

AT

obligation to not
revisions, =

i A9
6809 OPTIMIZING ASSEMBLER
~ VERSION 3,2

USER'S GUIDE

~ IMPORTANT NOTE

Although every effort has been made to make the supplied
- software and its documentation as accurate and functional
@ possible,. Southw al ' s
- specifical 1y disclaims any responsibilfty for any ‘damages
enerated by such materfal. Southwest
Corporation reserves the right to
change or revise this materfal at any time without

vest Technical Products Corporation

incurred or
Technical Proc

iy any person of such changes or

| ASWO3 Copyright1s7s
Southwest Technical Products Corporation
| ALLRIGHTS RESERVED

Tab!e of Contents
Preface - L] * . - * * L] - L] L . E] L] - » * L] * * - L] L] . L] * lk * -« ‘. ‘ iv

1;0 SHTPCASSEMU‘GT‘-.....‘........‘.......k.l-l

1-1 Requ'h“éﬂ EﬂViY‘O!mﬂt ¢ se e e e e B e m & w e w % e w s 1"1
102 ASS@%‘&Y‘ ﬁistf‘fbutim e 8 % e 8 8 8 & 8w e 8 W e e P 1"1
103 Cm&ﬂd Sy"tax S e 6 w0 ee se & 8 B e w6 & o wiw 6. & 1"’2
104 Options . e d e & B e e & @ o' s w8 s s & & ¥ 8 ¥ e 1“2
1.5 COﬂVEY‘S iOﬂ P?‘Og‘f‘ams o s sa s e B e e S F & & e & 6 & % 1"4 :
2‘0 Iﬂput Laﬂguage Sy“tax . 8 e s w e & & e s 6 ¢ s e & 5. e & @ 2"1
2.1 Character Classification+ v 0o v v v vu . 21
202 IdentifiErs 28 8 8. e s e 6 e 8 & 8 6 8 & % 6 8 & & e @ 2“‘1

203 Iﬂp?fﬁit'fy BEfiHEd Ideﬂtffiers N ‘o * o e b s & 6 o o @ 2“'2 :
204 Iﬂplﬂ: Statmts ‘e & % sE e e @ s 4 6 e e s e e o & 2“'3
2n5 Cmnt Stamﬂts o 8. 8 ¢ B .8 & ® b o F s e W @ e & & @ 2"3
2.6 SOU?'CQ Stamts S e ¢ e s s s .8 6 8 s e s b e & e @ .. 2"3
2-7 ASS&ﬂbTEY‘ Dﬂ"ectives ® s e e 6 6 & w e 5 8 % e 4w s s s 2“6
Tab?ﬁ 2-1 8 8 & B & e 6 & 6 e e s 8t & T & b " W s 2‘7

Tab]e 202 s o s s » " S 8 6 8 S & 5 8 e e & % & & w. s 2“8 .
Tab]e 2-3 ® s e s e 6 8 W 8 8 & e & ¢ e o e o 'o ¢« o o 8 @ 2‘9
Tab]e 2-4 . . %8 B 8 6 8 s & 6 & & 4 8 b 6 S S8 4 6. 8 & 2‘9
300' 6809 SOftﬁPe Amhftectufe $i6 4 o &8 e a e [IRE TN SR SN S RO 3"1
3c1 Arithmtfc Registers e e e e ¢ ¢80 b e 8 e e s8-8 @ &6 e 3’1
3:2 pafﬂtel” Régfﬁters LI R T IR 200 U DO O R JERT TR RN JRNY S R RN SR 3"1
3.3 ngf‘am Cﬁﬁﬁtéf s 0 s e s S0 6 & o & . a o e s ',o o e 3"2
304 CMdfthYI ang Registéf‘ s & E e 8 » e 4 s e e & e ® .. 3“'2
365 ﬂf?‘éct page R&gfster 8 8 0 6. 4TS 8 e & & ¥ s B e & & e 3"4
. 3-6 Address i“g ms ® s 8 8 s ¢ ® & s b s e e s .8 e W E e e 3“‘4
400 Assem.'er EXPP&SSfOﬂS ® 6 S 8 B 8 8 6 8 .4 8 6 & B & ' 8 e 4"‘1
401 Tems in EXpTESSiOﬂS 2 e . B & E.e s B ¥ 6 S e s e w8 4"1
4.2 Operators in Assembler Expressfons 43
4.3 Grouping Operators o ¢ o o ¢ o s o o o o o s o« o 84
4.5 Truth Value Operators . . . o v v v v v o 0o s o s s s o G4
4.6 Relational Operators . . . v ¢ ¢ o o v o s 0 v o o o o o 45
4.7 Bitwfse Logica‘ Operators . . * L S L * L] [] L2 L] . » [* * ‘-5
408 S"ift Opef'atOY‘S e e 8 8 8 6 8.8 e & & 8 s 8 8 e @ o & %9 4"6
4.9 Logical Connectives « . o o v ¢ v v v v v v v v v v 0o o 87
T&b]é@loo LN R S A T B TR O T T PR DR U N N A NN 04‘8‘

5.0 6809 Operation Mnemonics . . « « « « » . e . . Bed

L
-
-
L
*
L4

501 COﬂdﬁ:‘iOﬂ F]ags . '. " e s s ’6 ¢ s @ & s 5. e e e 6. 6 5 & 5“1 ’
5.2 ExteﬂdEﬂ mm iCS . ™ ¢ o » ' s & @ 0. # 6 6 & & & €& W e 5‘1
5 3 6899 Flﬂﬂy mm’cs ® 4 6 6 + s e 8 88 & & 8.8 & s b ¢ 5"‘

»

’m

-1i-

6.0 Assembler Directfves e i e e e e 6-1

»
L]
L]
*
.
*
.
»
.
»
L.

6-1
6-1
6-1

BSZ -- Block Storage of Zeros . . .
END == End of Block « & o« o o ¢ o« &
EQU -~ Equate Symbol to Expression
ERR -- Generate an Error . , .
ERRIF -- Generate a Conditional Erre
FAIL -- Generate an Error
_FCB -~ Form Constant Bytes . .
- FCC =- Form oustang Characters

. & & .

6-2
6-2
6-2
6-4
6-4
6-4
6-4
6-5
6-5

-

- N
6 ad o D O QY OT P G N

et

, : 1 :‘,aytes :
tLls - Library Inclusfon . . .
“NAM -~ Provide Noéu?e Name . .
6.13 OPT -~ Specify | am Opt for
6.14 ORG -~ Set Prﬁgram Counter Grigiﬂ
g’ 6615 Pﬁﬁ - Sﬁf‘t a sﬁﬂ Page * 8w e @
 6.16 PROC -- Begin a Procedure Block .
6.17 PUBLIC - egin a Public Dictionary
6.18 Qu egi ~a Qualified Data Block
6‘1? ‘ 2ary mry Bytes L T
6. 2§f13£TDP -- Set Direct Page Pseudo ﬁegister
5.213’{3 - spQCQ L‘ist‘fng « e e 8 e ® @ .
6‘22 m Tfth’.‘ .'0‘0.-,.6oo.pou
6.23;;“3£ -- Use Program Counter Section . . .

N S

mmmmagmmmmaa

L]
. 2 e N &

6-6

»
.
L4
*
»
£ d
+
*
-
]
L]

opb.oliod'a'o‘~1n~ooa

o7
6-8
6-8

ofoo'-,'oo‘nnccooo“c,o'o
u,"oq,u-ou"oo-f"-‘ooétot

o o & 5 8 8 o & ¢ & . 6 ¢ ® s.e -8 & &0 ¢ 8

6-9
06"10

. 7-1

e e e e e &e. e e e e e ¥ wle .. w 6w b b
e . e e e e PO s e & e e e e e e e
a6 e e e e . o & e iw e as ¢ e e v e s w
L 3 .\’ [] [] L L 4 » . » » * * [- ¥ e L 3 “ * .‘ L] L 3 .'
S A S -' o e e e e 8 e @ e e el e e e e e &
‘.‘ “ s o @ - e e e . o‘t PRI WS o b e e e W
¢ 0 e e 0 e e s 0 v e s e e . ‘n s8 ele e e e

»
L
»
»
-
»
-
-

/‘“\ 70 f"fﬁﬂ?@s-.-..; o’ooaoo‘-dio‘o',‘
- B0 Asmwrzrrornessages

-
-~
£ d
L4
L 4
-*
*
L]

8.1 'M395§ge Favnat 8»1?'-

3«2 ﬁ@t&s e e e e :V‘c PeE e e e eE e el e e e o I 8"1
803 Cim*@ﬂ mssaﬁes A N R T T R ¢ . t e w e e 8'1 .

. 8*# “‘ﬁ’(fﬁg ms33§es Tele e e e s & e e ‘. - ‘o e 6 e e 6wl e ,0 8"1

815 E!‘N!‘ *ssms . el * e & & e .8 o‘ s 6 e 6w % o8 e e 8"2

8.6 Bisaster Msages

-iii-

6-2

6-6
6-6

6-8
6-9

8-1

8‘2 ;’, -

PREFACE

This publication was designed as a reference manual for
~the SWTPC 6809 Optimizing Assembler, Version 3. It is not
intended as a tutorial on assembly language programming,
nor is it intended as a reference on the 6809
microprocessor, Although detailed descriptions are
provided for the native 6809 instructions, these
descriptions should not be considered exhaustive. The
Motorola MC6809 Programming Manual should be consulted for

‘more information on the 6809 wmicroprocessor. For a

the book COMPUTER ORGANIZATION AND PROGRAMMING by W. Gear
is an excelTent choice. o

tutorial introduction to _assembly language programming,

u‘fv—

S

et

‘Assembler Users Guide

1.0 « Southwest Technicél Products Assembler:

The SWTPC 6809 resident assembler is a very gowerful disk assemblerj
designed to provide a versatile programming tool. It has many special
features added to support structured programming techniques and enhance
code modularity and readability. In addition, the assembler provides a

;~multi-pass optimizer that attempts to reduce the size and execution time ,
~ of assembled object code. Two options are provided to selectively
- disable certain types of optimization in order to reduce the time~

R requited for an assembly. g B : :

: 1 1 - Required Environmant

“(;, The a&aeﬁﬁler runs on a Southwest Tbchnical Producté 6809
microcomgutet system running the FLEX operating system. A minimum of

16K of user memory is required (implying 24K total memory) and provides

approximately 4.8K of symbol table space. The assembler does not
suppott a virtual symb@l table, so that in systems with limited memory,
it is possible to overflow the symbol table with very large programs.
The assembler requires approximately (8.4 + Ls) * Ns bytes of symbol

- table Space, where 1s is the average number of characters in a symbol :

and us is the total nnmber of symbols to be kept in the dictionary.

kath qualified é‘” yistructures and procedures require 1&rger,‘
(48 byte) entries in ¢

ymbol table, so that the use of many

 structures and procedures will somewhat reduce the &ueuat of available
~ symbol table space. Similarly, each level of library inclusion requires;~

a buffer area (336 bytes) in the symbol table, and will also reduce the
amount of availabie ~symbol

procesaed-

1.2 = Assembler Distributian

The ABMODY program is disttibuted on Flex foruat S-dnch and Sminch»
floppy disk. The disk contains the Flex operating system, the "CAT",

- "copy", "NEWDISK", and “LINK" utility programs (to enable duplicatian of -
the disk), and the four suppliea asseﬁbler files: .

'Z"&SMQ%C?&D" 'I‘he ‘main assembler cmmand file- L
"ASMO9.CMV" The assembler symbol table overlay.
"MIRCV.CMD" The binary file to Mikbug format converter.
"~~"BINCV.CHB“T LThe Mikbug format to binary file couverter.

The assembler eammand file and averlay may be renamed as’ 10ng an N

'1V_jthef~caﬁﬁand ‘file and the overlay file are given the same name. For
example, if the command file were named "ASM.CMD", the overlay name
would then be "ASM.CMV". If the overlay file 1is not renamed, the

assembler will be uﬁable to produce an address file or a symbol table_

= 1isting.

a 1-1 a

table space. Note that this space is
‘required for each level of inclusion, not for each inclusion file

Assembler Users Guide

1.3 ~ Assembler Command Syntax
The general syntéx of the ASM09 command is:
+-+ASMO9 <input file#*{,<output f11e>} [;+<option list>]

The first file specification is the name of the file to be assembled.
This file 3pecification is required. The second file specification is

the name of the binary file to be generated by the assembler._ If no

output file is specified, its name defaults to that of the input file.
1f the output file extension is not specified, it defaults to ".BIN".

If the specified output file already exists on disk, the old file w111 _

be automatically deleted and replaced by the new file. Assembler

options are specified on the command line by placing them after a . plus

sign, to separate them from file specifications.

1.4 -~ Assembler Options

The option list consists of single characters, optionally separated

by commas, and terminated by a carriage return or FLEX end of 1line
character. The options that may be specified are l1isted below:

A - Generate Addréés File. The "A" option will cause ;the
assembler symbol table overlay to generate an external symbol

address file. Only those symbols defined as entry points “to.

the global dicticnary will be included,

B - Suppress binmary output. The "B option wili svbpfeéé

generation of a binary output file. If the binary file
already exists on disk, it will not be deleted.

C - Suppress Cautions. = The "C" option will supptess all cautian-

messages produced by the assembler.

E -~ Suppress Error Messages. The “E“,optian will supp:esé all
error, warning, '~ and caution messages produced by the

assembler. Since all diagnostic messages produced by the

assembler .are suppressed, it 1s possible that errors in the '
source gtogram being assesbled will go undetected by the users

F - Optimize Assembly Time. The "F" option will cause the"

assembler to suppress any optimization of object code.

Foreward references will be assembled ‘using the ' least &
restrictive addressing modes. . This option will force the

assembler to complete in two passes, but object code may be

considerably larger than required. This option is especially
useful while debugging a program which will later be
optimized. Note that the "R" option takes priority over this‘

option in the determinaticn of branch lengths.

G - Enable genersted “code eutpnt. The "G"-a?tibn will cause the

: assembler to print all generated binary object code. If this
option 1is not specified, the assembler will print up to eight
bytes of object code on the game line as the source statement'

Assembier Users Cuide

and - then supptess any additional printed output. Note that
this option does not affect the binary file produced. : :

Suppress liating.~ The "L" option will suppress any ptinted
ocutput from the assembler, except for lines -containing errors
detect&d hy the assembler. : e

'Specify Mo:orola Compatability. Thé "y bption will supress_'

nop-Motorola extended pracessing. , Index ‘address1ngj

¥ aptinization is auyptessed and branch _range checking ds.

selected. All labels ‘are internally truncated to six

‘_,chatac:ers of significance. Arithmetic expressions afe"

evaluated aaing\‘a strict left-to-right order. Character
constants revert to
Mikbug format object code is desired, the assemblers binary
output may be canverted using the MIKCV utility program.,l

Suppress Line Numbers. The "N" option will cause ~the
assembler to suppress line number output. This option can “be

used to reduce the size of the assem&ler listing.,4, %

- Fotmat Page Output. The "P" option will cause assemblerk
~output to be formatted for a printer. The assembler will ask

for a heading for the assembly, and perform page counting and

title functions. If this option is not specified, the PAGE‘k' ’
“and TITLE mnemonics are ignored by the assembler. ; e

Suppreas Branch Range. The MRM option will cause theff‘i

assembler - te auppress hranch/lﬁng branch optimization., Ths f5
assembler ‘normally treats branch and long branch mnemonics as
 identical, and camputes which type of branch is required. If'

this feature 1is suppressed, branches are limited

'~appreximately 127 ‘bytes range, and an error message will . be‘f~'
- produced if a range error is detected. This ‘option will

o narmally reduce the number of optimization passes required.,‘ e

Suppress symﬁoi table. Whenever the assembler praduces an‘;~¢j
object code listing, it normally produces a sorted, formatted -
 listing of its symbol table. The "S" option supptesses this
output. It is not possible to produce a symbol table 1isting7 o
”‘without pro&ucing an object code listing. : S b

Truncate Print Output. The "T" aptian will reduce the number“"

of bytes of ‘object code per line in order to decrease the i
‘ wi&th of the output 1listing. Together with the "N" option, =
 the output width is decreased sufficiently to obtain printouts g

on an eighty column printer.

Priﬁt Gnnama& Bictionaries. The "U" ogtion will cause thej~fs'
laasembler to print unnamed procedures (1.e., procedures with a =
name of "*Pknnﬂn") found in the symbol table. Unnamed
procedures are normally pracedures included from system 5o
‘1£hraty files and are of marginal valne in the symbal table

=13 -

‘the single quote only Motorola format. If

Assembler Users Guide

W *: Suppress Warnings. The "W" option will suppress all wurning
: and caution messages produced by the assembler.

1.5 = Conversion~Prcgrams

The output of the assembler program is a binary file in a format
suitable for the system loader. This format is compact and efficient,
but it is not compatable with the Mikbug paper tape format object code
required by several prom monitors and cassette tape interfaces. Two
utility programs haveé been provided to convert from binary format to
Mikbug format and conversly.

The HIKCV program converts a binary file (such as 1is output from
the assembler) into a text file in Mikbug format. Similarly, the BINCV
program will convert a Mikbug format text file into a binary file, at a
significant savings in disk space and execution time. The syntax of the
two commands is as follows: ‘

- HHHMIRCYV <input file>, <output file>
.+++BINdV <input file>, <output file>

In each case, both the input file specification and the output file
specification are required. For MIKCY, the input file must be a binary
file (an extension of .BIN is assumed) and the output file must be a
text file (a .TXT extension is assumed). F¥or the BINCV program, the
input file must be a text file (a .TXT extension is assumed) and the
output file must be a binary file (vith an assumed extension of JBIN).
~If the output file exists on disk it will automatically be deleted and
, replaced with the new output file. ,

In general Mikbug format files will be approximately 2‘7 times

larger than the equivalent binary file. Mikbug format files output

records of 16 bytes maxinam, ‘and include a transfer address in the
header block. The name of the output file is used as the name placed in
the Mikbug header by MIKCV. The name placed in the Mikbug header 1is
ignored by the BINCV program. :

- 1=4 -

AT

Assembler Users Guide

2.0 - Input Laﬁguage‘SyntaX'

' Input ta - the assembler ccnsists of one or more disk files. These
files are expected to be in 8-bit ASCII code, with the sign bit always
set to zero. These files may be space compressed, and may contain
control characters. The ‘assembler treats carrlage returns, form feeds,

~and rubouts as input line delimiters. The horizontal tab character 1is .

treated as a white noise character (same as a blank). All other control_?
charactete are 1gnored by the assembler- SR Tl e

2.1 - Character Classiiicatians

Each ‘character 1n the input stream is. classified into one of four. s

'grouys' alphabetic type characters, numeric type charactets,‘ specia1 .

characters, and separatot characters (white noise).~ .

~ Alphabetic type characters consist of both upper ’and lower case Ve

letters, the underbar character, and the baeckslash character. In
general, the assembler will make a distinction between upper and lower

‘case letters 1in symbols defined by the user, but will not make that
distinction for symbols defined internally to the assembler. For -

example, user labels "label" and "LABEL" are separate and distinct,
while the register name "IX" is identical to "iz", or for that matter,
"Ix" or "iX". This permits the assembler to be used in either upper or
1ower case envirenments with a maximum of compatability.

, Numeric type characters consist of the digits zero thtough nine,
the crosshatch "#", the dollor sign "§", the question mark "?", and the

- at sign "@". It is important to realize that numeric type characters
are not necessatily digits. When the assembler is recognising a number,
the digits in the number start at zero and continue to one'less than the
number’s radixs In the case of hexadecimal numbers, the letters A -

through F are considered digits, even though thay are alphabetic type’”'k
characters. , ‘ :

Special characters are used by the aasenbler as comment or

‘conditional assembly ‘designators, quoted string delimiters, and as
operators. Since the function of special characters éepeuds heavily upon
the context in vwhich they are encountered, they are best documented*,‘f‘
along with the functiens they perform.

Separator characters consist of the horizontal tab character, the“*

carriage = return character, ‘the rubout character, and the space
character. These characters serve to separate assembler tokens and in

general, have no significance themselves. A special separator character*-j :
is the semicolon, ";", which besides being a white noise character, is

used to denote ehe praaence of secondary &ssambler soarce statements.

262 - Identifiers

Identifiers cansist of a leading alphabetic type character,

followed by one or more alphabetic ot nuneric type characters. The -

maximum length of an identifier permitted by the assembler is 127,ﬁ:
characters, while the minimam length is two characters-~ Note that while

- Pl e

Assembler Users Guidev

single-character identifiers are not expressly prohibited, defining

identifiers with names like "A" or "B" can lead to unexpected results

when using indexed addwessing modes. In general, it is considered good
coding practice to use identifiers with names that are contextually

meaningful instead of identifiers with arbitrary and‘meaningleés nanes.

In certain cases, special téiminating'charactets may be uséd“tnf‘
denote the end of an identifier, for example, the qualified reference
"EMPLOYEE. PENSION" contains the period character as a terminator of the

identifier "E&?LGYEE";j“~The»terminating character is not considered as

part of the identifier; it is considered as part of the qualified
reference. It is important to understand that characters like the -
underbar and the backslash are valid identifier characters and are not

equivalent to special purpose terminator characters. The assembler
treats all characters of an identifier as significant.

Some examples of'vélid'identifiers are:

MONTH :

THIS_IS A VERY LONG_IDENTIFIER
\Break\ } :

lower case identifer

task done? =
PLM$STYLESIDENTIFIER

If the Motorola compatability option has been selected, the

assembler will d{nternally truncate all identifiers to six characters.

If the identifier was originally longer than six characters, the excess
is simply discarded. No warning is issued unless the truncation process

results in multiple definitnions of a single identifier.

2.3 - Implicitly Defined Identifiers

Assembler 1nitializatién~p1acesVSeveral identifers in the,,globéilﬂ
dictionary and assigns their values prior to beginning the first pass on
the input source file. These identifiers are protected symbols, d.ev,

any attempt to redefine their value will result in an error message,

with no change in in the identifier value. These implicitly ‘defined

identifiers are as follows: ’

DAY - The current day of the month, as two ASCII characters [ih7‘

a sixteen bit value with the star attribute set.

FALSE == The truth value "FALSE".

MONTH — The current month of the year, as two ASCII characters in

a sixteen bit value with the star attribute set.
TRUE The truth value YIRUEY, ,
YEAR -~ The last two digits of the current year, as two ASCII

set.

characters in a sixteen bit value with the star attribute

AN

et

»’,"m"\'

with a colon are de , Aterd rrent
dictionary and represent explicitly declared entry addresses. Labels

Aséembler‘users,Ghide~f

2.4 - Input'Statemants

‘The assembler input consists of one or more files containing

' assembler language source statements, assembler directives, and comment

statements. Source statements assemble into actual machine code
instructions, and in general have a one to one corespondence with

machine operations. Assembler directives set ~envirommental parameters .
affecting machine code generation, listing format, and dictionary

structure. Comment statements are used ,tu“document‘\and' format an
asgembler program listing but are otherwise. unprocessed by the
assembler. T S e g e

2.5 - Comment Statements >

P .

plus sign and asterisk. type comments assume a special gignificance.
Those comments beginning with a plus sign force the assembler to a new
page, as 1if a PACE mmemonic had immediately preceded the comment.
Comments beginning an asterisk cause the assembler to force a new

_ character. If pagination is selected via the assembler "P" option, the

~ page if fewer than 14 lines remain on the current page. This fatility7“"

is éxttémely*convéﬁiéﬁﬁifar-p:éventing logically connected sectionsx‘of;f:

source code ftam;av%rf §wing,pagefbouhdaries. o

2.6 - Source Statements

The assembler classifies source statements into primary and

secondary statements according to their position in an dimput lime.
Primary statements begin in column one of the input line, and are
terminated by a carriage return or a semicolon. If the primary
statement was terminated with a semicolon, _one or more secondary

statements may follow it on the 'same line, each terminated by a

semicolon or carriage return. The only restriction cn;statémentkfﬁtmat ;,‘;}

; : ; ,E?; if;ptesent,,must start ,by,rcolumn, 30,yo£~,the-;'jf',~

- input record, or be separated from the preceeding field by only one
space. SRR e . e [A s i

is that optional £

2.6.1 - Primary Statements

_ Primary statements consist of an label field, an mnemonic operation =
code field, an operand field, and an comment field. All statement

fields are optional however, an operation code‘f1EId7must‘be‘present 1f3"; *4 ~
anAkpperand_‘fial&:sisltafbeluaed.; Some operations have teSt:ictiéﬁs~onf7i; e
label and/or operand fields. Notice that a aull line is a valid primary

statement, as 1s a line withonlya comment (which must:beginjaf:exf :

1nput]coluwﬂ~30§;f,7;;

 Labels, if present, must begin in column one of a primary
statemerit, and consist of a valid “assembler identifier. The label =
should terminate with a space, a period, or a colon. Labels terminating =
ed in the parent dictibnary of the current

w243 -

‘“”ts;Beginfﬁith‘either a piﬁs»sign{"+“, ,an,'aStef£Sk;? f
or a pertod ".", and are terminated with a carriage return

terminating with a peried are defined in the global 'dictionafy«’and jf,f"‘

Assembler Users Cuide

represent global definitions. The value of a primary source statement
label is the value of the program counter at the beginning of statement
evaluation, and has the relocation attributes of the»currently\activek
program counter. FE T : R

~In order to clear up some of the details of the previous
paragraphs, an example of assembly source statements is provided. - This
.. section of code is a subroutine to perform a single bit right arithmetic

shift on a multi-byte field. C e 8

1. ® . . S
2. . SUBROUTINE TO SHIFT A FIELD ONE BIT RIGHT
4 . ENTER WITH X => FIELD TO SHIFT
5. : B = BYTE COUNT OF FIELD
6. 4 R ‘
\ , 7. ; PROC R
0000 A6 84 8. SHIFT: LDA 0,X GET FIRST BYTE B
0002 47 9. ASRA SHIFT RIGHT ARITHMETIC
0003 A7 80 10. ~ STA 0,%+ PUT BACK IN MEMORY
0005 5A 11. DECB DECREMENT THE BYTE COUNT
0006 A6 84 12. ROTATE = LDA 0,X GET NEXT BYTE e
0008 46 13. - RORA ROTATE RIGHT ONE BIT
0009 A7 80 4. STA 0,X+ PUT BACK IN MEMORY
~000B 54 - s, DECB DECREMENT BYTE COUNT
000C 26 F8 16. BNE ROTATE CONTINUE TILL DONE
000E 39 17. .~ RrTS f , :
o . 18. END

Lines 1-6 of the above subroutine are commentskexﬁlaiuihg'whatfthe'“

routine does and how it is to be ‘parameterized. Such comments are, .
strictly speaking, unnecessary in that the aasembler~igno:es them. They -

are provided to benefi programmers (perhaps yourself) attempting to

- understand the code. It is always considered gobé'cddiﬂg(practice;to :
type a few extra lines to tha:dughly document subroutines. Notice that

line 1 is an asterisk-type comment. This line helps to assure that this =

routine will not cross over a page fold in a printed listing.

Lines 8-17 are assembler source statements ahd~fepre3ent‘éctual»

| :f6§09‘machine instructions. The object code generated by the assembler
. appears to the left of the line number. The label "SHIFT:" on line 8 is
an explicitly declared entry point to the subroutine and has the value

0000 (Hex). The "LDA" in 1ine 8 is an assembler mnemomic for "Load

Accumulator". The "0,X" is the operand and signifies indexed addressing*lﬂ“f
~ mode (see addressing modes) . The label "ROTATE" on311ne-12sis.aﬁlocalj,3;
label and has the value 0006 (Hex). It is not defined anywhere outside

labels..

Lines 7 and 18 are assembler directives and are;uséd.tOfdeliﬁit“the ;V

of the subroutine and will not conflict with other similarly named l7‘ ‘

subroutine. For more details on their function, conSult_thelchspterlnon’iV o

: assembler_directiVES.

RO

Assembler Users Guide

2.6.2 - Secondary Statements

. Secondary statements begin after the_fsemicolon terminating a
primary statement, and consist of a mnemonic operation code field, an

operand field, and a comment field. Labels may not be defined in a
- secondary statement. As before, operand and comment fields are

optional. = Note that operation codes are required in secondary

statements. If the Motorola compatability option has been selected, no =

secondary statements will be recognised. A short segment of code

containiﬁg'secoﬁdafyfstatements,vill serve tO'illust:ate their utility:

LDD CHERSUM Pick up the Checksum
LSRA; ROLBE ‘Shift it Left one Bit
 ADDD NEWORD = Add in the Next Word
~ STD CHERSUM Stuff Back in Sum
2.6.3 - Mnemonic Operation Codes |

~ Assembler sourcélétste&ént mnemonic operation codes may be 6809

~operation mnemonics listed Table 2.1, 6800 Family compatability o
mnemonics, listed in table 2.2, or 6809 extended mnemonics, listed in L
table 2.3, The 6809 and 6800 Pamily mnemonics are identical to those

defined by Motorola in the 6809 Programming and Macro Assemblers manual,

publication M68MASR. The 6800 Family compatability mnemonics are

provided to simplify the process of upgrading previously written 6800

software to run on the 6809. Note that not all 6800 Family operations
have equivalent 6809 operations, and;thatftﬁe*;asseﬁblerw will generate
~instruction 'sequences that emulate the 6800 operations. Several

to simplify syntax for several types of operations.

extended mnemonics are provided as an aid to structured programming; and L

: ‘be_ﬁfiﬁ&f? 5féféﬁé#f3;the muemonic muét;5b6~ séparated;'frdm:‘theui; f7'
~label (if any) by at least one separator character. No distinction is
- made between upper case and lower case mnemonics, so that the mnemonic

for a 6809 no-operation can be either "NOP" or "mop", or for that

. matter, "Nop" or "n0p", ete. In general, each“mnemanic,codé‘_corespOnds‘“
with a 6809 machine instruction. This assembler also recognises 6800

Family mnemonics, and performs a cross-assembly into £ﬁnctiénélly73‘

: equivaleﬁtj58@9;1ﬁ§tfuctioné;

k "“Theﬂ6890 Fémi1yiéﬁéf&fibﬁs have been. iﬁéfud&df to prdVide"fdff‘a~‘V

_simple and ~rapid upgtade to 6809 from other members of the family. In

most cases, the code can simply be reassembled for the 6809. There are

certain functional differences that may create problems. In particular,

the use of comstructs like "BNE #+12" are likely to be troublesome. In
any eVeht,kthe,éross,aésémblé&‘code is likely to be much less effecient,
both in terms of time and code space, than code rewritten for the 6809. =

2.604 - Operands

Source statement operand fields are req&ireé with'many;of‘the,‘6809,“r”
~mnemonic operations. If present, the operand field must begin before
~-column 30 of the input statement, or be separated from the mnemonic
field by exactly one space. Operands can consist of register or flag

- 2a§ <

Assembler Users Guide

designators, addressing mode indicators, and expressions. The exact
format of an operand varies with the addressing mode capabilities of the
particular instruction. A detailed functional description of the
various 6809 addressing modes 1is covered in a later chapter of this :
- publication. Any information in the operand field of instructions that
do not have operands is treated as statement comments. ‘ '

2.6.5 - Statement Cqﬁments

Statement yéoﬁmehts sféiloﬁ the operand ‘fieié '(if' breséht) and

~ continue until the end of statement is encountered. The end o£f
 statement may be the carriage return at the end of a line, or it may be

a semicolon character. A semicolon indicates that secondary statements

will follow on the same source. input line.

One complication cahéed by the ability to have multiple statements

per line is that statement comments (as opposed to comment statements)
may not contain the semicolon character unless certain restrictions are

noted. First, the semicolon should appear after column 30 on the input

line, and second, the semicolon should be followed by at least two “;:L
spaces. This will inform the assembler that no more statements may be

found on this line.

Another consideration that must be noted when using multiple =

~ Statements per line is that it is possible to make the assembler think
~ that the first statement comment on a line should be treated as a

secondary statement. In order to avoid this difficulty, it is suggestedf “ _'
that the 1last secondary statement on a line be terminated with a space

instead of a semicolon. Some examples of this technique are shown:

FILL STA 0,X+; DECB; BNE FILL Fill a fleld
- ASRA; RORB e Shift D-Register Right

2.7 < Assembler DiréétiVeS:

Assembler directives must always be encountered in the conmtext of a0
primary statement, i.e., they must be the only operation appearing onag
line of dnput text. Several directives ~have restrictions on the =
~presence of label fields and will generate an error message if these

restrictions are not mets Similarly, several directives ~have
restrictions on the presence of operand fields. Assembler directives

‘vary widely in function and are discussed in a separate chapter of thisﬁL;‘

document. Valid assembler directives are listed in table 2.4.

- 2;5 -

ABX 0“."’.:0“,0"!’10

ASL = ASLA ASLB

 BITA BITB
 BLT LBLT
"BMI LBMI
BNE LBNE
“BRN LERN
N BVC . LBVC
BZC LBZC

CLR.

DEC DECA DECB

L N

NEG NECA NEGB .

Assembleraﬁsers:Gniae' .

- Table 2,1 -
6809 Assembler Mnemonic Opera;iqh Codes

Add B to IXR

‘Add with Carry

 Add without Carry
‘Logical And iy
':‘Arithmetic Shift left
Arithmetic SHift Right
- Branch on Carry Clear
‘Branch on Carry Set
Branch on Equal

ADDA ADDB ADDD

»
.
»

.
.
»

. e
.

ASR ASRA ASRB
BCC - LBCC ~
BCS LBCS
BEQ LBEQ
BGE LBGE
B6T LBGT

BHI LBHI
BHS LBHS

L]
-
*

L
-

S8 e e % & & & e

LIRS N SR S O

Branch on Greater
~ Branch on Higher s
- Branch on Higher or Same T
‘Bit Test S
~Branch on Less or Equal
- Branch on Less
Branch on Minus
 ‘Branch on Not Equal
- Branch on Plus
_ Branch
- Branch Never : s
Branch to throatine, o
Branch on Overflow Clear
Branch on Overflow Set
~ Branch on Zero Clear
‘Branch on Zero Set
- Clear doul
- Compare
3Camplimént Ui
- Conditioned W&it
Decimal Adjust
'Decrement
 Exclusive Or
_ Exchange Registers
f_Increment ; LR
Jump '
 Jump to Subroutine
 Load Register
~ Load Effective Address
logical Shift Left 5
‘logical Shift Right
~ Multiply ~
~ Negate
. No-Operation
 Inclusive Or
- Push Begisters

o e e e e e e e e el e e e e
.5 H e b & &6 . ® % & & ® @

el e . w el W e .

e e el e

BLE LBLE

BPL LBRL
BRA LBRA

e a e e e e e e e e e e e e e e e e e e
"‘OQOQ.ic,ﬁtl..'OOO

« * * . 8 . b d . L2 L d *> »

BSR LBSR

BVS LBYVS

T P E T e SR IR N Y T T A v SR R S A R

*
»
*
-
.
-
.
*»
L d
.
.
*
L 4
L)
.
»
L
*
-
L d
-
.
L 3
L
L3
L)
.

* L} [2 L 3 * L] » 4 L] L 3 L 2 * * * * - - » L o % » . Ll £ - »

8¢
o

o’tdoiog"o’oo‘oooustctwta‘-.'oo

Do e ele e e e s e e e e TR s

Ne W e e e e e e e e
R T T N T SN S)

.. L BNE J L 2R NNRRE SRR R - * .

2

BZS LB2S

L] - - » - L] - - * - 8) L] L * . » . L]
. L d L) - - - » . ° - . *

el e e e e
e e e e e

[3° £7 SURC R SIRE S I

CHPA CHPB CMPD CMPS
CVAI S A | e e e e

EORA EORE . . « + . .
EXG el e o . ¢ -
ING ch INCB o o W
JMP o;o" ST S -

o e e eie s € e

o & e e a4 W e & 8
}Q .,"w; o liele e PRR' ISP TISPUESE CIREE WS SIERE S S S S IR ST SR SIS ARSI R R SRR S AR R Al Al o P A .

Ve e e e e e e e

Fan i U TR SR TIE SURT SN ST LY
ftte o o o & @ 8w

IDA LDB 1LDD LDS
LEAS LEAU LEAX
LSL LSLA LSLB .
LSR LSRA ;LS'RB':. ,
m ‘-'; au . ‘- * o',""‘ .

NOP Liw e el e e

ROL Rﬁtﬁk'RGLB"
ROR RORA RORB

] Tmstate Left
~ Rotate Right

R RN WL O R S U SIS o e PR PR T
s el e w8 & @ e e e e e Che e e e e e »
o e e & e e e eie b e e e ae e 8 w8
e e w e e e ele ee e e e e e e s e

FONE To T T ST DR IR TN DR S
¢ o w e w w8 e elle w
« & 8 @ e e e ele & W
e e ee e e e e

B I R e o o

o 8 e e e el e e e e
SR T S T T A R Y

‘Branch on Greater or Equal;»;ffﬁ

Assembler Users

RTL
RTS

SBCA.

- SEX
STA
SuUBA
SWI.

SYNC
TFR

TST

ABA
ASLD
CBA
CLC
- CLI

CLV

CPX
'DES
DEX
-INS

INX

 LDAA

~ LSRD

" PSHA
PULA
'SEC
- SEI

- SEV

 STAA

ey

TAP

.TSX

- WAI

g . - *

'SBCB

* » .

STB
SUBB

SWI2

TSTA

L]
L d

L] L] [] . * * » L ®

‘Guide

- Table 2.1 cont”’

6809 Assembler Mnemonic Operation Codes

e e .8
LI T
e o @

. * *

STD .
SUBD -

SWI3

Ly s

o e e

TSTB

ooacrmc

* - L L] L L] . A4 . .
L] . L * L] . L) * . »
4 . 4 . . * . L] - L4
» - . . . L 2 L o« e .
STU 8TX STY .
. .‘ . L L] . e L d - L]
LI A TN T i S I T
* . * . L L] . . . L d
* . L * . * - - * -
. [4 .‘ ‘e - * L)

.
‘e
.

- Table 2.2 -

Return from Interrupt
Return from Subroutine

‘Subtract with borrow

Sign Extend

Store- - Ca '
Subtract without Carry
Software Interrupt
Synchronize to Event
Transfer Registers
Test ’

Supported‘GSOOfFamilyyﬂhémonic Operation Codes -

*
.

PSHX
PULX

s e e o 6 6 6 @ o ® o @4 o .8 & o

- * L]] L L] » »

¢ e e w8 B e 8 & 6 o & & 8 . ®

el e e e e # e e

‘:.’Q'.III'....’.Q.<Q'

* s e 8. .85 e e e

e o e o o e e . @

¢ s w6 & & %

¢ .8 & 4 & & 5 e @
o e o s 4 6 o & o 4
o 6 ¢ o o o @ * & e
.6 o o 8 o 8 o e o
¢ e 6 T 8 e s 8 6 e
S o 6 o o o & s e -»
4 .8 8 9 6 o s & 8. e
* ®. 6 s @ & 8 S5 % o
¢ 6 s o @ s ¢ » e @
e e e 4 e e ae e
46 8.6 & e o 8 e w
e 0 e .8 & @ & 0 &
0 e we % e84 6 e
Ve e o o &0 ¢ & o
e e e b & » w e
* o . 6 s e € & »

e s e s s s e &
0 & e e. 6 ¢ B .
.8 s e o e v e @

L T T T Y S
e e 6. 8 4 ¢ & @

IR JHEY TR o ¢ o o

L R S R Y T Y

- 2.8 ~

- Transfer Accumulators =

Add B to A ;
Arithmetic Left Shift
Compare B to A

Clear Carry

Clear Interrupt Hhsk ,
Clear Overflow
Compare to Index
Decrement Stack Pointer
Decrement Index Pointer
Increment Stack Pointer
Increment Index

Load Accumulator
Logical Right Shift e
Inclusive Or Accumulatot¢]~"l i
Push on System Stack e
Pull from System Stack
Set Carry

Set Interrupt Mask

Set Overflow

Store Accumulator

Transfer Condition Flags
Transfer Stack and Index
Whit for Interrupt T

BSZ

< ERRIF
. FCB

FDB
FMB
LIB

~OPT
~ORG
~ PAG
 PROC

o

_SETDP
SPC
TIL
USE

- GeC .
mARK .
“RET %

sCc .

END
ENDF
EQU
ERR

-

FCC

L

*

PUBLIC

L3

TN SO R R

e e e R LR

e e e e e e

e e e e e e W

LN DR U S VS

o w9 e ae

.

e e 8 e s o4 e e e e e e e

-

» 8 e e e

éew. & e w el

.

e e el wl e el e

L2 1

-

s e e e e e

D T T AT T,

.

-

LA S SR S SR

) L3 » L} * & s L4 . » - . .

Y

s &4 e e

LR TN M TR R SRR SN VRN Th SSRr i

e e s e e e e e e e e e . LI IO Tt)

*

'0"0‘0'..'.

{_FR . . * - Ll - L RN 2 L SEI]

:Exténded

6 e e e e e

T I T R e N T S G A,

® e 8 s e e e s
- » . L3
& 0 ¥ e s & e
* & 0 e e s 8 »
FE LR S L I
e e & & @ ‘ .
w8 e e e e W e
e s o .8 % & &
e e e e .« . .
» o‘ * e & o e @
® 8 6.6 & e 8 6.
.' o % ¢ e & & »
LENEL NS T S S TR T

e e e s 8 e 8
e e e e e & & @
.. e * 8 e e e @
e 8 e e w4
el e e e v e s

L6 e el s & e e e
o LI Y S S
o8 0. e e e s &
‘e LR RN I S
S 8w € e s e

- Table 2.3 -

L R) ‘ - . » * * * * * » L

*
.
»
L]
]
1 3
» - * * -
*
.

- Table 2.4 -

Assembler Users Guide

Mnemonic Operation COdéS‘

Clear ‘Condition Codes
Enable and Wait

“Exit from Procedure

Mark Stack fotr Procedure.

~ Return with Registers

Set Condition Codes

Assembler Directives

-2-9 -

.
.
.
.
*
.
-
»
.
-
.
TV
-
L
.
.
.
*
"
.
[
.
*

- Block Storage of Zeros
“End of Segment

End of File (Generated)
Equate Value
Generate Error Message

~ Conditional Error ‘Message
- Form Constant Bytes
_Form Constant Characters

. Form Double Bytes . b
 Form Multiple Bytes

Include Library File =
Name Module D
Set: Assembler Options

- Begin Program Counter

Begin New Page

Begin Procedure .

Begin Public Library :
Begin Qualified Structure

‘Reserve Memory Bytes S
Set Direct Page Addressing
- Space Listing :

Provide Title

‘ ~Usge Ptogram Counter

.Aaaembieilﬁseraycnidé“f»‘
3.0 - 6809 Software Architecture

; - The 6809 microprocessor is a stack-oriented, one-address
microprocessor containing two accumulators, four pointer ‘reglsters, a .f :
~ direct page register, and a condition flag register. With the addition
- of more pointer registers and a powerful complenent{df‘addtessiﬁg;nadesgi,;k”
the 6809 1is a major improvement over previous 6800 Family processors.

'/5_i?igure 3ﬁ1fiﬂfa programming model of the 6809 microprocessor. The
. following paragraphs give a brief description of each register and of

 single sixteen bit accunulator (called the D accumulator), providing
~ much improved performance in multiple~precision operations. The 6809
~ performs all arithmetic operations in two’s complement format. The 6809

_registers, refered to as the "X" and "Y" registers, the user stac

. series of PUSH and PULL instructions to facilitate zero addres

- how 1t 1is referenced by the programmer ﬁben~7ﬁrit1ng‘;asseﬁbler,,aource*'[fv' .
. code. . g : ; , i S g S

 The 6809 has two eight bit sccumulators (called the A and B

: accumulators) that are used to perform arithmetic and logic . operations.
‘Far, m@ﬁy_‘o?aeriaﬁJ ~the A and B accumulators can be treated like

‘,.érithﬁétic.]fEQIStéts‘/arékréfere& to by the‘sin§1é ;étE§tS‘"A”;["B"3xpr‘

¢ "D'"i ; i
;:-f3§2f~ Paiﬁtér ké§i§térs :

':'fljlfﬁe*ﬁﬁééfﬁﬁé‘faurfsixtéen bit~pointerfiégiééefékfﬁétfc§n7$efﬁsedfasf

- base address registers for indexed mode addressing. There are two index

_ pointer refered to as the "U" register, and the system stack pointer, |
 refered to as the "S" register. ‘The various combinations available with
i .1ndéxéd_-ﬁﬁ&e é5éres$1ﬁg;alibwsvgll four pointer registers to be used as
- explicit stack polaters. In addition, the two stack registers have a
- (stack)
programing. The system stack pointer is imp icitly used by the 6809

??g*uigtoﬁfaésaééf for subroutine calls and interrupts.

Assembler Users Guide

3.3 - Program Counter

The 6809 maintains an internal sixteen bit program counter register
refered to as the "PC" register. At any given time, the PC register may
be thought of as a pointer to the next instruction to be executed. = Two

indexed addressing modes are available that utilize the program counter

for their base address. These addressing modes provide the capability
of writing program modules that are position independent. :

3.4 - Condition Flag Register

The Condition Flag Register is conceptually and eight-bit ‘register
that containg the processor condition flags. It 1s refered to as the
"CC" register: The bit positions of the condition register are shown in
figure 3-2. A detailed description of each flag follows. :

- S ANEE T

stare —— 4 | ; , [-————fcx¢,y,,
"ﬁazﬁfx — o - OVERFLOW
. IRGM i k o

:“*‘Fc“ﬁnv] o el

3.4.1 - Carry Flag

Bit zero is the carry flag refered to by the single letter "CM. It

represents . the binary carry from an arithmetic or shift type operation.
For these operations, the carry flag is an unsigned overflow indicator.
In general, move~type and logical operations do not affect the carry -
flag.. B T o « SO

 3.4.2 - Two’s Compliment Overflow Flag

" Bit one is the two’sféomplement bverfidw flag‘énd‘ié réferéd'to.:bﬁ;

~the single letter "V". Tt is set by an operation that causes a twe's

complement arithmetic overflow. Loads, stores, and “logical operations

generally clear the overflow flag, vhile arithmetic operations set~it'{‘ L

appropriately.

| Since all 6809 arithmetic operations are of limited precision
(eight or sixteen bits), it 1is possible to generate invalid. signed

results when performing arithmetic operations. For example, when

i performing an eight bit addition, it is possible to add 75 (base 10)

(01001011 ‘bage 2) to 85 (base 10) (01010101 base 2) and get the invalid
result -96 (base 10) (10100000 base 2). What has occured is that the

carry out - of the most significant bit (the sign bit) is different from
the carry into the sign bit, hence the sign (and the value) of the

result is -invalid. It 4is under these conditions that the two’s’

complement -overflow flag 1s set. As another example, comsider
performing an arithmetic left shift on 96 (base 10) (01100000 base 2).

The result ie -64 (base 10) (11000000 base 2). 'Since the signed result | ;
is 1nVaiid;,thé'dvefflow flégﬁis‘sgt. Fo ST o

< 3;2';_*fi ‘

Assembler Users Guide

3.4.3 = Zero Flag

Bit two 1is the zero flag and is refered to by the single letter
"Z". It is set whenever the result of an operation 1is zero. After
compare operations, this bit represents the equal condition. After BIT
type operations, this flag represents the state of the tested bits,
Arithmetic, load, . store, and logical operations set this flag
appropriately. S ~ o R e e T T

3.4.4 - Sign Flag

Bit three 1is the,sign*flég'and is refered tofby.thé single letter

"N (for Negative). It fs set whemever the most significant bit of the
result is a one bit. For .arithmetic operations, this flag is set 1if a =

valid negative two’s complement result is obtained. Note that two’s

~ complement branches use both the N and V flags so that the the proper

branch path is taken even if a two’s‘gcmplement‘overfIOWIhaSJOCCured.1[

Bit four is the TRQ mask bit and is refered to by the single letter

“I".f The processor will not recognize IRQ interrupts if €5185'flagf”is.

set. The interrupt ‘acknowledge sequence sets - the IRQ mask flag to

inhibit subsequent

‘Toutine completes o
from interrupt instruct
- flag from the stack.

terrupt requests until the {nterrupt service

: 3.4.6,~“Ha1f4cérry FlagJ']i

explicitly clears the interrupt mask. A return
on will restore the state:of,the’in;gitupt, mask,jiv

_ Bit five is the half-carry flag and 1s refered to by the single
letter "H". This flag 1is used after eight bit add operations to

indicate the carry out of bit three in the arithmetic unit. This flag

1s used by the DAA instructions to perform packed decimal (BCD) addition
adjustment. In general, the half carry fiag»stateaib,uﬁdéfined«afterf‘k,

non-add operations and add type 1nsttuét16ns‘onQSixtééﬁibi;fppérands- i

3.4.7 - PIRQ Interrupt Mask

Bit six iS~the;Ff§Q'ihtérrhpt mask bit and is refered to by the

_Single? letter "F". This flag affects the FIRQ interrupt in the same

manner that the I flag affects the IRQ interrupt. Remember
interrupts do not stack the entire machine state. D iy

3:4.8 - Entire Staté F158 ; 1V
| Bit* $even;is‘:he;Entire\Staté‘flag and is>refete&*§055?ffhé single
letter "E". It {s used only by the return from interrupt instruction to
determine how much of the machine state was pushed onto the system stack

hat FIRQ

at the time of an interrupt. Two saved states are defined: the entire

state (E = 1) 4n which all registers have been pushed onto the system ;
stack, and the subset state (E = 0) in which only ‘the program counter

and the condition flags have been pushed onto the stack. Infgenera1, f :;

the state of the E flag is indeterminate except after an interrupt.

- 3.3 -

Assembler Users. Guide

3¢5 - Direct Page Register L g : |) S

| The Direct Page Register is an eight bit register that is used to
| provide the most -significant eight bits of the sixteen bit address
generated by instructions using direct addressing. It is refered to as
the "DP" register and is initialised to gZero at RESET time.: e

3.6 - Addressing Mbdea

One of ‘the most useful featurea of the 6809 microprocessor is its
wide variety of addressing modes. The use of these addressing modes
permits the 6809 to be programmed either as a zero address (stack)
machine, or as a one . address (accnmulator) machine. In addition to
memory addressing ‘modee, - several implicit addressing modes reference
internal processor registers and status indicators. = Four instructions
have been provided that explicitly perform stack operations that
reference memory through tha two stack pointer reglisters.

3¢6.1 ~ Inherent addressing

Inherent addressing includes those iﬁstructions vhich h#ve,nof néer ;
specifiable addressing options. All data references are 1ﬁp11cit within
the instruction itself. : , S e :

Example: . MUL : : Hnltiply Accumulators :
SW12 s . . Do User Software Interrupt

3.642 - Accumulator Addressing

Accumulator addressing refers to data values contained within the
accumulator registers and does not generate a memory reference cycle.
Most instructions perform operations on the eight bit A or B
accumulators, while some instructions also perform operations on the,
sixteen bit D accumulator. The accumulator specification is netmally'*
appended to the mnemonic tact specification. ; !

Example. CLRA P - Clear A,Accumulator
REGB - Negate B Accumulator

Register addressing refers to data values contained within one of
the MPU data or pointer registers. The selected register or registers:
must be explicitly specified as instruction operands. A register list
consists of a series of register specifications, geparated by commas.
Some instructions having register addressing implicitly. refereﬂce memory
through the two stack pointer registers., .

|
‘ 3.6.3 ~ Register Addressing
|

Example: = TFR D,X ~ Move Data from D to IX
PSHS A,B,X Push Registers on Stack =~

- Bl -

W8y, an instruction utilizi

- Assembler Users Guide

364~ Condition Flag Addressing

; Condition flag addressing refers to specific flag bits in thef .
ccndition flag register. This form of - ‘addressing 1s used for the
condition code operations. ‘A condition flag list consists of a series

of conditiun flag specificatinns, separated by commas.,

Example. . mAT LF ~ Wait for IRQ or FIRQ
‘ SCC ‘VY"‘ , ~Set the Overflow Flag -

3.6, 5 - Memory &ddressing Mbdes

Memory addressing modes are used to specify operationa on operands\‘”

residing in main memory.: Several memotry addressing modes are available.

Immediate addressing accesses an operand that is contained within the

instruction itself. Absolute addressing requires an operand whose exact7«

“memory - address is*kﬁawn at assembly time. Indexed addressing accessesf

an operand at an address that is developed from the contents of one of

the MPU pointer registers and thus is the most flexible of the
,addressing modes. ;5,' : : e

3646 = Immediate Addresaing

Immediate addressing refera to a data ‘value that is ‘coutained

‘within the - byte or bytes 1mmediate1y following the instruction opcode.

This mode is used to access a value that is known at assembly time and :

Exampxe: - sfngl~ "2 o ‘MakejAf;'127aﬂ; .
| | CMP ADDRESS See 1f D = ADDRESS

'3 6.7 - Absolute Addtessing

Absolute aédtessing refers to a éata value that 1s referenced by an-f, L

k~address word or byte immediately following the instruction - opcode. i
‘There dre . two program selectable modes of absolute addreaaing Directv,y,fp;
and Extended. Both of these mﬁdes are neceasarily position dependent.g5if-f s

“which will not be. changed during program execution. Immediate St

; addressing is specified by prefixing the operand expression with aj'ff”‘
crosshatch,'“#“~~f;‘ ; 5 , .

Direct addrassing uses the eight bit immediate value of the'“
instruction as the low order eight bits of an address. The high ‘order
- ‘eight bits are obtained from the direct page register (DPR). In this
,direct addressing can reference one of 256

locations in a "page" of memory selected by the direct page register.*k‘,‘g;;;
~Extended ad&tessinz ‘uses the sixteen bit immediate value of the
instruction as the address af the data value and can access data Ly

anywhere in memery‘:;

In order to specify absnlute addreasing, specify the address of the“

the specified aﬂdress and compares the high order portion with the

 assumed contents of the direct page register (speeified via the SET™P
direCtive) in ‘order to &etermine absolute addreasing mode. If the

‘data as the operand field of the instruction. The ‘assembler computes':

: Asaembler‘UserS'Guide

‘programwer wishes to explicitly specify direct or extended addréssing,

two significance forcing characters are provided. The41ess~than sign
"<" forces the assembler to. create an eight bit addréss vhile the
greater~than sign ">" forces a sixteen bit address. In the case of an

eight bit address, a warning is issned if the ‘assembler determines that

eight bits is insufficient..

Example: LDB BYIE Load a Byte
: IST ~ <LOWBYTE Test a Byte — Direct
CLR >HIBYTE Clear a Byte - Extended

3.6.8 - Relative Addressing

Relative addressing is used for branch address calculations and

refers to an addresa'thatfis computed from the updated prbgram counter
value and the byte or word of offset contained within the instruction.

Short relative addressing uses an eight bit offset and provides relative
addresses of =128 to +127 ‘bytes. long relative addressing uses a

sixteen bit offset and can address anywhere in memory. -

~~ The assembler normally computes the offset required and assignes
either 1long or short ‘relative addressing as appropriate. If the
programmer wishes to explicitly assign short or ‘long relative
addressing, the two significance forcing characters may be used similar -

to absolute addressing above. A warning message is produced 1if short
- addressing is selected and an eight bit offset is insufficient.

Example: BRA = LABEL = Relative Addressing
BNE <SHORT Short Relative Addressing

BEQ SLONG Long Relative Addressing

 346+9 ~ Indexed Aﬂdtessingff

Indexed addressing refers to data values whose address is developed

from the value contained in one of the MPU pointer régisterSg The
 specific register used to develop the address of the actusl data (called

~the effective address) is called the index base register. “The register

~to be used for a base address must ‘always be explicitly specifiedyﬂ"‘
Certain indexing modes have the ability to use the program counter

‘Tegister as their index base register. .

‘ Indeied‘ addressing requires the presence of,an‘in&exing’modé“post‘7
byte following the'inattuctian,opcode.~kThiskpost"byte _specifies both
- the type of indexed addressing to be used and which index base register

- to use. 1If an offset or address is required by the indexing mode, chisg;V
- value follows the - post byte in the immediate data field. Several

options are available to comserve both execution time and object code
~8pace. The assembler automatically selects the instruction format that

- will require minimum object code space and time.

~ 3-8 -

P

:"qsed to select eight or sixteen bit offsets respectively.

3.6.11 - Constant Offset Indirect Indexing

- address from memory.
‘in square brackets
‘the expression and b

‘3.&?12?97Eécﬁﬁﬁlatéfléfféet«iﬁdexing

g accumulator register to the value of an index base register to generate
 an effective address. If indirection is specified, this address is then
‘used to fetch the effective address value from memory. In the case of
the A or B accumulators the offset is a signed eight bit value. For the

 offsets are selected by specifing the accumulator tegister as the
~operand followed by the index base register specification. Like

JVf['operaﬁdkihsidéfbf square brackets.

. Emawple: STA B,Y 8-bit Accomulator Offset
. 3.6.13 -

~address is then used to fetch the effective address value from memory.

~incremented by one or two. Note that the {increment must be two if

Assembler Users Guide

‘3-6f10 ; Constant foset Indexing =

"«CbnﬁfaﬁtkOffSét:iﬁﬂﬁﬁéd'add?é951“§ 8¢ﬂefatés~anj éffe¢E£ve' address574~ >

| by adding a'fixed;offaet~t6 the contents of]one,of,the‘faur:MPU pointerf;J .
-registers. The offset isﬁcentainedawithingthe~instructian,?itself"and*' i

follows the indexing mode post byte. Offsets are signed values, and may

 be five, eight, or sixteen bits in length. The assembler computes the
offset and selects the smallest adequate format. The base register is
- specified following the offset expression. If an explicit offset size

~ 1is desired, the significance _forcing characters "<" and ">" " may be

- Example: LDA 12,X ~ Constant Offset from X i
ok ST L w2y .~ Constant Offset fromY .

o LDX <0,0 . Forced 8-bit Offset
- 8TX >12,8 . Forced 16-bit Offset

. Like most of the indexed addressing modes, constant offset indexing

 may specify a single level of indirection. The effective address is
~generated by adding the fixed offset to the value of the 1index base -

register, and then using that address to fetch a sixteen bit effective

Indirection is specified by enclosing the operand
‘4ny significance forcing characters must precede
neide of the bracketss -

. Example: UMP [0,X] Constant Offset Tadirect
1D . [pl2,U) : - Forced 16-bit Offset -

_ Accumulator offset indexed addressing adds the contents of an

D accumulator, the offset is a signed sixteen bit value. Accumulator

censt&n%?bffééta*iﬁdéﬁings~~1ﬁdiréctian4wia»’aﬁécifiediibY:ﬁplacing“fthe

. X DU 16-bit Accumulator Offset
. CMPB [AX]. f ,fys‘bit'ﬂfféét‘Iﬁaifééﬁ7\, e

,Antbihéfeaent Iﬁde§1§§
A“t'iﬁcfeﬁéﬁt'iﬁﬂéied §3&£§38ingfuse§ tﬁé:vélﬁélofjféﬁ ;1nﬂek7‘BaseV'ﬁ

register as the effective address. If indirection is specified, this

After the effective address 1is determined, the base register is

oo

Assembler Users Guide -

indirection 1is specified. = No offset is permitted when using
autoincrement addressing. Autoincrement is selected by following the
base register specification by either one or two plus signs "+", for

increments of one or two respect1Ve1y. Like other forms of adaressing,

indirection is specified by enclasing the operand in square brackets.f

Example. - LbA ‘,O,X+ 3 “: Autalncr&men: by One
STD 0,Y++ . AutoIncrement by Two

LDU [0,S++] - AutoIncrement Indirect
3.6.14 - Autodecrement Indexing

Autodecrement indexed addressing ‘gubtracts either one or - two from

an ‘index bage register and subsequently uses that value as the effective
address. If indirection is specified, this address 1s then used to
fetch the effective address value from memory. Note that the decrement
value must be two if indirection is specified. No offset 1is permitted
with autodecrement indexing. Autodecrement addressing is selected by

preceding the base register specification by either one or two minus
signs "-", for decrements of one or two respectively. Like. other forms

of indexed addressing, 1ndirectian is specified by eﬁclosing the operand

in square brackets.

Example: CLR ",O,4x | g AutoDeérenent by One
- LDY. - 0y==U . AutoDecrement by Two

STY‘ . [0,==81 AutonecremEnt Indirect '
3.6.15 = Extended Absolute Inditect Addressing

Extended absolute indirect addressing uses the address word
contained in the instruction to fetch an effective address from WEMOTY »
This addressing mode allows the programmer to define a pseudo register
vector (in IBM terminology) £or use in eamnunicating between program

modules. Since the instruction conteins an abSOIute adﬁress, it is

necessarily position dependent-f~;, ;
Example. BITA {DEVICE] . Extended Abaolute Indirect

3.6.16 - Program Counter Ralative Aﬂdreasing :

Program counter addreasing uses the value of the updated pragram'k
counter register as the index base value. A fixed offset contained
- within the instruction is added to the updated program counter value to

obtain the effective address. “If indirection is specified ~this address
is then used to fetech the effective address. from memory. The expression

value specified in the ‘source code is the desired value of the effective
address; the assembler uses that value to compute the required offset.
Program counter relative addressing is specified ‘by affixing the "PC"
register specification to the requested address. Like other forms of
.indexing, indirection 48 specified by enclosing the operand in square

brackets.

Example: . LDA BYIE,PC Program Counter Relative
' STX . [ADDR,PC} Program Counter Indirect

- 38 -

counter referenc
value constants.

’ 4.1 1 - Symbelie'

 reference, a . p

, Assemhler;nsé:afgﬁidé‘
4.0 - Assembler Ekpt&SEiaﬁs

Expressions consist of one or more terms combined with assemblet'
operators. Each term represents a sixteen bit signed value, and the
result of ° expteasion ‘evaluation is also sixteen bits and aigned.~ The
expression value . may be absalute, relocatable, or complex ‘relocatable,
depending on the relocation attributes of the various terms and the
operators used upan them., In addition to’ the relucation attributes, the

, expresaion may have the starred attribute. This attribute will be set
if any of the terms in the expression have the star attribute. More

~information on starred expressions can be found in the chapter on
Jassembler directivas, Fe : , : '

Snder : certain aircumstances. ,expressicns may be preceded or

'surrauadea by. speci"l characters used to specify addressing modes. It

must be clearly understood that these mode characters are not part of

the expression pra? r,faad hence must not apyear within an expression.

el Terms 1n Expfessions

Terms in axpressions may consist of symbalic raferenaes,{ location
, numeric constants, character constants, or truth
Symbolic references have an explicit relocation
attribute set when the ‘symbol is defined. Location counter references
have the relocation attributes of the current program counter.

Constsnts always have a relocation attribute of absolute',

Symbnlic refetences may ‘consist of "aflocal reference, a global
. reference, or a structure reference. Local
f an identifier with no qualifier characters (".")

references consi

and refer to the most local definition of that identifier. Global
references consist of the,global qualifier character (". ") fallowed by
an identifier and ‘refer to that identifier ‘defined in the global

dictianary., ‘Parental references consist of the parental qualifier
character (") fellaf'd by an identifier and refer to that didentifier

‘defined 1in the pa ént dictionary of the current pracedure. Structure.
~referentes, which

identifiers separated by global qualifier characters. Some éxamples;qf;j; ‘
1 :Symbalic references are‘ s ; L .

may be 1local, global, or. parental, consist of

e e L A P
JLABEL = - = d o w L h Lo caa g ‘global reference
“LABEL = - = F'r - = = ===~~~ g parental reference
TABLE ENTRY - - - - oo - glocal structure -
= - "~;-—'—‘- ~,;‘-°~‘—,fa,g1obal structure =
: e = = = = = g parental structure
E&GE PAR&QEAFﬁoPﬂRASE.WORD LETTER =~ = a local structure o

’-‘- Gl -

Assembler Users Guide

4+.¢2 ~ Location Counter References

Location-counter references consist of the asterisk 2" used in

Place of a symbolic reference. The value and relocation attributes of a

location counter reference are those of the current program,coun:er at
the beginning of primary atatemen:\processing for the current 11ne, of
assembler source input. Note that this value does not change within a

line of source code, regardless of changes in program counter values.

For = example, in the followiﬁg[‘statements,"both«.loc&tion, counter
references have the same value (which is the value of the identifier
"LABEL"): ~ ‘ , ‘

| ORG $0200 o
LABEL CLR 0,X+; DECB; BPL %: DECA; BPL *;

4¢1.3 - Numeric Constants

Numeric type constants consist of an optional radix designator
character, followed by a string of digits. If the radix is greater than
ten, the larger digits are specified as letters, with the letter "A"
having a value of ten, "B" for eleven, and so forth. Each digit is
checked to be sure that its value is less than that of the designated
radix. For the purposes of numeric constant evaluation, the assembler
treats letters of lower case and upper case as {dentical.

Permissible radix designator characters are "$" denoting
hexidecimal numbers, "g" denoting binary numbers, and "@", denoting
octal numbers. In the absence of a radix designator, decimal numbers
are assumed. Numeric type constants always have a relocation attribute
of absolute. FExamples of numeric constants are as follows:

Decimal Constant -- 21845
Hexidecimal Constant —- $5555 ;
Binary Constant == %101010101010101
Octal Constant -

52525
4+1.4 - Character Constants |

Character type constants consist of an opening quote character
followed by a string of characters followed by the closing quote
character. This assembler recognises three characters as quote
characters: the double quote ", the single quote (apostrophe) "’",
and the grave accent "N, Any of these characters may be used to begin

a character constant, however, the closing quote must be the same

character as the opening quote. Character constants are limited to a

precision of 16 bits or two characters, and always have a relocation

attribute of absolute. Examples of character constants are:
o == Character constant with value SQQQO
"AY -~ Character constant with value $0041
‘AB’ =~ Character constant with value $4142
'ABC' -~ Character constant with value $4243

G

Assembler Users Guide

Quotes within character constants ‘may be denoted by ueing two

successive quote characters, or by using a different quote character as
~ a delimiter. In either case, there must always be a proper character as

a closing quote. Some examples of character constants containing quotes
"™ - Character constant with value $0027

== Character constant with value $0027

== Character constant with value $2727
=~ Character constant with value $2727

: oe i
e
' eees l :
. If the Motorola compatability option has been selected, character
constants consist of an opening single quote character followed by
exactly one ASCII character. In this case, the upper nine bits of the
‘charactet"conatant;,value, are zero, and the lower seven bits have the
AﬁeflaiVSlue‘fofwjthe-‘following character. No closing quotes are
permitted. Some examples of Motorola compatable character constants are:

‘A ~F ‘Cﬁ$ractér‘éonstantyvith«va1&§,$0§41,
-7 == Character constant with value $0020
"7 == Character constant with value $0027

4+1.5 ~ Truth Constants

k‘«iruth'Valﬂe,QOﬁstant9~cnnsiSt of the reserved symbols TRUE and
FALSE and have values of 1 and 0 respectively. The relocation attribute
- of truth value constants is always absolute. In expressions, truth .=
~ value operators treat any non-zero value as being equivalent to the
truth value TRUE. N St .

4;2?4"ﬁperatafszin ﬁssemhléi“Expressioﬁé

~ The assembler ,u@ﬁgrtsia‘widevvariety*of_operators;inﬁﬁexpreSsionsg

- These operators are used to evaluate expressions at assembly time, and

- in addition, several operators can be passed to the linker program to
causekexpreasion;év&luatioh"at,link»time., In either case, operators are

processed in precedence order. That s, operators with .a higher

precedence value are processed before operators with a lower value. A

complete listing of operators and precedence values can be found in -

table 4.1. 1In the following example, the value of VAR2 is multiplied by =

the value of VAR3, and the result is added to VARL: L e

~‘:”;V&R14#!§2?VA§3‘”: mﬁlti?iylﬁaskhigﬁégfpfecedéhéeféh&nféda‘

 Each term of the source expression 1is ~evaluated to a signed,

- sixteen bit binary relocatable value during expression scanning. These~

- binary values are then passed to the expression evaluator to perform the
required arithmetic. Note that expression evaluation always produces a

~sixteen bit result even if terms in the expression are undefined.
Undefined terms have a value of zerofaha,a“relocatioﬁ,&;tribute,Of; ,'{

absolute. B ST SR R - L

- 4=3 -

Assembler Users Guide

4¢3 = Grouping Operators

The two parentheses and are used as grouping operators are used to

alter the order of expression evaluation by explicitly stating the order

in which expressions are to be processed. These operators have a
precedence value of 123 higher than that of any other operator.
Parentheses may be nested up to ten levels deep. The following example
demonstrates the use of parentheses: . O '
0007 EI BQU 14243 NOT GROUPED
0006 E2 EQU (142)%*3 - GROUPED

4o4 - Arithmetic Operators

Seven arithmetic operators are provided. = The unary mnegation
operator, "-", returs as 1its result the two’s ‘complement of its
operand. 1If an overflow occurs as a result of the negation, the maximum
negative sixteen bit number is returned as the result. The unary plus
operator, "+", 1is essentially a no-op. The binary addition operator,
"+", and the binary subtraction operator, "-", perform sixteen bit two’s

complement arithmetic. - Any overflow that may occur produces a warning

message but is otherwise ignored. The multiplication operator, "*",
performs a sixteen bit signed wmultiply. If the results of the
multiplication have more than sixteen bits of significance, a warning
message 18 produced and the result is then truncated to sixteen bits.
The divieion operator, "/", performs a sixteen bit signed division with
the sign of the result determined by the rules of algebra. Any
remainder 1s discarded. Note that a divide by zero produces a warning

and substitutes the maximum poseible sixteen bit number for the result.
The modulus operator, "2", performs a signed division and returns the

remainder as the result. The sign of the remainder is always the same
as the sign of the dividend. If a divide by zero occurs, the result 1is
set to zero. A few examples will illustrate the use of the seven
arithmetic operators: : . : : :

0003 . El1 EQ 43 o ,ﬁﬁakr PLUS -

- FFF8 = E2 EQU -7 UNARY MINUS
000F- . E3 EQU 5410 ABDITION
FFF6 ~ E4 EQU 5-10 - - SUBTRACTION
0032 ES EQU 5%10 - MULTIPLICATION
0005 E6 EQ@ 100/17 DIVISION
000F - E7 EQU 100%]7 MODULUS

4.5 = Truth Value Operators

The two unary truth value operators are used to convert arithmetic
(possibly relocatable) values into “truth values. The truth value
operator "/" has the value TRUE if its argument is non-zero, and FALSE
1f its argument is zero. The truth value negation operator "!" performs
the truth value conversion 1in the same manner, and then inverts the
rasul te. .

—4—4 -

*,

I,

Assemblerkﬁbéfs Gﬁide“

‘The value TRUE is equal to one, with a relocaticn attribute of
absolute. Similarly, FALSE. is equal to =zero, also absolute- ,These S
values may be used in arithmetic expressions- Examples of :he truth

value. operators are.
~ ov01 i vz ‘aqa N2 _man::"v&ws‘[:
OOGO ; Qﬂ !12 8 FALSE VALUE

4. 6 - Ralational Operators

The six binary telational operators are. ‘used to compare their left
and tight operands. 1If the relational condition is satisfied, the value .
of the expression is TRBE, otherwise it is FALSE. These -operators. are
particularly useful in conditional assembly and for use with the ERRIF.
directive- Exaaples of the $1x relational eperators are: ~

0020 HI Equ 32
o010 10 EQ 16

0000 RI EQ HIQO ,Lﬁss 'rm o
0000 R2 EQU “HI¢=L0 LESS THAN OR EQUAL TO
0000 R3 EQU HIssLO EQUAL TO
0001 R4 EQU - HIl=L0 'NOT EQUAL TO «
. 0001 RS EQU HI=>LO GREATER THAN ma EQUAL TO
- 0001 'Eﬁﬁ EQU HI>L0 , egmm mn

~In order to simplify the coding of relational operators, several
variations on basic ‘syntax are recognised as valid. The less Than or
Equal To operator m, ;be,specified as "<=" or also as "a<", the Greater
Than or Equal To operator as "=>" and also as Y>=", the Not Equal To
operator as "l=", "™ and also as "><". The function of these

, COmpaaite operatars is &xactly the same, oaly their syntax is different-

4.7 - Bitwise Logical Operatats

Faur bitwise 1egical eperators are pravi&ed. " The unary HOTk‘

fﬂpér&tét e produ&eayas its result the one’s complement of its aperand

The three binary *peratars ‘are the Inclusfve OR operator "|", the

Exclusive OR operator, "°", and the AND operator, "&". These operators
perform their ‘respective o

: 01701?; mgQU $01?0§‘-
O0FF M2 Equ "$OGFF~ﬁ

FOFO VI BQU M1 . UNARY NoT

OFFF V2 EQU MI|MZ BINARY INCLUSIVE OR
OFFO V3 EBQU MI"M2 BINARY EXCLUSIVE OR

- 00OF v4 mu - M1aM2 BINARY AND

"\-*4-'5:'-‘

‘ratens bitwise upon their two operands.k The
; followdng examples will clarify their~£unctian8° . SR e

Assembler Users Guide

4.8 - Shift Operators

All of the six shift operators are binary with the left opetand
specifying the value to be shifted and the right operand specifying the
bit count. The shift count is signed, meaning that a left shift with a
negative bit count is converted into a right shift and so forth. No
checks are made for arithmetie overflow or lost significance. The
following diagrams illustrate the six different shifts: :

!-fﬁﬂllllﬂﬂlilﬂﬂllilﬂnl >> ﬂhﬁfﬁoﬁuﬂsﬁﬂf
b15 o

COTTITITIITITITTI << Left Logical Shift
o

(311 D amares

L3 90 0 2 15 0 O 0 045 0 U 4> Right Arithmatic Shift
515 — v

mEnazassasesus ;.4.'.' <+ Left Arithmetic Shift

Lbunnxunnudﬂ %> Right Rotate
o185 ,

KUIllllllllilllllig <% Left Rotate
b15 — Py .

Logical shifts supply zero bits for ail positians vacated.
Arithmetic shifts sign extend the value being shifted. Rotates use the
bits shifted out of the value to fill the vacated bit positions. The
following examples ﬂlustrate the shift operators:

FOFO M1 EQU $FOFO

7878 V1 EQU MI>»l LOGICAL RIGHT SHIFT

- C3€0 v2 EQU Ml<2 LOGICAL LEFT SHIFT
FEIE v3 EQU MI+»3 ARITHMETIC RIGHT SHIFT
OF00 V4 EQU Mi<ks ARITHMETIC LEFT SHIFT
8787 V5 EQU M1Z>5 RIGHT ROTATE
3cic V6 EQU Ml<%6 = LEFT ROTATE

- Assembler Usersféhi&e L

P

ST 49 - Lagical Connectives,:

o Logical connectives are binary operators used to Join truth value&
_expressions into complex truth values. Two connectives are available,

~ Logical AND, "&&", and Logical OR, "[]". Some examples of the ‘use off‘
e conneetives are.;; T \ :

0010 VI E@ 16
0020 V2 Erg] 32

0020 V3 EQU Vi<l | |
0000 LX EQU Vie=V266V25=Y3 LOGICAL AND
0001 LY EQU VI==V2||V2==V3 LOGICAL OR

Assembler

Operator

“a”

L S B B

Y N N

<+
<7
>>
+>
z>

=g

= Bitwise AND

Dsers Guide

= Table 4.1 -

Assembler Operator Precedence

- Fanction

-~ Right Parenthesis . . .

- Unary Plus . o v e

- Unary Negation v o o o .
- Unaty Bitﬁse Not v s
- Unary Truth Value . .

- Unary Nhgated Truth VAIue

el Arithm&tic M&itio‘l e
~ Arithmetic Subtraction .
~ Arithmetic Mhltiplication
- Arithmetic Division . .

- Arithmetic Modulus (Remainder

= . Left Logical Shifet . .
- Left Arithmetic Shift

- Left Rﬂtate LR T S
~ Right Logfcal Shift .
- Right Arithmetic Shift
- Right Ratate « o o 0w

» @

- Re;ationsl Less Than R

(Same)
~ Relational Equal To

.

*

» * L .

»

-

o & o o e @

)

6 . n 8 @

o« s e e e e

- Relational Less Than or Equal To

.
* L] * » . *

~ Relational Greater Than or Equal

: (Same) ,

- Relational Greater Than

~ Relational Rot Equal To
. (Same)
(Saﬁe)

L4 L] . L] * .

- Bitvise Exc}.usive OR .
=~ Bitwise Inclusive OR .

- Logical Connective AND .
~ Logical Connective OR. .

- 48 -

*

.

L B

o

L2 - . - -
L} L 2 » . -

L4 - . L .
. - L A *

* 5 6 e e
e o ¢ e e @

L4
L

To

e o o e @ LR R Y Y

- - - L] ¢ &

L 2 L) - L L]

* e 8 e

R SN I SR TN Y

- * * -

* » . * - L3

. & & & 9

* . W -

-« L - - L2 [

. L » - [2

Precedence

e o w12
e .12
.' RIS § |
L} * L 11
LA 11
e e 11
P ¢ |
L] » . 9
o v o 9
. s o 10
e ea 10
. * - 16
e 8
P -
« & o 8
o o e 8
" . .] 8
L L] L 3 8
LA BT 1 7
» - * 7
Y
. . L 7
.‘. - 7
PRI
« ¢ % 5
L] . L] 4
L IR TS 3
R
o . e 1

N

 assembler Users Guide

5.0 - 6809'0peration‘ﬂnemonics

"The followiug pages contain a detailed description of. the 68093

: operations supported by the SWTPC assembler. These ~operations consist
of 6809 primitives and & few extended mnemonics designed to simplify
structured programming practices. Each table entry consists of the

~assembler mnemonic, a description of the function of each of the

 operations, a list of affected condition flags, and the valid addressingi{orj

modes for . that opetation, -

) ,5.1 - Condition Fl&gs ,

The condition flag‘liSt contains information about which condition

‘flags an. operation alters and the criteria for the result. Unless -

otherwise specifically ‘mentioned, the Interrupt Mask (IRQ) and Fast

. Interrupt Mask (FIRQ) are unchanged by the operation. The Entire State
flag (E) is undefined in the condition flag register and is valid on the

stack only after an interruyt.‘ The slow maskable interrupt (IRQ), the

‘non-maskable interrﬂpt (¥MI), and all three of the software interrupts
 (SWI) set the Entire State flag before pushing the MPU registers on the
stack. Only the fast maskable interrupt (FIRQ) clears the entire state

~flag and then pﬂshes only the condition flaga and the program counter on.
the ‘stack. V .

:5 2 - Extended Hhemonics

Sevaral of the supported mnemonics are not strictly ‘speaking 6809{"
operations, and consist of ‘either multiple 6809 instructions or of

‘syntax different from the Motorola standard. These instructions are
- marked with the notation "ext' after the assembler mmemonic. They have
_been provided for the sake of program clarity and coding convenience. . ,
- All extended mnemo&ios will ~produce error messages if the Motorolakj“ o

compatability option has been set.

’o5.3 - 6800 Famiiy Hnemoﬂicskfj

Full support has been provided for 6800 Family snemonic operation :

codes (except of course the 6805). In certain cases, these operations

~ will assemble {into multiple instruction sequences designed to emulate

~ the specified 6&00 operations. Bmulation is exact in all cases except .
~ for the 6801 MUL instruction which is upward compatable. The 6809 MUL

- operation sets the ‘zZero flag when appropriate while the 6801 operation‘“
fﬁdoes not. - : o : : :

- 5el -

Assembler Users Guide

ABX

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

ADC

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:
ADD

DESCRIPTION:

CONDITION CODES:

ADDRESS ING ‘MODES ;

Add ACCB Into IX

Add ﬁ%ﬁ eight - bit unsigned wvalue in the B

accumulator into the X index register. ‘This

instruction is provided for 6801 compatibility.

Not Affected. -

Inherent -

Add Witn Carry

Adds the carry flag and the memory byte into an
eight bit register.

H: Set if the operation causes a carry from bit
three in the ALU.

N: Set 1f the bit seven of the result is Set.

: Set if all bits of the result are Clear.

V: Set 1if the operation causes a two’'s complement

arithmetic overflow.
C: Set if the operation causes a carry frou the high
forder bit in the ALU.

Immediate,vﬁiregt, Iﬁéexed, Extended

A&d'Without~Cerff
Adds memory ihtb'register.
H: For eight bit operations, set if the operation

causes. & carry from bit three in the ALU. For
sixteen bit operations, the H flag is unaffected.

N: Set if the high order bit of the result is Set.

Z: Set if all bits of the result are Clear.

V: Set 1if the operation causes a two’s complement ,

arithmetic overflow.

C: Set if the operation causes a carry from the high
order bit in the ALU. ;

Immediate, Direct,;IndeXed, Extended

- Bud -

AND

DESCRIPTION:

CONDITION CODES:

awee

CONDITION CODES: The condition codes are set to the result of _the
i ... 8«=bit logical AND of the current condition code bits
_ with the immediate operand. Any condition code bit
~ 1including the interrupt masks may be cleared by this
, . ‘operation. - S A s T s e
ADDRESSING MODES: Immediate

Logical AND

~ H: Not Affected. e
- N: Set if bit seven of the result £f Set.
. 2t Set 1if all bits of the result are Clear. Gt

ADDRESSING MODES: Immediate, Direct, Indexed, Extended

’1; i !LdgiéalfAR?:Intb Cohditiqnbede Ré8ister
DESCRIPIION
; i - condition code register and the immediate byte and

| As&eﬂbleruﬂerag“ide e

Performs an eight bit logical AND operation between -
‘the contents of a register and the contents of it

Mot Affected.

Performs an ‘eight bit logical AND between the

places the result ingth¢'caﬁdiﬁion\cOde‘regiater;j -

;ij; 5-3 -

Assembler Users Guide

ASL

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

ASR -

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

Arithmetic Shift Left Be
Shifts all bits of the operand one place to the
left. Bit zero is loaded with ‘a zero. The high

order bit of the operand is shifted into the carry
flag. ,

LT T

Ht Undefined. | e
% Set if the high order bit of the result is Set.

Z: Set if all bits of the result are Clear.

V: Set 1f the bit shifted out of the high order bit

is not equal to the bit shifted into the high
order bit.

C: Loaded with the high order bit of the original
operand. , :

Accumulator, Direct, Inﬁexed, Extended

Arithmetic Shift Right

Shifts all bits of the operand aﬁe place right and

sets the carry flag from bit zero of the original

operand. The ‘high order bit 18 held constant to
provide proper two s complement sign extension.

R unsnsnanyc

H: Uhdefined. :

N: Set if the sign bit of the result is Set.

Z: Set 1if all bits of result are Clear. ,

V: Not Affected.

C: Loaded with bit zero of the original operand.

Accumulatat, Ditect Indexed Extended

'-‘s.gk-

e,

CONDITION CODES:

: DESCKiﬁTféN: jf
o Amnssmc mnzs

| DESCRIPTTON:

~ COKDITIOR aenss~
| ADBRESSING MODES:

 Assembler Users Gutde

BCC’jgﬁ T 7Bréﬁéh on Carry Clear

DESCRIPTION: ,;“freats the state of the Carry bit ana'¢a¢gés.ajb~:aﬁ¢af L

i 4f Carry is clear.’,~
CONDiiibﬁ‘cODgS; i{bet &ffected‘f

: Aﬁ3ﬁ3g9i§3730ﬂ355 ije1ative,’Long’Relativé l f Shan

S Brawchon Carry Set

DESCRi?TiﬂN: 1f~‘]f TaBts the state of the Carry bit and causes a branchj ,ﬂ
G ;,é‘if ﬁarry is set. , s Sl

. Not ;,Af»fected :

ADDRESSING MODES: Relative, Long Relative

BEQ - . 'f ;Branch on Equal

:ffﬂged after a subtract or compate operation,‘ this S
instruction ‘will branch i£ the registet is equal tn ~
he mmﬁory aperand.v Lo : ,

cons:mmw co;ms- Not Affected. e

ative, Long Relative

BGE ; jif} ‘ ‘7; *f?3ranch on Greater or Eqnal

~ﬂbeﬂ after a sﬂbtract or compare aperation on signedl,
binary ‘values, this in trucion will branch if the
egister was greater thaﬁ or equal to the memoryﬁ;
‘peraﬁd‘ , S i S e

Ebt Affected. o

kelative, Long Relative i:Q :'?f5~:

Assembler Users Guide o ' B

BGT

DESCRIPTION:

CONDITION CODE:

ADDRESSING MODES:

BHI

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BHS

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BIT
DESCRIPTION:

 CONDITION CODES:

 ADDRESSING MODES:

Branch on Greater

Used after a subtract or compare operation on‘signedj,‘
binary values, ‘this instruction will branch if the
register was greatet than the memory operand.

Not AffecCed.

Relative, Long Relative

Branch if Higher
Uéed;jéfter7 af"éubtradt_ or compare operation on
unsigned binary values this instrucion will branch
if the register was higher than the memory operand.

Relative, Long Relative

Branch if Higher or Same

When used after‘ a subtract or compare on unsigned_f
binary value&,‘

register was higher than or same ae the memory’f*
operand . 4 :
Not Affécted‘f"

Relative, Long Relative

Bit T%ét

Performs an eight bit 1ogica1 AND of the contents cf{ff
a register and a memory operand and modifies

conﬁition codes ‘accordingly. The contents of the
register ara not affected. o :

H: Not Affected. o :

N: Set if bit aeven of the result 13 Set.
Z: Set 1if all bits of the result are Clear.
Ve Cltéred. ;

C: Not Affected.

Imadiate, Mrect, Imiexed Extemied

=56 -

this instruction will branch 1f

e T T N g L

BLE

DESCRIPTION:

‘CONDITION CODES:

BLO

 DESCRIPTION:

- CONDITION CODES:

ADDRESSING MODES:

BLS

 DESCRIPTION:

 ,b1nary valnea,.
5ragister was lower than the memory operand.

. Relative, Long Relative

‘ Bfancﬁ on Lower or Same = -

- ;ﬂSéd after a subtract or compare
:unaigned ‘binary values, this iastrucitén will brznch

jAssembléf U§efé éﬁidéff7 ”‘

Branch on LeSs or Equal

‘,USed after a subtract or compare aperatian on signed';
‘binary values, this instruction will branch 1if the
: register was

less than or equal to the memory
operand. - : . :

 Not "A,fffécted .

 Relative, Long Relative

”Branch on Lower

'When used after a sub:ract or compare on unsigned~'x
this instruction will branch if the~

Yot Affected.

- 1f the register was lower than or the same as the‘

CONDITION CODES:

/ jAﬁ§R£$S:ﬂ¢‘g0§E§§‘ 3§£3€1¥%, Long'ké1a£1Ve‘

 DESCRIPTION:

:‘w‘;ragister was less than the memcry aperand o
~com>1rtmw cenzs. i L

mmssmc mms Rblative, Lcmg Relative i

o mémary dgerand. &

L Bréﬁchléﬁ!mss

~Nat &ffected. f'

Eat Affected.

H'Used after a subtract or ccmpara operatia ~en signed

binary values this instruction will branch if the

Assembler Users Guide

BMI

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BNE

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BPL

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BRA
'DESCRIPTION:

CONDITION CODES:

~ ADDRESSING MODES:

BRN
DESCRIPTION:
CONDITION CODES:

'ADDRESSING MODES:

Branch on Minus

Used after an operation‘ on signed binary values,
this instruciton will branch 1if the result is
negativg. 4 ;

Not Affected.

Relative, Long Relative |

Branch Not Equal

Used after a subtract or coépare‘operation; this
instruction will branch if the register is not equal

to the memory operand.
Not Affected. :

Relative, Long Relative

Branch on'Plﬁs

~ Used after an operation signed Binary ?alues, this

instruction will branch if the result is positive.
Not Affacted.

Relative, Long Relative

Branch
Causes an unconditional branch.
Not Affécted.

L}

Relative, Long Relative

Branch Never

Does not cause a branch. This instruction 1s
~ essentially a NO<OP. ‘

Not Affected.

Relative, Long Raiatiyé

'-'5,#‘3"

BSR

DESCRIPTION:

e fcrmnrrmw cobﬂs. |

f,'ADBRESSIﬁG ﬁﬁBES'

Bve

: ,nﬁééﬁxrfzékx‘

 CONDITION CODES:

 ADDRESSING MODES: Relative, Long Relative

BVS

DESCRIPTION:
: i ':“[fbranch 1f the overflow flag 13 clear.
~ CONDITION CODES:

. BZC

e nEsc:MPT‘mﬂ‘

- camrrmﬂ cenzs- i

e Annasssmc nonxs.? |

 DESCRIPTION:

 CONDITION CODES:

- ADDRESSING MODES:

fﬁfaﬁﬁﬁ 0ﬁ°2éro Ciﬁaf;

- ?ests the state of the zero flag and causes a braﬁch
,if the zero flag 1s c}.ear. :

, 'Teata the state of the zero flag 8ﬂé causes a branch
: “if tﬁe zero flag 13 sets ;[

Asééﬁbleryﬂséré Gﬁi&gﬁ,
Branch to Subroutine

s puShed onto thel‘ :
transferred to the

The updated ptagram counter
system stack and control A8
effective address. :

Not Affectedf

 Relative, Long Relative

"Bfénéh on”Gverf16w~C1ear TR

' Taats; the state of the avetflow flag and causes a o
: braacb if the overflow flag 18 set., -

: ﬁat Affected.

~ Branch on bverflw Set

Teats the state of the overflow fltg and causea a

Rot Affected.

Relativ@, Long Relative e

: &ffﬁcte& .

"Re étive,;iong Relécive,

Branch 6:‘1 Zero Set |

Rot Affected .

RelatiVe, Loag Relative

g

Asgembler Users Guide

ec'c‘ (ext)

DESCRIPTION: -
 CONDITION CODES:
ADDRESSING MODES:

CLR

DESCRIPTION:

CONDITION CODES:

- ADDRESSING MODES:

CMP

* DESCRIPTION:

. CONDITION CODES:

~ ADDRESSING MODES:

Clear Condition Co&e

Explicitiy clears any subset of the MPU condition

flags. This operation is an extended syntax veraion‘
of ANDcCo :

All condition flags specified as operands are
cleared. It 1s not possible to specify the Entire
State flag. , ‘ ,

Conéition List

Clear

The register or memory is laaded with zero. The’
carry flag is cleared for 6860 compatibility.

H: Not Affected.~
B: Cleared
Z: Set .
V: Cleared
Cs Cleated

Accumlator, Mrerct, Im!exed, Extended

Compare ilemafy to a. Ragister

Compares a memu

T and sets apprcpriate condition

. H: Uadefined f ff, efght bit oﬁefatiuns;~”;aﬁd‘\"1

unaffected for 16<bit operations.
N: Set if the high order bit of the result is Set.
Z: Set if all bits of the result are Clear. U
V: Set 1if the operation causes a two's complement ‘
overflow.

C: Set if the subtra&tion did not cause a carry from i

the mst significant bit of the ALU. :

Iﬁmeﬂiata;~nirect, Indexed, Extended

- 8wl <

operand to the cantents of a

‘Aséeﬁbler‘ﬁsets’cdiﬁé'fl

- COM '”“:,‘ / "Camﬁlémentf

ﬁ DESCRI?TION: - : Replaces the contents of a register or memory with
S o ; its ana’s complement. The carry flag 18 set for -
i 6&&& compatibility. : ;

- CONDITION GODES: H: ot Affected. S
[AR ‘fﬂ’ Set 1f bit seven of the tesult is Set
7‘2: SQt if all bits cf the result are Clear

- ADDRESSING MODES: Accumulator, Direct, Indexed, Extended

CCWAL Glear and Whit for Interrupt
' DESCRIPTION:

The CWATL 1nstruction AKDs an immadiate byte with theaﬁ;
condition code register (which may clear interrupt
masks), stacks the éntire machine state on the
‘system'stack and then waits for an 1nterrnpt. When
-a_ non-masked interrupt occurs, no further machine
, 8 will bem gaved before vectering to the
jinﬁ “rupt h,} ,ng reutiﬂe‘ : :

on&ition eodes are set ho the result of the
*bit logical AND of the current condition code
',igmeaiate operan&. Aay canﬂition cod

 CONDITION CODES:

 ADDRESSING MoDES: 1

. Vresult is in the preper binary~caded decimal format,
f»f,fa that the carry flag 1is 'set correctly. This

~dn lon should be used after an ADD or ADC
with the rasult held in the A register'

= S 1f bit seven of result is Set.', S
Sat if all bita of the resnit are Clear.,

~ ADDRESSING MODES:

Assembler Users Guide

DEC

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

EOR

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

EWAL (ext)

DESCRIPTION:

"CONDITION CODES:

* ADDRESSING MODES:

All condition flags

Decrement

Subtract one from the operand. The carry flag 13,
not affected, thus allowing DEC to be a 1cop~cnunter
in multigle precision computatians.

H: ﬂot AffectEdt . w0

N: Set if bit seven ef result 18 Set.

Z: Set 1f all bits of result are Clear. :

V: Set if & two’s complement aritbmetic averflow
ocours.

C: Kot Affected.

Accumulator Direct, Indexed, Extended

_Exclusive OR

A menary operan& is exclusive ORed into an eight bit
register. .

H: th Affected.

F: Set 1if bit seven of result is Set
Z: Set 1f all bits of result are Clear
V: Cleared.

C: Not Affected.

 Immediate, Direct, Extended, Indexed

Enable Interrupts and Wait

Explic!tly clears any subset of ;he MPU coméitian

flags, stacks the contents of the MPU registers on
the system stack, and waits for an interrupt. This
operation is an extended syntax version of CWAI.;m

(incluﬁing interruyt masks)
agecified as operands are cleared. It 1is not
possibie to specify the Entire State flag. ;

Condition List

~ DESCRIPTION:

me

‘7I;DES¢§i§Ticx:‘

f i ﬁESéRIiTIﬁﬁ: :

EXG

it _commmn ccnss»' f;?'_fNot Affected.

i *Annaxssmc xonzs-

EXIT (ext)

; nascax?rmt:v G

‘kAbBﬁESSiﬁﬁfﬁﬂﬁEﬁi{F;Register*LiSt"

""~Aﬁﬁﬁﬁs_iﬁ3fﬁﬂﬁﬁstf: §c¢u§ﬁiétdr uﬁirect, iﬂﬁeﬁéd; Exféhdéd f1'

- CONDITION CODES:
 ADDRESSING MoDES:

*jnﬁgister Yo

‘ ’ ;Exit from Procedure,~

141he Exit instruction luads the system stack pointdr‘ 1 g
ﬁ;from the user stack pointer, and then pulls the

- previous user stack pointer, the specified
. reglsters, and ‘the program counter (which effects a
.”»freturn from subroutine) from the system stack. v

 comITtoN coves:

”fj' Intrament ,
fAﬁd one to the operand.

~ affected, thus allowing INC to be used 4
i ﬁé@—counter in multipié pracision computatiana.

 CONDITION CoDE:

5‘:3&ﬁ§' &

;',*Pragram control is transferred to thé effective”
‘*, address‘ , : s e T

: N‘o : Affected .

,Ditect Indexed Extsnded

- Assembler Users Guide

EXchange Registers:

- Exchange two register values. Note that registers ~
_ may only be exchanged with ‘registers of 1like - slze,
- 1.e., eight bit with eight bit, or sixteen bit with" §
ffsixteen bit. o o

ﬁot &ffected s

The, carry flag is?

' E,Not'Affected. ‘ ' :
Set if bit seven of t e_zesult is Sét.

Set 1if all bits of the reSult are Clear.
3 Set if a two’s comple 1 thne

f ¥£§-13 -

Assemblet Users Guide

JSR

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

LD

DESCRIPTION:

CONDITION CODES:

 ADDRESSING MODES:

LEA

DESCRIPTION

CONDITION CODES:

ADDRESSING MODES:

Jump to Subroutine

 The updated program counter 1is pushed onto ~thef;5
system stack ‘and control is transferred to the;;s~

effective address.

Rot Affected.‘

Direct, Indekéd, Extended

Lcad Register from Memary

~ load ‘the contents of the addressed memory into the
‘register

- He NOt Affected. i
“Ns 8et 1f bit seven of loaded data is Set

Z: Set if all bits of loaded data are Clear
V: Cleared.

C: Not Affected.

,iImmédiata, Direct, In&éked; Ektéﬁded

‘Load Effective A&&ress

~ Form the effective address to data using the memary" »f
;addressiug mode. Load that address, not the data‘,_~

itself into the'pointer register.

‘VLEAX and LEAY »ffect the Zerc flag to alinw use as

. counters -and ' for 6800 IHXJBEX compatibility. LEAU.

- and LEAS do. not affect the Zero flag to allow for

cleaning up to the stack while returning the Zero

 flag as a parameter to a calliug routine, and for
6800 INS/DES - compatibility. All other candition',~”

flags are unaffected.;a

Indexed

- 5elb -

: '\\

CONDITION -CODES: W

ADDRESSING MODES:

“Abﬁ§§§§fﬁczﬁb§83tc

'71 f Aséeﬁ&léf ﬁ§§£s;Guide ;:;fl

CESE e ‘;§ngica1 Shift Left

: DESCRIPTIOS:,; e f,Shifts ‘all bits of the operand one place to the

: i1e£t. Bit zero is loaded with a zero. Bit‘saven 18
’*gfgshifted into the carry flag”' - . o

/1 Set if the carty out of the high orderrbbit is=7
“different than the carry into the high order bite
(f'Loa&ed with bit seven 0f he original operand.-

accumulater, Direct, Indez Extended j‘

Logical Shift nght

ift on the operand.

lrfarms a logical righ 1€ - operanc e
der bit and bit zero =

Shifts a zero into the hig
1nto thﬁ carry flag. -

DESCRIPTION:

e —

"emulamr, Direct, Indexed, Extended

~ 5-15 -

Assembler Users Guide

HAkK {ext)

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

MUL

DESCRIPTION:

CONDITION CODES:
 ADDRESSING MODES:
NEG

DESCRIPTION:

CONDITION CODES:

~ ADDRESSING MODES:

Mark System Stack'

The Mark instruction pushes the specified Eegister ,
list and the wuser stack pointer onto the system
stack, and then loads the user stack pointer from -
the system stack pointer. : .
Not‘Affected.

Regisfet List

Multiply chumﬁﬁators

Multiply the unsigned binary numbers in the A and B
accumulators and place the result in the D

accumulator.

H: Not Affected.

 N: Not Affected.

V: Not Affected. - .

Z: Set if all bits of the result are Clear. |
C: Set 1f bit seven of the B accumulator is Set.

Inherent

Negate

operand with its two’s cotplements
Note that 80 (Hex) is replaced by {tself and only in
this case 1s overflow set. The value 00 (Hex) 18
also replaced by itself, and only in this case is
carry cleared. ' Lo T

Replaces the

H: Undefined = S

N: Set 1f bit seven of result is Set.

Z: Set 1f all bits of result are Clear.

V: Set if the original operand was 80 {Hex). :
C: Cleared if the original operand was 00 (Hex).

‘Accuﬁﬁin’tof » Direct, Indexed, Extended

- 5216 -

oz

- CONDITION CODES:

~ ADDRESSING MODES:

: _kbﬁSCﬁiééiégffi

~ CONDITION CODES:

Bﬁﬁﬁﬁéﬁiﬂcjﬁﬁaﬁsgf |

;Inherent
‘kIacxuaive OR

f:and the result is stored 1n the register. L

N: Set if high order bit of reault Set gty
Z: Set if all bits of tesult ate Olear
i 61eared

'fé Not 5£fected.

‘register. This instructidn may be used to set{
'jinterrupt masks . : S : :

- 7eight bit logical OR of the c&xrent condition code
 bits with he immediate operand. Any condition - ‘code
_bit including the intertupt masks can be set by chis,
faaeratiou. .

f”rmmeaiate

~Aésembl¢t&Ugﬁf# ¢“id§fj;; o

No Operation

This 1s a single byte instruction that ‘causes thef,¢}1~
program counter to be incremented. No .. other,ﬁ‘*f
registers or memory voutents are affected.~‘,“

th Affected.

P&rforms an eight bit 1nclnsive OR opetatian ‘between
the cantents of a register and the memory - operand,

"“TNot Affected.

and thek result {is placeﬂ ‘iﬁ the candition'cod&_

wbe conditien,codes are set o)the result of the

- 5-17 =

. Assembler Users Guide

PSBS

Dzscnzprlow:

CONDITION CODES:

ADDRESSING MODES:

PSHU
DESCRIPTION:
CONDITION CODES:

ADDRESSIG HbDE:k

PULS
DESCRIPTION:
~ CONDITION CODES:
,2 -AﬁﬁRESSIHG MODES :
CPULU
DESCRIPTION:
 CONDITION CODES:

- ADDRESSING MODES:

stack.

 pulled from the system stack.

Push Regisfers;on the System Stack

Any subset ‘of the MPU registers except the system
stack pointer itself are pushed onto the system

‘ stack.

Not Affected.

Register List

Push'ngistetayon the User Stack
Any subset of the MPU registers except the user
stack-paiuter‘itsélf are pnshg§ oﬁtokthe uder stgck.
Not Affected.

Register List

Pull Regfsters from System Stack = §
Any subset of the MPU registers except the system
stack ' pointer itself are pulled from the system

Unaffected unless the ‘condi;tidﬁ,""c'od‘e”’reg‘iisyter"fié; o

© Pull Reglsters from the User Stack

" Any Wibset of the MPU registers except the user

stack pointer itself are pulled from the user stack.

Unaffécted unless the condition code register s
- pulled from the user stacke

Register List

- 5-18 -

' ,‘ RET (ext)

szscxxpmrau.

cauazrzax caags:;

 JADﬂRESs£§£ KQDES*J

 i"AQSQﬁbleriﬁsérstGuiﬁéﬁ f jfm

‘Return Registers

The return instruction;pulls the specified regiater
118t and the program counter (which effects a return
fran subroutine) from the system stack.

- Eﬁt Aff&cteé.

VQagister List

*fggtaee“iﬁff

ite all bits of tha ogtrand dua place 1eft',
hrough the carry flag. !his is a nineubit shift

““3 aﬁﬁf&tinn.

 ADDRESSTNG MODES:

é&«& with bit sevea af tﬁa original apéraaé

A umalatsr, nirect, Inéeﬁa&, S:teuaed

- 519 -

Assenble:'ﬂbets Guide

ROR

. DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

RTI

DESCRIPTION:

CONDITION CODES:

_ ADDRESSING MODES:

~RTS

DESCRIPTION:

~ CONDITION CODES:

' ADDRESSING MODES :

Rotate Right

Rotates all bita of the operand right one ‘place

through the - catry flag. This is a nineohit shiftf
operatidn. :

H: Hot Affectﬁdi :

N: Set if bit seven of result is Set.

Z: Set if all bits of result are Clear. .
V: Not s:ffecteé. :

cy Loaded with bit gero of the origiaal aperanﬁ

Accummlator, ﬁ&rect. In&exed Extended

Rétufnffrdmvlhtarrupt

The . savud machiue state is recovereﬁ from the systemf %
stack and control i8 returned ta thé &ntar‘rupted

‘program.

Recovered frem Stack

Iaherent

Return ftom Subroutine

Prcgraa econttol is returfied from the suﬁmﬁne td

the calling program. The return adéreas is pulledlf"

from the syatuﬁ stack.
Not Affected;i

Inheraﬁtk

T

~ cOMDITION CoDES: < |

- _stgam:mmd

| AUDRESSING MODES: fnherent

Aaseaﬂ:ierﬂsarsm:h

SBC : Subatract with Borrow

’ ‘DESGRIPTIQN: e Sahtracts the contents of memory and the ‘borrow tlag5

~£¥om the contents of a registar, and places the
"reanlt in that regiater.,

| CONDITION CODES: H: Undefined.

Nz Set if bit seven of the réiﬂlt is Set.

Bt Set 4f all bits of the rnanlt are Clear. o

:]~¥‘ et 1f the operation eaucﬁn d two” s canplenent

. overflow.

i_‘ﬂﬁ: Set 1if the operatian di& aat caaée a carry ftam
o bit seven in the ﬁLU. i

i&te, ﬂirect, Indaxe&, Exeeaded '

§Cé (ﬁ#f) ‘f . 3 :fSﬁt Con&ition C&des

| ﬁﬁéﬂﬁtﬁ@iﬂﬁﬁ; }«f{ fExpi1c1£1yH sets any sd&n&t af tke Mpy eondiﬁion‘ '

‘ ~;£1$§3 Thig operation in an exteﬁéa& syntax version

1 cﬁn&itiou flags spaeiféed adrcgtrands are tﬁt.~'
4is not 9¢asible to sp&eﬁiy'the Eﬂtira Sta:e flag.j

‘51 'Tﬁis 1nstrﬁ¢tioa traaﬁ, rus‘,7é signeﬂ binary
el ~bi§” vélue in the B acewnulator fnto a signed
; xtean—bit value in th& b a&euaniatur.,, f

:e&e high ar&ur hi:,af tha reault 1: S!t. ,
allybits of the }é&uit are ﬁlear. o

Sl e

- Assembler Users Guide

ST

~ DESCRIPTION:

- CONDITION CODES:

ADDRESSING ‘MODES:

SuB

DESCRIPTION: ;

CONDITION CODES:

ADDRESSING MODES: >

sss‘vx

DESCRIPPYON:
- ADDRESSING MODES:

DESCRIPTION:

~ CONDITION CODES:

’Stéré‘kegiSter Inio Hbﬁory

Dir&ct, Indexed, Extende&

C: 86t 1f the eﬁerzt&cn did not cause : a carry frcm fL i

'stAEk, and control 1is cransferrsd through the SﬂIi
‘mtar., e s

,jTh x&q and FTRQ maﬂk bits ate
“£la

;uﬁaffegteﬂ.

'inh&féﬁtf'

Writes the contents of an MPU register :mto a memory

'location. .

H NN! Affected. ; ‘ g
N: Set 1f bit seven of stored aata wae Set.
2 8
Vi Cl
‘ C¢

!: :lf all b:lta of stomﬁ data are Clear.

t" Affected;' n

Suhtract Memory from Register f fj , 5

~‘Snbttwts the valm 1n memory frm the canteats of a
~rag£ster. :

Bt Undefined. S e
'N: Set 1f the high otﬁet bit af the rasu,‘it is Set. o

Z: Set if all bits of the result are Clear.

Vi Bet 1f the operattan cduses s tm 5 cuaipiemmt L

“everflow.

the higﬁ ét&er bit in the ALU.

‘ watﬁ, Mfeet, Xndexed, Ex:amléd:

£ the m‘f“gg:lst;ers are pushe f onto the ayatém‘

jt‘ia t:im com:tit.w
:Ltioix codes are '

AIZ ~other e

register.

Softmre Interrupt 2

All. s! the MPU regiaters ‘are pwﬁhed onto !:he sys‘

stack and conttal 13 transferted thwwgh the S’WI
VECtGl‘r : e o : E

Not Lffacted.

ey

 Assembler %ers&«xide A

~ ADDRESSING MODES: Inherent

',SWIjif:ﬂ‘:," . Softiare‘lnterrupt 3

| DESCRIPTION: AL of the MM registers sre pushed onto the system

~ stack and control 1s tramsferred through the SWI3

~ CONDITION CODES: ot Affected.

ADDRESSING MODES: . Inherent

Csme ~ Synchronize to External Byent

| nﬁscax?rmm . When a SYNC instrucion 18 executed, the MPU enters a

~ S¥RCing state, stops processing instrucitons, and

- waits on an interrupt. When an interrupt occurs,
_ the SYNCing state s clesred and processing

 comtinues. If the faterrupt 1is ensbled, the

| processor will perforn the inverrupt routine. If
. the interrupt is masked, the processor simply
| comtinuss to the next fmetructfom.

Tr af&rﬁagistet to I{egiater |

isters of like size; ie., eight bit to eight bit,
d sixteen bit to sixteen bit. =

$: Register

 Registers may only by transferred betwsen

Assembler Users Guide

TST Test the magnitude of an'eigh: bit operand.

 DESCRIPTION: The TST instruction conceptually adds an immediate
: ' value of gzero to the operand and sets the condition~" N
~kcodes accordiagly. No data is written to memory or

data registers.

 CONDITION CODES: H: Not Affected. R e
B . N: Set if bit seven of the result is Set. ;
2t Set if all bits of the result are Clear. :
V& Cleared.

- Ct Not Affected. .

- ADDRESSING MODES: Accmlator, Ditect, In&exed Extanded

o o5u24 -

Assembler Users Guide

6.3.1 - The Star Attribute

- The equate directive may be used to define a symbol having the star
attribute. This flag is used by the FCB directive to determine whether
one or two bytes of data need be generated. The star flag is selected
by preceding the equate operand with a crosshatch character, "#". The
star flag 1s also selected if any symbolic reference in the operand
expression has its star flag set. An example of the use of the star
flag follows: Saar ~ ‘ S S

0p0A ~ CR EQU #30D0A Set Star Flag
0200 . ORG $200 , »
0200 4D 53 47 MSG FCB "MsG" Message Text
0203 0D 0A 00 - FCB CR,0 End of Text

6.4 - ERR -- Generate an Error

The ERR" directive 18 used to generate an assembler error for
documentation purposes. When the ERR directive is encountered, the
assembler will generate error number 65, Programmer Signaled Error.
This directive may be used to call attention to certain areas of source
code, or may be used in conditional assembly in order to detect certain
exceptional conditions. For compatability purposes, the mnemonic "FAIL"
is also recognised for this operation. T e S

- 6¢5 = ERRIF =~ Generate a Cond1t£bna1 Error

truth-valued expression. If the expression value is true, an _error
message 1is generated as iIn the ERR directive, otherwise the ERRIF
directive is ignored. Note that the unary truth valueioperatéfs>"?"?and

"/" may be used to cOnvertmanﬂarithmetic~expreasidn‘intu_a,trﬁth'value.,

The ERRIF directive requires an operand, Which‘1t,ex§é¢f§”téf5éjé'

Some Examples of the ERRIF directive follow:

c702 ~ ERRIF 45<12 False Condition
c702 ~ ERRIF *=>§C700 Too Much Memory Used
*%% ERROR *** 065 - Programmer Signalled Error Tl s

6.6 - FAIL — Generate an Error

~ The FAIL directive has been provided for \compatgbllityflwifh ‘
- Motorola assemblers and is identical to the ERR directive. R

6.7 = FCB -~ Form Constant Bytes

The FCB directive is used to define areas of data at a
-and may have one or more operands, separated by commas.
may be either a character string or an assembler expressio [t
‘dmportant to realize that character strings (such as used in this
directive) and character constants are not equivalent. '
~ constants have a maximom precision of sixteen bits (two

while character strings may be of any length.

ly tine
operand

afactéié)

- G -

‘«_‘is considered to be a character string constant.

chatam!:ewo Pl

kAséeaﬁler U§ers Gﬁide‘

If an eperand begins with one of thﬂ assemhler quote characters it'~' -

- The data generated
{;cansists of the ASCII characters enclosed by the quotes. 1If a quote 1g

' to be enclosed within the character string itself, its presence must be
indicated by two successive quote characters. For example, the string
 ‘JOHN’’"§’. coneists of six characters, and could also be defined by using
e aktttauté syntax “Jﬂﬂk'S" If character constants ate required as
f an exp thay must not be the firat term in the
g , ;the ‘undry plus aperacax ‘can be ‘used to force
'Qzexﬁreasiﬁﬁ evaiﬁtt'\ﬁ;

;pareatha&e&. ﬁn axsﬁple of this technique is given Iater.

_an expression and is evaluated to s sixteen bit wntd.‘
ate permitted and have the value zero. The

7 ‘Bou§1e bytéksigniflcaﬁce mxy be forced by usina the significance forcing
~character, ">" as the first character of the expression and in this

or the entire expreseion can be encioﬁeé 13, jf‘V'"
egin with a ‘qaote eharaetat, it 1s:

“'{1? generates one byte of data for each expresaiou. '

case, two b?taa of data will be generated. Thiﬁ feature is useful forf~ B

,j;mbeddiua aﬂ&r&aa mﬁs inside of conatmts.,

directiv& has th& sr&r:
kthe expresaina value {s used to determine
ta will be gemerated. 1If the value of the
or equal to ~128 end less than +128, then
ated. For all other values (including
of data are gm&ratoé. ' Fote that the star
ough the use of the forcing character "<" ;
re Several ex&m@les af tha FCE &irective,

B fﬁsf&r ?Iaa Sot
#S0D0OA Star Fiag Set

B 0,1,-1 Single Bytes
FCB "ABCDE" - Charscter String
FCB “AB°°CD’ Quote in String =
3 (“A’<16) Character mpmssieu
 HTAMLT M Chgvacter Expression
5500 -~ Porced sigaificanee f;‘x*
B 500 . oOne Byte .
"“;"‘&Bc" 13 Two ﬁpﬁfaﬁés
B ﬁiS,,,15 ‘Null Operands
““‘*@Rm* Star Flag Toed i
< 8 3Furea& Sigﬁificanse .

"\eifiad, vei:het ofi the

[+ s and are used in expression
tha1sigﬁi£ifance of cach operand is forced to

[,‘eight hita Etsaré?’;’

» character string
"Beginning w&tk a quote character are

8 af the state of the star fiag or the forcing;V;\'7:“::

 Assembler Users Guide

648 - FCC ~--Form Constaﬂt\Characters

: The FCC directive is used to define character atrings in nemory.‘k
I The character string starts with the first non-separator character after L

~the FCC opcode, and terminates with the ‘second occurrance of that

- 1is permitted, and it must have a valid disk file name format.
 inclusion files may be nested, and up to ninetyﬁﬁine library
_ be included in one assembly. If - no extensian ia speaift&d
e library file name, an exteﬂsioa of .TXE 1s assumaé ﬁm

' character. These delimiters may be any printable ASCII character, and

- are not considered as part of the character string. Some examples of
.~ the FCC directive follow: - : ; L : :

O00F 41 42 43 4 BCC /ABCD/ Slasthelimiter
0013 65 66 67 68 . FCC "efgh" Quote Belimitet

6.9 - FDB ~- Form Doublé;3§te

The FDB directive ia used to define 16-bit wurds in mamnry-; !t ‘may
~.have one or more operands, separated by commas, and will define. ‘one word

for each operand expression. This directive is normally used to;*defineu
addresses. , il , S

610 ~ FMB — Forn Multiple Bytes

The . TMB directive 18 used to. reserve areas of mamory and to
‘initalize them to a single 8-bit value. The first operand of the MB
directive defines the length of the memory area to be defined while the
~ second operand definees the byte of data to be stored in the memory sre
- The second operand is optional, and 1f omitted, 1s assumed to be gero.
- If the BSZ directive is used, it 1s ‘processed, emactly like - - the mMB
directive and since no second operand is spaeifiad, the mahﬁrﬁ area is
properly initialized to serces. The first operand of FMB (and of BSZ)

must mnot contain any fnrﬂutd or external refartncesa SGHs uxaﬁ@les of;jﬂ’
the PMB directive followi - : , e ;

0013 00 00 00 00 00 FMB 5 ?1ve Bytes o
O01E 0A 0A 0OA \;;;~VFHB, 3,10 Three Bytes .

f ~6.I1 -~ LIB —~'Library Ihéiusiuﬁ

The LIB airective is used to 1nc1ude ad¢ : iles as
source language input to the assembler. In effect, the iuetﬂﬁaﬁ sautce«;u :
file replaces the library directive in the assesibly. Only one

files may el

6809 17 oz sn 91. .1, ~ BSR ncvg
92.
93.}‘1> . LIB . SUBS
Lot *
2.01 .+ SUBROUTINES
7069 A6 80 4.01 MOVE LDA 0,%+
7068 A7 AQ 5.01 STA . 0,Y+

- 64 -

6012 = NAM «m Provide Hcdule Name

. The N&! diractism " has been provided for source |
patability ' ola ExBug assemblers. Its use is

ive may be used in a program.
ve characters '
le

 ‘mechanism used to define a program counter section, and to set its
origin. If a label ia spe
~as the name of the progr:

,‘ must not contain forwar
i,zstatements fallow.

' “pagination ig in effe

- the procedure dictionar

 ﬁf¢annot be referaaézd

Assembler Users Guide

6 14 - ORG -~ Set Program Counter Origin

, ‘The assembler supporta multiple program caunter ‘sections, each of
which may be absolute or relocatsble. The ORG directive is the

:ified on the ORG statement, this label 1s used
ounter section. If no label 1is specified
{s selected. The operand of this directiv,
external references. Some examples of ‘

the ABSOLUTE program count

0200 ‘ ”idﬁs“ $0200 Abeolute PE .
0400 5 1 BE?‘ GRG $0400 . BU¥ Prugram counter

v6«15 ~ PAG ~— Start ‘a Néey ?hge

i The page directivu s-usaa to force the assembler to the top o
_page of listing. If the page option has not been selected, either by
specifying the "P" option on the assembler command line or via the OPT
statement, the PAG directivg.ia ignored and appears in the listing.
‘the PAG directive itseif disappeara ftom t

 progtam listing.

 6.16 - PROC ~- Begin a Praa, ure Blbck

fc'aﬁed to hegin 8 procedure bléck« If the
ibel, then that label is used as the name of
jtéd, 1f the dietionary has alre&dy been
'”vagis considered to be a continuation of t:

0 atatemeﬂt witb no lsbel creatés

'3”7 The procadure dir
{ptocedure statement has

defined, then this di;
“previous definiion. -
'“&ictionary ﬁ!med M
‘_the symbol table uniess

Symbols defineé in

‘ai to the block uﬁless they are explicitlf
yy using the colon character ":" as
i is appaar 1n the diceiuﬁary that cantaiﬁﬁ

In ‘a siﬁi.zw

’ fk_colon on its 1ﬁhll' i]

o ‘dictianaries are aearchad.

prag caunter.:_~_ ;
re being used with procedure &ireetives, :he ‘prog

ia 7;)f should take place ptinr to praceﬂ

&efiﬁitign‘

i ytaceéure are resal,\' 5y
 the current procedure dictionsry (called the local éietiannry).;;
reference has not been resclved, the parent dictionary is searched,
then 1its parent, and 86 on, ‘until the global dietionary has be/
searched. If the reference has 8t111 not been resatvud, then th& pﬁbi

: Symbolia reféren

\M ; 543;-

Assembiét Uéeré‘eﬁi

" The abﬂity to declam entry points and to have local labels is
great assistance in ‘writing wmodular, block structured e
Parameterization can be well defined and cantmlled by prohibit: ;
a’cceéa‘ tc')' “reeuhmutm,& arieg.. An examyle showing tha use o
\ 1es follows: ‘

cmmmz BY‘T’E rmw Rwrms

ENTER WITH X => SQURCE ?KELD
S 'Y => TARGET FIELD
B.= FIELﬂ LEKETH

PROC Declare Kﬁtty Point
DA 0,%+ QGet Source Byte

CMPA 0,Y+ Compare To Target
BNE FAIL If Mot Equal, Exit
DECB Decrement Count

B oMp
 OPATL RTS

‘Loop Till Done
Kxit Rnutina :

1 qu 'H&es& é&e:wna fes are not printeé
x:mless thﬂ “ﬁ" opt :

urrent 10681 éictionary and then proceeds thmugh"
dictiamry until the global dictionary ha
- local dictionary up throug
_thﬁn: and cmly thven are the

Assembler Users Guide

The order in multipie public dictionaries are searched 1s not

defined. More precisely, public dictionaries are not in general searched
in the same order in which public directives appear in the input stream.
- If duplicate labels appear in one or more public dictionaries, which one
will be wused to. finally reaolve the reference is unpredictable. An
"example of the use of a public dictionary is shown'~ i :

‘~ 28-,, - PUBLIC ' f ~Start Libtary

| cn03 ,29. WARMS EQU $CDO3 Warm Start Addr
€24 - 30. PCRLF EQU $CD24 Do ca/m |
: . 8. END 4 |
0209 BDCD 26 91 ISR PCRLF Do Line Feed

020C . 7E CD 03 92. : mp WARMS ‘Back to BOS

6. 18 - QUAL =- Begin a Qualified Data Block

The QSAL directive 18 used to start an intetnal qualified data

‘dictionary. The directive must have a label field which ie used as the -

name of the qualified dictionary. Symbols defined inside of a qualified

data structure must be referenced by using the name of the symbol

qualified by the structure name. An example of a 'qualified structure
and its references is shown.

CF69 B6 03 55 52. DA RECORD.SEX Get Sex Value
CP6C 81 46 53. . cMPA 4" See if Avatleble.

- - .

i S B2. kﬁcnab QaAL : - Start A
0355 . 83. NAME RMB 10 = Name ?1&14

L 035F B4, SEX RMB I Sex Fleld,
8. END

;’6 19 - RMﬁ - Resetve Hﬁﬂbry'ﬂytes

‘The RMB directive is uﬁcd to teserve a blaek Qf memoryg;»" o
initialization 1is performed on the reserved memory. -

‘must not contain any forward or external references, and specifies the/f ;l e
length of the block of memory to be reserved. Since no object code 18
~ generated, RMB directives do not require any space in the ébjact code -

1~f11e. Some examples~of anx fbllawz

0100 ssur MR 25;!5..,, sman'nuffez l
0200 e Lﬁﬁ!‘ _RMB 10000 Large ‘Buffer

 6.20 - smnr -~ Set Birect ?uge Paeudo aegiscer |

The SETDP directiva 15 used to inform the assenbler o fpfééﬁﬂed ~ff'

contents of the direct page register. This value is by the

assembler to decide whether direct or extended absol fﬁrn@;;ﬁgN o
should be generated. The most significant eight bits of the tpression

: field is uned for a&dresaing calculations. The express y

- least aisﬁi

have the reloeat‘ion attrihnte of sbsolute. In Addition, it must not
r contain forward or external teferences. 5 ot P

G It is 1nportant to realize that the SE‘I‘DP directive in no way'
; 'affects the actual contents of the direct page register. It ia the
'programmer 8 re&penaibi'ity ‘to insure that the proper values are loaded ,
into this register a ’ecution time. The directive affects only zhe { *i'
' b ‘ le decision proceaa. An exmple of the use of

LDA g‘anxxﬁésk | Load éddr MSP o
TFR ADPR Load Direct ?ﬁse -

‘ SETBP~sCiK,, kf'3 Teil Assemﬁlar

. WAIT LDA ACIA Get Status

: LSRA . Cheek cheivet ,
CBCC WAIT Loop if Ebthing
LDA ACIA+1 ~ “cgt Data Byte

campatability option has baen set (eithnr on the

2 OPT directive), the SETDP directive uses the
ts uf the~valaa to s%t tﬁe &irent pege pseuda ulf*
: ragisﬁer.
 genetat¢é.

f6.21 ..sggc
e

U asseabies 118
,generate&. §

perand 1n'uat spet Iiéé, 0ﬂﬁ»blank :
13 sﬁaeifiéd, and 18 positive, it specifies g
1 ;1 haiapérand ia nﬁgative,~“*‘

;ia asad te syecify 4 titl ‘ _as :
tién h&s not been SE;étteﬂ ‘either by apacifyiﬁg
: miand line or. via ﬁhﬁ“;ﬁ?? directive,
-~ the TTL direc : ‘ eption is active, the
~ printing of the & . , ressed, a new page of
 listing 1s @ . the directive is used as.
“thﬁ new p&ge h#ﬁ& ;_~,’ e S TER

:2listing‘- the
_the "P" optian on

 named aection then becomes the currently active progr.

';'JEX3Mple, a pure code procedure references a static

AssenhleffﬁSéré"Egidé

' :6 23 - USE —— Use Program Counter Section

The USE directive causes the assembler to selec
counter section: No label may be specified on a uee; ta
operand field must either be a single asterisk, "#", or the name of a
- program counter section. If a name is specified, t
counter section is made the previous program counter

asterisk is specified, the previous program counter sec
: currently active s&ctién._ If there is no previa
.. message 13 produced and the ABSOLUTE program counter 4

on is maﬂe the
ction, an error
~ae1ectad.,«

Zically conaected]:
In the following
a8 areas The two

fgpiecéé'bf;pfdgremfihto different memary locations.

a new program
:ement, and the -
curreat program

tion, and then jj¢~,_
counter. - If an

- sections are kept distinct in memory by using multiple program counters.

 Notice that the references to . the data sectiuﬁ éil utilize directl‘
addressing.‘f & 8 o

' "11; .

24 Pack a Word Striﬁg
RO . B
2414 . ke WE copE
Z41A BE 00 Zb . 5. PACK LDX 0ORD
241D IF 12 » _¥6._ f@"M, TFR XY
" 241F D6 2C f77'f7; f . LpB LER
2421 oFr 2c 8. - o CIR LEN
2423 A6 80 9. CRAM LDA O0,%+
2625 2704 10. BEQ LOOP
2427 A? AD ;Q{JLIN';, . STA 0,v+
2428 5A | ‘13, 100P DECE @
. 282C 26 PS5 14, “BRE CRAM
o 242E 39) 5 RTS
002c USE DATA
002C Rﬁﬁ i
. 002D RMB 32
- 242F USE

- 6-10 -

PUBLIC DICTIONARY *"?mm]
NOPARENT | |

©44; ' svmuuovs"mn" B I

v Pﬁmm ﬁﬁmn mﬂw “
L ‘f.’_;,;'"'svmos."mv'me s
j _svmwmm"m | svmeoL-sameLe-gess 4»—---_;.@ i
Bl mﬁmmmmv"tm" | smat.“mrma' m e

Th& %mpie ngr'&m shm 1 submatme "EW“ mat is used to cmert T

from BCD decimal numbes {packed decimal) to d‘!s;ﬂay format, complete with i

© insertion of commas, déﬂ%?‘ si dec imal points, and whatever. This pr&gram Lo
ﬂlustrates several of the v::afp&&" ities of the SW?PC ammter. e e

B Tne label SAMPLE at "A“ daﬂﬁes m erﬁiﬂary sma‘; and agpears ffi tm dictimryk |

. MAIN along with its value, 0000, A small subroutine MOVE has been included, and

x f‘,~‘,symbo1 EDMK in ‘the ‘global -

- additional intmsﬁng

‘placed in the pum ic dict‘f#nary 'fa the Pum.xc §tatemﬂt at "B". The label MOVE o
~ referenced de r'a famﬁ in the dictionary e
, »mm.*meom. he sy ent end statement ; terminates the public s
- dictionary. The s&&mﬁtmﬁ m is. aﬂ‘uéed«wi* the LIB statement at "E“ The
PROC statement at "F" defines a rocedure dictionary named MAIN.EDMK and a
fonary. The symbol definftion represents an
explicit ent&xaédmis as dendted by the colon on the label. Labels within the
Procedure EUMK are Lo the procedure .and appear only in dictionary
- MAIN.EDMK. Some examples of local labels are DIGIT and NEXT shown at “G". One
int is the local variable UL FLAG that 1s created on
_ the stack by subroutine £ This variable is réfarmea via e a&g&twa offset :
from the user stack pam%f', as shom at "W, e R

‘{

ATTERN INTO STRING BUFFER = -

PATTERN ' GET PATTERN ®
STRING ~ POINT TO OUTPUT STRING -

PL LOAD PATTERN LENGTH

OvE : :m MOVE IN THE PATTERN @

L'!K RO’UTIKE O COWEKT THE S‘ERING

RCDSTR POINT TO BCD STRING

STRING . - AND AT THE OUTPUT smmc

PL 'SET THE PATTERN LENGTH
AR e FiLLcmmmmA_spms:@
DMK ~ CONVERT THE STRING

F A Lw;mc noz.um STGN INTG THE smmc :
ngn A 'STOFF IN A DOLLAR sxm

N 4 " STORE INTO OUTFUT STRING
. W% ERD OF TEST #%%

ove nu:nm HOVE: nowm -

g

Ten wﬂmx smms
- TM!
- L&m a mm

; X+
ST+

. cEr ym somn BYIE

OVE ,
~ mm gmn

TERN 70 LOOK LIKE 15"' &ad‘.dd‘d,.'éd"' |
1IE DIGIT SELECTOR BYIE

1P SIGRIPICANCE STARTER ¢
:35 m;ns, ["8, m,ss, '"nm&w : IR R T &

~?&T‘!‘E§m LEW}! OF mmn :
©BTRING TO EGLB OQ?IPU‘I
xm,sza &03, $12 e

K mcwnzsunnomm 1 ®

T0 ASCIT UNDER CONTROL OF A PATTERN

i- ZERGV
. => AFTER BGD STRING L
 => FIRST SIGNIFICANT DIGIT

.

 VARIABLES AS OPFSETS INTO THE STACK

'FIRST SIG DIGIT POINTER

BCD STRING POINTER .
. REMAINING PATTERN LENGTH
. FILL CHARACTER VALUE

B AR

o CQOkC 25°02 0 o 35,02 0 UUUBLO- 'nmfxr o
"‘0050'8170?, SR 37‘.02»'1)1611 nsn mmc‘n‘

0052 so 41'.0,27;3“1 . rsTB

0077 BA 30 64.02 DIGCHAR OKA
. 0079 39 - 65.02. RIS

em o
007E 10 AF 44 02 8T
o081 39 73.02 SICEXIT RTS

oo o000 38 ED SKMPE

-= NO ERRORS mm}ssmn' -

O0IEDS 003F EDME

' -- Prdcedu:e: MAIN.EDMK '

0081 sxczxx'r i

T 31;7633 Eﬁ‘i,;[126.0 .

CLEAR sxmm:cm PLAG
:‘cmﬁ UPM!LWN FLAG

« -GET THE NEXT PATTERN CHARACT&R AND CONTINUE

. o,~s

GET PATTERN BYIE

'DECIDE WHAT TYPE OF BYIE
IF HIGHER, ASCII CHARACTER

IF LOWER, REGULAR DIGIT
TP EQUAL, SET SIGRIFICANCE

| THEN GET THE DIGIT VALUE

0046 A6 A4 32.02 NEXT IDA 0,Y
0048 8L 1F 33.02 . CMPA HSIF
0044 22 06 34,02 BHL ASCII

QD4R 8D 2K 0 36,02 T BSK SETSIGK

39-‘02 L STGRE ASGII GKA.BM:TER OR YILL CBARM’:TER IN !’ATTERH

- rEST sxmzncmcn FLAG
'IF NON-ZERO, STORE DIGIT
PICK UP THE PILL CHARACTER
STORE INTO THE PATTERN

'DECREMENT PATTERN LENGTH

- IF NON-ZERO, CONTINUE

0053 26 02 42402 .0 . BRE STORE
0055 A6 C& 43,02 LDA PILLCHR,U
0057 AT A0 58402 ;srona . STA . 0,¥+
0059 6A 41 . 45.02 Lt UDECY LERGTH, W
005 26E9 46.02 BME NEXT
00SD 32 C4 35 F6. 47.02 - EXT A,3,%,Y
S 48502 %
49.02 cm' m:xr uxcmu. nwrr mu scn STRING

m m. m mmn 'ro BCD s'mmc
o : _ PEYCH TWO BCD DIGITS
. UL_FLAG,U. COMPLIMENT HIGH-LOW FLAG
B&%" $ DIG. . IF ZERO,. LOW ORDER DIGIT
LM{LSM;LSEA;LSRA SHIFT RIGHT POUR BITS
'DIGCHEK . - AND*ENTER CHECK ROUTINE.

7%~i~BGB m. - STUEF POINTER BACK

9 féap u:qsum OFF HIGH ORDER' nmxr

GANCE IE' NOE»»ZERO, CONVEXT DIGI‘I TO ASCII

0073 27 02 62.02 DIGCHEK BEQ DIGCHAR IF ZERO DIGIT, BYPASS
0075 8 03 63,02 - . BSE: SETSIGF CHECK DIGIT SIGNIFICANCE
: et romx AN As‘cl;:n:cn :

6“7-"02‘ . ..,’ sm SIGET.FICME AND ?IRST SI@IFICANT DIGIT ADBRESS .

5 CHECK SIGRIFICANCE FLAG
smnm | EXIT IF FLAG ALREADY SET
. SET SIGNIFICANCE FLAG
. SET FIRST SIGNIPICANT BIGIT

wn:s;;gf
0078 26 04

" vsp pmR,U

_ERD OF MAIN PROGEDURE .

3138 DAY - §,P,0.
0000 FALSE - P,U
0000 SAMPLE
3739 YEAR = 8,P,0

_¥PDO001 - PD 0000 ABSOLUTE = PC 0038 xzmsm ,
3132 MONTH - $,P,U 0025 PATTERN 0008 PL ;
OOIF S8 - 0030 STRING 0001 TRUE - P,U

== Public: MAIN.*PDOOOL

001D MoOVvE

0077 macma,g‘ 0073 nmcm' :
0004 FSD PTR 0001 LEWGTH
{0061 NEXTRCD mm smmxé

s by

This column wn

m.sasters, in iﬁéf'f vein

- s.z - Notes

" 13.3 - ﬂautiﬁn ﬁa%mas

Assembler Users Guide

m 8.0 - Assembler Brmr mssages

The : assembler perfams extensive ermr checki:xg while precessiag

source input. The Phﬂmphy behind the error handler is that the

course, no assembler tan make a programmer write perfect programs, but

 assembler should -assist the programmer in staying out of trouble. Of

it can help by de &at:iug ‘a8 many faults as peam&, and By m&im
unclesn coding puctt 103 diiﬂcult., To this end, the assembler forces

- certain conventiens, such
_explicitly declared a prah&htting ‘data references into
dictionaries. The e ness pro
large extent #ﬁlf

n#n-—ﬁtr

; 8.1 - Hessage Fmt

Each error- 'mnga :inclwies colum nmr, which is tlm cclm,
' was 1aek1ag at when the error was detected.
; ,maxiy‘ points at the end of the. symbol or
. hﬂwvar, in certain m@tivm cases;
~ the column cmmr may ’i&e meral columns d:{ffet‘ézxt ‘than the item in

 that the statement sc

expression fem& t& &e ‘srrol

BYFOT. S
In the dmﬁpcﬁsﬁ of : the error messagas, the tem “poiﬁted itm”
refers to the iten ‘
been divided into

m"ﬁer of aerverity. e

ﬁates ate

as requiring procedure entry ;»inta to be
ture

ing the columm counter. Assembler errors have L
asgas: Notes; Caazians, Vammga. Ertars, snd !

o }&eé ﬁ!'ren t‘hﬁ assembler has pwceam a valid but e
uniikely operation. For example, it 1s entirely valid to use a

conditional branch 18 wetion with an offset of gero. Simce this

 results in two iden
- operation mnkﬁxy‘
Zero" is proém:a&‘

cantieas a;ra ,
that may produce une
for cross assembled

For example, the 6800

- - instruction CBA (Compare § kt:é, A) éams not g&nmte a wmemory reference
sar \mﬂe the cross aseembled instructions mske
e The cautiau ;“Itplicit Use of

‘when run on & 63&& roe
~ use af ane wmit "; ;

" 'thaa gmtttion ef

mduced when & cmﬁm m B«eaﬁ ﬁ&%me!:ﬁg

41 branch paths, the assembler comsiders the
his csse, the note msﬁage ﬁ”ﬁrmﬁ ‘Offset 1s

ﬂmn tifm asseabm: has &a“@ew& a ew&itiﬂn .
aide aF ﬁm’e messages normally oceur

an eight bit value snd the expression mpﬂi&&:iﬂ L

- that velue has more than eight bits of significance, 1t may or may not

 constitute an error. In this case the watning msag’e "Ym&i&te ?alzm\ =

ﬁmﬁteé" Wuid b& pw&aceé. :

Assembler Users Guide

8.5 ~ Error Messages

Error messages are produced when the assembler has detected an

invalid but not necessarily fatal conditfon. For example, 1f an
 instruction references an undefined symbol, the code produced for this
~ Statement is certainly iavalid but other statements are unaffected. In
this case the error message "Undefined Symbol Referenced in Expression"
~would be produced. R R S S

8.6 ~‘Disaster'néssggészﬁi“

8 are produced when the assembler has detected a
condition which ﬁiii"é&ubé’co&é;sﬁhseqﬁeﬁtly produced to be invalid.
For example, 1f the wymbol table overflows available memory, all
subsequent labels will femain undefined and not be placed in the symbol
table. There is little chance of the produced code being anywhere near
correct. The disaster medsage "Insufficient Memory to Define Symbol" is

Disaster messages

produced.

The following table fs. a complete 1ist of " the error messages
produced by the assemblér. They have been listed in numerical order of
error and are not necessarily grouped by function or cause. .

Etror - Uhﬂefined Mhemonic Operation Gode

,N“* The assembler could not find the pointed é$f iﬁ‘ ¢ithéf(; ,
fi_j;its mnemonic ‘table or in the macro direc ~ Pive no-op .

inatructions are generated in lieu of the‘ nten&ed cpde. ¢

Error - Previausly Defined Symbol

Assembler Users Guide

10 - Error ~ Label Required for This Operation

11

12

13 .

14

15

16

17

18

. The current statement contains an assembler directive thet i
‘;,requirea a label and none has been specified,

Brror - Operand Required for This Operetion

. iThe current statement contains an assembler directive that¢~f_

requires an operand end none has been epecified« 3 s -
:Errar - Invalid Terminator for Indirection |

The:! assembler was attempting to’ process- an operand

,specifying indirect addressing when a terminator character

was encountered prior to the closing indirection bracket.

Error - Registers Not Same Size

“A transfer or exchange insttuction specified two registere

3Indexed : addressing was epeeified using the regie er;~{/5
predecrement mode, but the register deeignator specifies;,teﬁ
‘the program counter., : ST .

- ———

Whrning - Direct Reference Hby Be Invalid

‘that were not both eight bit or both sixteen bit‘e‘

registere.

Error - Forced Significance Invalid in Imaediate Mbde

An operand specifying immediate addressing also specifiedd'i‘ffriw~
a forced significance. Immediate mode significance is,i“"
,implicit with the instructien being proceased.k¢btz e

An operation usins an ebsolute addreeeing mode has a0

operand that forces direct addressing. The assembler has

determined that extended addressing is required to reach~ -
target address. . e

Error - Index Base Register Required :

Indexed eddressing was specified, nbue
designator followed the comma. - i

Error - Predec Invalid with PCR Indexing

kError - Predec Iuvalid with Accumulator Offeet Indexing ;

Indexed addreseing was specified usins the regieter;}"7

predecrement mode, but an accumulatar

offsetﬁi
apecified. ~ :

-8 -

no reglster

- /M\,V‘i e

Indexed add ?ssing vas specified using both the register .
- predecremen:: mode and the register postincrement mode.. e

'B' 7 direct: ver ' containe&,« a'f‘i‘]f'
es H;Sincehthis reference may be affected
:by the outdme of the m d ‘ t::lve. this constitutes am- .

Assembler Users Guide

29

30

31

32

33

34

35

36

37

Error - Indexing Specified with Immediate Addressing
Immediate addressing mode was specified, but an index
register designator was located or implied by the
expression.

Warning - Maximum Negative Number Negated to Zero

While the assembler was evaluating an expression, a
maximum negative number was negated. The resuling two’s
compliment overflow forced a zero result.

Error - Operator Stack Overflow

The current expression contains operators nested too : deep
for the assembler evaluator to parse.

Error - Value Stack Overflow

The current expression has too many terms for the
assembler evaluator to parse. :

Error - Operator Encountered Out of Context

The assembler was parsing an expression and expected a
value token when an operator or terminator was
encountered.

Error - Missing Right Parentheses in Expression

The pointed expression has more 1left parentheses than
right parentheses.

Error -~ Too Many Right Parenthesis in Expression

The pointed expression has more right parentheses than
left parentheses. :

Erro: - Invalid Binary Operator in Expression

The pointed character string was encountered in the
context of a binary operator and is not a valid binary
operator.

Error - Invalid Unary Operator in Expression

The pointed character string was encountered 1in the

context of a unary operator and is not a valid unary
operator.

- 86 -

b

L

39

40

41

42

43

44

45

~replaced with the 6809 instruction CWAI $EF. The

‘Assembler Users Guide

38 — Warning - Use of WAI is not Equivalent to CWAI

A 6800 WAI Mnemonic has been encountered and cross
assembled into a conditioned wait instruction. Note that
the 6800 instruction sequence NOP; CLI; WAI; ' ‘should be

cross-assembled sequence of instructions can result in an

interrupt occurring after the execution of the CLI

- instruction but before the WAI.

-

 The assembler will allow any number of inclusion files,
however, the inclusion count is two decimal digits long.

Disaster'-'lnsufficient Memory to Defiﬁe'Symbol

The assembler found that there was insufficient memory. to

insert the label of the current statement into the symbol

table.

Disaster = Insufficient Memoryffor Library Inclusion

The assembler found that there was insufficient memory to]

open the 1library inclusion file.
Error - Library File Could Not Be Opened

The specified libraty file did not exist‘dn disk, or there

was a directory error resulting in failure of the open ‘on ‘

the library file.

Error - Library,File Specification Invalid

The file specification on the library statement was
invalid. ' ; ‘ : : :

Error - Library File Specification Required
The library statement requires a file specifications’

Waraning - Library Inclusion Numbers May Be Invalid

If more than 99 inclusions are used, the inclusion number
will no longer be valid. :

Warning - Multiply Caused Two’g Complemeﬁt“0verflow ‘

The product of two sixteen bit numbers could not be
contained in the sixteen bit result. ~ The least
significant sixteen bits of the product was used as the

result.

R 3-7 -

e

Assembler Users Guide

46

47

48

49

50

51

52

53

54

Warning -~ Divide by Zero

The divisor value was found to be zero and the assembler
has substituted the maximum positive number as the result.

Error - Absolute Value Required by ORG

The ORG directive forces the program counter to become

absolute hence the value of the expression on the ORG

statement must have a relocatability attribute of
absolute. : :

Error - Absolute Value Required by RMB

The RMB directive requires a non-relocatable length for
its operand. '

Caution - E Condition Flag Undefined Except on Stack

The ANDCC or ORCC operation referenced the "E" condition
flag which is not meaningful except on the stack.

Error - Attempt to Redéfine a Protected Symbol

The current statement attempts to redefine the value of a
protected symbol.

Warning - Label Subsequently Redefined

This 4s the first occurance of a label that is
subsequently redefined.

Disaster ~ Code Generation Pass Phasing Error Detected

This error indicates an internal malfunction in the
assembler and should be reported at once to Southwest
Technical. Copies of the program generating this error

along with all relevent data should be included with the
report.

Error - Undefined Node Referenced in Structute

The assembler was processing a qualified data name when it
encountered a node name that was not found in the

structure’s dictionary.

Error - Null Node Name Invalid in Structure

The assembler was processing a qualified data name when ic

encountered a null symbol or terminator character.

- 8-8 -

R

Lo

Assembler Users Guide

55 we Disaatar - Insufficient Memory to Define Procedure

Insufficient memory remained in the asaembler dictionary‘:
space to allocate space for a new procedure or data
dictionary and- the new dictionary has not been. defined.

56 — Disaater - Insufficient Memory to Define Program Counter o

; Insufficienr ‘memory remained in the aasembler dictionary
,gfspcco to allocate a new progran counter. ‘

57 == Error - Insufficient Memory for Data Dictionary

;.;Ineufficient memory remained in the aasenbler dictionary
~8pace to . allocate space for a new qualified data S
dictionary and the new qualified name has not been' L
defined. S S et

587é-‘Error - Eight Bit Index Offset will be Insufficient
‘r‘;fConstant offset indexed addresaing was apecified with the
offset forced to eight bits. The assembler has determined
that this offset will be insufficient to allow the
instruction to reach its target.
“59,—-,Error - Forcad Short Branch cannot Reach Thrget kf
;1<f2 e _ The expression field of a branch instruction has forced,rs
G5 T the offset to eight bits. The assembler has determined =
- that this offset is insufficient to allow the instruction,‘,;.f
 to reach its target.
?60Jé¥“Error -'Branch Out of Range

jThe sssembler range—check option was specified and the 1
currant short branch cannot ‘reach 1cs target.~ :

: 61 —+jBrror - Abnolute Vhlue Required for FMB

; rThe PMB directive requires a non-relocatable length for&n\\'k
~ 1its first operand. e : o oy

'f62 -—'Error - Forward Reference Invalid for B

7The length expression of an PMB directtve contained A o e
- forward reference. Since the reference may be affected by o
~the outcome of the WMB directive, this constitutea an\f! :

~ invalid circular reference. -

63i+5;3rror - Sixteen Bit Precision Cannot be Fbrced for FMB |
The value expression of an FMB directive has a forced'

. sixteen bit precision. The assembler has used the“r
: ,~low»order eight bits of the exgression as the fi11 bytes. o

See 5'

Assembler Users Guide

64

65

66

67

68

69

70

71

72

Error - Invalid Option Specified

‘The specified option is invalid for the OPT directive and

has been ignored.
Error -~ Progtammer-Signalled Error

An error message has been generated by an ERR or ERRIF

\conditional assembly statement.

A push or pull operation was specified with a null

Error - Specified Register Invalid as Index Base

Indexed addressing mode was specified but the frégister

specified ‘as the index address base cannot be used for ’

indexed addressing.

Error - Operand Required for Indirection

The assembler was processing an opetand specifying -

indirect addressing when 1t encountered and end of

statement operator. Null operands, are mot valid when

using indirect addressing.

Warning - Immediate Value Truncated

The assembler has truncated significant bits from a

sixteen bit expression to cobtain the required eight bit
immediate value.

Error - Leading Bracket Required for Indirection

The pointed expression has terminated with a closing right
bracket indicating 1indirect addressing mode, but no

leading left bracket preceeded the expression.

Warning - No Registers Specified in List

- register list.

Error - Parent Reference Invalid in Global Dictionafy

An explicit pérental reference was encountered while
processing code in the global dictionary where only local

or global references are valid.

Error - Directive Requires Primary Statement

An assembler directive was encountered in the context of a
secondary statement. Directives must always be specified”

as primary statements.

w 8=10 =

2,

P

o

999 -

73 —

e

A USE statement specifies an identiffer that has not been

15—

o 76 -~ Warning - Mi@sing'End Statement -

- Assembler ﬁbe:s-ﬂnide' 5

Warning - Absolute Program Counte:fSelected

Too many levels of USE Previous were specified. The
default absolute program counter has been selected.

‘Ei:or‘~ Invalid Program Countér,Specifiedf

previously defined as a program counter name.

vsotekeinranch;0£fsétkis Zero

i

»AThranéh*?inst:uction was encountered with a computed
. offset value of zero. If full optimization was selected,

the entire branch instruction is supressed.

‘.'The~assemblet has detected ah enﬂ'ef‘file»éondition ;ptidr

' ta, processing the end statement for the MAIN procedure.
. No transfer address has been assigned to the object code

‘ ~ This artork indicates an internal malfunction in the

Disaster - Invalid Error Address

~assembler and should be reported at once to Southwest

Technical. Copies of the program generating this error
along with all relevent data should be included with the

report l: i . D

Co-8ell -

