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SUMMARY. 

The report gives a complete defining description of the international 

algorithmic language ALGOL 60. This is a language suitable for expressing 

a large class of numerical processes in a form sufficiently concise for 

direct automatic translation into the language of programmed automatic 

computers. 

The introduction contains an account of the preparatory work leading 

up to the final conference, where the language was defined. In addition 

the notions reference language, publication language, and hardware repre- 

sentations, are explained. 
In the first chapter a survey of the basic constituents and features 

of the language is given, and the formal notation, by which the syntactic 

structure is defined, is explained. 

The second chapter lists all the basic symbols, and the syntactic 

units known as identifiers, numbers, and strings, are defined. Further 
some important notions such as quantity and value are defined. 

The third chapter explains the rules for forming expressions and the 

meaning of these expressions. Three different types of expressions exist: 

arithmetic, Boolean (logical), and designational. 
The fourth chapter describes the operational units of the language, 

known as statements. The basic statements are: assignment statements 

(evaluation of a formula), go to statements (explicit break of the se- 
quence of execution of statements) , dummy statements, and procedure state- 

ments (call for execution of a closed process, defined by a procedure 

declaration). The formation of more complex structures, having statement 

character, is explained. These include: conditional statements, for state- 

ments, compound statements, and blocks. 

In the fifth chapter the units know as declarations, serving for 

defining permanent properties of the units entering into a process descri- 

bed in the language, are defined. 

The report ends with two detailed examples of the use of the language 

and an alphabetic index of definitions.
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INTRODUCTION 7 

INTRODUCTION 

Background 

After the mubiicaeienatia of a preliminary report on the algorithmic 

language ALGOL, as prepared at a conference in Ziirich in 1958, much 

interest in the ALGOL language developed. 
As a result of an informal meeting held at Mainz in November 1958, 

about forty interested persons from several European countries held an 

ALGOL implementation conference in Copenhagen in February 1959. A "hard- 

ware group’ was formed for working cooperatively right down to the level of 
the paper tape code. This conference also led to the publication by Regne- 

centralen, Copenhagen, of an ALGOL Bulletin, edited by Peter Naur, which 
served as a forum for further discussion. During the June 1959 ICIP Con- 

ference in Paris several meetings, both formal and informal ones, were 
held. These meetings revealed some misunderstandings as to the intent 

of the group which was primarily responsible for the formulation of the 

language, but at the same time made it clear that there exists a wide 

appreciation of the effort involved. As a result of the discussions it was 
decided to hold an international meeting in January 1960 for improving 
the ALGOL language and preparing a final report. At a European ALGOL Con- 
ference in Paris in November 1959 which was attended by about fifty people, 

seven European representatives were selected to attend the January 1960 

Conference, and they represent the following organisations: Association 

Francaise de Calcul, British Computer Society, Gesellschaft fur Angewandte 

Mathematik und Mechanik, and Nederlands Rekenmachine Genootschap. The 
seven representatives held a final preparatory meeting at Mainz in Decem- 
ber 1959. 

i. Preliminary report - International Algebraic Language, Conm.Assoc, 

Comp Mach, 1, No. 12 (1958), 8. 

2. Report on the Algorithmic Language ALGOL by the ACM Committee on 

Programming Languages and the GAMM Committee on Programming, edited by 

A. J. Perlis and K, Samelson, Numerische Mathematik Bd. 1, S, 41 - 60 

(1959).
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Meanwhile, in the United States, anyone who wished to suggest changes 
or corrections to ALGOL was requested to send his comments to the ACM 

Communications where they were published. These comments then became the 
basis of consideration for changes in the ALGOL language. Both the SHARE 

and USE organisations established ALGOL working groups and both organi- 

sations were represented on the ACM Committee on Programming Languages. 

The ACM Committee met in Washington in November 1959 and considered all 
comments on ALGOL that had been sent to the ACM Communications. Also, seven 
representatives were selected to attend the January 1960 international 

conference. These seven representatives held a final preparatory meeting 

in Boston in December 1959. 

January 1960 Conference 

The thirteen representatives’, from Denmark, England, France, Germany, 
Holland, Switzerland, and the United States, conferred in Paris from 
January i1 to 16, 1960. 

Prior to this meeting a completely new draft report was worked out 

from the preliminary report and the recommendations of the preparatory 
meetings by Peter Naur and the conference adopted this new form as the ba- 

sis for its report. The Conference then proceded to work for agreement on 

each item of the report. The present report represents the union of the 

Committee's concepts and the intersection of its agreements. 

As with the preliminary ALGOL report, three different levels of 
language are recognized, namely a Reference Language, a Publication 

Language and several Hardware Representations. 

Reference Language. 

1. It is the working language of the committee. 
2. It is the defining language. 

3. The characters are determined by ease of mutual understanding and not 

by any computer limitations, coders notation, or pure mathematical 

notation. 

It is the basic reference and guide for compiler builders. 
It is the guide for all hardware representations. 

It is the guide for transliterating from publication language to any 

locally appropriate hardware representations. 

7. The main publications of the ALGOL language itself will use the 
reference representation. 

a
u
 

1. William Turanski of the American group was killed by an automobile just 
prior to the January 1960 Conference.
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Publication Language. 

The publication language admits variations of the reference language 
according to usage of printing and handwriting (e.g., subscripts, 
spaces, exponents, Greek letters). 
It is used for stating and comunicating processes. 
The characters to be used may be different in different countries, but 
univocal correspondence with reference representation must be secured. 

Hardware Representations. 

Each one of these is a condensation of the reference language enforced 
by the limited number of characters on standard input equipment. 
Each one of these uses the character set of a particular computer and 
is the language accepted by a translator for that computer. 
Each one of these must be accompanied by a special set of rules for 
transliterating from Publication or Reference language. 

For transliteration between the reference language and a language 
suitable for publications, among others, the following rules are recom- 
mended, 

Reference language Publication language 

Subscript bracket [ ] Lowering of the line between the 
brackets and removal of the brackets. 

Exponentation * Raising of the exponent 

Parentheses ( ) Any form of parentheses, brackets, 
braces, 

Basis of ten Raising of the ten and of the fol- 
lowing integral number, inserting 

of the intended multiplication sign.



10 1. STRUCTURE OF THE LANGUAGE. 

DESCRIPTION OF THE REFERENCE LANGUAGE. 

Was sich therhaupt sagen l#sst, ldsst 

sich klar sagen; und wovon man nicht 
reden kann, dartiber muss man schweigen. 

Ludwig Wittgenstein. 

1. STRUCTURE OF THE LANGUAGE. 

As stated in the introduction, the algorithmic language has three 
different kinds of representations - reference, hardware, and publication 
- and the development described in the sequel is in terms of the reference 

representation. This means that all objects defined within the language 
are represented by a given set of symbols - and it is only in the choice 
of symbols that the other two representations may differ. Structure and 

content must be the same for all representations. 

The purpose of the algorithmic language is to describe computational 

processes. The basic concept used for the description of calculating rules 
is the well known arithmetic expression containing as constituents numbers, 
variables, and functions. From such expressions are compounded, by apply- 

ing rules of arithmetic composition, self-contained units of the language 

- explicit formulae - called assignment statements. 
To show the flow of computational processes, certain nonarithmetic 

statements and statement clauses are added which may describe e.g., 
alternatives, or iterative repetitions of computing statements. Since 
it is necessary for the function of these statements that one statement 
refers to another, statements may be provided with labels. Sequences of 
statements may be combined into compound statements by insertion of 

statement brackets. 
Statements are supported by declarations which are not themselves com 

puting instructions, but inform the translator of the existence and certain 

properties of objects appearing in statements, such as the class of numbers 

taken on as values by a variable, the dimension of an array of numbers or 

even the set of rules defining a function. Each declaration is attached 
to and valid for one compound statement. A compound statement which in- 

cludes declarations is called a block. 
A program is a self-contained compound statement, i.e. a compound 

statement which is not contained within another compound statement and 

which makes no use of other compound statements not contained within it. 
In the sequel the syntax and semantics of the language will be given. 

1. Whenever the precision of arithmetic is stated as being in general not 
specified, or the outcome of a certain process is said to be undefined, 

this is to be interpreted in the sense that a program only fully defines 
a computational process if the accompanying information specifies the 

precision assumed, the kind of arithmetic assumed, and the course of action 
to be taken in all such cases as may occur during the execution of the 
computation,
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1.1. FORMALISM FOR SYNTACTIC DESCRIPTION. 1 
The syntax will be described with the aid of metalinguistic formulae’. 

Their interpretation is best explained by an example: 

<ab> ::= ( | [ | <ab>( | <ab><a> 

Sequences of characters enclosed in the bracket < > represent metalinguistic 

variables whose values are sequences of symbols. The marks ::= and | (the 

latter with the meaning of or) are metalinguistic connectives. Any mark in a 

formula, which is not a variable or a connective, denotes itself (or the 
class of marks which are similar to it). Juxtaposition of marks and/or 
variables in a formula signifies juxtaposition of the sequences denoted. 

Thus the formula above gives a recursive rule for the formation of values 

of the variable <ab>. It indicates that <ab> may have the value ( or 
[ or that given some legitimate value of <ab>, another may be formed by 

following it with the character ( or by following it with some value of 

the variable <d>. If the values of <d> are the decimal digits, some values 
of <ab> are: 

ere 
12345 ( 

tbs 
In order to facilitate the study the symbols used for distinguishing the 

metalinguistic variables (i.e. the sequences of characters appearing within 

the brackets < > as ab in the above example) have been chosen to be words 

describing approximately the nature of the corresponding variable. Where 

words which have appeared in this manner are used elsewhere in the text 

they will refer to the corresponding syntactic definition, In addition 
some formulae have been given in more than one place. 

Definition: 

<empty> ::= 

(i.e. the null string of symbols). 

1. Cf. J.W.Backus, The syntax and semantics of the proposed international 

algebraic language of the Zurich ACM-GAMM conference. ICIP Paris, June 1959.
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2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS. 
BASIC CONCEPTS, 

The reference language is built up from the following basic symbols: 
<basic symbol> ::= <letter>|<digit>|<logical value>|<delimiter> 

2.1, LETTERS. 
<letter> ::= alb|clale/f/g/nli] 4k |2|/m|njolplalr|s|tlulv|wlx|y|2| 

a|p|c|p|z|F|¢|x| 2] 5]x|L[m|w|o|P|o[z|s|z]ulv|wix|¥|z 
This alphabet may arbitrarily be restricted, or extended with any other 
distinctive character (i.e. character not coinciding with any digit, 
logical value or delimiter). 

Letters do not have individual meaning. They are used for forming 
identifiers and strings (cf. sections 2.4, IDENTIFIERS, 2.6. STRINGS). 

2.2.1. DIGITS. 
<digit> ::= 0/1/2/3]4|5]6|7/8]9 

Digits are used for forming numbers, identifiers, and strings. 

2.2.2. LOGICAL VALUES. 
<logical value> ::= true| false 

The logical values have a fixed obvious meaning. 

2.3. DELIMITERS. 

<delimiter> ::= <operator> | <separator> | <bracket> | <declarator> | <specificator> 
<operator> ::= <arithmetic operator> |<relational operator> | 

<logical operator> |<sequential pperato 

+ 

  

    

<arithmetic operator> | ane | / | v 
<relational operator> < | & | = | 2 | > | 

    

    

  

   

<logical operator> a | > | Vv A | “+ 2 
<sequential operator> ::= go to|if/then! else|for|do 
<separator> 7 | ° | 40,122 3 cae | be | until | while | comment 
<bracket> : Cl) 1 EL] 17 | > | begin T ena 
<declarator> ::= own | cole: | integer | real | array | switch | procedure 
<specificator> ::= string | label | value 

Delimiters have a fixed meaning which for the most part is obvious, or 
else will be given at the appropriate place in the sequel. 

Typographical features such as blank space or change to a new line have 

no significance in the reference language. They may, however, be used freely 

for facilitating reading. 

1. It should be particularly noted that throughout the reference language 

underlining is used for defining independent basic symbols (see sections 

2.2.2 and 2,3). These are understood to have no relation to the individual 

letters of which they are composed. Within the present report underlining 

will be used for no other purpose. 

2. do is used in for statements. It has no relation whatsoever to the do of 
the preliminary report, which is not included in ALGOL 60.
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For the purpose of including text among the symbols of a program 

the following "comment" conventions hold: 

The sequence of basic symbols: is equivalent with 

3 comment <any sequence not containing ;>; ; 

begin comment <any sequence not containing 3>; begin 

end <any sequence not containing end or ; or else> end 

By equivalence is here meant that any of the three symbols shown in the 

right hand column may, in any occurrence outside of strings, be replaced 

by any sequence of symbols of the structure shown in the same line of the 

left hand column without any effect on the action of the program, 

2.4, IDENTIFIERS. 

2.4.1. Syntax. 
<identifier> ::= <letter>|<identifier><letter> <identifier><digit> 
2.4.2. Examples. qa 

Soup 

Vila 
a34kTMNs 
MARILYN 

2.4.3. Semantics. 
Identifiers have no inherent meaning, but serve for the identification 

of simple variables, arrays, labels, switches, and procedures. They may be 

chosen freely (cf. however section 3.2.4. STANDARD FUNCTIONS) . 
The same identifier cannot be used to denote two different quantities 

except when these quantities have disjoint scopes as defined by the decla- 

rations of the program (cf. section 2.7. QUANTITIES, KINDS AND SCOPES and 

section 5, DECLARATIONS). 

2.5. NUMBERS, 
2.5.1. Syntax. 

<unsigned integer> ::= <digit> |<unsigned integer><digit> 

<integer> ::= <unsigned integer> |+<unsigned integer>| -<unsigned integer> 

<decimal fraction> ::= .<unsigned integer> 

<exponent part> ::= ,<integer> 

<decimal number> <unsigned integer>|<decimal fraction>| 
<unsigned integer><decimal fraction> 

<unsigned number> ::= <decimal number» | <exponent part>| 

<decimal number><exponent part> 

<number> ::= <unsigned number> | +<unsigned number> | -<unsigned number> 

  

2.5.2. Examples. 0 -200,084 ~ 0839-02 

177 +07 43,8 ae 

25384 93h, gt10 ot 
+0.7300 24 tight 

2.5.3. Semantics. 
Decimal numbers have their conventional meaning. The exponent part is a 

scale factor expressed as an integral power of 10.
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2.54. Types. 
Integers are of type integer. All other numbers are of type real (cf. 

section 5.1. TYPE DECLARATIONS). 

2.6. STRINGS. 
2.6.1. Syntax. 
<proper string> ::= <any sequence of basic symbols not containing ‘ or ‘ >| 

<empty> 

<open string> ::= <proper string>|/<open string>’ |<open string><open string> 

<string> ::= ‘<open string>’ 
2.6.2. Examples, 

54, ,~([[[(am/2 Pt) 
‘,. This isa, ‘string’ 

2.6.3. Semantics. 
In order to enable the language to handle arbitrary sequences of basic 

symbols the string quotes ‘ and ‘ are introduced. The symbol , denotes a 
space. It has no significance outside strings. 

Strings are used as actual parameters of procedures (cf. sections 

3.2, FUNCTION DESIGNATORS and 4.7. PROCEDURE STATEMENTS) . 

2.7. QUANTITIES, KINDS AND SCOPES. 
The following kinds of quantities are distinguished: simple variables, 

arrays, labels, switches, and procedures. 
The scope of a quantity is the set of statements in which the decla- 

ration for the identifier associated with that quantity is valid, or, for 
labels, the set of statements which may have the statement in which the 
label occurs as their successor. 

2.8. VALUES AND TYPES. 
A value is an ordered set of numbers (special case: a single number), 

an ordered set of logical values (special case: a single logical value) , 

or a label. 

Certain of the syntactic units are said to possess values, These values 
will in general change during the execution of the program. The values of 
expressions and their constituents are defined in section 3. The value 
of an array identifier is the ordered set of values of the corresponding 
array of subscripted variables (cf. section 3.1.4.1). 

The various types (integer, real, Boolean) basically denote proper- 

ties of values. The types associated with syntactic units refer to the 
values of these units.
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3. EXPRESSIONS. 

In the language the primary constituents of the programs describing 

algorithmic processes are arithmetic, Boolean, and designational, expres- 
sions. Constituents of these expressions, except for certain delimiters, are 
logical values, numbers, variables, function designators, and elementary 
arithmetic, relational, logical, and sequential, operators. Since the syntac-— 
tic definition of both variables and function designators contains expressions, 
the definition of expressions, and their constituents, is necessarily recursive. 

<expression> ::= <arithmetic expression>|<Boolean expression> 

<designational expression> 

3.1. VARIABLES, 
3.1.1. Syntax. 
<variable identifier> ::= <identifier> 
<simple variable> : <variable identifier> 

<subscript expression> ::= <arithmetic expression> 

<subseript list> ::= <subscript expression> | 

<subscript list>,<subscript expression> 
<array identifier> ::= <identifier> 

<subscripted variable> ::= <array identifier>[<subscript list>] 
<variable> ::= <simple vartable> |<subscripted variable> 

  

3.1.2. Examples. epsilon 

detA 

al7 

ofr 2] 
x[sin(nxpi/2), @[3, n, 4]) 

3.1.3. Semantics, 

A variable is a designation given to a single value. This value may be 
used in expressions for forming other values and may be changed at will by 
means of assignment statements (section 4.2). The type of the value of a 

particular variable is defined in the declaration for the variable itself 
(cf. section 5.1. TYPE DECLARATIONS) or for the corresponding array identi- 
fier (cf. section 5.2. ARRAY DECLARATIONS) . 

3.1.4. Subscripts. 
3.1.4.1. Subscripted variables designate values which are components of 
multidimensional arrays (cf. section 5.2. ARRAY DECLARATIONS). Each arithme- 
tic expression of the subscript list occupies one subscript position of the 

subscripted variable, and is called a subscript. The complete list of sub- 

scripts is enclosed in the subscript brackets [ ]. The array component re- 
ferred to by a subscripted variable is specified by the actual numerical 

value of its subscripts (cf. section 3.3. ARITHMETIC EXPRESSIONS). 
3.1.4.2. Each subscript position acts like a variable of type integer and 
the evaluation of the subscript is understood to be equivalent to an assign- 

ment to this fictitious variable (cf. section 4.2.4). The value of the sub- 
scripted variable is defined only if the value of the subscript expression 
is within the subscript bounds of the array (cf. section 5.2. ARRAY DECLA- 
RATIONS) .
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3.2. FUNCTION DESIGNATORS. 
3.2.1. Syntax. 
<procedure identifier> ::= <identifier> 

<actual parameter> ::= <string> |<expression> | <array identifier> 

<switch identifier>|<procedure identifier> 

<letter string> ::= <letter>|/<letter string><letter> 
<parameter delimiter> ::= , | )<letter string> :( 
<actual parameter list> ::= <actual parameter> | 

<actual parameter list><parameter delimiter><actual parameter> 

<actual parameter part> ::= <empty> | (<actual parameter list>) 

<function designator> ::= <procedure identifier><actual parameter part> 

3.2.2. Examples. 

sin (a - b) 

J(v + s, n) 
R 

S(s - 5)Temperature:(T)Pressure:(P) 
Compile(‘ := ’ )Stack:(Q) 

3.2.3. Semantics. 

Function designators define single numerical or logical values, which 

result through the application of given sets of rules defined by a procedure 

declaration (cf. section 5.4. PROCEDURE DECLARATIONS) to fixed sets of 
actual parameters. The rules governing specification of actual parameters 

are given in section 4.7. PROCEDURE STATEMENTS. Not every procedure 

declaration defines the value of a function designator. 

3.2.4, Standard functions. 
Certain identifiers should be reserved for the standard functions of 

analysis, which will be expressed as procedures. It is recommended that 

this reserved list should contain: 
abs(E) for the modulus (absolute value) of the value of the ex- 

pression E 

sign(E) for the sign of the value of E (+1 for E>O, O for E=0, 

-1 for E<O) 
sqrt(E) for the square root of the value of E 
sin(E) for the sine of the value of E 
cos(B) for the cosine of the value of E 
arctan(E) for the principal value of the arctangent of the value of E 

1n(£) for the natural logarithm of the value of E 
exp(E) for the exponential function of the value of E (ex ve 

These functions are all understood to operate indifferently on arguments 

both of type real and integer. They will all yield values of type real, 
except for sign(E) which will have values of type integer. In a particular 

representation these functions may be available without explicit decla- 

rations (cf. section 5, DECLARATIONS). 

3.2.5. Transfer functions, 
It is understood that transfer functions between any pair of quantities 

and expressions may be defined. Among the standard functions it is recom- 

mended that there be one, namely 
entier(E), 

which "transfers" an expression of real type to one of integer type, and 
assigns to it the value which is the largest integer not greater than the 
value of E.
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3.3. ARITHMETIC EXPRESSIONS. 
3.31. Syntax. 
<adding operator> ::= + | - 
<multiplying operator> ::= x | / | + 
<primary> ::= <unsigned number> | <variable>|<function designator> | 

(<arithmetic expression>) 
<factor> ::= <primary> | <factor> <primary> 
<term> ::= <factor> | <term><multiplying operator><factor> 
<simple arithmetic expression> ::= <term> | <adding operator><term) | 

<simple arithmetic expression><adding operator><term> 
<if clause> ::= if <Boolean expression> then 
<arithmetic expression> ::= <simple arithmetic expression) | 

<if clause><simple arithmetic expression>else<arithmetic expression> 

3.3.2. Examples. 
Primaries: 

7394-8 
sum 
w[i+2 ,8] 
cos(y+zx3 
(a-3/y+vu]8) 

Factors: 
ome, 

*3) 
ran Sh La 81 a-3/y+vul8) 

Terms: 
U 
omegax sunifcos(y+zx3) /T 3h Bf w[li+2, 81{(a-3/ y+vul8) 

Simple arjthmetic expression: 
U-Yutomegaxsum|'cos(y+zx3) /7 239! 9-8 hw [442 8] (a-3/y+vuf8) 

Arithmetje expressions: 
wxu - Q(S+Cu)]2 
Af a>0 then S+3xQ/A else 2xS+3xq 
if a<O then U+V else if axb>17 then U/V else if kty then V/U else 0 
a x sin (amega x t) 
0.57_12 x a[N x (N ~ 1)/2, 0] 
(A x ae + 2) (7 + Q) 
if q then n-1 else n 
if, a<O then A/B else if b=0 then B/A else z 

3.3.3. Semantics. 
An arithmetic expression is a rule for computing a numerical value. In 

case of simple arithmetic expressions this value is obtained by executing 
the indicated arithmetic operations on the actual numerical values of the 
primaries of the expression, as explained in detail in section 3.3.4 below. 
The actual numerical value of a primary is cbvious in the case of numbers. 
For variables it is the current value (assigned last in the dynamic sense) , 
and for function designators it is the value arising from the computing rules 
defining the procedure (cf. section 5.4. PROCEDURE DECLARATIONS) when applied
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to the current values of the procedure parameters given in the expression, 

Finally, for arithmetic expressions enclosed in parentheses the value must 

through a recursive analysis be expressed in terms of the values of prima- 

ries of the other three kinds. 
In the more general arithmetic expressions, which include if clauses, 

one out of several simple arithmetic expressions is selected on the basis 

of the actual values of the Boolean expressions (cf. section 3.4. BOOLEAN 

EXPRESSIONS). This selection is made as follows: The Boolean expressions 

of the if clauses are evaluated one by one in sequence from left to right 

until one having the value true is found. The value of the arithmetic ex- 

pression is then the value of the first arithmetic expression following 

this Boolean (the largest arithmetic expression found in this position 

is understood). The construction: 
else <simple arithmetic expression> 

is equivalent to the construction: 

else if true then <simple arithmetic expression> 

3.3.4. Operators and types. 

Apart from the Boolean expressions of if clauses, the constituents of 

simple arithmetic expressions must be of types real or integer (ef. section 

5.1. TYPE DECLARATIONS). The meaning of the basic operators and the types 

of the expressions to which they lead are given by the following rules: 

3.3.4.1. The operators +, -, and x have the conventional meaning (addition, 

subtraction, and multiplication). The type of the expression will be in- 

teger if both of the operands are of integer type, otherwise real. 

3.3.4.2. The operations <term>/<factor> and <term>+#<factor> both denote 

division, to be understood as a multiplication of the term by the reci- 

procal of the factor with due regard to the rules of precedence (cf. sec- 

tion 3.3.5). Thus for example 

ajo x 7/(p - a) x v/s 
means “4 “1 “4 

((((a x (b-")) x 7) x ((p - a) )) x v) x (87) 
The operator / is defined for all four combinations of types real and 

integer and will yield results of real type in any case. The cperator + 

is defined only for two operands both of type integer and will yield a 

result of type integer defined as follows: 

a+b = sign(a/b) x entier(abs(a/b)) 
(cf. sections 3.2.4 and 3.2.5). 

3.3.4.3. The operation <factory|<primary> denotes exponentiation, where 

the factor is the base and the primary is the exponent. Thus for example 

2 7 n + k means (2) 
while m. 

2N(n 7 m) means 2m) 
Writing i for a number of integer type, r for a number of real type, and 

a for a number of either integer or real type, the result is given by the 

following rules: 

afi If i>0, axax. . . xa (i times), of the same type as a. 
If isO, if atO, 1, of the same type as a. 

if a=O, undefined. 

If i<O, if ato! 1/(axax. . . xa) (the denominator has 
-i factors), of type real. 

if a=O undefined.
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aly If a>O, exp(r x In(a)), of type real. 
If a=O, if r>O, 0.0, of type real. 

if r<O, undefined. 
If a<O, always undefined. 

3.3.5. Precedence of operators. 
The sequence of operations within one expression is generally from left 

to right, with the following additional rules: 

3.35.1. According to the syntax given in section 3.3.1 the following rules 
of precedence hold: 

first: 

second: x / # 
third: += 

3.35.2. The expression between a left parenthesis and the matching right 
parenthesis is evaluated by itself and this value is used in subsequent 
calculations. Consequently the desired order of execution of operations 
within an expression can always be arranged by appropriate positioning 

of parentheses. 

3.3.6. Arithmetics of real quantities. 
Numbers and variables of type real must be interpreted in the sense of 

numerical analysis, i.e. as entities defined inherently with only a finite 

accuracy. Similarly, the possibility of the occurrence of a finite deviation 
from the mathematically defined result in any arithmetic expression is 

explicitly understood. No exact arithmetic will be specified, however, 
and it is indeed understood that different hardware representations may 

evaluate arithmetic expressions differently. The control of the possible 

consequences of such differences must be carried out by the methods of 

numerical analysis. This control must be considered a part of the process 
to be described, and will therefore be expressed in terms of the language 
itself, 

3.4. BOOLEAN EXPRESSIONS. 
3.4.1. Syntax. 
<relational operator> ::= < |< |= | 2 | >| 4 
<relation> ::= 

<arithmetic expression><relational operator><arithmetic expression> 
<Boolean primary> ::= <logical value>|<variable>|<function designator> | 

<relation> | (<Boolean expressiocn>) 
<Boolean secondary> ::= <Boolean primary> | —<Boolean primary> 
<Boolean factor> ::= <Boolean secondary> | Boolean factor>A<Boolean secondary> 
<Boolean term> ::= <Boolean factor>|<Boolean term>v<Boolean factor> 
<implication> ::= <Boolean term) |<implication> > <Boolean term> 
<simple Boolean> ::= <implication> |<simple Boolean> = <implication> 
<Boolean expression> ::= <simple Boolean) | 

<if clause><simple Boolean> else <Boolean expression> 

3.4.2, Examples. x = -2 

DV v z2<q 
atb > 2 A 2-d > af2 

PQ V xFy 
g = 4aNdA-,cvdve > 4f 
if k<1 then s>w else h<c 
if if if a then b else c then d else f then g else h<k
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3.4.3. Semantics. 
A Boolean expression is a rule for computing a logical value. The 

principles of evaluation are entirely analogous to those given for 

arithmetic expressions in section 3.3.3. 

3.4.4. Types. 
Variables and function designators entered as Boolean primaries must 

be declared Boolean (cf. section 5.1. TYPE DECLARATIONS and section 5.4.4. 

VALUES OF FUNCTION DESIGNATORS) . 

3.4.5. The operators. 
Relations take on the value true whenever the corresponding relation 

is satisfied for the expressions involved, otherwise false. 
The meaning of the logical operators -— (not), A (and), v (or), 

> (implies), and = (equivalent), is given by the following function 
table. 

      

bi false false true true 
b2 false true false true 

—yb1i true true false ‘als. 
bi A b2 false false false true 

bi v b2 false true true ime 
bi > b2 true true false true 

bi = b2 true false false true 
  

3.4.6. Precedence of operators. 
The sequence of operations within one expression is generally from 

left to right, with the following additional rules: 

3.4.6.1. According to the syntax given in section 3.4.1 the following rules 
of precedence hold: 

first: arithmetic expressions according to section 5.3.5. 

second: < £€ = > > 

third: 4 

fourth: A 

fifth: Vv 

sixth: > 

seventh: = 

3.4.6.2. The use of parentheses will be interpreted in the sense given 

in section 3.3.5.2.
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3.5. DESIGNATIONAL EXPRESSIONS. 
3.5.1. Syntax. 

<label> ::= <identifier> |<unsigned integer> 
<switch identifier> ::= <identifier> 
<switch designator> ::= <switch identifier>[<subscript expression> | 
<simple designational expression> ::= <label> | <switch designator | 

(<designational expression>) 
<designational expression> ::= <simple designational expression) | 

<if clause><simple designational expression> 
else <designational expression> 
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Po 
Choose[n - 1] 
Town[if y<O then N else N+1] 
if Ab<c then 17 else q[if w<O then 2 else n] 

3.5.3. Semantics. 

A designational expression is a rule for obtaining a label of a 
statement (cf. section 4, STATEMENTS). Again the principle of the 
evaluation is entirely analogous to that of arithmetic expressions 

(section 3.3.3). In the general case the Boolean expressions of the 
if clauses will select a simple designational expression. If this is 
a label the desired result is already found. A switch designator refers 
to the corresponding switch declaration (cf. section 5.3. SWITCH 

DECLARATIONS) and by the actual numerical value of its subscript 
expression selects one of the designational expressions listed in the 

switch declaration by counting these from left to right. Since the 
designational expression thus selected may again be a switch designator 
this evaluation is obviously a recursive process. 

3.54. The subscript expression. 
The evaluation of the subscript expression is analogous to that of 

subscripted variables (cf. section 3.1.4.2). The value of a switch 
designator is defined only if the subscript expression assumes one of 
the positive values 1, 2, 3, ..- , n, where n is the number of entries 
in the switch list. 

1 

3.5.5. Unsigned integers as labels. 
Unsigned integers used as labels have the property that leading 

zeroes do not affect their meaning, e.g. 00217 denotes the same label 

as 217.
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4, STATEMENTS. 

The units of operation within the language are called statements. They 

will normally be executed consecutively as written. However, this sequence 
of operations may be broken by go to statements, which define their succes— 

sor explicitly, and shortened by conditional statements, which may cause 
certain statements to be skipped. 

In order to make it possible to define a specific dynamic succession, 

statements may be provided with labels, 
Since sequences of statements may be grouped together into compound 

statements and blocks the definition of statement must necessarily be re- 
cursive. Also since declarations, described in section 5, enter fundamen- 
tally into the syntactic structure, the syntactic definition of statements 

must suppose declarations to be already defined. 

4.1. COMPOUND STATEMENTS AND BLOCKS. 

4.1.1. Syntax. 
<unlabelled basic statement> ::= <assignment statement>|<go to statement) | 

<dummy statement> |<procedure statement> 
<basic statement> ::= <unlabelled basic statement>| 

<label>:<basic statement> 
<unconditional statement> ::= <basic statement>|<for statement>| 

<compound statement> |<block> 
<statement> ::= <unconditional statement>|<conditional statement> 
<compound tail> ::= <statement> end | <statement> 3 <compound tail> 
<block head> ::= egin<declaration> | <block head> 3 <declaration> 
<unlabelled compound> ::= begin <compound tail> 
<unlabelled block> ::= <block head> ; <compound tail> 
<compound statement> ::= <unlabelled compound> | <label> :<compound statement> 
<block> ::= <unlabelled block>|<lebel> : <block> 

This syntax may be illustrated as follows: Denoting arbitrary statements, 
declarations, and labels, by the letters S, D, and L, respectively, the 
basic syntactic units take the forms: 
Compound statement: 

L: L: ... beginS;S3;...S3 S end 

Block: 
Ll: L: ... beginD;D;..D3S3S3..-S3 S end 

It should be kept in mind that each of the statements S may again be a 

complete compound statement or block. 

4.1.2. Examples. 
Basic statements: 

aiptg 
go to Naples 

START: CONTINUE: W := 7.993 
Compound statement: 

begin x:=0 3 for y:= 1 step 1 until n do x:= x + Aly] 5 
if »>q then go to STOP else if x>w-2 then go to S 3 
Aw: St: W := x + bob end
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Block: 

for k: 

begin 

  

4.41.3, Semantics. 
Every block automatically introduces a new level of nomenclature. 

This is realized as follows: Any identifier occurring within the block 

may through a suitable declaration (cf. section 5. DECLARATIONS) be 
specified to be local to the block in question, This means (a) that the 

entity represented by this identifier inside the block has no existence 

outside it and (b) that any entity represented by this identifier cutside 

the block is completely inaccessible inside the block. 
Identifiers (except those representing labels) occurring within a 

block and not being declared to this block will be ncn-local to it, i.e. 

will represent the same entity inside the block and in the level immedia- 

tely outside it. The exception to this rule is presented by labels, which 

are local to the block in which they occur. 

Since a statement of a block may again itself be a block the concepts 

lcecal and non-local to a block must be understood recursively. Thus an 

identifier, which is non-local to a block A, may or may not be non-local 

to the block B in which A is one statement. 

4.2. ASSIGNMENT STATEMENTS. 

4.2.1. Syntax. 
<left part> ::= <variable>:= 

<left part list> ::= <left part>|<left part list><left part> 
<assignment statement> ::= <left part list><arithmetic expression>| 

<left part list><Boolean expression> 

4.2.2, Examples. 
s := p[O] :=n:=n+1+s 

    

At=B/C-v-qxS 
s[v, k+2] := 3 - arctan(s x zeta) 
V3=Q>YAZ 

4.2.3. Semantics. 
Assignment statements serve for assigning the value of an expression 

to one or several variables. The process will in the general case be under- 

stood to take place in three steps as follows: 

4.2.3.1. Any subscript expressions occurring in the left part variables are 

evaluated in sequence from left to right. 

4.2.3.2. The expression of the statement is evaluated. 

4.2.3.3. The value of the expression is assigned to all the left part varia- 

bles, with any subscript expressions having values as evaluated in step 

4.2.3.1.
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4.2.4, Types. 
All variables of a left part list must be of the same declared type. 

If the variables are Boolean the expression must likewise be Boolean. 
If the variables are of type real or integer the expression must be 
arithmetic. If the type of the arithmetic expression differs from that 
of the variables, appropriate transfer functions are understood to be 
automatically invoked. For transfer from real to integer type the 
transfer function is understood to yield a result equivalent to 

entier(E + 0.5) 
where E is the value of the expression. 

4.3. GO TO STATEMENTS. 

4.3.1. Syntax. 
<go to statement> ::= go to <designational expression> 

4.3.2. Examples. 
go to 8 
BO to watte +1] 
go to Tomf[if y<O then N else N+1] 
go to if Ab<c then 17 else qfif w<O then 2 else n] 

4.3.3. Semantics. 
A go to statement interrupts the normal sequence of operations, defined 

by the write-up of statements, by defining its successcr explicitly by the 
value of a designational expression. Thus the next statement to be executed 
will be the one having this value as its label. 

4.3.4, Restriction. 
Since labels are inherently local, no go to statement can lead from 

outside into a block, 

4.3.5. Go to an undefined switch designator. 
A go to statement is equivalent to a dummy statement if the designa- 

tional expression is a switch designator whose value is undefined. 

4.4, DUMMY STATEMENTS. 

ku.1. Syntax. 
<dummy statement> ::= <empty> 

4.4.2, Examples. 
L: 
begin... .- 3 John: end 

4.4.3, Semantics. 
A dummy statement executes no operation. It may serve to place 

a label,
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4.5. CONDITIONAL STATEMENTS, 

4.5.1. Syntax. 

<if clause> ::= if <Boolean expression> then 
<unconditional statement> ::= <basic statement>|<for statement) | 

<compound statement> | <block> 

<if statement> ::= <if clause><unconditional statement) | 
<label> : <if statement> 

<ecnditional statement> ::= <if statement>|<if statement> else <statement> 

4.5.2. Examples. 

  

  

  

Af xO then n := n+l 

if v>u then V: nim else go to R 
if s<OvP<Q then AA: begin if q<v =v y 

else if vs then a:=v-q else if v>s-1 then go to S 

4.5.3. Semantics. 
Conditional statements cause certain statements to be executed or 

skipped depending on the running values of specified Boolean expressions. 

4.5.3.1. If statement. 
The unconditional statement of an if statement will be executed if the 
Boolean expression of the if clause is true. Otherwise it will be skipped 
and the operation will be continued with the next statement. 

4.5.3.2. Conditional statement. 
According to the syntax two different forms of conditional statements are 

possible. These may be illustrated as follows: 

if Bi then Si else if B2 then S2 else S3 3; Sh 
and 

if B1 then S1 else if B2 then S2 else if B3 then S3 ; Sl 
Here Bi to B3 are Boolean expressions, while Sl to S3 are unconditional 
statements. S4 is the statement following the complete conditional state- 
ment. 

The execution of a conditional statement may be described as follows: 
The Boolean expression of the if clauses are evaluated one after the other 

in sequence from left to right until one yielding the value true is found. 
Then the unconditional statement following this Boolean is executed. 
Unless this statement defines its successor explicitly the next statement 
to be executed will be Sh, the statement following the complete conditional 
statement. Thus the effect of the delimiter else may be described by saying 
that it defines the successor of the statement it follows to be the state- 
ment following the complete conditional statement. 

The construction 
else <unconditional statement> 

is equivalent to 

else if true then <unconditional statement> 
If none of the Boolean expressions of the if clauses is true, the 

effect of the whole conditional statement will be equivalent to that of 
a dummy statement. 

For further explanation the following picture may be useful: 
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Bi false B2 false 

4.5.4. Go to into a conditional statement. 

The effect of a go to statement leading into a conditional state- 

ment follows directly from the above explanation of the effect of else. 

4.6, FOR STATEMENTS. 

4.6.1. Syntax. 
<for list element> ::= <arithmetic expression) | 

<arithmetic expression> step <arithmetic expression> until 

<arithmetic expression>| 
<arithmetic expression> while <Boolean expression> 

<for list) ::= <for list element>|<for list> , <for list element> 

<for clause> x <variable> := <for list> do 

<for statement> : <for clause><statement> | 

<label> : <for statement> 

  

   

  

4.6.2. Examples. : 

for q t= 1 step s until n do Alq] := Bla] 
for k := 1, Vi x 2 while V1 < N do 

for j := 1+G, L, 1 step 1 until N, C + D do a(k, 3] := Bk, 3] 
  

4.6.3. Semantics. 
A for clause causes the statement 3 which it precedes to be repeatedly 

executed zero or more times. In addition it performs a sequence of assign- 

ments to its controlled variable. The process may be visualized by means 

of the following picture: 

¥ 4 
Initialize ; test ; statement S ; advance ; successor 

or list exhausted 

In this picture the word initialize means: perform the first assignment 

cf the for clause. Advance means: perform the next assignment of the for 

clause. Test determines if the last assignment has been done. If so 

the execution continues with the successor of the for statement. If not 

the statement following the for clause is executed. 

4.6.4, The for list elements. 
The for list gives a rule for obtaining the values whicn are con- 

secutively assigned to the controlled variable. This sequence of values 

is obtained from the for list elements by taking these one by one in the 

order in which they are written. The sequence of values generated by each 

of the three species of for list elements and the corresponding execution 

of the statement S are given by the following rules:
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4.6.4.1. Arithmetic expression. This element gives rise to one value, 

namely the value of the given arithmetic expression as calculated imme- 

diately before the corresponding execution of the statement S. 

4.6.4.2, Step-until-element. An element for the form A step B until C, 
where A, B, and C, are arithmetic expressions, gives rise to an execution 

which may be described most concisely in terms of additional ALGOL state- 

ments as follows: 

Vi=A3 

Li:if (Vv - C)x sign(B) > O then go to Element exhausted; 
Statement S; 

Vi= V + B; 
go to Li; 

where V is the controlled variable of the for clause and Element exhausted 

points to the evaluation according to the next element in the for list, 

or if the step-until-element is the last of the list, to the next statement 

in the program. 

4.6.4.3, While-element. The execution governed by a for list element of 

the form E while F, where E is an arithmetic and F a Boolean expression, 

is most concisely described in terms of additional ALGOL statements as 

follows: 

  

   
if ZO to Element exhausted; 

Statement 5S; 
fo to L3; 

where the notation i> the same as in 4.6.4.2 above. 

4.6.5. The value of the ccntrolled variable upon exit. 

Upon exit out of the statement S (supposed to be compound) through 

& go to statement the value of the controlled variable will be the same 

as it was immediately preceding the execution of the go to statement. 

If the exit is due to exhaustion of the fcr list, on the other hand, 

the value of the controlled variable is undefined after the exit. 

6.6, Go to leading into a for statement. 
The effect of a go to statement, outside a for statement, which re- 

to a label within the for statement, is undefined, 

  

a
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4.7. PROCEDURE STATEMENTS, 

4.7.1. Syntax. 
<actual parameter> ::= <string> | <expressicn> | <array identifier> 

<switch identifier>|<procedure identifier> 
<letter string> ::= <letter>|<letter string><letter> 
<parameter delimiter> :: ' )<letter string>: 
<actual parameter list> = <actual parameter> 

<actual parameter list><parameter delimiter><actual parameter> 
<actual parameter part> = <empty> | (<actual parameter list>) 
<procedure statement> : <procedure identifier><actual parameter part> 

  

     

  

4.7.2. Examples. 
Spur (A)Order:(7) Result to:(v) 
Transpose (w, v+1) 

Absmax (A, N, M, Yy, I, kK) 
Innerproduct(A[t,P,u], B(P], 10, P, ¥) 

These examples correspond to examples given in section 5.4.2. 

4.7.3. Semantics. 
A procedure statement serves to invoke (call for) the execution of 

a procedure body (cf. section 5.4. PROCEDURE DECLARATIONS). Where the 
procedure body is a statement written in ALGOL the effect of this 
execution will be equivalent to the effect of performing the following 
Operations on the program: 

4.7.3.1. Value assignment (call by value). 
All formal parameters quoted in the value part of the procedure 

declaration heading are assigned the values (cf. section 2.8. VALUES 
AND TYPES) of the corresponding actual parameters, these assignments 
being considered as being performed explicitly before entering the 
procedure body. These formal parameters will subsequently be treated 
as local to the procedure body. 
4.7.3.2. Name replacement (call by name). 

Any formal parameter not quoted in the value list is replaced, 
throughout the procedure body, by the corresponding actual parameter, 
after enclosing this latter in parentheses wherever syntactically 
possible. Possible conflicts between identifiers inserted through 
this process and other identifiers already present within the procedure 
body will be avoided by suitable systematic changes of the formal 
or local identifiers involved. 
4.7.3.3. Body replacement and execution. 

Finally the procedure body, modified as above, is inserted in 
place of the procedure statement and executed. 

4.7.4. Actual-formal correspondence. 
The correspondence between the actual parameters of the procedure 

statement and the formal parameters of the procedure heading is 
established as follows: The actual parameter list of the procedure 
statement must have the same number of entries as the formal parameter 
list of the procedure declaration heading. The correspondence is ob- 
tained by taking the entries of these two lists in the same order,
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4.7.5. Restrictions. 
For a procedure statement to be defined it is evidently neces- 

sary that the operations on the procedure body defined in sections 
4.7.3.1 and 4.7.3.2 lead to a correct ALGOL statement. 

This poses the restriction on any procedure statement that 
the kind and type of each actual parameter be compatible with the kind 
and type of the corresponding formal parameter. Some important parti- 
cular cases of this general rule are the following: 
4.7.5.1. Strings cannot occur as actual parameters in procedure state- 

ments calling procedure declarations having ALGOL 60 statements as 

their bodies (cf. section 4.7.8). 
4.7.5.2. A formal parameter which occurs as a left part variable 
in an assignment statement within the procedure body and which is not 
called by value can only correspond to an actual parameter which is 

a variable (special case of expression). 
4.7.5.3. A formal parameter which is used within the procedure body 
as an array identifier can only correspond to an actual parameter 
which is an array identifier of an array of the same dimensions. 
In addition if the formal parameter is called by value the local 
array created during the call will have the same subscript bounds as 
the actual array. 

4.7.5.4. A formal parameter which is called by value cannot in gene- 
ral correspond to a switch identifier or a procedure identifier, 
because these latter do not possess values (the exception is the 
procedure identifier of a procedure declaration which has an empty 
formal parameter part (ef. section 5.4.1) and which defines the value 
of a function designator (cf. section 5.4.4). This procedure iden~ 
tifier is in itself a complete expressicn). 
4.7.5.5. Any formal parameter may have restrictions on the type of 

the corresponding actual parameter associated with it (these restric- 
tions may, or may nct, be given through specifications in the proce- 
dure heading). In the procedure statement such restrictions must 
evidently be observed. 

4.7.6. Non-local quantities of the body. 
A procedure statement written outside the scope of any non-local 

quantity of the procedure body is undefined. 

4.7.7. Parameter delimiters. 
All parameter delimiters are understood to be equivalent. No 

correspondence between the parameter delimiters used in a procedure 

statement and those used in the procedure heading is expected beyond 
their number being the same. Thus the information conveyed by using 

the elaborate ones is entirely optional, 

4.7.8. Procedure body expressed in code. 

The restrictions imposed on a procedure statement calling a 

procedure having its bcdy expressed in non-ALGOL code evidently can 
only be derived from the characteristics of the code used and the 
intent of the user and thus fall outside the scope of the reference 

language. 
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5. DECLARATIONS. 

Declarations serve to define certain properties of the identifiers of 
the program, A declaration for an identifier is valid for one block. Out- 
side this block the particular identifier may be used for other purposes 
(cf. section 4.1.3). 

Dynamically this implies the following: at the time of an entry 
into a block (through the begin, since the labels inside are local 
and therefore inaccessible from outside) all identifiers declared for 

the block assume the significance implied by the nature of the declarations 
given. If these identifiers had already been defined by other declarations 
outside they are for the time being given a new significance. Identifiers 
which are not declared for the block, on the other hand, retain their old 
meaning. 

At the time of an exit from a block (through end, or by a go to state- 
ment) all identifiers which are declared for the block lose their sig- 
nificance again. 

A declaration may be marked with the additional declarator ow. This 
has the following effect: upon a reentry into the block, the values 
of own quantities will be unchanged from their values at the last exit, 
while the values of declared variables which are not marked as own are 
undefined, Apart from labels and formal parameters of procedure declara- 

tions and with the possible exception of those for standard functions 

(cf. sections 3.2.4 and 3.2.5) all identifiers of a program must be de- 
clared. No identifier may be declared more than once in any one block 
head. 

Syntax. 

<declaration> ::= <type declaration>|<array declaration>| 
<switch declaration> | <procedure declaration> 

5.1. TYPE DECLARATIONS. 

5.1.1. Syntax. 
<type list> ::= <simple variable>|<simple variable>,<type list> 
<type> ::= real|integer|Boolean 
<local or own type> ::= <type>} om <type> 
<type declaration> ::= <local or own type><type list> 

  

5.1.2. Examples. 

integer p, q, § 
own Boolean Acryl, n 

5.1.3. Semantics. 

Type declarations serve to declare certain identifiers to represent 

simple variables of a given type. Real declared variables may only as- 

sume positive or negative values including zero. Integer declared varia- 

bles may only assume positive and negative integral values including zero. 

Boolean declared variables may only assume the values true and false. 

In arithmetic expressions any position which can be occupied by 

a@ real declared variable may be occupied by an integer declared variable. 

For the semantics of own, see the fourth paragraph of section 5 
above.
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5.2. ARRAY DECLARATIONS. 

5.2.1. Syntax. 

<lower bound> ::= <arithmetic expression> 
<upper bound> <arithmetic expression> 
<bound pair> <lower bound> : <upper bound> 
<bound pair list> ::= <bound pair> | <bound pair list> , <bound pair> 
<array segment> : <array identifier> [<bound pair list>] | 

<array identifier> , <array segment> 

<array list> ::= <array segment> | <array list> , <array segment> 
<array declaration> ::= array <array list>| 

<local or own type> array <array list> 

   

    

5.2.2. Examples. 
array a, b, c[7:n,2:m], s [-2:10] 
am integer array A[if c<O then 2 else 1 : 20] 
real array q[-7 : -1] 

5.2.3. Semantics. 

An array declaration declares one or several identifiers to represent 
multidimensional arrays of subscripted variables and gives the dimensions 
of the arrays, the bounds of the subscripts and the types of the variables. 

5.2.3.1. Subscript bounds. 
The subscript bounds for any array are given in the first subscript 

bracket following the identifier of this array in the form of a bound pair 
list. Each item of this list gives the lower and upper bound of a subscript 
in the form of two arithmetic expressions separated by the delimiter : 
The bound pair list gives the bounds of all subscripts taken in order from 
left to right. 

5020502. Dimensions. 
The dimensions are given as the number of entries in the bound pair 

lists, 

52.3.3. Types. 
All arrays declared in one declaration are of the same quoted type. 

If no type declarator is given the type real is understood. 

5.2.4, Lower upper bound expressions. 
5.2.4.1. The expressions will be evaluated in the same way as subscript 

expressions (cf. section 3.1.4.2). 
5.2.4.2. The expressions can only depend on variables and procedures which 
are non-local to the block for which the array declaration is valid. Conse- 
quently in the outermost block of a program only array declarations with 

constant bounds may be declared. 

5.2.4.3. An array is defined only when the values of all upper subscript 

bounds are not smaller than those of the corresponding lower bounds. 

5.2.4.4. The expressions will be evaluated once at each entrance into the 
block.
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5.2.5. The identity of subscripted variables. 
The identity of a subscripted variable is not related to the sub- 

script bounds given in the array declaration, However, even if an array 
is declared own the values of the corresponding subscripted variables 
will, at any time, be defined only for those of these variables which 
have subscripts within the most recently calculated subscript bounds. 

523. SWITCH DECLARATIONS. 

5.3.1. Syntax. 

<switch list> ::= <designational expression>| 
<switch list> , <designational expression> 

<switch declaration> ::= switch <switch identifier>:=<switch list>   

5.3.2. Examples. 
switch S := S1, S2, Q[m], if v>-5 then S3 else sh 
switch Q := pl, w 

525-5- Semantics. 

A switch declaration defines the values corresponding to a switch 
identifier. These values are given one by one as the values of the 
designational expressions entered in the switch list. With each of 
these designational expressions there is associated a positive integer, 
1, 2, ... , obtained by counting the items in the list from left to 
right. The value of the switch designator corresponding to a given 
value of the subscript expression (cf. section 3.5. DESIGNATIONAL EX- 
PRESSIONS) is the value of the designational expression in the switch 
list having this given value as its associated integer. 

5.3.4, Evaluation of expressions in the switch list. 
An expression in the switch list will be evaluated every time 

the item of the list in which the expression occurs is referred to, 
using the current values of all variables involved. 

5.35.5. Influence of scopes. 
Any reference to the value of a switch designator from outside 

the scope of any quantity entering into the designational expression 
for this particular value is undefined.
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5.4. PROCEDURE DECLARATIONS. 

5.4.1. Syntax. 
<formal parameter> ::= <identifier> 

<formal parameter list> ::= <formal parameter» | 

<formal parameter list><parameter delimiter><formal parameter> 

<formal parameter part> ::= <empty>|(<formal parameter list>) 

<identifier list> i:= <identifier>|<identifier list> , <identifier> 

<value part> value <identifier list> ; |<empty> 
<specifier> : stxing|<type> | array|<type> array | label | switch | 

procedure | <type> procedure 
<specification part> ::= <empty> 

<specifier><identifier list> ; 
<specification part><specifier><identifier list> ; 

<procedure heading> : <precedure identifier><formal parameter part>; 

<value part><specification part> 

<procedure body> ::= <statement> | <code> 

<procedure declaration> ::= 

procedure <procedure heading><procedure vody> | 

<type> procedure <procedure heading><procedure body> 

    

  

  

5.4.2, Examples (see also the examples at the end of the report)’. 

procedure Spur(a)Order:(n)Result:(s) ; value n ; 

array a ; integer n ; real s ; 

begin integer k ; 

s:= 0; 

for k := 1 step 1 until n do s := s + alk,k] 
end 

procedure Transpose(a)Order:(n) ; value rn ; 
array a ; integer n 3; 
begin real w ; integer i, k 
for i := 1 step 1 until n do 

  

end Transpose 

integer procedure Step(u) ; real u ; 
Step if O<uAu<i then 1 else 0 

  

procedure Absmax(a)size:(n,m)Result:(y)Subscripts:(i,k) ; 
comment The absolute greatest element of the matrix a, of size n by m 

is transferred to y, and the subscripts of this element to i and k ; 

array a 3; integer n, 

begin integer p, q 3 

y= O03 
for p := 1 step 1 until 

if abs(alp.al) > y # 

m, i, k 3 real y; 

= 5 O lo 
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procedure Innerproduct(a,b)Order:(k,p)Result:(y) 3 value k ; 
integer k,p ; real y,a,b 3 
begin real s 3 

s:= O03 

for := 1 step 1 until k dos :=s+axb 3 
yrs 
end Innerproduct 

5.4.3. Semantics. 
A procedure declaration serves to define the procedure associated 

with a procedure identifier. The principal constituent of a procedure 

declaration is a statement or a piece of code, the procedure body, which 

through the use of procedure statements and/or function designators may 

be activated from other parts of the block in the head of which the pro- 

cedure declaration appears. Associated with the body is a heading, which 

specifies certain identifiers occurring within the body to represent for- 
mal parameters. Formal parameters in the procedure body will, whenever 

the procedure is activated (cf. section 3.2. FUNCTION DESIGNATORS and 
section 4.7, PROCEDURE STATEMENTS) be assigned the values of or repla- 
ced by actual parameters. Identifiers in the procedure body which are 

not formal will be either local or non-local to the body depending on 

whether they are declared within the body or not. Those of them which 

are non-local to the body may well be local to the block in the head of 

which the procedure declaration appears. 

5.4.4. Values of function designators. 

For a procedure declaration to define the value of a function desig- 

nator there must, within the procedure body, occur an assignment of a 

value to the procedure identifier, and in addition the type of this value 

must be declared through the appearance of a type declarator as the 

very first symbol of the procedure declaration. 

Any other cccurrence of the procedure identifier within the procedure 
body denotes activation of the procedure. 

5.4.5. Specifications. 
In the heading a specification part, giving information about 

the kinds and types of the formal parameters by means of an obvious 

notatior , may be included, In this part no formal parameter may occur 

more than once and formal parameters called by name (cf. section 4.7.3.2) 
may be omitted altogether. 

5.4.6. Code as procedure body. 
It is understood that the procedure body may be expressed in 

non-ALGOL language. Since it is intended that the use of this feature 

should be entirely a question of hardware representation, no further 
rules concerning this code language can be given within the reference 

language.



EXAMPLES OF PROCEDURE DECLARATIONS. 35 

Example 1. 

procedure euler (fet, sum, eps, tim) ; value eps, tim ; integer tim ; 

real procedure fct ; real sum, eps ; 
comment euler computes the sum of fct(i) for i from: zero up to infinity 

by means of a suitably refined euler transformation. The summation is 

stopped as soon as tim times in succession the absolute value of the 

terms of the transformed series are found to be less than eps. Hence, 

one should provide a function fect with one integer argument, an upper 

bound eps, and an integer tim. The output is the sum sum. euler is 

particularly efficient in the case of a slowly convergent or divergent 

alternating series ; 

begin integer i, k, n, t ; array m[O:15] ; real mn, mp, ds 3 
i s=n i= t := 03 m[O} := fct(0) ; sum := mfol/2 
nextterm: i t= i+1 ; m fet(i) ; 

for k := O step 1 until n 
begin mp := (orval) (2 3 m[k] := mn 3 m := mp end means ; 

A 

  

      
N
e
 

if (abs(mn) < abs(m[n]))A(n<15) then 
begin ds := mn/2 ; n := ntl ; eh 

else ds := m ; 
sum := sum + ds 

if abs(ds) < eps then t:=t+1 else t := O 3 

if t<tim then go to nextterm 

end euler 

ah
 

:= mm end accept 

  

  

Example 2t ° 

procedure RK(x,y,n,FKT,eps,eta,xE,yE,fi) ; value x,y 3 integer n ; 

Boolean fi ; real x,eps,eta,xE ; array y, yE ; procedure FKT ; 

comment : RK integrates the system yy = Py, ¥4 Yor Vy) (k=1,2,..n) 

of differential equations with the method of Runge-Kutta with automatic 

search for appropriate length of integration step. Parameters are: 
The initial values x and y[k] for x and the unknown functions y,. (0). 

The order n of the system. The procedure FKT(x,y,n,z) which represents 

the system to be integrated, i.e. the set of functions f,. The tole- 
rance values eps and eta which govern the accuracy of the numerical 

integration. The end «* the integration interval xE. The output para- 

meter yE which represe.rcs the solution at x=xE. The Boolean variable 

fi, which must always be given the value true for an isolated or first 

entry into RK, If however the functions y must be available at several 

meshpoints Xor Xy1 eee: Xyy then the procedure must be called repeatedly 

(with x=x,, xB = x,,,, for k-0, 1, ... , n-1) and then the later calls 

  

1. This RK-program contains some new ideas which are related to ideas of 

S. Gill, A process for the step by step integration of differential 

equations in an automatic computing machine. Proc. Camb. Phil. Soc. 

Vol. 47 (1951) p. 96, and E. Fréberg, On the solution of ordinary dif- 
ferential equations with digital computing machines, Fysiograf, Sallsk. 

Lund, Forhdl. 20 Nr. 11 (1950) p. 136-152. It must be clear however 
that with respect to computing time and round-off errors it may not 

be optimal, nor has it actually been tested on a computer.
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may occur with fi = false which saves computing time. The input para- 
meters of FKT must be x,y,n, the output parameter z represents the set 
of derivatives z[k] = £,(x,y[1], y[2], ..., y[n]) for x and the actual 
y's. A procedure comp enters as a non-local identifier ; 
begin 

array 2,y1,y2,y3[1:n] ; real x1,x2,x3,H ; Boolean out ; 
integer k,j 3 om real s,Hs ; 
procedure RKisT(x,y,h,xe,ye) 3 Heal x,h,xe 3 array y,ye ; 

comment : RKIST integrates one single RUNGE-KUTTA step with 
initial values x,y[k] which yields the output parameters 
xe = x+h and ye[k], the latter being the solution at xe. 
IMPORTANT: the parameters n, FKT, z enter RKIST as non-local 
entities ; 
begin 

  

  

a[i] := a[2] :=a = afk] :=h ; 
xe t= xX 3 
for ki=1 step 1 until n do ye[k] := w[k] := y[k] ; 
for j:=1 step 1 until 4 do 
begin 

FKT(xe,win,z) 3 
xe r= x +alj] 3 
for k := 1 step 1 until n do 
begin 

w[k] s= vil + ald] x z[k] . 
ye[k] := ye[k] + alj+1] x ehel/s 

end k 
end j 

gnd RKIST ; 
BEGIN OF PROGRAM: 

AA: 

BB: 

if fi then begin H:=xE-x ; s := O end else H := Hs 3 
out := false ; 
Af (x+2.01xH-xE>O) = (H>O) then 
begin Hs := H 3 out := true 3 H := (xE-x)/2 end if ; 
RKIST(x,y,2xH,xt,y1) ; 
RKIST(x,y,H,x2,y2) 3 RKIST(x2,y2,H, x3,y3) 5 
for k := 1 step 1 until n do 

if comp(yi[k],y3[k],eta) > eps then go to cc ; 
comment : comp(a,b,c) is a function designator, the value of which 
is the absolute value of the difference of the mantissae of a and b 
after the exponents of these quantities have been made equal to the 
largest of the exponents of the originally given parameters a,b,c 3 
xX := x3 3; if out then go to DD 5 

= 1 step 1 until n do y[k] := y3[k] ; 
hen begin s:=0 3 H := 2xH end if ; 

  

    
  

i ; 
«5xH alse ; x1 := x2 ; 
t= 1 step 1 until n do yi[k] := y2[k] ; 

BB 3 
for k := 1 step 1 until n do yz[k] := y3[k]
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS. 

All references are given through section numbers. The references 
are given in three groups: 

def Following the abbreviation def reference to the syntactic definition 
(if any) is given. 

synt Following the abbreviation synt references to the occurrences in 
metalinguistic formulae are given. References already quoted in 
the def-group are not repeated. 

text Following the word text the references to definitions given in 
the text are given. 

The basic symbols represented by signs other than underlined words 
have been collected at the beginning. The examples have been ignored in 
compiling the index. 

+, see: plus 
, see: minus 

x, see: multiply 

, t, see: divide 
, see: exponentiation 
<,4,7,2,>, +, see: <relational operator> 
= 2,Vv%,A,4 see: <logical operator> 

see: comma 
+, see: decimal point 

see: ten 

2, see: colon 
see: semicolon 

see: colon equal 

see: space 
see: parentheses 

see: subscript bracket 

see: string quote 

' 

a
T
 

<actual parameter>, def 3.2.1, 4.7.4 
<actual parameter list>, def 3.2.1, 4.7.4 
<actual parameter part>, def 3.2.1, 4.7.1 
<adding operator>, def 3.3.1 
alphabet, text 2.1 
arithmetic, text 3.3.6 
<arithmetic expression>, def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1, 

4.6.1, 5.2.1 text 3.3.3 
<arithmetic operator>, def 2.3 text 3.3.4 
array, synt 2.3, 5.2.1, 5.4.1 
array, text 3.1.4.1 

<array declaration>, def 5.2.1 synt 5 text 5.2.3 
<array identifier>, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8 
<array list>, def 5.2.1 

<array segment>, def 5.2.1 

<assignment statement>, def 4.2.1 synt 4.1.1 text 1, 4.2.3
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<basic statement>, def 4.1.1 synt 4.5.1 
<basic symbol>, def 2 
begin, synt 2.3, 4.1.1 

<block>, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5 
<block head>, def 4.1.1 
Boolean, synt 2.3, 5.1.1 text 5.1.3 
<Boolean expression>, def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.) 
<Boolean factor>, def 3.4.1 
<Boolean primary>, def 3.4.1 
<Boolean secondary>, def 3.4.1 
<Boolean term>, def 3.4.1 
<bound pair>, def 5.2.1 
<bound pair list>, def 5.2.1 

<bracket>, def 2.3 
<code>, synt 5.4.1 text 4.7.8, 5.4.6 
colon: , synt 2.3, 3.2.1, 41.1, 4.5.1, 4.6.4, 4.7.1, 5.2.1 
colon equal := , synt 2. 3, 4.2 a1, 4.6.1, 5.3.1 
comma , , synt 2.3, 3.101, 3.2.1, 4.64, 407.1, 5.1.1, 5.2.1, 5.3.1, 5.l1 
comment, synt 2.3 
comment convention, text 2.3 

<compound statement>, def 4.1.1 synt 4.5.1 text 1 
<compound tail>, def 4.1.1 
<conditional statement>, def 4.5.1 synt 4.1.1 text 4.5.3 
<decimal fraction>, def 2.5.1 

<decimal number>, def 2.5.1 text 2.5.3 
decimal point . , synt 2.3, 2.5.1 

<declaration>, def 5 synt 4.1.1 text 1, 5 (complete section) 
<declarator>, def 2.3 
<delimiter>, def 2.3 synt 2 

<designational expression>, def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.5.3 
<digit>, def 2.2.1 synt 2, 2.4.1, 2.5.1 
dimension, text 5.2.3.2 
divide / 4, synt 2.3, 3.3.1 text 3.3.4.2 
do, synt 2.3, 4.6.1 
<dumiy statement>, def 4.4.1 synt 4.1.1 text 4.4.3 
else, synt 2.3, 3. ee 1, 3.451, 3.5.1, 4.5.1 text 4.5.3.2 

<empty>, def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1 
end, synt 2.3, 4.1. t 
entier, text em 3 

exponentiation , synt 2.3, 3.3.1 text 3.3.4.5 
<exponent part>, def 2.5.1 text 2.5.3 

<expression>, def 3 synt 3.2.1, 4.7.1 text 3 (complete section) 
<factor>, def 3.3.1 
false synt 2.2.2 
for, synt 2.3, 4.6.1 

<for clause>, def 4.6.1 text 4.6.3 
<for list>, def 4.6.1 text 4.6.4 
<for list element>, def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.5 
<formal parameter>, def 5.4.1 te ext 5.4.35 
<formal parameter list>, def 5.4.1 

<formal parameter part>. def 5.4.1 

<for statement>, def 4. 6.1 synt 4.1.1, 4.5.1 text 4.6 (complete section) 
<function designator, def 3. A 1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4
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go to, synt 2.3, 4.3.1 
<go to statement>, def 4.3.1 synt 4.1.1 
<identifier>, def 2.4.1 synt 3.1.1, 3.2. 
<identifier list>, def 544 

Af, synt 2.3, 3.3.1, 4.5.1 
<if clause>, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2 
<if statement>, def 4.5.1 text 4.5.3.1 
<implication>, def 3.4.1 
integer, synt 2.3, 5.1.1 text 5.1.3 

<integer>, def 2.5.1 text 2.54 

label, synt 2.3, 5.4.1 

<label>, def 3.5.1 synt 4.1.1, 4.5.1, 4.6.4 text 1, 4.1.3 
<left part>, def 4.2.4 
<left part list>, def 4.2.1 
<letter>, def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1 
<letter string>, def 3.2.1, 4.7.1 
local, text 4.1.3 

<local or own type>, def 5.1.1 synt 5.2.1 
<logical operator>, def 2.3 synt 3.4.1 text 3.4.5 
<logical value>, def 2.2.2 synt 2, 3.4.1 
<lower bound>, def 5.2.1 text 5.2.4 

non-local, text 4.1.3 
minus —- , synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1 
multiply x , synt 2.3, 3.3.1 text 3.3.4.1 
<multiplying operator>, def 3.3.1 

<number>, def 2.5.1 text 2.5.3, 2.5.4 
<open string>, def 2.6.1 
<operator>, def 2.3 

wm, synt 2.3, 5.1.1 text 5, 5.2.5 
<parameter delimiter>, def 3.2.1, 4.7.1 synt 5.4.1 + ° 
parentheses ( ), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4. 

text 3.3.5.2 
plus + , synt 2.3, 2.5.1, 3.3.1 text B31 

<primary>, def 3.3.1 
procedure, synt 2.3, 5.4.4 
<procedure body>, def 5.4.1 

text 
1,3 

43.3 
5.1, 5.4.1 text 2.4.3 

<procedure declaration>, def 5.4.1 synt 5 text 5.4.3 
<procedure heading>, def 5.4.1 text 5.4.3 
<procedure identifier> def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4 
<procedure statement>, def 4.7.1 synt 4.1.1 text 4.7.3 
program, text 1 

<proper string>, def 2.6.1 
quantity, text 2.7 
real, synt 2.3, 5.1.1 text 5.1.3 

<relation>, def 3.4.1 text 3.4.5 
“relational operator>, def 2.3, 3.4.1 
scope, text 2.7 
semicolon ;, synt 2.3, 4.1.1, 5.4.1 

<separator>, def 2.3 

<sequential operator>, def 2.3 
<simple arithmetic expression>, def 3.3.1 text 3.3.3 
<simple Boolean>, def 3.4.1 
<simple designational expression>, def 3.5.1 
<simple variable>, def 3.1.1 synt 5.1.1 text 2.4.3 
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