum.

"PO fejl" is a copy of the TO lamp on the main console. It is
1it when the current instruction contains an undefined
basic operation.

"HP sparret", is 1it when the interrupt button is locked i.e.
when by[0] = 1; see also the description of HELP in
chapter 13 ¥*).

nj-lpkke" is 1it when GIER cycles a long time in a chain of in—
direct addresses (and the lamp M1 is permanently 1it).
The only way to stop this is to press the RESET button

and GIER will then stop, about to execute the next in-—-

*) If the HP button is depressed while the computer is running
and also while by[0] =1, nothing happens before by[0] is
cleared (by a VY instruction); the interrupt will first
occur at this pointj thus, GIER "remembers" when the HP
button has been pressed during a run. This is, however, not
the case when GIER is stopped and the HP button is locked
(this should incidentally never occur!). When RESET (= MI-
KROTEMPI STOP) is pressed, by [0] is cleared.

53

struction even though the instruction with the chain of
indirect addresses has not been executed; if this hap—
pens in a LH half-word instruction, GIER will however
stop, ready to repeat the same LH instruction (because
the Control Counter r1 has not been increased and be-

cause the half-word bit h is cleared.

54

11.

11. SLIP (SYMBOLIC LANGUAGE INPUT PROGRAM)

Introduction.

This chapter deals with the use of the loader program SLIP,
which allows for, among other things, symbolic addressing. The
program itself is closely related to the system of service
routines called HELP and may, in fact, be regarded as a part of
this system. The whole of the HELP system is described in more
detail in chapter 13, while the present chapter will, in general,
be confined to describing the way in which instructions and nu-
merical and literal constants should be written and how they can
be knitted into a complete program. Only when one understands
the general mechanism of the HELP system will it be possible to
understand the way in which SLIP works especially as regards the
entry to and exit from the loader program. Thus this chapter
should be regarded as a survey of the rules for writing programs
which are to be loaded by SLIP.

Note that, although SLIP means literally "Input Program" its
major use should be to load program and program—constants (in—
cluding text). SLIP ought not to be used for input of data dur—

ing a run; each call of SLIP takes approx. 1 sec. for admin—

11.

55

istration (storage and replacement of the core store image).
Thus, for input of data, one should use the library routines
designed for this purpose (see the GIER System Library, edited

by Regnecentralen).

An example of a simple loader program.

(This section has been deleted).

The loader program SLIP.

11.3.1 Introduction. Storage allocation.

SLIP may, as mentioned in section 11.1, be regarded as a sub—
routine in the HELP system designed to load program and program—
constants.

An important facet of SLIP is that symbolic addressing may
be employed for both address constants and increments; this is a
great help during programming and debugging. It is also recom—
mended that the use of relative addresses is combined with the
use of symbolic names so that it is comparatively easy to insert
or remove instructions in the course of testing a program.

The part of the core store available for loading via SLIP
is cells 10—1022 since the permanent SLIP administrator is stor—
ed from cells 0—-9 and cell 1023 is used to store check totals
for output. On the drum, tracks 58—293 are available, since
tracks 0—-57 are used for storage of SLIP and HELP (of which
tracks 0—31 containing SLIP and the main part of HELP are nor—
mally locked), while tracks 294-319 are reserved for an image of

the core store, formed as the program is loaded: everything

56

which is programmed for the core store is,-in fact, stored in a
corresponding position in the image on the drum,'and only when
loading is ‘complete (just before the exit from SLIP), are tracks
294-319 transferred to the cells 0—-1023 in the core store (it 1is
in fact possigle to load program or data into cells 0-9 but it
is not recommended since the SLIP administrator will be over—
written).

Similarly, prior to each run of SLIP the current contents of
ceils 0—1023 and all the registers are stored on tracks 294—319,

after which a new program is loaded. [Thus the net result of a

complete run of SLIP is as if the program read in had been load-

ed directly into the core store.

The time taken to transfer the 26 tracks of core store image
to or from the drum is 26 x 0,02 sec. ™ 0.5 sec. so a program
should be loaded using as few calls of SLIP as possible i.e. as
large portions of program as possible, in one go, to avoid un-—
necessary drum transfers.

On GIER systems with 3 drums (tracks 0-959), track nos.
934-959 are used for the image of the core store; throughout the
following, where tracks 294-319 are discussed, 640 should be
added to these track numbers to make these remarks appropriate
for GIER with 3 drums.

In the following sections the most important facets of SLIP
are described in detail, while in section 11.9 a compleie syntax
for input to SLIP is given. (The syntax is presented in the

same manner as for the ALGOL 60 Report).

11.3.2 Liﬁes of information.

In order to load a program consisting of instructions, 1lit-

57

eral constants and numerical constants, SLIP must be supplied
with extra information, control information. It is thus neces—
sary to distinguish between the program information (instruc—
tions and constants), which are loaded into GIER as rart of the
complete program, and gontrol information, which does not appear
in the computer when loading is complete but serves to control
the loading operation.

Each program to be loaded by SLIP consists of a number of

lines of information which are separated from one another by the

Carriage Return symbol (CR). Each line may be one of 6 different

types, viz.

Instruction lines, consisting of one or two

instructions
Number lines, - — one or more
numbers
Text lines, ~ - one or (paradox— Program

ically so0) more >Information
lines of text

Binary information lines (the output in condensed
form from the HELP
routine "kompud",
see chapter 13)

Control line, which may define addresses W
(definition line)

- — <contrecl the way in which
numbers are stored
(control code)

Control

- —- select peripheral units Etc'?lnformation

(control code)

Help-call line (which selects HELP routines and
presents appropriate param-—
eters for these — not in
fact mentioned in this chap—
ter but in chapter 13) J

58

The first 3 types of program information are described in sec—
tions 11.4 and 11.5, while the control information is discussed
in section 11.6.

Dummy information: 1) When lines of text are read in only

Tape Feed and All Holes (i.e. characters with holes in all 8
channels) are ignored,

2) When lines other than text lines are read in, Space¥),
Tab, Stop Code, Punch On, Punch Off, Tape Feed and All Holes
are ignored; furthermore, everything from [to] inclusive (in—
cluding CR) is ignored; finally, everything from and including
semi—colon to — but not‘including — CR is also ignored. This
gives possibilities for writing comments and memos in each line,
for instance, when writing instructions and numbers: if one
wishes to write a comment at the beginning or in the middle of
the line it must bé embraced by the square brackets; if a com—
ment is required at the end of a line the square brackets may
also be used but it is also sufficient to begin the comment with
a semi—colon.

The symbols _ and are ignored, unless they come at the
beginning of a line or precede a symbol in Lower Case (in which
case only those combinations mentioned in section 11.6 will be
accepted, the remainder being treated as s).

A number of CR symbols after each other have the same effect

as one CR, so that all but the first CR symbol are dummy .

*¥) If a program is input from typewriter a space immediately
following a CR will cause the instantanecus address i to
be typed out in red (and perhaps also the instantaneous

track no. k)3 cf. chapter 13.

59

Loading of Instructions Using SLIP.

In this section the make—up of an instruction line is de—
sceribed. This description will assume the character of an
extension of the rules for writing instructioné laid down in
chapters 3, 4, 5 and 6 of Volume I. The way in which instruc—
tions are loaded to definite sections of the core store or drum
is discussed later, in section 11.6.

An instruction line is always loaded to a complete ce;l;
the line consists either of 2 half—word instructions or one
whole—word instruction; half-word instructions are separated by
a comma (as previously mentioned) or a stroke (slash)., Note
that a half-word instruction may be empty. Thus, for instance,
the instruction line

JAR 17
will cause the LH half-word to be cleared, corresponding to
insertion of the instruction Q& O while the instruction AR 17

will be loaded as a RH half—word instruction.

11.4.1 The Basic Operation, Modification and Indicator

Instruction.

The operation code may be written with letters in either
lower case or upper case or a mixture of the two and apart from
the 57, 2-letter mnemonics mentioned in chapter 5 and section

8.1, mnemonics for 7 other dummy*) operations are acceptable,

*¥) 4 of these, namely IL, US, GC and PC are additional basic
operations for the GIER system with a Buffer Store (4096

words of ferrite core) or Process Control Unit.

and will cause the following bit patterns to be loaded by SLIP

into pos.20-25 (or pos.30-35) of the appropriate cell:

dummy bit decimal
operation pattern value

IL 101100 44

Us 101101 45

G 101110 46

GC 101111 A7

PC 110000 48

zJ 111001 57

ZL 111110 62

In this way it becomes possible to represent each of 242 pos—
sible bit patterns in a cell, completely in the form of {"pseudo")
ingtructions (with attendant modifications).

S modification can be written as S (as previously) or as n.
(S is a mnemonic for Sletning, the Danish for clearing and n may
be regarded as a mnemonic for "null and void").

The floating—point modification F may be Qritten with a
capital or a small letter.

The modifications X, V, D must be written using capital let—
ters (as previously).

. Indicator instructions are to be written with capital let—
ters as laid down in Volume I.

The order in which the different parts of an instruction are
written is quite arbitrary, with the exception: each instruction
must begin with the (basic) operation code and the address con—
stant must precede the increments; otherwise, one may shuffle
modifications, indicator instruction, address constant and in—
crement together as one will. The reason for this is that the
bit pattern corresponding to a given inatruction line is built

up using a series of logical additionsy each time a constituent

61

part of an instruction is read in by SLIP, the bits correspond-
ing to that part, appropriately scaled, are added logically to
the bit pattern already read in frbm the same instruction line.
The use of this technique means also that any number of modifica—
tions or indicator instructions may be written in one instruc—
tion line; for instance, twentyfour X—s and three n—-s in one in-

struction line will have the same effect as one X and one n.

11.4.2 The Address.

In chapters 3 and .4 the concepts of absolute addresses, in-
direct addresses, p— and s—indexed addresses and increments were
introduceds everything which was said about these concepts re—
garding notation and meaning is still wvalid for input to SLIP
and the rules mentioned below are simply extensions of the pre—
vious notation:

1) A simple address may consist of:

a) ry, s, p or nothing

b) +, —, or nothing

¢c) an integer or nothing.

d) The above may be enclosed by brackets (for indirect

addressing).

If the sign between a) and c¢) is omitted, SLIP will assume a
plus. Thus, for instance, the addresses

824 and s+24
are equivalent. The order of writing the elements a), b), ¢) is
not irrelevant as the integer must always come last. Any inte—
ger is allowed, but the address constant is always formed modulo

1024. An empty address is the same as O.

62

2) Labels: Labels comprising one of the lettersa, b, c, d, e
followed by an integer may be used to represent values in the
address (or increment). Thus the following labels are available

a0, al, a2, ...
b0, b1, b2,

e0, el, e2, ...
(The labels a0, b0, ¢cO, etc. may be written as a, b, ¢, etc.).

Labels may bz defined, i.e. become associated with a numer-
ical value, in one of two ways: either, by means of a definition
line or by preceding a line with the name of the label (cf. sec-
tion 14.6.3 Definition lines etc.). But, irrespective of the
way in which the label is defined it is of significance for the
loading of an instruction line whether any label occurring in
this line is defined before the line in question or whether the
definition comes after this line. In the first case the label

is known as a pre—defined label and the value thus assigned to

this label is directly set in the appropriate address when it is

read inji in the other case the label is known as a post—defined

label and SLIP must store information about the instructions

where post—defined labels are used so that when the definition

is made the appropriate values can be set in the addresses of
these instructions. The difference between SLIP's treatment of
pre—defined and post—defined labels causes a certain difference
in the rules for their respective use.

3) Addresses with post—defined labels: The structure of

addresses containing labels which are first defined after the

instruction containing the address, is as follows:

63

a) r, s, p or nothing

b) + or nothing

c) a post—defined label.

d) The above may be enclosed by brackets (for indirect

addressing).

Note that a minus is not allowed and that absence of a sign is

regarded as plus.

Example 11.2.

Examples of address parts with post—defined labels:

cO
s+c1

(pd11) which is the equivalent of (p+di1).

Whereas the following are unacceptable if the label is post-
defined

—c0

c1+3
3+c1
s=d 11

because neither a minus nor an integer may appear together
with a post—defined label. (In the case of the address 3+c1
the expression will be in fact regarded as the address con-—
stant 3 together with the increment c1; see below in section
11.4.3).

If the address is relative, the instantaneous value of the

word counter is subtracted from the value of the label before

the address constant is set. This is necessary to enable one to

create relative addresses with symbolic address constants so

that the address is independent of where the program is placed

in the store.

64

Example 11.3.

In the section of program

HVS r+3 IZA
AR p+2, GR 124
MK 124, GR 125
AR p+4, MK 126

it is not possible to insert or remove an instruction with-
out changing the relative address of the jump instruction
HVS r+3. If one writes

HVS r+c1 IZA

AR p+2, GR 124

MK 124, GR 125
¢1: AR p+4, MK 126

the effect of the program will be the same as the original
one since SLIP performs the following functions: The label
¢1 is not defined when the instruction line HVS r+c1 IZA
is read in, and is tkerefore put on a "waiting-list". When
SLIP reaches the instruction line c¢1: AR pt+4, MK 126 the
symbols c¢1: serve to define the value of the label ¢1 as
the address of the cell into which the instruction is to be
loaded (see further section 11.6.3). SLIP will now look up
in the waiting list and find that ¢1 has been used earlier
whereupon the defined value will be set in the address where
c¢1 has occurred. But since the address in the HVS instruc—
tion is relative, the address of the cell where the HVS in-—
struction has been loaded will be subtracted from the value
associated with the label c¢13; the final form of the instruc—
tion will thus be HVS r+3 IZA.

In this program instructions can be inserted or removed
without affecting the meaning of the instruction HVS r+ci IZA
since SLIP will always interpret the required address con-—

stant as being the difference between the addresses of the

65

cells containing the instructions AR p+4 and HVS r+ci1 IZA,

Furthermore the program can be loaded anywhere in the core

store thanks to the use of relative addressing. If, on the

other hand, one wrote

cl:

ci

HVS c1 IZA
AR p+2, GR 124
MK 124, GR 125
AR p+4, MK 126

in the HVS instruction would be replaced by the absolute

address of the cell containing the AR instruction and the

program would be forced to remain in exactly that part of

the core store where it was first loaded.

4)

Addresses with pre—defined labels: ILabels which are de—

fined before being used in the address parts of instructions may

be used in the said address parts in several ways but the basic

structure of such addresses is as follows:

a)
b)

c1)

d)

r, s, p or nothing

+, — or nothing

an arbitrary number 6f pre—defined labels separated by

+ or —. The last {and only the last) term may also be an
integer.

The above may be enclosed by brackets (for indirect

addressing).

As previously, absence of a plus or a minus will be regarded as

meaning +. In contrast to addresses with post—defined labels

where each address can include only one label, any number of

labels

may be used here.

66

Example 11.4.

If a3, af and b14 are defined before they are used in ad-~
dresses, the following addresses will be accepted by SLIP:

(a3-a7)
s + bl14 + a3 + 1

pa7 — a3 which is the same as p + a7 — a3
whereas the following are invalid

b14 - 3 — a3

pafa3

because in the case of the former the number 3 may not be
followed by the terms —a3, and in the case of the latter a
plus or minus sign has been omitted between a7 and a3.
(Incidentally, in the case of the first expression,

b14 — 3 — a3, it will be regarded as consisting of the
address b14 —3 and the increment —a3 which is guite admis—
sible, whereas the other expression will cause an error

message).

The limitations regarding the positioning of integers in
address expressions illustrated in Example 11.4 can be overcome
since item c¢) includes a further possibility

c2) Any of the terms occurring in expressions named in ¢1)

may comprise an integer followed by a pre—defined label
withcut any sign between them.
The "missing" sign will be interpreted as a plus (and not — as
may be expected — as a multiplication sign) and the whole term,
integer plus label, is regarded as being enclosed in the usual

arithmetical brackets.

67

Example 11.5.

In accordance with rule c¢2) the addresses

s + 5a7 — a3
b14 — 3a3
p1b14

are acceptable and SLIP will calculate the values of

5+ a7 — a3
b14 — 3 — a3
1+ b4

as the address constants for the respective instructions.

(The first address will be s—indexed and the last p—indexed).

If an address is relative, it will be treated in much the
same way as for post—defined labels, the instantaneous value of
the word counter being subtracted from the value of the label
before this value is used in calculating the address constant.
If only one label occurs in the address and if the preceding
sign is plus, the effect will be exactly as described in example
11.3; but it must be emphasized that if several (pre—defined)
labels occur in a relative address, the word counter will be
subtracted from the value of each label before the terms are
added/subtracted as indicated. (The result will, presumably, be

very rarely of any use).

Example 11.6.

In the following 2 lines of program

at: PS s+1, AC 100
ARS r+at-2 X

the second line will be stored having an address constant -3

i.e. as the instruction ARS r—3 X.

68

As a program is read in, SLIP keeps a record of the cell and
the drum track into which the program is to be loaded. The in—

stantaneous values of the serial address and the serial track

number, signified by i and k respectively, may appear in
addresses in the same way as pre—defined labels:
¢3) 1 or k may occur instead of pre—defined labels in any
situation covered by c1) and c2) above.
If an address is relative, the values of i and k are not
however reduced as labels are.
In section 11.6 below the serial address and track number

are discussed in detail.

Example 11.7.

If the instruction line
LK i+25, VK O

is to be read into cell 100, it will be loaded as the in-
structions LK 125, VK O3 the line LK r+25, VK O will on the
other hand be loaded as the instructions LK r+25, VK O.

5) Scaling: In the case of all the addresses mentioned
above, each term is treated as an integer with units in position
9 or, when the address is for a RH half-word instruction, posi-
tion 19. It is often expedient tc be able to read in numbers
with the un£¥s justified to other positions in the word (see,
for instance, the initialisation parameters for editing numbers,
in chapter 12). This can be done by scaling the term in the
address expression:

c4) Every term in an address containing pre—defined labels

may be scaled by means of a suffix consisting of a

69

period {full stop) followed by an unsigned integer.

(The term may be any of the types mentioned in c¢1, ¢2

and e3).

NB. A scaled integer does not need to be the last term

in an address expression,
The effect of scaling is that the integral value of each term is
scaled (using the TK shift instruction) so that the units coin-
cide with the stated position in the word, before the term is
used to evaluate the address expression¥®). It is quite possible
to use scaling which falls outside the address part of a cell.

One should note here the way in which addresses in RH half-—

word instructions are treated: as these addresses are read in,

they are formed in the address pcsitions 0—9 with appropriate
consideration for scaling; when an address has been read in com—
pletely, the whole of it is shifted 10 positions to the right.
In this way the scale factor is automatically increased by 10 if
applied to right—hand addresses. (This applies also to incre—
ments; cf. section 11.4.3 below).

The expressions introduced under c¢1), c2), c3) and c4) will
in the remainder of this manual 511 be referred to as <{pre—

defined address>. A <pre—defined address> is thus a collection

*) In this respect there is a somewhat illogical difference in
the treatment of integers pd 512 (or negative integers) and
labels, whose value is 2 512: The integers are treated as
negative numbers which, on being‘shifted to the right in a
cell, will always be supplied with a string of ones in front;
the value of a label is always treated as a pdsitive number
which, on being shifted to the right, will be supplied with

a zero string in front.

of terms separated by + or —, where each term may be
a) a pre—defined label (including i or k) with or with-—
out a preceding integer and with or without scaling.
b) an integer with scaling.
The last term in a pre—defined address may be an integer without

scaling.

Example 11.8.

The instruction line
PI 1.7+1.8, VY 1.4

will be loaded as the instruction PI 6, VY 32,

Example 11.9.

The instruction line
AR (p+1.0+1.1) X

will be loaded as the instruction AR (p—256) X.

Example 11.10.

SLIP does not make any check ags to whether the extent of the
cell has been exceeded by scaling but executes slavishly the
required shift operations (without round-off):

Let a1l be (pre—)defined as 100. Then the instruction

line
MKF a1.2, AR a1.50-1

will be loaded as the instructions MKF -512, AR —1.

Example 11.11.

In a type ¢2) term, i.e. an integer followed by a label, for
instance 17a1, with scaling, the whole term e.g. 17a1 is

scaled. Thus the instruction line

71

ARn 17a1.8

is loaded as the instruction ARS 234, if a1 has the
value 100.

Example 11.12.

Initialisation parameters for editing of numbers can easily
be read in by means of scaled integers. Let us consider the
initialisation which is required for a number—editing rou-
tine, discussed in the next chapter. The parameters select—
ed are b=6, h=4, f1=1, 4=3, n=1, bE=3, f2=2, gi=4
and g2=g3=g4=g5=0.

The meaning of these parameters will be evident in the
next chapter where it is also possible to discover that the

parameters must be introduced into a cell as follows:

b with units in pos.3 h with units in pos.7
£f1 - - - - 9 d - - - =13
n - - = =14 bE - - - =17
fz - - = =19 gl - - = =23

These parameters could thus be read in with the whole-word

instruction
QQ 6.3+4.7+1.9 + 3.13+1.14+3.17+2.19 +4.23

The scaling .9 is in fact superfluous but if it is omitted
the integer 1 must be the last term in the address expres-—

siony one could therefore just as well write
QQ 6.3+4.7+3.13+1.14+3.17+2.19+4.23+1

(and in fact the remaining scaled integers do not need to be

written in any particular order).

11.4.3 Increment.

An increment may be written in the same way as the address
with the exclusion of relative, indirect and indexed addresses.

The increment part may thus be either

T2

A simple increment consisting of

a) +, — or nothing

b) an integer

or
An increment containing a post—defined label consisting of
a) + or nothing
b) a post—defined label
or

An increment containing pre—defined label(s) consisting of

a) +, — or nothing

b) a {pre—defined address> as defined above.
If scaling is used on an element of an increment, the position
number indicated is increased by 10 as the increment is read in
(see the previous section).

Separation of address part and increment. Since the address

may consist of an arbitrary number of elements and since the in-
crement can easily be mistaken for an address it may be neces—
sary to separate them in an easy and unambiguous way. The fol-
lowing possibilities are available in SLIP:

a) The increment may be preceded by t (small letter). This

possibility is always available and it is recommended that one
makes a habit of writing t in front of all increments.

b) Any of the instruction modifications 5, n, F, £, X, V, D

may be written between the address and increment and will sepa—
rate the two "addresses".

¢) Any indicator instruction including the dummy indicator

operationlI placed between the address and increment will dis—

tinguish the one from the other.

73

d) If the address expression is concluded by an integer any

term following this will be regarded as an increment (ef. the

rotation used in Volume I e.g. AR p+4+1).

Example 11.13.

In the instruction line
VK r+al17 t1

the address is r+a17 and the increment is 1,

Example 11.14.

In the instruction line
LY az1 t—1

the address is a21 with increment —1, whereas the same

instruction line without the separator t i.e.
LY a21 -1

will be read in as having the address a21 -1 and increment
0 if a21 is pre—defined. (If a21 is temporarily unde-
fined (i.e. post—defined) the line will be syntactically

wrong and will cause error reports to be made).

Example 11.15.

The instruction line
BT s+5 -2

will be read in as the operation BT with address s+5 and
increment —2 . One might just as well have written

BT s+5 t =2 or BT s+5 I -2 , since I is a dummy indica-
tor operation which is stored as zero in pos.33-34 (cf. sec—

tion 4.9.2 of Volume I).

74

Example 11.16.

In the instruction line
ar al n a2

the operation-modification n (clearing) separates the
address a1l and the increment a2 , whereas the instruction
line ar n at a2 will cause an error report because a sepa—
rator between at1 and a2 1s missingj if one writes

ar n al+a2 the locaded instruction would acquire an address
al+a2 and increment O , assuming of course that al and

a2 are pre-—-defined,.

Input of numbers and text using SLIP,

11.5.1 Input of Numbers.

SLIP can read and load numbers in 4 different ways, as

either floatin oint numbers, fixed—point numbers, integers,

or packed integerss a number—line is distinct from an instruc—

tion in that it always commences with a digit, a sign or a
point; selection of the way in which a number is loaded depends
partly on the structure of the number and partly on the adminis—
trators m and f£. (g and f are examples of control—code lines).

Each number or group of numbers (packed integers) is loaded

into one cell. Numbers are separated by at least one of-the
following terminators:

1) CR or commaj if either of these symbols follows imme-—
diately after a -number the marker—bits of the cell in
question are cleared.

2) The letters a, b or c; if any of these symbols follow
immediately after a number the marker—bits of the cell

in question are set appropriately.

)

75

Numbers are written in the same way as defined in the ALGOL
report, section 2.5, i.e. with or without a decimal point and
with or without an exponent to the base 10, Otherwise numbers
are read in as:

floating—point numbers if the most recent administrator read

in previously is fj any base—10 exponent may not be larger than
1523

fixed—point numbers if the most recent administrator read in

is m and, at the same time, the number contains a decimal point
or base—10 exponentj the number 1.0 will be stored as the larg—
est possible number in GIER, being 1—24(-39) 3 if one attempts
to read numbers outside the range -1.0 Sx £ 1.0 » SLIP will
give an error report (see section 11.8 below);

integers with units in position 39, if the most recent ad—
ministrator read in is m and, at the same time, the number con-—
tains as decimal point or exponent.

Packed integers consist of one or more integers, separated

or concluded by one or more oblique strokes (slashes). The pres—
ence of a stroke has the effect that, firstly, numbers are read
in as integers irrespective of the current mode indicated by the
administrator, and secondly, the units position of the numbers
is shifted 10 positions to the left for each stroke to the right
of the number. If an integer is too large to be included in the
space so allccated, there are stored as many bits, taken from
the (RH) end of the number, as there is room for {(i.e. the last
10, 20 or 30 bits). In particular the ones prefixed before
negative numbers will only be set within the allocated space
(see Example 11.18.).

NB. Packed integers may not commence with a stroke.

76

Example 11.17.

The control and number lines

m
1, 1.0, 50,,-2, -0.5, 300, 250/
will cause the following to be stored (in 6 consecutive
cells): the integer 1 (units in pos.39), the fixed-point
numbers 1-24(-39) , 0.5 and -0.5 , the integer 300
(units in pos.39) and, finally, the integer 250 with units
in pos.29. However, the lines
n
—O.1102
will cause an error report because the limits for a fixed-

point number in GIER have been exceeded.

Example 11.18,

The lines

£

1, 1.0, 50,,-2, =0.5, 300, 250/, 0/-200
will cause the following to be stored (in 7 consecutive
cells): the floating point numbers 1.0, 1.0, 0.5, —-0.,5 and
300.0, the integer 250 with units in pos.29 and finally the

integer =200 in positions 30-39 with units in pos.39.

Example 11.19.

Irrespective of administrators, the line
1//~4a

will cause a cell to be loaded with the number 1 in the LH
half-cell (pos.0-19) with units in pos.19 and the number —4
in the RH half-cell (pos.20-39) with units in pos.39.
Finally, the cell will be a—marked.

1025///

will cause the number 1 to be loaded with units in pos.9
while the rest of the cell will be cleared.

77

11.5.2 Input of Text.

If a line commences with the symbol t, every symbol<(ipc1ud—
ing any CR symbol) up to and including the firét semi—colon,
will be regarded as a text string so fhat all symbols that are
read in will be stored in successive cells, 7 symbols per cell.
In each cell, symbols are, however, stored "backwards"; the
first symbol read being stored in pos.36-41, the next in pos. -
30-35 and 86 on. The 6 positions which each Eymbol fills con-—
tain a bit—pattern which is identical excepting parity bit, with
the punched tape code for the symbol in questidn; the‘only ex—
ception from the abové being the‘symboi CR, (the only symbol
using the B8th., channel on the tape), which is stored as the
pattern 111111, | |

The only symbols which are ignored as text is read in are
Tape Feed (7 holes) and All Holes (8 holes).

When SLIP reads the concluding semi—colon,.this symbol is
not stored but a special terminal symbol (the unﬁsed combination
001010) is stored instead. After thisrloadiné will take place
in the next whole cell regardless of how much the previoug celi
has been filled up. Thus a text string will always fill a whole
number of cells.

There exists a HELP routine which can be used to print (out-

put) text strings read in'by SLIP; see the next chapter.

Example 11.20. .

The text Mline™

t Yes, we have no bananas
Easter 19643

78

will produce a text string consisting of 40 symbols (includ-
ing Case Shift, Space, Terminal symbol etc.) which will be

stored in 6 whole cells.

Control Lines and Blocks in SLIP.

11.6.1 The Serial Address and Serial Track No.

Loading via SLIP is always made to successive cellg in the
core store or tc successive cells and tracks on the drum. SLIP
uses two '"'registers" or counters to keep control of the addres-—
ses involved:

The serial address i always indicates in which cell in the

store the next piece of program information is to be loaded;
when the cell is filled up i 1is increased by 1.

i can be set to a desired value (e.g. the first address of
a block of cells into which a program is to be loaded) in two
ways: 1) by writing i=<pre—defined address> in a block head
(see below), where <pre—defined address)> means an expression
of the same type as that introduced in section 11.4.2%
2) by writing, anywhere in the program, a line similar to the
above viz:

i=<pre—defined address>
In each case the serial address is set equal to the value of the
pre—defined address on the right—hand side.

When input to SLIP is started from scratch the serial
address is 1=10 and if there is no good reason for changing it
one need not define it more explicitly; loading will thus take

place into cell 10 and onwards.

———

79

The serial track number k always indicates the number of

the track on which the next cells of program are to be loaded.
Each time a track is filled up 1 is added to k.

It is only possible to assign a value to k via the drum
block head (see below) where one writes k=<pre—defined address>.
k will then assume the value of the defined address.

When input to SLIP is started from scratch the serial track
number is set automatically to k=294. The reason for this is
that all input — as mentioned in the introduction — is in real-
ity loaded to the drum, and any parts of the program which are
destined for the core store, will be loaded into the Core Store
Image i.e. tracks 294-319. It is only necessary, in the latter
case, for the programmer to specify the serial address i , as
SLIP keeps an automatic record of the appropriate track numbers
(and automatically transfers the Core Store Image to the appro—
priate parts of the core store when input is finished). Only in
those cases where a part of a program is to be loaded elsewhere
on the drum is it necessary to define a value of k3 a further
discussion of these matters is given in the section on drum
blocks, 11.6.4. It should be mentioned here, however, that in
the Core Store Image, the 18t cell on track 294 corresponds to
cell O in the core store, the Zna cell on the track to cell 1

etc. etec.

Example 11.21.

The definition line
i = 401

causes the following program to be loaded to cell 401 and

onwards.

80

The definition line
i=1i+5 or 1 = 5i

causes 5 cells to be skipped (left undefined) as a program

is loaded.

11.6.2 Program Blocks.

SLIP has a facility for reétricting the scope of labels by
means of blocks similar to those iﬁ ALGOL; the most important
aspect of this is that labels which are "declared" in a block
are local for that block as in ALGCL., For the purposes of this
"section the name "block" will only refer to parts of programs
stored in the core store; the rules applicable to drum blocks,
described in section 11.6.4; are siightly different.

A block consists of a block head, the program sequence and
a block end. . ‘ [

Block head: A block begins with the symbol b followed by
optional control information about the start address in the core
store and the labels which are to be used internally within the
block. More formally, the structure of the block head is as
follows:

a) The symbol b

b) i = <pre—defined address>

c) One or more labels, separated by commasj the maximum num—

ber of labels is 5 since each of the initial letters
permigsible may only occur once.
The parts b) o? c) may be omitted but the symbol b by itself is
ignored completely.
The effect of a block head is as follows: 1 =<pre—defined

address> causes the serial address to be set equal to the vdlue

4______J

81

of the address on the right—hand side, i.e. the piece of program
following is loaded to the cell (and following cells) having
this address in the core store. If part b) is omitted, the pro-—
gram will be loaded in continuation of the program read in imme-—
diately before the block head,

If labels are used in the body of a block SLIP must have
indication of this in the head of the same block or in the head
of a block which embraces it, in the form of a "declaration': ifr
a label occurs in a block head, one may use labels with the same
initial letter as this label, freely within the body of the
blocks the digital part of such labels must be less than or
equal to the digital part (or this number + 1 if it is even) of
the declared label. Values are assigned to these labels either
by means of a definition line or by using it to "label" a line.
(The occurrence of a label in a block head in SLIP has thus a

similar effect to that of & declaration in ALGOL).

Example 11.22.

4 label in a block head corresponds to a declaration in
ALGOL in the respect that values are not assighed but that
the possibility of using certain labels is established.

Example 11.23.

The block head
b i=250, a3

causes loading to take place in cell 250 and after; the
labels a0, al, a2 and a3 may occur in the block. The bloeck
head

b i=250, a4

has the same effect on the loading as above but the labels

a0, a1, a2, a3, a4 and a5 are now allowed.

82

In many programs blocks will occcur inside each other, and
the scope of the declared labels will correspond exactly to the
situation in ALGOL: 1) If a label is declared in an "inner"
block, it may only be used in the part of program within that
block (including any other blocks embraced by that block).

2) If a label is declared twice, once in an outer block and
once in an inner block, it will act as two different labels, of
which one may only be used in that part of the outer block
which surrounds the inner block. This means that the label
must be defined twice, once at each "level'", and that the value
assigned to the label in the outer block is inaccessible from
the inner block and vice—versa.

The Block Tail: A block is terminated as follows: ;

a) The symbol e

b) a <pre—defined address> or nothing
The effect of a block tail is firstly that labels declared in
the corresponding bleck head are deleted, i.e. they may not be
used anymore (unless they are also declared in a block embracing
the terminated block); the values which have (possibly) been
assigned to these labels are inaccessible. Regarding the re-

ports made by SLIP and the internal "catalogue of labels'", one

is referred to sections 11.6.5 and 11.8 below.

Secondly, loading may be terminated completely: If a <pre—
defined address> follows e , a jump is made to the cell in-—
dicated by the <pre—defined address> and the program will be
executed.

If the symbol ‘e alone is followed by CR, loading will only

be terminated 1f the number of g symbols read in exceeds the

83

number of b symbols; in this case GIER will jump back to that
part of the core store from which SLIP was entered {(cf. section
11.7 below and chapter 13). As long as the number of e symbols
(without following address) is £ the number of b symbols, load—
ing will continue. For more details see section 11.6.4 on drum

blocks and 11.6.6 on complete programs.

Example 11.24.

In the program

— b i=100 43

d0: PM 700 IPA
MK (d0), GR (dO)

b a1
ARS (dO), NK r+a0
a0t PP 0O t+1

=]
GR (d0), 2Q O
L e 100

the label d0 is replaced by the wvalue 100 throughout,
because the labels 40, 41, 42 and 43 are only declared in
the outer block. The label a0 1is assigned the value 103,

but may only be used in the inner block.

Example 11.25.

As the following program:

- b i=100, 43

d0: PM 700 IPA
MK (d40), GR (d0)

b d0, al

ARS (d0), NK (r+a0Q)
a0t PP 0 t—1

e
GR (d0), 2Q ©
= e 100

84

is input, GIER will, on termination of the inmner block,
protest against the use of the label dC in the inner
block where it is only declared but not defined (see
section 11.8,2 below). On the other hand, both the MK
instruction and the GR instructions (before and after the
inner block) will be loaded with an address constant of 100.

For the block heads shown above, d1 1is in exactly the
same situation as dO, since the block head of the inner
block

b 40, a1

makes the "original" values of d0 and a1 inaccessible
within the inner block. Whereas, d2 and d3 are usable
throughout the program (if, of course, they are defined at

some point or other).

Example 11.26.

As the following program:

r b i=100, 43

d0: PM 700 IPA
MK (d0), GR (d0)

b a1

ARS (d0), NK (r+a0)
a0: PP 0 t-1

e

QQ 512 t512

HY i+3

b i=i+2

IT (a0), GT Q0
ZQ 0, HV 40

- e 100

is read in, GIER will protest against the use of the label
a0 in the final small block, This can be resolved by moving
the declaration of the lahel a0 (and thus automatically
al) up to the head of the outer block, sc that the program

will commence with
b i=100, 43, a1l

thus making the value of a0 available throughout the program.

85

The object of this complicated mechanism to restrict the
scope of labels is the same as in ALGOL: It should be possible
to include sub-routines (in ALGOL: procedures) written by others
in SLIP without having to worry about avoiding those labels,
which are used in the sub—routine. This can be achieved by
making all sub—routines into blocks which commence with declara—

tions of the names used.

11.6.3 Definition lines and labelled program—lines.

As mentioned in section 11.4.2 above a label (which must
have been declared in a previous block head) can get a value,
an integer in the range O £ 8 1023, in two ways:

1) In a definition line which looks like this:

<name> = <pre—defined address> g
where <name> 1is one of the labels introduced in section 11.4.2,
or the letter i (indicating the serial address). One may de-—
fine several names in the same definition line if each defini-
tion is of the above form and separated by commas.

The effect is that the value of the pre—defined address on
the RH side is calculated, after which the value is assigned to
the name on the LH side. (It becomes thereafter a pre—defined
label, cf. section 11.4.2 sub—section 2). *)

*) There is also a rather special facility for reference to a
RH half-word: <label> h = {pre—defined address> has besides

the usual effect (assignment of value) the following effect:

In those inatructions which have been read in previously, where
the label occurs as a post—defined label the basic operations HYV
and PA will be changed to HH and PT respectively. Note that gnly
these two basic operations will be changed and this only in in-
structions read in prior to the definition and never in succeed-—

ing instructions where the label is pre—defined.

86

In a definition where 1 occurs on the LH side, the effect
is that the value of the pre—defined address on the RH side is
assigned to the serial address, and loading will proceed begin-
ning with this address.

2) A label may also be defined by labelling a program line
i.e. when a label followed by a colon precedes a program linej
a program line may be an instruction line or a constant line;j
a label referring to a RH half-word is also written at the
beginning of a line and will normally look like an ordinary
label, although it may include the letter h Dbetween the label
and the colon. One may write several labels in the same program

linej each label must be followed by a colon.

The effect of labelling is that the label acquires the cur-
rent value of i , which is thus the address of the cell in
which the following program line is to be loaded. The letter h
has, as with definition lines, only one effect, namely that, if

any HV or PA instructions containing the label in the address

part have been read in previously, these instructions are changed

to HH or PT instructions, respectively.

Example 11.27.

In the piece of program

al=T7
ARS 202 IPA af

the addition instruction acquires the increment 7 at the

time it is read in, whereas in the piece of program

ARS 202 IPA at
at=T7

this will first occur after the definition line has been read.

87

Example 11.28.

The piece of program

i=25, a0=1, a1=100

ARS 5a1 tal
MK 100a1 ta®
HV i—2 NT

is read into cells 25, 26 and 27 as the instructions

26 MK 200 t1

t251 ARS 105 1
27] HV 25 NT .

Example 11.29.

In the piece of program

b i=100, a2

a0: PPS 10, PP p—i
PM p+700, MK p+720
BS p tO
HH r+a0

al: 2Q a1l t1

a0 acquires the value 100, a1 the value 104, and when the
program has been loaded the instructions look like this:
100] PP3S 10, PP p—1
101} PM p+700, MK p+720
102| BS p+0 10
103| HH r-3
104] ZQ 104 t1
Since the jump instruction has a relative address, the
serial value of i, in this case i=103, is subtracted from

the address constant during input.

Example 11.30.

The piece of program

i=200

AR (r+b3), GR (r+b3)
HV r+b3 NZ

b3h: ——-

HV r+b3 LO

88

will be loaded as

200] AR (r+3), GR (r+3)
201] HE r+2 NZ

[203] - -~

[205] BV r—2 LO

since only the one jump instructicn, where b3 occurs as a
post—defined label, is changed to a HH instruction through
fhe label b3h. The addresses in cell 200 refer as normally
to the LEH address—part of cell 203.

Re—definition. A label may be re—defined i.e. a new value

may be assigned tc it at the same block—level as the original
definition as long as the re—definition is accomplished by a
definition line, and not by labelling a program line. (There
are however no restrictions regarding new definitions at other
block—levels assuming of course that the label in question is

re—declared).

Example 11.31.

Consider the program (where dashes represent instructions)

b d1

d1=14

i=100, d1=i-2

d1, when it occurs in the 1st and 2nd sections of the pro—
gram, will be replaced by the value 14, while d1 in the 3rd
section will be replaced by the value 98.

SLIP will, however, probably protest against the program

89

b a1

d1=14

d1: AR 400 t1

because the re—definition is made by labelling., The program
will only be accepted by SLIP in the event that the AR in-
struction is in fact loaded to cell 14, since it is permit-—
ted to gheck the value of a pre—defined label by labelling
the cell which the value of the cell indicates.

Labelling on an empty line: If a label and colon are the

only items on a line, the labelling will refer to the following
line of programj the CR between the label and the program line
has only typographical significance — no cells will be skipped

during input.

Example 11.32.

The part of the program

i=50

GR r+a4, MKS p+31
AR r+a4 D

a4:

SR {s—1) t1

will be loaded to cells 50—-h2 as the instructions

51] AR r+1 D

501 GR r+2, MKS p+31
521 SR (s—1) t1

11.6.4 Drum blocks.

If a program is too large tc be in the core store at one

time, it can be split up into drum blocks, which are thus loaded

90

to the drum and can successively be read intc the same section
of the core store. From the syntactical point of view, the drum
block resembles the program blocks mentioned previously, since
each drum block consists of a block head, the program body and

a bloeck taily of these, the program body and block tail have
exactly the same structure as the core store block, and the
block head differs only from the description in 11.6.2 in that
there must be a definition of the block's location on the drum
tracks:

A drum—block head consists of

a) the symbol b

b) k = <{pre—defined address>

c) i = {pre—defined address>

d) One or more labels separated by commas3 these may not be

more than 5 labels since each initial letter may only

occur once.
The parts b), c) and d) are separated by commas. Any one, two
or all of these parts may be omitted. A drum—block head causes
the succeeding program to be loaded to the drum until the corre—
sponding block tail is readj the program is loaded to track k
and onwards, k being, during input of part b), set to the
value of the expression <{pre—defined address>.

The serial address i does not directly influence the load-—
ing of a drum block, as it always begins in the 1st cell of the
track indicated, but i should usually correspond to the block's
later location in the core store: If i is uged in addresses
or increments or definition lines in the drum block and if

reference to labels is made without the use of relative address—

91

ing, one must set i equal to the address of the cell in the
core store to which the 1st cell of the drum block will be
transferred during a run of the program.

Irrespective of whether i is defined in the drum—~block
head or not, the serial address is increased in the normal way
with 1 for each cell that is loaded on input, and for every
40th cell k dis automatically increased by 1. When a drum
block is terminated i and k are reset to the values they
had before the drum block (including the block head) was entered,
i.e. the status of the core store is exactly as if the drum block
has not been read in at all., (i and k are not reset on termi-

nation of a core store block).

Example 11.33.

The program block

b k=60, i=100, a7

-——} program filling 100 cells

e

? will be loaded to tracks 60, 61 and the first half of track
\ 62. During input i will assume the values 100, 101, ...,
199, successively, but after the symbol ¢ has been read in,
i and k will be reset to the values they had just before
the drum block was entered.
If i does not occur in the drum—block program, the
block head

b k=60, a7

will have exactly the same effect.

92

Example 11.34.

A large program may, for example, be split up into a main
routine which is always situated in the core store and two
minor routines loaded as drum blocks and sharing the same

portion of the core store; it might be written as follows:
b i=10, a4, b7, c13

_::: } the main routine

- b k=60

" ”7” } 1st drum block

g
~ b k=75

~_ '} 2nd drum block

fo

=3

The 1st and 2nd drum blocks will be loaded to, respectively,
tracks 60 and 75 (and onwards), but in both cases the serial
address will be adjusted as if they had been placed in the
core store in continuation of the main routine. The main
routine must thus contain instructions which transfer the
appropriate block to this common part of the core store when

it is required.

Restrictions on the use of drum blocks.

1) If global labels (i.e. labels declared outside a block)

are used within a drum block, they must be defined before they

are useds it is irrelevant whether the definition occurs before

the drum block is entered, or the definition occurs in the drum
block itself before the label is uged. Labels declared in a
drum block are not restricted in this way but must conform to

the rules of section 11.6.3.

93

Examvle 11.35.

In the section of program,

— b a2
b k=50
AV r+a2
ARS p—100 LZ

a2: GR 496 t+1

SLIP will protest against the occurrence of the global, post—
defined label a2 in a drum block. But if one moves the
declaration and writes

~ b

b k=50, a2

HV r+a2

ARS p—100 L3Z
a2: GR 496 t+1

it will be accepted, because a2 has now become a local label.
(If the block were not a drum block then there would be no
problem).

2) SLIP does not keep control of the number of tracks used
nor does it take any notice of whether the serial address is a
reagonable size or nots the programmer must thus make sure for
himself that drum blocks do not overlap each other on the drum
and that while drum dlocks are being loaded, the serial address
i does not change to a value less than the first address, or
to a value which ig beyond the extent of the core store.

3) Normally, it serves no useful purpose to load drum blocks

to tracks 294—319 as this section of the drum is used by SLIP

for an image of the core store.

94

11.6.5 Control codes.

As mentioned previously, some of SLIP's functions are gov—

erned by control codes, each one an underlined letter, Some of

the control codes have been mentioned previously but in this
section a review ig made of all the control codes and other
control lines with a detailed description of those not mentioned
previously.

1) Control codes:

£ : Input of floating—point numbers (see section 11.5.1).

Input of fixed—point numbers and integers (see section

_Ql_l :
11.5.1).

4 : Input of text (concluded by semi—colon) (see section
11.5.2). %)

1 : Paper tape reader is selected as input unit (with type—

writer as output unit). Input from punched tape commences imme-—
diately — this is normally the situation required when a program
is read in.

8 + Typewriter is selected as input (and output) unit.
If GIER has read — from tape — the control code g, a CR is writ-—
ten to the typewriter and GIER will await further input from the
typewriter this being indicated by the lighting of the green
lamp on this unit.

If a space isg typed, a report will be typed (in red) indi-
cating the state of the serisgl address 1 and the serial track
number k. This report can alsoc be obtained if a CR and space

is typed immediately after a block head or a block end.

*) t is not really a control code in the same sense as the

others but has been included in this survey.

ﬁ |

95

A CR followed by a space will otherwise only result in a
report about 1i.

r ¢+ In instruction—lines following this symbol all address—
eg which are not p— or s—indexed will be automatically made
relative. This effect can however be suppressed by preceding an
address (in place of r, s or p) by the letter m,

This facility has been introduced because in many programs,
especially those written as sub-routines, there will be far more
relative addresses than absolute addresses.

The automatic creation of relative addresses continues in a
program until the contrcl code n is read.

n : In instruction lines following this symbol all adresses
are read in normally i.e. without the automatic creation of
relative addresses described above. (The letter m becomes there-
by superfluous, but harmless, in absolute addresses). This situ—
ation remains until xr is read (ef. example 11.37 below).

2) Other control lines:

b i = <pre—defined address>, <label>, ..., CR: Block head
with definition of serial address, and declarations (see section
11.6.2).

b h = <{pre—defined address>, i = <pre—defined address>,
{label>, ..., CR: Drum—block head with definition of serial
track number and core—store address and with declarations (see
section 11.6.4).

b CR: Dummy information.

e CR: Block end (see sections 11.6.2 and 11.6.4).

e <pre—defined address> CR: Block end together with termina-—
tion of input by jumping to the cell indicated by the address

(see section 11.6.2).

96

{label> = <{pre—defined address>, <{label> = <pre—defined
address>, ..., CR: Definition or re—definition of one or more
labels and possibly the serial address i (see section 11.6.3).

4 <label?> = <pre—def.addr.>, <label> = <pre—def.addr.>,
++ey CRt This line has exactly the same effect as the same
line without d (cf. above). The symbol 4 is thus quite super—
fluous but may be included to improve readability.

¢ <pre-def.addr.> CR: This line has the same effect as the
line i = <{pre—def.addr.> CR i.,e. it is a definition of the
serial address. Note that this line can be written completely
in Lower Case (unless + occurs in the address expression) as
opposed to the line with i = ete.

x <pre—defined address> CR: ZLabel Table Dump: The tables
containing all the declared labels and their values, if defined,
together with certain administrative informations (block-levels
etc.) can be stored on 7 consecutive drum tracks using the con-
trol code x. The number of the first track to be used is given
in the address which should be in the range %8 to 287 inclusive.
If no address is given, the tables are stored on tracks 287-293.

2z <pre—defined address> CR: This control code may only be
used when x has been used earlier with the same address, as 2z
causes the tables etc. which are stored on the drum beginning
at the track indicated, to be retrieved in order to re—establish
the input situation as when the corresponding x function was
calledsy this includes the selection of peripheral units and
other settings made by the other control codes. (See example
11. 38 below).

u <pre—defined address> CR: This control line sets the exit

97

address from SLIP equal to the address indicated. This means
that, when sufficiently many e symbols have been read, input
will be interrupted to execute the program whose first instruc-—
tion is at the cell indicated by the address. (See section
11.7 below).

h <HELP routine name> CR: This control line causes a HELP
routine to be executed. Most HELP routines require that a
number of control parameters follow this line. See otherwise
chapter 13 below.

A1l other small letters which are underlined work in exactly
the same way as s, so that erroneous underlined letters will
return one to the typewriter where corrections can be made.

For special (historical) reasons, however, g is regarded as

dummy information.

Example 11.36.

If a long program is required to be split up into a number
of shorter tapes, one can conclude each tape with g. When
one tape has been read in, the next is set in the tape
reader after which cone can type 1 whereupon this tape is
read in, in continuation of the one read in previously,
etc., etc.

In order to check whether the tape has been read in to
the correct place in the store, one may type CR followed by
space before typing 1. In this ways a report will be typed
giving the serial address 1 and the serial track no. k.

i and k indicate where the next tape will be loaded.
All tapes should, in faet, terminate with g as SLIP will

then be set in a natural "idle" situation.

Example 11.37.

The following part of a program

r
al: ARS a4 t1
SR (a1) t1
DK m+100, IT p—1
BT m+7, HV a1
HR s+1
a4:
n

will be loaded as the instructions

ARS r+5 t1

SR (r—1) %1

DX 100, IT p-—1

BT 7, HV r—3

HR s+1
and the terminating n causes the preogram which follows to
read in in normally. Note that the control codes r and n

have absolutely no effect on indexed addresses.

Example 11.38.

During de—bugging, when one wishes to make corrections to a
program which has been read in it is very useful to be able
to use the same labels as were used when the program was
written. This is, however, only possible if the control
codes X and z are used, as otherwise one loses all informa—
tion about the labels as soon as the input is terminated.

One should thus insert the following
x <track number> CR

just before the block tail of every large bleck in the pro-—
gram. (The track numbers selected in each case must differ
by at least 7 from each other, because the tables fill 7
tracks).

Before one reads in corrections to a given block, one
must thus restore the SLIP situation (the meaning of labels

etc.) by writing the line

z <track number> CR

99

where the track number must be the same as with the corre—
sponding x—line.
Consider that the following program has been read in:

r b a7, b9
al: ——-—
al2:s ——-—
b a5
als ——-—
b0: —-—-
X [store label tables on tracks 287-293]
e
b1 ———
x 280 store label tables on tracks 280-286]
e al loading completed, jump to cell at]

If one requires to correct cell no.al in the inner block,
during a run, one must interrupt the run (using the HP

button) and type

ol 5}

=a1
followed by the correction, and finally 3 times e CR after

which the run will be re—started just where it was inter-

rupted.
If one wishes to correct cell no.al1 in the outer block,

one should type

z 280 CRH

thereby re—establishing the labels bO and b1, and ai1 and a2

with their values in the outer block.

11.6.6 Programs.

When the loading of programs via SLIP is commenced the
effect is as if the following fictitious block head had been

read in:

100

All program destined for the core store are in fact, first read
to drum tracks 294—319 and only after input is terminated, are
these tracks read back to the core store. Cell 0 in the core
store corresponds to the first cell on track 294 but input is
directed to cell 10 (on track 294, in fact) as cells 0-9 contain
the fixed SLIP administration. The control ccdes n means that
SLIP is conditioned to read "normal" addresses, that is, without
automatic creation of relative addresses, and m means that SLIP
is conditioned to read fixed-point numbers.

If one wishes to read a program under these conditions with-
out the use of labels, it is not necessary to write any block
head and one can instead begin to feed instructions and con-
stants direetly. The program tape may be terminated by s, so
that one can leave SLIP by writing e and possibly an address
(and CR) on the on—line typewriter. (See also example 11.39
below).

SLIP regards, in fact, a program as being terminated either
when one more ¢ symbol than the number of b symbols has been
read (the block structure being thereby balanced when one takes
the fictitious block head into consideration), or as soon as an
e followed by a <pre—defined address> has been read in, (irre-

spective of the number of b and e symbols).

101

Entry to and exit from SLIP,

11.7.1 Manually—controlled entry.

Irrespective of GIER's instantaneous situation (whether the
computer is running or it has been stopped in one way or another),
pressing the HP button on the auxiliary console will activate
the following functions *):

1. The current contents of the core store are stored on

tracks 294—-319;

2. The‘words "hp—knap" (Danish for hp button) is typed in
red on the on—line typewriter, followed by the exit
address, i.e. the address to which a jump will be made
on exit from SLIP (unless the input which feollows gives
orders to the contrary).

3. SLIP is transferred to the core store and the program is
initialised i.e. made ready for the first input.

4. SLIP awaits input from the typewriter.

Thug if one types 1 on the typewriter, SLIP will start reading a
program tape in. If this tape terminates with g, one can there-—
after write the concluding ¢ on the typewriter, (followed pos-—
sibly by an address) and a CR, causing a direct 5ump from SLIP
to the programj one may also call HELP routines from the type—
writer at this point. A program tape may terminate with e, with
or without address {and CR) but this eliminates the possibili—
ties of manual control at this point and is not to be recom—

mended.

*) These functions are described in more detail in chapter 13.

102

11.7.2 Program—controlled entry.

During execution of a program, Jjumps can be made directly
te SLIP in one of 2 ways:

1) The instruction HSF 2, activates the same 4 functions as

with the HP button, except that the word "hsf 2" is written in-
stead of "hp—knap"; the exit address always indicates the cell
following that containing the HS instruc£ion (i.e., SLIP acts
exactly like a ncrmal sub—routine which terminates with the in-
struction HR s+1).

2) The instruction HS 2 activates the HP-button functions 1)

and 3) given abovey no messages are typed, and the actual situa—
tion with regard to selected peripheral units is not changed; as
above, SLIP prepares to return, on exit, to the cell following
the HS instruction.

Execution of each of these instructions (et seq.) takes
about 0.5 sec. because the whole of the core store must be
copied to the drum.

Finally, one may (involuntarily) enter SLIP, if overflow
occurs after floating—point operation; GIER jumps, as mentioned
in the list of operations, to cell O, and this activates the
same 4 functions as with the HP button, the typed message being
replaced by the word "fl.overleb" (Danish for floating (pt.) —
overflow), followed by the address of the cell containing the
instruction which caused the overflow. (This means that exit
from SLIP will cause a jump to the same instruction unless one

indicates another exit address).

e

103

11.7.3 Exit from SLIP.

SLIP is, like other sub—routines, disposed to "return to the
place from which it was called", and this means that when SLIP
is entered it will normally be prepared to jump to the cell
following that from which the entry took place. When using the
HP button, the re—entry point will be at the cell following the
instruction which GIER was executing when the button was pressed.

If the program terminates with e alone, exit from SLIP will
take place as described above, but the exit address can be
changed in two ways:

1) By writing u followed by a pre—defined address somewhere
in the program; in this way the exit address 1s re-set to the
value indicated, and input will continue until terminated by
an e.

2) By terminating the program with ¢ followed by a pre—de-
fined addresss exit from SLIP to the address indicated will, in
this case, occur immediately.

At all events, the Core Store Image will be transferred to
the core store from drum tracks 294—-319, immediately before exit
from SLIP takes places in this way, that part cf the program
which was required to be loaded to the core store will be put
in its correct place.

A result of the use of this Core Store Image, is that the
contents of the core store is identical with the contents of
tracks 294-319, immediately after entry to and immediately be-—

fore exit from SLIP.

104

11.8

Example 11.39.

Execution of the program shown in example 11.38 is to start

in cell no.af—1 in the inner block.

Moreover, there is to

be possibility for manual control after the program is load-

ed. Thus, the program should be
- b a7, b9

al:
a2y ——-—

22

I o i~ o

This tape would he read by first
then typing 1. When the tape is
on the typewriter lights up, one
gram or call HELP routines using
one types ¢ CR, the program will

_the required cell.

Messages and Reports output by SLIP.

11.8.1 Error Messages.

written as follows:

[set exit address = ail-t]

{continue input from typewriter)

pressing the HP button and
read in, and the green lamp
may correct the locaded pro-—
the typewriters and when

be executed, commencing at

During input, SLIP makes a syntactic check of the program

read in, and when an error is encountered a message is written

on the typewriter, giving information on the type and location

of the error; after this, in almost all cases, input will con-—

tinue until the end of the program.

In the case of most errors,

105

this means that only a single cell will be loaded with incorrect
information (which can sometimes be corrected from the typewrit-—
er on completion of input), and that there is a chance of find-
ing all the syntactical errors in one test—run.

SLIP distinguishes between 9 different types of error, al-
though they all have a common notation: The typed message con—
sists of (CR), an error—type number and the serial address; when
program is read in from tape, the last symbol read in is also
typed followed by the next 3 linesj after this, input usually
continues normally.

The meaning of each error—type number and the action taken

by SLIP are briefly described in the table below.

Error

Type Meaning Action taken by SLIP
1 Syntactical error in instruc—|Symbols fecllewing until
tion line, text line or con— |the first colon, comma,

trol line. stroke or CR,are skipped.

After this input continues
normally (o: As a rule
only one call is loaded
incorrectly).

2 Illegal use of post—defined As with error no.1.
label in address or increment.

3 Use of undeclared label. As with error no.1.
4 Error in declaration in As with error no.1.
block head. (o: Normally, only the
erroneous declaration is
skipped).
5 "Unused" code punched on tape,)The symbol is skipped and
input continues normally.
6 Redefinition by labelling The redefinition has no
where the value does not effect and input continues
tally with the earlier normally.

definition.

106

Error Meanin Action taken by
Type g SLIP
7 Syntactical error in number line. The cell in ques~—

tion acquires un-—
defined contents
and input continues.

8 Number outside the range allowed As with error no.T.

(fixed pt.: =1 £ x S 9

float.pt.: fl.pt.range and exponent
£ 152).

9 Too many labels/ﬁlooks have been used|Input taken from
at one time. (Label table has slight—|typewriter as af-
ly more than 250 cells of which is ter s. The pro—

used gram can usually
4 cell for each label not be further

1 = — each declaration read in satisfac—
1 - — each core—store block—head|torily.

2 — 8 — each drum—block head

11.8.2 Reports.

The gerial address and the serial track number: When a pro-—

gram is input from the typewriter it is possible to cause the
serial address i to be typed out after each new line by typing
a space after CR. If CR—space is typed after a block head

(b followed by declarations etc.), a block tail (e without ad=-
dress), a definition line or s, has been read in, both the
serial track no. and the serial address (in that order) are
typed out. These messages are typed in red.

The values of labels used: If KA and/or KB is set, a list

of 211 labels used within a block, including values of i and
k, is output at the end of a block. If KA is set (= 1) the
output is punched on tape and if KB = {1 the output is typed.

The format of this output is as follows:

107

The address of the first track of the drum block last
entered.

The address in the core store of the first cell of the
block just terminated.

The serial address, i.e. the address of the next un-—
occupied cell in the core store, following the block
Jjust terminated.

The address of the track, to which the next program line
will be loaded in the block just terminated.

A1l labels which are declared and used within the block

just terminated, followed by their defined values,

Example 11.40.

Consider a drum block which has been read in with the block
head

b k=48, i=218, a5

and let us assume that the block occupies just over B tracks.

If KA = 1, for instance, the following output will be punch-

ed on tape, when the block tail ¢ is read:

48 218 320 50
a 225

al 228

a4 318 219

a5 246

and at the same time there will be typed (in black):

a4 318 219

This report shows that the drum block is loaded to tracks

48—50 corresponding to location in the core store in cells

218 to 319 inclusive. Moreover one can also see that a0,

a1 and a5 have acquired the values of 225, 228 and 246 where—

as a2 and a3 have not been usedj finally, one can see that
a4 has been used (last, in the address of cell 318 and the

108

increment of cell 219) but that it has not been defined
within the block.
If KA were set = 0O there would only be typed the error

message
a4 318 219

(cf. example 11.25).

11.9 Syntax for input to SLIP.

11.9.1 Programs and blocks.

{program> ::= <{group>
<block> ::= b<block head>CR<group><block taild>|<drum block>

{drum block> ::= b k=<pre—defined address>,<block head>CR
<group><block tail>|

b k=<{pre-defined address>CR<{group><block tail>
{group> ::= <line>|<block>|<group><group>

<block head> ::= i=<pre—defined address>|<label’|
<block head>,<label>

<block taild ::= eCR|e<pre—defined address>CR

11.9.2 Lines.

{line> ::= <program line><line end>|<controlline>|
{labelling><line end>|<labelling><1ine>

<program line?> ::= <instruction 1ine>|<constant 1ine>|
{condensed line>

{control line> ::= <definition line><line end>|
{control code>|<auxiliary line><line end>

{line end> t:= CR|j;<arbitrary string not including CR>CR|
{line end><line end>

{labelling> ::= <label>:|<label’h:

{label> ::= <initial letter><index>

<initial letter> ::= a|blc|d]e
<index> ::= <digit|<index><digit>|<empty>

<digit> ::= 0}1|2|3]4]5]6|7|8]9

11.9.3 Instruction lines.

109

{instruction line> ::= <nalf-word instrn.>,<half-word instrn.>
<half-word instrn.>/<half-word instrn.>

{whole—word instrn.>

<{hal f-word instrn.> ::= <basic operation><half-word mod.>
{address><half—word mod.>|<empty>

{whole—word instrn.> ::= <basic operation><bi-—operation>

<address><bi—operation><t>
{increment><bi—operation>

<{basic operation> ::= <letter><{letter>
(only the combinaticns listed in section 11.4.1)

<hal f~word mod.> t:= <clearing flag>|<floating flag)l(empty)
<half-word mod.><half—word mod.>

{clearing flag> ::= n|S

{floating flag> :1:= le

<bi-operation> ::= <half-word mod.> | <whole—word mod. > |
<indicator op><indicator addr.1>
<indicator addr.2>|<bi-operation>
<bi—operation>

{whole—word mod.> ::= X|V|D

<indicator op> ::= I|M|N|L|<empty>

{indicator addr.i> ::= K|Z2|0|T|P|Q|R|<empty>

¢indicator addr.2> ::= A|B|C|<empty>

4> r:i= t|<empty>

11.9.4 Addresses and Increments.

<address> t:= <relative flag><address constant>|
(<relative flag><address constant>)

110

<relative flag> ::= m|r|s|p|<empty>
{increment> ::= <address constant>

{address constant) s:= <post—def.labe1>|+<post—def.1abe1>|
<sign><pre~def.address>|<empty>

{pre—def.address> ::= <integer>]<term>|<term+<pre—def.address>|
{term>—<pre—def.adress>

{term> ::= <symbolic addr.>]<symbolic addr.)(scaling>]
{integer><scaling>

<{symbolic addr.> ::= re—def.labe1>|<integer><pre—def.label)l
iTk[(integer)if(integer>k|

{scaling> :1:= . {integer>
{gign> ::= +|~|<empty>
{integer> ::= <digit>|<digit><integer>

{pre—def.label> is a <labeld whose value is defined before the
label is used in an instruction.

<{post—def.label) is a <labeld whose value is not defined until
after the label is used in an instruction.

11.9.5 Constant lines.

{constant line> ::= <number line>|<text lined>

<number lined> ::= <number>|<number><terminator>|
<number><terminator><number line>

<number> ::= <number as defined in the ALGOL report section 2.5>]
{packed integers)

{terminator> ::= alblclA[BfOl,]<terminator><terminator>

(only the first terminator, following a number, influences the

marker—bits)

<packed integers)d ::= <sign><integer>|
<sign><integer><atroke>]
<sign><integer)(stroke><packed integers>

{gign> ::= +[—[<empty>

<stroke> ::= /|/<stroke>

{text lined i:= t<arbitrary string not including; >,

(<condensed line> is not described further here but has the
format of output from the HELP routine "kompud", cf.chapter 13).

11.9,6 Control lines.

{definition line> ::= <definitions>lg(definitions>]
c<pre—def.address>

{definitions> ::= <definitiond|<definitiond,<definitions>

{definition> ::= i=<{pre—def,address) |
‘ {label>=<pre—def.address> |
{label>h=<{pre—def.addressd>

<{control code> ::= £[g|l|§|£|g

{auxiliary line> ::= x|x<pre—def.address) |
z|z<pre—def.address> |
u<pre—def.address>|
h<help~routine name> |
h<help-routine name>|<integer>

(See also chapter 13).

112

12.1

12. OUTPUT.

Introduction.

The routine(s) which provide(s) for the output of results in
& readable form constitute a very important part of a program;
one must pay a great deal of attention to the planning of output,
so that the required information is printed®) in a rational and
unambiguous way, and alsc so that superfluous information is
omitted.

When one has decided which results should be printed, one
must plan how they are to be printed, and it is useful here to
distinguish between the layout of a single number -~ the local
typography, which determines the number of printed digits, the
rules for printing signs ete. — and the layout of numbers in
tabular form — the global typography which determines the number
0g values per line, the number of lines ver page, the presence

of text etec., etec.

*) Since output of results via punched tape is generally analo-
gous with printing on on— or off-line equipment, the verbs
to print and to punch and related expressions may be used

interchangeably in this and succeeding sections.

12.2

13

Routines for editing numbers and printing text are included
in the HELP systemj these routines are described below but they
are only concerned with local typography, and the user must him-
self program the administration of the global typography around
the individual entries intc the routines described. 4An example
is therefore given in section 12.3.3, showing a program which
prints results in a tabular form using the output routines men-

tioned above as sub—routines.

Editing of number using the sub—routine in HELP.

12.2.1 Function.

For each entry into the routine, one number is printed
according to a layout which is determined by a number of param—
eters. There are 5 possible entry points each of which casuses
the contents of the accumulator R (or part thereof, or the
floating point ditto, RF) to be printed in & different wayj if
the routine is placed from cell [m] onwards the table below

illustrates the 5 possibilities:

Entry at Contents of Printed as

cell [m+0] | Rpos. 0—9 | integer in range 0 £hn S 1023
cell [m+1] | Rpos. 0 -9 | integer in range -512 S h £ 519
cell [m+2] | Rpos. 0-39 | integer in range 239 <y < 232

cell [m+3] | Rpos. 0~39 | fixed point no. in range —1Sx < 4

cell [m+4] | RF floating point number

The appropriate number is converted to decimal form and rounded-—

off to the required number of digitsj the number can optionally

114

be scaled to a multiple of a power of 10 before printing (cf.
parameter initialisation and scale factor, below).

Before the routine is entered, the required output unit must
be selected by means of a VY instructionj the routine assumes
that the selected unit has been set ih Lower Case on entry, but
the unit is always set in Lower Case on exit.

On exit from the routine, both the accumulator and the M
register will have been changedj if the number to be edited is
to be used later in the program, it must be stored before enter—

ing the editing routine.

12.2.2 Location of the routines entry and exit.

The routine occupies 120 cells and is stored on tracks 33-35
within the fixed part of the HELP system. The routine may be
located anywhere in the core store where it occupies 123 cells,

3 extra cells, in continuation of the routine itself, being used
as working locations. The user himself must program the transfer
from drum to core store of tracks 33-353 it follows that the

start address in the core store may not be greater than 900,

.8ince cell 1023 is reserved. A check tptal of the wvalues of all

symbols output is accumulated in cell 1023 {ef. the Operation
List in Vol.I).
Entry into the routine from the main program should be made

by means of an HS instruction accompanied by a program parameter

indicating the address of the cell in which the initialisation
parameters (determining the layout as required) are stored.
The program parameter and the sub—routine jump may be written,

either, as two half-word instructions

115

QQ<address of parameter—word>,HS<entry address>
or as a whole—word instruction followed by a half-word or whole—
word instruction

HS<entry address>

QQ<address of parameter—word>, —--
The entry address should be one of the 5 mentioned in the pre-
vious section, and the initialisation parameters will, in each
case, be taken from the cell whose address is indicated in the
QQ instruction. Since the parameter—word is accessed by means
of ARS (s+0) or ARS (s+1) , as the case may be, the address
given in the program parameter may be indirect or such—-like.

Exit from the editing routine is always made by means of the
instruction HR s+1 , on return to the main program the contents
of the registers, R and M, will have been changed. If the sub—
routine jump is a half-word instruction, the sub—routine index
register will not be reset correctly; thus, if the routine is
used as "a sub—routine for a sub—routine", the entry into the
routine must be made using a whole—word HS inastruction viz.

HS<entry address>

QQ<address of parameter-word>, ——-—

if the sub—routine return mechanism is to function properly.

Example 12.1.

In a program which does not otherwise use 900—-1022, one
wishes to edit the fixed—point number contained in cell
[a2] using a layout which is stored in cell [a5]. This

may be programmed as follows:

116

VK 33, LK 900
VK 34, LK 940

VK 35, LK 980 get editing routine from drum]
VK 0O, ARS a2 R:= the number to be edited]
HS 903 Jump to editing routine]

QQ a5, —— -

12.2.3 Tnitialisation parameters.

The layout of the printed number is determined by 12 param—
eters which are selected by the user and packed in a certain way
in the cell indicated by <address of parameter—word> . These

parame ters are used to specify the number of gignificant digits

to be printed, the maximum number of digits before the point and

after the point, the maximum number of digits in the base 10

exponent if required, the rules for printing signs in both the

mantissa and exponent, an optional grouping of digits with

spaces between, and a subtlety regarding the printing of the

number 0.
Finally, it is possible to incorporate the automatic multi-—

plicetion of the contents of R {or RF) register by a given power

of ten, into the routine but this is accomplished more or less
directly and not via the parameter—word (see section 12.2.4,
below).

A layout may be loaded by expressing it as an instruction
with a series of scaled terms as the address,

QA <b2.3+<h>.7+<£10.9+<d>. 13 +<n>. 14 +<bE>. 17 +<£2>.19

+ <g1>.23 + <g2>.27 +<g3>.31 4+ <g4>:35 +<g5>.39

where the acceptable value and meaning of each term is as fol-

lows:

(@]
{
o’

O
i~
o

[ZaN

I~

I~

15

15

15

117

indicates the number of significant digits to be
printed; that is from and including the first digit
+ O, b digits are printed with correct rounding—
off of the last digit. However, no more than 4

decimals will be printed.

indicates the maximum number of digits before the
deecimal point. If the printed number does not have
so many such digits, an appropriate number of spaces

will be printed first, instead.

indicates the maximum number of decimals to be
printed. If b significant digits are printed
before d decimals have been used, they will be
followed by an appropriate number of spaces.

If 4 = 0, the decimal point is not printed; if 4 > ©
but all the significant digits come before the point

the decimal point is replaced by a space,

governs the way in which the gsign of positive man—
tissae 1s printed, and where the sign is to be
placed: Since a minus sign is always printed before
negative mantissae there are the following 4 possi-—
bilities:

1) The sign is to be printed immediately in front of

the first digit (or the decimal point) with

No sign (empty) in front of mantissa 2 0: f1 =0
Space - - - - 20: f1 =1
Plus sign - - - - >0

}= f1.=2
Space - - - - =0

118

A

I~

[P

bE

f2

I

1A

IA

2) The sign is to be printed as the first symbol of

any number before any space or digit with

Plus sign'in front of mantissa > O }
: f1 =3

Space - - - - =0

has only significance regarding the printing of the
nought before the point‘in mantissae between =1 and
+1. In this case, n = 0 will cause printing of h
spaces before the point, whereas n = 1 will cause
the printing of h—1 spaces followed by a nought

(before the point).

indicates the maximum no. of digits in the exponent
which is printed as the symbol " followed by a sign
and a maximum of bE digits. If the exponent has
less than DbDE significant digits an appropriate
number of spaces are inserted between the mantissa
and the symbol ,, so that the last digit is always
printed in the (bE+2)th position after the mantissa.

If the exponent = 0 but DbDE has been selected
> 0, the exponent is printed as an equivalent no.
of spaces.

If bE is set = 0 (or omitted completely), the
number is printed without a separate exponent (nor

with "equivalent" spaces).

governs the way in which the sign is printed before
the exponent, in exactly the same way as f1 does

for the mantissa (see above).

119

g1, g2, g3, &4, &5 should fall within the range 0 £ g £ 15 and
controls a possible grouping of digits with inter—
vening spaces or, where appropriate, the decimal
point: g1 indicates the number of digits (or posi-
tions) in the first group, g2, the number of digits
(or positions) in the second group, and so on.
The mantissa can thus be dealt up into 6 groups, the
decimal point being always regarded as a separator
between groups. I1f the mantissa is preceded by a
number of spaces due to "insufficient" integral
digits, these spaces are counted as part of a group
of digits; the grouping is thus performed on the
h+d positions which the mantissa occupies (excluding

the sign and decimal point).

Example 12.2.

Some numbers the absolute values of which are between 103
and 10_1, are required to be printed with 4 significant
digits and without exponent; the sign of positive values is
to be represented by a space, and no special grouping is
required other than that given by the decimal point. Thus
the following values of the parameters should be used:
b=4, h=3, d=4 (to make room for 4 significant digits
also for the smaller values), f£1=1, bE=£f2=0 (no expo-—
nent), gi=h=3, g2=d=4 and g3=g4=g5=0. The only
parameter not yet assigned a value is n, and if the true
decimal fractions are to be printed with a nought before the
decimal point, n is set = 0.

This layout might be stored in cell [aS], for instance,

by means of the following instruction line:

a5: QQ 4.3+3.7+1.9+4.13+1.14+3.23+4,27

120

For positive numbers within the given range editing will

have the following effect:

XN, *
)
%, KH®
0, *%xx

where each asterisk indicates a digit and where the verti-
cal lines indicate where printing begins and ends i.e. each
number ocecupies h+d+2=9 positions.

The layout selected here corresponds completely to the
layout expression {—ndd.dOOO} for output procedures in
GIER ALGOL.

There are a humber of rules regarding the interplay between
the different parémeters:

1) The mantissa occupies normally h+1 printing positions
when 4 = 0 and otherwise h+d+2 positions, in which case some
of the first and some of the last positions may be filled up
with spaces; if the option f1=0 for printing of signs is used
and the mantissa is 2 0, it will occupy one position less (this
option can be used if one wishes to save space when printing
positive numbers).

2) The exponent (including sign) uses no space if bE=0 ,
but otherwise normally occupies DE+2 positions, of which some
or all may be spaces (in the same way as for mantissa, the se-
lection of the option f2=0 will cause the exponents 2 0 to
occupy one position less).

3) One should always select h, d and b so that h+4d 21
gince the maximum number of digits which can be printed in the

mantissa iz h+d , If editing takes place without an exponent

121

(i.e. when bBE=0) numbers whose absolute value ie 2 10" — i.e.

numbers with more than h digits before the point — will be print-
ed with the necessary number of integral digits and the correct
value, but the number will occupy more positions than planned

(if the absolute value is < 1015; otherwise the routine has no
other alternative than to supplement the number with an exponent).

Numbers whose absolute value is < 1Od-_b_1 — in other words,
numbers whose b significant digits extend "to the right' of the
d decimals — will, when printed without exponent, be always
printed with exactly d decimals, that is less than b significant
digits. Very small numbers will thus be printed as 0.000...0
with d noughts after the decimal point (they are always regarded
as positive).

4) When a number is printed with exponent (bE>0) and if
b=h+d , the mantissa will always have exactly h integral
digits and exactly d decimals, all being significant, and the
exponent printed will be accomodated thereafter. But if b<h+4
there will be several possible powers of ten, all giving the re-
guired number of significant digits within the limits indicated
by h+d . The routine will then select the (uniquely deter—
mined) exponent which is a multiple of h+d+1-b and which
gives b significant digits in the mantissa. *)

¥) If the value of the number is so small that this cannot be
achieved with an exponent having bBE digits it will be at
the cost of the number of significant digits in the mantissa:
The routine selects the smallest exponent that has bE dig—
its and which is a multiple of h+d4+4+1-b , and the corre—
sponding mantissa will then be printed with less than b
significant digits.

122

5) Frequently one does not wish to have grouping of the
digits of the edited mantissa, and in this case when printing
integers (i.e. with 4 = 0), g1 is set = h, while the remaining
4 g-parameters can be left out. When printing decimal fractions
without grouping of digits the setting gl=h, g2=d 1is used
the remaining 3 being left out (i.e. set to zero).

Grouping is usually only used for printing mantissae with

many digits, where separation makes the output more presentable.

Example 12.3.

In order to illustrate point 3 above, let us consider the

following layout
QR 2.3 +4.7T+1.9+2.13+1.14+4.23 +2.27

i.e. one has selected b=2, h=4, da=2, "usual" way of
printing signs, no exponent, no grouping besides the decimal
point.

The table below shows the results of editing different
numbers using this layout. The vertical lines indicate how

many positions are used for each number:

Number in GIER Printed as
-0.0123... -0.01
1.234... 1.2
1234.5. .. 1200
12345.6... 12000)

-12500.0... —-13000

the two last numbers exceed the limits of the layout because

their absclute values are larger than 104.

Example 12.4.
In order to illustrate point 4 above, let us consider the

following layout

QQ 2.3+2.7+1.9+ 3.13+1.14+2,17+2.19 + 2,23+3.27

123

which corresponds to the layout {-nd.000 +dd} in GIER ALGOL.
This layout is to be used to edit the numbers 1.2468 10P
where p varies from —4 to 6. The powers of 10 which are
used as exponents of these numbers will consistently be
multiples of h+d+1-b=2+3+1-2 =43 in addition, the
numbers will be rounded—off to 2 significant digits and the

results will be as follows:

1.2 -4
12 b
0.012
0.12

1.2

12

0.012 _+4
0.12 :+4
1.2 1+4
12 he
0.012 ,+8

The space before the exponent is due to the fact that 2

digits have beer allocated to the exponent, since bE=2.

12.2.4 Scale factors.

If one wishes a number to be multiplied by a scale factor

which is a power of ten, before the number is edited — for in-

stance, if a series of fixed point numbers are to be multiplied
by 100 under output — it can be achieved by the following modi-—
fication of the routine, independent of the layout selected:

If the required scale factor is 1OH, the integer H is placed in
the address part of cell 14 of the routine before the usual
entry takes place. The initial value of this address is 0, but
it is unaffected by the routine; therefore, if once one has set
a particular scale factor in cell 14 it will remain there and

be effective for all following calls of the routine, until one
changes the contents of cell 14 or reads in the routine from the

drum afresh.

124

Example 12.5.

A fixed point number is to be multiplied by 1000 before
editing and only those digits before the decimal point are
to be printed. Let the editing routine be placed in cells
900~1022, let the number be stored in cell [a2] and let cell
[a5] contain the layout

ab: QQ 3.3+3.7+1.9+1.14+3.23
[b=h=g1=3, f1=n=1, remainder =0}

The part of the program for outputting the number could be

written as follows:

- ——~, ARS a2
PA 914 3 [set scale factor 10°]
HS 903 {edit number]

QQ a5, PA 914 [reset scale factor to 100]

If cell [a2] contained the number -0.03456... , for instance,

this would have been printed as
| =35

where the vertical lines show where printing begins and ends.

If one wishes a number to be multiplied by a scale factor
which is a power of 2, before editing, this can be done by appro-—
priately modifying the contents of pos.0-9 of the M register —
which holds the base—2 exponent for floating point numbers -
before entering the routine as for normal editing of floating—
point numbers. It should be noted, here that when editing float-
ing—point numbers the routine does not assume that R contains a
correctly normalised mantissaj; the routine simply regards the
contents of R as a binary number with the point between pos. 11
and 12 (and ROO as sign indicator), and edits it with appropri-—

ate consideration for the exponent in Mo_

9°

125

Example 12.6.

The fixed—point number in cell [a2] is to be edited with a
15

scale factor 2 7. This can be done by putting the number

in R and an exponent 4 (namely, 15 minus 11) in M and

0—-9?
then jumping to the entry for editing of floating—point
nmumbers. Using the same allocation of the core store as in

the previous examples, the coding will be:

———, ARS a2 [R:= the number to be edited]

PM 4 D [set the exponent = 4]
HS 904 [edit as fl.pt. number]
QR a5, ——-

12.2.5 Examples of layoutsi special facilities.

In the table below is shown the effect of editing different
numbers with 4 different layouts; these have been selected to
illustrate, among other things, the effect of f1, which governs
the printing of signs, and n, which governs the printing of
"whole number zeros". Notice that the routine always prints
correct values (rounded—off within the limits indicated), but
if the number has a value outside the expected range, the result
may occupy more positions than was planned.

The top half of the table shows the values of each parameter
together with the corresponding layout in GIER ALGOL. (No entry
means that the parameter value is 0). The values of numbers on
entry to the routine are given at the bottom LH corner, and on
their right are shown the printed results, where the vertical
lines indicate where printing begins and ends for each number.

If one wishes to print only the exponent of a number this

can be achieved by selecting b=h=d=0, i.e. printing of

mantissa with O significant digits and O digits before and after

126

b 4 4 4 4
h 2 2 4 2
a 2 2 6
£1 1 2 1
n 1 1
bE 1
£2 2
gly ++vy &85 | g1=82=2 gl=g2=2 gl=4 gl=2, g2=g3=3
corr. GIER-

ALGOL layout {—nd ’ dd} *dd' dd* {+dddd* i_nd- ddo OOOn*’d}

0.012345... 0.01 .01 0.012 35
1.2345... 1.23 1.23 +1 1.235
-1.2345... -1.23 -1,23] -1 -1.235
-123.456...| |-123.46| |-123.46]| -123 —0.001 235,+5

the decimal point. There is the one disadvantage that all num-
hers are treated as positive, 1i.e. (dependent on f1) a space or
a plus is printed before the exponent regardless of the number's
sign in GIER.

As will be seen from the table above, the routine is normal-
ly disposed to print numbers with the decimal point "under each
other" for a given layout. However, it is possible to print
numbers whose position is Jjustified to the first significant
digit at the price of the number of printing positions not being
the same for all numbers; if one in fact selects h=0 bdut b>0,
every number whose absolute value is 2 1 will exceed the limits
imposed by the layout with the result that printing is left-
justified., The address constant in cell O of the routine will
incidentally be increased by the number of positions that are

used.

127

Example 12.7.

On output of a series of integers, the first significant
digits are required to be printed below each other and all
digits in the number are to be printed. Therefore, h is set
= 0 ard b = 15, the maximum allowable; since only integers
are involved 4 is set = 0, and n=1, £1=1 (standard treat—
ment of signs), bE=f2=0 (no exponent), g1=15 and g2=g3=
g4=g5=0 (no grouping). This layout will for the numbers
6, -1, 12, —123 and 1234, for instance, result in the fol-
lowing output:
0
-1
12|
-123|
1234

12.3 Printing of text using the sub—routine in HELP.

12. 3.1 Function.

For each entry into this routine, one text line read in by
SLIP is printed out, i.e. the routine prints a copy of what has
been read in between it and the first semi—colcn which follows it
(not including these symbols).

Prior to entry into the routine the required output unit
must be selected by means of a VY instruction in the main pro-—
gramj the routine assumes that the selected output unit has been
set in Lower Case on entry but always leaves it in Lower Case.

On exit from the routine both the accumulator, R, and the
register, M, will be different, while the other registers em—

ployed will be re—set to their values on entry.

128

12.3.2 Location of the routines entry and exit.

The routine occupies 13 cells and is stored in cells 27—39
on track 16 in the permanent part of HELP. It can be placed
anywhere in the core store and the user must himself program the
transfer of track 16 4o the core storesy the start address of the
routine may thus not be greater than 1010 (and during transfer
of track 16 from the drum 40 cells will always be affected).

Entry from the main program is made by jumping with an HS
instruction to cell O of the routine, which reguires as a pro—

gram parameter the address of the first cell in which the text

is stored. In the same way as with the editing routine, the
program parameter and subroutine jump may be written, either as
to half-word instructions

QQ <text address>, HS <entry address>
or as a whole—word instruction followed by a whole—word or half-
word instruction

HS <entry address>

QQ <text address>, ———
The text address may be indirect, relative or, s— or p—indexed,
since the routine uses the indirect address (s+0) or (s+1) to
get at the stored text.

Exit from the routine is always made using the instruction
HR s+1, at which stage the registers R and M are changed, while
the indicator register and p register are re—set; if the HS
entry instruction is programmed as a half-word instruction, the
gubroutine index-register is not re—set correctly (e¢f. the cor-—

responding remarks in section 12.2.2 above).

129

Example 12.8.

If one wishes to include a sequence which types "that was -
GIER - that was.", in a program it could be written as fol-—
lows

VK 16, LK 983 read track 16]

VY 1.5 t7 input unchanged, output to typewriter]

VK 0, SY 58 wait until track 16 has been read,
select Lower Case]

HS 1010

QQ b2, —--

b2: tthat was — GIER — that was.;

If the instruction SY 58 were replaced by SY €0 [select
Upper Case] , the sequence would type "THAT WAS + GIER -
that was.", because the text read in and stored by SLIP does
not begin with a Lower Case symbol but with the symbol for
t, alternatively T, The first Lower Case symbol comes be-—

tween R and -—.

12.3.3 Example of the use of HELP output—routines.

In order to illustrate the use of the output routines in a
more ccherent and realistic example, we will go through part of
a program, which, in connection with some calculation, prints a

table with the following format:

HEADLESS. 28.4.1772

t b'd ¥y teta

.1
.2

| © O O

2.0

divergence = ——

The horizontal lines represent the calculated values of x, y and

teta, and finally, the divergencej x, y and teta are calculated

130

as fixed point numbers and are to be printed with the layout

{—n.dddd}, while the divergence (also fixed pt.) is to be print-—

ed with the layout {+nw+d} 3 t is calculated as a floating pt.

number and, as can be seen is to be printed as {n.d} .

Let t be stored in cell no. c¢0, and let corresponding values

of x, y and teta be stored in the cells c¢1, c¢1+1 and c1+2.

The main features of the program should then be as follows:

— a0:

als
az:

aji:

bO:

b1
b2s
b3:
b4:

b a3, b4, ec1

_——— [includes definition of the label c1]
VK 16, LK 860 put text routine into cells 887-899
VK 33, LK 900

VK 34, LK 940

VK 35, LK 980 put number routine into cells 900-1019]

VY 1.4 t7 select punch for output]

SY 64, SY 64 2 times CR)

HS 887

QQ b0, SY 64 punch leading and CR]

VK O wait until drum transfer is completed]

PA a3 t20 re~set line counter]

-—— [calculation of a value of t, x, y and

teta]

SY 64, ARSF cO %punch CR]

HS 904 punch a value of t)

QQ b2, SY O

PA a2 toi-1 [re—set address of x|

8Y 0, 3Y O

ARS c2-1 t1 [R:= x or y or teta]

HS 903 punch R]

QQ b3, ARS a2

NC c1+2, HV al [jump to al the first 2 times]

BT 20 t—1

HV a0 [jump to a0 {fresh line) the first 20
times]

SY 64, SY 64 [2 times CR]

HS 887 punch the final text]

QQ b1, ARS c1+3

HS 903 punch divergence]

QQ b4, SY 64 punch a final CR

sY 11, - -- [punch Stop Code]

t HEADLESS. 28.4.1772

X ¥y tetas

t divergence = j

Q9 2.3+ 1.7+ 1.13+1.14+1.23+1.27 layout {n.d}]

QQ 5.3+ 1.7 +4.13+1.9 +1.44 + 1.23 + 4.27 [layout {-n.ddad}]

QQ 1.3+1.7+2.9+1.14+1.17 +2.19 +1.23 [layout +nb+d}]

131

Note that in this program the label c¢1 must be defined be-—
fore the central part of the program is read in, (to be precise,
before the PA instruction in cell a1-1 is read in).

The punching of a Stop Code at the end of the output tape
has simply the effect that, when the tape is read by an off-line

typewriter, it will stop automatically at this symbol,

132

13.1

13. TUTILITY PROGRAMS; THE HELP SYSTEM.

A system of utility programs.

While testing programs it is very important to have a system
of utility programs, which can assist debugging. In order that
these programs can give effective assistance to the operator, it
is essentiallthat they are easy to call and contr¢l during a run
of the program which is being debugged; the HELP system is there—
fore organized in such a way that it can be operated directly via
the HP button and on-line typewriter. Furthermore it is also
useful to be able to operate the system according to a pre-—deter-
mined plan for which purpose it has been made possible to feed
the control information via punched tape and through special in-—
structions in the program.

Such a system should be able to perform many different serv-
ice functions flexibly Dbut at the same time it must not be too
complicated to operate: There should not be too many utility
programs as otherwise it would become difficult to remember
about them all, and likewise the number of different parameters

for each routine should not be too large.

133

One must thus make a compromise between these wishes although
there are a certain minimum of facilities that the system should
provide. They are:

1) Initialisation of the computer's store.

2) Input and output of programs and data etc. both in sym-—
bolic (readable) form, and condensed (binary) form (for
optimum speeds of input/output).

3) Amendments to a loaded program.

4) Dumps of store and registers, and changes in the store
during a run.

5) Tracing of arunning program giving output which indicates
the workings of the program on the one hand administrative—
ly and on the other hand in its treatment of the data.

6) The possibility for introducing or removing a utility
subroutine at any stage of a run, without corrupting the
running program.

As will be evident from the following sections, the HELP system
generally fulfills these regquirements and has furthermore the
advantage of being adaptable tc the incorporation of new utility
programs. In section 13.4, utility programs which constitute
the standard system are discussed, and the end of this section
is devoted to a description of the way in which the system can
be arbitrarily extendeds in section 13.5, sources of different
errors and the resulting messages are mentioned, together with
their treatment. But before this, the central mechanism of the
HELP system will be described together with the different ways

of entering the system.

134

13.2

The HELP administrator.

From the programmer's point of view HELP can be considered
as a collection of sub-routines which can be entered at an arbi-
trary stage of a program—run via the HP button or by means of
special instruction in the program (programmed entry). PFurther—
more, HELP will be entered automatically if overflow occurs when
using floating—point arithmetiec.

The utility programs are controlled by a common administra-
tor (administrative routine), and the loader SLIP may be regard-
ed, in this context, as a sub—routine for the administrator:

All input — both of progrems and of controlling information —
is made via SLIP, and all input just as all activation of util-
ity programs is concluded by an exit via the administrator.

When HELP is entered, the exit address is normally set equal to

the address of the instruction from which entry tcok place.
Thus, if the exit address has not been changed in the meantime,
GIER will continue at the place where the course of the program
was interrupted by entry into HELP.

The cost of using the facilities of the HELP system is a
restriction in the available storage space, as the system itself
must be stored somewhere. In the standard version of GIER with
1 drum, the following parts of the store are used:

Cell 0—9 and cell 1023 for those parts of the administrator

which must always be present in the core store.
Track 0 for the basic administrator.
Tracks 1—37 for a number of standard routines, including
SLIP and the output routines mentioned in section 12.
Track 38 for working storage, used for instance after opera—

tion of HP button.

135

The remainder of the standard utility routines are normally
stored on

tracks 39-57 or on tracks 275—-293; in the case of the latter

the ALGOL compiler placed on tracks 39—190 can become a
part of the HELP system. These utility routines may, in
fact, be placed anywhere on the drum (see section 13.4).

Pracks 294—319 are used as Core Store Image in which HELP,

on entry, dumps the whole of the contents of the core

store and all registers and from which the core store

and registers are restored on exit from HELP.
The storage space available for programming is thus cells 10—1023
and tracks 58-293 on the drum, and if absolutely necessary tracks
39-293.

It will be apparent during discussion of the different util-—
ity routines below, that, if a program does not use all of the
space on the drum, it may be expedient to allocate a few of the
tracks after no.57 and a few before the Core Store Image, for

use with utility programs.

13.2.1 The HP button.

In chapter 11, the function of the HP button is mentioned
very brieflys; the effect of pressing the HP button is described

here in more detail as follows:

1) Execution of the current instruction is completed, includ—
ing any drum transfers or peripheral unit functions which
have been activated. (If GIER is already stopped, step 2
is taken immediately).

2) Pos.0 of the by register is set = 1, the HP button there-
by being set out of function so that depression of the

button will have no effect.

136

3)

4)

The contents of cells 0—39 are stored on track 38 and
track O is transferred to cells 0—39.

The contents of the register r1 (the Control Counter) are
atored as the address constant in cell 0, and GIER jumps

to cell 1.

Assuming that track O contains the basic administrator the effect

after this is as follows:

5) A check total is made of the locked tracks 0-31.

6)

7)

(If this
ig not correct, "FEJL" is typed; see further in section
13.4 bvelow).
CR, "hp—knap" followed by the exit address and CR is
typed (in red). An h after the exit address means that
the instruction Jjust completed was in a LH half—word, and
that GIER, on exit from HELP, will continue with the cor-
responding RH half-word. Addresses 2 512 are typed as
their negative complements.
The contents of the core store and all relevant registers
at the time of entry into HELP are dumped to tracks 294-
319. The first 10 cells on track 294 will however always
be loaded with the standard program necessary for HELP to
work correctly.
A special bit pattern (GK, VY r) is placed in pos.20-39
of cell 1023 in the core store having the effect that
depression of the HP button will not cause the core store
and registers to be dumped.

Posg.0 of the by register is thereafter set = 0,

making the HP button once again active.

137

9) Entry to SLIP is mades this routine then awaits input
from the typewriter, acting as if the following block

had been read in:

(see also chapter 11).

Remarks: A) Note that there are two different forms of inhibi-

tion: The Pirst, by means of by[O] , sets the HP button out of
function during execution of steps 3—8 which last altogether
approx. & sec.; this is necessary to ensure that an untimely
depression of the button does not spoil the effects of the stor—
age dump etc. In the same way the HP button is also set out of
function for approx. 4 sec. during restoration of the core store
immediately before exit from HELP (see below).

The other form of inhibition is active after the core store
has been dumped (step 8 above) until the core store is restored
on exit from HELP; this "switch" (governed by the contents of
cell 1023) prevents the contents of the Core Store Image from
being overwritten by depression of the HP button, before restora-—
tion of the core store. In addition the exit address stored in
cell 9 is not changed so long as the inhibition is active in
cell 1023,

B) The dumping and restoration deal with the contents of
cells 10—1023 of the core store while cells 0—9 always have
fixed contents; cells 0—5 contain the common entry mechanism
used by programmed entry to HELP, and cells 6-9 contain the com—
mon exit mechanism used in all exits from HELP. The actual code

is as follows:

]

138

—_> [O] iT -1, IT —1 [entry after floating—point overflow]

—> [1] IT -2, PT O [entry for HP patches and programmed
call of HELP]

—> [2] GK 1, VY 529 [entry to SLIP inputj inhibition of
button]

[3] VK 318, SK 960
[4] VK 25, LK 960
[5] VK 347, HV 960 [jump to SLIP etc.]

—> [6] LK 960, VK O [common exit from HELP)

[7] Qo N [used by HP patches]
(8] vY 0 t511 [release button inhibition]
[9] Qq, HV (z) [exit from HELP)

The exit address is placed in cell 9 as an address constanty if

i
entry occurred by means of a LH half-word instruction, the jump
instruction is changed to HH (r) *).
C) The HP button has the desired effect if only track O is
intact, If the contents of tracks 1—31 are also intact SLIP etc.
will work properly, otherwise the word FEJL ("error") is typed.
D) If the lamp marked "HP—knap sparret"” (HP button inhibited)
is not 1lit and the HP button does not however function, this is
usually because GIER is attempting to execute an instruction
which can not be completed, Such an instruction may include an
undefined basic operation, a drum operation on a non—existent
track, a closed chain of indirect addresses or GIER may be wait—
ing for input via a peripheral unit. In each case, pressing the
RESET button will enable the HP button to function again.

E) While the button is inhibited, GIER will remember if the

HP button has been pressed, and as soon as the inhibition is

*) and to assist program manipulation cell 9 is b—marked.

139

removed, the normal function of the button will be performed.
The HELP administrator ensures therefore that if the button is
pressed rapidly a number of times after each other it will have
the same effect as one depression of the button. Furthermore
the administrator ensures that if the HP button is pressed
during restoration of the core store prior to exit, HELP will
be entered once more but the exit address will remain unchanged
(and will not always, as one might have feared, be set to 9
because the removal of the inhibition of the button took place
in cell 8).

F) Similarly, the HELP administrator ensures that if one
presses the HP button while GIER is within the HELP system (for
instance, during input), hardly any damage will be done thanks
to the inhibiting bit pattern in cell 1023: The Core Store Image
will be unaffected, including the exit address in cell 9, and as
usual SLIP will be reset to begin input to cell 10 in the core
store {(in the Core Store Image, in actual fact). One may how—
ever run the risk that some of the information last input will
be lost when the HP button is pressed during input: Input is
always loaded to the drum either within the Core Store Image or
elsewhere; during input it is however collected in the core
store and only transferred to the drum when 40 cells have been
filled up, or when a definition of i , a block head or a block
tail, has been read in. In all other cases depression of the HP
button during input will cause that information which has been
read in but not yet transferred will be lost; in the worst case
the contents of just less than two tracks can be lost (because

SLIP buffers information in 2 track—sections of the core store).

140

G) The registers whose contents are dumped and restored to—
gether with the Image are all those of interest to the program-—
mer: the R register, M register, Overflow register, Indicator,

p register, s register, by register and tk register.

13.2.2 Exit.

Exit from HELP (or SLIP) occurs either when e followed by
an address has been read in, or when more e symbols than D
symbols have been read in. When all input has been placed on
the drum, the HP-button function is inhibited, after which all
registers are restored and the Core Store Image is read back to
the core storej GIER jumps to cell 6 in which the last track of
the Image is read into the storeg after this the button—inhibi-
tion is removed (in cell 8) and exit always takes place from

cell G where the exit address has been placed as the LH address

constant, while the RH half-word contains either the instruction
HV (r) or HH (r) depending on whether the return jump is to
be made to a LH or RH half-—cell,

While the effect of the HP button is quite independent of
the contents of the core store, and cells 0—-9 always acquire the
correct contents, programmed and automatic entries into HELP

only work correctly if cells O—5 are intact. After such an

entry the contents of cells 6—8 (in actual fact cells 0-8) will
be set as prescribed, but cell 9 will only contain the exit

address (as address constant).®) Therefore, cell 9 must also be

*) Pos.33 (and pos.41) will possibly be changed to indicate HV

or HH operation as appropriate.

141

intact if an exit from HELP is to function correctly. (The rea-—

son for not restoring cell 9 is that certain utility programs

insert special instructions here).

Example_13.1.

The message (in red), on the typewriter,
hp~knap 25h

means that the HP button has been pressed while GIER wag in
the process of executing the LH half-word instruction in

cell 25 or a RH Jjump instruction with final address 25.

Example 13.2.

If one presses the HP button during a run and after this

types g CR , the run will continue undisturbed.

13.2.3 Programmed entry.

Programmed entries intc HELP may be made in 3 ways of which
the first has approximately the same effect as the HP button:

A) The instruction HSF 2 causes the following:

1) The HP button is inhibited by setting by[O] = 1,

2) The message CR "haf 2" followed by the exit address and
CR is typed (in red). Exit will always occur to the
next LH half-word or whole word as if it had been made
via the normal sub—routine return jump HR s+1.

3) The core store and all relevant registers are dumped to
tracks 294—319. Cells C—8 always acquire the fixed, pre-—

gscribed contents, and the exit address is placed in cell 9.

142

4) The bit pattern to inhibit dumping is placed in cell 1023,
while the button—inhibition is removed and a Jjump is made
to SLIP, {(just as in step 8 and 9 when the HP button is
used (section 13.2.1)).

B) The instruction HS 2 causes entry into HELP {(or SLIP) with-—

out any entry message and without fresh selection of peripheral
unit; the functions performed are thus as steps 1, 3 and 4 in A)
above with the exception that the by register is undisturbed

(apart from pos.0).

Example 13.3.

If the instruction HS(F) 2 is placed in the LH half-word
of a cell, the corresponding RH half-word instruction is
skipped on exit from HELP. Furthermore it will cause a mal—
function of the subroutine mechanism since the address con—
stant in this RH half-word will be placed in the subroutine
index registerj this is exactly the same effect as if the

exit was made by means of the instruction HR s+i.

C) The third way of making programmed entries into HELP is by

using the instruction HS 1 followed by the program parameters

for a HELP rcutine. This causes — without an entry message or
possibilities for intervention via the typewriter — the follow—
ing:
1) The HP button is inhibited while the core store and regis-
ters are stored on tracks 294-319.
2) Dump inhibition is registered in cell 1023, and the but-
ton inhibition is removed.
3) The program parameters after the HS instruction select

and control the execution of a HELP routine.

4)

143

Restoration is performed as usual and exit is made to the

first cell after the program parameters.

A more detailed description of this is given in section 13. 3.3

below.

13,.2.4 TIFloating—vpoint overflow.

If overflow occurs during any of the floating—point opera-

tions (ARF, ANF, SRF, SNF, MKF or DKF), GIER makes a jump to

cell O; assuming that cells 0-5 are intact, the following then

ocecurs:

1)

2)

3)

4)

The HP button is inhibited.

The message CR, "fl.overleb" followed by the address of
the instruction which has caused overflow, and CR, is
typed (in red). If the offending instruction is & RH

hal f-word instruction, an h is typed after the address.
The core store and all relevant registers are dumped 1o
tracks 294—319. Cells 0—8 always acquire the fixed, pre—
gcribed contents, and the address typed out previously,
is placed in cell 9.

Dump inhibition is registered in cell 1023, the button
inhibition is removed, and a jump is made to SLIP just

as in steps 8 and 9 when the HP button is used (section

13.2.1).

Note that if exit is made from HELP in this situation without

changing the exit address, GIER will repeat the instruction

which caused overflowj this is usually meaningless because, for

instance, the address positions of the accumulator have been

changed (cf. description of ARF in the Operation List, Vol.I

page 64).

144

13. 3

Activation of HELP routines.

13.3.1 HELP—routine call—line, Control parameters.

Selection of HELP routines is made by means of a HELP—rou-—

tine call—line which is an auxiliary line (cf. SLIP syntax) of

the form

h <name of HELP routine>
when the routine is to be incorporated by the operator using
typewriter or paper tape input. It has the form

h <name of HELP routine>/<address constant>
when entry to the routine is programmed (in connection with the
instruction HS 1).

A HELP-routine call—line is usually followed by a number of

lines with control parameters for the routine in guestion. The

rules for these parameters will be dealt with as each HELP rou—
tine is described separately in section 13.4 below, but they all
have the format of normal instruction lines or number lines, and
are read in the usual way by SLIP.

The contrel information has exactly the same form regardless
of the way in which the HELP routine is selected; but it is em—
phasized that the representation of individual parameter lines
has been selected purely for mnemotechnical reasons and that
each line may be written as an arbitrary line of SLIP coding as

long as it creates the desired bit pattern on input.

13.3.2 Activation of routine from typewriter or tape.

Once HELP has been entered by means of the HP button, the
instruction HSP 2 or floating—point overflow, a HELP routine

may be activated by typing

145

b <HELP-routine name>

Appropriate parameters for the routine in question

e CR
When e CR 1is typed, the checktotal of the selected routine is
verified, and the routine is then executed straight away; since
a HELP—routine call-line has approximately the same syntactical
level as a drum-block head, ¢ CR causes this dummy block to be
abolished leaving HELP in exactly the same situation as before
the call—-line: The parameters just read in are not loaded any—
where (at any rate, they are inaccessible to the programmer),
and the serial address and track no. are unchanged.

Activation via paper tape: If one doesnotwish to type the

control information, one may read a tape with the same format
but concluded by s (or possibly with ¢ CR): After entry into
HELP as above, 1 is typed after which the tape is read ins

the routine is executed, and the concluding s transfers con—
trol back to the typewriter whereby HELP is in the same situa—

tion as after typing e CR , above.

BExample 13.4.
After the HP button has been pressed, a print—out of cells

100—108 in instruction format is required. When the message,

for instance,
hp=knap —-501
has beer typed in red by HELP, indicating that exit will

occur to cell 523, one should type

h tryk [select gen.output routine (tryk = output)]
gp 100 t 108 [initialises "tryk" for output of cells
100-108]

e CR [starts execution of routine]

146

When this output has been made, the situation is again as it
was before the HP button was pressed and if one types a
further e CR , GIER will resume the original program at
cell 523 as if nothing had happened.

If a tape was placed in the reader, with the following
information

h tryk

gp- 100 t 108

=3

e CR
the typing of 1 would have exactly the same effect as the

typed information above.

13.3.3 Programmed activation of a HELP routine.

If one wishes to interrupt the course of a program at cer—

tain places in order to take measures which are dependent on the
progress of a run, one should put in the instruetion HSF 2 in

these placesy each time GIER reaches this instruction, one will

have an opportunity to direct events from the typewriter.

If, on the other hand, one wishes to take predetermined
measures at a particular place in a program, one might just as
well insert the control information in the appropriate part of

the program, in the following manner:

HS 1 [execute the HELP routine which follows]
h <HELP-routine name>/<no. of prog. parameters>

Appropriate control parameters for the routine in gquestion

<{no. of prog. parameter> means, here, the number of cells (that
is, lines, usually), which the control parameters following,
occupy; the control parameters have exactly the same format as

in section 13f3.2 above,

147

However one should not write e CR as a termination of the
coentrol information, as this type of HELP-routine call-line with
stroke is not on the same level as a block head.

Everything read in is loaded as standard SLIP information,
of which the call—line is "translated" into one cell of informa-
tion ¥*). Specification of the number of program parameters
enables HELP to assemble the exit to the first cell after the

control parameters.

Example 13.5.

If, after pressing the HP button, one types

i= 1450

hs 1

h tryk /1

gp 100 t 108

ar 45
it will be read in and stored in cells 150-153. When GIER
during execution of the program reaches cell 150, the con—
tents of cells 100—-108 will be printed out, after which GIER
will continue in cell 153.
If, on the other hand, one types

i = 150

hs 1

h tryk

gp 100 + 108

£

ar 45
HELP will immediately print out the contents of cells 100 —
108 while the instructions hs 1 and ar 45 will be stored

*) The line is loaded as the half-word instructions NC, QQ
where the address constant for NC is the sum of the values
of the letters in the HELP-routine name, while the address
constant for QQ is the number of program parameters.

The part of the line which follows the stroke is read in

as a normal increment.

148

in cells 150-151 (and if GIER attempts to execute the in-—
gtruction in cell 150, an error message will be typed be—
cause the next cell does not have the expected contents,

namely an NC instruction etc.)

13.3,4 Corrections.

As it must be evident from the above, one does not need a
special utility program to make corrections to the core store,
since SLIP information can be read directly via typewriter or
punched tape into the core store (actually, the Core Store
Image). It should be remembered that by using the control lines

x <track address> and z <track address>
one can re—establish the labels used during input with the same
values, which can be a great help when reading-in corrections
(cf. example 11.38).

However corrections to the contents of registers can only be

accomplished (in a reasonable way) using the HELP routine '"ret"
(Danish for "correct"), which is described below.

If, at any time during the selection or execution of a HELP
routine, one regrets taking this measure, one may depress the
HP button. As soon as the instruction in progress is completed,
the usual buttonwise entry to HELP is made, but, thanks to the
dump—inhibition pattern in cell 1023, the Core Store Image (and
thereby the exit address) remain unaffected since the previous

entry *¥) In this way the HELP routine originally selected is

*) fThis is not applicable to the use of the HP button during
execution of a tracer program, since once this program is
started it works outside the HELP system, and the dump—

inhibition is therefore also removed.

149

forgotten completely and SLIP is once more in a position to
accept information from the typewriter to cell 10 or for selec-

tion of a new HELP routine.

Example 13.6.

After entering HELP, by one way or another, one has typed,

for instance,

h tryk
gp 100 t 405
e

after which HELP begins printing out the contents of 306
cells on the typewriter. This is perhaps not what was
wanted so as soon as the mistake is realized, one may press
the HP button, after which the print—out is stcpped, and
HELP is again ready to accept other information as if "tryk"
had not been selected. One cculd then type the correct con-—

trol information, for instance

h tryk
gp 400 t 405
e

which causes a print—-out of the contents of 6 cells.

Example 13.7.

If one starts to type the same information as in example
13.6 but realizes the mistake before e has been typed,
i.e. after

h tryk

gp 100 t 405
has been read in, one has 2 possibilities (besides that of
activating the "tryk" routine with the undesired parameter):

One may press the HP button and thereafter type an arbi-
trary character (to release GIER from the LY instruction for
the completion of which it is waiting), causing a return to

the "ready" situation before "tryk" was selected.

150

One may instead, however, correct the information just
read in by concluding the instruction line with a CR and

then typing

i=i-1 set the serial address back]
gp 400 t 405 [the correct parameters] |
e

after which the HELP routine will be executed.

13.4 Standard HELP routines.

13. 4,1 Location of HELP routines.

As mentioned previously HELP normally occupies tracks 0-57,

but one may if necessary use tracks 39—57 for other purposes

either by doing without the routines which are normally placed
on these tracks or by placing them elsewhere on the drum.

The permanent part of HELP, tracks 0-37 includes the HELP

administrator, SLIP, routines for output of instructions, num-—
bers and text. {(The 2 last-named are described in section 12), !
and the HELP routines h start, h kontrol and h slip which are
described below.
The remainder of the standard version of HELP consists of
the following utility programs, (The usual locations on the
drum are also given).

h tryk and h sam occupy 9 tracks, usually located on tracks 39—47

h kompud - 4 - - - - - 48~51
h ret - 1 - - - - - 52
h hent and h gem - 1 - - - - - 53
hhpind andhhpud - 3 - - - - - 54-56

h l=as hp - 1 - - - - - 57

151

In consideration of the requirements of the standard version
of the ALGOL compiler which is usually loaded to tracks 39-160,
a compatible version of HELP is available in which the above—
named routines are placed on tracks 191-209 (in the same order),
while the permanent part is still loaded to tracks 0-37. During
compilation of ALGOL program tracks 191-209 will however be over—
written. All these routines can be lcaded anywhere on the drum
and not necesgarily in continuation of each otherg each routine
is available on a separate tape and can be read to an arbitrary
drum track by typing ¢ <start trackD>CR and 1 (see also below).
In the same way, additional HELP rcutines may be read in in un—
limited quantities overwriting, if desired, routines already
loaded — the routine "las hp" ("read hp") should however be in—
tact, as it is used during the input.

All the time the HELP system is in use, a catalogue is kept
of routines read in and their location. Every time a HELP rou—
tine is called, an investigation is made to see if the name
exists in the cataloguej if the search proves fruitless an error
message "tomt hp" (meaning "empty hp") is written, after which
HELP is again ready for input. If the name is found, the check
total is verified and if it is in error "sum—fejl" (meaning
"checktotal error") is typed, after which HELP is yet again
ready for input (see also section 13.5).

There are a number of points, regarding the catalogue of
HELP routines, which should be noted:

1) HELP does not ascertain whether a new HELP routine is
read in to a track already used. It will simply extend the

catalogue with the data for the new rdutine. It is only when

152

one tries to call the rcutine read in previously that HELP will
make a protest because of the erroneous check total. Thus, if

one wishes to read in new HELP routines on top of routines read
in earlier, everything will go smoothly until one tries to use

the old routines.

2) If one loads a new routine with the game name as an exist-

ing routine, the new routine will be loaded to the required loca-
tion and the catalogue will be amended so that it ccrresponds to

the new routine's location and check total.

i
!
I

3) The catalogue may be reported (with verification, of
check totals) at any time using the "kontrol" routine but it can
only be initialised by the '"start" routine (which includes “kon-—
trol")}. "start" deletes all non—standard routines from the

catalogue and verifies the check totals for the standard rou-

tines (see below).

13.4.2 "kontrol" (check) and "start".

1) As mentioned above one can gheck which HELP routines have

been read in to the unlocked part of the drum, using the routine

called "kontrol". This routine can be used in two ways, namely

in the presence or absence of a parameter, the actual form of
which is quite arbitrary, the effect being:

Without parameter: Check totals for every HELP routine listed in
the catalogue are verified, and a list of the
starting track and name of each routine is
typed out; in the case of a non-standard HELP

routine only the starting track no. is typed

out,

153

If a check total does not agree, the mes—
sage "sumfejl" ("check total error") is typed
out.

With parameter, for instance, QQ: The same check is performed
but messages are only typed where the check
total does not agree.

The first item in the catalogue concerns the permanent part of

HELP on the unlocked tracks 32—37. For programming reasons,

tracks 28—37 are however treated as one HELP routine with the

neme "uafldsede" (unlocked), (this name should not be changed
by the user) and the first line in the typed list is therefore

"28 uafldsede". If all the standard HELP routines are located

in their usual positions and the catalogue has not been extended,

the list obtained will be as follows:

28 uafldsede

43 sam

39 tryk

48 kompud

5T 1l=s hp

53 hent og gem
54 hp ind

55 hp ud

52 ret

sumfejl 45 algol
The ALGOL compiler is listed in the catalogue as a HELP routine
on level with the remainder, but since it shares tracks with
some of them, it cannot be intact at the same time as the HELP
routines (in this version)j the message "sumfejl 45 algol" is

therefore obtained *).

*) HELP verifies, in fact, only track 45 containing the basic
entry to the compiler. The remainder is checked by the

compiler itself when it is called.

154

If the standard HELP routines are loaded to tracks 275-293
and the part of the ALGOL compiler on track 45 is intact, the
list obtained will now be as follows:

28 uaflaasede
279 sam

275 tryk

284 kompud

293 l=s hp

289 hent og gem
291 hp ind

290 hp ud

288 ret

45 algol

2) "gtart" is an initialising program, which sets GIER's

store and registers in a well—defined state before commencement

of new jobs, "start" may be used in two ways, namely in the
presence or absence of a parameter, the actual form of which is

gquite arbitrary, the effect being:

Without parameter: The available part of the store (i.e. cells
10-1022 and tracks 58—-319) is filled with
the instruction HSF 2 in each word; all
registers are set to zero (excepting the by
register and r1 register which are set to 17

and 10, respectivelys the HELP routine cata-—

logue is initialised, i.e. all non—standard
routines are deleted and the standard rou-—
tines are catalogued as being on tracks 39-57;
the 1list of HP patches is destroyed (see the
section on "hp ind"). After this the routine

"kontrol" is executed.

155

With parameter, for instance, QQ: The same effect as for
"start" without parameter except that the cata—
logue check message reports only those routines
for which the check total doces not agree,.

Note that if one of the standard HELP routines is corrupted,

"start" cannot restore it but will instead type the message

"sumfejl" and the start track no. and name.

The whole message is thus as shown at the beginning of this
section, with "sumfejl", where relevant, preceding one or more

lines.

Example 13.8.

Let us assume that while testing a program, the routines
"kompud" and "ret" are not required whereas a tracer pro-
gram called "hop" and filling 5 tracks is needed as a HELP
routine.

After one has typed

and ensured that the standard version of HELP is intact, one
should place the tape containing the routine "hop" in the
reader, and thereupon type

c 48

i
The routine will be loaded to tracks 48-52, and can be used
in precisely the same way as the other HELP routines. On the
other hand, attempts to use "kompud" or "ret" will cause
error megsages, because the check total does not agree.

If one later makes a call of "kontrol" by typing

h kontrol

o

the following report will be obtained:

156

28 uaflaasede

43 sam

39 tryk

sumfejl 48 kompud
57 l=:s hp

53 hent og gen
54 hp ind

55 hp ud

sunfejl 52 ret
sumfejl 45 algol
48

13.4.3 "tryk" (output).

The HELP routine "tryk" can be used to print (punch) the

contents of arbitrary parts of the gtore and registers in many

different ways, and the format of the control parameters is
rather complicated; for instance, several parameters are packed
together in one cell. Thus "tryk" can be used to print the con-
tents of the store and registers as instructions (again, in dif-
ferent ways), and as decimal numbers, in 4 different ways, (with
many more options) but not in binary form (this is catered for
by "kompud"), octal form or any such form.

The parameters are written in the form of instructionsy

there are 3 distinct types of parameters: the general output

delimiters (1 whole—cell), the basic trim (1 whole—cell) and the

number editing trim (2 whole—cells); these types are described

in more detail below. "tryk" can be activated with an unlimited
number of parameters, so that one can obtain a print—out of
several parts of the store in different ways, if required; there
should however be at least one set of general output delimiters

(describing what is to be output).

157

A) The general output delimiters may consist of two half-

word instructions, or one whole—word instruction having one of

the following forms

{output format>,<name of registerd
{output format><start address>t<end address)
<output format><track no.>.39+<start addressdt<end address>

where <output format> and <name of register> are SLIP operation

codes, and the other quantities are address constants.

Each set of general output delimiters begins then with an

operation code indicating the format of the ocutput i.e. whether

the output is to be in the form of instructions, fixed or float-

ing point numbers, integers or packed integers {within each

group the output format can be further defined by means of the

base trim and the number—editing trim). The meaning of the LH

operation is shown in the table below.

<output format>

The contents of cells to be output as

€p
gpr

grp
grn

gmp

gi
gin

ga

instructions

instructions, with indication (in square
brackets) of the equivalent absolute adress
where the address is relative

floating pt.numbers, with 5 significant digits
—_ _ - ’ —_ 10 —_— —_
- - - s layout and scale factor
as indicated in the number—editing trim ¥

fixed pt.numbers, with 6 decimals
L
- - - sy layout and scale factor as
indicated in the number—editing trim *)

integers (units in pos.39), with 13 digits
- - - -), layout and scale
factor as indicated in the number—editing
trim *)

packed integers, i.e. 4 integers from each
cell in the range 0 < t £ 1023

*¥) See section C) below.

158

When numbers are output the marking of the respective cells
(or the R register) is indicated as a, b, ¢ or a comma, so that
(punched) output can be read in again by SLIP.

The remaindery of a set of general output delimiters indi-
cates what is to be output, and each set may be concerned with
the contents of one of the following: registers, the core store
or the drum.

Qutput from registers is indicated by general output delim—

iters of the form

<output format>,<name of register>
or

,$name of register>
where <name of register> . can be one of the operation codes
shown in the table on the opposite page. If <output format>
ig omitted, the output format previocusly used is retained.

OQutput from the core store is obtained using general output

delimiters of the form

{output format><start address>t<end address>
which means that cells from <start address> to <end address>
inclusive, are to be output in the form indicated. If the end
address is omitted (or set equal to zero) only one cell is out-—
put.

Qutput from the drum is obtained using general output delim-
iters of the form |

{output format><k>.39+t<g>
which means that c¢ells from no. to no.<s> on track no.<k> are
to be output in the form indicated. The addresses and <s>

may be > 39 since then these are simply regarded as being on

159

" -
L0 -
ol -

0

q
B

00 sezsoTpuT jutod exsuym Toquks suo s® jndgno sT dnoxd 37q-2 YOBI (,

.Avwahowpdmp:ovﬁovﬂm@:mmmﬁ
aI® [Pu® ¥ JO juswieaI} ayzy LTuo

*¢jeuxol jndinoy uo juspusdep

1 03 Tenbs s31q ay3 Jo suotriTsod (g
LG $ T 3 216~ ‘xeBejur s®

+gords 98 TMIAYL0
0 X9338T 9y} £q Pe3}BOTPUT MOTFIea0 (¥
A* dnox8 319~z 2u0 s® gy ‘vy¥ (¢
(x sdnoas 3102 ¢ - - - 6-0 - (2
:mw..nwm_,ml ‘xsFejut 88 Z03BOTPUT JO 6—~0*s0d (1

¢jemIoy gndinos jo juepusdepul
LS STS ZLG— ‘sasfejutr

‘¢qewxoy gndgnoy uo juspusdep %

JY S®B PpelBall
Futeq W pus ¥ ‘sA0q® 2yl JO TT®
Jg Surpnioxe saoqe ay3 jo TI®

*([sseappe 1Tx0] 0u TT90)
snuTIU00 TTIM waeIxPoxd
§,I9sn 92U} YOTIYM UL TTI30 83}

xaqsT8ax £q

I91ST88J MOTJISAO PUB
gy pu® yyi *IoUT *Fsa J03BOTPUT

JI94 ST M3}
(uwI938188a | I,) SS8IPPEB 3TXd
Jogs18ex d
I84s81d8x @

J91s1¥sx W
A — - - v I9}SIFeI U
(s3Tq—aexsew* TOUT) I948TFex Y

Jam
Ie

10

s

13

pif
vl
dg
sg

Fa2
ag

18wxo0J gndaing

woxJ 3nding

<I®918TFaI JO sWBL)

160

neighbouring tracks, but both and <g> must be within the
range 0 £ t £ 1023. If <s> is omitted (or set equal to 0), only
cell on track <k> is output. (NB. If a reference address +
O has been used, the output will begin with cell no.[—<refer—
ence address>] on track <k>, derived from the fact that if the
first cell of the track <k> corresponds to cell no.<reference
address>, becomes the address in the core store of cell
on track <k>; see also item B), the basic trim.)

B) The basic trim which is valid for all succeeding general

output delimiters until a new basic trim is given has the form
bt<{s><{integer>.39+<output unit code>t<{reference address>

The operation code bt can be regarded as the mnemonic for basic

trim while the remaining constituents have the following effect:

If <{s> is empty, each line of the output is preceded by the
address in the core store, in square brackets. If <s>
is a clearing flag, these addresses are omitted from the
output.

{integer> indicates how many numbera are to be printed on
one line., If <integer> is equal to O or the term <inte—
ger>.39 is omitted completely, the previous value (ini-—
tially 3) is used. This term has no effect on output in

the form of instructions since this is always with one

whole—word per line.

<output unit code> selects the output unit(s): 1.5 for type-—
writer, 1.4 for punch and 3.5 (or 1.4 +1.5) for both
units. If <output unit code> is omitted the medium last

used is selectedj this is initially the typewriter.

)

161

{reference address> is an integer and should normally only
be used for output from the drum. It indicates the core
store address corresponding to the first cell on the
first track (similar to the serial address in a drum—
block head when a program is read in); after this the
start and end addresses in the general output delimiters
will refer to addresses in the core store, and not to
the cells on the drum track. If <reference address> is
omitted, it will be set equal to 0 *),

If none of these special facilities are required, the basic trim
can be omitted completely in which case the initial trim

bt 3.39 + 1.5 $0

is effectual, so that 3 numbers/line are output preceded by
addresses; the typewriter is selected as output unit and the
reference address is 0 which means that during output from the
drum, addresses refer "directly" to the cells on a track.

C) The number—editing trim governs all the succeeding sets

of general output delimiters which begin with grn, gmn or gin
until a new number—editing trim is given. It has the form of 2

whole—word instructions

*) The reference address is used to find the required cells
address on the drum. It is in fact cell no. [core store
address — <reference address>] on the first track (this
number may well be > 39).

During output from the core store, the reference address
is also subtracted from the start and end addresses, and a
reference address + 0 will therefore cause a "displacement"

of the output from the core store.

162

nt <power of 2>t<{power of 10>

<layout>
The operation c¢code nt can be regarded as the mnemonic for
number—editing trim while the remaining constituents have the
following effect:

{power of 2> is an integer which causes the contents of a
cell in the store or a register to be multipiied by the
power of 2 indicated, before it is edited. If <power of
> is omitted this corresponds to a multiplication fac—
tor of 240.

<{power of 10> is an integer causing multiplication by a
power of 10 before editing. If <power of 10> is omitted
this corresponds to a multiplication factor of 1OTO.

{layout> is an instruction line consisting of QQ followed by
as many as 12 scaled integers. The layout determines
the local typography of each number (number of signifi-
cant digitse, decimals, exponent digits etc., etc.) after
exactly the same rules as for the general routine for
editing of numbers, described in section 12.2, especial-—-
ly 12.2.3, above (it is in fact the same routine that is

used by "tryk").

Example 13.9.

After entry into HELP a print—out of the contents of the
register, R and M is required, in the form of fixed pt.
numbers with 12 decimals, and a print—out of the s—register.

One may type

163

h tryk
8mp , 8T
gmp , £gm

s 88
[S]

after which the following will be typed, for instance,

M| —0.345 000 678 321

Ri 0.123 456 789 101a
s] 345

(After this GIER will again wait for typewriter input).

Example 13.10.

After entry into HELP a print—out is wanted of the contents
of all registers (and incidentally the cell to which HELP
will exit), where RF contains a floating pt. number. One
may type

h tryk

grf , arf
e

after which the following will be typed, for instance,

97 ar r=5 ,gr 34
1.2346w7a
345 10 61 82=.bb.a . 0 —=239= ,1.5.9

The arrangement in this case is as follows:

{exit address><contents of cell)
<RF register>
<s reg.><p reg.><tk reg.>{indicator><overflow reg.><by reg.>

Thus in the example s = 345, p = 10 and tk = 61. The indi-
cator (pos.0—9) contains the bit pattern 00 01 01 00 10 cor-—
regponding to the number 82, and the succeeding point indi-
cates that KA = KB = 0. The letter 0 indicates, that over—
flow has been registered, and finally by = —239, i.e. posi-
tions 0, 1, 5 and 9 are equal to 1 {but pos.Q is never shown

in the output).

164

Example 13.11.

If one wishes to have a print—out of the program in cells
10-12 one may (after entering HELP) type
h tryk

gpr 10 t 12
e

after which the following will be typed, for instance,

10] arf r+7 [17] 1
1] okf 94 y dkf s-3
12] hv r+31 [43] NT
If the output is to be punched and without addresses hefore
each line, one would need to include a basic trim by typing
h tryk
bt s 1.4

gpr 10 t 12
e

It is important here that one types the basic trim before
the general cutput delimiters, as it will otherwise have no
effect.

Example 13.12.

One wishes to make a print—out of the floating pt. numbers
stored on tracks 110-114 with a layout f—nddd.OOO}; the
ocutput is to be made via the punch with 8 numbers per line
and without addresses. After entry to HELP the following
should be typed

h tryk

bt s 8.39 + 1.4 [no addr.; 8 no./linej punch
nt no scale factor
qQq 4.3+4.7+3.13+1.9+1,14+4.23+3.27 [1ayout

grn 110.39 + 0 t 199 [200 cells from tracks 110 onwards
e

(The symbols +0 in the last parameter could just as well
have been omitted).

165

13.4.4 "kompud" (condensed dump).

The HELP routine "kompud" makes dumps of specified parts of

the store, in a condensed form punched on tape, so that it can

be read by SLIP at optimum speed. The punched tape is supplied
with all necessary control information and can be re-read by
typing 1 after a call of HELP. What happens on conclusion of
the re—input is dependent on some of the parameters given to
"kompud" (see sub—section B below).

"kompud" requires as parameters one or more cells of packed
integers to specify the required sections of the store to be
dumped, to specify the treatment of "undumped" parts of the
store on re—input and to specify the required terminating action
on re—input. These specifications are made using 2 types of
parameters:

A) Output delimiters. These are packed integers of the

form

first track>/<first cell>/<last track>/<last cell><mark>
where <mark?> is either a, b or nothing while the remaining quan-—
tities are integers. These parameters causes dumping of a sec—
tion of the store according to the following rules:

{first track> is the number of the first track; if <first track>
is omitted (or equal to O), it means that a sec—
tion of the core store is to be dumped.

{first cell> in the number of the first cell to be dumped in
relation to cell 0 on the first track; if <first
track> = 0, <first c¢ell> is the address of the

first cell in the core store to be dumped.

o

166

{last track> is the number of the last track; if <last track> is
omitted (or equal to 0), it means that the last
track is the same as the first track. If <first
track> = 0, <last track> must alsc = O and dumping
is made from the core store.

{last cell> is the number of the last cell to be dumped in
relation to cell O on the last trackj when dumping
from the core store <last cell> is the address of

last cell in the store, to be dumped.

The gquantities <start track> and <last track> must be within the
range 1 £ t £ 319 (and track nos. 2 294 refer naturally to the
core store image. The expressions first track and last track
must be regarded to some extent as reference addresses only, in
that if the quantities <first cell> or <last cell> are > 39, the
routine will calculate internally the actual address of the cell
on a succeeding track. Cell numbers should, however, be within
the range O L£c & 1023 (although in fact, numbers outside this
range will be taken modulo 1024; cf. input of packed integers,
section 11.5.1).

If the section of the store in question includes cells which
contain the instruction HSF 2 (cf. the HELP routine "start",
which fills the whole store with HSF 2), these are skipped
during the dump; by marking the packed integers which constitute
the output delimiters, it is possible to indicate the two ways
in which sections of the store, so skipped, are to be treated on

re—input:

]

167

<mark> = empty causes SLIP to fill up with HSF 2 all cells with-
in the section of the store that was skipped dur-—
ing the dump. The section of store will thus be
regenerated completely.

<mark> = a causes SLIP to skip all cells (within the section
of the store) which were skipped during dumping.

The last possibility

<mark> = b causes the section of store in question to be ig—
nored during dumping and, on re—input, tc be filled
with HSF 2 .

Note that

<{mark> = ¢ indicates another type of parameter (see B below).

It may often be useful to specify a section of store in terms
of symbolic addresses, but this is not possible when using packed
integerss it may thus be convenient to indicate the output param—
eters in the form of an instruction with 4 scaled terms i.e.

qq <firsttrack%9+<firstcellz19<lasttrackk29+<1astcellk39
One should however remember that marking in this case must be
indicated by half-word marking or F marking.

An unlimited number of sections of store can be specified by
means of a cell of packed integers (or an instruction) for each f
of them; certain general cases of dumps covered in B) below, re-—
quire no output delimiters.

B) Exit specification and general dumps. This parameter is

a c—marked cell with packed integers.
<u addr.>/<e addr.>/<exit code>/<dump code> ¢
There can only be one parameter of this type and by definition

it must be c—marked.

168

The first 2 quantities may be arbitrary integers, <exit code>
consgists of max. 3 digits, each digit being O or 1, and <dump
¢ode> may be either 0, 1 or 2 (and under special circumstances
3 or 4 — see example 13.15). The effect of these parameters is
as follows:

Re—input of a condensed tape is always terminated by a jump
to SLIP, which continues reading tape in the .usual way (the val—
ues of i and k are discussed below)j the digits in the <exit
code> causes the tape to be punched with one or more of the con—

ventional SLIP control lines, as follows:

<exit code> = 100: The condensed tape is to be terminated with
the control line u<u addr.>. On re—input
the exit address from HELP is thus set equal
to <u addr.> (see chapter 11), after which
input from tape continues via SLIP.

{exit code> = 10: The condensed tape is to be terminated with
8 , so that SLIP waits for typewriter input
after re—input.

{exit code> = 1: The condensed tape is to be terminated with
the control line e<e addr.>, so that GIER
jumps immediately to cell [(e addr.)] after

re—input.

If <exit code> is set to 11, 101, 110 or 111 the above—named
effects are combined and the control lines are punched in the
gsame order as the digits are written, i.e. first wu<u addr.>,

then s and finally e<e addr.> .

169

If <exit code> is set to O or 100 the condensed tape can not
be used alone for re—input, as it not concluded "properly" — the
tape reader will (literally) "cry out for more tape". Unless
the punched tape is supplied with additional codes in some way
or another, one of the other alternatives should be selected.

The last quantity <dump code> is used to specify whether the

dump parameters are explicit or specific:

]
jo]

{dump code> means that the dump is to be governed by param—

eters of the type mentioned in A) above.

]
—n

{dump code> indicates that all registers and the whole of
the core atore are to be dumped; cells contain-
ing HSF 2 at dump time will be regenerated

with HSF 2 on re-input.

]
\V]

<dump code> indicates that all registers, the available part
of the drum, i.e. tracks 58-293, and the whole
of the core store are to be dumpeds cells con-

taining HSF 2 at dump time will be regenerated

with HSF 2 on re—-input.

Since the Core Store Image extends as far as cell 23 on track
319 and the contents of all registers are stored on cells 24—33
of this track, the specification

{dump code> = 1 corresponds to the output delimiters 294//319/33

{dump code> = 2 corresponds to the output delimiters 58//319/33.

Example 13.13.

If one requires a condensed dump of the core store, so that
after re—input, GIER will jump immediately to cell 10, one
may type

170

If one requires a condensed dump of cells 10—-94, cells 300-
451 and tracks 100-114, so that after re—-input, GIER will
wait for typewriter input ready to jump to cell 305, one may
type

h kompud

10//94
300//451
100//114/39
305//110/c
e

When the tape so produced is re—input (by simply typing 1),
the exit address is set equal to 305, and GIER then awaits
typewriter input. This will give one time to, for instance,
set a data tape in the reader before one types g 1o start
execution of the program.

The order in which the parameters are presented to
"kompud" is quite arbitrary and in the above instance one

could just as well have typed

h kompud
3007//451
305//110 /¢
100//114/39
10//94

e

for instance, the only difference being the order on the
tape produced: The dumps are made in the same order as the

parameters are given.

The serial address and track number when a condensed tape

has been read in. Let i , k0 be the values of the serial

o)

address and track number in the last drumblock head before the

condensed tape is read ing let i1 s k be the current values

1

171

Jjust before reading of the condensed tape starts. Then, if i ,
k are the values just after the loading is finished, the follow—
ing rule holds: If 40k +1i 2 4Ok0--io s then the serial address
and track number keep their current values i , k ;3 otherwise

they are set "back" to the values i, , k which were effec~—

1 1

tive just before input of the dump.

In other words, this rule means that, if input terminates
within the drum block which was entered before input was started,
one may read program in continuation of the dump, without further
ado. But if input termin;tes outside (that is to say, before)
this drum block, i and k will be set back as if the con-
densed input had not appeared. For this purpose the core store
is regarded as a drum block with k = 294 and i = O.

Immediately prior to entry into HELP-SLIP a block is estab—
lished with k = 294 and i = 0. Input of condensed tapes dumped
from the core store will in this situation always terminate
within this block, and input of sections of the drum other than
the Core Store Image will terminate outside this block. Thus,
input to the core store can always be made in automatic continu-—
ation of re—input of core store dumps.

The format of the condensed tape. The condensed tape which
is produced by "kompud" is made up in the following way:

1) an introduction consisting of a start combination, definition
of the starting addresses i.e. serial address and track number,
47 space symbols and an end combinétion; 2) the main part con-—
sisting of a number of blocks, each consisting of a word indicat-—
ing the number of cells, to be akipped and the contents of a

number of consecutive cells (each word consisting of 6 charac—

172

ters); 3) a check total and the numbers of characters on the

condensed tapej 4) a termination, if requested by means of the

exit specification mentioned in B).

The reason why the introduction contains so many spaces
(which are dummy symbols here) is that by starting reading at
any of these spaces, the dump will be re—input to the instanta—
neous values of the serial track number and address. The load-
ing will thus be "linearly displaced" in the store because all the
addresses in the condensed tape are relative to the start ad-
dress. If, for instance, one has made a dump of cells 100-155
and wish to read them in to cells 248-303, one should simply
define the serial address i = 248 via the typewriter and com—

mence input of the tape after the first ten characters.

Example 13.15.

It is possible to punch a condensed tape without any intro—
duction: if the first parameter for "kompud" is 3c , the
starting address (and the 47 spaces) are omitted from the
condensed tape.

If, for instance, one wishes to prepare a library rou—
tine, which is loaded to cells 850—899, so that it can be

read anywhere in the store, one should type

h kompud

3c
857/889
10/c

e

The tape so punched has therefere no introduction and is
terminated with s 3 it will be read to the instantaneous
serial address and on completion of input GIER will wait
for typewriter input.

If one wishes to be able to dump and re-inpﬁt cells

containing HSF 2 exactly like any other cells (due to the

-

173

requirements of the GIER ALGOL "gierproc" routine, for in-—
stance), one may include the parameter 4c as the first
parameter (if both 3¢ and 4c¢ are to be used simultane-

ously 3c comes first).

13.4.5 "gem" (preserve), "hent" (retrieve) and "sam" (compare).

"gem",

Activation of "gem" causes re—dumping of the Core Store
Image (including contents of registers) — 26 tracks in all — to
a section.of the drum store and since the Core Store Image is
identical with the core store at thé time HELP is called, "gem"
does in fact "preserve" the contents of the core store etc.

"gem" may be activated without parameters or with any number
of parameters of the form

sk ,
where b is an integer in the range 39 v X 319. The effects

are as follows:

Without parameter: The whole of the Core Store Image (tracks
294—319) is copied to tracks 268-293, i.e.
the last 26 free tracks on the drum.

sk The Core Store Image is copied to track <bd>
and the 25 tracks thereafter. If = 0
(or is omitted) the Image will be copied

to tracks 268-293,

If one wishes to copy only a part of the Image or to copy dif-
ferent parts on different sections of the drum, this can be

achieved using "hent", which is described below.

174

"hent".

Whereas "gem" always copies from the Core Store Image to
other sections of the drum, "hent' has been designed to perform
tranafers in the opposite directions the parameters are, however,
so flexible that it is possible to perform any drum—to—drum
transfers with this routine and the facilities lacking in the
"gem" routine are obtainable in "hent" using appropriate param—
eters.

"hent" may be activated without parameters or with any num-—
ber of parameters of the form

sk<a>.39 + t<c>
where <a> , and <c¢> are integers within the ranges
0<a$319, 39512319 and 39 S¢S 319 . The effects

are as follows:

Without parameters: The contents of the 26 tracks 268-293 are

copied to the Core Store Image, being pre—
cisely the reverse of "gem" without param—
. eters.
sk<a>.39 + t<c>: The contents of <a> +tracks are transferred
from track onwards to track <c¢> on-
wards. As exceptions, <a> = 0 has the

game effect as <a> = 26 3 i.e. 26 iracks

are transferredy; = 0 has the same ef-
fect as = 268 § i.e. copying is made
from the "Preserved Image" just in front of
the Core Store Image; <c¢> = 0 has the same
effect as <e¢> = 294 , i.e, tfansference is

made to the Core Store Image.

175

If more than one set of parameters are given, transference

takes place in the order in which the parameters are presented.

"sam",

"sam" compares two drum sections (each of 26 tracks) cell by
cell, and outputs the deviations in a selected format.

The routine requires 2 types of parameters, namely the sec—

tion delimiters of the form

sk <a>t<bv>
and the putput format which has the same form as the output
delimiters and trims for the HELP routine "tryk". Their effect

is as follows:

A) Section delimiters.

sk <a>t : "sam" compares the two 26—track gections of the
drum which begin with track <a> and track ’
respectively. As exceptions, <a> = 0 has the
gsame effect as <a> = 294 (i.e. this section is
the Core Store Image), while = O has the same
effect as = 268 (i.e. this section is the
"Preserved Image" immediately preceding the Core
Store Image).

If this parameter is omitted, the sections compared are the Core

Store Image and the section immediately preceding

it (i.e. the same effect as sk O t 0).

B) Output format. For each set of section delimiters there must
be an output format consisting of one or more sets of parameters

formed after the same rules as for "tryk", section 13.4.3, with

176

the following exceptions: a) all addresses refer to the rela—
tive positions of cells with an image of the core store, and
therefore reference to drum tracks has no effect, i.e. any indi-
cation of reference address or track numbers is ignored; b) if
a basic trim is included in the parameters, the indication of
the number of words per line is ineffectual since the output

always has the following form *):

<a>
{address> {contents of cell> {contents of cell>
{addregs> {contents of cell> {contents of cell>

LI B et e e seesoe .

where the situation ﬁf the third column is dependent on the
positioning of the tab stop since "sam" uses the tab instruction
SY 30 between the second and third column (and only here).

If one forgets to specify the output delimiters, "sam" has
no effect.

One may specify several consecutive comparisons between
pairs of sections on the drum using parameters of type A)

sk <a>t , but a complete output format must follow each

. parameter of this type.

Example 13.16.

A typical usage of the three routines "gem", "hent" and "sam"
might be as follows:
1) When a program (which does not use tracks 268-293)

has been loaded to the core store,

*) Addresses are output even though a basic trim with s flag is

used.

177

gem

lo |

is typed, after which the required run of the program is
made.

2) Whatever happens during a run, good or bad, the orig—
inal situation can be re—established by pressing the HP but—
ton and typing:

h hent
e

3) If, however, one concludes a run in one way or another
and thereafter, for instance, wishes to find out what, if
anything, has been changed of the instructions in cells
10—150 and 600—-1022, and of the working locations in cells
151-559, one may press the HP button and type:

h sam

bt 1.4

gp 10 t 150

gp 600 t 1022
gr 151 t 559
e

Since the section delimiter has been omitted, the Core Store
Inmage (i.e. the situation after the run) is compared with
the "Preserved Image" (i.e. the situation before the Tun)j
the basic trim causes output to be made via punch, and the
last parameters cause diverging cells in section 10—-150 and
600~1022 to be output as instructions and in cells 151599
in the form of floating pt. nos. with 5 significant digits.

13.4.6 "ret" (correction).

After any normal entry into SLIP-HELP one may type directly
anything whatscever into any cell in the store whatever by first
defining i and k appropriately and thereafter typing the

required contents. If, however, one wishes to change the con—

tents of one of the registers, it must be done using "ret".

This routine which requires as control information, the name of

178

the register to be changed followed by the desired contents,
must be supplied by a pair of parameters of the form

<name of register><overflow code>

<SLIP line>
where <name of register> may be, as for the HELP routine "tryk",

gr for the R register, grf for the RF register,

gm - - M - y &8 - - 8 - ’
gp - ~— P - , 8 - - track - ,
gi - — indicator register and

sy — — by register

{overflow code> may only be used when correcting the R register.
It controls the flow of information partly to R and partly to

the overflow register:

{overflow code> 0 or nothing: After the specified number (or
program constant) is read in, ROO is set =
Rpos[0] and the overflow register is

cleared.

(]
=
”»

{overflow code> After the specified number is read in, ROC
is set = — Rpos[0] and the overflow regis—

ter is cleared.

1l

{overflow code> 10: After input ROO is set = Rpos[0] and the

overflow register is set to 1.

{overflow code> = 11: After input ROO is set = = Rpos[0] and the

overflow register is set to 1.

The two most applicable possibilities are thus gr for input to R
without overflow, and gr 11 for input to R of something with
overflow. <SLIP line> may be an instruction line, or a number

line possibly preceded by a control code for number—input (;cn?g):

The

The

The

The

179

contents of the registers R and M may be changed by input of
an instruction line or a number which may be either a
fixed pt. number, packed integers or a floating pt. num-—
ber (stored in a cell).

RF register may only be set equal to a floating point number
which is then placed as in arnf instructions.

reraining registers can be set equal to an integer (modulo
1024) which is read in as an integer (with control code
m) or as an address in an instruction line of the form

qq <pre—defined address>.

rules for writing SLIP lines are otherwise exactly as de-

scribed in chapter 11.

Note that for each call of "ret" the contents of only one

register may be changed.

Example 13.17.

A program contains a jump to SLIP using the instruction
HS 2 3 the number 5”—20 is to be put in the RF register
after which the run is to continue. When this jump to

SLIP is made, one should type

h ret
grf put in RF register]
£ the floating pt.no.]

520 5”—20]

lo |o

[continue with program]

Example 13.18.

The bits TA and PA of the indicator are to be set to 1
while the remainder are to be cleared. At the same time the
drum track register is to be set equal to 140. One could
then type:

180

h ret

gi

qq 1.2 + 1.4 [set pos.2 and 4 of the indicator to 1]
e

h ret

gk
140 [set integer 140 in the track register]
e

The control code m which might otherwise precede the integer
140, is unnecessary because entry to SLIP-HELP always invokes

m automatically.

13.4.7 "hp ind" {(patch).

This HELP routine inserts "patches" which incorporate calls
of other HELP routines in running programs, i.e. "hp ind" will
arrange for another HELP routine ("tryk", for instance) to be
called when a certain instruction in a running program is exec—
uted. "hp ind" in fact, replaces the instruction(s) in the cell
in question by a jump to HELP (HSF 1) which is conditioned to
execute the selected HELP routine, thereafter to execute the
displaced instruction(s) and finally to continue with the run-
ning program.

One msy insert several "HELP" patches in the same program,
but not more than 32 at a time.

The selected HELP routines are executed each time GIER
comes to the cell in guestion but one may suppress this action
the first n times (where n is any number 2 0). A patch may be
removed using "hp ud" (de—patch — see next section).

"hp ind" requires 2 types of control information as follows:

A) Drum storage information (which may be omitted) has the format

qq <start cell>.29+<{free track>t<{reference address>.29

+<{track number>

181

The first 2 parameters are concerned with the location on the
drum of the necessary information for insertion of patches, while
the last 2 parameters are only used if the displaced instruction
(from the running program) is situated in a drum block. All the
drum storage information may be omitted if the patch is to be
inserted in a core store block and at the same time if the neces—
sary information may be stored on tracks 58 onwards or in con-
tinuation of earlier patch information (depending on the previ-
ous use of "hp ind" regarding drum storage information).

The meaning of the 4 parameters is as follows:

{free track> is the address of the first of the tracks (often
only one) to be used for storage of the succeeding
patch and call information. If this parameter is
omitted, or is set equal to 0, the information is
stored on the drum in continuation of the informa-
tion last stored in a call of "hp ind"; if the pa—
rameter is omitted with the first use of "hp ind",
the information is stored automatically on track
58 onwards (the first available tracks). *)

{start cell> is the number of the first cell, on the track se—
lected above, to be used for storage of the patch
and call information which follows. Thus, these

two parameters indicate the cell on the drum to

*) The information to be stored is the patch and call informa-—
tion described under B) belowj the number of cells occupied
on the drum is equal to the number of lines of information
(including the line containing the patch information). (See

example 13.18 below).

182

{track number>

{reference address>

which storing begins. If <start cell> =0
or is omitted completely storing begins at
the start of the selected track. <start cell>
may also be > 39 since the appropriate ad-—
dress on one of the next tracks is calculat—
ed in the usual way.

is only given if the patch is to be inserted
instead of an instruction in a drum block.

In this case <track number> is the number of
the first track in this block (i.e. the value
of k as in the drum—block head). If this
parameter is omitted it means that the patch
is inserted in the core store.

is also only given if the patch is made in a
drum block. <reference address> will then
indicate the starting address of the block
when in the core store (i.e. the value of i
at the time the drum—block head is read inj
cf. description of drum blocks section
11.6.4). If this parameter is omitted, the

reference address = 0.

B) Patch and call information consists of the patch information

h <name of HELP routine>/<n>.29+<patch address>

followed by the necessary call information for the selected HELP

routine presented in the usual way.

The patch information tells which routine is to be called

via the patch, where the patch is t0 be made and when the routine

is to be activated:

183

<name of HELP rcutine> is the name of the selected HELP routine.

{patch address> is the address in the core store of the instruc-
tion in the running program, which is to be dis-—
placed by the patch (also if the patch is to be
inserted in a drum blockj the core store address
of the appropriate instruction must still be
given). The patch always displaces one cell and
the instruction or the two instructions, which
were originally situated there are executed af-
ter the selected HELP routine has been executed.

<n> is the number of times which cell [<patch address>]
is to be run through before the HELP routine is
gctivated; after this the HELP routine is. execut-—
ed every time cell [<patch address>] is run
through. If <u> is omitted or set = 0, the HELP
routine is activated at the very first time (and
every successive occasion) when cell [<patch ad-
dress>] is passed.

One may insert patches in almost any part of a running program

as long as one respects the following limitations:

1) Each call of "hp ind" can only be used to insert one patch
for one HELP routine in the running program. On the other hand
one may call "hp ind" several times with the same patch address
(and different HELP routine names) in order to activate several
routines in succession at one place.

2) There may be no more than 32 patches at any one time (be—
cause HELP's Catalogue of patch addresses is limited to 32); if,

however, one removes patches (using the HELP routine "hp ud")

184

during the course of a program the space occupied becomes free,
whereby it is possible to operate with more than 32 patches but
not all at the same time.

3) Since the displaced instruction(s) are transplanted from
their original location in the store %o be executed in some
other location (in cell 7, in fact, where it is executed imme—
diately before the return jump in cell 9) certain types of in—
structions can not be displaced by patches. cell [<patch address>]
may thus not contain any of the followings:

a) Instructions which are modified by other instructions in

the program (the inserted jump will be ruined and the intended
effect will never be achieved).

b) An instruction with increment which modifies its own ad—

dress constant (the instruction is always executed as it was

at the time of displacement — modification by increment will not

be recorded).

¢) An HS instruction after which the s register is used for

any other purpose than a return jump of the form HR s+1 , HH s
or such—like (since the HS instruction is put in cell 7, the
contents of s will thus be 7). An ES jump to a subroutine
which calls HELP may not be displaced by a patch.

d) An instruction with V modification.

e) A conditionalising instruction (BS, BT, CA, NC, CM) which

governs the execution of an instruction in the next cell (as it
will be applied to cell 8). On the other hand the cell may con—
tain a LH half—-word conditionalising insgstruction, as it is only

applied to the RH half-word which is alsoc displaced to cell T.

f) Instructions which are involved with substitution linkage

185

(1s, IT, NS, NT cor instructions immediately following these),
because the effect of a substitution is dependent on the two in—
structions being executed immediately after each other. (It may
be alright if the LH half word is the substitution instruction
and the RH half word an otherwise harmless instruction).

g) Instructions whose contents are used as constants by
other instructions (including reference via indirect addressing).

Indirect, relative or indexed addresses within the displaced

instruction are allowed and will be treated correctly.
4) One may set patches in different drum blocks at the same

time, but the appropriate core store addresses must be different.

Example 13.19.

In a program in the core store a print—out of the contents
of cell 400 and the R register is required each time cell
157 is passed. When cell 219 is passed, a comparigsen of the
core store with the original contents is to be made together
with a print—out of the contents of cells 500-509.

When the program has been read in, one may type the fol-

lowing:

h gem :

e [by which the Image is preserved for later
comparison]

h hp ind

h tryk / 157 [insert patch activating "tryk", in cell 157]

gm 400 output cell 400 as fixed pt. no.

gm, gr output R register as fixed pt. no.]

terminate "hp ind")

gp 0 t 1023 [changes anywhere in core store are out-
put as instructions]

e [terminate "hp ind"]

h hp ind

h tryk / 219

gm 500 t 509 [output cells 500-509]

e terminate "hp ind"]

e terminate ¢all of HELP, enter the program)

186

This will cause cells 157 and 219 *to be displaced from the
program and replaced by the instruction HSF 1; all the
typed information will be stored on track 58 (filling, in
fact, 10 cells). During a run the patches will be activated
each time cell 157 or 219 is passed.

The patch catalogue will consist of 3 addresses since

cell 219 is featured twice.

Example 13,20,

During a run of a program ocne wishes to output the contents
of the RF register each time the computer comes to the in-
struction in cell 74 which belongs to a drum block that has
been read in with the block head b} k=125, i=650 , The out—
put routine is to be first activated on the 16.th occasion
the instruction is met.

After the program has been read in one may type:

h hp ind

gqq t 50.29 + 125 drum storage information]
h tryk/15.29 + 74 [15 dummy runs, cell 74]

gr, grf output RF as floating pt.no.]
e terminate "hp ind"]
e terminate call of HELP, enter pro—

gram]

This causes displacement of the 24.th c¢ell of the drum block
and output of the contents of RF starting with the 16.th
time this cell is passed. On the other hand cell 74 in the
core store may be passed many more times, if it is in a sec-—
tion of the store which is used for other program blocks.

In the above case the 4 first cells on track 58 are used
for storage of the necessary information about the patches.
If this space is not available but, for ingtance, the last
10 cells on track 153 are free, one may type, instead of the
above,

h hp ind

qq 30.29 +153 £ 50.29 + 125 [storage in cell 30, track 153]

h tryk/15.29 + 74
gr, grf

e
£

187

If, later in the same run — i.e. without the HELP routine
"start" having been used — one calls "hp ind" without giving
{free track> and <start cell>, the patch information will be
stored on track 153, cell 34 onwards in continuation of the

above.

13.4.8 "hp ud" (de—patch).

This routine removes patches which have been inserted by
"hp ind", the original instruction(s) being re—instated in their
correct place while references thereto are deleted from the
patch catalogue. Parameters for "hp ud" include the insertion
address and all referenees to this address are thereby deleted
from the catalogue.
In full, "hp ud" parameters have the following format
qq <reference address>,39 + <insertion addressd>t<{track no.>
where
{insertion address> is the address in the core store of the cell
from which the patch is to be removed.
{track no.> and <reference address> are only to be given when
the cell in question belongs to a drum block;
in this case these values correspond to
those for "hp ind'", that is, the values of
k and i at the time the drum block was
read in.
It must be emphasized that if one has inserted several patches
at the same address (as in example 13.19), they are all removed
with one application of "hp ud".
Primarily, "hp ud" may be activated manually during a run

when one reckons that a patch has served its purposes; but if one

188

can plan the removal of a patch beforehand, one can arrange for
"hp ud" to be activated after a given number of passages using

a counter controlled by "hp ind" (see the following example).

Example 13.21. Controlling "hp ud" using "hp ind",

If one wishes to make a check output of all registers when
the instruction in cell 843 (belonging to a modest core
store block) is passed, but only from the 2.nd to the 10.th
passage, one may type the following after the program has

been read in

h hp ind
h tryk / 1.29 + 843 [output from 2.nd passage onwards
of cell 843]
gm, ar [output all registers,
M and R as fixed pt.nos.]
e
h hp ind
h hp ud / 10.29 + 843 [activate on 11.th passage of
cell 843)
aq 843 [removes patches in cell 843 incl.
"hp ud" patch]
e

Example 13.22. Programmed control.

This illustration of programmed removal of patches should not
necessarily be regarded as a typical example. However, let
us consider a program at whose start patches were inserted
in cells 314 and 471 (in core store blocks). They may be

removed again at an appropriate stage of the program by

coding:

n HS 1 jump to HELP]

m+1] h hp ud / 1 execute "hp ud" with 1 parameter—]
cell

m+2] qq 314 remove patch from cell 314)]

m+3] HS 1 fresh jump to HELP]

m+4} h hp ud / 1 _

m+5] qq 471 [remove patch from cell 471]

189

13.4.9 '"glip".

Occasionally it may be useful to make a jump to SLIP-HELP
after a certain part of the program has been executed several
times, in order to avail oneself of unspecified HELP routines
etc. This is impossible with the mechanisms introduced so far,
as even though one can jump to SLIP-HELP from the program (with
HSF 2 or HS 2) this will happen already on the first time
such an instruction is met; one may also cause HELP routines to
be executed after a certain number of passages via "hp ind" but
these routines must be specified beforehand.

Therefore, a very primitive little HELP routine called "slip"
has been made which simply performs the indicated selection of
input unit after which it jumps to SLIP (as by HS 2); the rou-
tine is primarily intended to be used as auxiliary routine for
"hp ind". One parameter of the form

qq <input unit code>
is required, where <input unit code> must be = 17 if one wishes
to make input from typewriter and otherwise <input unit code) =
16, giving input frem the tape reader. The output is as usual

typewriter.

Example 13.23.

After cell 127 has been run through 100 times, one wishes to
have the possidbility of using SLIP-HELP without being able
to specify the actions to be taken beforehand. One should
thus insert a patch activating SLIP-HELP via "slip" on the
100.th passage by typing, after the program has been read in

h hp ind
h slip / 99.29 +127 [on 100.th passage, jump to SLIP]
qq 17 which awaits input from typewriter]

e

190

13.4.10 Incorporation of other HELP routines.

As mentioned in section 13.4.1 it is extremely easy to change
the location and number of HELP routines, as long as tracks 0-38
remain uncorrupted. In addition the HELP routine "l®s hp" {(read
HELP routine) which is normally stored on track 57 must be intact.
"les hp" can not be caelled as other HELP routines can, but it is
taken into use when one reads in a HELP routine tape by typing

first track>

c

i
At the same time as the program is read in, its name and loca—
tion are registered in the catalogue of HELP routinesy if it has
the same name as a routine which has been read in earlier the
original routine is deleted from the catalogue, (cf. the remarks
in section 13.4.1).

During input of new HELP routines, track 57 (or rather, the
track on which "las hp" is stored) must not be corrupted, but as
gsoon as input is over this track may be used for anything what—

so0ever.

Example 13.24.

If one insists on reading & HELP routine occupying 4 tracks
to tracks 54-57, 1t cannot be done without moving "l=s hp".
Therefore, one must first read the HELP-routine tape for
"lzs hp" on to another unused track, let us say, 117 by

typing:

117

I~le

When "l@s hp" has been read in, one can place the desired

HELP—routine tape in the reader and type

54

IHle

191

Note that the tapes "HJALP—uaflisede" (HELP-unlocked tracks)
and "HJELP-uafldsede udenom ALGOL" (HELP—unlocked tracks co—ex—
istent with ALGOL), containing all the standard HELP routines,
are read in by typing 1 only. The tape "HJELP" (HELP), which
contains the whole system excluding track O, is read in by typ—

ing a space (after "FEJL" message, see section 13.5.3, below).

13.4.11 Rules for preparation of HELP routines.

Routines which are to be introduced into the HELP system
must be prepared with due consideration for the few rules which
must necessarily be fulfilled so that routines can be adminis—
tered correctly by HELP., These rules are concerned partly with
the way in which a routine must be programmed and partly with

the layout of the final tape.

A) The program,
1) Length and location: The program must not cceupy more

than 12 tracks and must be designed for execution when located
in cell O onwards. The first 2 cells must be as follows:
[cell 0] a QQ instruction with address 55x (no.of tracks-—1)¥*)
[cerll 1] "complementary check total"
By "complementary check total" is meant that the bit pattern is
such that the total (accumulated by AR instructions) of all cells
in the program (a whole number of tracks) is equal to O.

2) Entry and exit: The entry to a HELP routine is made from

the HELP administrator using an HV instructions the address of

the entry is not restricted and is specified on the tape which

*) The contents of the RH half-word in cell O is irrelevant.

192

inputs the routine (see below). The usual exit from the routine
should be made with the instruction HV 694 , and the contents
of the registers at this point are immaterial., If the routine,
for some reason or other, cannot fulfill its mission (perhaps
because of errors in the parameters), an error message should be
typed terminating with the execution of the instructions VY 17,
HH 695 3 this will put HELP in the same situation as after s .
3) Parameters: When entry to a routine is made, the HELP

administrator has read in the parameters placing them in cells
642, 643, ...3 there is not room for more than 38 parameters.
The number of parameters is held as the increment in cell 641
(which incidentally contains the line h <HELP-routine name>/
<no. of parameter> , stored in the same way as mentioned in sec—
tion 13.3.3). On exit from the routine the contents of cells

641-679 are irrelevant.

B) The tape.

The tape containing a HELP routine to be read in as described
in section 13.4.10 above must have the following structure:

b a0
a0: b k=al, i=0
- == punch-—out (usually condensed) of the HELP rou-

-—- tine without introduction or termination
e

l®s hp

<HELP—-routine name)/(entry address>.29 + a0

1= I=

o o

7]

where <entry address> is the required starting point (most likely

to be cell 2), while <HELP-routine name? is the required name of

13.5

193

the program. The name may be selected freely, although the sum
of the wvalues of the letters should be different from those of

existing HELP routines,

Error messages from HELP.

Apart from the error messages (and after effects) mentioned
in section 11.8, due to syntactical errors and such—like during
input via SLIP, there are a number of error messages which may
occur when using the HELP system as a wholej they are mentioned

below.

13.5.1 Wrong control parameters.

During input (typed or punched) of parameters for a HELP
routine one may encounter the error message

gal information
(Danish for "wrong information"). This means that one or more
of the parameters is not in accordance with the requirements of
the routine in question. When the terminating e 1is read in
the HELP routine may be executed inadequately (or not at all)
after which one can select the routine once again and supply the
correct parameters.

One may also, as scon as the error message has been recog—
nized, press the HP button and select the routine once again.

If, while typing the control parameters, one realizes that
something has been typed incorrectly, one may correct the error

in the same way as with normal input via SLIP: complete the cur-—

194

rent line; type, if necessary, CR and a space which will give a
report of the serial address 1 § set 1 Dback to the erroneous
linejy type the line correctly; advance i as appropriate and
continue where one left off.

One may of course press the HP button but this will involve

starting from scratch with the routine.

13.5.2 "tomt hp" (not in catalogue} and "sumfejl" (error in

check total).

If one calls a HELP routine and gets the reply

tomt hp
it means that there is no entry in the catalogue of a routine
with the name or rather with a name in which the sum of the
values of its letters is the same as the selected name).

sumfejl
means that the routine in question is registered in the cata-
logue but that the check total dces not agree, i.e. the tracks
on which the routine is stored have been corrupted.

In both cases, GIER will await typewriter input and one is
strongly advised to type

h kontrol

£
in order to ascertain which HELP routines are intact and where
they are located. After this one may possibly read the corrupt-—
ed routines in again and continue. A single HELP routine is

read in by typing

<start track>

[+
1

195

whereas the whole of that part of HELP which is stored on un-—
locked tracks is contained in both "HJELP-uaflisede" and "HJELP-
uafldsede udenom ALGOL" and these can be read in by just typing
1l ; input is terminated by a standard jump to HELP, and the in-
terrupted run may be continued since input only affects those

tracks reserved for HELP.

13.5.3 Errors in the locked tracks.

4) If, after pressing the HP button or after any other entry
to HELP, one obtains the message
FEJL

it means that there is an error in one of the locked tracks 1—31.

The situation can be resolved by the following procedure:

1) Unlock tracks 1-31 (a switch in the main cabinet); 2) Place
the "HJELP" tape {(containing the whole of the HELP system locat-—
ed on tracks 1*57) in the reader and type a space, after which
the tape will be read inj 3) Lock tracks 1-31. As in the case
above, the situation in the rest of GIER is unchanged and the
interrupted run may be continued.

B) If pressing the HP button does not even cause the message
FEJL, it may be because the HP button is inhibited (pos.0 in the
by register set to 1). Pressing the RESET button will release
the interrupt. If even this does not work, there is a computer
error or an error in track O, and in all cases one can only con—
tinue running after technical assistance has been called for.

During a normal run with GIER errors on track O should not
occur since writing is inhibited by a very inaccessible contact
pin in the main cabinet. If the HP button does not function it

is therefore an indication of a serious error in GIER.

196

14. LIBRARY ROUTINES.

This chapter dealing with the way in which lidbrary routines
should be prepared and presented has been deleted. The reader
is referred to the publications of "GIER System Library" which
is responsible for the coordination of user activity with respect

to library routines.

15. EXERCISES.

This chapter has been deleted.

197

16. SUMMARIES AND TABLES.

198

16.

1

Numerical Representation of the Typographical Symbols.

The table below'is a slightly extended version of the table in sec—

tion 8.4 of Volume Ij it shows for both off-line typewriter, on—line

typewriter and line printer the correspondance between the addregs in

an SY instruction and the symbol output.

For the line printer the

code and character set are as currently available with Anelex mark
4-1000 {cf. section 9.4.3).

LC = Lower Casej

*)

UC = Upper Case

O0ff—line | On—1line Line Off-line | On—-line Line
typewriteritypewriter] Printer typewriterftypewriter] Printer
LC Uc LC ue LC uc LC uc LC uc LC Uc
0 Space Space Space 32 - + - + - +
1 1 v 1 v 1 £ 33 J J j J J
2 2 X 2 X 2 X 34 k K k X K
3t 3/ 3/ 3/ 35] 1 L 1 L L
41 4 = 4 = 4 = 36|l m M m M M
51 5 3 5 3 5 ; 37! n N n N N
6 6 [6 | 6 [38 o 0 o 0 0
717] 7 1 7] 39 p P p P P
8] 8 (8 (8 401 a Q g Q Q
9l 9) 9) 9) 41 r R r R R
10| not used | not used Space 42| not used | not used PageChange *)
11|Stop Code| not used Stop 43 %] %} o] @
12| not used | not used Space 44| Punch On | not used a
13| not used & 2 i 451 not used | not used [Vertical Tab *)
14 _ | _ *oo 46 | not used | not used | Space
191 not used | not used % & AT not used | not used Space
16] 0 ~ 0 A o 4 48| = K 2 K K
17 < > < > < > 49 a A a A A
18 8 S s S S 50 b B b B B
19 t T t T T 51 ¢ c c C c
20 u U u U U 52 d D d D D
21 v v v v v 53 e E e E E
22 w W w W W 54 t F f F F
23 X X X X X 55 g G g G G
24} y ¥ ¥y Y Y 56| h H h H H
25 Z Z z 2 Z 57 i I i I I
26 | not used | not used + 58 Lc LC LC
27 ’ s ’ 0 59 . : . H . H
28| not used | not used Space 60 uc Uc uc
29{ not used [Red ribbon| not used 61| not used | not used Space
30 Tab Tab Tab 62] not used [Bladk Ribbon [not used
31{Punch Off | not used $ 63 |Tape Feed| not used | not used
64 CR CR CR

"Vertical Tab" means that the line printer can be made to space a
predetermined number of lines when it receives the instruction

SY 45.

a fresh page.

"Page Change'" via SY 42 causes the line printer to start on
See also section 9.4.2.

199

16.2 Bntries and Layouts when Editing numbers.

Below is given a short summary of the different entries, the lay-—
out format and the meaning of each parameter when editing numbers
uging the standard routine in HELP, These are described in more de—

tail in section 12.2.

Entry: HS <addr.>
QQ <address of parameter word>, ...
or QQ <addreas of parameter word>, HS <addr.>

<addr.> = m+0 : R.__ as integer 2 O

m+1 Rg_g — integer, =512 < h £ 511
m+2 : R — integer

m+3 : R — fixed pt.no.

m+4 ¢ RF — floating pt.no.

Layout:
QQ b.3+h.7+d.13+£1.9+n. 14+bE. 17+£2,19+g1.23+g2. 27+g3. 31+g4. 35+g5. 39

Parameter Meaning
0£b 215 | No. of significant digits
<£n s 15 No. of digits before the point
La < 15 No. of decimals
0Lt & 3 Printing of sign of mantissa:
Plus sign before positive Nos.: f1 =2
- — replaced by space: f1 =1
- ~ omitted completely: f1 =0
Sign in first printing pos.: f1 =3
0<nst Printing of zeroes: Nought before point: n =1
Space - - ¢ n=2~0
0 LE £ No. of significant digits in exponent
0 £rf2 L3 Printing of sign of exponent: as for f1
0 L g1 L5 No. of positions in 1st group of digits
0Lg2l15 | - - - - 2nd - - -
0Lg3l15 | - = - - 3ra - - -
0Lgsl5 | - - - = 4th - - -
0Lg5it5| - - - - 5th - - -

200

16.3 Underlined letters in SLIP.

Below ig given a list of all the underlined letters in SLIPj

detailed descriptions are given in chapter 11, particularly section

11.6.5.
b <declarations> : Core—store-~block head (b alone is dummy)
b i=<pre—def.addr.> : Core—store—block head
b k=<pre—def.addr.> t Drum~block head
¢ <integer>
d <name>=<pre—def,addr.>,...: Definition of serial addr. and/or label
- (4 is superfluous)
e t Termination of block
e <{pre—def.addr.> t+ Termination of input
£ : Floating pt. numbers
h <HELP-routine name? : Call of BELP routine
1 : Input via tape
m ¢t Fixed pt. numbers
n. ¢ Cancel automatic relative—addressing
r : Establish automatic relative—addressing
8 : Input via typewriter
hd : Text
u <pre-def.addr.> : Definition of exit address
X

}': Dump table of labels
x <pre—def.addr.>
) J

s Restore table of labels

z <pre—def.addr.>

A1l other underlined letters (except g) have the same effect as g.

|

201

16.4 Error messages from HELP and SLIP.

The table below shows all the error messages produced by HELP and
SLIP with a short description of their meaning. Purther explanation

is given in sections 11.8 and 13.5.

Message in red Meaning

1 {serial address> Syntactical error

2 <serial address> Post—defined label used incorrect
3 {serial address> | Undeclared label used

4 <{serial address> Brror in declaration

5 {serial address> | Unused punched code

6 {serial address> Check definition does not agree

7 {serial address> Syntactical error in number

8 {gerial address> Range of numbers exceeded

9 <serial address> Too many labels or blocks

{label><addr.1><addr.2> Label not defined at end of block.
Last reference in the address part of
cell [<addr.1>] and in the increment
part of cell [<addr.2>]. (Typed in
black).

gal information Wrong parameters. A HELP routine has

been called with erroneous parameters.

sumfejl Check—total error. Check total for

selected HELP routine does not agree.

tomt hp Not in catalogue. Selected HELP routine
is not registered in the HELP—-routine
catalogue.

FEJL Error in one of the locked tracks (Nos.1-31).

202

16.5 The effect of HELP routines and types of parameters.

The table below shows the effect of each routine and the

types of parameter which can be included in a call of each rou—

Name Effect
h start Clears store, i
initialises HELP—-routine catalogue, !
verifies check—totals b
I
h kontrol Verifies check totals L
h tryk Print—out of store and registers ;
h kompud Condensed dump of store
h gem Preserves Core Store Image
h hent Restores Core Store Image
h sam Compariscn of sections of store
L ret Input to registers
h hp ind Inserts HELP-routine patches
h hp ud Removes HELP-routine patches
h slip Entry to SLIP
h hop Traces running program, reports all
Jumps

1

203

tine. The specific effect of each parameter is not mentioned
here (but is described in chapter 13). The table covers all the

standard HELP routines and the tracer—routine "hop".

Parameters

None or one in any form

None or one in any form

{output format>,<name of register>
<output format><track>.39+<start addr.>t<end addr.>
| bt<{s>{integer>. 39+<output unit code>t<ref.addr.>
{ nt<{power of 2>t<{power of 10>
{layout>

3c

Ac

<first track>/<{first cell>/<last track>/<last celld<mark>
<u addr.>/<e addr.>/<exit code>/<dump codedec

None or sk<start track>

None or
sk<start track>
sk<no.of tracks>.39+<{start track 1>t<{start track 2>

sk<{start track 1>t<start track 2>
output delimiters as for h tryk

<{name of register>
<SLIP line>

qq<free cell>.29+<{free track>t<ref.addr.>.29+<{gstart track
h (name of HELP-rout.>/<n>.29+<insertion addr.)
parameters for the selected HELP-rout.

qq<ref.addr.>,39+<insertion addr.>t<{start track>

qq<input unit code>

bt<core store addr. for "hop">t<output unit code>
qq<start addr.>t<end addr.>

JTOSNOD

d0is I8V.LS RESTAN iMYLS
)
. @ 2 9
AW IO EIN B R
SRR PESCE:TY
B2 R AN
. X . i ‘ by
AR =
¥
48 8E SE qﬁm mmm Nmm »mm

_9 _S h e

CORRCRC NG I Y

=~
@@@@_@ &
.5 mg 19 M3 By UL ZS g4 IS | 4) HyVy By Vy 8oV 8y ¥y 8 v figvg | o
“p“ﬂ_m __‘____w"qm_..w
43LSI03Y “ HOLTAOINI _

JTOSNOD A¥VITIXNY

g -~
v Bl

WSOWAALING

101010}43d

P 4 -
.

Wi

N YO| =1
190120ds 4H

194 o1

ilaj awouy
jiod sa9) 415
3A

1Dy

INDEX

205

206

INDEX
Address 61
Address in RH half-word 68
Address, syntax 108
Address with post—defined labels 62
Address with pre—defined labels 65
Anelex line printer 20
Auxiliary console 50
Auxiliary console, photo 205
Available storage space in HELP 55, 135
b (in layout) 117
b 80
Base 10 exponent (in layout) 116
Basic operation 59
Basic trim for "tryk" and "sanm" 160
bE (in layout) 118
bl lamp a1
Blocks 80
Blocks, drum 89
Block head 80
Block, syntax 108
Block tail 82
bs lamp 42
Buffer stores in card reader 27
by lamp 42 i

Call line for HELP routines
Card—reading speeds

Cards, '"80 column"

Card reader

Catalogue of HELP routines

Check (HELP routine "kontrol)
Check on reading of drum tracks
Compare (HELP routine "sam")
Condensed Dump (HELP rcutine "kompud")
Condensed tape

Consecutive stacking, card reader
Console

Console lamps

Conscle, photo

Constant lines, syntax

Control codes

Control information in SLIP
Control lines, syntax

Control parameters for HELP-routines
Core Store Image

Correction (HELP routine "ret")
Corrections to core store

Corrections to register

d (in layout)

Definition line

De~patch (HELP routine "hp ud")
Digits before the point (in layout)
Digits (in layout), number of
Drum block

Drum—block head

Drum blocks, restrictions

Drum error

Drumfree jumps

Drum store

Dummy information in SLIP

148,

o

207

144
26
26
26

153

152

173
165
165
30
38
38
204
110
94
57
111
144
135
177
148
171

117
85
173
116
116
89
90
92
52
10

58

208

e

Editing, special facilities
Entry, manually—controlled
Entry, program—controlled

Error marking, card reader

Error messages (HELP) 195,
Error messages (SLIP) 104,
Error types (SLIP)} 105,

Errors in the locked tracks

Execution of single instructions

Exit address 95, 103, 140,
Exit from HELP

Exit from SLIP

Exponent {(in layout)

1 (in layout)
f2 (in layout)
f

"FEJL" 195,
Final address when reading cards

Fixed—point numbers

F lamp

Floating—point numbers

Floating—point overflow

gl...25 (in layout)

£

tgem", HELP-routine 173,
Grouping of digits (in layout)

h (in layout)

h 97,
HELP, error messages

HELP, location of

EELP routine: '"gem" 173,

"hent" 174,

82
125
101
102

29
201
201
202
195

46
167
140
103
116

117
118
24
201
31
T4
44
74
143

119

97
202
116

17
144
194
134
202
202

HELP routine: "hop"
"hp ind"
"hp ud"
"kompudt
f'kontrol"
"lazs hp"
"ret'
"gam"
"glip"
"start'
"tryk"
HELP routines
y activation via paper tape
s, catalogue of
s call=line
y location of
s preparation of
y programmed activation
HELP-unlocked
HELP—unlocked co—existent with ALGOL
HELP, utility programs
"hent'", HELP-routine
HJELP, error messages
HJELP-uafldsede
HJELP—uaflisede udenom ALGOL
h lamp
H lamp
HP button
HP button out of function
"hp ind" HELP routine
HP-knap
HP=knap sparret lamp
HP patches
"hp ud" HELP routine
HSF 2
HS 1

180,
187,

165,

122,

50, 51,

180,
50,. 51,

187,
102,

209

202
202
202
202
202
190
202
202
202
202
202
150
145
153
144
150
191
146
191
191
132
202
194
194
191

39

40
135
136
202
133

52
178
202
142
142

210

i, serial address

"i—lekke" lamp

Inceorporation of HELP routines
Increment

Increment, syntax

Indicator lamps

Information, lines of (SLIP)

~Initialisation (HELP routine "start")

Initialisation parameters for "tryk"
in lamp

Input from tape

Input from typewriter

Input of condensed tape

Input of numbers and text using SLIP
Input program SLIP

Instantaneous values of i and k
Instruction line, syntax
Instructions, loading of
Instructions, separate parts of
Integers

Integers, packed

Interrupt button

k, serial number

Kanal O

KLAR lamp

"kompud', HELP routine
"kontrol", HELP routine

1

Labels

Labelling

Label, local
Labels, pre—defined
Label, post—defined
Labels, values of

Lamps on auxiliary consocle

68, 78
52
190
71
140
39
57
152
116
41
12
17
170
T4
54
68, 18
109
59
42
T4
75
50, 51

68, 18
4, 195
40, 51
165, 202
152

94
108
86
80
62
62
106

51

IO\
[p®)

Layout

Lines in SLIP

Line printer

Line printer code

Lines, syntax

L lamp

Loading of instructions

Local label

Location of HELP

Locked tracks

Locked tracks, error on

Locking drum tracks (3 drums)
Lower Case, input from typewriter
Lower Case, output to typewriter
"les hp" HELP routine

m

M1...M4 lamps
Manually-controlled entry
MIKROTEMPI START
MIKROTEMPI STOP

M lamp

n (in 1ayout)

n

NORMAL START

NORMAL STOP

nought, printing of, (in layout)
numbers, editing of, by HELP

numbers, input of

0 lamp

On—line typewriter

Operation times for LY instructions
Output

Output (HELP routine "tryk")

Output unit, choice of

211

116
57
20
25

108
40
59
80

134

4, 195

195

17
18
190

94
39
101
44
43, 44, 51
40

118
95
43

44
116

113
74

39, 40
17
20
112
156
21

212

Packed integers 74
Page change, line printer 24
Paper tape activation of a HELP routine 145
Paper tape punch 16
Paper tape reader 12
Parity bit 14
Parity check, input 13
Parity check, reading to tracks 5, 7
Parity error 14
Patches (HELP routines "hp ind" and "hp ud") 180
Peripheral units 12
Poat—defined labels 62
Pre—defined labels 62
P register 42
Preserve (HELP routine "gem") 173
Printer code 25
Program 99
Program—controlled entry into SLIP 102
Programmed activation of a HELP routine 146
Programmed entry into HELP 141
Programming of HEELP routines 190
Program, syntax 108
z 95
r1 lamp 41
rZ2 lamp 41
RC 2000 tape reader 15
Reading of cards 26
Re—definition 88
Registers 38
Relative address with labels 63, 67
Reports (SLIP) 106
RESET 44
RESET lamp 51
"ret" HELP routine 11, 202
Retrieve (HELP routine "hent") 173

RH half-word, address in

R lamp

213

=S 94
s1 lamp 41
s2 lamp 41
"sam" HELP routine 1715, 202
Scale factor (in layout) 123, 126
Scaling 68
Separation of address part and increment 72
serial address, i 68, 18
serial track number, k 68, 18
SF lamp 40
Significant digits 116
Signs (in layout), printing of 116
Simultaneous drum transfers 7
SLIP 54, 59
"glip" HELP routine 189, 202
SLIP syntax 108
Sorting of cards 30
Stacking, consecutive 30
Stacking of cards 29
Start 46
Start buttons 42, 43
"gtart" HELP routine 154, 202
Step—by-step running A7
Stop 43
Stop buttons 43
str.l=zs.par.fejl 52
"gumfejl" 194, 201
Summary, error messages 201

HELP routines 202

layout 199

line printer code 198

numbers, editing of 199

numerical representation of typographical symbols 198

off—line typewriter 198

on—-line typewriter 198

underlined letters in SLIP 200
Syntax for SLIP code 108

214

-t

hd

ta lamp

text, input of

Text, printing of, using HELP
text line, syntax

Three drums

tk lamp

T lamp

T0 lamp

"tomt hp"

Track O

Track address

Tracks, registers of locked
TR lamp

Tromlefejl

"tryk", HELP-routine

Typewriter

u
Upper Case, input from typewriter
Upper Case, output to typewriter

Utility programs, HELP

Value of labels

I

YE lamp

Ia

72
24
44
7

127

110

194, 201

	A manual of Gier programming II
	Preface
	Contents
	The drum store and peripheral units
	Introduction
	The drum store
	Addresses in the core store
	The track address; locked tracks
	Simultaneous drum transfers; the check on reading
	Drumfree

	Paper tape reader, paper tape punch and on-line typewriter
	The paper tape reader
	The paper tape punch
	The on-line typewriter
	Operation times

	The anelex line printer
	Margin
	Carriage return, page change and stationary formats
	The printer code

	The card reader
	The mechanical construction
	Input to Gier
	Examples of punched card input

	The console and registers
	The main console
	Lamps and buttons on the main console
	Start and stop button

	Operation of the main console
	Computer stop
	Start
	Execution of single instructions

	The HP button etc.

	SLIP
	Introduction
	An example of simple loader program(deleted)
	The loader program SLIP
	Introduction. Storage allocation
	Lines of information

	Loading of instructions using SLIP
	The basic operation, modification and indicator instruction
	The address
	Increment

	Input of numbers and text using SLIP
	Input of numbers
	Input of text

	Control lines and blocks in SLIP
	The serial address and serial track no.
	Program blocks
	Definition lines and labelled program lines
	Drum blocks
	Control codes
	Programs

	Entry and exit from SLIP
	Manually-controlled entry
	Program-controlled entry
	Exit from SLIP

	Messages and reports output by SLIP
	Error messages
	Reports

	Syntax for input to SLIP
	Programs and blocks
	Lines
	Instruction lines
	Addresses and increments
	Constant lines
	Control lines

	Output
	Introduction
	Editing of numbers using the sub-routine in HELP
	Function
	Location of the routine; entry and exit
	Initialisation parameters
	Scale factors
	Examples of layouts; special facilities

	Printing of text using the sub-routine in HELP
	Function
	Location of the routine; entry and exit
	Example of the use of HELP output routines

	Utility programs; the HELP system
	A system of utility programs
	The HELP administrator
	The HP button
	Exit
	Programmed entry
	Floating point overflow

	Activation of HELP routines
	HELP-routine call-line. Control parameters
	Activation of routines from typewriter or tape
	Programmed activation of a HELP-routine
	Corrections

	Standard HELP routines
	Location of HELP routines
	"kontrol" (check) and "start"
	"tryk" (output)
	"kompud" (condensed dump)
	"gem" (preserve), "hent" (retrieve) and "sam" (compare)
	"ret" (correction)
	"hp ind" (patch)
	"hp ud" (de-patch)
	"slip"
	Incorporation of other HELP routines
	Rules for preparation of HELP routines

	Error messages from HELP
	Wrong control parameters
	"tomt hp" (not in catalogue) and "sumfejl" (error in check total)
	Errors in the locked tracks

	Library routines (deleted)
	Exercises (deleted)
	Summaries and tables
	Numerical representation of the typegraphical symbols
	Entries and layouts when editing numbers
	Underlined letters in SLIP
	Error messages from HELP and SLIP
	The effect of HELP routines and types of parameters

	Photos of consoles
	Index

