
UniFLEX™
BASIC

Precompiler
Users
Manual

(Facetechnicalsystems
consultany,INC.

UniFLEX™
BASIC

PrecompllerUser's
Manual -

COPYRIGHT © 1980 by
Technical Systems. Consultants, Inc»

P.O. Box 2570

West Lafayette, Indiana 47906.
All Rights Reserved

™ UniFLEX is a trademark of Technical Systems Consultants, Inc.

MANUAL REVISION HISTORY

Revision Date Change

A 10/80 Original Release, Basic Precompiler Version 1.0

B 3/81 Appendix: Add new keywords from Basic Version 2.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its

contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in

whole or in part, by any means is prohibited. Use of this program, or any part thereof,

for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of

undocumented features or parameters may cause unpredictable results for which Technical

Systems Consultants, Inc. cannot assume responsibility. Although every effort has been

made to make the supplied software and its documentation as accurate and functional as

possible, Technical Systems Consultants, Inc. will not assume responsibility for any

damages incurred or generated by such material. Technical Systems Consultants, Inc.

reserves the right to make changes in such material at any time without notice

Chapter 1

Chapter 2
2.1

Chapter 3

3.1

3.2

3.3

Chapter 4

4.1

Chapter

Appendix

Table of Contents

“Introductionsee eeeeeeeeaceecesseapereeeseneees
Conventionssoseancevecnecscddebevdecenpecdvans
DeFINitIONS w.ccccvesevecrseveverscccceecvosees

Gettingthesystem Started ssccoccscecesnevense

The UniFLEX command Tine settecvartececsonseess
Command line Options «eeseccseccoevccvevesccens

Printer interface cope eecereneeenoeseneeneenes

Features cececcecccscceresevcvvcesenegeseevevers

Variable names sscoccsvevccennsececnvevescccere

Line labels sscescsseecescecesepesascceseevees

Continuation Of LiNeS «recereeseresovacoeoreres

Embedded comments in source program secevebens
Precompiler control statements eoeececeevereece

String/macro definition statements .occreeere

Creating an using definitions ssesececevens1

22. Removing definitions weccccereevevecovcecer

Conditional compilation statements cececeeses

Variable type declarations creseseceoernceses

Pagination and listing control statements ...

Miscellaneous control statements eooeeneneeone

Error messages SHS H CORE SEHHHEHRHEHHHEHHESHHESHEEHEE

~iii-

ow

Ob

oO

OT

mH

Ww

WwW

&

~~oS.

10

11

12.
12
12
14
14

15
17
18

el

UniFLEX Basic Precompiler Manual

1. INTRODUCTION

The UniFLEX™ Basic Precompiler allows programmers to produce Basic

programs that are easier to read, easier to write, and result in smaller

"compiled" files. (UniFLEX jis a trademark of Technical. Systems
Consultants, Inc.) The precompiler accepts Basic source files and

produces a "compiled" file similar to that produced by the "compile"
command in UniFLEX Basic. This precompiler should not be confused with

other Basic compilers that generate machine language code, because the

UniFLEX Basic Precompiler generates an intermediate code that can only
be used with UniFLEX Basic.

This is the manual for the precompiler only. It is assumed that the

reader is familiar with Basic so detailed programming examples are not

given nor is the syntax of the Basic language explained. These are

given in the "UniFLEX Basic User's Manual".

The precompiler executes in two passes and will accept any size file on

the disk for input as long as enough memory is available for internal

tables. If necessary, additional memory for these tables is requested
from the operating system up to the maximum permitted by the system.
Two types of output can be generated. The first one is a source listing
of the Basic program complete with line numbered statements and any

error messages. The second is the compiled version of the program ready
to be executed by Basic.

The precompiler, like Basic, performs very little syntax checking of the

source statements. Most such errors will be. detected by Basic when the

program is executed.

This manual is organized as follows. First. some terms used throughout
the remainder of this manual will be defined. The next section explains
how to start the program running, including a discussion of the command

line parameters. Next the major features and advantages of the

precompiler are explained, including precompiler control statements.

And finally, the last section lists all of the error messages that can

be generated by the precompiler.

-1-

UniFLEX Basic Precompiler Manual

UniFLEX Basic PrecompilerManual

2. CONVENTIONS

As in the UniFLEX Basic User's Manual, the following conventions will be

used when showing the general form of a statement or command. Items not

enclosed in angle brackets (<>) or square brackets ([]) are keywords and

should be typed as shown. In such keywords, upper case and lower case

letters are considered equivalent. Angle brackets (<>) will be used to

enclose essential components of the statement. Square brackets ([])
will be used to enclose optional components.

<essential item>

[optional item]

2.1 Definitions

LETTERS .

;

The set of letters consists of the ASCII characters "A" through "Z"

and "a" through "z". The underscore character ("_") is also

considered a letter. -

NUMBERS
.

The set of numbers consists of the ASCII characters "0" through
Wg", :

,

.

SEPARATORS .

The set of separators consists of any ASCII character that is not

letter, a number, or an underscore.

PHYSICAL LINE
A physical line is defined to be one line on a terminal ending with

a carriage return. It also can be thought of as one line as

generated by an editor.

LOGICAL LINE :

A logical line consists of one or more physical lines that contain

either a single Basic statement, or several Basic statements

separated by the Basic statement separators (colon or backslash).
A logical line is assigned a single statement number by the

precompiler and may be considered the equivalent of a numbered line

in ordinary Basic. A logical line may be broken across several

lines as described later on in this manual.

UniFLEX Basic Precompiler Manual

UniFLEX Basic Precompiler Manual

3. GETTING THE SYSTEM STARTED

Since there are not any built-in editing functions in the precompiler,
you must have previously created a source file on disk before using the

precompiler. An editor may be used to create the file. The source must
be a standard UniFLEX source file, which is simply a series of textual
lines terminated with carriage returns.

3.1 The UniFLEXcommand line

The syntax for calling the precompiler is as follows:

-

pe <source files> [+<options>]
|

whereall file names arestandard UniFLEX file names and default to the

current working directory. Sufficient path information should be

Specified to accurately locate any file that is not in the current
workingdirectory.

The _<source files> are previously edited files containing the Basic

source lines. Asingle file name, or more than one file name, may be

specified as containing the program to be processed. If more than one

file is specified, they are processed in the order that they appear on

the command line. The data contained in these files is assumed to be
one complete program, perhaps broken into several parts, each part in a

file. It is not possible to process more than one program with a single
invocation of the precompiler.

The <options>are used to control the processingof the program and are
_

described in detail in the next section.

3.2 Command line options

Optionally, one may include precompiler options on. the command line.
The list of options must start with a plus sign ("+") and may not have

any embedded spaces. More than one list of options may be specified,
but. each list must start with a plus sign. Some of the options are

single letters while others require an argument. Those that are single
letters may be grouped together; for example: +bld. Those that require
arguments may either stand alone or be the last of a group of. options;
for example: +bs10, where the "s10" is an option with an argument. For

readability, those optionsthat require an argument may use an equal
sign to separate the option letter from the argument. Thus, "s10" and

"s=10" are equivalent. Option letters must be specified in lower case.

Following is a detailed description of each of the legal command line

options.
—

UniFLEX Basic Precompiler Manual

up

Hel

"d"

"fF"

AH

Ny u“

"] wt

Do not create the "compiled" (binary) file.
No binary file will be created even if a binary file
name is specified. This is useful when compiling a

program to check for any syntax errors or for

obtaining only a listing of the program.

Print precompiler control statements.
Some of the precompiler control statements (described
later) embedded in the source program itself are not

normally printed. Specifying this option will cause

them to appear in the source listing.

Write "compiled" file despite errors.
If errors are detected, the "compiled" file is

normally not written. Specifying this option will
cause the file to. be written even if errors are

detected. Statements that contain. errors will be

incomplete and will probably cause Basic to generate
an error when the program is run.

Disable form feed eject.
The top of each page starts with an ASCIIform feed
character. Specifying this option causes no form feed
to be issued. This is useful when the Tisting is
being displayed on a terminal that uses the form Feed.character as a “clear screen"command.

Specify load and go
“If this option is specified and there were no. errors

detected by the precompiler, then instead of returning
to the operating system when finished, the precompiler
calls Basic, passing it the name of the object file.
In effect, this causes the execution of the "compiled"
program. This option is ignored if the "b" option (no
object file) was selected. If the "d" option (produce
object file despite errors) was selected, Basic will
be called even if errors were detectedby the

precompiler.

Specify line number increment.

This option requires an argument. When a program is

processed, the line numbers assigned by the

precompilerincrement by 1 for each logical line

processed. This option may be used to change that
increment. For example, +i=10: may be used to set the

line number incrementto 10.

Suppress the source listing.
If not specified, the compiler will print¢each line as

it is processed. If this option is specified, only
those lines containing errors will be printed. When

this option is specified, the precompiler control

-6-

UniFLEX Basic Precompiler Manual

statements $lis and $nol are ignored. (These control
statements are discussed later on.)

Specify margin size
This option requires an argument that specifies the
number: of margin lines to be printed. when a source

listing is produced. These margin lines are blank
lines printed after the page eject is performed and

before the title line is printed. This option, along
with the "p" option, permit the vertical centering of
the printed listing on a page. The specified value
must be between 0 and 255 inclusive. If this option
is not specified, a default value of 3 is used.

"n". Turn off line numbers.

By default, line numbers are printed at the beginning
of each logical line. But if the source program
already has line numbers, like a normal Basic program,
more line numbers would only be confusing. This

option wil] cause those line numbers assignedby the

precompiler to not be printed.

"o" Specify name of "compiled" file.

This option is used to specify the name of the file
that is to receive the "compiled" program. The name

may start immediately after the option letter “o", or

may be separated from the option letter by an equal
sign. For example, "“+to=test" and "+totest" are both

acceptable ways of specifying the file "test" as the

"compiled" file. If this option is not specified, the
name of the first source file followed by the.
characters. ".bc" becomes the name of the "compiled"
file. If the name of the first source file is too

long to accommodate the extra characters, it is
shorted to the proper length and then the extra

characters are appended.

"p" Specify page length.
This option is used to specify the number of physical
lines of the source program that are to be printed on

a page. Each page consists, therefore, of this number
of source lines, plus 5 lines for the title and

subtitle areas, plus any margin lines. The specified
value must be between 1 and 255 inclusive. If this

option is not specified, a default value of 55 is

used,

"s" Specify starting line number.
Normally, the precompiler starts assigningnumbers to

the logical lines starting with 1. This option may be

used to specify that a different starting line number

be used. For example, specifying "+s=10" or "+s10"

~]=

UniFLEX Basic Precompiler Manual

indicates that the first line number is to be 10.

"t" Suppress title and margin printing.
.

This option causes the precompiler to not attempt to
format the listing of the source. No title lines are

printed, no margin lines are printed, and the number
of lines per page value is ignored. In addition, all
precompiler control statements are printed and the
control statements $pag and $spc are ignored. No page
ejects are performed. This option finds its greatest
use when the source listing is routed to a disk file
for later viewing in case it is needed for

troubleshooting.

Some examples of these options are:

++ pe prog] +lo=test no listing
"compiled" file is "test"

++ pc pl p2 +nb listing on

no line numbers
no "compiled" file

++ pe test +cds10 +110

list source command statements
write "compiled" file despite errors

starting line number is 10
line number increment is 10

"compiled" file will be "test.bc"

3.3 Printer interface

The precompiler does not have a built-in method to output to a hardcopy
device. However, since the program listing is routed through the
UniFLEX standard output device, the “pipe” mechanism may be used to
route the output to a printer spooler. For more information, consult
the UniFLEX Operating System Manual.

UniFLEX Basic Precompiler Manual

4. FEATURES

Several things stand out as the main features of the Basic Precompiler.
They are:

Se, : woe

1) unlimited length variable names,

2) unlimited length label names,

(3 continuing logical lines across physical line boundaries,
4) embedded comments in the source program, and

(5) compilation and listing format control via precompiler
control statements.

4.1 Variable Names

Variable names may be of any length and may contain letters, numbers,
and the underscore character ("_"). The first character must be a

letter or an underscore, and the name must be followed by a blank,

separator, or the end of the logical line. Upper and lower case letters
are distinct. Thus, the variable "first_time" is considered different

from "First_time". The name cannot be the same as one of the Basic

keywords (a list of them is in an appendix to this manual). All upper

and lower case variants of keywords are also forbidden. Thus, "open",
"Open", "OPEN", etc. are all illegal variable names. However, string
and integer variants of keywords are legal; eg. "“open%"and "“open$"are

legal variable names even though "open" is not. If the keyword is

itself a string or an integer (eg. chr$), then the floating point and

integer (or string) variants may be used as variable names. For

example, "chr$" is a keyword, but "chr" and "chr2" are valid variable

names.

Also, the name of a floating point variable cannot start with the

letters "fn" (or any upper or Tower case variants) unless it is a call

to or definition of a user-defined function. Integer and. string

variables, however, may begin with "fn". In the case of user-defined

functions, upper and lower case variations of the letters "fn" refer to

different functions. Thus, "fna" and "Fna" are distinct user-defined

functions. Here are some examples of variable and function names:

THIS_IS_A_VARIABLE_NAME
So_isthis
this 7s a STRINGvariable$
_S0_TsTHIS $
this is too$
FNCTTONISAFUNCTIONNAME
_THIS_ISANINTEGER_VARIABLE%
7so_1STHIS% }

response$

_@9-

UniFLEXBasic Precompiler Manual

mode%

Some illegal variable names are:

1 cannot_start_a_variable_name
9CANNOT_START_AVARIABLE.NAMEEITHER
CLOSE (variable names cannot be keywords}

4.2 Line Labels

Basic normally requires an integer line number on every source line of.
the program. The precompiler on the other hand, only requires a label
on a line to which the program will transfer control. Also, the label
need not be an integer, it can be any contiguous series of characters
consisting of letters, numbers and underscores. Any other character
terminates the label name. All statement labels must begin in column
one, and statements must start in column two or beyond. Some examples
are:

THIS_IS_ALABELREM This is a remark with a label

1000 REM That was the label "1000"

this_is_a_label_without_astatement
0000 REM Note that 0000 is a legal label name, therefore

REM "goto 0000" is a valid statement; but
REM "goto0000" references the variable "goto0000"

Labels may appear. in expressions. They are translated into integer
constants by the precompiler. Thus if. the label “restart_line" has been
assigned the value 120 by the precompiler, then the statement:

if erl<>restart_line then on error goto 0

is a valid statement. In this case, the system variable "erl" would be
compared to 120.

4.3 Continuation of Lines

The precompiler allows logical lines to be split across physical line
boundaries or in other words, a logical line may consist of one or more
physical lines. To do so, just place a backslash ("\") before the
carriage return. The precompiler converts the backslash-carriage return
combination to a space. This means that variable names and keywordscannot be continued onto the next line since the space iS a separatorCharacter. It should be noted that multiple spaces and horizontal tab
characters are ignored except inside of strings where they are

-10-

UniFLEX Basic Precompiler Manual

significant. For example:

IF DELTA% <= GAMMA%THENPRINT ‘DELTA ='; DELTA% \

ELSE PRINT ‘GAMMA='; GAMMA%

* DEFINERECORD I/0 BUFFER

FOR Is0 TO NUMBER_ELEMENTS;: \

FIELD #1, I*ELEMENTSIZE AS G$, \

15 AS FIRST_NAME$(I),
15 AS LAST_NAME$(I),
09 AS SOC_SEC_NU$(I)
02 AS INDEX$(T)

\
\
\

\

NEXT I

In the first line of the example, the "if-then-else" statement is

considered as one logical line even though it is split across two

physical lines. It should be pointed out that a remark statement after

the "then" portion would cause the “else” statement to be ignored, since

remarks stop at the end of the logical line. The next logical line is

the line that begins with an asterisk in column one. (The blank line is

ignored.) This is a comment line and is ignored by the precompiler. The

last logical line consists of seven physical lines starting with the

"for" statement and ending with the "next" statement. Even though seven

physical lines are involved, only three Basic statements are used (the
"for", "field", and "next" statements). If more than one statement is

on a logical line, the statements must be separated by either a colon

(:) or a backslash (\). A backslash-carriage return combination does

not act as a statement terminator.
.

4.4 Embedded comments in the source program

It is possible to embed comments in the source program at any point
outside of quoted strings. The comment is enclosed in braces ("¢" and

"}"), Comments may span physical lines and do not need the "backslash

followed by carriage return" convention to be continued. For example:

dim a(3,4), {This could describe the use of this matrix}\

b(4,5), {This comment could describe the second matrix

and could be continued on another line without

using the backslash }\
c(3,5) {Note that backslashes are needed

outside of comments}

-ll- ©

 UniFLEX Basic Precompiler Manual

_ 4.5 Precompiler control statements

As. the above example shows, any line that starts in column one with a
_

separator is considered to be a commentline. In most cases, a comment
line is ignored by the precompiler. If the comment starts with a dollar
sign ("$") in column one then the line is considered to be a precompiler .

control statement. Spaces may appear between the dollar sign and the.
control statement. There are five groups of precompiler control
Statements: :

(1) string/macro definition statements

(2). conditional compilation statements

(3) variable type declarations

(4) pagination and listing control statements

(5) miscellaneous statements

4.5.1 String/macrodefinition statements

The precompiler allows the user to assign a string to an identifier.
All subsequent references to the identifer in the source program will be
replaced by the specified string. Arguments may be passed when the
string is used, and the definition may be changed or removed. —

4.5.11 Creating and using definitions.

Definitions are created using the "$def" statement. The general form of

‘the$def statement is:

$def <name>=<string>

The name is any combination of letters and/or digits as defined earlier.
The string is any. series of characters. It is not necessary to enclose
the string in quotation marks. The string may span several lines, but
the line continuation convention (backslash followed: by carriage return)
must be used. Thus, a definition may not include more than one logical

line. If the specified name has already been used for a definition, the
previous definition is removed and the new definition used. Here are
some examples of definitions: ee

—$def random number=8.*rnd(0)+1
$def clear_array=for i%=0 to 10:\

a(iZ)=0:\
next i%

In the first example, the name "randomnumber" was defined to be the
string "8.*rnd(0)+1". Any occurrence of the name "random_number" in the
program subsequent to the definition would cause the name to be replaced -

by "8.*rnd(0)+1". An example of its use is:

if random_number<= 4 then x=x+1_

a] Q=

UniFLEX Basic Precompiler Manual

The second example shows a multi~line definition. Note, however, that
it spans only physical lines, not logical lines. As with normal lines
in the precompiler, the backslash followed by carriage return is
replaced by a single space when the line is processed. Since this
definition can be interpreted as a complete logical line, it may stand
alone in the program. For example:

clear_array

It may also be usedas part of a larger construction, for example:
|

if b<>0 then clear_array

It is also possible to pass. parameters when calling a definition.
Within the definition itself, a substitutable parameter is indicated by
an ampersand (&) followed immediately by a. digit from 0 through 9
inclusive. The first substitutable parameter is indicated by &0; the

Tast, by &9. When calling the definition, the actual values are passed
by enclosing each one in a pair of square brackets ([]) immediately
following the name of the definition. As an example, we will modify the

"“clear_array" definition to accept parameters.
.

$def clear_array=fori%=&1 to &2:\
oe

&0(1%)=0:\
next i%

This definition allows us to specify the name of the array to be

cleared, and the index bounds of the portion of the array to be cleared.
Here is an example of its use:

clear_array{a][3][7]

This would cause the following statements to be generated:
for 1%=3 to 7:\

a(i%)=0:\
next i%

A null argument may be specified by merely specifying the square
brackets, for example: abc[]. If insufficient parameters are specified
when the definition is called, no substitution takes place for those
references that do not have a corresponding parameter,

There are some limitations that must be observed when defining and using
these defined strings.

:

A definition cannot include anything that must start in column 1.

Thus, a definition cannot contain labels or -precompiler control
statements. A call to a definition cannot start in column 1; this
column is reserved for labels.

The name of a definition cannot be the same as a Basic keyword.

-14-

UniFLEX Basic Precompiler Manual

A search for a definition is made before searching. for a variable
name or line label. Thus, definition names may be the same as

variable names and line labels, but this would disable the use of the
variable name or line label until the definition is removed. This
holds true even if the variable name is that of an integer or string.
Thus, if there is a definition "“abc", then the variables "abc",
"abc%", and "abc$" could not be used.

Definitions may contain calls to other definitions, but a definitionshould not call itself.
Lastly, calls to definitions may not appear within Basicstrings
(enclosed in single or double quotation marks).

4.5.1.2 Removing definitions

A definition is removed by using the $undef control statement. The
general form of this statement is: :

$undef <name>[,<name>...]

The names are those of the definitions that are to be removed. No error
is generated if a name is specified for which a definition does not
exist.

4.5.2 Conditional compilation statements

Names defined with the $def control statement may be used to effect the
conditional compilation of parts of the source program. Precompiler
control statements which test for a name having been defined are used to
determine if a segment of the program is to be included or excluded.
The following is a discussion of each of the conditional compilation
control statements.

$ifdef <name>

$ifndef <name>
The $ifdef statement asks if "name"is currentlydefined (as the

Subjectof a $def statement). The $ifndef statement asks if
"name" is currently not defined. If the statement is true ("name"
is defined for $ifdef or not defined for $ifndef), then all lines
following the statement up to a $orifdef, $orifndef, $else, or

$endif statement are processed. If the test is false, then those
lines are skipped. i

$orifdef <name>

$orifndef <name>
.

These statements provide for alternative tests. If a preceding
test ($ifdef, $ifndef, $orifdef, or $orifndef) was false, then
these statements are evaluated. If the statement is true ("name"
is defined for $orifdef or not defined for $orifndef), then all

¢

-14-

UniFLEX Basic Precompiter Manual

lines following the statement up to a $orifdef, $orifndef, $else,
or $endif statement are processed. If the test is false, then
those lines are skipped. As soon as any one of a_ consecutive

series of $ifdef, $ifndef, $orifdef, and $orifndef statements is

Found
subsequent ones will be skippedunt

1] a $endif statementisound.

-$else
The $else statement is used to indicate the final alternativeto a

sequence of $ifdef, $ifndef, $orifdef, and $orifndef statements.

If none of the previous tests were true, then all lines between
the $else statement and the $endif statement are processed. If

any previous test was true, al] lines betweenthe $else and the

$endif are skipped.

$endif
The Sendif is used to indicate the end of aconditional.

Hereis an example of the use of conditionals:

* The following statement defines "aaa"
* to be the null string.
$def aaa=

$ifdef bbb

rem This will be skipped since "bbb" is not defined

$orifdef. aaa

rem This will be processed since "aaa" is defined,
rem even if it is only the null string.

$orifndef bbb

rem This will be skipped because even

rem though "bbb" is not defined,
rem a previous test was true.

$else
rem This also will be skipped

b

because a previous
-

rem test was true.
$endif

4.5.3 Variabletypedeclarations.
‘Normally, a variable is considered to represent a floating point number

unless it is followed by a special. character to indicate an integer
variable or a string variable. If most of the variables used ina

program are integers or strings, typing the percent signs or dollar

signs can ‘become quite burdensome. The precompiler allows the

programmer to specify which of the three variable types, floating point,
integer, or string, is to be assumed if there is no special character

appended to the name. This is achieved through the $type contro}

statement. The general form of this statement is:

$type <type letter>

-15-

UniFLEX Basic Precompiler Manual

The type letter is either an "i", an "s", or an "f", indicating integer,
String, or floating point, respectively. The type letter may be in
either upper case or Tower case. When a $type statement is encountered,

|

all variables that do not have a special character appended to them are
assumed to be of the specified type. When the default type is set to
either string or integer, floating point variables may be specified by
appending an exclamation point to the variable name. For example:

$type i {Define default type to be integer}
a=1 {This refers to the integer variable a%}
a$="pdq" { The string variable requires the dollar sign}
al=pi {This refers to floating point variable "a"'}

$type s {Now change the default type to string}
a="abc" {Now "a" refers to a string variable.}
an=2 {The integer variable "a" now requires the

percent sign}
a!=5, {The floating point variable still requires the

exclamation point}

$type f {Change to floating point}
a=10. {Floating point variables now do not need the

exclamation point}
a%=10 {Integers need the percent sign}
a$="10" {Strings need the dollar sign}

Notice that more than one $type statement may appear in a program. The
specified type remains in effect until another $type statement is
encountered. There is one limitation that must be observed when usingthe $type statement. If a variable is the same as a Basic keyword
except for a trailing special character (eg. open$), then it must alwaysbe specified with the trailing special character. The special character
is the only way that the precompiler knows that the name is a variable
and not a keyword.

The precompiler also allows the programmer to specifically declare that
certain variables have a specific type. When they are so declared,these variables do not need a special character appended to their names
to indicate the type, regardless of the value of the default type. The
types are declared using one of the three declaration statements $float,$string, and Sinteger. The general forms of these declarationstatements are:

—

$float <name>[,<name>...]
$integer <name>[,<name>...]
$string <name>[,<name>...]

As an example, let us assume that a program uses a lot of floating point
variables, and only uses integer variables for loop control and
subscripts. The programmer decides to reserve the variables i%, j%, and
k% for these variables. To avoid having to type the percent signs everytime that a loop variable or subscript is used, the following statement

-16-

UniFLEX Basic Precompiler Manual

may be. used:
|

|

$integer i,j,k.

Any time that the variables i, j, and k are used without any = special
characters appended to them, they are assumed to refer to the integer
variables. Of course, these variables may also be specified with

trailing percent signs since they are really integers. The $float and

$string declaration statements are used in a similar manner. Names that
are the same as Basic keywords should not be specified in type

declarations since the precompiler needs the trailing special character
(percent sign or dollar sign) as an indication that the name is a

variable and not a keyword. -

,

Arrays may alsobe declared to have a specific type. In this case, the

characters "()" are appended to the variable name. For example,

$stringx,y(),z-

In this example,the variablesx, and z, and the array y are declared to

be of type "string"’. No dimension information should be specified in.

the type declaration; that is done through the Basic "dim" statement.
@

One limitation to the declaration of types of specific variables is that
the declarations must occur at the front of the program, before any

Basic statements are processed. The declarations may be precededonly
by other precompiler control] statements, blank Jines, and comments

(those that start with a separator in column 1, not Basic remarks).

4.5.4 Paginationand listing control statements

Pagination and listing control statementsallow the programmer to format

the printed listing of the program. The following are descriptions of

those control statements. a

.

-

$lis
pe

oe

The $lis control statement. is used to resume the listing of the

source program after it had been turned off by the $no]. control

statement. If listing is already taking place, then the $lis control

statement is ignored. This control statement. is also ignored if the
"1" command line option was specified. This control statement is not

normally printed in the source listing unless the "c" or "t" command

line option was specified. :

$nol
.

4g

.

The $nol control statement is used to turnoff the listing of the

source program, If listing has already been turned off then the $nol
control statement is ignored. This contro] statement is not normally

printed in the source listing unless the "“c" or "t" command. line

-1l7-

UniFLEX Basic Precompiler Manual

option was specified.

$pag
The $pag control statement causes a page eject to occur. Normally, a

page eject is automatically performed whenever a page is filled, but
by using the $pag command one can cause a page eject to occur
earlier. This control statement is ignored if the "t" command line
option is specified, and is not normally printed in the source

listing unless the "c" or "t" command line option was specified. If
the source listing is already at the top of a page, this command is
ignored.

$spe <n> [, <m>]
The $spc control statement causes <n> blank lines to be inserted into
the listing. Optionally the <m> parameter can be specified which is
a keep count. If there are less than <m> lines left on the page then
instead of spacing <n> lines, a page eject is performed and
processing of the space command is terminated. This is useful to
prevent a block of lines from being split across a page. This
control statement is ignored if the "t" command line option is
specified, and is not normally printed in the source listing unless

*the "c" or "t" command line option was specified. This command is
also ignored if the source listing is at the top of a page.

$stt! [string]
The $sttl control statement sets the program sub-title to the
specified string. The sub-title may be 0 to 80 characters long. If
the string is longer than 80 characters, anything past the 80th
character is ignored. The sub-title string is printed left justified
under the title line. If no sub-title string is specified, the
sub-title is set to spaces. This control statement is not normal ly
printed in the source listing unless the "c" or "t" command line
option was specified.

$tt1 [string]
.

The $ttl control statement sets the program title to the specified
string. The title may be 0 to 35 characters long. If the string is
longer, anything past the 35th character is ignored. The title
string is printed left justified on the same line as the date and
page number. If no title string is specified, the title is set to
Spaces. This control statement is not normally printed in the source
listing unless the "c" or "t" command line option was specified.

4.5.5 Miscellaneous control statements.

$lib <file name>

The $lib control statement tells the precompiler to start reading the
source from another disk file. The <file name> should be in the
normal UniFLEX format, with sufficient path information to accurately
locate the file. These alternate input files may be nested up to 12
deep. (This may result in more open files that the operating system

.

-18-

UniFLEX Basic Precompiler Manual |

allows.)

If path information is specified, only that path is searched for the

file. If no path information is specified in the name of the file, a

series of directories is searched in an attempt to find the file.

First the current working directory is searched. If the file is not.

found there, then a subdirectory named "lib" in the current working
directory is searched. If that subdirectory does not exist, or does

not contain the file, then the directory "/lib" is searched. If the
file cannot be found in any of these directories, an error message is

issued.
-

When all of the statementsin the alternate file have been read,
input reverts back to the file that contained the $lib statement.

$scale <n>
on

The $scale control statement sets the Basic scale factor to <n> where

"n" is between 0 and 6 inclusive. For example:
Se

$scale 3

This control statement must precede any Basic statements in the

source file. .-It may be preceded only by other precompiler control

statements, blank lines, and comments (those that start with a

separator character in column 1, not Basic remarks). If an error

occurs in the $scale statement, the scale factor is set to zero. See

the UniFLEX Basic User's Manual for information on the proper use of

the scale factor. oo

—

=19-

UniFLEX Basic Precompiler Manual

-70«+

_ UniFLEXBasic Precompiler Manual

5. Error Messages

There are two types of error messages that) can be generated by the

precompiler. The first type is from errors found on the command line
calling the precompiler from UniFLEX. These errors also include those
detected when making the first pass over the source program. These

whew
are fatal, causing the precompiter to terminateimmediately.

ey are:

Erroneouspage length/margin value

apes length of zero or a page length or margin value largerthan
25 was specified,or a non-digit was encountered in the specified
value.

Error in line number start/increment:

A non-digit. was encountered in the argument to the "s" or "i"

option.

Line number overflow

-A line number was generated by the precompiler that is largerthan
32767. If a line number increment or starting value was specified
on the command line, their values. should be made smaller so that
the largest line number generated by the precompiler does. not

exceed 32767.

Line number start/increment is zero or too large.

pheargumentto the "s" or "i" optionwas zero or greater than
Memory overflow. . Translation terminated.

Not enough memory was available for the precompilerto make an

entry in one of its internal tables.. More space may be made

available by reducing the number or length of variable names,
-

Tabel names, and definitions.

Missing object file name

The "o" command line option was seen but was not followedby a

file name.

No files specified
No input file names were specified on the command line.

Program larger than 65535 bytes.
The program is too large to fit into memory.

‘Unknown option specified
.

.

.

An unknown option character was foundafter the plus sign,

-21-

UniFLEX Basic PrecompilerManual

Errors detected when trying to open the source files are reported along
with the name of the file that generated the error.

The second type of errors are source code errors.

Array declaration not followed by "()"
A variable in a $string, $float, or $integer control statement was

followed by a "(" but not by "()".

Bad constant

An error was detected when trying to convert an ASCII number to

binary. The number could be too large, too small, or contain an

illegal character.

Cannot open library file
A file referenced in a $lib control statement could not be found
or opened.

Declaration not before first statement
A $string, $float, or $integer control statement was encountered
that was not before the first Basic statement. Declarations may
be preceded only by other precompiler control statements, blank
lines, and comments.

Dummy variable may not be typed
A dummy variable was specified to a user-defined function that had
a trailing dollar sign, percent sign, or exclamation point.

Duplicate declaration
The same variable name was given two types by appearing in

conflicting $string, $float, or $integer statements.

Duplicate line label
Two lines have the same label.

"Endif", “orif", or "else" without corresponding "if".
A $endif, $else, $orifdef, or $orifndef was encountered when there
was no previous $ifdef or $ifndef.

"If" nesting level too deep
The maximum nesting level for conditional statements is 255.

Illegal "defined" name

An illegal name was specified as the argument to a $ifdef,
$ifndef, $orifdef, or $orifndef control statement.

Illegal separator in name

A separator character was detected in a variable name ina

~22—

UniFLEX Basic Precompiler Manual

$integer, $float, or $stringcontrol statement.

Illegal scale factor
_

.

The scale factor was too large, too small, or the scale command

was not on the first line of the original source file.

Illegal type specified
;

A $type control statementwas. encountered that did not specify
either "i", "f", or "s"

Missing equal sign in definition
.

.

An equal sign could not be found after the name in a $def control

statement. .

Missing quotation mark
A closing quotation mark was missingfrom a string constant.

No "]" found
:

No closing bracket was foundafteran argumentto a definition

call,
Stringtoo long

A string constant is limitedto 255characters.

Unbalanced Parentheses

An expressionhas unbalanced parentheses.

Undefinedline label
A reference was made to a label that doesnot exist.

Unrecognizablecharacter.
A character was seen that has no meaning to the precompiler.This

may be caused by having too many percent signs or dollar signs at

the end of a variable name. [In general, if the precompiler is

expecting to. find a- variable name or label name and finds a

separator character instead, it will issue this error message.

Control characters other than carriage return and horizontal tab

appearing outside of quoted strings also cause this error.

~23-

UniFLEX Basic Precompiler Manual

=24-

Appendix

UniFLEX Basic Precompiler Manual

The following is a list of all keywords defined in UniFLEX Basic. These

may not be used as variable names.

ABS

AND

ARGS.
ARGC%
AS
ASC
ATN

CHAIN
CHD

CHR$
CLOCK$
CLOSE
COMMON
cos

CVT$%
CVT$F
CVT%$
CVIF$.
DATA

DATES
DEF
DIGITS
DIM

ELSE

END
ERL

ERR
ERROR
EXEC

EXIT
EXP
FIELD
FN

FOR
GET

GOSUB
GOTO
HEX
IF

. INCH$
INPUT

INSTR
INT

KILL

LEFT$
LEN
LET

LINE

LOG

LSET
MEM

MID$
MODE
NEW

NEXT

NOT.

POS
POSITION

PRINT
PUT

RANDOMIZE
READ

RECORD

REM
RENAME

RESPONSE

RESTORE
RESUME

RETURN

RIGHT$
RND
RSET

SECOND

_

SEEK

SGN
SIN
SIZE

SLEEP
SPC

SQR
STEP

STOP

STR$
STRING$
SWAP
TAB
TAN

|

TASK$.
TERM$
THEN

TIME$
TO

TSTAT%
UNLOCK

USING
VAL

WAIT

WIDT#

